1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 #ifndef NDEBUG 133 // Stress test IV chain generation. 134 static cl::opt<bool> StressIVChain( 135 "stress-ivchain", cl::Hidden, cl::init(false), 136 cl::desc("Stress test LSR IV chains")); 137 #else 138 static bool StressIVChain = false; 139 #endif 140 141 namespace { 142 143 struct MemAccessTy { 144 /// Used in situations where the accessed memory type is unknown. 145 static const unsigned UnknownAddressSpace = ~0u; 146 147 Type *MemTy; 148 unsigned AddrSpace; 149 150 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 151 152 MemAccessTy(Type *Ty, unsigned AS) : 153 MemTy(Ty), AddrSpace(AS) {} 154 155 bool operator==(MemAccessTy Other) const { 156 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 157 } 158 159 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 160 161 static MemAccessTy getUnknown(LLVMContext &Ctx, 162 unsigned AS = UnknownAddressSpace) { 163 return MemAccessTy(Type::getVoidTy(Ctx), AS); 164 } 165 }; 166 167 /// This class holds data which is used to order reuse candidates. 168 class RegSortData { 169 public: 170 /// This represents the set of LSRUse indices which reference 171 /// a particular register. 172 SmallBitVector UsedByIndices; 173 174 void print(raw_ostream &OS) const; 175 void dump() const; 176 }; 177 178 } // end anonymous namespace 179 180 void RegSortData::print(raw_ostream &OS) const { 181 OS << "[NumUses=" << UsedByIndices.count() << ']'; 182 } 183 184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 185 LLVM_DUMP_METHOD void RegSortData::dump() const { 186 print(errs()); errs() << '\n'; 187 } 188 #endif 189 190 namespace { 191 192 /// Map register candidates to information about how they are used. 193 class RegUseTracker { 194 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 195 196 RegUsesTy RegUsesMap; 197 SmallVector<const SCEV *, 16> RegSequence; 198 199 public: 200 void countRegister(const SCEV *Reg, size_t LUIdx); 201 void dropRegister(const SCEV *Reg, size_t LUIdx); 202 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 203 204 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 205 206 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 207 208 void clear(); 209 210 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 211 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 212 iterator begin() { return RegSequence.begin(); } 213 iterator end() { return RegSequence.end(); } 214 const_iterator begin() const { return RegSequence.begin(); } 215 const_iterator end() const { return RegSequence.end(); } 216 }; 217 218 } // end anonymous namespace 219 220 void 221 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 222 std::pair<RegUsesTy::iterator, bool> Pair = 223 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 224 RegSortData &RSD = Pair.first->second; 225 if (Pair.second) 226 RegSequence.push_back(Reg); 227 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 228 RSD.UsedByIndices.set(LUIdx); 229 } 230 231 void 232 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 233 RegUsesTy::iterator It = RegUsesMap.find(Reg); 234 assert(It != RegUsesMap.end()); 235 RegSortData &RSD = It->second; 236 assert(RSD.UsedByIndices.size() > LUIdx); 237 RSD.UsedByIndices.reset(LUIdx); 238 } 239 240 void 241 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 242 assert(LUIdx <= LastLUIdx); 243 244 // Update RegUses. The data structure is not optimized for this purpose; 245 // we must iterate through it and update each of the bit vectors. 246 for (auto &Pair : RegUsesMap) { 247 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 248 if (LUIdx < UsedByIndices.size()) 249 UsedByIndices[LUIdx] = 250 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 251 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 252 } 253 } 254 255 bool 256 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 257 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 258 if (I == RegUsesMap.end()) 259 return false; 260 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 261 int i = UsedByIndices.find_first(); 262 if (i == -1) return false; 263 if ((size_t)i != LUIdx) return true; 264 return UsedByIndices.find_next(i) != -1; 265 } 266 267 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 268 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 269 assert(I != RegUsesMap.end() && "Unknown register!"); 270 return I->second.UsedByIndices; 271 } 272 273 void RegUseTracker::clear() { 274 RegUsesMap.clear(); 275 RegSequence.clear(); 276 } 277 278 namespace { 279 280 /// This class holds information that describes a formula for computing 281 /// satisfying a use. It may include broken-out immediates and scaled registers. 282 struct Formula { 283 /// Global base address used for complex addressing. 284 GlobalValue *BaseGV; 285 286 /// Base offset for complex addressing. 287 int64_t BaseOffset; 288 289 /// Whether any complex addressing has a base register. 290 bool HasBaseReg; 291 292 /// The scale of any complex addressing. 293 int64_t Scale; 294 295 /// The list of "base" registers for this use. When this is non-empty. The 296 /// canonical representation of a formula is 297 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 298 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 299 /// #1 enforces that the scaled register is always used when at least two 300 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 301 /// #2 enforces that 1 * reg is reg. 302 /// This invariant can be temporarly broken while building a formula. 303 /// However, every formula inserted into the LSRInstance must be in canonical 304 /// form. 305 SmallVector<const SCEV *, 4> BaseRegs; 306 307 /// The 'scaled' register for this use. This should be non-null when Scale is 308 /// not zero. 309 const SCEV *ScaledReg; 310 311 /// An additional constant offset which added near the use. This requires a 312 /// temporary register, but the offset itself can live in an add immediate 313 /// field rather than a register. 314 int64_t UnfoldedOffset; 315 316 Formula() 317 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 318 ScaledReg(nullptr), UnfoldedOffset(0) {} 319 320 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 321 322 bool isCanonical() const; 323 324 void canonicalize(); 325 326 bool unscale(); 327 328 size_t getNumRegs() const; 329 Type *getType() const; 330 331 void deleteBaseReg(const SCEV *&S); 332 333 bool referencesReg(const SCEV *S) const; 334 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 335 const RegUseTracker &RegUses) const; 336 337 void print(raw_ostream &OS) const; 338 void dump() const; 339 }; 340 341 } // end anonymous namespace 342 343 /// Recursion helper for initialMatch. 344 static void DoInitialMatch(const SCEV *S, Loop *L, 345 SmallVectorImpl<const SCEV *> &Good, 346 SmallVectorImpl<const SCEV *> &Bad, 347 ScalarEvolution &SE) { 348 // Collect expressions which properly dominate the loop header. 349 if (SE.properlyDominates(S, L->getHeader())) { 350 Good.push_back(S); 351 return; 352 } 353 354 // Look at add operands. 355 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 356 for (const SCEV *S : Add->operands()) 357 DoInitialMatch(S, L, Good, Bad, SE); 358 return; 359 } 360 361 // Look at addrec operands. 362 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 363 if (!AR->getStart()->isZero() && AR->isAffine()) { 364 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 365 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 366 AR->getStepRecurrence(SE), 367 // FIXME: AR->getNoWrapFlags() 368 AR->getLoop(), SCEV::FlagAnyWrap), 369 L, Good, Bad, SE); 370 return; 371 } 372 373 // Handle a multiplication by -1 (negation) if it didn't fold. 374 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 375 if (Mul->getOperand(0)->isAllOnesValue()) { 376 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 377 const SCEV *NewMul = SE.getMulExpr(Ops); 378 379 SmallVector<const SCEV *, 4> MyGood; 380 SmallVector<const SCEV *, 4> MyBad; 381 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 382 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 383 SE.getEffectiveSCEVType(NewMul->getType()))); 384 for (const SCEV *S : MyGood) 385 Good.push_back(SE.getMulExpr(NegOne, S)); 386 for (const SCEV *S : MyBad) 387 Bad.push_back(SE.getMulExpr(NegOne, S)); 388 return; 389 } 390 391 // Ok, we can't do anything interesting. Just stuff the whole thing into a 392 // register and hope for the best. 393 Bad.push_back(S); 394 } 395 396 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 397 /// all loop-invariant and loop-computable values in a single base register. 398 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 399 SmallVector<const SCEV *, 4> Good; 400 SmallVector<const SCEV *, 4> Bad; 401 DoInitialMatch(S, L, Good, Bad, SE); 402 if (!Good.empty()) { 403 const SCEV *Sum = SE.getAddExpr(Good); 404 if (!Sum->isZero()) 405 BaseRegs.push_back(Sum); 406 HasBaseReg = true; 407 } 408 if (!Bad.empty()) { 409 const SCEV *Sum = SE.getAddExpr(Bad); 410 if (!Sum->isZero()) 411 BaseRegs.push_back(Sum); 412 HasBaseReg = true; 413 } 414 canonicalize(); 415 } 416 417 /// \brief Check whether or not this formula statisfies the canonical 418 /// representation. 419 /// \see Formula::BaseRegs. 420 bool Formula::isCanonical() const { 421 if (ScaledReg) 422 return Scale != 1 || !BaseRegs.empty(); 423 return BaseRegs.size() <= 1; 424 } 425 426 /// \brief Helper method to morph a formula into its canonical representation. 427 /// \see Formula::BaseRegs. 428 /// Every formula having more than one base register, must use the ScaledReg 429 /// field. Otherwise, we would have to do special cases everywhere in LSR 430 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 431 /// On the other hand, 1*reg should be canonicalized into reg. 432 void Formula::canonicalize() { 433 if (isCanonical()) 434 return; 435 // So far we did not need this case. This is easy to implement but it is 436 // useless to maintain dead code. Beside it could hurt compile time. 437 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 438 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 439 ScaledReg = BaseRegs.back(); 440 BaseRegs.pop_back(); 441 Scale = 1; 442 size_t BaseRegsSize = BaseRegs.size(); 443 size_t Try = 0; 444 // If ScaledReg is an invariant, try to find a variant expression. 445 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 446 std::swap(ScaledReg, BaseRegs[Try++]); 447 } 448 449 /// \brief Get rid of the scale in the formula. 450 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 451 /// \return true if it was possible to get rid of the scale, false otherwise. 452 /// \note After this operation the formula may not be in the canonical form. 453 bool Formula::unscale() { 454 if (Scale != 1) 455 return false; 456 Scale = 0; 457 BaseRegs.push_back(ScaledReg); 458 ScaledReg = nullptr; 459 return true; 460 } 461 462 /// Return the total number of register operands used by this formula. This does 463 /// not include register uses implied by non-constant addrec strides. 464 size_t Formula::getNumRegs() const { 465 return !!ScaledReg + BaseRegs.size(); 466 } 467 468 /// Return the type of this formula, if it has one, or null otherwise. This type 469 /// is meaningless except for the bit size. 470 Type *Formula::getType() const { 471 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 472 ScaledReg ? ScaledReg->getType() : 473 BaseGV ? BaseGV->getType() : 474 nullptr; 475 } 476 477 /// Delete the given base reg from the BaseRegs list. 478 void Formula::deleteBaseReg(const SCEV *&S) { 479 if (&S != &BaseRegs.back()) 480 std::swap(S, BaseRegs.back()); 481 BaseRegs.pop_back(); 482 } 483 484 /// Test if this formula references the given register. 485 bool Formula::referencesReg(const SCEV *S) const { 486 return S == ScaledReg || is_contained(BaseRegs, S); 487 } 488 489 /// Test whether this formula uses registers which are used by uses other than 490 /// the use with the given index. 491 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 492 const RegUseTracker &RegUses) const { 493 if (ScaledReg) 494 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 495 return true; 496 for (const SCEV *BaseReg : BaseRegs) 497 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 498 return true; 499 return false; 500 } 501 502 void Formula::print(raw_ostream &OS) const { 503 bool First = true; 504 if (BaseGV) { 505 if (!First) OS << " + "; else First = false; 506 BaseGV->printAsOperand(OS, /*PrintType=*/false); 507 } 508 if (BaseOffset != 0) { 509 if (!First) OS << " + "; else First = false; 510 OS << BaseOffset; 511 } 512 for (const SCEV *BaseReg : BaseRegs) { 513 if (!First) OS << " + "; else First = false; 514 OS << "reg(" << *BaseReg << ')'; 515 } 516 if (HasBaseReg && BaseRegs.empty()) { 517 if (!First) OS << " + "; else First = false; 518 OS << "**error: HasBaseReg**"; 519 } else if (!HasBaseReg && !BaseRegs.empty()) { 520 if (!First) OS << " + "; else First = false; 521 OS << "**error: !HasBaseReg**"; 522 } 523 if (Scale != 0) { 524 if (!First) OS << " + "; else First = false; 525 OS << Scale << "*reg("; 526 if (ScaledReg) 527 OS << *ScaledReg; 528 else 529 OS << "<unknown>"; 530 OS << ')'; 531 } 532 if (UnfoldedOffset != 0) { 533 if (!First) OS << " + "; 534 OS << "imm(" << UnfoldedOffset << ')'; 535 } 536 } 537 538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 539 LLVM_DUMP_METHOD void Formula::dump() const { 540 print(errs()); errs() << '\n'; 541 } 542 #endif 543 544 /// Return true if the given addrec can be sign-extended without changing its 545 /// value. 546 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 547 Type *WideTy = 548 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 549 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 550 } 551 552 /// Return true if the given add can be sign-extended without changing its 553 /// value. 554 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 555 Type *WideTy = 556 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 557 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 558 } 559 560 /// Return true if the given mul can be sign-extended without changing its 561 /// value. 562 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 563 Type *WideTy = 564 IntegerType::get(SE.getContext(), 565 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 566 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 567 } 568 569 /// Return an expression for LHS /s RHS, if it can be determined and if the 570 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 571 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 572 /// the multiplication may overflow, which is useful when the result will be 573 /// used in a context where the most significant bits are ignored. 574 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 575 ScalarEvolution &SE, 576 bool IgnoreSignificantBits = false) { 577 // Handle the trivial case, which works for any SCEV type. 578 if (LHS == RHS) 579 return SE.getConstant(LHS->getType(), 1); 580 581 // Handle a few RHS special cases. 582 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 583 if (RC) { 584 const APInt &RA = RC->getAPInt(); 585 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 586 // some folding. 587 if (RA.isAllOnesValue()) 588 return SE.getMulExpr(LHS, RC); 589 // Handle x /s 1 as x. 590 if (RA == 1) 591 return LHS; 592 } 593 594 // Check for a division of a constant by a constant. 595 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 596 if (!RC) 597 return nullptr; 598 const APInt &LA = C->getAPInt(); 599 const APInt &RA = RC->getAPInt(); 600 if (LA.srem(RA) != 0) 601 return nullptr; 602 return SE.getConstant(LA.sdiv(RA)); 603 } 604 605 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 606 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 607 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 608 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 609 IgnoreSignificantBits); 610 if (!Step) return nullptr; 611 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 612 IgnoreSignificantBits); 613 if (!Start) return nullptr; 614 // FlagNW is independent of the start value, step direction, and is 615 // preserved with smaller magnitude steps. 616 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 617 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 618 } 619 return nullptr; 620 } 621 622 // Distribute the sdiv over add operands, if the add doesn't overflow. 623 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 624 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 625 SmallVector<const SCEV *, 8> Ops; 626 for (const SCEV *S : Add->operands()) { 627 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 628 if (!Op) return nullptr; 629 Ops.push_back(Op); 630 } 631 return SE.getAddExpr(Ops); 632 } 633 return nullptr; 634 } 635 636 // Check for a multiply operand that we can pull RHS out of. 637 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 638 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 639 SmallVector<const SCEV *, 4> Ops; 640 bool Found = false; 641 for (const SCEV *S : Mul->operands()) { 642 if (!Found) 643 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 644 IgnoreSignificantBits)) { 645 S = Q; 646 Found = true; 647 } 648 Ops.push_back(S); 649 } 650 return Found ? SE.getMulExpr(Ops) : nullptr; 651 } 652 return nullptr; 653 } 654 655 // Otherwise we don't know. 656 return nullptr; 657 } 658 659 /// If S involves the addition of a constant integer value, return that integer 660 /// value, and mutate S to point to a new SCEV with that value excluded. 661 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 662 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 663 if (C->getAPInt().getMinSignedBits() <= 64) { 664 S = SE.getConstant(C->getType(), 0); 665 return C->getValue()->getSExtValue(); 666 } 667 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 668 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 669 int64_t Result = ExtractImmediate(NewOps.front(), SE); 670 if (Result != 0) 671 S = SE.getAddExpr(NewOps); 672 return Result; 673 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 674 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 675 int64_t Result = ExtractImmediate(NewOps.front(), SE); 676 if (Result != 0) 677 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 678 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 679 SCEV::FlagAnyWrap); 680 return Result; 681 } 682 return 0; 683 } 684 685 /// If S involves the addition of a GlobalValue address, return that symbol, and 686 /// mutate S to point to a new SCEV with that value excluded. 687 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 688 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 689 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 690 S = SE.getConstant(GV->getType(), 0); 691 return GV; 692 } 693 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 694 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 695 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 696 if (Result) 697 S = SE.getAddExpr(NewOps); 698 return Result; 699 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 700 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 701 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 702 if (Result) 703 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 704 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 705 SCEV::FlagAnyWrap); 706 return Result; 707 } 708 return nullptr; 709 } 710 711 /// Returns true if the specified instruction is using the specified value as an 712 /// address. 713 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 714 bool isAddress = isa<LoadInst>(Inst); 715 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 716 if (SI->getPointerOperand() == OperandVal) 717 isAddress = true; 718 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 719 // Addressing modes can also be folded into prefetches and a variety 720 // of intrinsics. 721 switch (II->getIntrinsicID()) { 722 default: break; 723 case Intrinsic::prefetch: 724 if (II->getArgOperand(0) == OperandVal) 725 isAddress = true; 726 break; 727 } 728 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 729 if (RMW->getPointerOperand() == OperandVal) 730 isAddress = true; 731 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 732 if (CmpX->getPointerOperand() == OperandVal) 733 isAddress = true; 734 } 735 return isAddress; 736 } 737 738 /// Return the type of the memory being accessed. 739 static MemAccessTy getAccessType(const Instruction *Inst) { 740 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 741 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 742 AccessTy.MemTy = SI->getOperand(0)->getType(); 743 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 744 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 745 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 746 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 747 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 748 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 749 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 750 } 751 752 // All pointers have the same requirements, so canonicalize them to an 753 // arbitrary pointer type to minimize variation. 754 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 755 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 756 PTy->getAddressSpace()); 757 758 return AccessTy; 759 } 760 761 /// Return true if this AddRec is already a phi in its loop. 762 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 763 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 764 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 765 if (SE.isSCEVable(PN->getType()) && 766 (SE.getEffectiveSCEVType(PN->getType()) == 767 SE.getEffectiveSCEVType(AR->getType())) && 768 SE.getSCEV(PN) == AR) 769 return true; 770 } 771 return false; 772 } 773 774 /// Check if expanding this expression is likely to incur significant cost. This 775 /// is tricky because SCEV doesn't track which expressions are actually computed 776 /// by the current IR. 777 /// 778 /// We currently allow expansion of IV increments that involve adds, 779 /// multiplication by constants, and AddRecs from existing phis. 780 /// 781 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 782 /// obvious multiple of the UDivExpr. 783 static bool isHighCostExpansion(const SCEV *S, 784 SmallPtrSetImpl<const SCEV*> &Processed, 785 ScalarEvolution &SE) { 786 // Zero/One operand expressions 787 switch (S->getSCEVType()) { 788 case scUnknown: 789 case scConstant: 790 return false; 791 case scTruncate: 792 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 793 Processed, SE); 794 case scZeroExtend: 795 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 796 Processed, SE); 797 case scSignExtend: 798 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 799 Processed, SE); 800 } 801 802 if (!Processed.insert(S).second) 803 return false; 804 805 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 806 for (const SCEV *S : Add->operands()) { 807 if (isHighCostExpansion(S, Processed, SE)) 808 return true; 809 } 810 return false; 811 } 812 813 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 814 if (Mul->getNumOperands() == 2) { 815 // Multiplication by a constant is ok 816 if (isa<SCEVConstant>(Mul->getOperand(0))) 817 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 818 819 // If we have the value of one operand, check if an existing 820 // multiplication already generates this expression. 821 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 822 Value *UVal = U->getValue(); 823 for (User *UR : UVal->users()) { 824 // If U is a constant, it may be used by a ConstantExpr. 825 Instruction *UI = dyn_cast<Instruction>(UR); 826 if (UI && UI->getOpcode() == Instruction::Mul && 827 SE.isSCEVable(UI->getType())) { 828 return SE.getSCEV(UI) == Mul; 829 } 830 } 831 } 832 } 833 } 834 835 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 836 if (isExistingPhi(AR, SE)) 837 return false; 838 } 839 840 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 841 return true; 842 } 843 844 /// If any of the instructions is the specified set are trivially dead, delete 845 /// them and see if this makes any of their operands subsequently dead. 846 static bool 847 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 848 bool Changed = false; 849 850 while (!DeadInsts.empty()) { 851 Value *V = DeadInsts.pop_back_val(); 852 Instruction *I = dyn_cast_or_null<Instruction>(V); 853 854 if (!I || !isInstructionTriviallyDead(I)) 855 continue; 856 857 for (Use &O : I->operands()) 858 if (Instruction *U = dyn_cast<Instruction>(O)) { 859 O = nullptr; 860 if (U->use_empty()) 861 DeadInsts.emplace_back(U); 862 } 863 864 I->eraseFromParent(); 865 Changed = true; 866 } 867 868 return Changed; 869 } 870 871 namespace { 872 873 class LSRUse; 874 875 } // end anonymous namespace 876 877 /// \brief Check if the addressing mode defined by \p F is completely 878 /// folded in \p LU at isel time. 879 /// This includes address-mode folding and special icmp tricks. 880 /// This function returns true if \p LU can accommodate what \p F 881 /// defines and up to 1 base + 1 scaled + offset. 882 /// In other words, if \p F has several base registers, this function may 883 /// still return true. Therefore, users still need to account for 884 /// additional base registers and/or unfolded offsets to derive an 885 /// accurate cost model. 886 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 887 const LSRUse &LU, const Formula &F); 888 // Get the cost of the scaling factor used in F for LU. 889 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 890 const LSRUse &LU, const Formula &F); 891 892 namespace { 893 894 /// This class is used to measure and compare candidate formulae. 895 class Cost { 896 /// TODO: Some of these could be merged. Also, a lexical ordering 897 /// isn't always optimal. 898 unsigned NumRegs; 899 unsigned AddRecCost; 900 unsigned NumIVMuls; 901 unsigned NumBaseAdds; 902 unsigned ImmCost; 903 unsigned SetupCost; 904 unsigned ScaleCost; 905 906 public: 907 Cost() 908 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 909 SetupCost(0), ScaleCost(0) {} 910 911 bool operator<(const Cost &Other) const; 912 913 void Lose(); 914 915 #ifndef NDEBUG 916 // Once any of the metrics loses, they must all remain losers. 917 bool isValid() { 918 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 919 | ImmCost | SetupCost | ScaleCost) != ~0u) 920 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 921 & ImmCost & SetupCost & ScaleCost) == ~0u); 922 } 923 #endif 924 925 bool isLoser() { 926 assert(isValid() && "invalid cost"); 927 return NumRegs == ~0u; 928 } 929 930 void RateFormula(const TargetTransformInfo &TTI, 931 const Formula &F, 932 SmallPtrSetImpl<const SCEV *> &Regs, 933 const DenseSet<const SCEV *> &VisitedRegs, 934 const Loop *L, 935 ScalarEvolution &SE, DominatorTree &DT, 936 const LSRUse &LU, 937 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 938 939 void print(raw_ostream &OS) const; 940 void dump() const; 941 942 private: 943 void RateRegister(const SCEV *Reg, 944 SmallPtrSetImpl<const SCEV *> &Regs, 945 const Loop *L, 946 ScalarEvolution &SE, DominatorTree &DT); 947 void RatePrimaryRegister(const SCEV *Reg, 948 SmallPtrSetImpl<const SCEV *> &Regs, 949 const Loop *L, 950 ScalarEvolution &SE, DominatorTree &DT, 951 SmallPtrSetImpl<const SCEV *> *LoserRegs); 952 }; 953 954 /// An operand value in an instruction which is to be replaced with some 955 /// equivalent, possibly strength-reduced, replacement. 956 struct LSRFixup { 957 /// The instruction which will be updated. 958 Instruction *UserInst; 959 960 /// The operand of the instruction which will be replaced. The operand may be 961 /// used more than once; every instance will be replaced. 962 Value *OperandValToReplace; 963 964 /// If this user is to use the post-incremented value of an induction 965 /// variable, this variable is non-null and holds the loop associated with the 966 /// induction variable. 967 PostIncLoopSet PostIncLoops; 968 969 /// A constant offset to be added to the LSRUse expression. This allows 970 /// multiple fixups to share the same LSRUse with different offsets, for 971 /// example in an unrolled loop. 972 int64_t Offset; 973 974 bool isUseFullyOutsideLoop(const Loop *L) const; 975 976 LSRFixup(); 977 978 void print(raw_ostream &OS) const; 979 void dump() const; 980 }; 981 982 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 983 /// SmallVectors of const SCEV*. 984 struct UniquifierDenseMapInfo { 985 static SmallVector<const SCEV *, 4> getEmptyKey() { 986 SmallVector<const SCEV *, 4> V; 987 V.push_back(reinterpret_cast<const SCEV *>(-1)); 988 return V; 989 } 990 991 static SmallVector<const SCEV *, 4> getTombstoneKey() { 992 SmallVector<const SCEV *, 4> V; 993 V.push_back(reinterpret_cast<const SCEV *>(-2)); 994 return V; 995 } 996 997 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 998 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 999 } 1000 1001 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1002 const SmallVector<const SCEV *, 4> &RHS) { 1003 return LHS == RHS; 1004 } 1005 }; 1006 1007 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1008 /// as uses invented by LSR itself. It includes information about what kinds of 1009 /// things can be folded into the user, information about the user itself, and 1010 /// information about how the use may be satisfied. TODO: Represent multiple 1011 /// users of the same expression in common? 1012 class LSRUse { 1013 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1014 1015 public: 1016 /// An enum for a kind of use, indicating what types of scaled and immediate 1017 /// operands it might support. 1018 enum KindType { 1019 Basic, ///< A normal use, with no folding. 1020 Special, ///< A special case of basic, allowing -1 scales. 1021 Address, ///< An address use; folding according to TargetLowering 1022 ICmpZero ///< An equality icmp with both operands folded into one. 1023 // TODO: Add a generic icmp too? 1024 }; 1025 1026 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1027 1028 KindType Kind; 1029 MemAccessTy AccessTy; 1030 1031 /// The list of operands which are to be replaced. 1032 SmallVector<LSRFixup, 8> Fixups; 1033 1034 /// Keep track of the min and max offsets of the fixups. 1035 int64_t MinOffset; 1036 int64_t MaxOffset; 1037 1038 /// This records whether all of the fixups using this LSRUse are outside of 1039 /// the loop, in which case some special-case heuristics may be used. 1040 bool AllFixupsOutsideLoop; 1041 1042 /// RigidFormula is set to true to guarantee that this use will be associated 1043 /// with a single formula--the one that initially matched. Some SCEV 1044 /// expressions cannot be expanded. This allows LSR to consider the registers 1045 /// used by those expressions without the need to expand them later after 1046 /// changing the formula. 1047 bool RigidFormula; 1048 1049 /// This records the widest use type for any fixup using this 1050 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1051 /// fixup widths to be equivalent, because the narrower one may be relying on 1052 /// the implicit truncation to truncate away bogus bits. 1053 Type *WidestFixupType; 1054 1055 /// A list of ways to build a value that can satisfy this user. After the 1056 /// list is populated, one of these is selected heuristically and used to 1057 /// formulate a replacement for OperandValToReplace in UserInst. 1058 SmallVector<Formula, 12> Formulae; 1059 1060 /// The set of register candidates used by all formulae in this LSRUse. 1061 SmallPtrSet<const SCEV *, 4> Regs; 1062 1063 LSRUse(KindType K, MemAccessTy AT) 1064 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1065 AllFixupsOutsideLoop(true), RigidFormula(false), 1066 WidestFixupType(nullptr) {} 1067 1068 LSRFixup &getNewFixup() { 1069 Fixups.push_back(LSRFixup()); 1070 return Fixups.back(); 1071 } 1072 1073 void pushFixup(LSRFixup &f) { 1074 Fixups.push_back(f); 1075 if (f.Offset > MaxOffset) 1076 MaxOffset = f.Offset; 1077 if (f.Offset < MinOffset) 1078 MinOffset = f.Offset; 1079 } 1080 1081 bool HasFormulaWithSameRegs(const Formula &F) const; 1082 bool InsertFormula(const Formula &F); 1083 void DeleteFormula(Formula &F); 1084 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1085 1086 void print(raw_ostream &OS) const; 1087 void dump() const; 1088 }; 1089 1090 } // end anonymous namespace 1091 1092 /// Tally up interesting quantities from the given register. 1093 void Cost::RateRegister(const SCEV *Reg, 1094 SmallPtrSetImpl<const SCEV *> &Regs, 1095 const Loop *L, 1096 ScalarEvolution &SE, DominatorTree &DT) { 1097 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1098 // If this is an addrec for another loop, don't second-guess its addrec phi 1099 // nodes. LSR isn't currently smart enough to reason about more than one 1100 // loop at a time. LSR has already run on inner loops, will not run on outer 1101 // loops, and cannot be expected to change sibling loops. 1102 if (AR->getLoop() != L) { 1103 // If the AddRec exists, consider it's register free and leave it alone. 1104 if (isExistingPhi(AR, SE)) 1105 return; 1106 1107 // Otherwise, do not consider this formula at all. 1108 Lose(); 1109 return; 1110 } 1111 AddRecCost += 1; /// TODO: This should be a function of the stride. 1112 1113 // Add the step value register, if it needs one. 1114 // TODO: The non-affine case isn't precisely modeled here. 1115 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1116 if (!Regs.count(AR->getOperand(1))) { 1117 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1118 if (isLoser()) 1119 return; 1120 } 1121 } 1122 } 1123 ++NumRegs; 1124 1125 // Rough heuristic; favor registers which don't require extra setup 1126 // instructions in the preheader. 1127 if (!isa<SCEVUnknown>(Reg) && 1128 !isa<SCEVConstant>(Reg) && 1129 !(isa<SCEVAddRecExpr>(Reg) && 1130 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1131 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1132 ++SetupCost; 1133 1134 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1135 SE.hasComputableLoopEvolution(Reg, L); 1136 } 1137 1138 /// Record this register in the set. If we haven't seen it before, rate 1139 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1140 /// one of those regs an instant loser. 1141 void Cost::RatePrimaryRegister(const SCEV *Reg, 1142 SmallPtrSetImpl<const SCEV *> &Regs, 1143 const Loop *L, 1144 ScalarEvolution &SE, DominatorTree &DT, 1145 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1146 if (LoserRegs && LoserRegs->count(Reg)) { 1147 Lose(); 1148 return; 1149 } 1150 if (Regs.insert(Reg).second) { 1151 RateRegister(Reg, Regs, L, SE, DT); 1152 if (LoserRegs && isLoser()) 1153 LoserRegs->insert(Reg); 1154 } 1155 } 1156 1157 void Cost::RateFormula(const TargetTransformInfo &TTI, 1158 const Formula &F, 1159 SmallPtrSetImpl<const SCEV *> &Regs, 1160 const DenseSet<const SCEV *> &VisitedRegs, 1161 const Loop *L, 1162 ScalarEvolution &SE, DominatorTree &DT, 1163 const LSRUse &LU, 1164 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1165 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1166 // Tally up the registers. 1167 if (const SCEV *ScaledReg = F.ScaledReg) { 1168 if (VisitedRegs.count(ScaledReg)) { 1169 Lose(); 1170 return; 1171 } 1172 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1173 if (isLoser()) 1174 return; 1175 } 1176 for (const SCEV *BaseReg : F.BaseRegs) { 1177 if (VisitedRegs.count(BaseReg)) { 1178 Lose(); 1179 return; 1180 } 1181 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1182 if (isLoser()) 1183 return; 1184 } 1185 1186 // Determine how many (unfolded) adds we'll need inside the loop. 1187 size_t NumBaseParts = F.getNumRegs(); 1188 if (NumBaseParts > 1) 1189 // Do not count the base and a possible second register if the target 1190 // allows to fold 2 registers. 1191 NumBaseAdds += 1192 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1193 NumBaseAdds += (F.UnfoldedOffset != 0); 1194 1195 // Accumulate non-free scaling amounts. 1196 ScaleCost += getScalingFactorCost(TTI, LU, F); 1197 1198 // Tally up the non-zero immediates. 1199 for (const LSRFixup &Fixup : LU.Fixups) { 1200 int64_t O = Fixup.Offset; 1201 int64_t Offset = (uint64_t)O + F.BaseOffset; 1202 if (F.BaseGV) 1203 ImmCost += 64; // Handle symbolic values conservatively. 1204 // TODO: This should probably be the pointer size. 1205 else if (Offset != 0) 1206 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1207 1208 // Check with target if this offset with this instruction is 1209 // specifically not supported. 1210 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1211 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1212 NumBaseAdds++; 1213 } 1214 assert(isValid() && "invalid cost"); 1215 } 1216 1217 /// Set this cost to a losing value. 1218 void Cost::Lose() { 1219 NumRegs = ~0u; 1220 AddRecCost = ~0u; 1221 NumIVMuls = ~0u; 1222 NumBaseAdds = ~0u; 1223 ImmCost = ~0u; 1224 SetupCost = ~0u; 1225 ScaleCost = ~0u; 1226 } 1227 1228 /// Choose the lower cost. 1229 bool Cost::operator<(const Cost &Other) const { 1230 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1231 ImmCost, SetupCost) < 1232 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1233 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1234 Other.SetupCost); 1235 } 1236 1237 void Cost::print(raw_ostream &OS) const { 1238 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1239 if (AddRecCost != 0) 1240 OS << ", with addrec cost " << AddRecCost; 1241 if (NumIVMuls != 0) 1242 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1243 if (NumBaseAdds != 0) 1244 OS << ", plus " << NumBaseAdds << " base add" 1245 << (NumBaseAdds == 1 ? "" : "s"); 1246 if (ScaleCost != 0) 1247 OS << ", plus " << ScaleCost << " scale cost"; 1248 if (ImmCost != 0) 1249 OS << ", plus " << ImmCost << " imm cost"; 1250 if (SetupCost != 0) 1251 OS << ", plus " << SetupCost << " setup cost"; 1252 } 1253 1254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1255 LLVM_DUMP_METHOD void Cost::dump() const { 1256 print(errs()); errs() << '\n'; 1257 } 1258 #endif 1259 1260 LSRFixup::LSRFixup() 1261 : UserInst(nullptr), OperandValToReplace(nullptr), 1262 Offset(0) {} 1263 1264 /// Test whether this fixup always uses its value outside of the given loop. 1265 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1266 // PHI nodes use their value in their incoming blocks. 1267 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1268 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1269 if (PN->getIncomingValue(i) == OperandValToReplace && 1270 L->contains(PN->getIncomingBlock(i))) 1271 return false; 1272 return true; 1273 } 1274 1275 return !L->contains(UserInst); 1276 } 1277 1278 void LSRFixup::print(raw_ostream &OS) const { 1279 OS << "UserInst="; 1280 // Store is common and interesting enough to be worth special-casing. 1281 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1282 OS << "store "; 1283 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1284 } else if (UserInst->getType()->isVoidTy()) 1285 OS << UserInst->getOpcodeName(); 1286 else 1287 UserInst->printAsOperand(OS, /*PrintType=*/false); 1288 1289 OS << ", OperandValToReplace="; 1290 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1291 1292 for (const Loop *PIL : PostIncLoops) { 1293 OS << ", PostIncLoop="; 1294 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1295 } 1296 1297 if (Offset != 0) 1298 OS << ", Offset=" << Offset; 1299 } 1300 1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1302 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1303 print(errs()); errs() << '\n'; 1304 } 1305 #endif 1306 1307 /// Test whether this use as a formula which has the same registers as the given 1308 /// formula. 1309 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1310 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1311 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1312 // Unstable sort by host order ok, because this is only used for uniquifying. 1313 std::sort(Key.begin(), Key.end()); 1314 return Uniquifier.count(Key); 1315 } 1316 1317 /// If the given formula has not yet been inserted, add it to the list, and 1318 /// return true. Return false otherwise. The formula must be in canonical form. 1319 bool LSRUse::InsertFormula(const Formula &F) { 1320 assert(F.isCanonical() && "Invalid canonical representation"); 1321 1322 if (!Formulae.empty() && RigidFormula) 1323 return false; 1324 1325 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1326 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1327 // Unstable sort by host order ok, because this is only used for uniquifying. 1328 std::sort(Key.begin(), Key.end()); 1329 1330 if (!Uniquifier.insert(Key).second) 1331 return false; 1332 1333 // Using a register to hold the value of 0 is not profitable. 1334 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1335 "Zero allocated in a scaled register!"); 1336 #ifndef NDEBUG 1337 for (const SCEV *BaseReg : F.BaseRegs) 1338 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1339 #endif 1340 1341 // Add the formula to the list. 1342 Formulae.push_back(F); 1343 1344 // Record registers now being used by this use. 1345 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1346 if (F.ScaledReg) 1347 Regs.insert(F.ScaledReg); 1348 1349 return true; 1350 } 1351 1352 /// Remove the given formula from this use's list. 1353 void LSRUse::DeleteFormula(Formula &F) { 1354 if (&F != &Formulae.back()) 1355 std::swap(F, Formulae.back()); 1356 Formulae.pop_back(); 1357 } 1358 1359 /// Recompute the Regs field, and update RegUses. 1360 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1361 // Now that we've filtered out some formulae, recompute the Regs set. 1362 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1363 Regs.clear(); 1364 for (const Formula &F : Formulae) { 1365 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1366 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1367 } 1368 1369 // Update the RegTracker. 1370 for (const SCEV *S : OldRegs) 1371 if (!Regs.count(S)) 1372 RegUses.dropRegister(S, LUIdx); 1373 } 1374 1375 void LSRUse::print(raw_ostream &OS) const { 1376 OS << "LSR Use: Kind="; 1377 switch (Kind) { 1378 case Basic: OS << "Basic"; break; 1379 case Special: OS << "Special"; break; 1380 case ICmpZero: OS << "ICmpZero"; break; 1381 case Address: 1382 OS << "Address of "; 1383 if (AccessTy.MemTy->isPointerTy()) 1384 OS << "pointer"; // the full pointer type could be really verbose 1385 else { 1386 OS << *AccessTy.MemTy; 1387 } 1388 1389 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1390 } 1391 1392 OS << ", Offsets={"; 1393 bool NeedComma = false; 1394 for (const LSRFixup &Fixup : Fixups) { 1395 if (NeedComma) OS << ','; 1396 OS << Fixup.Offset; 1397 NeedComma = true; 1398 } 1399 OS << '}'; 1400 1401 if (AllFixupsOutsideLoop) 1402 OS << ", all-fixups-outside-loop"; 1403 1404 if (WidestFixupType) 1405 OS << ", widest fixup type: " << *WidestFixupType; 1406 } 1407 1408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1409 LLVM_DUMP_METHOD void LSRUse::dump() const { 1410 print(errs()); errs() << '\n'; 1411 } 1412 #endif 1413 1414 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1415 LSRUse::KindType Kind, MemAccessTy AccessTy, 1416 GlobalValue *BaseGV, int64_t BaseOffset, 1417 bool HasBaseReg, int64_t Scale) { 1418 switch (Kind) { 1419 case LSRUse::Address: 1420 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1421 HasBaseReg, Scale, AccessTy.AddrSpace); 1422 1423 case LSRUse::ICmpZero: 1424 // There's not even a target hook for querying whether it would be legal to 1425 // fold a GV into an ICmp. 1426 if (BaseGV) 1427 return false; 1428 1429 // ICmp only has two operands; don't allow more than two non-trivial parts. 1430 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1431 return false; 1432 1433 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1434 // putting the scaled register in the other operand of the icmp. 1435 if (Scale != 0 && Scale != -1) 1436 return false; 1437 1438 // If we have low-level target information, ask the target if it can fold an 1439 // integer immediate on an icmp. 1440 if (BaseOffset != 0) { 1441 // We have one of: 1442 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1443 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1444 // Offs is the ICmp immediate. 1445 if (Scale == 0) 1446 // The cast does the right thing with INT64_MIN. 1447 BaseOffset = -(uint64_t)BaseOffset; 1448 return TTI.isLegalICmpImmediate(BaseOffset); 1449 } 1450 1451 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1452 return true; 1453 1454 case LSRUse::Basic: 1455 // Only handle single-register values. 1456 return !BaseGV && Scale == 0 && BaseOffset == 0; 1457 1458 case LSRUse::Special: 1459 // Special case Basic to handle -1 scales. 1460 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1461 } 1462 1463 llvm_unreachable("Invalid LSRUse Kind!"); 1464 } 1465 1466 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1467 int64_t MinOffset, int64_t MaxOffset, 1468 LSRUse::KindType Kind, MemAccessTy AccessTy, 1469 GlobalValue *BaseGV, int64_t BaseOffset, 1470 bool HasBaseReg, int64_t Scale) { 1471 // Check for overflow. 1472 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1473 (MinOffset > 0)) 1474 return false; 1475 MinOffset = (uint64_t)BaseOffset + MinOffset; 1476 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1477 (MaxOffset > 0)) 1478 return false; 1479 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1480 1481 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1482 HasBaseReg, Scale) && 1483 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1484 HasBaseReg, Scale); 1485 } 1486 1487 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1488 int64_t MinOffset, int64_t MaxOffset, 1489 LSRUse::KindType Kind, MemAccessTy AccessTy, 1490 const Formula &F) { 1491 // For the purpose of isAMCompletelyFolded either having a canonical formula 1492 // or a scale not equal to zero is correct. 1493 // Problems may arise from non canonical formulae having a scale == 0. 1494 // Strictly speaking it would best to just rely on canonical formulae. 1495 // However, when we generate the scaled formulae, we first check that the 1496 // scaling factor is profitable before computing the actual ScaledReg for 1497 // compile time sake. 1498 assert((F.isCanonical() || F.Scale != 0)); 1499 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1500 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1501 } 1502 1503 /// Test whether we know how to expand the current formula. 1504 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1505 int64_t MaxOffset, LSRUse::KindType Kind, 1506 MemAccessTy AccessTy, GlobalValue *BaseGV, 1507 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1508 // We know how to expand completely foldable formulae. 1509 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1510 BaseOffset, HasBaseReg, Scale) || 1511 // Or formulae that use a base register produced by a sum of base 1512 // registers. 1513 (Scale == 1 && 1514 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1515 BaseGV, BaseOffset, true, 0)); 1516 } 1517 1518 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1519 int64_t MaxOffset, LSRUse::KindType Kind, 1520 MemAccessTy AccessTy, const Formula &F) { 1521 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1522 F.BaseOffset, F.HasBaseReg, F.Scale); 1523 } 1524 1525 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1526 const LSRUse &LU, const Formula &F) { 1527 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1528 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1529 F.Scale); 1530 } 1531 1532 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1533 const LSRUse &LU, const Formula &F) { 1534 if (!F.Scale) 1535 return 0; 1536 1537 // If the use is not completely folded in that instruction, we will have to 1538 // pay an extra cost only for scale != 1. 1539 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1540 LU.AccessTy, F)) 1541 return F.Scale != 1; 1542 1543 switch (LU.Kind) { 1544 case LSRUse::Address: { 1545 // Check the scaling factor cost with both the min and max offsets. 1546 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1547 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1548 F.Scale, LU.AccessTy.AddrSpace); 1549 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1550 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1551 F.Scale, LU.AccessTy.AddrSpace); 1552 1553 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1554 "Legal addressing mode has an illegal cost!"); 1555 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1556 } 1557 case LSRUse::ICmpZero: 1558 case LSRUse::Basic: 1559 case LSRUse::Special: 1560 // The use is completely folded, i.e., everything is folded into the 1561 // instruction. 1562 return 0; 1563 } 1564 1565 llvm_unreachable("Invalid LSRUse Kind!"); 1566 } 1567 1568 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1569 LSRUse::KindType Kind, MemAccessTy AccessTy, 1570 GlobalValue *BaseGV, int64_t BaseOffset, 1571 bool HasBaseReg) { 1572 // Fast-path: zero is always foldable. 1573 if (BaseOffset == 0 && !BaseGV) return true; 1574 1575 // Conservatively, create an address with an immediate and a 1576 // base and a scale. 1577 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1578 1579 // Canonicalize a scale of 1 to a base register if the formula doesn't 1580 // already have a base register. 1581 if (!HasBaseReg && Scale == 1) { 1582 Scale = 0; 1583 HasBaseReg = true; 1584 } 1585 1586 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1587 HasBaseReg, Scale); 1588 } 1589 1590 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1591 ScalarEvolution &SE, int64_t MinOffset, 1592 int64_t MaxOffset, LSRUse::KindType Kind, 1593 MemAccessTy AccessTy, const SCEV *S, 1594 bool HasBaseReg) { 1595 // Fast-path: zero is always foldable. 1596 if (S->isZero()) return true; 1597 1598 // Conservatively, create an address with an immediate and a 1599 // base and a scale. 1600 int64_t BaseOffset = ExtractImmediate(S, SE); 1601 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1602 1603 // If there's anything else involved, it's not foldable. 1604 if (!S->isZero()) return false; 1605 1606 // Fast-path: zero is always foldable. 1607 if (BaseOffset == 0 && !BaseGV) return true; 1608 1609 // Conservatively, create an address with an immediate and a 1610 // base and a scale. 1611 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1612 1613 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1614 BaseOffset, HasBaseReg, Scale); 1615 } 1616 1617 namespace { 1618 1619 /// An individual increment in a Chain of IV increments. Relate an IV user to 1620 /// an expression that computes the IV it uses from the IV used by the previous 1621 /// link in the Chain. 1622 /// 1623 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1624 /// original IVOperand. The head of the chain's IVOperand is only valid during 1625 /// chain collection, before LSR replaces IV users. During chain generation, 1626 /// IncExpr can be used to find the new IVOperand that computes the same 1627 /// expression. 1628 struct IVInc { 1629 Instruction *UserInst; 1630 Value* IVOperand; 1631 const SCEV *IncExpr; 1632 1633 IVInc(Instruction *U, Value *O, const SCEV *E): 1634 UserInst(U), IVOperand(O), IncExpr(E) {} 1635 }; 1636 1637 // The list of IV increments in program order. We typically add the head of a 1638 // chain without finding subsequent links. 1639 struct IVChain { 1640 SmallVector<IVInc,1> Incs; 1641 const SCEV *ExprBase; 1642 1643 IVChain() : ExprBase(nullptr) {} 1644 1645 IVChain(const IVInc &Head, const SCEV *Base) 1646 : Incs(1, Head), ExprBase(Base) {} 1647 1648 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1649 1650 // Return the first increment in the chain. 1651 const_iterator begin() const { 1652 assert(!Incs.empty()); 1653 return std::next(Incs.begin()); 1654 } 1655 const_iterator end() const { 1656 return Incs.end(); 1657 } 1658 1659 // Returns true if this chain contains any increments. 1660 bool hasIncs() const { return Incs.size() >= 2; } 1661 1662 // Add an IVInc to the end of this chain. 1663 void add(const IVInc &X) { Incs.push_back(X); } 1664 1665 // Returns the last UserInst in the chain. 1666 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1667 1668 // Returns true if IncExpr can be profitably added to this chain. 1669 bool isProfitableIncrement(const SCEV *OperExpr, 1670 const SCEV *IncExpr, 1671 ScalarEvolution&); 1672 }; 1673 1674 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1675 /// between FarUsers that definitely cross IV increments and NearUsers that may 1676 /// be used between IV increments. 1677 struct ChainUsers { 1678 SmallPtrSet<Instruction*, 4> FarUsers; 1679 SmallPtrSet<Instruction*, 4> NearUsers; 1680 }; 1681 1682 /// This class holds state for the main loop strength reduction logic. 1683 class LSRInstance { 1684 IVUsers &IU; 1685 ScalarEvolution &SE; 1686 DominatorTree &DT; 1687 LoopInfo &LI; 1688 const TargetTransformInfo &TTI; 1689 Loop *const L; 1690 bool Changed; 1691 1692 /// This is the insert position that the current loop's induction variable 1693 /// increment should be placed. In simple loops, this is the latch block's 1694 /// terminator. But in more complicated cases, this is a position which will 1695 /// dominate all the in-loop post-increment users. 1696 Instruction *IVIncInsertPos; 1697 1698 /// Interesting factors between use strides. 1699 /// 1700 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1701 /// default, a SmallDenseSet, because we need to use the full range of 1702 /// int64_ts, and there's currently no good way of doing that with 1703 /// SmallDenseSet. 1704 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1705 1706 /// Interesting use types, to facilitate truncation reuse. 1707 SmallSetVector<Type *, 4> Types; 1708 1709 /// The list of interesting uses. 1710 SmallVector<LSRUse, 16> Uses; 1711 1712 /// Track which uses use which register candidates. 1713 RegUseTracker RegUses; 1714 1715 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1716 // have more than a few IV increment chains in a loop. Missing a Chain falls 1717 // back to normal LSR behavior for those uses. 1718 static const unsigned MaxChains = 8; 1719 1720 /// IV users can form a chain of IV increments. 1721 SmallVector<IVChain, MaxChains> IVChainVec; 1722 1723 /// IV users that belong to profitable IVChains. 1724 SmallPtrSet<Use*, MaxChains> IVIncSet; 1725 1726 void OptimizeShadowIV(); 1727 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1728 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1729 void OptimizeLoopTermCond(); 1730 1731 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1732 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1733 void FinalizeChain(IVChain &Chain); 1734 void CollectChains(); 1735 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1736 SmallVectorImpl<WeakVH> &DeadInsts); 1737 1738 void CollectInterestingTypesAndFactors(); 1739 void CollectFixupsAndInitialFormulae(); 1740 1741 // Support for sharing of LSRUses between LSRFixups. 1742 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1743 UseMapTy UseMap; 1744 1745 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1746 LSRUse::KindType Kind, MemAccessTy AccessTy); 1747 1748 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1749 MemAccessTy AccessTy); 1750 1751 void DeleteUse(LSRUse &LU, size_t LUIdx); 1752 1753 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1754 1755 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1756 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1757 void CountRegisters(const Formula &F, size_t LUIdx); 1758 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1759 1760 void CollectLoopInvariantFixupsAndFormulae(); 1761 1762 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1763 unsigned Depth = 0); 1764 1765 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1766 const Formula &Base, unsigned Depth, 1767 size_t Idx, bool IsScaledReg = false); 1768 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1769 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1770 const Formula &Base, size_t Idx, 1771 bool IsScaledReg = false); 1772 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1773 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1774 const Formula &Base, 1775 const SmallVectorImpl<int64_t> &Worklist, 1776 size_t Idx, bool IsScaledReg = false); 1777 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1778 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1779 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1780 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1781 void GenerateCrossUseConstantOffsets(); 1782 void GenerateAllReuseFormulae(); 1783 1784 void FilterOutUndesirableDedicatedRegisters(); 1785 1786 size_t EstimateSearchSpaceComplexity() const; 1787 void NarrowSearchSpaceByDetectingSupersets(); 1788 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1789 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1790 void NarrowSearchSpaceByPickingWinnerRegs(); 1791 void NarrowSearchSpaceUsingHeuristics(); 1792 1793 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1794 Cost &SolutionCost, 1795 SmallVectorImpl<const Formula *> &Workspace, 1796 const Cost &CurCost, 1797 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1798 DenseSet<const SCEV *> &VisitedRegs) const; 1799 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1800 1801 BasicBlock::iterator 1802 HoistInsertPosition(BasicBlock::iterator IP, 1803 const SmallVectorImpl<Instruction *> &Inputs) const; 1804 BasicBlock::iterator 1805 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1806 const LSRFixup &LF, 1807 const LSRUse &LU, 1808 SCEVExpander &Rewriter) const; 1809 1810 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1811 const Formula &F, 1812 BasicBlock::iterator IP, 1813 SCEVExpander &Rewriter, 1814 SmallVectorImpl<WeakVH> &DeadInsts) const; 1815 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1816 const Formula &F, 1817 SCEVExpander &Rewriter, 1818 SmallVectorImpl<WeakVH> &DeadInsts) const; 1819 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1820 const Formula &F, 1821 SCEVExpander &Rewriter, 1822 SmallVectorImpl<WeakVH> &DeadInsts) const; 1823 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1824 1825 public: 1826 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1827 LoopInfo &LI, const TargetTransformInfo &TTI); 1828 1829 bool getChanged() const { return Changed; } 1830 1831 void print_factors_and_types(raw_ostream &OS) const; 1832 void print_fixups(raw_ostream &OS) const; 1833 void print_uses(raw_ostream &OS) const; 1834 void print(raw_ostream &OS) const; 1835 void dump() const; 1836 }; 1837 1838 } // end anonymous namespace 1839 1840 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1841 /// the cast operation. 1842 void LSRInstance::OptimizeShadowIV() { 1843 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1844 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1845 return; 1846 1847 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1848 UI != E; /* empty */) { 1849 IVUsers::const_iterator CandidateUI = UI; 1850 ++UI; 1851 Instruction *ShadowUse = CandidateUI->getUser(); 1852 Type *DestTy = nullptr; 1853 bool IsSigned = false; 1854 1855 /* If shadow use is a int->float cast then insert a second IV 1856 to eliminate this cast. 1857 1858 for (unsigned i = 0; i < n; ++i) 1859 foo((double)i); 1860 1861 is transformed into 1862 1863 double d = 0.0; 1864 for (unsigned i = 0; i < n; ++i, ++d) 1865 foo(d); 1866 */ 1867 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1868 IsSigned = false; 1869 DestTy = UCast->getDestTy(); 1870 } 1871 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1872 IsSigned = true; 1873 DestTy = SCast->getDestTy(); 1874 } 1875 if (!DestTy) continue; 1876 1877 // If target does not support DestTy natively then do not apply 1878 // this transformation. 1879 if (!TTI.isTypeLegal(DestTy)) continue; 1880 1881 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1882 if (!PH) continue; 1883 if (PH->getNumIncomingValues() != 2) continue; 1884 1885 Type *SrcTy = PH->getType(); 1886 int Mantissa = DestTy->getFPMantissaWidth(); 1887 if (Mantissa == -1) continue; 1888 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1889 continue; 1890 1891 unsigned Entry, Latch; 1892 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1893 Entry = 0; 1894 Latch = 1; 1895 } else { 1896 Entry = 1; 1897 Latch = 0; 1898 } 1899 1900 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1901 if (!Init) continue; 1902 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1903 (double)Init->getSExtValue() : 1904 (double)Init->getZExtValue()); 1905 1906 BinaryOperator *Incr = 1907 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1908 if (!Incr) continue; 1909 if (Incr->getOpcode() != Instruction::Add 1910 && Incr->getOpcode() != Instruction::Sub) 1911 continue; 1912 1913 /* Initialize new IV, double d = 0.0 in above example. */ 1914 ConstantInt *C = nullptr; 1915 if (Incr->getOperand(0) == PH) 1916 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1917 else if (Incr->getOperand(1) == PH) 1918 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1919 else 1920 continue; 1921 1922 if (!C) continue; 1923 1924 // Ignore negative constants, as the code below doesn't handle them 1925 // correctly. TODO: Remove this restriction. 1926 if (!C->getValue().isStrictlyPositive()) continue; 1927 1928 /* Add new PHINode. */ 1929 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1930 1931 /* create new increment. '++d' in above example. */ 1932 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1933 BinaryOperator *NewIncr = 1934 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1935 Instruction::FAdd : Instruction::FSub, 1936 NewPH, CFP, "IV.S.next.", Incr); 1937 1938 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1939 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1940 1941 /* Remove cast operation */ 1942 ShadowUse->replaceAllUsesWith(NewPH); 1943 ShadowUse->eraseFromParent(); 1944 Changed = true; 1945 break; 1946 } 1947 } 1948 1949 /// If Cond has an operand that is an expression of an IV, set the IV user and 1950 /// stride information and return true, otherwise return false. 1951 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1952 for (IVStrideUse &U : IU) 1953 if (U.getUser() == Cond) { 1954 // NOTE: we could handle setcc instructions with multiple uses here, but 1955 // InstCombine does it as well for simple uses, it's not clear that it 1956 // occurs enough in real life to handle. 1957 CondUse = &U; 1958 return true; 1959 } 1960 return false; 1961 } 1962 1963 /// Rewrite the loop's terminating condition if it uses a max computation. 1964 /// 1965 /// This is a narrow solution to a specific, but acute, problem. For loops 1966 /// like this: 1967 /// 1968 /// i = 0; 1969 /// do { 1970 /// p[i] = 0.0; 1971 /// } while (++i < n); 1972 /// 1973 /// the trip count isn't just 'n', because 'n' might not be positive. And 1974 /// unfortunately this can come up even for loops where the user didn't use 1975 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1976 /// will commonly be lowered like this: 1977 // 1978 /// if (n > 0) { 1979 /// i = 0; 1980 /// do { 1981 /// p[i] = 0.0; 1982 /// } while (++i < n); 1983 /// } 1984 /// 1985 /// and then it's possible for subsequent optimization to obscure the if 1986 /// test in such a way that indvars can't find it. 1987 /// 1988 /// When indvars can't find the if test in loops like this, it creates a 1989 /// max expression, which allows it to give the loop a canonical 1990 /// induction variable: 1991 /// 1992 /// i = 0; 1993 /// max = n < 1 ? 1 : n; 1994 /// do { 1995 /// p[i] = 0.0; 1996 /// } while (++i != max); 1997 /// 1998 /// Canonical induction variables are necessary because the loop passes 1999 /// are designed around them. The most obvious example of this is the 2000 /// LoopInfo analysis, which doesn't remember trip count values. It 2001 /// expects to be able to rediscover the trip count each time it is 2002 /// needed, and it does this using a simple analysis that only succeeds if 2003 /// the loop has a canonical induction variable. 2004 /// 2005 /// However, when it comes time to generate code, the maximum operation 2006 /// can be quite costly, especially if it's inside of an outer loop. 2007 /// 2008 /// This function solves this problem by detecting this type of loop and 2009 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2010 /// the instructions for the maximum computation. 2011 /// 2012 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2013 // Check that the loop matches the pattern we're looking for. 2014 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2015 Cond->getPredicate() != CmpInst::ICMP_NE) 2016 return Cond; 2017 2018 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2019 if (!Sel || !Sel->hasOneUse()) return Cond; 2020 2021 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2022 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2023 return Cond; 2024 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2025 2026 // Add one to the backedge-taken count to get the trip count. 2027 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2028 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2029 2030 // Check for a max calculation that matches the pattern. There's no check 2031 // for ICMP_ULE here because the comparison would be with zero, which 2032 // isn't interesting. 2033 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2034 const SCEVNAryExpr *Max = nullptr; 2035 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2036 Pred = ICmpInst::ICMP_SLE; 2037 Max = S; 2038 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2039 Pred = ICmpInst::ICMP_SLT; 2040 Max = S; 2041 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2042 Pred = ICmpInst::ICMP_ULT; 2043 Max = U; 2044 } else { 2045 // No match; bail. 2046 return Cond; 2047 } 2048 2049 // To handle a max with more than two operands, this optimization would 2050 // require additional checking and setup. 2051 if (Max->getNumOperands() != 2) 2052 return Cond; 2053 2054 const SCEV *MaxLHS = Max->getOperand(0); 2055 const SCEV *MaxRHS = Max->getOperand(1); 2056 2057 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2058 // for a comparison with 1. For <= and >=, a comparison with zero. 2059 if (!MaxLHS || 2060 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2061 return Cond; 2062 2063 // Check the relevant induction variable for conformance to 2064 // the pattern. 2065 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2066 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2067 if (!AR || !AR->isAffine() || 2068 AR->getStart() != One || 2069 AR->getStepRecurrence(SE) != One) 2070 return Cond; 2071 2072 assert(AR->getLoop() == L && 2073 "Loop condition operand is an addrec in a different loop!"); 2074 2075 // Check the right operand of the select, and remember it, as it will 2076 // be used in the new comparison instruction. 2077 Value *NewRHS = nullptr; 2078 if (ICmpInst::isTrueWhenEqual(Pred)) { 2079 // Look for n+1, and grab n. 2080 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2081 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2082 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2083 NewRHS = BO->getOperand(0); 2084 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2085 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2086 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2087 NewRHS = BO->getOperand(0); 2088 if (!NewRHS) 2089 return Cond; 2090 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2091 NewRHS = Sel->getOperand(1); 2092 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2093 NewRHS = Sel->getOperand(2); 2094 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2095 NewRHS = SU->getValue(); 2096 else 2097 // Max doesn't match expected pattern. 2098 return Cond; 2099 2100 // Determine the new comparison opcode. It may be signed or unsigned, 2101 // and the original comparison may be either equality or inequality. 2102 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2103 Pred = CmpInst::getInversePredicate(Pred); 2104 2105 // Ok, everything looks ok to change the condition into an SLT or SGE and 2106 // delete the max calculation. 2107 ICmpInst *NewCond = 2108 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2109 2110 // Delete the max calculation instructions. 2111 Cond->replaceAllUsesWith(NewCond); 2112 CondUse->setUser(NewCond); 2113 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2114 Cond->eraseFromParent(); 2115 Sel->eraseFromParent(); 2116 if (Cmp->use_empty()) 2117 Cmp->eraseFromParent(); 2118 return NewCond; 2119 } 2120 2121 /// Change loop terminating condition to use the postinc iv when possible. 2122 void 2123 LSRInstance::OptimizeLoopTermCond() { 2124 SmallPtrSet<Instruction *, 4> PostIncs; 2125 2126 // We need a different set of heuristics for rotated and non-rotated loops. 2127 // If a loop is rotated then the latch is also the backedge, so inserting 2128 // post-inc expressions just before the latch is ideal. To reduce live ranges 2129 // it also makes sense to rewrite terminating conditions to use post-inc 2130 // expressions. 2131 // 2132 // If the loop is not rotated then the latch is not a backedge; the latch 2133 // check is done in the loop head. Adding post-inc expressions before the 2134 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2135 // in the loop body. In this case we do *not* want to use post-inc expressions 2136 // in the latch check, and we want to insert post-inc expressions before 2137 // the backedge. 2138 BasicBlock *LatchBlock = L->getLoopLatch(); 2139 SmallVector<BasicBlock*, 8> ExitingBlocks; 2140 L->getExitingBlocks(ExitingBlocks); 2141 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2142 return LatchBlock != BB; 2143 })) { 2144 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2145 IVIncInsertPos = LatchBlock->getTerminator(); 2146 return; 2147 } 2148 2149 // Otherwise treat this as a rotated loop. 2150 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2151 2152 // Get the terminating condition for the loop if possible. If we 2153 // can, we want to change it to use a post-incremented version of its 2154 // induction variable, to allow coalescing the live ranges for the IV into 2155 // one register value. 2156 2157 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2158 if (!TermBr) 2159 continue; 2160 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2161 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2162 continue; 2163 2164 // Search IVUsesByStride to find Cond's IVUse if there is one. 2165 IVStrideUse *CondUse = nullptr; 2166 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2167 if (!FindIVUserForCond(Cond, CondUse)) 2168 continue; 2169 2170 // If the trip count is computed in terms of a max (due to ScalarEvolution 2171 // being unable to find a sufficient guard, for example), change the loop 2172 // comparison to use SLT or ULT instead of NE. 2173 // One consequence of doing this now is that it disrupts the count-down 2174 // optimization. That's not always a bad thing though, because in such 2175 // cases it may still be worthwhile to avoid a max. 2176 Cond = OptimizeMax(Cond, CondUse); 2177 2178 // If this exiting block dominates the latch block, it may also use 2179 // the post-inc value if it won't be shared with other uses. 2180 // Check for dominance. 2181 if (!DT.dominates(ExitingBlock, LatchBlock)) 2182 continue; 2183 2184 // Conservatively avoid trying to use the post-inc value in non-latch 2185 // exits if there may be pre-inc users in intervening blocks. 2186 if (LatchBlock != ExitingBlock) 2187 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2188 // Test if the use is reachable from the exiting block. This dominator 2189 // query is a conservative approximation of reachability. 2190 if (&*UI != CondUse && 2191 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2192 // Conservatively assume there may be reuse if the quotient of their 2193 // strides could be a legal scale. 2194 const SCEV *A = IU.getStride(*CondUse, L); 2195 const SCEV *B = IU.getStride(*UI, L); 2196 if (!A || !B) continue; 2197 if (SE.getTypeSizeInBits(A->getType()) != 2198 SE.getTypeSizeInBits(B->getType())) { 2199 if (SE.getTypeSizeInBits(A->getType()) > 2200 SE.getTypeSizeInBits(B->getType())) 2201 B = SE.getSignExtendExpr(B, A->getType()); 2202 else 2203 A = SE.getSignExtendExpr(A, B->getType()); 2204 } 2205 if (const SCEVConstant *D = 2206 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2207 const ConstantInt *C = D->getValue(); 2208 // Stride of one or negative one can have reuse with non-addresses. 2209 if (C->isOne() || C->isAllOnesValue()) 2210 goto decline_post_inc; 2211 // Avoid weird situations. 2212 if (C->getValue().getMinSignedBits() >= 64 || 2213 C->getValue().isMinSignedValue()) 2214 goto decline_post_inc; 2215 // Check for possible scaled-address reuse. 2216 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2217 int64_t Scale = C->getSExtValue(); 2218 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2219 /*BaseOffset=*/0, 2220 /*HasBaseReg=*/false, Scale, 2221 AccessTy.AddrSpace)) 2222 goto decline_post_inc; 2223 Scale = -Scale; 2224 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2225 /*BaseOffset=*/0, 2226 /*HasBaseReg=*/false, Scale, 2227 AccessTy.AddrSpace)) 2228 goto decline_post_inc; 2229 } 2230 } 2231 2232 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2233 << *Cond << '\n'); 2234 2235 // It's possible for the setcc instruction to be anywhere in the loop, and 2236 // possible for it to have multiple users. If it is not immediately before 2237 // the exiting block branch, move it. 2238 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2239 if (Cond->hasOneUse()) { 2240 Cond->moveBefore(TermBr); 2241 } else { 2242 // Clone the terminating condition and insert into the loopend. 2243 ICmpInst *OldCond = Cond; 2244 Cond = cast<ICmpInst>(Cond->clone()); 2245 Cond->setName(L->getHeader()->getName() + ".termcond"); 2246 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2247 2248 // Clone the IVUse, as the old use still exists! 2249 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2250 TermBr->replaceUsesOfWith(OldCond, Cond); 2251 } 2252 } 2253 2254 // If we get to here, we know that we can transform the setcc instruction to 2255 // use the post-incremented version of the IV, allowing us to coalesce the 2256 // live ranges for the IV correctly. 2257 CondUse->transformToPostInc(L); 2258 Changed = true; 2259 2260 PostIncs.insert(Cond); 2261 decline_post_inc:; 2262 } 2263 2264 // Determine an insertion point for the loop induction variable increment. It 2265 // must dominate all the post-inc comparisons we just set up, and it must 2266 // dominate the loop latch edge. 2267 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2268 for (Instruction *Inst : PostIncs) { 2269 BasicBlock *BB = 2270 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2271 Inst->getParent()); 2272 if (BB == Inst->getParent()) 2273 IVIncInsertPos = Inst; 2274 else if (BB != IVIncInsertPos->getParent()) 2275 IVIncInsertPos = BB->getTerminator(); 2276 } 2277 } 2278 2279 /// Determine if the given use can accommodate a fixup at the given offset and 2280 /// other details. If so, update the use and return true. 2281 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2282 bool HasBaseReg, LSRUse::KindType Kind, 2283 MemAccessTy AccessTy) { 2284 int64_t NewMinOffset = LU.MinOffset; 2285 int64_t NewMaxOffset = LU.MaxOffset; 2286 MemAccessTy NewAccessTy = AccessTy; 2287 2288 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2289 // something conservative, however this can pessimize in the case that one of 2290 // the uses will have all its uses outside the loop, for example. 2291 if (LU.Kind != Kind) 2292 return false; 2293 2294 // Check for a mismatched access type, and fall back conservatively as needed. 2295 // TODO: Be less conservative when the type is similar and can use the same 2296 // addressing modes. 2297 if (Kind == LSRUse::Address) { 2298 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2299 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2300 AccessTy.AddrSpace); 2301 } 2302 } 2303 2304 // Conservatively assume HasBaseReg is true for now. 2305 if (NewOffset < LU.MinOffset) { 2306 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2307 LU.MaxOffset - NewOffset, HasBaseReg)) 2308 return false; 2309 NewMinOffset = NewOffset; 2310 } else if (NewOffset > LU.MaxOffset) { 2311 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2312 NewOffset - LU.MinOffset, HasBaseReg)) 2313 return false; 2314 NewMaxOffset = NewOffset; 2315 } 2316 2317 // Update the use. 2318 LU.MinOffset = NewMinOffset; 2319 LU.MaxOffset = NewMaxOffset; 2320 LU.AccessTy = NewAccessTy; 2321 return true; 2322 } 2323 2324 /// Return an LSRUse index and an offset value for a fixup which needs the given 2325 /// expression, with the given kind and optional access type. Either reuse an 2326 /// existing use or create a new one, as needed. 2327 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2328 LSRUse::KindType Kind, 2329 MemAccessTy AccessTy) { 2330 const SCEV *Copy = Expr; 2331 int64_t Offset = ExtractImmediate(Expr, SE); 2332 2333 // Basic uses can't accept any offset, for example. 2334 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2335 Offset, /*HasBaseReg=*/ true)) { 2336 Expr = Copy; 2337 Offset = 0; 2338 } 2339 2340 std::pair<UseMapTy::iterator, bool> P = 2341 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2342 if (!P.second) { 2343 // A use already existed with this base. 2344 size_t LUIdx = P.first->second; 2345 LSRUse &LU = Uses[LUIdx]; 2346 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2347 // Reuse this use. 2348 return std::make_pair(LUIdx, Offset); 2349 } 2350 2351 // Create a new use. 2352 size_t LUIdx = Uses.size(); 2353 P.first->second = LUIdx; 2354 Uses.push_back(LSRUse(Kind, AccessTy)); 2355 LSRUse &LU = Uses[LUIdx]; 2356 2357 LU.MinOffset = Offset; 2358 LU.MaxOffset = Offset; 2359 return std::make_pair(LUIdx, Offset); 2360 } 2361 2362 /// Delete the given use from the Uses list. 2363 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2364 if (&LU != &Uses.back()) 2365 std::swap(LU, Uses.back()); 2366 Uses.pop_back(); 2367 2368 // Update RegUses. 2369 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2370 } 2371 2372 /// Look for a use distinct from OrigLU which is has a formula that has the same 2373 /// registers as the given formula. 2374 LSRUse * 2375 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2376 const LSRUse &OrigLU) { 2377 // Search all uses for the formula. This could be more clever. 2378 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2379 LSRUse &LU = Uses[LUIdx]; 2380 // Check whether this use is close enough to OrigLU, to see whether it's 2381 // worthwhile looking through its formulae. 2382 // Ignore ICmpZero uses because they may contain formulae generated by 2383 // GenerateICmpZeroScales, in which case adding fixup offsets may 2384 // be invalid. 2385 if (&LU != &OrigLU && 2386 LU.Kind != LSRUse::ICmpZero && 2387 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2388 LU.WidestFixupType == OrigLU.WidestFixupType && 2389 LU.HasFormulaWithSameRegs(OrigF)) { 2390 // Scan through this use's formulae. 2391 for (const Formula &F : LU.Formulae) { 2392 // Check to see if this formula has the same registers and symbols 2393 // as OrigF. 2394 if (F.BaseRegs == OrigF.BaseRegs && 2395 F.ScaledReg == OrigF.ScaledReg && 2396 F.BaseGV == OrigF.BaseGV && 2397 F.Scale == OrigF.Scale && 2398 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2399 if (F.BaseOffset == 0) 2400 return &LU; 2401 // This is the formula where all the registers and symbols matched; 2402 // there aren't going to be any others. Since we declined it, we 2403 // can skip the rest of the formulae and proceed to the next LSRUse. 2404 break; 2405 } 2406 } 2407 } 2408 } 2409 2410 // Nothing looked good. 2411 return nullptr; 2412 } 2413 2414 void LSRInstance::CollectInterestingTypesAndFactors() { 2415 SmallSetVector<const SCEV *, 4> Strides; 2416 2417 // Collect interesting types and strides. 2418 SmallVector<const SCEV *, 4> Worklist; 2419 for (const IVStrideUse &U : IU) { 2420 const SCEV *Expr = IU.getExpr(U); 2421 2422 // Collect interesting types. 2423 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2424 2425 // Add strides for mentioned loops. 2426 Worklist.push_back(Expr); 2427 do { 2428 const SCEV *S = Worklist.pop_back_val(); 2429 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2430 if (AR->getLoop() == L) 2431 Strides.insert(AR->getStepRecurrence(SE)); 2432 Worklist.push_back(AR->getStart()); 2433 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2434 Worklist.append(Add->op_begin(), Add->op_end()); 2435 } 2436 } while (!Worklist.empty()); 2437 } 2438 2439 // Compute interesting factors from the set of interesting strides. 2440 for (SmallSetVector<const SCEV *, 4>::const_iterator 2441 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2442 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2443 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2444 const SCEV *OldStride = *I; 2445 const SCEV *NewStride = *NewStrideIter; 2446 2447 if (SE.getTypeSizeInBits(OldStride->getType()) != 2448 SE.getTypeSizeInBits(NewStride->getType())) { 2449 if (SE.getTypeSizeInBits(OldStride->getType()) > 2450 SE.getTypeSizeInBits(NewStride->getType())) 2451 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2452 else 2453 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2454 } 2455 if (const SCEVConstant *Factor = 2456 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2457 SE, true))) { 2458 if (Factor->getAPInt().getMinSignedBits() <= 64) 2459 Factors.insert(Factor->getAPInt().getSExtValue()); 2460 } else if (const SCEVConstant *Factor = 2461 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2462 NewStride, 2463 SE, true))) { 2464 if (Factor->getAPInt().getMinSignedBits() <= 64) 2465 Factors.insert(Factor->getAPInt().getSExtValue()); 2466 } 2467 } 2468 2469 // If all uses use the same type, don't bother looking for truncation-based 2470 // reuse. 2471 if (Types.size() == 1) 2472 Types.clear(); 2473 2474 DEBUG(print_factors_and_types(dbgs())); 2475 } 2476 2477 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2478 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2479 /// IVStrideUses, we could partially skip this. 2480 static User::op_iterator 2481 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2482 Loop *L, ScalarEvolution &SE) { 2483 for(; OI != OE; ++OI) { 2484 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2485 if (!SE.isSCEVable(Oper->getType())) 2486 continue; 2487 2488 if (const SCEVAddRecExpr *AR = 2489 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2490 if (AR->getLoop() == L) 2491 break; 2492 } 2493 } 2494 } 2495 return OI; 2496 } 2497 2498 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2499 /// a convenient helper. 2500 static Value *getWideOperand(Value *Oper) { 2501 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2502 return Trunc->getOperand(0); 2503 return Oper; 2504 } 2505 2506 /// Return true if we allow an IV chain to include both types. 2507 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2508 Type *LType = LVal->getType(); 2509 Type *RType = RVal->getType(); 2510 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2511 } 2512 2513 /// Return an approximation of this SCEV expression's "base", or NULL for any 2514 /// constant. Returning the expression itself is conservative. Returning a 2515 /// deeper subexpression is more precise and valid as long as it isn't less 2516 /// complex than another subexpression. For expressions involving multiple 2517 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2518 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2519 /// IVInc==b-a. 2520 /// 2521 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2522 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2523 static const SCEV *getExprBase(const SCEV *S) { 2524 switch (S->getSCEVType()) { 2525 default: // uncluding scUnknown. 2526 return S; 2527 case scConstant: 2528 return nullptr; 2529 case scTruncate: 2530 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2531 case scZeroExtend: 2532 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2533 case scSignExtend: 2534 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2535 case scAddExpr: { 2536 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2537 // there's nothing more complex. 2538 // FIXME: not sure if we want to recognize negation. 2539 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2540 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2541 E(Add->op_begin()); I != E; ++I) { 2542 const SCEV *SubExpr = *I; 2543 if (SubExpr->getSCEVType() == scAddExpr) 2544 return getExprBase(SubExpr); 2545 2546 if (SubExpr->getSCEVType() != scMulExpr) 2547 return SubExpr; 2548 } 2549 return S; // all operands are scaled, be conservative. 2550 } 2551 case scAddRecExpr: 2552 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2553 } 2554 } 2555 2556 /// Return true if the chain increment is profitable to expand into a loop 2557 /// invariant value, which may require its own register. A profitable chain 2558 /// increment will be an offset relative to the same base. We allow such offsets 2559 /// to potentially be used as chain increment as long as it's not obviously 2560 /// expensive to expand using real instructions. 2561 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2562 const SCEV *IncExpr, 2563 ScalarEvolution &SE) { 2564 // Aggressively form chains when -stress-ivchain. 2565 if (StressIVChain) 2566 return true; 2567 2568 // Do not replace a constant offset from IV head with a nonconstant IV 2569 // increment. 2570 if (!isa<SCEVConstant>(IncExpr)) { 2571 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2572 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2573 return false; 2574 } 2575 2576 SmallPtrSet<const SCEV*, 8> Processed; 2577 return !isHighCostExpansion(IncExpr, Processed, SE); 2578 } 2579 2580 /// Return true if the number of registers needed for the chain is estimated to 2581 /// be less than the number required for the individual IV users. First prohibit 2582 /// any IV users that keep the IV live across increments (the Users set should 2583 /// be empty). Next count the number and type of increments in the chain. 2584 /// 2585 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2586 /// effectively use postinc addressing modes. Only consider it profitable it the 2587 /// increments can be computed in fewer registers when chained. 2588 /// 2589 /// TODO: Consider IVInc free if it's already used in another chains. 2590 static bool 2591 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2592 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2593 if (StressIVChain) 2594 return true; 2595 2596 if (!Chain.hasIncs()) 2597 return false; 2598 2599 if (!Users.empty()) { 2600 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2601 for (Instruction *Inst : Users) { 2602 dbgs() << " " << *Inst << "\n"; 2603 }); 2604 return false; 2605 } 2606 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2607 2608 // The chain itself may require a register, so intialize cost to 1. 2609 int cost = 1; 2610 2611 // A complete chain likely eliminates the need for keeping the original IV in 2612 // a register. LSR does not currently know how to form a complete chain unless 2613 // the header phi already exists. 2614 if (isa<PHINode>(Chain.tailUserInst()) 2615 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2616 --cost; 2617 } 2618 const SCEV *LastIncExpr = nullptr; 2619 unsigned NumConstIncrements = 0; 2620 unsigned NumVarIncrements = 0; 2621 unsigned NumReusedIncrements = 0; 2622 for (const IVInc &Inc : Chain) { 2623 if (Inc.IncExpr->isZero()) 2624 continue; 2625 2626 // Incrementing by zero or some constant is neutral. We assume constants can 2627 // be folded into an addressing mode or an add's immediate operand. 2628 if (isa<SCEVConstant>(Inc.IncExpr)) { 2629 ++NumConstIncrements; 2630 continue; 2631 } 2632 2633 if (Inc.IncExpr == LastIncExpr) 2634 ++NumReusedIncrements; 2635 else 2636 ++NumVarIncrements; 2637 2638 LastIncExpr = Inc.IncExpr; 2639 } 2640 // An IV chain with a single increment is handled by LSR's postinc 2641 // uses. However, a chain with multiple increments requires keeping the IV's 2642 // value live longer than it needs to be if chained. 2643 if (NumConstIncrements > 1) 2644 --cost; 2645 2646 // Materializing increment expressions in the preheader that didn't exist in 2647 // the original code may cost a register. For example, sign-extended array 2648 // indices can produce ridiculous increments like this: 2649 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2650 cost += NumVarIncrements; 2651 2652 // Reusing variable increments likely saves a register to hold the multiple of 2653 // the stride. 2654 cost -= NumReusedIncrements; 2655 2656 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2657 << "\n"); 2658 2659 return cost < 0; 2660 } 2661 2662 /// Add this IV user to an existing chain or make it the head of a new chain. 2663 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2664 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2665 // When IVs are used as types of varying widths, they are generally converted 2666 // to a wider type with some uses remaining narrow under a (free) trunc. 2667 Value *const NextIV = getWideOperand(IVOper); 2668 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2669 const SCEV *const OperExprBase = getExprBase(OperExpr); 2670 2671 // Visit all existing chains. Check if its IVOper can be computed as a 2672 // profitable loop invariant increment from the last link in the Chain. 2673 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2674 const SCEV *LastIncExpr = nullptr; 2675 for (; ChainIdx < NChains; ++ChainIdx) { 2676 IVChain &Chain = IVChainVec[ChainIdx]; 2677 2678 // Prune the solution space aggressively by checking that both IV operands 2679 // are expressions that operate on the same unscaled SCEVUnknown. This 2680 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2681 // first avoids creating extra SCEV expressions. 2682 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2683 continue; 2684 2685 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2686 if (!isCompatibleIVType(PrevIV, NextIV)) 2687 continue; 2688 2689 // A phi node terminates a chain. 2690 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2691 continue; 2692 2693 // The increment must be loop-invariant so it can be kept in a register. 2694 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2695 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2696 if (!SE.isLoopInvariant(IncExpr, L)) 2697 continue; 2698 2699 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2700 LastIncExpr = IncExpr; 2701 break; 2702 } 2703 } 2704 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2705 // bother for phi nodes, because they must be last in the chain. 2706 if (ChainIdx == NChains) { 2707 if (isa<PHINode>(UserInst)) 2708 return; 2709 if (NChains >= MaxChains && !StressIVChain) { 2710 DEBUG(dbgs() << "IV Chain Limit\n"); 2711 return; 2712 } 2713 LastIncExpr = OperExpr; 2714 // IVUsers may have skipped over sign/zero extensions. We don't currently 2715 // attempt to form chains involving extensions unless they can be hoisted 2716 // into this loop's AddRec. 2717 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2718 return; 2719 ++NChains; 2720 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2721 OperExprBase)); 2722 ChainUsersVec.resize(NChains); 2723 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2724 << ") IV=" << *LastIncExpr << "\n"); 2725 } else { 2726 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2727 << ") IV+" << *LastIncExpr << "\n"); 2728 // Add this IV user to the end of the chain. 2729 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2730 } 2731 IVChain &Chain = IVChainVec[ChainIdx]; 2732 2733 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2734 // This chain's NearUsers become FarUsers. 2735 if (!LastIncExpr->isZero()) { 2736 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2737 NearUsers.end()); 2738 NearUsers.clear(); 2739 } 2740 2741 // All other uses of IVOperand become near uses of the chain. 2742 // We currently ignore intermediate values within SCEV expressions, assuming 2743 // they will eventually be used be the current chain, or can be computed 2744 // from one of the chain increments. To be more precise we could 2745 // transitively follow its user and only add leaf IV users to the set. 2746 for (User *U : IVOper->users()) { 2747 Instruction *OtherUse = dyn_cast<Instruction>(U); 2748 if (!OtherUse) 2749 continue; 2750 // Uses in the chain will no longer be uses if the chain is formed. 2751 // Include the head of the chain in this iteration (not Chain.begin()). 2752 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2753 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2754 for( ; IncIter != IncEnd; ++IncIter) { 2755 if (IncIter->UserInst == OtherUse) 2756 break; 2757 } 2758 if (IncIter != IncEnd) 2759 continue; 2760 2761 if (SE.isSCEVable(OtherUse->getType()) 2762 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2763 && IU.isIVUserOrOperand(OtherUse)) { 2764 continue; 2765 } 2766 NearUsers.insert(OtherUse); 2767 } 2768 2769 // Since this user is part of the chain, it's no longer considered a use 2770 // of the chain. 2771 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2772 } 2773 2774 /// Populate the vector of Chains. 2775 /// 2776 /// This decreases ILP at the architecture level. Targets with ample registers, 2777 /// multiple memory ports, and no register renaming probably don't want 2778 /// this. However, such targets should probably disable LSR altogether. 2779 /// 2780 /// The job of LSR is to make a reasonable choice of induction variables across 2781 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2782 /// ILP *within the loop* if the target wants it. 2783 /// 2784 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2785 /// will not reorder memory operations, it will recognize this as a chain, but 2786 /// will generate redundant IV increments. Ideally this would be corrected later 2787 /// by a smart scheduler: 2788 /// = A[i] 2789 /// = A[i+x] 2790 /// A[i] = 2791 /// A[i+x] = 2792 /// 2793 /// TODO: Walk the entire domtree within this loop, not just the path to the 2794 /// loop latch. This will discover chains on side paths, but requires 2795 /// maintaining multiple copies of the Chains state. 2796 void LSRInstance::CollectChains() { 2797 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2798 SmallVector<ChainUsers, 8> ChainUsersVec; 2799 2800 SmallVector<BasicBlock *,8> LatchPath; 2801 BasicBlock *LoopHeader = L->getHeader(); 2802 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2803 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2804 LatchPath.push_back(Rung->getBlock()); 2805 } 2806 LatchPath.push_back(LoopHeader); 2807 2808 // Walk the instruction stream from the loop header to the loop latch. 2809 for (BasicBlock *BB : reverse(LatchPath)) { 2810 for (Instruction &I : *BB) { 2811 // Skip instructions that weren't seen by IVUsers analysis. 2812 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2813 continue; 2814 2815 // Ignore users that are part of a SCEV expression. This way we only 2816 // consider leaf IV Users. This effectively rediscovers a portion of 2817 // IVUsers analysis but in program order this time. 2818 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2819 continue; 2820 2821 // Remove this instruction from any NearUsers set it may be in. 2822 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2823 ChainIdx < NChains; ++ChainIdx) { 2824 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2825 } 2826 // Search for operands that can be chained. 2827 SmallPtrSet<Instruction*, 4> UniqueOperands; 2828 User::op_iterator IVOpEnd = I.op_end(); 2829 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2830 while (IVOpIter != IVOpEnd) { 2831 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2832 if (UniqueOperands.insert(IVOpInst).second) 2833 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2834 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2835 } 2836 } // Continue walking down the instructions. 2837 } // Continue walking down the domtree. 2838 // Visit phi backedges to determine if the chain can generate the IV postinc. 2839 for (BasicBlock::iterator I = L->getHeader()->begin(); 2840 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2841 if (!SE.isSCEVable(PN->getType())) 2842 continue; 2843 2844 Instruction *IncV = 2845 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2846 if (IncV) 2847 ChainInstruction(PN, IncV, ChainUsersVec); 2848 } 2849 // Remove any unprofitable chains. 2850 unsigned ChainIdx = 0; 2851 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2852 UsersIdx < NChains; ++UsersIdx) { 2853 if (!isProfitableChain(IVChainVec[UsersIdx], 2854 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2855 continue; 2856 // Preserve the chain at UsesIdx. 2857 if (ChainIdx != UsersIdx) 2858 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2859 FinalizeChain(IVChainVec[ChainIdx]); 2860 ++ChainIdx; 2861 } 2862 IVChainVec.resize(ChainIdx); 2863 } 2864 2865 void LSRInstance::FinalizeChain(IVChain &Chain) { 2866 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2867 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2868 2869 for (const IVInc &Inc : Chain) { 2870 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2871 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2872 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2873 IVIncSet.insert(UseI); 2874 } 2875 } 2876 2877 /// Return true if the IVInc can be folded into an addressing mode. 2878 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2879 Value *Operand, const TargetTransformInfo &TTI) { 2880 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2881 if (!IncConst || !isAddressUse(UserInst, Operand)) 2882 return false; 2883 2884 if (IncConst->getAPInt().getMinSignedBits() > 64) 2885 return false; 2886 2887 MemAccessTy AccessTy = getAccessType(UserInst); 2888 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2889 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2890 IncOffset, /*HaseBaseReg=*/false)) 2891 return false; 2892 2893 return true; 2894 } 2895 2896 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2897 /// user's operand from the previous IV user's operand. 2898 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2899 SmallVectorImpl<WeakVH> &DeadInsts) { 2900 // Find the new IVOperand for the head of the chain. It may have been replaced 2901 // by LSR. 2902 const IVInc &Head = Chain.Incs[0]; 2903 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2904 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2905 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2906 IVOpEnd, L, SE); 2907 Value *IVSrc = nullptr; 2908 while (IVOpIter != IVOpEnd) { 2909 IVSrc = getWideOperand(*IVOpIter); 2910 2911 // If this operand computes the expression that the chain needs, we may use 2912 // it. (Check this after setting IVSrc which is used below.) 2913 // 2914 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2915 // narrow for the chain, so we can no longer use it. We do allow using a 2916 // wider phi, assuming the LSR checked for free truncation. In that case we 2917 // should already have a truncate on this operand such that 2918 // getSCEV(IVSrc) == IncExpr. 2919 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2920 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2921 break; 2922 } 2923 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2924 } 2925 if (IVOpIter == IVOpEnd) { 2926 // Gracefully give up on this chain. 2927 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2928 return; 2929 } 2930 2931 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2932 Type *IVTy = IVSrc->getType(); 2933 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2934 const SCEV *LeftOverExpr = nullptr; 2935 for (const IVInc &Inc : Chain) { 2936 Instruction *InsertPt = Inc.UserInst; 2937 if (isa<PHINode>(InsertPt)) 2938 InsertPt = L->getLoopLatch()->getTerminator(); 2939 2940 // IVOper will replace the current IV User's operand. IVSrc is the IV 2941 // value currently held in a register. 2942 Value *IVOper = IVSrc; 2943 if (!Inc.IncExpr->isZero()) { 2944 // IncExpr was the result of subtraction of two narrow values, so must 2945 // be signed. 2946 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2947 LeftOverExpr = LeftOverExpr ? 2948 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2949 } 2950 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2951 // Expand the IV increment. 2952 Rewriter.clearPostInc(); 2953 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2954 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2955 SE.getUnknown(IncV)); 2956 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2957 2958 // If an IV increment can't be folded, use it as the next IV value. 2959 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2960 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2961 IVSrc = IVOper; 2962 LeftOverExpr = nullptr; 2963 } 2964 } 2965 Type *OperTy = Inc.IVOperand->getType(); 2966 if (IVTy != OperTy) { 2967 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2968 "cannot extend a chained IV"); 2969 IRBuilder<> Builder(InsertPt); 2970 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2971 } 2972 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2973 DeadInsts.emplace_back(Inc.IVOperand); 2974 } 2975 // If LSR created a new, wider phi, we may also replace its postinc. We only 2976 // do this if we also found a wide value for the head of the chain. 2977 if (isa<PHINode>(Chain.tailUserInst())) { 2978 for (BasicBlock::iterator I = L->getHeader()->begin(); 2979 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2980 if (!isCompatibleIVType(Phi, IVSrc)) 2981 continue; 2982 Instruction *PostIncV = dyn_cast<Instruction>( 2983 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2984 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2985 continue; 2986 Value *IVOper = IVSrc; 2987 Type *PostIncTy = PostIncV->getType(); 2988 if (IVTy != PostIncTy) { 2989 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2990 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2991 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2992 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2993 } 2994 Phi->replaceUsesOfWith(PostIncV, IVOper); 2995 DeadInsts.emplace_back(PostIncV); 2996 } 2997 } 2998 } 2999 3000 void LSRInstance::CollectFixupsAndInitialFormulae() { 3001 for (const IVStrideUse &U : IU) { 3002 Instruction *UserInst = U.getUser(); 3003 // Skip IV users that are part of profitable IV Chains. 3004 User::op_iterator UseI = 3005 find(UserInst->operands(), U.getOperandValToReplace()); 3006 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3007 if (IVIncSet.count(UseI)) { 3008 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3009 continue; 3010 } 3011 3012 LSRUse::KindType Kind = LSRUse::Basic; 3013 MemAccessTy AccessTy; 3014 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3015 Kind = LSRUse::Address; 3016 AccessTy = getAccessType(UserInst); 3017 } 3018 3019 const SCEV *S = IU.getExpr(U); 3020 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3021 3022 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3023 // (N - i == 0), and this allows (N - i) to be the expression that we work 3024 // with rather than just N or i, so we can consider the register 3025 // requirements for both N and i at the same time. Limiting this code to 3026 // equality icmps is not a problem because all interesting loops use 3027 // equality icmps, thanks to IndVarSimplify. 3028 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3029 if (CI->isEquality()) { 3030 // Swap the operands if needed to put the OperandValToReplace on the 3031 // left, for consistency. 3032 Value *NV = CI->getOperand(1); 3033 if (NV == U.getOperandValToReplace()) { 3034 CI->setOperand(1, CI->getOperand(0)); 3035 CI->setOperand(0, NV); 3036 NV = CI->getOperand(1); 3037 Changed = true; 3038 } 3039 3040 // x == y --> x - y == 0 3041 const SCEV *N = SE.getSCEV(NV); 3042 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3043 // S is normalized, so normalize N before folding it into S 3044 // to keep the result normalized. 3045 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3046 TmpPostIncLoops, SE, DT); 3047 Kind = LSRUse::ICmpZero; 3048 S = SE.getMinusSCEV(N, S); 3049 } 3050 3051 // -1 and the negations of all interesting strides (except the negation 3052 // of -1) are now also interesting. 3053 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3054 if (Factors[i] != -1) 3055 Factors.insert(-(uint64_t)Factors[i]); 3056 Factors.insert(-1); 3057 } 3058 3059 // Get or create an LSRUse. 3060 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3061 size_t LUIdx = P.first; 3062 int64_t Offset = P.second; 3063 LSRUse &LU = Uses[LUIdx]; 3064 3065 // Record the fixup. 3066 LSRFixup &LF = LU.getNewFixup(); 3067 LF.UserInst = UserInst; 3068 LF.OperandValToReplace = U.getOperandValToReplace(); 3069 LF.PostIncLoops = TmpPostIncLoops; 3070 LF.Offset = Offset; 3071 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3072 3073 if (!LU.WidestFixupType || 3074 SE.getTypeSizeInBits(LU.WidestFixupType) < 3075 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3076 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3077 3078 // If this is the first use of this LSRUse, give it a formula. 3079 if (LU.Formulae.empty()) { 3080 InsertInitialFormula(S, LU, LUIdx); 3081 CountRegisters(LU.Formulae.back(), LUIdx); 3082 } 3083 } 3084 3085 DEBUG(print_fixups(dbgs())); 3086 } 3087 3088 /// Insert a formula for the given expression into the given use, separating out 3089 /// loop-variant portions from loop-invariant and loop-computable portions. 3090 void 3091 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3092 // Mark uses whose expressions cannot be expanded. 3093 if (!isSafeToExpand(S, SE)) 3094 LU.RigidFormula = true; 3095 3096 Formula F; 3097 F.initialMatch(S, L, SE); 3098 bool Inserted = InsertFormula(LU, LUIdx, F); 3099 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3100 } 3101 3102 /// Insert a simple single-register formula for the given expression into the 3103 /// given use. 3104 void 3105 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3106 LSRUse &LU, size_t LUIdx) { 3107 Formula F; 3108 F.BaseRegs.push_back(S); 3109 F.HasBaseReg = true; 3110 bool Inserted = InsertFormula(LU, LUIdx, F); 3111 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3112 } 3113 3114 /// Note which registers are used by the given formula, updating RegUses. 3115 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3116 if (F.ScaledReg) 3117 RegUses.countRegister(F.ScaledReg, LUIdx); 3118 for (const SCEV *BaseReg : F.BaseRegs) 3119 RegUses.countRegister(BaseReg, LUIdx); 3120 } 3121 3122 /// If the given formula has not yet been inserted, add it to the list, and 3123 /// return true. Return false otherwise. 3124 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3125 // Do not insert formula that we will not be able to expand. 3126 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3127 "Formula is illegal"); 3128 if (!LU.InsertFormula(F)) 3129 return false; 3130 3131 CountRegisters(F, LUIdx); 3132 return true; 3133 } 3134 3135 /// Check for other uses of loop-invariant values which we're tracking. These 3136 /// other uses will pin these values in registers, making them less profitable 3137 /// for elimination. 3138 /// TODO: This currently misses non-constant addrec step registers. 3139 /// TODO: Should this give more weight to users inside the loop? 3140 void 3141 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3142 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3143 SmallPtrSet<const SCEV *, 32> Visited; 3144 3145 while (!Worklist.empty()) { 3146 const SCEV *S = Worklist.pop_back_val(); 3147 3148 // Don't process the same SCEV twice 3149 if (!Visited.insert(S).second) 3150 continue; 3151 3152 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3153 Worklist.append(N->op_begin(), N->op_end()); 3154 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3155 Worklist.push_back(C->getOperand()); 3156 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3157 Worklist.push_back(D->getLHS()); 3158 Worklist.push_back(D->getRHS()); 3159 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3160 const Value *V = US->getValue(); 3161 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3162 // Look for instructions defined outside the loop. 3163 if (L->contains(Inst)) continue; 3164 } else if (isa<UndefValue>(V)) 3165 // Undef doesn't have a live range, so it doesn't matter. 3166 continue; 3167 for (const Use &U : V->uses()) { 3168 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3169 // Ignore non-instructions. 3170 if (!UserInst) 3171 continue; 3172 // Ignore instructions in other functions (as can happen with 3173 // Constants). 3174 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3175 continue; 3176 // Ignore instructions not dominated by the loop. 3177 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3178 UserInst->getParent() : 3179 cast<PHINode>(UserInst)->getIncomingBlock( 3180 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3181 if (!DT.dominates(L->getHeader(), UseBB)) 3182 continue; 3183 // Don't bother if the instruction is in a BB which ends in an EHPad. 3184 if (UseBB->getTerminator()->isEHPad()) 3185 continue; 3186 // Don't bother rewriting PHIs in catchswitch blocks. 3187 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3188 continue; 3189 // Ignore uses which are part of other SCEV expressions, to avoid 3190 // analyzing them multiple times. 3191 if (SE.isSCEVable(UserInst->getType())) { 3192 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3193 // If the user is a no-op, look through to its uses. 3194 if (!isa<SCEVUnknown>(UserS)) 3195 continue; 3196 if (UserS == US) { 3197 Worklist.push_back( 3198 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3199 continue; 3200 } 3201 } 3202 // Ignore icmp instructions which are already being analyzed. 3203 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3204 unsigned OtherIdx = !U.getOperandNo(); 3205 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3206 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3207 continue; 3208 } 3209 3210 std::pair<size_t, int64_t> P = getUse( 3211 S, LSRUse::Basic, MemAccessTy()); 3212 size_t LUIdx = P.first; 3213 int64_t Offset = P.second; 3214 LSRUse &LU = Uses[LUIdx]; 3215 LSRFixup &LF = LU.getNewFixup(); 3216 LF.UserInst = const_cast<Instruction *>(UserInst); 3217 LF.OperandValToReplace = U; 3218 LF.Offset = Offset; 3219 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3220 if (!LU.WidestFixupType || 3221 SE.getTypeSizeInBits(LU.WidestFixupType) < 3222 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3223 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3224 InsertSupplementalFormula(US, LU, LUIdx); 3225 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3226 break; 3227 } 3228 } 3229 } 3230 } 3231 3232 /// Split S into subexpressions which can be pulled out into separate 3233 /// registers. If C is non-null, multiply each subexpression by C. 3234 /// 3235 /// Return remainder expression after factoring the subexpressions captured by 3236 /// Ops. If Ops is complete, return NULL. 3237 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3238 SmallVectorImpl<const SCEV *> &Ops, 3239 const Loop *L, 3240 ScalarEvolution &SE, 3241 unsigned Depth = 0) { 3242 // Arbitrarily cap recursion to protect compile time. 3243 if (Depth >= 3) 3244 return S; 3245 3246 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3247 // Break out add operands. 3248 for (const SCEV *S : Add->operands()) { 3249 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3250 if (Remainder) 3251 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3252 } 3253 return nullptr; 3254 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3255 // Split a non-zero base out of an addrec. 3256 if (AR->getStart()->isZero() || !AR->isAffine()) 3257 return S; 3258 3259 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3260 C, Ops, L, SE, Depth+1); 3261 // Split the non-zero AddRec unless it is part of a nested recurrence that 3262 // does not pertain to this loop. 3263 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3264 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3265 Remainder = nullptr; 3266 } 3267 if (Remainder != AR->getStart()) { 3268 if (!Remainder) 3269 Remainder = SE.getConstant(AR->getType(), 0); 3270 return SE.getAddRecExpr(Remainder, 3271 AR->getStepRecurrence(SE), 3272 AR->getLoop(), 3273 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3274 SCEV::FlagAnyWrap); 3275 } 3276 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3277 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3278 if (Mul->getNumOperands() != 2) 3279 return S; 3280 if (const SCEVConstant *Op0 = 3281 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3282 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3283 const SCEV *Remainder = 3284 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3285 if (Remainder) 3286 Ops.push_back(SE.getMulExpr(C, Remainder)); 3287 return nullptr; 3288 } 3289 } 3290 return S; 3291 } 3292 3293 /// \brief Helper function for LSRInstance::GenerateReassociations. 3294 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3295 const Formula &Base, 3296 unsigned Depth, size_t Idx, 3297 bool IsScaledReg) { 3298 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3299 SmallVector<const SCEV *, 8> AddOps; 3300 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3301 if (Remainder) 3302 AddOps.push_back(Remainder); 3303 3304 if (AddOps.size() == 1) 3305 return; 3306 3307 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3308 JE = AddOps.end(); 3309 J != JE; ++J) { 3310 3311 // Loop-variant "unknown" values are uninteresting; we won't be able to 3312 // do anything meaningful with them. 3313 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3314 continue; 3315 3316 // Don't pull a constant into a register if the constant could be folded 3317 // into an immediate field. 3318 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3319 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3320 continue; 3321 3322 // Collect all operands except *J. 3323 SmallVector<const SCEV *, 8> InnerAddOps( 3324 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3325 InnerAddOps.append(std::next(J), 3326 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3327 3328 // Don't leave just a constant behind in a register if the constant could 3329 // be folded into an immediate field. 3330 if (InnerAddOps.size() == 1 && 3331 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3332 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3333 continue; 3334 3335 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3336 if (InnerSum->isZero()) 3337 continue; 3338 Formula F = Base; 3339 3340 // Add the remaining pieces of the add back into the new formula. 3341 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3342 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3343 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3344 InnerSumSC->getValue()->getZExtValue())) { 3345 F.UnfoldedOffset = 3346 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3347 if (IsScaledReg) 3348 F.ScaledReg = nullptr; 3349 else 3350 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3351 } else if (IsScaledReg) 3352 F.ScaledReg = InnerSum; 3353 else 3354 F.BaseRegs[Idx] = InnerSum; 3355 3356 // Add J as its own register, or an unfolded immediate. 3357 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3358 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3359 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3360 SC->getValue()->getZExtValue())) 3361 F.UnfoldedOffset = 3362 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3363 else 3364 F.BaseRegs.push_back(*J); 3365 // We may have changed the number of register in base regs, adjust the 3366 // formula accordingly. 3367 F.canonicalize(); 3368 3369 if (InsertFormula(LU, LUIdx, F)) 3370 // If that formula hadn't been seen before, recurse to find more like 3371 // it. 3372 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3373 } 3374 } 3375 3376 /// Split out subexpressions from adds and the bases of addrecs. 3377 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3378 Formula Base, unsigned Depth) { 3379 assert(Base.isCanonical() && "Input must be in the canonical form"); 3380 // Arbitrarily cap recursion to protect compile time. 3381 if (Depth >= 3) 3382 return; 3383 3384 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3385 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3386 3387 if (Base.Scale == 1) 3388 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3389 /* Idx */ -1, /* IsScaledReg */ true); 3390 } 3391 3392 /// Generate a formula consisting of all of the loop-dominating registers added 3393 /// into a single register. 3394 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3395 Formula Base) { 3396 // This method is only interesting on a plurality of registers. 3397 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3398 return; 3399 3400 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3401 // processing the formula. 3402 Base.unscale(); 3403 Formula F = Base; 3404 F.BaseRegs.clear(); 3405 SmallVector<const SCEV *, 4> Ops; 3406 for (const SCEV *BaseReg : Base.BaseRegs) { 3407 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3408 !SE.hasComputableLoopEvolution(BaseReg, L)) 3409 Ops.push_back(BaseReg); 3410 else 3411 F.BaseRegs.push_back(BaseReg); 3412 } 3413 if (Ops.size() > 1) { 3414 const SCEV *Sum = SE.getAddExpr(Ops); 3415 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3416 // opportunity to fold something. For now, just ignore such cases 3417 // rather than proceed with zero in a register. 3418 if (!Sum->isZero()) { 3419 F.BaseRegs.push_back(Sum); 3420 F.canonicalize(); 3421 (void)InsertFormula(LU, LUIdx, F); 3422 } 3423 } 3424 } 3425 3426 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3427 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3428 const Formula &Base, size_t Idx, 3429 bool IsScaledReg) { 3430 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3431 GlobalValue *GV = ExtractSymbol(G, SE); 3432 if (G->isZero() || !GV) 3433 return; 3434 Formula F = Base; 3435 F.BaseGV = GV; 3436 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3437 return; 3438 if (IsScaledReg) 3439 F.ScaledReg = G; 3440 else 3441 F.BaseRegs[Idx] = G; 3442 (void)InsertFormula(LU, LUIdx, F); 3443 } 3444 3445 /// Generate reuse formulae using symbolic offsets. 3446 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3447 Formula Base) { 3448 // We can't add a symbolic offset if the address already contains one. 3449 if (Base.BaseGV) return; 3450 3451 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3452 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3453 if (Base.Scale == 1) 3454 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3455 /* IsScaledReg */ true); 3456 } 3457 3458 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3459 void LSRInstance::GenerateConstantOffsetsImpl( 3460 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3461 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3462 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3463 for (int64_t Offset : Worklist) { 3464 Formula F = Base; 3465 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3466 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3467 LU.AccessTy, F)) { 3468 // Add the offset to the base register. 3469 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3470 // If it cancelled out, drop the base register, otherwise update it. 3471 if (NewG->isZero()) { 3472 if (IsScaledReg) { 3473 F.Scale = 0; 3474 F.ScaledReg = nullptr; 3475 } else 3476 F.deleteBaseReg(F.BaseRegs[Idx]); 3477 F.canonicalize(); 3478 } else if (IsScaledReg) 3479 F.ScaledReg = NewG; 3480 else 3481 F.BaseRegs[Idx] = NewG; 3482 3483 (void)InsertFormula(LU, LUIdx, F); 3484 } 3485 } 3486 3487 int64_t Imm = ExtractImmediate(G, SE); 3488 if (G->isZero() || Imm == 0) 3489 return; 3490 Formula F = Base; 3491 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3492 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3493 return; 3494 if (IsScaledReg) 3495 F.ScaledReg = G; 3496 else 3497 F.BaseRegs[Idx] = G; 3498 (void)InsertFormula(LU, LUIdx, F); 3499 } 3500 3501 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3502 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3503 Formula Base) { 3504 // TODO: For now, just add the min and max offset, because it usually isn't 3505 // worthwhile looking at everything inbetween. 3506 SmallVector<int64_t, 2> Worklist; 3507 Worklist.push_back(LU.MinOffset); 3508 if (LU.MaxOffset != LU.MinOffset) 3509 Worklist.push_back(LU.MaxOffset); 3510 3511 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3512 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3513 if (Base.Scale == 1) 3514 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3515 /* IsScaledReg */ true); 3516 } 3517 3518 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3519 /// == y -> x*c == y*c. 3520 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3521 Formula Base) { 3522 if (LU.Kind != LSRUse::ICmpZero) return; 3523 3524 // Determine the integer type for the base formula. 3525 Type *IntTy = Base.getType(); 3526 if (!IntTy) return; 3527 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3528 3529 // Don't do this if there is more than one offset. 3530 if (LU.MinOffset != LU.MaxOffset) return; 3531 3532 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3533 3534 // Check each interesting stride. 3535 for (int64_t Factor : Factors) { 3536 // Check that the multiplication doesn't overflow. 3537 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3538 continue; 3539 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3540 if (NewBaseOffset / Factor != Base.BaseOffset) 3541 continue; 3542 // If the offset will be truncated at this use, check that it is in bounds. 3543 if (!IntTy->isPointerTy() && 3544 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3545 continue; 3546 3547 // Check that multiplying with the use offset doesn't overflow. 3548 int64_t Offset = LU.MinOffset; 3549 if (Offset == INT64_MIN && Factor == -1) 3550 continue; 3551 Offset = (uint64_t)Offset * Factor; 3552 if (Offset / Factor != LU.MinOffset) 3553 continue; 3554 // If the offset will be truncated at this use, check that it is in bounds. 3555 if (!IntTy->isPointerTy() && 3556 !ConstantInt::isValueValidForType(IntTy, Offset)) 3557 continue; 3558 3559 Formula F = Base; 3560 F.BaseOffset = NewBaseOffset; 3561 3562 // Check that this scale is legal. 3563 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3564 continue; 3565 3566 // Compensate for the use having MinOffset built into it. 3567 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3568 3569 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3570 3571 // Check that multiplying with each base register doesn't overflow. 3572 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3573 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3574 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3575 goto next; 3576 } 3577 3578 // Check that multiplying with the scaled register doesn't overflow. 3579 if (F.ScaledReg) { 3580 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3581 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3582 continue; 3583 } 3584 3585 // Check that multiplying with the unfolded offset doesn't overflow. 3586 if (F.UnfoldedOffset != 0) { 3587 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3588 continue; 3589 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3590 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3591 continue; 3592 // If the offset will be truncated, check that it is in bounds. 3593 if (!IntTy->isPointerTy() && 3594 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3595 continue; 3596 } 3597 3598 // If we make it here and it's legal, add it. 3599 (void)InsertFormula(LU, LUIdx, F); 3600 next:; 3601 } 3602 } 3603 3604 /// Generate stride factor reuse formulae by making use of scaled-offset address 3605 /// modes, for example. 3606 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3607 // Determine the integer type for the base formula. 3608 Type *IntTy = Base.getType(); 3609 if (!IntTy) return; 3610 3611 // If this Formula already has a scaled register, we can't add another one. 3612 // Try to unscale the formula to generate a better scale. 3613 if (Base.Scale != 0 && !Base.unscale()) 3614 return; 3615 3616 assert(Base.Scale == 0 && "unscale did not did its job!"); 3617 3618 // Check each interesting stride. 3619 for (int64_t Factor : Factors) { 3620 Base.Scale = Factor; 3621 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3622 // Check whether this scale is going to be legal. 3623 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3624 Base)) { 3625 // As a special-case, handle special out-of-loop Basic users specially. 3626 // TODO: Reconsider this special case. 3627 if (LU.Kind == LSRUse::Basic && 3628 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3629 LU.AccessTy, Base) && 3630 LU.AllFixupsOutsideLoop) 3631 LU.Kind = LSRUse::Special; 3632 else 3633 continue; 3634 } 3635 // For an ICmpZero, negating a solitary base register won't lead to 3636 // new solutions. 3637 if (LU.Kind == LSRUse::ICmpZero && 3638 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3639 continue; 3640 // For each addrec base reg, apply the scale, if possible. 3641 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3642 if (const SCEVAddRecExpr *AR = 3643 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3644 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3645 if (FactorS->isZero()) 3646 continue; 3647 // Divide out the factor, ignoring high bits, since we'll be 3648 // scaling the value back up in the end. 3649 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3650 // TODO: This could be optimized to avoid all the copying. 3651 Formula F = Base; 3652 F.ScaledReg = Quotient; 3653 F.deleteBaseReg(F.BaseRegs[i]); 3654 // The canonical representation of 1*reg is reg, which is already in 3655 // Base. In that case, do not try to insert the formula, it will be 3656 // rejected anyway. 3657 if (F.Scale == 1 && F.BaseRegs.empty()) 3658 continue; 3659 (void)InsertFormula(LU, LUIdx, F); 3660 } 3661 } 3662 } 3663 } 3664 3665 /// Generate reuse formulae from different IV types. 3666 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3667 // Don't bother truncating symbolic values. 3668 if (Base.BaseGV) return; 3669 3670 // Determine the integer type for the base formula. 3671 Type *DstTy = Base.getType(); 3672 if (!DstTy) return; 3673 DstTy = SE.getEffectiveSCEVType(DstTy); 3674 3675 for (Type *SrcTy : Types) { 3676 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3677 Formula F = Base; 3678 3679 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3680 for (const SCEV *&BaseReg : F.BaseRegs) 3681 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3682 3683 // TODO: This assumes we've done basic processing on all uses and 3684 // have an idea what the register usage is. 3685 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3686 continue; 3687 3688 (void)InsertFormula(LU, LUIdx, F); 3689 } 3690 } 3691 } 3692 3693 namespace { 3694 3695 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3696 /// modifications so that the search phase doesn't have to worry about the data 3697 /// structures moving underneath it. 3698 struct WorkItem { 3699 size_t LUIdx; 3700 int64_t Imm; 3701 const SCEV *OrigReg; 3702 3703 WorkItem(size_t LI, int64_t I, const SCEV *R) 3704 : LUIdx(LI), Imm(I), OrigReg(R) {} 3705 3706 void print(raw_ostream &OS) const; 3707 void dump() const; 3708 }; 3709 3710 } // end anonymous namespace 3711 3712 void WorkItem::print(raw_ostream &OS) const { 3713 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3714 << " , add offset " << Imm; 3715 } 3716 3717 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3718 LLVM_DUMP_METHOD void WorkItem::dump() const { 3719 print(errs()); errs() << '\n'; 3720 } 3721 #endif 3722 3723 /// Look for registers which are a constant distance apart and try to form reuse 3724 /// opportunities between them. 3725 void LSRInstance::GenerateCrossUseConstantOffsets() { 3726 // Group the registers by their value without any added constant offset. 3727 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3728 DenseMap<const SCEV *, ImmMapTy> Map; 3729 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3730 SmallVector<const SCEV *, 8> Sequence; 3731 for (const SCEV *Use : RegUses) { 3732 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3733 int64_t Imm = ExtractImmediate(Reg, SE); 3734 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3735 if (Pair.second) 3736 Sequence.push_back(Reg); 3737 Pair.first->second.insert(std::make_pair(Imm, Use)); 3738 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3739 } 3740 3741 // Now examine each set of registers with the same base value. Build up 3742 // a list of work to do and do the work in a separate step so that we're 3743 // not adding formulae and register counts while we're searching. 3744 SmallVector<WorkItem, 32> WorkItems; 3745 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3746 for (const SCEV *Reg : Sequence) { 3747 const ImmMapTy &Imms = Map.find(Reg)->second; 3748 3749 // It's not worthwhile looking for reuse if there's only one offset. 3750 if (Imms.size() == 1) 3751 continue; 3752 3753 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3754 for (const auto &Entry : Imms) 3755 dbgs() << ' ' << Entry.first; 3756 dbgs() << '\n'); 3757 3758 // Examine each offset. 3759 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3760 J != JE; ++J) { 3761 const SCEV *OrigReg = J->second; 3762 3763 int64_t JImm = J->first; 3764 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3765 3766 if (!isa<SCEVConstant>(OrigReg) && 3767 UsedByIndicesMap[Reg].count() == 1) { 3768 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3769 continue; 3770 } 3771 3772 // Conservatively examine offsets between this orig reg a few selected 3773 // other orig regs. 3774 ImmMapTy::const_iterator OtherImms[] = { 3775 Imms.begin(), std::prev(Imms.end()), 3776 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3777 2) 3778 }; 3779 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3780 ImmMapTy::const_iterator M = OtherImms[i]; 3781 if (M == J || M == JE) continue; 3782 3783 // Compute the difference between the two. 3784 int64_t Imm = (uint64_t)JImm - M->first; 3785 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3786 LUIdx = UsedByIndices.find_next(LUIdx)) 3787 // Make a memo of this use, offset, and register tuple. 3788 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3789 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3790 } 3791 } 3792 } 3793 3794 Map.clear(); 3795 Sequence.clear(); 3796 UsedByIndicesMap.clear(); 3797 UniqueItems.clear(); 3798 3799 // Now iterate through the worklist and add new formulae. 3800 for (const WorkItem &WI : WorkItems) { 3801 size_t LUIdx = WI.LUIdx; 3802 LSRUse &LU = Uses[LUIdx]; 3803 int64_t Imm = WI.Imm; 3804 const SCEV *OrigReg = WI.OrigReg; 3805 3806 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3807 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3808 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3809 3810 // TODO: Use a more targeted data structure. 3811 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3812 Formula F = LU.Formulae[L]; 3813 // FIXME: The code for the scaled and unscaled registers looks 3814 // very similar but slightly different. Investigate if they 3815 // could be merged. That way, we would not have to unscale the 3816 // Formula. 3817 F.unscale(); 3818 // Use the immediate in the scaled register. 3819 if (F.ScaledReg == OrigReg) { 3820 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3821 // Don't create 50 + reg(-50). 3822 if (F.referencesReg(SE.getSCEV( 3823 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3824 continue; 3825 Formula NewF = F; 3826 NewF.BaseOffset = Offset; 3827 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3828 NewF)) 3829 continue; 3830 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3831 3832 // If the new scale is a constant in a register, and adding the constant 3833 // value to the immediate would produce a value closer to zero than the 3834 // immediate itself, then the formula isn't worthwhile. 3835 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3836 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3837 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3838 .ule(std::abs(NewF.BaseOffset))) 3839 continue; 3840 3841 // OK, looks good. 3842 NewF.canonicalize(); 3843 (void)InsertFormula(LU, LUIdx, NewF); 3844 } else { 3845 // Use the immediate in a base register. 3846 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3847 const SCEV *BaseReg = F.BaseRegs[N]; 3848 if (BaseReg != OrigReg) 3849 continue; 3850 Formula NewF = F; 3851 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3852 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3853 LU.Kind, LU.AccessTy, NewF)) { 3854 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3855 continue; 3856 NewF = F; 3857 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3858 } 3859 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3860 3861 // If the new formula has a constant in a register, and adding the 3862 // constant value to the immediate would produce a value closer to 3863 // zero than the immediate itself, then the formula isn't worthwhile. 3864 for (const SCEV *NewReg : NewF.BaseRegs) 3865 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3866 if ((C->getAPInt() + NewF.BaseOffset) 3867 .abs() 3868 .slt(std::abs(NewF.BaseOffset)) && 3869 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3870 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3871 goto skip_formula; 3872 3873 // Ok, looks good. 3874 NewF.canonicalize(); 3875 (void)InsertFormula(LU, LUIdx, NewF); 3876 break; 3877 skip_formula:; 3878 } 3879 } 3880 } 3881 } 3882 } 3883 3884 /// Generate formulae for each use. 3885 void 3886 LSRInstance::GenerateAllReuseFormulae() { 3887 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3888 // queries are more precise. 3889 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3890 LSRUse &LU = Uses[LUIdx]; 3891 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3892 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3893 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3894 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3895 } 3896 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3897 LSRUse &LU = Uses[LUIdx]; 3898 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3899 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3900 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3901 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3902 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3903 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3904 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3905 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3906 } 3907 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3908 LSRUse &LU = Uses[LUIdx]; 3909 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3910 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3911 } 3912 3913 GenerateCrossUseConstantOffsets(); 3914 3915 DEBUG(dbgs() << "\n" 3916 "After generating reuse formulae:\n"; 3917 print_uses(dbgs())); 3918 } 3919 3920 /// If there are multiple formulae with the same set of registers used 3921 /// by other uses, pick the best one and delete the others. 3922 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3923 DenseSet<const SCEV *> VisitedRegs; 3924 SmallPtrSet<const SCEV *, 16> Regs; 3925 SmallPtrSet<const SCEV *, 16> LoserRegs; 3926 #ifndef NDEBUG 3927 bool ChangedFormulae = false; 3928 #endif 3929 3930 // Collect the best formula for each unique set of shared registers. This 3931 // is reset for each use. 3932 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3933 BestFormulaeTy; 3934 BestFormulaeTy BestFormulae; 3935 3936 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3937 LSRUse &LU = Uses[LUIdx]; 3938 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3939 3940 bool Any = false; 3941 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3942 FIdx != NumForms; ++FIdx) { 3943 Formula &F = LU.Formulae[FIdx]; 3944 3945 // Some formulas are instant losers. For example, they may depend on 3946 // nonexistent AddRecs from other loops. These need to be filtered 3947 // immediately, otherwise heuristics could choose them over others leading 3948 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3949 // avoids the need to recompute this information across formulae using the 3950 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3951 // the corresponding bad register from the Regs set. 3952 Cost CostF; 3953 Regs.clear(); 3954 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 3955 if (CostF.isLoser()) { 3956 // During initial formula generation, undesirable formulae are generated 3957 // by uses within other loops that have some non-trivial address mode or 3958 // use the postinc form of the IV. LSR needs to provide these formulae 3959 // as the basis of rediscovering the desired formula that uses an AddRec 3960 // corresponding to the existing phi. Once all formulae have been 3961 // generated, these initial losers may be pruned. 3962 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3963 dbgs() << "\n"); 3964 } 3965 else { 3966 SmallVector<const SCEV *, 4> Key; 3967 for (const SCEV *Reg : F.BaseRegs) { 3968 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3969 Key.push_back(Reg); 3970 } 3971 if (F.ScaledReg && 3972 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3973 Key.push_back(F.ScaledReg); 3974 // Unstable sort by host order ok, because this is only used for 3975 // uniquifying. 3976 std::sort(Key.begin(), Key.end()); 3977 3978 std::pair<BestFormulaeTy::const_iterator, bool> P = 3979 BestFormulae.insert(std::make_pair(Key, FIdx)); 3980 if (P.second) 3981 continue; 3982 3983 Formula &Best = LU.Formulae[P.first->second]; 3984 3985 Cost CostBest; 3986 Regs.clear(); 3987 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 3988 if (CostF < CostBest) 3989 std::swap(F, Best); 3990 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3991 dbgs() << "\n" 3992 " in favor of formula "; Best.print(dbgs()); 3993 dbgs() << '\n'); 3994 } 3995 #ifndef NDEBUG 3996 ChangedFormulae = true; 3997 #endif 3998 LU.DeleteFormula(F); 3999 --FIdx; 4000 --NumForms; 4001 Any = true; 4002 } 4003 4004 // Now that we've filtered out some formulae, recompute the Regs set. 4005 if (Any) 4006 LU.RecomputeRegs(LUIdx, RegUses); 4007 4008 // Reset this to prepare for the next use. 4009 BestFormulae.clear(); 4010 } 4011 4012 DEBUG(if (ChangedFormulae) { 4013 dbgs() << "\n" 4014 "After filtering out undesirable candidates:\n"; 4015 print_uses(dbgs()); 4016 }); 4017 } 4018 4019 // This is a rough guess that seems to work fairly well. 4020 static const size_t ComplexityLimit = UINT16_MAX; 4021 4022 /// Estimate the worst-case number of solutions the solver might have to 4023 /// consider. It almost never considers this many solutions because it prune the 4024 /// search space, but the pruning isn't always sufficient. 4025 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4026 size_t Power = 1; 4027 for (const LSRUse &LU : Uses) { 4028 size_t FSize = LU.Formulae.size(); 4029 if (FSize >= ComplexityLimit) { 4030 Power = ComplexityLimit; 4031 break; 4032 } 4033 Power *= FSize; 4034 if (Power >= ComplexityLimit) 4035 break; 4036 } 4037 return Power; 4038 } 4039 4040 /// When one formula uses a superset of the registers of another formula, it 4041 /// won't help reduce register pressure (though it may not necessarily hurt 4042 /// register pressure); remove it to simplify the system. 4043 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4044 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4045 DEBUG(dbgs() << "The search space is too complex.\n"); 4046 4047 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4048 "which use a superset of registers used by other " 4049 "formulae.\n"); 4050 4051 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4052 LSRUse &LU = Uses[LUIdx]; 4053 bool Any = false; 4054 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4055 Formula &F = LU.Formulae[i]; 4056 // Look for a formula with a constant or GV in a register. If the use 4057 // also has a formula with that same value in an immediate field, 4058 // delete the one that uses a register. 4059 for (SmallVectorImpl<const SCEV *>::const_iterator 4060 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4061 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4062 Formula NewF = F; 4063 NewF.BaseOffset += C->getValue()->getSExtValue(); 4064 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4065 (I - F.BaseRegs.begin())); 4066 if (LU.HasFormulaWithSameRegs(NewF)) { 4067 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4068 LU.DeleteFormula(F); 4069 --i; 4070 --e; 4071 Any = true; 4072 break; 4073 } 4074 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4075 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4076 if (!F.BaseGV) { 4077 Formula NewF = F; 4078 NewF.BaseGV = GV; 4079 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4080 (I - F.BaseRegs.begin())); 4081 if (LU.HasFormulaWithSameRegs(NewF)) { 4082 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4083 dbgs() << '\n'); 4084 LU.DeleteFormula(F); 4085 --i; 4086 --e; 4087 Any = true; 4088 break; 4089 } 4090 } 4091 } 4092 } 4093 } 4094 if (Any) 4095 LU.RecomputeRegs(LUIdx, RegUses); 4096 } 4097 4098 DEBUG(dbgs() << "After pre-selection:\n"; 4099 print_uses(dbgs())); 4100 } 4101 } 4102 4103 /// When there are many registers for expressions like A, A+1, A+2, etc., 4104 /// allocate a single register for them. 4105 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4106 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4107 return; 4108 4109 DEBUG(dbgs() << "The search space is too complex.\n" 4110 "Narrowing the search space by assuming that uses separated " 4111 "by a constant offset will use the same registers.\n"); 4112 4113 // This is especially useful for unrolled loops. 4114 4115 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4116 LSRUse &LU = Uses[LUIdx]; 4117 for (const Formula &F : LU.Formulae) { 4118 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4119 continue; 4120 4121 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4122 if (!LUThatHas) 4123 continue; 4124 4125 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4126 LU.Kind, LU.AccessTy)) 4127 continue; 4128 4129 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4130 4131 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4132 4133 // Transfer the fixups of LU to LUThatHas. 4134 for (LSRFixup &Fixup : LU.Fixups) { 4135 Fixup.Offset += F.BaseOffset; 4136 LUThatHas->pushFixup(Fixup); 4137 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4138 } 4139 4140 // Delete formulae from the new use which are no longer legal. 4141 bool Any = false; 4142 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4143 Formula &F = LUThatHas->Formulae[i]; 4144 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4145 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4146 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4147 dbgs() << '\n'); 4148 LUThatHas->DeleteFormula(F); 4149 --i; 4150 --e; 4151 Any = true; 4152 } 4153 } 4154 4155 if (Any) 4156 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4157 4158 // Delete the old use. 4159 DeleteUse(LU, LUIdx); 4160 --LUIdx; 4161 --NumUses; 4162 break; 4163 } 4164 } 4165 4166 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4167 } 4168 4169 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4170 /// we've done more filtering, as it may be able to find more formulae to 4171 /// eliminate. 4172 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4173 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4174 DEBUG(dbgs() << "The search space is too complex.\n"); 4175 4176 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4177 "undesirable dedicated registers.\n"); 4178 4179 FilterOutUndesirableDedicatedRegisters(); 4180 4181 DEBUG(dbgs() << "After pre-selection:\n"; 4182 print_uses(dbgs())); 4183 } 4184 } 4185 4186 /// Pick a register which seems likely to be profitable, and then in any use 4187 /// which has any reference to that register, delete all formulae which do not 4188 /// reference that register. 4189 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4190 // With all other options exhausted, loop until the system is simple 4191 // enough to handle. 4192 SmallPtrSet<const SCEV *, 4> Taken; 4193 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4194 // Ok, we have too many of formulae on our hands to conveniently handle. 4195 // Use a rough heuristic to thin out the list. 4196 DEBUG(dbgs() << "The search space is too complex.\n"); 4197 4198 // Pick the register which is used by the most LSRUses, which is likely 4199 // to be a good reuse register candidate. 4200 const SCEV *Best = nullptr; 4201 unsigned BestNum = 0; 4202 for (const SCEV *Reg : RegUses) { 4203 if (Taken.count(Reg)) 4204 continue; 4205 if (!Best) { 4206 Best = Reg; 4207 BestNum = RegUses.getUsedByIndices(Reg).count(); 4208 } else { 4209 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4210 if (Count > BestNum) { 4211 Best = Reg; 4212 BestNum = Count; 4213 } 4214 } 4215 } 4216 4217 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4218 << " will yield profitable reuse.\n"); 4219 Taken.insert(Best); 4220 4221 // In any use with formulae which references this register, delete formulae 4222 // which don't reference it. 4223 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4224 LSRUse &LU = Uses[LUIdx]; 4225 if (!LU.Regs.count(Best)) continue; 4226 4227 bool Any = false; 4228 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4229 Formula &F = LU.Formulae[i]; 4230 if (!F.referencesReg(Best)) { 4231 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4232 LU.DeleteFormula(F); 4233 --e; 4234 --i; 4235 Any = true; 4236 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4237 continue; 4238 } 4239 } 4240 4241 if (Any) 4242 LU.RecomputeRegs(LUIdx, RegUses); 4243 } 4244 4245 DEBUG(dbgs() << "After pre-selection:\n"; 4246 print_uses(dbgs())); 4247 } 4248 } 4249 4250 /// If there are an extraordinary number of formulae to choose from, use some 4251 /// rough heuristics to prune down the number of formulae. This keeps the main 4252 /// solver from taking an extraordinary amount of time in some worst-case 4253 /// scenarios. 4254 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4255 NarrowSearchSpaceByDetectingSupersets(); 4256 NarrowSearchSpaceByCollapsingUnrolledCode(); 4257 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4258 NarrowSearchSpaceByPickingWinnerRegs(); 4259 } 4260 4261 /// This is the recursive solver. 4262 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4263 Cost &SolutionCost, 4264 SmallVectorImpl<const Formula *> &Workspace, 4265 const Cost &CurCost, 4266 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4267 DenseSet<const SCEV *> &VisitedRegs) const { 4268 // Some ideas: 4269 // - prune more: 4270 // - use more aggressive filtering 4271 // - sort the formula so that the most profitable solutions are found first 4272 // - sort the uses too 4273 // - search faster: 4274 // - don't compute a cost, and then compare. compare while computing a cost 4275 // and bail early. 4276 // - track register sets with SmallBitVector 4277 4278 const LSRUse &LU = Uses[Workspace.size()]; 4279 4280 // If this use references any register that's already a part of the 4281 // in-progress solution, consider it a requirement that a formula must 4282 // reference that register in order to be considered. This prunes out 4283 // unprofitable searching. 4284 SmallSetVector<const SCEV *, 4> ReqRegs; 4285 for (const SCEV *S : CurRegs) 4286 if (LU.Regs.count(S)) 4287 ReqRegs.insert(S); 4288 4289 SmallPtrSet<const SCEV *, 16> NewRegs; 4290 Cost NewCost; 4291 for (const Formula &F : LU.Formulae) { 4292 // Ignore formulae which may not be ideal in terms of register reuse of 4293 // ReqRegs. The formula should use all required registers before 4294 // introducing new ones. 4295 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4296 for (const SCEV *Reg : ReqRegs) { 4297 if ((F.ScaledReg && F.ScaledReg == Reg) || 4298 is_contained(F.BaseRegs, Reg)) { 4299 --NumReqRegsToFind; 4300 if (NumReqRegsToFind == 0) 4301 break; 4302 } 4303 } 4304 if (NumReqRegsToFind != 0) { 4305 // If none of the formulae satisfied the required registers, then we could 4306 // clear ReqRegs and try again. Currently, we simply give up in this case. 4307 continue; 4308 } 4309 4310 // Evaluate the cost of the current formula. If it's already worse than 4311 // the current best, prune the search at that point. 4312 NewCost = CurCost; 4313 NewRegs = CurRegs; 4314 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4315 if (NewCost < SolutionCost) { 4316 Workspace.push_back(&F); 4317 if (Workspace.size() != Uses.size()) { 4318 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4319 NewRegs, VisitedRegs); 4320 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4321 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4322 } else { 4323 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4324 dbgs() << ".\n Regs:"; 4325 for (const SCEV *S : NewRegs) 4326 dbgs() << ' ' << *S; 4327 dbgs() << '\n'); 4328 4329 SolutionCost = NewCost; 4330 Solution = Workspace; 4331 } 4332 Workspace.pop_back(); 4333 } 4334 } 4335 } 4336 4337 /// Choose one formula from each use. Return the results in the given Solution 4338 /// vector. 4339 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4340 SmallVector<const Formula *, 8> Workspace; 4341 Cost SolutionCost; 4342 SolutionCost.Lose(); 4343 Cost CurCost; 4344 SmallPtrSet<const SCEV *, 16> CurRegs; 4345 DenseSet<const SCEV *> VisitedRegs; 4346 Workspace.reserve(Uses.size()); 4347 4348 // SolveRecurse does all the work. 4349 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4350 CurRegs, VisitedRegs); 4351 if (Solution.empty()) { 4352 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4353 return; 4354 } 4355 4356 // Ok, we've now made all our decisions. 4357 DEBUG(dbgs() << "\n" 4358 "The chosen solution requires "; SolutionCost.print(dbgs()); 4359 dbgs() << ":\n"; 4360 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4361 dbgs() << " "; 4362 Uses[i].print(dbgs()); 4363 dbgs() << "\n" 4364 " "; 4365 Solution[i]->print(dbgs()); 4366 dbgs() << '\n'; 4367 }); 4368 4369 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4370 } 4371 4372 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4373 /// we can go while still being dominated by the input positions. This helps 4374 /// canonicalize the insert position, which encourages sharing. 4375 BasicBlock::iterator 4376 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4377 const SmallVectorImpl<Instruction *> &Inputs) 4378 const { 4379 Instruction *Tentative = &*IP; 4380 while (true) { 4381 bool AllDominate = true; 4382 Instruction *BetterPos = nullptr; 4383 // Don't bother attempting to insert before a catchswitch, their basic block 4384 // cannot have other non-PHI instructions. 4385 if (isa<CatchSwitchInst>(Tentative)) 4386 return IP; 4387 4388 for (Instruction *Inst : Inputs) { 4389 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4390 AllDominate = false; 4391 break; 4392 } 4393 // Attempt to find an insert position in the middle of the block, 4394 // instead of at the end, so that it can be used for other expansions. 4395 if (Tentative->getParent() == Inst->getParent() && 4396 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4397 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4398 } 4399 if (!AllDominate) 4400 break; 4401 if (BetterPos) 4402 IP = BetterPos->getIterator(); 4403 else 4404 IP = Tentative->getIterator(); 4405 4406 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4407 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4408 4409 BasicBlock *IDom; 4410 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4411 if (!Rung) return IP; 4412 Rung = Rung->getIDom(); 4413 if (!Rung) return IP; 4414 IDom = Rung->getBlock(); 4415 4416 // Don't climb into a loop though. 4417 const Loop *IDomLoop = LI.getLoopFor(IDom); 4418 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4419 if (IDomDepth <= IPLoopDepth && 4420 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4421 break; 4422 } 4423 4424 Tentative = IDom->getTerminator(); 4425 } 4426 4427 return IP; 4428 } 4429 4430 /// Determine an input position which will be dominated by the operands and 4431 /// which will dominate the result. 4432 BasicBlock::iterator 4433 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4434 const LSRFixup &LF, 4435 const LSRUse &LU, 4436 SCEVExpander &Rewriter) const { 4437 // Collect some instructions which must be dominated by the 4438 // expanding replacement. These must be dominated by any operands that 4439 // will be required in the expansion. 4440 SmallVector<Instruction *, 4> Inputs; 4441 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4442 Inputs.push_back(I); 4443 if (LU.Kind == LSRUse::ICmpZero) 4444 if (Instruction *I = 4445 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4446 Inputs.push_back(I); 4447 if (LF.PostIncLoops.count(L)) { 4448 if (LF.isUseFullyOutsideLoop(L)) 4449 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4450 else 4451 Inputs.push_back(IVIncInsertPos); 4452 } 4453 // The expansion must also be dominated by the increment positions of any 4454 // loops it for which it is using post-inc mode. 4455 for (const Loop *PIL : LF.PostIncLoops) { 4456 if (PIL == L) continue; 4457 4458 // Be dominated by the loop exit. 4459 SmallVector<BasicBlock *, 4> ExitingBlocks; 4460 PIL->getExitingBlocks(ExitingBlocks); 4461 if (!ExitingBlocks.empty()) { 4462 BasicBlock *BB = ExitingBlocks[0]; 4463 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4464 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4465 Inputs.push_back(BB->getTerminator()); 4466 } 4467 } 4468 4469 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4470 && !isa<DbgInfoIntrinsic>(LowestIP) && 4471 "Insertion point must be a normal instruction"); 4472 4473 // Then, climb up the immediate dominator tree as far as we can go while 4474 // still being dominated by the input positions. 4475 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4476 4477 // Don't insert instructions before PHI nodes. 4478 while (isa<PHINode>(IP)) ++IP; 4479 4480 // Ignore landingpad instructions. 4481 while (IP->isEHPad()) ++IP; 4482 4483 // Ignore debug intrinsics. 4484 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4485 4486 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4487 // IP consistent across expansions and allows the previously inserted 4488 // instructions to be reused by subsequent expansion. 4489 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4490 ++IP; 4491 4492 return IP; 4493 } 4494 4495 /// Emit instructions for the leading candidate expression for this LSRUse (this 4496 /// is called "expanding"). 4497 Value *LSRInstance::Expand(const LSRUse &LU, 4498 const LSRFixup &LF, 4499 const Formula &F, 4500 BasicBlock::iterator IP, 4501 SCEVExpander &Rewriter, 4502 SmallVectorImpl<WeakVH> &DeadInsts) const { 4503 if (LU.RigidFormula) 4504 return LF.OperandValToReplace; 4505 4506 // Determine an input position which will be dominated by the operands and 4507 // which will dominate the result. 4508 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4509 Rewriter.setInsertPoint(&*IP); 4510 4511 // Inform the Rewriter if we have a post-increment use, so that it can 4512 // perform an advantageous expansion. 4513 Rewriter.setPostInc(LF.PostIncLoops); 4514 4515 // This is the type that the user actually needs. 4516 Type *OpTy = LF.OperandValToReplace->getType(); 4517 // This will be the type that we'll initially expand to. 4518 Type *Ty = F.getType(); 4519 if (!Ty) 4520 // No type known; just expand directly to the ultimate type. 4521 Ty = OpTy; 4522 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4523 // Expand directly to the ultimate type if it's the right size. 4524 Ty = OpTy; 4525 // This is the type to do integer arithmetic in. 4526 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4527 4528 // Build up a list of operands to add together to form the full base. 4529 SmallVector<const SCEV *, 8> Ops; 4530 4531 // Expand the BaseRegs portion. 4532 for (const SCEV *Reg : F.BaseRegs) { 4533 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4534 4535 // If we're expanding for a post-inc user, make the post-inc adjustment. 4536 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4537 Reg = TransformForPostIncUse(Denormalize, Reg, 4538 LF.UserInst, LF.OperandValToReplace, 4539 Loops, SE, DT); 4540 4541 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4542 } 4543 4544 // Expand the ScaledReg portion. 4545 Value *ICmpScaledV = nullptr; 4546 if (F.Scale != 0) { 4547 const SCEV *ScaledS = F.ScaledReg; 4548 4549 // If we're expanding for a post-inc user, make the post-inc adjustment. 4550 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4551 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4552 LF.UserInst, LF.OperandValToReplace, 4553 Loops, SE, DT); 4554 4555 if (LU.Kind == LSRUse::ICmpZero) { 4556 // Expand ScaleReg as if it was part of the base regs. 4557 if (F.Scale == 1) 4558 Ops.push_back( 4559 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4560 else { 4561 // An interesting way of "folding" with an icmp is to use a negated 4562 // scale, which we'll implement by inserting it into the other operand 4563 // of the icmp. 4564 assert(F.Scale == -1 && 4565 "The only scale supported by ICmpZero uses is -1!"); 4566 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4567 } 4568 } else { 4569 // Otherwise just expand the scaled register and an explicit scale, 4570 // which is expected to be matched as part of the address. 4571 4572 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4573 // Unless the addressing mode will not be folded. 4574 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4575 isAMCompletelyFolded(TTI, LU, F)) { 4576 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4577 Ops.clear(); 4578 Ops.push_back(SE.getUnknown(FullV)); 4579 } 4580 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4581 if (F.Scale != 1) 4582 ScaledS = 4583 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4584 Ops.push_back(ScaledS); 4585 } 4586 } 4587 4588 // Expand the GV portion. 4589 if (F.BaseGV) { 4590 // Flush the operand list to suppress SCEVExpander hoisting. 4591 if (!Ops.empty()) { 4592 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4593 Ops.clear(); 4594 Ops.push_back(SE.getUnknown(FullV)); 4595 } 4596 Ops.push_back(SE.getUnknown(F.BaseGV)); 4597 } 4598 4599 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4600 // unfolded offsets. LSR assumes they both live next to their uses. 4601 if (!Ops.empty()) { 4602 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4603 Ops.clear(); 4604 Ops.push_back(SE.getUnknown(FullV)); 4605 } 4606 4607 // Expand the immediate portion. 4608 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4609 if (Offset != 0) { 4610 if (LU.Kind == LSRUse::ICmpZero) { 4611 // The other interesting way of "folding" with an ICmpZero is to use a 4612 // negated immediate. 4613 if (!ICmpScaledV) 4614 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4615 else { 4616 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4617 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4618 } 4619 } else { 4620 // Just add the immediate values. These again are expected to be matched 4621 // as part of the address. 4622 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4623 } 4624 } 4625 4626 // Expand the unfolded offset portion. 4627 int64_t UnfoldedOffset = F.UnfoldedOffset; 4628 if (UnfoldedOffset != 0) { 4629 // Just add the immediate values. 4630 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4631 UnfoldedOffset))); 4632 } 4633 4634 // Emit instructions summing all the operands. 4635 const SCEV *FullS = Ops.empty() ? 4636 SE.getConstant(IntTy, 0) : 4637 SE.getAddExpr(Ops); 4638 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4639 4640 // We're done expanding now, so reset the rewriter. 4641 Rewriter.clearPostInc(); 4642 4643 // An ICmpZero Formula represents an ICmp which we're handling as a 4644 // comparison against zero. Now that we've expanded an expression for that 4645 // form, update the ICmp's other operand. 4646 if (LU.Kind == LSRUse::ICmpZero) { 4647 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4648 DeadInsts.emplace_back(CI->getOperand(1)); 4649 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4650 "a scale at the same time!"); 4651 if (F.Scale == -1) { 4652 if (ICmpScaledV->getType() != OpTy) { 4653 Instruction *Cast = 4654 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4655 OpTy, false), 4656 ICmpScaledV, OpTy, "tmp", CI); 4657 ICmpScaledV = Cast; 4658 } 4659 CI->setOperand(1, ICmpScaledV); 4660 } else { 4661 // A scale of 1 means that the scale has been expanded as part of the 4662 // base regs. 4663 assert((F.Scale == 0 || F.Scale == 1) && 4664 "ICmp does not support folding a global value and " 4665 "a scale at the same time!"); 4666 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4667 -(uint64_t)Offset); 4668 if (C->getType() != OpTy) 4669 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4670 OpTy, false), 4671 C, OpTy); 4672 4673 CI->setOperand(1, C); 4674 } 4675 } 4676 4677 return FullV; 4678 } 4679 4680 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4681 /// effectively happens in their predecessor blocks, so the expression may need 4682 /// to be expanded in multiple places. 4683 void LSRInstance::RewriteForPHI(PHINode *PN, 4684 const LSRUse &LU, 4685 const LSRFixup &LF, 4686 const Formula &F, 4687 SCEVExpander &Rewriter, 4688 SmallVectorImpl<WeakVH> &DeadInsts) const { 4689 DenseMap<BasicBlock *, Value *> Inserted; 4690 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4691 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4692 BasicBlock *BB = PN->getIncomingBlock(i); 4693 4694 // If this is a critical edge, split the edge so that we do not insert 4695 // the code on all predecessor/successor paths. We do this unless this 4696 // is the canonical backedge for this loop, which complicates post-inc 4697 // users. 4698 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4699 !isa<IndirectBrInst>(BB->getTerminator()) && 4700 !isa<CatchSwitchInst>(BB->getTerminator())) { 4701 BasicBlock *Parent = PN->getParent(); 4702 Loop *PNLoop = LI.getLoopFor(Parent); 4703 if (!PNLoop || Parent != PNLoop->getHeader()) { 4704 // Split the critical edge. 4705 BasicBlock *NewBB = nullptr; 4706 if (!Parent->isLandingPad()) { 4707 NewBB = SplitCriticalEdge(BB, Parent, 4708 CriticalEdgeSplittingOptions(&DT, &LI) 4709 .setMergeIdenticalEdges() 4710 .setDontDeleteUselessPHIs()); 4711 } else { 4712 SmallVector<BasicBlock*, 2> NewBBs; 4713 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4714 NewBB = NewBBs[0]; 4715 } 4716 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4717 // phi predecessors are identical. The simple thing to do is skip 4718 // splitting in this case rather than complicate the API. 4719 if (NewBB) { 4720 // If PN is outside of the loop and BB is in the loop, we want to 4721 // move the block to be immediately before the PHI block, not 4722 // immediately after BB. 4723 if (L->contains(BB) && !L->contains(PN)) 4724 NewBB->moveBefore(PN->getParent()); 4725 4726 // Splitting the edge can reduce the number of PHI entries we have. 4727 e = PN->getNumIncomingValues(); 4728 BB = NewBB; 4729 i = PN->getBasicBlockIndex(BB); 4730 } 4731 } 4732 } 4733 4734 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4735 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4736 if (!Pair.second) 4737 PN->setIncomingValue(i, Pair.first->second); 4738 else { 4739 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4740 Rewriter, DeadInsts); 4741 4742 // If this is reuse-by-noop-cast, insert the noop cast. 4743 Type *OpTy = LF.OperandValToReplace->getType(); 4744 if (FullV->getType() != OpTy) 4745 FullV = 4746 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4747 OpTy, false), 4748 FullV, LF.OperandValToReplace->getType(), 4749 "tmp", BB->getTerminator()); 4750 4751 PN->setIncomingValue(i, FullV); 4752 Pair.first->second = FullV; 4753 } 4754 } 4755 } 4756 4757 /// Emit instructions for the leading candidate expression for this LSRUse (this 4758 /// is called "expanding"), and update the UserInst to reference the newly 4759 /// expanded value. 4760 void LSRInstance::Rewrite(const LSRUse &LU, 4761 const LSRFixup &LF, 4762 const Formula &F, 4763 SCEVExpander &Rewriter, 4764 SmallVectorImpl<WeakVH> &DeadInsts) const { 4765 // First, find an insertion point that dominates UserInst. For PHI nodes, 4766 // find the nearest block which dominates all the relevant uses. 4767 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4768 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4769 } else { 4770 Value *FullV = 4771 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4772 4773 // If this is reuse-by-noop-cast, insert the noop cast. 4774 Type *OpTy = LF.OperandValToReplace->getType(); 4775 if (FullV->getType() != OpTy) { 4776 Instruction *Cast = 4777 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4778 FullV, OpTy, "tmp", LF.UserInst); 4779 FullV = Cast; 4780 } 4781 4782 // Update the user. ICmpZero is handled specially here (for now) because 4783 // Expand may have updated one of the operands of the icmp already, and 4784 // its new value may happen to be equal to LF.OperandValToReplace, in 4785 // which case doing replaceUsesOfWith leads to replacing both operands 4786 // with the same value. TODO: Reorganize this. 4787 if (LU.Kind == LSRUse::ICmpZero) 4788 LF.UserInst->setOperand(0, FullV); 4789 else 4790 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4791 } 4792 4793 DeadInsts.emplace_back(LF.OperandValToReplace); 4794 } 4795 4796 /// Rewrite all the fixup locations with new values, following the chosen 4797 /// solution. 4798 void LSRInstance::ImplementSolution( 4799 const SmallVectorImpl<const Formula *> &Solution) { 4800 // Keep track of instructions we may have made dead, so that 4801 // we can remove them after we are done working. 4802 SmallVector<WeakVH, 16> DeadInsts; 4803 4804 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4805 "lsr"); 4806 #ifndef NDEBUG 4807 Rewriter.setDebugType(DEBUG_TYPE); 4808 #endif 4809 Rewriter.disableCanonicalMode(); 4810 Rewriter.enableLSRMode(); 4811 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4812 4813 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4814 for (const IVChain &Chain : IVChainVec) { 4815 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4816 Rewriter.setChainedPhi(PN); 4817 } 4818 4819 // Expand the new value definitions and update the users. 4820 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4821 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4822 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4823 Changed = true; 4824 } 4825 4826 for (const IVChain &Chain : IVChainVec) { 4827 GenerateIVChain(Chain, Rewriter, DeadInsts); 4828 Changed = true; 4829 } 4830 // Clean up after ourselves. This must be done before deleting any 4831 // instructions. 4832 Rewriter.clear(); 4833 4834 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4835 } 4836 4837 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4838 DominatorTree &DT, LoopInfo &LI, 4839 const TargetTransformInfo &TTI) 4840 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4841 IVIncInsertPos(nullptr) { 4842 // If LoopSimplify form is not available, stay out of trouble. 4843 if (!L->isLoopSimplifyForm()) 4844 return; 4845 4846 // If there's no interesting work to be done, bail early. 4847 if (IU.empty()) return; 4848 4849 // If there's too much analysis to be done, bail early. We won't be able to 4850 // model the problem anyway. 4851 unsigned NumUsers = 0; 4852 for (const IVStrideUse &U : IU) { 4853 if (++NumUsers > MaxIVUsers) { 4854 (void)U; 4855 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4856 return; 4857 } 4858 // Bail out if we have a PHI on an EHPad that gets a value from a 4859 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4860 // no good place to stick any instructions. 4861 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4862 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4863 if (isa<FuncletPadInst>(FirstNonPHI) || 4864 isa<CatchSwitchInst>(FirstNonPHI)) 4865 for (BasicBlock *PredBB : PN->blocks()) 4866 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4867 return; 4868 } 4869 } 4870 4871 #ifndef NDEBUG 4872 // All dominating loops must have preheaders, or SCEVExpander may not be able 4873 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4874 // 4875 // IVUsers analysis should only create users that are dominated by simple loop 4876 // headers. Since this loop should dominate all of its users, its user list 4877 // should be empty if this loop itself is not within a simple loop nest. 4878 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4879 Rung; Rung = Rung->getIDom()) { 4880 BasicBlock *BB = Rung->getBlock(); 4881 const Loop *DomLoop = LI.getLoopFor(BB); 4882 if (DomLoop && DomLoop->getHeader() == BB) { 4883 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4884 } 4885 } 4886 #endif // DEBUG 4887 4888 DEBUG(dbgs() << "\nLSR on loop "; 4889 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4890 dbgs() << ":\n"); 4891 4892 // First, perform some low-level loop optimizations. 4893 OptimizeShadowIV(); 4894 OptimizeLoopTermCond(); 4895 4896 // If loop preparation eliminates all interesting IV users, bail. 4897 if (IU.empty()) return; 4898 4899 // Skip nested loops until we can model them better with formulae. 4900 if (!L->empty()) { 4901 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4902 return; 4903 } 4904 4905 // Start collecting data and preparing for the solver. 4906 CollectChains(); 4907 CollectInterestingTypesAndFactors(); 4908 CollectFixupsAndInitialFormulae(); 4909 CollectLoopInvariantFixupsAndFormulae(); 4910 4911 assert(!Uses.empty() && "IVUsers reported at least one use"); 4912 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4913 print_uses(dbgs())); 4914 4915 // Now use the reuse data to generate a bunch of interesting ways 4916 // to formulate the values needed for the uses. 4917 GenerateAllReuseFormulae(); 4918 4919 FilterOutUndesirableDedicatedRegisters(); 4920 NarrowSearchSpaceUsingHeuristics(); 4921 4922 SmallVector<const Formula *, 8> Solution; 4923 Solve(Solution); 4924 4925 // Release memory that is no longer needed. 4926 Factors.clear(); 4927 Types.clear(); 4928 RegUses.clear(); 4929 4930 if (Solution.empty()) 4931 return; 4932 4933 #ifndef NDEBUG 4934 // Formulae should be legal. 4935 for (const LSRUse &LU : Uses) { 4936 for (const Formula &F : LU.Formulae) 4937 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4938 F) && "Illegal formula generated!"); 4939 }; 4940 #endif 4941 4942 // Now that we've decided what we want, make it so. 4943 ImplementSolution(Solution); 4944 } 4945 4946 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4947 if (Factors.empty() && Types.empty()) return; 4948 4949 OS << "LSR has identified the following interesting factors and types: "; 4950 bool First = true; 4951 4952 for (int64_t Factor : Factors) { 4953 if (!First) OS << ", "; 4954 First = false; 4955 OS << '*' << Factor; 4956 } 4957 4958 for (Type *Ty : Types) { 4959 if (!First) OS << ", "; 4960 First = false; 4961 OS << '(' << *Ty << ')'; 4962 } 4963 OS << '\n'; 4964 } 4965 4966 void LSRInstance::print_fixups(raw_ostream &OS) const { 4967 OS << "LSR is examining the following fixup sites:\n"; 4968 for (const LSRUse &LU : Uses) 4969 for (const LSRFixup &LF : LU.Fixups) { 4970 dbgs() << " "; 4971 LF.print(OS); 4972 OS << '\n'; 4973 } 4974 } 4975 4976 void LSRInstance::print_uses(raw_ostream &OS) const { 4977 OS << "LSR is examining the following uses:\n"; 4978 for (const LSRUse &LU : Uses) { 4979 dbgs() << " "; 4980 LU.print(OS); 4981 OS << '\n'; 4982 for (const Formula &F : LU.Formulae) { 4983 OS << " "; 4984 F.print(OS); 4985 OS << '\n'; 4986 } 4987 } 4988 } 4989 4990 void LSRInstance::print(raw_ostream &OS) const { 4991 print_factors_and_types(OS); 4992 print_fixups(OS); 4993 print_uses(OS); 4994 } 4995 4996 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4997 LLVM_DUMP_METHOD void LSRInstance::dump() const { 4998 print(errs()); errs() << '\n'; 4999 } 5000 #endif 5001 5002 namespace { 5003 5004 class LoopStrengthReduce : public LoopPass { 5005 public: 5006 static char ID; // Pass ID, replacement for typeid 5007 5008 LoopStrengthReduce(); 5009 5010 private: 5011 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5012 void getAnalysisUsage(AnalysisUsage &AU) const override; 5013 }; 5014 5015 } // end anonymous namespace 5016 5017 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5018 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5019 } 5020 5021 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5022 // We split critical edges, so we change the CFG. However, we do update 5023 // many analyses if they are around. 5024 AU.addPreservedID(LoopSimplifyID); 5025 5026 AU.addRequired<LoopInfoWrapperPass>(); 5027 AU.addPreserved<LoopInfoWrapperPass>(); 5028 AU.addRequiredID(LoopSimplifyID); 5029 AU.addRequired<DominatorTreeWrapperPass>(); 5030 AU.addPreserved<DominatorTreeWrapperPass>(); 5031 AU.addRequired<ScalarEvolutionWrapperPass>(); 5032 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5033 // Requiring LoopSimplify a second time here prevents IVUsers from running 5034 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5035 AU.addRequiredID(LoopSimplifyID); 5036 AU.addRequired<IVUsersWrapperPass>(); 5037 AU.addPreserved<IVUsersWrapperPass>(); 5038 AU.addRequired<TargetTransformInfoWrapperPass>(); 5039 } 5040 5041 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5042 DominatorTree &DT, LoopInfo &LI, 5043 const TargetTransformInfo &TTI) { 5044 bool Changed = false; 5045 5046 // Run the main LSR transformation. 5047 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5048 5049 // Remove any extra phis created by processing inner loops. 5050 Changed |= DeleteDeadPHIs(L->getHeader()); 5051 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5052 SmallVector<WeakVH, 16> DeadInsts; 5053 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5054 SCEVExpander Rewriter(SE, DL, "lsr"); 5055 #ifndef NDEBUG 5056 Rewriter.setDebugType(DEBUG_TYPE); 5057 #endif 5058 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5059 if (numFolded) { 5060 Changed = true; 5061 DeleteTriviallyDeadInstructions(DeadInsts); 5062 DeleteDeadPHIs(L->getHeader()); 5063 } 5064 } 5065 return Changed; 5066 } 5067 5068 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5069 if (skipLoop(L)) 5070 return false; 5071 5072 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5073 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5074 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5075 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5076 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5077 *L->getHeader()->getParent()); 5078 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5079 } 5080 5081 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5082 LoopStandardAnalysisResults &AR, 5083 LPMUpdater &) { 5084 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5085 AR.DT, AR.LI, AR.TTI)) 5086 return PreservedAnalyses::all(); 5087 5088 return getLoopPassPreservedAnalyses(); 5089 } 5090 5091 char LoopStrengthReduce::ID = 0; 5092 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5093 "Loop Strength Reduction", false, false) 5094 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5095 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5096 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5097 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5098 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5099 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5100 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5101 "Loop Strength Reduction", false, false) 5102 5103 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5104