1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetTransformInfo.h"
79 #include "llvm/Config/llvm-config.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DerivedTypes.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/IRBuilder.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/OperandTraits.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/IR/ValueHandle.h"
101 #include "llvm/InitializePasses.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include "llvm/Transforms/Scalar.h"
111 #include "llvm/Transforms/Utils.h"
112 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
113 #include "llvm/Transforms/Utils/Local.h"
114 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cstddef>
118 #include <cstdint>
119 #include <cstdlib>
120 #include <iterator>
121 #include <limits>
122 #include <map>
123 #include <numeric>
124 #include <utility>
125 
126 using namespace llvm;
127 
128 #define DEBUG_TYPE "loop-reduce"
129 
130 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
131 /// bail out. This threshold is far beyond the number of users that LSR can
132 /// conceivably solve, so it should not affect generated code, but catches the
133 /// worst cases before LSR burns too much compile time and stack space.
134 static const unsigned MaxIVUsers = 200;
135 
136 // Temporary flag to cleanup congruent phis after LSR phi expansion.
137 // It's currently disabled until we can determine whether it's truly useful or
138 // not. The flag should be removed after the v3.0 release.
139 // This is now needed for ivchains.
140 static cl::opt<bool> EnablePhiElim(
141   "enable-lsr-phielim", cl::Hidden, cl::init(true),
142   cl::desc("Enable LSR phi elimination"));
143 
144 // The flag adds instruction count to solutions cost comparision.
145 static cl::opt<bool> InsnsCost(
146   "lsr-insns-cost", cl::Hidden, cl::init(true),
147   cl::desc("Add instruction count to a LSR cost model"));
148 
149 // Flag to choose how to narrow complex lsr solution
150 static cl::opt<bool> LSRExpNarrow(
151   "lsr-exp-narrow", cl::Hidden, cl::init(false),
152   cl::desc("Narrow LSR complex solution using"
153            " expectation of registers number"));
154 
155 // Flag to narrow search space by filtering non-optimal formulae with
156 // the same ScaledReg and Scale.
157 static cl::opt<bool> FilterSameScaledReg(
158     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
159     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
160              " with the same ScaledReg and Scale"));
161 
162 static cl::opt<bool> EnableBackedgeIndexing(
163   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
164   cl::desc("Enable the generation of cross iteration indexed memops"));
165 
166 static cl::opt<unsigned> ComplexityLimit(
167   "lsr-complexity-limit", cl::Hidden,
168   cl::init(std::numeric_limits<uint16_t>::max()),
169   cl::desc("LSR search space complexity limit"));
170 
171 static cl::opt<unsigned> SetupCostDepthLimit(
172     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
173     cl::desc("The limit on recursion depth for LSRs setup cost"));
174 
175 #ifndef NDEBUG
176 // Stress test IV chain generation.
177 static cl::opt<bool> StressIVChain(
178   "stress-ivchain", cl::Hidden, cl::init(false),
179   cl::desc("Stress test LSR IV chains"));
180 #else
181 static bool StressIVChain = false;
182 #endif
183 
184 namespace {
185 
186 struct MemAccessTy {
187   /// Used in situations where the accessed memory type is unknown.
188   static const unsigned UnknownAddressSpace =
189       std::numeric_limits<unsigned>::max();
190 
191   Type *MemTy = nullptr;
192   unsigned AddrSpace = UnknownAddressSpace;
193 
194   MemAccessTy() = default;
195   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
196 
197   bool operator==(MemAccessTy Other) const {
198     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
199   }
200 
201   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
202 
203   static MemAccessTy getUnknown(LLVMContext &Ctx,
204                                 unsigned AS = UnknownAddressSpace) {
205     return MemAccessTy(Type::getVoidTy(Ctx), AS);
206   }
207 
208   Type *getType() { return MemTy; }
209 };
210 
211 /// This class holds data which is used to order reuse candidates.
212 class RegSortData {
213 public:
214   /// This represents the set of LSRUse indices which reference
215   /// a particular register.
216   SmallBitVector UsedByIndices;
217 
218   void print(raw_ostream &OS) const;
219   void dump() const;
220 };
221 
222 } // end anonymous namespace
223 
224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
225 void RegSortData::print(raw_ostream &OS) const {
226   OS << "[NumUses=" << UsedByIndices.count() << ']';
227 }
228 
229 LLVM_DUMP_METHOD void RegSortData::dump() const {
230   print(errs()); errs() << '\n';
231 }
232 #endif
233 
234 namespace {
235 
236 /// Map register candidates to information about how they are used.
237 class RegUseTracker {
238   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
239 
240   RegUsesTy RegUsesMap;
241   SmallVector<const SCEV *, 16> RegSequence;
242 
243 public:
244   void countRegister(const SCEV *Reg, size_t LUIdx);
245   void dropRegister(const SCEV *Reg, size_t LUIdx);
246   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
247 
248   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
249 
250   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
251 
252   void clear();
253 
254   using iterator = SmallVectorImpl<const SCEV *>::iterator;
255   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
256 
257   iterator begin() { return RegSequence.begin(); }
258   iterator end()   { return RegSequence.end(); }
259   const_iterator begin() const { return RegSequence.begin(); }
260   const_iterator end() const   { return RegSequence.end(); }
261 };
262 
263 } // end anonymous namespace
264 
265 void
266 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
267   std::pair<RegUsesTy::iterator, bool> Pair =
268     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
269   RegSortData &RSD = Pair.first->second;
270   if (Pair.second)
271     RegSequence.push_back(Reg);
272   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
273   RSD.UsedByIndices.set(LUIdx);
274 }
275 
276 void
277 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
278   RegUsesTy::iterator It = RegUsesMap.find(Reg);
279   assert(It != RegUsesMap.end());
280   RegSortData &RSD = It->second;
281   assert(RSD.UsedByIndices.size() > LUIdx);
282   RSD.UsedByIndices.reset(LUIdx);
283 }
284 
285 void
286 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
287   assert(LUIdx <= LastLUIdx);
288 
289   // Update RegUses. The data structure is not optimized for this purpose;
290   // we must iterate through it and update each of the bit vectors.
291   for (auto &Pair : RegUsesMap) {
292     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
293     if (LUIdx < UsedByIndices.size())
294       UsedByIndices[LUIdx] =
295         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
296     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
297   }
298 }
299 
300 bool
301 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
302   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
303   if (I == RegUsesMap.end())
304     return false;
305   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
306   int i = UsedByIndices.find_first();
307   if (i == -1) return false;
308   if ((size_t)i != LUIdx) return true;
309   return UsedByIndices.find_next(i) != -1;
310 }
311 
312 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
313   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
314   assert(I != RegUsesMap.end() && "Unknown register!");
315   return I->second.UsedByIndices;
316 }
317 
318 void RegUseTracker::clear() {
319   RegUsesMap.clear();
320   RegSequence.clear();
321 }
322 
323 namespace {
324 
325 /// This class holds information that describes a formula for computing
326 /// satisfying a use. It may include broken-out immediates and scaled registers.
327 struct Formula {
328   /// Global base address used for complex addressing.
329   GlobalValue *BaseGV = nullptr;
330 
331   /// Base offset for complex addressing.
332   int64_t BaseOffset = 0;
333 
334   /// Whether any complex addressing has a base register.
335   bool HasBaseReg = false;
336 
337   /// The scale of any complex addressing.
338   int64_t Scale = 0;
339 
340   /// The list of "base" registers for this use. When this is non-empty. The
341   /// canonical representation of a formula is
342   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
343   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
344   /// 3. The reg containing recurrent expr related with currect loop in the
345   /// formula should be put in the ScaledReg.
346   /// #1 enforces that the scaled register is always used when at least two
347   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
348   /// #2 enforces that 1 * reg is reg.
349   /// #3 ensures invariant regs with respect to current loop can be combined
350   /// together in LSR codegen.
351   /// This invariant can be temporarily broken while building a formula.
352   /// However, every formula inserted into the LSRInstance must be in canonical
353   /// form.
354   SmallVector<const SCEV *, 4> BaseRegs;
355 
356   /// The 'scaled' register for this use. This should be non-null when Scale is
357   /// not zero.
358   const SCEV *ScaledReg = nullptr;
359 
360   /// An additional constant offset which added near the use. This requires a
361   /// temporary register, but the offset itself can live in an add immediate
362   /// field rather than a register.
363   int64_t UnfoldedOffset = 0;
364 
365   Formula() = default;
366 
367   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
368 
369   bool isCanonical(const Loop &L) const;
370 
371   void canonicalize(const Loop &L);
372 
373   bool unscale();
374 
375   bool hasZeroEnd() const;
376 
377   size_t getNumRegs() const;
378   Type *getType() const;
379 
380   void deleteBaseReg(const SCEV *&S);
381 
382   bool referencesReg(const SCEV *S) const;
383   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
384                                   const RegUseTracker &RegUses) const;
385 
386   void print(raw_ostream &OS) const;
387   void dump() const;
388 };
389 
390 } // end anonymous namespace
391 
392 /// Recursion helper for initialMatch.
393 static void DoInitialMatch(const SCEV *S, Loop *L,
394                            SmallVectorImpl<const SCEV *> &Good,
395                            SmallVectorImpl<const SCEV *> &Bad,
396                            ScalarEvolution &SE) {
397   // Collect expressions which properly dominate the loop header.
398   if (SE.properlyDominates(S, L->getHeader())) {
399     Good.push_back(S);
400     return;
401   }
402 
403   // Look at add operands.
404   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
405     for (const SCEV *S : Add->operands())
406       DoInitialMatch(S, L, Good, Bad, SE);
407     return;
408   }
409 
410   // Look at addrec operands.
411   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
412     if (!AR->getStart()->isZero() && AR->isAffine()) {
413       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
414       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
415                                       AR->getStepRecurrence(SE),
416                                       // FIXME: AR->getNoWrapFlags()
417                                       AR->getLoop(), SCEV::FlagAnyWrap),
418                      L, Good, Bad, SE);
419       return;
420     }
421 
422   // Handle a multiplication by -1 (negation) if it didn't fold.
423   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
424     if (Mul->getOperand(0)->isAllOnesValue()) {
425       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
426       const SCEV *NewMul = SE.getMulExpr(Ops);
427 
428       SmallVector<const SCEV *, 4> MyGood;
429       SmallVector<const SCEV *, 4> MyBad;
430       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
431       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
432         SE.getEffectiveSCEVType(NewMul->getType())));
433       for (const SCEV *S : MyGood)
434         Good.push_back(SE.getMulExpr(NegOne, S));
435       for (const SCEV *S : MyBad)
436         Bad.push_back(SE.getMulExpr(NegOne, S));
437       return;
438     }
439 
440   // Ok, we can't do anything interesting. Just stuff the whole thing into a
441   // register and hope for the best.
442   Bad.push_back(S);
443 }
444 
445 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
446 /// all loop-invariant and loop-computable values in a single base register.
447 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
448   SmallVector<const SCEV *, 4> Good;
449   SmallVector<const SCEV *, 4> Bad;
450   DoInitialMatch(S, L, Good, Bad, SE);
451   if (!Good.empty()) {
452     const SCEV *Sum = SE.getAddExpr(Good);
453     if (!Sum->isZero())
454       BaseRegs.push_back(Sum);
455     HasBaseReg = true;
456   }
457   if (!Bad.empty()) {
458     const SCEV *Sum = SE.getAddExpr(Bad);
459     if (!Sum->isZero())
460       BaseRegs.push_back(Sum);
461     HasBaseReg = true;
462   }
463   canonicalize(*L);
464 }
465 
466 /// Check whether or not this formula satisfies the canonical
467 /// representation.
468 /// \see Formula::BaseRegs.
469 bool Formula::isCanonical(const Loop &L) const {
470   if (!ScaledReg)
471     return BaseRegs.size() <= 1;
472 
473   if (Scale != 1)
474     return true;
475 
476   if (Scale == 1 && BaseRegs.empty())
477     return false;
478 
479   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
480   if (SAR && SAR->getLoop() == &L)
481     return true;
482 
483   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
484   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
485   // loop, we want to swap the reg in BaseRegs with ScaledReg.
486   auto I =
487       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
488         return isa<const SCEVAddRecExpr>(S) &&
489                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
490       });
491   return I == BaseRegs.end();
492 }
493 
494 /// Helper method to morph a formula into its canonical representation.
495 /// \see Formula::BaseRegs.
496 /// Every formula having more than one base register, must use the ScaledReg
497 /// field. Otherwise, we would have to do special cases everywhere in LSR
498 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
499 /// On the other hand, 1*reg should be canonicalized into reg.
500 void Formula::canonicalize(const Loop &L) {
501   if (isCanonical(L))
502     return;
503   // So far we did not need this case. This is easy to implement but it is
504   // useless to maintain dead code. Beside it could hurt compile time.
505   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
506 
507   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
508   if (!ScaledReg) {
509     ScaledReg = BaseRegs.back();
510     BaseRegs.pop_back();
511     Scale = 1;
512   }
513 
514   // If ScaledReg is an invariant with respect to L, find the reg from
515   // BaseRegs containing the recurrent expr related with Loop L. Swap the
516   // reg with ScaledReg.
517   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
518   if (!SAR || SAR->getLoop() != &L) {
519     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
520                      [&](const SCEV *S) {
521                        return isa<const SCEVAddRecExpr>(S) &&
522                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
523                      });
524     if (I != BaseRegs.end())
525       std::swap(ScaledReg, *I);
526   }
527 }
528 
529 /// Get rid of the scale in the formula.
530 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
531 /// \return true if it was possible to get rid of the scale, false otherwise.
532 /// \note After this operation the formula may not be in the canonical form.
533 bool Formula::unscale() {
534   if (Scale != 1)
535     return false;
536   Scale = 0;
537   BaseRegs.push_back(ScaledReg);
538   ScaledReg = nullptr;
539   return true;
540 }
541 
542 bool Formula::hasZeroEnd() const {
543   if (UnfoldedOffset || BaseOffset)
544     return false;
545   if (BaseRegs.size() != 1 || ScaledReg)
546     return false;
547   return true;
548 }
549 
550 /// Return the total number of register operands used by this formula. This does
551 /// not include register uses implied by non-constant addrec strides.
552 size_t Formula::getNumRegs() const {
553   return !!ScaledReg + BaseRegs.size();
554 }
555 
556 /// Return the type of this formula, if it has one, or null otherwise. This type
557 /// is meaningless except for the bit size.
558 Type *Formula::getType() const {
559   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
560          ScaledReg ? ScaledReg->getType() :
561          BaseGV ? BaseGV->getType() :
562          nullptr;
563 }
564 
565 /// Delete the given base reg from the BaseRegs list.
566 void Formula::deleteBaseReg(const SCEV *&S) {
567   if (&S != &BaseRegs.back())
568     std::swap(S, BaseRegs.back());
569   BaseRegs.pop_back();
570 }
571 
572 /// Test if this formula references the given register.
573 bool Formula::referencesReg(const SCEV *S) const {
574   return S == ScaledReg || is_contained(BaseRegs, S);
575 }
576 
577 /// Test whether this formula uses registers which are used by uses other than
578 /// the use with the given index.
579 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
580                                          const RegUseTracker &RegUses) const {
581   if (ScaledReg)
582     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
583       return true;
584   for (const SCEV *BaseReg : BaseRegs)
585     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
586       return true;
587   return false;
588 }
589 
590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591 void Formula::print(raw_ostream &OS) const {
592   bool First = true;
593   if (BaseGV) {
594     if (!First) OS << " + "; else First = false;
595     BaseGV->printAsOperand(OS, /*PrintType=*/false);
596   }
597   if (BaseOffset != 0) {
598     if (!First) OS << " + "; else First = false;
599     OS << BaseOffset;
600   }
601   for (const SCEV *BaseReg : BaseRegs) {
602     if (!First) OS << " + "; else First = false;
603     OS << "reg(" << *BaseReg << ')';
604   }
605   if (HasBaseReg && BaseRegs.empty()) {
606     if (!First) OS << " + "; else First = false;
607     OS << "**error: HasBaseReg**";
608   } else if (!HasBaseReg && !BaseRegs.empty()) {
609     if (!First) OS << " + "; else First = false;
610     OS << "**error: !HasBaseReg**";
611   }
612   if (Scale != 0) {
613     if (!First) OS << " + "; else First = false;
614     OS << Scale << "*reg(";
615     if (ScaledReg)
616       OS << *ScaledReg;
617     else
618       OS << "<unknown>";
619     OS << ')';
620   }
621   if (UnfoldedOffset != 0) {
622     if (!First) OS << " + ";
623     OS << "imm(" << UnfoldedOffset << ')';
624   }
625 }
626 
627 LLVM_DUMP_METHOD void Formula::dump() const {
628   print(errs()); errs() << '\n';
629 }
630 #endif
631 
632 /// Return true if the given addrec can be sign-extended without changing its
633 /// value.
634 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
635   Type *WideTy =
636     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
637   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
638 }
639 
640 /// Return true if the given add can be sign-extended without changing its
641 /// value.
642 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
643   Type *WideTy =
644     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
645   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
646 }
647 
648 /// Return true if the given mul can be sign-extended without changing its
649 /// value.
650 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
651   Type *WideTy =
652     IntegerType::get(SE.getContext(),
653                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
654   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
655 }
656 
657 /// Return an expression for LHS /s RHS, if it can be determined and if the
658 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
659 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
660 /// the multiplication may overflow, which is useful when the result will be
661 /// used in a context where the most significant bits are ignored.
662 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
663                                 ScalarEvolution &SE,
664                                 bool IgnoreSignificantBits = false) {
665   // Handle the trivial case, which works for any SCEV type.
666   if (LHS == RHS)
667     return SE.getConstant(LHS->getType(), 1);
668 
669   // Handle a few RHS special cases.
670   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
671   if (RC) {
672     const APInt &RA = RC->getAPInt();
673     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
674     // some folding.
675     if (RA.isAllOnesValue())
676       return SE.getMulExpr(LHS, RC);
677     // Handle x /s 1 as x.
678     if (RA == 1)
679       return LHS;
680   }
681 
682   // Check for a division of a constant by a constant.
683   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
684     if (!RC)
685       return nullptr;
686     const APInt &LA = C->getAPInt();
687     const APInt &RA = RC->getAPInt();
688     if (LA.srem(RA) != 0)
689       return nullptr;
690     return SE.getConstant(LA.sdiv(RA));
691   }
692 
693   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
694   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
695     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
696       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
697                                       IgnoreSignificantBits);
698       if (!Step) return nullptr;
699       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
700                                        IgnoreSignificantBits);
701       if (!Start) return nullptr;
702       // FlagNW is independent of the start value, step direction, and is
703       // preserved with smaller magnitude steps.
704       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
705       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
706     }
707     return nullptr;
708   }
709 
710   // Distribute the sdiv over add operands, if the add doesn't overflow.
711   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
712     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
713       SmallVector<const SCEV *, 8> Ops;
714       for (const SCEV *S : Add->operands()) {
715         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
716         if (!Op) return nullptr;
717         Ops.push_back(Op);
718       }
719       return SE.getAddExpr(Ops);
720     }
721     return nullptr;
722   }
723 
724   // Check for a multiply operand that we can pull RHS out of.
725   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
726     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
727       SmallVector<const SCEV *, 4> Ops;
728       bool Found = false;
729       for (const SCEV *S : Mul->operands()) {
730         if (!Found)
731           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
732                                            IgnoreSignificantBits)) {
733             S = Q;
734             Found = true;
735           }
736         Ops.push_back(S);
737       }
738       return Found ? SE.getMulExpr(Ops) : nullptr;
739     }
740     return nullptr;
741   }
742 
743   // Otherwise we don't know.
744   return nullptr;
745 }
746 
747 /// If S involves the addition of a constant integer value, return that integer
748 /// value, and mutate S to point to a new SCEV with that value excluded.
749 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
750   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
751     if (C->getAPInt().getMinSignedBits() <= 64) {
752       S = SE.getConstant(C->getType(), 0);
753       return C->getValue()->getSExtValue();
754     }
755   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
756     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
757     int64_t Result = ExtractImmediate(NewOps.front(), SE);
758     if (Result != 0)
759       S = SE.getAddExpr(NewOps);
760     return Result;
761   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
762     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
763     int64_t Result = ExtractImmediate(NewOps.front(), SE);
764     if (Result != 0)
765       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
766                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
767                            SCEV::FlagAnyWrap);
768     return Result;
769   }
770   return 0;
771 }
772 
773 /// If S involves the addition of a GlobalValue address, return that symbol, and
774 /// mutate S to point to a new SCEV with that value excluded.
775 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
776   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
777     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
778       S = SE.getConstant(GV->getType(), 0);
779       return GV;
780     }
781   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
782     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
783     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
784     if (Result)
785       S = SE.getAddExpr(NewOps);
786     return Result;
787   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
788     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
789     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
790     if (Result)
791       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
792                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
793                            SCEV::FlagAnyWrap);
794     return Result;
795   }
796   return nullptr;
797 }
798 
799 /// Returns true if the specified instruction is using the specified value as an
800 /// address.
801 static bool isAddressUse(const TargetTransformInfo &TTI,
802                          Instruction *Inst, Value *OperandVal) {
803   bool isAddress = isa<LoadInst>(Inst);
804   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
805     if (SI->getPointerOperand() == OperandVal)
806       isAddress = true;
807   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
808     // Addressing modes can also be folded into prefetches and a variety
809     // of intrinsics.
810     switch (II->getIntrinsicID()) {
811     case Intrinsic::memset:
812     case Intrinsic::prefetch:
813     case Intrinsic::masked_load:
814       if (II->getArgOperand(0) == OperandVal)
815         isAddress = true;
816       break;
817     case Intrinsic::masked_store:
818       if (II->getArgOperand(1) == OperandVal)
819         isAddress = true;
820       break;
821     case Intrinsic::memmove:
822     case Intrinsic::memcpy:
823       if (II->getArgOperand(0) == OperandVal ||
824           II->getArgOperand(1) == OperandVal)
825         isAddress = true;
826       break;
827     default: {
828       MemIntrinsicInfo IntrInfo;
829       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
830         if (IntrInfo.PtrVal == OperandVal)
831           isAddress = true;
832       }
833     }
834     }
835   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
836     if (RMW->getPointerOperand() == OperandVal)
837       isAddress = true;
838   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
839     if (CmpX->getPointerOperand() == OperandVal)
840       isAddress = true;
841   }
842   return isAddress;
843 }
844 
845 /// Return the type of the memory being accessed.
846 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
847                                  Instruction *Inst, Value *OperandVal) {
848   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
849   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
850     AccessTy.MemTy = SI->getOperand(0)->getType();
851     AccessTy.AddrSpace = SI->getPointerAddressSpace();
852   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
853     AccessTy.AddrSpace = LI->getPointerAddressSpace();
854   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
855     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
856   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
857     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
858   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859     switch (II->getIntrinsicID()) {
860     case Intrinsic::prefetch:
861     case Intrinsic::memset:
862       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
863       AccessTy.MemTy = OperandVal->getType();
864       break;
865     case Intrinsic::memmove:
866     case Intrinsic::memcpy:
867       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
868       AccessTy.MemTy = OperandVal->getType();
869       break;
870     case Intrinsic::masked_load:
871       AccessTy.AddrSpace =
872           II->getArgOperand(0)->getType()->getPointerAddressSpace();
873       break;
874     case Intrinsic::masked_store:
875       AccessTy.MemTy = II->getOperand(0)->getType();
876       AccessTy.AddrSpace =
877           II->getArgOperand(1)->getType()->getPointerAddressSpace();
878       break;
879     default: {
880       MemIntrinsicInfo IntrInfo;
881       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
882         AccessTy.AddrSpace
883           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
884       }
885 
886       break;
887     }
888     }
889   }
890 
891   // All pointers have the same requirements, so canonicalize them to an
892   // arbitrary pointer type to minimize variation.
893   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
894     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
895                                       PTy->getAddressSpace());
896 
897   return AccessTy;
898 }
899 
900 /// Return true if this AddRec is already a phi in its loop.
901 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
902   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
903     if (SE.isSCEVable(PN.getType()) &&
904         (SE.getEffectiveSCEVType(PN.getType()) ==
905          SE.getEffectiveSCEVType(AR->getType())) &&
906         SE.getSCEV(&PN) == AR)
907       return true;
908   }
909   return false;
910 }
911 
912 /// Check if expanding this expression is likely to incur significant cost. This
913 /// is tricky because SCEV doesn't track which expressions are actually computed
914 /// by the current IR.
915 ///
916 /// We currently allow expansion of IV increments that involve adds,
917 /// multiplication by constants, and AddRecs from existing phis.
918 ///
919 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
920 /// obvious multiple of the UDivExpr.
921 static bool isHighCostExpansion(const SCEV *S,
922                                 SmallPtrSetImpl<const SCEV*> &Processed,
923                                 ScalarEvolution &SE) {
924   // Zero/One operand expressions
925   switch (S->getSCEVType()) {
926   case scUnknown:
927   case scConstant:
928     return false;
929   case scTruncate:
930     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
931                                Processed, SE);
932   case scZeroExtend:
933     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
934                                Processed, SE);
935   case scSignExtend:
936     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
937                                Processed, SE);
938   }
939 
940   if (!Processed.insert(S).second)
941     return false;
942 
943   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
944     for (const SCEV *S : Add->operands()) {
945       if (isHighCostExpansion(S, Processed, SE))
946         return true;
947     }
948     return false;
949   }
950 
951   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
952     if (Mul->getNumOperands() == 2) {
953       // Multiplication by a constant is ok
954       if (isa<SCEVConstant>(Mul->getOperand(0)))
955         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
956 
957       // If we have the value of one operand, check if an existing
958       // multiplication already generates this expression.
959       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
960         Value *UVal = U->getValue();
961         for (User *UR : UVal->users()) {
962           // If U is a constant, it may be used by a ConstantExpr.
963           Instruction *UI = dyn_cast<Instruction>(UR);
964           if (UI && UI->getOpcode() == Instruction::Mul &&
965               SE.isSCEVable(UI->getType())) {
966             return SE.getSCEV(UI) == Mul;
967           }
968         }
969       }
970     }
971   }
972 
973   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
974     if (isExistingPhi(AR, SE))
975       return false;
976   }
977 
978   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
979   return true;
980 }
981 
982 namespace {
983 
984 class LSRUse;
985 
986 } // end anonymous namespace
987 
988 /// Check if the addressing mode defined by \p F is completely
989 /// folded in \p LU at isel time.
990 /// This includes address-mode folding and special icmp tricks.
991 /// This function returns true if \p LU can accommodate what \p F
992 /// defines and up to 1 base + 1 scaled + offset.
993 /// In other words, if \p F has several base registers, this function may
994 /// still return true. Therefore, users still need to account for
995 /// additional base registers and/or unfolded offsets to derive an
996 /// accurate cost model.
997 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
998                                  const LSRUse &LU, const Formula &F);
999 
1000 // Get the cost of the scaling factor used in F for LU.
1001 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1002                                      const LSRUse &LU, const Formula &F,
1003                                      const Loop &L);
1004 
1005 namespace {
1006 
1007 /// This class is used to measure and compare candidate formulae.
1008 class Cost {
1009   const Loop *L = nullptr;
1010   ScalarEvolution *SE = nullptr;
1011   const TargetTransformInfo *TTI = nullptr;
1012   TargetTransformInfo::LSRCost C;
1013 
1014 public:
1015   Cost() = delete;
1016   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1017     L(L), SE(&SE), TTI(&TTI) {
1018     C.Insns = 0;
1019     C.NumRegs = 0;
1020     C.AddRecCost = 0;
1021     C.NumIVMuls = 0;
1022     C.NumBaseAdds = 0;
1023     C.ImmCost = 0;
1024     C.SetupCost = 0;
1025     C.ScaleCost = 0;
1026   }
1027 
1028   bool isLess(Cost &Other);
1029 
1030   void Lose();
1031 
1032 #ifndef NDEBUG
1033   // Once any of the metrics loses, they must all remain losers.
1034   bool isValid() {
1035     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1036              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1037       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1038            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1039   }
1040 #endif
1041 
1042   bool isLoser() {
1043     assert(isValid() && "invalid cost");
1044     return C.NumRegs == ~0u;
1045   }
1046 
1047   void RateFormula(const Formula &F,
1048                    SmallPtrSetImpl<const SCEV *> &Regs,
1049                    const DenseSet<const SCEV *> &VisitedRegs,
1050                    const LSRUse &LU,
1051                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1052 
1053   void print(raw_ostream &OS) const;
1054   void dump() const;
1055 
1056 private:
1057   void RateRegister(const Formula &F, const SCEV *Reg,
1058                     SmallPtrSetImpl<const SCEV *> &Regs);
1059   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1060                            SmallPtrSetImpl<const SCEV *> &Regs,
1061                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1062 };
1063 
1064 /// An operand value in an instruction which is to be replaced with some
1065 /// equivalent, possibly strength-reduced, replacement.
1066 struct LSRFixup {
1067   /// The instruction which will be updated.
1068   Instruction *UserInst = nullptr;
1069 
1070   /// The operand of the instruction which will be replaced. The operand may be
1071   /// used more than once; every instance will be replaced.
1072   Value *OperandValToReplace = nullptr;
1073 
1074   /// If this user is to use the post-incremented value of an induction
1075   /// variable, this set is non-empty and holds the loops associated with the
1076   /// induction variable.
1077   PostIncLoopSet PostIncLoops;
1078 
1079   /// A constant offset to be added to the LSRUse expression.  This allows
1080   /// multiple fixups to share the same LSRUse with different offsets, for
1081   /// example in an unrolled loop.
1082   int64_t Offset = 0;
1083 
1084   LSRFixup() = default;
1085 
1086   bool isUseFullyOutsideLoop(const Loop *L) const;
1087 
1088   void print(raw_ostream &OS) const;
1089   void dump() const;
1090 };
1091 
1092 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1093 /// SmallVectors of const SCEV*.
1094 struct UniquifierDenseMapInfo {
1095   static SmallVector<const SCEV *, 4> getEmptyKey() {
1096     SmallVector<const SCEV *, 4>  V;
1097     V.push_back(reinterpret_cast<const SCEV *>(-1));
1098     return V;
1099   }
1100 
1101   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1102     SmallVector<const SCEV *, 4> V;
1103     V.push_back(reinterpret_cast<const SCEV *>(-2));
1104     return V;
1105   }
1106 
1107   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1108     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1109   }
1110 
1111   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1112                       const SmallVector<const SCEV *, 4> &RHS) {
1113     return LHS == RHS;
1114   }
1115 };
1116 
1117 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1118 /// as uses invented by LSR itself. It includes information about what kinds of
1119 /// things can be folded into the user, information about the user itself, and
1120 /// information about how the use may be satisfied.  TODO: Represent multiple
1121 /// users of the same expression in common?
1122 class LSRUse {
1123   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1124 
1125 public:
1126   /// An enum for a kind of use, indicating what types of scaled and immediate
1127   /// operands it might support.
1128   enum KindType {
1129     Basic,   ///< A normal use, with no folding.
1130     Special, ///< A special case of basic, allowing -1 scales.
1131     Address, ///< An address use; folding according to TargetLowering
1132     ICmpZero ///< An equality icmp with both operands folded into one.
1133     // TODO: Add a generic icmp too?
1134   };
1135 
1136   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1137 
1138   KindType Kind;
1139   MemAccessTy AccessTy;
1140 
1141   /// The list of operands which are to be replaced.
1142   SmallVector<LSRFixup, 8> Fixups;
1143 
1144   /// Keep track of the min and max offsets of the fixups.
1145   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1146   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1147 
1148   /// This records whether all of the fixups using this LSRUse are outside of
1149   /// the loop, in which case some special-case heuristics may be used.
1150   bool AllFixupsOutsideLoop = true;
1151 
1152   /// RigidFormula is set to true to guarantee that this use will be associated
1153   /// with a single formula--the one that initially matched. Some SCEV
1154   /// expressions cannot be expanded. This allows LSR to consider the registers
1155   /// used by those expressions without the need to expand them later after
1156   /// changing the formula.
1157   bool RigidFormula = false;
1158 
1159   /// This records the widest use type for any fixup using this
1160   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1161   /// fixup widths to be equivalent, because the narrower one may be relying on
1162   /// the implicit truncation to truncate away bogus bits.
1163   Type *WidestFixupType = nullptr;
1164 
1165   /// A list of ways to build a value that can satisfy this user.  After the
1166   /// list is populated, one of these is selected heuristically and used to
1167   /// formulate a replacement for OperandValToReplace in UserInst.
1168   SmallVector<Formula, 12> Formulae;
1169 
1170   /// The set of register candidates used by all formulae in this LSRUse.
1171   SmallPtrSet<const SCEV *, 4> Regs;
1172 
1173   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1174 
1175   LSRFixup &getNewFixup() {
1176     Fixups.push_back(LSRFixup());
1177     return Fixups.back();
1178   }
1179 
1180   void pushFixup(LSRFixup &f) {
1181     Fixups.push_back(f);
1182     if (f.Offset > MaxOffset)
1183       MaxOffset = f.Offset;
1184     if (f.Offset < MinOffset)
1185       MinOffset = f.Offset;
1186   }
1187 
1188   bool HasFormulaWithSameRegs(const Formula &F) const;
1189   float getNotSelectedProbability(const SCEV *Reg) const;
1190   bool InsertFormula(const Formula &F, const Loop &L);
1191   void DeleteFormula(Formula &F);
1192   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1193 
1194   void print(raw_ostream &OS) const;
1195   void dump() const;
1196 };
1197 
1198 } // end anonymous namespace
1199 
1200 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1201                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1202                                  GlobalValue *BaseGV, int64_t BaseOffset,
1203                                  bool HasBaseReg, int64_t Scale,
1204                                  Instruction *Fixup = nullptr);
1205 
1206 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1207   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1208     return 1;
1209   if (Depth == 0)
1210     return 0;
1211   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1212     return getSetupCost(S->getStart(), Depth - 1);
1213   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1214     return getSetupCost(S->getOperand(), Depth - 1);
1215   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1216     return std::accumulate(S->op_begin(), S->op_end(), 0,
1217                            [&](unsigned i, const SCEV *Reg) {
1218                              return i + getSetupCost(Reg, Depth - 1);
1219                            });
1220   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1221     return getSetupCost(S->getLHS(), Depth - 1) +
1222            getSetupCost(S->getRHS(), Depth - 1);
1223   return 0;
1224 }
1225 
1226 /// Tally up interesting quantities from the given register.
1227 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1228                         SmallPtrSetImpl<const SCEV *> &Regs) {
1229   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1230     // If this is an addrec for another loop, it should be an invariant
1231     // with respect to L since L is the innermost loop (at least
1232     // for now LSR only handles innermost loops).
1233     if (AR->getLoop() != L) {
1234       // If the AddRec exists, consider it's register free and leave it alone.
1235       if (isExistingPhi(AR, *SE))
1236         return;
1237 
1238       // It is bad to allow LSR for current loop to add induction variables
1239       // for its sibling loops.
1240       if (!AR->getLoop()->contains(L)) {
1241         Lose();
1242         return;
1243       }
1244 
1245       // Otherwise, it will be an invariant with respect to Loop L.
1246       ++C.NumRegs;
1247       return;
1248     }
1249 
1250     unsigned LoopCost = 1;
1251     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1252         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1253 
1254       // If the step size matches the base offset, we could use pre-indexed
1255       // addressing.
1256       if (TTI->shouldFavorBackedgeIndex(L)) {
1257         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1258           if (Step->getAPInt() == F.BaseOffset)
1259             LoopCost = 0;
1260       }
1261 
1262       if (TTI->shouldFavorPostInc()) {
1263         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1264         if (isa<SCEVConstant>(LoopStep)) {
1265           const SCEV *LoopStart = AR->getStart();
1266           if (!isa<SCEVConstant>(LoopStart) &&
1267               SE->isLoopInvariant(LoopStart, L))
1268             LoopCost = 0;
1269         }
1270       }
1271     }
1272     C.AddRecCost += LoopCost;
1273 
1274     // Add the step value register, if it needs one.
1275     // TODO: The non-affine case isn't precisely modeled here.
1276     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1277       if (!Regs.count(AR->getOperand(1))) {
1278         RateRegister(F, AR->getOperand(1), Regs);
1279         if (isLoser())
1280           return;
1281       }
1282     }
1283   }
1284   ++C.NumRegs;
1285 
1286   // Rough heuristic; favor registers which don't require extra setup
1287   // instructions in the preheader.
1288   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1289   // Ensure we don't, even with the recusion limit, produce invalid costs.
1290   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1291 
1292   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1293                SE->hasComputableLoopEvolution(Reg, L);
1294 }
1295 
1296 /// Record this register in the set. If we haven't seen it before, rate
1297 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1298 /// one of those regs an instant loser.
1299 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1300                                SmallPtrSetImpl<const SCEV *> &Regs,
1301                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1302   if (LoserRegs && LoserRegs->count(Reg)) {
1303     Lose();
1304     return;
1305   }
1306   if (Regs.insert(Reg).second) {
1307     RateRegister(F, Reg, Regs);
1308     if (LoserRegs && isLoser())
1309       LoserRegs->insert(Reg);
1310   }
1311 }
1312 
1313 void Cost::RateFormula(const Formula &F,
1314                        SmallPtrSetImpl<const SCEV *> &Regs,
1315                        const DenseSet<const SCEV *> &VisitedRegs,
1316                        const LSRUse &LU,
1317                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1318   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1319   // Tally up the registers.
1320   unsigned PrevAddRecCost = C.AddRecCost;
1321   unsigned PrevNumRegs = C.NumRegs;
1322   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1323   if (const SCEV *ScaledReg = F.ScaledReg) {
1324     if (VisitedRegs.count(ScaledReg)) {
1325       Lose();
1326       return;
1327     }
1328     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1329     if (isLoser())
1330       return;
1331   }
1332   for (const SCEV *BaseReg : F.BaseRegs) {
1333     if (VisitedRegs.count(BaseReg)) {
1334       Lose();
1335       return;
1336     }
1337     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1338     if (isLoser())
1339       return;
1340   }
1341 
1342   // Determine how many (unfolded) adds we'll need inside the loop.
1343   size_t NumBaseParts = F.getNumRegs();
1344   if (NumBaseParts > 1)
1345     // Do not count the base and a possible second register if the target
1346     // allows to fold 2 registers.
1347     C.NumBaseAdds +=
1348         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1349   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1350 
1351   // Accumulate non-free scaling amounts.
1352   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1353 
1354   // Tally up the non-zero immediates.
1355   for (const LSRFixup &Fixup : LU.Fixups) {
1356     int64_t O = Fixup.Offset;
1357     int64_t Offset = (uint64_t)O + F.BaseOffset;
1358     if (F.BaseGV)
1359       C.ImmCost += 64; // Handle symbolic values conservatively.
1360                      // TODO: This should probably be the pointer size.
1361     else if (Offset != 0)
1362       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1363 
1364     // Check with target if this offset with this instruction is
1365     // specifically not supported.
1366     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1367         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1368                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1369       C.NumBaseAdds++;
1370   }
1371 
1372   // If we don't count instruction cost exit here.
1373   if (!InsnsCost) {
1374     assert(isValid() && "invalid cost");
1375     return;
1376   }
1377 
1378   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1379   // additional instruction (at least fill).
1380   // TODO: Need distinguish register class?
1381   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1382                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1383   if (C.NumRegs > TTIRegNum) {
1384     // Cost already exceeded TTIRegNum, then only newly added register can add
1385     // new instructions.
1386     if (PrevNumRegs > TTIRegNum)
1387       C.Insns += (C.NumRegs - PrevNumRegs);
1388     else
1389       C.Insns += (C.NumRegs - TTIRegNum);
1390   }
1391 
1392   // If ICmpZero formula ends with not 0, it could not be replaced by
1393   // just add or sub. We'll need to compare final result of AddRec.
1394   // That means we'll need an additional instruction. But if the target can
1395   // macro-fuse a compare with a branch, don't count this extra instruction.
1396   // For -10 + {0, +, 1}:
1397   // i = i + 1;
1398   // cmp i, 10
1399   //
1400   // For {-10, +, 1}:
1401   // i = i + 1;
1402   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1403       !TTI->canMacroFuseCmp())
1404     C.Insns++;
1405   // Each new AddRec adds 1 instruction to calculation.
1406   C.Insns += (C.AddRecCost - PrevAddRecCost);
1407 
1408   // BaseAdds adds instructions for unfolded registers.
1409   if (LU.Kind != LSRUse::ICmpZero)
1410     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1411   assert(isValid() && "invalid cost");
1412 }
1413 
1414 /// Set this cost to a losing value.
1415 void Cost::Lose() {
1416   C.Insns = std::numeric_limits<unsigned>::max();
1417   C.NumRegs = std::numeric_limits<unsigned>::max();
1418   C.AddRecCost = std::numeric_limits<unsigned>::max();
1419   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1420   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1421   C.ImmCost = std::numeric_limits<unsigned>::max();
1422   C.SetupCost = std::numeric_limits<unsigned>::max();
1423   C.ScaleCost = std::numeric_limits<unsigned>::max();
1424 }
1425 
1426 /// Choose the lower cost.
1427 bool Cost::isLess(Cost &Other) {
1428   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1429       C.Insns != Other.C.Insns)
1430     return C.Insns < Other.C.Insns;
1431   return TTI->isLSRCostLess(C, Other.C);
1432 }
1433 
1434 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1435 void Cost::print(raw_ostream &OS) const {
1436   if (InsnsCost)
1437     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1438   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1439   if (C.AddRecCost != 0)
1440     OS << ", with addrec cost " << C.AddRecCost;
1441   if (C.NumIVMuls != 0)
1442     OS << ", plus " << C.NumIVMuls << " IV mul"
1443        << (C.NumIVMuls == 1 ? "" : "s");
1444   if (C.NumBaseAdds != 0)
1445     OS << ", plus " << C.NumBaseAdds << " base add"
1446        << (C.NumBaseAdds == 1 ? "" : "s");
1447   if (C.ScaleCost != 0)
1448     OS << ", plus " << C.ScaleCost << " scale cost";
1449   if (C.ImmCost != 0)
1450     OS << ", plus " << C.ImmCost << " imm cost";
1451   if (C.SetupCost != 0)
1452     OS << ", plus " << C.SetupCost << " setup cost";
1453 }
1454 
1455 LLVM_DUMP_METHOD void Cost::dump() const {
1456   print(errs()); errs() << '\n';
1457 }
1458 #endif
1459 
1460 /// Test whether this fixup always uses its value outside of the given loop.
1461 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1462   // PHI nodes use their value in their incoming blocks.
1463   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1464     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1465       if (PN->getIncomingValue(i) == OperandValToReplace &&
1466           L->contains(PN->getIncomingBlock(i)))
1467         return false;
1468     return true;
1469   }
1470 
1471   return !L->contains(UserInst);
1472 }
1473 
1474 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1475 void LSRFixup::print(raw_ostream &OS) const {
1476   OS << "UserInst=";
1477   // Store is common and interesting enough to be worth special-casing.
1478   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1479     OS << "store ";
1480     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1481   } else if (UserInst->getType()->isVoidTy())
1482     OS << UserInst->getOpcodeName();
1483   else
1484     UserInst->printAsOperand(OS, /*PrintType=*/false);
1485 
1486   OS << ", OperandValToReplace=";
1487   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1488 
1489   for (const Loop *PIL : PostIncLoops) {
1490     OS << ", PostIncLoop=";
1491     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1492   }
1493 
1494   if (Offset != 0)
1495     OS << ", Offset=" << Offset;
1496 }
1497 
1498 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1499   print(errs()); errs() << '\n';
1500 }
1501 #endif
1502 
1503 /// Test whether this use as a formula which has the same registers as the given
1504 /// formula.
1505 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1506   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1507   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1508   // Unstable sort by host order ok, because this is only used for uniquifying.
1509   llvm::sort(Key);
1510   return Uniquifier.count(Key);
1511 }
1512 
1513 /// The function returns a probability of selecting formula without Reg.
1514 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1515   unsigned FNum = 0;
1516   for (const Formula &F : Formulae)
1517     if (F.referencesReg(Reg))
1518       FNum++;
1519   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1520 }
1521 
1522 /// If the given formula has not yet been inserted, add it to the list, and
1523 /// return true. Return false otherwise.  The formula must be in canonical form.
1524 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1525   assert(F.isCanonical(L) && "Invalid canonical representation");
1526 
1527   if (!Formulae.empty() && RigidFormula)
1528     return false;
1529 
1530   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1531   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1532   // Unstable sort by host order ok, because this is only used for uniquifying.
1533   llvm::sort(Key);
1534 
1535   if (!Uniquifier.insert(Key).second)
1536     return false;
1537 
1538   // Using a register to hold the value of 0 is not profitable.
1539   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1540          "Zero allocated in a scaled register!");
1541 #ifndef NDEBUG
1542   for (const SCEV *BaseReg : F.BaseRegs)
1543     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1544 #endif
1545 
1546   // Add the formula to the list.
1547   Formulae.push_back(F);
1548 
1549   // Record registers now being used by this use.
1550   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1551   if (F.ScaledReg)
1552     Regs.insert(F.ScaledReg);
1553 
1554   return true;
1555 }
1556 
1557 /// Remove the given formula from this use's list.
1558 void LSRUse::DeleteFormula(Formula &F) {
1559   if (&F != &Formulae.back())
1560     std::swap(F, Formulae.back());
1561   Formulae.pop_back();
1562 }
1563 
1564 /// Recompute the Regs field, and update RegUses.
1565 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1566   // Now that we've filtered out some formulae, recompute the Regs set.
1567   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1568   Regs.clear();
1569   for (const Formula &F : Formulae) {
1570     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1571     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1572   }
1573 
1574   // Update the RegTracker.
1575   for (const SCEV *S : OldRegs)
1576     if (!Regs.count(S))
1577       RegUses.dropRegister(S, LUIdx);
1578 }
1579 
1580 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1581 void LSRUse::print(raw_ostream &OS) const {
1582   OS << "LSR Use: Kind=";
1583   switch (Kind) {
1584   case Basic:    OS << "Basic"; break;
1585   case Special:  OS << "Special"; break;
1586   case ICmpZero: OS << "ICmpZero"; break;
1587   case Address:
1588     OS << "Address of ";
1589     if (AccessTy.MemTy->isPointerTy())
1590       OS << "pointer"; // the full pointer type could be really verbose
1591     else {
1592       OS << *AccessTy.MemTy;
1593     }
1594 
1595     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1596   }
1597 
1598   OS << ", Offsets={";
1599   bool NeedComma = false;
1600   for (const LSRFixup &Fixup : Fixups) {
1601     if (NeedComma) OS << ',';
1602     OS << Fixup.Offset;
1603     NeedComma = true;
1604   }
1605   OS << '}';
1606 
1607   if (AllFixupsOutsideLoop)
1608     OS << ", all-fixups-outside-loop";
1609 
1610   if (WidestFixupType)
1611     OS << ", widest fixup type: " << *WidestFixupType;
1612 }
1613 
1614 LLVM_DUMP_METHOD void LSRUse::dump() const {
1615   print(errs()); errs() << '\n';
1616 }
1617 #endif
1618 
1619 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1620                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1621                                  GlobalValue *BaseGV, int64_t BaseOffset,
1622                                  bool HasBaseReg, int64_t Scale,
1623                                  Instruction *Fixup/*= nullptr*/) {
1624   switch (Kind) {
1625   case LSRUse::Address:
1626     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1627                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1628 
1629   case LSRUse::ICmpZero:
1630     // There's not even a target hook for querying whether it would be legal to
1631     // fold a GV into an ICmp.
1632     if (BaseGV)
1633       return false;
1634 
1635     // ICmp only has two operands; don't allow more than two non-trivial parts.
1636     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1637       return false;
1638 
1639     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1640     // putting the scaled register in the other operand of the icmp.
1641     if (Scale != 0 && Scale != -1)
1642       return false;
1643 
1644     // If we have low-level target information, ask the target if it can fold an
1645     // integer immediate on an icmp.
1646     if (BaseOffset != 0) {
1647       // We have one of:
1648       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1649       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1650       // Offs is the ICmp immediate.
1651       if (Scale == 0)
1652         // The cast does the right thing with
1653         // std::numeric_limits<int64_t>::min().
1654         BaseOffset = -(uint64_t)BaseOffset;
1655       return TTI.isLegalICmpImmediate(BaseOffset);
1656     }
1657 
1658     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1659     return true;
1660 
1661   case LSRUse::Basic:
1662     // Only handle single-register values.
1663     return !BaseGV && Scale == 0 && BaseOffset == 0;
1664 
1665   case LSRUse::Special:
1666     // Special case Basic to handle -1 scales.
1667     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1668   }
1669 
1670   llvm_unreachable("Invalid LSRUse Kind!");
1671 }
1672 
1673 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1674                                  int64_t MinOffset, int64_t MaxOffset,
1675                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1676                                  GlobalValue *BaseGV, int64_t BaseOffset,
1677                                  bool HasBaseReg, int64_t Scale) {
1678   // Check for overflow.
1679   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1680       (MinOffset > 0))
1681     return false;
1682   MinOffset = (uint64_t)BaseOffset + MinOffset;
1683   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1684       (MaxOffset > 0))
1685     return false;
1686   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1687 
1688   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1689                               HasBaseReg, Scale) &&
1690          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1691                               HasBaseReg, Scale);
1692 }
1693 
1694 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1695                                  int64_t MinOffset, int64_t MaxOffset,
1696                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1697                                  const Formula &F, const Loop &L) {
1698   // For the purpose of isAMCompletelyFolded either having a canonical formula
1699   // or a scale not equal to zero is correct.
1700   // Problems may arise from non canonical formulae having a scale == 0.
1701   // Strictly speaking it would best to just rely on canonical formulae.
1702   // However, when we generate the scaled formulae, we first check that the
1703   // scaling factor is profitable before computing the actual ScaledReg for
1704   // compile time sake.
1705   assert((F.isCanonical(L) || F.Scale != 0));
1706   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1707                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1708 }
1709 
1710 /// Test whether we know how to expand the current formula.
1711 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1712                        int64_t MaxOffset, LSRUse::KindType Kind,
1713                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1714                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1715   // We know how to expand completely foldable formulae.
1716   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1717                               BaseOffset, HasBaseReg, Scale) ||
1718          // Or formulae that use a base register produced by a sum of base
1719          // registers.
1720          (Scale == 1 &&
1721           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1722                                BaseGV, BaseOffset, true, 0));
1723 }
1724 
1725 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1726                        int64_t MaxOffset, LSRUse::KindType Kind,
1727                        MemAccessTy AccessTy, const Formula &F) {
1728   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1729                     F.BaseOffset, F.HasBaseReg, F.Scale);
1730 }
1731 
1732 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1733                                  const LSRUse &LU, const Formula &F) {
1734   // Target may want to look at the user instructions.
1735   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1736     for (const LSRFixup &Fixup : LU.Fixups)
1737       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1738                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1739                                 F.Scale, Fixup.UserInst))
1740         return false;
1741     return true;
1742   }
1743 
1744   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1745                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1746                               F.Scale);
1747 }
1748 
1749 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1750                                      const LSRUse &LU, const Formula &F,
1751                                      const Loop &L) {
1752   if (!F.Scale)
1753     return 0;
1754 
1755   // If the use is not completely folded in that instruction, we will have to
1756   // pay an extra cost only for scale != 1.
1757   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1758                             LU.AccessTy, F, L))
1759     return F.Scale != 1;
1760 
1761   switch (LU.Kind) {
1762   case LSRUse::Address: {
1763     // Check the scaling factor cost with both the min and max offsets.
1764     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1765         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1766         F.Scale, LU.AccessTy.AddrSpace);
1767     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1768         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1769         F.Scale, LU.AccessTy.AddrSpace);
1770 
1771     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1772            "Legal addressing mode has an illegal cost!");
1773     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1774   }
1775   case LSRUse::ICmpZero:
1776   case LSRUse::Basic:
1777   case LSRUse::Special:
1778     // The use is completely folded, i.e., everything is folded into the
1779     // instruction.
1780     return 0;
1781   }
1782 
1783   llvm_unreachable("Invalid LSRUse Kind!");
1784 }
1785 
1786 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1787                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1788                              GlobalValue *BaseGV, int64_t BaseOffset,
1789                              bool HasBaseReg) {
1790   // Fast-path: zero is always foldable.
1791   if (BaseOffset == 0 && !BaseGV) return true;
1792 
1793   // Conservatively, create an address with an immediate and a
1794   // base and a scale.
1795   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1796 
1797   // Canonicalize a scale of 1 to a base register if the formula doesn't
1798   // already have a base register.
1799   if (!HasBaseReg && Scale == 1) {
1800     Scale = 0;
1801     HasBaseReg = true;
1802   }
1803 
1804   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1805                               HasBaseReg, Scale);
1806 }
1807 
1808 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1809                              ScalarEvolution &SE, int64_t MinOffset,
1810                              int64_t MaxOffset, LSRUse::KindType Kind,
1811                              MemAccessTy AccessTy, const SCEV *S,
1812                              bool HasBaseReg) {
1813   // Fast-path: zero is always foldable.
1814   if (S->isZero()) return true;
1815 
1816   // Conservatively, create an address with an immediate and a
1817   // base and a scale.
1818   int64_t BaseOffset = ExtractImmediate(S, SE);
1819   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1820 
1821   // If there's anything else involved, it's not foldable.
1822   if (!S->isZero()) return false;
1823 
1824   // Fast-path: zero is always foldable.
1825   if (BaseOffset == 0 && !BaseGV) return true;
1826 
1827   // Conservatively, create an address with an immediate and a
1828   // base and a scale.
1829   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1830 
1831   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1832                               BaseOffset, HasBaseReg, Scale);
1833 }
1834 
1835 namespace {
1836 
1837 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1838 /// an expression that computes the IV it uses from the IV used by the previous
1839 /// link in the Chain.
1840 ///
1841 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1842 /// original IVOperand. The head of the chain's IVOperand is only valid during
1843 /// chain collection, before LSR replaces IV users. During chain generation,
1844 /// IncExpr can be used to find the new IVOperand that computes the same
1845 /// expression.
1846 struct IVInc {
1847   Instruction *UserInst;
1848   Value* IVOperand;
1849   const SCEV *IncExpr;
1850 
1851   IVInc(Instruction *U, Value *O, const SCEV *E)
1852       : UserInst(U), IVOperand(O), IncExpr(E) {}
1853 };
1854 
1855 // The list of IV increments in program order.  We typically add the head of a
1856 // chain without finding subsequent links.
1857 struct IVChain {
1858   SmallVector<IVInc, 1> Incs;
1859   const SCEV *ExprBase = nullptr;
1860 
1861   IVChain() = default;
1862   IVChain(const IVInc &Head, const SCEV *Base)
1863       : Incs(1, Head), ExprBase(Base) {}
1864 
1865   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1866 
1867   // Return the first increment in the chain.
1868   const_iterator begin() const {
1869     assert(!Incs.empty());
1870     return std::next(Incs.begin());
1871   }
1872   const_iterator end() const {
1873     return Incs.end();
1874   }
1875 
1876   // Returns true if this chain contains any increments.
1877   bool hasIncs() const { return Incs.size() >= 2; }
1878 
1879   // Add an IVInc to the end of this chain.
1880   void add(const IVInc &X) { Incs.push_back(X); }
1881 
1882   // Returns the last UserInst in the chain.
1883   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1884 
1885   // Returns true if IncExpr can be profitably added to this chain.
1886   bool isProfitableIncrement(const SCEV *OperExpr,
1887                              const SCEV *IncExpr,
1888                              ScalarEvolution&);
1889 };
1890 
1891 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1892 /// between FarUsers that definitely cross IV increments and NearUsers that may
1893 /// be used between IV increments.
1894 struct ChainUsers {
1895   SmallPtrSet<Instruction*, 4> FarUsers;
1896   SmallPtrSet<Instruction*, 4> NearUsers;
1897 };
1898 
1899 /// This class holds state for the main loop strength reduction logic.
1900 class LSRInstance {
1901   IVUsers &IU;
1902   ScalarEvolution &SE;
1903   DominatorTree &DT;
1904   LoopInfo &LI;
1905   AssumptionCache &AC;
1906   TargetLibraryInfo &TLI;
1907   const TargetTransformInfo &TTI;
1908   Loop *const L;
1909   MemorySSAUpdater *MSSAU;
1910   bool FavorBackedgeIndex = false;
1911   bool Changed = false;
1912 
1913   /// This is the insert position that the current loop's induction variable
1914   /// increment should be placed. In simple loops, this is the latch block's
1915   /// terminator. But in more complicated cases, this is a position which will
1916   /// dominate all the in-loop post-increment users.
1917   Instruction *IVIncInsertPos = nullptr;
1918 
1919   /// Interesting factors between use strides.
1920   ///
1921   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1922   /// default, a SmallDenseSet, because we need to use the full range of
1923   /// int64_ts, and there's currently no good way of doing that with
1924   /// SmallDenseSet.
1925   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1926 
1927   /// Interesting use types, to facilitate truncation reuse.
1928   SmallSetVector<Type *, 4> Types;
1929 
1930   /// The list of interesting uses.
1931   mutable SmallVector<LSRUse, 16> Uses;
1932 
1933   /// Track which uses use which register candidates.
1934   RegUseTracker RegUses;
1935 
1936   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1937   // have more than a few IV increment chains in a loop. Missing a Chain falls
1938   // back to normal LSR behavior for those uses.
1939   static const unsigned MaxChains = 8;
1940 
1941   /// IV users can form a chain of IV increments.
1942   SmallVector<IVChain, MaxChains> IVChainVec;
1943 
1944   /// IV users that belong to profitable IVChains.
1945   SmallPtrSet<Use*, MaxChains> IVIncSet;
1946 
1947   void OptimizeShadowIV();
1948   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1949   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1950   void OptimizeLoopTermCond();
1951 
1952   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1953                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1954   void FinalizeChain(IVChain &Chain);
1955   void CollectChains();
1956   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1957                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1958 
1959   void CollectInterestingTypesAndFactors();
1960   void CollectFixupsAndInitialFormulae();
1961 
1962   // Support for sharing of LSRUses between LSRFixups.
1963   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1964   UseMapTy UseMap;
1965 
1966   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1967                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1968 
1969   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1970                                     MemAccessTy AccessTy);
1971 
1972   void DeleteUse(LSRUse &LU, size_t LUIdx);
1973 
1974   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1975 
1976   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1977   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1978   void CountRegisters(const Formula &F, size_t LUIdx);
1979   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1980 
1981   void CollectLoopInvariantFixupsAndFormulae();
1982 
1983   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1984                               unsigned Depth = 0);
1985 
1986   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1987                                   const Formula &Base, unsigned Depth,
1988                                   size_t Idx, bool IsScaledReg = false);
1989   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1990   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1991                                    const Formula &Base, size_t Idx,
1992                                    bool IsScaledReg = false);
1993   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1994   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1995                                    const Formula &Base,
1996                                    const SmallVectorImpl<int64_t> &Worklist,
1997                                    size_t Idx, bool IsScaledReg = false);
1998   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1999   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2002   void GenerateCrossUseConstantOffsets();
2003   void GenerateAllReuseFormulae();
2004 
2005   void FilterOutUndesirableDedicatedRegisters();
2006 
2007   size_t EstimateSearchSpaceComplexity() const;
2008   void NarrowSearchSpaceByDetectingSupersets();
2009   void NarrowSearchSpaceByCollapsingUnrolledCode();
2010   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2011   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2012   void NarrowSearchSpaceByDeletingCostlyFormulas();
2013   void NarrowSearchSpaceByPickingWinnerRegs();
2014   void NarrowSearchSpaceUsingHeuristics();
2015 
2016   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2017                     Cost &SolutionCost,
2018                     SmallVectorImpl<const Formula *> &Workspace,
2019                     const Cost &CurCost,
2020                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2021                     DenseSet<const SCEV *> &VisitedRegs) const;
2022   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2023 
2024   BasicBlock::iterator
2025     HoistInsertPosition(BasicBlock::iterator IP,
2026                         const SmallVectorImpl<Instruction *> &Inputs) const;
2027   BasicBlock::iterator
2028     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2029                                   const LSRFixup &LF,
2030                                   const LSRUse &LU,
2031                                   SCEVExpander &Rewriter) const;
2032 
2033   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2034                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2035                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2036   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2037                      const Formula &F, SCEVExpander &Rewriter,
2038                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2039   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2040                SCEVExpander &Rewriter,
2041                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2042   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2043 
2044 public:
2045   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2046               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2047               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2048 
2049   bool getChanged() const { return Changed; }
2050 
2051   void print_factors_and_types(raw_ostream &OS) const;
2052   void print_fixups(raw_ostream &OS) const;
2053   void print_uses(raw_ostream &OS) const;
2054   void print(raw_ostream &OS) const;
2055   void dump() const;
2056 };
2057 
2058 } // end anonymous namespace
2059 
2060 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2061 /// the cast operation.
2062 void LSRInstance::OptimizeShadowIV() {
2063   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2064   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2065     return;
2066 
2067   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2068        UI != E; /* empty */) {
2069     IVUsers::const_iterator CandidateUI = UI;
2070     ++UI;
2071     Instruction *ShadowUse = CandidateUI->getUser();
2072     Type *DestTy = nullptr;
2073     bool IsSigned = false;
2074 
2075     /* If shadow use is a int->float cast then insert a second IV
2076        to eliminate this cast.
2077 
2078          for (unsigned i = 0; i < n; ++i)
2079            foo((double)i);
2080 
2081        is transformed into
2082 
2083          double d = 0.0;
2084          for (unsigned i = 0; i < n; ++i, ++d)
2085            foo(d);
2086     */
2087     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2088       IsSigned = false;
2089       DestTy = UCast->getDestTy();
2090     }
2091     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2092       IsSigned = true;
2093       DestTy = SCast->getDestTy();
2094     }
2095     if (!DestTy) continue;
2096 
2097     // If target does not support DestTy natively then do not apply
2098     // this transformation.
2099     if (!TTI.isTypeLegal(DestTy)) continue;
2100 
2101     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2102     if (!PH) continue;
2103     if (PH->getNumIncomingValues() != 2) continue;
2104 
2105     // If the calculation in integers overflows, the result in FP type will
2106     // differ. So we only can do this transformation if we are guaranteed to not
2107     // deal with overflowing values
2108     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2109     if (!AR) continue;
2110     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2111     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2112 
2113     Type *SrcTy = PH->getType();
2114     int Mantissa = DestTy->getFPMantissaWidth();
2115     if (Mantissa == -1) continue;
2116     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2117       continue;
2118 
2119     unsigned Entry, Latch;
2120     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2121       Entry = 0;
2122       Latch = 1;
2123     } else {
2124       Entry = 1;
2125       Latch = 0;
2126     }
2127 
2128     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2129     if (!Init) continue;
2130     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2131                                         (double)Init->getSExtValue() :
2132                                         (double)Init->getZExtValue());
2133 
2134     BinaryOperator *Incr =
2135       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2136     if (!Incr) continue;
2137     if (Incr->getOpcode() != Instruction::Add
2138         && Incr->getOpcode() != Instruction::Sub)
2139       continue;
2140 
2141     /* Initialize new IV, double d = 0.0 in above example. */
2142     ConstantInt *C = nullptr;
2143     if (Incr->getOperand(0) == PH)
2144       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2145     else if (Incr->getOperand(1) == PH)
2146       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2147     else
2148       continue;
2149 
2150     if (!C) continue;
2151 
2152     // Ignore negative constants, as the code below doesn't handle them
2153     // correctly. TODO: Remove this restriction.
2154     if (!C->getValue().isStrictlyPositive()) continue;
2155 
2156     /* Add new PHINode. */
2157     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2158 
2159     /* create new increment. '++d' in above example. */
2160     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2161     BinaryOperator *NewIncr =
2162       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2163                                Instruction::FAdd : Instruction::FSub,
2164                              NewPH, CFP, "IV.S.next.", Incr);
2165 
2166     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2167     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2168 
2169     /* Remove cast operation */
2170     ShadowUse->replaceAllUsesWith(NewPH);
2171     ShadowUse->eraseFromParent();
2172     Changed = true;
2173     break;
2174   }
2175 }
2176 
2177 /// If Cond has an operand that is an expression of an IV, set the IV user and
2178 /// stride information and return true, otherwise return false.
2179 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2180   for (IVStrideUse &U : IU)
2181     if (U.getUser() == Cond) {
2182       // NOTE: we could handle setcc instructions with multiple uses here, but
2183       // InstCombine does it as well for simple uses, it's not clear that it
2184       // occurs enough in real life to handle.
2185       CondUse = &U;
2186       return true;
2187     }
2188   return false;
2189 }
2190 
2191 /// Rewrite the loop's terminating condition if it uses a max computation.
2192 ///
2193 /// This is a narrow solution to a specific, but acute, problem. For loops
2194 /// like this:
2195 ///
2196 ///   i = 0;
2197 ///   do {
2198 ///     p[i] = 0.0;
2199 ///   } while (++i < n);
2200 ///
2201 /// the trip count isn't just 'n', because 'n' might not be positive. And
2202 /// unfortunately this can come up even for loops where the user didn't use
2203 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2204 /// will commonly be lowered like this:
2205 ///
2206 ///   if (n > 0) {
2207 ///     i = 0;
2208 ///     do {
2209 ///       p[i] = 0.0;
2210 ///     } while (++i < n);
2211 ///   }
2212 ///
2213 /// and then it's possible for subsequent optimization to obscure the if
2214 /// test in such a way that indvars can't find it.
2215 ///
2216 /// When indvars can't find the if test in loops like this, it creates a
2217 /// max expression, which allows it to give the loop a canonical
2218 /// induction variable:
2219 ///
2220 ///   i = 0;
2221 ///   max = n < 1 ? 1 : n;
2222 ///   do {
2223 ///     p[i] = 0.0;
2224 ///   } while (++i != max);
2225 ///
2226 /// Canonical induction variables are necessary because the loop passes
2227 /// are designed around them. The most obvious example of this is the
2228 /// LoopInfo analysis, which doesn't remember trip count values. It
2229 /// expects to be able to rediscover the trip count each time it is
2230 /// needed, and it does this using a simple analysis that only succeeds if
2231 /// the loop has a canonical induction variable.
2232 ///
2233 /// However, when it comes time to generate code, the maximum operation
2234 /// can be quite costly, especially if it's inside of an outer loop.
2235 ///
2236 /// This function solves this problem by detecting this type of loop and
2237 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2238 /// the instructions for the maximum computation.
2239 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2240   // Check that the loop matches the pattern we're looking for.
2241   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2242       Cond->getPredicate() != CmpInst::ICMP_NE)
2243     return Cond;
2244 
2245   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2246   if (!Sel || !Sel->hasOneUse()) return Cond;
2247 
2248   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2249   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2250     return Cond;
2251   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2252 
2253   // Add one to the backedge-taken count to get the trip count.
2254   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2255   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2256 
2257   // Check for a max calculation that matches the pattern. There's no check
2258   // for ICMP_ULE here because the comparison would be with zero, which
2259   // isn't interesting.
2260   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2261   const SCEVNAryExpr *Max = nullptr;
2262   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2263     Pred = ICmpInst::ICMP_SLE;
2264     Max = S;
2265   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2266     Pred = ICmpInst::ICMP_SLT;
2267     Max = S;
2268   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2269     Pred = ICmpInst::ICMP_ULT;
2270     Max = U;
2271   } else {
2272     // No match; bail.
2273     return Cond;
2274   }
2275 
2276   // To handle a max with more than two operands, this optimization would
2277   // require additional checking and setup.
2278   if (Max->getNumOperands() != 2)
2279     return Cond;
2280 
2281   const SCEV *MaxLHS = Max->getOperand(0);
2282   const SCEV *MaxRHS = Max->getOperand(1);
2283 
2284   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2285   // for a comparison with 1. For <= and >=, a comparison with zero.
2286   if (!MaxLHS ||
2287       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2288     return Cond;
2289 
2290   // Check the relevant induction variable for conformance to
2291   // the pattern.
2292   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2293   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2294   if (!AR || !AR->isAffine() ||
2295       AR->getStart() != One ||
2296       AR->getStepRecurrence(SE) != One)
2297     return Cond;
2298 
2299   assert(AR->getLoop() == L &&
2300          "Loop condition operand is an addrec in a different loop!");
2301 
2302   // Check the right operand of the select, and remember it, as it will
2303   // be used in the new comparison instruction.
2304   Value *NewRHS = nullptr;
2305   if (ICmpInst::isTrueWhenEqual(Pred)) {
2306     // Look for n+1, and grab n.
2307     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2308       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2309          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2310            NewRHS = BO->getOperand(0);
2311     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2312       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2313         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2314           NewRHS = BO->getOperand(0);
2315     if (!NewRHS)
2316       return Cond;
2317   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2318     NewRHS = Sel->getOperand(1);
2319   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2320     NewRHS = Sel->getOperand(2);
2321   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2322     NewRHS = SU->getValue();
2323   else
2324     // Max doesn't match expected pattern.
2325     return Cond;
2326 
2327   // Determine the new comparison opcode. It may be signed or unsigned,
2328   // and the original comparison may be either equality or inequality.
2329   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2330     Pred = CmpInst::getInversePredicate(Pred);
2331 
2332   // Ok, everything looks ok to change the condition into an SLT or SGE and
2333   // delete the max calculation.
2334   ICmpInst *NewCond =
2335     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2336 
2337   // Delete the max calculation instructions.
2338   Cond->replaceAllUsesWith(NewCond);
2339   CondUse->setUser(NewCond);
2340   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2341   Cond->eraseFromParent();
2342   Sel->eraseFromParent();
2343   if (Cmp->use_empty())
2344     Cmp->eraseFromParent();
2345   return NewCond;
2346 }
2347 
2348 /// Change loop terminating condition to use the postinc iv when possible.
2349 void
2350 LSRInstance::OptimizeLoopTermCond() {
2351   SmallPtrSet<Instruction *, 4> PostIncs;
2352 
2353   // We need a different set of heuristics for rotated and non-rotated loops.
2354   // If a loop is rotated then the latch is also the backedge, so inserting
2355   // post-inc expressions just before the latch is ideal. To reduce live ranges
2356   // it also makes sense to rewrite terminating conditions to use post-inc
2357   // expressions.
2358   //
2359   // If the loop is not rotated then the latch is not a backedge; the latch
2360   // check is done in the loop head. Adding post-inc expressions before the
2361   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2362   // in the loop body. In this case we do *not* want to use post-inc expressions
2363   // in the latch check, and we want to insert post-inc expressions before
2364   // the backedge.
2365   BasicBlock *LatchBlock = L->getLoopLatch();
2366   SmallVector<BasicBlock*, 8> ExitingBlocks;
2367   L->getExitingBlocks(ExitingBlocks);
2368   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2369         return LatchBlock != BB;
2370       })) {
2371     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2372     IVIncInsertPos = LatchBlock->getTerminator();
2373     return;
2374   }
2375 
2376   // Otherwise treat this as a rotated loop.
2377   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2378     // Get the terminating condition for the loop if possible.  If we
2379     // can, we want to change it to use a post-incremented version of its
2380     // induction variable, to allow coalescing the live ranges for the IV into
2381     // one register value.
2382 
2383     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2384     if (!TermBr)
2385       continue;
2386     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2387     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2388       continue;
2389 
2390     // Search IVUsesByStride to find Cond's IVUse if there is one.
2391     IVStrideUse *CondUse = nullptr;
2392     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2393     if (!FindIVUserForCond(Cond, CondUse))
2394       continue;
2395 
2396     // If the trip count is computed in terms of a max (due to ScalarEvolution
2397     // being unable to find a sufficient guard, for example), change the loop
2398     // comparison to use SLT or ULT instead of NE.
2399     // One consequence of doing this now is that it disrupts the count-down
2400     // optimization. That's not always a bad thing though, because in such
2401     // cases it may still be worthwhile to avoid a max.
2402     Cond = OptimizeMax(Cond, CondUse);
2403 
2404     // If this exiting block dominates the latch block, it may also use
2405     // the post-inc value if it won't be shared with other uses.
2406     // Check for dominance.
2407     if (!DT.dominates(ExitingBlock, LatchBlock))
2408       continue;
2409 
2410     // Conservatively avoid trying to use the post-inc value in non-latch
2411     // exits if there may be pre-inc users in intervening blocks.
2412     if (LatchBlock != ExitingBlock)
2413       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2414         // Test if the use is reachable from the exiting block. This dominator
2415         // query is a conservative approximation of reachability.
2416         if (&*UI != CondUse &&
2417             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2418           // Conservatively assume there may be reuse if the quotient of their
2419           // strides could be a legal scale.
2420           const SCEV *A = IU.getStride(*CondUse, L);
2421           const SCEV *B = IU.getStride(*UI, L);
2422           if (!A || !B) continue;
2423           if (SE.getTypeSizeInBits(A->getType()) !=
2424               SE.getTypeSizeInBits(B->getType())) {
2425             if (SE.getTypeSizeInBits(A->getType()) >
2426                 SE.getTypeSizeInBits(B->getType()))
2427               B = SE.getSignExtendExpr(B, A->getType());
2428             else
2429               A = SE.getSignExtendExpr(A, B->getType());
2430           }
2431           if (const SCEVConstant *D =
2432                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2433             const ConstantInt *C = D->getValue();
2434             // Stride of one or negative one can have reuse with non-addresses.
2435             if (C->isOne() || C->isMinusOne())
2436               goto decline_post_inc;
2437             // Avoid weird situations.
2438             if (C->getValue().getMinSignedBits() >= 64 ||
2439                 C->getValue().isMinSignedValue())
2440               goto decline_post_inc;
2441             // Check for possible scaled-address reuse.
2442             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2443               MemAccessTy AccessTy = getAccessType(
2444                   TTI, UI->getUser(), UI->getOperandValToReplace());
2445               int64_t Scale = C->getSExtValue();
2446               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2447                                             /*BaseOffset=*/0,
2448                                             /*HasBaseReg=*/false, Scale,
2449                                             AccessTy.AddrSpace))
2450                 goto decline_post_inc;
2451               Scale = -Scale;
2452               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2453                                             /*BaseOffset=*/0,
2454                                             /*HasBaseReg=*/false, Scale,
2455                                             AccessTy.AddrSpace))
2456                 goto decline_post_inc;
2457             }
2458           }
2459         }
2460 
2461     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2462                       << *Cond << '\n');
2463 
2464     // It's possible for the setcc instruction to be anywhere in the loop, and
2465     // possible for it to have multiple users.  If it is not immediately before
2466     // the exiting block branch, move it.
2467     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2468       if (Cond->hasOneUse()) {
2469         Cond->moveBefore(TermBr);
2470       } else {
2471         // Clone the terminating condition and insert into the loopend.
2472         ICmpInst *OldCond = Cond;
2473         Cond = cast<ICmpInst>(Cond->clone());
2474         Cond->setName(L->getHeader()->getName() + ".termcond");
2475         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2476 
2477         // Clone the IVUse, as the old use still exists!
2478         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2479         TermBr->replaceUsesOfWith(OldCond, Cond);
2480       }
2481     }
2482 
2483     // If we get to here, we know that we can transform the setcc instruction to
2484     // use the post-incremented version of the IV, allowing us to coalesce the
2485     // live ranges for the IV correctly.
2486     CondUse->transformToPostInc(L);
2487     Changed = true;
2488 
2489     PostIncs.insert(Cond);
2490   decline_post_inc:;
2491   }
2492 
2493   // Determine an insertion point for the loop induction variable increment. It
2494   // must dominate all the post-inc comparisons we just set up, and it must
2495   // dominate the loop latch edge.
2496   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2497   for (Instruction *Inst : PostIncs) {
2498     BasicBlock *BB =
2499       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2500                                     Inst->getParent());
2501     if (BB == Inst->getParent())
2502       IVIncInsertPos = Inst;
2503     else if (BB != IVIncInsertPos->getParent())
2504       IVIncInsertPos = BB->getTerminator();
2505   }
2506 }
2507 
2508 /// Determine if the given use can accommodate a fixup at the given offset and
2509 /// other details. If so, update the use and return true.
2510 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2511                                      bool HasBaseReg, LSRUse::KindType Kind,
2512                                      MemAccessTy AccessTy) {
2513   int64_t NewMinOffset = LU.MinOffset;
2514   int64_t NewMaxOffset = LU.MaxOffset;
2515   MemAccessTy NewAccessTy = AccessTy;
2516 
2517   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2518   // something conservative, however this can pessimize in the case that one of
2519   // the uses will have all its uses outside the loop, for example.
2520   if (LU.Kind != Kind)
2521     return false;
2522 
2523   // Check for a mismatched access type, and fall back conservatively as needed.
2524   // TODO: Be less conservative when the type is similar and can use the same
2525   // addressing modes.
2526   if (Kind == LSRUse::Address) {
2527     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2528       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2529                                             AccessTy.AddrSpace);
2530     }
2531   }
2532 
2533   // Conservatively assume HasBaseReg is true for now.
2534   if (NewOffset < LU.MinOffset) {
2535     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2536                           LU.MaxOffset - NewOffset, HasBaseReg))
2537       return false;
2538     NewMinOffset = NewOffset;
2539   } else if (NewOffset > LU.MaxOffset) {
2540     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2541                           NewOffset - LU.MinOffset, HasBaseReg))
2542       return false;
2543     NewMaxOffset = NewOffset;
2544   }
2545 
2546   // Update the use.
2547   LU.MinOffset = NewMinOffset;
2548   LU.MaxOffset = NewMaxOffset;
2549   LU.AccessTy = NewAccessTy;
2550   return true;
2551 }
2552 
2553 /// Return an LSRUse index and an offset value for a fixup which needs the given
2554 /// expression, with the given kind and optional access type.  Either reuse an
2555 /// existing use or create a new one, as needed.
2556 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2557                                                LSRUse::KindType Kind,
2558                                                MemAccessTy AccessTy) {
2559   const SCEV *Copy = Expr;
2560   int64_t Offset = ExtractImmediate(Expr, SE);
2561 
2562   // Basic uses can't accept any offset, for example.
2563   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2564                         Offset, /*HasBaseReg=*/ true)) {
2565     Expr = Copy;
2566     Offset = 0;
2567   }
2568 
2569   std::pair<UseMapTy::iterator, bool> P =
2570     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2571   if (!P.second) {
2572     // A use already existed with this base.
2573     size_t LUIdx = P.first->second;
2574     LSRUse &LU = Uses[LUIdx];
2575     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2576       // Reuse this use.
2577       return std::make_pair(LUIdx, Offset);
2578   }
2579 
2580   // Create a new use.
2581   size_t LUIdx = Uses.size();
2582   P.first->second = LUIdx;
2583   Uses.push_back(LSRUse(Kind, AccessTy));
2584   LSRUse &LU = Uses[LUIdx];
2585 
2586   LU.MinOffset = Offset;
2587   LU.MaxOffset = Offset;
2588   return std::make_pair(LUIdx, Offset);
2589 }
2590 
2591 /// Delete the given use from the Uses list.
2592 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2593   if (&LU != &Uses.back())
2594     std::swap(LU, Uses.back());
2595   Uses.pop_back();
2596 
2597   // Update RegUses.
2598   RegUses.swapAndDropUse(LUIdx, Uses.size());
2599 }
2600 
2601 /// Look for a use distinct from OrigLU which is has a formula that has the same
2602 /// registers as the given formula.
2603 LSRUse *
2604 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2605                                        const LSRUse &OrigLU) {
2606   // Search all uses for the formula. This could be more clever.
2607   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2608     LSRUse &LU = Uses[LUIdx];
2609     // Check whether this use is close enough to OrigLU, to see whether it's
2610     // worthwhile looking through its formulae.
2611     // Ignore ICmpZero uses because they may contain formulae generated by
2612     // GenerateICmpZeroScales, in which case adding fixup offsets may
2613     // be invalid.
2614     if (&LU != &OrigLU &&
2615         LU.Kind != LSRUse::ICmpZero &&
2616         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2617         LU.WidestFixupType == OrigLU.WidestFixupType &&
2618         LU.HasFormulaWithSameRegs(OrigF)) {
2619       // Scan through this use's formulae.
2620       for (const Formula &F : LU.Formulae) {
2621         // Check to see if this formula has the same registers and symbols
2622         // as OrigF.
2623         if (F.BaseRegs == OrigF.BaseRegs &&
2624             F.ScaledReg == OrigF.ScaledReg &&
2625             F.BaseGV == OrigF.BaseGV &&
2626             F.Scale == OrigF.Scale &&
2627             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2628           if (F.BaseOffset == 0)
2629             return &LU;
2630           // This is the formula where all the registers and symbols matched;
2631           // there aren't going to be any others. Since we declined it, we
2632           // can skip the rest of the formulae and proceed to the next LSRUse.
2633           break;
2634         }
2635       }
2636     }
2637   }
2638 
2639   // Nothing looked good.
2640   return nullptr;
2641 }
2642 
2643 void LSRInstance::CollectInterestingTypesAndFactors() {
2644   SmallSetVector<const SCEV *, 4> Strides;
2645 
2646   // Collect interesting types and strides.
2647   SmallVector<const SCEV *, 4> Worklist;
2648   for (const IVStrideUse &U : IU) {
2649     const SCEV *Expr = IU.getExpr(U);
2650 
2651     // Collect interesting types.
2652     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2653 
2654     // Add strides for mentioned loops.
2655     Worklist.push_back(Expr);
2656     do {
2657       const SCEV *S = Worklist.pop_back_val();
2658       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2659         if (AR->getLoop() == L)
2660           Strides.insert(AR->getStepRecurrence(SE));
2661         Worklist.push_back(AR->getStart());
2662       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2663         Worklist.append(Add->op_begin(), Add->op_end());
2664       }
2665     } while (!Worklist.empty());
2666   }
2667 
2668   // Compute interesting factors from the set of interesting strides.
2669   for (SmallSetVector<const SCEV *, 4>::const_iterator
2670        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2671     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2672          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2673       const SCEV *OldStride = *I;
2674       const SCEV *NewStride = *NewStrideIter;
2675 
2676       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2677           SE.getTypeSizeInBits(NewStride->getType())) {
2678         if (SE.getTypeSizeInBits(OldStride->getType()) >
2679             SE.getTypeSizeInBits(NewStride->getType()))
2680           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2681         else
2682           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2683       }
2684       if (const SCEVConstant *Factor =
2685             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2686                                                         SE, true))) {
2687         if (Factor->getAPInt().getMinSignedBits() <= 64)
2688           Factors.insert(Factor->getAPInt().getSExtValue());
2689       } else if (const SCEVConstant *Factor =
2690                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2691                                                                NewStride,
2692                                                                SE, true))) {
2693         if (Factor->getAPInt().getMinSignedBits() <= 64)
2694           Factors.insert(Factor->getAPInt().getSExtValue());
2695       }
2696     }
2697 
2698   // If all uses use the same type, don't bother looking for truncation-based
2699   // reuse.
2700   if (Types.size() == 1)
2701     Types.clear();
2702 
2703   LLVM_DEBUG(print_factors_and_types(dbgs()));
2704 }
2705 
2706 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2707 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2708 /// IVStrideUses, we could partially skip this.
2709 static User::op_iterator
2710 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2711               Loop *L, ScalarEvolution &SE) {
2712   for(; OI != OE; ++OI) {
2713     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2714       if (!SE.isSCEVable(Oper->getType()))
2715         continue;
2716 
2717       if (const SCEVAddRecExpr *AR =
2718           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2719         if (AR->getLoop() == L)
2720           break;
2721       }
2722     }
2723   }
2724   return OI;
2725 }
2726 
2727 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2728 /// a convenient helper.
2729 static Value *getWideOperand(Value *Oper) {
2730   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2731     return Trunc->getOperand(0);
2732   return Oper;
2733 }
2734 
2735 /// Return true if we allow an IV chain to include both types.
2736 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2737   Type *LType = LVal->getType();
2738   Type *RType = RVal->getType();
2739   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2740                               // Different address spaces means (possibly)
2741                               // different types of the pointer implementation,
2742                               // e.g. i16 vs i32 so disallow that.
2743                               (LType->getPointerAddressSpace() ==
2744                                RType->getPointerAddressSpace()));
2745 }
2746 
2747 /// Return an approximation of this SCEV expression's "base", or NULL for any
2748 /// constant. Returning the expression itself is conservative. Returning a
2749 /// deeper subexpression is more precise and valid as long as it isn't less
2750 /// complex than another subexpression. For expressions involving multiple
2751 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2752 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2753 /// IVInc==b-a.
2754 ///
2755 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2756 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2757 static const SCEV *getExprBase(const SCEV *S) {
2758   switch (S->getSCEVType()) {
2759   default: // uncluding scUnknown.
2760     return S;
2761   case scConstant:
2762     return nullptr;
2763   case scTruncate:
2764     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2765   case scZeroExtend:
2766     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2767   case scSignExtend:
2768     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2769   case scAddExpr: {
2770     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2771     // there's nothing more complex.
2772     // FIXME: not sure if we want to recognize negation.
2773     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2774     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2775            E(Add->op_begin()); I != E; ++I) {
2776       const SCEV *SubExpr = *I;
2777       if (SubExpr->getSCEVType() == scAddExpr)
2778         return getExprBase(SubExpr);
2779 
2780       if (SubExpr->getSCEVType() != scMulExpr)
2781         return SubExpr;
2782     }
2783     return S; // all operands are scaled, be conservative.
2784   }
2785   case scAddRecExpr:
2786     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2787   }
2788 }
2789 
2790 /// Return true if the chain increment is profitable to expand into a loop
2791 /// invariant value, which may require its own register. A profitable chain
2792 /// increment will be an offset relative to the same base. We allow such offsets
2793 /// to potentially be used as chain increment as long as it's not obviously
2794 /// expensive to expand using real instructions.
2795 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2796                                     const SCEV *IncExpr,
2797                                     ScalarEvolution &SE) {
2798   // Aggressively form chains when -stress-ivchain.
2799   if (StressIVChain)
2800     return true;
2801 
2802   // Do not replace a constant offset from IV head with a nonconstant IV
2803   // increment.
2804   if (!isa<SCEVConstant>(IncExpr)) {
2805     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2806     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2807       return false;
2808   }
2809 
2810   SmallPtrSet<const SCEV*, 8> Processed;
2811   return !isHighCostExpansion(IncExpr, Processed, SE);
2812 }
2813 
2814 /// Return true if the number of registers needed for the chain is estimated to
2815 /// be less than the number required for the individual IV users. First prohibit
2816 /// any IV users that keep the IV live across increments (the Users set should
2817 /// be empty). Next count the number and type of increments in the chain.
2818 ///
2819 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2820 /// effectively use postinc addressing modes. Only consider it profitable it the
2821 /// increments can be computed in fewer registers when chained.
2822 ///
2823 /// TODO: Consider IVInc free if it's already used in another chains.
2824 static bool isProfitableChain(IVChain &Chain,
2825                               SmallPtrSetImpl<Instruction *> &Users,
2826                               ScalarEvolution &SE,
2827                               const TargetTransformInfo &TTI) {
2828   if (StressIVChain)
2829     return true;
2830 
2831   if (!Chain.hasIncs())
2832     return false;
2833 
2834   if (!Users.empty()) {
2835     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2836                for (Instruction *Inst
2837                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2838     return false;
2839   }
2840   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2841 
2842   // The chain itself may require a register, so intialize cost to 1.
2843   int cost = 1;
2844 
2845   // A complete chain likely eliminates the need for keeping the original IV in
2846   // a register. LSR does not currently know how to form a complete chain unless
2847   // the header phi already exists.
2848   if (isa<PHINode>(Chain.tailUserInst())
2849       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2850     --cost;
2851   }
2852   const SCEV *LastIncExpr = nullptr;
2853   unsigned NumConstIncrements = 0;
2854   unsigned NumVarIncrements = 0;
2855   unsigned NumReusedIncrements = 0;
2856 
2857   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2858     return true;
2859 
2860   for (const IVInc &Inc : Chain) {
2861     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2862       return true;
2863 
2864     if (Inc.IncExpr->isZero())
2865       continue;
2866 
2867     // Incrementing by zero or some constant is neutral. We assume constants can
2868     // be folded into an addressing mode or an add's immediate operand.
2869     if (isa<SCEVConstant>(Inc.IncExpr)) {
2870       ++NumConstIncrements;
2871       continue;
2872     }
2873 
2874     if (Inc.IncExpr == LastIncExpr)
2875       ++NumReusedIncrements;
2876     else
2877       ++NumVarIncrements;
2878 
2879     LastIncExpr = Inc.IncExpr;
2880   }
2881   // An IV chain with a single increment is handled by LSR's postinc
2882   // uses. However, a chain with multiple increments requires keeping the IV's
2883   // value live longer than it needs to be if chained.
2884   if (NumConstIncrements > 1)
2885     --cost;
2886 
2887   // Materializing increment expressions in the preheader that didn't exist in
2888   // the original code may cost a register. For example, sign-extended array
2889   // indices can produce ridiculous increments like this:
2890   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2891   cost += NumVarIncrements;
2892 
2893   // Reusing variable increments likely saves a register to hold the multiple of
2894   // the stride.
2895   cost -= NumReusedIncrements;
2896 
2897   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2898                     << "\n");
2899 
2900   return cost < 0;
2901 }
2902 
2903 /// Add this IV user to an existing chain or make it the head of a new chain.
2904 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2905                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2906   // When IVs are used as types of varying widths, they are generally converted
2907   // to a wider type with some uses remaining narrow under a (free) trunc.
2908   Value *const NextIV = getWideOperand(IVOper);
2909   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2910   const SCEV *const OperExprBase = getExprBase(OperExpr);
2911 
2912   // Visit all existing chains. Check if its IVOper can be computed as a
2913   // profitable loop invariant increment from the last link in the Chain.
2914   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2915   const SCEV *LastIncExpr = nullptr;
2916   for (; ChainIdx < NChains; ++ChainIdx) {
2917     IVChain &Chain = IVChainVec[ChainIdx];
2918 
2919     // Prune the solution space aggressively by checking that both IV operands
2920     // are expressions that operate on the same unscaled SCEVUnknown. This
2921     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2922     // first avoids creating extra SCEV expressions.
2923     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2924       continue;
2925 
2926     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2927     if (!isCompatibleIVType(PrevIV, NextIV))
2928       continue;
2929 
2930     // A phi node terminates a chain.
2931     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2932       continue;
2933 
2934     // The increment must be loop-invariant so it can be kept in a register.
2935     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2936     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2937     if (!SE.isLoopInvariant(IncExpr, L))
2938       continue;
2939 
2940     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2941       LastIncExpr = IncExpr;
2942       break;
2943     }
2944   }
2945   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2946   // bother for phi nodes, because they must be last in the chain.
2947   if (ChainIdx == NChains) {
2948     if (isa<PHINode>(UserInst))
2949       return;
2950     if (NChains >= MaxChains && !StressIVChain) {
2951       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2952       return;
2953     }
2954     LastIncExpr = OperExpr;
2955     // IVUsers may have skipped over sign/zero extensions. We don't currently
2956     // attempt to form chains involving extensions unless they can be hoisted
2957     // into this loop's AddRec.
2958     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2959       return;
2960     ++NChains;
2961     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2962                                  OperExprBase));
2963     ChainUsersVec.resize(NChains);
2964     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2965                       << ") IV=" << *LastIncExpr << "\n");
2966   } else {
2967     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2968                       << ") IV+" << *LastIncExpr << "\n");
2969     // Add this IV user to the end of the chain.
2970     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2971   }
2972   IVChain &Chain = IVChainVec[ChainIdx];
2973 
2974   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2975   // This chain's NearUsers become FarUsers.
2976   if (!LastIncExpr->isZero()) {
2977     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2978                                             NearUsers.end());
2979     NearUsers.clear();
2980   }
2981 
2982   // All other uses of IVOperand become near uses of the chain.
2983   // We currently ignore intermediate values within SCEV expressions, assuming
2984   // they will eventually be used be the current chain, or can be computed
2985   // from one of the chain increments. To be more precise we could
2986   // transitively follow its user and only add leaf IV users to the set.
2987   for (User *U : IVOper->users()) {
2988     Instruction *OtherUse = dyn_cast<Instruction>(U);
2989     if (!OtherUse)
2990       continue;
2991     // Uses in the chain will no longer be uses if the chain is formed.
2992     // Include the head of the chain in this iteration (not Chain.begin()).
2993     IVChain::const_iterator IncIter = Chain.Incs.begin();
2994     IVChain::const_iterator IncEnd = Chain.Incs.end();
2995     for( ; IncIter != IncEnd; ++IncIter) {
2996       if (IncIter->UserInst == OtherUse)
2997         break;
2998     }
2999     if (IncIter != IncEnd)
3000       continue;
3001 
3002     if (SE.isSCEVable(OtherUse->getType())
3003         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3004         && IU.isIVUserOrOperand(OtherUse)) {
3005       continue;
3006     }
3007     NearUsers.insert(OtherUse);
3008   }
3009 
3010   // Since this user is part of the chain, it's no longer considered a use
3011   // of the chain.
3012   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3013 }
3014 
3015 /// Populate the vector of Chains.
3016 ///
3017 /// This decreases ILP at the architecture level. Targets with ample registers,
3018 /// multiple memory ports, and no register renaming probably don't want
3019 /// this. However, such targets should probably disable LSR altogether.
3020 ///
3021 /// The job of LSR is to make a reasonable choice of induction variables across
3022 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3023 /// ILP *within the loop* if the target wants it.
3024 ///
3025 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3026 /// will not reorder memory operations, it will recognize this as a chain, but
3027 /// will generate redundant IV increments. Ideally this would be corrected later
3028 /// by a smart scheduler:
3029 ///        = A[i]
3030 ///        = A[i+x]
3031 /// A[i]   =
3032 /// A[i+x] =
3033 ///
3034 /// TODO: Walk the entire domtree within this loop, not just the path to the
3035 /// loop latch. This will discover chains on side paths, but requires
3036 /// maintaining multiple copies of the Chains state.
3037 void LSRInstance::CollectChains() {
3038   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3039   SmallVector<ChainUsers, 8> ChainUsersVec;
3040 
3041   SmallVector<BasicBlock *,8> LatchPath;
3042   BasicBlock *LoopHeader = L->getHeader();
3043   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3044        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3045     LatchPath.push_back(Rung->getBlock());
3046   }
3047   LatchPath.push_back(LoopHeader);
3048 
3049   // Walk the instruction stream from the loop header to the loop latch.
3050   for (BasicBlock *BB : reverse(LatchPath)) {
3051     for (Instruction &I : *BB) {
3052       // Skip instructions that weren't seen by IVUsers analysis.
3053       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3054         continue;
3055 
3056       // Ignore users that are part of a SCEV expression. This way we only
3057       // consider leaf IV Users. This effectively rediscovers a portion of
3058       // IVUsers analysis but in program order this time.
3059       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3060           continue;
3061 
3062       // Remove this instruction from any NearUsers set it may be in.
3063       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3064            ChainIdx < NChains; ++ChainIdx) {
3065         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3066       }
3067       // Search for operands that can be chained.
3068       SmallPtrSet<Instruction*, 4> UniqueOperands;
3069       User::op_iterator IVOpEnd = I.op_end();
3070       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3071       while (IVOpIter != IVOpEnd) {
3072         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3073         if (UniqueOperands.insert(IVOpInst).second)
3074           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3075         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3076       }
3077     } // Continue walking down the instructions.
3078   } // Continue walking down the domtree.
3079   // Visit phi backedges to determine if the chain can generate the IV postinc.
3080   for (PHINode &PN : L->getHeader()->phis()) {
3081     if (!SE.isSCEVable(PN.getType()))
3082       continue;
3083 
3084     Instruction *IncV =
3085         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3086     if (IncV)
3087       ChainInstruction(&PN, IncV, ChainUsersVec);
3088   }
3089   // Remove any unprofitable chains.
3090   unsigned ChainIdx = 0;
3091   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3092        UsersIdx < NChains; ++UsersIdx) {
3093     if (!isProfitableChain(IVChainVec[UsersIdx],
3094                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3095       continue;
3096     // Preserve the chain at UsesIdx.
3097     if (ChainIdx != UsersIdx)
3098       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3099     FinalizeChain(IVChainVec[ChainIdx]);
3100     ++ChainIdx;
3101   }
3102   IVChainVec.resize(ChainIdx);
3103 }
3104 
3105 void LSRInstance::FinalizeChain(IVChain &Chain) {
3106   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3107   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3108 
3109   for (const IVInc &Inc : Chain) {
3110     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3111     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3112     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3113     IVIncSet.insert(UseI);
3114   }
3115 }
3116 
3117 /// Return true if the IVInc can be folded into an addressing mode.
3118 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3119                              Value *Operand, const TargetTransformInfo &TTI) {
3120   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3121   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3122     return false;
3123 
3124   if (IncConst->getAPInt().getMinSignedBits() > 64)
3125     return false;
3126 
3127   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3128   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3129   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3130                         IncOffset, /*HasBaseReg=*/false))
3131     return false;
3132 
3133   return true;
3134 }
3135 
3136 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3137 /// user's operand from the previous IV user's operand.
3138 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3139                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3140   // Find the new IVOperand for the head of the chain. It may have been replaced
3141   // by LSR.
3142   const IVInc &Head = Chain.Incs[0];
3143   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3144   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3145   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3146                                              IVOpEnd, L, SE);
3147   Value *IVSrc = nullptr;
3148   while (IVOpIter != IVOpEnd) {
3149     IVSrc = getWideOperand(*IVOpIter);
3150 
3151     // If this operand computes the expression that the chain needs, we may use
3152     // it. (Check this after setting IVSrc which is used below.)
3153     //
3154     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3155     // narrow for the chain, so we can no longer use it. We do allow using a
3156     // wider phi, assuming the LSR checked for free truncation. In that case we
3157     // should already have a truncate on this operand such that
3158     // getSCEV(IVSrc) == IncExpr.
3159     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3160         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3161       break;
3162     }
3163     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3164   }
3165   if (IVOpIter == IVOpEnd) {
3166     // Gracefully give up on this chain.
3167     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3168     return;
3169   }
3170   assert(IVSrc && "Failed to find IV chain source");
3171 
3172   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3173   Type *IVTy = IVSrc->getType();
3174   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3175   const SCEV *LeftOverExpr = nullptr;
3176   for (const IVInc &Inc : Chain) {
3177     Instruction *InsertPt = Inc.UserInst;
3178     if (isa<PHINode>(InsertPt))
3179       InsertPt = L->getLoopLatch()->getTerminator();
3180 
3181     // IVOper will replace the current IV User's operand. IVSrc is the IV
3182     // value currently held in a register.
3183     Value *IVOper = IVSrc;
3184     if (!Inc.IncExpr->isZero()) {
3185       // IncExpr was the result of subtraction of two narrow values, so must
3186       // be signed.
3187       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3188       LeftOverExpr = LeftOverExpr ?
3189         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3190     }
3191     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3192       // Expand the IV increment.
3193       Rewriter.clearPostInc();
3194       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3195       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3196                                              SE.getUnknown(IncV));
3197       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3198 
3199       // If an IV increment can't be folded, use it as the next IV value.
3200       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3201         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3202         IVSrc = IVOper;
3203         LeftOverExpr = nullptr;
3204       }
3205     }
3206     Type *OperTy = Inc.IVOperand->getType();
3207     if (IVTy != OperTy) {
3208       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3209              "cannot extend a chained IV");
3210       IRBuilder<> Builder(InsertPt);
3211       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3212     }
3213     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3214     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3215       DeadInsts.emplace_back(OperandIsInstr);
3216   }
3217   // If LSR created a new, wider phi, we may also replace its postinc. We only
3218   // do this if we also found a wide value for the head of the chain.
3219   if (isa<PHINode>(Chain.tailUserInst())) {
3220     for (PHINode &Phi : L->getHeader()->phis()) {
3221       if (!isCompatibleIVType(&Phi, IVSrc))
3222         continue;
3223       Instruction *PostIncV = dyn_cast<Instruction>(
3224           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3225       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3226         continue;
3227       Value *IVOper = IVSrc;
3228       Type *PostIncTy = PostIncV->getType();
3229       if (IVTy != PostIncTy) {
3230         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3231         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3232         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3233         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3234       }
3235       Phi.replaceUsesOfWith(PostIncV, IVOper);
3236       DeadInsts.emplace_back(PostIncV);
3237     }
3238   }
3239 }
3240 
3241 void LSRInstance::CollectFixupsAndInitialFormulae() {
3242   BranchInst *ExitBranch = nullptr;
3243   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3244 
3245   for (const IVStrideUse &U : IU) {
3246     Instruction *UserInst = U.getUser();
3247     // Skip IV users that are part of profitable IV Chains.
3248     User::op_iterator UseI =
3249         find(UserInst->operands(), U.getOperandValToReplace());
3250     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3251     if (IVIncSet.count(UseI)) {
3252       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3253       continue;
3254     }
3255 
3256     LSRUse::KindType Kind = LSRUse::Basic;
3257     MemAccessTy AccessTy;
3258     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3259       Kind = LSRUse::Address;
3260       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3261     }
3262 
3263     const SCEV *S = IU.getExpr(U);
3264     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3265 
3266     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3267     // (N - i == 0), and this allows (N - i) to be the expression that we work
3268     // with rather than just N or i, so we can consider the register
3269     // requirements for both N and i at the same time. Limiting this code to
3270     // equality icmps is not a problem because all interesting loops use
3271     // equality icmps, thanks to IndVarSimplify.
3272     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3273       // If CI can be saved in some target, like replaced inside hardware loop
3274       // in PowerPC, no need to generate initial formulae for it.
3275       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3276         continue;
3277       if (CI->isEquality()) {
3278         // Swap the operands if needed to put the OperandValToReplace on the
3279         // left, for consistency.
3280         Value *NV = CI->getOperand(1);
3281         if (NV == U.getOperandValToReplace()) {
3282           CI->setOperand(1, CI->getOperand(0));
3283           CI->setOperand(0, NV);
3284           NV = CI->getOperand(1);
3285           Changed = true;
3286         }
3287 
3288         // x == y  -->  x - y == 0
3289         const SCEV *N = SE.getSCEV(NV);
3290         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3291           // S is normalized, so normalize N before folding it into S
3292           // to keep the result normalized.
3293           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3294           Kind = LSRUse::ICmpZero;
3295           S = SE.getMinusSCEV(N, S);
3296         }
3297 
3298         // -1 and the negations of all interesting strides (except the negation
3299         // of -1) are now also interesting.
3300         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3301           if (Factors[i] != -1)
3302             Factors.insert(-(uint64_t)Factors[i]);
3303         Factors.insert(-1);
3304       }
3305     }
3306 
3307     // Get or create an LSRUse.
3308     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3309     size_t LUIdx = P.first;
3310     int64_t Offset = P.second;
3311     LSRUse &LU = Uses[LUIdx];
3312 
3313     // Record the fixup.
3314     LSRFixup &LF = LU.getNewFixup();
3315     LF.UserInst = UserInst;
3316     LF.OperandValToReplace = U.getOperandValToReplace();
3317     LF.PostIncLoops = TmpPostIncLoops;
3318     LF.Offset = Offset;
3319     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3320 
3321     if (!LU.WidestFixupType ||
3322         SE.getTypeSizeInBits(LU.WidestFixupType) <
3323         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3324       LU.WidestFixupType = LF.OperandValToReplace->getType();
3325 
3326     // If this is the first use of this LSRUse, give it a formula.
3327     if (LU.Formulae.empty()) {
3328       InsertInitialFormula(S, LU, LUIdx);
3329       CountRegisters(LU.Formulae.back(), LUIdx);
3330     }
3331   }
3332 
3333   LLVM_DEBUG(print_fixups(dbgs()));
3334 }
3335 
3336 /// Insert a formula for the given expression into the given use, separating out
3337 /// loop-variant portions from loop-invariant and loop-computable portions.
3338 void
3339 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3340   // Mark uses whose expressions cannot be expanded.
3341   if (!isSafeToExpand(S, SE))
3342     LU.RigidFormula = true;
3343 
3344   Formula F;
3345   F.initialMatch(S, L, SE);
3346   bool Inserted = InsertFormula(LU, LUIdx, F);
3347   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3348 }
3349 
3350 /// Insert a simple single-register formula for the given expression into the
3351 /// given use.
3352 void
3353 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3354                                        LSRUse &LU, size_t LUIdx) {
3355   Formula F;
3356   F.BaseRegs.push_back(S);
3357   F.HasBaseReg = true;
3358   bool Inserted = InsertFormula(LU, LUIdx, F);
3359   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3360 }
3361 
3362 /// Note which registers are used by the given formula, updating RegUses.
3363 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3364   if (F.ScaledReg)
3365     RegUses.countRegister(F.ScaledReg, LUIdx);
3366   for (const SCEV *BaseReg : F.BaseRegs)
3367     RegUses.countRegister(BaseReg, LUIdx);
3368 }
3369 
3370 /// If the given formula has not yet been inserted, add it to the list, and
3371 /// return true. Return false otherwise.
3372 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3373   // Do not insert formula that we will not be able to expand.
3374   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3375          "Formula is illegal");
3376 
3377   if (!LU.InsertFormula(F, *L))
3378     return false;
3379 
3380   CountRegisters(F, LUIdx);
3381   return true;
3382 }
3383 
3384 /// Check for other uses of loop-invariant values which we're tracking. These
3385 /// other uses will pin these values in registers, making them less profitable
3386 /// for elimination.
3387 /// TODO: This currently misses non-constant addrec step registers.
3388 /// TODO: Should this give more weight to users inside the loop?
3389 void
3390 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3391   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3392   SmallPtrSet<const SCEV *, 32> Visited;
3393 
3394   while (!Worklist.empty()) {
3395     const SCEV *S = Worklist.pop_back_val();
3396 
3397     // Don't process the same SCEV twice
3398     if (!Visited.insert(S).second)
3399       continue;
3400 
3401     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3402       Worklist.append(N->op_begin(), N->op_end());
3403     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3404       Worklist.push_back(C->getOperand());
3405     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3406       Worklist.push_back(D->getLHS());
3407       Worklist.push_back(D->getRHS());
3408     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3409       const Value *V = US->getValue();
3410       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3411         // Look for instructions defined outside the loop.
3412         if (L->contains(Inst)) continue;
3413       } else if (isa<UndefValue>(V))
3414         // Undef doesn't have a live range, so it doesn't matter.
3415         continue;
3416       for (const Use &U : V->uses()) {
3417         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3418         // Ignore non-instructions.
3419         if (!UserInst)
3420           continue;
3421         // Ignore instructions in other functions (as can happen with
3422         // Constants).
3423         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3424           continue;
3425         // Ignore instructions not dominated by the loop.
3426         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3427           UserInst->getParent() :
3428           cast<PHINode>(UserInst)->getIncomingBlock(
3429             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3430         if (!DT.dominates(L->getHeader(), UseBB))
3431           continue;
3432         // Don't bother if the instruction is in a BB which ends in an EHPad.
3433         if (UseBB->getTerminator()->isEHPad())
3434           continue;
3435         // Don't bother rewriting PHIs in catchswitch blocks.
3436         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3437           continue;
3438         // Ignore uses which are part of other SCEV expressions, to avoid
3439         // analyzing them multiple times.
3440         if (SE.isSCEVable(UserInst->getType())) {
3441           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3442           // If the user is a no-op, look through to its uses.
3443           if (!isa<SCEVUnknown>(UserS))
3444             continue;
3445           if (UserS == US) {
3446             Worklist.push_back(
3447               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3448             continue;
3449           }
3450         }
3451         // Ignore icmp instructions which are already being analyzed.
3452         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3453           unsigned OtherIdx = !U.getOperandNo();
3454           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3455           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3456             continue;
3457         }
3458 
3459         std::pair<size_t, int64_t> P = getUse(
3460             S, LSRUse::Basic, MemAccessTy());
3461         size_t LUIdx = P.first;
3462         int64_t Offset = P.second;
3463         LSRUse &LU = Uses[LUIdx];
3464         LSRFixup &LF = LU.getNewFixup();
3465         LF.UserInst = const_cast<Instruction *>(UserInst);
3466         LF.OperandValToReplace = U;
3467         LF.Offset = Offset;
3468         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3469         if (!LU.WidestFixupType ||
3470             SE.getTypeSizeInBits(LU.WidestFixupType) <
3471             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3472           LU.WidestFixupType = LF.OperandValToReplace->getType();
3473         InsertSupplementalFormula(US, LU, LUIdx);
3474         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3475         break;
3476       }
3477     }
3478   }
3479 }
3480 
3481 /// Split S into subexpressions which can be pulled out into separate
3482 /// registers. If C is non-null, multiply each subexpression by C.
3483 ///
3484 /// Return remainder expression after factoring the subexpressions captured by
3485 /// Ops. If Ops is complete, return NULL.
3486 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3487                                    SmallVectorImpl<const SCEV *> &Ops,
3488                                    const Loop *L,
3489                                    ScalarEvolution &SE,
3490                                    unsigned Depth = 0) {
3491   // Arbitrarily cap recursion to protect compile time.
3492   if (Depth >= 3)
3493     return S;
3494 
3495   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3496     // Break out add operands.
3497     for (const SCEV *S : Add->operands()) {
3498       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3499       if (Remainder)
3500         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3501     }
3502     return nullptr;
3503   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3504     // Split a non-zero base out of an addrec.
3505     if (AR->getStart()->isZero() || !AR->isAffine())
3506       return S;
3507 
3508     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3509                                             C, Ops, L, SE, Depth+1);
3510     // Split the non-zero AddRec unless it is part of a nested recurrence that
3511     // does not pertain to this loop.
3512     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3513       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3514       Remainder = nullptr;
3515     }
3516     if (Remainder != AR->getStart()) {
3517       if (!Remainder)
3518         Remainder = SE.getConstant(AR->getType(), 0);
3519       return SE.getAddRecExpr(Remainder,
3520                               AR->getStepRecurrence(SE),
3521                               AR->getLoop(),
3522                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3523                               SCEV::FlagAnyWrap);
3524     }
3525   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3526     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3527     if (Mul->getNumOperands() != 2)
3528       return S;
3529     if (const SCEVConstant *Op0 =
3530         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3531       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3532       const SCEV *Remainder =
3533         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3534       if (Remainder)
3535         Ops.push_back(SE.getMulExpr(C, Remainder));
3536       return nullptr;
3537     }
3538   }
3539   return S;
3540 }
3541 
3542 /// Return true if the SCEV represents a value that may end up as a
3543 /// post-increment operation.
3544 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3545                               LSRUse &LU, const SCEV *S, const Loop *L,
3546                               ScalarEvolution &SE) {
3547   if (LU.Kind != LSRUse::Address ||
3548       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3549     return false;
3550   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3551   if (!AR)
3552     return false;
3553   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3554   if (!isa<SCEVConstant>(LoopStep))
3555     return false;
3556   // Check if a post-indexed load/store can be used.
3557   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3558       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3559     const SCEV *LoopStart = AR->getStart();
3560     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3561       return true;
3562   }
3563   return false;
3564 }
3565 
3566 /// Helper function for LSRInstance::GenerateReassociations.
3567 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3568                                              const Formula &Base,
3569                                              unsigned Depth, size_t Idx,
3570                                              bool IsScaledReg) {
3571   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3572   // Don't generate reassociations for the base register of a value that
3573   // may generate a post-increment operator. The reason is that the
3574   // reassociations cause extra base+register formula to be created,
3575   // and possibly chosen, but the post-increment is more efficient.
3576   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3577     return;
3578   SmallVector<const SCEV *, 8> AddOps;
3579   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3580   if (Remainder)
3581     AddOps.push_back(Remainder);
3582 
3583   if (AddOps.size() == 1)
3584     return;
3585 
3586   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3587                                                      JE = AddOps.end();
3588        J != JE; ++J) {
3589     // Loop-variant "unknown" values are uninteresting; we won't be able to
3590     // do anything meaningful with them.
3591     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3592       continue;
3593 
3594     // Don't pull a constant into a register if the constant could be folded
3595     // into an immediate field.
3596     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3597                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3598       continue;
3599 
3600     // Collect all operands except *J.
3601     SmallVector<const SCEV *, 8> InnerAddOps(
3602         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3603     InnerAddOps.append(std::next(J),
3604                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3605 
3606     // Don't leave just a constant behind in a register if the constant could
3607     // be folded into an immediate field.
3608     if (InnerAddOps.size() == 1 &&
3609         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3610                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3611       continue;
3612 
3613     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3614     if (InnerSum->isZero())
3615       continue;
3616     Formula F = Base;
3617 
3618     // Add the remaining pieces of the add back into the new formula.
3619     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3620     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3621         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3622                                 InnerSumSC->getValue()->getZExtValue())) {
3623       F.UnfoldedOffset =
3624           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3625       if (IsScaledReg)
3626         F.ScaledReg = nullptr;
3627       else
3628         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3629     } else if (IsScaledReg)
3630       F.ScaledReg = InnerSum;
3631     else
3632       F.BaseRegs[Idx] = InnerSum;
3633 
3634     // Add J as its own register, or an unfolded immediate.
3635     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3636     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3637         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3638                                 SC->getValue()->getZExtValue()))
3639       F.UnfoldedOffset =
3640           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3641     else
3642       F.BaseRegs.push_back(*J);
3643     // We may have changed the number of register in base regs, adjust the
3644     // formula accordingly.
3645     F.canonicalize(*L);
3646 
3647     if (InsertFormula(LU, LUIdx, F))
3648       // If that formula hadn't been seen before, recurse to find more like
3649       // it.
3650       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3651       // Because just Depth is not enough to bound compile time.
3652       // This means that every time AddOps.size() is greater 16^x we will add
3653       // x to Depth.
3654       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3655                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3656   }
3657 }
3658 
3659 /// Split out subexpressions from adds and the bases of addrecs.
3660 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3661                                          Formula Base, unsigned Depth) {
3662   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3663   // Arbitrarily cap recursion to protect compile time.
3664   if (Depth >= 3)
3665     return;
3666 
3667   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3668     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3669 
3670   if (Base.Scale == 1)
3671     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3672                                /* Idx */ -1, /* IsScaledReg */ true);
3673 }
3674 
3675 ///  Generate a formula consisting of all of the loop-dominating registers added
3676 /// into a single register.
3677 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3678                                        Formula Base) {
3679   // This method is only interesting on a plurality of registers.
3680   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3681       (Base.UnfoldedOffset != 0) <= 1)
3682     return;
3683 
3684   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3685   // processing the formula.
3686   Base.unscale();
3687   SmallVector<const SCEV *, 4> Ops;
3688   Formula NewBase = Base;
3689   NewBase.BaseRegs.clear();
3690   Type *CombinedIntegerType = nullptr;
3691   for (const SCEV *BaseReg : Base.BaseRegs) {
3692     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3693         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3694       if (!CombinedIntegerType)
3695         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3696       Ops.push_back(BaseReg);
3697     }
3698     else
3699       NewBase.BaseRegs.push_back(BaseReg);
3700   }
3701 
3702   // If no register is relevant, we're done.
3703   if (Ops.size() == 0)
3704     return;
3705 
3706   // Utility function for generating the required variants of the combined
3707   // registers.
3708   auto GenerateFormula = [&](const SCEV *Sum) {
3709     Formula F = NewBase;
3710 
3711     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3712     // opportunity to fold something. For now, just ignore such cases
3713     // rather than proceed with zero in a register.
3714     if (Sum->isZero())
3715       return;
3716 
3717     F.BaseRegs.push_back(Sum);
3718     F.canonicalize(*L);
3719     (void)InsertFormula(LU, LUIdx, F);
3720   };
3721 
3722   // If we collected at least two registers, generate a formula combining them.
3723   if (Ops.size() > 1) {
3724     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3725     GenerateFormula(SE.getAddExpr(OpsCopy));
3726   }
3727 
3728   // If we have an unfolded offset, generate a formula combining it with the
3729   // registers collected.
3730   if (NewBase.UnfoldedOffset) {
3731     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3732     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3733                                  true));
3734     NewBase.UnfoldedOffset = 0;
3735     GenerateFormula(SE.getAddExpr(Ops));
3736   }
3737 }
3738 
3739 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3740 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3741                                               const Formula &Base, size_t Idx,
3742                                               bool IsScaledReg) {
3743   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3744   GlobalValue *GV = ExtractSymbol(G, SE);
3745   if (G->isZero() || !GV)
3746     return;
3747   Formula F = Base;
3748   F.BaseGV = GV;
3749   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3750     return;
3751   if (IsScaledReg)
3752     F.ScaledReg = G;
3753   else
3754     F.BaseRegs[Idx] = G;
3755   (void)InsertFormula(LU, LUIdx, F);
3756 }
3757 
3758 /// Generate reuse formulae using symbolic offsets.
3759 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3760                                           Formula Base) {
3761   // We can't add a symbolic offset if the address already contains one.
3762   if (Base.BaseGV) return;
3763 
3764   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3765     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3766   if (Base.Scale == 1)
3767     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3768                                 /* IsScaledReg */ true);
3769 }
3770 
3771 /// Helper function for LSRInstance::GenerateConstantOffsets.
3772 void LSRInstance::GenerateConstantOffsetsImpl(
3773     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3774     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3775 
3776   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3777     Formula F = Base;
3778     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3779 
3780     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3781                    LU.AccessTy, F)) {
3782       // Add the offset to the base register.
3783       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3784       // If it cancelled out, drop the base register, otherwise update it.
3785       if (NewG->isZero()) {
3786         if (IsScaledReg) {
3787           F.Scale = 0;
3788           F.ScaledReg = nullptr;
3789         } else
3790           F.deleteBaseReg(F.BaseRegs[Idx]);
3791         F.canonicalize(*L);
3792       } else if (IsScaledReg)
3793         F.ScaledReg = NewG;
3794       else
3795         F.BaseRegs[Idx] = NewG;
3796 
3797       (void)InsertFormula(LU, LUIdx, F);
3798     }
3799   };
3800 
3801   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3802 
3803   // With constant offsets and constant steps, we can generate pre-inc
3804   // accesses by having the offset equal the step. So, for access #0 with a
3805   // step of 8, we generate a G - 8 base which would require the first access
3806   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3807   // for itself and hopefully becomes the base for other accesses. This means
3808   // means that a single pre-indexed access can be generated to become the new
3809   // base pointer for each iteration of the loop, resulting in no extra add/sub
3810   // instructions for pointer updating.
3811   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3812     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3813       if (auto *StepRec =
3814           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3815         const APInt &StepInt = StepRec->getAPInt();
3816         int64_t Step = StepInt.isNegative() ?
3817           StepInt.getSExtValue() : StepInt.getZExtValue();
3818 
3819         for (int64_t Offset : Worklist) {
3820           Offset -= Step;
3821           GenerateOffset(G, Offset);
3822         }
3823       }
3824     }
3825   }
3826   for (int64_t Offset : Worklist)
3827     GenerateOffset(G, Offset);
3828 
3829   int64_t Imm = ExtractImmediate(G, SE);
3830   if (G->isZero() || Imm == 0)
3831     return;
3832   Formula F = Base;
3833   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3834   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3835     return;
3836   if (IsScaledReg)
3837     F.ScaledReg = G;
3838   else
3839     F.BaseRegs[Idx] = G;
3840   (void)InsertFormula(LU, LUIdx, F);
3841 }
3842 
3843 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3844 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3845                                           Formula Base) {
3846   // TODO: For now, just add the min and max offset, because it usually isn't
3847   // worthwhile looking at everything inbetween.
3848   SmallVector<int64_t, 2> Worklist;
3849   Worklist.push_back(LU.MinOffset);
3850   if (LU.MaxOffset != LU.MinOffset)
3851     Worklist.push_back(LU.MaxOffset);
3852 
3853   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3854     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3855   if (Base.Scale == 1)
3856     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3857                                 /* IsScaledReg */ true);
3858 }
3859 
3860 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3861 /// == y -> x*c == y*c.
3862 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3863                                          Formula Base) {
3864   if (LU.Kind != LSRUse::ICmpZero) return;
3865 
3866   // Determine the integer type for the base formula.
3867   Type *IntTy = Base.getType();
3868   if (!IntTy) return;
3869   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3870 
3871   // Don't do this if there is more than one offset.
3872   if (LU.MinOffset != LU.MaxOffset) return;
3873 
3874   // Check if transformation is valid. It is illegal to multiply pointer.
3875   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3876     return;
3877   for (const SCEV *BaseReg : Base.BaseRegs)
3878     if (BaseReg->getType()->isPointerTy())
3879       return;
3880   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3881 
3882   // Check each interesting stride.
3883   for (int64_t Factor : Factors) {
3884     // Check that the multiplication doesn't overflow.
3885     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3886       continue;
3887     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3888     if (NewBaseOffset / Factor != Base.BaseOffset)
3889       continue;
3890     // If the offset will be truncated at this use, check that it is in bounds.
3891     if (!IntTy->isPointerTy() &&
3892         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3893       continue;
3894 
3895     // Check that multiplying with the use offset doesn't overflow.
3896     int64_t Offset = LU.MinOffset;
3897     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3898       continue;
3899     Offset = (uint64_t)Offset * Factor;
3900     if (Offset / Factor != LU.MinOffset)
3901       continue;
3902     // If the offset will be truncated at this use, check that it is in bounds.
3903     if (!IntTy->isPointerTy() &&
3904         !ConstantInt::isValueValidForType(IntTy, Offset))
3905       continue;
3906 
3907     Formula F = Base;
3908     F.BaseOffset = NewBaseOffset;
3909 
3910     // Check that this scale is legal.
3911     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3912       continue;
3913 
3914     // Compensate for the use having MinOffset built into it.
3915     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3916 
3917     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3918 
3919     // Check that multiplying with each base register doesn't overflow.
3920     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3921       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3922       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3923         goto next;
3924     }
3925 
3926     // Check that multiplying with the scaled register doesn't overflow.
3927     if (F.ScaledReg) {
3928       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3929       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3930         continue;
3931     }
3932 
3933     // Check that multiplying with the unfolded offset doesn't overflow.
3934     if (F.UnfoldedOffset != 0) {
3935       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3936           Factor == -1)
3937         continue;
3938       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3939       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3940         continue;
3941       // If the offset will be truncated, check that it is in bounds.
3942       if (!IntTy->isPointerTy() &&
3943           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3944         continue;
3945     }
3946 
3947     // If we make it here and it's legal, add it.
3948     (void)InsertFormula(LU, LUIdx, F);
3949   next:;
3950   }
3951 }
3952 
3953 /// Generate stride factor reuse formulae by making use of scaled-offset address
3954 /// modes, for example.
3955 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3956   // Determine the integer type for the base formula.
3957   Type *IntTy = Base.getType();
3958   if (!IntTy) return;
3959 
3960   // If this Formula already has a scaled register, we can't add another one.
3961   // Try to unscale the formula to generate a better scale.
3962   if (Base.Scale != 0 && !Base.unscale())
3963     return;
3964 
3965   assert(Base.Scale == 0 && "unscale did not did its job!");
3966 
3967   // Check each interesting stride.
3968   for (int64_t Factor : Factors) {
3969     Base.Scale = Factor;
3970     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3971     // Check whether this scale is going to be legal.
3972     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3973                     Base)) {
3974       // As a special-case, handle special out-of-loop Basic users specially.
3975       // TODO: Reconsider this special case.
3976       if (LU.Kind == LSRUse::Basic &&
3977           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3978                      LU.AccessTy, Base) &&
3979           LU.AllFixupsOutsideLoop)
3980         LU.Kind = LSRUse::Special;
3981       else
3982         continue;
3983     }
3984     // For an ICmpZero, negating a solitary base register won't lead to
3985     // new solutions.
3986     if (LU.Kind == LSRUse::ICmpZero &&
3987         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3988       continue;
3989     // For each addrec base reg, if its loop is current loop, apply the scale.
3990     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3991       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3992       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3993         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3994         if (FactorS->isZero())
3995           continue;
3996         // Divide out the factor, ignoring high bits, since we'll be
3997         // scaling the value back up in the end.
3998         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3999           // TODO: This could be optimized to avoid all the copying.
4000           Formula F = Base;
4001           F.ScaledReg = Quotient;
4002           F.deleteBaseReg(F.BaseRegs[i]);
4003           // The canonical representation of 1*reg is reg, which is already in
4004           // Base. In that case, do not try to insert the formula, it will be
4005           // rejected anyway.
4006           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4007                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4008             continue;
4009           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4010           // non canonical Formula with ScaledReg's loop not being L.
4011           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4012             F.canonicalize(*L);
4013           (void)InsertFormula(LU, LUIdx, F);
4014         }
4015       }
4016     }
4017   }
4018 }
4019 
4020 /// Generate reuse formulae from different IV types.
4021 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4022   // Don't bother truncating symbolic values.
4023   if (Base.BaseGV) return;
4024 
4025   // Determine the integer type for the base formula.
4026   Type *DstTy = Base.getType();
4027   if (!DstTy) return;
4028   DstTy = SE.getEffectiveSCEVType(DstTy);
4029 
4030   for (Type *SrcTy : Types) {
4031     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4032       Formula F = Base;
4033 
4034       // Sometimes SCEV is able to prove zero during ext transform. It may
4035       // happen if SCEV did not do all possible transforms while creating the
4036       // initial node (maybe due to depth limitations), but it can do them while
4037       // taking ext.
4038       if (F.ScaledReg) {
4039         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4040         if (NewScaledReg->isZero())
4041          continue;
4042         F.ScaledReg = NewScaledReg;
4043       }
4044       bool HasZeroBaseReg = false;
4045       for (const SCEV *&BaseReg : F.BaseRegs) {
4046         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4047         if (NewBaseReg->isZero()) {
4048           HasZeroBaseReg = true;
4049           break;
4050         }
4051         BaseReg = NewBaseReg;
4052       }
4053       if (HasZeroBaseReg)
4054         continue;
4055 
4056       // TODO: This assumes we've done basic processing on all uses and
4057       // have an idea what the register usage is.
4058       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4059         continue;
4060 
4061       F.canonicalize(*L);
4062       (void)InsertFormula(LU, LUIdx, F);
4063     }
4064   }
4065 }
4066 
4067 namespace {
4068 
4069 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4070 /// modifications so that the search phase doesn't have to worry about the data
4071 /// structures moving underneath it.
4072 struct WorkItem {
4073   size_t LUIdx;
4074   int64_t Imm;
4075   const SCEV *OrigReg;
4076 
4077   WorkItem(size_t LI, int64_t I, const SCEV *R)
4078       : LUIdx(LI), Imm(I), OrigReg(R) {}
4079 
4080   void print(raw_ostream &OS) const;
4081   void dump() const;
4082 };
4083 
4084 } // end anonymous namespace
4085 
4086 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4087 void WorkItem::print(raw_ostream &OS) const {
4088   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4089      << " , add offset " << Imm;
4090 }
4091 
4092 LLVM_DUMP_METHOD void WorkItem::dump() const {
4093   print(errs()); errs() << '\n';
4094 }
4095 #endif
4096 
4097 /// Look for registers which are a constant distance apart and try to form reuse
4098 /// opportunities between them.
4099 void LSRInstance::GenerateCrossUseConstantOffsets() {
4100   // Group the registers by their value without any added constant offset.
4101   using ImmMapTy = std::map<int64_t, const SCEV *>;
4102 
4103   DenseMap<const SCEV *, ImmMapTy> Map;
4104   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4105   SmallVector<const SCEV *, 8> Sequence;
4106   for (const SCEV *Use : RegUses) {
4107     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4108     int64_t Imm = ExtractImmediate(Reg, SE);
4109     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4110     if (Pair.second)
4111       Sequence.push_back(Reg);
4112     Pair.first->second.insert(std::make_pair(Imm, Use));
4113     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4114   }
4115 
4116   // Now examine each set of registers with the same base value. Build up
4117   // a list of work to do and do the work in a separate step so that we're
4118   // not adding formulae and register counts while we're searching.
4119   SmallVector<WorkItem, 32> WorkItems;
4120   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4121   for (const SCEV *Reg : Sequence) {
4122     const ImmMapTy &Imms = Map.find(Reg)->second;
4123 
4124     // It's not worthwhile looking for reuse if there's only one offset.
4125     if (Imms.size() == 1)
4126       continue;
4127 
4128     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4129                for (const auto &Entry
4130                     : Imms) dbgs()
4131                << ' ' << Entry.first;
4132                dbgs() << '\n');
4133 
4134     // Examine each offset.
4135     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4136          J != JE; ++J) {
4137       const SCEV *OrigReg = J->second;
4138 
4139       int64_t JImm = J->first;
4140       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4141 
4142       if (!isa<SCEVConstant>(OrigReg) &&
4143           UsedByIndicesMap[Reg].count() == 1) {
4144         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4145                           << '\n');
4146         continue;
4147       }
4148 
4149       // Conservatively examine offsets between this orig reg a few selected
4150       // other orig regs.
4151       int64_t First = Imms.begin()->first;
4152       int64_t Last = std::prev(Imms.end())->first;
4153       // Compute (First + Last)  / 2 without overflow using the fact that
4154       // First + Last = 2 * (First + Last) + (First ^ Last).
4155       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4156       // If the result is negative and First is odd and Last even (or vice versa),
4157       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4158       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4159       ImmMapTy::const_iterator OtherImms[] = {
4160           Imms.begin(), std::prev(Imms.end()),
4161          Imms.lower_bound(Avg)};
4162       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4163         ImmMapTy::const_iterator M = OtherImms[i];
4164         if (M == J || M == JE) continue;
4165 
4166         // Compute the difference between the two.
4167         int64_t Imm = (uint64_t)JImm - M->first;
4168         for (unsigned LUIdx : UsedByIndices.set_bits())
4169           // Make a memo of this use, offset, and register tuple.
4170           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4171             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4172       }
4173     }
4174   }
4175 
4176   Map.clear();
4177   Sequence.clear();
4178   UsedByIndicesMap.clear();
4179   UniqueItems.clear();
4180 
4181   // Now iterate through the worklist and add new formulae.
4182   for (const WorkItem &WI : WorkItems) {
4183     size_t LUIdx = WI.LUIdx;
4184     LSRUse &LU = Uses[LUIdx];
4185     int64_t Imm = WI.Imm;
4186     const SCEV *OrigReg = WI.OrigReg;
4187 
4188     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4189     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4190     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4191 
4192     // TODO: Use a more targeted data structure.
4193     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4194       Formula F = LU.Formulae[L];
4195       // FIXME: The code for the scaled and unscaled registers looks
4196       // very similar but slightly different. Investigate if they
4197       // could be merged. That way, we would not have to unscale the
4198       // Formula.
4199       F.unscale();
4200       // Use the immediate in the scaled register.
4201       if (F.ScaledReg == OrigReg) {
4202         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4203         // Don't create 50 + reg(-50).
4204         if (F.referencesReg(SE.getSCEV(
4205                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4206           continue;
4207         Formula NewF = F;
4208         NewF.BaseOffset = Offset;
4209         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4210                         NewF))
4211           continue;
4212         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4213 
4214         // If the new scale is a constant in a register, and adding the constant
4215         // value to the immediate would produce a value closer to zero than the
4216         // immediate itself, then the formula isn't worthwhile.
4217         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4218           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4219               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4220                   .ule(std::abs(NewF.BaseOffset)))
4221             continue;
4222 
4223         // OK, looks good.
4224         NewF.canonicalize(*this->L);
4225         (void)InsertFormula(LU, LUIdx, NewF);
4226       } else {
4227         // Use the immediate in a base register.
4228         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4229           const SCEV *BaseReg = F.BaseRegs[N];
4230           if (BaseReg != OrigReg)
4231             continue;
4232           Formula NewF = F;
4233           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4234           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4235                           LU.Kind, LU.AccessTy, NewF)) {
4236             if (TTI.shouldFavorPostInc() &&
4237                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4238               continue;
4239             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4240               continue;
4241             NewF = F;
4242             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4243           }
4244           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4245 
4246           // If the new formula has a constant in a register, and adding the
4247           // constant value to the immediate would produce a value closer to
4248           // zero than the immediate itself, then the formula isn't worthwhile.
4249           for (const SCEV *NewReg : NewF.BaseRegs)
4250             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4251               if ((C->getAPInt() + NewF.BaseOffset)
4252                       .abs()
4253                       .slt(std::abs(NewF.BaseOffset)) &&
4254                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4255                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4256                 goto skip_formula;
4257 
4258           // Ok, looks good.
4259           NewF.canonicalize(*this->L);
4260           (void)InsertFormula(LU, LUIdx, NewF);
4261           break;
4262         skip_formula:;
4263         }
4264       }
4265     }
4266   }
4267 }
4268 
4269 /// Generate formulae for each use.
4270 void
4271 LSRInstance::GenerateAllReuseFormulae() {
4272   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4273   // queries are more precise.
4274   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4275     LSRUse &LU = Uses[LUIdx];
4276     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4277       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4278     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4279       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4280   }
4281   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4282     LSRUse &LU = Uses[LUIdx];
4283     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4284       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4285     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4287     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4288       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4289     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4290       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4291   }
4292   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4293     LSRUse &LU = Uses[LUIdx];
4294     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4295       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4296   }
4297 
4298   GenerateCrossUseConstantOffsets();
4299 
4300   LLVM_DEBUG(dbgs() << "\n"
4301                        "After generating reuse formulae:\n";
4302              print_uses(dbgs()));
4303 }
4304 
4305 /// If there are multiple formulae with the same set of registers used
4306 /// by other uses, pick the best one and delete the others.
4307 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4308   DenseSet<const SCEV *> VisitedRegs;
4309   SmallPtrSet<const SCEV *, 16> Regs;
4310   SmallPtrSet<const SCEV *, 16> LoserRegs;
4311 #ifndef NDEBUG
4312   bool ChangedFormulae = false;
4313 #endif
4314 
4315   // Collect the best formula for each unique set of shared registers. This
4316   // is reset for each use.
4317   using BestFormulaeTy =
4318       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4319 
4320   BestFormulaeTy BestFormulae;
4321 
4322   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4323     LSRUse &LU = Uses[LUIdx];
4324     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4325                dbgs() << '\n');
4326 
4327     bool Any = false;
4328     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4329          FIdx != NumForms; ++FIdx) {
4330       Formula &F = LU.Formulae[FIdx];
4331 
4332       // Some formulas are instant losers. For example, they may depend on
4333       // nonexistent AddRecs from other loops. These need to be filtered
4334       // immediately, otherwise heuristics could choose them over others leading
4335       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4336       // avoids the need to recompute this information across formulae using the
4337       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4338       // the corresponding bad register from the Regs set.
4339       Cost CostF(L, SE, TTI);
4340       Regs.clear();
4341       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4342       if (CostF.isLoser()) {
4343         // During initial formula generation, undesirable formulae are generated
4344         // by uses within other loops that have some non-trivial address mode or
4345         // use the postinc form of the IV. LSR needs to provide these formulae
4346         // as the basis of rediscovering the desired formula that uses an AddRec
4347         // corresponding to the existing phi. Once all formulae have been
4348         // generated, these initial losers may be pruned.
4349         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4350                    dbgs() << "\n");
4351       }
4352       else {
4353         SmallVector<const SCEV *, 4> Key;
4354         for (const SCEV *Reg : F.BaseRegs) {
4355           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4356             Key.push_back(Reg);
4357         }
4358         if (F.ScaledReg &&
4359             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4360           Key.push_back(F.ScaledReg);
4361         // Unstable sort by host order ok, because this is only used for
4362         // uniquifying.
4363         llvm::sort(Key);
4364 
4365         std::pair<BestFormulaeTy::const_iterator, bool> P =
4366           BestFormulae.insert(std::make_pair(Key, FIdx));
4367         if (P.second)
4368           continue;
4369 
4370         Formula &Best = LU.Formulae[P.first->second];
4371 
4372         Cost CostBest(L, SE, TTI);
4373         Regs.clear();
4374         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4375         if (CostF.isLess(CostBest))
4376           std::swap(F, Best);
4377         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4378                    dbgs() << "\n"
4379                              "    in favor of formula ";
4380                    Best.print(dbgs()); dbgs() << '\n');
4381       }
4382 #ifndef NDEBUG
4383       ChangedFormulae = true;
4384 #endif
4385       LU.DeleteFormula(F);
4386       --FIdx;
4387       --NumForms;
4388       Any = true;
4389     }
4390 
4391     // Now that we've filtered out some formulae, recompute the Regs set.
4392     if (Any)
4393       LU.RecomputeRegs(LUIdx, RegUses);
4394 
4395     // Reset this to prepare for the next use.
4396     BestFormulae.clear();
4397   }
4398 
4399   LLVM_DEBUG(if (ChangedFormulae) {
4400     dbgs() << "\n"
4401               "After filtering out undesirable candidates:\n";
4402     print_uses(dbgs());
4403   });
4404 }
4405 
4406 /// Estimate the worst-case number of solutions the solver might have to
4407 /// consider. It almost never considers this many solutions because it prune the
4408 /// search space, but the pruning isn't always sufficient.
4409 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4410   size_t Power = 1;
4411   for (const LSRUse &LU : Uses) {
4412     size_t FSize = LU.Formulae.size();
4413     if (FSize >= ComplexityLimit) {
4414       Power = ComplexityLimit;
4415       break;
4416     }
4417     Power *= FSize;
4418     if (Power >= ComplexityLimit)
4419       break;
4420   }
4421   return Power;
4422 }
4423 
4424 /// When one formula uses a superset of the registers of another formula, it
4425 /// won't help reduce register pressure (though it may not necessarily hurt
4426 /// register pressure); remove it to simplify the system.
4427 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4428   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4429     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4430 
4431     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4432                          "which use a superset of registers used by other "
4433                          "formulae.\n");
4434 
4435     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4436       LSRUse &LU = Uses[LUIdx];
4437       bool Any = false;
4438       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4439         Formula &F = LU.Formulae[i];
4440         // Look for a formula with a constant or GV in a register. If the use
4441         // also has a formula with that same value in an immediate field,
4442         // delete the one that uses a register.
4443         for (SmallVectorImpl<const SCEV *>::const_iterator
4444              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4445           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4446             Formula NewF = F;
4447             //FIXME: Formulas should store bitwidth to do wrapping properly.
4448             //       See PR41034.
4449             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4450             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4451                                 (I - F.BaseRegs.begin()));
4452             if (LU.HasFormulaWithSameRegs(NewF)) {
4453               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4454                          dbgs() << '\n');
4455               LU.DeleteFormula(F);
4456               --i;
4457               --e;
4458               Any = true;
4459               break;
4460             }
4461           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4462             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4463               if (!F.BaseGV) {
4464                 Formula NewF = F;
4465                 NewF.BaseGV = GV;
4466                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4467                                     (I - F.BaseRegs.begin()));
4468                 if (LU.HasFormulaWithSameRegs(NewF)) {
4469                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4470                              dbgs() << '\n');
4471                   LU.DeleteFormula(F);
4472                   --i;
4473                   --e;
4474                   Any = true;
4475                   break;
4476                 }
4477               }
4478           }
4479         }
4480       }
4481       if (Any)
4482         LU.RecomputeRegs(LUIdx, RegUses);
4483     }
4484 
4485     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4486   }
4487 }
4488 
4489 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4490 /// allocate a single register for them.
4491 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4492   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4493     return;
4494 
4495   LLVM_DEBUG(
4496       dbgs() << "The search space is too complex.\n"
4497                 "Narrowing the search space by assuming that uses separated "
4498                 "by a constant offset will use the same registers.\n");
4499 
4500   // This is especially useful for unrolled loops.
4501 
4502   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4503     LSRUse &LU = Uses[LUIdx];
4504     for (const Formula &F : LU.Formulae) {
4505       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4506         continue;
4507 
4508       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4509       if (!LUThatHas)
4510         continue;
4511 
4512       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4513                               LU.Kind, LU.AccessTy))
4514         continue;
4515 
4516       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4517 
4518       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4519 
4520       // Transfer the fixups of LU to LUThatHas.
4521       for (LSRFixup &Fixup : LU.Fixups) {
4522         Fixup.Offset += F.BaseOffset;
4523         LUThatHas->pushFixup(Fixup);
4524         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4525       }
4526 
4527       // Delete formulae from the new use which are no longer legal.
4528       bool Any = false;
4529       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4530         Formula &F = LUThatHas->Formulae[i];
4531         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4532                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4533           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4534           LUThatHas->DeleteFormula(F);
4535           --i;
4536           --e;
4537           Any = true;
4538         }
4539       }
4540 
4541       if (Any)
4542         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4543 
4544       // Delete the old use.
4545       DeleteUse(LU, LUIdx);
4546       --LUIdx;
4547       --NumUses;
4548       break;
4549     }
4550   }
4551 
4552   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4553 }
4554 
4555 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4556 /// we've done more filtering, as it may be able to find more formulae to
4557 /// eliminate.
4558 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4559   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4560     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4561 
4562     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4563                          "undesirable dedicated registers.\n");
4564 
4565     FilterOutUndesirableDedicatedRegisters();
4566 
4567     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4568   }
4569 }
4570 
4571 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4572 /// Pick the best one and delete the others.
4573 /// This narrowing heuristic is to keep as many formulae with different
4574 /// Scale and ScaledReg pair as possible while narrowing the search space.
4575 /// The benefit is that it is more likely to find out a better solution
4576 /// from a formulae set with more Scale and ScaledReg variations than
4577 /// a formulae set with the same Scale and ScaledReg. The picking winner
4578 /// reg heuristic will often keep the formulae with the same Scale and
4579 /// ScaledReg and filter others, and we want to avoid that if possible.
4580 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4581   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4582     return;
4583 
4584   LLVM_DEBUG(
4585       dbgs() << "The search space is too complex.\n"
4586                 "Narrowing the search space by choosing the best Formula "
4587                 "from the Formulae with the same Scale and ScaledReg.\n");
4588 
4589   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4590   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4591 
4592   BestFormulaeTy BestFormulae;
4593 #ifndef NDEBUG
4594   bool ChangedFormulae = false;
4595 #endif
4596   DenseSet<const SCEV *> VisitedRegs;
4597   SmallPtrSet<const SCEV *, 16> Regs;
4598 
4599   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4600     LSRUse &LU = Uses[LUIdx];
4601     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4602                dbgs() << '\n');
4603 
4604     // Return true if Formula FA is better than Formula FB.
4605     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4606       // First we will try to choose the Formula with fewer new registers.
4607       // For a register used by current Formula, the more the register is
4608       // shared among LSRUses, the less we increase the register number
4609       // counter of the formula.
4610       size_t FARegNum = 0;
4611       for (const SCEV *Reg : FA.BaseRegs) {
4612         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4613         FARegNum += (NumUses - UsedByIndices.count() + 1);
4614       }
4615       size_t FBRegNum = 0;
4616       for (const SCEV *Reg : FB.BaseRegs) {
4617         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4618         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4619       }
4620       if (FARegNum != FBRegNum)
4621         return FARegNum < FBRegNum;
4622 
4623       // If the new register numbers are the same, choose the Formula with
4624       // less Cost.
4625       Cost CostFA(L, SE, TTI);
4626       Cost CostFB(L, SE, TTI);
4627       Regs.clear();
4628       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4629       Regs.clear();
4630       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4631       return CostFA.isLess(CostFB);
4632     };
4633 
4634     bool Any = false;
4635     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4636          ++FIdx) {
4637       Formula &F = LU.Formulae[FIdx];
4638       if (!F.ScaledReg)
4639         continue;
4640       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4641       if (P.second)
4642         continue;
4643 
4644       Formula &Best = LU.Formulae[P.first->second];
4645       if (IsBetterThan(F, Best))
4646         std::swap(F, Best);
4647       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4648                  dbgs() << "\n"
4649                            "    in favor of formula ";
4650                  Best.print(dbgs()); dbgs() << '\n');
4651 #ifndef NDEBUG
4652       ChangedFormulae = true;
4653 #endif
4654       LU.DeleteFormula(F);
4655       --FIdx;
4656       --NumForms;
4657       Any = true;
4658     }
4659     if (Any)
4660       LU.RecomputeRegs(LUIdx, RegUses);
4661 
4662     // Reset this to prepare for the next use.
4663     BestFormulae.clear();
4664   }
4665 
4666   LLVM_DEBUG(if (ChangedFormulae) {
4667     dbgs() << "\n"
4668               "After filtering out undesirable candidates:\n";
4669     print_uses(dbgs());
4670   });
4671 }
4672 
4673 /// The function delete formulas with high registers number expectation.
4674 /// Assuming we don't know the value of each formula (already delete
4675 /// all inefficient), generate probability of not selecting for each
4676 /// register.
4677 /// For example,
4678 /// Use1:
4679 ///  reg(a) + reg({0,+,1})
4680 ///  reg(a) + reg({-1,+,1}) + 1
4681 ///  reg({a,+,1})
4682 /// Use2:
4683 ///  reg(b) + reg({0,+,1})
4684 ///  reg(b) + reg({-1,+,1}) + 1
4685 ///  reg({b,+,1})
4686 /// Use3:
4687 ///  reg(c) + reg(b) + reg({0,+,1})
4688 ///  reg(c) + reg({b,+,1})
4689 ///
4690 /// Probability of not selecting
4691 ///                 Use1   Use2    Use3
4692 /// reg(a)         (1/3) *   1   *   1
4693 /// reg(b)           1   * (1/3) * (1/2)
4694 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4695 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4696 /// reg({a,+,1})   (2/3) *   1   *   1
4697 /// reg({b,+,1})     1   * (2/3) * (2/3)
4698 /// reg(c)           1   *   1   *   0
4699 ///
4700 /// Now count registers number mathematical expectation for each formula:
4701 /// Note that for each use we exclude probability if not selecting for the use.
4702 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4703 /// probabilty 1/3 of not selecting for Use1).
4704 /// Use1:
4705 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4706 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4707 ///  reg({a,+,1})                   1
4708 /// Use2:
4709 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4710 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4711 ///  reg({b,+,1})                   2/3
4712 /// Use3:
4713 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4714 ///  reg(c) + reg({b,+,1})          1 + 2/3
4715 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4716   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4717     return;
4718   // Ok, we have too many of formulae on our hands to conveniently handle.
4719   // Use a rough heuristic to thin out the list.
4720 
4721   // Set of Regs wich will be 100% used in final solution.
4722   // Used in each formula of a solution (in example above this is reg(c)).
4723   // We can skip them in calculations.
4724   SmallPtrSet<const SCEV *, 4> UniqRegs;
4725   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4726 
4727   // Map each register to probability of not selecting
4728   DenseMap <const SCEV *, float> RegNumMap;
4729   for (const SCEV *Reg : RegUses) {
4730     if (UniqRegs.count(Reg))
4731       continue;
4732     float PNotSel = 1;
4733     for (const LSRUse &LU : Uses) {
4734       if (!LU.Regs.count(Reg))
4735         continue;
4736       float P = LU.getNotSelectedProbability(Reg);
4737       if (P != 0.0)
4738         PNotSel *= P;
4739       else
4740         UniqRegs.insert(Reg);
4741     }
4742     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4743   }
4744 
4745   LLVM_DEBUG(
4746       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4747 
4748   // Delete formulas where registers number expectation is high.
4749   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4750     LSRUse &LU = Uses[LUIdx];
4751     // If nothing to delete - continue.
4752     if (LU.Formulae.size() < 2)
4753       continue;
4754     // This is temporary solution to test performance. Float should be
4755     // replaced with round independent type (based on integers) to avoid
4756     // different results for different target builds.
4757     float FMinRegNum = LU.Formulae[0].getNumRegs();
4758     float FMinARegNum = LU.Formulae[0].getNumRegs();
4759     size_t MinIdx = 0;
4760     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4761       Formula &F = LU.Formulae[i];
4762       float FRegNum = 0;
4763       float FARegNum = 0;
4764       for (const SCEV *BaseReg : F.BaseRegs) {
4765         if (UniqRegs.count(BaseReg))
4766           continue;
4767         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4768         if (isa<SCEVAddRecExpr>(BaseReg))
4769           FARegNum +=
4770               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4771       }
4772       if (const SCEV *ScaledReg = F.ScaledReg) {
4773         if (!UniqRegs.count(ScaledReg)) {
4774           FRegNum +=
4775               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4776           if (isa<SCEVAddRecExpr>(ScaledReg))
4777             FARegNum +=
4778                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4779         }
4780       }
4781       if (FMinRegNum > FRegNum ||
4782           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4783         FMinRegNum = FRegNum;
4784         FMinARegNum = FARegNum;
4785         MinIdx = i;
4786       }
4787     }
4788     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4789                dbgs() << " with min reg num " << FMinRegNum << '\n');
4790     if (MinIdx != 0)
4791       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4792     while (LU.Formulae.size() != 1) {
4793       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4794                  dbgs() << '\n');
4795       LU.Formulae.pop_back();
4796     }
4797     LU.RecomputeRegs(LUIdx, RegUses);
4798     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4799     Formula &F = LU.Formulae[0];
4800     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4801     // When we choose the formula, the regs become unique.
4802     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4803     if (F.ScaledReg)
4804       UniqRegs.insert(F.ScaledReg);
4805   }
4806   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4807 }
4808 
4809 /// Pick a register which seems likely to be profitable, and then in any use
4810 /// which has any reference to that register, delete all formulae which do not
4811 /// reference that register.
4812 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4813   // With all other options exhausted, loop until the system is simple
4814   // enough to handle.
4815   SmallPtrSet<const SCEV *, 4> Taken;
4816   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4817     // Ok, we have too many of formulae on our hands to conveniently handle.
4818     // Use a rough heuristic to thin out the list.
4819     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4820 
4821     // Pick the register which is used by the most LSRUses, which is likely
4822     // to be a good reuse register candidate.
4823     const SCEV *Best = nullptr;
4824     unsigned BestNum = 0;
4825     for (const SCEV *Reg : RegUses) {
4826       if (Taken.count(Reg))
4827         continue;
4828       if (!Best) {
4829         Best = Reg;
4830         BestNum = RegUses.getUsedByIndices(Reg).count();
4831       } else {
4832         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4833         if (Count > BestNum) {
4834           Best = Reg;
4835           BestNum = Count;
4836         }
4837       }
4838     }
4839     assert(Best && "Failed to find best LSRUse candidate");
4840 
4841     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4842                       << " will yield profitable reuse.\n");
4843     Taken.insert(Best);
4844 
4845     // In any use with formulae which references this register, delete formulae
4846     // which don't reference it.
4847     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4848       LSRUse &LU = Uses[LUIdx];
4849       if (!LU.Regs.count(Best)) continue;
4850 
4851       bool Any = false;
4852       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4853         Formula &F = LU.Formulae[i];
4854         if (!F.referencesReg(Best)) {
4855           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4856           LU.DeleteFormula(F);
4857           --e;
4858           --i;
4859           Any = true;
4860           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4861           continue;
4862         }
4863       }
4864 
4865       if (Any)
4866         LU.RecomputeRegs(LUIdx, RegUses);
4867     }
4868 
4869     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4870   }
4871 }
4872 
4873 /// If there are an extraordinary number of formulae to choose from, use some
4874 /// rough heuristics to prune down the number of formulae. This keeps the main
4875 /// solver from taking an extraordinary amount of time in some worst-case
4876 /// scenarios.
4877 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4878   NarrowSearchSpaceByDetectingSupersets();
4879   NarrowSearchSpaceByCollapsingUnrolledCode();
4880   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4881   if (FilterSameScaledReg)
4882     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4883   if (LSRExpNarrow)
4884     NarrowSearchSpaceByDeletingCostlyFormulas();
4885   else
4886     NarrowSearchSpaceByPickingWinnerRegs();
4887 }
4888 
4889 /// This is the recursive solver.
4890 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4891                                Cost &SolutionCost,
4892                                SmallVectorImpl<const Formula *> &Workspace,
4893                                const Cost &CurCost,
4894                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4895                                DenseSet<const SCEV *> &VisitedRegs) const {
4896   // Some ideas:
4897   //  - prune more:
4898   //    - use more aggressive filtering
4899   //    - sort the formula so that the most profitable solutions are found first
4900   //    - sort the uses too
4901   //  - search faster:
4902   //    - don't compute a cost, and then compare. compare while computing a cost
4903   //      and bail early.
4904   //    - track register sets with SmallBitVector
4905 
4906   const LSRUse &LU = Uses[Workspace.size()];
4907 
4908   // If this use references any register that's already a part of the
4909   // in-progress solution, consider it a requirement that a formula must
4910   // reference that register in order to be considered. This prunes out
4911   // unprofitable searching.
4912   SmallSetVector<const SCEV *, 4> ReqRegs;
4913   for (const SCEV *S : CurRegs)
4914     if (LU.Regs.count(S))
4915       ReqRegs.insert(S);
4916 
4917   SmallPtrSet<const SCEV *, 16> NewRegs;
4918   Cost NewCost(L, SE, TTI);
4919   for (const Formula &F : LU.Formulae) {
4920     // Ignore formulae which may not be ideal in terms of register reuse of
4921     // ReqRegs.  The formula should use all required registers before
4922     // introducing new ones.
4923     // This can sometimes (notably when trying to favour postinc) lead to
4924     // sub-optimial decisions. There it is best left to the cost modelling to
4925     // get correct.
4926     if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) {
4927       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4928       for (const SCEV *Reg : ReqRegs) {
4929         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4930             is_contained(F.BaseRegs, Reg)) {
4931           --NumReqRegsToFind;
4932           if (NumReqRegsToFind == 0)
4933             break;
4934         }
4935       }
4936       if (NumReqRegsToFind != 0) {
4937         // If none of the formulae satisfied the required registers, then we could
4938         // clear ReqRegs and try again. Currently, we simply give up in this case.
4939         continue;
4940       }
4941     }
4942 
4943     // Evaluate the cost of the current formula. If it's already worse than
4944     // the current best, prune the search at that point.
4945     NewCost = CurCost;
4946     NewRegs = CurRegs;
4947     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4948     if (NewCost.isLess(SolutionCost)) {
4949       Workspace.push_back(&F);
4950       if (Workspace.size() != Uses.size()) {
4951         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4952                      NewRegs, VisitedRegs);
4953         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4954           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4955       } else {
4956         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4957                    dbgs() << ".\nRegs:\n";
4958                    for (const SCEV *S : NewRegs) dbgs()
4959                       << "- " << *S << "\n";
4960                    dbgs() << '\n');
4961 
4962         SolutionCost = NewCost;
4963         Solution = Workspace;
4964       }
4965       Workspace.pop_back();
4966     }
4967   }
4968 }
4969 
4970 /// Choose one formula from each use. Return the results in the given Solution
4971 /// vector.
4972 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4973   SmallVector<const Formula *, 8> Workspace;
4974   Cost SolutionCost(L, SE, TTI);
4975   SolutionCost.Lose();
4976   Cost CurCost(L, SE, TTI);
4977   SmallPtrSet<const SCEV *, 16> CurRegs;
4978   DenseSet<const SCEV *> VisitedRegs;
4979   Workspace.reserve(Uses.size());
4980 
4981   // SolveRecurse does all the work.
4982   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4983                CurRegs, VisitedRegs);
4984   if (Solution.empty()) {
4985     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4986     return;
4987   }
4988 
4989   // Ok, we've now made all our decisions.
4990   LLVM_DEBUG(dbgs() << "\n"
4991                        "The chosen solution requires ";
4992              SolutionCost.print(dbgs()); dbgs() << ":\n";
4993              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4994                dbgs() << "  ";
4995                Uses[i].print(dbgs());
4996                dbgs() << "\n"
4997                          "    ";
4998                Solution[i]->print(dbgs());
4999                dbgs() << '\n';
5000              });
5001 
5002   assert(Solution.size() == Uses.size() && "Malformed solution!");
5003 }
5004 
5005 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5006 /// we can go while still being dominated by the input positions. This helps
5007 /// canonicalize the insert position, which encourages sharing.
5008 BasicBlock::iterator
5009 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5010                                  const SmallVectorImpl<Instruction *> &Inputs)
5011                                                                          const {
5012   Instruction *Tentative = &*IP;
5013   while (true) {
5014     bool AllDominate = true;
5015     Instruction *BetterPos = nullptr;
5016     // Don't bother attempting to insert before a catchswitch, their basic block
5017     // cannot have other non-PHI instructions.
5018     if (isa<CatchSwitchInst>(Tentative))
5019       return IP;
5020 
5021     for (Instruction *Inst : Inputs) {
5022       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5023         AllDominate = false;
5024         break;
5025       }
5026       // Attempt to find an insert position in the middle of the block,
5027       // instead of at the end, so that it can be used for other expansions.
5028       if (Tentative->getParent() == Inst->getParent() &&
5029           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5030         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5031     }
5032     if (!AllDominate)
5033       break;
5034     if (BetterPos)
5035       IP = BetterPos->getIterator();
5036     else
5037       IP = Tentative->getIterator();
5038 
5039     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5040     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5041 
5042     BasicBlock *IDom;
5043     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5044       if (!Rung) return IP;
5045       Rung = Rung->getIDom();
5046       if (!Rung) return IP;
5047       IDom = Rung->getBlock();
5048 
5049       // Don't climb into a loop though.
5050       const Loop *IDomLoop = LI.getLoopFor(IDom);
5051       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5052       if (IDomDepth <= IPLoopDepth &&
5053           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5054         break;
5055     }
5056 
5057     Tentative = IDom->getTerminator();
5058   }
5059 
5060   return IP;
5061 }
5062 
5063 /// Determine an input position which will be dominated by the operands and
5064 /// which will dominate the result.
5065 BasicBlock::iterator
5066 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5067                                            const LSRFixup &LF,
5068                                            const LSRUse &LU,
5069                                            SCEVExpander &Rewriter) const {
5070   // Collect some instructions which must be dominated by the
5071   // expanding replacement. These must be dominated by any operands that
5072   // will be required in the expansion.
5073   SmallVector<Instruction *, 4> Inputs;
5074   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5075     Inputs.push_back(I);
5076   if (LU.Kind == LSRUse::ICmpZero)
5077     if (Instruction *I =
5078           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5079       Inputs.push_back(I);
5080   if (LF.PostIncLoops.count(L)) {
5081     if (LF.isUseFullyOutsideLoop(L))
5082       Inputs.push_back(L->getLoopLatch()->getTerminator());
5083     else
5084       Inputs.push_back(IVIncInsertPos);
5085   }
5086   // The expansion must also be dominated by the increment positions of any
5087   // loops it for which it is using post-inc mode.
5088   for (const Loop *PIL : LF.PostIncLoops) {
5089     if (PIL == L) continue;
5090 
5091     // Be dominated by the loop exit.
5092     SmallVector<BasicBlock *, 4> ExitingBlocks;
5093     PIL->getExitingBlocks(ExitingBlocks);
5094     if (!ExitingBlocks.empty()) {
5095       BasicBlock *BB = ExitingBlocks[0];
5096       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5097         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5098       Inputs.push_back(BB->getTerminator());
5099     }
5100   }
5101 
5102   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5103          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5104          "Insertion point must be a normal instruction");
5105 
5106   // Then, climb up the immediate dominator tree as far as we can go while
5107   // still being dominated by the input positions.
5108   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5109 
5110   // Don't insert instructions before PHI nodes.
5111   while (isa<PHINode>(IP)) ++IP;
5112 
5113   // Ignore landingpad instructions.
5114   while (IP->isEHPad()) ++IP;
5115 
5116   // Ignore debug intrinsics.
5117   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5118 
5119   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5120   // IP consistent across expansions and allows the previously inserted
5121   // instructions to be reused by subsequent expansion.
5122   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5123     ++IP;
5124 
5125   return IP;
5126 }
5127 
5128 /// Emit instructions for the leading candidate expression for this LSRUse (this
5129 /// is called "expanding").
5130 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5131                            const Formula &F, BasicBlock::iterator IP,
5132                            SCEVExpander &Rewriter,
5133                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5134   if (LU.RigidFormula)
5135     return LF.OperandValToReplace;
5136 
5137   // Determine an input position which will be dominated by the operands and
5138   // which will dominate the result.
5139   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5140   Rewriter.setInsertPoint(&*IP);
5141 
5142   // Inform the Rewriter if we have a post-increment use, so that it can
5143   // perform an advantageous expansion.
5144   Rewriter.setPostInc(LF.PostIncLoops);
5145 
5146   // This is the type that the user actually needs.
5147   Type *OpTy = LF.OperandValToReplace->getType();
5148   // This will be the type that we'll initially expand to.
5149   Type *Ty = F.getType();
5150   if (!Ty)
5151     // No type known; just expand directly to the ultimate type.
5152     Ty = OpTy;
5153   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5154     // Expand directly to the ultimate type if it's the right size.
5155     Ty = OpTy;
5156   // This is the type to do integer arithmetic in.
5157   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5158 
5159   // Build up a list of operands to add together to form the full base.
5160   SmallVector<const SCEV *, 8> Ops;
5161 
5162   // Expand the BaseRegs portion.
5163   for (const SCEV *Reg : F.BaseRegs) {
5164     assert(!Reg->isZero() && "Zero allocated in a base register!");
5165 
5166     // If we're expanding for a post-inc user, make the post-inc adjustment.
5167     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5168     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5169   }
5170 
5171   // Expand the ScaledReg portion.
5172   Value *ICmpScaledV = nullptr;
5173   if (F.Scale != 0) {
5174     const SCEV *ScaledS = F.ScaledReg;
5175 
5176     // If we're expanding for a post-inc user, make the post-inc adjustment.
5177     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5178     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5179 
5180     if (LU.Kind == LSRUse::ICmpZero) {
5181       // Expand ScaleReg as if it was part of the base regs.
5182       if (F.Scale == 1)
5183         Ops.push_back(
5184             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5185       else {
5186         // An interesting way of "folding" with an icmp is to use a negated
5187         // scale, which we'll implement by inserting it into the other operand
5188         // of the icmp.
5189         assert(F.Scale == -1 &&
5190                "The only scale supported by ICmpZero uses is -1!");
5191         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5192       }
5193     } else {
5194       // Otherwise just expand the scaled register and an explicit scale,
5195       // which is expected to be matched as part of the address.
5196 
5197       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5198       // Unless the addressing mode will not be folded.
5199       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5200           isAMCompletelyFolded(TTI, LU, F)) {
5201         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5202         Ops.clear();
5203         Ops.push_back(SE.getUnknown(FullV));
5204       }
5205       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5206       if (F.Scale != 1)
5207         ScaledS =
5208             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5209       Ops.push_back(ScaledS);
5210     }
5211   }
5212 
5213   // Expand the GV portion.
5214   if (F.BaseGV) {
5215     // Flush the operand list to suppress SCEVExpander hoisting.
5216     if (!Ops.empty()) {
5217       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5218       Ops.clear();
5219       Ops.push_back(SE.getUnknown(FullV));
5220     }
5221     Ops.push_back(SE.getUnknown(F.BaseGV));
5222   }
5223 
5224   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5225   // unfolded offsets. LSR assumes they both live next to their uses.
5226   if (!Ops.empty()) {
5227     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5228     Ops.clear();
5229     Ops.push_back(SE.getUnknown(FullV));
5230   }
5231 
5232   // Expand the immediate portion.
5233   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5234   if (Offset != 0) {
5235     if (LU.Kind == LSRUse::ICmpZero) {
5236       // The other interesting way of "folding" with an ICmpZero is to use a
5237       // negated immediate.
5238       if (!ICmpScaledV)
5239         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5240       else {
5241         Ops.push_back(SE.getUnknown(ICmpScaledV));
5242         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5243       }
5244     } else {
5245       // Just add the immediate values. These again are expected to be matched
5246       // as part of the address.
5247       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5248     }
5249   }
5250 
5251   // Expand the unfolded offset portion.
5252   int64_t UnfoldedOffset = F.UnfoldedOffset;
5253   if (UnfoldedOffset != 0) {
5254     // Just add the immediate values.
5255     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5256                                                        UnfoldedOffset)));
5257   }
5258 
5259   // Emit instructions summing all the operands.
5260   const SCEV *FullS = Ops.empty() ?
5261                       SE.getConstant(IntTy, 0) :
5262                       SE.getAddExpr(Ops);
5263   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5264 
5265   // We're done expanding now, so reset the rewriter.
5266   Rewriter.clearPostInc();
5267 
5268   // An ICmpZero Formula represents an ICmp which we're handling as a
5269   // comparison against zero. Now that we've expanded an expression for that
5270   // form, update the ICmp's other operand.
5271   if (LU.Kind == LSRUse::ICmpZero) {
5272     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5273     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5274       DeadInsts.emplace_back(OperandIsInstr);
5275     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5276                            "a scale at the same time!");
5277     if (F.Scale == -1) {
5278       if (ICmpScaledV->getType() != OpTy) {
5279         Instruction *Cast =
5280           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5281                                                    OpTy, false),
5282                            ICmpScaledV, OpTy, "tmp", CI);
5283         ICmpScaledV = Cast;
5284       }
5285       CI->setOperand(1, ICmpScaledV);
5286     } else {
5287       // A scale of 1 means that the scale has been expanded as part of the
5288       // base regs.
5289       assert((F.Scale == 0 || F.Scale == 1) &&
5290              "ICmp does not support folding a global value and "
5291              "a scale at the same time!");
5292       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5293                                            -(uint64_t)Offset);
5294       if (C->getType() != OpTy)
5295         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5296                                                           OpTy, false),
5297                                   C, OpTy);
5298 
5299       CI->setOperand(1, C);
5300     }
5301   }
5302 
5303   return FullV;
5304 }
5305 
5306 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5307 /// effectively happens in their predecessor blocks, so the expression may need
5308 /// to be expanded in multiple places.
5309 void LSRInstance::RewriteForPHI(
5310     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5311     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5312   DenseMap<BasicBlock *, Value *> Inserted;
5313   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5314     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5315       bool needUpdateFixups = false;
5316       BasicBlock *BB = PN->getIncomingBlock(i);
5317 
5318       // If this is a critical edge, split the edge so that we do not insert
5319       // the code on all predecessor/successor paths.  We do this unless this
5320       // is the canonical backedge for this loop, which complicates post-inc
5321       // users.
5322       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5323           !isa<IndirectBrInst>(BB->getTerminator()) &&
5324           !isa<CatchSwitchInst>(BB->getTerminator())) {
5325         BasicBlock *Parent = PN->getParent();
5326         Loop *PNLoop = LI.getLoopFor(Parent);
5327         if (!PNLoop || Parent != PNLoop->getHeader()) {
5328           // Split the critical edge.
5329           BasicBlock *NewBB = nullptr;
5330           if (!Parent->isLandingPad()) {
5331             NewBB = SplitCriticalEdge(BB, Parent,
5332                                       CriticalEdgeSplittingOptions(&DT, &LI)
5333                                           .setMergeIdenticalEdges()
5334                                           .setKeepOneInputPHIs());
5335           } else {
5336             SmallVector<BasicBlock*, 2> NewBBs;
5337             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5338             NewBB = NewBBs[0];
5339           }
5340           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5341           // phi predecessors are identical. The simple thing to do is skip
5342           // splitting in this case rather than complicate the API.
5343           if (NewBB) {
5344             // If PN is outside of the loop and BB is in the loop, we want to
5345             // move the block to be immediately before the PHI block, not
5346             // immediately after BB.
5347             if (L->contains(BB) && !L->contains(PN))
5348               NewBB->moveBefore(PN->getParent());
5349 
5350             // Splitting the edge can reduce the number of PHI entries we have.
5351             e = PN->getNumIncomingValues();
5352             BB = NewBB;
5353             i = PN->getBasicBlockIndex(BB);
5354 
5355             needUpdateFixups = true;
5356           }
5357         }
5358       }
5359 
5360       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5361         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5362       if (!Pair.second)
5363         PN->setIncomingValue(i, Pair.first->second);
5364       else {
5365         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5366                               Rewriter, DeadInsts);
5367 
5368         // If this is reuse-by-noop-cast, insert the noop cast.
5369         Type *OpTy = LF.OperandValToReplace->getType();
5370         if (FullV->getType() != OpTy)
5371           FullV =
5372             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5373                                                      OpTy, false),
5374                              FullV, LF.OperandValToReplace->getType(),
5375                              "tmp", BB->getTerminator());
5376 
5377         PN->setIncomingValue(i, FullV);
5378         Pair.first->second = FullV;
5379       }
5380 
5381       // If LSR splits critical edge and phi node has other pending
5382       // fixup operands, we need to update those pending fixups. Otherwise
5383       // formulae will not be implemented completely and some instructions
5384       // will not be eliminated.
5385       if (needUpdateFixups) {
5386         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5387           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5388             // If fixup is supposed to rewrite some operand in the phi
5389             // that was just updated, it may be already moved to
5390             // another phi node. Such fixup requires update.
5391             if (Fixup.UserInst == PN) {
5392               // Check if the operand we try to replace still exists in the
5393               // original phi.
5394               bool foundInOriginalPHI = false;
5395               for (const auto &val : PN->incoming_values())
5396                 if (val == Fixup.OperandValToReplace) {
5397                   foundInOriginalPHI = true;
5398                   break;
5399                 }
5400 
5401               // If fixup operand found in original PHI - nothing to do.
5402               if (foundInOriginalPHI)
5403                 continue;
5404 
5405               // Otherwise it might be moved to another PHI and requires update.
5406               // If fixup operand not found in any of the incoming blocks that
5407               // means we have already rewritten it - nothing to do.
5408               for (const auto &Block : PN->blocks())
5409                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5410                      ++I) {
5411                   PHINode *NewPN = cast<PHINode>(I);
5412                   for (const auto &val : NewPN->incoming_values())
5413                     if (val == Fixup.OperandValToReplace)
5414                       Fixup.UserInst = NewPN;
5415                 }
5416             }
5417       }
5418     }
5419 }
5420 
5421 /// Emit instructions for the leading candidate expression for this LSRUse (this
5422 /// is called "expanding"), and update the UserInst to reference the newly
5423 /// expanded value.
5424 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5425                           const Formula &F, SCEVExpander &Rewriter,
5426                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5427   // First, find an insertion point that dominates UserInst. For PHI nodes,
5428   // find the nearest block which dominates all the relevant uses.
5429   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5430     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5431   } else {
5432     Value *FullV =
5433       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5434 
5435     // If this is reuse-by-noop-cast, insert the noop cast.
5436     Type *OpTy = LF.OperandValToReplace->getType();
5437     if (FullV->getType() != OpTy) {
5438       Instruction *Cast =
5439         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5440                          FullV, OpTy, "tmp", LF.UserInst);
5441       FullV = Cast;
5442     }
5443 
5444     // Update the user. ICmpZero is handled specially here (for now) because
5445     // Expand may have updated one of the operands of the icmp already, and
5446     // its new value may happen to be equal to LF.OperandValToReplace, in
5447     // which case doing replaceUsesOfWith leads to replacing both operands
5448     // with the same value. TODO: Reorganize this.
5449     if (LU.Kind == LSRUse::ICmpZero)
5450       LF.UserInst->setOperand(0, FullV);
5451     else
5452       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5453   }
5454 
5455   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5456     DeadInsts.emplace_back(OperandIsInstr);
5457 }
5458 
5459 /// Rewrite all the fixup locations with new values, following the chosen
5460 /// solution.
5461 void LSRInstance::ImplementSolution(
5462     const SmallVectorImpl<const Formula *> &Solution) {
5463   // Keep track of instructions we may have made dead, so that
5464   // we can remove them after we are done working.
5465   SmallVector<WeakTrackingVH, 16> DeadInsts;
5466 
5467   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5468                         "lsr");
5469 #ifndef NDEBUG
5470   Rewriter.setDebugType(DEBUG_TYPE);
5471 #endif
5472   Rewriter.disableCanonicalMode();
5473   Rewriter.enableLSRMode();
5474   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5475 
5476   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5477   for (const IVChain &Chain : IVChainVec) {
5478     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5479       Rewriter.setChainedPhi(PN);
5480   }
5481 
5482   // Expand the new value definitions and update the users.
5483   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5484     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5485       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5486       Changed = true;
5487     }
5488 
5489   for (const IVChain &Chain : IVChainVec) {
5490     GenerateIVChain(Chain, Rewriter, DeadInsts);
5491     Changed = true;
5492   }
5493   // Clean up after ourselves. This must be done before deleting any
5494   // instructions.
5495   Rewriter.clear();
5496 
5497   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5498                                                                   &TLI, MSSAU);
5499 }
5500 
5501 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5502                          DominatorTree &DT, LoopInfo &LI,
5503                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5504                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5505     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5506       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5507                                        TTI.shouldFavorBackedgeIndex(L)) {
5508   // If LoopSimplify form is not available, stay out of trouble.
5509   if (!L->isLoopSimplifyForm())
5510     return;
5511 
5512   // If there's no interesting work to be done, bail early.
5513   if (IU.empty()) return;
5514 
5515   // If there's too much analysis to be done, bail early. We won't be able to
5516   // model the problem anyway.
5517   unsigned NumUsers = 0;
5518   for (const IVStrideUse &U : IU) {
5519     if (++NumUsers > MaxIVUsers) {
5520       (void)U;
5521       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5522                         << "\n");
5523       return;
5524     }
5525     // Bail out if we have a PHI on an EHPad that gets a value from a
5526     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5527     // no good place to stick any instructions.
5528     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5529        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5530        if (isa<FuncletPadInst>(FirstNonPHI) ||
5531            isa<CatchSwitchInst>(FirstNonPHI))
5532          for (BasicBlock *PredBB : PN->blocks())
5533            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5534              return;
5535     }
5536   }
5537 
5538 #ifndef NDEBUG
5539   // All dominating loops must have preheaders, or SCEVExpander may not be able
5540   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5541   //
5542   // IVUsers analysis should only create users that are dominated by simple loop
5543   // headers. Since this loop should dominate all of its users, its user list
5544   // should be empty if this loop itself is not within a simple loop nest.
5545   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5546        Rung; Rung = Rung->getIDom()) {
5547     BasicBlock *BB = Rung->getBlock();
5548     const Loop *DomLoop = LI.getLoopFor(BB);
5549     if (DomLoop && DomLoop->getHeader() == BB) {
5550       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5551     }
5552   }
5553 #endif // DEBUG
5554 
5555   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5556              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5557              dbgs() << ":\n");
5558 
5559   // First, perform some low-level loop optimizations.
5560   OptimizeShadowIV();
5561   OptimizeLoopTermCond();
5562 
5563   // If loop preparation eliminates all interesting IV users, bail.
5564   if (IU.empty()) return;
5565 
5566   // Skip nested loops until we can model them better with formulae.
5567   if (!L->empty()) {
5568     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5569     return;
5570   }
5571 
5572   // Start collecting data and preparing for the solver.
5573   CollectChains();
5574   CollectInterestingTypesAndFactors();
5575   CollectFixupsAndInitialFormulae();
5576   CollectLoopInvariantFixupsAndFormulae();
5577 
5578   if (Uses.empty())
5579     return;
5580 
5581   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5582              print_uses(dbgs()));
5583 
5584   // Now use the reuse data to generate a bunch of interesting ways
5585   // to formulate the values needed for the uses.
5586   GenerateAllReuseFormulae();
5587 
5588   FilterOutUndesirableDedicatedRegisters();
5589   NarrowSearchSpaceUsingHeuristics();
5590 
5591   SmallVector<const Formula *, 8> Solution;
5592   Solve(Solution);
5593 
5594   // Release memory that is no longer needed.
5595   Factors.clear();
5596   Types.clear();
5597   RegUses.clear();
5598 
5599   if (Solution.empty())
5600     return;
5601 
5602 #ifndef NDEBUG
5603   // Formulae should be legal.
5604   for (const LSRUse &LU : Uses) {
5605     for (const Formula &F : LU.Formulae)
5606       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5607                         F) && "Illegal formula generated!");
5608   };
5609 #endif
5610 
5611   // Now that we've decided what we want, make it so.
5612   ImplementSolution(Solution);
5613 }
5614 
5615 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5616 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5617   if (Factors.empty() && Types.empty()) return;
5618 
5619   OS << "LSR has identified the following interesting factors and types: ";
5620   bool First = true;
5621 
5622   for (int64_t Factor : Factors) {
5623     if (!First) OS << ", ";
5624     First = false;
5625     OS << '*' << Factor;
5626   }
5627 
5628   for (Type *Ty : Types) {
5629     if (!First) OS << ", ";
5630     First = false;
5631     OS << '(' << *Ty << ')';
5632   }
5633   OS << '\n';
5634 }
5635 
5636 void LSRInstance::print_fixups(raw_ostream &OS) const {
5637   OS << "LSR is examining the following fixup sites:\n";
5638   for (const LSRUse &LU : Uses)
5639     for (const LSRFixup &LF : LU.Fixups) {
5640       dbgs() << "  ";
5641       LF.print(OS);
5642       OS << '\n';
5643     }
5644 }
5645 
5646 void LSRInstance::print_uses(raw_ostream &OS) const {
5647   OS << "LSR is examining the following uses:\n";
5648   for (const LSRUse &LU : Uses) {
5649     dbgs() << "  ";
5650     LU.print(OS);
5651     OS << '\n';
5652     for (const Formula &F : LU.Formulae) {
5653       OS << "    ";
5654       F.print(OS);
5655       OS << '\n';
5656     }
5657   }
5658 }
5659 
5660 void LSRInstance::print(raw_ostream &OS) const {
5661   print_factors_and_types(OS);
5662   print_fixups(OS);
5663   print_uses(OS);
5664 }
5665 
5666 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5667   print(errs()); errs() << '\n';
5668 }
5669 #endif
5670 
5671 namespace {
5672 
5673 class LoopStrengthReduce : public LoopPass {
5674 public:
5675   static char ID; // Pass ID, replacement for typeid
5676 
5677   LoopStrengthReduce();
5678 
5679 private:
5680   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5681   void getAnalysisUsage(AnalysisUsage &AU) const override;
5682 };
5683 
5684 } // end anonymous namespace
5685 
5686 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5687   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5688 }
5689 
5690 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5691   // We split critical edges, so we change the CFG.  However, we do update
5692   // many analyses if they are around.
5693   AU.addPreservedID(LoopSimplifyID);
5694 
5695   AU.addRequired<LoopInfoWrapperPass>();
5696   AU.addPreserved<LoopInfoWrapperPass>();
5697   AU.addRequiredID(LoopSimplifyID);
5698   AU.addRequired<DominatorTreeWrapperPass>();
5699   AU.addPreserved<DominatorTreeWrapperPass>();
5700   AU.addRequired<ScalarEvolutionWrapperPass>();
5701   AU.addPreserved<ScalarEvolutionWrapperPass>();
5702   AU.addRequired<AssumptionCacheTracker>();
5703   AU.addRequired<TargetLibraryInfoWrapperPass>();
5704   // Requiring LoopSimplify a second time here prevents IVUsers from running
5705   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5706   AU.addRequiredID(LoopSimplifyID);
5707   AU.addRequired<IVUsersWrapperPass>();
5708   AU.addPreserved<IVUsersWrapperPass>();
5709   AU.addRequired<TargetTransformInfoWrapperPass>();
5710   AU.addPreserved<MemorySSAWrapperPass>();
5711 }
5712 
5713 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5714                                DominatorTree &DT, LoopInfo &LI,
5715                                const TargetTransformInfo &TTI,
5716                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5717                                MemorySSA *MSSA) {
5718 
5719   bool Changed = false;
5720   std::unique_ptr<MemorySSAUpdater> MSSAU;
5721   if (MSSA)
5722     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5723 
5724   // Run the main LSR transformation.
5725   Changed |=
5726       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5727 
5728   // Remove any extra phis created by processing inner loops.
5729   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5730   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5731     SmallVector<WeakTrackingVH, 16> DeadInsts;
5732     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5733     SCEVExpander Rewriter(SE, DL, "lsr");
5734 #ifndef NDEBUG
5735     Rewriter.setDebugType(DEBUG_TYPE);
5736 #endif
5737     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5738     if (numFolded) {
5739       Changed = true;
5740       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5741                                                            MSSAU.get());
5742       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5743     }
5744   }
5745   return Changed;
5746 }
5747 
5748 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5749   if (skipLoop(L))
5750     return false;
5751 
5752   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5753   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5754   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5755   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5756   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5757       *L->getHeader()->getParent());
5758   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5759       *L->getHeader()->getParent());
5760   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5761       *L->getHeader()->getParent());
5762   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5763   MemorySSA *MSSA = nullptr;
5764   if (MSSAAnalysis)
5765     MSSA = &MSSAAnalysis->getMSSA();
5766   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5767 }
5768 
5769 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5770                                               LoopStandardAnalysisResults &AR,
5771                                               LPMUpdater &) {
5772   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5773                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5774     return PreservedAnalyses::all();
5775 
5776   auto PA = getLoopPassPreservedAnalyses();
5777   if (AR.MSSA)
5778     PA.preserve<MemorySSAAnalysis>();
5779   return PA;
5780 }
5781 
5782 char LoopStrengthReduce::ID = 0;
5783 
5784 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5785                       "Loop Strength Reduction", false, false)
5786 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5787 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5788 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5789 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5790 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5791 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5792 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5793                     "Loop Strength Reduction", false, false)
5794 
5795 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5796