1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/LoopPassManager.h"
65 #include "llvm/Analysis/ScalarEvolutionExpander.h"
66 #include "llvm/Analysis/TargetTransformInfo.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/Module.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
79 #include "llvm/Transforms/Utils/Local.h"
80 #include <algorithm>
81 using namespace llvm;
82 
83 #define DEBUG_TYPE "loop-reduce"
84 
85 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
86 /// bail out. This threshold is far beyond the number of users that LSR can
87 /// conceivably solve, so it should not affect generated code, but catches the
88 /// worst cases before LSR burns too much compile time and stack space.
89 static const unsigned MaxIVUsers = 200;
90 
91 // Temporary flag to cleanup congruent phis after LSR phi expansion.
92 // It's currently disabled until we can determine whether it's truly useful or
93 // not. The flag should be removed after the v3.0 release.
94 // This is now needed for ivchains.
95 static cl::opt<bool> EnablePhiElim(
96   "enable-lsr-phielim", cl::Hidden, cl::init(true),
97   cl::desc("Enable LSR phi elimination"));
98 
99 #ifndef NDEBUG
100 // Stress test IV chain generation.
101 static cl::opt<bool> StressIVChain(
102   "stress-ivchain", cl::Hidden, cl::init(false),
103   cl::desc("Stress test LSR IV chains"));
104 #else
105 static bool StressIVChain = false;
106 #endif
107 
108 namespace {
109 
110 struct MemAccessTy {
111   /// Used in situations where the accessed memory type is unknown.
112   static const unsigned UnknownAddressSpace = ~0u;
113 
114   Type *MemTy;
115   unsigned AddrSpace;
116 
117   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
118 
119   MemAccessTy(Type *Ty, unsigned AS) :
120     MemTy(Ty), AddrSpace(AS) {}
121 
122   bool operator==(MemAccessTy Other) const {
123     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
124   }
125 
126   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
127 
128   static MemAccessTy getUnknown(LLVMContext &Ctx) {
129     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
130   }
131 };
132 
133 /// This class holds data which is used to order reuse candidates.
134 class RegSortData {
135 public:
136   /// This represents the set of LSRUse indices which reference
137   /// a particular register.
138   SmallBitVector UsedByIndices;
139 
140   void print(raw_ostream &OS) const;
141   void dump() const;
142 };
143 
144 }
145 
146 void RegSortData::print(raw_ostream &OS) const {
147   OS << "[NumUses=" << UsedByIndices.count() << ']';
148 }
149 
150 LLVM_DUMP_METHOD
151 void RegSortData::dump() const {
152   print(errs()); errs() << '\n';
153 }
154 
155 namespace {
156 
157 /// Map register candidates to information about how they are used.
158 class RegUseTracker {
159   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
160 
161   RegUsesTy RegUsesMap;
162   SmallVector<const SCEV *, 16> RegSequence;
163 
164 public:
165   void countRegister(const SCEV *Reg, size_t LUIdx);
166   void dropRegister(const SCEV *Reg, size_t LUIdx);
167   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
168 
169   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
170 
171   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
172 
173   void clear();
174 
175   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
176   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
177   iterator begin() { return RegSequence.begin(); }
178   iterator end()   { return RegSequence.end(); }
179   const_iterator begin() const { return RegSequence.begin(); }
180   const_iterator end() const   { return RegSequence.end(); }
181 };
182 
183 }
184 
185 void
186 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
187   std::pair<RegUsesTy::iterator, bool> Pair =
188     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
189   RegSortData &RSD = Pair.first->second;
190   if (Pair.second)
191     RegSequence.push_back(Reg);
192   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
193   RSD.UsedByIndices.set(LUIdx);
194 }
195 
196 void
197 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
198   RegUsesTy::iterator It = RegUsesMap.find(Reg);
199   assert(It != RegUsesMap.end());
200   RegSortData &RSD = It->second;
201   assert(RSD.UsedByIndices.size() > LUIdx);
202   RSD.UsedByIndices.reset(LUIdx);
203 }
204 
205 void
206 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
207   assert(LUIdx <= LastLUIdx);
208 
209   // Update RegUses. The data structure is not optimized for this purpose;
210   // we must iterate through it and update each of the bit vectors.
211   for (auto &Pair : RegUsesMap) {
212     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
213     if (LUIdx < UsedByIndices.size())
214       UsedByIndices[LUIdx] =
215         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
216     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
217   }
218 }
219 
220 bool
221 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
222   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
223   if (I == RegUsesMap.end())
224     return false;
225   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
226   int i = UsedByIndices.find_first();
227   if (i == -1) return false;
228   if ((size_t)i != LUIdx) return true;
229   return UsedByIndices.find_next(i) != -1;
230 }
231 
232 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
233   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
234   assert(I != RegUsesMap.end() && "Unknown register!");
235   return I->second.UsedByIndices;
236 }
237 
238 void RegUseTracker::clear() {
239   RegUsesMap.clear();
240   RegSequence.clear();
241 }
242 
243 namespace {
244 
245 /// This class holds information that describes a formula for computing
246 /// satisfying a use. It may include broken-out immediates and scaled registers.
247 struct Formula {
248   /// Global base address used for complex addressing.
249   GlobalValue *BaseGV;
250 
251   /// Base offset for complex addressing.
252   int64_t BaseOffset;
253 
254   /// Whether any complex addressing has a base register.
255   bool HasBaseReg;
256 
257   /// The scale of any complex addressing.
258   int64_t Scale;
259 
260   /// The list of "base" registers for this use. When this is non-empty. The
261   /// canonical representation of a formula is
262   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
263   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
264   /// #1 enforces that the scaled register is always used when at least two
265   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
266   /// #2 enforces that 1 * reg is reg.
267   /// This invariant can be temporarly broken while building a formula.
268   /// However, every formula inserted into the LSRInstance must be in canonical
269   /// form.
270   SmallVector<const SCEV *, 4> BaseRegs;
271 
272   /// The 'scaled' register for this use. This should be non-null when Scale is
273   /// not zero.
274   const SCEV *ScaledReg;
275 
276   /// An additional constant offset which added near the use. This requires a
277   /// temporary register, but the offset itself can live in an add immediate
278   /// field rather than a register.
279   int64_t UnfoldedOffset;
280 
281   Formula()
282       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
283         ScaledReg(nullptr), UnfoldedOffset(0) {}
284 
285   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
286 
287   bool isCanonical() const;
288 
289   void canonicalize();
290 
291   bool unscale();
292 
293   size_t getNumRegs() const;
294   Type *getType() const;
295 
296   void deleteBaseReg(const SCEV *&S);
297 
298   bool referencesReg(const SCEV *S) const;
299   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
300                                   const RegUseTracker &RegUses) const;
301 
302   void print(raw_ostream &OS) const;
303   void dump() const;
304 };
305 
306 }
307 
308 /// Recursion helper for initialMatch.
309 static void DoInitialMatch(const SCEV *S, Loop *L,
310                            SmallVectorImpl<const SCEV *> &Good,
311                            SmallVectorImpl<const SCEV *> &Bad,
312                            ScalarEvolution &SE) {
313   // Collect expressions which properly dominate the loop header.
314   if (SE.properlyDominates(S, L->getHeader())) {
315     Good.push_back(S);
316     return;
317   }
318 
319   // Look at add operands.
320   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
321     for (const SCEV *S : Add->operands())
322       DoInitialMatch(S, L, Good, Bad, SE);
323     return;
324   }
325 
326   // Look at addrec operands.
327   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
328     if (!AR->getStart()->isZero() && AR->isAffine()) {
329       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
330       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
331                                       AR->getStepRecurrence(SE),
332                                       // FIXME: AR->getNoWrapFlags()
333                                       AR->getLoop(), SCEV::FlagAnyWrap),
334                      L, Good, Bad, SE);
335       return;
336     }
337 
338   // Handle a multiplication by -1 (negation) if it didn't fold.
339   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
340     if (Mul->getOperand(0)->isAllOnesValue()) {
341       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
342       const SCEV *NewMul = SE.getMulExpr(Ops);
343 
344       SmallVector<const SCEV *, 4> MyGood;
345       SmallVector<const SCEV *, 4> MyBad;
346       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
347       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
348         SE.getEffectiveSCEVType(NewMul->getType())));
349       for (const SCEV *S : MyGood)
350         Good.push_back(SE.getMulExpr(NegOne, S));
351       for (const SCEV *S : MyBad)
352         Bad.push_back(SE.getMulExpr(NegOne, S));
353       return;
354     }
355 
356   // Ok, we can't do anything interesting. Just stuff the whole thing into a
357   // register and hope for the best.
358   Bad.push_back(S);
359 }
360 
361 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
362 /// all loop-invariant and loop-computable values in a single base register.
363 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
364   SmallVector<const SCEV *, 4> Good;
365   SmallVector<const SCEV *, 4> Bad;
366   DoInitialMatch(S, L, Good, Bad, SE);
367   if (!Good.empty()) {
368     const SCEV *Sum = SE.getAddExpr(Good);
369     if (!Sum->isZero())
370       BaseRegs.push_back(Sum);
371     HasBaseReg = true;
372   }
373   if (!Bad.empty()) {
374     const SCEV *Sum = SE.getAddExpr(Bad);
375     if (!Sum->isZero())
376       BaseRegs.push_back(Sum);
377     HasBaseReg = true;
378   }
379   canonicalize();
380 }
381 
382 /// \brief Check whether or not this formula statisfies the canonical
383 /// representation.
384 /// \see Formula::BaseRegs.
385 bool Formula::isCanonical() const {
386   if (ScaledReg)
387     return Scale != 1 || !BaseRegs.empty();
388   return BaseRegs.size() <= 1;
389 }
390 
391 /// \brief Helper method to morph a formula into its canonical representation.
392 /// \see Formula::BaseRegs.
393 /// Every formula having more than one base register, must use the ScaledReg
394 /// field. Otherwise, we would have to do special cases everywhere in LSR
395 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
396 /// On the other hand, 1*reg should be canonicalized into reg.
397 void Formula::canonicalize() {
398   if (isCanonical())
399     return;
400   // So far we did not need this case. This is easy to implement but it is
401   // useless to maintain dead code. Beside it could hurt compile time.
402   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
403   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
404   ScaledReg = BaseRegs.back();
405   BaseRegs.pop_back();
406   Scale = 1;
407   size_t BaseRegsSize = BaseRegs.size();
408   size_t Try = 0;
409   // If ScaledReg is an invariant, try to find a variant expression.
410   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
411     std::swap(ScaledReg, BaseRegs[Try++]);
412 }
413 
414 /// \brief Get rid of the scale in the formula.
415 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
416 /// \return true if it was possible to get rid of the scale, false otherwise.
417 /// \note After this operation the formula may not be in the canonical form.
418 bool Formula::unscale() {
419   if (Scale != 1)
420     return false;
421   Scale = 0;
422   BaseRegs.push_back(ScaledReg);
423   ScaledReg = nullptr;
424   return true;
425 }
426 
427 /// Return the total number of register operands used by this formula. This does
428 /// not include register uses implied by non-constant addrec strides.
429 size_t Formula::getNumRegs() const {
430   return !!ScaledReg + BaseRegs.size();
431 }
432 
433 /// Return the type of this formula, if it has one, or null otherwise. This type
434 /// is meaningless except for the bit size.
435 Type *Formula::getType() const {
436   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
437          ScaledReg ? ScaledReg->getType() :
438          BaseGV ? BaseGV->getType() :
439          nullptr;
440 }
441 
442 /// Delete the given base reg from the BaseRegs list.
443 void Formula::deleteBaseReg(const SCEV *&S) {
444   if (&S != &BaseRegs.back())
445     std::swap(S, BaseRegs.back());
446   BaseRegs.pop_back();
447 }
448 
449 /// Test if this formula references the given register.
450 bool Formula::referencesReg(const SCEV *S) const {
451   return S == ScaledReg || is_contained(BaseRegs, S);
452 }
453 
454 /// Test whether this formula uses registers which are used by uses other than
455 /// the use with the given index.
456 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
457                                          const RegUseTracker &RegUses) const {
458   if (ScaledReg)
459     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
460       return true;
461   for (const SCEV *BaseReg : BaseRegs)
462     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
463       return true;
464   return false;
465 }
466 
467 void Formula::print(raw_ostream &OS) const {
468   bool First = true;
469   if (BaseGV) {
470     if (!First) OS << " + "; else First = false;
471     BaseGV->printAsOperand(OS, /*PrintType=*/false);
472   }
473   if (BaseOffset != 0) {
474     if (!First) OS << " + "; else First = false;
475     OS << BaseOffset;
476   }
477   for (const SCEV *BaseReg : BaseRegs) {
478     if (!First) OS << " + "; else First = false;
479     OS << "reg(" << *BaseReg << ')';
480   }
481   if (HasBaseReg && BaseRegs.empty()) {
482     if (!First) OS << " + "; else First = false;
483     OS << "**error: HasBaseReg**";
484   } else if (!HasBaseReg && !BaseRegs.empty()) {
485     if (!First) OS << " + "; else First = false;
486     OS << "**error: !HasBaseReg**";
487   }
488   if (Scale != 0) {
489     if (!First) OS << " + "; else First = false;
490     OS << Scale << "*reg(";
491     if (ScaledReg)
492       OS << *ScaledReg;
493     else
494       OS << "<unknown>";
495     OS << ')';
496   }
497   if (UnfoldedOffset != 0) {
498     if (!First) OS << " + ";
499     OS << "imm(" << UnfoldedOffset << ')';
500   }
501 }
502 
503 LLVM_DUMP_METHOD
504 void Formula::dump() const {
505   print(errs()); errs() << '\n';
506 }
507 
508 /// Return true if the given addrec can be sign-extended without changing its
509 /// value.
510 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
511   Type *WideTy =
512     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
513   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
514 }
515 
516 /// Return true if the given add can be sign-extended without changing its
517 /// value.
518 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
519   Type *WideTy =
520     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
521   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
522 }
523 
524 /// Return true if the given mul can be sign-extended without changing its
525 /// value.
526 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
527   Type *WideTy =
528     IntegerType::get(SE.getContext(),
529                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
530   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
531 }
532 
533 /// Return an expression for LHS /s RHS, if it can be determined and if the
534 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
535 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
536 /// the multiplication may overflow, which is useful when the result will be
537 /// used in a context where the most significant bits are ignored.
538 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
539                                 ScalarEvolution &SE,
540                                 bool IgnoreSignificantBits = false) {
541   // Handle the trivial case, which works for any SCEV type.
542   if (LHS == RHS)
543     return SE.getConstant(LHS->getType(), 1);
544 
545   // Handle a few RHS special cases.
546   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
547   if (RC) {
548     const APInt &RA = RC->getAPInt();
549     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
550     // some folding.
551     if (RA.isAllOnesValue())
552       return SE.getMulExpr(LHS, RC);
553     // Handle x /s 1 as x.
554     if (RA == 1)
555       return LHS;
556   }
557 
558   // Check for a division of a constant by a constant.
559   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
560     if (!RC)
561       return nullptr;
562     const APInt &LA = C->getAPInt();
563     const APInt &RA = RC->getAPInt();
564     if (LA.srem(RA) != 0)
565       return nullptr;
566     return SE.getConstant(LA.sdiv(RA));
567   }
568 
569   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
570   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
571     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
572       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
573                                       IgnoreSignificantBits);
574       if (!Step) return nullptr;
575       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
576                                        IgnoreSignificantBits);
577       if (!Start) return nullptr;
578       // FlagNW is independent of the start value, step direction, and is
579       // preserved with smaller magnitude steps.
580       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
581       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
582     }
583     return nullptr;
584   }
585 
586   // Distribute the sdiv over add operands, if the add doesn't overflow.
587   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
588     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
589       SmallVector<const SCEV *, 8> Ops;
590       for (const SCEV *S : Add->operands()) {
591         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
592         if (!Op) return nullptr;
593         Ops.push_back(Op);
594       }
595       return SE.getAddExpr(Ops);
596     }
597     return nullptr;
598   }
599 
600   // Check for a multiply operand that we can pull RHS out of.
601   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
602     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
603       SmallVector<const SCEV *, 4> Ops;
604       bool Found = false;
605       for (const SCEV *S : Mul->operands()) {
606         if (!Found)
607           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
608                                            IgnoreSignificantBits)) {
609             S = Q;
610             Found = true;
611           }
612         Ops.push_back(S);
613       }
614       return Found ? SE.getMulExpr(Ops) : nullptr;
615     }
616     return nullptr;
617   }
618 
619   // Otherwise we don't know.
620   return nullptr;
621 }
622 
623 /// If S involves the addition of a constant integer value, return that integer
624 /// value, and mutate S to point to a new SCEV with that value excluded.
625 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
626   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
627     if (C->getAPInt().getMinSignedBits() <= 64) {
628       S = SE.getConstant(C->getType(), 0);
629       return C->getValue()->getSExtValue();
630     }
631   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
632     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
633     int64_t Result = ExtractImmediate(NewOps.front(), SE);
634     if (Result != 0)
635       S = SE.getAddExpr(NewOps);
636     return Result;
637   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
638     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
639     int64_t Result = ExtractImmediate(NewOps.front(), SE);
640     if (Result != 0)
641       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
642                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
643                            SCEV::FlagAnyWrap);
644     return Result;
645   }
646   return 0;
647 }
648 
649 /// If S involves the addition of a GlobalValue address, return that symbol, and
650 /// mutate S to point to a new SCEV with that value excluded.
651 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
652   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
653     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
654       S = SE.getConstant(GV->getType(), 0);
655       return GV;
656     }
657   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
658     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
659     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
660     if (Result)
661       S = SE.getAddExpr(NewOps);
662     return Result;
663   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
664     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
665     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
666     if (Result)
667       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
668                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
669                            SCEV::FlagAnyWrap);
670     return Result;
671   }
672   return nullptr;
673 }
674 
675 /// Returns true if the specified instruction is using the specified value as an
676 /// address.
677 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
678   bool isAddress = isa<LoadInst>(Inst);
679   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
680     if (SI->getOperand(1) == OperandVal)
681       isAddress = true;
682   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
683     // Addressing modes can also be folded into prefetches and a variety
684     // of intrinsics.
685     switch (II->getIntrinsicID()) {
686       default: break;
687       case Intrinsic::prefetch:
688         if (II->getArgOperand(0) == OperandVal)
689           isAddress = true;
690         break;
691     }
692   }
693   return isAddress;
694 }
695 
696 /// Return the type of the memory being accessed.
697 static MemAccessTy getAccessType(const Instruction *Inst) {
698   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
699   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
700     AccessTy.MemTy = SI->getOperand(0)->getType();
701     AccessTy.AddrSpace = SI->getPointerAddressSpace();
702   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
703     AccessTy.AddrSpace = LI->getPointerAddressSpace();
704   }
705 
706   // All pointers have the same requirements, so canonicalize them to an
707   // arbitrary pointer type to minimize variation.
708   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
709     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
710                                       PTy->getAddressSpace());
711 
712   return AccessTy;
713 }
714 
715 /// Return true if this AddRec is already a phi in its loop.
716 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
717   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
718        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
719     if (SE.isSCEVable(PN->getType()) &&
720         (SE.getEffectiveSCEVType(PN->getType()) ==
721          SE.getEffectiveSCEVType(AR->getType())) &&
722         SE.getSCEV(PN) == AR)
723       return true;
724   }
725   return false;
726 }
727 
728 /// Check if expanding this expression is likely to incur significant cost. This
729 /// is tricky because SCEV doesn't track which expressions are actually computed
730 /// by the current IR.
731 ///
732 /// We currently allow expansion of IV increments that involve adds,
733 /// multiplication by constants, and AddRecs from existing phis.
734 ///
735 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
736 /// obvious multiple of the UDivExpr.
737 static bool isHighCostExpansion(const SCEV *S,
738                                 SmallPtrSetImpl<const SCEV*> &Processed,
739                                 ScalarEvolution &SE) {
740   // Zero/One operand expressions
741   switch (S->getSCEVType()) {
742   case scUnknown:
743   case scConstant:
744     return false;
745   case scTruncate:
746     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
747                                Processed, SE);
748   case scZeroExtend:
749     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
750                                Processed, SE);
751   case scSignExtend:
752     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
753                                Processed, SE);
754   }
755 
756   if (!Processed.insert(S).second)
757     return false;
758 
759   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
760     for (const SCEV *S : Add->operands()) {
761       if (isHighCostExpansion(S, Processed, SE))
762         return true;
763     }
764     return false;
765   }
766 
767   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
768     if (Mul->getNumOperands() == 2) {
769       // Multiplication by a constant is ok
770       if (isa<SCEVConstant>(Mul->getOperand(0)))
771         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
772 
773       // If we have the value of one operand, check if an existing
774       // multiplication already generates this expression.
775       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
776         Value *UVal = U->getValue();
777         for (User *UR : UVal->users()) {
778           // If U is a constant, it may be used by a ConstantExpr.
779           Instruction *UI = dyn_cast<Instruction>(UR);
780           if (UI && UI->getOpcode() == Instruction::Mul &&
781               SE.isSCEVable(UI->getType())) {
782             return SE.getSCEV(UI) == Mul;
783           }
784         }
785       }
786     }
787   }
788 
789   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
790     if (isExistingPhi(AR, SE))
791       return false;
792   }
793 
794   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
795   return true;
796 }
797 
798 /// If any of the instructions is the specified set are trivially dead, delete
799 /// them and see if this makes any of their operands subsequently dead.
800 static bool
801 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
802   bool Changed = false;
803 
804   while (!DeadInsts.empty()) {
805     Value *V = DeadInsts.pop_back_val();
806     Instruction *I = dyn_cast_or_null<Instruction>(V);
807 
808     if (!I || !isInstructionTriviallyDead(I))
809       continue;
810 
811     for (Use &O : I->operands())
812       if (Instruction *U = dyn_cast<Instruction>(O)) {
813         O = nullptr;
814         if (U->use_empty())
815           DeadInsts.emplace_back(U);
816       }
817 
818     I->eraseFromParent();
819     Changed = true;
820   }
821 
822   return Changed;
823 }
824 
825 namespace {
826 class LSRUse;
827 }
828 
829 /// \brief Check if the addressing mode defined by \p F is completely
830 /// folded in \p LU at isel time.
831 /// This includes address-mode folding and special icmp tricks.
832 /// This function returns true if \p LU can accommodate what \p F
833 /// defines and up to 1 base + 1 scaled + offset.
834 /// In other words, if \p F has several base registers, this function may
835 /// still return true. Therefore, users still need to account for
836 /// additional base registers and/or unfolded offsets to derive an
837 /// accurate cost model.
838 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
839                                  const LSRUse &LU, const Formula &F);
840 // Get the cost of the scaling factor used in F for LU.
841 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
842                                      const LSRUse &LU, const Formula &F);
843 
844 namespace {
845 
846 /// This class is used to measure and compare candidate formulae.
847 class Cost {
848   /// TODO: Some of these could be merged. Also, a lexical ordering
849   /// isn't always optimal.
850   unsigned NumRegs;
851   unsigned AddRecCost;
852   unsigned NumIVMuls;
853   unsigned NumBaseAdds;
854   unsigned ImmCost;
855   unsigned SetupCost;
856   unsigned ScaleCost;
857 
858 public:
859   Cost()
860     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
861       SetupCost(0), ScaleCost(0) {}
862 
863   bool operator<(const Cost &Other) const;
864 
865   void Lose();
866 
867 #ifndef NDEBUG
868   // Once any of the metrics loses, they must all remain losers.
869   bool isValid() {
870     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
871              | ImmCost | SetupCost | ScaleCost) != ~0u)
872       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
873            & ImmCost & SetupCost & ScaleCost) == ~0u);
874   }
875 #endif
876 
877   bool isLoser() {
878     assert(isValid() && "invalid cost");
879     return NumRegs == ~0u;
880   }
881 
882   void RateFormula(const TargetTransformInfo &TTI,
883                    const Formula &F,
884                    SmallPtrSetImpl<const SCEV *> &Regs,
885                    const DenseSet<const SCEV *> &VisitedRegs,
886                    const Loop *L,
887                    ScalarEvolution &SE, DominatorTree &DT,
888                    const LSRUse &LU,
889                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
890 
891   void print(raw_ostream &OS) const;
892   void dump() const;
893 
894 private:
895   void RateRegister(const SCEV *Reg,
896                     SmallPtrSetImpl<const SCEV *> &Regs,
897                     const Loop *L,
898                     ScalarEvolution &SE, DominatorTree &DT);
899   void RatePrimaryRegister(const SCEV *Reg,
900                            SmallPtrSetImpl<const SCEV *> &Regs,
901                            const Loop *L,
902                            ScalarEvolution &SE, DominatorTree &DT,
903                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
904 };
905 
906 /// An operand value in an instruction which is to be replaced with some
907 /// equivalent, possibly strength-reduced, replacement.
908 struct LSRFixup {
909   /// The instruction which will be updated.
910   Instruction *UserInst;
911 
912   /// The operand of the instruction which will be replaced. The operand may be
913   /// used more than once; every instance will be replaced.
914   Value *OperandValToReplace;
915 
916   /// If this user is to use the post-incremented value of an induction
917   /// variable, this variable is non-null and holds the loop associated with the
918   /// induction variable.
919   PostIncLoopSet PostIncLoops;
920 
921   /// A constant offset to be added to the LSRUse expression.  This allows
922   /// multiple fixups to share the same LSRUse with different offsets, for
923   /// example in an unrolled loop.
924   int64_t Offset;
925 
926   bool isUseFullyOutsideLoop(const Loop *L) const;
927 
928   LSRFixup();
929 
930   void print(raw_ostream &OS) const;
931   void dump() const;
932 };
933 
934 
935 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
936 /// SmallVectors of const SCEV*.
937 struct UniquifierDenseMapInfo {
938   static SmallVector<const SCEV *, 4> getEmptyKey() {
939     SmallVector<const SCEV *, 4>  V;
940     V.push_back(reinterpret_cast<const SCEV *>(-1));
941     return V;
942   }
943 
944   static SmallVector<const SCEV *, 4> getTombstoneKey() {
945     SmallVector<const SCEV *, 4> V;
946     V.push_back(reinterpret_cast<const SCEV *>(-2));
947     return V;
948   }
949 
950   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
951     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
952   }
953 
954   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
955                       const SmallVector<const SCEV *, 4> &RHS) {
956     return LHS == RHS;
957   }
958 };
959 
960 /// This class holds the state that LSR keeps for each use in IVUsers, as well
961 /// as uses invented by LSR itself. It includes information about what kinds of
962 /// things can be folded into the user, information about the user itself, and
963 /// information about how the use may be satisfied.  TODO: Represent multiple
964 /// users of the same expression in common?
965 class LSRUse {
966   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
967 
968 public:
969   /// An enum for a kind of use, indicating what types of scaled and immediate
970   /// operands it might support.
971   enum KindType {
972     Basic,   ///< A normal use, with no folding.
973     Special, ///< A special case of basic, allowing -1 scales.
974     Address, ///< An address use; folding according to TargetLowering
975     ICmpZero ///< An equality icmp with both operands folded into one.
976     // TODO: Add a generic icmp too?
977   };
978 
979   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
980 
981   KindType Kind;
982   MemAccessTy AccessTy;
983 
984   /// The list of operands which are to be replaced.
985   SmallVector<LSRFixup, 8> Fixups;
986 
987   /// Keep track of the min and max offsets of the fixups.
988   int64_t MinOffset;
989   int64_t MaxOffset;
990 
991   /// This records whether all of the fixups using this LSRUse are outside of
992   /// the loop, in which case some special-case heuristics may be used.
993   bool AllFixupsOutsideLoop;
994 
995   /// RigidFormula is set to true to guarantee that this use will be associated
996   /// with a single formula--the one that initially matched. Some SCEV
997   /// expressions cannot be expanded. This allows LSR to consider the registers
998   /// used by those expressions without the need to expand them later after
999   /// changing the formula.
1000   bool RigidFormula;
1001 
1002   /// This records the widest use type for any fixup using this
1003   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1004   /// fixup widths to be equivalent, because the narrower one may be relying on
1005   /// the implicit truncation to truncate away bogus bits.
1006   Type *WidestFixupType;
1007 
1008   /// A list of ways to build a value that can satisfy this user.  After the
1009   /// list is populated, one of these is selected heuristically and used to
1010   /// formulate a replacement for OperandValToReplace in UserInst.
1011   SmallVector<Formula, 12> Formulae;
1012 
1013   /// The set of register candidates used by all formulae in this LSRUse.
1014   SmallPtrSet<const SCEV *, 4> Regs;
1015 
1016   LSRUse(KindType K, MemAccessTy AT)
1017       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1018         AllFixupsOutsideLoop(true), RigidFormula(false),
1019         WidestFixupType(nullptr) {}
1020 
1021   LSRFixup &getNewFixup() {
1022     Fixups.push_back(LSRFixup());
1023     return Fixups.back();
1024   }
1025 
1026   void pushFixup(LSRFixup &f) {
1027     Fixups.push_back(f);
1028     if (f.Offset > MaxOffset)
1029       MaxOffset = f.Offset;
1030     if (f.Offset < MinOffset)
1031       MinOffset = f.Offset;
1032   }
1033 
1034   bool HasFormulaWithSameRegs(const Formula &F) const;
1035   bool InsertFormula(const Formula &F);
1036   void DeleteFormula(Formula &F);
1037   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1038 
1039   void print(raw_ostream &OS) const;
1040   void dump() const;
1041 };
1042 
1043 }
1044 
1045 /// Tally up interesting quantities from the given register.
1046 void Cost::RateRegister(const SCEV *Reg,
1047                         SmallPtrSetImpl<const SCEV *> &Regs,
1048                         const Loop *L,
1049                         ScalarEvolution &SE, DominatorTree &DT) {
1050   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1051     // If this is an addrec for another loop, don't second-guess its addrec phi
1052     // nodes. LSR isn't currently smart enough to reason about more than one
1053     // loop at a time. LSR has already run on inner loops, will not run on outer
1054     // loops, and cannot be expected to change sibling loops.
1055     if (AR->getLoop() != L) {
1056       // If the AddRec exists, consider it's register free and leave it alone.
1057       if (isExistingPhi(AR, SE))
1058         return;
1059 
1060       // Otherwise, do not consider this formula at all.
1061       Lose();
1062       return;
1063     }
1064     AddRecCost += 1; /// TODO: This should be a function of the stride.
1065 
1066     // Add the step value register, if it needs one.
1067     // TODO: The non-affine case isn't precisely modeled here.
1068     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1069       if (!Regs.count(AR->getOperand(1))) {
1070         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1071         if (isLoser())
1072           return;
1073       }
1074     }
1075   }
1076   ++NumRegs;
1077 
1078   // Rough heuristic; favor registers which don't require extra setup
1079   // instructions in the preheader.
1080   if (!isa<SCEVUnknown>(Reg) &&
1081       !isa<SCEVConstant>(Reg) &&
1082       !(isa<SCEVAddRecExpr>(Reg) &&
1083         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1084          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1085     ++SetupCost;
1086 
1087   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1088                SE.hasComputableLoopEvolution(Reg, L);
1089 }
1090 
1091 /// Record this register in the set. If we haven't seen it before, rate
1092 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1093 /// one of those regs an instant loser.
1094 void Cost::RatePrimaryRegister(const SCEV *Reg,
1095                                SmallPtrSetImpl<const SCEV *> &Regs,
1096                                const Loop *L,
1097                                ScalarEvolution &SE, DominatorTree &DT,
1098                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1099   if (LoserRegs && LoserRegs->count(Reg)) {
1100     Lose();
1101     return;
1102   }
1103   if (Regs.insert(Reg).second) {
1104     RateRegister(Reg, Regs, L, SE, DT);
1105     if (LoserRegs && isLoser())
1106       LoserRegs->insert(Reg);
1107   }
1108 }
1109 
1110 void Cost::RateFormula(const TargetTransformInfo &TTI,
1111                        const Formula &F,
1112                        SmallPtrSetImpl<const SCEV *> &Regs,
1113                        const DenseSet<const SCEV *> &VisitedRegs,
1114                        const Loop *L,
1115                        ScalarEvolution &SE, DominatorTree &DT,
1116                        const LSRUse &LU,
1117                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1118   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
1119   // Tally up the registers.
1120   if (const SCEV *ScaledReg = F.ScaledReg) {
1121     if (VisitedRegs.count(ScaledReg)) {
1122       Lose();
1123       return;
1124     }
1125     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1126     if (isLoser())
1127       return;
1128   }
1129   for (const SCEV *BaseReg : F.BaseRegs) {
1130     if (VisitedRegs.count(BaseReg)) {
1131       Lose();
1132       return;
1133     }
1134     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1135     if (isLoser())
1136       return;
1137   }
1138 
1139   // Determine how many (unfolded) adds we'll need inside the loop.
1140   size_t NumBaseParts = F.getNumRegs();
1141   if (NumBaseParts > 1)
1142     // Do not count the base and a possible second register if the target
1143     // allows to fold 2 registers.
1144     NumBaseAdds +=
1145         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1146   NumBaseAdds += (F.UnfoldedOffset != 0);
1147 
1148   // Accumulate non-free scaling amounts.
1149   ScaleCost += getScalingFactorCost(TTI, LU, F);
1150 
1151   // Tally up the non-zero immediates.
1152   for (const LSRFixup &Fixup : LU.Fixups) {
1153     int64_t O = Fixup.Offset;
1154     int64_t Offset = (uint64_t)O + F.BaseOffset;
1155     if (F.BaseGV)
1156       ImmCost += 64; // Handle symbolic values conservatively.
1157                      // TODO: This should probably be the pointer size.
1158     else if (Offset != 0)
1159       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1160 
1161     // Check with target if this offset with this instruction is
1162     // specifically not supported.
1163     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1164         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1165       NumBaseAdds++;
1166   }
1167   assert(isValid() && "invalid cost");
1168 }
1169 
1170 /// Set this cost to a losing value.
1171 void Cost::Lose() {
1172   NumRegs = ~0u;
1173   AddRecCost = ~0u;
1174   NumIVMuls = ~0u;
1175   NumBaseAdds = ~0u;
1176   ImmCost = ~0u;
1177   SetupCost = ~0u;
1178   ScaleCost = ~0u;
1179 }
1180 
1181 /// Choose the lower cost.
1182 bool Cost::operator<(const Cost &Other) const {
1183   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1184                   ImmCost, SetupCost) <
1185          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1186                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1187                   Other.SetupCost);
1188 }
1189 
1190 void Cost::print(raw_ostream &OS) const {
1191   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1192   if (AddRecCost != 0)
1193     OS << ", with addrec cost " << AddRecCost;
1194   if (NumIVMuls != 0)
1195     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1196   if (NumBaseAdds != 0)
1197     OS << ", plus " << NumBaseAdds << " base add"
1198        << (NumBaseAdds == 1 ? "" : "s");
1199   if (ScaleCost != 0)
1200     OS << ", plus " << ScaleCost << " scale cost";
1201   if (ImmCost != 0)
1202     OS << ", plus " << ImmCost << " imm cost";
1203   if (SetupCost != 0)
1204     OS << ", plus " << SetupCost << " setup cost";
1205 }
1206 
1207 LLVM_DUMP_METHOD
1208 void Cost::dump() const {
1209   print(errs()); errs() << '\n';
1210 }
1211 
1212 LSRFixup::LSRFixup()
1213   : UserInst(nullptr), OperandValToReplace(nullptr),
1214     Offset(0) {}
1215 
1216 /// Test whether this fixup always uses its value outside of the given loop.
1217 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1218   // PHI nodes use their value in their incoming blocks.
1219   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1220     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1221       if (PN->getIncomingValue(i) == OperandValToReplace &&
1222           L->contains(PN->getIncomingBlock(i)))
1223         return false;
1224     return true;
1225   }
1226 
1227   return !L->contains(UserInst);
1228 }
1229 
1230 void LSRFixup::print(raw_ostream &OS) const {
1231   OS << "UserInst=";
1232   // Store is common and interesting enough to be worth special-casing.
1233   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1234     OS << "store ";
1235     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1236   } else if (UserInst->getType()->isVoidTy())
1237     OS << UserInst->getOpcodeName();
1238   else
1239     UserInst->printAsOperand(OS, /*PrintType=*/false);
1240 
1241   OS << ", OperandValToReplace=";
1242   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1243 
1244   for (const Loop *PIL : PostIncLoops) {
1245     OS << ", PostIncLoop=";
1246     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1247   }
1248 
1249   if (Offset != 0)
1250     OS << ", Offset=" << Offset;
1251 }
1252 
1253 LLVM_DUMP_METHOD
1254 void LSRFixup::dump() const {
1255   print(errs()); errs() << '\n';
1256 }
1257 
1258 /// Test whether this use as a formula which has the same registers as the given
1259 /// formula.
1260 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1261   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1262   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1263   // Unstable sort by host order ok, because this is only used for uniquifying.
1264   std::sort(Key.begin(), Key.end());
1265   return Uniquifier.count(Key);
1266 }
1267 
1268 /// If the given formula has not yet been inserted, add it to the list, and
1269 /// return true. Return false otherwise.  The formula must be in canonical form.
1270 bool LSRUse::InsertFormula(const Formula &F) {
1271   assert(F.isCanonical() && "Invalid canonical representation");
1272 
1273   if (!Formulae.empty() && RigidFormula)
1274     return false;
1275 
1276   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1277   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1278   // Unstable sort by host order ok, because this is only used for uniquifying.
1279   std::sort(Key.begin(), Key.end());
1280 
1281   if (!Uniquifier.insert(Key).second)
1282     return false;
1283 
1284   // Using a register to hold the value of 0 is not profitable.
1285   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1286          "Zero allocated in a scaled register!");
1287 #ifndef NDEBUG
1288   for (const SCEV *BaseReg : F.BaseRegs)
1289     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1290 #endif
1291 
1292   // Add the formula to the list.
1293   Formulae.push_back(F);
1294 
1295   // Record registers now being used by this use.
1296   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1297   if (F.ScaledReg)
1298     Regs.insert(F.ScaledReg);
1299 
1300   return true;
1301 }
1302 
1303 /// Remove the given formula from this use's list.
1304 void LSRUse::DeleteFormula(Formula &F) {
1305   if (&F != &Formulae.back())
1306     std::swap(F, Formulae.back());
1307   Formulae.pop_back();
1308 }
1309 
1310 /// Recompute the Regs field, and update RegUses.
1311 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1312   // Now that we've filtered out some formulae, recompute the Regs set.
1313   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1314   Regs.clear();
1315   for (const Formula &F : Formulae) {
1316     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1317     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1318   }
1319 
1320   // Update the RegTracker.
1321   for (const SCEV *S : OldRegs)
1322     if (!Regs.count(S))
1323       RegUses.dropRegister(S, LUIdx);
1324 }
1325 
1326 void LSRUse::print(raw_ostream &OS) const {
1327   OS << "LSR Use: Kind=";
1328   switch (Kind) {
1329   case Basic:    OS << "Basic"; break;
1330   case Special:  OS << "Special"; break;
1331   case ICmpZero: OS << "ICmpZero"; break;
1332   case Address:
1333     OS << "Address of ";
1334     if (AccessTy.MemTy->isPointerTy())
1335       OS << "pointer"; // the full pointer type could be really verbose
1336     else {
1337       OS << *AccessTy.MemTy;
1338     }
1339 
1340     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1341   }
1342 
1343   OS << ", Offsets={";
1344   bool NeedComma = false;
1345   for (const LSRFixup &Fixup : Fixups) {
1346     if (NeedComma) OS << ',';
1347     OS << Fixup.Offset;
1348     NeedComma = true;
1349   }
1350   OS << '}';
1351 
1352   if (AllFixupsOutsideLoop)
1353     OS << ", all-fixups-outside-loop";
1354 
1355   if (WidestFixupType)
1356     OS << ", widest fixup type: " << *WidestFixupType;
1357 }
1358 
1359 LLVM_DUMP_METHOD
1360 void LSRUse::dump() const {
1361   print(errs()); errs() << '\n';
1362 }
1363 
1364 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1365                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1366                                  GlobalValue *BaseGV, int64_t BaseOffset,
1367                                  bool HasBaseReg, int64_t Scale) {
1368   switch (Kind) {
1369   case LSRUse::Address:
1370     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1371                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1372 
1373   case LSRUse::ICmpZero:
1374     // There's not even a target hook for querying whether it would be legal to
1375     // fold a GV into an ICmp.
1376     if (BaseGV)
1377       return false;
1378 
1379     // ICmp only has two operands; don't allow more than two non-trivial parts.
1380     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1381       return false;
1382 
1383     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1384     // putting the scaled register in the other operand of the icmp.
1385     if (Scale != 0 && Scale != -1)
1386       return false;
1387 
1388     // If we have low-level target information, ask the target if it can fold an
1389     // integer immediate on an icmp.
1390     if (BaseOffset != 0) {
1391       // We have one of:
1392       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1393       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1394       // Offs is the ICmp immediate.
1395       if (Scale == 0)
1396         // The cast does the right thing with INT64_MIN.
1397         BaseOffset = -(uint64_t)BaseOffset;
1398       return TTI.isLegalICmpImmediate(BaseOffset);
1399     }
1400 
1401     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1402     return true;
1403 
1404   case LSRUse::Basic:
1405     // Only handle single-register values.
1406     return !BaseGV && Scale == 0 && BaseOffset == 0;
1407 
1408   case LSRUse::Special:
1409     // Special case Basic to handle -1 scales.
1410     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1411   }
1412 
1413   llvm_unreachable("Invalid LSRUse Kind!");
1414 }
1415 
1416 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1417                                  int64_t MinOffset, int64_t MaxOffset,
1418                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1419                                  GlobalValue *BaseGV, int64_t BaseOffset,
1420                                  bool HasBaseReg, int64_t Scale) {
1421   // Check for overflow.
1422   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1423       (MinOffset > 0))
1424     return false;
1425   MinOffset = (uint64_t)BaseOffset + MinOffset;
1426   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1427       (MaxOffset > 0))
1428     return false;
1429   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1430 
1431   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1432                               HasBaseReg, Scale) &&
1433          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1434                               HasBaseReg, Scale);
1435 }
1436 
1437 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1438                                  int64_t MinOffset, int64_t MaxOffset,
1439                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1440                                  const Formula &F) {
1441   // For the purpose of isAMCompletelyFolded either having a canonical formula
1442   // or a scale not equal to zero is correct.
1443   // Problems may arise from non canonical formulae having a scale == 0.
1444   // Strictly speaking it would best to just rely on canonical formulae.
1445   // However, when we generate the scaled formulae, we first check that the
1446   // scaling factor is profitable before computing the actual ScaledReg for
1447   // compile time sake.
1448   assert((F.isCanonical() || F.Scale != 0));
1449   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1450                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1451 }
1452 
1453 /// Test whether we know how to expand the current formula.
1454 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1455                        int64_t MaxOffset, LSRUse::KindType Kind,
1456                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1457                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1458   // We know how to expand completely foldable formulae.
1459   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1460                               BaseOffset, HasBaseReg, Scale) ||
1461          // Or formulae that use a base register produced by a sum of base
1462          // registers.
1463          (Scale == 1 &&
1464           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1465                                BaseGV, BaseOffset, true, 0));
1466 }
1467 
1468 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1469                        int64_t MaxOffset, LSRUse::KindType Kind,
1470                        MemAccessTy AccessTy, const Formula &F) {
1471   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1472                     F.BaseOffset, F.HasBaseReg, F.Scale);
1473 }
1474 
1475 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1476                                  const LSRUse &LU, const Formula &F) {
1477   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1478                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1479                               F.Scale);
1480 }
1481 
1482 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1483                                      const LSRUse &LU, const Formula &F) {
1484   if (!F.Scale)
1485     return 0;
1486 
1487   // If the use is not completely folded in that instruction, we will have to
1488   // pay an extra cost only for scale != 1.
1489   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1490                             LU.AccessTy, F))
1491     return F.Scale != 1;
1492 
1493   switch (LU.Kind) {
1494   case LSRUse::Address: {
1495     // Check the scaling factor cost with both the min and max offsets.
1496     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1497         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1498         F.Scale, LU.AccessTy.AddrSpace);
1499     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1500         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1501         F.Scale, LU.AccessTy.AddrSpace);
1502 
1503     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1504            "Legal addressing mode has an illegal cost!");
1505     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1506   }
1507   case LSRUse::ICmpZero:
1508   case LSRUse::Basic:
1509   case LSRUse::Special:
1510     // The use is completely folded, i.e., everything is folded into the
1511     // instruction.
1512     return 0;
1513   }
1514 
1515   llvm_unreachable("Invalid LSRUse Kind!");
1516 }
1517 
1518 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1519                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1520                              GlobalValue *BaseGV, int64_t BaseOffset,
1521                              bool HasBaseReg) {
1522   // Fast-path: zero is always foldable.
1523   if (BaseOffset == 0 && !BaseGV) return true;
1524 
1525   // Conservatively, create an address with an immediate and a
1526   // base and a scale.
1527   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1528 
1529   // Canonicalize a scale of 1 to a base register if the formula doesn't
1530   // already have a base register.
1531   if (!HasBaseReg && Scale == 1) {
1532     Scale = 0;
1533     HasBaseReg = true;
1534   }
1535 
1536   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1537                               HasBaseReg, Scale);
1538 }
1539 
1540 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1541                              ScalarEvolution &SE, int64_t MinOffset,
1542                              int64_t MaxOffset, LSRUse::KindType Kind,
1543                              MemAccessTy AccessTy, const SCEV *S,
1544                              bool HasBaseReg) {
1545   // Fast-path: zero is always foldable.
1546   if (S->isZero()) return true;
1547 
1548   // Conservatively, create an address with an immediate and a
1549   // base and a scale.
1550   int64_t BaseOffset = ExtractImmediate(S, SE);
1551   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1552 
1553   // If there's anything else involved, it's not foldable.
1554   if (!S->isZero()) return false;
1555 
1556   // Fast-path: zero is always foldable.
1557   if (BaseOffset == 0 && !BaseGV) return true;
1558 
1559   // Conservatively, create an address with an immediate and a
1560   // base and a scale.
1561   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1562 
1563   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1564                               BaseOffset, HasBaseReg, Scale);
1565 }
1566 
1567 namespace {
1568 
1569 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1570 /// an expression that computes the IV it uses from the IV used by the previous
1571 /// link in the Chain.
1572 ///
1573 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1574 /// original IVOperand. The head of the chain's IVOperand is only valid during
1575 /// chain collection, before LSR replaces IV users. During chain generation,
1576 /// IncExpr can be used to find the new IVOperand that computes the same
1577 /// expression.
1578 struct IVInc {
1579   Instruction *UserInst;
1580   Value* IVOperand;
1581   const SCEV *IncExpr;
1582 
1583   IVInc(Instruction *U, Value *O, const SCEV *E):
1584     UserInst(U), IVOperand(O), IncExpr(E) {}
1585 };
1586 
1587 // The list of IV increments in program order.  We typically add the head of a
1588 // chain without finding subsequent links.
1589 struct IVChain {
1590   SmallVector<IVInc,1> Incs;
1591   const SCEV *ExprBase;
1592 
1593   IVChain() : ExprBase(nullptr) {}
1594 
1595   IVChain(const IVInc &Head, const SCEV *Base)
1596     : Incs(1, Head), ExprBase(Base) {}
1597 
1598   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1599 
1600   // Return the first increment in the chain.
1601   const_iterator begin() const {
1602     assert(!Incs.empty());
1603     return std::next(Incs.begin());
1604   }
1605   const_iterator end() const {
1606     return Incs.end();
1607   }
1608 
1609   // Returns true if this chain contains any increments.
1610   bool hasIncs() const { return Incs.size() >= 2; }
1611 
1612   // Add an IVInc to the end of this chain.
1613   void add(const IVInc &X) { Incs.push_back(X); }
1614 
1615   // Returns the last UserInst in the chain.
1616   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1617 
1618   // Returns true if IncExpr can be profitably added to this chain.
1619   bool isProfitableIncrement(const SCEV *OperExpr,
1620                              const SCEV *IncExpr,
1621                              ScalarEvolution&);
1622 };
1623 
1624 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1625 /// between FarUsers that definitely cross IV increments and NearUsers that may
1626 /// be used between IV increments.
1627 struct ChainUsers {
1628   SmallPtrSet<Instruction*, 4> FarUsers;
1629   SmallPtrSet<Instruction*, 4> NearUsers;
1630 };
1631 
1632 /// This class holds state for the main loop strength reduction logic.
1633 class LSRInstance {
1634   IVUsers &IU;
1635   ScalarEvolution &SE;
1636   DominatorTree &DT;
1637   LoopInfo &LI;
1638   const TargetTransformInfo &TTI;
1639   Loop *const L;
1640   bool Changed;
1641 
1642   /// This is the insert position that the current loop's induction variable
1643   /// increment should be placed. In simple loops, this is the latch block's
1644   /// terminator. But in more complicated cases, this is a position which will
1645   /// dominate all the in-loop post-increment users.
1646   Instruction *IVIncInsertPos;
1647 
1648   /// Interesting factors between use strides.
1649   ///
1650   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1651   /// default, a SmallDenseSet, because we need to use the full range of
1652   /// int64_ts, and there's currently no good way of doing that with
1653   /// SmallDenseSet.
1654   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1655 
1656   /// Interesting use types, to facilitate truncation reuse.
1657   SmallSetVector<Type *, 4> Types;
1658 
1659   /// The list of interesting uses.
1660   SmallVector<LSRUse, 16> Uses;
1661 
1662   /// Track which uses use which register candidates.
1663   RegUseTracker RegUses;
1664 
1665   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1666   // have more than a few IV increment chains in a loop. Missing a Chain falls
1667   // back to normal LSR behavior for those uses.
1668   static const unsigned MaxChains = 8;
1669 
1670   /// IV users can form a chain of IV increments.
1671   SmallVector<IVChain, MaxChains> IVChainVec;
1672 
1673   /// IV users that belong to profitable IVChains.
1674   SmallPtrSet<Use*, MaxChains> IVIncSet;
1675 
1676   void OptimizeShadowIV();
1677   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1678   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1679   void OptimizeLoopTermCond();
1680 
1681   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1682                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1683   void FinalizeChain(IVChain &Chain);
1684   void CollectChains();
1685   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1686                        SmallVectorImpl<WeakVH> &DeadInsts);
1687 
1688   void CollectInterestingTypesAndFactors();
1689   void CollectFixupsAndInitialFormulae();
1690 
1691   // Support for sharing of LSRUses between LSRFixups.
1692   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1693   UseMapTy UseMap;
1694 
1695   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1696                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1697 
1698   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1699                                     MemAccessTy AccessTy);
1700 
1701   void DeleteUse(LSRUse &LU, size_t LUIdx);
1702 
1703   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1704 
1705   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1706   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1707   void CountRegisters(const Formula &F, size_t LUIdx);
1708   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1709 
1710   void CollectLoopInvariantFixupsAndFormulae();
1711 
1712   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1713                               unsigned Depth = 0);
1714 
1715   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1716                                   const Formula &Base, unsigned Depth,
1717                                   size_t Idx, bool IsScaledReg = false);
1718   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1719   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1720                                    const Formula &Base, size_t Idx,
1721                                    bool IsScaledReg = false);
1722   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1723   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1724                                    const Formula &Base,
1725                                    const SmallVectorImpl<int64_t> &Worklist,
1726                                    size_t Idx, bool IsScaledReg = false);
1727   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1728   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1729   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1730   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1731   void GenerateCrossUseConstantOffsets();
1732   void GenerateAllReuseFormulae();
1733 
1734   void FilterOutUndesirableDedicatedRegisters();
1735 
1736   size_t EstimateSearchSpaceComplexity() const;
1737   void NarrowSearchSpaceByDetectingSupersets();
1738   void NarrowSearchSpaceByCollapsingUnrolledCode();
1739   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1740   void NarrowSearchSpaceByPickingWinnerRegs();
1741   void NarrowSearchSpaceUsingHeuristics();
1742 
1743   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1744                     Cost &SolutionCost,
1745                     SmallVectorImpl<const Formula *> &Workspace,
1746                     const Cost &CurCost,
1747                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1748                     DenseSet<const SCEV *> &VisitedRegs) const;
1749   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1750 
1751   BasicBlock::iterator
1752     HoistInsertPosition(BasicBlock::iterator IP,
1753                         const SmallVectorImpl<Instruction *> &Inputs) const;
1754   BasicBlock::iterator
1755     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1756                                   const LSRFixup &LF,
1757                                   const LSRUse &LU,
1758                                   SCEVExpander &Rewriter) const;
1759 
1760   Value *Expand(const LSRUse &LU, const LSRFixup &LF,
1761                 const Formula &F,
1762                 BasicBlock::iterator IP,
1763                 SCEVExpander &Rewriter,
1764                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1765   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1766                      const Formula &F,
1767                      SCEVExpander &Rewriter,
1768                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1769   void Rewrite(const LSRUse &LU, const LSRFixup &LF,
1770                const Formula &F,
1771                SCEVExpander &Rewriter,
1772                SmallVectorImpl<WeakVH> &DeadInsts) const;
1773   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1774 
1775 public:
1776   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1777               LoopInfo &LI, const TargetTransformInfo &TTI);
1778 
1779   bool getChanged() const { return Changed; }
1780 
1781   void print_factors_and_types(raw_ostream &OS) const;
1782   void print_fixups(raw_ostream &OS) const;
1783   void print_uses(raw_ostream &OS) const;
1784   void print(raw_ostream &OS) const;
1785   void dump() const;
1786 };
1787 
1788 }
1789 
1790 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1791 /// the cast operation.
1792 void LSRInstance::OptimizeShadowIV() {
1793   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1794   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1795     return;
1796 
1797   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1798        UI != E; /* empty */) {
1799     IVUsers::const_iterator CandidateUI = UI;
1800     ++UI;
1801     Instruction *ShadowUse = CandidateUI->getUser();
1802     Type *DestTy = nullptr;
1803     bool IsSigned = false;
1804 
1805     /* If shadow use is a int->float cast then insert a second IV
1806        to eliminate this cast.
1807 
1808          for (unsigned i = 0; i < n; ++i)
1809            foo((double)i);
1810 
1811        is transformed into
1812 
1813          double d = 0.0;
1814          for (unsigned i = 0; i < n; ++i, ++d)
1815            foo(d);
1816     */
1817     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1818       IsSigned = false;
1819       DestTy = UCast->getDestTy();
1820     }
1821     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1822       IsSigned = true;
1823       DestTy = SCast->getDestTy();
1824     }
1825     if (!DestTy) continue;
1826 
1827     // If target does not support DestTy natively then do not apply
1828     // this transformation.
1829     if (!TTI.isTypeLegal(DestTy)) continue;
1830 
1831     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1832     if (!PH) continue;
1833     if (PH->getNumIncomingValues() != 2) continue;
1834 
1835     Type *SrcTy = PH->getType();
1836     int Mantissa = DestTy->getFPMantissaWidth();
1837     if (Mantissa == -1) continue;
1838     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1839       continue;
1840 
1841     unsigned Entry, Latch;
1842     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1843       Entry = 0;
1844       Latch = 1;
1845     } else {
1846       Entry = 1;
1847       Latch = 0;
1848     }
1849 
1850     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1851     if (!Init) continue;
1852     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1853                                         (double)Init->getSExtValue() :
1854                                         (double)Init->getZExtValue());
1855 
1856     BinaryOperator *Incr =
1857       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1858     if (!Incr) continue;
1859     if (Incr->getOpcode() != Instruction::Add
1860         && Incr->getOpcode() != Instruction::Sub)
1861       continue;
1862 
1863     /* Initialize new IV, double d = 0.0 in above example. */
1864     ConstantInt *C = nullptr;
1865     if (Incr->getOperand(0) == PH)
1866       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1867     else if (Incr->getOperand(1) == PH)
1868       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1869     else
1870       continue;
1871 
1872     if (!C) continue;
1873 
1874     // Ignore negative constants, as the code below doesn't handle them
1875     // correctly. TODO: Remove this restriction.
1876     if (!C->getValue().isStrictlyPositive()) continue;
1877 
1878     /* Add new PHINode. */
1879     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1880 
1881     /* create new increment. '++d' in above example. */
1882     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1883     BinaryOperator *NewIncr =
1884       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1885                                Instruction::FAdd : Instruction::FSub,
1886                              NewPH, CFP, "IV.S.next.", Incr);
1887 
1888     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1889     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1890 
1891     /* Remove cast operation */
1892     ShadowUse->replaceAllUsesWith(NewPH);
1893     ShadowUse->eraseFromParent();
1894     Changed = true;
1895     break;
1896   }
1897 }
1898 
1899 /// If Cond has an operand that is an expression of an IV, set the IV user and
1900 /// stride information and return true, otherwise return false.
1901 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1902   for (IVStrideUse &U : IU)
1903     if (U.getUser() == Cond) {
1904       // NOTE: we could handle setcc instructions with multiple uses here, but
1905       // InstCombine does it as well for simple uses, it's not clear that it
1906       // occurs enough in real life to handle.
1907       CondUse = &U;
1908       return true;
1909     }
1910   return false;
1911 }
1912 
1913 /// Rewrite the loop's terminating condition if it uses a max computation.
1914 ///
1915 /// This is a narrow solution to a specific, but acute, problem. For loops
1916 /// like this:
1917 ///
1918 ///   i = 0;
1919 ///   do {
1920 ///     p[i] = 0.0;
1921 ///   } while (++i < n);
1922 ///
1923 /// the trip count isn't just 'n', because 'n' might not be positive. And
1924 /// unfortunately this can come up even for loops where the user didn't use
1925 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1926 /// will commonly be lowered like this:
1927 //
1928 ///   if (n > 0) {
1929 ///     i = 0;
1930 ///     do {
1931 ///       p[i] = 0.0;
1932 ///     } while (++i < n);
1933 ///   }
1934 ///
1935 /// and then it's possible for subsequent optimization to obscure the if
1936 /// test in such a way that indvars can't find it.
1937 ///
1938 /// When indvars can't find the if test in loops like this, it creates a
1939 /// max expression, which allows it to give the loop a canonical
1940 /// induction variable:
1941 ///
1942 ///   i = 0;
1943 ///   max = n < 1 ? 1 : n;
1944 ///   do {
1945 ///     p[i] = 0.0;
1946 ///   } while (++i != max);
1947 ///
1948 /// Canonical induction variables are necessary because the loop passes
1949 /// are designed around them. The most obvious example of this is the
1950 /// LoopInfo analysis, which doesn't remember trip count values. It
1951 /// expects to be able to rediscover the trip count each time it is
1952 /// needed, and it does this using a simple analysis that only succeeds if
1953 /// the loop has a canonical induction variable.
1954 ///
1955 /// However, when it comes time to generate code, the maximum operation
1956 /// can be quite costly, especially if it's inside of an outer loop.
1957 ///
1958 /// This function solves this problem by detecting this type of loop and
1959 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1960 /// the instructions for the maximum computation.
1961 ///
1962 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1963   // Check that the loop matches the pattern we're looking for.
1964   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1965       Cond->getPredicate() != CmpInst::ICMP_NE)
1966     return Cond;
1967 
1968   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1969   if (!Sel || !Sel->hasOneUse()) return Cond;
1970 
1971   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1972   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1973     return Cond;
1974   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1975 
1976   // Add one to the backedge-taken count to get the trip count.
1977   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1978   if (IterationCount != SE.getSCEV(Sel)) return Cond;
1979 
1980   // Check for a max calculation that matches the pattern. There's no check
1981   // for ICMP_ULE here because the comparison would be with zero, which
1982   // isn't interesting.
1983   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1984   const SCEVNAryExpr *Max = nullptr;
1985   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1986     Pred = ICmpInst::ICMP_SLE;
1987     Max = S;
1988   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1989     Pred = ICmpInst::ICMP_SLT;
1990     Max = S;
1991   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1992     Pred = ICmpInst::ICMP_ULT;
1993     Max = U;
1994   } else {
1995     // No match; bail.
1996     return Cond;
1997   }
1998 
1999   // To handle a max with more than two operands, this optimization would
2000   // require additional checking and setup.
2001   if (Max->getNumOperands() != 2)
2002     return Cond;
2003 
2004   const SCEV *MaxLHS = Max->getOperand(0);
2005   const SCEV *MaxRHS = Max->getOperand(1);
2006 
2007   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2008   // for a comparison with 1. For <= and >=, a comparison with zero.
2009   if (!MaxLHS ||
2010       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2011     return Cond;
2012 
2013   // Check the relevant induction variable for conformance to
2014   // the pattern.
2015   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2016   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2017   if (!AR || !AR->isAffine() ||
2018       AR->getStart() != One ||
2019       AR->getStepRecurrence(SE) != One)
2020     return Cond;
2021 
2022   assert(AR->getLoop() == L &&
2023          "Loop condition operand is an addrec in a different loop!");
2024 
2025   // Check the right operand of the select, and remember it, as it will
2026   // be used in the new comparison instruction.
2027   Value *NewRHS = nullptr;
2028   if (ICmpInst::isTrueWhenEqual(Pred)) {
2029     // Look for n+1, and grab n.
2030     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2031       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2032          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2033            NewRHS = BO->getOperand(0);
2034     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2035       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2036         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2037           NewRHS = BO->getOperand(0);
2038     if (!NewRHS)
2039       return Cond;
2040   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2041     NewRHS = Sel->getOperand(1);
2042   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2043     NewRHS = Sel->getOperand(2);
2044   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2045     NewRHS = SU->getValue();
2046   else
2047     // Max doesn't match expected pattern.
2048     return Cond;
2049 
2050   // Determine the new comparison opcode. It may be signed or unsigned,
2051   // and the original comparison may be either equality or inequality.
2052   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2053     Pred = CmpInst::getInversePredicate(Pred);
2054 
2055   // Ok, everything looks ok to change the condition into an SLT or SGE and
2056   // delete the max calculation.
2057   ICmpInst *NewCond =
2058     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2059 
2060   // Delete the max calculation instructions.
2061   Cond->replaceAllUsesWith(NewCond);
2062   CondUse->setUser(NewCond);
2063   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2064   Cond->eraseFromParent();
2065   Sel->eraseFromParent();
2066   if (Cmp->use_empty())
2067     Cmp->eraseFromParent();
2068   return NewCond;
2069 }
2070 
2071 /// Change loop terminating condition to use the postinc iv when possible.
2072 void
2073 LSRInstance::OptimizeLoopTermCond() {
2074   SmallPtrSet<Instruction *, 4> PostIncs;
2075 
2076   // We need a different set of heuristics for rotated and non-rotated loops.
2077   // If a loop is rotated then the latch is also the backedge, so inserting
2078   // post-inc expressions just before the latch is ideal. To reduce live ranges
2079   // it also makes sense to rewrite terminating conditions to use post-inc
2080   // expressions.
2081   //
2082   // If the loop is not rotated then the latch is not a backedge; the latch
2083   // check is done in the loop head. Adding post-inc expressions before the
2084   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2085   // in the loop body. In this case we do *not* want to use post-inc expressions
2086   // in the latch check, and we want to insert post-inc expressions before
2087   // the backedge.
2088   BasicBlock *LatchBlock = L->getLoopLatch();
2089   SmallVector<BasicBlock*, 8> ExitingBlocks;
2090   L->getExitingBlocks(ExitingBlocks);
2091   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2092         return LatchBlock != BB;
2093       })) {
2094     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2095     IVIncInsertPos = LatchBlock->getTerminator();
2096     return;
2097   }
2098 
2099   // Otherwise treat this as a rotated loop.
2100   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2101 
2102     // Get the terminating condition for the loop if possible.  If we
2103     // can, we want to change it to use a post-incremented version of its
2104     // induction variable, to allow coalescing the live ranges for the IV into
2105     // one register value.
2106 
2107     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2108     if (!TermBr)
2109       continue;
2110     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2111     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2112       continue;
2113 
2114     // Search IVUsesByStride to find Cond's IVUse if there is one.
2115     IVStrideUse *CondUse = nullptr;
2116     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2117     if (!FindIVUserForCond(Cond, CondUse))
2118       continue;
2119 
2120     // If the trip count is computed in terms of a max (due to ScalarEvolution
2121     // being unable to find a sufficient guard, for example), change the loop
2122     // comparison to use SLT or ULT instead of NE.
2123     // One consequence of doing this now is that it disrupts the count-down
2124     // optimization. That's not always a bad thing though, because in such
2125     // cases it may still be worthwhile to avoid a max.
2126     Cond = OptimizeMax(Cond, CondUse);
2127 
2128     // If this exiting block dominates the latch block, it may also use
2129     // the post-inc value if it won't be shared with other uses.
2130     // Check for dominance.
2131     if (!DT.dominates(ExitingBlock, LatchBlock))
2132       continue;
2133 
2134     // Conservatively avoid trying to use the post-inc value in non-latch
2135     // exits if there may be pre-inc users in intervening blocks.
2136     if (LatchBlock != ExitingBlock)
2137       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2138         // Test if the use is reachable from the exiting block. This dominator
2139         // query is a conservative approximation of reachability.
2140         if (&*UI != CondUse &&
2141             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2142           // Conservatively assume there may be reuse if the quotient of their
2143           // strides could be a legal scale.
2144           const SCEV *A = IU.getStride(*CondUse, L);
2145           const SCEV *B = IU.getStride(*UI, L);
2146           if (!A || !B) continue;
2147           if (SE.getTypeSizeInBits(A->getType()) !=
2148               SE.getTypeSizeInBits(B->getType())) {
2149             if (SE.getTypeSizeInBits(A->getType()) >
2150                 SE.getTypeSizeInBits(B->getType()))
2151               B = SE.getSignExtendExpr(B, A->getType());
2152             else
2153               A = SE.getSignExtendExpr(A, B->getType());
2154           }
2155           if (const SCEVConstant *D =
2156                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2157             const ConstantInt *C = D->getValue();
2158             // Stride of one or negative one can have reuse with non-addresses.
2159             if (C->isOne() || C->isAllOnesValue())
2160               goto decline_post_inc;
2161             // Avoid weird situations.
2162             if (C->getValue().getMinSignedBits() >= 64 ||
2163                 C->getValue().isMinSignedValue())
2164               goto decline_post_inc;
2165             // Check for possible scaled-address reuse.
2166             MemAccessTy AccessTy = getAccessType(UI->getUser());
2167             int64_t Scale = C->getSExtValue();
2168             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2169                                           /*BaseOffset=*/0,
2170                                           /*HasBaseReg=*/false, Scale,
2171                                           AccessTy.AddrSpace))
2172               goto decline_post_inc;
2173             Scale = -Scale;
2174             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2175                                           /*BaseOffset=*/0,
2176                                           /*HasBaseReg=*/false, Scale,
2177                                           AccessTy.AddrSpace))
2178               goto decline_post_inc;
2179           }
2180         }
2181 
2182     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2183                  << *Cond << '\n');
2184 
2185     // It's possible for the setcc instruction to be anywhere in the loop, and
2186     // possible for it to have multiple users.  If it is not immediately before
2187     // the exiting block branch, move it.
2188     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2189       if (Cond->hasOneUse()) {
2190         Cond->moveBefore(TermBr);
2191       } else {
2192         // Clone the terminating condition and insert into the loopend.
2193         ICmpInst *OldCond = Cond;
2194         Cond = cast<ICmpInst>(Cond->clone());
2195         Cond->setName(L->getHeader()->getName() + ".termcond");
2196         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2197 
2198         // Clone the IVUse, as the old use still exists!
2199         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2200         TermBr->replaceUsesOfWith(OldCond, Cond);
2201       }
2202     }
2203 
2204     // If we get to here, we know that we can transform the setcc instruction to
2205     // use the post-incremented version of the IV, allowing us to coalesce the
2206     // live ranges for the IV correctly.
2207     CondUse->transformToPostInc(L);
2208     Changed = true;
2209 
2210     PostIncs.insert(Cond);
2211   decline_post_inc:;
2212   }
2213 
2214   // Determine an insertion point for the loop induction variable increment. It
2215   // must dominate all the post-inc comparisons we just set up, and it must
2216   // dominate the loop latch edge.
2217   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2218   for (Instruction *Inst : PostIncs) {
2219     BasicBlock *BB =
2220       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2221                                     Inst->getParent());
2222     if (BB == Inst->getParent())
2223       IVIncInsertPos = Inst;
2224     else if (BB != IVIncInsertPos->getParent())
2225       IVIncInsertPos = BB->getTerminator();
2226   }
2227 }
2228 
2229 /// Determine if the given use can accommodate a fixup at the given offset and
2230 /// other details. If so, update the use and return true.
2231 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2232                                      bool HasBaseReg, LSRUse::KindType Kind,
2233                                      MemAccessTy AccessTy) {
2234   int64_t NewMinOffset = LU.MinOffset;
2235   int64_t NewMaxOffset = LU.MaxOffset;
2236   MemAccessTy NewAccessTy = AccessTy;
2237 
2238   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2239   // something conservative, however this can pessimize in the case that one of
2240   // the uses will have all its uses outside the loop, for example.
2241   if (LU.Kind != Kind)
2242     return false;
2243 
2244   // Check for a mismatched access type, and fall back conservatively as needed.
2245   // TODO: Be less conservative when the type is similar and can use the same
2246   // addressing modes.
2247   if (Kind == LSRUse::Address) {
2248     if (AccessTy != LU.AccessTy)
2249       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2250   }
2251 
2252   // Conservatively assume HasBaseReg is true for now.
2253   if (NewOffset < LU.MinOffset) {
2254     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2255                           LU.MaxOffset - NewOffset, HasBaseReg))
2256       return false;
2257     NewMinOffset = NewOffset;
2258   } else if (NewOffset > LU.MaxOffset) {
2259     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2260                           NewOffset - LU.MinOffset, HasBaseReg))
2261       return false;
2262     NewMaxOffset = NewOffset;
2263   }
2264 
2265   // Update the use.
2266   LU.MinOffset = NewMinOffset;
2267   LU.MaxOffset = NewMaxOffset;
2268   LU.AccessTy = NewAccessTy;
2269   return true;
2270 }
2271 
2272 /// Return an LSRUse index and an offset value for a fixup which needs the given
2273 /// expression, with the given kind and optional access type.  Either reuse an
2274 /// existing use or create a new one, as needed.
2275 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2276                                                LSRUse::KindType Kind,
2277                                                MemAccessTy AccessTy) {
2278   const SCEV *Copy = Expr;
2279   int64_t Offset = ExtractImmediate(Expr, SE);
2280 
2281   // Basic uses can't accept any offset, for example.
2282   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2283                         Offset, /*HasBaseReg=*/ true)) {
2284     Expr = Copy;
2285     Offset = 0;
2286   }
2287 
2288   std::pair<UseMapTy::iterator, bool> P =
2289     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2290   if (!P.second) {
2291     // A use already existed with this base.
2292     size_t LUIdx = P.first->second;
2293     LSRUse &LU = Uses[LUIdx];
2294     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2295       // Reuse this use.
2296       return std::make_pair(LUIdx, Offset);
2297   }
2298 
2299   // Create a new use.
2300   size_t LUIdx = Uses.size();
2301   P.first->second = LUIdx;
2302   Uses.push_back(LSRUse(Kind, AccessTy));
2303   LSRUse &LU = Uses[LUIdx];
2304 
2305   LU.MinOffset = Offset;
2306   LU.MaxOffset = Offset;
2307   return std::make_pair(LUIdx, Offset);
2308 }
2309 
2310 /// Delete the given use from the Uses list.
2311 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2312   if (&LU != &Uses.back())
2313     std::swap(LU, Uses.back());
2314   Uses.pop_back();
2315 
2316   // Update RegUses.
2317   RegUses.swapAndDropUse(LUIdx, Uses.size());
2318 }
2319 
2320 /// Look for a use distinct from OrigLU which is has a formula that has the same
2321 /// registers as the given formula.
2322 LSRUse *
2323 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2324                                        const LSRUse &OrigLU) {
2325   // Search all uses for the formula. This could be more clever.
2326   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2327     LSRUse &LU = Uses[LUIdx];
2328     // Check whether this use is close enough to OrigLU, to see whether it's
2329     // worthwhile looking through its formulae.
2330     // Ignore ICmpZero uses because they may contain formulae generated by
2331     // GenerateICmpZeroScales, in which case adding fixup offsets may
2332     // be invalid.
2333     if (&LU != &OrigLU &&
2334         LU.Kind != LSRUse::ICmpZero &&
2335         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2336         LU.WidestFixupType == OrigLU.WidestFixupType &&
2337         LU.HasFormulaWithSameRegs(OrigF)) {
2338       // Scan through this use's formulae.
2339       for (const Formula &F : LU.Formulae) {
2340         // Check to see if this formula has the same registers and symbols
2341         // as OrigF.
2342         if (F.BaseRegs == OrigF.BaseRegs &&
2343             F.ScaledReg == OrigF.ScaledReg &&
2344             F.BaseGV == OrigF.BaseGV &&
2345             F.Scale == OrigF.Scale &&
2346             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2347           if (F.BaseOffset == 0)
2348             return &LU;
2349           // This is the formula where all the registers and symbols matched;
2350           // there aren't going to be any others. Since we declined it, we
2351           // can skip the rest of the formulae and proceed to the next LSRUse.
2352           break;
2353         }
2354       }
2355     }
2356   }
2357 
2358   // Nothing looked good.
2359   return nullptr;
2360 }
2361 
2362 void LSRInstance::CollectInterestingTypesAndFactors() {
2363   SmallSetVector<const SCEV *, 4> Strides;
2364 
2365   // Collect interesting types and strides.
2366   SmallVector<const SCEV *, 4> Worklist;
2367   for (const IVStrideUse &U : IU) {
2368     const SCEV *Expr = IU.getExpr(U);
2369 
2370     // Collect interesting types.
2371     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2372 
2373     // Add strides for mentioned loops.
2374     Worklist.push_back(Expr);
2375     do {
2376       const SCEV *S = Worklist.pop_back_val();
2377       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2378         if (AR->getLoop() == L)
2379           Strides.insert(AR->getStepRecurrence(SE));
2380         Worklist.push_back(AR->getStart());
2381       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2382         Worklist.append(Add->op_begin(), Add->op_end());
2383       }
2384     } while (!Worklist.empty());
2385   }
2386 
2387   // Compute interesting factors from the set of interesting strides.
2388   for (SmallSetVector<const SCEV *, 4>::const_iterator
2389        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2390     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2391          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2392       const SCEV *OldStride = *I;
2393       const SCEV *NewStride = *NewStrideIter;
2394 
2395       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2396           SE.getTypeSizeInBits(NewStride->getType())) {
2397         if (SE.getTypeSizeInBits(OldStride->getType()) >
2398             SE.getTypeSizeInBits(NewStride->getType()))
2399           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2400         else
2401           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2402       }
2403       if (const SCEVConstant *Factor =
2404             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2405                                                         SE, true))) {
2406         if (Factor->getAPInt().getMinSignedBits() <= 64)
2407           Factors.insert(Factor->getAPInt().getSExtValue());
2408       } else if (const SCEVConstant *Factor =
2409                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2410                                                                NewStride,
2411                                                                SE, true))) {
2412         if (Factor->getAPInt().getMinSignedBits() <= 64)
2413           Factors.insert(Factor->getAPInt().getSExtValue());
2414       }
2415     }
2416 
2417   // If all uses use the same type, don't bother looking for truncation-based
2418   // reuse.
2419   if (Types.size() == 1)
2420     Types.clear();
2421 
2422   DEBUG(print_factors_and_types(dbgs()));
2423 }
2424 
2425 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2426 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2427 /// IVStrideUses, we could partially skip this.
2428 static User::op_iterator
2429 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2430               Loop *L, ScalarEvolution &SE) {
2431   for(; OI != OE; ++OI) {
2432     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2433       if (!SE.isSCEVable(Oper->getType()))
2434         continue;
2435 
2436       if (const SCEVAddRecExpr *AR =
2437           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2438         if (AR->getLoop() == L)
2439           break;
2440       }
2441     }
2442   }
2443   return OI;
2444 }
2445 
2446 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2447 /// a convenient helper.
2448 static Value *getWideOperand(Value *Oper) {
2449   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2450     return Trunc->getOperand(0);
2451   return Oper;
2452 }
2453 
2454 /// Return true if we allow an IV chain to include both types.
2455 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2456   Type *LType = LVal->getType();
2457   Type *RType = RVal->getType();
2458   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2459 }
2460 
2461 /// Return an approximation of this SCEV expression's "base", or NULL for any
2462 /// constant. Returning the expression itself is conservative. Returning a
2463 /// deeper subexpression is more precise and valid as long as it isn't less
2464 /// complex than another subexpression. For expressions involving multiple
2465 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2466 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2467 /// IVInc==b-a.
2468 ///
2469 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2470 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2471 static const SCEV *getExprBase(const SCEV *S) {
2472   switch (S->getSCEVType()) {
2473   default: // uncluding scUnknown.
2474     return S;
2475   case scConstant:
2476     return nullptr;
2477   case scTruncate:
2478     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2479   case scZeroExtend:
2480     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2481   case scSignExtend:
2482     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2483   case scAddExpr: {
2484     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2485     // there's nothing more complex.
2486     // FIXME: not sure if we want to recognize negation.
2487     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2488     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2489            E(Add->op_begin()); I != E; ++I) {
2490       const SCEV *SubExpr = *I;
2491       if (SubExpr->getSCEVType() == scAddExpr)
2492         return getExprBase(SubExpr);
2493 
2494       if (SubExpr->getSCEVType() != scMulExpr)
2495         return SubExpr;
2496     }
2497     return S; // all operands are scaled, be conservative.
2498   }
2499   case scAddRecExpr:
2500     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2501   }
2502 }
2503 
2504 /// Return true if the chain increment is profitable to expand into a loop
2505 /// invariant value, which may require its own register. A profitable chain
2506 /// increment will be an offset relative to the same base. We allow such offsets
2507 /// to potentially be used as chain increment as long as it's not obviously
2508 /// expensive to expand using real instructions.
2509 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2510                                     const SCEV *IncExpr,
2511                                     ScalarEvolution &SE) {
2512   // Aggressively form chains when -stress-ivchain.
2513   if (StressIVChain)
2514     return true;
2515 
2516   // Do not replace a constant offset from IV head with a nonconstant IV
2517   // increment.
2518   if (!isa<SCEVConstant>(IncExpr)) {
2519     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2520     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2521       return 0;
2522   }
2523 
2524   SmallPtrSet<const SCEV*, 8> Processed;
2525   return !isHighCostExpansion(IncExpr, Processed, SE);
2526 }
2527 
2528 /// Return true if the number of registers needed for the chain is estimated to
2529 /// be less than the number required for the individual IV users. First prohibit
2530 /// any IV users that keep the IV live across increments (the Users set should
2531 /// be empty). Next count the number and type of increments in the chain.
2532 ///
2533 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2534 /// effectively use postinc addressing modes. Only consider it profitable it the
2535 /// increments can be computed in fewer registers when chained.
2536 ///
2537 /// TODO: Consider IVInc free if it's already used in another chains.
2538 static bool
2539 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2540                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2541   if (StressIVChain)
2542     return true;
2543 
2544   if (!Chain.hasIncs())
2545     return false;
2546 
2547   if (!Users.empty()) {
2548     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2549           for (Instruction *Inst : Users) {
2550             dbgs() << "  " << *Inst << "\n";
2551           });
2552     return false;
2553   }
2554   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2555 
2556   // The chain itself may require a register, so intialize cost to 1.
2557   int cost = 1;
2558 
2559   // A complete chain likely eliminates the need for keeping the original IV in
2560   // a register. LSR does not currently know how to form a complete chain unless
2561   // the header phi already exists.
2562   if (isa<PHINode>(Chain.tailUserInst())
2563       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2564     --cost;
2565   }
2566   const SCEV *LastIncExpr = nullptr;
2567   unsigned NumConstIncrements = 0;
2568   unsigned NumVarIncrements = 0;
2569   unsigned NumReusedIncrements = 0;
2570   for (const IVInc &Inc : Chain) {
2571     if (Inc.IncExpr->isZero())
2572       continue;
2573 
2574     // Incrementing by zero or some constant is neutral. We assume constants can
2575     // be folded into an addressing mode or an add's immediate operand.
2576     if (isa<SCEVConstant>(Inc.IncExpr)) {
2577       ++NumConstIncrements;
2578       continue;
2579     }
2580 
2581     if (Inc.IncExpr == LastIncExpr)
2582       ++NumReusedIncrements;
2583     else
2584       ++NumVarIncrements;
2585 
2586     LastIncExpr = Inc.IncExpr;
2587   }
2588   // An IV chain with a single increment is handled by LSR's postinc
2589   // uses. However, a chain with multiple increments requires keeping the IV's
2590   // value live longer than it needs to be if chained.
2591   if (NumConstIncrements > 1)
2592     --cost;
2593 
2594   // Materializing increment expressions in the preheader that didn't exist in
2595   // the original code may cost a register. For example, sign-extended array
2596   // indices can produce ridiculous increments like this:
2597   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2598   cost += NumVarIncrements;
2599 
2600   // Reusing variable increments likely saves a register to hold the multiple of
2601   // the stride.
2602   cost -= NumReusedIncrements;
2603 
2604   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2605                << "\n");
2606 
2607   return cost < 0;
2608 }
2609 
2610 /// Add this IV user to an existing chain or make it the head of a new chain.
2611 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2612                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2613   // When IVs are used as types of varying widths, they are generally converted
2614   // to a wider type with some uses remaining narrow under a (free) trunc.
2615   Value *const NextIV = getWideOperand(IVOper);
2616   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2617   const SCEV *const OperExprBase = getExprBase(OperExpr);
2618 
2619   // Visit all existing chains. Check if its IVOper can be computed as a
2620   // profitable loop invariant increment from the last link in the Chain.
2621   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2622   const SCEV *LastIncExpr = nullptr;
2623   for (; ChainIdx < NChains; ++ChainIdx) {
2624     IVChain &Chain = IVChainVec[ChainIdx];
2625 
2626     // Prune the solution space aggressively by checking that both IV operands
2627     // are expressions that operate on the same unscaled SCEVUnknown. This
2628     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2629     // first avoids creating extra SCEV expressions.
2630     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2631       continue;
2632 
2633     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2634     if (!isCompatibleIVType(PrevIV, NextIV))
2635       continue;
2636 
2637     // A phi node terminates a chain.
2638     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2639       continue;
2640 
2641     // The increment must be loop-invariant so it can be kept in a register.
2642     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2643     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2644     if (!SE.isLoopInvariant(IncExpr, L))
2645       continue;
2646 
2647     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2648       LastIncExpr = IncExpr;
2649       break;
2650     }
2651   }
2652   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2653   // bother for phi nodes, because they must be last in the chain.
2654   if (ChainIdx == NChains) {
2655     if (isa<PHINode>(UserInst))
2656       return;
2657     if (NChains >= MaxChains && !StressIVChain) {
2658       DEBUG(dbgs() << "IV Chain Limit\n");
2659       return;
2660     }
2661     LastIncExpr = OperExpr;
2662     // IVUsers may have skipped over sign/zero extensions. We don't currently
2663     // attempt to form chains involving extensions unless they can be hoisted
2664     // into this loop's AddRec.
2665     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2666       return;
2667     ++NChains;
2668     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2669                                  OperExprBase));
2670     ChainUsersVec.resize(NChains);
2671     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2672                  << ") IV=" << *LastIncExpr << "\n");
2673   } else {
2674     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2675                  << ") IV+" << *LastIncExpr << "\n");
2676     // Add this IV user to the end of the chain.
2677     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2678   }
2679   IVChain &Chain = IVChainVec[ChainIdx];
2680 
2681   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2682   // This chain's NearUsers become FarUsers.
2683   if (!LastIncExpr->isZero()) {
2684     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2685                                             NearUsers.end());
2686     NearUsers.clear();
2687   }
2688 
2689   // All other uses of IVOperand become near uses of the chain.
2690   // We currently ignore intermediate values within SCEV expressions, assuming
2691   // they will eventually be used be the current chain, or can be computed
2692   // from one of the chain increments. To be more precise we could
2693   // transitively follow its user and only add leaf IV users to the set.
2694   for (User *U : IVOper->users()) {
2695     Instruction *OtherUse = dyn_cast<Instruction>(U);
2696     if (!OtherUse)
2697       continue;
2698     // Uses in the chain will no longer be uses if the chain is formed.
2699     // Include the head of the chain in this iteration (not Chain.begin()).
2700     IVChain::const_iterator IncIter = Chain.Incs.begin();
2701     IVChain::const_iterator IncEnd = Chain.Incs.end();
2702     for( ; IncIter != IncEnd; ++IncIter) {
2703       if (IncIter->UserInst == OtherUse)
2704         break;
2705     }
2706     if (IncIter != IncEnd)
2707       continue;
2708 
2709     if (SE.isSCEVable(OtherUse->getType())
2710         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2711         && IU.isIVUserOrOperand(OtherUse)) {
2712       continue;
2713     }
2714     NearUsers.insert(OtherUse);
2715   }
2716 
2717   // Since this user is part of the chain, it's no longer considered a use
2718   // of the chain.
2719   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2720 }
2721 
2722 /// Populate the vector of Chains.
2723 ///
2724 /// This decreases ILP at the architecture level. Targets with ample registers,
2725 /// multiple memory ports, and no register renaming probably don't want
2726 /// this. However, such targets should probably disable LSR altogether.
2727 ///
2728 /// The job of LSR is to make a reasonable choice of induction variables across
2729 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2730 /// ILP *within the loop* if the target wants it.
2731 ///
2732 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2733 /// will not reorder memory operations, it will recognize this as a chain, but
2734 /// will generate redundant IV increments. Ideally this would be corrected later
2735 /// by a smart scheduler:
2736 ///        = A[i]
2737 ///        = A[i+x]
2738 /// A[i]   =
2739 /// A[i+x] =
2740 ///
2741 /// TODO: Walk the entire domtree within this loop, not just the path to the
2742 /// loop latch. This will discover chains on side paths, but requires
2743 /// maintaining multiple copies of the Chains state.
2744 void LSRInstance::CollectChains() {
2745   DEBUG(dbgs() << "Collecting IV Chains.\n");
2746   SmallVector<ChainUsers, 8> ChainUsersVec;
2747 
2748   SmallVector<BasicBlock *,8> LatchPath;
2749   BasicBlock *LoopHeader = L->getHeader();
2750   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2751        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2752     LatchPath.push_back(Rung->getBlock());
2753   }
2754   LatchPath.push_back(LoopHeader);
2755 
2756   // Walk the instruction stream from the loop header to the loop latch.
2757   for (BasicBlock *BB : reverse(LatchPath)) {
2758     for (Instruction &I : *BB) {
2759       // Skip instructions that weren't seen by IVUsers analysis.
2760       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2761         continue;
2762 
2763       // Ignore users that are part of a SCEV expression. This way we only
2764       // consider leaf IV Users. This effectively rediscovers a portion of
2765       // IVUsers analysis but in program order this time.
2766       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2767         continue;
2768 
2769       // Remove this instruction from any NearUsers set it may be in.
2770       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2771            ChainIdx < NChains; ++ChainIdx) {
2772         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2773       }
2774       // Search for operands that can be chained.
2775       SmallPtrSet<Instruction*, 4> UniqueOperands;
2776       User::op_iterator IVOpEnd = I.op_end();
2777       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2778       while (IVOpIter != IVOpEnd) {
2779         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2780         if (UniqueOperands.insert(IVOpInst).second)
2781           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2782         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2783       }
2784     } // Continue walking down the instructions.
2785   } // Continue walking down the domtree.
2786   // Visit phi backedges to determine if the chain can generate the IV postinc.
2787   for (BasicBlock::iterator I = L->getHeader()->begin();
2788        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2789     if (!SE.isSCEVable(PN->getType()))
2790       continue;
2791 
2792     Instruction *IncV =
2793       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2794     if (IncV)
2795       ChainInstruction(PN, IncV, ChainUsersVec);
2796   }
2797   // Remove any unprofitable chains.
2798   unsigned ChainIdx = 0;
2799   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2800        UsersIdx < NChains; ++UsersIdx) {
2801     if (!isProfitableChain(IVChainVec[UsersIdx],
2802                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2803       continue;
2804     // Preserve the chain at UsesIdx.
2805     if (ChainIdx != UsersIdx)
2806       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2807     FinalizeChain(IVChainVec[ChainIdx]);
2808     ++ChainIdx;
2809   }
2810   IVChainVec.resize(ChainIdx);
2811 }
2812 
2813 void LSRInstance::FinalizeChain(IVChain &Chain) {
2814   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2815   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2816 
2817   for (const IVInc &Inc : Chain) {
2818     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2819     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2820     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2821     IVIncSet.insert(UseI);
2822   }
2823 }
2824 
2825 /// Return true if the IVInc can be folded into an addressing mode.
2826 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2827                              Value *Operand, const TargetTransformInfo &TTI) {
2828   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2829   if (!IncConst || !isAddressUse(UserInst, Operand))
2830     return false;
2831 
2832   if (IncConst->getAPInt().getMinSignedBits() > 64)
2833     return false;
2834 
2835   MemAccessTy AccessTy = getAccessType(UserInst);
2836   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2837   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2838                         IncOffset, /*HaseBaseReg=*/false))
2839     return false;
2840 
2841   return true;
2842 }
2843 
2844 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2845 /// user's operand from the previous IV user's operand.
2846 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2847                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2848   // Find the new IVOperand for the head of the chain. It may have been replaced
2849   // by LSR.
2850   const IVInc &Head = Chain.Incs[0];
2851   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2852   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2853   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2854                                              IVOpEnd, L, SE);
2855   Value *IVSrc = nullptr;
2856   while (IVOpIter != IVOpEnd) {
2857     IVSrc = getWideOperand(*IVOpIter);
2858 
2859     // If this operand computes the expression that the chain needs, we may use
2860     // it. (Check this after setting IVSrc which is used below.)
2861     //
2862     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2863     // narrow for the chain, so we can no longer use it. We do allow using a
2864     // wider phi, assuming the LSR checked for free truncation. In that case we
2865     // should already have a truncate on this operand such that
2866     // getSCEV(IVSrc) == IncExpr.
2867     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2868         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2869       break;
2870     }
2871     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2872   }
2873   if (IVOpIter == IVOpEnd) {
2874     // Gracefully give up on this chain.
2875     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2876     return;
2877   }
2878 
2879   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2880   Type *IVTy = IVSrc->getType();
2881   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2882   const SCEV *LeftOverExpr = nullptr;
2883   for (const IVInc &Inc : Chain) {
2884     Instruction *InsertPt = Inc.UserInst;
2885     if (isa<PHINode>(InsertPt))
2886       InsertPt = L->getLoopLatch()->getTerminator();
2887 
2888     // IVOper will replace the current IV User's operand. IVSrc is the IV
2889     // value currently held in a register.
2890     Value *IVOper = IVSrc;
2891     if (!Inc.IncExpr->isZero()) {
2892       // IncExpr was the result of subtraction of two narrow values, so must
2893       // be signed.
2894       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2895       LeftOverExpr = LeftOverExpr ?
2896         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2897     }
2898     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2899       // Expand the IV increment.
2900       Rewriter.clearPostInc();
2901       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2902       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2903                                              SE.getUnknown(IncV));
2904       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2905 
2906       // If an IV increment can't be folded, use it as the next IV value.
2907       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2908         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2909         IVSrc = IVOper;
2910         LeftOverExpr = nullptr;
2911       }
2912     }
2913     Type *OperTy = Inc.IVOperand->getType();
2914     if (IVTy != OperTy) {
2915       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2916              "cannot extend a chained IV");
2917       IRBuilder<> Builder(InsertPt);
2918       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2919     }
2920     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2921     DeadInsts.emplace_back(Inc.IVOperand);
2922   }
2923   // If LSR created a new, wider phi, we may also replace its postinc. We only
2924   // do this if we also found a wide value for the head of the chain.
2925   if (isa<PHINode>(Chain.tailUserInst())) {
2926     for (BasicBlock::iterator I = L->getHeader()->begin();
2927          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2928       if (!isCompatibleIVType(Phi, IVSrc))
2929         continue;
2930       Instruction *PostIncV = dyn_cast<Instruction>(
2931         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2932       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2933         continue;
2934       Value *IVOper = IVSrc;
2935       Type *PostIncTy = PostIncV->getType();
2936       if (IVTy != PostIncTy) {
2937         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2938         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2939         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2940         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2941       }
2942       Phi->replaceUsesOfWith(PostIncV, IVOper);
2943       DeadInsts.emplace_back(PostIncV);
2944     }
2945   }
2946 }
2947 
2948 void LSRInstance::CollectFixupsAndInitialFormulae() {
2949   for (const IVStrideUse &U : IU) {
2950     Instruction *UserInst = U.getUser();
2951     // Skip IV users that are part of profitable IV Chains.
2952     User::op_iterator UseI =
2953         find(UserInst->operands(), U.getOperandValToReplace());
2954     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2955     if (IVIncSet.count(UseI))
2956       continue;
2957 
2958     LSRUse::KindType Kind = LSRUse::Basic;
2959     MemAccessTy AccessTy;
2960     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
2961       Kind = LSRUse::Address;
2962       AccessTy = getAccessType(UserInst);
2963     }
2964 
2965     const SCEV *S = IU.getExpr(U);
2966     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
2967 
2968     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2969     // (N - i == 0), and this allows (N - i) to be the expression that we work
2970     // with rather than just N or i, so we can consider the register
2971     // requirements for both N and i at the same time. Limiting this code to
2972     // equality icmps is not a problem because all interesting loops use
2973     // equality icmps, thanks to IndVarSimplify.
2974     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
2975       if (CI->isEquality()) {
2976         // Swap the operands if needed to put the OperandValToReplace on the
2977         // left, for consistency.
2978         Value *NV = CI->getOperand(1);
2979         if (NV == U.getOperandValToReplace()) {
2980           CI->setOperand(1, CI->getOperand(0));
2981           CI->setOperand(0, NV);
2982           NV = CI->getOperand(1);
2983           Changed = true;
2984         }
2985 
2986         // x == y  -->  x - y == 0
2987         const SCEV *N = SE.getSCEV(NV);
2988         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2989           // S is normalized, so normalize N before folding it into S
2990           // to keep the result normalized.
2991           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2992                                      TmpPostIncLoops, SE, DT);
2993           Kind = LSRUse::ICmpZero;
2994           S = SE.getMinusSCEV(N, S);
2995         }
2996 
2997         // -1 and the negations of all interesting strides (except the negation
2998         // of -1) are now also interesting.
2999         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3000           if (Factors[i] != -1)
3001             Factors.insert(-(uint64_t)Factors[i]);
3002         Factors.insert(-1);
3003       }
3004 
3005     // Get or create an LSRUse.
3006     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3007     size_t LUIdx = P.first;
3008     int64_t Offset = P.second;
3009     LSRUse &LU = Uses[LUIdx];
3010 
3011     // Record the fixup.
3012     LSRFixup &LF = LU.getNewFixup();
3013     LF.UserInst = UserInst;
3014     LF.OperandValToReplace = U.getOperandValToReplace();
3015     LF.PostIncLoops = TmpPostIncLoops;
3016     LF.Offset = Offset;
3017     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3018 
3019     if (!LU.WidestFixupType ||
3020         SE.getTypeSizeInBits(LU.WidestFixupType) <
3021         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3022       LU.WidestFixupType = LF.OperandValToReplace->getType();
3023 
3024     // If this is the first use of this LSRUse, give it a formula.
3025     if (LU.Formulae.empty()) {
3026       InsertInitialFormula(S, LU, LUIdx);
3027       CountRegisters(LU.Formulae.back(), LUIdx);
3028     }
3029   }
3030 
3031   DEBUG(print_fixups(dbgs()));
3032 }
3033 
3034 /// Insert a formula for the given expression into the given use, separating out
3035 /// loop-variant portions from loop-invariant and loop-computable portions.
3036 void
3037 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3038   // Mark uses whose expressions cannot be expanded.
3039   if (!isSafeToExpand(S, SE))
3040     LU.RigidFormula = true;
3041 
3042   Formula F;
3043   F.initialMatch(S, L, SE);
3044   bool Inserted = InsertFormula(LU, LUIdx, F);
3045   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3046 }
3047 
3048 /// Insert a simple single-register formula for the given expression into the
3049 /// given use.
3050 void
3051 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3052                                        LSRUse &LU, size_t LUIdx) {
3053   Formula F;
3054   F.BaseRegs.push_back(S);
3055   F.HasBaseReg = true;
3056   bool Inserted = InsertFormula(LU, LUIdx, F);
3057   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3058 }
3059 
3060 /// Note which registers are used by the given formula, updating RegUses.
3061 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3062   if (F.ScaledReg)
3063     RegUses.countRegister(F.ScaledReg, LUIdx);
3064   for (const SCEV *BaseReg : F.BaseRegs)
3065     RegUses.countRegister(BaseReg, LUIdx);
3066 }
3067 
3068 /// If the given formula has not yet been inserted, add it to the list, and
3069 /// return true. Return false otherwise.
3070 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3071   // Do not insert formula that we will not be able to expand.
3072   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3073          "Formula is illegal");
3074   if (!LU.InsertFormula(F))
3075     return false;
3076 
3077   CountRegisters(F, LUIdx);
3078   return true;
3079 }
3080 
3081 /// Check for other uses of loop-invariant values which we're tracking. These
3082 /// other uses will pin these values in registers, making them less profitable
3083 /// for elimination.
3084 /// TODO: This currently misses non-constant addrec step registers.
3085 /// TODO: Should this give more weight to users inside the loop?
3086 void
3087 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3088   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3089   SmallPtrSet<const SCEV *, 32> Visited;
3090 
3091   while (!Worklist.empty()) {
3092     const SCEV *S = Worklist.pop_back_val();
3093 
3094     // Don't process the same SCEV twice
3095     if (!Visited.insert(S).second)
3096       continue;
3097 
3098     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3099       Worklist.append(N->op_begin(), N->op_end());
3100     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3101       Worklist.push_back(C->getOperand());
3102     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3103       Worklist.push_back(D->getLHS());
3104       Worklist.push_back(D->getRHS());
3105     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3106       const Value *V = US->getValue();
3107       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3108         // Look for instructions defined outside the loop.
3109         if (L->contains(Inst)) continue;
3110       } else if (isa<UndefValue>(V))
3111         // Undef doesn't have a live range, so it doesn't matter.
3112         continue;
3113       for (const Use &U : V->uses()) {
3114         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3115         // Ignore non-instructions.
3116         if (!UserInst)
3117           continue;
3118         // Ignore instructions in other functions (as can happen with
3119         // Constants).
3120         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3121           continue;
3122         // Ignore instructions not dominated by the loop.
3123         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3124           UserInst->getParent() :
3125           cast<PHINode>(UserInst)->getIncomingBlock(
3126             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3127         if (!DT.dominates(L->getHeader(), UseBB))
3128           continue;
3129         // Don't bother if the instruction is in a BB which ends in an EHPad.
3130         if (UseBB->getTerminator()->isEHPad())
3131           continue;
3132         // Ignore uses which are part of other SCEV expressions, to avoid
3133         // analyzing them multiple times.
3134         if (SE.isSCEVable(UserInst->getType())) {
3135           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3136           // If the user is a no-op, look through to its uses.
3137           if (!isa<SCEVUnknown>(UserS))
3138             continue;
3139           if (UserS == US) {
3140             Worklist.push_back(
3141               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3142             continue;
3143           }
3144         }
3145         // Ignore icmp instructions which are already being analyzed.
3146         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3147           unsigned OtherIdx = !U.getOperandNo();
3148           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3149           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3150             continue;
3151         }
3152 
3153         std::pair<size_t, int64_t> P = getUse(
3154             S, LSRUse::Basic, MemAccessTy());
3155         size_t LUIdx = P.first;
3156         int64_t Offset = P.second;
3157         LSRUse &LU = Uses[LUIdx];
3158         LSRFixup &LF = LU.getNewFixup();
3159         LF.UserInst = const_cast<Instruction *>(UserInst);
3160         LF.OperandValToReplace = U;
3161         LF.Offset = Offset;
3162         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3163         if (!LU.WidestFixupType ||
3164             SE.getTypeSizeInBits(LU.WidestFixupType) <
3165             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3166           LU.WidestFixupType = LF.OperandValToReplace->getType();
3167         InsertSupplementalFormula(US, LU, LUIdx);
3168         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3169         break;
3170       }
3171     }
3172   }
3173 }
3174 
3175 /// Split S into subexpressions which can be pulled out into separate
3176 /// registers. If C is non-null, multiply each subexpression by C.
3177 ///
3178 /// Return remainder expression after factoring the subexpressions captured by
3179 /// Ops. If Ops is complete, return NULL.
3180 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3181                                    SmallVectorImpl<const SCEV *> &Ops,
3182                                    const Loop *L,
3183                                    ScalarEvolution &SE,
3184                                    unsigned Depth = 0) {
3185   // Arbitrarily cap recursion to protect compile time.
3186   if (Depth >= 3)
3187     return S;
3188 
3189   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3190     // Break out add operands.
3191     for (const SCEV *S : Add->operands()) {
3192       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3193       if (Remainder)
3194         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3195     }
3196     return nullptr;
3197   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3198     // Split a non-zero base out of an addrec.
3199     if (AR->getStart()->isZero() || !AR->isAffine())
3200       return S;
3201 
3202     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3203                                             C, Ops, L, SE, Depth+1);
3204     // Split the non-zero AddRec unless it is part of a nested recurrence that
3205     // does not pertain to this loop.
3206     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3207       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3208       Remainder = nullptr;
3209     }
3210     if (Remainder != AR->getStart()) {
3211       if (!Remainder)
3212         Remainder = SE.getConstant(AR->getType(), 0);
3213       return SE.getAddRecExpr(Remainder,
3214                               AR->getStepRecurrence(SE),
3215                               AR->getLoop(),
3216                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3217                               SCEV::FlagAnyWrap);
3218     }
3219   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3220     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3221     if (Mul->getNumOperands() != 2)
3222       return S;
3223     if (const SCEVConstant *Op0 =
3224         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3225       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3226       const SCEV *Remainder =
3227         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3228       if (Remainder)
3229         Ops.push_back(SE.getMulExpr(C, Remainder));
3230       return nullptr;
3231     }
3232   }
3233   return S;
3234 }
3235 
3236 /// \brief Helper function for LSRInstance::GenerateReassociations.
3237 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3238                                              const Formula &Base,
3239                                              unsigned Depth, size_t Idx,
3240                                              bool IsScaledReg) {
3241   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3242   SmallVector<const SCEV *, 8> AddOps;
3243   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3244   if (Remainder)
3245     AddOps.push_back(Remainder);
3246 
3247   if (AddOps.size() == 1)
3248     return;
3249 
3250   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3251                                                      JE = AddOps.end();
3252        J != JE; ++J) {
3253 
3254     // Loop-variant "unknown" values are uninteresting; we won't be able to
3255     // do anything meaningful with them.
3256     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3257       continue;
3258 
3259     // Don't pull a constant into a register if the constant could be folded
3260     // into an immediate field.
3261     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3262                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3263       continue;
3264 
3265     // Collect all operands except *J.
3266     SmallVector<const SCEV *, 8> InnerAddOps(
3267         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3268     InnerAddOps.append(std::next(J),
3269                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3270 
3271     // Don't leave just a constant behind in a register if the constant could
3272     // be folded into an immediate field.
3273     if (InnerAddOps.size() == 1 &&
3274         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3275                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3276       continue;
3277 
3278     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3279     if (InnerSum->isZero())
3280       continue;
3281     Formula F = Base;
3282 
3283     // Add the remaining pieces of the add back into the new formula.
3284     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3285     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3286         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3287                                 InnerSumSC->getValue()->getZExtValue())) {
3288       F.UnfoldedOffset =
3289           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3290       if (IsScaledReg)
3291         F.ScaledReg = nullptr;
3292       else
3293         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3294     } else if (IsScaledReg)
3295       F.ScaledReg = InnerSum;
3296     else
3297       F.BaseRegs[Idx] = InnerSum;
3298 
3299     // Add J as its own register, or an unfolded immediate.
3300     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3301     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3302         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3303                                 SC->getValue()->getZExtValue()))
3304       F.UnfoldedOffset =
3305           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3306     else
3307       F.BaseRegs.push_back(*J);
3308     // We may have changed the number of register in base regs, adjust the
3309     // formula accordingly.
3310     F.canonicalize();
3311 
3312     if (InsertFormula(LU, LUIdx, F))
3313       // If that formula hadn't been seen before, recurse to find more like
3314       // it.
3315       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3316   }
3317 }
3318 
3319 /// Split out subexpressions from adds and the bases of addrecs.
3320 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3321                                          Formula Base, unsigned Depth) {
3322   assert(Base.isCanonical() && "Input must be in the canonical form");
3323   // Arbitrarily cap recursion to protect compile time.
3324   if (Depth >= 3)
3325     return;
3326 
3327   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3328     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3329 
3330   if (Base.Scale == 1)
3331     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3332                                /* Idx */ -1, /* IsScaledReg */ true);
3333 }
3334 
3335 ///  Generate a formula consisting of all of the loop-dominating registers added
3336 /// into a single register.
3337 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3338                                        Formula Base) {
3339   // This method is only interesting on a plurality of registers.
3340   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3341     return;
3342 
3343   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3344   // processing the formula.
3345   Base.unscale();
3346   Formula F = Base;
3347   F.BaseRegs.clear();
3348   SmallVector<const SCEV *, 4> Ops;
3349   for (const SCEV *BaseReg : Base.BaseRegs) {
3350     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3351         !SE.hasComputableLoopEvolution(BaseReg, L))
3352       Ops.push_back(BaseReg);
3353     else
3354       F.BaseRegs.push_back(BaseReg);
3355   }
3356   if (Ops.size() > 1) {
3357     const SCEV *Sum = SE.getAddExpr(Ops);
3358     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3359     // opportunity to fold something. For now, just ignore such cases
3360     // rather than proceed with zero in a register.
3361     if (!Sum->isZero()) {
3362       F.BaseRegs.push_back(Sum);
3363       F.canonicalize();
3364       (void)InsertFormula(LU, LUIdx, F);
3365     }
3366   }
3367 }
3368 
3369 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3370 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3371                                               const Formula &Base, size_t Idx,
3372                                               bool IsScaledReg) {
3373   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3374   GlobalValue *GV = ExtractSymbol(G, SE);
3375   if (G->isZero() || !GV)
3376     return;
3377   Formula F = Base;
3378   F.BaseGV = GV;
3379   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3380     return;
3381   if (IsScaledReg)
3382     F.ScaledReg = G;
3383   else
3384     F.BaseRegs[Idx] = G;
3385   (void)InsertFormula(LU, LUIdx, F);
3386 }
3387 
3388 /// Generate reuse formulae using symbolic offsets.
3389 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3390                                           Formula Base) {
3391   // We can't add a symbolic offset if the address already contains one.
3392   if (Base.BaseGV) return;
3393 
3394   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3395     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3396   if (Base.Scale == 1)
3397     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3398                                 /* IsScaledReg */ true);
3399 }
3400 
3401 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3402 void LSRInstance::GenerateConstantOffsetsImpl(
3403     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3404     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3405   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3406   for (int64_t Offset : Worklist) {
3407     Formula F = Base;
3408     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3409     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3410                    LU.AccessTy, F)) {
3411       // Add the offset to the base register.
3412       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3413       // If it cancelled out, drop the base register, otherwise update it.
3414       if (NewG->isZero()) {
3415         if (IsScaledReg) {
3416           F.Scale = 0;
3417           F.ScaledReg = nullptr;
3418         } else
3419           F.deleteBaseReg(F.BaseRegs[Idx]);
3420         F.canonicalize();
3421       } else if (IsScaledReg)
3422         F.ScaledReg = NewG;
3423       else
3424         F.BaseRegs[Idx] = NewG;
3425 
3426       (void)InsertFormula(LU, LUIdx, F);
3427     }
3428   }
3429 
3430   int64_t Imm = ExtractImmediate(G, SE);
3431   if (G->isZero() || Imm == 0)
3432     return;
3433   Formula F = Base;
3434   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3435   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3436     return;
3437   if (IsScaledReg)
3438     F.ScaledReg = G;
3439   else
3440     F.BaseRegs[Idx] = G;
3441   (void)InsertFormula(LU, LUIdx, F);
3442 }
3443 
3444 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3445 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3446                                           Formula Base) {
3447   // TODO: For now, just add the min and max offset, because it usually isn't
3448   // worthwhile looking at everything inbetween.
3449   SmallVector<int64_t, 2> Worklist;
3450   Worklist.push_back(LU.MinOffset);
3451   if (LU.MaxOffset != LU.MinOffset)
3452     Worklist.push_back(LU.MaxOffset);
3453 
3454   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3455     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3456   if (Base.Scale == 1)
3457     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3458                                 /* IsScaledReg */ true);
3459 }
3460 
3461 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3462 /// == y -> x*c == y*c.
3463 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3464                                          Formula Base) {
3465   if (LU.Kind != LSRUse::ICmpZero) return;
3466 
3467   // Determine the integer type for the base formula.
3468   Type *IntTy = Base.getType();
3469   if (!IntTy) return;
3470   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3471 
3472   // Don't do this if there is more than one offset.
3473   if (LU.MinOffset != LU.MaxOffset) return;
3474 
3475   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3476 
3477   // Check each interesting stride.
3478   for (int64_t Factor : Factors) {
3479     // Check that the multiplication doesn't overflow.
3480     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3481       continue;
3482     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3483     if (NewBaseOffset / Factor != Base.BaseOffset)
3484       continue;
3485     // If the offset will be truncated at this use, check that it is in bounds.
3486     if (!IntTy->isPointerTy() &&
3487         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3488       continue;
3489 
3490     // Check that multiplying with the use offset doesn't overflow.
3491     int64_t Offset = LU.MinOffset;
3492     if (Offset == INT64_MIN && Factor == -1)
3493       continue;
3494     Offset = (uint64_t)Offset * Factor;
3495     if (Offset / Factor != LU.MinOffset)
3496       continue;
3497     // If the offset will be truncated at this use, check that it is in bounds.
3498     if (!IntTy->isPointerTy() &&
3499         !ConstantInt::isValueValidForType(IntTy, Offset))
3500       continue;
3501 
3502     Formula F = Base;
3503     F.BaseOffset = NewBaseOffset;
3504 
3505     // Check that this scale is legal.
3506     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3507       continue;
3508 
3509     // Compensate for the use having MinOffset built into it.
3510     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3511 
3512     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3513 
3514     // Check that multiplying with each base register doesn't overflow.
3515     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3516       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3517       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3518         goto next;
3519     }
3520 
3521     // Check that multiplying with the scaled register doesn't overflow.
3522     if (F.ScaledReg) {
3523       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3524       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3525         continue;
3526     }
3527 
3528     // Check that multiplying with the unfolded offset doesn't overflow.
3529     if (F.UnfoldedOffset != 0) {
3530       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3531         continue;
3532       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3533       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3534         continue;
3535       // If the offset will be truncated, check that it is in bounds.
3536       if (!IntTy->isPointerTy() &&
3537           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3538         continue;
3539     }
3540 
3541     // If we make it here and it's legal, add it.
3542     (void)InsertFormula(LU, LUIdx, F);
3543   next:;
3544   }
3545 }
3546 
3547 /// Generate stride factor reuse formulae by making use of scaled-offset address
3548 /// modes, for example.
3549 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3550   // Determine the integer type for the base formula.
3551   Type *IntTy = Base.getType();
3552   if (!IntTy) return;
3553 
3554   // If this Formula already has a scaled register, we can't add another one.
3555   // Try to unscale the formula to generate a better scale.
3556   if (Base.Scale != 0 && !Base.unscale())
3557     return;
3558 
3559   assert(Base.Scale == 0 && "unscale did not did its job!");
3560 
3561   // Check each interesting stride.
3562   for (int64_t Factor : Factors) {
3563     Base.Scale = Factor;
3564     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3565     // Check whether this scale is going to be legal.
3566     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3567                     Base)) {
3568       // As a special-case, handle special out-of-loop Basic users specially.
3569       // TODO: Reconsider this special case.
3570       if (LU.Kind == LSRUse::Basic &&
3571           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3572                      LU.AccessTy, Base) &&
3573           LU.AllFixupsOutsideLoop)
3574         LU.Kind = LSRUse::Special;
3575       else
3576         continue;
3577     }
3578     // For an ICmpZero, negating a solitary base register won't lead to
3579     // new solutions.
3580     if (LU.Kind == LSRUse::ICmpZero &&
3581         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3582       continue;
3583     // For each addrec base reg, apply the scale, if possible.
3584     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3585       if (const SCEVAddRecExpr *AR =
3586             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3587         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3588         if (FactorS->isZero())
3589           continue;
3590         // Divide out the factor, ignoring high bits, since we'll be
3591         // scaling the value back up in the end.
3592         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3593           // TODO: This could be optimized to avoid all the copying.
3594           Formula F = Base;
3595           F.ScaledReg = Quotient;
3596           F.deleteBaseReg(F.BaseRegs[i]);
3597           // The canonical representation of 1*reg is reg, which is already in
3598           // Base. In that case, do not try to insert the formula, it will be
3599           // rejected anyway.
3600           if (F.Scale == 1 && F.BaseRegs.empty())
3601             continue;
3602           (void)InsertFormula(LU, LUIdx, F);
3603         }
3604       }
3605   }
3606 }
3607 
3608 /// Generate reuse formulae from different IV types.
3609 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3610   // Don't bother truncating symbolic values.
3611   if (Base.BaseGV) return;
3612 
3613   // Determine the integer type for the base formula.
3614   Type *DstTy = Base.getType();
3615   if (!DstTy) return;
3616   DstTy = SE.getEffectiveSCEVType(DstTy);
3617 
3618   for (Type *SrcTy : Types) {
3619     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3620       Formula F = Base;
3621 
3622       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3623       for (const SCEV *&BaseReg : F.BaseRegs)
3624         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3625 
3626       // TODO: This assumes we've done basic processing on all uses and
3627       // have an idea what the register usage is.
3628       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3629         continue;
3630 
3631       (void)InsertFormula(LU, LUIdx, F);
3632     }
3633   }
3634 }
3635 
3636 namespace {
3637 
3638 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3639 /// modifications so that the search phase doesn't have to worry about the data
3640 /// structures moving underneath it.
3641 struct WorkItem {
3642   size_t LUIdx;
3643   int64_t Imm;
3644   const SCEV *OrigReg;
3645 
3646   WorkItem(size_t LI, int64_t I, const SCEV *R)
3647     : LUIdx(LI), Imm(I), OrigReg(R) {}
3648 
3649   void print(raw_ostream &OS) const;
3650   void dump() const;
3651 };
3652 
3653 }
3654 
3655 void WorkItem::print(raw_ostream &OS) const {
3656   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3657      << " , add offset " << Imm;
3658 }
3659 
3660 LLVM_DUMP_METHOD
3661 void WorkItem::dump() const {
3662   print(errs()); errs() << '\n';
3663 }
3664 
3665 /// Look for registers which are a constant distance apart and try to form reuse
3666 /// opportunities between them.
3667 void LSRInstance::GenerateCrossUseConstantOffsets() {
3668   // Group the registers by their value without any added constant offset.
3669   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3670   DenseMap<const SCEV *, ImmMapTy> Map;
3671   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3672   SmallVector<const SCEV *, 8> Sequence;
3673   for (const SCEV *Use : RegUses) {
3674     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3675     int64_t Imm = ExtractImmediate(Reg, SE);
3676     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3677     if (Pair.second)
3678       Sequence.push_back(Reg);
3679     Pair.first->second.insert(std::make_pair(Imm, Use));
3680     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3681   }
3682 
3683   // Now examine each set of registers with the same base value. Build up
3684   // a list of work to do and do the work in a separate step so that we're
3685   // not adding formulae and register counts while we're searching.
3686   SmallVector<WorkItem, 32> WorkItems;
3687   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3688   for (const SCEV *Reg : Sequence) {
3689     const ImmMapTy &Imms = Map.find(Reg)->second;
3690 
3691     // It's not worthwhile looking for reuse if there's only one offset.
3692     if (Imms.size() == 1)
3693       continue;
3694 
3695     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3696           for (const auto &Entry : Imms)
3697             dbgs() << ' ' << Entry.first;
3698           dbgs() << '\n');
3699 
3700     // Examine each offset.
3701     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3702          J != JE; ++J) {
3703       const SCEV *OrigReg = J->second;
3704 
3705       int64_t JImm = J->first;
3706       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3707 
3708       if (!isa<SCEVConstant>(OrigReg) &&
3709           UsedByIndicesMap[Reg].count() == 1) {
3710         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3711         continue;
3712       }
3713 
3714       // Conservatively examine offsets between this orig reg a few selected
3715       // other orig regs.
3716       ImmMapTy::const_iterator OtherImms[] = {
3717         Imms.begin(), std::prev(Imms.end()),
3718         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3719                          2)
3720       };
3721       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3722         ImmMapTy::const_iterator M = OtherImms[i];
3723         if (M == J || M == JE) continue;
3724 
3725         // Compute the difference between the two.
3726         int64_t Imm = (uint64_t)JImm - M->first;
3727         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3728              LUIdx = UsedByIndices.find_next(LUIdx))
3729           // Make a memo of this use, offset, and register tuple.
3730           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3731             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3732       }
3733     }
3734   }
3735 
3736   Map.clear();
3737   Sequence.clear();
3738   UsedByIndicesMap.clear();
3739   UniqueItems.clear();
3740 
3741   // Now iterate through the worklist and add new formulae.
3742   for (const WorkItem &WI : WorkItems) {
3743     size_t LUIdx = WI.LUIdx;
3744     LSRUse &LU = Uses[LUIdx];
3745     int64_t Imm = WI.Imm;
3746     const SCEV *OrigReg = WI.OrigReg;
3747 
3748     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3749     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3750     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3751 
3752     // TODO: Use a more targeted data structure.
3753     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3754       Formula F = LU.Formulae[L];
3755       // FIXME: The code for the scaled and unscaled registers looks
3756       // very similar but slightly different. Investigate if they
3757       // could be merged. That way, we would not have to unscale the
3758       // Formula.
3759       F.unscale();
3760       // Use the immediate in the scaled register.
3761       if (F.ScaledReg == OrigReg) {
3762         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3763         // Don't create 50 + reg(-50).
3764         if (F.referencesReg(SE.getSCEV(
3765                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3766           continue;
3767         Formula NewF = F;
3768         NewF.BaseOffset = Offset;
3769         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3770                         NewF))
3771           continue;
3772         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3773 
3774         // If the new scale is a constant in a register, and adding the constant
3775         // value to the immediate would produce a value closer to zero than the
3776         // immediate itself, then the formula isn't worthwhile.
3777         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3778           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3779               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3780                   .ule(std::abs(NewF.BaseOffset)))
3781             continue;
3782 
3783         // OK, looks good.
3784         NewF.canonicalize();
3785         (void)InsertFormula(LU, LUIdx, NewF);
3786       } else {
3787         // Use the immediate in a base register.
3788         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3789           const SCEV *BaseReg = F.BaseRegs[N];
3790           if (BaseReg != OrigReg)
3791             continue;
3792           Formula NewF = F;
3793           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3794           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3795                           LU.Kind, LU.AccessTy, NewF)) {
3796             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3797               continue;
3798             NewF = F;
3799             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3800           }
3801           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3802 
3803           // If the new formula has a constant in a register, and adding the
3804           // constant value to the immediate would produce a value closer to
3805           // zero than the immediate itself, then the formula isn't worthwhile.
3806           for (const SCEV *NewReg : NewF.BaseRegs)
3807             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3808               if ((C->getAPInt() + NewF.BaseOffset)
3809                       .abs()
3810                       .slt(std::abs(NewF.BaseOffset)) &&
3811                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3812                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3813                 goto skip_formula;
3814 
3815           // Ok, looks good.
3816           NewF.canonicalize();
3817           (void)InsertFormula(LU, LUIdx, NewF);
3818           break;
3819         skip_formula:;
3820         }
3821       }
3822     }
3823   }
3824 }
3825 
3826 /// Generate formulae for each use.
3827 void
3828 LSRInstance::GenerateAllReuseFormulae() {
3829   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3830   // queries are more precise.
3831   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3832     LSRUse &LU = Uses[LUIdx];
3833     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3834       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3835     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3836       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3837   }
3838   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3839     LSRUse &LU = Uses[LUIdx];
3840     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3841       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3842     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3843       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3844     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3845       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3846     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3847       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3848   }
3849   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3850     LSRUse &LU = Uses[LUIdx];
3851     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3852       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3853   }
3854 
3855   GenerateCrossUseConstantOffsets();
3856 
3857   DEBUG(dbgs() << "\n"
3858                   "After generating reuse formulae:\n";
3859         print_uses(dbgs()));
3860 }
3861 
3862 /// If there are multiple formulae with the same set of registers used
3863 /// by other uses, pick the best one and delete the others.
3864 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3865   DenseSet<const SCEV *> VisitedRegs;
3866   SmallPtrSet<const SCEV *, 16> Regs;
3867   SmallPtrSet<const SCEV *, 16> LoserRegs;
3868 #ifndef NDEBUG
3869   bool ChangedFormulae = false;
3870 #endif
3871 
3872   // Collect the best formula for each unique set of shared registers. This
3873   // is reset for each use.
3874   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3875     BestFormulaeTy;
3876   BestFormulaeTy BestFormulae;
3877 
3878   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3879     LSRUse &LU = Uses[LUIdx];
3880     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3881 
3882     bool Any = false;
3883     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3884          FIdx != NumForms; ++FIdx) {
3885       Formula &F = LU.Formulae[FIdx];
3886 
3887       // Some formulas are instant losers. For example, they may depend on
3888       // nonexistent AddRecs from other loops. These need to be filtered
3889       // immediately, otherwise heuristics could choose them over others leading
3890       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3891       // avoids the need to recompute this information across formulae using the
3892       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3893       // the corresponding bad register from the Regs set.
3894       Cost CostF;
3895       Regs.clear();
3896       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
3897       if (CostF.isLoser()) {
3898         // During initial formula generation, undesirable formulae are generated
3899         // by uses within other loops that have some non-trivial address mode or
3900         // use the postinc form of the IV. LSR needs to provide these formulae
3901         // as the basis of rediscovering the desired formula that uses an AddRec
3902         // corresponding to the existing phi. Once all formulae have been
3903         // generated, these initial losers may be pruned.
3904         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3905               dbgs() << "\n");
3906       }
3907       else {
3908         SmallVector<const SCEV *, 4> Key;
3909         for (const SCEV *Reg : F.BaseRegs) {
3910           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3911             Key.push_back(Reg);
3912         }
3913         if (F.ScaledReg &&
3914             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3915           Key.push_back(F.ScaledReg);
3916         // Unstable sort by host order ok, because this is only used for
3917         // uniquifying.
3918         std::sort(Key.begin(), Key.end());
3919 
3920         std::pair<BestFormulaeTy::const_iterator, bool> P =
3921           BestFormulae.insert(std::make_pair(Key, FIdx));
3922         if (P.second)
3923           continue;
3924 
3925         Formula &Best = LU.Formulae[P.first->second];
3926 
3927         Cost CostBest;
3928         Regs.clear();
3929         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
3930         if (CostF < CostBest)
3931           std::swap(F, Best);
3932         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3933               dbgs() << "\n"
3934                         "    in favor of formula "; Best.print(dbgs());
3935               dbgs() << '\n');
3936       }
3937 #ifndef NDEBUG
3938       ChangedFormulae = true;
3939 #endif
3940       LU.DeleteFormula(F);
3941       --FIdx;
3942       --NumForms;
3943       Any = true;
3944     }
3945 
3946     // Now that we've filtered out some formulae, recompute the Regs set.
3947     if (Any)
3948       LU.RecomputeRegs(LUIdx, RegUses);
3949 
3950     // Reset this to prepare for the next use.
3951     BestFormulae.clear();
3952   }
3953 
3954   DEBUG(if (ChangedFormulae) {
3955           dbgs() << "\n"
3956                     "After filtering out undesirable candidates:\n";
3957           print_uses(dbgs());
3958         });
3959 }
3960 
3961 // This is a rough guess that seems to work fairly well.
3962 static const size_t ComplexityLimit = UINT16_MAX;
3963 
3964 /// Estimate the worst-case number of solutions the solver might have to
3965 /// consider. It almost never considers this many solutions because it prune the
3966 /// search space, but the pruning isn't always sufficient.
3967 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3968   size_t Power = 1;
3969   for (const LSRUse &LU : Uses) {
3970     size_t FSize = LU.Formulae.size();
3971     if (FSize >= ComplexityLimit) {
3972       Power = ComplexityLimit;
3973       break;
3974     }
3975     Power *= FSize;
3976     if (Power >= ComplexityLimit)
3977       break;
3978   }
3979   return Power;
3980 }
3981 
3982 /// When one formula uses a superset of the registers of another formula, it
3983 /// won't help reduce register pressure (though it may not necessarily hurt
3984 /// register pressure); remove it to simplify the system.
3985 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3986   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3987     DEBUG(dbgs() << "The search space is too complex.\n");
3988 
3989     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3990                     "which use a superset of registers used by other "
3991                     "formulae.\n");
3992 
3993     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3994       LSRUse &LU = Uses[LUIdx];
3995       bool Any = false;
3996       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3997         Formula &F = LU.Formulae[i];
3998         // Look for a formula with a constant or GV in a register. If the use
3999         // also has a formula with that same value in an immediate field,
4000         // delete the one that uses a register.
4001         for (SmallVectorImpl<const SCEV *>::const_iterator
4002              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4003           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4004             Formula NewF = F;
4005             NewF.BaseOffset += C->getValue()->getSExtValue();
4006             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4007                                 (I - F.BaseRegs.begin()));
4008             if (LU.HasFormulaWithSameRegs(NewF)) {
4009               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4010               LU.DeleteFormula(F);
4011               --i;
4012               --e;
4013               Any = true;
4014               break;
4015             }
4016           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4017             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4018               if (!F.BaseGV) {
4019                 Formula NewF = F;
4020                 NewF.BaseGV = GV;
4021                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4022                                     (I - F.BaseRegs.begin()));
4023                 if (LU.HasFormulaWithSameRegs(NewF)) {
4024                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4025                         dbgs() << '\n');
4026                   LU.DeleteFormula(F);
4027                   --i;
4028                   --e;
4029                   Any = true;
4030                   break;
4031                 }
4032               }
4033           }
4034         }
4035       }
4036       if (Any)
4037         LU.RecomputeRegs(LUIdx, RegUses);
4038     }
4039 
4040     DEBUG(dbgs() << "After pre-selection:\n";
4041           print_uses(dbgs()));
4042   }
4043 }
4044 
4045 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4046 /// allocate a single register for them.
4047 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4048   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4049     return;
4050 
4051   DEBUG(dbgs() << "The search space is too complex.\n"
4052                   "Narrowing the search space by assuming that uses separated "
4053                   "by a constant offset will use the same registers.\n");
4054 
4055   // This is especially useful for unrolled loops.
4056 
4057   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4058     LSRUse &LU = Uses[LUIdx];
4059     for (const Formula &F : LU.Formulae) {
4060       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4061         continue;
4062 
4063       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4064       if (!LUThatHas)
4065         continue;
4066 
4067       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4068                               LU.Kind, LU.AccessTy))
4069         continue;
4070 
4071       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4072 
4073       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4074 
4075       // Transfer the fixups of LU to LUThatHas.
4076       for (LSRFixup &Fixup : LU.Fixups) {
4077         Fixup.Offset += F.BaseOffset;
4078         LUThatHas->pushFixup(Fixup);
4079         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4080       }
4081 
4082       // Delete formulae from the new use which are no longer legal.
4083       bool Any = false;
4084       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4085         Formula &F = LUThatHas->Formulae[i];
4086         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4087                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4088           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4089                 dbgs() << '\n');
4090           LUThatHas->DeleteFormula(F);
4091           --i;
4092           --e;
4093           Any = true;
4094         }
4095       }
4096 
4097       if (Any)
4098         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4099 
4100       // Delete the old use.
4101       DeleteUse(LU, LUIdx);
4102       --LUIdx;
4103       --NumUses;
4104       break;
4105     }
4106   }
4107 
4108   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4109 }
4110 
4111 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4112 /// we've done more filtering, as it may be able to find more formulae to
4113 /// eliminate.
4114 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4115   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4116     DEBUG(dbgs() << "The search space is too complex.\n");
4117 
4118     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4119                     "undesirable dedicated registers.\n");
4120 
4121     FilterOutUndesirableDedicatedRegisters();
4122 
4123     DEBUG(dbgs() << "After pre-selection:\n";
4124           print_uses(dbgs()));
4125   }
4126 }
4127 
4128 /// Pick a register which seems likely to be profitable, and then in any use
4129 /// which has any reference to that register, delete all formulae which do not
4130 /// reference that register.
4131 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4132   // With all other options exhausted, loop until the system is simple
4133   // enough to handle.
4134   SmallPtrSet<const SCEV *, 4> Taken;
4135   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4136     // Ok, we have too many of formulae on our hands to conveniently handle.
4137     // Use a rough heuristic to thin out the list.
4138     DEBUG(dbgs() << "The search space is too complex.\n");
4139 
4140     // Pick the register which is used by the most LSRUses, which is likely
4141     // to be a good reuse register candidate.
4142     const SCEV *Best = nullptr;
4143     unsigned BestNum = 0;
4144     for (const SCEV *Reg : RegUses) {
4145       if (Taken.count(Reg))
4146         continue;
4147       if (!Best)
4148         Best = Reg;
4149       else {
4150         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4151         if (Count > BestNum) {
4152           Best = Reg;
4153           BestNum = Count;
4154         }
4155       }
4156     }
4157 
4158     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4159                  << " will yield profitable reuse.\n");
4160     Taken.insert(Best);
4161 
4162     // In any use with formulae which references this register, delete formulae
4163     // which don't reference it.
4164     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4165       LSRUse &LU = Uses[LUIdx];
4166       if (!LU.Regs.count(Best)) continue;
4167 
4168       bool Any = false;
4169       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4170         Formula &F = LU.Formulae[i];
4171         if (!F.referencesReg(Best)) {
4172           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4173           LU.DeleteFormula(F);
4174           --e;
4175           --i;
4176           Any = true;
4177           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4178           continue;
4179         }
4180       }
4181 
4182       if (Any)
4183         LU.RecomputeRegs(LUIdx, RegUses);
4184     }
4185 
4186     DEBUG(dbgs() << "After pre-selection:\n";
4187           print_uses(dbgs()));
4188   }
4189 }
4190 
4191 /// If there are an extraordinary number of formulae to choose from, use some
4192 /// rough heuristics to prune down the number of formulae. This keeps the main
4193 /// solver from taking an extraordinary amount of time in some worst-case
4194 /// scenarios.
4195 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4196   NarrowSearchSpaceByDetectingSupersets();
4197   NarrowSearchSpaceByCollapsingUnrolledCode();
4198   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4199   NarrowSearchSpaceByPickingWinnerRegs();
4200 }
4201 
4202 /// This is the recursive solver.
4203 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4204                                Cost &SolutionCost,
4205                                SmallVectorImpl<const Formula *> &Workspace,
4206                                const Cost &CurCost,
4207                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4208                                DenseSet<const SCEV *> &VisitedRegs) const {
4209   // Some ideas:
4210   //  - prune more:
4211   //    - use more aggressive filtering
4212   //    - sort the formula so that the most profitable solutions are found first
4213   //    - sort the uses too
4214   //  - search faster:
4215   //    - don't compute a cost, and then compare. compare while computing a cost
4216   //      and bail early.
4217   //    - track register sets with SmallBitVector
4218 
4219   const LSRUse &LU = Uses[Workspace.size()];
4220 
4221   // If this use references any register that's already a part of the
4222   // in-progress solution, consider it a requirement that a formula must
4223   // reference that register in order to be considered. This prunes out
4224   // unprofitable searching.
4225   SmallSetVector<const SCEV *, 4> ReqRegs;
4226   for (const SCEV *S : CurRegs)
4227     if (LU.Regs.count(S))
4228       ReqRegs.insert(S);
4229 
4230   SmallPtrSet<const SCEV *, 16> NewRegs;
4231   Cost NewCost;
4232   for (const Formula &F : LU.Formulae) {
4233     // Ignore formulae which may not be ideal in terms of register reuse of
4234     // ReqRegs.  The formula should use all required registers before
4235     // introducing new ones.
4236     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4237     for (const SCEV *Reg : ReqRegs) {
4238       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4239           is_contained(F.BaseRegs, Reg)) {
4240         --NumReqRegsToFind;
4241         if (NumReqRegsToFind == 0)
4242           break;
4243       }
4244     }
4245     if (NumReqRegsToFind != 0) {
4246       // If none of the formulae satisfied the required registers, then we could
4247       // clear ReqRegs and try again. Currently, we simply give up in this case.
4248       continue;
4249     }
4250 
4251     // Evaluate the cost of the current formula. If it's already worse than
4252     // the current best, prune the search at that point.
4253     NewCost = CurCost;
4254     NewRegs = CurRegs;
4255     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4256     if (NewCost < SolutionCost) {
4257       Workspace.push_back(&F);
4258       if (Workspace.size() != Uses.size()) {
4259         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4260                      NewRegs, VisitedRegs);
4261         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4262           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4263       } else {
4264         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4265               dbgs() << ".\n Regs:";
4266               for (const SCEV *S : NewRegs)
4267                 dbgs() << ' ' << *S;
4268               dbgs() << '\n');
4269 
4270         SolutionCost = NewCost;
4271         Solution = Workspace;
4272       }
4273       Workspace.pop_back();
4274     }
4275   }
4276 }
4277 
4278 /// Choose one formula from each use. Return the results in the given Solution
4279 /// vector.
4280 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4281   SmallVector<const Formula *, 8> Workspace;
4282   Cost SolutionCost;
4283   SolutionCost.Lose();
4284   Cost CurCost;
4285   SmallPtrSet<const SCEV *, 16> CurRegs;
4286   DenseSet<const SCEV *> VisitedRegs;
4287   Workspace.reserve(Uses.size());
4288 
4289   // SolveRecurse does all the work.
4290   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4291                CurRegs, VisitedRegs);
4292   if (Solution.empty()) {
4293     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4294     return;
4295   }
4296 
4297   // Ok, we've now made all our decisions.
4298   DEBUG(dbgs() << "\n"
4299                   "The chosen solution requires "; SolutionCost.print(dbgs());
4300         dbgs() << ":\n";
4301         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4302           dbgs() << "  ";
4303           Uses[i].print(dbgs());
4304           dbgs() << "\n"
4305                     "    ";
4306           Solution[i]->print(dbgs());
4307           dbgs() << '\n';
4308         });
4309 
4310   assert(Solution.size() == Uses.size() && "Malformed solution!");
4311 }
4312 
4313 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4314 /// we can go while still being dominated by the input positions. This helps
4315 /// canonicalize the insert position, which encourages sharing.
4316 BasicBlock::iterator
4317 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4318                                  const SmallVectorImpl<Instruction *> &Inputs)
4319                                                                          const {
4320   Instruction *Tentative = &*IP;
4321   for (;;) {
4322     bool AllDominate = true;
4323     Instruction *BetterPos = nullptr;
4324     // Don't bother attempting to insert before a catchswitch, their basic block
4325     // cannot have other non-PHI instructions.
4326     if (isa<CatchSwitchInst>(Tentative))
4327       return IP;
4328 
4329     for (Instruction *Inst : Inputs) {
4330       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4331         AllDominate = false;
4332         break;
4333       }
4334       // Attempt to find an insert position in the middle of the block,
4335       // instead of at the end, so that it can be used for other expansions.
4336       if (Tentative->getParent() == Inst->getParent() &&
4337           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4338         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4339     }
4340     if (!AllDominate)
4341       break;
4342     if (BetterPos)
4343       IP = BetterPos->getIterator();
4344     else
4345       IP = Tentative->getIterator();
4346 
4347     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4348     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4349 
4350     BasicBlock *IDom;
4351     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4352       if (!Rung) return IP;
4353       Rung = Rung->getIDom();
4354       if (!Rung) return IP;
4355       IDom = Rung->getBlock();
4356 
4357       // Don't climb into a loop though.
4358       const Loop *IDomLoop = LI.getLoopFor(IDom);
4359       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4360       if (IDomDepth <= IPLoopDepth &&
4361           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4362         break;
4363     }
4364 
4365     Tentative = IDom->getTerminator();
4366   }
4367 
4368   return IP;
4369 }
4370 
4371 /// Determine an input position which will be dominated by the operands and
4372 /// which will dominate the result.
4373 BasicBlock::iterator
4374 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4375                                            const LSRFixup &LF,
4376                                            const LSRUse &LU,
4377                                            SCEVExpander &Rewriter) const {
4378   // Collect some instructions which must be dominated by the
4379   // expanding replacement. These must be dominated by any operands that
4380   // will be required in the expansion.
4381   SmallVector<Instruction *, 4> Inputs;
4382   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4383     Inputs.push_back(I);
4384   if (LU.Kind == LSRUse::ICmpZero)
4385     if (Instruction *I =
4386           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4387       Inputs.push_back(I);
4388   if (LF.PostIncLoops.count(L)) {
4389     if (LF.isUseFullyOutsideLoop(L))
4390       Inputs.push_back(L->getLoopLatch()->getTerminator());
4391     else
4392       Inputs.push_back(IVIncInsertPos);
4393   }
4394   // The expansion must also be dominated by the increment positions of any
4395   // loops it for which it is using post-inc mode.
4396   for (const Loop *PIL : LF.PostIncLoops) {
4397     if (PIL == L) continue;
4398 
4399     // Be dominated by the loop exit.
4400     SmallVector<BasicBlock *, 4> ExitingBlocks;
4401     PIL->getExitingBlocks(ExitingBlocks);
4402     if (!ExitingBlocks.empty()) {
4403       BasicBlock *BB = ExitingBlocks[0];
4404       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4405         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4406       Inputs.push_back(BB->getTerminator());
4407     }
4408   }
4409 
4410   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4411          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4412          "Insertion point must be a normal instruction");
4413 
4414   // Then, climb up the immediate dominator tree as far as we can go while
4415   // still being dominated by the input positions.
4416   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4417 
4418   // Don't insert instructions before PHI nodes.
4419   while (isa<PHINode>(IP)) ++IP;
4420 
4421   // Ignore landingpad instructions.
4422   while (IP->isEHPad()) ++IP;
4423 
4424   // Ignore debug intrinsics.
4425   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4426 
4427   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4428   // IP consistent across expansions and allows the previously inserted
4429   // instructions to be reused by subsequent expansion.
4430   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4431     ++IP;
4432 
4433   return IP;
4434 }
4435 
4436 /// Emit instructions for the leading candidate expression for this LSRUse (this
4437 /// is called "expanding").
4438 Value *LSRInstance::Expand(const LSRUse &LU,
4439                            const LSRFixup &LF,
4440                            const Formula &F,
4441                            BasicBlock::iterator IP,
4442                            SCEVExpander &Rewriter,
4443                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4444   if (LU.RigidFormula)
4445     return LF.OperandValToReplace;
4446 
4447   // Determine an input position which will be dominated by the operands and
4448   // which will dominate the result.
4449   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4450   Rewriter.setInsertPoint(&*IP);
4451 
4452   // Inform the Rewriter if we have a post-increment use, so that it can
4453   // perform an advantageous expansion.
4454   Rewriter.setPostInc(LF.PostIncLoops);
4455 
4456   // This is the type that the user actually needs.
4457   Type *OpTy = LF.OperandValToReplace->getType();
4458   // This will be the type that we'll initially expand to.
4459   Type *Ty = F.getType();
4460   if (!Ty)
4461     // No type known; just expand directly to the ultimate type.
4462     Ty = OpTy;
4463   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4464     // Expand directly to the ultimate type if it's the right size.
4465     Ty = OpTy;
4466   // This is the type to do integer arithmetic in.
4467   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4468 
4469   // Build up a list of operands to add together to form the full base.
4470   SmallVector<const SCEV *, 8> Ops;
4471 
4472   // Expand the BaseRegs portion.
4473   for (const SCEV *Reg : F.BaseRegs) {
4474     assert(!Reg->isZero() && "Zero allocated in a base register!");
4475 
4476     // If we're expanding for a post-inc user, make the post-inc adjustment.
4477     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4478     Reg = TransformForPostIncUse(Denormalize, Reg,
4479                                  LF.UserInst, LF.OperandValToReplace,
4480                                  Loops, SE, DT);
4481 
4482     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4483   }
4484 
4485   // Expand the ScaledReg portion.
4486   Value *ICmpScaledV = nullptr;
4487   if (F.Scale != 0) {
4488     const SCEV *ScaledS = F.ScaledReg;
4489 
4490     // If we're expanding for a post-inc user, make the post-inc adjustment.
4491     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4492     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4493                                      LF.UserInst, LF.OperandValToReplace,
4494                                      Loops, SE, DT);
4495 
4496     if (LU.Kind == LSRUse::ICmpZero) {
4497       // Expand ScaleReg as if it was part of the base regs.
4498       if (F.Scale == 1)
4499         Ops.push_back(
4500             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4501       else {
4502         // An interesting way of "folding" with an icmp is to use a negated
4503         // scale, which we'll implement by inserting it into the other operand
4504         // of the icmp.
4505         assert(F.Scale == -1 &&
4506                "The only scale supported by ICmpZero uses is -1!");
4507         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4508       }
4509     } else {
4510       // Otherwise just expand the scaled register and an explicit scale,
4511       // which is expected to be matched as part of the address.
4512 
4513       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4514       // Unless the addressing mode will not be folded.
4515       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4516           isAMCompletelyFolded(TTI, LU, F)) {
4517         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4518         Ops.clear();
4519         Ops.push_back(SE.getUnknown(FullV));
4520       }
4521       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4522       if (F.Scale != 1)
4523         ScaledS =
4524             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4525       Ops.push_back(ScaledS);
4526     }
4527   }
4528 
4529   // Expand the GV portion.
4530   if (F.BaseGV) {
4531     // Flush the operand list to suppress SCEVExpander hoisting.
4532     if (!Ops.empty()) {
4533       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4534       Ops.clear();
4535       Ops.push_back(SE.getUnknown(FullV));
4536     }
4537     Ops.push_back(SE.getUnknown(F.BaseGV));
4538   }
4539 
4540   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4541   // unfolded offsets. LSR assumes they both live next to their uses.
4542   if (!Ops.empty()) {
4543     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4544     Ops.clear();
4545     Ops.push_back(SE.getUnknown(FullV));
4546   }
4547 
4548   // Expand the immediate portion.
4549   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4550   if (Offset != 0) {
4551     if (LU.Kind == LSRUse::ICmpZero) {
4552       // The other interesting way of "folding" with an ICmpZero is to use a
4553       // negated immediate.
4554       if (!ICmpScaledV)
4555         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4556       else {
4557         Ops.push_back(SE.getUnknown(ICmpScaledV));
4558         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4559       }
4560     } else {
4561       // Just add the immediate values. These again are expected to be matched
4562       // as part of the address.
4563       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4564     }
4565   }
4566 
4567   // Expand the unfolded offset portion.
4568   int64_t UnfoldedOffset = F.UnfoldedOffset;
4569   if (UnfoldedOffset != 0) {
4570     // Just add the immediate values.
4571     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4572                                                        UnfoldedOffset)));
4573   }
4574 
4575   // Emit instructions summing all the operands.
4576   const SCEV *FullS = Ops.empty() ?
4577                       SE.getConstant(IntTy, 0) :
4578                       SE.getAddExpr(Ops);
4579   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4580 
4581   // We're done expanding now, so reset the rewriter.
4582   Rewriter.clearPostInc();
4583 
4584   // An ICmpZero Formula represents an ICmp which we're handling as a
4585   // comparison against zero. Now that we've expanded an expression for that
4586   // form, update the ICmp's other operand.
4587   if (LU.Kind == LSRUse::ICmpZero) {
4588     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4589     DeadInsts.emplace_back(CI->getOperand(1));
4590     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4591                            "a scale at the same time!");
4592     if (F.Scale == -1) {
4593       if (ICmpScaledV->getType() != OpTy) {
4594         Instruction *Cast =
4595           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4596                                                    OpTy, false),
4597                            ICmpScaledV, OpTy, "tmp", CI);
4598         ICmpScaledV = Cast;
4599       }
4600       CI->setOperand(1, ICmpScaledV);
4601     } else {
4602       // A scale of 1 means that the scale has been expanded as part of the
4603       // base regs.
4604       assert((F.Scale == 0 || F.Scale == 1) &&
4605              "ICmp does not support folding a global value and "
4606              "a scale at the same time!");
4607       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4608                                            -(uint64_t)Offset);
4609       if (C->getType() != OpTy)
4610         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4611                                                           OpTy, false),
4612                                   C, OpTy);
4613 
4614       CI->setOperand(1, C);
4615     }
4616   }
4617 
4618   return FullV;
4619 }
4620 
4621 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4622 /// effectively happens in their predecessor blocks, so the expression may need
4623 /// to be expanded in multiple places.
4624 void LSRInstance::RewriteForPHI(PHINode *PN,
4625                                 const LSRUse &LU,
4626                                 const LSRFixup &LF,
4627                                 const Formula &F,
4628                                 SCEVExpander &Rewriter,
4629                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4630   DenseMap<BasicBlock *, Value *> Inserted;
4631   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4632     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4633       BasicBlock *BB = PN->getIncomingBlock(i);
4634 
4635       // If this is a critical edge, split the edge so that we do not insert
4636       // the code on all predecessor/successor paths.  We do this unless this
4637       // is the canonical backedge for this loop, which complicates post-inc
4638       // users.
4639       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4640           !isa<IndirectBrInst>(BB->getTerminator())) {
4641         BasicBlock *Parent = PN->getParent();
4642         Loop *PNLoop = LI.getLoopFor(Parent);
4643         if (!PNLoop || Parent != PNLoop->getHeader()) {
4644           // Split the critical edge.
4645           BasicBlock *NewBB = nullptr;
4646           if (!Parent->isLandingPad()) {
4647             NewBB = SplitCriticalEdge(BB, Parent,
4648                                       CriticalEdgeSplittingOptions(&DT, &LI)
4649                                           .setMergeIdenticalEdges()
4650                                           .setDontDeleteUselessPHIs());
4651           } else {
4652             SmallVector<BasicBlock*, 2> NewBBs;
4653             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4654             NewBB = NewBBs[0];
4655           }
4656           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4657           // phi predecessors are identical. The simple thing to do is skip
4658           // splitting in this case rather than complicate the API.
4659           if (NewBB) {
4660             // If PN is outside of the loop and BB is in the loop, we want to
4661             // move the block to be immediately before the PHI block, not
4662             // immediately after BB.
4663             if (L->contains(BB) && !L->contains(PN))
4664               NewBB->moveBefore(PN->getParent());
4665 
4666             // Splitting the edge can reduce the number of PHI entries we have.
4667             e = PN->getNumIncomingValues();
4668             BB = NewBB;
4669             i = PN->getBasicBlockIndex(BB);
4670           }
4671         }
4672       }
4673 
4674       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4675         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4676       if (!Pair.second)
4677         PN->setIncomingValue(i, Pair.first->second);
4678       else {
4679         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4680                               Rewriter, DeadInsts);
4681 
4682         // If this is reuse-by-noop-cast, insert the noop cast.
4683         Type *OpTy = LF.OperandValToReplace->getType();
4684         if (FullV->getType() != OpTy)
4685           FullV =
4686             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4687                                                      OpTy, false),
4688                              FullV, LF.OperandValToReplace->getType(),
4689                              "tmp", BB->getTerminator());
4690 
4691         PN->setIncomingValue(i, FullV);
4692         Pair.first->second = FullV;
4693       }
4694     }
4695 }
4696 
4697 /// Emit instructions for the leading candidate expression for this LSRUse (this
4698 /// is called "expanding"), and update the UserInst to reference the newly
4699 /// expanded value.
4700 void LSRInstance::Rewrite(const LSRUse &LU,
4701                           const LSRFixup &LF,
4702                           const Formula &F,
4703                           SCEVExpander &Rewriter,
4704                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4705   // First, find an insertion point that dominates UserInst. For PHI nodes,
4706   // find the nearest block which dominates all the relevant uses.
4707   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4708     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
4709   } else {
4710     Value *FullV =
4711       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4712 
4713     // If this is reuse-by-noop-cast, insert the noop cast.
4714     Type *OpTy = LF.OperandValToReplace->getType();
4715     if (FullV->getType() != OpTy) {
4716       Instruction *Cast =
4717         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4718                          FullV, OpTy, "tmp", LF.UserInst);
4719       FullV = Cast;
4720     }
4721 
4722     // Update the user. ICmpZero is handled specially here (for now) because
4723     // Expand may have updated one of the operands of the icmp already, and
4724     // its new value may happen to be equal to LF.OperandValToReplace, in
4725     // which case doing replaceUsesOfWith leads to replacing both operands
4726     // with the same value. TODO: Reorganize this.
4727     if (LU.Kind == LSRUse::ICmpZero)
4728       LF.UserInst->setOperand(0, FullV);
4729     else
4730       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4731   }
4732 
4733   DeadInsts.emplace_back(LF.OperandValToReplace);
4734 }
4735 
4736 /// Rewrite all the fixup locations with new values, following the chosen
4737 /// solution.
4738 void LSRInstance::ImplementSolution(
4739     const SmallVectorImpl<const Formula *> &Solution) {
4740   // Keep track of instructions we may have made dead, so that
4741   // we can remove them after we are done working.
4742   SmallVector<WeakVH, 16> DeadInsts;
4743 
4744   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4745                         "lsr");
4746 #ifndef NDEBUG
4747   Rewriter.setDebugType(DEBUG_TYPE);
4748 #endif
4749   Rewriter.disableCanonicalMode();
4750   Rewriter.enableLSRMode();
4751   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4752 
4753   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4754   for (const IVChain &Chain : IVChainVec) {
4755     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4756       Rewriter.setChainedPhi(PN);
4757   }
4758 
4759   // Expand the new value definitions and update the users.
4760   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
4761     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
4762       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
4763       Changed = true;
4764     }
4765 
4766   for (const IVChain &Chain : IVChainVec) {
4767     GenerateIVChain(Chain, Rewriter, DeadInsts);
4768     Changed = true;
4769   }
4770   // Clean up after ourselves. This must be done before deleting any
4771   // instructions.
4772   Rewriter.clear();
4773 
4774   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4775 }
4776 
4777 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4778                          DominatorTree &DT, LoopInfo &LI,
4779                          const TargetTransformInfo &TTI)
4780     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4781       IVIncInsertPos(nullptr) {
4782   // If LoopSimplify form is not available, stay out of trouble.
4783   if (!L->isLoopSimplifyForm())
4784     return;
4785 
4786   // If there's no interesting work to be done, bail early.
4787   if (IU.empty()) return;
4788 
4789   // If there's too much analysis to be done, bail early. We won't be able to
4790   // model the problem anyway.
4791   unsigned NumUsers = 0;
4792   for (const IVStrideUse &U : IU) {
4793     if (++NumUsers > MaxIVUsers) {
4794       (void)U;
4795       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4796       return;
4797     }
4798     // Bail out if we have a PHI on an EHPad that gets a value from a
4799     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4800     // no good place to stick any instructions.
4801     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4802        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4803        if (isa<FuncletPadInst>(FirstNonPHI) ||
4804            isa<CatchSwitchInst>(FirstNonPHI))
4805          for (BasicBlock *PredBB : PN->blocks())
4806            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4807              return;
4808     }
4809   }
4810 
4811 #ifndef NDEBUG
4812   // All dominating loops must have preheaders, or SCEVExpander may not be able
4813   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4814   //
4815   // IVUsers analysis should only create users that are dominated by simple loop
4816   // headers. Since this loop should dominate all of its users, its user list
4817   // should be empty if this loop itself is not within a simple loop nest.
4818   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4819        Rung; Rung = Rung->getIDom()) {
4820     BasicBlock *BB = Rung->getBlock();
4821     const Loop *DomLoop = LI.getLoopFor(BB);
4822     if (DomLoop && DomLoop->getHeader() == BB) {
4823       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4824     }
4825   }
4826 #endif // DEBUG
4827 
4828   DEBUG(dbgs() << "\nLSR on loop ";
4829         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4830         dbgs() << ":\n");
4831 
4832   // First, perform some low-level loop optimizations.
4833   OptimizeShadowIV();
4834   OptimizeLoopTermCond();
4835 
4836   // If loop preparation eliminates all interesting IV users, bail.
4837   if (IU.empty()) return;
4838 
4839   // Skip nested loops until we can model them better with formulae.
4840   if (!L->empty()) {
4841     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4842     return;
4843   }
4844 
4845   // Start collecting data and preparing for the solver.
4846   CollectChains();
4847   CollectInterestingTypesAndFactors();
4848   CollectFixupsAndInitialFormulae();
4849   CollectLoopInvariantFixupsAndFormulae();
4850 
4851   assert(!Uses.empty() && "IVUsers reported at least one use");
4852   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4853         print_uses(dbgs()));
4854 
4855   // Now use the reuse data to generate a bunch of interesting ways
4856   // to formulate the values needed for the uses.
4857   GenerateAllReuseFormulae();
4858 
4859   FilterOutUndesirableDedicatedRegisters();
4860   NarrowSearchSpaceUsingHeuristics();
4861 
4862   SmallVector<const Formula *, 8> Solution;
4863   Solve(Solution);
4864 
4865   // Release memory that is no longer needed.
4866   Factors.clear();
4867   Types.clear();
4868   RegUses.clear();
4869 
4870   if (Solution.empty())
4871     return;
4872 
4873 #ifndef NDEBUG
4874   // Formulae should be legal.
4875   for (const LSRUse &LU : Uses) {
4876     for (const Formula &F : LU.Formulae)
4877       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4878                         F) && "Illegal formula generated!");
4879   };
4880 #endif
4881 
4882   // Now that we've decided what we want, make it so.
4883   ImplementSolution(Solution);
4884 }
4885 
4886 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4887   if (Factors.empty() && Types.empty()) return;
4888 
4889   OS << "LSR has identified the following interesting factors and types: ";
4890   bool First = true;
4891 
4892   for (int64_t Factor : Factors) {
4893     if (!First) OS << ", ";
4894     First = false;
4895     OS << '*' << Factor;
4896   }
4897 
4898   for (Type *Ty : Types) {
4899     if (!First) OS << ", ";
4900     First = false;
4901     OS << '(' << *Ty << ')';
4902   }
4903   OS << '\n';
4904 }
4905 
4906 void LSRInstance::print_fixups(raw_ostream &OS) const {
4907   OS << "LSR is examining the following fixup sites:\n";
4908   for (const LSRUse &LU : Uses)
4909     for (const LSRFixup &LF : LU.Fixups) {
4910       dbgs() << "  ";
4911       LF.print(OS);
4912       OS << '\n';
4913     }
4914 }
4915 
4916 void LSRInstance::print_uses(raw_ostream &OS) const {
4917   OS << "LSR is examining the following uses:\n";
4918   for (const LSRUse &LU : Uses) {
4919     dbgs() << "  ";
4920     LU.print(OS);
4921     OS << '\n';
4922     for (const Formula &F : LU.Formulae) {
4923       OS << "    ";
4924       F.print(OS);
4925       OS << '\n';
4926     }
4927   }
4928 }
4929 
4930 void LSRInstance::print(raw_ostream &OS) const {
4931   print_factors_and_types(OS);
4932   print_fixups(OS);
4933   print_uses(OS);
4934 }
4935 
4936 LLVM_DUMP_METHOD
4937 void LSRInstance::dump() const {
4938   print(errs()); errs() << '\n';
4939 }
4940 
4941 namespace {
4942 
4943 class LoopStrengthReduce : public LoopPass {
4944 public:
4945   static char ID; // Pass ID, replacement for typeid
4946   LoopStrengthReduce();
4947 
4948 private:
4949   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4950   void getAnalysisUsage(AnalysisUsage &AU) const override;
4951 };
4952 }
4953 
4954 char LoopStrengthReduce::ID = 0;
4955 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4956                       "Loop Strength Reduction", false, false)
4957 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4958 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4959 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4960 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
4961 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4962 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4963 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4964                     "Loop Strength Reduction", false, false)
4965 
4966 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
4967 
4968 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4969   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4970 }
4971 
4972 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4973   // We split critical edges, so we change the CFG.  However, we do update
4974   // many analyses if they are around.
4975   AU.addPreservedID(LoopSimplifyID);
4976 
4977   AU.addRequired<LoopInfoWrapperPass>();
4978   AU.addPreserved<LoopInfoWrapperPass>();
4979   AU.addRequiredID(LoopSimplifyID);
4980   AU.addRequired<DominatorTreeWrapperPass>();
4981   AU.addPreserved<DominatorTreeWrapperPass>();
4982   AU.addRequired<ScalarEvolutionWrapperPass>();
4983   AU.addPreserved<ScalarEvolutionWrapperPass>();
4984   // Requiring LoopSimplify a second time here prevents IVUsers from running
4985   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4986   AU.addRequiredID(LoopSimplifyID);
4987   AU.addRequired<IVUsersWrapperPass>();
4988   AU.addPreserved<IVUsersWrapperPass>();
4989   AU.addRequired<TargetTransformInfoWrapperPass>();
4990 }
4991 
4992 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4993                                DominatorTree &DT, LoopInfo &LI,
4994                                const TargetTransformInfo &TTI) {
4995   bool Changed = false;
4996 
4997   // Run the main LSR transformation.
4998   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
4999 
5000   // Remove any extra phis created by processing inner loops.
5001   Changed |= DeleteDeadPHIs(L->getHeader());
5002   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5003     SmallVector<WeakVH, 16> DeadInsts;
5004     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5005     SCEVExpander Rewriter(SE, DL, "lsr");
5006 #ifndef NDEBUG
5007     Rewriter.setDebugType(DEBUG_TYPE);
5008 #endif
5009     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5010     if (numFolded) {
5011       Changed = true;
5012       DeleteTriviallyDeadInstructions(DeadInsts);
5013       DeleteDeadPHIs(L->getHeader());
5014     }
5015   }
5016   return Changed;
5017 }
5018 
5019 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5020   if (skipLoop(L))
5021     return false;
5022 
5023   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5024   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5025   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5026   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5027   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5028       *L->getHeader()->getParent());
5029   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5030 }
5031 
5032 PreservedAnalyses LoopStrengthReducePass::run(Loop &L,
5033                                               LoopAnalysisManager &AM) {
5034   const auto &FAM =
5035       AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
5036   Function *F = L.getHeader()->getParent();
5037 
5038   auto &IU = AM.getResult<IVUsersAnalysis>(L);
5039   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
5040   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
5041   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
5042   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
5043   assert((SE && DT && LI && TTI) &&
5044          "Analyses for Loop Strength Reduce not available");
5045 
5046   if (!ReduceLoopStrength(&L, IU, *SE, *DT, *LI, *TTI))
5047     return PreservedAnalyses::all();
5048 
5049   return getLoopPassPreservedAnalyses();
5050 }
5051