1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/Config/llvm-config.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/DebugInfoMetadata.h" 86 #include "llvm/IR/DerivedTypes.h" 87 #include "llvm/IR/Dominators.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/IRBuilder.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/OperandTraits.h" 97 #include "llvm/IR/Operator.h" 98 #include "llvm/IR/PassManager.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <cstdlib> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <utility> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "loop-reduce" 132 133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 134 /// bail out. This threshold is far beyond the number of users that LSR can 135 /// conceivably solve, so it should not affect generated code, but catches the 136 /// worst cases before LSR burns too much compile time and stack space. 137 static const unsigned MaxIVUsers = 200; 138 139 // Temporary flag to cleanup congruent phis after LSR phi expansion. 140 // It's currently disabled until we can determine whether it's truly useful or 141 // not. The flag should be removed after the v3.0 release. 142 // This is now needed for ivchains. 143 static cl::opt<bool> EnablePhiElim( 144 "enable-lsr-phielim", cl::Hidden, cl::init(true), 145 cl::desc("Enable LSR phi elimination")); 146 147 // The flag adds instruction count to solutions cost comparision. 148 static cl::opt<bool> InsnsCost( 149 "lsr-insns-cost", cl::Hidden, cl::init(true), 150 cl::desc("Add instruction count to a LSR cost model")); 151 152 // Flag to choose how to narrow complex lsr solution 153 static cl::opt<bool> LSRExpNarrow( 154 "lsr-exp-narrow", cl::Hidden, cl::init(false), 155 cl::desc("Narrow LSR complex solution using" 156 " expectation of registers number")); 157 158 // Flag to narrow search space by filtering non-optimal formulae with 159 // the same ScaledReg and Scale. 160 static cl::opt<bool> FilterSameScaledReg( 161 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 162 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 163 " with the same ScaledReg and Scale")); 164 165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 166 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 167 cl::desc("A flag that overrides the target's preferred addressing mode."), 168 cl::values(clEnumValN(TTI::AMK_None, 169 "none", 170 "Don't prefer any addressing mode"), 171 clEnumValN(TTI::AMK_PreIndexed, 172 "preindexed", 173 "Prefer pre-indexed addressing mode"), 174 clEnumValN(TTI::AMK_PostIndexed, 175 "postindexed", 176 "Prefer post-indexed addressing mode"))); 177 178 static cl::opt<unsigned> ComplexityLimit( 179 "lsr-complexity-limit", cl::Hidden, 180 cl::init(std::numeric_limits<uint16_t>::max()), 181 cl::desc("LSR search space complexity limit")); 182 183 static cl::opt<unsigned> SetupCostDepthLimit( 184 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 185 cl::desc("The limit on recursion depth for LSRs setup cost")); 186 187 #ifndef NDEBUG 188 // Stress test IV chain generation. 189 static cl::opt<bool> StressIVChain( 190 "stress-ivchain", cl::Hidden, cl::init(false), 191 cl::desc("Stress test LSR IV chains")); 192 #else 193 static bool StressIVChain = false; 194 #endif 195 196 namespace { 197 198 struct MemAccessTy { 199 /// Used in situations where the accessed memory type is unknown. 200 static const unsigned UnknownAddressSpace = 201 std::numeric_limits<unsigned>::max(); 202 203 Type *MemTy = nullptr; 204 unsigned AddrSpace = UnknownAddressSpace; 205 206 MemAccessTy() = default; 207 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 208 209 bool operator==(MemAccessTy Other) const { 210 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 211 } 212 213 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 214 215 static MemAccessTy getUnknown(LLVMContext &Ctx, 216 unsigned AS = UnknownAddressSpace) { 217 return MemAccessTy(Type::getVoidTy(Ctx), AS); 218 } 219 220 Type *getType() { return MemTy; } 221 }; 222 223 /// This class holds data which is used to order reuse candidates. 224 class RegSortData { 225 public: 226 /// This represents the set of LSRUse indices which reference 227 /// a particular register. 228 SmallBitVector UsedByIndices; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } // end anonymous namespace 235 236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 237 void RegSortData::print(raw_ostream &OS) const { 238 OS << "[NumUses=" << UsedByIndices.count() << ']'; 239 } 240 241 LLVM_DUMP_METHOD void RegSortData::dump() const { 242 print(errs()); errs() << '\n'; 243 } 244 #endif 245 246 namespace { 247 248 /// Map register candidates to information about how they are used. 249 class RegUseTracker { 250 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 251 252 RegUsesTy RegUsesMap; 253 SmallVector<const SCEV *, 16> RegSequence; 254 255 public: 256 void countRegister(const SCEV *Reg, size_t LUIdx); 257 void dropRegister(const SCEV *Reg, size_t LUIdx); 258 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 259 260 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 261 262 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 263 264 void clear(); 265 266 using iterator = SmallVectorImpl<const SCEV *>::iterator; 267 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 268 269 iterator begin() { return RegSequence.begin(); } 270 iterator end() { return RegSequence.end(); } 271 const_iterator begin() const { return RegSequence.begin(); } 272 const_iterator end() const { return RegSequence.end(); } 273 }; 274 275 } // end anonymous namespace 276 277 void 278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 279 std::pair<RegUsesTy::iterator, bool> Pair = 280 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 281 RegSortData &RSD = Pair.first->second; 282 if (Pair.second) 283 RegSequence.push_back(Reg); 284 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 285 RSD.UsedByIndices.set(LUIdx); 286 } 287 288 void 289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 290 RegUsesTy::iterator It = RegUsesMap.find(Reg); 291 assert(It != RegUsesMap.end()); 292 RegSortData &RSD = It->second; 293 assert(RSD.UsedByIndices.size() > LUIdx); 294 RSD.UsedByIndices.reset(LUIdx); 295 } 296 297 void 298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 299 assert(LUIdx <= LastLUIdx); 300 301 // Update RegUses. The data structure is not optimized for this purpose; 302 // we must iterate through it and update each of the bit vectors. 303 for (auto &Pair : RegUsesMap) { 304 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 305 if (LUIdx < UsedByIndices.size()) 306 UsedByIndices[LUIdx] = 307 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 308 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 309 } 310 } 311 312 bool 313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 315 if (I == RegUsesMap.end()) 316 return false; 317 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 318 int i = UsedByIndices.find_first(); 319 if (i == -1) return false; 320 if ((size_t)i != LUIdx) return true; 321 return UsedByIndices.find_next(i) != -1; 322 } 323 324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 325 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 326 assert(I != RegUsesMap.end() && "Unknown register!"); 327 return I->second.UsedByIndices; 328 } 329 330 void RegUseTracker::clear() { 331 RegUsesMap.clear(); 332 RegSequence.clear(); 333 } 334 335 namespace { 336 337 /// This class holds information that describes a formula for computing 338 /// satisfying a use. It may include broken-out immediates and scaled registers. 339 struct Formula { 340 /// Global base address used for complex addressing. 341 GlobalValue *BaseGV = nullptr; 342 343 /// Base offset for complex addressing. 344 int64_t BaseOffset = 0; 345 346 /// Whether any complex addressing has a base register. 347 bool HasBaseReg = false; 348 349 /// The scale of any complex addressing. 350 int64_t Scale = 0; 351 352 /// The list of "base" registers for this use. When this is non-empty. The 353 /// canonical representation of a formula is 354 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 355 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 356 /// 3. The reg containing recurrent expr related with currect loop in the 357 /// formula should be put in the ScaledReg. 358 /// #1 enforces that the scaled register is always used when at least two 359 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 360 /// #2 enforces that 1 * reg is reg. 361 /// #3 ensures invariant regs with respect to current loop can be combined 362 /// together in LSR codegen. 363 /// This invariant can be temporarily broken while building a formula. 364 /// However, every formula inserted into the LSRInstance must be in canonical 365 /// form. 366 SmallVector<const SCEV *, 4> BaseRegs; 367 368 /// The 'scaled' register for this use. This should be non-null when Scale is 369 /// not zero. 370 const SCEV *ScaledReg = nullptr; 371 372 /// An additional constant offset which added near the use. This requires a 373 /// temporary register, but the offset itself can live in an add immediate 374 /// field rather than a register. 375 int64_t UnfoldedOffset = 0; 376 377 Formula() = default; 378 379 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 380 381 bool isCanonical(const Loop &L) const; 382 383 void canonicalize(const Loop &L); 384 385 bool unscale(); 386 387 bool hasZeroEnd() const; 388 389 size_t getNumRegs() const; 390 Type *getType() const; 391 392 void deleteBaseReg(const SCEV *&S); 393 394 bool referencesReg(const SCEV *S) const; 395 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 396 const RegUseTracker &RegUses) const; 397 398 void print(raw_ostream &OS) const; 399 void dump() const; 400 }; 401 402 } // end anonymous namespace 403 404 /// Recursion helper for initialMatch. 405 static void DoInitialMatch(const SCEV *S, Loop *L, 406 SmallVectorImpl<const SCEV *> &Good, 407 SmallVectorImpl<const SCEV *> &Bad, 408 ScalarEvolution &SE) { 409 // Collect expressions which properly dominate the loop header. 410 if (SE.properlyDominates(S, L->getHeader())) { 411 Good.push_back(S); 412 return; 413 } 414 415 // Look at add operands. 416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 417 for (const SCEV *S : Add->operands()) 418 DoInitialMatch(S, L, Good, Bad, SE); 419 return; 420 } 421 422 // Look at addrec operands. 423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 424 if (!AR->getStart()->isZero() && AR->isAffine()) { 425 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 426 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 427 AR->getStepRecurrence(SE), 428 // FIXME: AR->getNoWrapFlags() 429 AR->getLoop(), SCEV::FlagAnyWrap), 430 L, Good, Bad, SE); 431 return; 432 } 433 434 // Handle a multiplication by -1 (negation) if it didn't fold. 435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 436 if (Mul->getOperand(0)->isAllOnesValue()) { 437 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 438 const SCEV *NewMul = SE.getMulExpr(Ops); 439 440 SmallVector<const SCEV *, 4> MyGood; 441 SmallVector<const SCEV *, 4> MyBad; 442 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 443 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 444 SE.getEffectiveSCEVType(NewMul->getType()))); 445 for (const SCEV *S : MyGood) 446 Good.push_back(SE.getMulExpr(NegOne, S)); 447 for (const SCEV *S : MyBad) 448 Bad.push_back(SE.getMulExpr(NegOne, S)); 449 return; 450 } 451 452 // Ok, we can't do anything interesting. Just stuff the whole thing into a 453 // register and hope for the best. 454 Bad.push_back(S); 455 } 456 457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 458 /// all loop-invariant and loop-computable values in a single base register. 459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 460 SmallVector<const SCEV *, 4> Good; 461 SmallVector<const SCEV *, 4> Bad; 462 DoInitialMatch(S, L, Good, Bad, SE); 463 if (!Good.empty()) { 464 const SCEV *Sum = SE.getAddExpr(Good); 465 if (!Sum->isZero()) 466 BaseRegs.push_back(Sum); 467 HasBaseReg = true; 468 } 469 if (!Bad.empty()) { 470 const SCEV *Sum = SE.getAddExpr(Bad); 471 if (!Sum->isZero()) 472 BaseRegs.push_back(Sum); 473 HasBaseReg = true; 474 } 475 canonicalize(*L); 476 } 477 478 /// Check whether or not this formula satisfies the canonical 479 /// representation. 480 /// \see Formula::BaseRegs. 481 bool Formula::isCanonical(const Loop &L) const { 482 if (!ScaledReg) 483 return BaseRegs.size() <= 1; 484 485 if (Scale != 1) 486 return true; 487 488 if (Scale == 1 && BaseRegs.empty()) 489 return false; 490 491 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 492 if (SAR && SAR->getLoop() == &L) 493 return true; 494 495 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 496 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 497 // loop, we want to swap the reg in BaseRegs with ScaledReg. 498 auto I = find_if(BaseRegs, [&](const SCEV *S) { 499 return isa<const SCEVAddRecExpr>(S) && 500 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 501 }); 502 return I == BaseRegs.end(); 503 } 504 505 /// Helper method to morph a formula into its canonical representation. 506 /// \see Formula::BaseRegs. 507 /// Every formula having more than one base register, must use the ScaledReg 508 /// field. Otherwise, we would have to do special cases everywhere in LSR 509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 510 /// On the other hand, 1*reg should be canonicalized into reg. 511 void Formula::canonicalize(const Loop &L) { 512 if (isCanonical(L)) 513 return; 514 515 if (BaseRegs.empty()) { 516 // No base reg? Use scale reg with scale = 1 as such. 517 assert(ScaledReg && "Expected 1*reg => reg"); 518 assert(Scale == 1 && "Expected 1*reg => reg"); 519 BaseRegs.push_back(ScaledReg); 520 Scale = 0; 521 ScaledReg = nullptr; 522 return; 523 } 524 525 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 526 if (!ScaledReg) { 527 ScaledReg = BaseRegs.pop_back_val(); 528 Scale = 1; 529 } 530 531 // If ScaledReg is an invariant with respect to L, find the reg from 532 // BaseRegs containing the recurrent expr related with Loop L. Swap the 533 // reg with ScaledReg. 534 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 535 if (!SAR || SAR->getLoop() != &L) { 536 auto I = find_if(BaseRegs, [&](const SCEV *S) { 537 return isa<const SCEVAddRecExpr>(S) && 538 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 539 }); 540 if (I != BaseRegs.end()) 541 std::swap(ScaledReg, *I); 542 } 543 assert(isCanonical(L) && "Failed to canonicalize?"); 544 } 545 546 /// Get rid of the scale in the formula. 547 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 548 /// \return true if it was possible to get rid of the scale, false otherwise. 549 /// \note After this operation the formula may not be in the canonical form. 550 bool Formula::unscale() { 551 if (Scale != 1) 552 return false; 553 Scale = 0; 554 BaseRegs.push_back(ScaledReg); 555 ScaledReg = nullptr; 556 return true; 557 } 558 559 bool Formula::hasZeroEnd() const { 560 if (UnfoldedOffset || BaseOffset) 561 return false; 562 if (BaseRegs.size() != 1 || ScaledReg) 563 return false; 564 return true; 565 } 566 567 /// Return the total number of register operands used by this formula. This does 568 /// not include register uses implied by non-constant addrec strides. 569 size_t Formula::getNumRegs() const { 570 return !!ScaledReg + BaseRegs.size(); 571 } 572 573 /// Return the type of this formula, if it has one, or null otherwise. This type 574 /// is meaningless except for the bit size. 575 Type *Formula::getType() const { 576 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 577 ScaledReg ? ScaledReg->getType() : 578 BaseGV ? BaseGV->getType() : 579 nullptr; 580 } 581 582 /// Delete the given base reg from the BaseRegs list. 583 void Formula::deleteBaseReg(const SCEV *&S) { 584 if (&S != &BaseRegs.back()) 585 std::swap(S, BaseRegs.back()); 586 BaseRegs.pop_back(); 587 } 588 589 /// Test if this formula references the given register. 590 bool Formula::referencesReg(const SCEV *S) const { 591 return S == ScaledReg || is_contained(BaseRegs, S); 592 } 593 594 /// Test whether this formula uses registers which are used by uses other than 595 /// the use with the given index. 596 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 597 const RegUseTracker &RegUses) const { 598 if (ScaledReg) 599 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 600 return true; 601 for (const SCEV *BaseReg : BaseRegs) 602 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 603 return true; 604 return false; 605 } 606 607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 608 void Formula::print(raw_ostream &OS) const { 609 bool First = true; 610 if (BaseGV) { 611 if (!First) OS << " + "; else First = false; 612 BaseGV->printAsOperand(OS, /*PrintType=*/false); 613 } 614 if (BaseOffset != 0) { 615 if (!First) OS << " + "; else First = false; 616 OS << BaseOffset; 617 } 618 for (const SCEV *BaseReg : BaseRegs) { 619 if (!First) OS << " + "; else First = false; 620 OS << "reg(" << *BaseReg << ')'; 621 } 622 if (HasBaseReg && BaseRegs.empty()) { 623 if (!First) OS << " + "; else First = false; 624 OS << "**error: HasBaseReg**"; 625 } else if (!HasBaseReg && !BaseRegs.empty()) { 626 if (!First) OS << " + "; else First = false; 627 OS << "**error: !HasBaseReg**"; 628 } 629 if (Scale != 0) { 630 if (!First) OS << " + "; else First = false; 631 OS << Scale << "*reg("; 632 if (ScaledReg) 633 OS << *ScaledReg; 634 else 635 OS << "<unknown>"; 636 OS << ')'; 637 } 638 if (UnfoldedOffset != 0) { 639 if (!First) OS << " + "; 640 OS << "imm(" << UnfoldedOffset << ')'; 641 } 642 } 643 644 LLVM_DUMP_METHOD void Formula::dump() const { 645 print(errs()); errs() << '\n'; 646 } 647 #endif 648 649 /// Return true if the given addrec can be sign-extended without changing its 650 /// value. 651 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 652 Type *WideTy = 653 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 654 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 655 } 656 657 /// Return true if the given add can be sign-extended without changing its 658 /// value. 659 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 660 Type *WideTy = 661 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 662 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 663 } 664 665 /// Return true if the given mul can be sign-extended without changing its 666 /// value. 667 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 668 Type *WideTy = 669 IntegerType::get(SE.getContext(), 670 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 671 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 672 } 673 674 /// Return an expression for LHS /s RHS, if it can be determined and if the 675 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 676 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 677 /// the multiplication may overflow, which is useful when the result will be 678 /// used in a context where the most significant bits are ignored. 679 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 680 ScalarEvolution &SE, 681 bool IgnoreSignificantBits = false) { 682 // Handle the trivial case, which works for any SCEV type. 683 if (LHS == RHS) 684 return SE.getConstant(LHS->getType(), 1); 685 686 // Handle a few RHS special cases. 687 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 688 if (RC) { 689 const APInt &RA = RC->getAPInt(); 690 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 691 // some folding. 692 if (RA.isAllOnesValue()) { 693 if (LHS->getType()->isPointerTy()) 694 return nullptr; 695 return SE.getMulExpr(LHS, RC); 696 } 697 // Handle x /s 1 as x. 698 if (RA == 1) 699 return LHS; 700 } 701 702 // Check for a division of a constant by a constant. 703 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 704 if (!RC) 705 return nullptr; 706 const APInt &LA = C->getAPInt(); 707 const APInt &RA = RC->getAPInt(); 708 if (LA.srem(RA) != 0) 709 return nullptr; 710 return SE.getConstant(LA.sdiv(RA)); 711 } 712 713 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 714 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 715 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 716 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 717 IgnoreSignificantBits); 718 if (!Step) return nullptr; 719 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 720 IgnoreSignificantBits); 721 if (!Start) return nullptr; 722 // FlagNW is independent of the start value, step direction, and is 723 // preserved with smaller magnitude steps. 724 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 725 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 726 } 727 return nullptr; 728 } 729 730 // Distribute the sdiv over add operands, if the add doesn't overflow. 731 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 732 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 733 SmallVector<const SCEV *, 8> Ops; 734 for (const SCEV *S : Add->operands()) { 735 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 736 if (!Op) return nullptr; 737 Ops.push_back(Op); 738 } 739 return SE.getAddExpr(Ops); 740 } 741 return nullptr; 742 } 743 744 // Check for a multiply operand that we can pull RHS out of. 745 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 746 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 747 // Handle special case C1*X*Y /s C2*X*Y. 748 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 749 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 750 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 751 const SCEVConstant *RC = 752 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 753 if (LC && RC) { 754 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 755 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 756 if (LOps == ROps) 757 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 758 } 759 } 760 } 761 762 SmallVector<const SCEV *, 4> Ops; 763 bool Found = false; 764 for (const SCEV *S : Mul->operands()) { 765 if (!Found) 766 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 767 IgnoreSignificantBits)) { 768 S = Q; 769 Found = true; 770 } 771 Ops.push_back(S); 772 } 773 return Found ? SE.getMulExpr(Ops) : nullptr; 774 } 775 return nullptr; 776 } 777 778 // Otherwise we don't know. 779 return nullptr; 780 } 781 782 /// If S involves the addition of a constant integer value, return that integer 783 /// value, and mutate S to point to a new SCEV with that value excluded. 784 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 785 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 786 if (C->getAPInt().getMinSignedBits() <= 64) { 787 S = SE.getConstant(C->getType(), 0); 788 return C->getValue()->getSExtValue(); 789 } 790 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 791 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 792 int64_t Result = ExtractImmediate(NewOps.front(), SE); 793 if (Result != 0) 794 S = SE.getAddExpr(NewOps); 795 return Result; 796 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 797 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 798 int64_t Result = ExtractImmediate(NewOps.front(), SE); 799 if (Result != 0) 800 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 801 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 802 SCEV::FlagAnyWrap); 803 return Result; 804 } 805 return 0; 806 } 807 808 /// If S involves the addition of a GlobalValue address, return that symbol, and 809 /// mutate S to point to a new SCEV with that value excluded. 810 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 811 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 812 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 813 S = SE.getConstant(GV->getType(), 0); 814 return GV; 815 } 816 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 817 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 818 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 819 if (Result) 820 S = SE.getAddExpr(NewOps); 821 return Result; 822 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 823 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 824 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 825 if (Result) 826 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 827 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 828 SCEV::FlagAnyWrap); 829 return Result; 830 } 831 return nullptr; 832 } 833 834 /// Returns true if the specified instruction is using the specified value as an 835 /// address. 836 static bool isAddressUse(const TargetTransformInfo &TTI, 837 Instruction *Inst, Value *OperandVal) { 838 bool isAddress = isa<LoadInst>(Inst); 839 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 840 if (SI->getPointerOperand() == OperandVal) 841 isAddress = true; 842 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 843 // Addressing modes can also be folded into prefetches and a variety 844 // of intrinsics. 845 switch (II->getIntrinsicID()) { 846 case Intrinsic::memset: 847 case Intrinsic::prefetch: 848 case Intrinsic::masked_load: 849 if (II->getArgOperand(0) == OperandVal) 850 isAddress = true; 851 break; 852 case Intrinsic::masked_store: 853 if (II->getArgOperand(1) == OperandVal) 854 isAddress = true; 855 break; 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 if (II->getArgOperand(0) == OperandVal || 859 II->getArgOperand(1) == OperandVal) 860 isAddress = true; 861 break; 862 default: { 863 MemIntrinsicInfo IntrInfo; 864 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 865 if (IntrInfo.PtrVal == OperandVal) 866 isAddress = true; 867 } 868 } 869 } 870 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 871 if (RMW->getPointerOperand() == OperandVal) 872 isAddress = true; 873 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 874 if (CmpX->getPointerOperand() == OperandVal) 875 isAddress = true; 876 } 877 return isAddress; 878 } 879 880 /// Return the type of the memory being accessed. 881 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 882 Instruction *Inst, Value *OperandVal) { 883 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 884 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 885 AccessTy.MemTy = SI->getOperand(0)->getType(); 886 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 887 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 888 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 889 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 890 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 891 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 892 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 893 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 894 switch (II->getIntrinsicID()) { 895 case Intrinsic::prefetch: 896 case Intrinsic::memset: 897 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 898 AccessTy.MemTy = OperandVal->getType(); 899 break; 900 case Intrinsic::memmove: 901 case Intrinsic::memcpy: 902 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 903 AccessTy.MemTy = OperandVal->getType(); 904 break; 905 case Intrinsic::masked_load: 906 AccessTy.AddrSpace = 907 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 908 break; 909 case Intrinsic::masked_store: 910 AccessTy.MemTy = II->getOperand(0)->getType(); 911 AccessTy.AddrSpace = 912 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 913 break; 914 default: { 915 MemIntrinsicInfo IntrInfo; 916 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 917 AccessTy.AddrSpace 918 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 919 } 920 921 break; 922 } 923 } 924 } 925 926 // All pointers have the same requirements, so canonicalize them to an 927 // arbitrary pointer type to minimize variation. 928 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 929 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 930 PTy->getAddressSpace()); 931 932 return AccessTy; 933 } 934 935 /// Return true if this AddRec is already a phi in its loop. 936 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 937 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 938 if (SE.isSCEVable(PN.getType()) && 939 (SE.getEffectiveSCEVType(PN.getType()) == 940 SE.getEffectiveSCEVType(AR->getType())) && 941 SE.getSCEV(&PN) == AR) 942 return true; 943 } 944 return false; 945 } 946 947 /// Check if expanding this expression is likely to incur significant cost. This 948 /// is tricky because SCEV doesn't track which expressions are actually computed 949 /// by the current IR. 950 /// 951 /// We currently allow expansion of IV increments that involve adds, 952 /// multiplication by constants, and AddRecs from existing phis. 953 /// 954 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 955 /// obvious multiple of the UDivExpr. 956 static bool isHighCostExpansion(const SCEV *S, 957 SmallPtrSetImpl<const SCEV*> &Processed, 958 ScalarEvolution &SE) { 959 // Zero/One operand expressions 960 switch (S->getSCEVType()) { 961 case scUnknown: 962 case scConstant: 963 return false; 964 case scTruncate: 965 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 966 Processed, SE); 967 case scZeroExtend: 968 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 969 Processed, SE); 970 case scSignExtend: 971 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 972 Processed, SE); 973 default: 974 break; 975 } 976 977 if (!Processed.insert(S).second) 978 return false; 979 980 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 981 for (const SCEV *S : Add->operands()) { 982 if (isHighCostExpansion(S, Processed, SE)) 983 return true; 984 } 985 return false; 986 } 987 988 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 989 if (Mul->getNumOperands() == 2) { 990 // Multiplication by a constant is ok 991 if (isa<SCEVConstant>(Mul->getOperand(0))) 992 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 993 994 // If we have the value of one operand, check if an existing 995 // multiplication already generates this expression. 996 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 997 Value *UVal = U->getValue(); 998 for (User *UR : UVal->users()) { 999 // If U is a constant, it may be used by a ConstantExpr. 1000 Instruction *UI = dyn_cast<Instruction>(UR); 1001 if (UI && UI->getOpcode() == Instruction::Mul && 1002 SE.isSCEVable(UI->getType())) { 1003 return SE.getSCEV(UI) == Mul; 1004 } 1005 } 1006 } 1007 } 1008 } 1009 1010 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1011 if (isExistingPhi(AR, SE)) 1012 return false; 1013 } 1014 1015 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1016 return true; 1017 } 1018 1019 namespace { 1020 1021 class LSRUse; 1022 1023 } // end anonymous namespace 1024 1025 /// Check if the addressing mode defined by \p F is completely 1026 /// folded in \p LU at isel time. 1027 /// This includes address-mode folding and special icmp tricks. 1028 /// This function returns true if \p LU can accommodate what \p F 1029 /// defines and up to 1 base + 1 scaled + offset. 1030 /// In other words, if \p F has several base registers, this function may 1031 /// still return true. Therefore, users still need to account for 1032 /// additional base registers and/or unfolded offsets to derive an 1033 /// accurate cost model. 1034 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1035 const LSRUse &LU, const Formula &F); 1036 1037 // Get the cost of the scaling factor used in F for LU. 1038 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1039 const LSRUse &LU, const Formula &F, 1040 const Loop &L); 1041 1042 namespace { 1043 1044 /// This class is used to measure and compare candidate formulae. 1045 class Cost { 1046 const Loop *L = nullptr; 1047 ScalarEvolution *SE = nullptr; 1048 const TargetTransformInfo *TTI = nullptr; 1049 TargetTransformInfo::LSRCost C; 1050 TTI::AddressingModeKind AMK = TTI::AMK_None; 1051 1052 public: 1053 Cost() = delete; 1054 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1055 TTI::AddressingModeKind AMK) : 1056 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1057 C.Insns = 0; 1058 C.NumRegs = 0; 1059 C.AddRecCost = 0; 1060 C.NumIVMuls = 0; 1061 C.NumBaseAdds = 0; 1062 C.ImmCost = 0; 1063 C.SetupCost = 0; 1064 C.ScaleCost = 0; 1065 } 1066 1067 bool isLess(Cost &Other); 1068 1069 void Lose(); 1070 1071 #ifndef NDEBUG 1072 // Once any of the metrics loses, they must all remain losers. 1073 bool isValid() { 1074 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1075 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1076 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1077 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1078 } 1079 #endif 1080 1081 bool isLoser() { 1082 assert(isValid() && "invalid cost"); 1083 return C.NumRegs == ~0u; 1084 } 1085 1086 void RateFormula(const Formula &F, 1087 SmallPtrSetImpl<const SCEV *> &Regs, 1088 const DenseSet<const SCEV *> &VisitedRegs, 1089 const LSRUse &LU, 1090 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1091 1092 void print(raw_ostream &OS) const; 1093 void dump() const; 1094 1095 private: 1096 void RateRegister(const Formula &F, const SCEV *Reg, 1097 SmallPtrSetImpl<const SCEV *> &Regs); 1098 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1099 SmallPtrSetImpl<const SCEV *> &Regs, 1100 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1101 }; 1102 1103 /// An operand value in an instruction which is to be replaced with some 1104 /// equivalent, possibly strength-reduced, replacement. 1105 struct LSRFixup { 1106 /// The instruction which will be updated. 1107 Instruction *UserInst = nullptr; 1108 1109 /// The operand of the instruction which will be replaced. The operand may be 1110 /// used more than once; every instance will be replaced. 1111 Value *OperandValToReplace = nullptr; 1112 1113 /// If this user is to use the post-incremented value of an induction 1114 /// variable, this set is non-empty and holds the loops associated with the 1115 /// induction variable. 1116 PostIncLoopSet PostIncLoops; 1117 1118 /// A constant offset to be added to the LSRUse expression. This allows 1119 /// multiple fixups to share the same LSRUse with different offsets, for 1120 /// example in an unrolled loop. 1121 int64_t Offset = 0; 1122 1123 LSRFixup() = default; 1124 1125 bool isUseFullyOutsideLoop(const Loop *L) const; 1126 1127 void print(raw_ostream &OS) const; 1128 void dump() const; 1129 }; 1130 1131 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1132 /// SmallVectors of const SCEV*. 1133 struct UniquifierDenseMapInfo { 1134 static SmallVector<const SCEV *, 4> getEmptyKey() { 1135 SmallVector<const SCEV *, 4> V; 1136 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1137 return V; 1138 } 1139 1140 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1141 SmallVector<const SCEV *, 4> V; 1142 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1143 return V; 1144 } 1145 1146 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1147 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1148 } 1149 1150 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1151 const SmallVector<const SCEV *, 4> &RHS) { 1152 return LHS == RHS; 1153 } 1154 }; 1155 1156 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1157 /// as uses invented by LSR itself. It includes information about what kinds of 1158 /// things can be folded into the user, information about the user itself, and 1159 /// information about how the use may be satisfied. TODO: Represent multiple 1160 /// users of the same expression in common? 1161 class LSRUse { 1162 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1163 1164 public: 1165 /// An enum for a kind of use, indicating what types of scaled and immediate 1166 /// operands it might support. 1167 enum KindType { 1168 Basic, ///< A normal use, with no folding. 1169 Special, ///< A special case of basic, allowing -1 scales. 1170 Address, ///< An address use; folding according to TargetLowering 1171 ICmpZero ///< An equality icmp with both operands folded into one. 1172 // TODO: Add a generic icmp too? 1173 }; 1174 1175 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1176 1177 KindType Kind; 1178 MemAccessTy AccessTy; 1179 1180 /// The list of operands which are to be replaced. 1181 SmallVector<LSRFixup, 8> Fixups; 1182 1183 /// Keep track of the min and max offsets of the fixups. 1184 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1185 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1186 1187 /// This records whether all of the fixups using this LSRUse are outside of 1188 /// the loop, in which case some special-case heuristics may be used. 1189 bool AllFixupsOutsideLoop = true; 1190 1191 /// RigidFormula is set to true to guarantee that this use will be associated 1192 /// with a single formula--the one that initially matched. Some SCEV 1193 /// expressions cannot be expanded. This allows LSR to consider the registers 1194 /// used by those expressions without the need to expand them later after 1195 /// changing the formula. 1196 bool RigidFormula = false; 1197 1198 /// This records the widest use type for any fixup using this 1199 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1200 /// fixup widths to be equivalent, because the narrower one may be relying on 1201 /// the implicit truncation to truncate away bogus bits. 1202 Type *WidestFixupType = nullptr; 1203 1204 /// A list of ways to build a value that can satisfy this user. After the 1205 /// list is populated, one of these is selected heuristically and used to 1206 /// formulate a replacement for OperandValToReplace in UserInst. 1207 SmallVector<Formula, 12> Formulae; 1208 1209 /// The set of register candidates used by all formulae in this LSRUse. 1210 SmallPtrSet<const SCEV *, 4> Regs; 1211 1212 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1213 1214 LSRFixup &getNewFixup() { 1215 Fixups.push_back(LSRFixup()); 1216 return Fixups.back(); 1217 } 1218 1219 void pushFixup(LSRFixup &f) { 1220 Fixups.push_back(f); 1221 if (f.Offset > MaxOffset) 1222 MaxOffset = f.Offset; 1223 if (f.Offset < MinOffset) 1224 MinOffset = f.Offset; 1225 } 1226 1227 bool HasFormulaWithSameRegs(const Formula &F) const; 1228 float getNotSelectedProbability(const SCEV *Reg) const; 1229 bool InsertFormula(const Formula &F, const Loop &L); 1230 void DeleteFormula(Formula &F); 1231 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1232 1233 void print(raw_ostream &OS) const; 1234 void dump() const; 1235 }; 1236 1237 } // end anonymous namespace 1238 1239 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1240 LSRUse::KindType Kind, MemAccessTy AccessTy, 1241 GlobalValue *BaseGV, int64_t BaseOffset, 1242 bool HasBaseReg, int64_t Scale, 1243 Instruction *Fixup = nullptr); 1244 1245 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1246 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1247 return 1; 1248 if (Depth == 0) 1249 return 0; 1250 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1251 return getSetupCost(S->getStart(), Depth - 1); 1252 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1253 return getSetupCost(S->getOperand(), Depth - 1); 1254 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1255 return std::accumulate(S->op_begin(), S->op_end(), 0, 1256 [&](unsigned i, const SCEV *Reg) { 1257 return i + getSetupCost(Reg, Depth - 1); 1258 }); 1259 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1260 return getSetupCost(S->getLHS(), Depth - 1) + 1261 getSetupCost(S->getRHS(), Depth - 1); 1262 return 0; 1263 } 1264 1265 /// Tally up interesting quantities from the given register. 1266 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1267 SmallPtrSetImpl<const SCEV *> &Regs) { 1268 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1269 // If this is an addrec for another loop, it should be an invariant 1270 // with respect to L since L is the innermost loop (at least 1271 // for now LSR only handles innermost loops). 1272 if (AR->getLoop() != L) { 1273 // If the AddRec exists, consider it's register free and leave it alone. 1274 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1275 return; 1276 1277 // It is bad to allow LSR for current loop to add induction variables 1278 // for its sibling loops. 1279 if (!AR->getLoop()->contains(L)) { 1280 Lose(); 1281 return; 1282 } 1283 1284 // Otherwise, it will be an invariant with respect to Loop L. 1285 ++C.NumRegs; 1286 return; 1287 } 1288 1289 unsigned LoopCost = 1; 1290 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1291 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1292 1293 // If the step size matches the base offset, we could use pre-indexed 1294 // addressing. 1295 if (AMK == TTI::AMK_PreIndexed) { 1296 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1297 if (Step->getAPInt() == F.BaseOffset) 1298 LoopCost = 0; 1299 } else if (AMK == TTI::AMK_PostIndexed) { 1300 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1301 if (isa<SCEVConstant>(LoopStep)) { 1302 const SCEV *LoopStart = AR->getStart(); 1303 if (!isa<SCEVConstant>(LoopStart) && 1304 SE->isLoopInvariant(LoopStart, L)) 1305 LoopCost = 0; 1306 } 1307 } 1308 } 1309 C.AddRecCost += LoopCost; 1310 1311 // Add the step value register, if it needs one. 1312 // TODO: The non-affine case isn't precisely modeled here. 1313 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1314 if (!Regs.count(AR->getOperand(1))) { 1315 RateRegister(F, AR->getOperand(1), Regs); 1316 if (isLoser()) 1317 return; 1318 } 1319 } 1320 } 1321 ++C.NumRegs; 1322 1323 // Rough heuristic; favor registers which don't require extra setup 1324 // instructions in the preheader. 1325 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1326 // Ensure we don't, even with the recusion limit, produce invalid costs. 1327 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1328 1329 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1330 SE->hasComputableLoopEvolution(Reg, L); 1331 } 1332 1333 /// Record this register in the set. If we haven't seen it before, rate 1334 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1335 /// one of those regs an instant loser. 1336 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1337 SmallPtrSetImpl<const SCEV *> &Regs, 1338 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1339 if (LoserRegs && LoserRegs->count(Reg)) { 1340 Lose(); 1341 return; 1342 } 1343 if (Regs.insert(Reg).second) { 1344 RateRegister(F, Reg, Regs); 1345 if (LoserRegs && isLoser()) 1346 LoserRegs->insert(Reg); 1347 } 1348 } 1349 1350 void Cost::RateFormula(const Formula &F, 1351 SmallPtrSetImpl<const SCEV *> &Regs, 1352 const DenseSet<const SCEV *> &VisitedRegs, 1353 const LSRUse &LU, 1354 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1355 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1356 // Tally up the registers. 1357 unsigned PrevAddRecCost = C.AddRecCost; 1358 unsigned PrevNumRegs = C.NumRegs; 1359 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1360 if (const SCEV *ScaledReg = F.ScaledReg) { 1361 if (VisitedRegs.count(ScaledReg)) { 1362 Lose(); 1363 return; 1364 } 1365 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1366 if (isLoser()) 1367 return; 1368 } 1369 for (const SCEV *BaseReg : F.BaseRegs) { 1370 if (VisitedRegs.count(BaseReg)) { 1371 Lose(); 1372 return; 1373 } 1374 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1375 if (isLoser()) 1376 return; 1377 } 1378 1379 // Determine how many (unfolded) adds we'll need inside the loop. 1380 size_t NumBaseParts = F.getNumRegs(); 1381 if (NumBaseParts > 1) 1382 // Do not count the base and a possible second register if the target 1383 // allows to fold 2 registers. 1384 C.NumBaseAdds += 1385 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1386 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1387 1388 // Accumulate non-free scaling amounts. 1389 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1390 1391 // Tally up the non-zero immediates. 1392 for (const LSRFixup &Fixup : LU.Fixups) { 1393 int64_t O = Fixup.Offset; 1394 int64_t Offset = (uint64_t)O + F.BaseOffset; 1395 if (F.BaseGV) 1396 C.ImmCost += 64; // Handle symbolic values conservatively. 1397 // TODO: This should probably be the pointer size. 1398 else if (Offset != 0) 1399 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1400 1401 // Check with target if this offset with this instruction is 1402 // specifically not supported. 1403 if (LU.Kind == LSRUse::Address && Offset != 0 && 1404 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1405 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1406 C.NumBaseAdds++; 1407 } 1408 1409 // If we don't count instruction cost exit here. 1410 if (!InsnsCost) { 1411 assert(isValid() && "invalid cost"); 1412 return; 1413 } 1414 1415 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1416 // additional instruction (at least fill). 1417 // TODO: Need distinguish register class? 1418 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1419 TTI->getRegisterClassForType(false, F.getType())) - 1; 1420 if (C.NumRegs > TTIRegNum) { 1421 // Cost already exceeded TTIRegNum, then only newly added register can add 1422 // new instructions. 1423 if (PrevNumRegs > TTIRegNum) 1424 C.Insns += (C.NumRegs - PrevNumRegs); 1425 else 1426 C.Insns += (C.NumRegs - TTIRegNum); 1427 } 1428 1429 // If ICmpZero formula ends with not 0, it could not be replaced by 1430 // just add or sub. We'll need to compare final result of AddRec. 1431 // That means we'll need an additional instruction. But if the target can 1432 // macro-fuse a compare with a branch, don't count this extra instruction. 1433 // For -10 + {0, +, 1}: 1434 // i = i + 1; 1435 // cmp i, 10 1436 // 1437 // For {-10, +, 1}: 1438 // i = i + 1; 1439 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1440 !TTI->canMacroFuseCmp()) 1441 C.Insns++; 1442 // Each new AddRec adds 1 instruction to calculation. 1443 C.Insns += (C.AddRecCost - PrevAddRecCost); 1444 1445 // BaseAdds adds instructions for unfolded registers. 1446 if (LU.Kind != LSRUse::ICmpZero) 1447 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1448 assert(isValid() && "invalid cost"); 1449 } 1450 1451 /// Set this cost to a losing value. 1452 void Cost::Lose() { 1453 C.Insns = std::numeric_limits<unsigned>::max(); 1454 C.NumRegs = std::numeric_limits<unsigned>::max(); 1455 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1456 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1457 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1458 C.ImmCost = std::numeric_limits<unsigned>::max(); 1459 C.SetupCost = std::numeric_limits<unsigned>::max(); 1460 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1461 } 1462 1463 /// Choose the lower cost. 1464 bool Cost::isLess(Cost &Other) { 1465 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1466 C.Insns != Other.C.Insns) 1467 return C.Insns < Other.C.Insns; 1468 return TTI->isLSRCostLess(C, Other.C); 1469 } 1470 1471 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1472 void Cost::print(raw_ostream &OS) const { 1473 if (InsnsCost) 1474 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1475 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1476 if (C.AddRecCost != 0) 1477 OS << ", with addrec cost " << C.AddRecCost; 1478 if (C.NumIVMuls != 0) 1479 OS << ", plus " << C.NumIVMuls << " IV mul" 1480 << (C.NumIVMuls == 1 ? "" : "s"); 1481 if (C.NumBaseAdds != 0) 1482 OS << ", plus " << C.NumBaseAdds << " base add" 1483 << (C.NumBaseAdds == 1 ? "" : "s"); 1484 if (C.ScaleCost != 0) 1485 OS << ", plus " << C.ScaleCost << " scale cost"; 1486 if (C.ImmCost != 0) 1487 OS << ", plus " << C.ImmCost << " imm cost"; 1488 if (C.SetupCost != 0) 1489 OS << ", plus " << C.SetupCost << " setup cost"; 1490 } 1491 1492 LLVM_DUMP_METHOD void Cost::dump() const { 1493 print(errs()); errs() << '\n'; 1494 } 1495 #endif 1496 1497 /// Test whether this fixup always uses its value outside of the given loop. 1498 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1499 // PHI nodes use their value in their incoming blocks. 1500 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1501 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1502 if (PN->getIncomingValue(i) == OperandValToReplace && 1503 L->contains(PN->getIncomingBlock(i))) 1504 return false; 1505 return true; 1506 } 1507 1508 return !L->contains(UserInst); 1509 } 1510 1511 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1512 void LSRFixup::print(raw_ostream &OS) const { 1513 OS << "UserInst="; 1514 // Store is common and interesting enough to be worth special-casing. 1515 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1516 OS << "store "; 1517 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1518 } else if (UserInst->getType()->isVoidTy()) 1519 OS << UserInst->getOpcodeName(); 1520 else 1521 UserInst->printAsOperand(OS, /*PrintType=*/false); 1522 1523 OS << ", OperandValToReplace="; 1524 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1525 1526 for (const Loop *PIL : PostIncLoops) { 1527 OS << ", PostIncLoop="; 1528 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1529 } 1530 1531 if (Offset != 0) 1532 OS << ", Offset=" << Offset; 1533 } 1534 1535 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1536 print(errs()); errs() << '\n'; 1537 } 1538 #endif 1539 1540 /// Test whether this use as a formula which has the same registers as the given 1541 /// formula. 1542 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1543 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1544 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1545 // Unstable sort by host order ok, because this is only used for uniquifying. 1546 llvm::sort(Key); 1547 return Uniquifier.count(Key); 1548 } 1549 1550 /// The function returns a probability of selecting formula without Reg. 1551 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1552 unsigned FNum = 0; 1553 for (const Formula &F : Formulae) 1554 if (F.referencesReg(Reg)) 1555 FNum++; 1556 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1557 } 1558 1559 /// If the given formula has not yet been inserted, add it to the list, and 1560 /// return true. Return false otherwise. The formula must be in canonical form. 1561 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1562 assert(F.isCanonical(L) && "Invalid canonical representation"); 1563 1564 if (!Formulae.empty() && RigidFormula) 1565 return false; 1566 1567 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1568 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1569 // Unstable sort by host order ok, because this is only used for uniquifying. 1570 llvm::sort(Key); 1571 1572 if (!Uniquifier.insert(Key).second) 1573 return false; 1574 1575 // Using a register to hold the value of 0 is not profitable. 1576 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1577 "Zero allocated in a scaled register!"); 1578 #ifndef NDEBUG 1579 for (const SCEV *BaseReg : F.BaseRegs) 1580 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1581 #endif 1582 1583 // Add the formula to the list. 1584 Formulae.push_back(F); 1585 1586 // Record registers now being used by this use. 1587 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1588 if (F.ScaledReg) 1589 Regs.insert(F.ScaledReg); 1590 1591 return true; 1592 } 1593 1594 /// Remove the given formula from this use's list. 1595 void LSRUse::DeleteFormula(Formula &F) { 1596 if (&F != &Formulae.back()) 1597 std::swap(F, Formulae.back()); 1598 Formulae.pop_back(); 1599 } 1600 1601 /// Recompute the Regs field, and update RegUses. 1602 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1603 // Now that we've filtered out some formulae, recompute the Regs set. 1604 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1605 Regs.clear(); 1606 for (const Formula &F : Formulae) { 1607 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1608 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1609 } 1610 1611 // Update the RegTracker. 1612 for (const SCEV *S : OldRegs) 1613 if (!Regs.count(S)) 1614 RegUses.dropRegister(S, LUIdx); 1615 } 1616 1617 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1618 void LSRUse::print(raw_ostream &OS) const { 1619 OS << "LSR Use: Kind="; 1620 switch (Kind) { 1621 case Basic: OS << "Basic"; break; 1622 case Special: OS << "Special"; break; 1623 case ICmpZero: OS << "ICmpZero"; break; 1624 case Address: 1625 OS << "Address of "; 1626 if (AccessTy.MemTy->isPointerTy()) 1627 OS << "pointer"; // the full pointer type could be really verbose 1628 else { 1629 OS << *AccessTy.MemTy; 1630 } 1631 1632 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1633 } 1634 1635 OS << ", Offsets={"; 1636 bool NeedComma = false; 1637 for (const LSRFixup &Fixup : Fixups) { 1638 if (NeedComma) OS << ','; 1639 OS << Fixup.Offset; 1640 NeedComma = true; 1641 } 1642 OS << '}'; 1643 1644 if (AllFixupsOutsideLoop) 1645 OS << ", all-fixups-outside-loop"; 1646 1647 if (WidestFixupType) 1648 OS << ", widest fixup type: " << *WidestFixupType; 1649 } 1650 1651 LLVM_DUMP_METHOD void LSRUse::dump() const { 1652 print(errs()); errs() << '\n'; 1653 } 1654 #endif 1655 1656 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1657 LSRUse::KindType Kind, MemAccessTy AccessTy, 1658 GlobalValue *BaseGV, int64_t BaseOffset, 1659 bool HasBaseReg, int64_t Scale, 1660 Instruction *Fixup/*= nullptr*/) { 1661 switch (Kind) { 1662 case LSRUse::Address: 1663 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1664 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1665 1666 case LSRUse::ICmpZero: 1667 // There's not even a target hook for querying whether it would be legal to 1668 // fold a GV into an ICmp. 1669 if (BaseGV) 1670 return false; 1671 1672 // ICmp only has two operands; don't allow more than two non-trivial parts. 1673 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1674 return false; 1675 1676 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1677 // putting the scaled register in the other operand of the icmp. 1678 if (Scale != 0 && Scale != -1) 1679 return false; 1680 1681 // If we have low-level target information, ask the target if it can fold an 1682 // integer immediate on an icmp. 1683 if (BaseOffset != 0) { 1684 // We have one of: 1685 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1686 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1687 // Offs is the ICmp immediate. 1688 if (Scale == 0) 1689 // The cast does the right thing with 1690 // std::numeric_limits<int64_t>::min(). 1691 BaseOffset = -(uint64_t)BaseOffset; 1692 return TTI.isLegalICmpImmediate(BaseOffset); 1693 } 1694 1695 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1696 return true; 1697 1698 case LSRUse::Basic: 1699 // Only handle single-register values. 1700 return !BaseGV && Scale == 0 && BaseOffset == 0; 1701 1702 case LSRUse::Special: 1703 // Special case Basic to handle -1 scales. 1704 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1705 } 1706 1707 llvm_unreachable("Invalid LSRUse Kind!"); 1708 } 1709 1710 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1711 int64_t MinOffset, int64_t MaxOffset, 1712 LSRUse::KindType Kind, MemAccessTy AccessTy, 1713 GlobalValue *BaseGV, int64_t BaseOffset, 1714 bool HasBaseReg, int64_t Scale) { 1715 // Check for overflow. 1716 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1717 (MinOffset > 0)) 1718 return false; 1719 MinOffset = (uint64_t)BaseOffset + MinOffset; 1720 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1721 (MaxOffset > 0)) 1722 return false; 1723 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1724 1725 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1726 HasBaseReg, Scale) && 1727 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1728 HasBaseReg, Scale); 1729 } 1730 1731 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1732 int64_t MinOffset, int64_t MaxOffset, 1733 LSRUse::KindType Kind, MemAccessTy AccessTy, 1734 const Formula &F, const Loop &L) { 1735 // For the purpose of isAMCompletelyFolded either having a canonical formula 1736 // or a scale not equal to zero is correct. 1737 // Problems may arise from non canonical formulae having a scale == 0. 1738 // Strictly speaking it would best to just rely on canonical formulae. 1739 // However, when we generate the scaled formulae, we first check that the 1740 // scaling factor is profitable before computing the actual ScaledReg for 1741 // compile time sake. 1742 assert((F.isCanonical(L) || F.Scale != 0)); 1743 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1744 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1745 } 1746 1747 /// Test whether we know how to expand the current formula. 1748 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1749 int64_t MaxOffset, LSRUse::KindType Kind, 1750 MemAccessTy AccessTy, GlobalValue *BaseGV, 1751 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1752 // We know how to expand completely foldable formulae. 1753 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1754 BaseOffset, HasBaseReg, Scale) || 1755 // Or formulae that use a base register produced by a sum of base 1756 // registers. 1757 (Scale == 1 && 1758 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1759 BaseGV, BaseOffset, true, 0)); 1760 } 1761 1762 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1763 int64_t MaxOffset, LSRUse::KindType Kind, 1764 MemAccessTy AccessTy, const Formula &F) { 1765 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1766 F.BaseOffset, F.HasBaseReg, F.Scale); 1767 } 1768 1769 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1770 const LSRUse &LU, const Formula &F) { 1771 // Target may want to look at the user instructions. 1772 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1773 for (const LSRFixup &Fixup : LU.Fixups) 1774 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1775 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1776 F.Scale, Fixup.UserInst)) 1777 return false; 1778 return true; 1779 } 1780 1781 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1782 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1783 F.Scale); 1784 } 1785 1786 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1787 const LSRUse &LU, const Formula &F, 1788 const Loop &L) { 1789 if (!F.Scale) 1790 return 0; 1791 1792 // If the use is not completely folded in that instruction, we will have to 1793 // pay an extra cost only for scale != 1. 1794 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1795 LU.AccessTy, F, L)) 1796 return F.Scale != 1; 1797 1798 switch (LU.Kind) { 1799 case LSRUse::Address: { 1800 // Check the scaling factor cost with both the min and max offsets. 1801 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1802 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1803 F.Scale, LU.AccessTy.AddrSpace); 1804 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1805 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1806 F.Scale, LU.AccessTy.AddrSpace); 1807 1808 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1809 "Legal addressing mode has an illegal cost!"); 1810 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1811 } 1812 case LSRUse::ICmpZero: 1813 case LSRUse::Basic: 1814 case LSRUse::Special: 1815 // The use is completely folded, i.e., everything is folded into the 1816 // instruction. 1817 return 0; 1818 } 1819 1820 llvm_unreachable("Invalid LSRUse Kind!"); 1821 } 1822 1823 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1824 LSRUse::KindType Kind, MemAccessTy AccessTy, 1825 GlobalValue *BaseGV, int64_t BaseOffset, 1826 bool HasBaseReg) { 1827 // Fast-path: zero is always foldable. 1828 if (BaseOffset == 0 && !BaseGV) return true; 1829 1830 // Conservatively, create an address with an immediate and a 1831 // base and a scale. 1832 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1833 1834 // Canonicalize a scale of 1 to a base register if the formula doesn't 1835 // already have a base register. 1836 if (!HasBaseReg && Scale == 1) { 1837 Scale = 0; 1838 HasBaseReg = true; 1839 } 1840 1841 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1842 HasBaseReg, Scale); 1843 } 1844 1845 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1846 ScalarEvolution &SE, int64_t MinOffset, 1847 int64_t MaxOffset, LSRUse::KindType Kind, 1848 MemAccessTy AccessTy, const SCEV *S, 1849 bool HasBaseReg) { 1850 // Fast-path: zero is always foldable. 1851 if (S->isZero()) return true; 1852 1853 // Conservatively, create an address with an immediate and a 1854 // base and a scale. 1855 int64_t BaseOffset = ExtractImmediate(S, SE); 1856 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1857 1858 // If there's anything else involved, it's not foldable. 1859 if (!S->isZero()) return false; 1860 1861 // Fast-path: zero is always foldable. 1862 if (BaseOffset == 0 && !BaseGV) return true; 1863 1864 // Conservatively, create an address with an immediate and a 1865 // base and a scale. 1866 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1867 1868 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1869 BaseOffset, HasBaseReg, Scale); 1870 } 1871 1872 namespace { 1873 1874 /// An individual increment in a Chain of IV increments. Relate an IV user to 1875 /// an expression that computes the IV it uses from the IV used by the previous 1876 /// link in the Chain. 1877 /// 1878 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1879 /// original IVOperand. The head of the chain's IVOperand is only valid during 1880 /// chain collection, before LSR replaces IV users. During chain generation, 1881 /// IncExpr can be used to find the new IVOperand that computes the same 1882 /// expression. 1883 struct IVInc { 1884 Instruction *UserInst; 1885 Value* IVOperand; 1886 const SCEV *IncExpr; 1887 1888 IVInc(Instruction *U, Value *O, const SCEV *E) 1889 : UserInst(U), IVOperand(O), IncExpr(E) {} 1890 }; 1891 1892 // The list of IV increments in program order. We typically add the head of a 1893 // chain without finding subsequent links. 1894 struct IVChain { 1895 SmallVector<IVInc, 1> Incs; 1896 const SCEV *ExprBase = nullptr; 1897 1898 IVChain() = default; 1899 IVChain(const IVInc &Head, const SCEV *Base) 1900 : Incs(1, Head), ExprBase(Base) {} 1901 1902 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1903 1904 // Return the first increment in the chain. 1905 const_iterator begin() const { 1906 assert(!Incs.empty()); 1907 return std::next(Incs.begin()); 1908 } 1909 const_iterator end() const { 1910 return Incs.end(); 1911 } 1912 1913 // Returns true if this chain contains any increments. 1914 bool hasIncs() const { return Incs.size() >= 2; } 1915 1916 // Add an IVInc to the end of this chain. 1917 void add(const IVInc &X) { Incs.push_back(X); } 1918 1919 // Returns the last UserInst in the chain. 1920 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1921 1922 // Returns true if IncExpr can be profitably added to this chain. 1923 bool isProfitableIncrement(const SCEV *OperExpr, 1924 const SCEV *IncExpr, 1925 ScalarEvolution&); 1926 }; 1927 1928 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1929 /// between FarUsers that definitely cross IV increments and NearUsers that may 1930 /// be used between IV increments. 1931 struct ChainUsers { 1932 SmallPtrSet<Instruction*, 4> FarUsers; 1933 SmallPtrSet<Instruction*, 4> NearUsers; 1934 }; 1935 1936 /// This class holds state for the main loop strength reduction logic. 1937 class LSRInstance { 1938 IVUsers &IU; 1939 ScalarEvolution &SE; 1940 DominatorTree &DT; 1941 LoopInfo &LI; 1942 AssumptionCache &AC; 1943 TargetLibraryInfo &TLI; 1944 const TargetTransformInfo &TTI; 1945 Loop *const L; 1946 MemorySSAUpdater *MSSAU; 1947 TTI::AddressingModeKind AMK; 1948 bool Changed = false; 1949 1950 /// This is the insert position that the current loop's induction variable 1951 /// increment should be placed. In simple loops, this is the latch block's 1952 /// terminator. But in more complicated cases, this is a position which will 1953 /// dominate all the in-loop post-increment users. 1954 Instruction *IVIncInsertPos = nullptr; 1955 1956 /// Interesting factors between use strides. 1957 /// 1958 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1959 /// default, a SmallDenseSet, because we need to use the full range of 1960 /// int64_ts, and there's currently no good way of doing that with 1961 /// SmallDenseSet. 1962 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1963 1964 /// Interesting use types, to facilitate truncation reuse. 1965 SmallSetVector<Type *, 4> Types; 1966 1967 /// The list of interesting uses. 1968 mutable SmallVector<LSRUse, 16> Uses; 1969 1970 /// Track which uses use which register candidates. 1971 RegUseTracker RegUses; 1972 1973 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1974 // have more than a few IV increment chains in a loop. Missing a Chain falls 1975 // back to normal LSR behavior for those uses. 1976 static const unsigned MaxChains = 8; 1977 1978 /// IV users can form a chain of IV increments. 1979 SmallVector<IVChain, MaxChains> IVChainVec; 1980 1981 /// IV users that belong to profitable IVChains. 1982 SmallPtrSet<Use*, MaxChains> IVIncSet; 1983 1984 void OptimizeShadowIV(); 1985 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1986 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1987 void OptimizeLoopTermCond(); 1988 1989 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1990 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1991 void FinalizeChain(IVChain &Chain); 1992 void CollectChains(); 1993 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1994 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1995 1996 void CollectInterestingTypesAndFactors(); 1997 void CollectFixupsAndInitialFormulae(); 1998 1999 // Support for sharing of LSRUses between LSRFixups. 2000 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2001 UseMapTy UseMap; 2002 2003 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2004 LSRUse::KindType Kind, MemAccessTy AccessTy); 2005 2006 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2007 MemAccessTy AccessTy); 2008 2009 void DeleteUse(LSRUse &LU, size_t LUIdx); 2010 2011 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2012 2013 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2014 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2015 void CountRegisters(const Formula &F, size_t LUIdx); 2016 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2017 2018 void CollectLoopInvariantFixupsAndFormulae(); 2019 2020 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2021 unsigned Depth = 0); 2022 2023 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2024 const Formula &Base, unsigned Depth, 2025 size_t Idx, bool IsScaledReg = false); 2026 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2027 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2028 const Formula &Base, size_t Idx, 2029 bool IsScaledReg = false); 2030 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2031 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2032 const Formula &Base, 2033 const SmallVectorImpl<int64_t> &Worklist, 2034 size_t Idx, bool IsScaledReg = false); 2035 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2036 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2037 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2038 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2039 void GenerateCrossUseConstantOffsets(); 2040 void GenerateAllReuseFormulae(); 2041 2042 void FilterOutUndesirableDedicatedRegisters(); 2043 2044 size_t EstimateSearchSpaceComplexity() const; 2045 void NarrowSearchSpaceByDetectingSupersets(); 2046 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2047 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2048 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2049 void NarrowSearchSpaceByFilterPostInc(); 2050 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2051 void NarrowSearchSpaceByPickingWinnerRegs(); 2052 void NarrowSearchSpaceUsingHeuristics(); 2053 2054 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2055 Cost &SolutionCost, 2056 SmallVectorImpl<const Formula *> &Workspace, 2057 const Cost &CurCost, 2058 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2059 DenseSet<const SCEV *> &VisitedRegs) const; 2060 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2061 2062 BasicBlock::iterator 2063 HoistInsertPosition(BasicBlock::iterator IP, 2064 const SmallVectorImpl<Instruction *> &Inputs) const; 2065 BasicBlock::iterator 2066 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2067 const LSRFixup &LF, 2068 const LSRUse &LU, 2069 SCEVExpander &Rewriter) const; 2070 2071 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2072 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2073 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2074 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2075 const Formula &F, SCEVExpander &Rewriter, 2076 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2077 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2078 SCEVExpander &Rewriter, 2079 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2080 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2081 2082 public: 2083 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2084 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2085 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2086 2087 bool getChanged() const { return Changed; } 2088 2089 void print_factors_and_types(raw_ostream &OS) const; 2090 void print_fixups(raw_ostream &OS) const; 2091 void print_uses(raw_ostream &OS) const; 2092 void print(raw_ostream &OS) const; 2093 void dump() const; 2094 }; 2095 2096 } // end anonymous namespace 2097 2098 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2099 /// the cast operation. 2100 void LSRInstance::OptimizeShadowIV() { 2101 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2102 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2103 return; 2104 2105 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2106 UI != E; /* empty */) { 2107 IVUsers::const_iterator CandidateUI = UI; 2108 ++UI; 2109 Instruction *ShadowUse = CandidateUI->getUser(); 2110 Type *DestTy = nullptr; 2111 bool IsSigned = false; 2112 2113 /* If shadow use is a int->float cast then insert a second IV 2114 to eliminate this cast. 2115 2116 for (unsigned i = 0; i < n; ++i) 2117 foo((double)i); 2118 2119 is transformed into 2120 2121 double d = 0.0; 2122 for (unsigned i = 0; i < n; ++i, ++d) 2123 foo(d); 2124 */ 2125 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2126 IsSigned = false; 2127 DestTy = UCast->getDestTy(); 2128 } 2129 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2130 IsSigned = true; 2131 DestTy = SCast->getDestTy(); 2132 } 2133 if (!DestTy) continue; 2134 2135 // If target does not support DestTy natively then do not apply 2136 // this transformation. 2137 if (!TTI.isTypeLegal(DestTy)) continue; 2138 2139 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2140 if (!PH) continue; 2141 if (PH->getNumIncomingValues() != 2) continue; 2142 2143 // If the calculation in integers overflows, the result in FP type will 2144 // differ. So we only can do this transformation if we are guaranteed to not 2145 // deal with overflowing values 2146 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2147 if (!AR) continue; 2148 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2149 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2150 2151 Type *SrcTy = PH->getType(); 2152 int Mantissa = DestTy->getFPMantissaWidth(); 2153 if (Mantissa == -1) continue; 2154 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2155 continue; 2156 2157 unsigned Entry, Latch; 2158 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2159 Entry = 0; 2160 Latch = 1; 2161 } else { 2162 Entry = 1; 2163 Latch = 0; 2164 } 2165 2166 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2167 if (!Init) continue; 2168 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2169 (double)Init->getSExtValue() : 2170 (double)Init->getZExtValue()); 2171 2172 BinaryOperator *Incr = 2173 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2174 if (!Incr) continue; 2175 if (Incr->getOpcode() != Instruction::Add 2176 && Incr->getOpcode() != Instruction::Sub) 2177 continue; 2178 2179 /* Initialize new IV, double d = 0.0 in above example. */ 2180 ConstantInt *C = nullptr; 2181 if (Incr->getOperand(0) == PH) 2182 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2183 else if (Incr->getOperand(1) == PH) 2184 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2185 else 2186 continue; 2187 2188 if (!C) continue; 2189 2190 // Ignore negative constants, as the code below doesn't handle them 2191 // correctly. TODO: Remove this restriction. 2192 if (!C->getValue().isStrictlyPositive()) continue; 2193 2194 /* Add new PHINode. */ 2195 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2196 2197 /* create new increment. '++d' in above example. */ 2198 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2199 BinaryOperator *NewIncr = 2200 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2201 Instruction::FAdd : Instruction::FSub, 2202 NewPH, CFP, "IV.S.next.", Incr); 2203 2204 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2205 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2206 2207 /* Remove cast operation */ 2208 ShadowUse->replaceAllUsesWith(NewPH); 2209 ShadowUse->eraseFromParent(); 2210 Changed = true; 2211 break; 2212 } 2213 } 2214 2215 /// If Cond has an operand that is an expression of an IV, set the IV user and 2216 /// stride information and return true, otherwise return false. 2217 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2218 for (IVStrideUse &U : IU) 2219 if (U.getUser() == Cond) { 2220 // NOTE: we could handle setcc instructions with multiple uses here, but 2221 // InstCombine does it as well for simple uses, it's not clear that it 2222 // occurs enough in real life to handle. 2223 CondUse = &U; 2224 return true; 2225 } 2226 return false; 2227 } 2228 2229 /// Rewrite the loop's terminating condition if it uses a max computation. 2230 /// 2231 /// This is a narrow solution to a specific, but acute, problem. For loops 2232 /// like this: 2233 /// 2234 /// i = 0; 2235 /// do { 2236 /// p[i] = 0.0; 2237 /// } while (++i < n); 2238 /// 2239 /// the trip count isn't just 'n', because 'n' might not be positive. And 2240 /// unfortunately this can come up even for loops where the user didn't use 2241 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2242 /// will commonly be lowered like this: 2243 /// 2244 /// if (n > 0) { 2245 /// i = 0; 2246 /// do { 2247 /// p[i] = 0.0; 2248 /// } while (++i < n); 2249 /// } 2250 /// 2251 /// and then it's possible for subsequent optimization to obscure the if 2252 /// test in such a way that indvars can't find it. 2253 /// 2254 /// When indvars can't find the if test in loops like this, it creates a 2255 /// max expression, which allows it to give the loop a canonical 2256 /// induction variable: 2257 /// 2258 /// i = 0; 2259 /// max = n < 1 ? 1 : n; 2260 /// do { 2261 /// p[i] = 0.0; 2262 /// } while (++i != max); 2263 /// 2264 /// Canonical induction variables are necessary because the loop passes 2265 /// are designed around them. The most obvious example of this is the 2266 /// LoopInfo analysis, which doesn't remember trip count values. It 2267 /// expects to be able to rediscover the trip count each time it is 2268 /// needed, and it does this using a simple analysis that only succeeds if 2269 /// the loop has a canonical induction variable. 2270 /// 2271 /// However, when it comes time to generate code, the maximum operation 2272 /// can be quite costly, especially if it's inside of an outer loop. 2273 /// 2274 /// This function solves this problem by detecting this type of loop and 2275 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2276 /// the instructions for the maximum computation. 2277 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2278 // Check that the loop matches the pattern we're looking for. 2279 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2280 Cond->getPredicate() != CmpInst::ICMP_NE) 2281 return Cond; 2282 2283 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2284 if (!Sel || !Sel->hasOneUse()) return Cond; 2285 2286 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2287 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2288 return Cond; 2289 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2290 2291 // Add one to the backedge-taken count to get the trip count. 2292 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2293 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2294 2295 // Check for a max calculation that matches the pattern. There's no check 2296 // for ICMP_ULE here because the comparison would be with zero, which 2297 // isn't interesting. 2298 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2299 const SCEVNAryExpr *Max = nullptr; 2300 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2301 Pred = ICmpInst::ICMP_SLE; 2302 Max = S; 2303 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2304 Pred = ICmpInst::ICMP_SLT; 2305 Max = S; 2306 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2307 Pred = ICmpInst::ICMP_ULT; 2308 Max = U; 2309 } else { 2310 // No match; bail. 2311 return Cond; 2312 } 2313 2314 // To handle a max with more than two operands, this optimization would 2315 // require additional checking and setup. 2316 if (Max->getNumOperands() != 2) 2317 return Cond; 2318 2319 const SCEV *MaxLHS = Max->getOperand(0); 2320 const SCEV *MaxRHS = Max->getOperand(1); 2321 2322 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2323 // for a comparison with 1. For <= and >=, a comparison with zero. 2324 if (!MaxLHS || 2325 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2326 return Cond; 2327 2328 // Check the relevant induction variable for conformance to 2329 // the pattern. 2330 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2331 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2332 if (!AR || !AR->isAffine() || 2333 AR->getStart() != One || 2334 AR->getStepRecurrence(SE) != One) 2335 return Cond; 2336 2337 assert(AR->getLoop() == L && 2338 "Loop condition operand is an addrec in a different loop!"); 2339 2340 // Check the right operand of the select, and remember it, as it will 2341 // be used in the new comparison instruction. 2342 Value *NewRHS = nullptr; 2343 if (ICmpInst::isTrueWhenEqual(Pred)) { 2344 // Look for n+1, and grab n. 2345 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2346 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2347 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2348 NewRHS = BO->getOperand(0); 2349 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2350 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2351 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2352 NewRHS = BO->getOperand(0); 2353 if (!NewRHS) 2354 return Cond; 2355 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2356 NewRHS = Sel->getOperand(1); 2357 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2358 NewRHS = Sel->getOperand(2); 2359 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2360 NewRHS = SU->getValue(); 2361 else 2362 // Max doesn't match expected pattern. 2363 return Cond; 2364 2365 // Determine the new comparison opcode. It may be signed or unsigned, 2366 // and the original comparison may be either equality or inequality. 2367 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2368 Pred = CmpInst::getInversePredicate(Pred); 2369 2370 // Ok, everything looks ok to change the condition into an SLT or SGE and 2371 // delete the max calculation. 2372 ICmpInst *NewCond = 2373 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2374 2375 // Delete the max calculation instructions. 2376 NewCond->setDebugLoc(Cond->getDebugLoc()); 2377 Cond->replaceAllUsesWith(NewCond); 2378 CondUse->setUser(NewCond); 2379 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2380 Cond->eraseFromParent(); 2381 Sel->eraseFromParent(); 2382 if (Cmp->use_empty()) 2383 Cmp->eraseFromParent(); 2384 return NewCond; 2385 } 2386 2387 /// Change loop terminating condition to use the postinc iv when possible. 2388 void 2389 LSRInstance::OptimizeLoopTermCond() { 2390 SmallPtrSet<Instruction *, 4> PostIncs; 2391 2392 // We need a different set of heuristics for rotated and non-rotated loops. 2393 // If a loop is rotated then the latch is also the backedge, so inserting 2394 // post-inc expressions just before the latch is ideal. To reduce live ranges 2395 // it also makes sense to rewrite terminating conditions to use post-inc 2396 // expressions. 2397 // 2398 // If the loop is not rotated then the latch is not a backedge; the latch 2399 // check is done in the loop head. Adding post-inc expressions before the 2400 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2401 // in the loop body. In this case we do *not* want to use post-inc expressions 2402 // in the latch check, and we want to insert post-inc expressions before 2403 // the backedge. 2404 BasicBlock *LatchBlock = L->getLoopLatch(); 2405 SmallVector<BasicBlock*, 8> ExitingBlocks; 2406 L->getExitingBlocks(ExitingBlocks); 2407 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2408 return LatchBlock != BB; 2409 })) { 2410 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2411 IVIncInsertPos = LatchBlock->getTerminator(); 2412 return; 2413 } 2414 2415 // Otherwise treat this as a rotated loop. 2416 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2417 // Get the terminating condition for the loop if possible. If we 2418 // can, we want to change it to use a post-incremented version of its 2419 // induction variable, to allow coalescing the live ranges for the IV into 2420 // one register value. 2421 2422 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2423 if (!TermBr) 2424 continue; 2425 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2426 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2427 continue; 2428 2429 // Search IVUsesByStride to find Cond's IVUse if there is one. 2430 IVStrideUse *CondUse = nullptr; 2431 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2432 if (!FindIVUserForCond(Cond, CondUse)) 2433 continue; 2434 2435 // If the trip count is computed in terms of a max (due to ScalarEvolution 2436 // being unable to find a sufficient guard, for example), change the loop 2437 // comparison to use SLT or ULT instead of NE. 2438 // One consequence of doing this now is that it disrupts the count-down 2439 // optimization. That's not always a bad thing though, because in such 2440 // cases it may still be worthwhile to avoid a max. 2441 Cond = OptimizeMax(Cond, CondUse); 2442 2443 // If this exiting block dominates the latch block, it may also use 2444 // the post-inc value if it won't be shared with other uses. 2445 // Check for dominance. 2446 if (!DT.dominates(ExitingBlock, LatchBlock)) 2447 continue; 2448 2449 // Conservatively avoid trying to use the post-inc value in non-latch 2450 // exits if there may be pre-inc users in intervening blocks. 2451 if (LatchBlock != ExitingBlock) 2452 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2453 // Test if the use is reachable from the exiting block. This dominator 2454 // query is a conservative approximation of reachability. 2455 if (&*UI != CondUse && 2456 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2457 // Conservatively assume there may be reuse if the quotient of their 2458 // strides could be a legal scale. 2459 const SCEV *A = IU.getStride(*CondUse, L); 2460 const SCEV *B = IU.getStride(*UI, L); 2461 if (!A || !B) continue; 2462 if (SE.getTypeSizeInBits(A->getType()) != 2463 SE.getTypeSizeInBits(B->getType())) { 2464 if (SE.getTypeSizeInBits(A->getType()) > 2465 SE.getTypeSizeInBits(B->getType())) 2466 B = SE.getSignExtendExpr(B, A->getType()); 2467 else 2468 A = SE.getSignExtendExpr(A, B->getType()); 2469 } 2470 if (const SCEVConstant *D = 2471 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2472 const ConstantInt *C = D->getValue(); 2473 // Stride of one or negative one can have reuse with non-addresses. 2474 if (C->isOne() || C->isMinusOne()) 2475 goto decline_post_inc; 2476 // Avoid weird situations. 2477 if (C->getValue().getMinSignedBits() >= 64 || 2478 C->getValue().isMinSignedValue()) 2479 goto decline_post_inc; 2480 // Check for possible scaled-address reuse. 2481 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2482 MemAccessTy AccessTy = getAccessType( 2483 TTI, UI->getUser(), UI->getOperandValToReplace()); 2484 int64_t Scale = C->getSExtValue(); 2485 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2486 /*BaseOffset=*/0, 2487 /*HasBaseReg=*/false, Scale, 2488 AccessTy.AddrSpace)) 2489 goto decline_post_inc; 2490 Scale = -Scale; 2491 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2492 /*BaseOffset=*/0, 2493 /*HasBaseReg=*/false, Scale, 2494 AccessTy.AddrSpace)) 2495 goto decline_post_inc; 2496 } 2497 } 2498 } 2499 2500 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2501 << *Cond << '\n'); 2502 2503 // It's possible for the setcc instruction to be anywhere in the loop, and 2504 // possible for it to have multiple users. If it is not immediately before 2505 // the exiting block branch, move it. 2506 if (Cond->getNextNonDebugInstruction() != TermBr) { 2507 if (Cond->hasOneUse()) { 2508 Cond->moveBefore(TermBr); 2509 } else { 2510 // Clone the terminating condition and insert into the loopend. 2511 ICmpInst *OldCond = Cond; 2512 Cond = cast<ICmpInst>(Cond->clone()); 2513 Cond->setName(L->getHeader()->getName() + ".termcond"); 2514 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2515 2516 // Clone the IVUse, as the old use still exists! 2517 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2518 TermBr->replaceUsesOfWith(OldCond, Cond); 2519 } 2520 } 2521 2522 // If we get to here, we know that we can transform the setcc instruction to 2523 // use the post-incremented version of the IV, allowing us to coalesce the 2524 // live ranges for the IV correctly. 2525 CondUse->transformToPostInc(L); 2526 Changed = true; 2527 2528 PostIncs.insert(Cond); 2529 decline_post_inc:; 2530 } 2531 2532 // Determine an insertion point for the loop induction variable increment. It 2533 // must dominate all the post-inc comparisons we just set up, and it must 2534 // dominate the loop latch edge. 2535 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2536 for (Instruction *Inst : PostIncs) { 2537 BasicBlock *BB = 2538 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2539 Inst->getParent()); 2540 if (BB == Inst->getParent()) 2541 IVIncInsertPos = Inst; 2542 else if (BB != IVIncInsertPos->getParent()) 2543 IVIncInsertPos = BB->getTerminator(); 2544 } 2545 } 2546 2547 /// Determine if the given use can accommodate a fixup at the given offset and 2548 /// other details. If so, update the use and return true. 2549 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2550 bool HasBaseReg, LSRUse::KindType Kind, 2551 MemAccessTy AccessTy) { 2552 int64_t NewMinOffset = LU.MinOffset; 2553 int64_t NewMaxOffset = LU.MaxOffset; 2554 MemAccessTy NewAccessTy = AccessTy; 2555 2556 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2557 // something conservative, however this can pessimize in the case that one of 2558 // the uses will have all its uses outside the loop, for example. 2559 if (LU.Kind != Kind) 2560 return false; 2561 2562 // Check for a mismatched access type, and fall back conservatively as needed. 2563 // TODO: Be less conservative when the type is similar and can use the same 2564 // addressing modes. 2565 if (Kind == LSRUse::Address) { 2566 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2567 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2568 AccessTy.AddrSpace); 2569 } 2570 } 2571 2572 // Conservatively assume HasBaseReg is true for now. 2573 if (NewOffset < LU.MinOffset) { 2574 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2575 LU.MaxOffset - NewOffset, HasBaseReg)) 2576 return false; 2577 NewMinOffset = NewOffset; 2578 } else if (NewOffset > LU.MaxOffset) { 2579 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2580 NewOffset - LU.MinOffset, HasBaseReg)) 2581 return false; 2582 NewMaxOffset = NewOffset; 2583 } 2584 2585 // Update the use. 2586 LU.MinOffset = NewMinOffset; 2587 LU.MaxOffset = NewMaxOffset; 2588 LU.AccessTy = NewAccessTy; 2589 return true; 2590 } 2591 2592 /// Return an LSRUse index and an offset value for a fixup which needs the given 2593 /// expression, with the given kind and optional access type. Either reuse an 2594 /// existing use or create a new one, as needed. 2595 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2596 LSRUse::KindType Kind, 2597 MemAccessTy AccessTy) { 2598 const SCEV *Copy = Expr; 2599 int64_t Offset = ExtractImmediate(Expr, SE); 2600 2601 // Basic uses can't accept any offset, for example. 2602 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2603 Offset, /*HasBaseReg=*/ true)) { 2604 Expr = Copy; 2605 Offset = 0; 2606 } 2607 2608 std::pair<UseMapTy::iterator, bool> P = 2609 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2610 if (!P.second) { 2611 // A use already existed with this base. 2612 size_t LUIdx = P.first->second; 2613 LSRUse &LU = Uses[LUIdx]; 2614 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2615 // Reuse this use. 2616 return std::make_pair(LUIdx, Offset); 2617 } 2618 2619 // Create a new use. 2620 size_t LUIdx = Uses.size(); 2621 P.first->second = LUIdx; 2622 Uses.push_back(LSRUse(Kind, AccessTy)); 2623 LSRUse &LU = Uses[LUIdx]; 2624 2625 LU.MinOffset = Offset; 2626 LU.MaxOffset = Offset; 2627 return std::make_pair(LUIdx, Offset); 2628 } 2629 2630 /// Delete the given use from the Uses list. 2631 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2632 if (&LU != &Uses.back()) 2633 std::swap(LU, Uses.back()); 2634 Uses.pop_back(); 2635 2636 // Update RegUses. 2637 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2638 } 2639 2640 /// Look for a use distinct from OrigLU which is has a formula that has the same 2641 /// registers as the given formula. 2642 LSRUse * 2643 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2644 const LSRUse &OrigLU) { 2645 // Search all uses for the formula. This could be more clever. 2646 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2647 LSRUse &LU = Uses[LUIdx]; 2648 // Check whether this use is close enough to OrigLU, to see whether it's 2649 // worthwhile looking through its formulae. 2650 // Ignore ICmpZero uses because they may contain formulae generated by 2651 // GenerateICmpZeroScales, in which case adding fixup offsets may 2652 // be invalid. 2653 if (&LU != &OrigLU && 2654 LU.Kind != LSRUse::ICmpZero && 2655 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2656 LU.WidestFixupType == OrigLU.WidestFixupType && 2657 LU.HasFormulaWithSameRegs(OrigF)) { 2658 // Scan through this use's formulae. 2659 for (const Formula &F : LU.Formulae) { 2660 // Check to see if this formula has the same registers and symbols 2661 // as OrigF. 2662 if (F.BaseRegs == OrigF.BaseRegs && 2663 F.ScaledReg == OrigF.ScaledReg && 2664 F.BaseGV == OrigF.BaseGV && 2665 F.Scale == OrigF.Scale && 2666 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2667 if (F.BaseOffset == 0) 2668 return &LU; 2669 // This is the formula where all the registers and symbols matched; 2670 // there aren't going to be any others. Since we declined it, we 2671 // can skip the rest of the formulae and proceed to the next LSRUse. 2672 break; 2673 } 2674 } 2675 } 2676 } 2677 2678 // Nothing looked good. 2679 return nullptr; 2680 } 2681 2682 void LSRInstance::CollectInterestingTypesAndFactors() { 2683 SmallSetVector<const SCEV *, 4> Strides; 2684 2685 // Collect interesting types and strides. 2686 SmallVector<const SCEV *, 4> Worklist; 2687 for (const IVStrideUse &U : IU) { 2688 const SCEV *Expr = IU.getExpr(U); 2689 2690 // Collect interesting types. 2691 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2692 2693 // Add strides for mentioned loops. 2694 Worklist.push_back(Expr); 2695 do { 2696 const SCEV *S = Worklist.pop_back_val(); 2697 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2698 if (AR->getLoop() == L) 2699 Strides.insert(AR->getStepRecurrence(SE)); 2700 Worklist.push_back(AR->getStart()); 2701 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2702 Worklist.append(Add->op_begin(), Add->op_end()); 2703 } 2704 } while (!Worklist.empty()); 2705 } 2706 2707 // Compute interesting factors from the set of interesting strides. 2708 for (SmallSetVector<const SCEV *, 4>::const_iterator 2709 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2710 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2711 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2712 const SCEV *OldStride = *I; 2713 const SCEV *NewStride = *NewStrideIter; 2714 2715 if (SE.getTypeSizeInBits(OldStride->getType()) != 2716 SE.getTypeSizeInBits(NewStride->getType())) { 2717 if (SE.getTypeSizeInBits(OldStride->getType()) > 2718 SE.getTypeSizeInBits(NewStride->getType())) 2719 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2720 else 2721 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2722 } 2723 if (const SCEVConstant *Factor = 2724 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2725 SE, true))) { 2726 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2727 Factors.insert(Factor->getAPInt().getSExtValue()); 2728 } else if (const SCEVConstant *Factor = 2729 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2730 NewStride, 2731 SE, true))) { 2732 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2733 Factors.insert(Factor->getAPInt().getSExtValue()); 2734 } 2735 } 2736 2737 // If all uses use the same type, don't bother looking for truncation-based 2738 // reuse. 2739 if (Types.size() == 1) 2740 Types.clear(); 2741 2742 LLVM_DEBUG(print_factors_and_types(dbgs())); 2743 } 2744 2745 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2746 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2747 /// IVStrideUses, we could partially skip this. 2748 static User::op_iterator 2749 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2750 Loop *L, ScalarEvolution &SE) { 2751 for(; OI != OE; ++OI) { 2752 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2753 if (!SE.isSCEVable(Oper->getType())) 2754 continue; 2755 2756 if (const SCEVAddRecExpr *AR = 2757 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2758 if (AR->getLoop() == L) 2759 break; 2760 } 2761 } 2762 } 2763 return OI; 2764 } 2765 2766 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2767 /// a convenient helper. 2768 static Value *getWideOperand(Value *Oper) { 2769 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2770 return Trunc->getOperand(0); 2771 return Oper; 2772 } 2773 2774 /// Return true if we allow an IV chain to include both types. 2775 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2776 Type *LType = LVal->getType(); 2777 Type *RType = RVal->getType(); 2778 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2779 // Different address spaces means (possibly) 2780 // different types of the pointer implementation, 2781 // e.g. i16 vs i32 so disallow that. 2782 (LType->getPointerAddressSpace() == 2783 RType->getPointerAddressSpace())); 2784 } 2785 2786 /// Return an approximation of this SCEV expression's "base", or NULL for any 2787 /// constant. Returning the expression itself is conservative. Returning a 2788 /// deeper subexpression is more precise and valid as long as it isn't less 2789 /// complex than another subexpression. For expressions involving multiple 2790 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2791 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2792 /// IVInc==b-a. 2793 /// 2794 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2795 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2796 static const SCEV *getExprBase(const SCEV *S) { 2797 switch (S->getSCEVType()) { 2798 default: // uncluding scUnknown. 2799 return S; 2800 case scConstant: 2801 return nullptr; 2802 case scTruncate: 2803 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2804 case scZeroExtend: 2805 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2806 case scSignExtend: 2807 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2808 case scAddExpr: { 2809 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2810 // there's nothing more complex. 2811 // FIXME: not sure if we want to recognize negation. 2812 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2813 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2814 E(Add->op_begin()); I != E; ++I) { 2815 const SCEV *SubExpr = *I; 2816 if (SubExpr->getSCEVType() == scAddExpr) 2817 return getExprBase(SubExpr); 2818 2819 if (SubExpr->getSCEVType() != scMulExpr) 2820 return SubExpr; 2821 } 2822 return S; // all operands are scaled, be conservative. 2823 } 2824 case scAddRecExpr: 2825 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2826 } 2827 llvm_unreachable("Unknown SCEV kind!"); 2828 } 2829 2830 /// Return true if the chain increment is profitable to expand into a loop 2831 /// invariant value, which may require its own register. A profitable chain 2832 /// increment will be an offset relative to the same base. We allow such offsets 2833 /// to potentially be used as chain increment as long as it's not obviously 2834 /// expensive to expand using real instructions. 2835 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2836 const SCEV *IncExpr, 2837 ScalarEvolution &SE) { 2838 // Aggressively form chains when -stress-ivchain. 2839 if (StressIVChain) 2840 return true; 2841 2842 // Do not replace a constant offset from IV head with a nonconstant IV 2843 // increment. 2844 if (!isa<SCEVConstant>(IncExpr)) { 2845 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2846 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2847 return false; 2848 } 2849 2850 SmallPtrSet<const SCEV*, 8> Processed; 2851 return !isHighCostExpansion(IncExpr, Processed, SE); 2852 } 2853 2854 /// Return true if the number of registers needed for the chain is estimated to 2855 /// be less than the number required for the individual IV users. First prohibit 2856 /// any IV users that keep the IV live across increments (the Users set should 2857 /// be empty). Next count the number and type of increments in the chain. 2858 /// 2859 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2860 /// effectively use postinc addressing modes. Only consider it profitable it the 2861 /// increments can be computed in fewer registers when chained. 2862 /// 2863 /// TODO: Consider IVInc free if it's already used in another chains. 2864 static bool isProfitableChain(IVChain &Chain, 2865 SmallPtrSetImpl<Instruction *> &Users, 2866 ScalarEvolution &SE, 2867 const TargetTransformInfo &TTI) { 2868 if (StressIVChain) 2869 return true; 2870 2871 if (!Chain.hasIncs()) 2872 return false; 2873 2874 if (!Users.empty()) { 2875 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2876 for (Instruction *Inst 2877 : Users) { dbgs() << " " << *Inst << "\n"; }); 2878 return false; 2879 } 2880 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2881 2882 // The chain itself may require a register, so intialize cost to 1. 2883 int cost = 1; 2884 2885 // A complete chain likely eliminates the need for keeping the original IV in 2886 // a register. LSR does not currently know how to form a complete chain unless 2887 // the header phi already exists. 2888 if (isa<PHINode>(Chain.tailUserInst()) 2889 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2890 --cost; 2891 } 2892 const SCEV *LastIncExpr = nullptr; 2893 unsigned NumConstIncrements = 0; 2894 unsigned NumVarIncrements = 0; 2895 unsigned NumReusedIncrements = 0; 2896 2897 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2898 return true; 2899 2900 for (const IVInc &Inc : Chain) { 2901 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2902 return true; 2903 if (Inc.IncExpr->isZero()) 2904 continue; 2905 2906 // Incrementing by zero or some constant is neutral. We assume constants can 2907 // be folded into an addressing mode or an add's immediate operand. 2908 if (isa<SCEVConstant>(Inc.IncExpr)) { 2909 ++NumConstIncrements; 2910 continue; 2911 } 2912 2913 if (Inc.IncExpr == LastIncExpr) 2914 ++NumReusedIncrements; 2915 else 2916 ++NumVarIncrements; 2917 2918 LastIncExpr = Inc.IncExpr; 2919 } 2920 // An IV chain with a single increment is handled by LSR's postinc 2921 // uses. However, a chain with multiple increments requires keeping the IV's 2922 // value live longer than it needs to be if chained. 2923 if (NumConstIncrements > 1) 2924 --cost; 2925 2926 // Materializing increment expressions in the preheader that didn't exist in 2927 // the original code may cost a register. For example, sign-extended array 2928 // indices can produce ridiculous increments like this: 2929 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2930 cost += NumVarIncrements; 2931 2932 // Reusing variable increments likely saves a register to hold the multiple of 2933 // the stride. 2934 cost -= NumReusedIncrements; 2935 2936 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2937 << "\n"); 2938 2939 return cost < 0; 2940 } 2941 2942 /// Add this IV user to an existing chain or make it the head of a new chain. 2943 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2944 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2945 // When IVs are used as types of varying widths, they are generally converted 2946 // to a wider type with some uses remaining narrow under a (free) trunc. 2947 Value *const NextIV = getWideOperand(IVOper); 2948 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2949 const SCEV *const OperExprBase = getExprBase(OperExpr); 2950 2951 // Visit all existing chains. Check if its IVOper can be computed as a 2952 // profitable loop invariant increment from the last link in the Chain. 2953 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2954 const SCEV *LastIncExpr = nullptr; 2955 for (; ChainIdx < NChains; ++ChainIdx) { 2956 IVChain &Chain = IVChainVec[ChainIdx]; 2957 2958 // Prune the solution space aggressively by checking that both IV operands 2959 // are expressions that operate on the same unscaled SCEVUnknown. This 2960 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2961 // first avoids creating extra SCEV expressions. 2962 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2963 continue; 2964 2965 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2966 if (!isCompatibleIVType(PrevIV, NextIV)) 2967 continue; 2968 2969 // A phi node terminates a chain. 2970 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2971 continue; 2972 2973 // The increment must be loop-invariant so it can be kept in a register. 2974 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2975 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2976 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2977 continue; 2978 2979 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2980 LastIncExpr = IncExpr; 2981 break; 2982 } 2983 } 2984 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2985 // bother for phi nodes, because they must be last in the chain. 2986 if (ChainIdx == NChains) { 2987 if (isa<PHINode>(UserInst)) 2988 return; 2989 if (NChains >= MaxChains && !StressIVChain) { 2990 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2991 return; 2992 } 2993 LastIncExpr = OperExpr; 2994 // IVUsers may have skipped over sign/zero extensions. We don't currently 2995 // attempt to form chains involving extensions unless they can be hoisted 2996 // into this loop's AddRec. 2997 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2998 return; 2999 ++NChains; 3000 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3001 OperExprBase)); 3002 ChainUsersVec.resize(NChains); 3003 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3004 << ") IV=" << *LastIncExpr << "\n"); 3005 } else { 3006 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3007 << ") IV+" << *LastIncExpr << "\n"); 3008 // Add this IV user to the end of the chain. 3009 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3010 } 3011 IVChain &Chain = IVChainVec[ChainIdx]; 3012 3013 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3014 // This chain's NearUsers become FarUsers. 3015 if (!LastIncExpr->isZero()) { 3016 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3017 NearUsers.end()); 3018 NearUsers.clear(); 3019 } 3020 3021 // All other uses of IVOperand become near uses of the chain. 3022 // We currently ignore intermediate values within SCEV expressions, assuming 3023 // they will eventually be used be the current chain, or can be computed 3024 // from one of the chain increments. To be more precise we could 3025 // transitively follow its user and only add leaf IV users to the set. 3026 for (User *U : IVOper->users()) { 3027 Instruction *OtherUse = dyn_cast<Instruction>(U); 3028 if (!OtherUse) 3029 continue; 3030 // Uses in the chain will no longer be uses if the chain is formed. 3031 // Include the head of the chain in this iteration (not Chain.begin()). 3032 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3033 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3034 for( ; IncIter != IncEnd; ++IncIter) { 3035 if (IncIter->UserInst == OtherUse) 3036 break; 3037 } 3038 if (IncIter != IncEnd) 3039 continue; 3040 3041 if (SE.isSCEVable(OtherUse->getType()) 3042 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3043 && IU.isIVUserOrOperand(OtherUse)) { 3044 continue; 3045 } 3046 NearUsers.insert(OtherUse); 3047 } 3048 3049 // Since this user is part of the chain, it's no longer considered a use 3050 // of the chain. 3051 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3052 } 3053 3054 /// Populate the vector of Chains. 3055 /// 3056 /// This decreases ILP at the architecture level. Targets with ample registers, 3057 /// multiple memory ports, and no register renaming probably don't want 3058 /// this. However, such targets should probably disable LSR altogether. 3059 /// 3060 /// The job of LSR is to make a reasonable choice of induction variables across 3061 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3062 /// ILP *within the loop* if the target wants it. 3063 /// 3064 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3065 /// will not reorder memory operations, it will recognize this as a chain, but 3066 /// will generate redundant IV increments. Ideally this would be corrected later 3067 /// by a smart scheduler: 3068 /// = A[i] 3069 /// = A[i+x] 3070 /// A[i] = 3071 /// A[i+x] = 3072 /// 3073 /// TODO: Walk the entire domtree within this loop, not just the path to the 3074 /// loop latch. This will discover chains on side paths, but requires 3075 /// maintaining multiple copies of the Chains state. 3076 void LSRInstance::CollectChains() { 3077 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3078 SmallVector<ChainUsers, 8> ChainUsersVec; 3079 3080 SmallVector<BasicBlock *,8> LatchPath; 3081 BasicBlock *LoopHeader = L->getHeader(); 3082 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3083 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3084 LatchPath.push_back(Rung->getBlock()); 3085 } 3086 LatchPath.push_back(LoopHeader); 3087 3088 // Walk the instruction stream from the loop header to the loop latch. 3089 for (BasicBlock *BB : reverse(LatchPath)) { 3090 for (Instruction &I : *BB) { 3091 // Skip instructions that weren't seen by IVUsers analysis. 3092 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3093 continue; 3094 3095 // Ignore users that are part of a SCEV expression. This way we only 3096 // consider leaf IV Users. This effectively rediscovers a portion of 3097 // IVUsers analysis but in program order this time. 3098 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3099 continue; 3100 3101 // Remove this instruction from any NearUsers set it may be in. 3102 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3103 ChainIdx < NChains; ++ChainIdx) { 3104 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3105 } 3106 // Search for operands that can be chained. 3107 SmallPtrSet<Instruction*, 4> UniqueOperands; 3108 User::op_iterator IVOpEnd = I.op_end(); 3109 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3110 while (IVOpIter != IVOpEnd) { 3111 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3112 if (UniqueOperands.insert(IVOpInst).second) 3113 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3114 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3115 } 3116 } // Continue walking down the instructions. 3117 } // Continue walking down the domtree. 3118 // Visit phi backedges to determine if the chain can generate the IV postinc. 3119 for (PHINode &PN : L->getHeader()->phis()) { 3120 if (!SE.isSCEVable(PN.getType())) 3121 continue; 3122 3123 Instruction *IncV = 3124 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3125 if (IncV) 3126 ChainInstruction(&PN, IncV, ChainUsersVec); 3127 } 3128 // Remove any unprofitable chains. 3129 unsigned ChainIdx = 0; 3130 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3131 UsersIdx < NChains; ++UsersIdx) { 3132 if (!isProfitableChain(IVChainVec[UsersIdx], 3133 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3134 continue; 3135 // Preserve the chain at UsesIdx. 3136 if (ChainIdx != UsersIdx) 3137 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3138 FinalizeChain(IVChainVec[ChainIdx]); 3139 ++ChainIdx; 3140 } 3141 IVChainVec.resize(ChainIdx); 3142 } 3143 3144 void LSRInstance::FinalizeChain(IVChain &Chain) { 3145 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3146 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3147 3148 for (const IVInc &Inc : Chain) { 3149 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3150 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3151 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3152 IVIncSet.insert(UseI); 3153 } 3154 } 3155 3156 /// Return true if the IVInc can be folded into an addressing mode. 3157 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3158 Value *Operand, const TargetTransformInfo &TTI) { 3159 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3160 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3161 return false; 3162 3163 if (IncConst->getAPInt().getMinSignedBits() > 64) 3164 return false; 3165 3166 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3167 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3168 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3169 IncOffset, /*HasBaseReg=*/false)) 3170 return false; 3171 3172 return true; 3173 } 3174 3175 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3176 /// user's operand from the previous IV user's operand. 3177 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3178 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3179 // Find the new IVOperand for the head of the chain. It may have been replaced 3180 // by LSR. 3181 const IVInc &Head = Chain.Incs[0]; 3182 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3183 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3184 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3185 IVOpEnd, L, SE); 3186 Value *IVSrc = nullptr; 3187 while (IVOpIter != IVOpEnd) { 3188 IVSrc = getWideOperand(*IVOpIter); 3189 3190 // If this operand computes the expression that the chain needs, we may use 3191 // it. (Check this after setting IVSrc which is used below.) 3192 // 3193 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3194 // narrow for the chain, so we can no longer use it. We do allow using a 3195 // wider phi, assuming the LSR checked for free truncation. In that case we 3196 // should already have a truncate on this operand such that 3197 // getSCEV(IVSrc) == IncExpr. 3198 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3199 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3200 break; 3201 } 3202 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3203 } 3204 if (IVOpIter == IVOpEnd) { 3205 // Gracefully give up on this chain. 3206 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3207 return; 3208 } 3209 assert(IVSrc && "Failed to find IV chain source"); 3210 3211 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3212 Type *IVTy = IVSrc->getType(); 3213 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3214 const SCEV *LeftOverExpr = nullptr; 3215 for (const IVInc &Inc : Chain) { 3216 Instruction *InsertPt = Inc.UserInst; 3217 if (isa<PHINode>(InsertPt)) 3218 InsertPt = L->getLoopLatch()->getTerminator(); 3219 3220 // IVOper will replace the current IV User's operand. IVSrc is the IV 3221 // value currently held in a register. 3222 Value *IVOper = IVSrc; 3223 if (!Inc.IncExpr->isZero()) { 3224 // IncExpr was the result of subtraction of two narrow values, so must 3225 // be signed. 3226 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3227 LeftOverExpr = LeftOverExpr ? 3228 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3229 } 3230 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3231 // Expand the IV increment. 3232 Rewriter.clearPostInc(); 3233 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3234 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3235 SE.getUnknown(IncV)); 3236 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3237 3238 // If an IV increment can't be folded, use it as the next IV value. 3239 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3240 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3241 IVSrc = IVOper; 3242 LeftOverExpr = nullptr; 3243 } 3244 } 3245 Type *OperTy = Inc.IVOperand->getType(); 3246 if (IVTy != OperTy) { 3247 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3248 "cannot extend a chained IV"); 3249 IRBuilder<> Builder(InsertPt); 3250 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3251 } 3252 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3253 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3254 DeadInsts.emplace_back(OperandIsInstr); 3255 } 3256 // If LSR created a new, wider phi, we may also replace its postinc. We only 3257 // do this if we also found a wide value for the head of the chain. 3258 if (isa<PHINode>(Chain.tailUserInst())) { 3259 for (PHINode &Phi : L->getHeader()->phis()) { 3260 if (!isCompatibleIVType(&Phi, IVSrc)) 3261 continue; 3262 Instruction *PostIncV = dyn_cast<Instruction>( 3263 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3264 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3265 continue; 3266 Value *IVOper = IVSrc; 3267 Type *PostIncTy = PostIncV->getType(); 3268 if (IVTy != PostIncTy) { 3269 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3270 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3271 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3272 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3273 } 3274 Phi.replaceUsesOfWith(PostIncV, IVOper); 3275 DeadInsts.emplace_back(PostIncV); 3276 } 3277 } 3278 } 3279 3280 void LSRInstance::CollectFixupsAndInitialFormulae() { 3281 BranchInst *ExitBranch = nullptr; 3282 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3283 3284 for (const IVStrideUse &U : IU) { 3285 Instruction *UserInst = U.getUser(); 3286 // Skip IV users that are part of profitable IV Chains. 3287 User::op_iterator UseI = 3288 find(UserInst->operands(), U.getOperandValToReplace()); 3289 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3290 if (IVIncSet.count(UseI)) { 3291 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3292 continue; 3293 } 3294 3295 LSRUse::KindType Kind = LSRUse::Basic; 3296 MemAccessTy AccessTy; 3297 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3298 Kind = LSRUse::Address; 3299 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3300 } 3301 3302 const SCEV *S = IU.getExpr(U); 3303 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3304 3305 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3306 // (N - i == 0), and this allows (N - i) to be the expression that we work 3307 // with rather than just N or i, so we can consider the register 3308 // requirements for both N and i at the same time. Limiting this code to 3309 // equality icmps is not a problem because all interesting loops use 3310 // equality icmps, thanks to IndVarSimplify. 3311 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3312 // If CI can be saved in some target, like replaced inside hardware loop 3313 // in PowerPC, no need to generate initial formulae for it. 3314 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3315 continue; 3316 if (CI->isEquality()) { 3317 // Swap the operands if needed to put the OperandValToReplace on the 3318 // left, for consistency. 3319 Value *NV = CI->getOperand(1); 3320 if (NV == U.getOperandValToReplace()) { 3321 CI->setOperand(1, CI->getOperand(0)); 3322 CI->setOperand(0, NV); 3323 NV = CI->getOperand(1); 3324 Changed = true; 3325 } 3326 3327 // x == y --> x - y == 0 3328 const SCEV *N = SE.getSCEV(NV); 3329 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3330 (!NV->getType()->isPointerTy() || 3331 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3332 // S is normalized, so normalize N before folding it into S 3333 // to keep the result normalized. 3334 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3335 Kind = LSRUse::ICmpZero; 3336 S = SE.getMinusSCEV(N, S); 3337 } 3338 3339 // -1 and the negations of all interesting strides (except the negation 3340 // of -1) are now also interesting. 3341 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3342 if (Factors[i] != -1) 3343 Factors.insert(-(uint64_t)Factors[i]); 3344 Factors.insert(-1); 3345 } 3346 } 3347 3348 // Get or create an LSRUse. 3349 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3350 size_t LUIdx = P.first; 3351 int64_t Offset = P.second; 3352 LSRUse &LU = Uses[LUIdx]; 3353 3354 // Record the fixup. 3355 LSRFixup &LF = LU.getNewFixup(); 3356 LF.UserInst = UserInst; 3357 LF.OperandValToReplace = U.getOperandValToReplace(); 3358 LF.PostIncLoops = TmpPostIncLoops; 3359 LF.Offset = Offset; 3360 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3361 3362 if (!LU.WidestFixupType || 3363 SE.getTypeSizeInBits(LU.WidestFixupType) < 3364 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3365 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3366 3367 // If this is the first use of this LSRUse, give it a formula. 3368 if (LU.Formulae.empty()) { 3369 InsertInitialFormula(S, LU, LUIdx); 3370 CountRegisters(LU.Formulae.back(), LUIdx); 3371 } 3372 } 3373 3374 LLVM_DEBUG(print_fixups(dbgs())); 3375 } 3376 3377 /// Insert a formula for the given expression into the given use, separating out 3378 /// loop-variant portions from loop-invariant and loop-computable portions. 3379 void 3380 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3381 // Mark uses whose expressions cannot be expanded. 3382 if (!isSafeToExpand(S, SE)) 3383 LU.RigidFormula = true; 3384 3385 Formula F; 3386 F.initialMatch(S, L, SE); 3387 bool Inserted = InsertFormula(LU, LUIdx, F); 3388 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3389 } 3390 3391 /// Insert a simple single-register formula for the given expression into the 3392 /// given use. 3393 void 3394 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3395 LSRUse &LU, size_t LUIdx) { 3396 Formula F; 3397 F.BaseRegs.push_back(S); 3398 F.HasBaseReg = true; 3399 bool Inserted = InsertFormula(LU, LUIdx, F); 3400 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3401 } 3402 3403 /// Note which registers are used by the given formula, updating RegUses. 3404 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3405 if (F.ScaledReg) 3406 RegUses.countRegister(F.ScaledReg, LUIdx); 3407 for (const SCEV *BaseReg : F.BaseRegs) 3408 RegUses.countRegister(BaseReg, LUIdx); 3409 } 3410 3411 /// If the given formula has not yet been inserted, add it to the list, and 3412 /// return true. Return false otherwise. 3413 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3414 // Do not insert formula that we will not be able to expand. 3415 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3416 "Formula is illegal"); 3417 3418 if (!LU.InsertFormula(F, *L)) 3419 return false; 3420 3421 CountRegisters(F, LUIdx); 3422 return true; 3423 } 3424 3425 /// Check for other uses of loop-invariant values which we're tracking. These 3426 /// other uses will pin these values in registers, making them less profitable 3427 /// for elimination. 3428 /// TODO: This currently misses non-constant addrec step registers. 3429 /// TODO: Should this give more weight to users inside the loop? 3430 void 3431 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3432 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3433 SmallPtrSet<const SCEV *, 32> Visited; 3434 3435 while (!Worklist.empty()) { 3436 const SCEV *S = Worklist.pop_back_val(); 3437 3438 // Don't process the same SCEV twice 3439 if (!Visited.insert(S).second) 3440 continue; 3441 3442 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3443 Worklist.append(N->op_begin(), N->op_end()); 3444 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3445 Worklist.push_back(C->getOperand()); 3446 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3447 Worklist.push_back(D->getLHS()); 3448 Worklist.push_back(D->getRHS()); 3449 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3450 const Value *V = US->getValue(); 3451 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3452 // Look for instructions defined outside the loop. 3453 if (L->contains(Inst)) continue; 3454 } else if (isa<UndefValue>(V)) 3455 // Undef doesn't have a live range, so it doesn't matter. 3456 continue; 3457 for (const Use &U : V->uses()) { 3458 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3459 // Ignore non-instructions. 3460 if (!UserInst) 3461 continue; 3462 // Don't bother if the instruction is an EHPad. 3463 if (UserInst->isEHPad()) 3464 continue; 3465 // Ignore instructions in other functions (as can happen with 3466 // Constants). 3467 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3468 continue; 3469 // Ignore instructions not dominated by the loop. 3470 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3471 UserInst->getParent() : 3472 cast<PHINode>(UserInst)->getIncomingBlock( 3473 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3474 if (!DT.dominates(L->getHeader(), UseBB)) 3475 continue; 3476 // Don't bother if the instruction is in a BB which ends in an EHPad. 3477 if (UseBB->getTerminator()->isEHPad()) 3478 continue; 3479 // Don't bother rewriting PHIs in catchswitch blocks. 3480 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3481 continue; 3482 // Ignore uses which are part of other SCEV expressions, to avoid 3483 // analyzing them multiple times. 3484 if (SE.isSCEVable(UserInst->getType())) { 3485 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3486 // If the user is a no-op, look through to its uses. 3487 if (!isa<SCEVUnknown>(UserS)) 3488 continue; 3489 if (UserS == US) { 3490 Worklist.push_back( 3491 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3492 continue; 3493 } 3494 } 3495 // Ignore icmp instructions which are already being analyzed. 3496 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3497 unsigned OtherIdx = !U.getOperandNo(); 3498 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3499 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3500 continue; 3501 } 3502 3503 std::pair<size_t, int64_t> P = getUse( 3504 S, LSRUse::Basic, MemAccessTy()); 3505 size_t LUIdx = P.first; 3506 int64_t Offset = P.second; 3507 LSRUse &LU = Uses[LUIdx]; 3508 LSRFixup &LF = LU.getNewFixup(); 3509 LF.UserInst = const_cast<Instruction *>(UserInst); 3510 LF.OperandValToReplace = U; 3511 LF.Offset = Offset; 3512 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3513 if (!LU.WidestFixupType || 3514 SE.getTypeSizeInBits(LU.WidestFixupType) < 3515 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3516 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3517 InsertSupplementalFormula(US, LU, LUIdx); 3518 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3519 break; 3520 } 3521 } 3522 } 3523 } 3524 3525 /// Split S into subexpressions which can be pulled out into separate 3526 /// registers. If C is non-null, multiply each subexpression by C. 3527 /// 3528 /// Return remainder expression after factoring the subexpressions captured by 3529 /// Ops. If Ops is complete, return NULL. 3530 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3531 SmallVectorImpl<const SCEV *> &Ops, 3532 const Loop *L, 3533 ScalarEvolution &SE, 3534 unsigned Depth = 0) { 3535 // Arbitrarily cap recursion to protect compile time. 3536 if (Depth >= 3) 3537 return S; 3538 3539 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3540 // Break out add operands. 3541 for (const SCEV *S : Add->operands()) { 3542 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3543 if (Remainder) 3544 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3545 } 3546 return nullptr; 3547 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3548 // Split a non-zero base out of an addrec. 3549 if (AR->getStart()->isZero() || !AR->isAffine()) 3550 return S; 3551 3552 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3553 C, Ops, L, SE, Depth+1); 3554 // Split the non-zero AddRec unless it is part of a nested recurrence that 3555 // does not pertain to this loop. 3556 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3557 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3558 Remainder = nullptr; 3559 } 3560 if (Remainder != AR->getStart()) { 3561 if (!Remainder) 3562 Remainder = SE.getConstant(AR->getType(), 0); 3563 return SE.getAddRecExpr(Remainder, 3564 AR->getStepRecurrence(SE), 3565 AR->getLoop(), 3566 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3567 SCEV::FlagAnyWrap); 3568 } 3569 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3570 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3571 if (Mul->getNumOperands() != 2) 3572 return S; 3573 if (const SCEVConstant *Op0 = 3574 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3575 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3576 const SCEV *Remainder = 3577 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3578 if (Remainder) 3579 Ops.push_back(SE.getMulExpr(C, Remainder)); 3580 return nullptr; 3581 } 3582 } 3583 return S; 3584 } 3585 3586 /// Return true if the SCEV represents a value that may end up as a 3587 /// post-increment operation. 3588 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3589 LSRUse &LU, const SCEV *S, const Loop *L, 3590 ScalarEvolution &SE) { 3591 if (LU.Kind != LSRUse::Address || 3592 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3593 return false; 3594 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3595 if (!AR) 3596 return false; 3597 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3598 if (!isa<SCEVConstant>(LoopStep)) 3599 return false; 3600 // Check if a post-indexed load/store can be used. 3601 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3602 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3603 const SCEV *LoopStart = AR->getStart(); 3604 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3605 return true; 3606 } 3607 return false; 3608 } 3609 3610 /// Helper function for LSRInstance::GenerateReassociations. 3611 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3612 const Formula &Base, 3613 unsigned Depth, size_t Idx, 3614 bool IsScaledReg) { 3615 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3616 // Don't generate reassociations for the base register of a value that 3617 // may generate a post-increment operator. The reason is that the 3618 // reassociations cause extra base+register formula to be created, 3619 // and possibly chosen, but the post-increment is more efficient. 3620 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3621 return; 3622 SmallVector<const SCEV *, 8> AddOps; 3623 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3624 if (Remainder) 3625 AddOps.push_back(Remainder); 3626 3627 if (AddOps.size() == 1) 3628 return; 3629 3630 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3631 JE = AddOps.end(); 3632 J != JE; ++J) { 3633 // Loop-variant "unknown" values are uninteresting; we won't be able to 3634 // do anything meaningful with them. 3635 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3636 continue; 3637 3638 // Don't pull a constant into a register if the constant could be folded 3639 // into an immediate field. 3640 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3641 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3642 continue; 3643 3644 // Collect all operands except *J. 3645 SmallVector<const SCEV *, 8> InnerAddOps( 3646 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3647 InnerAddOps.append(std::next(J), 3648 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3649 3650 // Don't leave just a constant behind in a register if the constant could 3651 // be folded into an immediate field. 3652 if (InnerAddOps.size() == 1 && 3653 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3654 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3655 continue; 3656 3657 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3658 if (InnerSum->isZero()) 3659 continue; 3660 Formula F = Base; 3661 3662 // Add the remaining pieces of the add back into the new formula. 3663 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3664 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3665 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3666 InnerSumSC->getValue()->getZExtValue())) { 3667 F.UnfoldedOffset = 3668 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3669 if (IsScaledReg) 3670 F.ScaledReg = nullptr; 3671 else 3672 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3673 } else if (IsScaledReg) 3674 F.ScaledReg = InnerSum; 3675 else 3676 F.BaseRegs[Idx] = InnerSum; 3677 3678 // Add J as its own register, or an unfolded immediate. 3679 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3680 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3681 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3682 SC->getValue()->getZExtValue())) 3683 F.UnfoldedOffset = 3684 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3685 else 3686 F.BaseRegs.push_back(*J); 3687 // We may have changed the number of register in base regs, adjust the 3688 // formula accordingly. 3689 F.canonicalize(*L); 3690 3691 if (InsertFormula(LU, LUIdx, F)) 3692 // If that formula hadn't been seen before, recurse to find more like 3693 // it. 3694 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3695 // Because just Depth is not enough to bound compile time. 3696 // This means that every time AddOps.size() is greater 16^x we will add 3697 // x to Depth. 3698 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3699 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3700 } 3701 } 3702 3703 /// Split out subexpressions from adds and the bases of addrecs. 3704 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3705 Formula Base, unsigned Depth) { 3706 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3707 // Arbitrarily cap recursion to protect compile time. 3708 if (Depth >= 3) 3709 return; 3710 3711 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3712 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3713 3714 if (Base.Scale == 1) 3715 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3716 /* Idx */ -1, /* IsScaledReg */ true); 3717 } 3718 3719 /// Generate a formula consisting of all of the loop-dominating registers added 3720 /// into a single register. 3721 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3722 Formula Base) { 3723 // This method is only interesting on a plurality of registers. 3724 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3725 (Base.UnfoldedOffset != 0) <= 1) 3726 return; 3727 3728 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3729 // processing the formula. 3730 Base.unscale(); 3731 SmallVector<const SCEV *, 4> Ops; 3732 Formula NewBase = Base; 3733 NewBase.BaseRegs.clear(); 3734 Type *CombinedIntegerType = nullptr; 3735 for (const SCEV *BaseReg : Base.BaseRegs) { 3736 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3737 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3738 if (!CombinedIntegerType) 3739 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3740 Ops.push_back(BaseReg); 3741 } 3742 else 3743 NewBase.BaseRegs.push_back(BaseReg); 3744 } 3745 3746 // If no register is relevant, we're done. 3747 if (Ops.size() == 0) 3748 return; 3749 3750 // Utility function for generating the required variants of the combined 3751 // registers. 3752 auto GenerateFormula = [&](const SCEV *Sum) { 3753 Formula F = NewBase; 3754 3755 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3756 // opportunity to fold something. For now, just ignore such cases 3757 // rather than proceed with zero in a register. 3758 if (Sum->isZero()) 3759 return; 3760 3761 F.BaseRegs.push_back(Sum); 3762 F.canonicalize(*L); 3763 (void)InsertFormula(LU, LUIdx, F); 3764 }; 3765 3766 // If we collected at least two registers, generate a formula combining them. 3767 if (Ops.size() > 1) { 3768 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3769 GenerateFormula(SE.getAddExpr(OpsCopy)); 3770 } 3771 3772 // If we have an unfolded offset, generate a formula combining it with the 3773 // registers collected. 3774 if (NewBase.UnfoldedOffset) { 3775 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3776 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3777 true)); 3778 NewBase.UnfoldedOffset = 0; 3779 GenerateFormula(SE.getAddExpr(Ops)); 3780 } 3781 } 3782 3783 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3784 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3785 const Formula &Base, size_t Idx, 3786 bool IsScaledReg) { 3787 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3788 GlobalValue *GV = ExtractSymbol(G, SE); 3789 if (G->isZero() || !GV) 3790 return; 3791 Formula F = Base; 3792 F.BaseGV = GV; 3793 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3794 return; 3795 if (IsScaledReg) 3796 F.ScaledReg = G; 3797 else 3798 F.BaseRegs[Idx] = G; 3799 (void)InsertFormula(LU, LUIdx, F); 3800 } 3801 3802 /// Generate reuse formulae using symbolic offsets. 3803 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3804 Formula Base) { 3805 // We can't add a symbolic offset if the address already contains one. 3806 if (Base.BaseGV) return; 3807 3808 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3809 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3810 if (Base.Scale == 1) 3811 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3812 /* IsScaledReg */ true); 3813 } 3814 3815 /// Helper function for LSRInstance::GenerateConstantOffsets. 3816 void LSRInstance::GenerateConstantOffsetsImpl( 3817 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3818 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3819 3820 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3821 Formula F = Base; 3822 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3823 3824 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3825 // Add the offset to the base register. 3826 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3827 // If it cancelled out, drop the base register, otherwise update it. 3828 if (NewG->isZero()) { 3829 if (IsScaledReg) { 3830 F.Scale = 0; 3831 F.ScaledReg = nullptr; 3832 } else 3833 F.deleteBaseReg(F.BaseRegs[Idx]); 3834 F.canonicalize(*L); 3835 } else if (IsScaledReg) 3836 F.ScaledReg = NewG; 3837 else 3838 F.BaseRegs[Idx] = NewG; 3839 3840 (void)InsertFormula(LU, LUIdx, F); 3841 } 3842 }; 3843 3844 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3845 3846 // With constant offsets and constant steps, we can generate pre-inc 3847 // accesses by having the offset equal the step. So, for access #0 with a 3848 // step of 8, we generate a G - 8 base which would require the first access 3849 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3850 // for itself and hopefully becomes the base for other accesses. This means 3851 // means that a single pre-indexed access can be generated to become the new 3852 // base pointer for each iteration of the loop, resulting in no extra add/sub 3853 // instructions for pointer updating. 3854 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3855 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3856 if (auto *StepRec = 3857 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3858 const APInt &StepInt = StepRec->getAPInt(); 3859 int64_t Step = StepInt.isNegative() ? 3860 StepInt.getSExtValue() : StepInt.getZExtValue(); 3861 3862 for (int64_t Offset : Worklist) { 3863 Offset -= Step; 3864 GenerateOffset(G, Offset); 3865 } 3866 } 3867 } 3868 } 3869 for (int64_t Offset : Worklist) 3870 GenerateOffset(G, Offset); 3871 3872 int64_t Imm = ExtractImmediate(G, SE); 3873 if (G->isZero() || Imm == 0) 3874 return; 3875 Formula F = Base; 3876 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3877 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3878 return; 3879 if (IsScaledReg) { 3880 F.ScaledReg = G; 3881 } else { 3882 F.BaseRegs[Idx] = G; 3883 // We may generate non canonical Formula if G is a recurrent expr reg 3884 // related with current loop while F.ScaledReg is not. 3885 F.canonicalize(*L); 3886 } 3887 (void)InsertFormula(LU, LUIdx, F); 3888 } 3889 3890 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3891 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3892 Formula Base) { 3893 // TODO: For now, just add the min and max offset, because it usually isn't 3894 // worthwhile looking at everything inbetween. 3895 SmallVector<int64_t, 2> Worklist; 3896 Worklist.push_back(LU.MinOffset); 3897 if (LU.MaxOffset != LU.MinOffset) 3898 Worklist.push_back(LU.MaxOffset); 3899 3900 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3901 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3902 if (Base.Scale == 1) 3903 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3904 /* IsScaledReg */ true); 3905 } 3906 3907 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3908 /// == y -> x*c == y*c. 3909 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3910 Formula Base) { 3911 if (LU.Kind != LSRUse::ICmpZero) return; 3912 3913 // Determine the integer type for the base formula. 3914 Type *IntTy = Base.getType(); 3915 if (!IntTy) return; 3916 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3917 3918 // Don't do this if there is more than one offset. 3919 if (LU.MinOffset != LU.MaxOffset) return; 3920 3921 // Check if transformation is valid. It is illegal to multiply pointer. 3922 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3923 return; 3924 for (const SCEV *BaseReg : Base.BaseRegs) 3925 if (BaseReg->getType()->isPointerTy()) 3926 return; 3927 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3928 3929 // Check each interesting stride. 3930 for (int64_t Factor : Factors) { 3931 // Check that the multiplication doesn't overflow. 3932 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3933 continue; 3934 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3935 assert(Factor != 0 && "Zero factor not expected!"); 3936 if (NewBaseOffset / Factor != Base.BaseOffset) 3937 continue; 3938 // If the offset will be truncated at this use, check that it is in bounds. 3939 if (!IntTy->isPointerTy() && 3940 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3941 continue; 3942 3943 // Check that multiplying with the use offset doesn't overflow. 3944 int64_t Offset = LU.MinOffset; 3945 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3946 continue; 3947 Offset = (uint64_t)Offset * Factor; 3948 if (Offset / Factor != LU.MinOffset) 3949 continue; 3950 // If the offset will be truncated at this use, check that it is in bounds. 3951 if (!IntTy->isPointerTy() && 3952 !ConstantInt::isValueValidForType(IntTy, Offset)) 3953 continue; 3954 3955 Formula F = Base; 3956 F.BaseOffset = NewBaseOffset; 3957 3958 // Check that this scale is legal. 3959 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3960 continue; 3961 3962 // Compensate for the use having MinOffset built into it. 3963 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3964 3965 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3966 3967 // Check that multiplying with each base register doesn't overflow. 3968 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3969 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3970 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3971 goto next; 3972 } 3973 3974 // Check that multiplying with the scaled register doesn't overflow. 3975 if (F.ScaledReg) { 3976 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3977 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3978 continue; 3979 } 3980 3981 // Check that multiplying with the unfolded offset doesn't overflow. 3982 if (F.UnfoldedOffset != 0) { 3983 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3984 Factor == -1) 3985 continue; 3986 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3987 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3988 continue; 3989 // If the offset will be truncated, check that it is in bounds. 3990 if (!IntTy->isPointerTy() && 3991 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3992 continue; 3993 } 3994 3995 // If we make it here and it's legal, add it. 3996 (void)InsertFormula(LU, LUIdx, F); 3997 next:; 3998 } 3999 } 4000 4001 /// Generate stride factor reuse formulae by making use of scaled-offset address 4002 /// modes, for example. 4003 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4004 // Determine the integer type for the base formula. 4005 Type *IntTy = Base.getType(); 4006 if (!IntTy) return; 4007 4008 // If this Formula already has a scaled register, we can't add another one. 4009 // Try to unscale the formula to generate a better scale. 4010 if (Base.Scale != 0 && !Base.unscale()) 4011 return; 4012 4013 assert(Base.Scale == 0 && "unscale did not did its job!"); 4014 4015 // Check each interesting stride. 4016 for (int64_t Factor : Factors) { 4017 Base.Scale = Factor; 4018 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4019 // Check whether this scale is going to be legal. 4020 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4021 Base)) { 4022 // As a special-case, handle special out-of-loop Basic users specially. 4023 // TODO: Reconsider this special case. 4024 if (LU.Kind == LSRUse::Basic && 4025 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4026 LU.AccessTy, Base) && 4027 LU.AllFixupsOutsideLoop) 4028 LU.Kind = LSRUse::Special; 4029 else 4030 continue; 4031 } 4032 // For an ICmpZero, negating a solitary base register won't lead to 4033 // new solutions. 4034 if (LU.Kind == LSRUse::ICmpZero && 4035 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4036 continue; 4037 // For each addrec base reg, if its loop is current loop, apply the scale. 4038 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4039 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4040 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4041 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4042 if (FactorS->isZero()) 4043 continue; 4044 // Divide out the factor, ignoring high bits, since we'll be 4045 // scaling the value back up in the end. 4046 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4047 // TODO: This could be optimized to avoid all the copying. 4048 Formula F = Base; 4049 F.ScaledReg = Quotient; 4050 F.deleteBaseReg(F.BaseRegs[i]); 4051 // The canonical representation of 1*reg is reg, which is already in 4052 // Base. In that case, do not try to insert the formula, it will be 4053 // rejected anyway. 4054 if (F.Scale == 1 && (F.BaseRegs.empty() || 4055 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4056 continue; 4057 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4058 // non canonical Formula with ScaledReg's loop not being L. 4059 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4060 F.canonicalize(*L); 4061 (void)InsertFormula(LU, LUIdx, F); 4062 } 4063 } 4064 } 4065 } 4066 } 4067 4068 /// Generate reuse formulae from different IV types. 4069 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4070 // Don't bother truncating symbolic values. 4071 if (Base.BaseGV) return; 4072 4073 // Determine the integer type for the base formula. 4074 Type *DstTy = Base.getType(); 4075 if (!DstTy) return; 4076 if (DstTy->isPointerTy()) 4077 return; 4078 4079 for (Type *SrcTy : Types) { 4080 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4081 Formula F = Base; 4082 4083 // Sometimes SCEV is able to prove zero during ext transform. It may 4084 // happen if SCEV did not do all possible transforms while creating the 4085 // initial node (maybe due to depth limitations), but it can do them while 4086 // taking ext. 4087 if (F.ScaledReg) { 4088 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4089 if (NewScaledReg->isZero()) 4090 continue; 4091 F.ScaledReg = NewScaledReg; 4092 } 4093 bool HasZeroBaseReg = false; 4094 for (const SCEV *&BaseReg : F.BaseRegs) { 4095 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4096 if (NewBaseReg->isZero()) { 4097 HasZeroBaseReg = true; 4098 break; 4099 } 4100 BaseReg = NewBaseReg; 4101 } 4102 if (HasZeroBaseReg) 4103 continue; 4104 4105 // TODO: This assumes we've done basic processing on all uses and 4106 // have an idea what the register usage is. 4107 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4108 continue; 4109 4110 F.canonicalize(*L); 4111 (void)InsertFormula(LU, LUIdx, F); 4112 } 4113 } 4114 } 4115 4116 namespace { 4117 4118 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4119 /// modifications so that the search phase doesn't have to worry about the data 4120 /// structures moving underneath it. 4121 struct WorkItem { 4122 size_t LUIdx; 4123 int64_t Imm; 4124 const SCEV *OrigReg; 4125 4126 WorkItem(size_t LI, int64_t I, const SCEV *R) 4127 : LUIdx(LI), Imm(I), OrigReg(R) {} 4128 4129 void print(raw_ostream &OS) const; 4130 void dump() const; 4131 }; 4132 4133 } // end anonymous namespace 4134 4135 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4136 void WorkItem::print(raw_ostream &OS) const { 4137 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4138 << " , add offset " << Imm; 4139 } 4140 4141 LLVM_DUMP_METHOD void WorkItem::dump() const { 4142 print(errs()); errs() << '\n'; 4143 } 4144 #endif 4145 4146 /// Look for registers which are a constant distance apart and try to form reuse 4147 /// opportunities between them. 4148 void LSRInstance::GenerateCrossUseConstantOffsets() { 4149 // Group the registers by their value without any added constant offset. 4150 using ImmMapTy = std::map<int64_t, const SCEV *>; 4151 4152 DenseMap<const SCEV *, ImmMapTy> Map; 4153 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4154 SmallVector<const SCEV *, 8> Sequence; 4155 for (const SCEV *Use : RegUses) { 4156 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4157 int64_t Imm = ExtractImmediate(Reg, SE); 4158 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4159 if (Pair.second) 4160 Sequence.push_back(Reg); 4161 Pair.first->second.insert(std::make_pair(Imm, Use)); 4162 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4163 } 4164 4165 // Now examine each set of registers with the same base value. Build up 4166 // a list of work to do and do the work in a separate step so that we're 4167 // not adding formulae and register counts while we're searching. 4168 SmallVector<WorkItem, 32> WorkItems; 4169 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4170 for (const SCEV *Reg : Sequence) { 4171 const ImmMapTy &Imms = Map.find(Reg)->second; 4172 4173 // It's not worthwhile looking for reuse if there's only one offset. 4174 if (Imms.size() == 1) 4175 continue; 4176 4177 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4178 for (const auto &Entry 4179 : Imms) dbgs() 4180 << ' ' << Entry.first; 4181 dbgs() << '\n'); 4182 4183 // Examine each offset. 4184 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4185 J != JE; ++J) { 4186 const SCEV *OrigReg = J->second; 4187 4188 int64_t JImm = J->first; 4189 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4190 4191 if (!isa<SCEVConstant>(OrigReg) && 4192 UsedByIndicesMap[Reg].count() == 1) { 4193 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4194 << '\n'); 4195 continue; 4196 } 4197 4198 // Conservatively examine offsets between this orig reg a few selected 4199 // other orig regs. 4200 int64_t First = Imms.begin()->first; 4201 int64_t Last = std::prev(Imms.end())->first; 4202 // Compute (First + Last) / 2 without overflow using the fact that 4203 // First + Last = 2 * (First + Last) + (First ^ Last). 4204 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4205 // If the result is negative and First is odd and Last even (or vice versa), 4206 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4207 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4208 ImmMapTy::const_iterator OtherImms[] = { 4209 Imms.begin(), std::prev(Imms.end()), 4210 Imms.lower_bound(Avg)}; 4211 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4212 ImmMapTy::const_iterator M = OtherImms[i]; 4213 if (M == J || M == JE) continue; 4214 4215 // Compute the difference between the two. 4216 int64_t Imm = (uint64_t)JImm - M->first; 4217 for (unsigned LUIdx : UsedByIndices.set_bits()) 4218 // Make a memo of this use, offset, and register tuple. 4219 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4220 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4221 } 4222 } 4223 } 4224 4225 Map.clear(); 4226 Sequence.clear(); 4227 UsedByIndicesMap.clear(); 4228 UniqueItems.clear(); 4229 4230 // Now iterate through the worklist and add new formulae. 4231 for (const WorkItem &WI : WorkItems) { 4232 size_t LUIdx = WI.LUIdx; 4233 LSRUse &LU = Uses[LUIdx]; 4234 int64_t Imm = WI.Imm; 4235 const SCEV *OrigReg = WI.OrigReg; 4236 4237 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4238 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4239 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4240 4241 // TODO: Use a more targeted data structure. 4242 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4243 Formula F = LU.Formulae[L]; 4244 // FIXME: The code for the scaled and unscaled registers looks 4245 // very similar but slightly different. Investigate if they 4246 // could be merged. That way, we would not have to unscale the 4247 // Formula. 4248 F.unscale(); 4249 // Use the immediate in the scaled register. 4250 if (F.ScaledReg == OrigReg) { 4251 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4252 // Don't create 50 + reg(-50). 4253 if (F.referencesReg(SE.getSCEV( 4254 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4255 continue; 4256 Formula NewF = F; 4257 NewF.BaseOffset = Offset; 4258 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4259 NewF)) 4260 continue; 4261 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4262 4263 // If the new scale is a constant in a register, and adding the constant 4264 // value to the immediate would produce a value closer to zero than the 4265 // immediate itself, then the formula isn't worthwhile. 4266 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4267 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4268 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4269 .ule(std::abs(NewF.BaseOffset))) 4270 continue; 4271 4272 // OK, looks good. 4273 NewF.canonicalize(*this->L); 4274 (void)InsertFormula(LU, LUIdx, NewF); 4275 } else { 4276 // Use the immediate in a base register. 4277 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4278 const SCEV *BaseReg = F.BaseRegs[N]; 4279 if (BaseReg != OrigReg) 4280 continue; 4281 Formula NewF = F; 4282 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4283 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4284 LU.Kind, LU.AccessTy, NewF)) { 4285 if (AMK == TTI::AMK_PostIndexed && 4286 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4287 continue; 4288 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4289 continue; 4290 NewF = F; 4291 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4292 } 4293 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4294 4295 // If the new formula has a constant in a register, and adding the 4296 // constant value to the immediate would produce a value closer to 4297 // zero than the immediate itself, then the formula isn't worthwhile. 4298 for (const SCEV *NewReg : NewF.BaseRegs) 4299 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4300 if ((C->getAPInt() + NewF.BaseOffset) 4301 .abs() 4302 .slt(std::abs(NewF.BaseOffset)) && 4303 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4304 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4305 goto skip_formula; 4306 4307 // Ok, looks good. 4308 NewF.canonicalize(*this->L); 4309 (void)InsertFormula(LU, LUIdx, NewF); 4310 break; 4311 skip_formula:; 4312 } 4313 } 4314 } 4315 } 4316 } 4317 4318 /// Generate formulae for each use. 4319 void 4320 LSRInstance::GenerateAllReuseFormulae() { 4321 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4322 // queries are more precise. 4323 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4324 LSRUse &LU = Uses[LUIdx]; 4325 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4326 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4327 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4328 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4329 } 4330 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4331 LSRUse &LU = Uses[LUIdx]; 4332 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4333 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4334 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4335 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4336 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4337 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4338 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4339 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4340 } 4341 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4342 LSRUse &LU = Uses[LUIdx]; 4343 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4344 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4345 } 4346 4347 GenerateCrossUseConstantOffsets(); 4348 4349 LLVM_DEBUG(dbgs() << "\n" 4350 "After generating reuse formulae:\n"; 4351 print_uses(dbgs())); 4352 } 4353 4354 /// If there are multiple formulae with the same set of registers used 4355 /// by other uses, pick the best one and delete the others. 4356 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4357 DenseSet<const SCEV *> VisitedRegs; 4358 SmallPtrSet<const SCEV *, 16> Regs; 4359 SmallPtrSet<const SCEV *, 16> LoserRegs; 4360 #ifndef NDEBUG 4361 bool ChangedFormulae = false; 4362 #endif 4363 4364 // Collect the best formula for each unique set of shared registers. This 4365 // is reset for each use. 4366 using BestFormulaeTy = 4367 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4368 4369 BestFormulaeTy BestFormulae; 4370 4371 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4372 LSRUse &LU = Uses[LUIdx]; 4373 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4374 dbgs() << '\n'); 4375 4376 bool Any = false; 4377 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4378 FIdx != NumForms; ++FIdx) { 4379 Formula &F = LU.Formulae[FIdx]; 4380 4381 // Some formulas are instant losers. For example, they may depend on 4382 // nonexistent AddRecs from other loops. These need to be filtered 4383 // immediately, otherwise heuristics could choose them over others leading 4384 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4385 // avoids the need to recompute this information across formulae using the 4386 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4387 // the corresponding bad register from the Regs set. 4388 Cost CostF(L, SE, TTI, AMK); 4389 Regs.clear(); 4390 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4391 if (CostF.isLoser()) { 4392 // During initial formula generation, undesirable formulae are generated 4393 // by uses within other loops that have some non-trivial address mode or 4394 // use the postinc form of the IV. LSR needs to provide these formulae 4395 // as the basis of rediscovering the desired formula that uses an AddRec 4396 // corresponding to the existing phi. Once all formulae have been 4397 // generated, these initial losers may be pruned. 4398 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4399 dbgs() << "\n"); 4400 } 4401 else { 4402 SmallVector<const SCEV *, 4> Key; 4403 for (const SCEV *Reg : F.BaseRegs) { 4404 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4405 Key.push_back(Reg); 4406 } 4407 if (F.ScaledReg && 4408 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4409 Key.push_back(F.ScaledReg); 4410 // Unstable sort by host order ok, because this is only used for 4411 // uniquifying. 4412 llvm::sort(Key); 4413 4414 std::pair<BestFormulaeTy::const_iterator, bool> P = 4415 BestFormulae.insert(std::make_pair(Key, FIdx)); 4416 if (P.second) 4417 continue; 4418 4419 Formula &Best = LU.Formulae[P.first->second]; 4420 4421 Cost CostBest(L, SE, TTI, AMK); 4422 Regs.clear(); 4423 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4424 if (CostF.isLess(CostBest)) 4425 std::swap(F, Best); 4426 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4427 dbgs() << "\n" 4428 " in favor of formula "; 4429 Best.print(dbgs()); dbgs() << '\n'); 4430 } 4431 #ifndef NDEBUG 4432 ChangedFormulae = true; 4433 #endif 4434 LU.DeleteFormula(F); 4435 --FIdx; 4436 --NumForms; 4437 Any = true; 4438 } 4439 4440 // Now that we've filtered out some formulae, recompute the Regs set. 4441 if (Any) 4442 LU.RecomputeRegs(LUIdx, RegUses); 4443 4444 // Reset this to prepare for the next use. 4445 BestFormulae.clear(); 4446 } 4447 4448 LLVM_DEBUG(if (ChangedFormulae) { 4449 dbgs() << "\n" 4450 "After filtering out undesirable candidates:\n"; 4451 print_uses(dbgs()); 4452 }); 4453 } 4454 4455 /// Estimate the worst-case number of solutions the solver might have to 4456 /// consider. It almost never considers this many solutions because it prune the 4457 /// search space, but the pruning isn't always sufficient. 4458 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4459 size_t Power = 1; 4460 for (const LSRUse &LU : Uses) { 4461 size_t FSize = LU.Formulae.size(); 4462 if (FSize >= ComplexityLimit) { 4463 Power = ComplexityLimit; 4464 break; 4465 } 4466 Power *= FSize; 4467 if (Power >= ComplexityLimit) 4468 break; 4469 } 4470 return Power; 4471 } 4472 4473 /// When one formula uses a superset of the registers of another formula, it 4474 /// won't help reduce register pressure (though it may not necessarily hurt 4475 /// register pressure); remove it to simplify the system. 4476 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4477 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4478 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4479 4480 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4481 "which use a superset of registers used by other " 4482 "formulae.\n"); 4483 4484 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4485 LSRUse &LU = Uses[LUIdx]; 4486 bool Any = false; 4487 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4488 Formula &F = LU.Formulae[i]; 4489 // Look for a formula with a constant or GV in a register. If the use 4490 // also has a formula with that same value in an immediate field, 4491 // delete the one that uses a register. 4492 for (SmallVectorImpl<const SCEV *>::const_iterator 4493 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4494 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4495 Formula NewF = F; 4496 //FIXME: Formulas should store bitwidth to do wrapping properly. 4497 // See PR41034. 4498 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4499 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4500 (I - F.BaseRegs.begin())); 4501 if (LU.HasFormulaWithSameRegs(NewF)) { 4502 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4503 dbgs() << '\n'); 4504 LU.DeleteFormula(F); 4505 --i; 4506 --e; 4507 Any = true; 4508 break; 4509 } 4510 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4511 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4512 if (!F.BaseGV) { 4513 Formula NewF = F; 4514 NewF.BaseGV = GV; 4515 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4516 (I - F.BaseRegs.begin())); 4517 if (LU.HasFormulaWithSameRegs(NewF)) { 4518 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4519 dbgs() << '\n'); 4520 LU.DeleteFormula(F); 4521 --i; 4522 --e; 4523 Any = true; 4524 break; 4525 } 4526 } 4527 } 4528 } 4529 } 4530 if (Any) 4531 LU.RecomputeRegs(LUIdx, RegUses); 4532 } 4533 4534 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4535 } 4536 } 4537 4538 /// When there are many registers for expressions like A, A+1, A+2, etc., 4539 /// allocate a single register for them. 4540 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4541 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4542 return; 4543 4544 LLVM_DEBUG( 4545 dbgs() << "The search space is too complex.\n" 4546 "Narrowing the search space by assuming that uses separated " 4547 "by a constant offset will use the same registers.\n"); 4548 4549 // This is especially useful for unrolled loops. 4550 4551 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4552 LSRUse &LU = Uses[LUIdx]; 4553 for (const Formula &F : LU.Formulae) { 4554 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4555 continue; 4556 4557 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4558 if (!LUThatHas) 4559 continue; 4560 4561 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4562 LU.Kind, LU.AccessTy)) 4563 continue; 4564 4565 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4566 4567 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4568 4569 // Transfer the fixups of LU to LUThatHas. 4570 for (LSRFixup &Fixup : LU.Fixups) { 4571 Fixup.Offset += F.BaseOffset; 4572 LUThatHas->pushFixup(Fixup); 4573 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4574 } 4575 4576 // Delete formulae from the new use which are no longer legal. 4577 bool Any = false; 4578 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4579 Formula &F = LUThatHas->Formulae[i]; 4580 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4581 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4582 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4583 LUThatHas->DeleteFormula(F); 4584 --i; 4585 --e; 4586 Any = true; 4587 } 4588 } 4589 4590 if (Any) 4591 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4592 4593 // Delete the old use. 4594 DeleteUse(LU, LUIdx); 4595 --LUIdx; 4596 --NumUses; 4597 break; 4598 } 4599 } 4600 4601 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4602 } 4603 4604 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4605 /// we've done more filtering, as it may be able to find more formulae to 4606 /// eliminate. 4607 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4608 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4609 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4610 4611 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4612 "undesirable dedicated registers.\n"); 4613 4614 FilterOutUndesirableDedicatedRegisters(); 4615 4616 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4617 } 4618 } 4619 4620 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4621 /// Pick the best one and delete the others. 4622 /// This narrowing heuristic is to keep as many formulae with different 4623 /// Scale and ScaledReg pair as possible while narrowing the search space. 4624 /// The benefit is that it is more likely to find out a better solution 4625 /// from a formulae set with more Scale and ScaledReg variations than 4626 /// a formulae set with the same Scale and ScaledReg. The picking winner 4627 /// reg heuristic will often keep the formulae with the same Scale and 4628 /// ScaledReg and filter others, and we want to avoid that if possible. 4629 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4630 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4631 return; 4632 4633 LLVM_DEBUG( 4634 dbgs() << "The search space is too complex.\n" 4635 "Narrowing the search space by choosing the best Formula " 4636 "from the Formulae with the same Scale and ScaledReg.\n"); 4637 4638 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4639 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4640 4641 BestFormulaeTy BestFormulae; 4642 #ifndef NDEBUG 4643 bool ChangedFormulae = false; 4644 #endif 4645 DenseSet<const SCEV *> VisitedRegs; 4646 SmallPtrSet<const SCEV *, 16> Regs; 4647 4648 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4649 LSRUse &LU = Uses[LUIdx]; 4650 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4651 dbgs() << '\n'); 4652 4653 // Return true if Formula FA is better than Formula FB. 4654 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4655 // First we will try to choose the Formula with fewer new registers. 4656 // For a register used by current Formula, the more the register is 4657 // shared among LSRUses, the less we increase the register number 4658 // counter of the formula. 4659 size_t FARegNum = 0; 4660 for (const SCEV *Reg : FA.BaseRegs) { 4661 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4662 FARegNum += (NumUses - UsedByIndices.count() + 1); 4663 } 4664 size_t FBRegNum = 0; 4665 for (const SCEV *Reg : FB.BaseRegs) { 4666 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4667 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4668 } 4669 if (FARegNum != FBRegNum) 4670 return FARegNum < FBRegNum; 4671 4672 // If the new register numbers are the same, choose the Formula with 4673 // less Cost. 4674 Cost CostFA(L, SE, TTI, AMK); 4675 Cost CostFB(L, SE, TTI, AMK); 4676 Regs.clear(); 4677 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4678 Regs.clear(); 4679 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4680 return CostFA.isLess(CostFB); 4681 }; 4682 4683 bool Any = false; 4684 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4685 ++FIdx) { 4686 Formula &F = LU.Formulae[FIdx]; 4687 if (!F.ScaledReg) 4688 continue; 4689 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4690 if (P.second) 4691 continue; 4692 4693 Formula &Best = LU.Formulae[P.first->second]; 4694 if (IsBetterThan(F, Best)) 4695 std::swap(F, Best); 4696 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4697 dbgs() << "\n" 4698 " in favor of formula "; 4699 Best.print(dbgs()); dbgs() << '\n'); 4700 #ifndef NDEBUG 4701 ChangedFormulae = true; 4702 #endif 4703 LU.DeleteFormula(F); 4704 --FIdx; 4705 --NumForms; 4706 Any = true; 4707 } 4708 if (Any) 4709 LU.RecomputeRegs(LUIdx, RegUses); 4710 4711 // Reset this to prepare for the next use. 4712 BestFormulae.clear(); 4713 } 4714 4715 LLVM_DEBUG(if (ChangedFormulae) { 4716 dbgs() << "\n" 4717 "After filtering out undesirable candidates:\n"; 4718 print_uses(dbgs()); 4719 }); 4720 } 4721 4722 /// If we are over the complexity limit, filter out any post-inc prefering 4723 /// variables to only post-inc values. 4724 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4725 if (AMK != TTI::AMK_PostIndexed) 4726 return; 4727 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4728 return; 4729 4730 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4731 "Narrowing the search space by choosing the lowest " 4732 "register Formula for PostInc Uses.\n"); 4733 4734 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4735 LSRUse &LU = Uses[LUIdx]; 4736 4737 if (LU.Kind != LSRUse::Address) 4738 continue; 4739 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4740 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4741 continue; 4742 4743 size_t MinRegs = std::numeric_limits<size_t>::max(); 4744 for (const Formula &F : LU.Formulae) 4745 MinRegs = std::min(F.getNumRegs(), MinRegs); 4746 4747 bool Any = false; 4748 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4749 ++FIdx) { 4750 Formula &F = LU.Formulae[FIdx]; 4751 if (F.getNumRegs() > MinRegs) { 4752 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4753 dbgs() << "\n"); 4754 LU.DeleteFormula(F); 4755 --FIdx; 4756 --NumForms; 4757 Any = true; 4758 } 4759 } 4760 if (Any) 4761 LU.RecomputeRegs(LUIdx, RegUses); 4762 4763 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4764 break; 4765 } 4766 4767 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4768 } 4769 4770 /// The function delete formulas with high registers number expectation. 4771 /// Assuming we don't know the value of each formula (already delete 4772 /// all inefficient), generate probability of not selecting for each 4773 /// register. 4774 /// For example, 4775 /// Use1: 4776 /// reg(a) + reg({0,+,1}) 4777 /// reg(a) + reg({-1,+,1}) + 1 4778 /// reg({a,+,1}) 4779 /// Use2: 4780 /// reg(b) + reg({0,+,1}) 4781 /// reg(b) + reg({-1,+,1}) + 1 4782 /// reg({b,+,1}) 4783 /// Use3: 4784 /// reg(c) + reg(b) + reg({0,+,1}) 4785 /// reg(c) + reg({b,+,1}) 4786 /// 4787 /// Probability of not selecting 4788 /// Use1 Use2 Use3 4789 /// reg(a) (1/3) * 1 * 1 4790 /// reg(b) 1 * (1/3) * (1/2) 4791 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4792 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4793 /// reg({a,+,1}) (2/3) * 1 * 1 4794 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4795 /// reg(c) 1 * 1 * 0 4796 /// 4797 /// Now count registers number mathematical expectation for each formula: 4798 /// Note that for each use we exclude probability if not selecting for the use. 4799 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4800 /// probabilty 1/3 of not selecting for Use1). 4801 /// Use1: 4802 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4803 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4804 /// reg({a,+,1}) 1 4805 /// Use2: 4806 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4807 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4808 /// reg({b,+,1}) 2/3 4809 /// Use3: 4810 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4811 /// reg(c) + reg({b,+,1}) 1 + 2/3 4812 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4813 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4814 return; 4815 // Ok, we have too many of formulae on our hands to conveniently handle. 4816 // Use a rough heuristic to thin out the list. 4817 4818 // Set of Regs wich will be 100% used in final solution. 4819 // Used in each formula of a solution (in example above this is reg(c)). 4820 // We can skip them in calculations. 4821 SmallPtrSet<const SCEV *, 4> UniqRegs; 4822 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4823 4824 // Map each register to probability of not selecting 4825 DenseMap <const SCEV *, float> RegNumMap; 4826 for (const SCEV *Reg : RegUses) { 4827 if (UniqRegs.count(Reg)) 4828 continue; 4829 float PNotSel = 1; 4830 for (const LSRUse &LU : Uses) { 4831 if (!LU.Regs.count(Reg)) 4832 continue; 4833 float P = LU.getNotSelectedProbability(Reg); 4834 if (P != 0.0) 4835 PNotSel *= P; 4836 else 4837 UniqRegs.insert(Reg); 4838 } 4839 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4840 } 4841 4842 LLVM_DEBUG( 4843 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4844 4845 // Delete formulas where registers number expectation is high. 4846 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4847 LSRUse &LU = Uses[LUIdx]; 4848 // If nothing to delete - continue. 4849 if (LU.Formulae.size() < 2) 4850 continue; 4851 // This is temporary solution to test performance. Float should be 4852 // replaced with round independent type (based on integers) to avoid 4853 // different results for different target builds. 4854 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4855 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4856 size_t MinIdx = 0; 4857 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4858 Formula &F = LU.Formulae[i]; 4859 float FRegNum = 0; 4860 float FARegNum = 0; 4861 for (const SCEV *BaseReg : F.BaseRegs) { 4862 if (UniqRegs.count(BaseReg)) 4863 continue; 4864 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4865 if (isa<SCEVAddRecExpr>(BaseReg)) 4866 FARegNum += 4867 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4868 } 4869 if (const SCEV *ScaledReg = F.ScaledReg) { 4870 if (!UniqRegs.count(ScaledReg)) { 4871 FRegNum += 4872 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4873 if (isa<SCEVAddRecExpr>(ScaledReg)) 4874 FARegNum += 4875 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4876 } 4877 } 4878 if (FMinRegNum > FRegNum || 4879 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4880 FMinRegNum = FRegNum; 4881 FMinARegNum = FARegNum; 4882 MinIdx = i; 4883 } 4884 } 4885 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4886 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4887 if (MinIdx != 0) 4888 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4889 while (LU.Formulae.size() != 1) { 4890 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4891 dbgs() << '\n'); 4892 LU.Formulae.pop_back(); 4893 } 4894 LU.RecomputeRegs(LUIdx, RegUses); 4895 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4896 Formula &F = LU.Formulae[0]; 4897 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4898 // When we choose the formula, the regs become unique. 4899 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4900 if (F.ScaledReg) 4901 UniqRegs.insert(F.ScaledReg); 4902 } 4903 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4904 } 4905 4906 /// Pick a register which seems likely to be profitable, and then in any use 4907 /// which has any reference to that register, delete all formulae which do not 4908 /// reference that register. 4909 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4910 // With all other options exhausted, loop until the system is simple 4911 // enough to handle. 4912 SmallPtrSet<const SCEV *, 4> Taken; 4913 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4914 // Ok, we have too many of formulae on our hands to conveniently handle. 4915 // Use a rough heuristic to thin out the list. 4916 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4917 4918 // Pick the register which is used by the most LSRUses, which is likely 4919 // to be a good reuse register candidate. 4920 const SCEV *Best = nullptr; 4921 unsigned BestNum = 0; 4922 for (const SCEV *Reg : RegUses) { 4923 if (Taken.count(Reg)) 4924 continue; 4925 if (!Best) { 4926 Best = Reg; 4927 BestNum = RegUses.getUsedByIndices(Reg).count(); 4928 } else { 4929 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4930 if (Count > BestNum) { 4931 Best = Reg; 4932 BestNum = Count; 4933 } 4934 } 4935 } 4936 assert(Best && "Failed to find best LSRUse candidate"); 4937 4938 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4939 << " will yield profitable reuse.\n"); 4940 Taken.insert(Best); 4941 4942 // In any use with formulae which references this register, delete formulae 4943 // which don't reference it. 4944 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4945 LSRUse &LU = Uses[LUIdx]; 4946 if (!LU.Regs.count(Best)) continue; 4947 4948 bool Any = false; 4949 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4950 Formula &F = LU.Formulae[i]; 4951 if (!F.referencesReg(Best)) { 4952 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4953 LU.DeleteFormula(F); 4954 --e; 4955 --i; 4956 Any = true; 4957 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4958 continue; 4959 } 4960 } 4961 4962 if (Any) 4963 LU.RecomputeRegs(LUIdx, RegUses); 4964 } 4965 4966 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4967 } 4968 } 4969 4970 /// If there are an extraordinary number of formulae to choose from, use some 4971 /// rough heuristics to prune down the number of formulae. This keeps the main 4972 /// solver from taking an extraordinary amount of time in some worst-case 4973 /// scenarios. 4974 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4975 NarrowSearchSpaceByDetectingSupersets(); 4976 NarrowSearchSpaceByCollapsingUnrolledCode(); 4977 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4978 if (FilterSameScaledReg) 4979 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4980 NarrowSearchSpaceByFilterPostInc(); 4981 if (LSRExpNarrow) 4982 NarrowSearchSpaceByDeletingCostlyFormulas(); 4983 else 4984 NarrowSearchSpaceByPickingWinnerRegs(); 4985 } 4986 4987 /// This is the recursive solver. 4988 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4989 Cost &SolutionCost, 4990 SmallVectorImpl<const Formula *> &Workspace, 4991 const Cost &CurCost, 4992 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4993 DenseSet<const SCEV *> &VisitedRegs) const { 4994 // Some ideas: 4995 // - prune more: 4996 // - use more aggressive filtering 4997 // - sort the formula so that the most profitable solutions are found first 4998 // - sort the uses too 4999 // - search faster: 5000 // - don't compute a cost, and then compare. compare while computing a cost 5001 // and bail early. 5002 // - track register sets with SmallBitVector 5003 5004 const LSRUse &LU = Uses[Workspace.size()]; 5005 5006 // If this use references any register that's already a part of the 5007 // in-progress solution, consider it a requirement that a formula must 5008 // reference that register in order to be considered. This prunes out 5009 // unprofitable searching. 5010 SmallSetVector<const SCEV *, 4> ReqRegs; 5011 for (const SCEV *S : CurRegs) 5012 if (LU.Regs.count(S)) 5013 ReqRegs.insert(S); 5014 5015 SmallPtrSet<const SCEV *, 16> NewRegs; 5016 Cost NewCost(L, SE, TTI, AMK); 5017 for (const Formula &F : LU.Formulae) { 5018 // Ignore formulae which may not be ideal in terms of register reuse of 5019 // ReqRegs. The formula should use all required registers before 5020 // introducing new ones. 5021 // This can sometimes (notably when trying to favour postinc) lead to 5022 // sub-optimial decisions. There it is best left to the cost modelling to 5023 // get correct. 5024 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5025 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5026 for (const SCEV *Reg : ReqRegs) { 5027 if ((F.ScaledReg && F.ScaledReg == Reg) || 5028 is_contained(F.BaseRegs, Reg)) { 5029 --NumReqRegsToFind; 5030 if (NumReqRegsToFind == 0) 5031 break; 5032 } 5033 } 5034 if (NumReqRegsToFind != 0) { 5035 // If none of the formulae satisfied the required registers, then we could 5036 // clear ReqRegs and try again. Currently, we simply give up in this case. 5037 continue; 5038 } 5039 } 5040 5041 // Evaluate the cost of the current formula. If it's already worse than 5042 // the current best, prune the search at that point. 5043 NewCost = CurCost; 5044 NewRegs = CurRegs; 5045 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5046 if (NewCost.isLess(SolutionCost)) { 5047 Workspace.push_back(&F); 5048 if (Workspace.size() != Uses.size()) { 5049 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5050 NewRegs, VisitedRegs); 5051 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5052 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5053 } else { 5054 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5055 dbgs() << ".\nRegs:\n"; 5056 for (const SCEV *S : NewRegs) dbgs() 5057 << "- " << *S << "\n"; 5058 dbgs() << '\n'); 5059 5060 SolutionCost = NewCost; 5061 Solution = Workspace; 5062 } 5063 Workspace.pop_back(); 5064 } 5065 } 5066 } 5067 5068 /// Choose one formula from each use. Return the results in the given Solution 5069 /// vector. 5070 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5071 SmallVector<const Formula *, 8> Workspace; 5072 Cost SolutionCost(L, SE, TTI, AMK); 5073 SolutionCost.Lose(); 5074 Cost CurCost(L, SE, TTI, AMK); 5075 SmallPtrSet<const SCEV *, 16> CurRegs; 5076 DenseSet<const SCEV *> VisitedRegs; 5077 Workspace.reserve(Uses.size()); 5078 5079 // SolveRecurse does all the work. 5080 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5081 CurRegs, VisitedRegs); 5082 if (Solution.empty()) { 5083 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5084 return; 5085 } 5086 5087 // Ok, we've now made all our decisions. 5088 LLVM_DEBUG(dbgs() << "\n" 5089 "The chosen solution requires "; 5090 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5091 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5092 dbgs() << " "; 5093 Uses[i].print(dbgs()); 5094 dbgs() << "\n" 5095 " "; 5096 Solution[i]->print(dbgs()); 5097 dbgs() << '\n'; 5098 }); 5099 5100 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5101 } 5102 5103 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5104 /// we can go while still being dominated by the input positions. This helps 5105 /// canonicalize the insert position, which encourages sharing. 5106 BasicBlock::iterator 5107 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5108 const SmallVectorImpl<Instruction *> &Inputs) 5109 const { 5110 Instruction *Tentative = &*IP; 5111 while (true) { 5112 bool AllDominate = true; 5113 Instruction *BetterPos = nullptr; 5114 // Don't bother attempting to insert before a catchswitch, their basic block 5115 // cannot have other non-PHI instructions. 5116 if (isa<CatchSwitchInst>(Tentative)) 5117 return IP; 5118 5119 for (Instruction *Inst : Inputs) { 5120 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5121 AllDominate = false; 5122 break; 5123 } 5124 // Attempt to find an insert position in the middle of the block, 5125 // instead of at the end, so that it can be used for other expansions. 5126 if (Tentative->getParent() == Inst->getParent() && 5127 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5128 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5129 } 5130 if (!AllDominate) 5131 break; 5132 if (BetterPos) 5133 IP = BetterPos->getIterator(); 5134 else 5135 IP = Tentative->getIterator(); 5136 5137 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5138 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5139 5140 BasicBlock *IDom; 5141 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5142 if (!Rung) return IP; 5143 Rung = Rung->getIDom(); 5144 if (!Rung) return IP; 5145 IDom = Rung->getBlock(); 5146 5147 // Don't climb into a loop though. 5148 const Loop *IDomLoop = LI.getLoopFor(IDom); 5149 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5150 if (IDomDepth <= IPLoopDepth && 5151 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5152 break; 5153 } 5154 5155 Tentative = IDom->getTerminator(); 5156 } 5157 5158 return IP; 5159 } 5160 5161 /// Determine an input position which will be dominated by the operands and 5162 /// which will dominate the result. 5163 BasicBlock::iterator 5164 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5165 const LSRFixup &LF, 5166 const LSRUse &LU, 5167 SCEVExpander &Rewriter) const { 5168 // Collect some instructions which must be dominated by the 5169 // expanding replacement. These must be dominated by any operands that 5170 // will be required in the expansion. 5171 SmallVector<Instruction *, 4> Inputs; 5172 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5173 Inputs.push_back(I); 5174 if (LU.Kind == LSRUse::ICmpZero) 5175 if (Instruction *I = 5176 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5177 Inputs.push_back(I); 5178 if (LF.PostIncLoops.count(L)) { 5179 if (LF.isUseFullyOutsideLoop(L)) 5180 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5181 else 5182 Inputs.push_back(IVIncInsertPos); 5183 } 5184 // The expansion must also be dominated by the increment positions of any 5185 // loops it for which it is using post-inc mode. 5186 for (const Loop *PIL : LF.PostIncLoops) { 5187 if (PIL == L) continue; 5188 5189 // Be dominated by the loop exit. 5190 SmallVector<BasicBlock *, 4> ExitingBlocks; 5191 PIL->getExitingBlocks(ExitingBlocks); 5192 if (!ExitingBlocks.empty()) { 5193 BasicBlock *BB = ExitingBlocks[0]; 5194 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5195 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5196 Inputs.push_back(BB->getTerminator()); 5197 } 5198 } 5199 5200 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5201 && !isa<DbgInfoIntrinsic>(LowestIP) && 5202 "Insertion point must be a normal instruction"); 5203 5204 // Then, climb up the immediate dominator tree as far as we can go while 5205 // still being dominated by the input positions. 5206 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5207 5208 // Don't insert instructions before PHI nodes. 5209 while (isa<PHINode>(IP)) ++IP; 5210 5211 // Ignore landingpad instructions. 5212 while (IP->isEHPad()) ++IP; 5213 5214 // Ignore debug intrinsics. 5215 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5216 5217 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5218 // IP consistent across expansions and allows the previously inserted 5219 // instructions to be reused by subsequent expansion. 5220 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5221 ++IP; 5222 5223 return IP; 5224 } 5225 5226 /// Emit instructions for the leading candidate expression for this LSRUse (this 5227 /// is called "expanding"). 5228 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5229 const Formula &F, BasicBlock::iterator IP, 5230 SCEVExpander &Rewriter, 5231 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5232 if (LU.RigidFormula) 5233 return LF.OperandValToReplace; 5234 5235 // Determine an input position which will be dominated by the operands and 5236 // which will dominate the result. 5237 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5238 Rewriter.setInsertPoint(&*IP); 5239 5240 // Inform the Rewriter if we have a post-increment use, so that it can 5241 // perform an advantageous expansion. 5242 Rewriter.setPostInc(LF.PostIncLoops); 5243 5244 // This is the type that the user actually needs. 5245 Type *OpTy = LF.OperandValToReplace->getType(); 5246 // This will be the type that we'll initially expand to. 5247 Type *Ty = F.getType(); 5248 if (!Ty) 5249 // No type known; just expand directly to the ultimate type. 5250 Ty = OpTy; 5251 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5252 // Expand directly to the ultimate type if it's the right size. 5253 Ty = OpTy; 5254 // This is the type to do integer arithmetic in. 5255 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5256 5257 // Build up a list of operands to add together to form the full base. 5258 SmallVector<const SCEV *, 8> Ops; 5259 5260 // Expand the BaseRegs portion. 5261 for (const SCEV *Reg : F.BaseRegs) { 5262 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5263 5264 // If we're expanding for a post-inc user, make the post-inc adjustment. 5265 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5266 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5267 } 5268 5269 // Expand the ScaledReg portion. 5270 Value *ICmpScaledV = nullptr; 5271 if (F.Scale != 0) { 5272 const SCEV *ScaledS = F.ScaledReg; 5273 5274 // If we're expanding for a post-inc user, make the post-inc adjustment. 5275 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5276 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5277 5278 if (LU.Kind == LSRUse::ICmpZero) { 5279 // Expand ScaleReg as if it was part of the base regs. 5280 if (F.Scale == 1) 5281 Ops.push_back( 5282 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5283 else { 5284 // An interesting way of "folding" with an icmp is to use a negated 5285 // scale, which we'll implement by inserting it into the other operand 5286 // of the icmp. 5287 assert(F.Scale == -1 && 5288 "The only scale supported by ICmpZero uses is -1!"); 5289 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5290 } 5291 } else { 5292 // Otherwise just expand the scaled register and an explicit scale, 5293 // which is expected to be matched as part of the address. 5294 5295 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5296 // Unless the addressing mode will not be folded. 5297 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5298 isAMCompletelyFolded(TTI, LU, F)) { 5299 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5300 Ops.clear(); 5301 Ops.push_back(SE.getUnknown(FullV)); 5302 } 5303 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5304 if (F.Scale != 1) 5305 ScaledS = 5306 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5307 Ops.push_back(ScaledS); 5308 } 5309 } 5310 5311 // Expand the GV portion. 5312 if (F.BaseGV) { 5313 // Flush the operand list to suppress SCEVExpander hoisting. 5314 if (!Ops.empty()) { 5315 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5316 Ops.clear(); 5317 Ops.push_back(SE.getUnknown(FullV)); 5318 } 5319 Ops.push_back(SE.getUnknown(F.BaseGV)); 5320 } 5321 5322 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5323 // unfolded offsets. LSR assumes they both live next to their uses. 5324 if (!Ops.empty()) { 5325 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5326 Ops.clear(); 5327 Ops.push_back(SE.getUnknown(FullV)); 5328 } 5329 5330 // Expand the immediate portion. 5331 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5332 if (Offset != 0) { 5333 if (LU.Kind == LSRUse::ICmpZero) { 5334 // The other interesting way of "folding" with an ICmpZero is to use a 5335 // negated immediate. 5336 if (!ICmpScaledV) 5337 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5338 else { 5339 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5340 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5341 } 5342 } else { 5343 // Just add the immediate values. These again are expected to be matched 5344 // as part of the address. 5345 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5346 } 5347 } 5348 5349 // Expand the unfolded offset portion. 5350 int64_t UnfoldedOffset = F.UnfoldedOffset; 5351 if (UnfoldedOffset != 0) { 5352 // Just add the immediate values. 5353 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5354 UnfoldedOffset))); 5355 } 5356 5357 // Emit instructions summing all the operands. 5358 const SCEV *FullS = Ops.empty() ? 5359 SE.getConstant(IntTy, 0) : 5360 SE.getAddExpr(Ops); 5361 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5362 5363 // We're done expanding now, so reset the rewriter. 5364 Rewriter.clearPostInc(); 5365 5366 // An ICmpZero Formula represents an ICmp which we're handling as a 5367 // comparison against zero. Now that we've expanded an expression for that 5368 // form, update the ICmp's other operand. 5369 if (LU.Kind == LSRUse::ICmpZero) { 5370 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5371 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5372 DeadInsts.emplace_back(OperandIsInstr); 5373 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5374 "a scale at the same time!"); 5375 if (F.Scale == -1) { 5376 if (ICmpScaledV->getType() != OpTy) { 5377 Instruction *Cast = 5378 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5379 OpTy, false), 5380 ICmpScaledV, OpTy, "tmp", CI); 5381 ICmpScaledV = Cast; 5382 } 5383 CI->setOperand(1, ICmpScaledV); 5384 } else { 5385 // A scale of 1 means that the scale has been expanded as part of the 5386 // base regs. 5387 assert((F.Scale == 0 || F.Scale == 1) && 5388 "ICmp does not support folding a global value and " 5389 "a scale at the same time!"); 5390 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5391 -(uint64_t)Offset); 5392 if (C->getType() != OpTy) 5393 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5394 OpTy, false), 5395 C, OpTy); 5396 5397 CI->setOperand(1, C); 5398 } 5399 } 5400 5401 return FullV; 5402 } 5403 5404 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5405 /// effectively happens in their predecessor blocks, so the expression may need 5406 /// to be expanded in multiple places. 5407 void LSRInstance::RewriteForPHI( 5408 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5409 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5410 DenseMap<BasicBlock *, Value *> Inserted; 5411 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5412 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5413 bool needUpdateFixups = false; 5414 BasicBlock *BB = PN->getIncomingBlock(i); 5415 5416 // If this is a critical edge, split the edge so that we do not insert 5417 // the code on all predecessor/successor paths. We do this unless this 5418 // is the canonical backedge for this loop, which complicates post-inc 5419 // users. 5420 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5421 !isa<IndirectBrInst>(BB->getTerminator()) && 5422 !isa<CatchSwitchInst>(BB->getTerminator())) { 5423 BasicBlock *Parent = PN->getParent(); 5424 Loop *PNLoop = LI.getLoopFor(Parent); 5425 if (!PNLoop || Parent != PNLoop->getHeader()) { 5426 // Split the critical edge. 5427 BasicBlock *NewBB = nullptr; 5428 if (!Parent->isLandingPad()) { 5429 NewBB = 5430 SplitCriticalEdge(BB, Parent, 5431 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5432 .setMergeIdenticalEdges() 5433 .setKeepOneInputPHIs()); 5434 } else { 5435 SmallVector<BasicBlock*, 2> NewBBs; 5436 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5437 NewBB = NewBBs[0]; 5438 } 5439 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5440 // phi predecessors are identical. The simple thing to do is skip 5441 // splitting in this case rather than complicate the API. 5442 if (NewBB) { 5443 // If PN is outside of the loop and BB is in the loop, we want to 5444 // move the block to be immediately before the PHI block, not 5445 // immediately after BB. 5446 if (L->contains(BB) && !L->contains(PN)) 5447 NewBB->moveBefore(PN->getParent()); 5448 5449 // Splitting the edge can reduce the number of PHI entries we have. 5450 e = PN->getNumIncomingValues(); 5451 BB = NewBB; 5452 i = PN->getBasicBlockIndex(BB); 5453 5454 needUpdateFixups = true; 5455 } 5456 } 5457 } 5458 5459 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5460 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5461 if (!Pair.second) 5462 PN->setIncomingValue(i, Pair.first->second); 5463 else { 5464 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5465 Rewriter, DeadInsts); 5466 5467 // If this is reuse-by-noop-cast, insert the noop cast. 5468 Type *OpTy = LF.OperandValToReplace->getType(); 5469 if (FullV->getType() != OpTy) 5470 FullV = 5471 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5472 OpTy, false), 5473 FullV, LF.OperandValToReplace->getType(), 5474 "tmp", BB->getTerminator()); 5475 5476 PN->setIncomingValue(i, FullV); 5477 Pair.first->second = FullV; 5478 } 5479 5480 // If LSR splits critical edge and phi node has other pending 5481 // fixup operands, we need to update those pending fixups. Otherwise 5482 // formulae will not be implemented completely and some instructions 5483 // will not be eliminated. 5484 if (needUpdateFixups) { 5485 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5486 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5487 // If fixup is supposed to rewrite some operand in the phi 5488 // that was just updated, it may be already moved to 5489 // another phi node. Such fixup requires update. 5490 if (Fixup.UserInst == PN) { 5491 // Check if the operand we try to replace still exists in the 5492 // original phi. 5493 bool foundInOriginalPHI = false; 5494 for (const auto &val : PN->incoming_values()) 5495 if (val == Fixup.OperandValToReplace) { 5496 foundInOriginalPHI = true; 5497 break; 5498 } 5499 5500 // If fixup operand found in original PHI - nothing to do. 5501 if (foundInOriginalPHI) 5502 continue; 5503 5504 // Otherwise it might be moved to another PHI and requires update. 5505 // If fixup operand not found in any of the incoming blocks that 5506 // means we have already rewritten it - nothing to do. 5507 for (const auto &Block : PN->blocks()) 5508 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5509 ++I) { 5510 PHINode *NewPN = cast<PHINode>(I); 5511 for (const auto &val : NewPN->incoming_values()) 5512 if (val == Fixup.OperandValToReplace) 5513 Fixup.UserInst = NewPN; 5514 } 5515 } 5516 } 5517 } 5518 } 5519 5520 /// Emit instructions for the leading candidate expression for this LSRUse (this 5521 /// is called "expanding"), and update the UserInst to reference the newly 5522 /// expanded value. 5523 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5524 const Formula &F, SCEVExpander &Rewriter, 5525 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5526 // First, find an insertion point that dominates UserInst. For PHI nodes, 5527 // find the nearest block which dominates all the relevant uses. 5528 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5529 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5530 } else { 5531 Value *FullV = 5532 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5533 5534 // If this is reuse-by-noop-cast, insert the noop cast. 5535 Type *OpTy = LF.OperandValToReplace->getType(); 5536 if (FullV->getType() != OpTy) { 5537 Instruction *Cast = 5538 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5539 FullV, OpTy, "tmp", LF.UserInst); 5540 FullV = Cast; 5541 } 5542 5543 // Update the user. ICmpZero is handled specially here (for now) because 5544 // Expand may have updated one of the operands of the icmp already, and 5545 // its new value may happen to be equal to LF.OperandValToReplace, in 5546 // which case doing replaceUsesOfWith leads to replacing both operands 5547 // with the same value. TODO: Reorganize this. 5548 if (LU.Kind == LSRUse::ICmpZero) 5549 LF.UserInst->setOperand(0, FullV); 5550 else 5551 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5552 } 5553 5554 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5555 DeadInsts.emplace_back(OperandIsInstr); 5556 } 5557 5558 /// Rewrite all the fixup locations with new values, following the chosen 5559 /// solution. 5560 void LSRInstance::ImplementSolution( 5561 const SmallVectorImpl<const Formula *> &Solution) { 5562 // Keep track of instructions we may have made dead, so that 5563 // we can remove them after we are done working. 5564 SmallVector<WeakTrackingVH, 16> DeadInsts; 5565 5566 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5567 false); 5568 #ifndef NDEBUG 5569 Rewriter.setDebugType(DEBUG_TYPE); 5570 #endif 5571 Rewriter.disableCanonicalMode(); 5572 Rewriter.enableLSRMode(); 5573 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5574 5575 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5576 for (const IVChain &Chain : IVChainVec) { 5577 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5578 Rewriter.setChainedPhi(PN); 5579 } 5580 5581 // Expand the new value definitions and update the users. 5582 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5583 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5584 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5585 Changed = true; 5586 } 5587 5588 for (const IVChain &Chain : IVChainVec) { 5589 GenerateIVChain(Chain, Rewriter, DeadInsts); 5590 Changed = true; 5591 } 5592 // Clean up after ourselves. This must be done before deleting any 5593 // instructions. 5594 Rewriter.clear(); 5595 5596 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5597 &TLI, MSSAU); 5598 5599 // In our cost analysis above, we assume that each addrec consumes exactly 5600 // one register, and arrange to have increments inserted just before the 5601 // latch to maximimize the chance this is true. However, if we reused 5602 // existing IVs, we now need to move the increments to match our 5603 // expectations. Otherwise, our cost modeling results in us having a 5604 // chosen a non-optimal result for the actual schedule. (And yes, this 5605 // scheduling decision does impact later codegen.) 5606 for (PHINode &PN : L->getHeader()->phis()) { 5607 BinaryOperator *BO = nullptr; 5608 Value *Start = nullptr, *Step = nullptr; 5609 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5610 continue; 5611 5612 switch (BO->getOpcode()) { 5613 case Instruction::Sub: 5614 if (BO->getOperand(0) != &PN) 5615 // sub is non-commutative - match handling elsewhere in LSR 5616 continue; 5617 break; 5618 case Instruction::Add: 5619 break; 5620 default: 5621 continue; 5622 }; 5623 5624 if (!isa<Constant>(Step)) 5625 // If not a constant step, might increase register pressure 5626 // (We assume constants have been canonicalized to RHS) 5627 continue; 5628 5629 if (BO->getParent() == IVIncInsertPos->getParent()) 5630 // Only bother moving across blocks. Isel can handle block local case. 5631 continue; 5632 5633 // Can we legally schedule inc at the desired point? 5634 if (!llvm::all_of(BO->uses(), 5635 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5636 continue; 5637 BO->moveBefore(IVIncInsertPos); 5638 Changed = true; 5639 } 5640 5641 5642 } 5643 5644 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5645 DominatorTree &DT, LoopInfo &LI, 5646 const TargetTransformInfo &TTI, AssumptionCache &AC, 5647 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5648 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5649 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5650 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5651 // If LoopSimplify form is not available, stay out of trouble. 5652 if (!L->isLoopSimplifyForm()) 5653 return; 5654 5655 // If there's no interesting work to be done, bail early. 5656 if (IU.empty()) return; 5657 5658 // If there's too much analysis to be done, bail early. We won't be able to 5659 // model the problem anyway. 5660 unsigned NumUsers = 0; 5661 for (const IVStrideUse &U : IU) { 5662 if (++NumUsers > MaxIVUsers) { 5663 (void)U; 5664 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5665 << "\n"); 5666 return; 5667 } 5668 // Bail out if we have a PHI on an EHPad that gets a value from a 5669 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5670 // no good place to stick any instructions. 5671 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5672 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5673 if (isa<FuncletPadInst>(FirstNonPHI) || 5674 isa<CatchSwitchInst>(FirstNonPHI)) 5675 for (BasicBlock *PredBB : PN->blocks()) 5676 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5677 return; 5678 } 5679 } 5680 5681 #ifndef NDEBUG 5682 // All dominating loops must have preheaders, or SCEVExpander may not be able 5683 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5684 // 5685 // IVUsers analysis should only create users that are dominated by simple loop 5686 // headers. Since this loop should dominate all of its users, its user list 5687 // should be empty if this loop itself is not within a simple loop nest. 5688 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5689 Rung; Rung = Rung->getIDom()) { 5690 BasicBlock *BB = Rung->getBlock(); 5691 const Loop *DomLoop = LI.getLoopFor(BB); 5692 if (DomLoop && DomLoop->getHeader() == BB) { 5693 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5694 } 5695 } 5696 #endif // DEBUG 5697 5698 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5699 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5700 dbgs() << ":\n"); 5701 5702 // First, perform some low-level loop optimizations. 5703 OptimizeShadowIV(); 5704 OptimizeLoopTermCond(); 5705 5706 // If loop preparation eliminates all interesting IV users, bail. 5707 if (IU.empty()) return; 5708 5709 // Skip nested loops until we can model them better with formulae. 5710 if (!L->isInnermost()) { 5711 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5712 return; 5713 } 5714 5715 // Start collecting data and preparing for the solver. 5716 // If number of registers is not the major cost, we cannot benefit from the 5717 // current profitable chain optimization which is based on number of 5718 // registers. 5719 // FIXME: add profitable chain optimization for other kinds major cost, for 5720 // example number of instructions. 5721 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5722 CollectChains(); 5723 CollectInterestingTypesAndFactors(); 5724 CollectFixupsAndInitialFormulae(); 5725 CollectLoopInvariantFixupsAndFormulae(); 5726 5727 if (Uses.empty()) 5728 return; 5729 5730 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5731 print_uses(dbgs())); 5732 5733 // Now use the reuse data to generate a bunch of interesting ways 5734 // to formulate the values needed for the uses. 5735 GenerateAllReuseFormulae(); 5736 5737 FilterOutUndesirableDedicatedRegisters(); 5738 NarrowSearchSpaceUsingHeuristics(); 5739 5740 SmallVector<const Formula *, 8> Solution; 5741 Solve(Solution); 5742 5743 // Release memory that is no longer needed. 5744 Factors.clear(); 5745 Types.clear(); 5746 RegUses.clear(); 5747 5748 if (Solution.empty()) 5749 return; 5750 5751 #ifndef NDEBUG 5752 // Formulae should be legal. 5753 for (const LSRUse &LU : Uses) { 5754 for (const Formula &F : LU.Formulae) 5755 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5756 F) && "Illegal formula generated!"); 5757 }; 5758 #endif 5759 5760 // Now that we've decided what we want, make it so. 5761 ImplementSolution(Solution); 5762 } 5763 5764 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5765 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5766 if (Factors.empty() && Types.empty()) return; 5767 5768 OS << "LSR has identified the following interesting factors and types: "; 5769 bool First = true; 5770 5771 for (int64_t Factor : Factors) { 5772 if (!First) OS << ", "; 5773 First = false; 5774 OS << '*' << Factor; 5775 } 5776 5777 for (Type *Ty : Types) { 5778 if (!First) OS << ", "; 5779 First = false; 5780 OS << '(' << *Ty << ')'; 5781 } 5782 OS << '\n'; 5783 } 5784 5785 void LSRInstance::print_fixups(raw_ostream &OS) const { 5786 OS << "LSR is examining the following fixup sites:\n"; 5787 for (const LSRUse &LU : Uses) 5788 for (const LSRFixup &LF : LU.Fixups) { 5789 dbgs() << " "; 5790 LF.print(OS); 5791 OS << '\n'; 5792 } 5793 } 5794 5795 void LSRInstance::print_uses(raw_ostream &OS) const { 5796 OS << "LSR is examining the following uses:\n"; 5797 for (const LSRUse &LU : Uses) { 5798 dbgs() << " "; 5799 LU.print(OS); 5800 OS << '\n'; 5801 for (const Formula &F : LU.Formulae) { 5802 OS << " "; 5803 F.print(OS); 5804 OS << '\n'; 5805 } 5806 } 5807 } 5808 5809 void LSRInstance::print(raw_ostream &OS) const { 5810 print_factors_and_types(OS); 5811 print_fixups(OS); 5812 print_uses(OS); 5813 } 5814 5815 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5816 print(errs()); errs() << '\n'; 5817 } 5818 #endif 5819 5820 namespace { 5821 5822 class LoopStrengthReduce : public LoopPass { 5823 public: 5824 static char ID; // Pass ID, replacement for typeid 5825 5826 LoopStrengthReduce(); 5827 5828 private: 5829 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5830 void getAnalysisUsage(AnalysisUsage &AU) const override; 5831 }; 5832 5833 } // end anonymous namespace 5834 5835 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5836 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5837 } 5838 5839 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5840 // We split critical edges, so we change the CFG. However, we do update 5841 // many analyses if they are around. 5842 AU.addPreservedID(LoopSimplifyID); 5843 5844 AU.addRequired<LoopInfoWrapperPass>(); 5845 AU.addPreserved<LoopInfoWrapperPass>(); 5846 AU.addRequiredID(LoopSimplifyID); 5847 AU.addRequired<DominatorTreeWrapperPass>(); 5848 AU.addPreserved<DominatorTreeWrapperPass>(); 5849 AU.addRequired<ScalarEvolutionWrapperPass>(); 5850 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5851 AU.addRequired<AssumptionCacheTracker>(); 5852 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5853 // Requiring LoopSimplify a second time here prevents IVUsers from running 5854 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5855 AU.addRequiredID(LoopSimplifyID); 5856 AU.addRequired<IVUsersWrapperPass>(); 5857 AU.addPreserved<IVUsersWrapperPass>(); 5858 AU.addRequired<TargetTransformInfoWrapperPass>(); 5859 AU.addPreserved<MemorySSAWrapperPass>(); 5860 } 5861 5862 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t>, 4>; 5863 using EqualValuesMap = 5864 DenseMap<DbgValueInst *, SmallVector<std::pair<unsigned, EqualValues>>>; 5865 using LocationMap = 5866 DenseMap<DbgValueInst *, std::pair<DIExpression *, Metadata *>>; 5867 5868 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5869 EqualValuesMap &DbgValueToEqualSet, 5870 LocationMap &DbgValueToLocation) { 5871 for (auto &B : L->getBlocks()) { 5872 for (auto &I : *B) { 5873 auto DVI = dyn_cast<DbgValueInst>(&I); 5874 if (!DVI) 5875 continue; 5876 for (unsigned Idx = 0; Idx < DVI->getNumVariableLocationOps(); ++Idx) { 5877 // TODO: We can duplicate results if the same arg appears more than 5878 // once. 5879 Value *V = DVI->getVariableLocationOp(Idx); 5880 if (!V || !SE.isSCEVable(V->getType())) 5881 continue; 5882 auto DbgValueSCEV = SE.getSCEV(V); 5883 EqualValues EqSet; 5884 for (PHINode &Phi : L->getHeader()->phis()) { 5885 if (V->getType() != Phi.getType()) 5886 continue; 5887 if (!SE.isSCEVable(Phi.getType())) 5888 continue; 5889 auto PhiSCEV = SE.getSCEV(&Phi); 5890 Optional<APInt> Offset = 5891 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV); 5892 if (Offset && Offset->getMinSignedBits() <= 64) 5893 EqSet.emplace_back( 5894 std::make_tuple(&Phi, Offset.getValue().getSExtValue())); 5895 } 5896 DbgValueToEqualSet[DVI].push_back({Idx, std::move(EqSet)}); 5897 // If we fall back to using this raw location, at least one location op 5898 // must be dead. A DIArgList will automatically undef arguments when 5899 // they become unavailable, but a ValueAsMetadata will not; since we 5900 // know the value should be undef, we use the undef value directly here. 5901 Metadata *RawLocation = 5902 DVI->hasArgList() ? DVI->getRawLocation() 5903 : ValueAsMetadata::get(UndefValue::get( 5904 DVI->getVariableLocationOp(0)->getType())); 5905 DbgValueToLocation[DVI] = {DVI->getExpression(), RawLocation}; 5906 } 5907 } 5908 } 5909 } 5910 5911 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet, 5912 LocationMap &DbgValueToLocation) { 5913 for (auto A : DbgValueToEqualSet) { 5914 auto *DVI = A.first; 5915 // Only update those that are now undef. 5916 if (!DVI->isUndef()) 5917 continue; 5918 // The dbg.value may have had its value or expression changed during LSR by 5919 // a failed salvage attempt; refresh them from the map. 5920 auto *DbgDIExpr = DbgValueToLocation[DVI].first; 5921 DVI->setRawLocation(DbgValueToLocation[DVI].second); 5922 DVI->setExpression(DbgDIExpr); 5923 assert(DVI->isUndef() && "dbg.value with non-undef location should not " 5924 "have been modified by LSR."); 5925 for (auto IdxEV : A.second) { 5926 unsigned Idx = IdxEV.first; 5927 for (auto EV : IdxEV.second) { 5928 auto EVHandle = std::get<WeakVH>(EV); 5929 if (!EVHandle) 5930 continue; 5931 int64_t Offset = std::get<int64_t>(EV); 5932 DVI->replaceVariableLocationOp(Idx, EVHandle); 5933 if (Offset) { 5934 SmallVector<uint64_t, 8> Ops; 5935 DIExpression::appendOffset(Ops, Offset); 5936 DbgDIExpr = DIExpression::appendOpsToArg(DbgDIExpr, Ops, Idx, true); 5937 } 5938 DVI->setExpression(DbgDIExpr); 5939 break; 5940 } 5941 } 5942 } 5943 } 5944 5945 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5946 DominatorTree &DT, LoopInfo &LI, 5947 const TargetTransformInfo &TTI, 5948 AssumptionCache &AC, TargetLibraryInfo &TLI, 5949 MemorySSA *MSSA) { 5950 5951 bool Changed = false; 5952 std::unique_ptr<MemorySSAUpdater> MSSAU; 5953 if (MSSA) 5954 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5955 5956 // Run the main LSR transformation. 5957 Changed |= 5958 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5959 5960 // Debug preservation - before we start removing anything create equivalence 5961 // sets for the llvm.dbg.value intrinsics. 5962 EqualValuesMap DbgValueToEqualSet; 5963 LocationMap DbgValueToLocation; 5964 DbgGatherEqualValues(L, SE, DbgValueToEqualSet, DbgValueToLocation); 5965 5966 // Remove any extra phis created by processing inner loops. 5967 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5968 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5969 SmallVector<WeakTrackingVH, 16> DeadInsts; 5970 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5971 SCEVExpander Rewriter(SE, DL, "lsr", false); 5972 #ifndef NDEBUG 5973 Rewriter.setDebugType(DEBUG_TYPE); 5974 #endif 5975 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5976 if (numFolded) { 5977 Changed = true; 5978 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5979 MSSAU.get()); 5980 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5981 } 5982 } 5983 5984 DbgApplyEqualValues(DbgValueToEqualSet, DbgValueToLocation); 5985 5986 return Changed; 5987 } 5988 5989 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5990 if (skipLoop(L)) 5991 return false; 5992 5993 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5994 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5995 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5996 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5997 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5998 *L->getHeader()->getParent()); 5999 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 6000 *L->getHeader()->getParent()); 6001 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 6002 *L->getHeader()->getParent()); 6003 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 6004 MemorySSA *MSSA = nullptr; 6005 if (MSSAAnalysis) 6006 MSSA = &MSSAAnalysis->getMSSA(); 6007 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6008 } 6009 6010 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6011 LoopStandardAnalysisResults &AR, 6012 LPMUpdater &) { 6013 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6014 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6015 return PreservedAnalyses::all(); 6016 6017 auto PA = getLoopPassPreservedAnalyses(); 6018 if (AR.MSSA) 6019 PA.preserve<MemorySSAAnalysis>(); 6020 return PA; 6021 } 6022 6023 char LoopStrengthReduce::ID = 0; 6024 6025 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6026 "Loop Strength Reduction", false, false) 6027 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6028 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6029 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6030 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6031 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6032 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6033 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6034 "Loop Strength Reduction", false, false) 6035 6036 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6037