1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/LoopPassManager.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Analysis/TargetTransformInfo.h" 67 #include "llvm/IR/Constants.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/Module.h" 73 #include "llvm/IR/ValueHandle.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Debug.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 79 #include "llvm/Transforms/Utils/Local.h" 80 #include <algorithm> 81 using namespace llvm; 82 83 #define DEBUG_TYPE "loop-reduce" 84 85 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 86 /// bail out. This threshold is far beyond the number of users that LSR can 87 /// conceivably solve, so it should not affect generated code, but catches the 88 /// worst cases before LSR burns too much compile time and stack space. 89 static const unsigned MaxIVUsers = 200; 90 91 // Temporary flag to cleanup congruent phis after LSR phi expansion. 92 // It's currently disabled until we can determine whether it's truly useful or 93 // not. The flag should be removed after the v3.0 release. 94 // This is now needed for ivchains. 95 static cl::opt<bool> EnablePhiElim( 96 "enable-lsr-phielim", cl::Hidden, cl::init(true), 97 cl::desc("Enable LSR phi elimination")); 98 99 #ifndef NDEBUG 100 // Stress test IV chain generation. 101 static cl::opt<bool> StressIVChain( 102 "stress-ivchain", cl::Hidden, cl::init(false), 103 cl::desc("Stress test LSR IV chains")); 104 #else 105 static bool StressIVChain = false; 106 #endif 107 108 namespace { 109 110 struct MemAccessTy { 111 /// Used in situations where the accessed memory type is unknown. 112 static const unsigned UnknownAddressSpace = ~0u; 113 114 Type *MemTy; 115 unsigned AddrSpace; 116 117 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 118 119 MemAccessTy(Type *Ty, unsigned AS) : 120 MemTy(Ty), AddrSpace(AS) {} 121 122 bool operator==(MemAccessTy Other) const { 123 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 124 } 125 126 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 127 128 static MemAccessTy getUnknown(LLVMContext &Ctx) { 129 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 130 } 131 }; 132 133 /// This class holds data which is used to order reuse candidates. 134 class RegSortData { 135 public: 136 /// This represents the set of LSRUse indices which reference 137 /// a particular register. 138 SmallBitVector UsedByIndices; 139 140 void print(raw_ostream &OS) const; 141 void dump() const; 142 }; 143 144 } 145 146 void RegSortData::print(raw_ostream &OS) const { 147 OS << "[NumUses=" << UsedByIndices.count() << ']'; 148 } 149 150 LLVM_DUMP_METHOD 151 void RegSortData::dump() const { 152 print(errs()); errs() << '\n'; 153 } 154 155 namespace { 156 157 /// Map register candidates to information about how they are used. 158 class RegUseTracker { 159 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 160 161 RegUsesTy RegUsesMap; 162 SmallVector<const SCEV *, 16> RegSequence; 163 164 public: 165 void countRegister(const SCEV *Reg, size_t LUIdx); 166 void dropRegister(const SCEV *Reg, size_t LUIdx); 167 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 168 169 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 170 171 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 172 173 void clear(); 174 175 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 176 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 177 iterator begin() { return RegSequence.begin(); } 178 iterator end() { return RegSequence.end(); } 179 const_iterator begin() const { return RegSequence.begin(); } 180 const_iterator end() const { return RegSequence.end(); } 181 }; 182 183 } 184 185 void 186 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 187 std::pair<RegUsesTy::iterator, bool> Pair = 188 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 189 RegSortData &RSD = Pair.first->second; 190 if (Pair.second) 191 RegSequence.push_back(Reg); 192 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 193 RSD.UsedByIndices.set(LUIdx); 194 } 195 196 void 197 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 198 RegUsesTy::iterator It = RegUsesMap.find(Reg); 199 assert(It != RegUsesMap.end()); 200 RegSortData &RSD = It->second; 201 assert(RSD.UsedByIndices.size() > LUIdx); 202 RSD.UsedByIndices.reset(LUIdx); 203 } 204 205 void 206 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 207 assert(LUIdx <= LastLUIdx); 208 209 // Update RegUses. The data structure is not optimized for this purpose; 210 // we must iterate through it and update each of the bit vectors. 211 for (auto &Pair : RegUsesMap) { 212 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 213 if (LUIdx < UsedByIndices.size()) 214 UsedByIndices[LUIdx] = 215 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 216 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 217 } 218 } 219 220 bool 221 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 222 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 223 if (I == RegUsesMap.end()) 224 return false; 225 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 226 int i = UsedByIndices.find_first(); 227 if (i == -1) return false; 228 if ((size_t)i != LUIdx) return true; 229 return UsedByIndices.find_next(i) != -1; 230 } 231 232 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 233 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 234 assert(I != RegUsesMap.end() && "Unknown register!"); 235 return I->second.UsedByIndices; 236 } 237 238 void RegUseTracker::clear() { 239 RegUsesMap.clear(); 240 RegSequence.clear(); 241 } 242 243 namespace { 244 245 /// This class holds information that describes a formula for computing 246 /// satisfying a use. It may include broken-out immediates and scaled registers. 247 struct Formula { 248 /// Global base address used for complex addressing. 249 GlobalValue *BaseGV; 250 251 /// Base offset for complex addressing. 252 int64_t BaseOffset; 253 254 /// Whether any complex addressing has a base register. 255 bool HasBaseReg; 256 257 /// The scale of any complex addressing. 258 int64_t Scale; 259 260 /// The list of "base" registers for this use. When this is non-empty. The 261 /// canonical representation of a formula is 262 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 263 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 264 /// #1 enforces that the scaled register is always used when at least two 265 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 266 /// #2 enforces that 1 * reg is reg. 267 /// This invariant can be temporarly broken while building a formula. 268 /// However, every formula inserted into the LSRInstance must be in canonical 269 /// form. 270 SmallVector<const SCEV *, 4> BaseRegs; 271 272 /// The 'scaled' register for this use. This should be non-null when Scale is 273 /// not zero. 274 const SCEV *ScaledReg; 275 276 /// An additional constant offset which added near the use. This requires a 277 /// temporary register, but the offset itself can live in an add immediate 278 /// field rather than a register. 279 int64_t UnfoldedOffset; 280 281 Formula() 282 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 283 ScaledReg(nullptr), UnfoldedOffset(0) {} 284 285 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 286 287 bool isCanonical() const; 288 289 void canonicalize(); 290 291 bool unscale(); 292 293 size_t getNumRegs() const; 294 Type *getType() const; 295 296 void deleteBaseReg(const SCEV *&S); 297 298 bool referencesReg(const SCEV *S) const; 299 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 300 const RegUseTracker &RegUses) const; 301 302 void print(raw_ostream &OS) const; 303 void dump() const; 304 }; 305 306 } 307 308 /// Recursion helper for initialMatch. 309 static void DoInitialMatch(const SCEV *S, Loop *L, 310 SmallVectorImpl<const SCEV *> &Good, 311 SmallVectorImpl<const SCEV *> &Bad, 312 ScalarEvolution &SE) { 313 // Collect expressions which properly dominate the loop header. 314 if (SE.properlyDominates(S, L->getHeader())) { 315 Good.push_back(S); 316 return; 317 } 318 319 // Look at add operands. 320 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 321 for (const SCEV *S : Add->operands()) 322 DoInitialMatch(S, L, Good, Bad, SE); 323 return; 324 } 325 326 // Look at addrec operands. 327 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 328 if (!AR->getStart()->isZero() && AR->isAffine()) { 329 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 330 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 331 AR->getStepRecurrence(SE), 332 // FIXME: AR->getNoWrapFlags() 333 AR->getLoop(), SCEV::FlagAnyWrap), 334 L, Good, Bad, SE); 335 return; 336 } 337 338 // Handle a multiplication by -1 (negation) if it didn't fold. 339 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 340 if (Mul->getOperand(0)->isAllOnesValue()) { 341 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 342 const SCEV *NewMul = SE.getMulExpr(Ops); 343 344 SmallVector<const SCEV *, 4> MyGood; 345 SmallVector<const SCEV *, 4> MyBad; 346 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 347 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 348 SE.getEffectiveSCEVType(NewMul->getType()))); 349 for (const SCEV *S : MyGood) 350 Good.push_back(SE.getMulExpr(NegOne, S)); 351 for (const SCEV *S : MyBad) 352 Bad.push_back(SE.getMulExpr(NegOne, S)); 353 return; 354 } 355 356 // Ok, we can't do anything interesting. Just stuff the whole thing into a 357 // register and hope for the best. 358 Bad.push_back(S); 359 } 360 361 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 362 /// all loop-invariant and loop-computable values in a single base register. 363 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 364 SmallVector<const SCEV *, 4> Good; 365 SmallVector<const SCEV *, 4> Bad; 366 DoInitialMatch(S, L, Good, Bad, SE); 367 if (!Good.empty()) { 368 const SCEV *Sum = SE.getAddExpr(Good); 369 if (!Sum->isZero()) 370 BaseRegs.push_back(Sum); 371 HasBaseReg = true; 372 } 373 if (!Bad.empty()) { 374 const SCEV *Sum = SE.getAddExpr(Bad); 375 if (!Sum->isZero()) 376 BaseRegs.push_back(Sum); 377 HasBaseReg = true; 378 } 379 canonicalize(); 380 } 381 382 /// \brief Check whether or not this formula statisfies the canonical 383 /// representation. 384 /// \see Formula::BaseRegs. 385 bool Formula::isCanonical() const { 386 if (ScaledReg) 387 return Scale != 1 || !BaseRegs.empty(); 388 return BaseRegs.size() <= 1; 389 } 390 391 /// \brief Helper method to morph a formula into its canonical representation. 392 /// \see Formula::BaseRegs. 393 /// Every formula having more than one base register, must use the ScaledReg 394 /// field. Otherwise, we would have to do special cases everywhere in LSR 395 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 396 /// On the other hand, 1*reg should be canonicalized into reg. 397 void Formula::canonicalize() { 398 if (isCanonical()) 399 return; 400 // So far we did not need this case. This is easy to implement but it is 401 // useless to maintain dead code. Beside it could hurt compile time. 402 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 403 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 404 ScaledReg = BaseRegs.back(); 405 BaseRegs.pop_back(); 406 Scale = 1; 407 size_t BaseRegsSize = BaseRegs.size(); 408 size_t Try = 0; 409 // If ScaledReg is an invariant, try to find a variant expression. 410 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 411 std::swap(ScaledReg, BaseRegs[Try++]); 412 } 413 414 /// \brief Get rid of the scale in the formula. 415 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 416 /// \return true if it was possible to get rid of the scale, false otherwise. 417 /// \note After this operation the formula may not be in the canonical form. 418 bool Formula::unscale() { 419 if (Scale != 1) 420 return false; 421 Scale = 0; 422 BaseRegs.push_back(ScaledReg); 423 ScaledReg = nullptr; 424 return true; 425 } 426 427 /// Return the total number of register operands used by this formula. This does 428 /// not include register uses implied by non-constant addrec strides. 429 size_t Formula::getNumRegs() const { 430 return !!ScaledReg + BaseRegs.size(); 431 } 432 433 /// Return the type of this formula, if it has one, or null otherwise. This type 434 /// is meaningless except for the bit size. 435 Type *Formula::getType() const { 436 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 437 ScaledReg ? ScaledReg->getType() : 438 BaseGV ? BaseGV->getType() : 439 nullptr; 440 } 441 442 /// Delete the given base reg from the BaseRegs list. 443 void Formula::deleteBaseReg(const SCEV *&S) { 444 if (&S != &BaseRegs.back()) 445 std::swap(S, BaseRegs.back()); 446 BaseRegs.pop_back(); 447 } 448 449 /// Test if this formula references the given register. 450 bool Formula::referencesReg(const SCEV *S) const { 451 return S == ScaledReg || is_contained(BaseRegs, S); 452 } 453 454 /// Test whether this formula uses registers which are used by uses other than 455 /// the use with the given index. 456 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 457 const RegUseTracker &RegUses) const { 458 if (ScaledReg) 459 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 460 return true; 461 for (const SCEV *BaseReg : BaseRegs) 462 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 463 return true; 464 return false; 465 } 466 467 void Formula::print(raw_ostream &OS) const { 468 bool First = true; 469 if (BaseGV) { 470 if (!First) OS << " + "; else First = false; 471 BaseGV->printAsOperand(OS, /*PrintType=*/false); 472 } 473 if (BaseOffset != 0) { 474 if (!First) OS << " + "; else First = false; 475 OS << BaseOffset; 476 } 477 for (const SCEV *BaseReg : BaseRegs) { 478 if (!First) OS << " + "; else First = false; 479 OS << "reg(" << *BaseReg << ')'; 480 } 481 if (HasBaseReg && BaseRegs.empty()) { 482 if (!First) OS << " + "; else First = false; 483 OS << "**error: HasBaseReg**"; 484 } else if (!HasBaseReg && !BaseRegs.empty()) { 485 if (!First) OS << " + "; else First = false; 486 OS << "**error: !HasBaseReg**"; 487 } 488 if (Scale != 0) { 489 if (!First) OS << " + "; else First = false; 490 OS << Scale << "*reg("; 491 if (ScaledReg) 492 OS << *ScaledReg; 493 else 494 OS << "<unknown>"; 495 OS << ')'; 496 } 497 if (UnfoldedOffset != 0) { 498 if (!First) OS << " + "; 499 OS << "imm(" << UnfoldedOffset << ')'; 500 } 501 } 502 503 LLVM_DUMP_METHOD 504 void Formula::dump() const { 505 print(errs()); errs() << '\n'; 506 } 507 508 /// Return true if the given addrec can be sign-extended without changing its 509 /// value. 510 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 511 Type *WideTy = 512 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 513 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 514 } 515 516 /// Return true if the given add can be sign-extended without changing its 517 /// value. 518 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 519 Type *WideTy = 520 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 521 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 522 } 523 524 /// Return true if the given mul can be sign-extended without changing its 525 /// value. 526 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 527 Type *WideTy = 528 IntegerType::get(SE.getContext(), 529 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 530 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 531 } 532 533 /// Return an expression for LHS /s RHS, if it can be determined and if the 534 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 535 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 536 /// the multiplication may overflow, which is useful when the result will be 537 /// used in a context where the most significant bits are ignored. 538 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 539 ScalarEvolution &SE, 540 bool IgnoreSignificantBits = false) { 541 // Handle the trivial case, which works for any SCEV type. 542 if (LHS == RHS) 543 return SE.getConstant(LHS->getType(), 1); 544 545 // Handle a few RHS special cases. 546 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 547 if (RC) { 548 const APInt &RA = RC->getAPInt(); 549 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 550 // some folding. 551 if (RA.isAllOnesValue()) 552 return SE.getMulExpr(LHS, RC); 553 // Handle x /s 1 as x. 554 if (RA == 1) 555 return LHS; 556 } 557 558 // Check for a division of a constant by a constant. 559 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 560 if (!RC) 561 return nullptr; 562 const APInt &LA = C->getAPInt(); 563 const APInt &RA = RC->getAPInt(); 564 if (LA.srem(RA) != 0) 565 return nullptr; 566 return SE.getConstant(LA.sdiv(RA)); 567 } 568 569 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 570 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 571 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 572 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 573 IgnoreSignificantBits); 574 if (!Step) return nullptr; 575 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 576 IgnoreSignificantBits); 577 if (!Start) return nullptr; 578 // FlagNW is independent of the start value, step direction, and is 579 // preserved with smaller magnitude steps. 580 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 581 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 582 } 583 return nullptr; 584 } 585 586 // Distribute the sdiv over add operands, if the add doesn't overflow. 587 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 588 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 589 SmallVector<const SCEV *, 8> Ops; 590 for (const SCEV *S : Add->operands()) { 591 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 592 if (!Op) return nullptr; 593 Ops.push_back(Op); 594 } 595 return SE.getAddExpr(Ops); 596 } 597 return nullptr; 598 } 599 600 // Check for a multiply operand that we can pull RHS out of. 601 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 602 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 603 SmallVector<const SCEV *, 4> Ops; 604 bool Found = false; 605 for (const SCEV *S : Mul->operands()) { 606 if (!Found) 607 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 608 IgnoreSignificantBits)) { 609 S = Q; 610 Found = true; 611 } 612 Ops.push_back(S); 613 } 614 return Found ? SE.getMulExpr(Ops) : nullptr; 615 } 616 return nullptr; 617 } 618 619 // Otherwise we don't know. 620 return nullptr; 621 } 622 623 /// If S involves the addition of a constant integer value, return that integer 624 /// value, and mutate S to point to a new SCEV with that value excluded. 625 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 626 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 627 if (C->getAPInt().getMinSignedBits() <= 64) { 628 S = SE.getConstant(C->getType(), 0); 629 return C->getValue()->getSExtValue(); 630 } 631 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 632 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 633 int64_t Result = ExtractImmediate(NewOps.front(), SE); 634 if (Result != 0) 635 S = SE.getAddExpr(NewOps); 636 return Result; 637 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 638 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 639 int64_t Result = ExtractImmediate(NewOps.front(), SE); 640 if (Result != 0) 641 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 642 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 643 SCEV::FlagAnyWrap); 644 return Result; 645 } 646 return 0; 647 } 648 649 /// If S involves the addition of a GlobalValue address, return that symbol, and 650 /// mutate S to point to a new SCEV with that value excluded. 651 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 652 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 653 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 654 S = SE.getConstant(GV->getType(), 0); 655 return GV; 656 } 657 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 658 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 659 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 660 if (Result) 661 S = SE.getAddExpr(NewOps); 662 return Result; 663 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 664 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 665 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 666 if (Result) 667 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 668 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 669 SCEV::FlagAnyWrap); 670 return Result; 671 } 672 return nullptr; 673 } 674 675 /// Returns true if the specified instruction is using the specified value as an 676 /// address. 677 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 678 bool isAddress = isa<LoadInst>(Inst); 679 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 680 if (SI->getOperand(1) == OperandVal) 681 isAddress = true; 682 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 683 // Addressing modes can also be folded into prefetches and a variety 684 // of intrinsics. 685 switch (II->getIntrinsicID()) { 686 default: break; 687 case Intrinsic::prefetch: 688 if (II->getArgOperand(0) == OperandVal) 689 isAddress = true; 690 break; 691 } 692 } 693 return isAddress; 694 } 695 696 /// Return the type of the memory being accessed. 697 static MemAccessTy getAccessType(const Instruction *Inst) { 698 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 699 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 700 AccessTy.MemTy = SI->getOperand(0)->getType(); 701 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 702 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 703 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 704 } 705 706 // All pointers have the same requirements, so canonicalize them to an 707 // arbitrary pointer type to minimize variation. 708 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 709 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 710 PTy->getAddressSpace()); 711 712 return AccessTy; 713 } 714 715 /// Return true if this AddRec is already a phi in its loop. 716 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 717 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 718 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 719 if (SE.isSCEVable(PN->getType()) && 720 (SE.getEffectiveSCEVType(PN->getType()) == 721 SE.getEffectiveSCEVType(AR->getType())) && 722 SE.getSCEV(PN) == AR) 723 return true; 724 } 725 return false; 726 } 727 728 /// Check if expanding this expression is likely to incur significant cost. This 729 /// is tricky because SCEV doesn't track which expressions are actually computed 730 /// by the current IR. 731 /// 732 /// We currently allow expansion of IV increments that involve adds, 733 /// multiplication by constants, and AddRecs from existing phis. 734 /// 735 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 736 /// obvious multiple of the UDivExpr. 737 static bool isHighCostExpansion(const SCEV *S, 738 SmallPtrSetImpl<const SCEV*> &Processed, 739 ScalarEvolution &SE) { 740 // Zero/One operand expressions 741 switch (S->getSCEVType()) { 742 case scUnknown: 743 case scConstant: 744 return false; 745 case scTruncate: 746 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 747 Processed, SE); 748 case scZeroExtend: 749 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 750 Processed, SE); 751 case scSignExtend: 752 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 753 Processed, SE); 754 } 755 756 if (!Processed.insert(S).second) 757 return false; 758 759 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 760 for (const SCEV *S : Add->operands()) { 761 if (isHighCostExpansion(S, Processed, SE)) 762 return true; 763 } 764 return false; 765 } 766 767 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 768 if (Mul->getNumOperands() == 2) { 769 // Multiplication by a constant is ok 770 if (isa<SCEVConstant>(Mul->getOperand(0))) 771 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 772 773 // If we have the value of one operand, check if an existing 774 // multiplication already generates this expression. 775 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 776 Value *UVal = U->getValue(); 777 for (User *UR : UVal->users()) { 778 // If U is a constant, it may be used by a ConstantExpr. 779 Instruction *UI = dyn_cast<Instruction>(UR); 780 if (UI && UI->getOpcode() == Instruction::Mul && 781 SE.isSCEVable(UI->getType())) { 782 return SE.getSCEV(UI) == Mul; 783 } 784 } 785 } 786 } 787 } 788 789 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 790 if (isExistingPhi(AR, SE)) 791 return false; 792 } 793 794 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 795 return true; 796 } 797 798 /// If any of the instructions is the specified set are trivially dead, delete 799 /// them and see if this makes any of their operands subsequently dead. 800 static bool 801 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 802 bool Changed = false; 803 804 while (!DeadInsts.empty()) { 805 Value *V = DeadInsts.pop_back_val(); 806 Instruction *I = dyn_cast_or_null<Instruction>(V); 807 808 if (!I || !isInstructionTriviallyDead(I)) 809 continue; 810 811 for (Use &O : I->operands()) 812 if (Instruction *U = dyn_cast<Instruction>(O)) { 813 O = nullptr; 814 if (U->use_empty()) 815 DeadInsts.emplace_back(U); 816 } 817 818 I->eraseFromParent(); 819 Changed = true; 820 } 821 822 return Changed; 823 } 824 825 namespace { 826 class LSRUse; 827 } 828 829 /// \brief Check if the addressing mode defined by \p F is completely 830 /// folded in \p LU at isel time. 831 /// This includes address-mode folding and special icmp tricks. 832 /// This function returns true if \p LU can accommodate what \p F 833 /// defines and up to 1 base + 1 scaled + offset. 834 /// In other words, if \p F has several base registers, this function may 835 /// still return true. Therefore, users still need to account for 836 /// additional base registers and/or unfolded offsets to derive an 837 /// accurate cost model. 838 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 839 const LSRUse &LU, const Formula &F); 840 // Get the cost of the scaling factor used in F for LU. 841 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 842 const LSRUse &LU, const Formula &F); 843 844 namespace { 845 846 /// This class is used to measure and compare candidate formulae. 847 class Cost { 848 /// TODO: Some of these could be merged. Also, a lexical ordering 849 /// isn't always optimal. 850 unsigned NumRegs; 851 unsigned AddRecCost; 852 unsigned NumIVMuls; 853 unsigned NumBaseAdds; 854 unsigned ImmCost; 855 unsigned SetupCost; 856 unsigned ScaleCost; 857 858 public: 859 Cost() 860 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 861 SetupCost(0), ScaleCost(0) {} 862 863 bool operator<(const Cost &Other) const; 864 865 void Lose(); 866 867 #ifndef NDEBUG 868 // Once any of the metrics loses, they must all remain losers. 869 bool isValid() { 870 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 871 | ImmCost | SetupCost | ScaleCost) != ~0u) 872 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 873 & ImmCost & SetupCost & ScaleCost) == ~0u); 874 } 875 #endif 876 877 bool isLoser() { 878 assert(isValid() && "invalid cost"); 879 return NumRegs == ~0u; 880 } 881 882 void RateFormula(const TargetTransformInfo &TTI, 883 const Formula &F, 884 SmallPtrSetImpl<const SCEV *> &Regs, 885 const DenseSet<const SCEV *> &VisitedRegs, 886 const Loop *L, 887 ScalarEvolution &SE, DominatorTree &DT, 888 const LSRUse &LU, 889 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 890 891 void print(raw_ostream &OS) const; 892 void dump() const; 893 894 private: 895 void RateRegister(const SCEV *Reg, 896 SmallPtrSetImpl<const SCEV *> &Regs, 897 const Loop *L, 898 ScalarEvolution &SE, DominatorTree &DT); 899 void RatePrimaryRegister(const SCEV *Reg, 900 SmallPtrSetImpl<const SCEV *> &Regs, 901 const Loop *L, 902 ScalarEvolution &SE, DominatorTree &DT, 903 SmallPtrSetImpl<const SCEV *> *LoserRegs); 904 }; 905 906 /// An operand value in an instruction which is to be replaced with some 907 /// equivalent, possibly strength-reduced, replacement. 908 struct LSRFixup { 909 /// The instruction which will be updated. 910 Instruction *UserInst; 911 912 /// The operand of the instruction which will be replaced. The operand may be 913 /// used more than once; every instance will be replaced. 914 Value *OperandValToReplace; 915 916 /// If this user is to use the post-incremented value of an induction 917 /// variable, this variable is non-null and holds the loop associated with the 918 /// induction variable. 919 PostIncLoopSet PostIncLoops; 920 921 /// A constant offset to be added to the LSRUse expression. This allows 922 /// multiple fixups to share the same LSRUse with different offsets, for 923 /// example in an unrolled loop. 924 int64_t Offset; 925 926 bool isUseFullyOutsideLoop(const Loop *L) const; 927 928 LSRFixup(); 929 930 void print(raw_ostream &OS) const; 931 void dump() const; 932 }; 933 934 935 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 936 /// SmallVectors of const SCEV*. 937 struct UniquifierDenseMapInfo { 938 static SmallVector<const SCEV *, 4> getEmptyKey() { 939 SmallVector<const SCEV *, 4> V; 940 V.push_back(reinterpret_cast<const SCEV *>(-1)); 941 return V; 942 } 943 944 static SmallVector<const SCEV *, 4> getTombstoneKey() { 945 SmallVector<const SCEV *, 4> V; 946 V.push_back(reinterpret_cast<const SCEV *>(-2)); 947 return V; 948 } 949 950 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 951 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 952 } 953 954 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 955 const SmallVector<const SCEV *, 4> &RHS) { 956 return LHS == RHS; 957 } 958 }; 959 960 /// This class holds the state that LSR keeps for each use in IVUsers, as well 961 /// as uses invented by LSR itself. It includes information about what kinds of 962 /// things can be folded into the user, information about the user itself, and 963 /// information about how the use may be satisfied. TODO: Represent multiple 964 /// users of the same expression in common? 965 class LSRUse { 966 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 967 968 public: 969 /// An enum for a kind of use, indicating what types of scaled and immediate 970 /// operands it might support. 971 enum KindType { 972 Basic, ///< A normal use, with no folding. 973 Special, ///< A special case of basic, allowing -1 scales. 974 Address, ///< An address use; folding according to TargetLowering 975 ICmpZero ///< An equality icmp with both operands folded into one. 976 // TODO: Add a generic icmp too? 977 }; 978 979 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 980 981 KindType Kind; 982 MemAccessTy AccessTy; 983 984 /// The list of operands which are to be replaced. 985 SmallVector<LSRFixup, 8> Fixups; 986 987 /// Keep track of the min and max offsets of the fixups. 988 int64_t MinOffset; 989 int64_t MaxOffset; 990 991 /// This records whether all of the fixups using this LSRUse are outside of 992 /// the loop, in which case some special-case heuristics may be used. 993 bool AllFixupsOutsideLoop; 994 995 /// RigidFormula is set to true to guarantee that this use will be associated 996 /// with a single formula--the one that initially matched. Some SCEV 997 /// expressions cannot be expanded. This allows LSR to consider the registers 998 /// used by those expressions without the need to expand them later after 999 /// changing the formula. 1000 bool RigidFormula; 1001 1002 /// This records the widest use type for any fixup using this 1003 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1004 /// fixup widths to be equivalent, because the narrower one may be relying on 1005 /// the implicit truncation to truncate away bogus bits. 1006 Type *WidestFixupType; 1007 1008 /// A list of ways to build a value that can satisfy this user. After the 1009 /// list is populated, one of these is selected heuristically and used to 1010 /// formulate a replacement for OperandValToReplace in UserInst. 1011 SmallVector<Formula, 12> Formulae; 1012 1013 /// The set of register candidates used by all formulae in this LSRUse. 1014 SmallPtrSet<const SCEV *, 4> Regs; 1015 1016 LSRUse(KindType K, MemAccessTy AT) 1017 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1018 AllFixupsOutsideLoop(true), RigidFormula(false), 1019 WidestFixupType(nullptr) {} 1020 1021 LSRFixup &getNewFixup() { 1022 Fixups.push_back(LSRFixup()); 1023 return Fixups.back(); 1024 } 1025 1026 void pushFixup(LSRFixup &f) { 1027 Fixups.push_back(f); 1028 if (f.Offset > MaxOffset) 1029 MaxOffset = f.Offset; 1030 if (f.Offset < MinOffset) 1031 MinOffset = f.Offset; 1032 } 1033 1034 bool HasFormulaWithSameRegs(const Formula &F) const; 1035 bool InsertFormula(const Formula &F); 1036 void DeleteFormula(Formula &F); 1037 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1038 1039 void print(raw_ostream &OS) const; 1040 void dump() const; 1041 }; 1042 1043 } 1044 1045 /// Tally up interesting quantities from the given register. 1046 void Cost::RateRegister(const SCEV *Reg, 1047 SmallPtrSetImpl<const SCEV *> &Regs, 1048 const Loop *L, 1049 ScalarEvolution &SE, DominatorTree &DT) { 1050 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1051 // If this is an addrec for another loop, don't second-guess its addrec phi 1052 // nodes. LSR isn't currently smart enough to reason about more than one 1053 // loop at a time. LSR has already run on inner loops, will not run on outer 1054 // loops, and cannot be expected to change sibling loops. 1055 if (AR->getLoop() != L) { 1056 // If the AddRec exists, consider it's register free and leave it alone. 1057 if (isExistingPhi(AR, SE)) 1058 return; 1059 1060 // Otherwise, do not consider this formula at all. 1061 Lose(); 1062 return; 1063 } 1064 AddRecCost += 1; /// TODO: This should be a function of the stride. 1065 1066 // Add the step value register, if it needs one. 1067 // TODO: The non-affine case isn't precisely modeled here. 1068 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1069 if (!Regs.count(AR->getOperand(1))) { 1070 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1071 if (isLoser()) 1072 return; 1073 } 1074 } 1075 } 1076 ++NumRegs; 1077 1078 // Rough heuristic; favor registers which don't require extra setup 1079 // instructions in the preheader. 1080 if (!isa<SCEVUnknown>(Reg) && 1081 !isa<SCEVConstant>(Reg) && 1082 !(isa<SCEVAddRecExpr>(Reg) && 1083 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1084 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1085 ++SetupCost; 1086 1087 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1088 SE.hasComputableLoopEvolution(Reg, L); 1089 } 1090 1091 /// Record this register in the set. If we haven't seen it before, rate 1092 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1093 /// one of those regs an instant loser. 1094 void Cost::RatePrimaryRegister(const SCEV *Reg, 1095 SmallPtrSetImpl<const SCEV *> &Regs, 1096 const Loop *L, 1097 ScalarEvolution &SE, DominatorTree &DT, 1098 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1099 if (LoserRegs && LoserRegs->count(Reg)) { 1100 Lose(); 1101 return; 1102 } 1103 if (Regs.insert(Reg).second) { 1104 RateRegister(Reg, Regs, L, SE, DT); 1105 if (LoserRegs && isLoser()) 1106 LoserRegs->insert(Reg); 1107 } 1108 } 1109 1110 void Cost::RateFormula(const TargetTransformInfo &TTI, 1111 const Formula &F, 1112 SmallPtrSetImpl<const SCEV *> &Regs, 1113 const DenseSet<const SCEV *> &VisitedRegs, 1114 const Loop *L, 1115 ScalarEvolution &SE, DominatorTree &DT, 1116 const LSRUse &LU, 1117 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1118 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1119 // Tally up the registers. 1120 if (const SCEV *ScaledReg = F.ScaledReg) { 1121 if (VisitedRegs.count(ScaledReg)) { 1122 Lose(); 1123 return; 1124 } 1125 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1126 if (isLoser()) 1127 return; 1128 } 1129 for (const SCEV *BaseReg : F.BaseRegs) { 1130 if (VisitedRegs.count(BaseReg)) { 1131 Lose(); 1132 return; 1133 } 1134 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1135 if (isLoser()) 1136 return; 1137 } 1138 1139 // Determine how many (unfolded) adds we'll need inside the loop. 1140 size_t NumBaseParts = F.getNumRegs(); 1141 if (NumBaseParts > 1) 1142 // Do not count the base and a possible second register if the target 1143 // allows to fold 2 registers. 1144 NumBaseAdds += 1145 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1146 NumBaseAdds += (F.UnfoldedOffset != 0); 1147 1148 // Accumulate non-free scaling amounts. 1149 ScaleCost += getScalingFactorCost(TTI, LU, F); 1150 1151 // Tally up the non-zero immediates. 1152 for (const LSRFixup &Fixup : LU.Fixups) { 1153 int64_t O = Fixup.Offset; 1154 int64_t Offset = (uint64_t)O + F.BaseOffset; 1155 if (F.BaseGV) 1156 ImmCost += 64; // Handle symbolic values conservatively. 1157 // TODO: This should probably be the pointer size. 1158 else if (Offset != 0) 1159 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1160 1161 // Check with target if this offset with this instruction is 1162 // specifically not supported. 1163 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1164 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1165 NumBaseAdds++; 1166 } 1167 assert(isValid() && "invalid cost"); 1168 } 1169 1170 /// Set this cost to a losing value. 1171 void Cost::Lose() { 1172 NumRegs = ~0u; 1173 AddRecCost = ~0u; 1174 NumIVMuls = ~0u; 1175 NumBaseAdds = ~0u; 1176 ImmCost = ~0u; 1177 SetupCost = ~0u; 1178 ScaleCost = ~0u; 1179 } 1180 1181 /// Choose the lower cost. 1182 bool Cost::operator<(const Cost &Other) const { 1183 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1184 ImmCost, SetupCost) < 1185 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1186 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1187 Other.SetupCost); 1188 } 1189 1190 void Cost::print(raw_ostream &OS) const { 1191 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1192 if (AddRecCost != 0) 1193 OS << ", with addrec cost " << AddRecCost; 1194 if (NumIVMuls != 0) 1195 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1196 if (NumBaseAdds != 0) 1197 OS << ", plus " << NumBaseAdds << " base add" 1198 << (NumBaseAdds == 1 ? "" : "s"); 1199 if (ScaleCost != 0) 1200 OS << ", plus " << ScaleCost << " scale cost"; 1201 if (ImmCost != 0) 1202 OS << ", plus " << ImmCost << " imm cost"; 1203 if (SetupCost != 0) 1204 OS << ", plus " << SetupCost << " setup cost"; 1205 } 1206 1207 LLVM_DUMP_METHOD 1208 void Cost::dump() const { 1209 print(errs()); errs() << '\n'; 1210 } 1211 1212 LSRFixup::LSRFixup() 1213 : UserInst(nullptr), OperandValToReplace(nullptr), 1214 Offset(0) {} 1215 1216 /// Test whether this fixup always uses its value outside of the given loop. 1217 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1218 // PHI nodes use their value in their incoming blocks. 1219 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1220 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1221 if (PN->getIncomingValue(i) == OperandValToReplace && 1222 L->contains(PN->getIncomingBlock(i))) 1223 return false; 1224 return true; 1225 } 1226 1227 return !L->contains(UserInst); 1228 } 1229 1230 void LSRFixup::print(raw_ostream &OS) const { 1231 OS << "UserInst="; 1232 // Store is common and interesting enough to be worth special-casing. 1233 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1234 OS << "store "; 1235 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1236 } else if (UserInst->getType()->isVoidTy()) 1237 OS << UserInst->getOpcodeName(); 1238 else 1239 UserInst->printAsOperand(OS, /*PrintType=*/false); 1240 1241 OS << ", OperandValToReplace="; 1242 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1243 1244 for (const Loop *PIL : PostIncLoops) { 1245 OS << ", PostIncLoop="; 1246 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1247 } 1248 1249 if (Offset != 0) 1250 OS << ", Offset=" << Offset; 1251 } 1252 1253 LLVM_DUMP_METHOD 1254 void LSRFixup::dump() const { 1255 print(errs()); errs() << '\n'; 1256 } 1257 1258 /// Test whether this use as a formula which has the same registers as the given 1259 /// formula. 1260 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1261 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1262 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1263 // Unstable sort by host order ok, because this is only used for uniquifying. 1264 std::sort(Key.begin(), Key.end()); 1265 return Uniquifier.count(Key); 1266 } 1267 1268 /// If the given formula has not yet been inserted, add it to the list, and 1269 /// return true. Return false otherwise. The formula must be in canonical form. 1270 bool LSRUse::InsertFormula(const Formula &F) { 1271 assert(F.isCanonical() && "Invalid canonical representation"); 1272 1273 if (!Formulae.empty() && RigidFormula) 1274 return false; 1275 1276 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1277 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1278 // Unstable sort by host order ok, because this is only used for uniquifying. 1279 std::sort(Key.begin(), Key.end()); 1280 1281 if (!Uniquifier.insert(Key).second) 1282 return false; 1283 1284 // Using a register to hold the value of 0 is not profitable. 1285 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1286 "Zero allocated in a scaled register!"); 1287 #ifndef NDEBUG 1288 for (const SCEV *BaseReg : F.BaseRegs) 1289 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1290 #endif 1291 1292 // Add the formula to the list. 1293 Formulae.push_back(F); 1294 1295 // Record registers now being used by this use. 1296 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1297 if (F.ScaledReg) 1298 Regs.insert(F.ScaledReg); 1299 1300 return true; 1301 } 1302 1303 /// Remove the given formula from this use's list. 1304 void LSRUse::DeleteFormula(Formula &F) { 1305 if (&F != &Formulae.back()) 1306 std::swap(F, Formulae.back()); 1307 Formulae.pop_back(); 1308 } 1309 1310 /// Recompute the Regs field, and update RegUses. 1311 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1312 // Now that we've filtered out some formulae, recompute the Regs set. 1313 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1314 Regs.clear(); 1315 for (const Formula &F : Formulae) { 1316 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1317 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1318 } 1319 1320 // Update the RegTracker. 1321 for (const SCEV *S : OldRegs) 1322 if (!Regs.count(S)) 1323 RegUses.dropRegister(S, LUIdx); 1324 } 1325 1326 void LSRUse::print(raw_ostream &OS) const { 1327 OS << "LSR Use: Kind="; 1328 switch (Kind) { 1329 case Basic: OS << "Basic"; break; 1330 case Special: OS << "Special"; break; 1331 case ICmpZero: OS << "ICmpZero"; break; 1332 case Address: 1333 OS << "Address of "; 1334 if (AccessTy.MemTy->isPointerTy()) 1335 OS << "pointer"; // the full pointer type could be really verbose 1336 else { 1337 OS << *AccessTy.MemTy; 1338 } 1339 1340 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1341 } 1342 1343 OS << ", Offsets={"; 1344 bool NeedComma = false; 1345 for (const LSRFixup &Fixup : Fixups) { 1346 if (NeedComma) OS << ','; 1347 OS << Fixup.Offset; 1348 NeedComma = true; 1349 } 1350 OS << '}'; 1351 1352 if (AllFixupsOutsideLoop) 1353 OS << ", all-fixups-outside-loop"; 1354 1355 if (WidestFixupType) 1356 OS << ", widest fixup type: " << *WidestFixupType; 1357 } 1358 1359 LLVM_DUMP_METHOD 1360 void LSRUse::dump() const { 1361 print(errs()); errs() << '\n'; 1362 } 1363 1364 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1365 LSRUse::KindType Kind, MemAccessTy AccessTy, 1366 GlobalValue *BaseGV, int64_t BaseOffset, 1367 bool HasBaseReg, int64_t Scale) { 1368 switch (Kind) { 1369 case LSRUse::Address: 1370 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1371 HasBaseReg, Scale, AccessTy.AddrSpace); 1372 1373 case LSRUse::ICmpZero: 1374 // There's not even a target hook for querying whether it would be legal to 1375 // fold a GV into an ICmp. 1376 if (BaseGV) 1377 return false; 1378 1379 // ICmp only has two operands; don't allow more than two non-trivial parts. 1380 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1381 return false; 1382 1383 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1384 // putting the scaled register in the other operand of the icmp. 1385 if (Scale != 0 && Scale != -1) 1386 return false; 1387 1388 // If we have low-level target information, ask the target if it can fold an 1389 // integer immediate on an icmp. 1390 if (BaseOffset != 0) { 1391 // We have one of: 1392 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1393 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1394 // Offs is the ICmp immediate. 1395 if (Scale == 0) 1396 // The cast does the right thing with INT64_MIN. 1397 BaseOffset = -(uint64_t)BaseOffset; 1398 return TTI.isLegalICmpImmediate(BaseOffset); 1399 } 1400 1401 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1402 return true; 1403 1404 case LSRUse::Basic: 1405 // Only handle single-register values. 1406 return !BaseGV && Scale == 0 && BaseOffset == 0; 1407 1408 case LSRUse::Special: 1409 // Special case Basic to handle -1 scales. 1410 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1411 } 1412 1413 llvm_unreachable("Invalid LSRUse Kind!"); 1414 } 1415 1416 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1417 int64_t MinOffset, int64_t MaxOffset, 1418 LSRUse::KindType Kind, MemAccessTy AccessTy, 1419 GlobalValue *BaseGV, int64_t BaseOffset, 1420 bool HasBaseReg, int64_t Scale) { 1421 // Check for overflow. 1422 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1423 (MinOffset > 0)) 1424 return false; 1425 MinOffset = (uint64_t)BaseOffset + MinOffset; 1426 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1427 (MaxOffset > 0)) 1428 return false; 1429 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1430 1431 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1432 HasBaseReg, Scale) && 1433 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1434 HasBaseReg, Scale); 1435 } 1436 1437 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1438 int64_t MinOffset, int64_t MaxOffset, 1439 LSRUse::KindType Kind, MemAccessTy AccessTy, 1440 const Formula &F) { 1441 // For the purpose of isAMCompletelyFolded either having a canonical formula 1442 // or a scale not equal to zero is correct. 1443 // Problems may arise from non canonical formulae having a scale == 0. 1444 // Strictly speaking it would best to just rely on canonical formulae. 1445 // However, when we generate the scaled formulae, we first check that the 1446 // scaling factor is profitable before computing the actual ScaledReg for 1447 // compile time sake. 1448 assert((F.isCanonical() || F.Scale != 0)); 1449 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1450 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1451 } 1452 1453 /// Test whether we know how to expand the current formula. 1454 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1455 int64_t MaxOffset, LSRUse::KindType Kind, 1456 MemAccessTy AccessTy, GlobalValue *BaseGV, 1457 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1458 // We know how to expand completely foldable formulae. 1459 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1460 BaseOffset, HasBaseReg, Scale) || 1461 // Or formulae that use a base register produced by a sum of base 1462 // registers. 1463 (Scale == 1 && 1464 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1465 BaseGV, BaseOffset, true, 0)); 1466 } 1467 1468 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1469 int64_t MaxOffset, LSRUse::KindType Kind, 1470 MemAccessTy AccessTy, const Formula &F) { 1471 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1472 F.BaseOffset, F.HasBaseReg, F.Scale); 1473 } 1474 1475 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1476 const LSRUse &LU, const Formula &F) { 1477 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1478 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1479 F.Scale); 1480 } 1481 1482 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1483 const LSRUse &LU, const Formula &F) { 1484 if (!F.Scale) 1485 return 0; 1486 1487 // If the use is not completely folded in that instruction, we will have to 1488 // pay an extra cost only for scale != 1. 1489 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1490 LU.AccessTy, F)) 1491 return F.Scale != 1; 1492 1493 switch (LU.Kind) { 1494 case LSRUse::Address: { 1495 // Check the scaling factor cost with both the min and max offsets. 1496 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1497 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1498 F.Scale, LU.AccessTy.AddrSpace); 1499 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1500 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1501 F.Scale, LU.AccessTy.AddrSpace); 1502 1503 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1504 "Legal addressing mode has an illegal cost!"); 1505 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1506 } 1507 case LSRUse::ICmpZero: 1508 case LSRUse::Basic: 1509 case LSRUse::Special: 1510 // The use is completely folded, i.e., everything is folded into the 1511 // instruction. 1512 return 0; 1513 } 1514 1515 llvm_unreachable("Invalid LSRUse Kind!"); 1516 } 1517 1518 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1519 LSRUse::KindType Kind, MemAccessTy AccessTy, 1520 GlobalValue *BaseGV, int64_t BaseOffset, 1521 bool HasBaseReg) { 1522 // Fast-path: zero is always foldable. 1523 if (BaseOffset == 0 && !BaseGV) return true; 1524 1525 // Conservatively, create an address with an immediate and a 1526 // base and a scale. 1527 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1528 1529 // Canonicalize a scale of 1 to a base register if the formula doesn't 1530 // already have a base register. 1531 if (!HasBaseReg && Scale == 1) { 1532 Scale = 0; 1533 HasBaseReg = true; 1534 } 1535 1536 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1537 HasBaseReg, Scale); 1538 } 1539 1540 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1541 ScalarEvolution &SE, int64_t MinOffset, 1542 int64_t MaxOffset, LSRUse::KindType Kind, 1543 MemAccessTy AccessTy, const SCEV *S, 1544 bool HasBaseReg) { 1545 // Fast-path: zero is always foldable. 1546 if (S->isZero()) return true; 1547 1548 // Conservatively, create an address with an immediate and a 1549 // base and a scale. 1550 int64_t BaseOffset = ExtractImmediate(S, SE); 1551 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1552 1553 // If there's anything else involved, it's not foldable. 1554 if (!S->isZero()) return false; 1555 1556 // Fast-path: zero is always foldable. 1557 if (BaseOffset == 0 && !BaseGV) return true; 1558 1559 // Conservatively, create an address with an immediate and a 1560 // base and a scale. 1561 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1562 1563 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1564 BaseOffset, HasBaseReg, Scale); 1565 } 1566 1567 namespace { 1568 1569 /// An individual increment in a Chain of IV increments. Relate an IV user to 1570 /// an expression that computes the IV it uses from the IV used by the previous 1571 /// link in the Chain. 1572 /// 1573 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1574 /// original IVOperand. The head of the chain's IVOperand is only valid during 1575 /// chain collection, before LSR replaces IV users. During chain generation, 1576 /// IncExpr can be used to find the new IVOperand that computes the same 1577 /// expression. 1578 struct IVInc { 1579 Instruction *UserInst; 1580 Value* IVOperand; 1581 const SCEV *IncExpr; 1582 1583 IVInc(Instruction *U, Value *O, const SCEV *E): 1584 UserInst(U), IVOperand(O), IncExpr(E) {} 1585 }; 1586 1587 // The list of IV increments in program order. We typically add the head of a 1588 // chain without finding subsequent links. 1589 struct IVChain { 1590 SmallVector<IVInc,1> Incs; 1591 const SCEV *ExprBase; 1592 1593 IVChain() : ExprBase(nullptr) {} 1594 1595 IVChain(const IVInc &Head, const SCEV *Base) 1596 : Incs(1, Head), ExprBase(Base) {} 1597 1598 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1599 1600 // Return the first increment in the chain. 1601 const_iterator begin() const { 1602 assert(!Incs.empty()); 1603 return std::next(Incs.begin()); 1604 } 1605 const_iterator end() const { 1606 return Incs.end(); 1607 } 1608 1609 // Returns true if this chain contains any increments. 1610 bool hasIncs() const { return Incs.size() >= 2; } 1611 1612 // Add an IVInc to the end of this chain. 1613 void add(const IVInc &X) { Incs.push_back(X); } 1614 1615 // Returns the last UserInst in the chain. 1616 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1617 1618 // Returns true if IncExpr can be profitably added to this chain. 1619 bool isProfitableIncrement(const SCEV *OperExpr, 1620 const SCEV *IncExpr, 1621 ScalarEvolution&); 1622 }; 1623 1624 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1625 /// between FarUsers that definitely cross IV increments and NearUsers that may 1626 /// be used between IV increments. 1627 struct ChainUsers { 1628 SmallPtrSet<Instruction*, 4> FarUsers; 1629 SmallPtrSet<Instruction*, 4> NearUsers; 1630 }; 1631 1632 /// This class holds state for the main loop strength reduction logic. 1633 class LSRInstance { 1634 IVUsers &IU; 1635 ScalarEvolution &SE; 1636 DominatorTree &DT; 1637 LoopInfo &LI; 1638 const TargetTransformInfo &TTI; 1639 Loop *const L; 1640 bool Changed; 1641 1642 /// This is the insert position that the current loop's induction variable 1643 /// increment should be placed. In simple loops, this is the latch block's 1644 /// terminator. But in more complicated cases, this is a position which will 1645 /// dominate all the in-loop post-increment users. 1646 Instruction *IVIncInsertPos; 1647 1648 /// Interesting factors between use strides. 1649 /// 1650 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1651 /// default, a SmallDenseSet, because we need to use the full range of 1652 /// int64_ts, and there's currently no good way of doing that with 1653 /// SmallDenseSet. 1654 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1655 1656 /// Interesting use types, to facilitate truncation reuse. 1657 SmallSetVector<Type *, 4> Types; 1658 1659 /// The list of interesting uses. 1660 SmallVector<LSRUse, 16> Uses; 1661 1662 /// Track which uses use which register candidates. 1663 RegUseTracker RegUses; 1664 1665 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1666 // have more than a few IV increment chains in a loop. Missing a Chain falls 1667 // back to normal LSR behavior for those uses. 1668 static const unsigned MaxChains = 8; 1669 1670 /// IV users can form a chain of IV increments. 1671 SmallVector<IVChain, MaxChains> IVChainVec; 1672 1673 /// IV users that belong to profitable IVChains. 1674 SmallPtrSet<Use*, MaxChains> IVIncSet; 1675 1676 void OptimizeShadowIV(); 1677 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1678 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1679 void OptimizeLoopTermCond(); 1680 1681 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1682 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1683 void FinalizeChain(IVChain &Chain); 1684 void CollectChains(); 1685 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1686 SmallVectorImpl<WeakVH> &DeadInsts); 1687 1688 void CollectInterestingTypesAndFactors(); 1689 void CollectFixupsAndInitialFormulae(); 1690 1691 // Support for sharing of LSRUses between LSRFixups. 1692 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1693 UseMapTy UseMap; 1694 1695 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1696 LSRUse::KindType Kind, MemAccessTy AccessTy); 1697 1698 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1699 MemAccessTy AccessTy); 1700 1701 void DeleteUse(LSRUse &LU, size_t LUIdx); 1702 1703 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1704 1705 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1706 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1707 void CountRegisters(const Formula &F, size_t LUIdx); 1708 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1709 1710 void CollectLoopInvariantFixupsAndFormulae(); 1711 1712 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1713 unsigned Depth = 0); 1714 1715 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1716 const Formula &Base, unsigned Depth, 1717 size_t Idx, bool IsScaledReg = false); 1718 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1719 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1720 const Formula &Base, size_t Idx, 1721 bool IsScaledReg = false); 1722 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1723 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1724 const Formula &Base, 1725 const SmallVectorImpl<int64_t> &Worklist, 1726 size_t Idx, bool IsScaledReg = false); 1727 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1728 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1729 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1730 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1731 void GenerateCrossUseConstantOffsets(); 1732 void GenerateAllReuseFormulae(); 1733 1734 void FilterOutUndesirableDedicatedRegisters(); 1735 1736 size_t EstimateSearchSpaceComplexity() const; 1737 void NarrowSearchSpaceByDetectingSupersets(); 1738 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1739 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1740 void NarrowSearchSpaceByPickingWinnerRegs(); 1741 void NarrowSearchSpaceUsingHeuristics(); 1742 1743 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1744 Cost &SolutionCost, 1745 SmallVectorImpl<const Formula *> &Workspace, 1746 const Cost &CurCost, 1747 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1748 DenseSet<const SCEV *> &VisitedRegs) const; 1749 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1750 1751 BasicBlock::iterator 1752 HoistInsertPosition(BasicBlock::iterator IP, 1753 const SmallVectorImpl<Instruction *> &Inputs) const; 1754 BasicBlock::iterator 1755 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1756 const LSRFixup &LF, 1757 const LSRUse &LU, 1758 SCEVExpander &Rewriter) const; 1759 1760 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1761 const Formula &F, 1762 BasicBlock::iterator IP, 1763 SCEVExpander &Rewriter, 1764 SmallVectorImpl<WeakVH> &DeadInsts) const; 1765 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1766 const Formula &F, 1767 SCEVExpander &Rewriter, 1768 SmallVectorImpl<WeakVH> &DeadInsts) const; 1769 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1770 const Formula &F, 1771 SCEVExpander &Rewriter, 1772 SmallVectorImpl<WeakVH> &DeadInsts) const; 1773 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1774 1775 public: 1776 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1777 LoopInfo &LI, const TargetTransformInfo &TTI); 1778 1779 bool getChanged() const { return Changed; } 1780 1781 void print_factors_and_types(raw_ostream &OS) const; 1782 void print_fixups(raw_ostream &OS) const; 1783 void print_uses(raw_ostream &OS) const; 1784 void print(raw_ostream &OS) const; 1785 void dump() const; 1786 }; 1787 1788 } 1789 1790 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1791 /// the cast operation. 1792 void LSRInstance::OptimizeShadowIV() { 1793 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1794 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1795 return; 1796 1797 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1798 UI != E; /* empty */) { 1799 IVUsers::const_iterator CandidateUI = UI; 1800 ++UI; 1801 Instruction *ShadowUse = CandidateUI->getUser(); 1802 Type *DestTy = nullptr; 1803 bool IsSigned = false; 1804 1805 /* If shadow use is a int->float cast then insert a second IV 1806 to eliminate this cast. 1807 1808 for (unsigned i = 0; i < n; ++i) 1809 foo((double)i); 1810 1811 is transformed into 1812 1813 double d = 0.0; 1814 for (unsigned i = 0; i < n; ++i, ++d) 1815 foo(d); 1816 */ 1817 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1818 IsSigned = false; 1819 DestTy = UCast->getDestTy(); 1820 } 1821 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1822 IsSigned = true; 1823 DestTy = SCast->getDestTy(); 1824 } 1825 if (!DestTy) continue; 1826 1827 // If target does not support DestTy natively then do not apply 1828 // this transformation. 1829 if (!TTI.isTypeLegal(DestTy)) continue; 1830 1831 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1832 if (!PH) continue; 1833 if (PH->getNumIncomingValues() != 2) continue; 1834 1835 Type *SrcTy = PH->getType(); 1836 int Mantissa = DestTy->getFPMantissaWidth(); 1837 if (Mantissa == -1) continue; 1838 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1839 continue; 1840 1841 unsigned Entry, Latch; 1842 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1843 Entry = 0; 1844 Latch = 1; 1845 } else { 1846 Entry = 1; 1847 Latch = 0; 1848 } 1849 1850 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1851 if (!Init) continue; 1852 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1853 (double)Init->getSExtValue() : 1854 (double)Init->getZExtValue()); 1855 1856 BinaryOperator *Incr = 1857 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1858 if (!Incr) continue; 1859 if (Incr->getOpcode() != Instruction::Add 1860 && Incr->getOpcode() != Instruction::Sub) 1861 continue; 1862 1863 /* Initialize new IV, double d = 0.0 in above example. */ 1864 ConstantInt *C = nullptr; 1865 if (Incr->getOperand(0) == PH) 1866 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1867 else if (Incr->getOperand(1) == PH) 1868 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1869 else 1870 continue; 1871 1872 if (!C) continue; 1873 1874 // Ignore negative constants, as the code below doesn't handle them 1875 // correctly. TODO: Remove this restriction. 1876 if (!C->getValue().isStrictlyPositive()) continue; 1877 1878 /* Add new PHINode. */ 1879 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1880 1881 /* create new increment. '++d' in above example. */ 1882 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1883 BinaryOperator *NewIncr = 1884 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1885 Instruction::FAdd : Instruction::FSub, 1886 NewPH, CFP, "IV.S.next.", Incr); 1887 1888 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1889 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1890 1891 /* Remove cast operation */ 1892 ShadowUse->replaceAllUsesWith(NewPH); 1893 ShadowUse->eraseFromParent(); 1894 Changed = true; 1895 break; 1896 } 1897 } 1898 1899 /// If Cond has an operand that is an expression of an IV, set the IV user and 1900 /// stride information and return true, otherwise return false. 1901 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1902 for (IVStrideUse &U : IU) 1903 if (U.getUser() == Cond) { 1904 // NOTE: we could handle setcc instructions with multiple uses here, but 1905 // InstCombine does it as well for simple uses, it's not clear that it 1906 // occurs enough in real life to handle. 1907 CondUse = &U; 1908 return true; 1909 } 1910 return false; 1911 } 1912 1913 /// Rewrite the loop's terminating condition if it uses a max computation. 1914 /// 1915 /// This is a narrow solution to a specific, but acute, problem. For loops 1916 /// like this: 1917 /// 1918 /// i = 0; 1919 /// do { 1920 /// p[i] = 0.0; 1921 /// } while (++i < n); 1922 /// 1923 /// the trip count isn't just 'n', because 'n' might not be positive. And 1924 /// unfortunately this can come up even for loops where the user didn't use 1925 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1926 /// will commonly be lowered like this: 1927 // 1928 /// if (n > 0) { 1929 /// i = 0; 1930 /// do { 1931 /// p[i] = 0.0; 1932 /// } while (++i < n); 1933 /// } 1934 /// 1935 /// and then it's possible for subsequent optimization to obscure the if 1936 /// test in such a way that indvars can't find it. 1937 /// 1938 /// When indvars can't find the if test in loops like this, it creates a 1939 /// max expression, which allows it to give the loop a canonical 1940 /// induction variable: 1941 /// 1942 /// i = 0; 1943 /// max = n < 1 ? 1 : n; 1944 /// do { 1945 /// p[i] = 0.0; 1946 /// } while (++i != max); 1947 /// 1948 /// Canonical induction variables are necessary because the loop passes 1949 /// are designed around them. The most obvious example of this is the 1950 /// LoopInfo analysis, which doesn't remember trip count values. It 1951 /// expects to be able to rediscover the trip count each time it is 1952 /// needed, and it does this using a simple analysis that only succeeds if 1953 /// the loop has a canonical induction variable. 1954 /// 1955 /// However, when it comes time to generate code, the maximum operation 1956 /// can be quite costly, especially if it's inside of an outer loop. 1957 /// 1958 /// This function solves this problem by detecting this type of loop and 1959 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1960 /// the instructions for the maximum computation. 1961 /// 1962 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1963 // Check that the loop matches the pattern we're looking for. 1964 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1965 Cond->getPredicate() != CmpInst::ICMP_NE) 1966 return Cond; 1967 1968 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1969 if (!Sel || !Sel->hasOneUse()) return Cond; 1970 1971 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1972 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1973 return Cond; 1974 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1975 1976 // Add one to the backedge-taken count to get the trip count. 1977 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1978 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1979 1980 // Check for a max calculation that matches the pattern. There's no check 1981 // for ICMP_ULE here because the comparison would be with zero, which 1982 // isn't interesting. 1983 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1984 const SCEVNAryExpr *Max = nullptr; 1985 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1986 Pred = ICmpInst::ICMP_SLE; 1987 Max = S; 1988 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1989 Pred = ICmpInst::ICMP_SLT; 1990 Max = S; 1991 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1992 Pred = ICmpInst::ICMP_ULT; 1993 Max = U; 1994 } else { 1995 // No match; bail. 1996 return Cond; 1997 } 1998 1999 // To handle a max with more than two operands, this optimization would 2000 // require additional checking and setup. 2001 if (Max->getNumOperands() != 2) 2002 return Cond; 2003 2004 const SCEV *MaxLHS = Max->getOperand(0); 2005 const SCEV *MaxRHS = Max->getOperand(1); 2006 2007 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2008 // for a comparison with 1. For <= and >=, a comparison with zero. 2009 if (!MaxLHS || 2010 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2011 return Cond; 2012 2013 // Check the relevant induction variable for conformance to 2014 // the pattern. 2015 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2016 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2017 if (!AR || !AR->isAffine() || 2018 AR->getStart() != One || 2019 AR->getStepRecurrence(SE) != One) 2020 return Cond; 2021 2022 assert(AR->getLoop() == L && 2023 "Loop condition operand is an addrec in a different loop!"); 2024 2025 // Check the right operand of the select, and remember it, as it will 2026 // be used in the new comparison instruction. 2027 Value *NewRHS = nullptr; 2028 if (ICmpInst::isTrueWhenEqual(Pred)) { 2029 // Look for n+1, and grab n. 2030 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2031 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2032 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2033 NewRHS = BO->getOperand(0); 2034 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2035 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2036 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2037 NewRHS = BO->getOperand(0); 2038 if (!NewRHS) 2039 return Cond; 2040 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2041 NewRHS = Sel->getOperand(1); 2042 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2043 NewRHS = Sel->getOperand(2); 2044 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2045 NewRHS = SU->getValue(); 2046 else 2047 // Max doesn't match expected pattern. 2048 return Cond; 2049 2050 // Determine the new comparison opcode. It may be signed or unsigned, 2051 // and the original comparison may be either equality or inequality. 2052 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2053 Pred = CmpInst::getInversePredicate(Pred); 2054 2055 // Ok, everything looks ok to change the condition into an SLT or SGE and 2056 // delete the max calculation. 2057 ICmpInst *NewCond = 2058 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2059 2060 // Delete the max calculation instructions. 2061 Cond->replaceAllUsesWith(NewCond); 2062 CondUse->setUser(NewCond); 2063 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2064 Cond->eraseFromParent(); 2065 Sel->eraseFromParent(); 2066 if (Cmp->use_empty()) 2067 Cmp->eraseFromParent(); 2068 return NewCond; 2069 } 2070 2071 /// Change loop terminating condition to use the postinc iv when possible. 2072 void 2073 LSRInstance::OptimizeLoopTermCond() { 2074 SmallPtrSet<Instruction *, 4> PostIncs; 2075 2076 // We need a different set of heuristics for rotated and non-rotated loops. 2077 // If a loop is rotated then the latch is also the backedge, so inserting 2078 // post-inc expressions just before the latch is ideal. To reduce live ranges 2079 // it also makes sense to rewrite terminating conditions to use post-inc 2080 // expressions. 2081 // 2082 // If the loop is not rotated then the latch is not a backedge; the latch 2083 // check is done in the loop head. Adding post-inc expressions before the 2084 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2085 // in the loop body. In this case we do *not* want to use post-inc expressions 2086 // in the latch check, and we want to insert post-inc expressions before 2087 // the backedge. 2088 BasicBlock *LatchBlock = L->getLoopLatch(); 2089 SmallVector<BasicBlock*, 8> ExitingBlocks; 2090 L->getExitingBlocks(ExitingBlocks); 2091 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2092 return LatchBlock != BB; 2093 })) { 2094 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2095 IVIncInsertPos = LatchBlock->getTerminator(); 2096 return; 2097 } 2098 2099 // Otherwise treat this as a rotated loop. 2100 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2101 2102 // Get the terminating condition for the loop if possible. If we 2103 // can, we want to change it to use a post-incremented version of its 2104 // induction variable, to allow coalescing the live ranges for the IV into 2105 // one register value. 2106 2107 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2108 if (!TermBr) 2109 continue; 2110 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2111 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2112 continue; 2113 2114 // Search IVUsesByStride to find Cond's IVUse if there is one. 2115 IVStrideUse *CondUse = nullptr; 2116 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2117 if (!FindIVUserForCond(Cond, CondUse)) 2118 continue; 2119 2120 // If the trip count is computed in terms of a max (due to ScalarEvolution 2121 // being unable to find a sufficient guard, for example), change the loop 2122 // comparison to use SLT or ULT instead of NE. 2123 // One consequence of doing this now is that it disrupts the count-down 2124 // optimization. That's not always a bad thing though, because in such 2125 // cases it may still be worthwhile to avoid a max. 2126 Cond = OptimizeMax(Cond, CondUse); 2127 2128 // If this exiting block dominates the latch block, it may also use 2129 // the post-inc value if it won't be shared with other uses. 2130 // Check for dominance. 2131 if (!DT.dominates(ExitingBlock, LatchBlock)) 2132 continue; 2133 2134 // Conservatively avoid trying to use the post-inc value in non-latch 2135 // exits if there may be pre-inc users in intervening blocks. 2136 if (LatchBlock != ExitingBlock) 2137 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2138 // Test if the use is reachable from the exiting block. This dominator 2139 // query is a conservative approximation of reachability. 2140 if (&*UI != CondUse && 2141 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2142 // Conservatively assume there may be reuse if the quotient of their 2143 // strides could be a legal scale. 2144 const SCEV *A = IU.getStride(*CondUse, L); 2145 const SCEV *B = IU.getStride(*UI, L); 2146 if (!A || !B) continue; 2147 if (SE.getTypeSizeInBits(A->getType()) != 2148 SE.getTypeSizeInBits(B->getType())) { 2149 if (SE.getTypeSizeInBits(A->getType()) > 2150 SE.getTypeSizeInBits(B->getType())) 2151 B = SE.getSignExtendExpr(B, A->getType()); 2152 else 2153 A = SE.getSignExtendExpr(A, B->getType()); 2154 } 2155 if (const SCEVConstant *D = 2156 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2157 const ConstantInt *C = D->getValue(); 2158 // Stride of one or negative one can have reuse with non-addresses. 2159 if (C->isOne() || C->isAllOnesValue()) 2160 goto decline_post_inc; 2161 // Avoid weird situations. 2162 if (C->getValue().getMinSignedBits() >= 64 || 2163 C->getValue().isMinSignedValue()) 2164 goto decline_post_inc; 2165 // Check for possible scaled-address reuse. 2166 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2167 int64_t Scale = C->getSExtValue(); 2168 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2169 /*BaseOffset=*/0, 2170 /*HasBaseReg=*/false, Scale, 2171 AccessTy.AddrSpace)) 2172 goto decline_post_inc; 2173 Scale = -Scale; 2174 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2175 /*BaseOffset=*/0, 2176 /*HasBaseReg=*/false, Scale, 2177 AccessTy.AddrSpace)) 2178 goto decline_post_inc; 2179 } 2180 } 2181 2182 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2183 << *Cond << '\n'); 2184 2185 // It's possible for the setcc instruction to be anywhere in the loop, and 2186 // possible for it to have multiple users. If it is not immediately before 2187 // the exiting block branch, move it. 2188 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2189 if (Cond->hasOneUse()) { 2190 Cond->moveBefore(TermBr); 2191 } else { 2192 // Clone the terminating condition and insert into the loopend. 2193 ICmpInst *OldCond = Cond; 2194 Cond = cast<ICmpInst>(Cond->clone()); 2195 Cond->setName(L->getHeader()->getName() + ".termcond"); 2196 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2197 2198 // Clone the IVUse, as the old use still exists! 2199 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2200 TermBr->replaceUsesOfWith(OldCond, Cond); 2201 } 2202 } 2203 2204 // If we get to here, we know that we can transform the setcc instruction to 2205 // use the post-incremented version of the IV, allowing us to coalesce the 2206 // live ranges for the IV correctly. 2207 CondUse->transformToPostInc(L); 2208 Changed = true; 2209 2210 PostIncs.insert(Cond); 2211 decline_post_inc:; 2212 } 2213 2214 // Determine an insertion point for the loop induction variable increment. It 2215 // must dominate all the post-inc comparisons we just set up, and it must 2216 // dominate the loop latch edge. 2217 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2218 for (Instruction *Inst : PostIncs) { 2219 BasicBlock *BB = 2220 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2221 Inst->getParent()); 2222 if (BB == Inst->getParent()) 2223 IVIncInsertPos = Inst; 2224 else if (BB != IVIncInsertPos->getParent()) 2225 IVIncInsertPos = BB->getTerminator(); 2226 } 2227 } 2228 2229 /// Determine if the given use can accommodate a fixup at the given offset and 2230 /// other details. If so, update the use and return true. 2231 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2232 bool HasBaseReg, LSRUse::KindType Kind, 2233 MemAccessTy AccessTy) { 2234 int64_t NewMinOffset = LU.MinOffset; 2235 int64_t NewMaxOffset = LU.MaxOffset; 2236 MemAccessTy NewAccessTy = AccessTy; 2237 2238 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2239 // something conservative, however this can pessimize in the case that one of 2240 // the uses will have all its uses outside the loop, for example. 2241 if (LU.Kind != Kind) 2242 return false; 2243 2244 // Check for a mismatched access type, and fall back conservatively as needed. 2245 // TODO: Be less conservative when the type is similar and can use the same 2246 // addressing modes. 2247 if (Kind == LSRUse::Address) { 2248 if (AccessTy != LU.AccessTy) 2249 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2250 } 2251 2252 // Conservatively assume HasBaseReg is true for now. 2253 if (NewOffset < LU.MinOffset) { 2254 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2255 LU.MaxOffset - NewOffset, HasBaseReg)) 2256 return false; 2257 NewMinOffset = NewOffset; 2258 } else if (NewOffset > LU.MaxOffset) { 2259 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2260 NewOffset - LU.MinOffset, HasBaseReg)) 2261 return false; 2262 NewMaxOffset = NewOffset; 2263 } 2264 2265 // Update the use. 2266 LU.MinOffset = NewMinOffset; 2267 LU.MaxOffset = NewMaxOffset; 2268 LU.AccessTy = NewAccessTy; 2269 return true; 2270 } 2271 2272 /// Return an LSRUse index and an offset value for a fixup which needs the given 2273 /// expression, with the given kind and optional access type. Either reuse an 2274 /// existing use or create a new one, as needed. 2275 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2276 LSRUse::KindType Kind, 2277 MemAccessTy AccessTy) { 2278 const SCEV *Copy = Expr; 2279 int64_t Offset = ExtractImmediate(Expr, SE); 2280 2281 // Basic uses can't accept any offset, for example. 2282 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2283 Offset, /*HasBaseReg=*/ true)) { 2284 Expr = Copy; 2285 Offset = 0; 2286 } 2287 2288 std::pair<UseMapTy::iterator, bool> P = 2289 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2290 if (!P.second) { 2291 // A use already existed with this base. 2292 size_t LUIdx = P.first->second; 2293 LSRUse &LU = Uses[LUIdx]; 2294 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2295 // Reuse this use. 2296 return std::make_pair(LUIdx, Offset); 2297 } 2298 2299 // Create a new use. 2300 size_t LUIdx = Uses.size(); 2301 P.first->second = LUIdx; 2302 Uses.push_back(LSRUse(Kind, AccessTy)); 2303 LSRUse &LU = Uses[LUIdx]; 2304 2305 LU.MinOffset = Offset; 2306 LU.MaxOffset = Offset; 2307 return std::make_pair(LUIdx, Offset); 2308 } 2309 2310 /// Delete the given use from the Uses list. 2311 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2312 if (&LU != &Uses.back()) 2313 std::swap(LU, Uses.back()); 2314 Uses.pop_back(); 2315 2316 // Update RegUses. 2317 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2318 } 2319 2320 /// Look for a use distinct from OrigLU which is has a formula that has the same 2321 /// registers as the given formula. 2322 LSRUse * 2323 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2324 const LSRUse &OrigLU) { 2325 // Search all uses for the formula. This could be more clever. 2326 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2327 LSRUse &LU = Uses[LUIdx]; 2328 // Check whether this use is close enough to OrigLU, to see whether it's 2329 // worthwhile looking through its formulae. 2330 // Ignore ICmpZero uses because they may contain formulae generated by 2331 // GenerateICmpZeroScales, in which case adding fixup offsets may 2332 // be invalid. 2333 if (&LU != &OrigLU && 2334 LU.Kind != LSRUse::ICmpZero && 2335 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2336 LU.WidestFixupType == OrigLU.WidestFixupType && 2337 LU.HasFormulaWithSameRegs(OrigF)) { 2338 // Scan through this use's formulae. 2339 for (const Formula &F : LU.Formulae) { 2340 // Check to see if this formula has the same registers and symbols 2341 // as OrigF. 2342 if (F.BaseRegs == OrigF.BaseRegs && 2343 F.ScaledReg == OrigF.ScaledReg && 2344 F.BaseGV == OrigF.BaseGV && 2345 F.Scale == OrigF.Scale && 2346 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2347 if (F.BaseOffset == 0) 2348 return &LU; 2349 // This is the formula where all the registers and symbols matched; 2350 // there aren't going to be any others. Since we declined it, we 2351 // can skip the rest of the formulae and proceed to the next LSRUse. 2352 break; 2353 } 2354 } 2355 } 2356 } 2357 2358 // Nothing looked good. 2359 return nullptr; 2360 } 2361 2362 void LSRInstance::CollectInterestingTypesAndFactors() { 2363 SmallSetVector<const SCEV *, 4> Strides; 2364 2365 // Collect interesting types and strides. 2366 SmallVector<const SCEV *, 4> Worklist; 2367 for (const IVStrideUse &U : IU) { 2368 const SCEV *Expr = IU.getExpr(U); 2369 2370 // Collect interesting types. 2371 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2372 2373 // Add strides for mentioned loops. 2374 Worklist.push_back(Expr); 2375 do { 2376 const SCEV *S = Worklist.pop_back_val(); 2377 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2378 if (AR->getLoop() == L) 2379 Strides.insert(AR->getStepRecurrence(SE)); 2380 Worklist.push_back(AR->getStart()); 2381 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2382 Worklist.append(Add->op_begin(), Add->op_end()); 2383 } 2384 } while (!Worklist.empty()); 2385 } 2386 2387 // Compute interesting factors from the set of interesting strides. 2388 for (SmallSetVector<const SCEV *, 4>::const_iterator 2389 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2390 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2391 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2392 const SCEV *OldStride = *I; 2393 const SCEV *NewStride = *NewStrideIter; 2394 2395 if (SE.getTypeSizeInBits(OldStride->getType()) != 2396 SE.getTypeSizeInBits(NewStride->getType())) { 2397 if (SE.getTypeSizeInBits(OldStride->getType()) > 2398 SE.getTypeSizeInBits(NewStride->getType())) 2399 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2400 else 2401 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2402 } 2403 if (const SCEVConstant *Factor = 2404 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2405 SE, true))) { 2406 if (Factor->getAPInt().getMinSignedBits() <= 64) 2407 Factors.insert(Factor->getAPInt().getSExtValue()); 2408 } else if (const SCEVConstant *Factor = 2409 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2410 NewStride, 2411 SE, true))) { 2412 if (Factor->getAPInt().getMinSignedBits() <= 64) 2413 Factors.insert(Factor->getAPInt().getSExtValue()); 2414 } 2415 } 2416 2417 // If all uses use the same type, don't bother looking for truncation-based 2418 // reuse. 2419 if (Types.size() == 1) 2420 Types.clear(); 2421 2422 DEBUG(print_factors_and_types(dbgs())); 2423 } 2424 2425 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2426 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2427 /// IVStrideUses, we could partially skip this. 2428 static User::op_iterator 2429 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2430 Loop *L, ScalarEvolution &SE) { 2431 for(; OI != OE; ++OI) { 2432 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2433 if (!SE.isSCEVable(Oper->getType())) 2434 continue; 2435 2436 if (const SCEVAddRecExpr *AR = 2437 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2438 if (AR->getLoop() == L) 2439 break; 2440 } 2441 } 2442 } 2443 return OI; 2444 } 2445 2446 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2447 /// a convenient helper. 2448 static Value *getWideOperand(Value *Oper) { 2449 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2450 return Trunc->getOperand(0); 2451 return Oper; 2452 } 2453 2454 /// Return true if we allow an IV chain to include both types. 2455 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2456 Type *LType = LVal->getType(); 2457 Type *RType = RVal->getType(); 2458 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2459 } 2460 2461 /// Return an approximation of this SCEV expression's "base", or NULL for any 2462 /// constant. Returning the expression itself is conservative. Returning a 2463 /// deeper subexpression is more precise and valid as long as it isn't less 2464 /// complex than another subexpression. For expressions involving multiple 2465 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2466 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2467 /// IVInc==b-a. 2468 /// 2469 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2470 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2471 static const SCEV *getExprBase(const SCEV *S) { 2472 switch (S->getSCEVType()) { 2473 default: // uncluding scUnknown. 2474 return S; 2475 case scConstant: 2476 return nullptr; 2477 case scTruncate: 2478 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2479 case scZeroExtend: 2480 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2481 case scSignExtend: 2482 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2483 case scAddExpr: { 2484 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2485 // there's nothing more complex. 2486 // FIXME: not sure if we want to recognize negation. 2487 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2488 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2489 E(Add->op_begin()); I != E; ++I) { 2490 const SCEV *SubExpr = *I; 2491 if (SubExpr->getSCEVType() == scAddExpr) 2492 return getExprBase(SubExpr); 2493 2494 if (SubExpr->getSCEVType() != scMulExpr) 2495 return SubExpr; 2496 } 2497 return S; // all operands are scaled, be conservative. 2498 } 2499 case scAddRecExpr: 2500 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2501 } 2502 } 2503 2504 /// Return true if the chain increment is profitable to expand into a loop 2505 /// invariant value, which may require its own register. A profitable chain 2506 /// increment will be an offset relative to the same base. We allow such offsets 2507 /// to potentially be used as chain increment as long as it's not obviously 2508 /// expensive to expand using real instructions. 2509 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2510 const SCEV *IncExpr, 2511 ScalarEvolution &SE) { 2512 // Aggressively form chains when -stress-ivchain. 2513 if (StressIVChain) 2514 return true; 2515 2516 // Do not replace a constant offset from IV head with a nonconstant IV 2517 // increment. 2518 if (!isa<SCEVConstant>(IncExpr)) { 2519 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2520 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2521 return 0; 2522 } 2523 2524 SmallPtrSet<const SCEV*, 8> Processed; 2525 return !isHighCostExpansion(IncExpr, Processed, SE); 2526 } 2527 2528 /// Return true if the number of registers needed for the chain is estimated to 2529 /// be less than the number required for the individual IV users. First prohibit 2530 /// any IV users that keep the IV live across increments (the Users set should 2531 /// be empty). Next count the number and type of increments in the chain. 2532 /// 2533 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2534 /// effectively use postinc addressing modes. Only consider it profitable it the 2535 /// increments can be computed in fewer registers when chained. 2536 /// 2537 /// TODO: Consider IVInc free if it's already used in another chains. 2538 static bool 2539 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2540 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2541 if (StressIVChain) 2542 return true; 2543 2544 if (!Chain.hasIncs()) 2545 return false; 2546 2547 if (!Users.empty()) { 2548 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2549 for (Instruction *Inst : Users) { 2550 dbgs() << " " << *Inst << "\n"; 2551 }); 2552 return false; 2553 } 2554 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2555 2556 // The chain itself may require a register, so intialize cost to 1. 2557 int cost = 1; 2558 2559 // A complete chain likely eliminates the need for keeping the original IV in 2560 // a register. LSR does not currently know how to form a complete chain unless 2561 // the header phi already exists. 2562 if (isa<PHINode>(Chain.tailUserInst()) 2563 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2564 --cost; 2565 } 2566 const SCEV *LastIncExpr = nullptr; 2567 unsigned NumConstIncrements = 0; 2568 unsigned NumVarIncrements = 0; 2569 unsigned NumReusedIncrements = 0; 2570 for (const IVInc &Inc : Chain) { 2571 if (Inc.IncExpr->isZero()) 2572 continue; 2573 2574 // Incrementing by zero or some constant is neutral. We assume constants can 2575 // be folded into an addressing mode or an add's immediate operand. 2576 if (isa<SCEVConstant>(Inc.IncExpr)) { 2577 ++NumConstIncrements; 2578 continue; 2579 } 2580 2581 if (Inc.IncExpr == LastIncExpr) 2582 ++NumReusedIncrements; 2583 else 2584 ++NumVarIncrements; 2585 2586 LastIncExpr = Inc.IncExpr; 2587 } 2588 // An IV chain with a single increment is handled by LSR's postinc 2589 // uses. However, a chain with multiple increments requires keeping the IV's 2590 // value live longer than it needs to be if chained. 2591 if (NumConstIncrements > 1) 2592 --cost; 2593 2594 // Materializing increment expressions in the preheader that didn't exist in 2595 // the original code may cost a register. For example, sign-extended array 2596 // indices can produce ridiculous increments like this: 2597 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2598 cost += NumVarIncrements; 2599 2600 // Reusing variable increments likely saves a register to hold the multiple of 2601 // the stride. 2602 cost -= NumReusedIncrements; 2603 2604 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2605 << "\n"); 2606 2607 return cost < 0; 2608 } 2609 2610 /// Add this IV user to an existing chain or make it the head of a new chain. 2611 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2612 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2613 // When IVs are used as types of varying widths, they are generally converted 2614 // to a wider type with some uses remaining narrow under a (free) trunc. 2615 Value *const NextIV = getWideOperand(IVOper); 2616 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2617 const SCEV *const OperExprBase = getExprBase(OperExpr); 2618 2619 // Visit all existing chains. Check if its IVOper can be computed as a 2620 // profitable loop invariant increment from the last link in the Chain. 2621 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2622 const SCEV *LastIncExpr = nullptr; 2623 for (; ChainIdx < NChains; ++ChainIdx) { 2624 IVChain &Chain = IVChainVec[ChainIdx]; 2625 2626 // Prune the solution space aggressively by checking that both IV operands 2627 // are expressions that operate on the same unscaled SCEVUnknown. This 2628 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2629 // first avoids creating extra SCEV expressions. 2630 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2631 continue; 2632 2633 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2634 if (!isCompatibleIVType(PrevIV, NextIV)) 2635 continue; 2636 2637 // A phi node terminates a chain. 2638 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2639 continue; 2640 2641 // The increment must be loop-invariant so it can be kept in a register. 2642 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2643 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2644 if (!SE.isLoopInvariant(IncExpr, L)) 2645 continue; 2646 2647 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2648 LastIncExpr = IncExpr; 2649 break; 2650 } 2651 } 2652 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2653 // bother for phi nodes, because they must be last in the chain. 2654 if (ChainIdx == NChains) { 2655 if (isa<PHINode>(UserInst)) 2656 return; 2657 if (NChains >= MaxChains && !StressIVChain) { 2658 DEBUG(dbgs() << "IV Chain Limit\n"); 2659 return; 2660 } 2661 LastIncExpr = OperExpr; 2662 // IVUsers may have skipped over sign/zero extensions. We don't currently 2663 // attempt to form chains involving extensions unless they can be hoisted 2664 // into this loop's AddRec. 2665 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2666 return; 2667 ++NChains; 2668 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2669 OperExprBase)); 2670 ChainUsersVec.resize(NChains); 2671 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2672 << ") IV=" << *LastIncExpr << "\n"); 2673 } else { 2674 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2675 << ") IV+" << *LastIncExpr << "\n"); 2676 // Add this IV user to the end of the chain. 2677 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2678 } 2679 IVChain &Chain = IVChainVec[ChainIdx]; 2680 2681 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2682 // This chain's NearUsers become FarUsers. 2683 if (!LastIncExpr->isZero()) { 2684 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2685 NearUsers.end()); 2686 NearUsers.clear(); 2687 } 2688 2689 // All other uses of IVOperand become near uses of the chain. 2690 // We currently ignore intermediate values within SCEV expressions, assuming 2691 // they will eventually be used be the current chain, or can be computed 2692 // from one of the chain increments. To be more precise we could 2693 // transitively follow its user and only add leaf IV users to the set. 2694 for (User *U : IVOper->users()) { 2695 Instruction *OtherUse = dyn_cast<Instruction>(U); 2696 if (!OtherUse) 2697 continue; 2698 // Uses in the chain will no longer be uses if the chain is formed. 2699 // Include the head of the chain in this iteration (not Chain.begin()). 2700 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2701 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2702 for( ; IncIter != IncEnd; ++IncIter) { 2703 if (IncIter->UserInst == OtherUse) 2704 break; 2705 } 2706 if (IncIter != IncEnd) 2707 continue; 2708 2709 if (SE.isSCEVable(OtherUse->getType()) 2710 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2711 && IU.isIVUserOrOperand(OtherUse)) { 2712 continue; 2713 } 2714 NearUsers.insert(OtherUse); 2715 } 2716 2717 // Since this user is part of the chain, it's no longer considered a use 2718 // of the chain. 2719 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2720 } 2721 2722 /// Populate the vector of Chains. 2723 /// 2724 /// This decreases ILP at the architecture level. Targets with ample registers, 2725 /// multiple memory ports, and no register renaming probably don't want 2726 /// this. However, such targets should probably disable LSR altogether. 2727 /// 2728 /// The job of LSR is to make a reasonable choice of induction variables across 2729 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2730 /// ILP *within the loop* if the target wants it. 2731 /// 2732 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2733 /// will not reorder memory operations, it will recognize this as a chain, but 2734 /// will generate redundant IV increments. Ideally this would be corrected later 2735 /// by a smart scheduler: 2736 /// = A[i] 2737 /// = A[i+x] 2738 /// A[i] = 2739 /// A[i+x] = 2740 /// 2741 /// TODO: Walk the entire domtree within this loop, not just the path to the 2742 /// loop latch. This will discover chains on side paths, but requires 2743 /// maintaining multiple copies of the Chains state. 2744 void LSRInstance::CollectChains() { 2745 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2746 SmallVector<ChainUsers, 8> ChainUsersVec; 2747 2748 SmallVector<BasicBlock *,8> LatchPath; 2749 BasicBlock *LoopHeader = L->getHeader(); 2750 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2751 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2752 LatchPath.push_back(Rung->getBlock()); 2753 } 2754 LatchPath.push_back(LoopHeader); 2755 2756 // Walk the instruction stream from the loop header to the loop latch. 2757 for (BasicBlock *BB : reverse(LatchPath)) { 2758 for (Instruction &I : *BB) { 2759 // Skip instructions that weren't seen by IVUsers analysis. 2760 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2761 continue; 2762 2763 // Ignore users that are part of a SCEV expression. This way we only 2764 // consider leaf IV Users. This effectively rediscovers a portion of 2765 // IVUsers analysis but in program order this time. 2766 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2767 continue; 2768 2769 // Remove this instruction from any NearUsers set it may be in. 2770 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2771 ChainIdx < NChains; ++ChainIdx) { 2772 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2773 } 2774 // Search for operands that can be chained. 2775 SmallPtrSet<Instruction*, 4> UniqueOperands; 2776 User::op_iterator IVOpEnd = I.op_end(); 2777 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2778 while (IVOpIter != IVOpEnd) { 2779 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2780 if (UniqueOperands.insert(IVOpInst).second) 2781 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2782 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2783 } 2784 } // Continue walking down the instructions. 2785 } // Continue walking down the domtree. 2786 // Visit phi backedges to determine if the chain can generate the IV postinc. 2787 for (BasicBlock::iterator I = L->getHeader()->begin(); 2788 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2789 if (!SE.isSCEVable(PN->getType())) 2790 continue; 2791 2792 Instruction *IncV = 2793 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2794 if (IncV) 2795 ChainInstruction(PN, IncV, ChainUsersVec); 2796 } 2797 // Remove any unprofitable chains. 2798 unsigned ChainIdx = 0; 2799 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2800 UsersIdx < NChains; ++UsersIdx) { 2801 if (!isProfitableChain(IVChainVec[UsersIdx], 2802 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2803 continue; 2804 // Preserve the chain at UsesIdx. 2805 if (ChainIdx != UsersIdx) 2806 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2807 FinalizeChain(IVChainVec[ChainIdx]); 2808 ++ChainIdx; 2809 } 2810 IVChainVec.resize(ChainIdx); 2811 } 2812 2813 void LSRInstance::FinalizeChain(IVChain &Chain) { 2814 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2815 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2816 2817 for (const IVInc &Inc : Chain) { 2818 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2819 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2820 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2821 IVIncSet.insert(UseI); 2822 } 2823 } 2824 2825 /// Return true if the IVInc can be folded into an addressing mode. 2826 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2827 Value *Operand, const TargetTransformInfo &TTI) { 2828 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2829 if (!IncConst || !isAddressUse(UserInst, Operand)) 2830 return false; 2831 2832 if (IncConst->getAPInt().getMinSignedBits() > 64) 2833 return false; 2834 2835 MemAccessTy AccessTy = getAccessType(UserInst); 2836 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2837 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2838 IncOffset, /*HaseBaseReg=*/false)) 2839 return false; 2840 2841 return true; 2842 } 2843 2844 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2845 /// user's operand from the previous IV user's operand. 2846 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2847 SmallVectorImpl<WeakVH> &DeadInsts) { 2848 // Find the new IVOperand for the head of the chain. It may have been replaced 2849 // by LSR. 2850 const IVInc &Head = Chain.Incs[0]; 2851 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2852 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2853 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2854 IVOpEnd, L, SE); 2855 Value *IVSrc = nullptr; 2856 while (IVOpIter != IVOpEnd) { 2857 IVSrc = getWideOperand(*IVOpIter); 2858 2859 // If this operand computes the expression that the chain needs, we may use 2860 // it. (Check this after setting IVSrc which is used below.) 2861 // 2862 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2863 // narrow for the chain, so we can no longer use it. We do allow using a 2864 // wider phi, assuming the LSR checked for free truncation. In that case we 2865 // should already have a truncate on this operand such that 2866 // getSCEV(IVSrc) == IncExpr. 2867 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2868 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2869 break; 2870 } 2871 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2872 } 2873 if (IVOpIter == IVOpEnd) { 2874 // Gracefully give up on this chain. 2875 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2876 return; 2877 } 2878 2879 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2880 Type *IVTy = IVSrc->getType(); 2881 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2882 const SCEV *LeftOverExpr = nullptr; 2883 for (const IVInc &Inc : Chain) { 2884 Instruction *InsertPt = Inc.UserInst; 2885 if (isa<PHINode>(InsertPt)) 2886 InsertPt = L->getLoopLatch()->getTerminator(); 2887 2888 // IVOper will replace the current IV User's operand. IVSrc is the IV 2889 // value currently held in a register. 2890 Value *IVOper = IVSrc; 2891 if (!Inc.IncExpr->isZero()) { 2892 // IncExpr was the result of subtraction of two narrow values, so must 2893 // be signed. 2894 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2895 LeftOverExpr = LeftOverExpr ? 2896 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2897 } 2898 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2899 // Expand the IV increment. 2900 Rewriter.clearPostInc(); 2901 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2902 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2903 SE.getUnknown(IncV)); 2904 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2905 2906 // If an IV increment can't be folded, use it as the next IV value. 2907 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2908 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2909 IVSrc = IVOper; 2910 LeftOverExpr = nullptr; 2911 } 2912 } 2913 Type *OperTy = Inc.IVOperand->getType(); 2914 if (IVTy != OperTy) { 2915 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2916 "cannot extend a chained IV"); 2917 IRBuilder<> Builder(InsertPt); 2918 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2919 } 2920 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2921 DeadInsts.emplace_back(Inc.IVOperand); 2922 } 2923 // If LSR created a new, wider phi, we may also replace its postinc. We only 2924 // do this if we also found a wide value for the head of the chain. 2925 if (isa<PHINode>(Chain.tailUserInst())) { 2926 for (BasicBlock::iterator I = L->getHeader()->begin(); 2927 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2928 if (!isCompatibleIVType(Phi, IVSrc)) 2929 continue; 2930 Instruction *PostIncV = dyn_cast<Instruction>( 2931 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2932 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2933 continue; 2934 Value *IVOper = IVSrc; 2935 Type *PostIncTy = PostIncV->getType(); 2936 if (IVTy != PostIncTy) { 2937 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2938 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2939 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2940 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2941 } 2942 Phi->replaceUsesOfWith(PostIncV, IVOper); 2943 DeadInsts.emplace_back(PostIncV); 2944 } 2945 } 2946 } 2947 2948 void LSRInstance::CollectFixupsAndInitialFormulae() { 2949 for (const IVStrideUse &U : IU) { 2950 Instruction *UserInst = U.getUser(); 2951 // Skip IV users that are part of profitable IV Chains. 2952 User::op_iterator UseI = 2953 find(UserInst->operands(), U.getOperandValToReplace()); 2954 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2955 if (IVIncSet.count(UseI)) 2956 continue; 2957 2958 LSRUse::KindType Kind = LSRUse::Basic; 2959 MemAccessTy AccessTy; 2960 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 2961 Kind = LSRUse::Address; 2962 AccessTy = getAccessType(UserInst); 2963 } 2964 2965 const SCEV *S = IU.getExpr(U); 2966 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 2967 2968 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2969 // (N - i == 0), and this allows (N - i) to be the expression that we work 2970 // with rather than just N or i, so we can consider the register 2971 // requirements for both N and i at the same time. Limiting this code to 2972 // equality icmps is not a problem because all interesting loops use 2973 // equality icmps, thanks to IndVarSimplify. 2974 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 2975 if (CI->isEquality()) { 2976 // Swap the operands if needed to put the OperandValToReplace on the 2977 // left, for consistency. 2978 Value *NV = CI->getOperand(1); 2979 if (NV == U.getOperandValToReplace()) { 2980 CI->setOperand(1, CI->getOperand(0)); 2981 CI->setOperand(0, NV); 2982 NV = CI->getOperand(1); 2983 Changed = true; 2984 } 2985 2986 // x == y --> x - y == 0 2987 const SCEV *N = SE.getSCEV(NV); 2988 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 2989 // S is normalized, so normalize N before folding it into S 2990 // to keep the result normalized. 2991 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 2992 TmpPostIncLoops, SE, DT); 2993 Kind = LSRUse::ICmpZero; 2994 S = SE.getMinusSCEV(N, S); 2995 } 2996 2997 // -1 and the negations of all interesting strides (except the negation 2998 // of -1) are now also interesting. 2999 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3000 if (Factors[i] != -1) 3001 Factors.insert(-(uint64_t)Factors[i]); 3002 Factors.insert(-1); 3003 } 3004 3005 // Get or create an LSRUse. 3006 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3007 size_t LUIdx = P.first; 3008 int64_t Offset = P.second; 3009 LSRUse &LU = Uses[LUIdx]; 3010 3011 // Record the fixup. 3012 LSRFixup &LF = LU.getNewFixup(); 3013 LF.UserInst = UserInst; 3014 LF.OperandValToReplace = U.getOperandValToReplace(); 3015 LF.PostIncLoops = TmpPostIncLoops; 3016 LF.Offset = Offset; 3017 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3018 3019 if (!LU.WidestFixupType || 3020 SE.getTypeSizeInBits(LU.WidestFixupType) < 3021 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3022 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3023 3024 // If this is the first use of this LSRUse, give it a formula. 3025 if (LU.Formulae.empty()) { 3026 InsertInitialFormula(S, LU, LUIdx); 3027 CountRegisters(LU.Formulae.back(), LUIdx); 3028 } 3029 } 3030 3031 DEBUG(print_fixups(dbgs())); 3032 } 3033 3034 /// Insert a formula for the given expression into the given use, separating out 3035 /// loop-variant portions from loop-invariant and loop-computable portions. 3036 void 3037 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3038 // Mark uses whose expressions cannot be expanded. 3039 if (!isSafeToExpand(S, SE)) 3040 LU.RigidFormula = true; 3041 3042 Formula F; 3043 F.initialMatch(S, L, SE); 3044 bool Inserted = InsertFormula(LU, LUIdx, F); 3045 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3046 } 3047 3048 /// Insert a simple single-register formula for the given expression into the 3049 /// given use. 3050 void 3051 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3052 LSRUse &LU, size_t LUIdx) { 3053 Formula F; 3054 F.BaseRegs.push_back(S); 3055 F.HasBaseReg = true; 3056 bool Inserted = InsertFormula(LU, LUIdx, F); 3057 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3058 } 3059 3060 /// Note which registers are used by the given formula, updating RegUses. 3061 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3062 if (F.ScaledReg) 3063 RegUses.countRegister(F.ScaledReg, LUIdx); 3064 for (const SCEV *BaseReg : F.BaseRegs) 3065 RegUses.countRegister(BaseReg, LUIdx); 3066 } 3067 3068 /// If the given formula has not yet been inserted, add it to the list, and 3069 /// return true. Return false otherwise. 3070 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3071 // Do not insert formula that we will not be able to expand. 3072 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3073 "Formula is illegal"); 3074 if (!LU.InsertFormula(F)) 3075 return false; 3076 3077 CountRegisters(F, LUIdx); 3078 return true; 3079 } 3080 3081 /// Check for other uses of loop-invariant values which we're tracking. These 3082 /// other uses will pin these values in registers, making them less profitable 3083 /// for elimination. 3084 /// TODO: This currently misses non-constant addrec step registers. 3085 /// TODO: Should this give more weight to users inside the loop? 3086 void 3087 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3088 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3089 SmallPtrSet<const SCEV *, 32> Visited; 3090 3091 while (!Worklist.empty()) { 3092 const SCEV *S = Worklist.pop_back_val(); 3093 3094 // Don't process the same SCEV twice 3095 if (!Visited.insert(S).second) 3096 continue; 3097 3098 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3099 Worklist.append(N->op_begin(), N->op_end()); 3100 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3101 Worklist.push_back(C->getOperand()); 3102 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3103 Worklist.push_back(D->getLHS()); 3104 Worklist.push_back(D->getRHS()); 3105 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3106 const Value *V = US->getValue(); 3107 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3108 // Look for instructions defined outside the loop. 3109 if (L->contains(Inst)) continue; 3110 } else if (isa<UndefValue>(V)) 3111 // Undef doesn't have a live range, so it doesn't matter. 3112 continue; 3113 for (const Use &U : V->uses()) { 3114 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3115 // Ignore non-instructions. 3116 if (!UserInst) 3117 continue; 3118 // Ignore instructions in other functions (as can happen with 3119 // Constants). 3120 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3121 continue; 3122 // Ignore instructions not dominated by the loop. 3123 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3124 UserInst->getParent() : 3125 cast<PHINode>(UserInst)->getIncomingBlock( 3126 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3127 if (!DT.dominates(L->getHeader(), UseBB)) 3128 continue; 3129 // Don't bother if the instruction is in a BB which ends in an EHPad. 3130 if (UseBB->getTerminator()->isEHPad()) 3131 continue; 3132 // Ignore uses which are part of other SCEV expressions, to avoid 3133 // analyzing them multiple times. 3134 if (SE.isSCEVable(UserInst->getType())) { 3135 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3136 // If the user is a no-op, look through to its uses. 3137 if (!isa<SCEVUnknown>(UserS)) 3138 continue; 3139 if (UserS == US) { 3140 Worklist.push_back( 3141 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3142 continue; 3143 } 3144 } 3145 // Ignore icmp instructions which are already being analyzed. 3146 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3147 unsigned OtherIdx = !U.getOperandNo(); 3148 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3149 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3150 continue; 3151 } 3152 3153 std::pair<size_t, int64_t> P = getUse( 3154 S, LSRUse::Basic, MemAccessTy()); 3155 size_t LUIdx = P.first; 3156 int64_t Offset = P.second; 3157 LSRUse &LU = Uses[LUIdx]; 3158 LSRFixup &LF = LU.getNewFixup(); 3159 LF.UserInst = const_cast<Instruction *>(UserInst); 3160 LF.OperandValToReplace = U; 3161 LF.Offset = Offset; 3162 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3163 if (!LU.WidestFixupType || 3164 SE.getTypeSizeInBits(LU.WidestFixupType) < 3165 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3166 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3167 InsertSupplementalFormula(US, LU, LUIdx); 3168 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3169 break; 3170 } 3171 } 3172 } 3173 } 3174 3175 /// Split S into subexpressions which can be pulled out into separate 3176 /// registers. If C is non-null, multiply each subexpression by C. 3177 /// 3178 /// Return remainder expression after factoring the subexpressions captured by 3179 /// Ops. If Ops is complete, return NULL. 3180 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3181 SmallVectorImpl<const SCEV *> &Ops, 3182 const Loop *L, 3183 ScalarEvolution &SE, 3184 unsigned Depth = 0) { 3185 // Arbitrarily cap recursion to protect compile time. 3186 if (Depth >= 3) 3187 return S; 3188 3189 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3190 // Break out add operands. 3191 for (const SCEV *S : Add->operands()) { 3192 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3193 if (Remainder) 3194 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3195 } 3196 return nullptr; 3197 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3198 // Split a non-zero base out of an addrec. 3199 if (AR->getStart()->isZero() || !AR->isAffine()) 3200 return S; 3201 3202 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3203 C, Ops, L, SE, Depth+1); 3204 // Split the non-zero AddRec unless it is part of a nested recurrence that 3205 // does not pertain to this loop. 3206 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3207 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3208 Remainder = nullptr; 3209 } 3210 if (Remainder != AR->getStart()) { 3211 if (!Remainder) 3212 Remainder = SE.getConstant(AR->getType(), 0); 3213 return SE.getAddRecExpr(Remainder, 3214 AR->getStepRecurrence(SE), 3215 AR->getLoop(), 3216 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3217 SCEV::FlagAnyWrap); 3218 } 3219 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3220 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3221 if (Mul->getNumOperands() != 2) 3222 return S; 3223 if (const SCEVConstant *Op0 = 3224 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3225 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3226 const SCEV *Remainder = 3227 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3228 if (Remainder) 3229 Ops.push_back(SE.getMulExpr(C, Remainder)); 3230 return nullptr; 3231 } 3232 } 3233 return S; 3234 } 3235 3236 /// \brief Helper function for LSRInstance::GenerateReassociations. 3237 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3238 const Formula &Base, 3239 unsigned Depth, size_t Idx, 3240 bool IsScaledReg) { 3241 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3242 SmallVector<const SCEV *, 8> AddOps; 3243 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3244 if (Remainder) 3245 AddOps.push_back(Remainder); 3246 3247 if (AddOps.size() == 1) 3248 return; 3249 3250 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3251 JE = AddOps.end(); 3252 J != JE; ++J) { 3253 3254 // Loop-variant "unknown" values are uninteresting; we won't be able to 3255 // do anything meaningful with them. 3256 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3257 continue; 3258 3259 // Don't pull a constant into a register if the constant could be folded 3260 // into an immediate field. 3261 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3262 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3263 continue; 3264 3265 // Collect all operands except *J. 3266 SmallVector<const SCEV *, 8> InnerAddOps( 3267 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3268 InnerAddOps.append(std::next(J), 3269 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3270 3271 // Don't leave just a constant behind in a register if the constant could 3272 // be folded into an immediate field. 3273 if (InnerAddOps.size() == 1 && 3274 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3275 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3276 continue; 3277 3278 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3279 if (InnerSum->isZero()) 3280 continue; 3281 Formula F = Base; 3282 3283 // Add the remaining pieces of the add back into the new formula. 3284 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3285 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3286 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3287 InnerSumSC->getValue()->getZExtValue())) { 3288 F.UnfoldedOffset = 3289 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3290 if (IsScaledReg) 3291 F.ScaledReg = nullptr; 3292 else 3293 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3294 } else if (IsScaledReg) 3295 F.ScaledReg = InnerSum; 3296 else 3297 F.BaseRegs[Idx] = InnerSum; 3298 3299 // Add J as its own register, or an unfolded immediate. 3300 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3301 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3302 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3303 SC->getValue()->getZExtValue())) 3304 F.UnfoldedOffset = 3305 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3306 else 3307 F.BaseRegs.push_back(*J); 3308 // We may have changed the number of register in base regs, adjust the 3309 // formula accordingly. 3310 F.canonicalize(); 3311 3312 if (InsertFormula(LU, LUIdx, F)) 3313 // If that formula hadn't been seen before, recurse to find more like 3314 // it. 3315 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3316 } 3317 } 3318 3319 /// Split out subexpressions from adds and the bases of addrecs. 3320 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3321 Formula Base, unsigned Depth) { 3322 assert(Base.isCanonical() && "Input must be in the canonical form"); 3323 // Arbitrarily cap recursion to protect compile time. 3324 if (Depth >= 3) 3325 return; 3326 3327 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3328 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3329 3330 if (Base.Scale == 1) 3331 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3332 /* Idx */ -1, /* IsScaledReg */ true); 3333 } 3334 3335 /// Generate a formula consisting of all of the loop-dominating registers added 3336 /// into a single register. 3337 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3338 Formula Base) { 3339 // This method is only interesting on a plurality of registers. 3340 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3341 return; 3342 3343 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3344 // processing the formula. 3345 Base.unscale(); 3346 Formula F = Base; 3347 F.BaseRegs.clear(); 3348 SmallVector<const SCEV *, 4> Ops; 3349 for (const SCEV *BaseReg : Base.BaseRegs) { 3350 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3351 !SE.hasComputableLoopEvolution(BaseReg, L)) 3352 Ops.push_back(BaseReg); 3353 else 3354 F.BaseRegs.push_back(BaseReg); 3355 } 3356 if (Ops.size() > 1) { 3357 const SCEV *Sum = SE.getAddExpr(Ops); 3358 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3359 // opportunity to fold something. For now, just ignore such cases 3360 // rather than proceed with zero in a register. 3361 if (!Sum->isZero()) { 3362 F.BaseRegs.push_back(Sum); 3363 F.canonicalize(); 3364 (void)InsertFormula(LU, LUIdx, F); 3365 } 3366 } 3367 } 3368 3369 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3370 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3371 const Formula &Base, size_t Idx, 3372 bool IsScaledReg) { 3373 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3374 GlobalValue *GV = ExtractSymbol(G, SE); 3375 if (G->isZero() || !GV) 3376 return; 3377 Formula F = Base; 3378 F.BaseGV = GV; 3379 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3380 return; 3381 if (IsScaledReg) 3382 F.ScaledReg = G; 3383 else 3384 F.BaseRegs[Idx] = G; 3385 (void)InsertFormula(LU, LUIdx, F); 3386 } 3387 3388 /// Generate reuse formulae using symbolic offsets. 3389 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3390 Formula Base) { 3391 // We can't add a symbolic offset if the address already contains one. 3392 if (Base.BaseGV) return; 3393 3394 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3395 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3396 if (Base.Scale == 1) 3397 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3398 /* IsScaledReg */ true); 3399 } 3400 3401 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3402 void LSRInstance::GenerateConstantOffsetsImpl( 3403 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3404 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3405 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3406 for (int64_t Offset : Worklist) { 3407 Formula F = Base; 3408 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3409 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3410 LU.AccessTy, F)) { 3411 // Add the offset to the base register. 3412 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3413 // If it cancelled out, drop the base register, otherwise update it. 3414 if (NewG->isZero()) { 3415 if (IsScaledReg) { 3416 F.Scale = 0; 3417 F.ScaledReg = nullptr; 3418 } else 3419 F.deleteBaseReg(F.BaseRegs[Idx]); 3420 F.canonicalize(); 3421 } else if (IsScaledReg) 3422 F.ScaledReg = NewG; 3423 else 3424 F.BaseRegs[Idx] = NewG; 3425 3426 (void)InsertFormula(LU, LUIdx, F); 3427 } 3428 } 3429 3430 int64_t Imm = ExtractImmediate(G, SE); 3431 if (G->isZero() || Imm == 0) 3432 return; 3433 Formula F = Base; 3434 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3435 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3436 return; 3437 if (IsScaledReg) 3438 F.ScaledReg = G; 3439 else 3440 F.BaseRegs[Idx] = G; 3441 (void)InsertFormula(LU, LUIdx, F); 3442 } 3443 3444 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3445 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3446 Formula Base) { 3447 // TODO: For now, just add the min and max offset, because it usually isn't 3448 // worthwhile looking at everything inbetween. 3449 SmallVector<int64_t, 2> Worklist; 3450 Worklist.push_back(LU.MinOffset); 3451 if (LU.MaxOffset != LU.MinOffset) 3452 Worklist.push_back(LU.MaxOffset); 3453 3454 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3455 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3456 if (Base.Scale == 1) 3457 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3458 /* IsScaledReg */ true); 3459 } 3460 3461 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3462 /// == y -> x*c == y*c. 3463 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3464 Formula Base) { 3465 if (LU.Kind != LSRUse::ICmpZero) return; 3466 3467 // Determine the integer type for the base formula. 3468 Type *IntTy = Base.getType(); 3469 if (!IntTy) return; 3470 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3471 3472 // Don't do this if there is more than one offset. 3473 if (LU.MinOffset != LU.MaxOffset) return; 3474 3475 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3476 3477 // Check each interesting stride. 3478 for (int64_t Factor : Factors) { 3479 // Check that the multiplication doesn't overflow. 3480 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3481 continue; 3482 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3483 if (NewBaseOffset / Factor != Base.BaseOffset) 3484 continue; 3485 // If the offset will be truncated at this use, check that it is in bounds. 3486 if (!IntTy->isPointerTy() && 3487 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3488 continue; 3489 3490 // Check that multiplying with the use offset doesn't overflow. 3491 int64_t Offset = LU.MinOffset; 3492 if (Offset == INT64_MIN && Factor == -1) 3493 continue; 3494 Offset = (uint64_t)Offset * Factor; 3495 if (Offset / Factor != LU.MinOffset) 3496 continue; 3497 // If the offset will be truncated at this use, check that it is in bounds. 3498 if (!IntTy->isPointerTy() && 3499 !ConstantInt::isValueValidForType(IntTy, Offset)) 3500 continue; 3501 3502 Formula F = Base; 3503 F.BaseOffset = NewBaseOffset; 3504 3505 // Check that this scale is legal. 3506 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3507 continue; 3508 3509 // Compensate for the use having MinOffset built into it. 3510 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3511 3512 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3513 3514 // Check that multiplying with each base register doesn't overflow. 3515 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3516 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3517 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3518 goto next; 3519 } 3520 3521 // Check that multiplying with the scaled register doesn't overflow. 3522 if (F.ScaledReg) { 3523 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3524 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3525 continue; 3526 } 3527 3528 // Check that multiplying with the unfolded offset doesn't overflow. 3529 if (F.UnfoldedOffset != 0) { 3530 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3531 continue; 3532 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3533 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3534 continue; 3535 // If the offset will be truncated, check that it is in bounds. 3536 if (!IntTy->isPointerTy() && 3537 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3538 continue; 3539 } 3540 3541 // If we make it here and it's legal, add it. 3542 (void)InsertFormula(LU, LUIdx, F); 3543 next:; 3544 } 3545 } 3546 3547 /// Generate stride factor reuse formulae by making use of scaled-offset address 3548 /// modes, for example. 3549 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3550 // Determine the integer type for the base formula. 3551 Type *IntTy = Base.getType(); 3552 if (!IntTy) return; 3553 3554 // If this Formula already has a scaled register, we can't add another one. 3555 // Try to unscale the formula to generate a better scale. 3556 if (Base.Scale != 0 && !Base.unscale()) 3557 return; 3558 3559 assert(Base.Scale == 0 && "unscale did not did its job!"); 3560 3561 // Check each interesting stride. 3562 for (int64_t Factor : Factors) { 3563 Base.Scale = Factor; 3564 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3565 // Check whether this scale is going to be legal. 3566 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3567 Base)) { 3568 // As a special-case, handle special out-of-loop Basic users specially. 3569 // TODO: Reconsider this special case. 3570 if (LU.Kind == LSRUse::Basic && 3571 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3572 LU.AccessTy, Base) && 3573 LU.AllFixupsOutsideLoop) 3574 LU.Kind = LSRUse::Special; 3575 else 3576 continue; 3577 } 3578 // For an ICmpZero, negating a solitary base register won't lead to 3579 // new solutions. 3580 if (LU.Kind == LSRUse::ICmpZero && 3581 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3582 continue; 3583 // For each addrec base reg, apply the scale, if possible. 3584 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3585 if (const SCEVAddRecExpr *AR = 3586 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3587 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3588 if (FactorS->isZero()) 3589 continue; 3590 // Divide out the factor, ignoring high bits, since we'll be 3591 // scaling the value back up in the end. 3592 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3593 // TODO: This could be optimized to avoid all the copying. 3594 Formula F = Base; 3595 F.ScaledReg = Quotient; 3596 F.deleteBaseReg(F.BaseRegs[i]); 3597 // The canonical representation of 1*reg is reg, which is already in 3598 // Base. In that case, do not try to insert the formula, it will be 3599 // rejected anyway. 3600 if (F.Scale == 1 && F.BaseRegs.empty()) 3601 continue; 3602 (void)InsertFormula(LU, LUIdx, F); 3603 } 3604 } 3605 } 3606 } 3607 3608 /// Generate reuse formulae from different IV types. 3609 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3610 // Don't bother truncating symbolic values. 3611 if (Base.BaseGV) return; 3612 3613 // Determine the integer type for the base formula. 3614 Type *DstTy = Base.getType(); 3615 if (!DstTy) return; 3616 DstTy = SE.getEffectiveSCEVType(DstTy); 3617 3618 for (Type *SrcTy : Types) { 3619 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3620 Formula F = Base; 3621 3622 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3623 for (const SCEV *&BaseReg : F.BaseRegs) 3624 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3625 3626 // TODO: This assumes we've done basic processing on all uses and 3627 // have an idea what the register usage is. 3628 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3629 continue; 3630 3631 (void)InsertFormula(LU, LUIdx, F); 3632 } 3633 } 3634 } 3635 3636 namespace { 3637 3638 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3639 /// modifications so that the search phase doesn't have to worry about the data 3640 /// structures moving underneath it. 3641 struct WorkItem { 3642 size_t LUIdx; 3643 int64_t Imm; 3644 const SCEV *OrigReg; 3645 3646 WorkItem(size_t LI, int64_t I, const SCEV *R) 3647 : LUIdx(LI), Imm(I), OrigReg(R) {} 3648 3649 void print(raw_ostream &OS) const; 3650 void dump() const; 3651 }; 3652 3653 } 3654 3655 void WorkItem::print(raw_ostream &OS) const { 3656 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3657 << " , add offset " << Imm; 3658 } 3659 3660 LLVM_DUMP_METHOD 3661 void WorkItem::dump() const { 3662 print(errs()); errs() << '\n'; 3663 } 3664 3665 /// Look for registers which are a constant distance apart and try to form reuse 3666 /// opportunities between them. 3667 void LSRInstance::GenerateCrossUseConstantOffsets() { 3668 // Group the registers by their value without any added constant offset. 3669 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3670 DenseMap<const SCEV *, ImmMapTy> Map; 3671 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3672 SmallVector<const SCEV *, 8> Sequence; 3673 for (const SCEV *Use : RegUses) { 3674 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3675 int64_t Imm = ExtractImmediate(Reg, SE); 3676 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3677 if (Pair.second) 3678 Sequence.push_back(Reg); 3679 Pair.first->second.insert(std::make_pair(Imm, Use)); 3680 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3681 } 3682 3683 // Now examine each set of registers with the same base value. Build up 3684 // a list of work to do and do the work in a separate step so that we're 3685 // not adding formulae and register counts while we're searching. 3686 SmallVector<WorkItem, 32> WorkItems; 3687 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3688 for (const SCEV *Reg : Sequence) { 3689 const ImmMapTy &Imms = Map.find(Reg)->second; 3690 3691 // It's not worthwhile looking for reuse if there's only one offset. 3692 if (Imms.size() == 1) 3693 continue; 3694 3695 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3696 for (const auto &Entry : Imms) 3697 dbgs() << ' ' << Entry.first; 3698 dbgs() << '\n'); 3699 3700 // Examine each offset. 3701 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3702 J != JE; ++J) { 3703 const SCEV *OrigReg = J->second; 3704 3705 int64_t JImm = J->first; 3706 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3707 3708 if (!isa<SCEVConstant>(OrigReg) && 3709 UsedByIndicesMap[Reg].count() == 1) { 3710 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3711 continue; 3712 } 3713 3714 // Conservatively examine offsets between this orig reg a few selected 3715 // other orig regs. 3716 ImmMapTy::const_iterator OtherImms[] = { 3717 Imms.begin(), std::prev(Imms.end()), 3718 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3719 2) 3720 }; 3721 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3722 ImmMapTy::const_iterator M = OtherImms[i]; 3723 if (M == J || M == JE) continue; 3724 3725 // Compute the difference between the two. 3726 int64_t Imm = (uint64_t)JImm - M->first; 3727 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3728 LUIdx = UsedByIndices.find_next(LUIdx)) 3729 // Make a memo of this use, offset, and register tuple. 3730 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3731 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3732 } 3733 } 3734 } 3735 3736 Map.clear(); 3737 Sequence.clear(); 3738 UsedByIndicesMap.clear(); 3739 UniqueItems.clear(); 3740 3741 // Now iterate through the worklist and add new formulae. 3742 for (const WorkItem &WI : WorkItems) { 3743 size_t LUIdx = WI.LUIdx; 3744 LSRUse &LU = Uses[LUIdx]; 3745 int64_t Imm = WI.Imm; 3746 const SCEV *OrigReg = WI.OrigReg; 3747 3748 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3749 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3750 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3751 3752 // TODO: Use a more targeted data structure. 3753 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3754 Formula F = LU.Formulae[L]; 3755 // FIXME: The code for the scaled and unscaled registers looks 3756 // very similar but slightly different. Investigate if they 3757 // could be merged. That way, we would not have to unscale the 3758 // Formula. 3759 F.unscale(); 3760 // Use the immediate in the scaled register. 3761 if (F.ScaledReg == OrigReg) { 3762 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3763 // Don't create 50 + reg(-50). 3764 if (F.referencesReg(SE.getSCEV( 3765 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3766 continue; 3767 Formula NewF = F; 3768 NewF.BaseOffset = Offset; 3769 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3770 NewF)) 3771 continue; 3772 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3773 3774 // If the new scale is a constant in a register, and adding the constant 3775 // value to the immediate would produce a value closer to zero than the 3776 // immediate itself, then the formula isn't worthwhile. 3777 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3778 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3779 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3780 .ule(std::abs(NewF.BaseOffset))) 3781 continue; 3782 3783 // OK, looks good. 3784 NewF.canonicalize(); 3785 (void)InsertFormula(LU, LUIdx, NewF); 3786 } else { 3787 // Use the immediate in a base register. 3788 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3789 const SCEV *BaseReg = F.BaseRegs[N]; 3790 if (BaseReg != OrigReg) 3791 continue; 3792 Formula NewF = F; 3793 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3794 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3795 LU.Kind, LU.AccessTy, NewF)) { 3796 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3797 continue; 3798 NewF = F; 3799 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3800 } 3801 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3802 3803 // If the new formula has a constant in a register, and adding the 3804 // constant value to the immediate would produce a value closer to 3805 // zero than the immediate itself, then the formula isn't worthwhile. 3806 for (const SCEV *NewReg : NewF.BaseRegs) 3807 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3808 if ((C->getAPInt() + NewF.BaseOffset) 3809 .abs() 3810 .slt(std::abs(NewF.BaseOffset)) && 3811 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3812 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3813 goto skip_formula; 3814 3815 // Ok, looks good. 3816 NewF.canonicalize(); 3817 (void)InsertFormula(LU, LUIdx, NewF); 3818 break; 3819 skip_formula:; 3820 } 3821 } 3822 } 3823 } 3824 } 3825 3826 /// Generate formulae for each use. 3827 void 3828 LSRInstance::GenerateAllReuseFormulae() { 3829 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3830 // queries are more precise. 3831 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3832 LSRUse &LU = Uses[LUIdx]; 3833 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3834 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3835 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3836 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3837 } 3838 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3839 LSRUse &LU = Uses[LUIdx]; 3840 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3841 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3842 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3843 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3844 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3845 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3846 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3847 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3848 } 3849 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3850 LSRUse &LU = Uses[LUIdx]; 3851 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3852 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3853 } 3854 3855 GenerateCrossUseConstantOffsets(); 3856 3857 DEBUG(dbgs() << "\n" 3858 "After generating reuse formulae:\n"; 3859 print_uses(dbgs())); 3860 } 3861 3862 /// If there are multiple formulae with the same set of registers used 3863 /// by other uses, pick the best one and delete the others. 3864 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3865 DenseSet<const SCEV *> VisitedRegs; 3866 SmallPtrSet<const SCEV *, 16> Regs; 3867 SmallPtrSet<const SCEV *, 16> LoserRegs; 3868 #ifndef NDEBUG 3869 bool ChangedFormulae = false; 3870 #endif 3871 3872 // Collect the best formula for each unique set of shared registers. This 3873 // is reset for each use. 3874 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3875 BestFormulaeTy; 3876 BestFormulaeTy BestFormulae; 3877 3878 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3879 LSRUse &LU = Uses[LUIdx]; 3880 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3881 3882 bool Any = false; 3883 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3884 FIdx != NumForms; ++FIdx) { 3885 Formula &F = LU.Formulae[FIdx]; 3886 3887 // Some formulas are instant losers. For example, they may depend on 3888 // nonexistent AddRecs from other loops. These need to be filtered 3889 // immediately, otherwise heuristics could choose them over others leading 3890 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3891 // avoids the need to recompute this information across formulae using the 3892 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3893 // the corresponding bad register from the Regs set. 3894 Cost CostF; 3895 Regs.clear(); 3896 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 3897 if (CostF.isLoser()) { 3898 // During initial formula generation, undesirable formulae are generated 3899 // by uses within other loops that have some non-trivial address mode or 3900 // use the postinc form of the IV. LSR needs to provide these formulae 3901 // as the basis of rediscovering the desired formula that uses an AddRec 3902 // corresponding to the existing phi. Once all formulae have been 3903 // generated, these initial losers may be pruned. 3904 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3905 dbgs() << "\n"); 3906 } 3907 else { 3908 SmallVector<const SCEV *, 4> Key; 3909 for (const SCEV *Reg : F.BaseRegs) { 3910 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3911 Key.push_back(Reg); 3912 } 3913 if (F.ScaledReg && 3914 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3915 Key.push_back(F.ScaledReg); 3916 // Unstable sort by host order ok, because this is only used for 3917 // uniquifying. 3918 std::sort(Key.begin(), Key.end()); 3919 3920 std::pair<BestFormulaeTy::const_iterator, bool> P = 3921 BestFormulae.insert(std::make_pair(Key, FIdx)); 3922 if (P.second) 3923 continue; 3924 3925 Formula &Best = LU.Formulae[P.first->second]; 3926 3927 Cost CostBest; 3928 Regs.clear(); 3929 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 3930 if (CostF < CostBest) 3931 std::swap(F, Best); 3932 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3933 dbgs() << "\n" 3934 " in favor of formula "; Best.print(dbgs()); 3935 dbgs() << '\n'); 3936 } 3937 #ifndef NDEBUG 3938 ChangedFormulae = true; 3939 #endif 3940 LU.DeleteFormula(F); 3941 --FIdx; 3942 --NumForms; 3943 Any = true; 3944 } 3945 3946 // Now that we've filtered out some formulae, recompute the Regs set. 3947 if (Any) 3948 LU.RecomputeRegs(LUIdx, RegUses); 3949 3950 // Reset this to prepare for the next use. 3951 BestFormulae.clear(); 3952 } 3953 3954 DEBUG(if (ChangedFormulae) { 3955 dbgs() << "\n" 3956 "After filtering out undesirable candidates:\n"; 3957 print_uses(dbgs()); 3958 }); 3959 } 3960 3961 // This is a rough guess that seems to work fairly well. 3962 static const size_t ComplexityLimit = UINT16_MAX; 3963 3964 /// Estimate the worst-case number of solutions the solver might have to 3965 /// consider. It almost never considers this many solutions because it prune the 3966 /// search space, but the pruning isn't always sufficient. 3967 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3968 size_t Power = 1; 3969 for (const LSRUse &LU : Uses) { 3970 size_t FSize = LU.Formulae.size(); 3971 if (FSize >= ComplexityLimit) { 3972 Power = ComplexityLimit; 3973 break; 3974 } 3975 Power *= FSize; 3976 if (Power >= ComplexityLimit) 3977 break; 3978 } 3979 return Power; 3980 } 3981 3982 /// When one formula uses a superset of the registers of another formula, it 3983 /// won't help reduce register pressure (though it may not necessarily hurt 3984 /// register pressure); remove it to simplify the system. 3985 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3986 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3987 DEBUG(dbgs() << "The search space is too complex.\n"); 3988 3989 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3990 "which use a superset of registers used by other " 3991 "formulae.\n"); 3992 3993 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3994 LSRUse &LU = Uses[LUIdx]; 3995 bool Any = false; 3996 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3997 Formula &F = LU.Formulae[i]; 3998 // Look for a formula with a constant or GV in a register. If the use 3999 // also has a formula with that same value in an immediate field, 4000 // delete the one that uses a register. 4001 for (SmallVectorImpl<const SCEV *>::const_iterator 4002 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4003 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4004 Formula NewF = F; 4005 NewF.BaseOffset += C->getValue()->getSExtValue(); 4006 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4007 (I - F.BaseRegs.begin())); 4008 if (LU.HasFormulaWithSameRegs(NewF)) { 4009 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4010 LU.DeleteFormula(F); 4011 --i; 4012 --e; 4013 Any = true; 4014 break; 4015 } 4016 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4017 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4018 if (!F.BaseGV) { 4019 Formula NewF = F; 4020 NewF.BaseGV = GV; 4021 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4022 (I - F.BaseRegs.begin())); 4023 if (LU.HasFormulaWithSameRegs(NewF)) { 4024 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4025 dbgs() << '\n'); 4026 LU.DeleteFormula(F); 4027 --i; 4028 --e; 4029 Any = true; 4030 break; 4031 } 4032 } 4033 } 4034 } 4035 } 4036 if (Any) 4037 LU.RecomputeRegs(LUIdx, RegUses); 4038 } 4039 4040 DEBUG(dbgs() << "After pre-selection:\n"; 4041 print_uses(dbgs())); 4042 } 4043 } 4044 4045 /// When there are many registers for expressions like A, A+1, A+2, etc., 4046 /// allocate a single register for them. 4047 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4048 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4049 return; 4050 4051 DEBUG(dbgs() << "The search space is too complex.\n" 4052 "Narrowing the search space by assuming that uses separated " 4053 "by a constant offset will use the same registers.\n"); 4054 4055 // This is especially useful for unrolled loops. 4056 4057 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4058 LSRUse &LU = Uses[LUIdx]; 4059 for (const Formula &F : LU.Formulae) { 4060 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4061 continue; 4062 4063 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4064 if (!LUThatHas) 4065 continue; 4066 4067 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4068 LU.Kind, LU.AccessTy)) 4069 continue; 4070 4071 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4072 4073 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4074 4075 // Transfer the fixups of LU to LUThatHas. 4076 for (LSRFixup &Fixup : LU.Fixups) { 4077 Fixup.Offset += F.BaseOffset; 4078 LUThatHas->pushFixup(Fixup); 4079 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4080 } 4081 4082 // Delete formulae from the new use which are no longer legal. 4083 bool Any = false; 4084 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4085 Formula &F = LUThatHas->Formulae[i]; 4086 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4087 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4088 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4089 dbgs() << '\n'); 4090 LUThatHas->DeleteFormula(F); 4091 --i; 4092 --e; 4093 Any = true; 4094 } 4095 } 4096 4097 if (Any) 4098 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4099 4100 // Delete the old use. 4101 DeleteUse(LU, LUIdx); 4102 --LUIdx; 4103 --NumUses; 4104 break; 4105 } 4106 } 4107 4108 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4109 } 4110 4111 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4112 /// we've done more filtering, as it may be able to find more formulae to 4113 /// eliminate. 4114 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4115 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4116 DEBUG(dbgs() << "The search space is too complex.\n"); 4117 4118 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4119 "undesirable dedicated registers.\n"); 4120 4121 FilterOutUndesirableDedicatedRegisters(); 4122 4123 DEBUG(dbgs() << "After pre-selection:\n"; 4124 print_uses(dbgs())); 4125 } 4126 } 4127 4128 /// Pick a register which seems likely to be profitable, and then in any use 4129 /// which has any reference to that register, delete all formulae which do not 4130 /// reference that register. 4131 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4132 // With all other options exhausted, loop until the system is simple 4133 // enough to handle. 4134 SmallPtrSet<const SCEV *, 4> Taken; 4135 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4136 // Ok, we have too many of formulae on our hands to conveniently handle. 4137 // Use a rough heuristic to thin out the list. 4138 DEBUG(dbgs() << "The search space is too complex.\n"); 4139 4140 // Pick the register which is used by the most LSRUses, which is likely 4141 // to be a good reuse register candidate. 4142 const SCEV *Best = nullptr; 4143 unsigned BestNum = 0; 4144 for (const SCEV *Reg : RegUses) { 4145 if (Taken.count(Reg)) 4146 continue; 4147 if (!Best) 4148 Best = Reg; 4149 else { 4150 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4151 if (Count > BestNum) { 4152 Best = Reg; 4153 BestNum = Count; 4154 } 4155 } 4156 } 4157 4158 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4159 << " will yield profitable reuse.\n"); 4160 Taken.insert(Best); 4161 4162 // In any use with formulae which references this register, delete formulae 4163 // which don't reference it. 4164 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4165 LSRUse &LU = Uses[LUIdx]; 4166 if (!LU.Regs.count(Best)) continue; 4167 4168 bool Any = false; 4169 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4170 Formula &F = LU.Formulae[i]; 4171 if (!F.referencesReg(Best)) { 4172 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4173 LU.DeleteFormula(F); 4174 --e; 4175 --i; 4176 Any = true; 4177 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4178 continue; 4179 } 4180 } 4181 4182 if (Any) 4183 LU.RecomputeRegs(LUIdx, RegUses); 4184 } 4185 4186 DEBUG(dbgs() << "After pre-selection:\n"; 4187 print_uses(dbgs())); 4188 } 4189 } 4190 4191 /// If there are an extraordinary number of formulae to choose from, use some 4192 /// rough heuristics to prune down the number of formulae. This keeps the main 4193 /// solver from taking an extraordinary amount of time in some worst-case 4194 /// scenarios. 4195 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4196 NarrowSearchSpaceByDetectingSupersets(); 4197 NarrowSearchSpaceByCollapsingUnrolledCode(); 4198 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4199 NarrowSearchSpaceByPickingWinnerRegs(); 4200 } 4201 4202 /// This is the recursive solver. 4203 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4204 Cost &SolutionCost, 4205 SmallVectorImpl<const Formula *> &Workspace, 4206 const Cost &CurCost, 4207 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4208 DenseSet<const SCEV *> &VisitedRegs) const { 4209 // Some ideas: 4210 // - prune more: 4211 // - use more aggressive filtering 4212 // - sort the formula so that the most profitable solutions are found first 4213 // - sort the uses too 4214 // - search faster: 4215 // - don't compute a cost, and then compare. compare while computing a cost 4216 // and bail early. 4217 // - track register sets with SmallBitVector 4218 4219 const LSRUse &LU = Uses[Workspace.size()]; 4220 4221 // If this use references any register that's already a part of the 4222 // in-progress solution, consider it a requirement that a formula must 4223 // reference that register in order to be considered. This prunes out 4224 // unprofitable searching. 4225 SmallSetVector<const SCEV *, 4> ReqRegs; 4226 for (const SCEV *S : CurRegs) 4227 if (LU.Regs.count(S)) 4228 ReqRegs.insert(S); 4229 4230 SmallPtrSet<const SCEV *, 16> NewRegs; 4231 Cost NewCost; 4232 for (const Formula &F : LU.Formulae) { 4233 // Ignore formulae which may not be ideal in terms of register reuse of 4234 // ReqRegs. The formula should use all required registers before 4235 // introducing new ones. 4236 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4237 for (const SCEV *Reg : ReqRegs) { 4238 if ((F.ScaledReg && F.ScaledReg == Reg) || 4239 is_contained(F.BaseRegs, Reg)) { 4240 --NumReqRegsToFind; 4241 if (NumReqRegsToFind == 0) 4242 break; 4243 } 4244 } 4245 if (NumReqRegsToFind != 0) { 4246 // If none of the formulae satisfied the required registers, then we could 4247 // clear ReqRegs and try again. Currently, we simply give up in this case. 4248 continue; 4249 } 4250 4251 // Evaluate the cost of the current formula. If it's already worse than 4252 // the current best, prune the search at that point. 4253 NewCost = CurCost; 4254 NewRegs = CurRegs; 4255 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4256 if (NewCost < SolutionCost) { 4257 Workspace.push_back(&F); 4258 if (Workspace.size() != Uses.size()) { 4259 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4260 NewRegs, VisitedRegs); 4261 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4262 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4263 } else { 4264 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4265 dbgs() << ".\n Regs:"; 4266 for (const SCEV *S : NewRegs) 4267 dbgs() << ' ' << *S; 4268 dbgs() << '\n'); 4269 4270 SolutionCost = NewCost; 4271 Solution = Workspace; 4272 } 4273 Workspace.pop_back(); 4274 } 4275 } 4276 } 4277 4278 /// Choose one formula from each use. Return the results in the given Solution 4279 /// vector. 4280 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4281 SmallVector<const Formula *, 8> Workspace; 4282 Cost SolutionCost; 4283 SolutionCost.Lose(); 4284 Cost CurCost; 4285 SmallPtrSet<const SCEV *, 16> CurRegs; 4286 DenseSet<const SCEV *> VisitedRegs; 4287 Workspace.reserve(Uses.size()); 4288 4289 // SolveRecurse does all the work. 4290 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4291 CurRegs, VisitedRegs); 4292 if (Solution.empty()) { 4293 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4294 return; 4295 } 4296 4297 // Ok, we've now made all our decisions. 4298 DEBUG(dbgs() << "\n" 4299 "The chosen solution requires "; SolutionCost.print(dbgs()); 4300 dbgs() << ":\n"; 4301 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4302 dbgs() << " "; 4303 Uses[i].print(dbgs()); 4304 dbgs() << "\n" 4305 " "; 4306 Solution[i]->print(dbgs()); 4307 dbgs() << '\n'; 4308 }); 4309 4310 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4311 } 4312 4313 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4314 /// we can go while still being dominated by the input positions. This helps 4315 /// canonicalize the insert position, which encourages sharing. 4316 BasicBlock::iterator 4317 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4318 const SmallVectorImpl<Instruction *> &Inputs) 4319 const { 4320 Instruction *Tentative = &*IP; 4321 for (;;) { 4322 bool AllDominate = true; 4323 Instruction *BetterPos = nullptr; 4324 // Don't bother attempting to insert before a catchswitch, their basic block 4325 // cannot have other non-PHI instructions. 4326 if (isa<CatchSwitchInst>(Tentative)) 4327 return IP; 4328 4329 for (Instruction *Inst : Inputs) { 4330 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4331 AllDominate = false; 4332 break; 4333 } 4334 // Attempt to find an insert position in the middle of the block, 4335 // instead of at the end, so that it can be used for other expansions. 4336 if (Tentative->getParent() == Inst->getParent() && 4337 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4338 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4339 } 4340 if (!AllDominate) 4341 break; 4342 if (BetterPos) 4343 IP = BetterPos->getIterator(); 4344 else 4345 IP = Tentative->getIterator(); 4346 4347 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4348 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4349 4350 BasicBlock *IDom; 4351 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4352 if (!Rung) return IP; 4353 Rung = Rung->getIDom(); 4354 if (!Rung) return IP; 4355 IDom = Rung->getBlock(); 4356 4357 // Don't climb into a loop though. 4358 const Loop *IDomLoop = LI.getLoopFor(IDom); 4359 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4360 if (IDomDepth <= IPLoopDepth && 4361 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4362 break; 4363 } 4364 4365 Tentative = IDom->getTerminator(); 4366 } 4367 4368 return IP; 4369 } 4370 4371 /// Determine an input position which will be dominated by the operands and 4372 /// which will dominate the result. 4373 BasicBlock::iterator 4374 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4375 const LSRFixup &LF, 4376 const LSRUse &LU, 4377 SCEVExpander &Rewriter) const { 4378 // Collect some instructions which must be dominated by the 4379 // expanding replacement. These must be dominated by any operands that 4380 // will be required in the expansion. 4381 SmallVector<Instruction *, 4> Inputs; 4382 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4383 Inputs.push_back(I); 4384 if (LU.Kind == LSRUse::ICmpZero) 4385 if (Instruction *I = 4386 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4387 Inputs.push_back(I); 4388 if (LF.PostIncLoops.count(L)) { 4389 if (LF.isUseFullyOutsideLoop(L)) 4390 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4391 else 4392 Inputs.push_back(IVIncInsertPos); 4393 } 4394 // The expansion must also be dominated by the increment positions of any 4395 // loops it for which it is using post-inc mode. 4396 for (const Loop *PIL : LF.PostIncLoops) { 4397 if (PIL == L) continue; 4398 4399 // Be dominated by the loop exit. 4400 SmallVector<BasicBlock *, 4> ExitingBlocks; 4401 PIL->getExitingBlocks(ExitingBlocks); 4402 if (!ExitingBlocks.empty()) { 4403 BasicBlock *BB = ExitingBlocks[0]; 4404 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4405 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4406 Inputs.push_back(BB->getTerminator()); 4407 } 4408 } 4409 4410 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4411 && !isa<DbgInfoIntrinsic>(LowestIP) && 4412 "Insertion point must be a normal instruction"); 4413 4414 // Then, climb up the immediate dominator tree as far as we can go while 4415 // still being dominated by the input positions. 4416 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4417 4418 // Don't insert instructions before PHI nodes. 4419 while (isa<PHINode>(IP)) ++IP; 4420 4421 // Ignore landingpad instructions. 4422 while (IP->isEHPad()) ++IP; 4423 4424 // Ignore debug intrinsics. 4425 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4426 4427 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4428 // IP consistent across expansions and allows the previously inserted 4429 // instructions to be reused by subsequent expansion. 4430 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4431 ++IP; 4432 4433 return IP; 4434 } 4435 4436 /// Emit instructions for the leading candidate expression for this LSRUse (this 4437 /// is called "expanding"). 4438 Value *LSRInstance::Expand(const LSRUse &LU, 4439 const LSRFixup &LF, 4440 const Formula &F, 4441 BasicBlock::iterator IP, 4442 SCEVExpander &Rewriter, 4443 SmallVectorImpl<WeakVH> &DeadInsts) const { 4444 if (LU.RigidFormula) 4445 return LF.OperandValToReplace; 4446 4447 // Determine an input position which will be dominated by the operands and 4448 // which will dominate the result. 4449 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4450 Rewriter.setInsertPoint(&*IP); 4451 4452 // Inform the Rewriter if we have a post-increment use, so that it can 4453 // perform an advantageous expansion. 4454 Rewriter.setPostInc(LF.PostIncLoops); 4455 4456 // This is the type that the user actually needs. 4457 Type *OpTy = LF.OperandValToReplace->getType(); 4458 // This will be the type that we'll initially expand to. 4459 Type *Ty = F.getType(); 4460 if (!Ty) 4461 // No type known; just expand directly to the ultimate type. 4462 Ty = OpTy; 4463 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4464 // Expand directly to the ultimate type if it's the right size. 4465 Ty = OpTy; 4466 // This is the type to do integer arithmetic in. 4467 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4468 4469 // Build up a list of operands to add together to form the full base. 4470 SmallVector<const SCEV *, 8> Ops; 4471 4472 // Expand the BaseRegs portion. 4473 for (const SCEV *Reg : F.BaseRegs) { 4474 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4475 4476 // If we're expanding for a post-inc user, make the post-inc adjustment. 4477 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4478 Reg = TransformForPostIncUse(Denormalize, Reg, 4479 LF.UserInst, LF.OperandValToReplace, 4480 Loops, SE, DT); 4481 4482 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4483 } 4484 4485 // Expand the ScaledReg portion. 4486 Value *ICmpScaledV = nullptr; 4487 if (F.Scale != 0) { 4488 const SCEV *ScaledS = F.ScaledReg; 4489 4490 // If we're expanding for a post-inc user, make the post-inc adjustment. 4491 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4492 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4493 LF.UserInst, LF.OperandValToReplace, 4494 Loops, SE, DT); 4495 4496 if (LU.Kind == LSRUse::ICmpZero) { 4497 // Expand ScaleReg as if it was part of the base regs. 4498 if (F.Scale == 1) 4499 Ops.push_back( 4500 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4501 else { 4502 // An interesting way of "folding" with an icmp is to use a negated 4503 // scale, which we'll implement by inserting it into the other operand 4504 // of the icmp. 4505 assert(F.Scale == -1 && 4506 "The only scale supported by ICmpZero uses is -1!"); 4507 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4508 } 4509 } else { 4510 // Otherwise just expand the scaled register and an explicit scale, 4511 // which is expected to be matched as part of the address. 4512 4513 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4514 // Unless the addressing mode will not be folded. 4515 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4516 isAMCompletelyFolded(TTI, LU, F)) { 4517 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4518 Ops.clear(); 4519 Ops.push_back(SE.getUnknown(FullV)); 4520 } 4521 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4522 if (F.Scale != 1) 4523 ScaledS = 4524 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4525 Ops.push_back(ScaledS); 4526 } 4527 } 4528 4529 // Expand the GV portion. 4530 if (F.BaseGV) { 4531 // Flush the operand list to suppress SCEVExpander hoisting. 4532 if (!Ops.empty()) { 4533 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4534 Ops.clear(); 4535 Ops.push_back(SE.getUnknown(FullV)); 4536 } 4537 Ops.push_back(SE.getUnknown(F.BaseGV)); 4538 } 4539 4540 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4541 // unfolded offsets. LSR assumes they both live next to their uses. 4542 if (!Ops.empty()) { 4543 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4544 Ops.clear(); 4545 Ops.push_back(SE.getUnknown(FullV)); 4546 } 4547 4548 // Expand the immediate portion. 4549 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4550 if (Offset != 0) { 4551 if (LU.Kind == LSRUse::ICmpZero) { 4552 // The other interesting way of "folding" with an ICmpZero is to use a 4553 // negated immediate. 4554 if (!ICmpScaledV) 4555 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4556 else { 4557 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4558 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4559 } 4560 } else { 4561 // Just add the immediate values. These again are expected to be matched 4562 // as part of the address. 4563 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4564 } 4565 } 4566 4567 // Expand the unfolded offset portion. 4568 int64_t UnfoldedOffset = F.UnfoldedOffset; 4569 if (UnfoldedOffset != 0) { 4570 // Just add the immediate values. 4571 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4572 UnfoldedOffset))); 4573 } 4574 4575 // Emit instructions summing all the operands. 4576 const SCEV *FullS = Ops.empty() ? 4577 SE.getConstant(IntTy, 0) : 4578 SE.getAddExpr(Ops); 4579 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4580 4581 // We're done expanding now, so reset the rewriter. 4582 Rewriter.clearPostInc(); 4583 4584 // An ICmpZero Formula represents an ICmp which we're handling as a 4585 // comparison against zero. Now that we've expanded an expression for that 4586 // form, update the ICmp's other operand. 4587 if (LU.Kind == LSRUse::ICmpZero) { 4588 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4589 DeadInsts.emplace_back(CI->getOperand(1)); 4590 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4591 "a scale at the same time!"); 4592 if (F.Scale == -1) { 4593 if (ICmpScaledV->getType() != OpTy) { 4594 Instruction *Cast = 4595 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4596 OpTy, false), 4597 ICmpScaledV, OpTy, "tmp", CI); 4598 ICmpScaledV = Cast; 4599 } 4600 CI->setOperand(1, ICmpScaledV); 4601 } else { 4602 // A scale of 1 means that the scale has been expanded as part of the 4603 // base regs. 4604 assert((F.Scale == 0 || F.Scale == 1) && 4605 "ICmp does not support folding a global value and " 4606 "a scale at the same time!"); 4607 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4608 -(uint64_t)Offset); 4609 if (C->getType() != OpTy) 4610 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4611 OpTy, false), 4612 C, OpTy); 4613 4614 CI->setOperand(1, C); 4615 } 4616 } 4617 4618 return FullV; 4619 } 4620 4621 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4622 /// effectively happens in their predecessor blocks, so the expression may need 4623 /// to be expanded in multiple places. 4624 void LSRInstance::RewriteForPHI(PHINode *PN, 4625 const LSRUse &LU, 4626 const LSRFixup &LF, 4627 const Formula &F, 4628 SCEVExpander &Rewriter, 4629 SmallVectorImpl<WeakVH> &DeadInsts) const { 4630 DenseMap<BasicBlock *, Value *> Inserted; 4631 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4632 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4633 BasicBlock *BB = PN->getIncomingBlock(i); 4634 4635 // If this is a critical edge, split the edge so that we do not insert 4636 // the code on all predecessor/successor paths. We do this unless this 4637 // is the canonical backedge for this loop, which complicates post-inc 4638 // users. 4639 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4640 !isa<IndirectBrInst>(BB->getTerminator())) { 4641 BasicBlock *Parent = PN->getParent(); 4642 Loop *PNLoop = LI.getLoopFor(Parent); 4643 if (!PNLoop || Parent != PNLoop->getHeader()) { 4644 // Split the critical edge. 4645 BasicBlock *NewBB = nullptr; 4646 if (!Parent->isLandingPad()) { 4647 NewBB = SplitCriticalEdge(BB, Parent, 4648 CriticalEdgeSplittingOptions(&DT, &LI) 4649 .setMergeIdenticalEdges() 4650 .setDontDeleteUselessPHIs()); 4651 } else { 4652 SmallVector<BasicBlock*, 2> NewBBs; 4653 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4654 NewBB = NewBBs[0]; 4655 } 4656 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4657 // phi predecessors are identical. The simple thing to do is skip 4658 // splitting in this case rather than complicate the API. 4659 if (NewBB) { 4660 // If PN is outside of the loop and BB is in the loop, we want to 4661 // move the block to be immediately before the PHI block, not 4662 // immediately after BB. 4663 if (L->contains(BB) && !L->contains(PN)) 4664 NewBB->moveBefore(PN->getParent()); 4665 4666 // Splitting the edge can reduce the number of PHI entries we have. 4667 e = PN->getNumIncomingValues(); 4668 BB = NewBB; 4669 i = PN->getBasicBlockIndex(BB); 4670 } 4671 } 4672 } 4673 4674 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4675 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4676 if (!Pair.second) 4677 PN->setIncomingValue(i, Pair.first->second); 4678 else { 4679 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4680 Rewriter, DeadInsts); 4681 4682 // If this is reuse-by-noop-cast, insert the noop cast. 4683 Type *OpTy = LF.OperandValToReplace->getType(); 4684 if (FullV->getType() != OpTy) 4685 FullV = 4686 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4687 OpTy, false), 4688 FullV, LF.OperandValToReplace->getType(), 4689 "tmp", BB->getTerminator()); 4690 4691 PN->setIncomingValue(i, FullV); 4692 Pair.first->second = FullV; 4693 } 4694 } 4695 } 4696 4697 /// Emit instructions for the leading candidate expression for this LSRUse (this 4698 /// is called "expanding"), and update the UserInst to reference the newly 4699 /// expanded value. 4700 void LSRInstance::Rewrite(const LSRUse &LU, 4701 const LSRFixup &LF, 4702 const Formula &F, 4703 SCEVExpander &Rewriter, 4704 SmallVectorImpl<WeakVH> &DeadInsts) const { 4705 // First, find an insertion point that dominates UserInst. For PHI nodes, 4706 // find the nearest block which dominates all the relevant uses. 4707 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4708 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4709 } else { 4710 Value *FullV = 4711 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4712 4713 // If this is reuse-by-noop-cast, insert the noop cast. 4714 Type *OpTy = LF.OperandValToReplace->getType(); 4715 if (FullV->getType() != OpTy) { 4716 Instruction *Cast = 4717 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4718 FullV, OpTy, "tmp", LF.UserInst); 4719 FullV = Cast; 4720 } 4721 4722 // Update the user. ICmpZero is handled specially here (for now) because 4723 // Expand may have updated one of the operands of the icmp already, and 4724 // its new value may happen to be equal to LF.OperandValToReplace, in 4725 // which case doing replaceUsesOfWith leads to replacing both operands 4726 // with the same value. TODO: Reorganize this. 4727 if (LU.Kind == LSRUse::ICmpZero) 4728 LF.UserInst->setOperand(0, FullV); 4729 else 4730 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4731 } 4732 4733 DeadInsts.emplace_back(LF.OperandValToReplace); 4734 } 4735 4736 /// Rewrite all the fixup locations with new values, following the chosen 4737 /// solution. 4738 void LSRInstance::ImplementSolution( 4739 const SmallVectorImpl<const Formula *> &Solution) { 4740 // Keep track of instructions we may have made dead, so that 4741 // we can remove them after we are done working. 4742 SmallVector<WeakVH, 16> DeadInsts; 4743 4744 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4745 "lsr"); 4746 #ifndef NDEBUG 4747 Rewriter.setDebugType(DEBUG_TYPE); 4748 #endif 4749 Rewriter.disableCanonicalMode(); 4750 Rewriter.enableLSRMode(); 4751 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4752 4753 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4754 for (const IVChain &Chain : IVChainVec) { 4755 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4756 Rewriter.setChainedPhi(PN); 4757 } 4758 4759 // Expand the new value definitions and update the users. 4760 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4761 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4762 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4763 Changed = true; 4764 } 4765 4766 for (const IVChain &Chain : IVChainVec) { 4767 GenerateIVChain(Chain, Rewriter, DeadInsts); 4768 Changed = true; 4769 } 4770 // Clean up after ourselves. This must be done before deleting any 4771 // instructions. 4772 Rewriter.clear(); 4773 4774 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4775 } 4776 4777 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4778 DominatorTree &DT, LoopInfo &LI, 4779 const TargetTransformInfo &TTI) 4780 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4781 IVIncInsertPos(nullptr) { 4782 // If LoopSimplify form is not available, stay out of trouble. 4783 if (!L->isLoopSimplifyForm()) 4784 return; 4785 4786 // If there's no interesting work to be done, bail early. 4787 if (IU.empty()) return; 4788 4789 // If there's too much analysis to be done, bail early. We won't be able to 4790 // model the problem anyway. 4791 unsigned NumUsers = 0; 4792 for (const IVStrideUse &U : IU) { 4793 if (++NumUsers > MaxIVUsers) { 4794 (void)U; 4795 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4796 return; 4797 } 4798 // Bail out if we have a PHI on an EHPad that gets a value from a 4799 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4800 // no good place to stick any instructions. 4801 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4802 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4803 if (isa<FuncletPadInst>(FirstNonPHI) || 4804 isa<CatchSwitchInst>(FirstNonPHI)) 4805 for (BasicBlock *PredBB : PN->blocks()) 4806 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4807 return; 4808 } 4809 } 4810 4811 #ifndef NDEBUG 4812 // All dominating loops must have preheaders, or SCEVExpander may not be able 4813 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4814 // 4815 // IVUsers analysis should only create users that are dominated by simple loop 4816 // headers. Since this loop should dominate all of its users, its user list 4817 // should be empty if this loop itself is not within a simple loop nest. 4818 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4819 Rung; Rung = Rung->getIDom()) { 4820 BasicBlock *BB = Rung->getBlock(); 4821 const Loop *DomLoop = LI.getLoopFor(BB); 4822 if (DomLoop && DomLoop->getHeader() == BB) { 4823 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4824 } 4825 } 4826 #endif // DEBUG 4827 4828 DEBUG(dbgs() << "\nLSR on loop "; 4829 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4830 dbgs() << ":\n"); 4831 4832 // First, perform some low-level loop optimizations. 4833 OptimizeShadowIV(); 4834 OptimizeLoopTermCond(); 4835 4836 // If loop preparation eliminates all interesting IV users, bail. 4837 if (IU.empty()) return; 4838 4839 // Skip nested loops until we can model them better with formulae. 4840 if (!L->empty()) { 4841 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4842 return; 4843 } 4844 4845 // Start collecting data and preparing for the solver. 4846 CollectChains(); 4847 CollectInterestingTypesAndFactors(); 4848 CollectFixupsAndInitialFormulae(); 4849 CollectLoopInvariantFixupsAndFormulae(); 4850 4851 assert(!Uses.empty() && "IVUsers reported at least one use"); 4852 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4853 print_uses(dbgs())); 4854 4855 // Now use the reuse data to generate a bunch of interesting ways 4856 // to formulate the values needed for the uses. 4857 GenerateAllReuseFormulae(); 4858 4859 FilterOutUndesirableDedicatedRegisters(); 4860 NarrowSearchSpaceUsingHeuristics(); 4861 4862 SmallVector<const Formula *, 8> Solution; 4863 Solve(Solution); 4864 4865 // Release memory that is no longer needed. 4866 Factors.clear(); 4867 Types.clear(); 4868 RegUses.clear(); 4869 4870 if (Solution.empty()) 4871 return; 4872 4873 #ifndef NDEBUG 4874 // Formulae should be legal. 4875 for (const LSRUse &LU : Uses) { 4876 for (const Formula &F : LU.Formulae) 4877 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4878 F) && "Illegal formula generated!"); 4879 }; 4880 #endif 4881 4882 // Now that we've decided what we want, make it so. 4883 ImplementSolution(Solution); 4884 } 4885 4886 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4887 if (Factors.empty() && Types.empty()) return; 4888 4889 OS << "LSR has identified the following interesting factors and types: "; 4890 bool First = true; 4891 4892 for (int64_t Factor : Factors) { 4893 if (!First) OS << ", "; 4894 First = false; 4895 OS << '*' << Factor; 4896 } 4897 4898 for (Type *Ty : Types) { 4899 if (!First) OS << ", "; 4900 First = false; 4901 OS << '(' << *Ty << ')'; 4902 } 4903 OS << '\n'; 4904 } 4905 4906 void LSRInstance::print_fixups(raw_ostream &OS) const { 4907 OS << "LSR is examining the following fixup sites:\n"; 4908 for (const LSRUse &LU : Uses) 4909 for (const LSRFixup &LF : LU.Fixups) { 4910 dbgs() << " "; 4911 LF.print(OS); 4912 OS << '\n'; 4913 } 4914 } 4915 4916 void LSRInstance::print_uses(raw_ostream &OS) const { 4917 OS << "LSR is examining the following uses:\n"; 4918 for (const LSRUse &LU : Uses) { 4919 dbgs() << " "; 4920 LU.print(OS); 4921 OS << '\n'; 4922 for (const Formula &F : LU.Formulae) { 4923 OS << " "; 4924 F.print(OS); 4925 OS << '\n'; 4926 } 4927 } 4928 } 4929 4930 void LSRInstance::print(raw_ostream &OS) const { 4931 print_factors_and_types(OS); 4932 print_fixups(OS); 4933 print_uses(OS); 4934 } 4935 4936 LLVM_DUMP_METHOD 4937 void LSRInstance::dump() const { 4938 print(errs()); errs() << '\n'; 4939 } 4940 4941 namespace { 4942 4943 class LoopStrengthReduce : public LoopPass { 4944 public: 4945 static char ID; // Pass ID, replacement for typeid 4946 LoopStrengthReduce(); 4947 4948 private: 4949 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4950 void getAnalysisUsage(AnalysisUsage &AU) const override; 4951 }; 4952 } 4953 4954 char LoopStrengthReduce::ID = 0; 4955 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4956 "Loop Strength Reduction", false, false) 4957 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4958 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4959 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4960 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 4961 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4962 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4963 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4964 "Loop Strength Reduction", false, false) 4965 4966 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 4967 4968 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4969 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4970 } 4971 4972 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4973 // We split critical edges, so we change the CFG. However, we do update 4974 // many analyses if they are around. 4975 AU.addPreservedID(LoopSimplifyID); 4976 4977 AU.addRequired<LoopInfoWrapperPass>(); 4978 AU.addPreserved<LoopInfoWrapperPass>(); 4979 AU.addRequiredID(LoopSimplifyID); 4980 AU.addRequired<DominatorTreeWrapperPass>(); 4981 AU.addPreserved<DominatorTreeWrapperPass>(); 4982 AU.addRequired<ScalarEvolutionWrapperPass>(); 4983 AU.addPreserved<ScalarEvolutionWrapperPass>(); 4984 // Requiring LoopSimplify a second time here prevents IVUsers from running 4985 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4986 AU.addRequiredID(LoopSimplifyID); 4987 AU.addRequired<IVUsersWrapperPass>(); 4988 AU.addPreserved<IVUsersWrapperPass>(); 4989 AU.addRequired<TargetTransformInfoWrapperPass>(); 4990 } 4991 4992 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4993 DominatorTree &DT, LoopInfo &LI, 4994 const TargetTransformInfo &TTI) { 4995 bool Changed = false; 4996 4997 // Run the main LSR transformation. 4998 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 4999 5000 // Remove any extra phis created by processing inner loops. 5001 Changed |= DeleteDeadPHIs(L->getHeader()); 5002 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5003 SmallVector<WeakVH, 16> DeadInsts; 5004 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5005 SCEVExpander Rewriter(SE, DL, "lsr"); 5006 #ifndef NDEBUG 5007 Rewriter.setDebugType(DEBUG_TYPE); 5008 #endif 5009 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5010 if (numFolded) { 5011 Changed = true; 5012 DeleteTriviallyDeadInstructions(DeadInsts); 5013 DeleteDeadPHIs(L->getHeader()); 5014 } 5015 } 5016 return Changed; 5017 } 5018 5019 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5020 if (skipLoop(L)) 5021 return false; 5022 5023 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5024 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5025 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5026 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5027 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5028 *L->getHeader()->getParent()); 5029 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5030 } 5031 5032 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, 5033 LoopAnalysisManager &AM) { 5034 const auto &FAM = 5035 AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 5036 Function *F = L.getHeader()->getParent(); 5037 5038 auto &IU = AM.getResult<IVUsersAnalysis>(L); 5039 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 5040 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 5041 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 5042 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 5043 assert((SE && DT && LI && TTI) && 5044 "Analyses for Loop Strength Reduce not available"); 5045 5046 if (!ReduceLoopStrength(&L, IU, *SE, *DT, *LI, *TTI)) 5047 return PreservedAnalyses::all(); 5048 5049 return getLoopPassPreservedAnalyses(); 5050 } 5051