1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/ValueHandle.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 76 #include "llvm/Transforms/Utils/Local.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 #define DEBUG_TYPE "loop-reduce" 81 82 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 83 /// bail out. This threshold is far beyond the number of users that LSR can 84 /// conceivably solve, so it should not affect generated code, but catches the 85 /// worst cases before LSR burns too much compile time and stack space. 86 static const unsigned MaxIVUsers = 200; 87 88 // Temporary flag to cleanup congruent phis after LSR phi expansion. 89 // It's currently disabled until we can determine whether it's truly useful or 90 // not. The flag should be removed after the v3.0 release. 91 // This is now needed for ivchains. 92 static cl::opt<bool> EnablePhiElim( 93 "enable-lsr-phielim", cl::Hidden, cl::init(true), 94 cl::desc("Enable LSR phi elimination")); 95 96 #ifndef NDEBUG 97 // Stress test IV chain generation. 98 static cl::opt<bool> StressIVChain( 99 "stress-ivchain", cl::Hidden, cl::init(false), 100 cl::desc("Stress test LSR IV chains")); 101 #else 102 static bool StressIVChain = false; 103 #endif 104 105 namespace { 106 107 /// RegSortData - This class holds data which is used to order reuse candidates. 108 class RegSortData { 109 public: 110 /// UsedByIndices - This represents the set of LSRUse indices which reference 111 /// a particular register. 112 SmallBitVector UsedByIndices; 113 114 RegSortData() {} 115 116 void print(raw_ostream &OS) const; 117 void dump() const; 118 }; 119 120 } 121 122 void RegSortData::print(raw_ostream &OS) const { 123 OS << "[NumUses=" << UsedByIndices.count() << ']'; 124 } 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void RegSortData::dump() const { 128 print(errs()); errs() << '\n'; 129 } 130 #endif 131 132 namespace { 133 134 /// RegUseTracker - Map register candidates to information about how they are 135 /// used. 136 class RegUseTracker { 137 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 138 139 RegUsesTy RegUsesMap; 140 SmallVector<const SCEV *, 16> RegSequence; 141 142 public: 143 void CountRegister(const SCEV *Reg, size_t LUIdx); 144 void DropRegister(const SCEV *Reg, size_t LUIdx); 145 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 146 147 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 148 149 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 150 151 void clear(); 152 153 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 154 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 155 iterator begin() { return RegSequence.begin(); } 156 iterator end() { return RegSequence.end(); } 157 const_iterator begin() const { return RegSequence.begin(); } 158 const_iterator end() const { return RegSequence.end(); } 159 }; 160 161 } 162 163 void 164 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 165 std::pair<RegUsesTy::iterator, bool> Pair = 166 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 167 RegSortData &RSD = Pair.first->second; 168 if (Pair.second) 169 RegSequence.push_back(Reg); 170 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 171 RSD.UsedByIndices.set(LUIdx); 172 } 173 174 void 175 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 176 RegUsesTy::iterator It = RegUsesMap.find(Reg); 177 assert(It != RegUsesMap.end()); 178 RegSortData &RSD = It->second; 179 assert(RSD.UsedByIndices.size() > LUIdx); 180 RSD.UsedByIndices.reset(LUIdx); 181 } 182 183 void 184 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 185 assert(LUIdx <= LastLUIdx); 186 187 // Update RegUses. The data structure is not optimized for this purpose; 188 // we must iterate through it and update each of the bit vectors. 189 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 190 I != E; ++I) { 191 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 192 if (LUIdx < UsedByIndices.size()) 193 UsedByIndices[LUIdx] = 194 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 195 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 196 } 197 } 198 199 bool 200 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 201 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 202 if (I == RegUsesMap.end()) 203 return false; 204 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 205 int i = UsedByIndices.find_first(); 206 if (i == -1) return false; 207 if ((size_t)i != LUIdx) return true; 208 return UsedByIndices.find_next(i) != -1; 209 } 210 211 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 212 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 213 assert(I != RegUsesMap.end() && "Unknown register!"); 214 return I->second.UsedByIndices; 215 } 216 217 void RegUseTracker::clear() { 218 RegUsesMap.clear(); 219 RegSequence.clear(); 220 } 221 222 namespace { 223 224 /// Formula - This class holds information that describes a formula for 225 /// computing satisfying a use. It may include broken-out immediates and scaled 226 /// registers. 227 struct Formula { 228 /// Global base address used for complex addressing. 229 GlobalValue *BaseGV; 230 231 /// Base offset for complex addressing. 232 int64_t BaseOffset; 233 234 /// Whether any complex addressing has a base register. 235 bool HasBaseReg; 236 237 /// The scale of any complex addressing. 238 int64_t Scale; 239 240 /// BaseRegs - The list of "base" registers for this use. When this is 241 /// non-empty, 242 SmallVector<const SCEV *, 4> BaseRegs; 243 244 /// ScaledReg - The 'scaled' register for this use. This should be non-null 245 /// when Scale is not zero. 246 const SCEV *ScaledReg; 247 248 /// UnfoldedOffset - An additional constant offset which added near the 249 /// use. This requires a temporary register, but the offset itself can 250 /// live in an add immediate field rather than a register. 251 int64_t UnfoldedOffset; 252 253 Formula() 254 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 255 ScaledReg(nullptr), UnfoldedOffset(0) {} 256 257 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 258 259 size_t getNumRegs() const; 260 Type *getType() const; 261 262 void DeleteBaseReg(const SCEV *&S); 263 264 bool referencesReg(const SCEV *S) const; 265 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 266 const RegUseTracker &RegUses) const; 267 268 void print(raw_ostream &OS) const; 269 void dump() const; 270 }; 271 272 } 273 274 /// DoInitialMatch - Recursion helper for InitialMatch. 275 static void DoInitialMatch(const SCEV *S, Loop *L, 276 SmallVectorImpl<const SCEV *> &Good, 277 SmallVectorImpl<const SCEV *> &Bad, 278 ScalarEvolution &SE) { 279 // Collect expressions which properly dominate the loop header. 280 if (SE.properlyDominates(S, L->getHeader())) { 281 Good.push_back(S); 282 return; 283 } 284 285 // Look at add operands. 286 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 287 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 288 I != E; ++I) 289 DoInitialMatch(*I, L, Good, Bad, SE); 290 return; 291 } 292 293 // Look at addrec operands. 294 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 295 if (!AR->getStart()->isZero()) { 296 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 297 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 298 AR->getStepRecurrence(SE), 299 // FIXME: AR->getNoWrapFlags() 300 AR->getLoop(), SCEV::FlagAnyWrap), 301 L, Good, Bad, SE); 302 return; 303 } 304 305 // Handle a multiplication by -1 (negation) if it didn't fold. 306 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 307 if (Mul->getOperand(0)->isAllOnesValue()) { 308 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 309 const SCEV *NewMul = SE.getMulExpr(Ops); 310 311 SmallVector<const SCEV *, 4> MyGood; 312 SmallVector<const SCEV *, 4> MyBad; 313 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 314 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 315 SE.getEffectiveSCEVType(NewMul->getType()))); 316 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 317 E = MyGood.end(); I != E; ++I) 318 Good.push_back(SE.getMulExpr(NegOne, *I)); 319 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 320 E = MyBad.end(); I != E; ++I) 321 Bad.push_back(SE.getMulExpr(NegOne, *I)); 322 return; 323 } 324 325 // Ok, we can't do anything interesting. Just stuff the whole thing into a 326 // register and hope for the best. 327 Bad.push_back(S); 328 } 329 330 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 331 /// attempting to keep all loop-invariant and loop-computable values in a 332 /// single base register. 333 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 334 SmallVector<const SCEV *, 4> Good; 335 SmallVector<const SCEV *, 4> Bad; 336 DoInitialMatch(S, L, Good, Bad, SE); 337 if (!Good.empty()) { 338 const SCEV *Sum = SE.getAddExpr(Good); 339 if (!Sum->isZero()) 340 BaseRegs.push_back(Sum); 341 HasBaseReg = true; 342 } 343 if (!Bad.empty()) { 344 const SCEV *Sum = SE.getAddExpr(Bad); 345 if (!Sum->isZero()) 346 BaseRegs.push_back(Sum); 347 HasBaseReg = true; 348 } 349 } 350 351 /// getNumRegs - Return the total number of register operands used by this 352 /// formula. This does not include register uses implied by non-constant 353 /// addrec strides. 354 size_t Formula::getNumRegs() const { 355 return !!ScaledReg + BaseRegs.size(); 356 } 357 358 /// getType - Return the type of this formula, if it has one, or null 359 /// otherwise. This type is meaningless except for the bit size. 360 Type *Formula::getType() const { 361 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 362 ScaledReg ? ScaledReg->getType() : 363 BaseGV ? BaseGV->getType() : 364 nullptr; 365 } 366 367 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 368 void Formula::DeleteBaseReg(const SCEV *&S) { 369 if (&S != &BaseRegs.back()) 370 std::swap(S, BaseRegs.back()); 371 BaseRegs.pop_back(); 372 } 373 374 /// referencesReg - Test if this formula references the given register. 375 bool Formula::referencesReg(const SCEV *S) const { 376 return S == ScaledReg || 377 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 378 } 379 380 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 381 /// which are used by uses other than the use with the given index. 382 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 383 const RegUseTracker &RegUses) const { 384 if (ScaledReg) 385 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 386 return true; 387 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 388 E = BaseRegs.end(); I != E; ++I) 389 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 390 return true; 391 return false; 392 } 393 394 void Formula::print(raw_ostream &OS) const { 395 bool First = true; 396 if (BaseGV) { 397 if (!First) OS << " + "; else First = false; 398 BaseGV->printAsOperand(OS, /*PrintType=*/false); 399 } 400 if (BaseOffset != 0) { 401 if (!First) OS << " + "; else First = false; 402 OS << BaseOffset; 403 } 404 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 405 E = BaseRegs.end(); I != E; ++I) { 406 if (!First) OS << " + "; else First = false; 407 OS << "reg(" << **I << ')'; 408 } 409 if (HasBaseReg && BaseRegs.empty()) { 410 if (!First) OS << " + "; else First = false; 411 OS << "**error: HasBaseReg**"; 412 } else if (!HasBaseReg && !BaseRegs.empty()) { 413 if (!First) OS << " + "; else First = false; 414 OS << "**error: !HasBaseReg**"; 415 } 416 if (Scale != 0) { 417 if (!First) OS << " + "; else First = false; 418 OS << Scale << "*reg("; 419 if (ScaledReg) 420 OS << *ScaledReg; 421 else 422 OS << "<unknown>"; 423 OS << ')'; 424 } 425 if (UnfoldedOffset != 0) { 426 if (!First) OS << " + "; 427 OS << "imm(" << UnfoldedOffset << ')'; 428 } 429 } 430 431 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 432 void Formula::dump() const { 433 print(errs()); errs() << '\n'; 434 } 435 #endif 436 437 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 438 /// without changing its value. 439 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 440 Type *WideTy = 441 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 442 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 443 } 444 445 /// isAddSExtable - Return true if the given add can be sign-extended 446 /// without changing its value. 447 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 448 Type *WideTy = 449 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 450 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 451 } 452 453 /// isMulSExtable - Return true if the given mul can be sign-extended 454 /// without changing its value. 455 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 456 Type *WideTy = 457 IntegerType::get(SE.getContext(), 458 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 459 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 460 } 461 462 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 463 /// and if the remainder is known to be zero, or null otherwise. If 464 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 465 /// to Y, ignoring that the multiplication may overflow, which is useful when 466 /// the result will be used in a context where the most significant bits are 467 /// ignored. 468 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 469 ScalarEvolution &SE, 470 bool IgnoreSignificantBits = false) { 471 // Handle the trivial case, which works for any SCEV type. 472 if (LHS == RHS) 473 return SE.getConstant(LHS->getType(), 1); 474 475 // Handle a few RHS special cases. 476 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 477 if (RC) { 478 const APInt &RA = RC->getValue()->getValue(); 479 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 480 // some folding. 481 if (RA.isAllOnesValue()) 482 return SE.getMulExpr(LHS, RC); 483 // Handle x /s 1 as x. 484 if (RA == 1) 485 return LHS; 486 } 487 488 // Check for a division of a constant by a constant. 489 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 490 if (!RC) 491 return nullptr; 492 const APInt &LA = C->getValue()->getValue(); 493 const APInt &RA = RC->getValue()->getValue(); 494 if (LA.srem(RA) != 0) 495 return nullptr; 496 return SE.getConstant(LA.sdiv(RA)); 497 } 498 499 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 500 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 501 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 502 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 503 IgnoreSignificantBits); 504 if (!Step) return nullptr; 505 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 506 IgnoreSignificantBits); 507 if (!Start) return nullptr; 508 // FlagNW is independent of the start value, step direction, and is 509 // preserved with smaller magnitude steps. 510 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 511 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 512 } 513 return nullptr; 514 } 515 516 // Distribute the sdiv over add operands, if the add doesn't overflow. 517 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 518 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 519 SmallVector<const SCEV *, 8> Ops; 520 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 521 I != E; ++I) { 522 const SCEV *Op = getExactSDiv(*I, RHS, SE, 523 IgnoreSignificantBits); 524 if (!Op) return nullptr; 525 Ops.push_back(Op); 526 } 527 return SE.getAddExpr(Ops); 528 } 529 return nullptr; 530 } 531 532 // Check for a multiply operand that we can pull RHS out of. 533 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 534 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 535 SmallVector<const SCEV *, 4> Ops; 536 bool Found = false; 537 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 538 I != E; ++I) { 539 const SCEV *S = *I; 540 if (!Found) 541 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 542 IgnoreSignificantBits)) { 543 S = Q; 544 Found = true; 545 } 546 Ops.push_back(S); 547 } 548 return Found ? SE.getMulExpr(Ops) : nullptr; 549 } 550 return nullptr; 551 } 552 553 // Otherwise we don't know. 554 return nullptr; 555 } 556 557 /// ExtractImmediate - If S involves the addition of a constant integer value, 558 /// return that integer value, and mutate S to point to a new SCEV with that 559 /// value excluded. 560 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 561 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 562 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 563 S = SE.getConstant(C->getType(), 0); 564 return C->getValue()->getSExtValue(); 565 } 566 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 567 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 568 int64_t Result = ExtractImmediate(NewOps.front(), SE); 569 if (Result != 0) 570 S = SE.getAddExpr(NewOps); 571 return Result; 572 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 573 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 574 int64_t Result = ExtractImmediate(NewOps.front(), SE); 575 if (Result != 0) 576 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 577 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 578 SCEV::FlagAnyWrap); 579 return Result; 580 } 581 return 0; 582 } 583 584 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 585 /// return that symbol, and mutate S to point to a new SCEV with that 586 /// value excluded. 587 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 588 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 589 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 590 S = SE.getConstant(GV->getType(), 0); 591 return GV; 592 } 593 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 594 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 595 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 596 if (Result) 597 S = SE.getAddExpr(NewOps); 598 return Result; 599 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 600 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 601 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 602 if (Result) 603 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 604 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 605 SCEV::FlagAnyWrap); 606 return Result; 607 } 608 return nullptr; 609 } 610 611 /// isAddressUse - Returns true if the specified instruction is using the 612 /// specified value as an address. 613 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 614 bool isAddress = isa<LoadInst>(Inst); 615 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 616 if (SI->getOperand(1) == OperandVal) 617 isAddress = true; 618 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 619 // Addressing modes can also be folded into prefetches and a variety 620 // of intrinsics. 621 switch (II->getIntrinsicID()) { 622 default: break; 623 case Intrinsic::prefetch: 624 case Intrinsic::x86_sse_storeu_ps: 625 case Intrinsic::x86_sse2_storeu_pd: 626 case Intrinsic::x86_sse2_storeu_dq: 627 case Intrinsic::x86_sse2_storel_dq: 628 if (II->getArgOperand(0) == OperandVal) 629 isAddress = true; 630 break; 631 } 632 } 633 return isAddress; 634 } 635 636 /// getAccessType - Return the type of the memory being accessed. 637 static Type *getAccessType(const Instruction *Inst) { 638 Type *AccessTy = Inst->getType(); 639 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 640 AccessTy = SI->getOperand(0)->getType(); 641 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 642 // Addressing modes can also be folded into prefetches and a variety 643 // of intrinsics. 644 switch (II->getIntrinsicID()) { 645 default: break; 646 case Intrinsic::x86_sse_storeu_ps: 647 case Intrinsic::x86_sse2_storeu_pd: 648 case Intrinsic::x86_sse2_storeu_dq: 649 case Intrinsic::x86_sse2_storel_dq: 650 AccessTy = II->getArgOperand(0)->getType(); 651 break; 652 } 653 } 654 655 // All pointers have the same requirements, so canonicalize them to an 656 // arbitrary pointer type to minimize variation. 657 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 658 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 659 PTy->getAddressSpace()); 660 661 return AccessTy; 662 } 663 664 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 665 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 666 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 667 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 668 if (SE.isSCEVable(PN->getType()) && 669 (SE.getEffectiveSCEVType(PN->getType()) == 670 SE.getEffectiveSCEVType(AR->getType())) && 671 SE.getSCEV(PN) == AR) 672 return true; 673 } 674 return false; 675 } 676 677 /// Check if expanding this expression is likely to incur significant cost. This 678 /// is tricky because SCEV doesn't track which expressions are actually computed 679 /// by the current IR. 680 /// 681 /// We currently allow expansion of IV increments that involve adds, 682 /// multiplication by constants, and AddRecs from existing phis. 683 /// 684 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 685 /// obvious multiple of the UDivExpr. 686 static bool isHighCostExpansion(const SCEV *S, 687 SmallPtrSet<const SCEV*, 8> &Processed, 688 ScalarEvolution &SE) { 689 // Zero/One operand expressions 690 switch (S->getSCEVType()) { 691 case scUnknown: 692 case scConstant: 693 return false; 694 case scTruncate: 695 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 696 Processed, SE); 697 case scZeroExtend: 698 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 699 Processed, SE); 700 case scSignExtend: 701 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 702 Processed, SE); 703 } 704 705 if (!Processed.insert(S)) 706 return false; 707 708 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 709 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 710 I != E; ++I) { 711 if (isHighCostExpansion(*I, Processed, SE)) 712 return true; 713 } 714 return false; 715 } 716 717 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 718 if (Mul->getNumOperands() == 2) { 719 // Multiplication by a constant is ok 720 if (isa<SCEVConstant>(Mul->getOperand(0))) 721 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 722 723 // If we have the value of one operand, check if an existing 724 // multiplication already generates this expression. 725 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 726 Value *UVal = U->getValue(); 727 for (User *UR : UVal->users()) { 728 // If U is a constant, it may be used by a ConstantExpr. 729 Instruction *UI = dyn_cast<Instruction>(UR); 730 if (UI && UI->getOpcode() == Instruction::Mul && 731 SE.isSCEVable(UI->getType())) { 732 return SE.getSCEV(UI) == Mul; 733 } 734 } 735 } 736 } 737 } 738 739 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 740 if (isExistingPhi(AR, SE)) 741 return false; 742 } 743 744 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 745 return true; 746 } 747 748 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 749 /// specified set are trivially dead, delete them and see if this makes any of 750 /// their operands subsequently dead. 751 static bool 752 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 753 bool Changed = false; 754 755 while (!DeadInsts.empty()) { 756 Value *V = DeadInsts.pop_back_val(); 757 Instruction *I = dyn_cast_or_null<Instruction>(V); 758 759 if (!I || !isInstructionTriviallyDead(I)) 760 continue; 761 762 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 763 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 764 *OI = nullptr; 765 if (U->use_empty()) 766 DeadInsts.push_back(U); 767 } 768 769 I->eraseFromParent(); 770 Changed = true; 771 } 772 773 return Changed; 774 } 775 776 namespace { 777 class LSRUse; 778 } 779 // Check if it is legal to fold 2 base registers. 780 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, 781 const Formula &F); 782 // Get the cost of the scaling factor used in F for LU. 783 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 784 const LSRUse &LU, const Formula &F); 785 786 namespace { 787 788 /// Cost - This class is used to measure and compare candidate formulae. 789 class Cost { 790 /// TODO: Some of these could be merged. Also, a lexical ordering 791 /// isn't always optimal. 792 unsigned NumRegs; 793 unsigned AddRecCost; 794 unsigned NumIVMuls; 795 unsigned NumBaseAdds; 796 unsigned ImmCost; 797 unsigned SetupCost; 798 unsigned ScaleCost; 799 800 public: 801 Cost() 802 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 803 SetupCost(0), ScaleCost(0) {} 804 805 bool operator<(const Cost &Other) const; 806 807 void Lose(); 808 809 #ifndef NDEBUG 810 // Once any of the metrics loses, they must all remain losers. 811 bool isValid() { 812 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 813 | ImmCost | SetupCost | ScaleCost) != ~0u) 814 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 815 & ImmCost & SetupCost & ScaleCost) == ~0u); 816 } 817 #endif 818 819 bool isLoser() { 820 assert(isValid() && "invalid cost"); 821 return NumRegs == ~0u; 822 } 823 824 void RateFormula(const TargetTransformInfo &TTI, 825 const Formula &F, 826 SmallPtrSet<const SCEV *, 16> &Regs, 827 const DenseSet<const SCEV *> &VisitedRegs, 828 const Loop *L, 829 const SmallVectorImpl<int64_t> &Offsets, 830 ScalarEvolution &SE, DominatorTree &DT, 831 const LSRUse &LU, 832 SmallPtrSet<const SCEV *, 16> *LoserRegs = nullptr); 833 834 void print(raw_ostream &OS) const; 835 void dump() const; 836 837 private: 838 void RateRegister(const SCEV *Reg, 839 SmallPtrSet<const SCEV *, 16> &Regs, 840 const Loop *L, 841 ScalarEvolution &SE, DominatorTree &DT); 842 void RatePrimaryRegister(const SCEV *Reg, 843 SmallPtrSet<const SCEV *, 16> &Regs, 844 const Loop *L, 845 ScalarEvolution &SE, DominatorTree &DT, 846 SmallPtrSet<const SCEV *, 16> *LoserRegs); 847 }; 848 849 } 850 851 /// RateRegister - Tally up interesting quantities from the given register. 852 void Cost::RateRegister(const SCEV *Reg, 853 SmallPtrSet<const SCEV *, 16> &Regs, 854 const Loop *L, 855 ScalarEvolution &SE, DominatorTree &DT) { 856 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 857 // If this is an addrec for another loop, don't second-guess its addrec phi 858 // nodes. LSR isn't currently smart enough to reason about more than one 859 // loop at a time. LSR has already run on inner loops, will not run on outer 860 // loops, and cannot be expected to change sibling loops. 861 if (AR->getLoop() != L) { 862 // If the AddRec exists, consider it's register free and leave it alone. 863 if (isExistingPhi(AR, SE)) 864 return; 865 866 // Otherwise, do not consider this formula at all. 867 Lose(); 868 return; 869 } 870 AddRecCost += 1; /// TODO: This should be a function of the stride. 871 872 // Add the step value register, if it needs one. 873 // TODO: The non-affine case isn't precisely modeled here. 874 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 875 if (!Regs.count(AR->getOperand(1))) { 876 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 877 if (isLoser()) 878 return; 879 } 880 } 881 } 882 ++NumRegs; 883 884 // Rough heuristic; favor registers which don't require extra setup 885 // instructions in the preheader. 886 if (!isa<SCEVUnknown>(Reg) && 887 !isa<SCEVConstant>(Reg) && 888 !(isa<SCEVAddRecExpr>(Reg) && 889 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 890 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 891 ++SetupCost; 892 893 NumIVMuls += isa<SCEVMulExpr>(Reg) && 894 SE.hasComputableLoopEvolution(Reg, L); 895 } 896 897 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 898 /// before, rate it. Optional LoserRegs provides a way to declare any formula 899 /// that refers to one of those regs an instant loser. 900 void Cost::RatePrimaryRegister(const SCEV *Reg, 901 SmallPtrSet<const SCEV *, 16> &Regs, 902 const Loop *L, 903 ScalarEvolution &SE, DominatorTree &DT, 904 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 905 if (LoserRegs && LoserRegs->count(Reg)) { 906 Lose(); 907 return; 908 } 909 if (Regs.insert(Reg)) { 910 RateRegister(Reg, Regs, L, SE, DT); 911 if (LoserRegs && isLoser()) 912 LoserRegs->insert(Reg); 913 } 914 } 915 916 void Cost::RateFormula(const TargetTransformInfo &TTI, 917 const Formula &F, 918 SmallPtrSet<const SCEV *, 16> &Regs, 919 const DenseSet<const SCEV *> &VisitedRegs, 920 const Loop *L, 921 const SmallVectorImpl<int64_t> &Offsets, 922 ScalarEvolution &SE, DominatorTree &DT, 923 const LSRUse &LU, 924 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 925 // Tally up the registers. 926 if (const SCEV *ScaledReg = F.ScaledReg) { 927 if (VisitedRegs.count(ScaledReg)) { 928 Lose(); 929 return; 930 } 931 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 932 if (isLoser()) 933 return; 934 } 935 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 936 E = F.BaseRegs.end(); I != E; ++I) { 937 const SCEV *BaseReg = *I; 938 if (VisitedRegs.count(BaseReg)) { 939 Lose(); 940 return; 941 } 942 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 943 if (isLoser()) 944 return; 945 } 946 947 // Determine how many (unfolded) adds we'll need inside the loop. 948 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 949 if (NumBaseParts > 1) 950 // Do not count the base and a possible second register if the target 951 // allows to fold 2 registers. 952 NumBaseAdds += NumBaseParts - (1 + isLegal2RegAMUse(TTI, LU, F)); 953 954 // Accumulate non-free scaling amounts. 955 ScaleCost += getScalingFactorCost(TTI, LU, F); 956 957 // Tally up the non-zero immediates. 958 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 959 E = Offsets.end(); I != E; ++I) { 960 int64_t Offset = (uint64_t)*I + F.BaseOffset; 961 if (F.BaseGV) 962 ImmCost += 64; // Handle symbolic values conservatively. 963 // TODO: This should probably be the pointer size. 964 else if (Offset != 0) 965 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 966 } 967 assert(isValid() && "invalid cost"); 968 } 969 970 /// Lose - Set this cost to a losing value. 971 void Cost::Lose() { 972 NumRegs = ~0u; 973 AddRecCost = ~0u; 974 NumIVMuls = ~0u; 975 NumBaseAdds = ~0u; 976 ImmCost = ~0u; 977 SetupCost = ~0u; 978 ScaleCost = ~0u; 979 } 980 981 /// operator< - Choose the lower cost. 982 bool Cost::operator<(const Cost &Other) const { 983 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 984 ImmCost, SetupCost) < 985 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 986 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 987 Other.SetupCost); 988 } 989 990 void Cost::print(raw_ostream &OS) const { 991 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 992 if (AddRecCost != 0) 993 OS << ", with addrec cost " << AddRecCost; 994 if (NumIVMuls != 0) 995 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 996 if (NumBaseAdds != 0) 997 OS << ", plus " << NumBaseAdds << " base add" 998 << (NumBaseAdds == 1 ? "" : "s"); 999 if (ScaleCost != 0) 1000 OS << ", plus " << ScaleCost << " scale cost"; 1001 if (ImmCost != 0) 1002 OS << ", plus " << ImmCost << " imm cost"; 1003 if (SetupCost != 0) 1004 OS << ", plus " << SetupCost << " setup cost"; 1005 } 1006 1007 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1008 void Cost::dump() const { 1009 print(errs()); errs() << '\n'; 1010 } 1011 #endif 1012 1013 namespace { 1014 1015 /// LSRFixup - An operand value in an instruction which is to be replaced 1016 /// with some equivalent, possibly strength-reduced, replacement. 1017 struct LSRFixup { 1018 /// UserInst - The instruction which will be updated. 1019 Instruction *UserInst; 1020 1021 /// OperandValToReplace - The operand of the instruction which will 1022 /// be replaced. The operand may be used more than once; every instance 1023 /// will be replaced. 1024 Value *OperandValToReplace; 1025 1026 /// PostIncLoops - If this user is to use the post-incremented value of an 1027 /// induction variable, this variable is non-null and holds the loop 1028 /// associated with the induction variable. 1029 PostIncLoopSet PostIncLoops; 1030 1031 /// LUIdx - The index of the LSRUse describing the expression which 1032 /// this fixup needs, minus an offset (below). 1033 size_t LUIdx; 1034 1035 /// Offset - A constant offset to be added to the LSRUse expression. 1036 /// This allows multiple fixups to share the same LSRUse with different 1037 /// offsets, for example in an unrolled loop. 1038 int64_t Offset; 1039 1040 bool isUseFullyOutsideLoop(const Loop *L) const; 1041 1042 LSRFixup(); 1043 1044 void print(raw_ostream &OS) const; 1045 void dump() const; 1046 }; 1047 1048 } 1049 1050 LSRFixup::LSRFixup() 1051 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1052 Offset(0) {} 1053 1054 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1055 /// value outside of the given loop. 1056 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1057 // PHI nodes use their value in their incoming blocks. 1058 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1059 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1060 if (PN->getIncomingValue(i) == OperandValToReplace && 1061 L->contains(PN->getIncomingBlock(i))) 1062 return false; 1063 return true; 1064 } 1065 1066 return !L->contains(UserInst); 1067 } 1068 1069 void LSRFixup::print(raw_ostream &OS) const { 1070 OS << "UserInst="; 1071 // Store is common and interesting enough to be worth special-casing. 1072 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1073 OS << "store "; 1074 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1075 } else if (UserInst->getType()->isVoidTy()) 1076 OS << UserInst->getOpcodeName(); 1077 else 1078 UserInst->printAsOperand(OS, /*PrintType=*/false); 1079 1080 OS << ", OperandValToReplace="; 1081 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1082 1083 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1084 E = PostIncLoops.end(); I != E; ++I) { 1085 OS << ", PostIncLoop="; 1086 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1087 } 1088 1089 if (LUIdx != ~size_t(0)) 1090 OS << ", LUIdx=" << LUIdx; 1091 1092 if (Offset != 0) 1093 OS << ", Offset=" << Offset; 1094 } 1095 1096 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1097 void LSRFixup::dump() const { 1098 print(errs()); errs() << '\n'; 1099 } 1100 #endif 1101 1102 namespace { 1103 1104 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1105 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1106 struct UniquifierDenseMapInfo { 1107 static SmallVector<const SCEV *, 4> getEmptyKey() { 1108 SmallVector<const SCEV *, 4> V; 1109 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1110 return V; 1111 } 1112 1113 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1114 SmallVector<const SCEV *, 4> V; 1115 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1116 return V; 1117 } 1118 1119 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1120 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1121 } 1122 1123 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1124 const SmallVector<const SCEV *, 4> &RHS) { 1125 return LHS == RHS; 1126 } 1127 }; 1128 1129 /// LSRUse - This class holds the state that LSR keeps for each use in 1130 /// IVUsers, as well as uses invented by LSR itself. It includes information 1131 /// about what kinds of things can be folded into the user, information about 1132 /// the user itself, and information about how the use may be satisfied. 1133 /// TODO: Represent multiple users of the same expression in common? 1134 class LSRUse { 1135 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1136 1137 public: 1138 /// KindType - An enum for a kind of use, indicating what types of 1139 /// scaled and immediate operands it might support. 1140 enum KindType { 1141 Basic, ///< A normal use, with no folding. 1142 Special, ///< A special case of basic, allowing -1 scales. 1143 Address, ///< An address use; folding according to TargetLowering 1144 ICmpZero ///< An equality icmp with both operands folded into one. 1145 // TODO: Add a generic icmp too? 1146 }; 1147 1148 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1149 1150 KindType Kind; 1151 Type *AccessTy; 1152 1153 SmallVector<int64_t, 8> Offsets; 1154 int64_t MinOffset; 1155 int64_t MaxOffset; 1156 1157 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1158 /// LSRUse are outside of the loop, in which case some special-case heuristics 1159 /// may be used. 1160 bool AllFixupsOutsideLoop; 1161 1162 /// RigidFormula is set to true to guarantee that this use will be associated 1163 /// with a single formula--the one that initially matched. Some SCEV 1164 /// expressions cannot be expanded. This allows LSR to consider the registers 1165 /// used by those expressions without the need to expand them later after 1166 /// changing the formula. 1167 bool RigidFormula; 1168 1169 /// WidestFixupType - This records the widest use type for any fixup using 1170 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1171 /// max fixup widths to be equivalent, because the narrower one may be relying 1172 /// on the implicit truncation to truncate away bogus bits. 1173 Type *WidestFixupType; 1174 1175 /// Formulae - A list of ways to build a value that can satisfy this user. 1176 /// After the list is populated, one of these is selected heuristically and 1177 /// used to formulate a replacement for OperandValToReplace in UserInst. 1178 SmallVector<Formula, 12> Formulae; 1179 1180 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1181 SmallPtrSet<const SCEV *, 4> Regs; 1182 1183 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1184 MinOffset(INT64_MAX), 1185 MaxOffset(INT64_MIN), 1186 AllFixupsOutsideLoop(true), 1187 RigidFormula(false), 1188 WidestFixupType(nullptr) {} 1189 1190 bool HasFormulaWithSameRegs(const Formula &F) const; 1191 bool InsertFormula(const Formula &F); 1192 void DeleteFormula(Formula &F); 1193 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1194 1195 void print(raw_ostream &OS) const; 1196 void dump() const; 1197 }; 1198 1199 } 1200 1201 /// HasFormula - Test whether this use as a formula which has the same 1202 /// registers as the given formula. 1203 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1204 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1205 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1206 // Unstable sort by host order ok, because this is only used for uniquifying. 1207 std::sort(Key.begin(), Key.end()); 1208 return Uniquifier.count(Key); 1209 } 1210 1211 /// InsertFormula - If the given formula has not yet been inserted, add it to 1212 /// the list, and return true. Return false otherwise. 1213 bool LSRUse::InsertFormula(const Formula &F) { 1214 if (!Formulae.empty() && RigidFormula) 1215 return false; 1216 1217 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1218 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1219 // Unstable sort by host order ok, because this is only used for uniquifying. 1220 std::sort(Key.begin(), Key.end()); 1221 1222 if (!Uniquifier.insert(Key).second) 1223 return false; 1224 1225 // Using a register to hold the value of 0 is not profitable. 1226 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1227 "Zero allocated in a scaled register!"); 1228 #ifndef NDEBUG 1229 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1230 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1231 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1232 #endif 1233 1234 // Add the formula to the list. 1235 Formulae.push_back(F); 1236 1237 // Record registers now being used by this use. 1238 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1239 1240 return true; 1241 } 1242 1243 /// DeleteFormula - Remove the given formula from this use's list. 1244 void LSRUse::DeleteFormula(Formula &F) { 1245 if (&F != &Formulae.back()) 1246 std::swap(F, Formulae.back()); 1247 Formulae.pop_back(); 1248 } 1249 1250 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1251 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1252 // Now that we've filtered out some formulae, recompute the Regs set. 1253 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1254 Regs.clear(); 1255 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1256 E = Formulae.end(); I != E; ++I) { 1257 const Formula &F = *I; 1258 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1259 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1260 } 1261 1262 // Update the RegTracker. 1263 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1264 E = OldRegs.end(); I != E; ++I) 1265 if (!Regs.count(*I)) 1266 RegUses.DropRegister(*I, LUIdx); 1267 } 1268 1269 void LSRUse::print(raw_ostream &OS) const { 1270 OS << "LSR Use: Kind="; 1271 switch (Kind) { 1272 case Basic: OS << "Basic"; break; 1273 case Special: OS << "Special"; break; 1274 case ICmpZero: OS << "ICmpZero"; break; 1275 case Address: 1276 OS << "Address of "; 1277 if (AccessTy->isPointerTy()) 1278 OS << "pointer"; // the full pointer type could be really verbose 1279 else 1280 OS << *AccessTy; 1281 } 1282 1283 OS << ", Offsets={"; 1284 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1285 E = Offsets.end(); I != E; ++I) { 1286 OS << *I; 1287 if (std::next(I) != E) 1288 OS << ','; 1289 } 1290 OS << '}'; 1291 1292 if (AllFixupsOutsideLoop) 1293 OS << ", all-fixups-outside-loop"; 1294 1295 if (WidestFixupType) 1296 OS << ", widest fixup type: " << *WidestFixupType; 1297 } 1298 1299 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1300 void LSRUse::dump() const { 1301 print(errs()); errs() << '\n'; 1302 } 1303 #endif 1304 1305 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1306 /// be completely folded into the user instruction at isel time. This includes 1307 /// address-mode folding and special icmp tricks. 1308 static bool isLegalUse(const TargetTransformInfo &TTI, LSRUse::KindType Kind, 1309 Type *AccessTy, GlobalValue *BaseGV, int64_t BaseOffset, 1310 bool HasBaseReg, int64_t Scale) { 1311 switch (Kind) { 1312 case LSRUse::Address: 1313 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1314 1315 // Otherwise, just guess that reg+reg addressing is legal. 1316 //return ; 1317 1318 case LSRUse::ICmpZero: 1319 // There's not even a target hook for querying whether it would be legal to 1320 // fold a GV into an ICmp. 1321 if (BaseGV) 1322 return false; 1323 1324 // ICmp only has two operands; don't allow more than two non-trivial parts. 1325 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1326 return false; 1327 1328 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1329 // putting the scaled register in the other operand of the icmp. 1330 if (Scale != 0 && Scale != -1) 1331 return false; 1332 1333 // If we have low-level target information, ask the target if it can fold an 1334 // integer immediate on an icmp. 1335 if (BaseOffset != 0) { 1336 // We have one of: 1337 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1338 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1339 // Offs is the ICmp immediate. 1340 if (Scale == 0) 1341 // The cast does the right thing with INT64_MIN. 1342 BaseOffset = -(uint64_t)BaseOffset; 1343 return TTI.isLegalICmpImmediate(BaseOffset); 1344 } 1345 1346 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1347 return true; 1348 1349 case LSRUse::Basic: 1350 // Only handle single-register values. 1351 return !BaseGV && Scale == 0 && BaseOffset == 0; 1352 1353 case LSRUse::Special: 1354 // Special case Basic to handle -1 scales. 1355 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1356 } 1357 1358 llvm_unreachable("Invalid LSRUse Kind!"); 1359 } 1360 1361 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1362 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1363 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1364 int64_t Scale) { 1365 // Check for overflow. 1366 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1367 (MinOffset > 0)) 1368 return false; 1369 MinOffset = (uint64_t)BaseOffset + MinOffset; 1370 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1371 (MaxOffset > 0)) 1372 return false; 1373 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1374 1375 return isLegalUse(TTI, Kind, AccessTy, BaseGV, MinOffset, HasBaseReg, 1376 Scale) && 1377 isLegalUse(TTI, Kind, AccessTy, BaseGV, MaxOffset, HasBaseReg, Scale); 1378 } 1379 1380 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1381 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1382 const Formula &F) { 1383 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1384 F.BaseOffset, F.HasBaseReg, F.Scale); 1385 } 1386 1387 static bool isLegal2RegAMUse(const TargetTransformInfo &TTI, const LSRUse &LU, 1388 const Formula &F) { 1389 // If F is used as an Addressing Mode, it may fold one Base plus one 1390 // scaled register. If the scaled register is nil, do as if another 1391 // element of the base regs is a 1-scaled register. 1392 // This is possible if BaseRegs has at least 2 registers. 1393 1394 // If this is not an address calculation, this is not an addressing mode 1395 // use. 1396 if (LU.Kind != LSRUse::Address) 1397 return false; 1398 1399 // F is already scaled. 1400 if (F.Scale != 0) 1401 return false; 1402 1403 // We need to keep one register for the base and one to scale. 1404 if (F.BaseRegs.size() < 2) 1405 return false; 1406 1407 return isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 1408 F.BaseGV, F.BaseOffset, F.HasBaseReg, 1); 1409 } 1410 1411 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1412 const LSRUse &LU, const Formula &F) { 1413 if (!F.Scale) 1414 return 0; 1415 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1416 LU.AccessTy, F) && "Illegal formula in use."); 1417 1418 switch (LU.Kind) { 1419 case LSRUse::Address: { 1420 // Check the scaling factor cost with both the min and max offsets. 1421 int ScaleCostMinOffset = 1422 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1423 F.BaseOffset + LU.MinOffset, 1424 F.HasBaseReg, F.Scale); 1425 int ScaleCostMaxOffset = 1426 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1427 F.BaseOffset + LU.MaxOffset, 1428 F.HasBaseReg, F.Scale); 1429 1430 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1431 "Legal addressing mode has an illegal cost!"); 1432 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1433 } 1434 case LSRUse::ICmpZero: 1435 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg. 1436 // Therefore, return 0 in case F.Scale == -1. 1437 return F.Scale != -1; 1438 1439 case LSRUse::Basic: 1440 case LSRUse::Special: 1441 return 0; 1442 } 1443 1444 llvm_unreachable("Invalid LSRUse Kind!"); 1445 } 1446 1447 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1448 LSRUse::KindType Kind, Type *AccessTy, 1449 GlobalValue *BaseGV, int64_t BaseOffset, 1450 bool HasBaseReg) { 1451 // Fast-path: zero is always foldable. 1452 if (BaseOffset == 0 && !BaseGV) return true; 1453 1454 // Conservatively, create an address with an immediate and a 1455 // base and a scale. 1456 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1457 1458 // Canonicalize a scale of 1 to a base register if the formula doesn't 1459 // already have a base register. 1460 if (!HasBaseReg && Scale == 1) { 1461 Scale = 0; 1462 HasBaseReg = true; 1463 } 1464 1465 return isLegalUse(TTI, Kind, AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1466 } 1467 1468 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1469 ScalarEvolution &SE, int64_t MinOffset, 1470 int64_t MaxOffset, LSRUse::KindType Kind, 1471 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1472 // Fast-path: zero is always foldable. 1473 if (S->isZero()) return true; 1474 1475 // Conservatively, create an address with an immediate and a 1476 // base and a scale. 1477 int64_t BaseOffset = ExtractImmediate(S, SE); 1478 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1479 1480 // If there's anything else involved, it's not foldable. 1481 if (!S->isZero()) return false; 1482 1483 // Fast-path: zero is always foldable. 1484 if (BaseOffset == 0 && !BaseGV) return true; 1485 1486 // Conservatively, create an address with an immediate and a 1487 // base and a scale. 1488 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1489 1490 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1491 BaseOffset, HasBaseReg, Scale); 1492 } 1493 1494 namespace { 1495 1496 /// IVInc - An individual increment in a Chain of IV increments. 1497 /// Relate an IV user to an expression that computes the IV it uses from the IV 1498 /// used by the previous link in the Chain. 1499 /// 1500 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1501 /// original IVOperand. The head of the chain's IVOperand is only valid during 1502 /// chain collection, before LSR replaces IV users. During chain generation, 1503 /// IncExpr can be used to find the new IVOperand that computes the same 1504 /// expression. 1505 struct IVInc { 1506 Instruction *UserInst; 1507 Value* IVOperand; 1508 const SCEV *IncExpr; 1509 1510 IVInc(Instruction *U, Value *O, const SCEV *E): 1511 UserInst(U), IVOperand(O), IncExpr(E) {} 1512 }; 1513 1514 // IVChain - The list of IV increments in program order. 1515 // We typically add the head of a chain without finding subsequent links. 1516 struct IVChain { 1517 SmallVector<IVInc,1> Incs; 1518 const SCEV *ExprBase; 1519 1520 IVChain() : ExprBase(nullptr) {} 1521 1522 IVChain(const IVInc &Head, const SCEV *Base) 1523 : Incs(1, Head), ExprBase(Base) {} 1524 1525 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1526 1527 // begin - return the first increment in the chain. 1528 const_iterator begin() const { 1529 assert(!Incs.empty()); 1530 return std::next(Incs.begin()); 1531 } 1532 const_iterator end() const { 1533 return Incs.end(); 1534 } 1535 1536 // hasIncs - Returns true if this chain contains any increments. 1537 bool hasIncs() const { return Incs.size() >= 2; } 1538 1539 // add - Add an IVInc to the end of this chain. 1540 void add(const IVInc &X) { Incs.push_back(X); } 1541 1542 // tailUserInst - Returns the last UserInst in the chain. 1543 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1544 1545 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1546 // this chain. 1547 bool isProfitableIncrement(const SCEV *OperExpr, 1548 const SCEV *IncExpr, 1549 ScalarEvolution&); 1550 }; 1551 1552 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1553 /// Distinguish between FarUsers that definitely cross IV increments and 1554 /// NearUsers that may be used between IV increments. 1555 struct ChainUsers { 1556 SmallPtrSet<Instruction*, 4> FarUsers; 1557 SmallPtrSet<Instruction*, 4> NearUsers; 1558 }; 1559 1560 /// LSRInstance - This class holds state for the main loop strength reduction 1561 /// logic. 1562 class LSRInstance { 1563 IVUsers &IU; 1564 ScalarEvolution &SE; 1565 DominatorTree &DT; 1566 LoopInfo &LI; 1567 const TargetTransformInfo &TTI; 1568 Loop *const L; 1569 bool Changed; 1570 1571 /// IVIncInsertPos - This is the insert position that the current loop's 1572 /// induction variable increment should be placed. In simple loops, this is 1573 /// the latch block's terminator. But in more complicated cases, this is a 1574 /// position which will dominate all the in-loop post-increment users. 1575 Instruction *IVIncInsertPos; 1576 1577 /// Factors - Interesting factors between use strides. 1578 SmallSetVector<int64_t, 8> Factors; 1579 1580 /// Types - Interesting use types, to facilitate truncation reuse. 1581 SmallSetVector<Type *, 4> Types; 1582 1583 /// Fixups - The list of operands which are to be replaced. 1584 SmallVector<LSRFixup, 16> Fixups; 1585 1586 /// Uses - The list of interesting uses. 1587 SmallVector<LSRUse, 16> Uses; 1588 1589 /// RegUses - Track which uses use which register candidates. 1590 RegUseTracker RegUses; 1591 1592 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1593 // have more than a few IV increment chains in a loop. Missing a Chain falls 1594 // back to normal LSR behavior for those uses. 1595 static const unsigned MaxChains = 8; 1596 1597 /// IVChainVec - IV users can form a chain of IV increments. 1598 SmallVector<IVChain, MaxChains> IVChainVec; 1599 1600 /// IVIncSet - IV users that belong to profitable IVChains. 1601 SmallPtrSet<Use*, MaxChains> IVIncSet; 1602 1603 void OptimizeShadowIV(); 1604 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1605 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1606 void OptimizeLoopTermCond(); 1607 1608 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1609 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1610 void FinalizeChain(IVChain &Chain); 1611 void CollectChains(); 1612 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1613 SmallVectorImpl<WeakVH> &DeadInsts); 1614 1615 void CollectInterestingTypesAndFactors(); 1616 void CollectFixupsAndInitialFormulae(); 1617 1618 LSRFixup &getNewFixup() { 1619 Fixups.push_back(LSRFixup()); 1620 return Fixups.back(); 1621 } 1622 1623 // Support for sharing of LSRUses between LSRFixups. 1624 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1625 UseMapTy UseMap; 1626 1627 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1628 LSRUse::KindType Kind, Type *AccessTy); 1629 1630 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1631 LSRUse::KindType Kind, 1632 Type *AccessTy); 1633 1634 void DeleteUse(LSRUse &LU, size_t LUIdx); 1635 1636 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1637 1638 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1639 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1640 void CountRegisters(const Formula &F, size_t LUIdx); 1641 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1642 1643 void CollectLoopInvariantFixupsAndFormulae(); 1644 1645 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1646 unsigned Depth = 0); 1647 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1648 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1649 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1650 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1651 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1652 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1653 void GenerateCrossUseConstantOffsets(); 1654 void GenerateAllReuseFormulae(); 1655 1656 void FilterOutUndesirableDedicatedRegisters(); 1657 1658 size_t EstimateSearchSpaceComplexity() const; 1659 void NarrowSearchSpaceByDetectingSupersets(); 1660 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1661 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1662 void NarrowSearchSpaceByPickingWinnerRegs(); 1663 void NarrowSearchSpaceUsingHeuristics(); 1664 1665 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1666 Cost &SolutionCost, 1667 SmallVectorImpl<const Formula *> &Workspace, 1668 const Cost &CurCost, 1669 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1670 DenseSet<const SCEV *> &VisitedRegs) const; 1671 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1672 1673 BasicBlock::iterator 1674 HoistInsertPosition(BasicBlock::iterator IP, 1675 const SmallVectorImpl<Instruction *> &Inputs) const; 1676 BasicBlock::iterator 1677 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1678 const LSRFixup &LF, 1679 const LSRUse &LU, 1680 SCEVExpander &Rewriter) const; 1681 1682 Value *Expand(const LSRFixup &LF, 1683 const Formula &F, 1684 BasicBlock::iterator IP, 1685 SCEVExpander &Rewriter, 1686 SmallVectorImpl<WeakVH> &DeadInsts) const; 1687 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1688 const Formula &F, 1689 SCEVExpander &Rewriter, 1690 SmallVectorImpl<WeakVH> &DeadInsts, 1691 Pass *P) const; 1692 void Rewrite(const LSRFixup &LF, 1693 const Formula &F, 1694 SCEVExpander &Rewriter, 1695 SmallVectorImpl<WeakVH> &DeadInsts, 1696 Pass *P) const; 1697 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1698 Pass *P); 1699 1700 public: 1701 LSRInstance(Loop *L, Pass *P); 1702 1703 bool getChanged() const { return Changed; } 1704 1705 void print_factors_and_types(raw_ostream &OS) const; 1706 void print_fixups(raw_ostream &OS) const; 1707 void print_uses(raw_ostream &OS) const; 1708 void print(raw_ostream &OS) const; 1709 void dump() const; 1710 }; 1711 1712 } 1713 1714 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1715 /// inside the loop then try to eliminate the cast operation. 1716 void LSRInstance::OptimizeShadowIV() { 1717 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1718 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1719 return; 1720 1721 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1722 UI != E; /* empty */) { 1723 IVUsers::const_iterator CandidateUI = UI; 1724 ++UI; 1725 Instruction *ShadowUse = CandidateUI->getUser(); 1726 Type *DestTy = nullptr; 1727 bool IsSigned = false; 1728 1729 /* If shadow use is a int->float cast then insert a second IV 1730 to eliminate this cast. 1731 1732 for (unsigned i = 0; i < n; ++i) 1733 foo((double)i); 1734 1735 is transformed into 1736 1737 double d = 0.0; 1738 for (unsigned i = 0; i < n; ++i, ++d) 1739 foo(d); 1740 */ 1741 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1742 IsSigned = false; 1743 DestTy = UCast->getDestTy(); 1744 } 1745 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1746 IsSigned = true; 1747 DestTy = SCast->getDestTy(); 1748 } 1749 if (!DestTy) continue; 1750 1751 // If target does not support DestTy natively then do not apply 1752 // this transformation. 1753 if (!TTI.isTypeLegal(DestTy)) continue; 1754 1755 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1756 if (!PH) continue; 1757 if (PH->getNumIncomingValues() != 2) continue; 1758 1759 Type *SrcTy = PH->getType(); 1760 int Mantissa = DestTy->getFPMantissaWidth(); 1761 if (Mantissa == -1) continue; 1762 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1763 continue; 1764 1765 unsigned Entry, Latch; 1766 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1767 Entry = 0; 1768 Latch = 1; 1769 } else { 1770 Entry = 1; 1771 Latch = 0; 1772 } 1773 1774 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1775 if (!Init) continue; 1776 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1777 (double)Init->getSExtValue() : 1778 (double)Init->getZExtValue()); 1779 1780 BinaryOperator *Incr = 1781 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1782 if (!Incr) continue; 1783 if (Incr->getOpcode() != Instruction::Add 1784 && Incr->getOpcode() != Instruction::Sub) 1785 continue; 1786 1787 /* Initialize new IV, double d = 0.0 in above example. */ 1788 ConstantInt *C = nullptr; 1789 if (Incr->getOperand(0) == PH) 1790 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1791 else if (Incr->getOperand(1) == PH) 1792 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1793 else 1794 continue; 1795 1796 if (!C) continue; 1797 1798 // Ignore negative constants, as the code below doesn't handle them 1799 // correctly. TODO: Remove this restriction. 1800 if (!C->getValue().isStrictlyPositive()) continue; 1801 1802 /* Add new PHINode. */ 1803 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1804 1805 /* create new increment. '++d' in above example. */ 1806 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1807 BinaryOperator *NewIncr = 1808 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1809 Instruction::FAdd : Instruction::FSub, 1810 NewPH, CFP, "IV.S.next.", Incr); 1811 1812 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1813 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1814 1815 /* Remove cast operation */ 1816 ShadowUse->replaceAllUsesWith(NewPH); 1817 ShadowUse->eraseFromParent(); 1818 Changed = true; 1819 break; 1820 } 1821 } 1822 1823 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1824 /// set the IV user and stride information and return true, otherwise return 1825 /// false. 1826 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1827 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1828 if (UI->getUser() == Cond) { 1829 // NOTE: we could handle setcc instructions with multiple uses here, but 1830 // InstCombine does it as well for simple uses, it's not clear that it 1831 // occurs enough in real life to handle. 1832 CondUse = UI; 1833 return true; 1834 } 1835 return false; 1836 } 1837 1838 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1839 /// a max computation. 1840 /// 1841 /// This is a narrow solution to a specific, but acute, problem. For loops 1842 /// like this: 1843 /// 1844 /// i = 0; 1845 /// do { 1846 /// p[i] = 0.0; 1847 /// } while (++i < n); 1848 /// 1849 /// the trip count isn't just 'n', because 'n' might not be positive. And 1850 /// unfortunately this can come up even for loops where the user didn't use 1851 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1852 /// will commonly be lowered like this: 1853 // 1854 /// if (n > 0) { 1855 /// i = 0; 1856 /// do { 1857 /// p[i] = 0.0; 1858 /// } while (++i < n); 1859 /// } 1860 /// 1861 /// and then it's possible for subsequent optimization to obscure the if 1862 /// test in such a way that indvars can't find it. 1863 /// 1864 /// When indvars can't find the if test in loops like this, it creates a 1865 /// max expression, which allows it to give the loop a canonical 1866 /// induction variable: 1867 /// 1868 /// i = 0; 1869 /// max = n < 1 ? 1 : n; 1870 /// do { 1871 /// p[i] = 0.0; 1872 /// } while (++i != max); 1873 /// 1874 /// Canonical induction variables are necessary because the loop passes 1875 /// are designed around them. The most obvious example of this is the 1876 /// LoopInfo analysis, which doesn't remember trip count values. It 1877 /// expects to be able to rediscover the trip count each time it is 1878 /// needed, and it does this using a simple analysis that only succeeds if 1879 /// the loop has a canonical induction variable. 1880 /// 1881 /// However, when it comes time to generate code, the maximum operation 1882 /// can be quite costly, especially if it's inside of an outer loop. 1883 /// 1884 /// This function solves this problem by detecting this type of loop and 1885 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1886 /// the instructions for the maximum computation. 1887 /// 1888 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1889 // Check that the loop matches the pattern we're looking for. 1890 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1891 Cond->getPredicate() != CmpInst::ICMP_NE) 1892 return Cond; 1893 1894 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1895 if (!Sel || !Sel->hasOneUse()) return Cond; 1896 1897 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1898 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1899 return Cond; 1900 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1901 1902 // Add one to the backedge-taken count to get the trip count. 1903 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1904 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1905 1906 // Check for a max calculation that matches the pattern. There's no check 1907 // for ICMP_ULE here because the comparison would be with zero, which 1908 // isn't interesting. 1909 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1910 const SCEVNAryExpr *Max = nullptr; 1911 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1912 Pred = ICmpInst::ICMP_SLE; 1913 Max = S; 1914 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1915 Pred = ICmpInst::ICMP_SLT; 1916 Max = S; 1917 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1918 Pred = ICmpInst::ICMP_ULT; 1919 Max = U; 1920 } else { 1921 // No match; bail. 1922 return Cond; 1923 } 1924 1925 // To handle a max with more than two operands, this optimization would 1926 // require additional checking and setup. 1927 if (Max->getNumOperands() != 2) 1928 return Cond; 1929 1930 const SCEV *MaxLHS = Max->getOperand(0); 1931 const SCEV *MaxRHS = Max->getOperand(1); 1932 1933 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1934 // for a comparison with 1. For <= and >=, a comparison with zero. 1935 if (!MaxLHS || 1936 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1937 return Cond; 1938 1939 // Check the relevant induction variable for conformance to 1940 // the pattern. 1941 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1942 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1943 if (!AR || !AR->isAffine() || 1944 AR->getStart() != One || 1945 AR->getStepRecurrence(SE) != One) 1946 return Cond; 1947 1948 assert(AR->getLoop() == L && 1949 "Loop condition operand is an addrec in a different loop!"); 1950 1951 // Check the right operand of the select, and remember it, as it will 1952 // be used in the new comparison instruction. 1953 Value *NewRHS = nullptr; 1954 if (ICmpInst::isTrueWhenEqual(Pred)) { 1955 // Look for n+1, and grab n. 1956 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1957 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 1958 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1959 NewRHS = BO->getOperand(0); 1960 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1961 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 1962 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1963 NewRHS = BO->getOperand(0); 1964 if (!NewRHS) 1965 return Cond; 1966 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1967 NewRHS = Sel->getOperand(1); 1968 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1969 NewRHS = Sel->getOperand(2); 1970 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1971 NewRHS = SU->getValue(); 1972 else 1973 // Max doesn't match expected pattern. 1974 return Cond; 1975 1976 // Determine the new comparison opcode. It may be signed or unsigned, 1977 // and the original comparison may be either equality or inequality. 1978 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1979 Pred = CmpInst::getInversePredicate(Pred); 1980 1981 // Ok, everything looks ok to change the condition into an SLT or SGE and 1982 // delete the max calculation. 1983 ICmpInst *NewCond = 1984 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1985 1986 // Delete the max calculation instructions. 1987 Cond->replaceAllUsesWith(NewCond); 1988 CondUse->setUser(NewCond); 1989 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1990 Cond->eraseFromParent(); 1991 Sel->eraseFromParent(); 1992 if (Cmp->use_empty()) 1993 Cmp->eraseFromParent(); 1994 return NewCond; 1995 } 1996 1997 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1998 /// postinc iv when possible. 1999 void 2000 LSRInstance::OptimizeLoopTermCond() { 2001 SmallPtrSet<Instruction *, 4> PostIncs; 2002 2003 BasicBlock *LatchBlock = L->getLoopLatch(); 2004 SmallVector<BasicBlock*, 8> ExitingBlocks; 2005 L->getExitingBlocks(ExitingBlocks); 2006 2007 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2008 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2009 2010 // Get the terminating condition for the loop if possible. If we 2011 // can, we want to change it to use a post-incremented version of its 2012 // induction variable, to allow coalescing the live ranges for the IV into 2013 // one register value. 2014 2015 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2016 if (!TermBr) 2017 continue; 2018 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2019 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2020 continue; 2021 2022 // Search IVUsesByStride to find Cond's IVUse if there is one. 2023 IVStrideUse *CondUse = nullptr; 2024 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2025 if (!FindIVUserForCond(Cond, CondUse)) 2026 continue; 2027 2028 // If the trip count is computed in terms of a max (due to ScalarEvolution 2029 // being unable to find a sufficient guard, for example), change the loop 2030 // comparison to use SLT or ULT instead of NE. 2031 // One consequence of doing this now is that it disrupts the count-down 2032 // optimization. That's not always a bad thing though, because in such 2033 // cases it may still be worthwhile to avoid a max. 2034 Cond = OptimizeMax(Cond, CondUse); 2035 2036 // If this exiting block dominates the latch block, it may also use 2037 // the post-inc value if it won't be shared with other uses. 2038 // Check for dominance. 2039 if (!DT.dominates(ExitingBlock, LatchBlock)) 2040 continue; 2041 2042 // Conservatively avoid trying to use the post-inc value in non-latch 2043 // exits if there may be pre-inc users in intervening blocks. 2044 if (LatchBlock != ExitingBlock) 2045 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2046 // Test if the use is reachable from the exiting block. This dominator 2047 // query is a conservative approximation of reachability. 2048 if (&*UI != CondUse && 2049 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2050 // Conservatively assume there may be reuse if the quotient of their 2051 // strides could be a legal scale. 2052 const SCEV *A = IU.getStride(*CondUse, L); 2053 const SCEV *B = IU.getStride(*UI, L); 2054 if (!A || !B) continue; 2055 if (SE.getTypeSizeInBits(A->getType()) != 2056 SE.getTypeSizeInBits(B->getType())) { 2057 if (SE.getTypeSizeInBits(A->getType()) > 2058 SE.getTypeSizeInBits(B->getType())) 2059 B = SE.getSignExtendExpr(B, A->getType()); 2060 else 2061 A = SE.getSignExtendExpr(A, B->getType()); 2062 } 2063 if (const SCEVConstant *D = 2064 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2065 const ConstantInt *C = D->getValue(); 2066 // Stride of one or negative one can have reuse with non-addresses. 2067 if (C->isOne() || C->isAllOnesValue()) 2068 goto decline_post_inc; 2069 // Avoid weird situations. 2070 if (C->getValue().getMinSignedBits() >= 64 || 2071 C->getValue().isMinSignedValue()) 2072 goto decline_post_inc; 2073 // Check for possible scaled-address reuse. 2074 Type *AccessTy = getAccessType(UI->getUser()); 2075 int64_t Scale = C->getSExtValue(); 2076 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2077 /*BaseOffset=*/ 0, 2078 /*HasBaseReg=*/ false, Scale)) 2079 goto decline_post_inc; 2080 Scale = -Scale; 2081 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2082 /*BaseOffset=*/ 0, 2083 /*HasBaseReg=*/ false, Scale)) 2084 goto decline_post_inc; 2085 } 2086 } 2087 2088 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2089 << *Cond << '\n'); 2090 2091 // It's possible for the setcc instruction to be anywhere in the loop, and 2092 // possible for it to have multiple users. If it is not immediately before 2093 // the exiting block branch, move it. 2094 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2095 if (Cond->hasOneUse()) { 2096 Cond->moveBefore(TermBr); 2097 } else { 2098 // Clone the terminating condition and insert into the loopend. 2099 ICmpInst *OldCond = Cond; 2100 Cond = cast<ICmpInst>(Cond->clone()); 2101 Cond->setName(L->getHeader()->getName() + ".termcond"); 2102 ExitingBlock->getInstList().insert(TermBr, Cond); 2103 2104 // Clone the IVUse, as the old use still exists! 2105 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2106 TermBr->replaceUsesOfWith(OldCond, Cond); 2107 } 2108 } 2109 2110 // If we get to here, we know that we can transform the setcc instruction to 2111 // use the post-incremented version of the IV, allowing us to coalesce the 2112 // live ranges for the IV correctly. 2113 CondUse->transformToPostInc(L); 2114 Changed = true; 2115 2116 PostIncs.insert(Cond); 2117 decline_post_inc:; 2118 } 2119 2120 // Determine an insertion point for the loop induction variable increment. It 2121 // must dominate all the post-inc comparisons we just set up, and it must 2122 // dominate the loop latch edge. 2123 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2124 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 2125 E = PostIncs.end(); I != E; ++I) { 2126 BasicBlock *BB = 2127 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2128 (*I)->getParent()); 2129 if (BB == (*I)->getParent()) 2130 IVIncInsertPos = *I; 2131 else if (BB != IVIncInsertPos->getParent()) 2132 IVIncInsertPos = BB->getTerminator(); 2133 } 2134 } 2135 2136 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2137 /// at the given offset and other details. If so, update the use and 2138 /// return true. 2139 bool 2140 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2141 LSRUse::KindType Kind, Type *AccessTy) { 2142 int64_t NewMinOffset = LU.MinOffset; 2143 int64_t NewMaxOffset = LU.MaxOffset; 2144 Type *NewAccessTy = AccessTy; 2145 2146 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2147 // something conservative, however this can pessimize in the case that one of 2148 // the uses will have all its uses outside the loop, for example. 2149 if (LU.Kind != Kind) 2150 return false; 2151 // Conservatively assume HasBaseReg is true for now. 2152 if (NewOffset < LU.MinOffset) { 2153 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2154 LU.MaxOffset - NewOffset, HasBaseReg)) 2155 return false; 2156 NewMinOffset = NewOffset; 2157 } else if (NewOffset > LU.MaxOffset) { 2158 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2159 NewOffset - LU.MinOffset, HasBaseReg)) 2160 return false; 2161 NewMaxOffset = NewOffset; 2162 } 2163 // Check for a mismatched access type, and fall back conservatively as needed. 2164 // TODO: Be less conservative when the type is similar and can use the same 2165 // addressing modes. 2166 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2167 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2168 2169 // Update the use. 2170 LU.MinOffset = NewMinOffset; 2171 LU.MaxOffset = NewMaxOffset; 2172 LU.AccessTy = NewAccessTy; 2173 if (NewOffset != LU.Offsets.back()) 2174 LU.Offsets.push_back(NewOffset); 2175 return true; 2176 } 2177 2178 /// getUse - Return an LSRUse index and an offset value for a fixup which 2179 /// needs the given expression, with the given kind and optional access type. 2180 /// Either reuse an existing use or create a new one, as needed. 2181 std::pair<size_t, int64_t> 2182 LSRInstance::getUse(const SCEV *&Expr, 2183 LSRUse::KindType Kind, Type *AccessTy) { 2184 const SCEV *Copy = Expr; 2185 int64_t Offset = ExtractImmediate(Expr, SE); 2186 2187 // Basic uses can't accept any offset, for example. 2188 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2189 Offset, /*HasBaseReg=*/ true)) { 2190 Expr = Copy; 2191 Offset = 0; 2192 } 2193 2194 std::pair<UseMapTy::iterator, bool> P = 2195 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2196 if (!P.second) { 2197 // A use already existed with this base. 2198 size_t LUIdx = P.first->second; 2199 LSRUse &LU = Uses[LUIdx]; 2200 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2201 // Reuse this use. 2202 return std::make_pair(LUIdx, Offset); 2203 } 2204 2205 // Create a new use. 2206 size_t LUIdx = Uses.size(); 2207 P.first->second = LUIdx; 2208 Uses.push_back(LSRUse(Kind, AccessTy)); 2209 LSRUse &LU = Uses[LUIdx]; 2210 2211 // We don't need to track redundant offsets, but we don't need to go out 2212 // of our way here to avoid them. 2213 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2214 LU.Offsets.push_back(Offset); 2215 2216 LU.MinOffset = Offset; 2217 LU.MaxOffset = Offset; 2218 return std::make_pair(LUIdx, Offset); 2219 } 2220 2221 /// DeleteUse - Delete the given use from the Uses list. 2222 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2223 if (&LU != &Uses.back()) 2224 std::swap(LU, Uses.back()); 2225 Uses.pop_back(); 2226 2227 // Update RegUses. 2228 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2229 } 2230 2231 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2232 /// a formula that has the same registers as the given formula. 2233 LSRUse * 2234 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2235 const LSRUse &OrigLU) { 2236 // Search all uses for the formula. This could be more clever. 2237 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2238 LSRUse &LU = Uses[LUIdx]; 2239 // Check whether this use is close enough to OrigLU, to see whether it's 2240 // worthwhile looking through its formulae. 2241 // Ignore ICmpZero uses because they may contain formulae generated by 2242 // GenerateICmpZeroScales, in which case adding fixup offsets may 2243 // be invalid. 2244 if (&LU != &OrigLU && 2245 LU.Kind != LSRUse::ICmpZero && 2246 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2247 LU.WidestFixupType == OrigLU.WidestFixupType && 2248 LU.HasFormulaWithSameRegs(OrigF)) { 2249 // Scan through this use's formulae. 2250 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2251 E = LU.Formulae.end(); I != E; ++I) { 2252 const Formula &F = *I; 2253 // Check to see if this formula has the same registers and symbols 2254 // as OrigF. 2255 if (F.BaseRegs == OrigF.BaseRegs && 2256 F.ScaledReg == OrigF.ScaledReg && 2257 F.BaseGV == OrigF.BaseGV && 2258 F.Scale == OrigF.Scale && 2259 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2260 if (F.BaseOffset == 0) 2261 return &LU; 2262 // This is the formula where all the registers and symbols matched; 2263 // there aren't going to be any others. Since we declined it, we 2264 // can skip the rest of the formulae and proceed to the next LSRUse. 2265 break; 2266 } 2267 } 2268 } 2269 } 2270 2271 // Nothing looked good. 2272 return nullptr; 2273 } 2274 2275 void LSRInstance::CollectInterestingTypesAndFactors() { 2276 SmallSetVector<const SCEV *, 4> Strides; 2277 2278 // Collect interesting types and strides. 2279 SmallVector<const SCEV *, 4> Worklist; 2280 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2281 const SCEV *Expr = IU.getExpr(*UI); 2282 2283 // Collect interesting types. 2284 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2285 2286 // Add strides for mentioned loops. 2287 Worklist.push_back(Expr); 2288 do { 2289 const SCEV *S = Worklist.pop_back_val(); 2290 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2291 if (AR->getLoop() == L) 2292 Strides.insert(AR->getStepRecurrence(SE)); 2293 Worklist.push_back(AR->getStart()); 2294 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2295 Worklist.append(Add->op_begin(), Add->op_end()); 2296 } 2297 } while (!Worklist.empty()); 2298 } 2299 2300 // Compute interesting factors from the set of interesting strides. 2301 for (SmallSetVector<const SCEV *, 4>::const_iterator 2302 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2303 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2304 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2305 const SCEV *OldStride = *I; 2306 const SCEV *NewStride = *NewStrideIter; 2307 2308 if (SE.getTypeSizeInBits(OldStride->getType()) != 2309 SE.getTypeSizeInBits(NewStride->getType())) { 2310 if (SE.getTypeSizeInBits(OldStride->getType()) > 2311 SE.getTypeSizeInBits(NewStride->getType())) 2312 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2313 else 2314 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2315 } 2316 if (const SCEVConstant *Factor = 2317 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2318 SE, true))) { 2319 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2320 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2321 } else if (const SCEVConstant *Factor = 2322 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2323 NewStride, 2324 SE, true))) { 2325 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2326 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2327 } 2328 } 2329 2330 // If all uses use the same type, don't bother looking for truncation-based 2331 // reuse. 2332 if (Types.size() == 1) 2333 Types.clear(); 2334 2335 DEBUG(print_factors_and_types(dbgs())); 2336 } 2337 2338 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2339 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2340 /// Instructions to IVStrideUses, we could partially skip this. 2341 static User::op_iterator 2342 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2343 Loop *L, ScalarEvolution &SE) { 2344 for(; OI != OE; ++OI) { 2345 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2346 if (!SE.isSCEVable(Oper->getType())) 2347 continue; 2348 2349 if (const SCEVAddRecExpr *AR = 2350 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2351 if (AR->getLoop() == L) 2352 break; 2353 } 2354 } 2355 } 2356 return OI; 2357 } 2358 2359 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2360 /// operands, so wrap it in a convenient helper. 2361 static Value *getWideOperand(Value *Oper) { 2362 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2363 return Trunc->getOperand(0); 2364 return Oper; 2365 } 2366 2367 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2368 /// types. 2369 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2370 Type *LType = LVal->getType(); 2371 Type *RType = RVal->getType(); 2372 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2373 } 2374 2375 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2376 /// NULL for any constant. Returning the expression itself is 2377 /// conservative. Returning a deeper subexpression is more precise and valid as 2378 /// long as it isn't less complex than another subexpression. For expressions 2379 /// involving multiple unscaled values, we need to return the pointer-type 2380 /// SCEVUnknown. This avoids forming chains across objects, such as: 2381 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2382 /// 2383 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2384 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2385 static const SCEV *getExprBase(const SCEV *S) { 2386 switch (S->getSCEVType()) { 2387 default: // uncluding scUnknown. 2388 return S; 2389 case scConstant: 2390 return nullptr; 2391 case scTruncate: 2392 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2393 case scZeroExtend: 2394 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2395 case scSignExtend: 2396 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2397 case scAddExpr: { 2398 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2399 // there's nothing more complex. 2400 // FIXME: not sure if we want to recognize negation. 2401 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2402 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2403 E(Add->op_begin()); I != E; ++I) { 2404 const SCEV *SubExpr = *I; 2405 if (SubExpr->getSCEVType() == scAddExpr) 2406 return getExprBase(SubExpr); 2407 2408 if (SubExpr->getSCEVType() != scMulExpr) 2409 return SubExpr; 2410 } 2411 return S; // all operands are scaled, be conservative. 2412 } 2413 case scAddRecExpr: 2414 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2415 } 2416 } 2417 2418 /// Return true if the chain increment is profitable to expand into a loop 2419 /// invariant value, which may require its own register. A profitable chain 2420 /// increment will be an offset relative to the same base. We allow such offsets 2421 /// to potentially be used as chain increment as long as it's not obviously 2422 /// expensive to expand using real instructions. 2423 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2424 const SCEV *IncExpr, 2425 ScalarEvolution &SE) { 2426 // Aggressively form chains when -stress-ivchain. 2427 if (StressIVChain) 2428 return true; 2429 2430 // Do not replace a constant offset from IV head with a nonconstant IV 2431 // increment. 2432 if (!isa<SCEVConstant>(IncExpr)) { 2433 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2434 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2435 return 0; 2436 } 2437 2438 SmallPtrSet<const SCEV*, 8> Processed; 2439 return !isHighCostExpansion(IncExpr, Processed, SE); 2440 } 2441 2442 /// Return true if the number of registers needed for the chain is estimated to 2443 /// be less than the number required for the individual IV users. First prohibit 2444 /// any IV users that keep the IV live across increments (the Users set should 2445 /// be empty). Next count the number and type of increments in the chain. 2446 /// 2447 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2448 /// effectively use postinc addressing modes. Only consider it profitable it the 2449 /// increments can be computed in fewer registers when chained. 2450 /// 2451 /// TODO: Consider IVInc free if it's already used in another chains. 2452 static bool 2453 isProfitableChain(IVChain &Chain, SmallPtrSet<Instruction*, 4> &Users, 2454 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2455 if (StressIVChain) 2456 return true; 2457 2458 if (!Chain.hasIncs()) 2459 return false; 2460 2461 if (!Users.empty()) { 2462 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2463 for (SmallPtrSet<Instruction*, 4>::const_iterator I = Users.begin(), 2464 E = Users.end(); I != E; ++I) { 2465 dbgs() << " " << **I << "\n"; 2466 }); 2467 return false; 2468 } 2469 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2470 2471 // The chain itself may require a register, so intialize cost to 1. 2472 int cost = 1; 2473 2474 // A complete chain likely eliminates the need for keeping the original IV in 2475 // a register. LSR does not currently know how to form a complete chain unless 2476 // the header phi already exists. 2477 if (isa<PHINode>(Chain.tailUserInst()) 2478 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2479 --cost; 2480 } 2481 const SCEV *LastIncExpr = nullptr; 2482 unsigned NumConstIncrements = 0; 2483 unsigned NumVarIncrements = 0; 2484 unsigned NumReusedIncrements = 0; 2485 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2486 I != E; ++I) { 2487 2488 if (I->IncExpr->isZero()) 2489 continue; 2490 2491 // Incrementing by zero or some constant is neutral. We assume constants can 2492 // be folded into an addressing mode or an add's immediate operand. 2493 if (isa<SCEVConstant>(I->IncExpr)) { 2494 ++NumConstIncrements; 2495 continue; 2496 } 2497 2498 if (I->IncExpr == LastIncExpr) 2499 ++NumReusedIncrements; 2500 else 2501 ++NumVarIncrements; 2502 2503 LastIncExpr = I->IncExpr; 2504 } 2505 // An IV chain with a single increment is handled by LSR's postinc 2506 // uses. However, a chain with multiple increments requires keeping the IV's 2507 // value live longer than it needs to be if chained. 2508 if (NumConstIncrements > 1) 2509 --cost; 2510 2511 // Materializing increment expressions in the preheader that didn't exist in 2512 // the original code may cost a register. For example, sign-extended array 2513 // indices can produce ridiculous increments like this: 2514 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2515 cost += NumVarIncrements; 2516 2517 // Reusing variable increments likely saves a register to hold the multiple of 2518 // the stride. 2519 cost -= NumReusedIncrements; 2520 2521 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2522 << "\n"); 2523 2524 return cost < 0; 2525 } 2526 2527 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2528 /// of a new chain. 2529 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2530 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2531 // When IVs are used as types of varying widths, they are generally converted 2532 // to a wider type with some uses remaining narrow under a (free) trunc. 2533 Value *const NextIV = getWideOperand(IVOper); 2534 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2535 const SCEV *const OperExprBase = getExprBase(OperExpr); 2536 2537 // Visit all existing chains. Check if its IVOper can be computed as a 2538 // profitable loop invariant increment from the last link in the Chain. 2539 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2540 const SCEV *LastIncExpr = nullptr; 2541 for (; ChainIdx < NChains; ++ChainIdx) { 2542 IVChain &Chain = IVChainVec[ChainIdx]; 2543 2544 // Prune the solution space aggressively by checking that both IV operands 2545 // are expressions that operate on the same unscaled SCEVUnknown. This 2546 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2547 // first avoids creating extra SCEV expressions. 2548 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2549 continue; 2550 2551 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2552 if (!isCompatibleIVType(PrevIV, NextIV)) 2553 continue; 2554 2555 // A phi node terminates a chain. 2556 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2557 continue; 2558 2559 // The increment must be loop-invariant so it can be kept in a register. 2560 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2561 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2562 if (!SE.isLoopInvariant(IncExpr, L)) 2563 continue; 2564 2565 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2566 LastIncExpr = IncExpr; 2567 break; 2568 } 2569 } 2570 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2571 // bother for phi nodes, because they must be last in the chain. 2572 if (ChainIdx == NChains) { 2573 if (isa<PHINode>(UserInst)) 2574 return; 2575 if (NChains >= MaxChains && !StressIVChain) { 2576 DEBUG(dbgs() << "IV Chain Limit\n"); 2577 return; 2578 } 2579 LastIncExpr = OperExpr; 2580 // IVUsers may have skipped over sign/zero extensions. We don't currently 2581 // attempt to form chains involving extensions unless they can be hoisted 2582 // into this loop's AddRec. 2583 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2584 return; 2585 ++NChains; 2586 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2587 OperExprBase)); 2588 ChainUsersVec.resize(NChains); 2589 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2590 << ") IV=" << *LastIncExpr << "\n"); 2591 } else { 2592 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2593 << ") IV+" << *LastIncExpr << "\n"); 2594 // Add this IV user to the end of the chain. 2595 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2596 } 2597 IVChain &Chain = IVChainVec[ChainIdx]; 2598 2599 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2600 // This chain's NearUsers become FarUsers. 2601 if (!LastIncExpr->isZero()) { 2602 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2603 NearUsers.end()); 2604 NearUsers.clear(); 2605 } 2606 2607 // All other uses of IVOperand become near uses of the chain. 2608 // We currently ignore intermediate values within SCEV expressions, assuming 2609 // they will eventually be used be the current chain, or can be computed 2610 // from one of the chain increments. To be more precise we could 2611 // transitively follow its user and only add leaf IV users to the set. 2612 for (User *U : IVOper->users()) { 2613 Instruction *OtherUse = dyn_cast<Instruction>(U); 2614 if (!OtherUse) 2615 continue; 2616 // Uses in the chain will no longer be uses if the chain is formed. 2617 // Include the head of the chain in this iteration (not Chain.begin()). 2618 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2619 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2620 for( ; IncIter != IncEnd; ++IncIter) { 2621 if (IncIter->UserInst == OtherUse) 2622 break; 2623 } 2624 if (IncIter != IncEnd) 2625 continue; 2626 2627 if (SE.isSCEVable(OtherUse->getType()) 2628 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2629 && IU.isIVUserOrOperand(OtherUse)) { 2630 continue; 2631 } 2632 NearUsers.insert(OtherUse); 2633 } 2634 2635 // Since this user is part of the chain, it's no longer considered a use 2636 // of the chain. 2637 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2638 } 2639 2640 /// CollectChains - Populate the vector of Chains. 2641 /// 2642 /// This decreases ILP at the architecture level. Targets with ample registers, 2643 /// multiple memory ports, and no register renaming probably don't want 2644 /// this. However, such targets should probably disable LSR altogether. 2645 /// 2646 /// The job of LSR is to make a reasonable choice of induction variables across 2647 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2648 /// ILP *within the loop* if the target wants it. 2649 /// 2650 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2651 /// will not reorder memory operations, it will recognize this as a chain, but 2652 /// will generate redundant IV increments. Ideally this would be corrected later 2653 /// by a smart scheduler: 2654 /// = A[i] 2655 /// = A[i+x] 2656 /// A[i] = 2657 /// A[i+x] = 2658 /// 2659 /// TODO: Walk the entire domtree within this loop, not just the path to the 2660 /// loop latch. This will discover chains on side paths, but requires 2661 /// maintaining multiple copies of the Chains state. 2662 void LSRInstance::CollectChains() { 2663 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2664 SmallVector<ChainUsers, 8> ChainUsersVec; 2665 2666 SmallVector<BasicBlock *,8> LatchPath; 2667 BasicBlock *LoopHeader = L->getHeader(); 2668 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2669 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2670 LatchPath.push_back(Rung->getBlock()); 2671 } 2672 LatchPath.push_back(LoopHeader); 2673 2674 // Walk the instruction stream from the loop header to the loop latch. 2675 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2676 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2677 BBIter != BBEnd; ++BBIter) { 2678 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2679 I != E; ++I) { 2680 // Skip instructions that weren't seen by IVUsers analysis. 2681 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2682 continue; 2683 2684 // Ignore users that are part of a SCEV expression. This way we only 2685 // consider leaf IV Users. This effectively rediscovers a portion of 2686 // IVUsers analysis but in program order this time. 2687 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2688 continue; 2689 2690 // Remove this instruction from any NearUsers set it may be in. 2691 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2692 ChainIdx < NChains; ++ChainIdx) { 2693 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2694 } 2695 // Search for operands that can be chained. 2696 SmallPtrSet<Instruction*, 4> UniqueOperands; 2697 User::op_iterator IVOpEnd = I->op_end(); 2698 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2699 while (IVOpIter != IVOpEnd) { 2700 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2701 if (UniqueOperands.insert(IVOpInst)) 2702 ChainInstruction(I, IVOpInst, ChainUsersVec); 2703 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2704 } 2705 } // Continue walking down the instructions. 2706 } // Continue walking down the domtree. 2707 // Visit phi backedges to determine if the chain can generate the IV postinc. 2708 for (BasicBlock::iterator I = L->getHeader()->begin(); 2709 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2710 if (!SE.isSCEVable(PN->getType())) 2711 continue; 2712 2713 Instruction *IncV = 2714 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2715 if (IncV) 2716 ChainInstruction(PN, IncV, ChainUsersVec); 2717 } 2718 // Remove any unprofitable chains. 2719 unsigned ChainIdx = 0; 2720 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2721 UsersIdx < NChains; ++UsersIdx) { 2722 if (!isProfitableChain(IVChainVec[UsersIdx], 2723 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2724 continue; 2725 // Preserve the chain at UsesIdx. 2726 if (ChainIdx != UsersIdx) 2727 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2728 FinalizeChain(IVChainVec[ChainIdx]); 2729 ++ChainIdx; 2730 } 2731 IVChainVec.resize(ChainIdx); 2732 } 2733 2734 void LSRInstance::FinalizeChain(IVChain &Chain) { 2735 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2736 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2737 2738 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2739 I != E; ++I) { 2740 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2741 User::op_iterator UseI = 2742 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2743 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2744 IVIncSet.insert(UseI); 2745 } 2746 } 2747 2748 /// Return true if the IVInc can be folded into an addressing mode. 2749 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2750 Value *Operand, const TargetTransformInfo &TTI) { 2751 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2752 if (!IncConst || !isAddressUse(UserInst, Operand)) 2753 return false; 2754 2755 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2756 return false; 2757 2758 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2759 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2760 getAccessType(UserInst), /*BaseGV=*/ nullptr, 2761 IncOffset, /*HaseBaseReg=*/ false)) 2762 return false; 2763 2764 return true; 2765 } 2766 2767 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2768 /// materialize the IV user's operand from the previous IV user's operand. 2769 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2770 SmallVectorImpl<WeakVH> &DeadInsts) { 2771 // Find the new IVOperand for the head of the chain. It may have been replaced 2772 // by LSR. 2773 const IVInc &Head = Chain.Incs[0]; 2774 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2775 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2776 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2777 IVOpEnd, L, SE); 2778 Value *IVSrc = nullptr; 2779 while (IVOpIter != IVOpEnd) { 2780 IVSrc = getWideOperand(*IVOpIter); 2781 2782 // If this operand computes the expression that the chain needs, we may use 2783 // it. (Check this after setting IVSrc which is used below.) 2784 // 2785 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2786 // narrow for the chain, so we can no longer use it. We do allow using a 2787 // wider phi, assuming the LSR checked for free truncation. In that case we 2788 // should already have a truncate on this operand such that 2789 // getSCEV(IVSrc) == IncExpr. 2790 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2791 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2792 break; 2793 } 2794 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2795 } 2796 if (IVOpIter == IVOpEnd) { 2797 // Gracefully give up on this chain. 2798 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2799 return; 2800 } 2801 2802 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2803 Type *IVTy = IVSrc->getType(); 2804 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2805 const SCEV *LeftOverExpr = nullptr; 2806 for (IVChain::const_iterator IncI = Chain.begin(), 2807 IncE = Chain.end(); IncI != IncE; ++IncI) { 2808 2809 Instruction *InsertPt = IncI->UserInst; 2810 if (isa<PHINode>(InsertPt)) 2811 InsertPt = L->getLoopLatch()->getTerminator(); 2812 2813 // IVOper will replace the current IV User's operand. IVSrc is the IV 2814 // value currently held in a register. 2815 Value *IVOper = IVSrc; 2816 if (!IncI->IncExpr->isZero()) { 2817 // IncExpr was the result of subtraction of two narrow values, so must 2818 // be signed. 2819 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2820 LeftOverExpr = LeftOverExpr ? 2821 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2822 } 2823 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2824 // Expand the IV increment. 2825 Rewriter.clearPostInc(); 2826 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2827 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2828 SE.getUnknown(IncV)); 2829 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2830 2831 // If an IV increment can't be folded, use it as the next IV value. 2832 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2833 TTI)) { 2834 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2835 IVSrc = IVOper; 2836 LeftOverExpr = nullptr; 2837 } 2838 } 2839 Type *OperTy = IncI->IVOperand->getType(); 2840 if (IVTy != OperTy) { 2841 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2842 "cannot extend a chained IV"); 2843 IRBuilder<> Builder(InsertPt); 2844 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2845 } 2846 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2847 DeadInsts.push_back(IncI->IVOperand); 2848 } 2849 // If LSR created a new, wider phi, we may also replace its postinc. We only 2850 // do this if we also found a wide value for the head of the chain. 2851 if (isa<PHINode>(Chain.tailUserInst())) { 2852 for (BasicBlock::iterator I = L->getHeader()->begin(); 2853 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2854 if (!isCompatibleIVType(Phi, IVSrc)) 2855 continue; 2856 Instruction *PostIncV = dyn_cast<Instruction>( 2857 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2858 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2859 continue; 2860 Value *IVOper = IVSrc; 2861 Type *PostIncTy = PostIncV->getType(); 2862 if (IVTy != PostIncTy) { 2863 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2864 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2865 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2866 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2867 } 2868 Phi->replaceUsesOfWith(PostIncV, IVOper); 2869 DeadInsts.push_back(PostIncV); 2870 } 2871 } 2872 } 2873 2874 void LSRInstance::CollectFixupsAndInitialFormulae() { 2875 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2876 Instruction *UserInst = UI->getUser(); 2877 // Skip IV users that are part of profitable IV Chains. 2878 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2879 UI->getOperandValToReplace()); 2880 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2881 if (IVIncSet.count(UseI)) 2882 continue; 2883 2884 // Record the uses. 2885 LSRFixup &LF = getNewFixup(); 2886 LF.UserInst = UserInst; 2887 LF.OperandValToReplace = UI->getOperandValToReplace(); 2888 LF.PostIncLoops = UI->getPostIncLoops(); 2889 2890 LSRUse::KindType Kind = LSRUse::Basic; 2891 Type *AccessTy = nullptr; 2892 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2893 Kind = LSRUse::Address; 2894 AccessTy = getAccessType(LF.UserInst); 2895 } 2896 2897 const SCEV *S = IU.getExpr(*UI); 2898 2899 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2900 // (N - i == 0), and this allows (N - i) to be the expression that we work 2901 // with rather than just N or i, so we can consider the register 2902 // requirements for both N and i at the same time. Limiting this code to 2903 // equality icmps is not a problem because all interesting loops use 2904 // equality icmps, thanks to IndVarSimplify. 2905 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2906 if (CI->isEquality()) { 2907 // Swap the operands if needed to put the OperandValToReplace on the 2908 // left, for consistency. 2909 Value *NV = CI->getOperand(1); 2910 if (NV == LF.OperandValToReplace) { 2911 CI->setOperand(1, CI->getOperand(0)); 2912 CI->setOperand(0, NV); 2913 NV = CI->getOperand(1); 2914 Changed = true; 2915 } 2916 2917 // x == y --> x - y == 0 2918 const SCEV *N = SE.getSCEV(NV); 2919 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 2920 // S is normalized, so normalize N before folding it into S 2921 // to keep the result normalized. 2922 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 2923 LF.PostIncLoops, SE, DT); 2924 Kind = LSRUse::ICmpZero; 2925 S = SE.getMinusSCEV(N, S); 2926 } 2927 2928 // -1 and the negations of all interesting strides (except the negation 2929 // of -1) are now also interesting. 2930 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2931 if (Factors[i] != -1) 2932 Factors.insert(-(uint64_t)Factors[i]); 2933 Factors.insert(-1); 2934 } 2935 2936 // Set up the initial formula for this use. 2937 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2938 LF.LUIdx = P.first; 2939 LF.Offset = P.second; 2940 LSRUse &LU = Uses[LF.LUIdx]; 2941 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2942 if (!LU.WidestFixupType || 2943 SE.getTypeSizeInBits(LU.WidestFixupType) < 2944 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2945 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2946 2947 // If this is the first use of this LSRUse, give it a formula. 2948 if (LU.Formulae.empty()) { 2949 InsertInitialFormula(S, LU, LF.LUIdx); 2950 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2951 } 2952 } 2953 2954 DEBUG(print_fixups(dbgs())); 2955 } 2956 2957 /// InsertInitialFormula - Insert a formula for the given expression into 2958 /// the given use, separating out loop-variant portions from loop-invariant 2959 /// and loop-computable portions. 2960 void 2961 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2962 // Mark uses whose expressions cannot be expanded. 2963 if (!isSafeToExpand(S, SE)) 2964 LU.RigidFormula = true; 2965 2966 Formula F; 2967 F.InitialMatch(S, L, SE); 2968 bool Inserted = InsertFormula(LU, LUIdx, F); 2969 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2970 } 2971 2972 /// InsertSupplementalFormula - Insert a simple single-register formula for 2973 /// the given expression into the given use. 2974 void 2975 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2976 LSRUse &LU, size_t LUIdx) { 2977 Formula F; 2978 F.BaseRegs.push_back(S); 2979 F.HasBaseReg = true; 2980 bool Inserted = InsertFormula(LU, LUIdx, F); 2981 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2982 } 2983 2984 /// CountRegisters - Note which registers are used by the given formula, 2985 /// updating RegUses. 2986 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2987 if (F.ScaledReg) 2988 RegUses.CountRegister(F.ScaledReg, LUIdx); 2989 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2990 E = F.BaseRegs.end(); I != E; ++I) 2991 RegUses.CountRegister(*I, LUIdx); 2992 } 2993 2994 /// InsertFormula - If the given formula has not yet been inserted, add it to 2995 /// the list, and return true. Return false otherwise. 2996 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2997 if (!LU.InsertFormula(F)) 2998 return false; 2999 3000 CountRegisters(F, LUIdx); 3001 return true; 3002 } 3003 3004 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3005 /// loop-invariant values which we're tracking. These other uses will pin these 3006 /// values in registers, making them less profitable for elimination. 3007 /// TODO: This currently misses non-constant addrec step registers. 3008 /// TODO: Should this give more weight to users inside the loop? 3009 void 3010 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3011 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3012 SmallPtrSet<const SCEV *, 8> Inserted; 3013 3014 while (!Worklist.empty()) { 3015 const SCEV *S = Worklist.pop_back_val(); 3016 3017 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3018 Worklist.append(N->op_begin(), N->op_end()); 3019 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3020 Worklist.push_back(C->getOperand()); 3021 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3022 Worklist.push_back(D->getLHS()); 3023 Worklist.push_back(D->getRHS()); 3024 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3025 if (!Inserted.insert(US)) continue; 3026 const Value *V = US->getValue(); 3027 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3028 // Look for instructions defined outside the loop. 3029 if (L->contains(Inst)) continue; 3030 } else if (isa<UndefValue>(V)) 3031 // Undef doesn't have a live range, so it doesn't matter. 3032 continue; 3033 for (const Use &U : V->uses()) { 3034 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3035 // Ignore non-instructions. 3036 if (!UserInst) 3037 continue; 3038 // Ignore instructions in other functions (as can happen with 3039 // Constants). 3040 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3041 continue; 3042 // Ignore instructions not dominated by the loop. 3043 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3044 UserInst->getParent() : 3045 cast<PHINode>(UserInst)->getIncomingBlock( 3046 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3047 if (!DT.dominates(L->getHeader(), UseBB)) 3048 continue; 3049 // Ignore uses which are part of other SCEV expressions, to avoid 3050 // analyzing them multiple times. 3051 if (SE.isSCEVable(UserInst->getType())) { 3052 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3053 // If the user is a no-op, look through to its uses. 3054 if (!isa<SCEVUnknown>(UserS)) 3055 continue; 3056 if (UserS == US) { 3057 Worklist.push_back( 3058 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3059 continue; 3060 } 3061 } 3062 // Ignore icmp instructions which are already being analyzed. 3063 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3064 unsigned OtherIdx = !U.getOperandNo(); 3065 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3066 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3067 continue; 3068 } 3069 3070 LSRFixup &LF = getNewFixup(); 3071 LF.UserInst = const_cast<Instruction *>(UserInst); 3072 LF.OperandValToReplace = U; 3073 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); 3074 LF.LUIdx = P.first; 3075 LF.Offset = P.second; 3076 LSRUse &LU = Uses[LF.LUIdx]; 3077 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3078 if (!LU.WidestFixupType || 3079 SE.getTypeSizeInBits(LU.WidestFixupType) < 3080 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3081 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3082 InsertSupplementalFormula(US, LU, LF.LUIdx); 3083 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3084 break; 3085 } 3086 } 3087 } 3088 } 3089 3090 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3091 /// separate registers. If C is non-null, multiply each subexpression by C. 3092 /// 3093 /// Return remainder expression after factoring the subexpressions captured by 3094 /// Ops. If Ops is complete, return NULL. 3095 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3096 SmallVectorImpl<const SCEV *> &Ops, 3097 const Loop *L, 3098 ScalarEvolution &SE, 3099 unsigned Depth = 0) { 3100 // Arbitrarily cap recursion to protect compile time. 3101 if (Depth >= 3) 3102 return S; 3103 3104 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3105 // Break out add operands. 3106 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3107 I != E; ++I) { 3108 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3109 if (Remainder) 3110 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3111 } 3112 return nullptr; 3113 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3114 // Split a non-zero base out of an addrec. 3115 if (AR->getStart()->isZero()) 3116 return S; 3117 3118 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3119 C, Ops, L, SE, Depth+1); 3120 // Split the non-zero AddRec unless it is part of a nested recurrence that 3121 // does not pertain to this loop. 3122 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3123 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3124 Remainder = nullptr; 3125 } 3126 if (Remainder != AR->getStart()) { 3127 if (!Remainder) 3128 Remainder = SE.getConstant(AR->getType(), 0); 3129 return SE.getAddRecExpr(Remainder, 3130 AR->getStepRecurrence(SE), 3131 AR->getLoop(), 3132 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3133 SCEV::FlagAnyWrap); 3134 } 3135 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3136 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3137 if (Mul->getNumOperands() != 2) 3138 return S; 3139 if (const SCEVConstant *Op0 = 3140 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3141 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3142 const SCEV *Remainder = 3143 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3144 if (Remainder) 3145 Ops.push_back(SE.getMulExpr(C, Remainder)); 3146 return nullptr; 3147 } 3148 } 3149 return S; 3150 } 3151 3152 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3153 /// addrecs. 3154 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3155 Formula Base, 3156 unsigned Depth) { 3157 // Arbitrarily cap recursion to protect compile time. 3158 if (Depth >= 3) return; 3159 3160 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3161 const SCEV *BaseReg = Base.BaseRegs[i]; 3162 3163 SmallVector<const SCEV *, 8> AddOps; 3164 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3165 if (Remainder) 3166 AddOps.push_back(Remainder); 3167 3168 if (AddOps.size() == 1) continue; 3169 3170 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3171 JE = AddOps.end(); J != JE; ++J) { 3172 3173 // Loop-variant "unknown" values are uninteresting; we won't be able to 3174 // do anything meaningful with them. 3175 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3176 continue; 3177 3178 // Don't pull a constant into a register if the constant could be folded 3179 // into an immediate field. 3180 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3181 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3182 continue; 3183 3184 // Collect all operands except *J. 3185 SmallVector<const SCEV *, 8> InnerAddOps( 3186 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3187 InnerAddOps.append(std::next(J), 3188 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3189 3190 // Don't leave just a constant behind in a register if the constant could 3191 // be folded into an immediate field. 3192 if (InnerAddOps.size() == 1 && 3193 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3194 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3195 continue; 3196 3197 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3198 if (InnerSum->isZero()) 3199 continue; 3200 Formula F = Base; 3201 3202 // Add the remaining pieces of the add back into the new formula. 3203 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3204 if (InnerSumSC && 3205 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3206 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3207 InnerSumSC->getValue()->getZExtValue())) { 3208 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3209 InnerSumSC->getValue()->getZExtValue(); 3210 F.BaseRegs.erase(F.BaseRegs.begin() + i); 3211 } else 3212 F.BaseRegs[i] = InnerSum; 3213 3214 // Add J as its own register, or an unfolded immediate. 3215 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3216 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3217 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3218 SC->getValue()->getZExtValue())) 3219 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 3220 SC->getValue()->getZExtValue(); 3221 else 3222 F.BaseRegs.push_back(*J); 3223 3224 if (InsertFormula(LU, LUIdx, F)) 3225 // If that formula hadn't been seen before, recurse to find more like 3226 // it. 3227 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 3228 } 3229 } 3230 } 3231 3232 /// GenerateCombinations - Generate a formula consisting of all of the 3233 /// loop-dominating registers added into a single register. 3234 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3235 Formula Base) { 3236 // This method is only interesting on a plurality of registers. 3237 if (Base.BaseRegs.size() <= 1) return; 3238 3239 Formula F = Base; 3240 F.BaseRegs.clear(); 3241 SmallVector<const SCEV *, 4> Ops; 3242 for (SmallVectorImpl<const SCEV *>::const_iterator 3243 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3244 const SCEV *BaseReg = *I; 3245 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3246 !SE.hasComputableLoopEvolution(BaseReg, L)) 3247 Ops.push_back(BaseReg); 3248 else 3249 F.BaseRegs.push_back(BaseReg); 3250 } 3251 if (Ops.size() > 1) { 3252 const SCEV *Sum = SE.getAddExpr(Ops); 3253 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3254 // opportunity to fold something. For now, just ignore such cases 3255 // rather than proceed with zero in a register. 3256 if (!Sum->isZero()) { 3257 F.BaseRegs.push_back(Sum); 3258 (void)InsertFormula(LU, LUIdx, F); 3259 } 3260 } 3261 } 3262 3263 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3264 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3265 Formula Base) { 3266 // We can't add a symbolic offset if the address already contains one. 3267 if (Base.BaseGV) return; 3268 3269 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3270 const SCEV *G = Base.BaseRegs[i]; 3271 GlobalValue *GV = ExtractSymbol(G, SE); 3272 if (G->isZero() || !GV) 3273 continue; 3274 Formula F = Base; 3275 F.BaseGV = GV; 3276 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3277 continue; 3278 F.BaseRegs[i] = G; 3279 (void)InsertFormula(LU, LUIdx, F); 3280 } 3281 } 3282 3283 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3284 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3285 Formula Base) { 3286 // TODO: For now, just add the min and max offset, because it usually isn't 3287 // worthwhile looking at everything inbetween. 3288 SmallVector<int64_t, 2> Worklist; 3289 Worklist.push_back(LU.MinOffset); 3290 if (LU.MaxOffset != LU.MinOffset) 3291 Worklist.push_back(LU.MaxOffset); 3292 3293 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3294 const SCEV *G = Base.BaseRegs[i]; 3295 3296 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3297 E = Worklist.end(); I != E; ++I) { 3298 Formula F = Base; 3299 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3300 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3301 LU.AccessTy, F)) { 3302 // Add the offset to the base register. 3303 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3304 // If it cancelled out, drop the base register, otherwise update it. 3305 if (NewG->isZero()) { 3306 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 3307 F.BaseRegs.pop_back(); 3308 } else 3309 F.BaseRegs[i] = NewG; 3310 3311 (void)InsertFormula(LU, LUIdx, F); 3312 } 3313 } 3314 3315 int64_t Imm = ExtractImmediate(G, SE); 3316 if (G->isZero() || Imm == 0) 3317 continue; 3318 Formula F = Base; 3319 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3320 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3321 continue; 3322 F.BaseRegs[i] = G; 3323 (void)InsertFormula(LU, LUIdx, F); 3324 } 3325 } 3326 3327 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3328 /// the comparison. For example, x == y -> x*c == y*c. 3329 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3330 Formula Base) { 3331 if (LU.Kind != LSRUse::ICmpZero) return; 3332 3333 // Determine the integer type for the base formula. 3334 Type *IntTy = Base.getType(); 3335 if (!IntTy) return; 3336 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3337 3338 // Don't do this if there is more than one offset. 3339 if (LU.MinOffset != LU.MaxOffset) return; 3340 3341 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3342 3343 // Check each interesting stride. 3344 for (SmallSetVector<int64_t, 8>::const_iterator 3345 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3346 int64_t Factor = *I; 3347 3348 // Check that the multiplication doesn't overflow. 3349 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3350 continue; 3351 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3352 if (NewBaseOffset / Factor != Base.BaseOffset) 3353 continue; 3354 // If the offset will be truncated at this use, check that it is in bounds. 3355 if (!IntTy->isPointerTy() && 3356 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3357 continue; 3358 3359 // Check that multiplying with the use offset doesn't overflow. 3360 int64_t Offset = LU.MinOffset; 3361 if (Offset == INT64_MIN && Factor == -1) 3362 continue; 3363 Offset = (uint64_t)Offset * Factor; 3364 if (Offset / Factor != LU.MinOffset) 3365 continue; 3366 // If the offset will be truncated at this use, check that it is in bounds. 3367 if (!IntTy->isPointerTy() && 3368 !ConstantInt::isValueValidForType(IntTy, Offset)) 3369 continue; 3370 3371 Formula F = Base; 3372 F.BaseOffset = NewBaseOffset; 3373 3374 // Check that this scale is legal. 3375 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3376 continue; 3377 3378 // Compensate for the use having MinOffset built into it. 3379 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3380 3381 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3382 3383 // Check that multiplying with each base register doesn't overflow. 3384 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3385 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3386 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3387 goto next; 3388 } 3389 3390 // Check that multiplying with the scaled register doesn't overflow. 3391 if (F.ScaledReg) { 3392 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3393 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3394 continue; 3395 } 3396 3397 // Check that multiplying with the unfolded offset doesn't overflow. 3398 if (F.UnfoldedOffset != 0) { 3399 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3400 continue; 3401 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3402 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3403 continue; 3404 // If the offset will be truncated, check that it is in bounds. 3405 if (!IntTy->isPointerTy() && 3406 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3407 continue; 3408 } 3409 3410 // If we make it here and it's legal, add it. 3411 (void)InsertFormula(LU, LUIdx, F); 3412 next:; 3413 } 3414 } 3415 3416 /// GenerateScales - Generate stride factor reuse formulae by making use of 3417 /// scaled-offset address modes, for example. 3418 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3419 // Determine the integer type for the base formula. 3420 Type *IntTy = Base.getType(); 3421 if (!IntTy) return; 3422 3423 // If this Formula already has a scaled register, we can't add another one. 3424 if (Base.Scale != 0) return; 3425 3426 // Check each interesting stride. 3427 for (SmallSetVector<int64_t, 8>::const_iterator 3428 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3429 int64_t Factor = *I; 3430 3431 Base.Scale = Factor; 3432 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3433 // Check whether this scale is going to be legal. 3434 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3435 Base)) { 3436 // As a special-case, handle special out-of-loop Basic users specially. 3437 // TODO: Reconsider this special case. 3438 if (LU.Kind == LSRUse::Basic && 3439 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3440 LU.AccessTy, Base) && 3441 LU.AllFixupsOutsideLoop) 3442 LU.Kind = LSRUse::Special; 3443 else 3444 continue; 3445 } 3446 // For an ICmpZero, negating a solitary base register won't lead to 3447 // new solutions. 3448 if (LU.Kind == LSRUse::ICmpZero && 3449 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3450 continue; 3451 // For each addrec base reg, apply the scale, if possible. 3452 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3453 if (const SCEVAddRecExpr *AR = 3454 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3455 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3456 if (FactorS->isZero()) 3457 continue; 3458 // Divide out the factor, ignoring high bits, since we'll be 3459 // scaling the value back up in the end. 3460 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3461 // TODO: This could be optimized to avoid all the copying. 3462 Formula F = Base; 3463 F.ScaledReg = Quotient; 3464 F.DeleteBaseReg(F.BaseRegs[i]); 3465 (void)InsertFormula(LU, LUIdx, F); 3466 } 3467 } 3468 } 3469 } 3470 3471 /// GenerateTruncates - Generate reuse formulae from different IV types. 3472 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3473 // Don't bother truncating symbolic values. 3474 if (Base.BaseGV) return; 3475 3476 // Determine the integer type for the base formula. 3477 Type *DstTy = Base.getType(); 3478 if (!DstTy) return; 3479 DstTy = SE.getEffectiveSCEVType(DstTy); 3480 3481 for (SmallSetVector<Type *, 4>::const_iterator 3482 I = Types.begin(), E = Types.end(); I != E; ++I) { 3483 Type *SrcTy = *I; 3484 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3485 Formula F = Base; 3486 3487 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3488 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3489 JE = F.BaseRegs.end(); J != JE; ++J) 3490 *J = SE.getAnyExtendExpr(*J, SrcTy); 3491 3492 // TODO: This assumes we've done basic processing on all uses and 3493 // have an idea what the register usage is. 3494 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3495 continue; 3496 3497 (void)InsertFormula(LU, LUIdx, F); 3498 } 3499 } 3500 } 3501 3502 namespace { 3503 3504 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3505 /// defer modifications so that the search phase doesn't have to worry about 3506 /// the data structures moving underneath it. 3507 struct WorkItem { 3508 size_t LUIdx; 3509 int64_t Imm; 3510 const SCEV *OrigReg; 3511 3512 WorkItem(size_t LI, int64_t I, const SCEV *R) 3513 : LUIdx(LI), Imm(I), OrigReg(R) {} 3514 3515 void print(raw_ostream &OS) const; 3516 void dump() const; 3517 }; 3518 3519 } 3520 3521 void WorkItem::print(raw_ostream &OS) const { 3522 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3523 << " , add offset " << Imm; 3524 } 3525 3526 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3527 void WorkItem::dump() const { 3528 print(errs()); errs() << '\n'; 3529 } 3530 #endif 3531 3532 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3533 /// distance apart and try to form reuse opportunities between them. 3534 void LSRInstance::GenerateCrossUseConstantOffsets() { 3535 // Group the registers by their value without any added constant offset. 3536 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3537 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3538 RegMapTy Map; 3539 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3540 SmallVector<const SCEV *, 8> Sequence; 3541 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3542 I != E; ++I) { 3543 const SCEV *Reg = *I; 3544 int64_t Imm = ExtractImmediate(Reg, SE); 3545 std::pair<RegMapTy::iterator, bool> Pair = 3546 Map.insert(std::make_pair(Reg, ImmMapTy())); 3547 if (Pair.second) 3548 Sequence.push_back(Reg); 3549 Pair.first->second.insert(std::make_pair(Imm, *I)); 3550 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3551 } 3552 3553 // Now examine each set of registers with the same base value. Build up 3554 // a list of work to do and do the work in a separate step so that we're 3555 // not adding formulae and register counts while we're searching. 3556 SmallVector<WorkItem, 32> WorkItems; 3557 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3558 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3559 E = Sequence.end(); I != E; ++I) { 3560 const SCEV *Reg = *I; 3561 const ImmMapTy &Imms = Map.find(Reg)->second; 3562 3563 // It's not worthwhile looking for reuse if there's only one offset. 3564 if (Imms.size() == 1) 3565 continue; 3566 3567 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3568 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3569 J != JE; ++J) 3570 dbgs() << ' ' << J->first; 3571 dbgs() << '\n'); 3572 3573 // Examine each offset. 3574 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3575 J != JE; ++J) { 3576 const SCEV *OrigReg = J->second; 3577 3578 int64_t JImm = J->first; 3579 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3580 3581 if (!isa<SCEVConstant>(OrigReg) && 3582 UsedByIndicesMap[Reg].count() == 1) { 3583 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3584 continue; 3585 } 3586 3587 // Conservatively examine offsets between this orig reg a few selected 3588 // other orig regs. 3589 ImmMapTy::const_iterator OtherImms[] = { 3590 Imms.begin(), std::prev(Imms.end()), 3591 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3592 2) 3593 }; 3594 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3595 ImmMapTy::const_iterator M = OtherImms[i]; 3596 if (M == J || M == JE) continue; 3597 3598 // Compute the difference between the two. 3599 int64_t Imm = (uint64_t)JImm - M->first; 3600 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3601 LUIdx = UsedByIndices.find_next(LUIdx)) 3602 // Make a memo of this use, offset, and register tuple. 3603 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 3604 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3605 } 3606 } 3607 } 3608 3609 Map.clear(); 3610 Sequence.clear(); 3611 UsedByIndicesMap.clear(); 3612 UniqueItems.clear(); 3613 3614 // Now iterate through the worklist and add new formulae. 3615 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3616 E = WorkItems.end(); I != E; ++I) { 3617 const WorkItem &WI = *I; 3618 size_t LUIdx = WI.LUIdx; 3619 LSRUse &LU = Uses[LUIdx]; 3620 int64_t Imm = WI.Imm; 3621 const SCEV *OrigReg = WI.OrigReg; 3622 3623 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3624 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3625 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3626 3627 // TODO: Use a more targeted data structure. 3628 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3629 const Formula &F = LU.Formulae[L]; 3630 // Use the immediate in the scaled register. 3631 if (F.ScaledReg == OrigReg) { 3632 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3633 // Don't create 50 + reg(-50). 3634 if (F.referencesReg(SE.getSCEV( 3635 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3636 continue; 3637 Formula NewF = F; 3638 NewF.BaseOffset = Offset; 3639 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3640 NewF)) 3641 continue; 3642 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3643 3644 // If the new scale is a constant in a register, and adding the constant 3645 // value to the immediate would produce a value closer to zero than the 3646 // immediate itself, then the formula isn't worthwhile. 3647 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3648 if (C->getValue()->isNegative() != 3649 (NewF.BaseOffset < 0) && 3650 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3651 .ule(abs64(NewF.BaseOffset))) 3652 continue; 3653 3654 // OK, looks good. 3655 (void)InsertFormula(LU, LUIdx, NewF); 3656 } else { 3657 // Use the immediate in a base register. 3658 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3659 const SCEV *BaseReg = F.BaseRegs[N]; 3660 if (BaseReg != OrigReg) 3661 continue; 3662 Formula NewF = F; 3663 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3664 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3665 LU.Kind, LU.AccessTy, NewF)) { 3666 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3667 continue; 3668 NewF = F; 3669 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3670 } 3671 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3672 3673 // If the new formula has a constant in a register, and adding the 3674 // constant value to the immediate would produce a value closer to 3675 // zero than the immediate itself, then the formula isn't worthwhile. 3676 for (SmallVectorImpl<const SCEV *>::const_iterator 3677 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3678 J != JE; ++J) 3679 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3680 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3681 abs64(NewF.BaseOffset)) && 3682 (C->getValue()->getValue() + 3683 NewF.BaseOffset).countTrailingZeros() >= 3684 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3685 goto skip_formula; 3686 3687 // Ok, looks good. 3688 (void)InsertFormula(LU, LUIdx, NewF); 3689 break; 3690 skip_formula:; 3691 } 3692 } 3693 } 3694 } 3695 } 3696 3697 /// GenerateAllReuseFormulae - Generate formulae for each use. 3698 void 3699 LSRInstance::GenerateAllReuseFormulae() { 3700 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3701 // queries are more precise. 3702 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3703 LSRUse &LU = Uses[LUIdx]; 3704 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3705 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3706 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3707 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3708 } 3709 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3710 LSRUse &LU = Uses[LUIdx]; 3711 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3712 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3713 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3714 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3715 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3716 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3717 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3718 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3719 } 3720 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3721 LSRUse &LU = Uses[LUIdx]; 3722 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3723 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3724 } 3725 3726 GenerateCrossUseConstantOffsets(); 3727 3728 DEBUG(dbgs() << "\n" 3729 "After generating reuse formulae:\n"; 3730 print_uses(dbgs())); 3731 } 3732 3733 /// If there are multiple formulae with the same set of registers used 3734 /// by other uses, pick the best one and delete the others. 3735 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3736 DenseSet<const SCEV *> VisitedRegs; 3737 SmallPtrSet<const SCEV *, 16> Regs; 3738 SmallPtrSet<const SCEV *, 16> LoserRegs; 3739 #ifndef NDEBUG 3740 bool ChangedFormulae = false; 3741 #endif 3742 3743 // Collect the best formula for each unique set of shared registers. This 3744 // is reset for each use. 3745 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3746 BestFormulaeTy; 3747 BestFormulaeTy BestFormulae; 3748 3749 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3750 LSRUse &LU = Uses[LUIdx]; 3751 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3752 3753 bool Any = false; 3754 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3755 FIdx != NumForms; ++FIdx) { 3756 Formula &F = LU.Formulae[FIdx]; 3757 3758 // Some formulas are instant losers. For example, they may depend on 3759 // nonexistent AddRecs from other loops. These need to be filtered 3760 // immediately, otherwise heuristics could choose them over others leading 3761 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3762 // avoids the need to recompute this information across formulae using the 3763 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3764 // the corresponding bad register from the Regs set. 3765 Cost CostF; 3766 Regs.clear(); 3767 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3768 &LoserRegs); 3769 if (CostF.isLoser()) { 3770 // During initial formula generation, undesirable formulae are generated 3771 // by uses within other loops that have some non-trivial address mode or 3772 // use the postinc form of the IV. LSR needs to provide these formulae 3773 // as the basis of rediscovering the desired formula that uses an AddRec 3774 // corresponding to the existing phi. Once all formulae have been 3775 // generated, these initial losers may be pruned. 3776 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3777 dbgs() << "\n"); 3778 } 3779 else { 3780 SmallVector<const SCEV *, 4> Key; 3781 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3782 JE = F.BaseRegs.end(); J != JE; ++J) { 3783 const SCEV *Reg = *J; 3784 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3785 Key.push_back(Reg); 3786 } 3787 if (F.ScaledReg && 3788 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3789 Key.push_back(F.ScaledReg); 3790 // Unstable sort by host order ok, because this is only used for 3791 // uniquifying. 3792 std::sort(Key.begin(), Key.end()); 3793 3794 std::pair<BestFormulaeTy::const_iterator, bool> P = 3795 BestFormulae.insert(std::make_pair(Key, FIdx)); 3796 if (P.second) 3797 continue; 3798 3799 Formula &Best = LU.Formulae[P.first->second]; 3800 3801 Cost CostBest; 3802 Regs.clear(); 3803 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3804 DT, LU); 3805 if (CostF < CostBest) 3806 std::swap(F, Best); 3807 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3808 dbgs() << "\n" 3809 " in favor of formula "; Best.print(dbgs()); 3810 dbgs() << '\n'); 3811 } 3812 #ifndef NDEBUG 3813 ChangedFormulae = true; 3814 #endif 3815 LU.DeleteFormula(F); 3816 --FIdx; 3817 --NumForms; 3818 Any = true; 3819 } 3820 3821 // Now that we've filtered out some formulae, recompute the Regs set. 3822 if (Any) 3823 LU.RecomputeRegs(LUIdx, RegUses); 3824 3825 // Reset this to prepare for the next use. 3826 BestFormulae.clear(); 3827 } 3828 3829 DEBUG(if (ChangedFormulae) { 3830 dbgs() << "\n" 3831 "After filtering out undesirable candidates:\n"; 3832 print_uses(dbgs()); 3833 }); 3834 } 3835 3836 // This is a rough guess that seems to work fairly well. 3837 static const size_t ComplexityLimit = UINT16_MAX; 3838 3839 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3840 /// solutions the solver might have to consider. It almost never considers 3841 /// this many solutions because it prune the search space, but the pruning 3842 /// isn't always sufficient. 3843 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3844 size_t Power = 1; 3845 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3846 E = Uses.end(); I != E; ++I) { 3847 size_t FSize = I->Formulae.size(); 3848 if (FSize >= ComplexityLimit) { 3849 Power = ComplexityLimit; 3850 break; 3851 } 3852 Power *= FSize; 3853 if (Power >= ComplexityLimit) 3854 break; 3855 } 3856 return Power; 3857 } 3858 3859 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3860 /// of the registers of another formula, it won't help reduce register 3861 /// pressure (though it may not necessarily hurt register pressure); remove 3862 /// it to simplify the system. 3863 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3864 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3865 DEBUG(dbgs() << "The search space is too complex.\n"); 3866 3867 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3868 "which use a superset of registers used by other " 3869 "formulae.\n"); 3870 3871 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3872 LSRUse &LU = Uses[LUIdx]; 3873 bool Any = false; 3874 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3875 Formula &F = LU.Formulae[i]; 3876 // Look for a formula with a constant or GV in a register. If the use 3877 // also has a formula with that same value in an immediate field, 3878 // delete the one that uses a register. 3879 for (SmallVectorImpl<const SCEV *>::const_iterator 3880 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3881 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3882 Formula NewF = F; 3883 NewF.BaseOffset += C->getValue()->getSExtValue(); 3884 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3885 (I - F.BaseRegs.begin())); 3886 if (LU.HasFormulaWithSameRegs(NewF)) { 3887 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3888 LU.DeleteFormula(F); 3889 --i; 3890 --e; 3891 Any = true; 3892 break; 3893 } 3894 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3895 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3896 if (!F.BaseGV) { 3897 Formula NewF = F; 3898 NewF.BaseGV = GV; 3899 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3900 (I - F.BaseRegs.begin())); 3901 if (LU.HasFormulaWithSameRegs(NewF)) { 3902 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3903 dbgs() << '\n'); 3904 LU.DeleteFormula(F); 3905 --i; 3906 --e; 3907 Any = true; 3908 break; 3909 } 3910 } 3911 } 3912 } 3913 } 3914 if (Any) 3915 LU.RecomputeRegs(LUIdx, RegUses); 3916 } 3917 3918 DEBUG(dbgs() << "After pre-selection:\n"; 3919 print_uses(dbgs())); 3920 } 3921 } 3922 3923 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3924 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3925 /// them. 3926 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3927 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 3928 return; 3929 3930 DEBUG(dbgs() << "The search space is too complex.\n" 3931 "Narrowing the search space by assuming that uses separated " 3932 "by a constant offset will use the same registers.\n"); 3933 3934 // This is especially useful for unrolled loops. 3935 3936 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3937 LSRUse &LU = Uses[LUIdx]; 3938 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3939 E = LU.Formulae.end(); I != E; ++I) { 3940 const Formula &F = *I; 3941 if (F.BaseOffset == 0 || F.Scale != 0) 3942 continue; 3943 3944 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 3945 if (!LUThatHas) 3946 continue; 3947 3948 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 3949 LU.Kind, LU.AccessTy)) 3950 continue; 3951 3952 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 3953 3954 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3955 3956 // Update the relocs to reference the new use. 3957 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3958 E = Fixups.end(); I != E; ++I) { 3959 LSRFixup &Fixup = *I; 3960 if (Fixup.LUIdx == LUIdx) { 3961 Fixup.LUIdx = LUThatHas - &Uses.front(); 3962 Fixup.Offset += F.BaseOffset; 3963 // Add the new offset to LUThatHas' offset list. 3964 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3965 LUThatHas->Offsets.push_back(Fixup.Offset); 3966 if (Fixup.Offset > LUThatHas->MaxOffset) 3967 LUThatHas->MaxOffset = Fixup.Offset; 3968 if (Fixup.Offset < LUThatHas->MinOffset) 3969 LUThatHas->MinOffset = Fixup.Offset; 3970 } 3971 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 3972 } 3973 if (Fixup.LUIdx == NumUses-1) 3974 Fixup.LUIdx = LUIdx; 3975 } 3976 3977 // Delete formulae from the new use which are no longer legal. 3978 bool Any = false; 3979 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3980 Formula &F = LUThatHas->Formulae[i]; 3981 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 3982 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 3983 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3984 dbgs() << '\n'); 3985 LUThatHas->DeleteFormula(F); 3986 --i; 3987 --e; 3988 Any = true; 3989 } 3990 } 3991 3992 if (Any) 3993 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3994 3995 // Delete the old use. 3996 DeleteUse(LU, LUIdx); 3997 --LUIdx; 3998 --NumUses; 3999 break; 4000 } 4001 } 4002 4003 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4004 } 4005 4006 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4007 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4008 /// we've done more filtering, as it may be able to find more formulae to 4009 /// eliminate. 4010 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4011 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4012 DEBUG(dbgs() << "The search space is too complex.\n"); 4013 4014 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4015 "undesirable dedicated registers.\n"); 4016 4017 FilterOutUndesirableDedicatedRegisters(); 4018 4019 DEBUG(dbgs() << "After pre-selection:\n"; 4020 print_uses(dbgs())); 4021 } 4022 } 4023 4024 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4025 /// to be profitable, and then in any use which has any reference to that 4026 /// register, delete all formulae which do not reference that register. 4027 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4028 // With all other options exhausted, loop until the system is simple 4029 // enough to handle. 4030 SmallPtrSet<const SCEV *, 4> Taken; 4031 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4032 // Ok, we have too many of formulae on our hands to conveniently handle. 4033 // Use a rough heuristic to thin out the list. 4034 DEBUG(dbgs() << "The search space is too complex.\n"); 4035 4036 // Pick the register which is used by the most LSRUses, which is likely 4037 // to be a good reuse register candidate. 4038 const SCEV *Best = nullptr; 4039 unsigned BestNum = 0; 4040 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4041 I != E; ++I) { 4042 const SCEV *Reg = *I; 4043 if (Taken.count(Reg)) 4044 continue; 4045 if (!Best) 4046 Best = Reg; 4047 else { 4048 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4049 if (Count > BestNum) { 4050 Best = Reg; 4051 BestNum = Count; 4052 } 4053 } 4054 } 4055 4056 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4057 << " will yield profitable reuse.\n"); 4058 Taken.insert(Best); 4059 4060 // In any use with formulae which references this register, delete formulae 4061 // which don't reference it. 4062 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4063 LSRUse &LU = Uses[LUIdx]; 4064 if (!LU.Regs.count(Best)) continue; 4065 4066 bool Any = false; 4067 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4068 Formula &F = LU.Formulae[i]; 4069 if (!F.referencesReg(Best)) { 4070 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4071 LU.DeleteFormula(F); 4072 --e; 4073 --i; 4074 Any = true; 4075 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4076 continue; 4077 } 4078 } 4079 4080 if (Any) 4081 LU.RecomputeRegs(LUIdx, RegUses); 4082 } 4083 4084 DEBUG(dbgs() << "After pre-selection:\n"; 4085 print_uses(dbgs())); 4086 } 4087 } 4088 4089 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4090 /// formulae to choose from, use some rough heuristics to prune down the number 4091 /// of formulae. This keeps the main solver from taking an extraordinary amount 4092 /// of time in some worst-case scenarios. 4093 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4094 NarrowSearchSpaceByDetectingSupersets(); 4095 NarrowSearchSpaceByCollapsingUnrolledCode(); 4096 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4097 NarrowSearchSpaceByPickingWinnerRegs(); 4098 } 4099 4100 /// SolveRecurse - This is the recursive solver. 4101 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4102 Cost &SolutionCost, 4103 SmallVectorImpl<const Formula *> &Workspace, 4104 const Cost &CurCost, 4105 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4106 DenseSet<const SCEV *> &VisitedRegs) const { 4107 // Some ideas: 4108 // - prune more: 4109 // - use more aggressive filtering 4110 // - sort the formula so that the most profitable solutions are found first 4111 // - sort the uses too 4112 // - search faster: 4113 // - don't compute a cost, and then compare. compare while computing a cost 4114 // and bail early. 4115 // - track register sets with SmallBitVector 4116 4117 const LSRUse &LU = Uses[Workspace.size()]; 4118 4119 // If this use references any register that's already a part of the 4120 // in-progress solution, consider it a requirement that a formula must 4121 // reference that register in order to be considered. This prunes out 4122 // unprofitable searching. 4123 SmallSetVector<const SCEV *, 4> ReqRegs; 4124 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 4125 E = CurRegs.end(); I != E; ++I) 4126 if (LU.Regs.count(*I)) 4127 ReqRegs.insert(*I); 4128 4129 SmallPtrSet<const SCEV *, 16> NewRegs; 4130 Cost NewCost; 4131 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4132 E = LU.Formulae.end(); I != E; ++I) { 4133 const Formula &F = *I; 4134 4135 // Ignore formulae which may not be ideal in terms of register reuse of 4136 // ReqRegs. The formula should use all required registers before 4137 // introducing new ones. 4138 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4139 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4140 JE = ReqRegs.end(); J != JE; ++J) { 4141 const SCEV *Reg = *J; 4142 if ((F.ScaledReg && F.ScaledReg == Reg) || 4143 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4144 F.BaseRegs.end()) { 4145 --NumReqRegsToFind; 4146 if (NumReqRegsToFind == 0) 4147 break; 4148 } 4149 } 4150 if (NumReqRegsToFind != 0) { 4151 // If none of the formulae satisfied the required registers, then we could 4152 // clear ReqRegs and try again. Currently, we simply give up in this case. 4153 continue; 4154 } 4155 4156 // Evaluate the cost of the current formula. If it's already worse than 4157 // the current best, prune the search at that point. 4158 NewCost = CurCost; 4159 NewRegs = CurRegs; 4160 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4161 LU); 4162 if (NewCost < SolutionCost) { 4163 Workspace.push_back(&F); 4164 if (Workspace.size() != Uses.size()) { 4165 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4166 NewRegs, VisitedRegs); 4167 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4168 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4169 } else { 4170 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4171 dbgs() << ".\n Regs:"; 4172 for (SmallPtrSet<const SCEV *, 16>::const_iterator 4173 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 4174 dbgs() << ' ' << **I; 4175 dbgs() << '\n'); 4176 4177 SolutionCost = NewCost; 4178 Solution = Workspace; 4179 } 4180 Workspace.pop_back(); 4181 } 4182 } 4183 } 4184 4185 /// Solve - Choose one formula from each use. Return the results in the given 4186 /// Solution vector. 4187 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4188 SmallVector<const Formula *, 8> Workspace; 4189 Cost SolutionCost; 4190 SolutionCost.Lose(); 4191 Cost CurCost; 4192 SmallPtrSet<const SCEV *, 16> CurRegs; 4193 DenseSet<const SCEV *> VisitedRegs; 4194 Workspace.reserve(Uses.size()); 4195 4196 // SolveRecurse does all the work. 4197 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4198 CurRegs, VisitedRegs); 4199 if (Solution.empty()) { 4200 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4201 return; 4202 } 4203 4204 // Ok, we've now made all our decisions. 4205 DEBUG(dbgs() << "\n" 4206 "The chosen solution requires "; SolutionCost.print(dbgs()); 4207 dbgs() << ":\n"; 4208 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4209 dbgs() << " "; 4210 Uses[i].print(dbgs()); 4211 dbgs() << "\n" 4212 " "; 4213 Solution[i]->print(dbgs()); 4214 dbgs() << '\n'; 4215 }); 4216 4217 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4218 } 4219 4220 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4221 /// the dominator tree far as we can go while still being dominated by the 4222 /// input positions. This helps canonicalize the insert position, which 4223 /// encourages sharing. 4224 BasicBlock::iterator 4225 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4226 const SmallVectorImpl<Instruction *> &Inputs) 4227 const { 4228 for (;;) { 4229 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4230 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4231 4232 BasicBlock *IDom; 4233 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4234 if (!Rung) return IP; 4235 Rung = Rung->getIDom(); 4236 if (!Rung) return IP; 4237 IDom = Rung->getBlock(); 4238 4239 // Don't climb into a loop though. 4240 const Loop *IDomLoop = LI.getLoopFor(IDom); 4241 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4242 if (IDomDepth <= IPLoopDepth && 4243 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4244 break; 4245 } 4246 4247 bool AllDominate = true; 4248 Instruction *BetterPos = nullptr; 4249 Instruction *Tentative = IDom->getTerminator(); 4250 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4251 E = Inputs.end(); I != E; ++I) { 4252 Instruction *Inst = *I; 4253 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4254 AllDominate = false; 4255 break; 4256 } 4257 // Attempt to find an insert position in the middle of the block, 4258 // instead of at the end, so that it can be used for other expansions. 4259 if (IDom == Inst->getParent() && 4260 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4261 BetterPos = std::next(BasicBlock::iterator(Inst)); 4262 } 4263 if (!AllDominate) 4264 break; 4265 if (BetterPos) 4266 IP = BetterPos; 4267 else 4268 IP = Tentative; 4269 } 4270 4271 return IP; 4272 } 4273 4274 /// AdjustInsertPositionForExpand - Determine an input position which will be 4275 /// dominated by the operands and which will dominate the result. 4276 BasicBlock::iterator 4277 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4278 const LSRFixup &LF, 4279 const LSRUse &LU, 4280 SCEVExpander &Rewriter) const { 4281 // Collect some instructions which must be dominated by the 4282 // expanding replacement. These must be dominated by any operands that 4283 // will be required in the expansion. 4284 SmallVector<Instruction *, 4> Inputs; 4285 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4286 Inputs.push_back(I); 4287 if (LU.Kind == LSRUse::ICmpZero) 4288 if (Instruction *I = 4289 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4290 Inputs.push_back(I); 4291 if (LF.PostIncLoops.count(L)) { 4292 if (LF.isUseFullyOutsideLoop(L)) 4293 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4294 else 4295 Inputs.push_back(IVIncInsertPos); 4296 } 4297 // The expansion must also be dominated by the increment positions of any 4298 // loops it for which it is using post-inc mode. 4299 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4300 E = LF.PostIncLoops.end(); I != E; ++I) { 4301 const Loop *PIL = *I; 4302 if (PIL == L) continue; 4303 4304 // Be dominated by the loop exit. 4305 SmallVector<BasicBlock *, 4> ExitingBlocks; 4306 PIL->getExitingBlocks(ExitingBlocks); 4307 if (!ExitingBlocks.empty()) { 4308 BasicBlock *BB = ExitingBlocks[0]; 4309 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4310 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4311 Inputs.push_back(BB->getTerminator()); 4312 } 4313 } 4314 4315 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4316 && !isa<DbgInfoIntrinsic>(LowestIP) && 4317 "Insertion point must be a normal instruction"); 4318 4319 // Then, climb up the immediate dominator tree as far as we can go while 4320 // still being dominated by the input positions. 4321 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4322 4323 // Don't insert instructions before PHI nodes. 4324 while (isa<PHINode>(IP)) ++IP; 4325 4326 // Ignore landingpad instructions. 4327 while (isa<LandingPadInst>(IP)) ++IP; 4328 4329 // Ignore debug intrinsics. 4330 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4331 4332 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4333 // IP consistent across expansions and allows the previously inserted 4334 // instructions to be reused by subsequent expansion. 4335 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4336 4337 return IP; 4338 } 4339 4340 /// Expand - Emit instructions for the leading candidate expression for this 4341 /// LSRUse (this is called "expanding"). 4342 Value *LSRInstance::Expand(const LSRFixup &LF, 4343 const Formula &F, 4344 BasicBlock::iterator IP, 4345 SCEVExpander &Rewriter, 4346 SmallVectorImpl<WeakVH> &DeadInsts) const { 4347 const LSRUse &LU = Uses[LF.LUIdx]; 4348 if (LU.RigidFormula) 4349 return LF.OperandValToReplace; 4350 4351 // Determine an input position which will be dominated by the operands and 4352 // which will dominate the result. 4353 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4354 4355 // Inform the Rewriter if we have a post-increment use, so that it can 4356 // perform an advantageous expansion. 4357 Rewriter.setPostInc(LF.PostIncLoops); 4358 4359 // This is the type that the user actually needs. 4360 Type *OpTy = LF.OperandValToReplace->getType(); 4361 // This will be the type that we'll initially expand to. 4362 Type *Ty = F.getType(); 4363 if (!Ty) 4364 // No type known; just expand directly to the ultimate type. 4365 Ty = OpTy; 4366 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4367 // Expand directly to the ultimate type if it's the right size. 4368 Ty = OpTy; 4369 // This is the type to do integer arithmetic in. 4370 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4371 4372 // Build up a list of operands to add together to form the full base. 4373 SmallVector<const SCEV *, 8> Ops; 4374 4375 // Expand the BaseRegs portion. 4376 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4377 E = F.BaseRegs.end(); I != E; ++I) { 4378 const SCEV *Reg = *I; 4379 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4380 4381 // If we're expanding for a post-inc user, make the post-inc adjustment. 4382 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4383 Reg = TransformForPostIncUse(Denormalize, Reg, 4384 LF.UserInst, LF.OperandValToReplace, 4385 Loops, SE, DT); 4386 4387 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); 4388 } 4389 4390 // Expand the ScaledReg portion. 4391 Value *ICmpScaledV = nullptr; 4392 if (F.Scale != 0) { 4393 const SCEV *ScaledS = F.ScaledReg; 4394 4395 // If we're expanding for a post-inc user, make the post-inc adjustment. 4396 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4397 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4398 LF.UserInst, LF.OperandValToReplace, 4399 Loops, SE, DT); 4400 4401 if (LU.Kind == LSRUse::ICmpZero) { 4402 // An interesting way of "folding" with an icmp is to use a negated 4403 // scale, which we'll implement by inserting it into the other operand 4404 // of the icmp. 4405 assert(F.Scale == -1 && 4406 "The only scale supported by ICmpZero uses is -1!"); 4407 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4408 } else { 4409 // Otherwise just expand the scaled register and an explicit scale, 4410 // which is expected to be matched as part of the address. 4411 4412 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4413 if (!Ops.empty() && LU.Kind == LSRUse::Address) { 4414 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4415 Ops.clear(); 4416 Ops.push_back(SE.getUnknown(FullV)); 4417 } 4418 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); 4419 ScaledS = SE.getMulExpr(ScaledS, 4420 SE.getConstant(ScaledS->getType(), F.Scale)); 4421 Ops.push_back(ScaledS); 4422 } 4423 } 4424 4425 // Expand the GV portion. 4426 if (F.BaseGV) { 4427 // Flush the operand list to suppress SCEVExpander hoisting. 4428 if (!Ops.empty()) { 4429 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4430 Ops.clear(); 4431 Ops.push_back(SE.getUnknown(FullV)); 4432 } 4433 Ops.push_back(SE.getUnknown(F.BaseGV)); 4434 } 4435 4436 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4437 // unfolded offsets. LSR assumes they both live next to their uses. 4438 if (!Ops.empty()) { 4439 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4440 Ops.clear(); 4441 Ops.push_back(SE.getUnknown(FullV)); 4442 } 4443 4444 // Expand the immediate portion. 4445 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4446 if (Offset != 0) { 4447 if (LU.Kind == LSRUse::ICmpZero) { 4448 // The other interesting way of "folding" with an ICmpZero is to use a 4449 // negated immediate. 4450 if (!ICmpScaledV) 4451 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4452 else { 4453 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4454 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4455 } 4456 } else { 4457 // Just add the immediate values. These again are expected to be matched 4458 // as part of the address. 4459 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4460 } 4461 } 4462 4463 // Expand the unfolded offset portion. 4464 int64_t UnfoldedOffset = F.UnfoldedOffset; 4465 if (UnfoldedOffset != 0) { 4466 // Just add the immediate values. 4467 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4468 UnfoldedOffset))); 4469 } 4470 4471 // Emit instructions summing all the operands. 4472 const SCEV *FullS = Ops.empty() ? 4473 SE.getConstant(IntTy, 0) : 4474 SE.getAddExpr(Ops); 4475 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4476 4477 // We're done expanding now, so reset the rewriter. 4478 Rewriter.clearPostInc(); 4479 4480 // An ICmpZero Formula represents an ICmp which we're handling as a 4481 // comparison against zero. Now that we've expanded an expression for that 4482 // form, update the ICmp's other operand. 4483 if (LU.Kind == LSRUse::ICmpZero) { 4484 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4485 DeadInsts.push_back(CI->getOperand(1)); 4486 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4487 "a scale at the same time!"); 4488 if (F.Scale == -1) { 4489 if (ICmpScaledV->getType() != OpTy) { 4490 Instruction *Cast = 4491 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4492 OpTy, false), 4493 ICmpScaledV, OpTy, "tmp", CI); 4494 ICmpScaledV = Cast; 4495 } 4496 CI->setOperand(1, ICmpScaledV); 4497 } else { 4498 assert(F.Scale == 0 && 4499 "ICmp does not support folding a global value and " 4500 "a scale at the same time!"); 4501 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4502 -(uint64_t)Offset); 4503 if (C->getType() != OpTy) 4504 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4505 OpTy, false), 4506 C, OpTy); 4507 4508 CI->setOperand(1, C); 4509 } 4510 } 4511 4512 return FullV; 4513 } 4514 4515 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4516 /// of their operands effectively happens in their predecessor blocks, so the 4517 /// expression may need to be expanded in multiple places. 4518 void LSRInstance::RewriteForPHI(PHINode *PN, 4519 const LSRFixup &LF, 4520 const Formula &F, 4521 SCEVExpander &Rewriter, 4522 SmallVectorImpl<WeakVH> &DeadInsts, 4523 Pass *P) const { 4524 DenseMap<BasicBlock *, Value *> Inserted; 4525 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4526 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4527 BasicBlock *BB = PN->getIncomingBlock(i); 4528 4529 // If this is a critical edge, split the edge so that we do not insert 4530 // the code on all predecessor/successor paths. We do this unless this 4531 // is the canonical backedge for this loop, which complicates post-inc 4532 // users. 4533 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4534 !isa<IndirectBrInst>(BB->getTerminator())) { 4535 BasicBlock *Parent = PN->getParent(); 4536 Loop *PNLoop = LI.getLoopFor(Parent); 4537 if (!PNLoop || Parent != PNLoop->getHeader()) { 4538 // Split the critical edge. 4539 BasicBlock *NewBB = nullptr; 4540 if (!Parent->isLandingPad()) { 4541 NewBB = SplitCriticalEdge(BB, Parent, P, 4542 /*MergeIdenticalEdges=*/true, 4543 /*DontDeleteUselessPhis=*/true); 4544 } else { 4545 SmallVector<BasicBlock*, 2> NewBBs; 4546 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 4547 NewBB = NewBBs[0]; 4548 } 4549 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4550 // phi predecessors are identical. The simple thing to do is skip 4551 // splitting in this case rather than complicate the API. 4552 if (NewBB) { 4553 // If PN is outside of the loop and BB is in the loop, we want to 4554 // move the block to be immediately before the PHI block, not 4555 // immediately after BB. 4556 if (L->contains(BB) && !L->contains(PN)) 4557 NewBB->moveBefore(PN->getParent()); 4558 4559 // Splitting the edge can reduce the number of PHI entries we have. 4560 e = PN->getNumIncomingValues(); 4561 BB = NewBB; 4562 i = PN->getBasicBlockIndex(BB); 4563 } 4564 } 4565 } 4566 4567 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4568 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4569 if (!Pair.second) 4570 PN->setIncomingValue(i, Pair.first->second); 4571 else { 4572 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4573 4574 // If this is reuse-by-noop-cast, insert the noop cast. 4575 Type *OpTy = LF.OperandValToReplace->getType(); 4576 if (FullV->getType() != OpTy) 4577 FullV = 4578 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4579 OpTy, false), 4580 FullV, LF.OperandValToReplace->getType(), 4581 "tmp", BB->getTerminator()); 4582 4583 PN->setIncomingValue(i, FullV); 4584 Pair.first->second = FullV; 4585 } 4586 } 4587 } 4588 4589 /// Rewrite - Emit instructions for the leading candidate expression for this 4590 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4591 /// the newly expanded value. 4592 void LSRInstance::Rewrite(const LSRFixup &LF, 4593 const Formula &F, 4594 SCEVExpander &Rewriter, 4595 SmallVectorImpl<WeakVH> &DeadInsts, 4596 Pass *P) const { 4597 // First, find an insertion point that dominates UserInst. For PHI nodes, 4598 // find the nearest block which dominates all the relevant uses. 4599 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4600 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4601 } else { 4602 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4603 4604 // If this is reuse-by-noop-cast, insert the noop cast. 4605 Type *OpTy = LF.OperandValToReplace->getType(); 4606 if (FullV->getType() != OpTy) { 4607 Instruction *Cast = 4608 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4609 FullV, OpTy, "tmp", LF.UserInst); 4610 FullV = Cast; 4611 } 4612 4613 // Update the user. ICmpZero is handled specially here (for now) because 4614 // Expand may have updated one of the operands of the icmp already, and 4615 // its new value may happen to be equal to LF.OperandValToReplace, in 4616 // which case doing replaceUsesOfWith leads to replacing both operands 4617 // with the same value. TODO: Reorganize this. 4618 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4619 LF.UserInst->setOperand(0, FullV); 4620 else 4621 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4622 } 4623 4624 DeadInsts.push_back(LF.OperandValToReplace); 4625 } 4626 4627 /// ImplementSolution - Rewrite all the fixup locations with new values, 4628 /// following the chosen solution. 4629 void 4630 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4631 Pass *P) { 4632 // Keep track of instructions we may have made dead, so that 4633 // we can remove them after we are done working. 4634 SmallVector<WeakVH, 16> DeadInsts; 4635 4636 SCEVExpander Rewriter(SE, "lsr"); 4637 #ifndef NDEBUG 4638 Rewriter.setDebugType(DEBUG_TYPE); 4639 #endif 4640 Rewriter.disableCanonicalMode(); 4641 Rewriter.enableLSRMode(); 4642 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4643 4644 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4645 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4646 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4647 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4648 Rewriter.setChainedPhi(PN); 4649 } 4650 4651 // Expand the new value definitions and update the users. 4652 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4653 E = Fixups.end(); I != E; ++I) { 4654 const LSRFixup &Fixup = *I; 4655 4656 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4657 4658 Changed = true; 4659 } 4660 4661 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4662 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4663 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4664 Changed = true; 4665 } 4666 // Clean up after ourselves. This must be done before deleting any 4667 // instructions. 4668 Rewriter.clear(); 4669 4670 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4671 } 4672 4673 LSRInstance::LSRInstance(Loop *L, Pass *P) 4674 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4675 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4676 LI(P->getAnalysis<LoopInfo>()), 4677 TTI(P->getAnalysis<TargetTransformInfo>()), L(L), Changed(false), 4678 IVIncInsertPos(nullptr) { 4679 // If LoopSimplify form is not available, stay out of trouble. 4680 if (!L->isLoopSimplifyForm()) 4681 return; 4682 4683 // If there's no interesting work to be done, bail early. 4684 if (IU.empty()) return; 4685 4686 // If there's too much analysis to be done, bail early. We won't be able to 4687 // model the problem anyway. 4688 unsigned NumUsers = 0; 4689 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4690 if (++NumUsers > MaxIVUsers) { 4691 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4692 << "\n"); 4693 return; 4694 } 4695 } 4696 4697 #ifndef NDEBUG 4698 // All dominating loops must have preheaders, or SCEVExpander may not be able 4699 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4700 // 4701 // IVUsers analysis should only create users that are dominated by simple loop 4702 // headers. Since this loop should dominate all of its users, its user list 4703 // should be empty if this loop itself is not within a simple loop nest. 4704 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4705 Rung; Rung = Rung->getIDom()) { 4706 BasicBlock *BB = Rung->getBlock(); 4707 const Loop *DomLoop = LI.getLoopFor(BB); 4708 if (DomLoop && DomLoop->getHeader() == BB) { 4709 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4710 } 4711 } 4712 #endif // DEBUG 4713 4714 DEBUG(dbgs() << "\nLSR on loop "; 4715 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4716 dbgs() << ":\n"); 4717 4718 // First, perform some low-level loop optimizations. 4719 OptimizeShadowIV(); 4720 OptimizeLoopTermCond(); 4721 4722 // If loop preparation eliminates all interesting IV users, bail. 4723 if (IU.empty()) return; 4724 4725 // Skip nested loops until we can model them better with formulae. 4726 if (!L->empty()) { 4727 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4728 return; 4729 } 4730 4731 // Start collecting data and preparing for the solver. 4732 CollectChains(); 4733 CollectInterestingTypesAndFactors(); 4734 CollectFixupsAndInitialFormulae(); 4735 CollectLoopInvariantFixupsAndFormulae(); 4736 4737 assert(!Uses.empty() && "IVUsers reported at least one use"); 4738 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4739 print_uses(dbgs())); 4740 4741 // Now use the reuse data to generate a bunch of interesting ways 4742 // to formulate the values needed for the uses. 4743 GenerateAllReuseFormulae(); 4744 4745 FilterOutUndesirableDedicatedRegisters(); 4746 NarrowSearchSpaceUsingHeuristics(); 4747 4748 SmallVector<const Formula *, 8> Solution; 4749 Solve(Solution); 4750 4751 // Release memory that is no longer needed. 4752 Factors.clear(); 4753 Types.clear(); 4754 RegUses.clear(); 4755 4756 if (Solution.empty()) 4757 return; 4758 4759 #ifndef NDEBUG 4760 // Formulae should be legal. 4761 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4762 I != E; ++I) { 4763 const LSRUse &LU = *I; 4764 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4765 JE = LU.Formulae.end(); 4766 J != JE; ++J) 4767 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4768 *J) && "Illegal formula generated!"); 4769 }; 4770 #endif 4771 4772 // Now that we've decided what we want, make it so. 4773 ImplementSolution(Solution, P); 4774 } 4775 4776 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4777 if (Factors.empty() && Types.empty()) return; 4778 4779 OS << "LSR has identified the following interesting factors and types: "; 4780 bool First = true; 4781 4782 for (SmallSetVector<int64_t, 8>::const_iterator 4783 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4784 if (!First) OS << ", "; 4785 First = false; 4786 OS << '*' << *I; 4787 } 4788 4789 for (SmallSetVector<Type *, 4>::const_iterator 4790 I = Types.begin(), E = Types.end(); I != E; ++I) { 4791 if (!First) OS << ", "; 4792 First = false; 4793 OS << '(' << **I << ')'; 4794 } 4795 OS << '\n'; 4796 } 4797 4798 void LSRInstance::print_fixups(raw_ostream &OS) const { 4799 OS << "LSR is examining the following fixup sites:\n"; 4800 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4801 E = Fixups.end(); I != E; ++I) { 4802 dbgs() << " "; 4803 I->print(OS); 4804 OS << '\n'; 4805 } 4806 } 4807 4808 void LSRInstance::print_uses(raw_ostream &OS) const { 4809 OS << "LSR is examining the following uses:\n"; 4810 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4811 E = Uses.end(); I != E; ++I) { 4812 const LSRUse &LU = *I; 4813 dbgs() << " "; 4814 LU.print(OS); 4815 OS << '\n'; 4816 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4817 JE = LU.Formulae.end(); J != JE; ++J) { 4818 OS << " "; 4819 J->print(OS); 4820 OS << '\n'; 4821 } 4822 } 4823 } 4824 4825 void LSRInstance::print(raw_ostream &OS) const { 4826 print_factors_and_types(OS); 4827 print_fixups(OS); 4828 print_uses(OS); 4829 } 4830 4831 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4832 void LSRInstance::dump() const { 4833 print(errs()); errs() << '\n'; 4834 } 4835 #endif 4836 4837 namespace { 4838 4839 class LoopStrengthReduce : public LoopPass { 4840 public: 4841 static char ID; // Pass ID, replacement for typeid 4842 LoopStrengthReduce(); 4843 4844 private: 4845 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4846 void getAnalysisUsage(AnalysisUsage &AU) const override; 4847 }; 4848 4849 } 4850 4851 char LoopStrengthReduce::ID = 0; 4852 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4853 "Loop Strength Reduction", false, false) 4854 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) 4855 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4856 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4857 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4858 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4859 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4860 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4861 "Loop Strength Reduction", false, false) 4862 4863 4864 Pass *llvm::createLoopStrengthReducePass() { 4865 return new LoopStrengthReduce(); 4866 } 4867 4868 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4869 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4870 } 4871 4872 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4873 // We split critical edges, so we change the CFG. However, we do update 4874 // many analyses if they are around. 4875 AU.addPreservedID(LoopSimplifyID); 4876 4877 AU.addRequired<LoopInfo>(); 4878 AU.addPreserved<LoopInfo>(); 4879 AU.addRequiredID(LoopSimplifyID); 4880 AU.addRequired<DominatorTreeWrapperPass>(); 4881 AU.addPreserved<DominatorTreeWrapperPass>(); 4882 AU.addRequired<ScalarEvolution>(); 4883 AU.addPreserved<ScalarEvolution>(); 4884 // Requiring LoopSimplify a second time here prevents IVUsers from running 4885 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4886 AU.addRequiredID(LoopSimplifyID); 4887 AU.addRequired<IVUsers>(); 4888 AU.addPreserved<IVUsers>(); 4889 AU.addRequired<TargetTransformInfo>(); 4890 } 4891 4892 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4893 if (skipOptnoneFunction(L)) 4894 return false; 4895 4896 bool Changed = false; 4897 4898 // Run the main LSR transformation. 4899 Changed |= LSRInstance(L, this).getChanged(); 4900 4901 // Remove any extra phis created by processing inner loops. 4902 Changed |= DeleteDeadPHIs(L->getHeader()); 4903 if (EnablePhiElim && L->isLoopSimplifyForm()) { 4904 SmallVector<WeakVH, 16> DeadInsts; 4905 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), "lsr"); 4906 #ifndef NDEBUG 4907 Rewriter.setDebugType(DEBUG_TYPE); 4908 #endif 4909 unsigned numFolded = Rewriter.replaceCongruentIVs( 4910 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 4911 &getAnalysis<TargetTransformInfo>()); 4912 if (numFolded) { 4913 Changed = true; 4914 DeleteTriviallyDeadInstructions(DeadInsts); 4915 DeleteDeadPHIs(L->getHeader()); 4916 } 4917 } 4918 return Changed; 4919 } 4920