1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ValueHandle.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Target/TargetLowering.h" 76 #include <algorithm> 77 using namespace llvm; 78 79 namespace { 80 81 /// RegSortData - This class holds data which is used to order reuse candidates. 82 class RegSortData { 83 public: 84 /// UsedByIndices - This represents the set of LSRUse indices which reference 85 /// a particular register. 86 SmallBitVector UsedByIndices; 87 88 RegSortData() {} 89 90 void print(raw_ostream &OS) const; 91 void dump() const; 92 }; 93 94 } 95 96 void RegSortData::print(raw_ostream &OS) const { 97 OS << "[NumUses=" << UsedByIndices.count() << ']'; 98 } 99 100 void RegSortData::dump() const { 101 print(errs()); errs() << '\n'; 102 } 103 104 namespace { 105 106 /// RegUseTracker - Map register candidates to information about how they are 107 /// used. 108 class RegUseTracker { 109 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 110 111 RegUsesTy RegUsesMap; 112 SmallVector<const SCEV *, 16> RegSequence; 113 114 public: 115 void CountRegister(const SCEV *Reg, size_t LUIdx); 116 void DropRegister(const SCEV *Reg, size_t LUIdx); 117 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 118 119 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 120 121 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 122 123 void clear(); 124 125 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 126 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 127 iterator begin() { return RegSequence.begin(); } 128 iterator end() { return RegSequence.end(); } 129 const_iterator begin() const { return RegSequence.begin(); } 130 const_iterator end() const { return RegSequence.end(); } 131 }; 132 133 } 134 135 void 136 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 137 std::pair<RegUsesTy::iterator, bool> Pair = 138 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 139 RegSortData &RSD = Pair.first->second; 140 if (Pair.second) 141 RegSequence.push_back(Reg); 142 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 143 RSD.UsedByIndices.set(LUIdx); 144 } 145 146 void 147 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 148 RegUsesTy::iterator It = RegUsesMap.find(Reg); 149 assert(It != RegUsesMap.end()); 150 RegSortData &RSD = It->second; 151 assert(RSD.UsedByIndices.size() > LUIdx); 152 RSD.UsedByIndices.reset(LUIdx); 153 } 154 155 void 156 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 157 assert(LUIdx <= LastLUIdx); 158 159 // Update RegUses. The data structure is not optimized for this purpose; 160 // we must iterate through it and update each of the bit vectors. 161 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 162 I != E; ++I) { 163 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 164 if (LUIdx < UsedByIndices.size()) 165 UsedByIndices[LUIdx] = 166 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 167 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 168 } 169 } 170 171 bool 172 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 173 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 174 if (I == RegUsesMap.end()) 175 return false; 176 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 177 int i = UsedByIndices.find_first(); 178 if (i == -1) return false; 179 if ((size_t)i != LUIdx) return true; 180 return UsedByIndices.find_next(i) != -1; 181 } 182 183 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 184 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 185 assert(I != RegUsesMap.end() && "Unknown register!"); 186 return I->second.UsedByIndices; 187 } 188 189 void RegUseTracker::clear() { 190 RegUsesMap.clear(); 191 RegSequence.clear(); 192 } 193 194 namespace { 195 196 /// Formula - This class holds information that describes a formula for 197 /// computing satisfying a use. It may include broken-out immediates and scaled 198 /// registers. 199 struct Formula { 200 /// AM - This is used to represent complex addressing, as well as other kinds 201 /// of interesting uses. 202 TargetLowering::AddrMode AM; 203 204 /// BaseRegs - The list of "base" registers for this use. When this is 205 /// non-empty, AM.HasBaseReg should be set to true. 206 SmallVector<const SCEV *, 2> BaseRegs; 207 208 /// ScaledReg - The 'scaled' register for this use. This should be non-null 209 /// when AM.Scale is not zero. 210 const SCEV *ScaledReg; 211 212 /// UnfoldedOffset - An additional constant offset which added near the 213 /// use. This requires a temporary register, but the offset itself can 214 /// live in an add immediate field rather than a register. 215 int64_t UnfoldedOffset; 216 217 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 218 219 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 220 221 unsigned getNumRegs() const; 222 Type *getType() const; 223 224 void DeleteBaseReg(const SCEV *&S); 225 226 bool referencesReg(const SCEV *S) const; 227 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 228 const RegUseTracker &RegUses) const; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } 235 236 /// DoInitialMatch - Recursion helper for InitialMatch. 237 static void DoInitialMatch(const SCEV *S, Loop *L, 238 SmallVectorImpl<const SCEV *> &Good, 239 SmallVectorImpl<const SCEV *> &Bad, 240 ScalarEvolution &SE) { 241 // Collect expressions which properly dominate the loop header. 242 if (SE.properlyDominates(S, L->getHeader())) { 243 Good.push_back(S); 244 return; 245 } 246 247 // Look at add operands. 248 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 249 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 250 I != E; ++I) 251 DoInitialMatch(*I, L, Good, Bad, SE); 252 return; 253 } 254 255 // Look at addrec operands. 256 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 257 if (!AR->getStart()->isZero()) { 258 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 259 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 260 AR->getStepRecurrence(SE), 261 // FIXME: AR->getNoWrapFlags() 262 AR->getLoop(), SCEV::FlagAnyWrap), 263 L, Good, Bad, SE); 264 return; 265 } 266 267 // Handle a multiplication by -1 (negation) if it didn't fold. 268 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 269 if (Mul->getOperand(0)->isAllOnesValue()) { 270 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 271 const SCEV *NewMul = SE.getMulExpr(Ops); 272 273 SmallVector<const SCEV *, 4> MyGood; 274 SmallVector<const SCEV *, 4> MyBad; 275 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 276 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 277 SE.getEffectiveSCEVType(NewMul->getType()))); 278 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 279 E = MyGood.end(); I != E; ++I) 280 Good.push_back(SE.getMulExpr(NegOne, *I)); 281 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 282 E = MyBad.end(); I != E; ++I) 283 Bad.push_back(SE.getMulExpr(NegOne, *I)); 284 return; 285 } 286 287 // Ok, we can't do anything interesting. Just stuff the whole thing into a 288 // register and hope for the best. 289 Bad.push_back(S); 290 } 291 292 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 293 /// attempting to keep all loop-invariant and loop-computable values in a 294 /// single base register. 295 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 296 SmallVector<const SCEV *, 4> Good; 297 SmallVector<const SCEV *, 4> Bad; 298 DoInitialMatch(S, L, Good, Bad, SE); 299 if (!Good.empty()) { 300 const SCEV *Sum = SE.getAddExpr(Good); 301 if (!Sum->isZero()) 302 BaseRegs.push_back(Sum); 303 AM.HasBaseReg = true; 304 } 305 if (!Bad.empty()) { 306 const SCEV *Sum = SE.getAddExpr(Bad); 307 if (!Sum->isZero()) 308 BaseRegs.push_back(Sum); 309 AM.HasBaseReg = true; 310 } 311 } 312 313 /// getNumRegs - Return the total number of register operands used by this 314 /// formula. This does not include register uses implied by non-constant 315 /// addrec strides. 316 unsigned Formula::getNumRegs() const { 317 return !!ScaledReg + BaseRegs.size(); 318 } 319 320 /// getType - Return the type of this formula, if it has one, or null 321 /// otherwise. This type is meaningless except for the bit size. 322 Type *Formula::getType() const { 323 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 324 ScaledReg ? ScaledReg->getType() : 325 AM.BaseGV ? AM.BaseGV->getType() : 326 0; 327 } 328 329 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 330 void Formula::DeleteBaseReg(const SCEV *&S) { 331 if (&S != &BaseRegs.back()) 332 std::swap(S, BaseRegs.back()); 333 BaseRegs.pop_back(); 334 } 335 336 /// referencesReg - Test if this formula references the given register. 337 bool Formula::referencesReg(const SCEV *S) const { 338 return S == ScaledReg || 339 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 340 } 341 342 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 343 /// which are used by uses other than the use with the given index. 344 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 345 const RegUseTracker &RegUses) const { 346 if (ScaledReg) 347 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 348 return true; 349 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 350 E = BaseRegs.end(); I != E; ++I) 351 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 352 return true; 353 return false; 354 } 355 356 void Formula::print(raw_ostream &OS) const { 357 bool First = true; 358 if (AM.BaseGV) { 359 if (!First) OS << " + "; else First = false; 360 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 361 } 362 if (AM.BaseOffs != 0) { 363 if (!First) OS << " + "; else First = false; 364 OS << AM.BaseOffs; 365 } 366 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 367 E = BaseRegs.end(); I != E; ++I) { 368 if (!First) OS << " + "; else First = false; 369 OS << "reg(" << **I << ')'; 370 } 371 if (AM.HasBaseReg && BaseRegs.empty()) { 372 if (!First) OS << " + "; else First = false; 373 OS << "**error: HasBaseReg**"; 374 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 375 if (!First) OS << " + "; else First = false; 376 OS << "**error: !HasBaseReg**"; 377 } 378 if (AM.Scale != 0) { 379 if (!First) OS << " + "; else First = false; 380 OS << AM.Scale << "*reg("; 381 if (ScaledReg) 382 OS << *ScaledReg; 383 else 384 OS << "<unknown>"; 385 OS << ')'; 386 } 387 if (UnfoldedOffset != 0) { 388 if (!First) OS << " + "; else First = false; 389 OS << "imm(" << UnfoldedOffset << ')'; 390 } 391 } 392 393 void Formula::dump() const { 394 print(errs()); errs() << '\n'; 395 } 396 397 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 398 /// without changing its value. 399 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 400 Type *WideTy = 401 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 402 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 403 } 404 405 /// isAddSExtable - Return true if the given add can be sign-extended 406 /// without changing its value. 407 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 408 Type *WideTy = 409 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 410 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 411 } 412 413 /// isMulSExtable - Return true if the given mul can be sign-extended 414 /// without changing its value. 415 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 416 Type *WideTy = 417 IntegerType::get(SE.getContext(), 418 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 419 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 420 } 421 422 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 423 /// and if the remainder is known to be zero, or null otherwise. If 424 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 425 /// to Y, ignoring that the multiplication may overflow, which is useful when 426 /// the result will be used in a context where the most significant bits are 427 /// ignored. 428 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 429 ScalarEvolution &SE, 430 bool IgnoreSignificantBits = false) { 431 // Handle the trivial case, which works for any SCEV type. 432 if (LHS == RHS) 433 return SE.getConstant(LHS->getType(), 1); 434 435 // Handle a few RHS special cases. 436 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 437 if (RC) { 438 const APInt &RA = RC->getValue()->getValue(); 439 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 440 // some folding. 441 if (RA.isAllOnesValue()) 442 return SE.getMulExpr(LHS, RC); 443 // Handle x /s 1 as x. 444 if (RA == 1) 445 return LHS; 446 } 447 448 // Check for a division of a constant by a constant. 449 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 450 if (!RC) 451 return 0; 452 const APInt &LA = C->getValue()->getValue(); 453 const APInt &RA = RC->getValue()->getValue(); 454 if (LA.srem(RA) != 0) 455 return 0; 456 return SE.getConstant(LA.sdiv(RA)); 457 } 458 459 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 460 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 461 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 462 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 463 IgnoreSignificantBits); 464 if (!Step) return 0; 465 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 466 IgnoreSignificantBits); 467 if (!Start) return 0; 468 // FlagNW is independent of the start value, step direction, and is 469 // preserved with smaller magnitude steps. 470 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 471 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 472 } 473 return 0; 474 } 475 476 // Distribute the sdiv over add operands, if the add doesn't overflow. 477 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 478 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 479 SmallVector<const SCEV *, 8> Ops; 480 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 481 I != E; ++I) { 482 const SCEV *Op = getExactSDiv(*I, RHS, SE, 483 IgnoreSignificantBits); 484 if (!Op) return 0; 485 Ops.push_back(Op); 486 } 487 return SE.getAddExpr(Ops); 488 } 489 return 0; 490 } 491 492 // Check for a multiply operand that we can pull RHS out of. 493 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 494 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 495 SmallVector<const SCEV *, 4> Ops; 496 bool Found = false; 497 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 498 I != E; ++I) { 499 const SCEV *S = *I; 500 if (!Found) 501 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 502 IgnoreSignificantBits)) { 503 S = Q; 504 Found = true; 505 } 506 Ops.push_back(S); 507 } 508 return Found ? SE.getMulExpr(Ops) : 0; 509 } 510 return 0; 511 } 512 513 // Otherwise we don't know. 514 return 0; 515 } 516 517 /// ExtractImmediate - If S involves the addition of a constant integer value, 518 /// return that integer value, and mutate S to point to a new SCEV with that 519 /// value excluded. 520 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 521 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 522 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 523 S = SE.getConstant(C->getType(), 0); 524 return C->getValue()->getSExtValue(); 525 } 526 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 527 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 528 int64_t Result = ExtractImmediate(NewOps.front(), SE); 529 if (Result != 0) 530 S = SE.getAddExpr(NewOps); 531 return Result; 532 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 533 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 534 int64_t Result = ExtractImmediate(NewOps.front(), SE); 535 if (Result != 0) 536 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 537 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 538 SCEV::FlagAnyWrap); 539 return Result; 540 } 541 return 0; 542 } 543 544 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 545 /// return that symbol, and mutate S to point to a new SCEV with that 546 /// value excluded. 547 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 548 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 549 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 550 S = SE.getConstant(GV->getType(), 0); 551 return GV; 552 } 553 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 554 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 555 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 556 if (Result) 557 S = SE.getAddExpr(NewOps); 558 return Result; 559 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 560 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 561 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 562 if (Result) 563 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 564 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 565 SCEV::FlagAnyWrap); 566 return Result; 567 } 568 return 0; 569 } 570 571 /// isAddressUse - Returns true if the specified instruction is using the 572 /// specified value as an address. 573 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 574 bool isAddress = isa<LoadInst>(Inst); 575 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 576 if (SI->getOperand(1) == OperandVal) 577 isAddress = true; 578 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 579 // Addressing modes can also be folded into prefetches and a variety 580 // of intrinsics. 581 switch (II->getIntrinsicID()) { 582 default: break; 583 case Intrinsic::prefetch: 584 case Intrinsic::x86_sse_storeu_ps: 585 case Intrinsic::x86_sse2_storeu_pd: 586 case Intrinsic::x86_sse2_storeu_dq: 587 case Intrinsic::x86_sse2_storel_dq: 588 if (II->getArgOperand(0) == OperandVal) 589 isAddress = true; 590 break; 591 } 592 } 593 return isAddress; 594 } 595 596 /// getAccessType - Return the type of the memory being accessed. 597 static Type *getAccessType(const Instruction *Inst) { 598 Type *AccessTy = Inst->getType(); 599 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 600 AccessTy = SI->getOperand(0)->getType(); 601 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 602 // Addressing modes can also be folded into prefetches and a variety 603 // of intrinsics. 604 switch (II->getIntrinsicID()) { 605 default: break; 606 case Intrinsic::x86_sse_storeu_ps: 607 case Intrinsic::x86_sse2_storeu_pd: 608 case Intrinsic::x86_sse2_storeu_dq: 609 case Intrinsic::x86_sse2_storel_dq: 610 AccessTy = II->getArgOperand(0)->getType(); 611 break; 612 } 613 } 614 615 // All pointers have the same requirements, so canonicalize them to an 616 // arbitrary pointer type to minimize variation. 617 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 618 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 619 PTy->getAddressSpace()); 620 621 return AccessTy; 622 } 623 624 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 625 /// specified set are trivially dead, delete them and see if this makes any of 626 /// their operands subsequently dead. 627 static bool 628 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 629 bool Changed = false; 630 631 while (!DeadInsts.empty()) { 632 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 633 634 if (I == 0 || !isInstructionTriviallyDead(I)) 635 continue; 636 637 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 638 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 639 *OI = 0; 640 if (U->use_empty()) 641 DeadInsts.push_back(U); 642 } 643 644 I->eraseFromParent(); 645 Changed = true; 646 } 647 648 return Changed; 649 } 650 651 namespace { 652 653 /// Cost - This class is used to measure and compare candidate formulae. 654 class Cost { 655 /// TODO: Some of these could be merged. Also, a lexical ordering 656 /// isn't always optimal. 657 unsigned NumRegs; 658 unsigned AddRecCost; 659 unsigned NumIVMuls; 660 unsigned NumBaseAdds; 661 unsigned ImmCost; 662 unsigned SetupCost; 663 664 public: 665 Cost() 666 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 667 SetupCost(0) {} 668 669 bool operator<(const Cost &Other) const; 670 671 void Loose(); 672 673 void RateFormula(const Formula &F, 674 SmallPtrSet<const SCEV *, 16> &Regs, 675 const DenseSet<const SCEV *> &VisitedRegs, 676 const Loop *L, 677 const SmallVectorImpl<int64_t> &Offsets, 678 ScalarEvolution &SE, DominatorTree &DT); 679 680 void print(raw_ostream &OS) const; 681 void dump() const; 682 683 private: 684 void RateRegister(const SCEV *Reg, 685 SmallPtrSet<const SCEV *, 16> &Regs, 686 const Loop *L, 687 ScalarEvolution &SE, DominatorTree &DT); 688 void RatePrimaryRegister(const SCEV *Reg, 689 SmallPtrSet<const SCEV *, 16> &Regs, 690 const Loop *L, 691 ScalarEvolution &SE, DominatorTree &DT); 692 }; 693 694 } 695 696 /// RateRegister - Tally up interesting quantities from the given register. 697 void Cost::RateRegister(const SCEV *Reg, 698 SmallPtrSet<const SCEV *, 16> &Regs, 699 const Loop *L, 700 ScalarEvolution &SE, DominatorTree &DT) { 701 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 702 if (AR->getLoop() == L) 703 AddRecCost += 1; /// TODO: This should be a function of the stride. 704 705 // If this is an addrec for a loop that's already been visited by LSR, 706 // don't second-guess its addrec phi nodes. LSR isn't currently smart 707 // enough to reason about more than one loop at a time. Consider these 708 // registers free and leave them alone. 709 else if (L->contains(AR->getLoop()) || 710 (!AR->getLoop()->contains(L) && 711 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 712 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 713 PHINode *PN = dyn_cast<PHINode>(I); ++I) 714 if (SE.isSCEVable(PN->getType()) && 715 (SE.getEffectiveSCEVType(PN->getType()) == 716 SE.getEffectiveSCEVType(AR->getType())) && 717 SE.getSCEV(PN) == AR) 718 return; 719 720 // If this isn't one of the addrecs that the loop already has, it 721 // would require a costly new phi and add. TODO: This isn't 722 // precisely modeled right now. 723 ++NumBaseAdds; 724 if (!Regs.count(AR->getStart())) 725 RateRegister(AR->getStart(), Regs, L, SE, DT); 726 } 727 728 // Add the step value register, if it needs one. 729 // TODO: The non-affine case isn't precisely modeled here. 730 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) 731 if (!Regs.count(AR->getStart())) 732 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 733 } 734 ++NumRegs; 735 736 // Rough heuristic; favor registers which don't require extra setup 737 // instructions in the preheader. 738 if (!isa<SCEVUnknown>(Reg) && 739 !isa<SCEVConstant>(Reg) && 740 !(isa<SCEVAddRecExpr>(Reg) && 741 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 742 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 743 ++SetupCost; 744 745 NumIVMuls += isa<SCEVMulExpr>(Reg) && 746 SE.hasComputableLoopEvolution(Reg, L); 747 } 748 749 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 750 /// before, rate it. 751 void Cost::RatePrimaryRegister(const SCEV *Reg, 752 SmallPtrSet<const SCEV *, 16> &Regs, 753 const Loop *L, 754 ScalarEvolution &SE, DominatorTree &DT) { 755 if (Regs.insert(Reg)) 756 RateRegister(Reg, Regs, L, SE, DT); 757 } 758 759 void Cost::RateFormula(const Formula &F, 760 SmallPtrSet<const SCEV *, 16> &Regs, 761 const DenseSet<const SCEV *> &VisitedRegs, 762 const Loop *L, 763 const SmallVectorImpl<int64_t> &Offsets, 764 ScalarEvolution &SE, DominatorTree &DT) { 765 // Tally up the registers. 766 if (const SCEV *ScaledReg = F.ScaledReg) { 767 if (VisitedRegs.count(ScaledReg)) { 768 Loose(); 769 return; 770 } 771 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); 772 } 773 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 774 E = F.BaseRegs.end(); I != E; ++I) { 775 const SCEV *BaseReg = *I; 776 if (VisitedRegs.count(BaseReg)) { 777 Loose(); 778 return; 779 } 780 RatePrimaryRegister(BaseReg, Regs, L, SE, DT); 781 } 782 783 // Determine how many (unfolded) adds we'll need inside the loop. 784 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 785 if (NumBaseParts > 1) 786 NumBaseAdds += NumBaseParts - 1; 787 788 // Tally up the non-zero immediates. 789 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 790 E = Offsets.end(); I != E; ++I) { 791 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 792 if (F.AM.BaseGV) 793 ImmCost += 64; // Handle symbolic values conservatively. 794 // TODO: This should probably be the pointer size. 795 else if (Offset != 0) 796 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 797 } 798 } 799 800 /// Loose - Set this cost to a losing value. 801 void Cost::Loose() { 802 NumRegs = ~0u; 803 AddRecCost = ~0u; 804 NumIVMuls = ~0u; 805 NumBaseAdds = ~0u; 806 ImmCost = ~0u; 807 SetupCost = ~0u; 808 } 809 810 /// operator< - Choose the lower cost. 811 bool Cost::operator<(const Cost &Other) const { 812 if (NumRegs != Other.NumRegs) 813 return NumRegs < Other.NumRegs; 814 if (AddRecCost != Other.AddRecCost) 815 return AddRecCost < Other.AddRecCost; 816 if (NumIVMuls != Other.NumIVMuls) 817 return NumIVMuls < Other.NumIVMuls; 818 if (NumBaseAdds != Other.NumBaseAdds) 819 return NumBaseAdds < Other.NumBaseAdds; 820 if (ImmCost != Other.ImmCost) 821 return ImmCost < Other.ImmCost; 822 if (SetupCost != Other.SetupCost) 823 return SetupCost < Other.SetupCost; 824 return false; 825 } 826 827 void Cost::print(raw_ostream &OS) const { 828 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 829 if (AddRecCost != 0) 830 OS << ", with addrec cost " << AddRecCost; 831 if (NumIVMuls != 0) 832 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 833 if (NumBaseAdds != 0) 834 OS << ", plus " << NumBaseAdds << " base add" 835 << (NumBaseAdds == 1 ? "" : "s"); 836 if (ImmCost != 0) 837 OS << ", plus " << ImmCost << " imm cost"; 838 if (SetupCost != 0) 839 OS << ", plus " << SetupCost << " setup cost"; 840 } 841 842 void Cost::dump() const { 843 print(errs()); errs() << '\n'; 844 } 845 846 namespace { 847 848 /// LSRFixup - An operand value in an instruction which is to be replaced 849 /// with some equivalent, possibly strength-reduced, replacement. 850 struct LSRFixup { 851 /// UserInst - The instruction which will be updated. 852 Instruction *UserInst; 853 854 /// OperandValToReplace - The operand of the instruction which will 855 /// be replaced. The operand may be used more than once; every instance 856 /// will be replaced. 857 Value *OperandValToReplace; 858 859 /// PostIncLoops - If this user is to use the post-incremented value of an 860 /// induction variable, this variable is non-null and holds the loop 861 /// associated with the induction variable. 862 PostIncLoopSet PostIncLoops; 863 864 /// LUIdx - The index of the LSRUse describing the expression which 865 /// this fixup needs, minus an offset (below). 866 size_t LUIdx; 867 868 /// Offset - A constant offset to be added to the LSRUse expression. 869 /// This allows multiple fixups to share the same LSRUse with different 870 /// offsets, for example in an unrolled loop. 871 int64_t Offset; 872 873 bool isUseFullyOutsideLoop(const Loop *L) const; 874 875 LSRFixup(); 876 877 void print(raw_ostream &OS) const; 878 void dump() const; 879 }; 880 881 } 882 883 LSRFixup::LSRFixup() 884 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 885 886 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 887 /// value outside of the given loop. 888 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 889 // PHI nodes use their value in their incoming blocks. 890 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 891 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 892 if (PN->getIncomingValue(i) == OperandValToReplace && 893 L->contains(PN->getIncomingBlock(i))) 894 return false; 895 return true; 896 } 897 898 return !L->contains(UserInst); 899 } 900 901 void LSRFixup::print(raw_ostream &OS) const { 902 OS << "UserInst="; 903 // Store is common and interesting enough to be worth special-casing. 904 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 905 OS << "store "; 906 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 907 } else if (UserInst->getType()->isVoidTy()) 908 OS << UserInst->getOpcodeName(); 909 else 910 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 911 912 OS << ", OperandValToReplace="; 913 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 914 915 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 916 E = PostIncLoops.end(); I != E; ++I) { 917 OS << ", PostIncLoop="; 918 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 919 } 920 921 if (LUIdx != ~size_t(0)) 922 OS << ", LUIdx=" << LUIdx; 923 924 if (Offset != 0) 925 OS << ", Offset=" << Offset; 926 } 927 928 void LSRFixup::dump() const { 929 print(errs()); errs() << '\n'; 930 } 931 932 namespace { 933 934 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 935 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 936 struct UniquifierDenseMapInfo { 937 static SmallVector<const SCEV *, 2> getEmptyKey() { 938 SmallVector<const SCEV *, 2> V; 939 V.push_back(reinterpret_cast<const SCEV *>(-1)); 940 return V; 941 } 942 943 static SmallVector<const SCEV *, 2> getTombstoneKey() { 944 SmallVector<const SCEV *, 2> V; 945 V.push_back(reinterpret_cast<const SCEV *>(-2)); 946 return V; 947 } 948 949 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 950 unsigned Result = 0; 951 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 952 E = V.end(); I != E; ++I) 953 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 954 return Result; 955 } 956 957 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 958 const SmallVector<const SCEV *, 2> &RHS) { 959 return LHS == RHS; 960 } 961 }; 962 963 /// LSRUse - This class holds the state that LSR keeps for each use in 964 /// IVUsers, as well as uses invented by LSR itself. It includes information 965 /// about what kinds of things can be folded into the user, information about 966 /// the user itself, and information about how the use may be satisfied. 967 /// TODO: Represent multiple users of the same expression in common? 968 class LSRUse { 969 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 970 971 public: 972 /// KindType - An enum for a kind of use, indicating what types of 973 /// scaled and immediate operands it might support. 974 enum KindType { 975 Basic, ///< A normal use, with no folding. 976 Special, ///< A special case of basic, allowing -1 scales. 977 Address, ///< An address use; folding according to TargetLowering 978 ICmpZero ///< An equality icmp with both operands folded into one. 979 // TODO: Add a generic icmp too? 980 }; 981 982 KindType Kind; 983 Type *AccessTy; 984 985 SmallVector<int64_t, 8> Offsets; 986 int64_t MinOffset; 987 int64_t MaxOffset; 988 989 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 990 /// LSRUse are outside of the loop, in which case some special-case heuristics 991 /// may be used. 992 bool AllFixupsOutsideLoop; 993 994 /// WidestFixupType - This records the widest use type for any fixup using 995 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 996 /// max fixup widths to be equivalent, because the narrower one may be relying 997 /// on the implicit truncation to truncate away bogus bits. 998 Type *WidestFixupType; 999 1000 /// Formulae - A list of ways to build a value that can satisfy this user. 1001 /// After the list is populated, one of these is selected heuristically and 1002 /// used to formulate a replacement for OperandValToReplace in UserInst. 1003 SmallVector<Formula, 12> Formulae; 1004 1005 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1006 SmallPtrSet<const SCEV *, 4> Regs; 1007 1008 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1009 MinOffset(INT64_MAX), 1010 MaxOffset(INT64_MIN), 1011 AllFixupsOutsideLoop(true), 1012 WidestFixupType(0) {} 1013 1014 bool HasFormulaWithSameRegs(const Formula &F) const; 1015 bool InsertFormula(const Formula &F); 1016 void DeleteFormula(Formula &F); 1017 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1018 1019 void print(raw_ostream &OS) const; 1020 void dump() const; 1021 }; 1022 1023 } 1024 1025 /// HasFormula - Test whether this use as a formula which has the same 1026 /// registers as the given formula. 1027 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1028 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1029 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1030 // Unstable sort by host order ok, because this is only used for uniquifying. 1031 std::sort(Key.begin(), Key.end()); 1032 return Uniquifier.count(Key); 1033 } 1034 1035 /// InsertFormula - If the given formula has not yet been inserted, add it to 1036 /// the list, and return true. Return false otherwise. 1037 bool LSRUse::InsertFormula(const Formula &F) { 1038 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1039 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1040 // Unstable sort by host order ok, because this is only used for uniquifying. 1041 std::sort(Key.begin(), Key.end()); 1042 1043 if (!Uniquifier.insert(Key).second) 1044 return false; 1045 1046 // Using a register to hold the value of 0 is not profitable. 1047 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1048 "Zero allocated in a scaled register!"); 1049 #ifndef NDEBUG 1050 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1051 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1052 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1053 #endif 1054 1055 // Add the formula to the list. 1056 Formulae.push_back(F); 1057 1058 // Record registers now being used by this use. 1059 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1060 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1061 1062 return true; 1063 } 1064 1065 /// DeleteFormula - Remove the given formula from this use's list. 1066 void LSRUse::DeleteFormula(Formula &F) { 1067 if (&F != &Formulae.back()) 1068 std::swap(F, Formulae.back()); 1069 Formulae.pop_back(); 1070 assert(!Formulae.empty() && "LSRUse has no formulae left!"); 1071 } 1072 1073 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1074 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1075 // Now that we've filtered out some formulae, recompute the Regs set. 1076 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1077 Regs.clear(); 1078 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1079 E = Formulae.end(); I != E; ++I) { 1080 const Formula &F = *I; 1081 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1082 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1083 } 1084 1085 // Update the RegTracker. 1086 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1087 E = OldRegs.end(); I != E; ++I) 1088 if (!Regs.count(*I)) 1089 RegUses.DropRegister(*I, LUIdx); 1090 } 1091 1092 void LSRUse::print(raw_ostream &OS) const { 1093 OS << "LSR Use: Kind="; 1094 switch (Kind) { 1095 case Basic: OS << "Basic"; break; 1096 case Special: OS << "Special"; break; 1097 case ICmpZero: OS << "ICmpZero"; break; 1098 case Address: 1099 OS << "Address of "; 1100 if (AccessTy->isPointerTy()) 1101 OS << "pointer"; // the full pointer type could be really verbose 1102 else 1103 OS << *AccessTy; 1104 } 1105 1106 OS << ", Offsets={"; 1107 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1108 E = Offsets.end(); I != E; ++I) { 1109 OS << *I; 1110 if (llvm::next(I) != E) 1111 OS << ','; 1112 } 1113 OS << '}'; 1114 1115 if (AllFixupsOutsideLoop) 1116 OS << ", all-fixups-outside-loop"; 1117 1118 if (WidestFixupType) 1119 OS << ", widest fixup type: " << *WidestFixupType; 1120 } 1121 1122 void LSRUse::dump() const { 1123 print(errs()); errs() << '\n'; 1124 } 1125 1126 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1127 /// be completely folded into the user instruction at isel time. This includes 1128 /// address-mode folding and special icmp tricks. 1129 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1130 LSRUse::KindType Kind, Type *AccessTy, 1131 const TargetLowering *TLI) { 1132 switch (Kind) { 1133 case LSRUse::Address: 1134 // If we have low-level target information, ask the target if it can 1135 // completely fold this address. 1136 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1137 1138 // Otherwise, just guess that reg+reg addressing is legal. 1139 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1140 1141 case LSRUse::ICmpZero: 1142 // There's not even a target hook for querying whether it would be legal to 1143 // fold a GV into an ICmp. 1144 if (AM.BaseGV) 1145 return false; 1146 1147 // ICmp only has two operands; don't allow more than two non-trivial parts. 1148 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1149 return false; 1150 1151 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1152 // putting the scaled register in the other operand of the icmp. 1153 if (AM.Scale != 0 && AM.Scale != -1) 1154 return false; 1155 1156 // If we have low-level target information, ask the target if it can fold an 1157 // integer immediate on an icmp. 1158 if (AM.BaseOffs != 0) { 1159 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs); 1160 return false; 1161 } 1162 1163 return true; 1164 1165 case LSRUse::Basic: 1166 // Only handle single-register values. 1167 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1168 1169 case LSRUse::Special: 1170 // Only handle -1 scales, or no scale. 1171 return AM.Scale == 0 || AM.Scale == -1; 1172 } 1173 1174 return false; 1175 } 1176 1177 static bool isLegalUse(TargetLowering::AddrMode AM, 1178 int64_t MinOffset, int64_t MaxOffset, 1179 LSRUse::KindType Kind, Type *AccessTy, 1180 const TargetLowering *TLI) { 1181 // Check for overflow. 1182 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1183 (MinOffset > 0)) 1184 return false; 1185 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1186 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1187 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1188 // Check for overflow. 1189 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1190 (MaxOffset > 0)) 1191 return false; 1192 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1193 return isLegalUse(AM, Kind, AccessTy, TLI); 1194 } 1195 return false; 1196 } 1197 1198 static bool isAlwaysFoldable(int64_t BaseOffs, 1199 GlobalValue *BaseGV, 1200 bool HasBaseReg, 1201 LSRUse::KindType Kind, Type *AccessTy, 1202 const TargetLowering *TLI) { 1203 // Fast-path: zero is always foldable. 1204 if (BaseOffs == 0 && !BaseGV) return true; 1205 1206 // Conservatively, create an address with an immediate and a 1207 // base and a scale. 1208 TargetLowering::AddrMode AM; 1209 AM.BaseOffs = BaseOffs; 1210 AM.BaseGV = BaseGV; 1211 AM.HasBaseReg = HasBaseReg; 1212 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1213 1214 // Canonicalize a scale of 1 to a base register if the formula doesn't 1215 // already have a base register. 1216 if (!AM.HasBaseReg && AM.Scale == 1) { 1217 AM.Scale = 0; 1218 AM.HasBaseReg = true; 1219 } 1220 1221 return isLegalUse(AM, Kind, AccessTy, TLI); 1222 } 1223 1224 static bool isAlwaysFoldable(const SCEV *S, 1225 int64_t MinOffset, int64_t MaxOffset, 1226 bool HasBaseReg, 1227 LSRUse::KindType Kind, Type *AccessTy, 1228 const TargetLowering *TLI, 1229 ScalarEvolution &SE) { 1230 // Fast-path: zero is always foldable. 1231 if (S->isZero()) return true; 1232 1233 // Conservatively, create an address with an immediate and a 1234 // base and a scale. 1235 int64_t BaseOffs = ExtractImmediate(S, SE); 1236 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1237 1238 // If there's anything else involved, it's not foldable. 1239 if (!S->isZero()) return false; 1240 1241 // Fast-path: zero is always foldable. 1242 if (BaseOffs == 0 && !BaseGV) return true; 1243 1244 // Conservatively, create an address with an immediate and a 1245 // base and a scale. 1246 TargetLowering::AddrMode AM; 1247 AM.BaseOffs = BaseOffs; 1248 AM.BaseGV = BaseGV; 1249 AM.HasBaseReg = HasBaseReg; 1250 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1251 1252 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1253 } 1254 1255 namespace { 1256 1257 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1258 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1259 struct UseMapDenseMapInfo { 1260 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1261 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1262 } 1263 1264 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1265 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1266 } 1267 1268 static unsigned 1269 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1270 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1271 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1272 return Result; 1273 } 1274 1275 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1276 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1277 return LHS == RHS; 1278 } 1279 }; 1280 1281 /// LSRInstance - This class holds state for the main loop strength reduction 1282 /// logic. 1283 class LSRInstance { 1284 IVUsers &IU; 1285 ScalarEvolution &SE; 1286 DominatorTree &DT; 1287 LoopInfo &LI; 1288 const TargetLowering *const TLI; 1289 Loop *const L; 1290 bool Changed; 1291 1292 /// IVIncInsertPos - This is the insert position that the current loop's 1293 /// induction variable increment should be placed. In simple loops, this is 1294 /// the latch block's terminator. But in more complicated cases, this is a 1295 /// position which will dominate all the in-loop post-increment users. 1296 Instruction *IVIncInsertPos; 1297 1298 /// Factors - Interesting factors between use strides. 1299 SmallSetVector<int64_t, 8> Factors; 1300 1301 /// Types - Interesting use types, to facilitate truncation reuse. 1302 SmallSetVector<Type *, 4> Types; 1303 1304 /// Fixups - The list of operands which are to be replaced. 1305 SmallVector<LSRFixup, 16> Fixups; 1306 1307 /// Uses - The list of interesting uses. 1308 SmallVector<LSRUse, 16> Uses; 1309 1310 /// RegUses - Track which uses use which register candidates. 1311 RegUseTracker RegUses; 1312 1313 void OptimizeShadowIV(); 1314 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1315 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1316 void OptimizeLoopTermCond(); 1317 1318 void CollectInterestingTypesAndFactors(); 1319 void CollectFixupsAndInitialFormulae(); 1320 1321 LSRFixup &getNewFixup() { 1322 Fixups.push_back(LSRFixup()); 1323 return Fixups.back(); 1324 } 1325 1326 // Support for sharing of LSRUses between LSRFixups. 1327 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1328 size_t, 1329 UseMapDenseMapInfo> UseMapTy; 1330 UseMapTy UseMap; 1331 1332 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1333 LSRUse::KindType Kind, Type *AccessTy); 1334 1335 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1336 LSRUse::KindType Kind, 1337 Type *AccessTy); 1338 1339 void DeleteUse(LSRUse &LU, size_t LUIdx); 1340 1341 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1342 1343 public: 1344 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1345 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1346 void CountRegisters(const Formula &F, size_t LUIdx); 1347 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1348 1349 void CollectLoopInvariantFixupsAndFormulae(); 1350 1351 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1352 unsigned Depth = 0); 1353 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1354 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1355 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1356 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1357 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1358 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1359 void GenerateCrossUseConstantOffsets(); 1360 void GenerateAllReuseFormulae(); 1361 1362 void FilterOutUndesirableDedicatedRegisters(); 1363 1364 size_t EstimateSearchSpaceComplexity() const; 1365 void NarrowSearchSpaceByDetectingSupersets(); 1366 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1367 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1368 void NarrowSearchSpaceByPickingWinnerRegs(); 1369 void NarrowSearchSpaceUsingHeuristics(); 1370 1371 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1372 Cost &SolutionCost, 1373 SmallVectorImpl<const Formula *> &Workspace, 1374 const Cost &CurCost, 1375 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1376 DenseSet<const SCEV *> &VisitedRegs) const; 1377 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1378 1379 BasicBlock::iterator 1380 HoistInsertPosition(BasicBlock::iterator IP, 1381 const SmallVectorImpl<Instruction *> &Inputs) const; 1382 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1383 const LSRFixup &LF, 1384 const LSRUse &LU) const; 1385 1386 Value *Expand(const LSRFixup &LF, 1387 const Formula &F, 1388 BasicBlock::iterator IP, 1389 SCEVExpander &Rewriter, 1390 SmallVectorImpl<WeakVH> &DeadInsts) const; 1391 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1392 const Formula &F, 1393 SCEVExpander &Rewriter, 1394 SmallVectorImpl<WeakVH> &DeadInsts, 1395 Pass *P) const; 1396 void Rewrite(const LSRFixup &LF, 1397 const Formula &F, 1398 SCEVExpander &Rewriter, 1399 SmallVectorImpl<WeakVH> &DeadInsts, 1400 Pass *P) const; 1401 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1402 Pass *P); 1403 1404 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1405 1406 bool getChanged() const { return Changed; } 1407 1408 void print_factors_and_types(raw_ostream &OS) const; 1409 void print_fixups(raw_ostream &OS) const; 1410 void print_uses(raw_ostream &OS) const; 1411 void print(raw_ostream &OS) const; 1412 void dump() const; 1413 }; 1414 1415 } 1416 1417 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1418 /// inside the loop then try to eliminate the cast operation. 1419 void LSRInstance::OptimizeShadowIV() { 1420 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1421 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1422 return; 1423 1424 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1425 UI != E; /* empty */) { 1426 IVUsers::const_iterator CandidateUI = UI; 1427 ++UI; 1428 Instruction *ShadowUse = CandidateUI->getUser(); 1429 Type *DestTy = NULL; 1430 bool IsSigned = false; 1431 1432 /* If shadow use is a int->float cast then insert a second IV 1433 to eliminate this cast. 1434 1435 for (unsigned i = 0; i < n; ++i) 1436 foo((double)i); 1437 1438 is transformed into 1439 1440 double d = 0.0; 1441 for (unsigned i = 0; i < n; ++i, ++d) 1442 foo(d); 1443 */ 1444 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1445 IsSigned = false; 1446 DestTy = UCast->getDestTy(); 1447 } 1448 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1449 IsSigned = true; 1450 DestTy = SCast->getDestTy(); 1451 } 1452 if (!DestTy) continue; 1453 1454 if (TLI) { 1455 // If target does not support DestTy natively then do not apply 1456 // this transformation. 1457 EVT DVT = TLI->getValueType(DestTy); 1458 if (!TLI->isTypeLegal(DVT)) continue; 1459 } 1460 1461 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1462 if (!PH) continue; 1463 if (PH->getNumIncomingValues() != 2) continue; 1464 1465 Type *SrcTy = PH->getType(); 1466 int Mantissa = DestTy->getFPMantissaWidth(); 1467 if (Mantissa == -1) continue; 1468 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1469 continue; 1470 1471 unsigned Entry, Latch; 1472 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1473 Entry = 0; 1474 Latch = 1; 1475 } else { 1476 Entry = 1; 1477 Latch = 0; 1478 } 1479 1480 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1481 if (!Init) continue; 1482 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1483 (double)Init->getSExtValue() : 1484 (double)Init->getZExtValue()); 1485 1486 BinaryOperator *Incr = 1487 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1488 if (!Incr) continue; 1489 if (Incr->getOpcode() != Instruction::Add 1490 && Incr->getOpcode() != Instruction::Sub) 1491 continue; 1492 1493 /* Initialize new IV, double d = 0.0 in above example. */ 1494 ConstantInt *C = NULL; 1495 if (Incr->getOperand(0) == PH) 1496 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1497 else if (Incr->getOperand(1) == PH) 1498 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1499 else 1500 continue; 1501 1502 if (!C) continue; 1503 1504 // Ignore negative constants, as the code below doesn't handle them 1505 // correctly. TODO: Remove this restriction. 1506 if (!C->getValue().isStrictlyPositive()) continue; 1507 1508 /* Add new PHINode. */ 1509 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1510 1511 /* create new increment. '++d' in above example. */ 1512 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1513 BinaryOperator *NewIncr = 1514 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1515 Instruction::FAdd : Instruction::FSub, 1516 NewPH, CFP, "IV.S.next.", Incr); 1517 1518 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1519 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1520 1521 /* Remove cast operation */ 1522 ShadowUse->replaceAllUsesWith(NewPH); 1523 ShadowUse->eraseFromParent(); 1524 Changed = true; 1525 break; 1526 } 1527 } 1528 1529 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1530 /// set the IV user and stride information and return true, otherwise return 1531 /// false. 1532 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1533 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1534 if (UI->getUser() == Cond) { 1535 // NOTE: we could handle setcc instructions with multiple uses here, but 1536 // InstCombine does it as well for simple uses, it's not clear that it 1537 // occurs enough in real life to handle. 1538 CondUse = UI; 1539 return true; 1540 } 1541 return false; 1542 } 1543 1544 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1545 /// a max computation. 1546 /// 1547 /// This is a narrow solution to a specific, but acute, problem. For loops 1548 /// like this: 1549 /// 1550 /// i = 0; 1551 /// do { 1552 /// p[i] = 0.0; 1553 /// } while (++i < n); 1554 /// 1555 /// the trip count isn't just 'n', because 'n' might not be positive. And 1556 /// unfortunately this can come up even for loops where the user didn't use 1557 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1558 /// will commonly be lowered like this: 1559 // 1560 /// if (n > 0) { 1561 /// i = 0; 1562 /// do { 1563 /// p[i] = 0.0; 1564 /// } while (++i < n); 1565 /// } 1566 /// 1567 /// and then it's possible for subsequent optimization to obscure the if 1568 /// test in such a way that indvars can't find it. 1569 /// 1570 /// When indvars can't find the if test in loops like this, it creates a 1571 /// max expression, which allows it to give the loop a canonical 1572 /// induction variable: 1573 /// 1574 /// i = 0; 1575 /// max = n < 1 ? 1 : n; 1576 /// do { 1577 /// p[i] = 0.0; 1578 /// } while (++i != max); 1579 /// 1580 /// Canonical induction variables are necessary because the loop passes 1581 /// are designed around them. The most obvious example of this is the 1582 /// LoopInfo analysis, which doesn't remember trip count values. It 1583 /// expects to be able to rediscover the trip count each time it is 1584 /// needed, and it does this using a simple analysis that only succeeds if 1585 /// the loop has a canonical induction variable. 1586 /// 1587 /// However, when it comes time to generate code, the maximum operation 1588 /// can be quite costly, especially if it's inside of an outer loop. 1589 /// 1590 /// This function solves this problem by detecting this type of loop and 1591 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1592 /// the instructions for the maximum computation. 1593 /// 1594 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1595 // Check that the loop matches the pattern we're looking for. 1596 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1597 Cond->getPredicate() != CmpInst::ICMP_NE) 1598 return Cond; 1599 1600 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1601 if (!Sel || !Sel->hasOneUse()) return Cond; 1602 1603 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1604 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1605 return Cond; 1606 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1607 1608 // Add one to the backedge-taken count to get the trip count. 1609 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1610 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1611 1612 // Check for a max calculation that matches the pattern. There's no check 1613 // for ICMP_ULE here because the comparison would be with zero, which 1614 // isn't interesting. 1615 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1616 const SCEVNAryExpr *Max = 0; 1617 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1618 Pred = ICmpInst::ICMP_SLE; 1619 Max = S; 1620 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1621 Pred = ICmpInst::ICMP_SLT; 1622 Max = S; 1623 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1624 Pred = ICmpInst::ICMP_ULT; 1625 Max = U; 1626 } else { 1627 // No match; bail. 1628 return Cond; 1629 } 1630 1631 // To handle a max with more than two operands, this optimization would 1632 // require additional checking and setup. 1633 if (Max->getNumOperands() != 2) 1634 return Cond; 1635 1636 const SCEV *MaxLHS = Max->getOperand(0); 1637 const SCEV *MaxRHS = Max->getOperand(1); 1638 1639 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1640 // for a comparison with 1. For <= and >=, a comparison with zero. 1641 if (!MaxLHS || 1642 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1643 return Cond; 1644 1645 // Check the relevant induction variable for conformance to 1646 // the pattern. 1647 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1648 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1649 if (!AR || !AR->isAffine() || 1650 AR->getStart() != One || 1651 AR->getStepRecurrence(SE) != One) 1652 return Cond; 1653 1654 assert(AR->getLoop() == L && 1655 "Loop condition operand is an addrec in a different loop!"); 1656 1657 // Check the right operand of the select, and remember it, as it will 1658 // be used in the new comparison instruction. 1659 Value *NewRHS = 0; 1660 if (ICmpInst::isTrueWhenEqual(Pred)) { 1661 // Look for n+1, and grab n. 1662 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1663 if (isa<ConstantInt>(BO->getOperand(1)) && 1664 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1665 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1666 NewRHS = BO->getOperand(0); 1667 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1668 if (isa<ConstantInt>(BO->getOperand(1)) && 1669 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1670 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1671 NewRHS = BO->getOperand(0); 1672 if (!NewRHS) 1673 return Cond; 1674 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1675 NewRHS = Sel->getOperand(1); 1676 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1677 NewRHS = Sel->getOperand(2); 1678 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1679 NewRHS = SU->getValue(); 1680 else 1681 // Max doesn't match expected pattern. 1682 return Cond; 1683 1684 // Determine the new comparison opcode. It may be signed or unsigned, 1685 // and the original comparison may be either equality or inequality. 1686 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1687 Pred = CmpInst::getInversePredicate(Pred); 1688 1689 // Ok, everything looks ok to change the condition into an SLT or SGE and 1690 // delete the max calculation. 1691 ICmpInst *NewCond = 1692 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1693 1694 // Delete the max calculation instructions. 1695 Cond->replaceAllUsesWith(NewCond); 1696 CondUse->setUser(NewCond); 1697 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1698 Cond->eraseFromParent(); 1699 Sel->eraseFromParent(); 1700 if (Cmp->use_empty()) 1701 Cmp->eraseFromParent(); 1702 return NewCond; 1703 } 1704 1705 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1706 /// postinc iv when possible. 1707 void 1708 LSRInstance::OptimizeLoopTermCond() { 1709 SmallPtrSet<Instruction *, 4> PostIncs; 1710 1711 BasicBlock *LatchBlock = L->getLoopLatch(); 1712 SmallVector<BasicBlock*, 8> ExitingBlocks; 1713 L->getExitingBlocks(ExitingBlocks); 1714 1715 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1716 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1717 1718 // Get the terminating condition for the loop if possible. If we 1719 // can, we want to change it to use a post-incremented version of its 1720 // induction variable, to allow coalescing the live ranges for the IV into 1721 // one register value. 1722 1723 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1724 if (!TermBr) 1725 continue; 1726 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1727 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1728 continue; 1729 1730 // Search IVUsesByStride to find Cond's IVUse if there is one. 1731 IVStrideUse *CondUse = 0; 1732 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1733 if (!FindIVUserForCond(Cond, CondUse)) 1734 continue; 1735 1736 // If the trip count is computed in terms of a max (due to ScalarEvolution 1737 // being unable to find a sufficient guard, for example), change the loop 1738 // comparison to use SLT or ULT instead of NE. 1739 // One consequence of doing this now is that it disrupts the count-down 1740 // optimization. That's not always a bad thing though, because in such 1741 // cases it may still be worthwhile to avoid a max. 1742 Cond = OptimizeMax(Cond, CondUse); 1743 1744 // If this exiting block dominates the latch block, it may also use 1745 // the post-inc value if it won't be shared with other uses. 1746 // Check for dominance. 1747 if (!DT.dominates(ExitingBlock, LatchBlock)) 1748 continue; 1749 1750 // Conservatively avoid trying to use the post-inc value in non-latch 1751 // exits if there may be pre-inc users in intervening blocks. 1752 if (LatchBlock != ExitingBlock) 1753 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1754 // Test if the use is reachable from the exiting block. This dominator 1755 // query is a conservative approximation of reachability. 1756 if (&*UI != CondUse && 1757 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1758 // Conservatively assume there may be reuse if the quotient of their 1759 // strides could be a legal scale. 1760 const SCEV *A = IU.getStride(*CondUse, L); 1761 const SCEV *B = IU.getStride(*UI, L); 1762 if (!A || !B) continue; 1763 if (SE.getTypeSizeInBits(A->getType()) != 1764 SE.getTypeSizeInBits(B->getType())) { 1765 if (SE.getTypeSizeInBits(A->getType()) > 1766 SE.getTypeSizeInBits(B->getType())) 1767 B = SE.getSignExtendExpr(B, A->getType()); 1768 else 1769 A = SE.getSignExtendExpr(A, B->getType()); 1770 } 1771 if (const SCEVConstant *D = 1772 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1773 const ConstantInt *C = D->getValue(); 1774 // Stride of one or negative one can have reuse with non-addresses. 1775 if (C->isOne() || C->isAllOnesValue()) 1776 goto decline_post_inc; 1777 // Avoid weird situations. 1778 if (C->getValue().getMinSignedBits() >= 64 || 1779 C->getValue().isMinSignedValue()) 1780 goto decline_post_inc; 1781 // Without TLI, assume that any stride might be valid, and so any 1782 // use might be shared. 1783 if (!TLI) 1784 goto decline_post_inc; 1785 // Check for possible scaled-address reuse. 1786 Type *AccessTy = getAccessType(UI->getUser()); 1787 TargetLowering::AddrMode AM; 1788 AM.Scale = C->getSExtValue(); 1789 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1790 goto decline_post_inc; 1791 AM.Scale = -AM.Scale; 1792 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1793 goto decline_post_inc; 1794 } 1795 } 1796 1797 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1798 << *Cond << '\n'); 1799 1800 // It's possible for the setcc instruction to be anywhere in the loop, and 1801 // possible for it to have multiple users. If it is not immediately before 1802 // the exiting block branch, move it. 1803 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1804 if (Cond->hasOneUse()) { 1805 Cond->moveBefore(TermBr); 1806 } else { 1807 // Clone the terminating condition and insert into the loopend. 1808 ICmpInst *OldCond = Cond; 1809 Cond = cast<ICmpInst>(Cond->clone()); 1810 Cond->setName(L->getHeader()->getName() + ".termcond"); 1811 ExitingBlock->getInstList().insert(TermBr, Cond); 1812 1813 // Clone the IVUse, as the old use still exists! 1814 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1815 TermBr->replaceUsesOfWith(OldCond, Cond); 1816 } 1817 } 1818 1819 // If we get to here, we know that we can transform the setcc instruction to 1820 // use the post-incremented version of the IV, allowing us to coalesce the 1821 // live ranges for the IV correctly. 1822 CondUse->transformToPostInc(L); 1823 Changed = true; 1824 1825 PostIncs.insert(Cond); 1826 decline_post_inc:; 1827 } 1828 1829 // Determine an insertion point for the loop induction variable increment. It 1830 // must dominate all the post-inc comparisons we just set up, and it must 1831 // dominate the loop latch edge. 1832 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1833 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1834 E = PostIncs.end(); I != E; ++I) { 1835 BasicBlock *BB = 1836 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1837 (*I)->getParent()); 1838 if (BB == (*I)->getParent()) 1839 IVIncInsertPos = *I; 1840 else if (BB != IVIncInsertPos->getParent()) 1841 IVIncInsertPos = BB->getTerminator(); 1842 } 1843 } 1844 1845 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1846 /// at the given offset and other details. If so, update the use and 1847 /// return true. 1848 bool 1849 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1850 LSRUse::KindType Kind, Type *AccessTy) { 1851 int64_t NewMinOffset = LU.MinOffset; 1852 int64_t NewMaxOffset = LU.MaxOffset; 1853 Type *NewAccessTy = AccessTy; 1854 1855 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1856 // something conservative, however this can pessimize in the case that one of 1857 // the uses will have all its uses outside the loop, for example. 1858 if (LU.Kind != Kind) 1859 return false; 1860 // Conservatively assume HasBaseReg is true for now. 1861 if (NewOffset < LU.MinOffset) { 1862 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1863 Kind, AccessTy, TLI)) 1864 return false; 1865 NewMinOffset = NewOffset; 1866 } else if (NewOffset > LU.MaxOffset) { 1867 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1868 Kind, AccessTy, TLI)) 1869 return false; 1870 NewMaxOffset = NewOffset; 1871 } 1872 // Check for a mismatched access type, and fall back conservatively as needed. 1873 // TODO: Be less conservative when the type is similar and can use the same 1874 // addressing modes. 1875 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1876 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1877 1878 // Update the use. 1879 LU.MinOffset = NewMinOffset; 1880 LU.MaxOffset = NewMaxOffset; 1881 LU.AccessTy = NewAccessTy; 1882 if (NewOffset != LU.Offsets.back()) 1883 LU.Offsets.push_back(NewOffset); 1884 return true; 1885 } 1886 1887 /// getUse - Return an LSRUse index and an offset value for a fixup which 1888 /// needs the given expression, with the given kind and optional access type. 1889 /// Either reuse an existing use or create a new one, as needed. 1890 std::pair<size_t, int64_t> 1891 LSRInstance::getUse(const SCEV *&Expr, 1892 LSRUse::KindType Kind, Type *AccessTy) { 1893 const SCEV *Copy = Expr; 1894 int64_t Offset = ExtractImmediate(Expr, SE); 1895 1896 // Basic uses can't accept any offset, for example. 1897 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1898 Expr = Copy; 1899 Offset = 0; 1900 } 1901 1902 std::pair<UseMapTy::iterator, bool> P = 1903 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1904 if (!P.second) { 1905 // A use already existed with this base. 1906 size_t LUIdx = P.first->second; 1907 LSRUse &LU = Uses[LUIdx]; 1908 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1909 // Reuse this use. 1910 return std::make_pair(LUIdx, Offset); 1911 } 1912 1913 // Create a new use. 1914 size_t LUIdx = Uses.size(); 1915 P.first->second = LUIdx; 1916 Uses.push_back(LSRUse(Kind, AccessTy)); 1917 LSRUse &LU = Uses[LUIdx]; 1918 1919 // We don't need to track redundant offsets, but we don't need to go out 1920 // of our way here to avoid them. 1921 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1922 LU.Offsets.push_back(Offset); 1923 1924 LU.MinOffset = Offset; 1925 LU.MaxOffset = Offset; 1926 return std::make_pair(LUIdx, Offset); 1927 } 1928 1929 /// DeleteUse - Delete the given use from the Uses list. 1930 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1931 if (&LU != &Uses.back()) 1932 std::swap(LU, Uses.back()); 1933 Uses.pop_back(); 1934 1935 // Update RegUses. 1936 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 1937 } 1938 1939 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 1940 /// a formula that has the same registers as the given formula. 1941 LSRUse * 1942 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 1943 const LSRUse &OrigLU) { 1944 // Search all uses for the formula. This could be more clever. 1945 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 1946 LSRUse &LU = Uses[LUIdx]; 1947 // Check whether this use is close enough to OrigLU, to see whether it's 1948 // worthwhile looking through its formulae. 1949 // Ignore ICmpZero uses because they may contain formulae generated by 1950 // GenerateICmpZeroScales, in which case adding fixup offsets may 1951 // be invalid. 1952 if (&LU != &OrigLU && 1953 LU.Kind != LSRUse::ICmpZero && 1954 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 1955 LU.WidestFixupType == OrigLU.WidestFixupType && 1956 LU.HasFormulaWithSameRegs(OrigF)) { 1957 // Scan through this use's formulae. 1958 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 1959 E = LU.Formulae.end(); I != E; ++I) { 1960 const Formula &F = *I; 1961 // Check to see if this formula has the same registers and symbols 1962 // as OrigF. 1963 if (F.BaseRegs == OrigF.BaseRegs && 1964 F.ScaledReg == OrigF.ScaledReg && 1965 F.AM.BaseGV == OrigF.AM.BaseGV && 1966 F.AM.Scale == OrigF.AM.Scale && 1967 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 1968 if (F.AM.BaseOffs == 0) 1969 return &LU; 1970 // This is the formula where all the registers and symbols matched; 1971 // there aren't going to be any others. Since we declined it, we 1972 // can skip the rest of the formulae and procede to the next LSRUse. 1973 break; 1974 } 1975 } 1976 } 1977 } 1978 1979 // Nothing looked good. 1980 return 0; 1981 } 1982 1983 void LSRInstance::CollectInterestingTypesAndFactors() { 1984 SmallSetVector<const SCEV *, 4> Strides; 1985 1986 // Collect interesting types and strides. 1987 SmallVector<const SCEV *, 4> Worklist; 1988 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 1989 const SCEV *Expr = IU.getExpr(*UI); 1990 1991 // Collect interesting types. 1992 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 1993 1994 // Add strides for mentioned loops. 1995 Worklist.push_back(Expr); 1996 do { 1997 const SCEV *S = Worklist.pop_back_val(); 1998 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1999 Strides.insert(AR->getStepRecurrence(SE)); 2000 Worklist.push_back(AR->getStart()); 2001 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2002 Worklist.append(Add->op_begin(), Add->op_end()); 2003 } 2004 } while (!Worklist.empty()); 2005 } 2006 2007 // Compute interesting factors from the set of interesting strides. 2008 for (SmallSetVector<const SCEV *, 4>::const_iterator 2009 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2010 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2011 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2012 const SCEV *OldStride = *I; 2013 const SCEV *NewStride = *NewStrideIter; 2014 2015 if (SE.getTypeSizeInBits(OldStride->getType()) != 2016 SE.getTypeSizeInBits(NewStride->getType())) { 2017 if (SE.getTypeSizeInBits(OldStride->getType()) > 2018 SE.getTypeSizeInBits(NewStride->getType())) 2019 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2020 else 2021 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2022 } 2023 if (const SCEVConstant *Factor = 2024 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2025 SE, true))) { 2026 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2027 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2028 } else if (const SCEVConstant *Factor = 2029 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2030 NewStride, 2031 SE, true))) { 2032 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2033 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2034 } 2035 } 2036 2037 // If all uses use the same type, don't bother looking for truncation-based 2038 // reuse. 2039 if (Types.size() == 1) 2040 Types.clear(); 2041 2042 DEBUG(print_factors_and_types(dbgs())); 2043 } 2044 2045 void LSRInstance::CollectFixupsAndInitialFormulae() { 2046 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2047 // Record the uses. 2048 LSRFixup &LF = getNewFixup(); 2049 LF.UserInst = UI->getUser(); 2050 LF.OperandValToReplace = UI->getOperandValToReplace(); 2051 LF.PostIncLoops = UI->getPostIncLoops(); 2052 2053 LSRUse::KindType Kind = LSRUse::Basic; 2054 Type *AccessTy = 0; 2055 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2056 Kind = LSRUse::Address; 2057 AccessTy = getAccessType(LF.UserInst); 2058 } 2059 2060 const SCEV *S = IU.getExpr(*UI); 2061 2062 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2063 // (N - i == 0), and this allows (N - i) to be the expression that we work 2064 // with rather than just N or i, so we can consider the register 2065 // requirements for both N and i at the same time. Limiting this code to 2066 // equality icmps is not a problem because all interesting loops use 2067 // equality icmps, thanks to IndVarSimplify. 2068 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2069 if (CI->isEquality()) { 2070 // Swap the operands if needed to put the OperandValToReplace on the 2071 // left, for consistency. 2072 Value *NV = CI->getOperand(1); 2073 if (NV == LF.OperandValToReplace) { 2074 CI->setOperand(1, CI->getOperand(0)); 2075 CI->setOperand(0, NV); 2076 NV = CI->getOperand(1); 2077 Changed = true; 2078 } 2079 2080 // x == y --> x - y == 0 2081 const SCEV *N = SE.getSCEV(NV); 2082 if (SE.isLoopInvariant(N, L)) { 2083 // S is normalized, so normalize N before folding it into S 2084 // to keep the result normalized. 2085 N = TransformForPostIncUse(Normalize, N, CI, 0, 2086 LF.PostIncLoops, SE, DT); 2087 Kind = LSRUse::ICmpZero; 2088 S = SE.getMinusSCEV(N, S); 2089 } 2090 2091 // -1 and the negations of all interesting strides (except the negation 2092 // of -1) are now also interesting. 2093 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2094 if (Factors[i] != -1) 2095 Factors.insert(-(uint64_t)Factors[i]); 2096 Factors.insert(-1); 2097 } 2098 2099 // Set up the initial formula for this use. 2100 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2101 LF.LUIdx = P.first; 2102 LF.Offset = P.second; 2103 LSRUse &LU = Uses[LF.LUIdx]; 2104 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2105 if (!LU.WidestFixupType || 2106 SE.getTypeSizeInBits(LU.WidestFixupType) < 2107 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2108 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2109 2110 // If this is the first use of this LSRUse, give it a formula. 2111 if (LU.Formulae.empty()) { 2112 InsertInitialFormula(S, LU, LF.LUIdx); 2113 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2114 } 2115 } 2116 2117 DEBUG(print_fixups(dbgs())); 2118 } 2119 2120 /// InsertInitialFormula - Insert a formula for the given expression into 2121 /// the given use, separating out loop-variant portions from loop-invariant 2122 /// and loop-computable portions. 2123 void 2124 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2125 Formula F; 2126 F.InitialMatch(S, L, SE); 2127 bool Inserted = InsertFormula(LU, LUIdx, F); 2128 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2129 } 2130 2131 /// InsertSupplementalFormula - Insert a simple single-register formula for 2132 /// the given expression into the given use. 2133 void 2134 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2135 LSRUse &LU, size_t LUIdx) { 2136 Formula F; 2137 F.BaseRegs.push_back(S); 2138 F.AM.HasBaseReg = true; 2139 bool Inserted = InsertFormula(LU, LUIdx, F); 2140 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2141 } 2142 2143 /// CountRegisters - Note which registers are used by the given formula, 2144 /// updating RegUses. 2145 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2146 if (F.ScaledReg) 2147 RegUses.CountRegister(F.ScaledReg, LUIdx); 2148 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2149 E = F.BaseRegs.end(); I != E; ++I) 2150 RegUses.CountRegister(*I, LUIdx); 2151 } 2152 2153 /// InsertFormula - If the given formula has not yet been inserted, add it to 2154 /// the list, and return true. Return false otherwise. 2155 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2156 if (!LU.InsertFormula(F)) 2157 return false; 2158 2159 CountRegisters(F, LUIdx); 2160 return true; 2161 } 2162 2163 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2164 /// loop-invariant values which we're tracking. These other uses will pin these 2165 /// values in registers, making them less profitable for elimination. 2166 /// TODO: This currently misses non-constant addrec step registers. 2167 /// TODO: Should this give more weight to users inside the loop? 2168 void 2169 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2170 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2171 SmallPtrSet<const SCEV *, 8> Inserted; 2172 2173 while (!Worklist.empty()) { 2174 const SCEV *S = Worklist.pop_back_val(); 2175 2176 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2177 Worklist.append(N->op_begin(), N->op_end()); 2178 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2179 Worklist.push_back(C->getOperand()); 2180 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2181 Worklist.push_back(D->getLHS()); 2182 Worklist.push_back(D->getRHS()); 2183 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2184 if (!Inserted.insert(U)) continue; 2185 const Value *V = U->getValue(); 2186 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2187 // Look for instructions defined outside the loop. 2188 if (L->contains(Inst)) continue; 2189 } else if (isa<UndefValue>(V)) 2190 // Undef doesn't have a live range, so it doesn't matter. 2191 continue; 2192 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2193 UI != UE; ++UI) { 2194 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2195 // Ignore non-instructions. 2196 if (!UserInst) 2197 continue; 2198 // Ignore instructions in other functions (as can happen with 2199 // Constants). 2200 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2201 continue; 2202 // Ignore instructions not dominated by the loop. 2203 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2204 UserInst->getParent() : 2205 cast<PHINode>(UserInst)->getIncomingBlock( 2206 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2207 if (!DT.dominates(L->getHeader(), UseBB)) 2208 continue; 2209 // Ignore uses which are part of other SCEV expressions, to avoid 2210 // analyzing them multiple times. 2211 if (SE.isSCEVable(UserInst->getType())) { 2212 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2213 // If the user is a no-op, look through to its uses. 2214 if (!isa<SCEVUnknown>(UserS)) 2215 continue; 2216 if (UserS == U) { 2217 Worklist.push_back( 2218 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2219 continue; 2220 } 2221 } 2222 // Ignore icmp instructions which are already being analyzed. 2223 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2224 unsigned OtherIdx = !UI.getOperandNo(); 2225 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2226 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2227 continue; 2228 } 2229 2230 LSRFixup &LF = getNewFixup(); 2231 LF.UserInst = const_cast<Instruction *>(UserInst); 2232 LF.OperandValToReplace = UI.getUse(); 2233 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2234 LF.LUIdx = P.first; 2235 LF.Offset = P.second; 2236 LSRUse &LU = Uses[LF.LUIdx]; 2237 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2238 if (!LU.WidestFixupType || 2239 SE.getTypeSizeInBits(LU.WidestFixupType) < 2240 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2241 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2242 InsertSupplementalFormula(U, LU, LF.LUIdx); 2243 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2244 break; 2245 } 2246 } 2247 } 2248 } 2249 2250 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2251 /// separate registers. If C is non-null, multiply each subexpression by C. 2252 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2253 SmallVectorImpl<const SCEV *> &Ops, 2254 const Loop *L, 2255 ScalarEvolution &SE) { 2256 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2257 // Break out add operands. 2258 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2259 I != E; ++I) 2260 CollectSubexprs(*I, C, Ops, L, SE); 2261 return; 2262 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2263 // Split a non-zero base out of an addrec. 2264 if (!AR->getStart()->isZero()) { 2265 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2266 AR->getStepRecurrence(SE), 2267 AR->getLoop(), 2268 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2269 SCEV::FlagAnyWrap), 2270 C, Ops, L, SE); 2271 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2272 return; 2273 } 2274 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2275 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2276 if (Mul->getNumOperands() == 2) 2277 if (const SCEVConstant *Op0 = 2278 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2279 CollectSubexprs(Mul->getOperand(1), 2280 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2281 Ops, L, SE); 2282 return; 2283 } 2284 } 2285 2286 // Otherwise use the value itself, optionally with a scale applied. 2287 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2288 } 2289 2290 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2291 /// addrecs. 2292 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2293 Formula Base, 2294 unsigned Depth) { 2295 // Arbitrarily cap recursion to protect compile time. 2296 if (Depth >= 3) return; 2297 2298 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2299 const SCEV *BaseReg = Base.BaseRegs[i]; 2300 2301 SmallVector<const SCEV *, 8> AddOps; 2302 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2303 2304 if (AddOps.size() == 1) continue; 2305 2306 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2307 JE = AddOps.end(); J != JE; ++J) { 2308 2309 // Loop-variant "unknown" values are uninteresting; we won't be able to 2310 // do anything meaningful with them. 2311 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2312 continue; 2313 2314 // Don't pull a constant into a register if the constant could be folded 2315 // into an immediate field. 2316 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2317 Base.getNumRegs() > 1, 2318 LU.Kind, LU.AccessTy, TLI, SE)) 2319 continue; 2320 2321 // Collect all operands except *J. 2322 SmallVector<const SCEV *, 8> InnerAddOps 2323 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2324 InnerAddOps.append 2325 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2326 2327 // Don't leave just a constant behind in a register if the constant could 2328 // be folded into an immediate field. 2329 if (InnerAddOps.size() == 1 && 2330 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2331 Base.getNumRegs() > 1, 2332 LU.Kind, LU.AccessTy, TLI, SE)) 2333 continue; 2334 2335 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2336 if (InnerSum->isZero()) 2337 continue; 2338 Formula F = Base; 2339 2340 // Add the remaining pieces of the add back into the new formula. 2341 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 2342 if (TLI && InnerSumSC && 2343 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 2344 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2345 InnerSumSC->getValue()->getZExtValue())) { 2346 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2347 InnerSumSC->getValue()->getZExtValue(); 2348 F.BaseRegs.erase(F.BaseRegs.begin() + i); 2349 } else 2350 F.BaseRegs[i] = InnerSum; 2351 2352 // Add J as its own register, or an unfolded immediate. 2353 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 2354 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 2355 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2356 SC->getValue()->getZExtValue())) 2357 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2358 SC->getValue()->getZExtValue(); 2359 else 2360 F.BaseRegs.push_back(*J); 2361 2362 if (InsertFormula(LU, LUIdx, F)) 2363 // If that formula hadn't been seen before, recurse to find more like 2364 // it. 2365 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2366 } 2367 } 2368 } 2369 2370 /// GenerateCombinations - Generate a formula consisting of all of the 2371 /// loop-dominating registers added into a single register. 2372 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2373 Formula Base) { 2374 // This method is only interesting on a plurality of registers. 2375 if (Base.BaseRegs.size() <= 1) return; 2376 2377 Formula F = Base; 2378 F.BaseRegs.clear(); 2379 SmallVector<const SCEV *, 4> Ops; 2380 for (SmallVectorImpl<const SCEV *>::const_iterator 2381 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2382 const SCEV *BaseReg = *I; 2383 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2384 !SE.hasComputableLoopEvolution(BaseReg, L)) 2385 Ops.push_back(BaseReg); 2386 else 2387 F.BaseRegs.push_back(BaseReg); 2388 } 2389 if (Ops.size() > 1) { 2390 const SCEV *Sum = SE.getAddExpr(Ops); 2391 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2392 // opportunity to fold something. For now, just ignore such cases 2393 // rather than proceed with zero in a register. 2394 if (!Sum->isZero()) { 2395 F.BaseRegs.push_back(Sum); 2396 (void)InsertFormula(LU, LUIdx, F); 2397 } 2398 } 2399 } 2400 2401 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2402 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2403 Formula Base) { 2404 // We can't add a symbolic offset if the address already contains one. 2405 if (Base.AM.BaseGV) return; 2406 2407 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2408 const SCEV *G = Base.BaseRegs[i]; 2409 GlobalValue *GV = ExtractSymbol(G, SE); 2410 if (G->isZero() || !GV) 2411 continue; 2412 Formula F = Base; 2413 F.AM.BaseGV = GV; 2414 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2415 LU.Kind, LU.AccessTy, TLI)) 2416 continue; 2417 F.BaseRegs[i] = G; 2418 (void)InsertFormula(LU, LUIdx, F); 2419 } 2420 } 2421 2422 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2423 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2424 Formula Base) { 2425 // TODO: For now, just add the min and max offset, because it usually isn't 2426 // worthwhile looking at everything inbetween. 2427 SmallVector<int64_t, 2> Worklist; 2428 Worklist.push_back(LU.MinOffset); 2429 if (LU.MaxOffset != LU.MinOffset) 2430 Worklist.push_back(LU.MaxOffset); 2431 2432 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2433 const SCEV *G = Base.BaseRegs[i]; 2434 2435 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2436 E = Worklist.end(); I != E; ++I) { 2437 Formula F = Base; 2438 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2439 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2440 LU.Kind, LU.AccessTy, TLI)) { 2441 // Add the offset to the base register. 2442 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2443 // If it cancelled out, drop the base register, otherwise update it. 2444 if (NewG->isZero()) { 2445 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2446 F.BaseRegs.pop_back(); 2447 } else 2448 F.BaseRegs[i] = NewG; 2449 2450 (void)InsertFormula(LU, LUIdx, F); 2451 } 2452 } 2453 2454 int64_t Imm = ExtractImmediate(G, SE); 2455 if (G->isZero() || Imm == 0) 2456 continue; 2457 Formula F = Base; 2458 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2459 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2460 LU.Kind, LU.AccessTy, TLI)) 2461 continue; 2462 F.BaseRegs[i] = G; 2463 (void)InsertFormula(LU, LUIdx, F); 2464 } 2465 } 2466 2467 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2468 /// the comparison. For example, x == y -> x*c == y*c. 2469 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2470 Formula Base) { 2471 if (LU.Kind != LSRUse::ICmpZero) return; 2472 2473 // Determine the integer type for the base formula. 2474 Type *IntTy = Base.getType(); 2475 if (!IntTy) return; 2476 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2477 2478 // Don't do this if there is more than one offset. 2479 if (LU.MinOffset != LU.MaxOffset) return; 2480 2481 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2482 2483 // Check each interesting stride. 2484 for (SmallSetVector<int64_t, 8>::const_iterator 2485 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2486 int64_t Factor = *I; 2487 2488 // Check that the multiplication doesn't overflow. 2489 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2490 continue; 2491 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2492 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2493 continue; 2494 2495 // Check that multiplying with the use offset doesn't overflow. 2496 int64_t Offset = LU.MinOffset; 2497 if (Offset == INT64_MIN && Factor == -1) 2498 continue; 2499 Offset = (uint64_t)Offset * Factor; 2500 if (Offset / Factor != LU.MinOffset) 2501 continue; 2502 2503 Formula F = Base; 2504 F.AM.BaseOffs = NewBaseOffs; 2505 2506 // Check that this scale is legal. 2507 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2508 continue; 2509 2510 // Compensate for the use having MinOffset built into it. 2511 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2512 2513 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2514 2515 // Check that multiplying with each base register doesn't overflow. 2516 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2517 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2518 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2519 goto next; 2520 } 2521 2522 // Check that multiplying with the scaled register doesn't overflow. 2523 if (F.ScaledReg) { 2524 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2525 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2526 continue; 2527 } 2528 2529 // Check that multiplying with the unfolded offset doesn't overflow. 2530 if (F.UnfoldedOffset != 0) { 2531 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 2532 continue; 2533 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 2534 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 2535 continue; 2536 } 2537 2538 // If we make it here and it's legal, add it. 2539 (void)InsertFormula(LU, LUIdx, F); 2540 next:; 2541 } 2542 } 2543 2544 /// GenerateScales - Generate stride factor reuse formulae by making use of 2545 /// scaled-offset address modes, for example. 2546 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2547 // Determine the integer type for the base formula. 2548 Type *IntTy = Base.getType(); 2549 if (!IntTy) return; 2550 2551 // If this Formula already has a scaled register, we can't add another one. 2552 if (Base.AM.Scale != 0) return; 2553 2554 // Check each interesting stride. 2555 for (SmallSetVector<int64_t, 8>::const_iterator 2556 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2557 int64_t Factor = *I; 2558 2559 Base.AM.Scale = Factor; 2560 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2561 // Check whether this scale is going to be legal. 2562 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2563 LU.Kind, LU.AccessTy, TLI)) { 2564 // As a special-case, handle special out-of-loop Basic users specially. 2565 // TODO: Reconsider this special case. 2566 if (LU.Kind == LSRUse::Basic && 2567 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2568 LSRUse::Special, LU.AccessTy, TLI) && 2569 LU.AllFixupsOutsideLoop) 2570 LU.Kind = LSRUse::Special; 2571 else 2572 continue; 2573 } 2574 // For an ICmpZero, negating a solitary base register won't lead to 2575 // new solutions. 2576 if (LU.Kind == LSRUse::ICmpZero && 2577 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2578 continue; 2579 // For each addrec base reg, apply the scale, if possible. 2580 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2581 if (const SCEVAddRecExpr *AR = 2582 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2583 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2584 if (FactorS->isZero()) 2585 continue; 2586 // Divide out the factor, ignoring high bits, since we'll be 2587 // scaling the value back up in the end. 2588 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2589 // TODO: This could be optimized to avoid all the copying. 2590 Formula F = Base; 2591 F.ScaledReg = Quotient; 2592 F.DeleteBaseReg(F.BaseRegs[i]); 2593 (void)InsertFormula(LU, LUIdx, F); 2594 } 2595 } 2596 } 2597 } 2598 2599 /// GenerateTruncates - Generate reuse formulae from different IV types. 2600 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2601 // This requires TargetLowering to tell us which truncates are free. 2602 if (!TLI) return; 2603 2604 // Don't bother truncating symbolic values. 2605 if (Base.AM.BaseGV) return; 2606 2607 // Determine the integer type for the base formula. 2608 Type *DstTy = Base.getType(); 2609 if (!DstTy) return; 2610 DstTy = SE.getEffectiveSCEVType(DstTy); 2611 2612 for (SmallSetVector<Type *, 4>::const_iterator 2613 I = Types.begin(), E = Types.end(); I != E; ++I) { 2614 Type *SrcTy = *I; 2615 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2616 Formula F = Base; 2617 2618 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2619 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2620 JE = F.BaseRegs.end(); J != JE; ++J) 2621 *J = SE.getAnyExtendExpr(*J, SrcTy); 2622 2623 // TODO: This assumes we've done basic processing on all uses and 2624 // have an idea what the register usage is. 2625 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2626 continue; 2627 2628 (void)InsertFormula(LU, LUIdx, F); 2629 } 2630 } 2631 } 2632 2633 namespace { 2634 2635 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2636 /// defer modifications so that the search phase doesn't have to worry about 2637 /// the data structures moving underneath it. 2638 struct WorkItem { 2639 size_t LUIdx; 2640 int64_t Imm; 2641 const SCEV *OrigReg; 2642 2643 WorkItem(size_t LI, int64_t I, const SCEV *R) 2644 : LUIdx(LI), Imm(I), OrigReg(R) {} 2645 2646 void print(raw_ostream &OS) const; 2647 void dump() const; 2648 }; 2649 2650 } 2651 2652 void WorkItem::print(raw_ostream &OS) const { 2653 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2654 << " , add offset " << Imm; 2655 } 2656 2657 void WorkItem::dump() const { 2658 print(errs()); errs() << '\n'; 2659 } 2660 2661 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2662 /// distance apart and try to form reuse opportunities between them. 2663 void LSRInstance::GenerateCrossUseConstantOffsets() { 2664 // Group the registers by their value without any added constant offset. 2665 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2666 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2667 RegMapTy Map; 2668 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2669 SmallVector<const SCEV *, 8> Sequence; 2670 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2671 I != E; ++I) { 2672 const SCEV *Reg = *I; 2673 int64_t Imm = ExtractImmediate(Reg, SE); 2674 std::pair<RegMapTy::iterator, bool> Pair = 2675 Map.insert(std::make_pair(Reg, ImmMapTy())); 2676 if (Pair.second) 2677 Sequence.push_back(Reg); 2678 Pair.first->second.insert(std::make_pair(Imm, *I)); 2679 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2680 } 2681 2682 // Now examine each set of registers with the same base value. Build up 2683 // a list of work to do and do the work in a separate step so that we're 2684 // not adding formulae and register counts while we're searching. 2685 SmallVector<WorkItem, 32> WorkItems; 2686 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2687 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2688 E = Sequence.end(); I != E; ++I) { 2689 const SCEV *Reg = *I; 2690 const ImmMapTy &Imms = Map.find(Reg)->second; 2691 2692 // It's not worthwhile looking for reuse if there's only one offset. 2693 if (Imms.size() == 1) 2694 continue; 2695 2696 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2697 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2698 J != JE; ++J) 2699 dbgs() << ' ' << J->first; 2700 dbgs() << '\n'); 2701 2702 // Examine each offset. 2703 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2704 J != JE; ++J) { 2705 const SCEV *OrigReg = J->second; 2706 2707 int64_t JImm = J->first; 2708 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2709 2710 if (!isa<SCEVConstant>(OrigReg) && 2711 UsedByIndicesMap[Reg].count() == 1) { 2712 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2713 continue; 2714 } 2715 2716 // Conservatively examine offsets between this orig reg a few selected 2717 // other orig regs. 2718 ImmMapTy::const_iterator OtherImms[] = { 2719 Imms.begin(), prior(Imms.end()), 2720 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2721 }; 2722 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2723 ImmMapTy::const_iterator M = OtherImms[i]; 2724 if (M == J || M == JE) continue; 2725 2726 // Compute the difference between the two. 2727 int64_t Imm = (uint64_t)JImm - M->first; 2728 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2729 LUIdx = UsedByIndices.find_next(LUIdx)) 2730 // Make a memo of this use, offset, and register tuple. 2731 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2732 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2733 } 2734 } 2735 } 2736 2737 Map.clear(); 2738 Sequence.clear(); 2739 UsedByIndicesMap.clear(); 2740 UniqueItems.clear(); 2741 2742 // Now iterate through the worklist and add new formulae. 2743 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2744 E = WorkItems.end(); I != E; ++I) { 2745 const WorkItem &WI = *I; 2746 size_t LUIdx = WI.LUIdx; 2747 LSRUse &LU = Uses[LUIdx]; 2748 int64_t Imm = WI.Imm; 2749 const SCEV *OrigReg = WI.OrigReg; 2750 2751 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2752 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2753 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2754 2755 // TODO: Use a more targeted data structure. 2756 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2757 const Formula &F = LU.Formulae[L]; 2758 // Use the immediate in the scaled register. 2759 if (F.ScaledReg == OrigReg) { 2760 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2761 Imm * (uint64_t)F.AM.Scale; 2762 // Don't create 50 + reg(-50). 2763 if (F.referencesReg(SE.getSCEV( 2764 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2765 continue; 2766 Formula NewF = F; 2767 NewF.AM.BaseOffs = Offs; 2768 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2769 LU.Kind, LU.AccessTy, TLI)) 2770 continue; 2771 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2772 2773 // If the new scale is a constant in a register, and adding the constant 2774 // value to the immediate would produce a value closer to zero than the 2775 // immediate itself, then the formula isn't worthwhile. 2776 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2777 if (C->getValue()->isNegative() != 2778 (NewF.AM.BaseOffs < 0) && 2779 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2780 .ule(abs64(NewF.AM.BaseOffs))) 2781 continue; 2782 2783 // OK, looks good. 2784 (void)InsertFormula(LU, LUIdx, NewF); 2785 } else { 2786 // Use the immediate in a base register. 2787 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2788 const SCEV *BaseReg = F.BaseRegs[N]; 2789 if (BaseReg != OrigReg) 2790 continue; 2791 Formula NewF = F; 2792 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2793 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2794 LU.Kind, LU.AccessTy, TLI)) { 2795 if (!TLI || 2796 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 2797 continue; 2798 NewF = F; 2799 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 2800 } 2801 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2802 2803 // If the new formula has a constant in a register, and adding the 2804 // constant value to the immediate would produce a value closer to 2805 // zero than the immediate itself, then the formula isn't worthwhile. 2806 for (SmallVectorImpl<const SCEV *>::const_iterator 2807 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2808 J != JE; ++J) 2809 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2810 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2811 abs64(NewF.AM.BaseOffs)) && 2812 (C->getValue()->getValue() + 2813 NewF.AM.BaseOffs).countTrailingZeros() >= 2814 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2815 goto skip_formula; 2816 2817 // Ok, looks good. 2818 (void)InsertFormula(LU, LUIdx, NewF); 2819 break; 2820 skip_formula:; 2821 } 2822 } 2823 } 2824 } 2825 } 2826 2827 /// GenerateAllReuseFormulae - Generate formulae for each use. 2828 void 2829 LSRInstance::GenerateAllReuseFormulae() { 2830 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2831 // queries are more precise. 2832 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2833 LSRUse &LU = Uses[LUIdx]; 2834 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2835 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2836 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2837 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2838 } 2839 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2840 LSRUse &LU = Uses[LUIdx]; 2841 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2842 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2843 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2844 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2845 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2846 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2847 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2848 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2849 } 2850 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2851 LSRUse &LU = Uses[LUIdx]; 2852 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2853 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2854 } 2855 2856 GenerateCrossUseConstantOffsets(); 2857 2858 DEBUG(dbgs() << "\n" 2859 "After generating reuse formulae:\n"; 2860 print_uses(dbgs())); 2861 } 2862 2863 /// If there are multiple formulae with the same set of registers used 2864 /// by other uses, pick the best one and delete the others. 2865 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2866 DenseSet<const SCEV *> VisitedRegs; 2867 SmallPtrSet<const SCEV *, 16> Regs; 2868 #ifndef NDEBUG 2869 bool ChangedFormulae = false; 2870 #endif 2871 2872 // Collect the best formula for each unique set of shared registers. This 2873 // is reset for each use. 2874 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2875 BestFormulaeTy; 2876 BestFormulaeTy BestFormulae; 2877 2878 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2879 LSRUse &LU = Uses[LUIdx]; 2880 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2881 2882 bool Any = false; 2883 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2884 FIdx != NumForms; ++FIdx) { 2885 Formula &F = LU.Formulae[FIdx]; 2886 2887 SmallVector<const SCEV *, 2> Key; 2888 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2889 JE = F.BaseRegs.end(); J != JE; ++J) { 2890 const SCEV *Reg = *J; 2891 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2892 Key.push_back(Reg); 2893 } 2894 if (F.ScaledReg && 2895 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2896 Key.push_back(F.ScaledReg); 2897 // Unstable sort by host order ok, because this is only used for 2898 // uniquifying. 2899 std::sort(Key.begin(), Key.end()); 2900 2901 std::pair<BestFormulaeTy::const_iterator, bool> P = 2902 BestFormulae.insert(std::make_pair(Key, FIdx)); 2903 if (!P.second) { 2904 Formula &Best = LU.Formulae[P.first->second]; 2905 2906 Cost CostF; 2907 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2908 Regs.clear(); 2909 Cost CostBest; 2910 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2911 Regs.clear(); 2912 if (CostF < CostBest) 2913 std::swap(F, Best); 2914 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 2915 dbgs() << "\n" 2916 " in favor of formula "; Best.print(dbgs()); 2917 dbgs() << '\n'); 2918 #ifndef NDEBUG 2919 ChangedFormulae = true; 2920 #endif 2921 LU.DeleteFormula(F); 2922 --FIdx; 2923 --NumForms; 2924 Any = true; 2925 continue; 2926 } 2927 } 2928 2929 // Now that we've filtered out some formulae, recompute the Regs set. 2930 if (Any) 2931 LU.RecomputeRegs(LUIdx, RegUses); 2932 2933 // Reset this to prepare for the next use. 2934 BestFormulae.clear(); 2935 } 2936 2937 DEBUG(if (ChangedFormulae) { 2938 dbgs() << "\n" 2939 "After filtering out undesirable candidates:\n"; 2940 print_uses(dbgs()); 2941 }); 2942 } 2943 2944 // This is a rough guess that seems to work fairly well. 2945 static const size_t ComplexityLimit = UINT16_MAX; 2946 2947 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 2948 /// solutions the solver might have to consider. It almost never considers 2949 /// this many solutions because it prune the search space, but the pruning 2950 /// isn't always sufficient. 2951 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 2952 size_t Power = 1; 2953 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 2954 E = Uses.end(); I != E; ++I) { 2955 size_t FSize = I->Formulae.size(); 2956 if (FSize >= ComplexityLimit) { 2957 Power = ComplexityLimit; 2958 break; 2959 } 2960 Power *= FSize; 2961 if (Power >= ComplexityLimit) 2962 break; 2963 } 2964 return Power; 2965 } 2966 2967 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 2968 /// of the registers of another formula, it won't help reduce register 2969 /// pressure (though it may not necessarily hurt register pressure); remove 2970 /// it to simplify the system. 2971 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 2972 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 2973 DEBUG(dbgs() << "The search space is too complex.\n"); 2974 2975 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 2976 "which use a superset of registers used by other " 2977 "formulae.\n"); 2978 2979 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2980 LSRUse &LU = Uses[LUIdx]; 2981 bool Any = false; 2982 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 2983 Formula &F = LU.Formulae[i]; 2984 // Look for a formula with a constant or GV in a register. If the use 2985 // also has a formula with that same value in an immediate field, 2986 // delete the one that uses a register. 2987 for (SmallVectorImpl<const SCEV *>::const_iterator 2988 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 2989 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 2990 Formula NewF = F; 2991 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 2992 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 2993 (I - F.BaseRegs.begin())); 2994 if (LU.HasFormulaWithSameRegs(NewF)) { 2995 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 2996 LU.DeleteFormula(F); 2997 --i; 2998 --e; 2999 Any = true; 3000 break; 3001 } 3002 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3003 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3004 if (!F.AM.BaseGV) { 3005 Formula NewF = F; 3006 NewF.AM.BaseGV = GV; 3007 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3008 (I - F.BaseRegs.begin())); 3009 if (LU.HasFormulaWithSameRegs(NewF)) { 3010 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3011 dbgs() << '\n'); 3012 LU.DeleteFormula(F); 3013 --i; 3014 --e; 3015 Any = true; 3016 break; 3017 } 3018 } 3019 } 3020 } 3021 } 3022 if (Any) 3023 LU.RecomputeRegs(LUIdx, RegUses); 3024 } 3025 3026 DEBUG(dbgs() << "After pre-selection:\n"; 3027 print_uses(dbgs())); 3028 } 3029 } 3030 3031 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3032 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3033 /// them. 3034 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3035 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3036 DEBUG(dbgs() << "The search space is too complex.\n"); 3037 3038 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3039 "separated by a constant offset will use the same " 3040 "registers.\n"); 3041 3042 // This is especially useful for unrolled loops. 3043 3044 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3045 LSRUse &LU = Uses[LUIdx]; 3046 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3047 E = LU.Formulae.end(); I != E; ++I) { 3048 const Formula &F = *I; 3049 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3050 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3051 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3052 /*HasBaseReg=*/false, 3053 LU.Kind, LU.AccessTy)) { 3054 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3055 dbgs() << '\n'); 3056 3057 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3058 3059 // Update the relocs to reference the new use. 3060 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3061 E = Fixups.end(); I != E; ++I) { 3062 LSRFixup &Fixup = *I; 3063 if (Fixup.LUIdx == LUIdx) { 3064 Fixup.LUIdx = LUThatHas - &Uses.front(); 3065 Fixup.Offset += F.AM.BaseOffs; 3066 // Add the new offset to LUThatHas' offset list. 3067 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3068 LUThatHas->Offsets.push_back(Fixup.Offset); 3069 if (Fixup.Offset > LUThatHas->MaxOffset) 3070 LUThatHas->MaxOffset = Fixup.Offset; 3071 if (Fixup.Offset < LUThatHas->MinOffset) 3072 LUThatHas->MinOffset = Fixup.Offset; 3073 } 3074 DEBUG(dbgs() << "New fixup has offset " 3075 << Fixup.Offset << '\n'); 3076 } 3077 if (Fixup.LUIdx == NumUses-1) 3078 Fixup.LUIdx = LUIdx; 3079 } 3080 3081 // Delete formulae from the new use which are no longer legal. 3082 bool Any = false; 3083 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3084 Formula &F = LUThatHas->Formulae[i]; 3085 if (!isLegalUse(F.AM, 3086 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3087 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3088 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3089 dbgs() << '\n'); 3090 LUThatHas->DeleteFormula(F); 3091 --i; 3092 --e; 3093 Any = true; 3094 } 3095 } 3096 if (Any) 3097 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3098 3099 // Delete the old use. 3100 DeleteUse(LU, LUIdx); 3101 --LUIdx; 3102 --NumUses; 3103 break; 3104 } 3105 } 3106 } 3107 } 3108 } 3109 3110 DEBUG(dbgs() << "After pre-selection:\n"; 3111 print_uses(dbgs())); 3112 } 3113 } 3114 3115 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3116 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3117 /// we've done more filtering, as it may be able to find more formulae to 3118 /// eliminate. 3119 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3120 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3121 DEBUG(dbgs() << "The search space is too complex.\n"); 3122 3123 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3124 "undesirable dedicated registers.\n"); 3125 3126 FilterOutUndesirableDedicatedRegisters(); 3127 3128 DEBUG(dbgs() << "After pre-selection:\n"; 3129 print_uses(dbgs())); 3130 } 3131 } 3132 3133 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3134 /// to be profitable, and then in any use which has any reference to that 3135 /// register, delete all formulae which do not reference that register. 3136 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3137 // With all other options exhausted, loop until the system is simple 3138 // enough to handle. 3139 SmallPtrSet<const SCEV *, 4> Taken; 3140 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3141 // Ok, we have too many of formulae on our hands to conveniently handle. 3142 // Use a rough heuristic to thin out the list. 3143 DEBUG(dbgs() << "The search space is too complex.\n"); 3144 3145 // Pick the register which is used by the most LSRUses, which is likely 3146 // to be a good reuse register candidate. 3147 const SCEV *Best = 0; 3148 unsigned BestNum = 0; 3149 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3150 I != E; ++I) { 3151 const SCEV *Reg = *I; 3152 if (Taken.count(Reg)) 3153 continue; 3154 if (!Best) 3155 Best = Reg; 3156 else { 3157 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3158 if (Count > BestNum) { 3159 Best = Reg; 3160 BestNum = Count; 3161 } 3162 } 3163 } 3164 3165 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3166 << " will yield profitable reuse.\n"); 3167 Taken.insert(Best); 3168 3169 // In any use with formulae which references this register, delete formulae 3170 // which don't reference it. 3171 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3172 LSRUse &LU = Uses[LUIdx]; 3173 if (!LU.Regs.count(Best)) continue; 3174 3175 bool Any = false; 3176 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3177 Formula &F = LU.Formulae[i]; 3178 if (!F.referencesReg(Best)) { 3179 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3180 LU.DeleteFormula(F); 3181 --e; 3182 --i; 3183 Any = true; 3184 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3185 continue; 3186 } 3187 } 3188 3189 if (Any) 3190 LU.RecomputeRegs(LUIdx, RegUses); 3191 } 3192 3193 DEBUG(dbgs() << "After pre-selection:\n"; 3194 print_uses(dbgs())); 3195 } 3196 } 3197 3198 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3199 /// formulae to choose from, use some rough heuristics to prune down the number 3200 /// of formulae. This keeps the main solver from taking an extraordinary amount 3201 /// of time in some worst-case scenarios. 3202 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3203 NarrowSearchSpaceByDetectingSupersets(); 3204 NarrowSearchSpaceByCollapsingUnrolledCode(); 3205 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3206 NarrowSearchSpaceByPickingWinnerRegs(); 3207 } 3208 3209 /// SolveRecurse - This is the recursive solver. 3210 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3211 Cost &SolutionCost, 3212 SmallVectorImpl<const Formula *> &Workspace, 3213 const Cost &CurCost, 3214 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3215 DenseSet<const SCEV *> &VisitedRegs) const { 3216 // Some ideas: 3217 // - prune more: 3218 // - use more aggressive filtering 3219 // - sort the formula so that the most profitable solutions are found first 3220 // - sort the uses too 3221 // - search faster: 3222 // - don't compute a cost, and then compare. compare while computing a cost 3223 // and bail early. 3224 // - track register sets with SmallBitVector 3225 3226 const LSRUse &LU = Uses[Workspace.size()]; 3227 3228 // If this use references any register that's already a part of the 3229 // in-progress solution, consider it a requirement that a formula must 3230 // reference that register in order to be considered. This prunes out 3231 // unprofitable searching. 3232 SmallSetVector<const SCEV *, 4> ReqRegs; 3233 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3234 E = CurRegs.end(); I != E; ++I) 3235 if (LU.Regs.count(*I)) 3236 ReqRegs.insert(*I); 3237 3238 bool AnySatisfiedReqRegs = false; 3239 SmallPtrSet<const SCEV *, 16> NewRegs; 3240 Cost NewCost; 3241 retry: 3242 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3243 E = LU.Formulae.end(); I != E; ++I) { 3244 const Formula &F = *I; 3245 3246 // Ignore formulae which do not use any of the required registers. 3247 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3248 JE = ReqRegs.end(); J != JE; ++J) { 3249 const SCEV *Reg = *J; 3250 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3251 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3252 F.BaseRegs.end()) 3253 goto skip; 3254 } 3255 AnySatisfiedReqRegs = true; 3256 3257 // Evaluate the cost of the current formula. If it's already worse than 3258 // the current best, prune the search at that point. 3259 NewCost = CurCost; 3260 NewRegs = CurRegs; 3261 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3262 if (NewCost < SolutionCost) { 3263 Workspace.push_back(&F); 3264 if (Workspace.size() != Uses.size()) { 3265 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3266 NewRegs, VisitedRegs); 3267 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3268 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3269 } else { 3270 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3271 dbgs() << ". Regs:"; 3272 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3273 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3274 dbgs() << ' ' << **I; 3275 dbgs() << '\n'); 3276 3277 SolutionCost = NewCost; 3278 Solution = Workspace; 3279 } 3280 Workspace.pop_back(); 3281 } 3282 skip:; 3283 } 3284 3285 // If none of the formulae had all of the required registers, relax the 3286 // constraint so that we don't exclude all formulae. 3287 if (!AnySatisfiedReqRegs) { 3288 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3289 ReqRegs.clear(); 3290 goto retry; 3291 } 3292 } 3293 3294 /// Solve - Choose one formula from each use. Return the results in the given 3295 /// Solution vector. 3296 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3297 SmallVector<const Formula *, 8> Workspace; 3298 Cost SolutionCost; 3299 SolutionCost.Loose(); 3300 Cost CurCost; 3301 SmallPtrSet<const SCEV *, 16> CurRegs; 3302 DenseSet<const SCEV *> VisitedRegs; 3303 Workspace.reserve(Uses.size()); 3304 3305 // SolveRecurse does all the work. 3306 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3307 CurRegs, VisitedRegs); 3308 3309 // Ok, we've now made all our decisions. 3310 DEBUG(dbgs() << "\n" 3311 "The chosen solution requires "; SolutionCost.print(dbgs()); 3312 dbgs() << ":\n"; 3313 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3314 dbgs() << " "; 3315 Uses[i].print(dbgs()); 3316 dbgs() << "\n" 3317 " "; 3318 Solution[i]->print(dbgs()); 3319 dbgs() << '\n'; 3320 }); 3321 3322 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3323 } 3324 3325 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3326 /// the dominator tree far as we can go while still being dominated by the 3327 /// input positions. This helps canonicalize the insert position, which 3328 /// encourages sharing. 3329 BasicBlock::iterator 3330 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3331 const SmallVectorImpl<Instruction *> &Inputs) 3332 const { 3333 for (;;) { 3334 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3335 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3336 3337 BasicBlock *IDom; 3338 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3339 if (!Rung) return IP; 3340 Rung = Rung->getIDom(); 3341 if (!Rung) return IP; 3342 IDom = Rung->getBlock(); 3343 3344 // Don't climb into a loop though. 3345 const Loop *IDomLoop = LI.getLoopFor(IDom); 3346 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3347 if (IDomDepth <= IPLoopDepth && 3348 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3349 break; 3350 } 3351 3352 bool AllDominate = true; 3353 Instruction *BetterPos = 0; 3354 Instruction *Tentative = IDom->getTerminator(); 3355 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3356 E = Inputs.end(); I != E; ++I) { 3357 Instruction *Inst = *I; 3358 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3359 AllDominate = false; 3360 break; 3361 } 3362 // Attempt to find an insert position in the middle of the block, 3363 // instead of at the end, so that it can be used for other expansions. 3364 if (IDom == Inst->getParent() && 3365 (!BetterPos || DT.dominates(BetterPos, Inst))) 3366 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3367 } 3368 if (!AllDominate) 3369 break; 3370 if (BetterPos) 3371 IP = BetterPos; 3372 else 3373 IP = Tentative; 3374 } 3375 3376 return IP; 3377 } 3378 3379 /// AdjustInsertPositionForExpand - Determine an input position which will be 3380 /// dominated by the operands and which will dominate the result. 3381 BasicBlock::iterator 3382 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3383 const LSRFixup &LF, 3384 const LSRUse &LU) const { 3385 // Collect some instructions which must be dominated by the 3386 // expanding replacement. These must be dominated by any operands that 3387 // will be required in the expansion. 3388 SmallVector<Instruction *, 4> Inputs; 3389 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3390 Inputs.push_back(I); 3391 if (LU.Kind == LSRUse::ICmpZero) 3392 if (Instruction *I = 3393 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3394 Inputs.push_back(I); 3395 if (LF.PostIncLoops.count(L)) { 3396 if (LF.isUseFullyOutsideLoop(L)) 3397 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3398 else 3399 Inputs.push_back(IVIncInsertPos); 3400 } 3401 // The expansion must also be dominated by the increment positions of any 3402 // loops it for which it is using post-inc mode. 3403 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3404 E = LF.PostIncLoops.end(); I != E; ++I) { 3405 const Loop *PIL = *I; 3406 if (PIL == L) continue; 3407 3408 // Be dominated by the loop exit. 3409 SmallVector<BasicBlock *, 4> ExitingBlocks; 3410 PIL->getExitingBlocks(ExitingBlocks); 3411 if (!ExitingBlocks.empty()) { 3412 BasicBlock *BB = ExitingBlocks[0]; 3413 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3414 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3415 Inputs.push_back(BB->getTerminator()); 3416 } 3417 } 3418 3419 // Then, climb up the immediate dominator tree as far as we can go while 3420 // still being dominated by the input positions. 3421 IP = HoistInsertPosition(IP, Inputs); 3422 3423 // Don't insert instructions before PHI nodes. 3424 while (isa<PHINode>(IP)) ++IP; 3425 3426 // Ignore landingpad instructions. 3427 while (isa<LandingPadInst>(IP)) ++IP; 3428 3429 // Ignore debug intrinsics. 3430 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3431 3432 return IP; 3433 } 3434 3435 /// Expand - Emit instructions for the leading candidate expression for this 3436 /// LSRUse (this is called "expanding"). 3437 Value *LSRInstance::Expand(const LSRFixup &LF, 3438 const Formula &F, 3439 BasicBlock::iterator IP, 3440 SCEVExpander &Rewriter, 3441 SmallVectorImpl<WeakVH> &DeadInsts) const { 3442 const LSRUse &LU = Uses[LF.LUIdx]; 3443 3444 // Determine an input position which will be dominated by the operands and 3445 // which will dominate the result. 3446 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3447 3448 // Inform the Rewriter if we have a post-increment use, so that it can 3449 // perform an advantageous expansion. 3450 Rewriter.setPostInc(LF.PostIncLoops); 3451 3452 // This is the type that the user actually needs. 3453 Type *OpTy = LF.OperandValToReplace->getType(); 3454 // This will be the type that we'll initially expand to. 3455 Type *Ty = F.getType(); 3456 if (!Ty) 3457 // No type known; just expand directly to the ultimate type. 3458 Ty = OpTy; 3459 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3460 // Expand directly to the ultimate type if it's the right size. 3461 Ty = OpTy; 3462 // This is the type to do integer arithmetic in. 3463 Type *IntTy = SE.getEffectiveSCEVType(Ty); 3464 3465 // Build up a list of operands to add together to form the full base. 3466 SmallVector<const SCEV *, 8> Ops; 3467 3468 // Expand the BaseRegs portion. 3469 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3470 E = F.BaseRegs.end(); I != E; ++I) { 3471 const SCEV *Reg = *I; 3472 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3473 3474 // If we're expanding for a post-inc user, make the post-inc adjustment. 3475 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3476 Reg = TransformForPostIncUse(Denormalize, Reg, 3477 LF.UserInst, LF.OperandValToReplace, 3478 Loops, SE, DT); 3479 3480 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3481 } 3482 3483 // Flush the operand list to suppress SCEVExpander hoisting. 3484 if (!Ops.empty()) { 3485 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3486 Ops.clear(); 3487 Ops.push_back(SE.getUnknown(FullV)); 3488 } 3489 3490 // Expand the ScaledReg portion. 3491 Value *ICmpScaledV = 0; 3492 if (F.AM.Scale != 0) { 3493 const SCEV *ScaledS = F.ScaledReg; 3494 3495 // If we're expanding for a post-inc user, make the post-inc adjustment. 3496 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3497 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3498 LF.UserInst, LF.OperandValToReplace, 3499 Loops, SE, DT); 3500 3501 if (LU.Kind == LSRUse::ICmpZero) { 3502 // An interesting way of "folding" with an icmp is to use a negated 3503 // scale, which we'll implement by inserting it into the other operand 3504 // of the icmp. 3505 assert(F.AM.Scale == -1 && 3506 "The only scale supported by ICmpZero uses is -1!"); 3507 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3508 } else { 3509 // Otherwise just expand the scaled register and an explicit scale, 3510 // which is expected to be matched as part of the address. 3511 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3512 ScaledS = SE.getMulExpr(ScaledS, 3513 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3514 Ops.push_back(ScaledS); 3515 3516 // Flush the operand list to suppress SCEVExpander hoisting. 3517 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3518 Ops.clear(); 3519 Ops.push_back(SE.getUnknown(FullV)); 3520 } 3521 } 3522 3523 // Expand the GV portion. 3524 if (F.AM.BaseGV) { 3525 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3526 3527 // Flush the operand list to suppress SCEVExpander hoisting. 3528 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3529 Ops.clear(); 3530 Ops.push_back(SE.getUnknown(FullV)); 3531 } 3532 3533 // Expand the immediate portion. 3534 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3535 if (Offset != 0) { 3536 if (LU.Kind == LSRUse::ICmpZero) { 3537 // The other interesting way of "folding" with an ICmpZero is to use a 3538 // negated immediate. 3539 if (!ICmpScaledV) 3540 ICmpScaledV = ConstantInt::get(IntTy, -Offset); 3541 else { 3542 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3543 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3544 } 3545 } else { 3546 // Just add the immediate values. These again are expected to be matched 3547 // as part of the address. 3548 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3549 } 3550 } 3551 3552 // Expand the unfolded offset portion. 3553 int64_t UnfoldedOffset = F.UnfoldedOffset; 3554 if (UnfoldedOffset != 0) { 3555 // Just add the immediate values. 3556 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 3557 UnfoldedOffset))); 3558 } 3559 3560 // Emit instructions summing all the operands. 3561 const SCEV *FullS = Ops.empty() ? 3562 SE.getConstant(IntTy, 0) : 3563 SE.getAddExpr(Ops); 3564 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3565 3566 // We're done expanding now, so reset the rewriter. 3567 Rewriter.clearPostInc(); 3568 3569 // An ICmpZero Formula represents an ICmp which we're handling as a 3570 // comparison against zero. Now that we've expanded an expression for that 3571 // form, update the ICmp's other operand. 3572 if (LU.Kind == LSRUse::ICmpZero) { 3573 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3574 DeadInsts.push_back(CI->getOperand(1)); 3575 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3576 "a scale at the same time!"); 3577 if (F.AM.Scale == -1) { 3578 if (ICmpScaledV->getType() != OpTy) { 3579 Instruction *Cast = 3580 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3581 OpTy, false), 3582 ICmpScaledV, OpTy, "tmp", CI); 3583 ICmpScaledV = Cast; 3584 } 3585 CI->setOperand(1, ICmpScaledV); 3586 } else { 3587 assert(F.AM.Scale == 0 && 3588 "ICmp does not support folding a global value and " 3589 "a scale at the same time!"); 3590 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3591 -(uint64_t)Offset); 3592 if (C->getType() != OpTy) 3593 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3594 OpTy, false), 3595 C, OpTy); 3596 3597 CI->setOperand(1, C); 3598 } 3599 } 3600 3601 return FullV; 3602 } 3603 3604 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3605 /// of their operands effectively happens in their predecessor blocks, so the 3606 /// expression may need to be expanded in multiple places. 3607 void LSRInstance::RewriteForPHI(PHINode *PN, 3608 const LSRFixup &LF, 3609 const Formula &F, 3610 SCEVExpander &Rewriter, 3611 SmallVectorImpl<WeakVH> &DeadInsts, 3612 Pass *P) const { 3613 DenseMap<BasicBlock *, Value *> Inserted; 3614 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3615 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3616 BasicBlock *BB = PN->getIncomingBlock(i); 3617 3618 // If this is a critical edge, split the edge so that we do not insert 3619 // the code on all predecessor/successor paths. We do this unless this 3620 // is the canonical backedge for this loop, which complicates post-inc 3621 // users. 3622 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3623 !isa<IndirectBrInst>(BB->getTerminator())) { 3624 BasicBlock *Parent = PN->getParent(); 3625 Loop *PNLoop = LI.getLoopFor(Parent); 3626 if (!PNLoop || Parent != PNLoop->getHeader()) { 3627 // Split the critical edge. 3628 BasicBlock *NewBB = 0; 3629 if (!Parent->isLandingPad()) { 3630 NewBB = SplitCriticalEdge(BB, Parent, P); 3631 } else { 3632 SmallVector<BasicBlock*, 2> NewBBs; 3633 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 3634 NewBB = NewBBs[0]; 3635 } 3636 3637 // If PN is outside of the loop and BB is in the loop, we want to 3638 // move the block to be immediately before the PHI block, not 3639 // immediately after BB. 3640 if (L->contains(BB) && !L->contains(PN)) 3641 NewBB->moveBefore(PN->getParent()); 3642 3643 // Splitting the edge can reduce the number of PHI entries we have. 3644 e = PN->getNumIncomingValues(); 3645 BB = NewBB; 3646 i = PN->getBasicBlockIndex(BB); 3647 } 3648 } 3649 3650 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3651 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3652 if (!Pair.second) 3653 PN->setIncomingValue(i, Pair.first->second); 3654 else { 3655 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3656 3657 // If this is reuse-by-noop-cast, insert the noop cast. 3658 Type *OpTy = LF.OperandValToReplace->getType(); 3659 if (FullV->getType() != OpTy) 3660 FullV = 3661 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3662 OpTy, false), 3663 FullV, LF.OperandValToReplace->getType(), 3664 "tmp", BB->getTerminator()); 3665 3666 PN->setIncomingValue(i, FullV); 3667 Pair.first->second = FullV; 3668 } 3669 } 3670 } 3671 3672 /// Rewrite - Emit instructions for the leading candidate expression for this 3673 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3674 /// the newly expanded value. 3675 void LSRInstance::Rewrite(const LSRFixup &LF, 3676 const Formula &F, 3677 SCEVExpander &Rewriter, 3678 SmallVectorImpl<WeakVH> &DeadInsts, 3679 Pass *P) const { 3680 // First, find an insertion point that dominates UserInst. For PHI nodes, 3681 // find the nearest block which dominates all the relevant uses. 3682 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3683 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3684 } else { 3685 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3686 3687 // If this is reuse-by-noop-cast, insert the noop cast. 3688 Type *OpTy = LF.OperandValToReplace->getType(); 3689 if (FullV->getType() != OpTy) { 3690 Instruction *Cast = 3691 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3692 FullV, OpTy, "tmp", LF.UserInst); 3693 FullV = Cast; 3694 } 3695 3696 // Update the user. ICmpZero is handled specially here (for now) because 3697 // Expand may have updated one of the operands of the icmp already, and 3698 // its new value may happen to be equal to LF.OperandValToReplace, in 3699 // which case doing replaceUsesOfWith leads to replacing both operands 3700 // with the same value. TODO: Reorganize this. 3701 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3702 LF.UserInst->setOperand(0, FullV); 3703 else 3704 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3705 } 3706 3707 DeadInsts.push_back(LF.OperandValToReplace); 3708 } 3709 3710 /// ImplementSolution - Rewrite all the fixup locations with new values, 3711 /// following the chosen solution. 3712 void 3713 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3714 Pass *P) { 3715 // Keep track of instructions we may have made dead, so that 3716 // we can remove them after we are done working. 3717 SmallVector<WeakVH, 16> DeadInsts; 3718 3719 SCEVExpander Rewriter(SE, "lsr"); 3720 Rewriter.disableCanonicalMode(); 3721 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3722 3723 // Expand the new value definitions and update the users. 3724 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3725 E = Fixups.end(); I != E; ++I) { 3726 const LSRFixup &Fixup = *I; 3727 3728 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3729 3730 Changed = true; 3731 } 3732 3733 // Clean up after ourselves. This must be done before deleting any 3734 // instructions. 3735 Rewriter.clear(); 3736 3737 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3738 } 3739 3740 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3741 : IU(P->getAnalysis<IVUsers>()), 3742 SE(P->getAnalysis<ScalarEvolution>()), 3743 DT(P->getAnalysis<DominatorTree>()), 3744 LI(P->getAnalysis<LoopInfo>()), 3745 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3746 3747 // If LoopSimplify form is not available, stay out of trouble. 3748 if (!L->isLoopSimplifyForm()) return; 3749 3750 // If there's no interesting work to be done, bail early. 3751 if (IU.empty()) return; 3752 3753 DEBUG(dbgs() << "\nLSR on loop "; 3754 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3755 dbgs() << ":\n"); 3756 3757 // First, perform some low-level loop optimizations. 3758 OptimizeShadowIV(); 3759 OptimizeLoopTermCond(); 3760 3761 // If loop preparation eliminates all interesting IV users, bail. 3762 if (IU.empty()) return; 3763 3764 // Start collecting data and preparing for the solver. 3765 CollectInterestingTypesAndFactors(); 3766 CollectFixupsAndInitialFormulae(); 3767 CollectLoopInvariantFixupsAndFormulae(); 3768 3769 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3770 print_uses(dbgs())); 3771 3772 // Now use the reuse data to generate a bunch of interesting ways 3773 // to formulate the values needed for the uses. 3774 GenerateAllReuseFormulae(); 3775 3776 FilterOutUndesirableDedicatedRegisters(); 3777 NarrowSearchSpaceUsingHeuristics(); 3778 3779 SmallVector<const Formula *, 8> Solution; 3780 Solve(Solution); 3781 3782 // Release memory that is no longer needed. 3783 Factors.clear(); 3784 Types.clear(); 3785 RegUses.clear(); 3786 3787 #ifndef NDEBUG 3788 // Formulae should be legal. 3789 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3790 E = Uses.end(); I != E; ++I) { 3791 const LSRUse &LU = *I; 3792 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3793 JE = LU.Formulae.end(); J != JE; ++J) 3794 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3795 LU.Kind, LU.AccessTy, TLI) && 3796 "Illegal formula generated!"); 3797 }; 3798 #endif 3799 3800 // Now that we've decided what we want, make it so. 3801 ImplementSolution(Solution, P); 3802 } 3803 3804 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3805 if (Factors.empty() && Types.empty()) return; 3806 3807 OS << "LSR has identified the following interesting factors and types: "; 3808 bool First = true; 3809 3810 for (SmallSetVector<int64_t, 8>::const_iterator 3811 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3812 if (!First) OS << ", "; 3813 First = false; 3814 OS << '*' << *I; 3815 } 3816 3817 for (SmallSetVector<Type *, 4>::const_iterator 3818 I = Types.begin(), E = Types.end(); I != E; ++I) { 3819 if (!First) OS << ", "; 3820 First = false; 3821 OS << '(' << **I << ')'; 3822 } 3823 OS << '\n'; 3824 } 3825 3826 void LSRInstance::print_fixups(raw_ostream &OS) const { 3827 OS << "LSR is examining the following fixup sites:\n"; 3828 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3829 E = Fixups.end(); I != E; ++I) { 3830 dbgs() << " "; 3831 I->print(OS); 3832 OS << '\n'; 3833 } 3834 } 3835 3836 void LSRInstance::print_uses(raw_ostream &OS) const { 3837 OS << "LSR is examining the following uses:\n"; 3838 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3839 E = Uses.end(); I != E; ++I) { 3840 const LSRUse &LU = *I; 3841 dbgs() << " "; 3842 LU.print(OS); 3843 OS << '\n'; 3844 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3845 JE = LU.Formulae.end(); J != JE; ++J) { 3846 OS << " "; 3847 J->print(OS); 3848 OS << '\n'; 3849 } 3850 } 3851 } 3852 3853 void LSRInstance::print(raw_ostream &OS) const { 3854 print_factors_and_types(OS); 3855 print_fixups(OS); 3856 print_uses(OS); 3857 } 3858 3859 void LSRInstance::dump() const { 3860 print(errs()); errs() << '\n'; 3861 } 3862 3863 namespace { 3864 3865 class LoopStrengthReduce : public LoopPass { 3866 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3867 /// transformation profitability. 3868 const TargetLowering *const TLI; 3869 3870 public: 3871 static char ID; // Pass ID, replacement for typeid 3872 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3873 3874 private: 3875 bool runOnLoop(Loop *L, LPPassManager &LPM); 3876 void getAnalysisUsage(AnalysisUsage &AU) const; 3877 }; 3878 3879 } 3880 3881 char LoopStrengthReduce::ID = 0; 3882 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 3883 "Loop Strength Reduction", false, false) 3884 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 3885 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3886 INITIALIZE_PASS_DEPENDENCY(IVUsers) 3887 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 3888 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3889 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 3890 "Loop Strength Reduction", false, false) 3891 3892 3893 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 3894 return new LoopStrengthReduce(TLI); 3895 } 3896 3897 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 3898 : LoopPass(ID), TLI(tli) { 3899 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 3900 } 3901 3902 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 3903 // We split critical edges, so we change the CFG. However, we do update 3904 // many analyses if they are around. 3905 AU.addPreservedID(LoopSimplifyID); 3906 3907 AU.addRequired<LoopInfo>(); 3908 AU.addPreserved<LoopInfo>(); 3909 AU.addRequiredID(LoopSimplifyID); 3910 AU.addRequired<DominatorTree>(); 3911 AU.addPreserved<DominatorTree>(); 3912 AU.addRequired<ScalarEvolution>(); 3913 AU.addPreserved<ScalarEvolution>(); 3914 // Requiring LoopSimplify a second time here prevents IVUsers from running 3915 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 3916 AU.addRequiredID(LoopSimplifyID); 3917 AU.addRequired<IVUsers>(); 3918 AU.addPreserved<IVUsers>(); 3919 } 3920 3921 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 3922 bool Changed = false; 3923 3924 // Run the main LSR transformation. 3925 Changed |= LSRInstance(TLI, L, this).getChanged(); 3926 3927 // At this point, it is worth checking to see if any recurrence PHIs are also 3928 // dead, so that we can remove them as well. 3929 Changed |= DeleteDeadPHIs(L->getHeader()); 3930 3931 return Changed; 3932 } 3933