1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 #ifndef NDEBUG
133 // Stress test IV chain generation.
134 static cl::opt<bool> StressIVChain(
135   "stress-ivchain", cl::Hidden, cl::init(false),
136   cl::desc("Stress test LSR IV chains"));
137 #else
138 static bool StressIVChain = false;
139 #endif
140 
141 namespace {
142 
143 struct MemAccessTy {
144   /// Used in situations where the accessed memory type is unknown.
145   static const unsigned UnknownAddressSpace = ~0u;
146 
147   Type *MemTy;
148   unsigned AddrSpace;
149 
150   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
151 
152   MemAccessTy(Type *Ty, unsigned AS) :
153     MemTy(Ty), AddrSpace(AS) {}
154 
155   bool operator==(MemAccessTy Other) const {
156     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
157   }
158 
159   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
160 
161   static MemAccessTy getUnknown(LLVMContext &Ctx,
162                                 unsigned AS = UnknownAddressSpace) {
163     return MemAccessTy(Type::getVoidTy(Ctx), AS);
164   }
165 };
166 
167 /// This class holds data which is used to order reuse candidates.
168 class RegSortData {
169 public:
170   /// This represents the set of LSRUse indices which reference
171   /// a particular register.
172   SmallBitVector UsedByIndices;
173 
174   void print(raw_ostream &OS) const;
175   void dump() const;
176 };
177 
178 } // end anonymous namespace
179 
180 void RegSortData::print(raw_ostream &OS) const {
181   OS << "[NumUses=" << UsedByIndices.count() << ']';
182 }
183 
184 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
185 LLVM_DUMP_METHOD void RegSortData::dump() const {
186   print(errs()); errs() << '\n';
187 }
188 #endif
189 
190 namespace {
191 
192 /// Map register candidates to information about how they are used.
193 class RegUseTracker {
194   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
195 
196   RegUsesTy RegUsesMap;
197   SmallVector<const SCEV *, 16> RegSequence;
198 
199 public:
200   void countRegister(const SCEV *Reg, size_t LUIdx);
201   void dropRegister(const SCEV *Reg, size_t LUIdx);
202   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
203 
204   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
205 
206   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
207 
208   void clear();
209 
210   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
211   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
212   iterator begin() { return RegSequence.begin(); }
213   iterator end()   { return RegSequence.end(); }
214   const_iterator begin() const { return RegSequence.begin(); }
215   const_iterator end() const   { return RegSequence.end(); }
216 };
217 
218 } // end anonymous namespace
219 
220 void
221 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
222   std::pair<RegUsesTy::iterator, bool> Pair =
223     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
224   RegSortData &RSD = Pair.first->second;
225   if (Pair.second)
226     RegSequence.push_back(Reg);
227   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
228   RSD.UsedByIndices.set(LUIdx);
229 }
230 
231 void
232 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
233   RegUsesTy::iterator It = RegUsesMap.find(Reg);
234   assert(It != RegUsesMap.end());
235   RegSortData &RSD = It->second;
236   assert(RSD.UsedByIndices.size() > LUIdx);
237   RSD.UsedByIndices.reset(LUIdx);
238 }
239 
240 void
241 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
242   assert(LUIdx <= LastLUIdx);
243 
244   // Update RegUses. The data structure is not optimized for this purpose;
245   // we must iterate through it and update each of the bit vectors.
246   for (auto &Pair : RegUsesMap) {
247     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
248     if (LUIdx < UsedByIndices.size())
249       UsedByIndices[LUIdx] =
250         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
251     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
252   }
253 }
254 
255 bool
256 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
257   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
258   if (I == RegUsesMap.end())
259     return false;
260   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
261   int i = UsedByIndices.find_first();
262   if (i == -1) return false;
263   if ((size_t)i != LUIdx) return true;
264   return UsedByIndices.find_next(i) != -1;
265 }
266 
267 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
268   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
269   assert(I != RegUsesMap.end() && "Unknown register!");
270   return I->second.UsedByIndices;
271 }
272 
273 void RegUseTracker::clear() {
274   RegUsesMap.clear();
275   RegSequence.clear();
276 }
277 
278 namespace {
279 
280 /// This class holds information that describes a formula for computing
281 /// satisfying a use. It may include broken-out immediates and scaled registers.
282 struct Formula {
283   /// Global base address used for complex addressing.
284   GlobalValue *BaseGV;
285 
286   /// Base offset for complex addressing.
287   int64_t BaseOffset;
288 
289   /// Whether any complex addressing has a base register.
290   bool HasBaseReg;
291 
292   /// The scale of any complex addressing.
293   int64_t Scale;
294 
295   /// The list of "base" registers for this use. When this is non-empty. The
296   /// canonical representation of a formula is
297   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
298   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
299   /// #1 enforces that the scaled register is always used when at least two
300   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
301   /// #2 enforces that 1 * reg is reg.
302   /// This invariant can be temporarly broken while building a formula.
303   /// However, every formula inserted into the LSRInstance must be in canonical
304   /// form.
305   SmallVector<const SCEV *, 4> BaseRegs;
306 
307   /// The 'scaled' register for this use. This should be non-null when Scale is
308   /// not zero.
309   const SCEV *ScaledReg;
310 
311   /// An additional constant offset which added near the use. This requires a
312   /// temporary register, but the offset itself can live in an add immediate
313   /// field rather than a register.
314   int64_t UnfoldedOffset;
315 
316   Formula()
317       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
318         ScaledReg(nullptr), UnfoldedOffset(0) {}
319 
320   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
321 
322   bool isCanonical() const;
323 
324   void canonicalize();
325 
326   bool unscale();
327 
328   size_t getNumRegs() const;
329   Type *getType() const;
330 
331   void deleteBaseReg(const SCEV *&S);
332 
333   bool referencesReg(const SCEV *S) const;
334   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
335                                   const RegUseTracker &RegUses) const;
336 
337   void print(raw_ostream &OS) const;
338   void dump() const;
339 };
340 
341 } // end anonymous namespace
342 
343 /// Recursion helper for initialMatch.
344 static void DoInitialMatch(const SCEV *S, Loop *L,
345                            SmallVectorImpl<const SCEV *> &Good,
346                            SmallVectorImpl<const SCEV *> &Bad,
347                            ScalarEvolution &SE) {
348   // Collect expressions which properly dominate the loop header.
349   if (SE.properlyDominates(S, L->getHeader())) {
350     Good.push_back(S);
351     return;
352   }
353 
354   // Look at add operands.
355   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
356     for (const SCEV *S : Add->operands())
357       DoInitialMatch(S, L, Good, Bad, SE);
358     return;
359   }
360 
361   // Look at addrec operands.
362   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
363     if (!AR->getStart()->isZero() && AR->isAffine()) {
364       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
365       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
366                                       AR->getStepRecurrence(SE),
367                                       // FIXME: AR->getNoWrapFlags()
368                                       AR->getLoop(), SCEV::FlagAnyWrap),
369                      L, Good, Bad, SE);
370       return;
371     }
372 
373   // Handle a multiplication by -1 (negation) if it didn't fold.
374   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
375     if (Mul->getOperand(0)->isAllOnesValue()) {
376       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
377       const SCEV *NewMul = SE.getMulExpr(Ops);
378 
379       SmallVector<const SCEV *, 4> MyGood;
380       SmallVector<const SCEV *, 4> MyBad;
381       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
382       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
383         SE.getEffectiveSCEVType(NewMul->getType())));
384       for (const SCEV *S : MyGood)
385         Good.push_back(SE.getMulExpr(NegOne, S));
386       for (const SCEV *S : MyBad)
387         Bad.push_back(SE.getMulExpr(NegOne, S));
388       return;
389     }
390 
391   // Ok, we can't do anything interesting. Just stuff the whole thing into a
392   // register and hope for the best.
393   Bad.push_back(S);
394 }
395 
396 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
397 /// all loop-invariant and loop-computable values in a single base register.
398 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
399   SmallVector<const SCEV *, 4> Good;
400   SmallVector<const SCEV *, 4> Bad;
401   DoInitialMatch(S, L, Good, Bad, SE);
402   if (!Good.empty()) {
403     const SCEV *Sum = SE.getAddExpr(Good);
404     if (!Sum->isZero())
405       BaseRegs.push_back(Sum);
406     HasBaseReg = true;
407   }
408   if (!Bad.empty()) {
409     const SCEV *Sum = SE.getAddExpr(Bad);
410     if (!Sum->isZero())
411       BaseRegs.push_back(Sum);
412     HasBaseReg = true;
413   }
414   canonicalize();
415 }
416 
417 /// \brief Check whether or not this formula statisfies the canonical
418 /// representation.
419 /// \see Formula::BaseRegs.
420 bool Formula::isCanonical() const {
421   if (ScaledReg)
422     return Scale != 1 || !BaseRegs.empty();
423   return BaseRegs.size() <= 1;
424 }
425 
426 /// \brief Helper method to morph a formula into its canonical representation.
427 /// \see Formula::BaseRegs.
428 /// Every formula having more than one base register, must use the ScaledReg
429 /// field. Otherwise, we would have to do special cases everywhere in LSR
430 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
431 /// On the other hand, 1*reg should be canonicalized into reg.
432 void Formula::canonicalize() {
433   if (isCanonical())
434     return;
435   // So far we did not need this case. This is easy to implement but it is
436   // useless to maintain dead code. Beside it could hurt compile time.
437   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
438   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
439   ScaledReg = BaseRegs.back();
440   BaseRegs.pop_back();
441   Scale = 1;
442   size_t BaseRegsSize = BaseRegs.size();
443   size_t Try = 0;
444   // If ScaledReg is an invariant, try to find a variant expression.
445   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
446     std::swap(ScaledReg, BaseRegs[Try++]);
447 }
448 
449 /// \brief Get rid of the scale in the formula.
450 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
451 /// \return true if it was possible to get rid of the scale, false otherwise.
452 /// \note After this operation the formula may not be in the canonical form.
453 bool Formula::unscale() {
454   if (Scale != 1)
455     return false;
456   Scale = 0;
457   BaseRegs.push_back(ScaledReg);
458   ScaledReg = nullptr;
459   return true;
460 }
461 
462 /// Return the total number of register operands used by this formula. This does
463 /// not include register uses implied by non-constant addrec strides.
464 size_t Formula::getNumRegs() const {
465   return !!ScaledReg + BaseRegs.size();
466 }
467 
468 /// Return the type of this formula, if it has one, or null otherwise. This type
469 /// is meaningless except for the bit size.
470 Type *Formula::getType() const {
471   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
472          ScaledReg ? ScaledReg->getType() :
473          BaseGV ? BaseGV->getType() :
474          nullptr;
475 }
476 
477 /// Delete the given base reg from the BaseRegs list.
478 void Formula::deleteBaseReg(const SCEV *&S) {
479   if (&S != &BaseRegs.back())
480     std::swap(S, BaseRegs.back());
481   BaseRegs.pop_back();
482 }
483 
484 /// Test if this formula references the given register.
485 bool Formula::referencesReg(const SCEV *S) const {
486   return S == ScaledReg || is_contained(BaseRegs, S);
487 }
488 
489 /// Test whether this formula uses registers which are used by uses other than
490 /// the use with the given index.
491 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
492                                          const RegUseTracker &RegUses) const {
493   if (ScaledReg)
494     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
495       return true;
496   for (const SCEV *BaseReg : BaseRegs)
497     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
498       return true;
499   return false;
500 }
501 
502 void Formula::print(raw_ostream &OS) const {
503   bool First = true;
504   if (BaseGV) {
505     if (!First) OS << " + "; else First = false;
506     BaseGV->printAsOperand(OS, /*PrintType=*/false);
507   }
508   if (BaseOffset != 0) {
509     if (!First) OS << " + "; else First = false;
510     OS << BaseOffset;
511   }
512   for (const SCEV *BaseReg : BaseRegs) {
513     if (!First) OS << " + "; else First = false;
514     OS << "reg(" << *BaseReg << ')';
515   }
516   if (HasBaseReg && BaseRegs.empty()) {
517     if (!First) OS << " + "; else First = false;
518     OS << "**error: HasBaseReg**";
519   } else if (!HasBaseReg && !BaseRegs.empty()) {
520     if (!First) OS << " + "; else First = false;
521     OS << "**error: !HasBaseReg**";
522   }
523   if (Scale != 0) {
524     if (!First) OS << " + "; else First = false;
525     OS << Scale << "*reg(";
526     if (ScaledReg)
527       OS << *ScaledReg;
528     else
529       OS << "<unknown>";
530     OS << ')';
531   }
532   if (UnfoldedOffset != 0) {
533     if (!First) OS << " + ";
534     OS << "imm(" << UnfoldedOffset << ')';
535   }
536 }
537 
538 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
539 LLVM_DUMP_METHOD void Formula::dump() const {
540   print(errs()); errs() << '\n';
541 }
542 #endif
543 
544 /// Return true if the given addrec can be sign-extended without changing its
545 /// value.
546 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
547   Type *WideTy =
548     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
549   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
550 }
551 
552 /// Return true if the given add can be sign-extended without changing its
553 /// value.
554 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
555   Type *WideTy =
556     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
557   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
558 }
559 
560 /// Return true if the given mul can be sign-extended without changing its
561 /// value.
562 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
563   Type *WideTy =
564     IntegerType::get(SE.getContext(),
565                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
566   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
567 }
568 
569 /// Return an expression for LHS /s RHS, if it can be determined and if the
570 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
571 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
572 /// the multiplication may overflow, which is useful when the result will be
573 /// used in a context where the most significant bits are ignored.
574 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
575                                 ScalarEvolution &SE,
576                                 bool IgnoreSignificantBits = false) {
577   // Handle the trivial case, which works for any SCEV type.
578   if (LHS == RHS)
579     return SE.getConstant(LHS->getType(), 1);
580 
581   // Handle a few RHS special cases.
582   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
583   if (RC) {
584     const APInt &RA = RC->getAPInt();
585     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
586     // some folding.
587     if (RA.isAllOnesValue())
588       return SE.getMulExpr(LHS, RC);
589     // Handle x /s 1 as x.
590     if (RA == 1)
591       return LHS;
592   }
593 
594   // Check for a division of a constant by a constant.
595   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
596     if (!RC)
597       return nullptr;
598     const APInt &LA = C->getAPInt();
599     const APInt &RA = RC->getAPInt();
600     if (LA.srem(RA) != 0)
601       return nullptr;
602     return SE.getConstant(LA.sdiv(RA));
603   }
604 
605   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
606   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
607     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
608       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
609                                       IgnoreSignificantBits);
610       if (!Step) return nullptr;
611       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
612                                        IgnoreSignificantBits);
613       if (!Start) return nullptr;
614       // FlagNW is independent of the start value, step direction, and is
615       // preserved with smaller magnitude steps.
616       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
617       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
618     }
619     return nullptr;
620   }
621 
622   // Distribute the sdiv over add operands, if the add doesn't overflow.
623   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
624     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
625       SmallVector<const SCEV *, 8> Ops;
626       for (const SCEV *S : Add->operands()) {
627         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
628         if (!Op) return nullptr;
629         Ops.push_back(Op);
630       }
631       return SE.getAddExpr(Ops);
632     }
633     return nullptr;
634   }
635 
636   // Check for a multiply operand that we can pull RHS out of.
637   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
638     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
639       SmallVector<const SCEV *, 4> Ops;
640       bool Found = false;
641       for (const SCEV *S : Mul->operands()) {
642         if (!Found)
643           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
644                                            IgnoreSignificantBits)) {
645             S = Q;
646             Found = true;
647           }
648         Ops.push_back(S);
649       }
650       return Found ? SE.getMulExpr(Ops) : nullptr;
651     }
652     return nullptr;
653   }
654 
655   // Otherwise we don't know.
656   return nullptr;
657 }
658 
659 /// If S involves the addition of a constant integer value, return that integer
660 /// value, and mutate S to point to a new SCEV with that value excluded.
661 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
662   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
663     if (C->getAPInt().getMinSignedBits() <= 64) {
664       S = SE.getConstant(C->getType(), 0);
665       return C->getValue()->getSExtValue();
666     }
667   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
668     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
669     int64_t Result = ExtractImmediate(NewOps.front(), SE);
670     if (Result != 0)
671       S = SE.getAddExpr(NewOps);
672     return Result;
673   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
674     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
675     int64_t Result = ExtractImmediate(NewOps.front(), SE);
676     if (Result != 0)
677       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
678                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
679                            SCEV::FlagAnyWrap);
680     return Result;
681   }
682   return 0;
683 }
684 
685 /// If S involves the addition of a GlobalValue address, return that symbol, and
686 /// mutate S to point to a new SCEV with that value excluded.
687 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
688   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
689     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
690       S = SE.getConstant(GV->getType(), 0);
691       return GV;
692     }
693   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
694     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
695     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
696     if (Result)
697       S = SE.getAddExpr(NewOps);
698     return Result;
699   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
700     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
701     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
702     if (Result)
703       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
704                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
705                            SCEV::FlagAnyWrap);
706     return Result;
707   }
708   return nullptr;
709 }
710 
711 /// Returns true if the specified instruction is using the specified value as an
712 /// address.
713 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
714   bool isAddress = isa<LoadInst>(Inst);
715   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
716     if (SI->getPointerOperand() == OperandVal)
717       isAddress = true;
718   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
719     // Addressing modes can also be folded into prefetches and a variety
720     // of intrinsics.
721     switch (II->getIntrinsicID()) {
722       default: break;
723       case Intrinsic::prefetch:
724         if (II->getArgOperand(0) == OperandVal)
725           isAddress = true;
726         break;
727     }
728   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
729     if (RMW->getPointerOperand() == OperandVal)
730       isAddress = true;
731   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
732     if (CmpX->getPointerOperand() == OperandVal)
733       isAddress = true;
734   }
735   return isAddress;
736 }
737 
738 /// Return the type of the memory being accessed.
739 static MemAccessTy getAccessType(const Instruction *Inst) {
740   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
741   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
742     AccessTy.MemTy = SI->getOperand(0)->getType();
743     AccessTy.AddrSpace = SI->getPointerAddressSpace();
744   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
745     AccessTy.AddrSpace = LI->getPointerAddressSpace();
746   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
747     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
748   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
749     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
750   }
751 
752   // All pointers have the same requirements, so canonicalize them to an
753   // arbitrary pointer type to minimize variation.
754   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
755     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
756                                       PTy->getAddressSpace());
757 
758   return AccessTy;
759 }
760 
761 /// Return true if this AddRec is already a phi in its loop.
762 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
763   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
764        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
765     if (SE.isSCEVable(PN->getType()) &&
766         (SE.getEffectiveSCEVType(PN->getType()) ==
767          SE.getEffectiveSCEVType(AR->getType())) &&
768         SE.getSCEV(PN) == AR)
769       return true;
770   }
771   return false;
772 }
773 
774 /// Check if expanding this expression is likely to incur significant cost. This
775 /// is tricky because SCEV doesn't track which expressions are actually computed
776 /// by the current IR.
777 ///
778 /// We currently allow expansion of IV increments that involve adds,
779 /// multiplication by constants, and AddRecs from existing phis.
780 ///
781 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
782 /// obvious multiple of the UDivExpr.
783 static bool isHighCostExpansion(const SCEV *S,
784                                 SmallPtrSetImpl<const SCEV*> &Processed,
785                                 ScalarEvolution &SE) {
786   // Zero/One operand expressions
787   switch (S->getSCEVType()) {
788   case scUnknown:
789   case scConstant:
790     return false;
791   case scTruncate:
792     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
793                                Processed, SE);
794   case scZeroExtend:
795     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
796                                Processed, SE);
797   case scSignExtend:
798     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
799                                Processed, SE);
800   }
801 
802   if (!Processed.insert(S).second)
803     return false;
804 
805   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
806     for (const SCEV *S : Add->operands()) {
807       if (isHighCostExpansion(S, Processed, SE))
808         return true;
809     }
810     return false;
811   }
812 
813   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
814     if (Mul->getNumOperands() == 2) {
815       // Multiplication by a constant is ok
816       if (isa<SCEVConstant>(Mul->getOperand(0)))
817         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
818 
819       // If we have the value of one operand, check if an existing
820       // multiplication already generates this expression.
821       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
822         Value *UVal = U->getValue();
823         for (User *UR : UVal->users()) {
824           // If U is a constant, it may be used by a ConstantExpr.
825           Instruction *UI = dyn_cast<Instruction>(UR);
826           if (UI && UI->getOpcode() == Instruction::Mul &&
827               SE.isSCEVable(UI->getType())) {
828             return SE.getSCEV(UI) == Mul;
829           }
830         }
831       }
832     }
833   }
834 
835   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
836     if (isExistingPhi(AR, SE))
837       return false;
838   }
839 
840   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
841   return true;
842 }
843 
844 /// If any of the instructions is the specified set are trivially dead, delete
845 /// them and see if this makes any of their operands subsequently dead.
846 static bool
847 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
848   bool Changed = false;
849 
850   while (!DeadInsts.empty()) {
851     Value *V = DeadInsts.pop_back_val();
852     Instruction *I = dyn_cast_or_null<Instruction>(V);
853 
854     if (!I || !isInstructionTriviallyDead(I))
855       continue;
856 
857     for (Use &O : I->operands())
858       if (Instruction *U = dyn_cast<Instruction>(O)) {
859         O = nullptr;
860         if (U->use_empty())
861           DeadInsts.emplace_back(U);
862       }
863 
864     I->eraseFromParent();
865     Changed = true;
866   }
867 
868   return Changed;
869 }
870 
871 namespace {
872 
873 class LSRUse;
874 
875 } // end anonymous namespace
876 
877 /// \brief Check if the addressing mode defined by \p F is completely
878 /// folded in \p LU at isel time.
879 /// This includes address-mode folding and special icmp tricks.
880 /// This function returns true if \p LU can accommodate what \p F
881 /// defines and up to 1 base + 1 scaled + offset.
882 /// In other words, if \p F has several base registers, this function may
883 /// still return true. Therefore, users still need to account for
884 /// additional base registers and/or unfolded offsets to derive an
885 /// accurate cost model.
886 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
887                                  const LSRUse &LU, const Formula &F);
888 // Get the cost of the scaling factor used in F for LU.
889 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
890                                      const LSRUse &LU, const Formula &F);
891 
892 namespace {
893 
894 /// This class is used to measure and compare candidate formulae.
895 class Cost {
896   /// TODO: Some of these could be merged. Also, a lexical ordering
897   /// isn't always optimal.
898   unsigned NumRegs;
899   unsigned AddRecCost;
900   unsigned NumIVMuls;
901   unsigned NumBaseAdds;
902   unsigned ImmCost;
903   unsigned SetupCost;
904   unsigned ScaleCost;
905 
906 public:
907   Cost()
908     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
909       SetupCost(0), ScaleCost(0) {}
910 
911   bool operator<(const Cost &Other) const;
912 
913   void Lose();
914 
915 #ifndef NDEBUG
916   // Once any of the metrics loses, they must all remain losers.
917   bool isValid() {
918     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
919              | ImmCost | SetupCost | ScaleCost) != ~0u)
920       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
921            & ImmCost & SetupCost & ScaleCost) == ~0u);
922   }
923 #endif
924 
925   bool isLoser() {
926     assert(isValid() && "invalid cost");
927     return NumRegs == ~0u;
928   }
929 
930   void RateFormula(const TargetTransformInfo &TTI,
931                    const Formula &F,
932                    SmallPtrSetImpl<const SCEV *> &Regs,
933                    const DenseSet<const SCEV *> &VisitedRegs,
934                    const Loop *L,
935                    ScalarEvolution &SE, DominatorTree &DT,
936                    const LSRUse &LU,
937                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
938 
939   void print(raw_ostream &OS) const;
940   void dump() const;
941 
942 private:
943   void RateRegister(const SCEV *Reg,
944                     SmallPtrSetImpl<const SCEV *> &Regs,
945                     const Loop *L,
946                     ScalarEvolution &SE, DominatorTree &DT);
947   void RatePrimaryRegister(const SCEV *Reg,
948                            SmallPtrSetImpl<const SCEV *> &Regs,
949                            const Loop *L,
950                            ScalarEvolution &SE, DominatorTree &DT,
951                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
952 };
953 
954 /// An operand value in an instruction which is to be replaced with some
955 /// equivalent, possibly strength-reduced, replacement.
956 struct LSRFixup {
957   /// The instruction which will be updated.
958   Instruction *UserInst;
959 
960   /// The operand of the instruction which will be replaced. The operand may be
961   /// used more than once; every instance will be replaced.
962   Value *OperandValToReplace;
963 
964   /// If this user is to use the post-incremented value of an induction
965   /// variable, this variable is non-null and holds the loop associated with the
966   /// induction variable.
967   PostIncLoopSet PostIncLoops;
968 
969   /// A constant offset to be added to the LSRUse expression.  This allows
970   /// multiple fixups to share the same LSRUse with different offsets, for
971   /// example in an unrolled loop.
972   int64_t Offset;
973 
974   bool isUseFullyOutsideLoop(const Loop *L) const;
975 
976   LSRFixup();
977 
978   void print(raw_ostream &OS) const;
979   void dump() const;
980 };
981 
982 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
983 /// SmallVectors of const SCEV*.
984 struct UniquifierDenseMapInfo {
985   static SmallVector<const SCEV *, 4> getEmptyKey() {
986     SmallVector<const SCEV *, 4>  V;
987     V.push_back(reinterpret_cast<const SCEV *>(-1));
988     return V;
989   }
990 
991   static SmallVector<const SCEV *, 4> getTombstoneKey() {
992     SmallVector<const SCEV *, 4> V;
993     V.push_back(reinterpret_cast<const SCEV *>(-2));
994     return V;
995   }
996 
997   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
998     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
999   }
1000 
1001   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1002                       const SmallVector<const SCEV *, 4> &RHS) {
1003     return LHS == RHS;
1004   }
1005 };
1006 
1007 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1008 /// as uses invented by LSR itself. It includes information about what kinds of
1009 /// things can be folded into the user, information about the user itself, and
1010 /// information about how the use may be satisfied.  TODO: Represent multiple
1011 /// users of the same expression in common?
1012 class LSRUse {
1013   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1014 
1015 public:
1016   /// An enum for a kind of use, indicating what types of scaled and immediate
1017   /// operands it might support.
1018   enum KindType {
1019     Basic,   ///< A normal use, with no folding.
1020     Special, ///< A special case of basic, allowing -1 scales.
1021     Address, ///< An address use; folding according to TargetLowering
1022     ICmpZero ///< An equality icmp with both operands folded into one.
1023     // TODO: Add a generic icmp too?
1024   };
1025 
1026   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1027 
1028   KindType Kind;
1029   MemAccessTy AccessTy;
1030 
1031   /// The list of operands which are to be replaced.
1032   SmallVector<LSRFixup, 8> Fixups;
1033 
1034   /// Keep track of the min and max offsets of the fixups.
1035   int64_t MinOffset;
1036   int64_t MaxOffset;
1037 
1038   /// This records whether all of the fixups using this LSRUse are outside of
1039   /// the loop, in which case some special-case heuristics may be used.
1040   bool AllFixupsOutsideLoop;
1041 
1042   /// RigidFormula is set to true to guarantee that this use will be associated
1043   /// with a single formula--the one that initially matched. Some SCEV
1044   /// expressions cannot be expanded. This allows LSR to consider the registers
1045   /// used by those expressions without the need to expand them later after
1046   /// changing the formula.
1047   bool RigidFormula;
1048 
1049   /// This records the widest use type for any fixup using this
1050   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1051   /// fixup widths to be equivalent, because the narrower one may be relying on
1052   /// the implicit truncation to truncate away bogus bits.
1053   Type *WidestFixupType;
1054 
1055   /// A list of ways to build a value that can satisfy this user.  After the
1056   /// list is populated, one of these is selected heuristically and used to
1057   /// formulate a replacement for OperandValToReplace in UserInst.
1058   SmallVector<Formula, 12> Formulae;
1059 
1060   /// The set of register candidates used by all formulae in this LSRUse.
1061   SmallPtrSet<const SCEV *, 4> Regs;
1062 
1063   LSRUse(KindType K, MemAccessTy AT)
1064       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1065         AllFixupsOutsideLoop(true), RigidFormula(false),
1066         WidestFixupType(nullptr) {}
1067 
1068   LSRFixup &getNewFixup() {
1069     Fixups.push_back(LSRFixup());
1070     return Fixups.back();
1071   }
1072 
1073   void pushFixup(LSRFixup &f) {
1074     Fixups.push_back(f);
1075     if (f.Offset > MaxOffset)
1076       MaxOffset = f.Offset;
1077     if (f.Offset < MinOffset)
1078       MinOffset = f.Offset;
1079   }
1080 
1081   bool HasFormulaWithSameRegs(const Formula &F) const;
1082   bool InsertFormula(const Formula &F);
1083   void DeleteFormula(Formula &F);
1084   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1085 
1086   void print(raw_ostream &OS) const;
1087   void dump() const;
1088 };
1089 
1090 } // end anonymous namespace
1091 
1092 /// Tally up interesting quantities from the given register.
1093 void Cost::RateRegister(const SCEV *Reg,
1094                         SmallPtrSetImpl<const SCEV *> &Regs,
1095                         const Loop *L,
1096                         ScalarEvolution &SE, DominatorTree &DT) {
1097   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1098     // If this is an addrec for another loop, don't second-guess its addrec phi
1099     // nodes. LSR isn't currently smart enough to reason about more than one
1100     // loop at a time. LSR has already run on inner loops, will not run on outer
1101     // loops, and cannot be expected to change sibling loops.
1102     if (AR->getLoop() != L) {
1103       // If the AddRec exists, consider it's register free and leave it alone.
1104       if (isExistingPhi(AR, SE))
1105         return;
1106 
1107       // Otherwise, do not consider this formula at all.
1108       Lose();
1109       return;
1110     }
1111     AddRecCost += 1; /// TODO: This should be a function of the stride.
1112 
1113     // Add the step value register, if it needs one.
1114     // TODO: The non-affine case isn't precisely modeled here.
1115     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1116       if (!Regs.count(AR->getOperand(1))) {
1117         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1118         if (isLoser())
1119           return;
1120       }
1121     }
1122   }
1123   ++NumRegs;
1124 
1125   // Rough heuristic; favor registers which don't require extra setup
1126   // instructions in the preheader.
1127   if (!isa<SCEVUnknown>(Reg) &&
1128       !isa<SCEVConstant>(Reg) &&
1129       !(isa<SCEVAddRecExpr>(Reg) &&
1130         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1131          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1132     ++SetupCost;
1133 
1134   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1135                SE.hasComputableLoopEvolution(Reg, L);
1136 }
1137 
1138 /// Record this register in the set. If we haven't seen it before, rate
1139 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1140 /// one of those regs an instant loser.
1141 void Cost::RatePrimaryRegister(const SCEV *Reg,
1142                                SmallPtrSetImpl<const SCEV *> &Regs,
1143                                const Loop *L,
1144                                ScalarEvolution &SE, DominatorTree &DT,
1145                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1146   if (LoserRegs && LoserRegs->count(Reg)) {
1147     Lose();
1148     return;
1149   }
1150   if (Regs.insert(Reg).second) {
1151     RateRegister(Reg, Regs, L, SE, DT);
1152     if (LoserRegs && isLoser())
1153       LoserRegs->insert(Reg);
1154   }
1155 }
1156 
1157 void Cost::RateFormula(const TargetTransformInfo &TTI,
1158                        const Formula &F,
1159                        SmallPtrSetImpl<const SCEV *> &Regs,
1160                        const DenseSet<const SCEV *> &VisitedRegs,
1161                        const Loop *L,
1162                        ScalarEvolution &SE, DominatorTree &DT,
1163                        const LSRUse &LU,
1164                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1165   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
1166   // Tally up the registers.
1167   if (const SCEV *ScaledReg = F.ScaledReg) {
1168     if (VisitedRegs.count(ScaledReg)) {
1169       Lose();
1170       return;
1171     }
1172     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1173     if (isLoser())
1174       return;
1175   }
1176   for (const SCEV *BaseReg : F.BaseRegs) {
1177     if (VisitedRegs.count(BaseReg)) {
1178       Lose();
1179       return;
1180     }
1181     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1182     if (isLoser())
1183       return;
1184   }
1185 
1186   // Determine how many (unfolded) adds we'll need inside the loop.
1187   size_t NumBaseParts = F.getNumRegs();
1188   if (NumBaseParts > 1)
1189     // Do not count the base and a possible second register if the target
1190     // allows to fold 2 registers.
1191     NumBaseAdds +=
1192         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1193   NumBaseAdds += (F.UnfoldedOffset != 0);
1194 
1195   // Accumulate non-free scaling amounts.
1196   ScaleCost += getScalingFactorCost(TTI, LU, F);
1197 
1198   // Tally up the non-zero immediates.
1199   for (const LSRFixup &Fixup : LU.Fixups) {
1200     int64_t O = Fixup.Offset;
1201     int64_t Offset = (uint64_t)O + F.BaseOffset;
1202     if (F.BaseGV)
1203       ImmCost += 64; // Handle symbolic values conservatively.
1204                      // TODO: This should probably be the pointer size.
1205     else if (Offset != 0)
1206       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1207 
1208     // Check with target if this offset with this instruction is
1209     // specifically not supported.
1210     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1211         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1212       NumBaseAdds++;
1213   }
1214   assert(isValid() && "invalid cost");
1215 }
1216 
1217 /// Set this cost to a losing value.
1218 void Cost::Lose() {
1219   NumRegs = ~0u;
1220   AddRecCost = ~0u;
1221   NumIVMuls = ~0u;
1222   NumBaseAdds = ~0u;
1223   ImmCost = ~0u;
1224   SetupCost = ~0u;
1225   ScaleCost = ~0u;
1226 }
1227 
1228 /// Choose the lower cost.
1229 bool Cost::operator<(const Cost &Other) const {
1230   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1231                   ImmCost, SetupCost) <
1232          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1233                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1234                   Other.SetupCost);
1235 }
1236 
1237 void Cost::print(raw_ostream &OS) const {
1238   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1239   if (AddRecCost != 0)
1240     OS << ", with addrec cost " << AddRecCost;
1241   if (NumIVMuls != 0)
1242     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1243   if (NumBaseAdds != 0)
1244     OS << ", plus " << NumBaseAdds << " base add"
1245        << (NumBaseAdds == 1 ? "" : "s");
1246   if (ScaleCost != 0)
1247     OS << ", plus " << ScaleCost << " scale cost";
1248   if (ImmCost != 0)
1249     OS << ", plus " << ImmCost << " imm cost";
1250   if (SetupCost != 0)
1251     OS << ", plus " << SetupCost << " setup cost";
1252 }
1253 
1254 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1255 LLVM_DUMP_METHOD void Cost::dump() const {
1256   print(errs()); errs() << '\n';
1257 }
1258 #endif
1259 
1260 LSRFixup::LSRFixup()
1261   : UserInst(nullptr), OperandValToReplace(nullptr),
1262     Offset(0) {}
1263 
1264 /// Test whether this fixup always uses its value outside of the given loop.
1265 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1266   // PHI nodes use their value in their incoming blocks.
1267   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1268     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1269       if (PN->getIncomingValue(i) == OperandValToReplace &&
1270           L->contains(PN->getIncomingBlock(i)))
1271         return false;
1272     return true;
1273   }
1274 
1275   return !L->contains(UserInst);
1276 }
1277 
1278 void LSRFixup::print(raw_ostream &OS) const {
1279   OS << "UserInst=";
1280   // Store is common and interesting enough to be worth special-casing.
1281   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1282     OS << "store ";
1283     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1284   } else if (UserInst->getType()->isVoidTy())
1285     OS << UserInst->getOpcodeName();
1286   else
1287     UserInst->printAsOperand(OS, /*PrintType=*/false);
1288 
1289   OS << ", OperandValToReplace=";
1290   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1291 
1292   for (const Loop *PIL : PostIncLoops) {
1293     OS << ", PostIncLoop=";
1294     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1295   }
1296 
1297   if (Offset != 0)
1298     OS << ", Offset=" << Offset;
1299 }
1300 
1301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1302 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1303   print(errs()); errs() << '\n';
1304 }
1305 #endif
1306 
1307 /// Test whether this use as a formula which has the same registers as the given
1308 /// formula.
1309 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1310   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1311   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1312   // Unstable sort by host order ok, because this is only used for uniquifying.
1313   std::sort(Key.begin(), Key.end());
1314   return Uniquifier.count(Key);
1315 }
1316 
1317 /// If the given formula has not yet been inserted, add it to the list, and
1318 /// return true. Return false otherwise.  The formula must be in canonical form.
1319 bool LSRUse::InsertFormula(const Formula &F) {
1320   assert(F.isCanonical() && "Invalid canonical representation");
1321 
1322   if (!Formulae.empty() && RigidFormula)
1323     return false;
1324 
1325   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1326   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1327   // Unstable sort by host order ok, because this is only used for uniquifying.
1328   std::sort(Key.begin(), Key.end());
1329 
1330   if (!Uniquifier.insert(Key).second)
1331     return false;
1332 
1333   // Using a register to hold the value of 0 is not profitable.
1334   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1335          "Zero allocated in a scaled register!");
1336 #ifndef NDEBUG
1337   for (const SCEV *BaseReg : F.BaseRegs)
1338     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1339 #endif
1340 
1341   // Add the formula to the list.
1342   Formulae.push_back(F);
1343 
1344   // Record registers now being used by this use.
1345   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1346   if (F.ScaledReg)
1347     Regs.insert(F.ScaledReg);
1348 
1349   return true;
1350 }
1351 
1352 /// Remove the given formula from this use's list.
1353 void LSRUse::DeleteFormula(Formula &F) {
1354   if (&F != &Formulae.back())
1355     std::swap(F, Formulae.back());
1356   Formulae.pop_back();
1357 }
1358 
1359 /// Recompute the Regs field, and update RegUses.
1360 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1361   // Now that we've filtered out some formulae, recompute the Regs set.
1362   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1363   Regs.clear();
1364   for (const Formula &F : Formulae) {
1365     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1366     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1367   }
1368 
1369   // Update the RegTracker.
1370   for (const SCEV *S : OldRegs)
1371     if (!Regs.count(S))
1372       RegUses.dropRegister(S, LUIdx);
1373 }
1374 
1375 void LSRUse::print(raw_ostream &OS) const {
1376   OS << "LSR Use: Kind=";
1377   switch (Kind) {
1378   case Basic:    OS << "Basic"; break;
1379   case Special:  OS << "Special"; break;
1380   case ICmpZero: OS << "ICmpZero"; break;
1381   case Address:
1382     OS << "Address of ";
1383     if (AccessTy.MemTy->isPointerTy())
1384       OS << "pointer"; // the full pointer type could be really verbose
1385     else {
1386       OS << *AccessTy.MemTy;
1387     }
1388 
1389     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1390   }
1391 
1392   OS << ", Offsets={";
1393   bool NeedComma = false;
1394   for (const LSRFixup &Fixup : Fixups) {
1395     if (NeedComma) OS << ',';
1396     OS << Fixup.Offset;
1397     NeedComma = true;
1398   }
1399   OS << '}';
1400 
1401   if (AllFixupsOutsideLoop)
1402     OS << ", all-fixups-outside-loop";
1403 
1404   if (WidestFixupType)
1405     OS << ", widest fixup type: " << *WidestFixupType;
1406 }
1407 
1408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1409 LLVM_DUMP_METHOD void LSRUse::dump() const {
1410   print(errs()); errs() << '\n';
1411 }
1412 #endif
1413 
1414 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1415                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1416                                  GlobalValue *BaseGV, int64_t BaseOffset,
1417                                  bool HasBaseReg, int64_t Scale) {
1418   switch (Kind) {
1419   case LSRUse::Address:
1420     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1421                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1422 
1423   case LSRUse::ICmpZero:
1424     // There's not even a target hook for querying whether it would be legal to
1425     // fold a GV into an ICmp.
1426     if (BaseGV)
1427       return false;
1428 
1429     // ICmp only has two operands; don't allow more than two non-trivial parts.
1430     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1431       return false;
1432 
1433     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1434     // putting the scaled register in the other operand of the icmp.
1435     if (Scale != 0 && Scale != -1)
1436       return false;
1437 
1438     // If we have low-level target information, ask the target if it can fold an
1439     // integer immediate on an icmp.
1440     if (BaseOffset != 0) {
1441       // We have one of:
1442       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1443       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1444       // Offs is the ICmp immediate.
1445       if (Scale == 0)
1446         // The cast does the right thing with INT64_MIN.
1447         BaseOffset = -(uint64_t)BaseOffset;
1448       return TTI.isLegalICmpImmediate(BaseOffset);
1449     }
1450 
1451     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1452     return true;
1453 
1454   case LSRUse::Basic:
1455     // Only handle single-register values.
1456     return !BaseGV && Scale == 0 && BaseOffset == 0;
1457 
1458   case LSRUse::Special:
1459     // Special case Basic to handle -1 scales.
1460     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1461   }
1462 
1463   llvm_unreachable("Invalid LSRUse Kind!");
1464 }
1465 
1466 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1467                                  int64_t MinOffset, int64_t MaxOffset,
1468                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1469                                  GlobalValue *BaseGV, int64_t BaseOffset,
1470                                  bool HasBaseReg, int64_t Scale) {
1471   // Check for overflow.
1472   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1473       (MinOffset > 0))
1474     return false;
1475   MinOffset = (uint64_t)BaseOffset + MinOffset;
1476   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1477       (MaxOffset > 0))
1478     return false;
1479   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1480 
1481   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1482                               HasBaseReg, Scale) &&
1483          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1484                               HasBaseReg, Scale);
1485 }
1486 
1487 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1488                                  int64_t MinOffset, int64_t MaxOffset,
1489                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1490                                  const Formula &F) {
1491   // For the purpose of isAMCompletelyFolded either having a canonical formula
1492   // or a scale not equal to zero is correct.
1493   // Problems may arise from non canonical formulae having a scale == 0.
1494   // Strictly speaking it would best to just rely on canonical formulae.
1495   // However, when we generate the scaled formulae, we first check that the
1496   // scaling factor is profitable before computing the actual ScaledReg for
1497   // compile time sake.
1498   assert((F.isCanonical() || F.Scale != 0));
1499   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1500                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1501 }
1502 
1503 /// Test whether we know how to expand the current formula.
1504 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1505                        int64_t MaxOffset, LSRUse::KindType Kind,
1506                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1507                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1508   // We know how to expand completely foldable formulae.
1509   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1510                               BaseOffset, HasBaseReg, Scale) ||
1511          // Or formulae that use a base register produced by a sum of base
1512          // registers.
1513          (Scale == 1 &&
1514           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1515                                BaseGV, BaseOffset, true, 0));
1516 }
1517 
1518 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1519                        int64_t MaxOffset, LSRUse::KindType Kind,
1520                        MemAccessTy AccessTy, const Formula &F) {
1521   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1522                     F.BaseOffset, F.HasBaseReg, F.Scale);
1523 }
1524 
1525 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1526                                  const LSRUse &LU, const Formula &F) {
1527   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1528                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1529                               F.Scale);
1530 }
1531 
1532 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1533                                      const LSRUse &LU, const Formula &F) {
1534   if (!F.Scale)
1535     return 0;
1536 
1537   // If the use is not completely folded in that instruction, we will have to
1538   // pay an extra cost only for scale != 1.
1539   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1540                             LU.AccessTy, F))
1541     return F.Scale != 1;
1542 
1543   switch (LU.Kind) {
1544   case LSRUse::Address: {
1545     // Check the scaling factor cost with both the min and max offsets.
1546     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1547         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1548         F.Scale, LU.AccessTy.AddrSpace);
1549     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1550         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1551         F.Scale, LU.AccessTy.AddrSpace);
1552 
1553     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1554            "Legal addressing mode has an illegal cost!");
1555     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1556   }
1557   case LSRUse::ICmpZero:
1558   case LSRUse::Basic:
1559   case LSRUse::Special:
1560     // The use is completely folded, i.e., everything is folded into the
1561     // instruction.
1562     return 0;
1563   }
1564 
1565   llvm_unreachable("Invalid LSRUse Kind!");
1566 }
1567 
1568 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1569                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1570                              GlobalValue *BaseGV, int64_t BaseOffset,
1571                              bool HasBaseReg) {
1572   // Fast-path: zero is always foldable.
1573   if (BaseOffset == 0 && !BaseGV) return true;
1574 
1575   // Conservatively, create an address with an immediate and a
1576   // base and a scale.
1577   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1578 
1579   // Canonicalize a scale of 1 to a base register if the formula doesn't
1580   // already have a base register.
1581   if (!HasBaseReg && Scale == 1) {
1582     Scale = 0;
1583     HasBaseReg = true;
1584   }
1585 
1586   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1587                               HasBaseReg, Scale);
1588 }
1589 
1590 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1591                              ScalarEvolution &SE, int64_t MinOffset,
1592                              int64_t MaxOffset, LSRUse::KindType Kind,
1593                              MemAccessTy AccessTy, const SCEV *S,
1594                              bool HasBaseReg) {
1595   // Fast-path: zero is always foldable.
1596   if (S->isZero()) return true;
1597 
1598   // Conservatively, create an address with an immediate and a
1599   // base and a scale.
1600   int64_t BaseOffset = ExtractImmediate(S, SE);
1601   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1602 
1603   // If there's anything else involved, it's not foldable.
1604   if (!S->isZero()) return false;
1605 
1606   // Fast-path: zero is always foldable.
1607   if (BaseOffset == 0 && !BaseGV) return true;
1608 
1609   // Conservatively, create an address with an immediate and a
1610   // base and a scale.
1611   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1612 
1613   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1614                               BaseOffset, HasBaseReg, Scale);
1615 }
1616 
1617 namespace {
1618 
1619 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1620 /// an expression that computes the IV it uses from the IV used by the previous
1621 /// link in the Chain.
1622 ///
1623 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1624 /// original IVOperand. The head of the chain's IVOperand is only valid during
1625 /// chain collection, before LSR replaces IV users. During chain generation,
1626 /// IncExpr can be used to find the new IVOperand that computes the same
1627 /// expression.
1628 struct IVInc {
1629   Instruction *UserInst;
1630   Value* IVOperand;
1631   const SCEV *IncExpr;
1632 
1633   IVInc(Instruction *U, Value *O, const SCEV *E):
1634     UserInst(U), IVOperand(O), IncExpr(E) {}
1635 };
1636 
1637 // The list of IV increments in program order.  We typically add the head of a
1638 // chain without finding subsequent links.
1639 struct IVChain {
1640   SmallVector<IVInc,1> Incs;
1641   const SCEV *ExprBase;
1642 
1643   IVChain() : ExprBase(nullptr) {}
1644 
1645   IVChain(const IVInc &Head, const SCEV *Base)
1646     : Incs(1, Head), ExprBase(Base) {}
1647 
1648   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1649 
1650   // Return the first increment in the chain.
1651   const_iterator begin() const {
1652     assert(!Incs.empty());
1653     return std::next(Incs.begin());
1654   }
1655   const_iterator end() const {
1656     return Incs.end();
1657   }
1658 
1659   // Returns true if this chain contains any increments.
1660   bool hasIncs() const { return Incs.size() >= 2; }
1661 
1662   // Add an IVInc to the end of this chain.
1663   void add(const IVInc &X) { Incs.push_back(X); }
1664 
1665   // Returns the last UserInst in the chain.
1666   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1667 
1668   // Returns true if IncExpr can be profitably added to this chain.
1669   bool isProfitableIncrement(const SCEV *OperExpr,
1670                              const SCEV *IncExpr,
1671                              ScalarEvolution&);
1672 };
1673 
1674 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1675 /// between FarUsers that definitely cross IV increments and NearUsers that may
1676 /// be used between IV increments.
1677 struct ChainUsers {
1678   SmallPtrSet<Instruction*, 4> FarUsers;
1679   SmallPtrSet<Instruction*, 4> NearUsers;
1680 };
1681 
1682 /// This class holds state for the main loop strength reduction logic.
1683 class LSRInstance {
1684   IVUsers &IU;
1685   ScalarEvolution &SE;
1686   DominatorTree &DT;
1687   LoopInfo &LI;
1688   const TargetTransformInfo &TTI;
1689   Loop *const L;
1690   bool Changed;
1691 
1692   /// This is the insert position that the current loop's induction variable
1693   /// increment should be placed. In simple loops, this is the latch block's
1694   /// terminator. But in more complicated cases, this is a position which will
1695   /// dominate all the in-loop post-increment users.
1696   Instruction *IVIncInsertPos;
1697 
1698   /// Interesting factors between use strides.
1699   ///
1700   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1701   /// default, a SmallDenseSet, because we need to use the full range of
1702   /// int64_ts, and there's currently no good way of doing that with
1703   /// SmallDenseSet.
1704   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1705 
1706   /// Interesting use types, to facilitate truncation reuse.
1707   SmallSetVector<Type *, 4> Types;
1708 
1709   /// The list of interesting uses.
1710   SmallVector<LSRUse, 16> Uses;
1711 
1712   /// Track which uses use which register candidates.
1713   RegUseTracker RegUses;
1714 
1715   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1716   // have more than a few IV increment chains in a loop. Missing a Chain falls
1717   // back to normal LSR behavior for those uses.
1718   static const unsigned MaxChains = 8;
1719 
1720   /// IV users can form a chain of IV increments.
1721   SmallVector<IVChain, MaxChains> IVChainVec;
1722 
1723   /// IV users that belong to profitable IVChains.
1724   SmallPtrSet<Use*, MaxChains> IVIncSet;
1725 
1726   void OptimizeShadowIV();
1727   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1728   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1729   void OptimizeLoopTermCond();
1730 
1731   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1732                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1733   void FinalizeChain(IVChain &Chain);
1734   void CollectChains();
1735   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1736                        SmallVectorImpl<WeakVH> &DeadInsts);
1737 
1738   void CollectInterestingTypesAndFactors();
1739   void CollectFixupsAndInitialFormulae();
1740 
1741   // Support for sharing of LSRUses between LSRFixups.
1742   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1743   UseMapTy UseMap;
1744 
1745   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1746                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1747 
1748   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1749                                     MemAccessTy AccessTy);
1750 
1751   void DeleteUse(LSRUse &LU, size_t LUIdx);
1752 
1753   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1754 
1755   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1756   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1757   void CountRegisters(const Formula &F, size_t LUIdx);
1758   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1759 
1760   void CollectLoopInvariantFixupsAndFormulae();
1761 
1762   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1763                               unsigned Depth = 0);
1764 
1765   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1766                                   const Formula &Base, unsigned Depth,
1767                                   size_t Idx, bool IsScaledReg = false);
1768   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1769   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1770                                    const Formula &Base, size_t Idx,
1771                                    bool IsScaledReg = false);
1772   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1773   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1774                                    const Formula &Base,
1775                                    const SmallVectorImpl<int64_t> &Worklist,
1776                                    size_t Idx, bool IsScaledReg = false);
1777   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1778   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1779   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1780   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1781   void GenerateCrossUseConstantOffsets();
1782   void GenerateAllReuseFormulae();
1783 
1784   void FilterOutUndesirableDedicatedRegisters();
1785 
1786   size_t EstimateSearchSpaceComplexity() const;
1787   void NarrowSearchSpaceByDetectingSupersets();
1788   void NarrowSearchSpaceByCollapsingUnrolledCode();
1789   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1790   void NarrowSearchSpaceByPickingWinnerRegs();
1791   void NarrowSearchSpaceUsingHeuristics();
1792 
1793   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1794                     Cost &SolutionCost,
1795                     SmallVectorImpl<const Formula *> &Workspace,
1796                     const Cost &CurCost,
1797                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1798                     DenseSet<const SCEV *> &VisitedRegs) const;
1799   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1800 
1801   BasicBlock::iterator
1802     HoistInsertPosition(BasicBlock::iterator IP,
1803                         const SmallVectorImpl<Instruction *> &Inputs) const;
1804   BasicBlock::iterator
1805     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1806                                   const LSRFixup &LF,
1807                                   const LSRUse &LU,
1808                                   SCEVExpander &Rewriter) const;
1809 
1810   Value *Expand(const LSRUse &LU, const LSRFixup &LF,
1811                 const Formula &F,
1812                 BasicBlock::iterator IP,
1813                 SCEVExpander &Rewriter,
1814                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1815   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1816                      const Formula &F,
1817                      SCEVExpander &Rewriter,
1818                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1819   void Rewrite(const LSRUse &LU, const LSRFixup &LF,
1820                const Formula &F,
1821                SCEVExpander &Rewriter,
1822                SmallVectorImpl<WeakVH> &DeadInsts) const;
1823   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1824 
1825 public:
1826   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1827               LoopInfo &LI, const TargetTransformInfo &TTI);
1828 
1829   bool getChanged() const { return Changed; }
1830 
1831   void print_factors_and_types(raw_ostream &OS) const;
1832   void print_fixups(raw_ostream &OS) const;
1833   void print_uses(raw_ostream &OS) const;
1834   void print(raw_ostream &OS) const;
1835   void dump() const;
1836 };
1837 
1838 } // end anonymous namespace
1839 
1840 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1841 /// the cast operation.
1842 void LSRInstance::OptimizeShadowIV() {
1843   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1844   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1845     return;
1846 
1847   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1848        UI != E; /* empty */) {
1849     IVUsers::const_iterator CandidateUI = UI;
1850     ++UI;
1851     Instruction *ShadowUse = CandidateUI->getUser();
1852     Type *DestTy = nullptr;
1853     bool IsSigned = false;
1854 
1855     /* If shadow use is a int->float cast then insert a second IV
1856        to eliminate this cast.
1857 
1858          for (unsigned i = 0; i < n; ++i)
1859            foo((double)i);
1860 
1861        is transformed into
1862 
1863          double d = 0.0;
1864          for (unsigned i = 0; i < n; ++i, ++d)
1865            foo(d);
1866     */
1867     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1868       IsSigned = false;
1869       DestTy = UCast->getDestTy();
1870     }
1871     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1872       IsSigned = true;
1873       DestTy = SCast->getDestTy();
1874     }
1875     if (!DestTy) continue;
1876 
1877     // If target does not support DestTy natively then do not apply
1878     // this transformation.
1879     if (!TTI.isTypeLegal(DestTy)) continue;
1880 
1881     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1882     if (!PH) continue;
1883     if (PH->getNumIncomingValues() != 2) continue;
1884 
1885     Type *SrcTy = PH->getType();
1886     int Mantissa = DestTy->getFPMantissaWidth();
1887     if (Mantissa == -1) continue;
1888     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1889       continue;
1890 
1891     unsigned Entry, Latch;
1892     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1893       Entry = 0;
1894       Latch = 1;
1895     } else {
1896       Entry = 1;
1897       Latch = 0;
1898     }
1899 
1900     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1901     if (!Init) continue;
1902     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1903                                         (double)Init->getSExtValue() :
1904                                         (double)Init->getZExtValue());
1905 
1906     BinaryOperator *Incr =
1907       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1908     if (!Incr) continue;
1909     if (Incr->getOpcode() != Instruction::Add
1910         && Incr->getOpcode() != Instruction::Sub)
1911       continue;
1912 
1913     /* Initialize new IV, double d = 0.0 in above example. */
1914     ConstantInt *C = nullptr;
1915     if (Incr->getOperand(0) == PH)
1916       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1917     else if (Incr->getOperand(1) == PH)
1918       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1919     else
1920       continue;
1921 
1922     if (!C) continue;
1923 
1924     // Ignore negative constants, as the code below doesn't handle them
1925     // correctly. TODO: Remove this restriction.
1926     if (!C->getValue().isStrictlyPositive()) continue;
1927 
1928     /* Add new PHINode. */
1929     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1930 
1931     /* create new increment. '++d' in above example. */
1932     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1933     BinaryOperator *NewIncr =
1934       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1935                                Instruction::FAdd : Instruction::FSub,
1936                              NewPH, CFP, "IV.S.next.", Incr);
1937 
1938     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1939     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1940 
1941     /* Remove cast operation */
1942     ShadowUse->replaceAllUsesWith(NewPH);
1943     ShadowUse->eraseFromParent();
1944     Changed = true;
1945     break;
1946   }
1947 }
1948 
1949 /// If Cond has an operand that is an expression of an IV, set the IV user and
1950 /// stride information and return true, otherwise return false.
1951 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1952   for (IVStrideUse &U : IU)
1953     if (U.getUser() == Cond) {
1954       // NOTE: we could handle setcc instructions with multiple uses here, but
1955       // InstCombine does it as well for simple uses, it's not clear that it
1956       // occurs enough in real life to handle.
1957       CondUse = &U;
1958       return true;
1959     }
1960   return false;
1961 }
1962 
1963 /// Rewrite the loop's terminating condition if it uses a max computation.
1964 ///
1965 /// This is a narrow solution to a specific, but acute, problem. For loops
1966 /// like this:
1967 ///
1968 ///   i = 0;
1969 ///   do {
1970 ///     p[i] = 0.0;
1971 ///   } while (++i < n);
1972 ///
1973 /// the trip count isn't just 'n', because 'n' might not be positive. And
1974 /// unfortunately this can come up even for loops where the user didn't use
1975 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1976 /// will commonly be lowered like this:
1977 //
1978 ///   if (n > 0) {
1979 ///     i = 0;
1980 ///     do {
1981 ///       p[i] = 0.0;
1982 ///     } while (++i < n);
1983 ///   }
1984 ///
1985 /// and then it's possible for subsequent optimization to obscure the if
1986 /// test in such a way that indvars can't find it.
1987 ///
1988 /// When indvars can't find the if test in loops like this, it creates a
1989 /// max expression, which allows it to give the loop a canonical
1990 /// induction variable:
1991 ///
1992 ///   i = 0;
1993 ///   max = n < 1 ? 1 : n;
1994 ///   do {
1995 ///     p[i] = 0.0;
1996 ///   } while (++i != max);
1997 ///
1998 /// Canonical induction variables are necessary because the loop passes
1999 /// are designed around them. The most obvious example of this is the
2000 /// LoopInfo analysis, which doesn't remember trip count values. It
2001 /// expects to be able to rediscover the trip count each time it is
2002 /// needed, and it does this using a simple analysis that only succeeds if
2003 /// the loop has a canonical induction variable.
2004 ///
2005 /// However, when it comes time to generate code, the maximum operation
2006 /// can be quite costly, especially if it's inside of an outer loop.
2007 ///
2008 /// This function solves this problem by detecting this type of loop and
2009 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2010 /// the instructions for the maximum computation.
2011 ///
2012 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2013   // Check that the loop matches the pattern we're looking for.
2014   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2015       Cond->getPredicate() != CmpInst::ICMP_NE)
2016     return Cond;
2017 
2018   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2019   if (!Sel || !Sel->hasOneUse()) return Cond;
2020 
2021   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2022   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2023     return Cond;
2024   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2025 
2026   // Add one to the backedge-taken count to get the trip count.
2027   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2028   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2029 
2030   // Check for a max calculation that matches the pattern. There's no check
2031   // for ICMP_ULE here because the comparison would be with zero, which
2032   // isn't interesting.
2033   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2034   const SCEVNAryExpr *Max = nullptr;
2035   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2036     Pred = ICmpInst::ICMP_SLE;
2037     Max = S;
2038   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2039     Pred = ICmpInst::ICMP_SLT;
2040     Max = S;
2041   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2042     Pred = ICmpInst::ICMP_ULT;
2043     Max = U;
2044   } else {
2045     // No match; bail.
2046     return Cond;
2047   }
2048 
2049   // To handle a max with more than two operands, this optimization would
2050   // require additional checking and setup.
2051   if (Max->getNumOperands() != 2)
2052     return Cond;
2053 
2054   const SCEV *MaxLHS = Max->getOperand(0);
2055   const SCEV *MaxRHS = Max->getOperand(1);
2056 
2057   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2058   // for a comparison with 1. For <= and >=, a comparison with zero.
2059   if (!MaxLHS ||
2060       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2061     return Cond;
2062 
2063   // Check the relevant induction variable for conformance to
2064   // the pattern.
2065   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2066   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2067   if (!AR || !AR->isAffine() ||
2068       AR->getStart() != One ||
2069       AR->getStepRecurrence(SE) != One)
2070     return Cond;
2071 
2072   assert(AR->getLoop() == L &&
2073          "Loop condition operand is an addrec in a different loop!");
2074 
2075   // Check the right operand of the select, and remember it, as it will
2076   // be used in the new comparison instruction.
2077   Value *NewRHS = nullptr;
2078   if (ICmpInst::isTrueWhenEqual(Pred)) {
2079     // Look for n+1, and grab n.
2080     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2081       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2082          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2083            NewRHS = BO->getOperand(0);
2084     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2085       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2086         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2087           NewRHS = BO->getOperand(0);
2088     if (!NewRHS)
2089       return Cond;
2090   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2091     NewRHS = Sel->getOperand(1);
2092   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2093     NewRHS = Sel->getOperand(2);
2094   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2095     NewRHS = SU->getValue();
2096   else
2097     // Max doesn't match expected pattern.
2098     return Cond;
2099 
2100   // Determine the new comparison opcode. It may be signed or unsigned,
2101   // and the original comparison may be either equality or inequality.
2102   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2103     Pred = CmpInst::getInversePredicate(Pred);
2104 
2105   // Ok, everything looks ok to change the condition into an SLT or SGE and
2106   // delete the max calculation.
2107   ICmpInst *NewCond =
2108     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2109 
2110   // Delete the max calculation instructions.
2111   Cond->replaceAllUsesWith(NewCond);
2112   CondUse->setUser(NewCond);
2113   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2114   Cond->eraseFromParent();
2115   Sel->eraseFromParent();
2116   if (Cmp->use_empty())
2117     Cmp->eraseFromParent();
2118   return NewCond;
2119 }
2120 
2121 /// Change loop terminating condition to use the postinc iv when possible.
2122 void
2123 LSRInstance::OptimizeLoopTermCond() {
2124   SmallPtrSet<Instruction *, 4> PostIncs;
2125 
2126   // We need a different set of heuristics for rotated and non-rotated loops.
2127   // If a loop is rotated then the latch is also the backedge, so inserting
2128   // post-inc expressions just before the latch is ideal. To reduce live ranges
2129   // it also makes sense to rewrite terminating conditions to use post-inc
2130   // expressions.
2131   //
2132   // If the loop is not rotated then the latch is not a backedge; the latch
2133   // check is done in the loop head. Adding post-inc expressions before the
2134   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2135   // in the loop body. In this case we do *not* want to use post-inc expressions
2136   // in the latch check, and we want to insert post-inc expressions before
2137   // the backedge.
2138   BasicBlock *LatchBlock = L->getLoopLatch();
2139   SmallVector<BasicBlock*, 8> ExitingBlocks;
2140   L->getExitingBlocks(ExitingBlocks);
2141   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2142         return LatchBlock != BB;
2143       })) {
2144     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2145     IVIncInsertPos = LatchBlock->getTerminator();
2146     return;
2147   }
2148 
2149   // Otherwise treat this as a rotated loop.
2150   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2151 
2152     // Get the terminating condition for the loop if possible.  If we
2153     // can, we want to change it to use a post-incremented version of its
2154     // induction variable, to allow coalescing the live ranges for the IV into
2155     // one register value.
2156 
2157     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2158     if (!TermBr)
2159       continue;
2160     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2161     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2162       continue;
2163 
2164     // Search IVUsesByStride to find Cond's IVUse if there is one.
2165     IVStrideUse *CondUse = nullptr;
2166     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2167     if (!FindIVUserForCond(Cond, CondUse))
2168       continue;
2169 
2170     // If the trip count is computed in terms of a max (due to ScalarEvolution
2171     // being unable to find a sufficient guard, for example), change the loop
2172     // comparison to use SLT or ULT instead of NE.
2173     // One consequence of doing this now is that it disrupts the count-down
2174     // optimization. That's not always a bad thing though, because in such
2175     // cases it may still be worthwhile to avoid a max.
2176     Cond = OptimizeMax(Cond, CondUse);
2177 
2178     // If this exiting block dominates the latch block, it may also use
2179     // the post-inc value if it won't be shared with other uses.
2180     // Check for dominance.
2181     if (!DT.dominates(ExitingBlock, LatchBlock))
2182       continue;
2183 
2184     // Conservatively avoid trying to use the post-inc value in non-latch
2185     // exits if there may be pre-inc users in intervening blocks.
2186     if (LatchBlock != ExitingBlock)
2187       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2188         // Test if the use is reachable from the exiting block. This dominator
2189         // query is a conservative approximation of reachability.
2190         if (&*UI != CondUse &&
2191             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2192           // Conservatively assume there may be reuse if the quotient of their
2193           // strides could be a legal scale.
2194           const SCEV *A = IU.getStride(*CondUse, L);
2195           const SCEV *B = IU.getStride(*UI, L);
2196           if (!A || !B) continue;
2197           if (SE.getTypeSizeInBits(A->getType()) !=
2198               SE.getTypeSizeInBits(B->getType())) {
2199             if (SE.getTypeSizeInBits(A->getType()) >
2200                 SE.getTypeSizeInBits(B->getType()))
2201               B = SE.getSignExtendExpr(B, A->getType());
2202             else
2203               A = SE.getSignExtendExpr(A, B->getType());
2204           }
2205           if (const SCEVConstant *D =
2206                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2207             const ConstantInt *C = D->getValue();
2208             // Stride of one or negative one can have reuse with non-addresses.
2209             if (C->isOne() || C->isAllOnesValue())
2210               goto decline_post_inc;
2211             // Avoid weird situations.
2212             if (C->getValue().getMinSignedBits() >= 64 ||
2213                 C->getValue().isMinSignedValue())
2214               goto decline_post_inc;
2215             // Check for possible scaled-address reuse.
2216             MemAccessTy AccessTy = getAccessType(UI->getUser());
2217             int64_t Scale = C->getSExtValue();
2218             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2219                                           /*BaseOffset=*/0,
2220                                           /*HasBaseReg=*/false, Scale,
2221                                           AccessTy.AddrSpace))
2222               goto decline_post_inc;
2223             Scale = -Scale;
2224             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2225                                           /*BaseOffset=*/0,
2226                                           /*HasBaseReg=*/false, Scale,
2227                                           AccessTy.AddrSpace))
2228               goto decline_post_inc;
2229           }
2230         }
2231 
2232     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2233                  << *Cond << '\n');
2234 
2235     // It's possible for the setcc instruction to be anywhere in the loop, and
2236     // possible for it to have multiple users.  If it is not immediately before
2237     // the exiting block branch, move it.
2238     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2239       if (Cond->hasOneUse()) {
2240         Cond->moveBefore(TermBr);
2241       } else {
2242         // Clone the terminating condition and insert into the loopend.
2243         ICmpInst *OldCond = Cond;
2244         Cond = cast<ICmpInst>(Cond->clone());
2245         Cond->setName(L->getHeader()->getName() + ".termcond");
2246         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2247 
2248         // Clone the IVUse, as the old use still exists!
2249         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2250         TermBr->replaceUsesOfWith(OldCond, Cond);
2251       }
2252     }
2253 
2254     // If we get to here, we know that we can transform the setcc instruction to
2255     // use the post-incremented version of the IV, allowing us to coalesce the
2256     // live ranges for the IV correctly.
2257     CondUse->transformToPostInc(L);
2258     Changed = true;
2259 
2260     PostIncs.insert(Cond);
2261   decline_post_inc:;
2262   }
2263 
2264   // Determine an insertion point for the loop induction variable increment. It
2265   // must dominate all the post-inc comparisons we just set up, and it must
2266   // dominate the loop latch edge.
2267   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2268   for (Instruction *Inst : PostIncs) {
2269     BasicBlock *BB =
2270       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2271                                     Inst->getParent());
2272     if (BB == Inst->getParent())
2273       IVIncInsertPos = Inst;
2274     else if (BB != IVIncInsertPos->getParent())
2275       IVIncInsertPos = BB->getTerminator();
2276   }
2277 }
2278 
2279 /// Determine if the given use can accommodate a fixup at the given offset and
2280 /// other details. If so, update the use and return true.
2281 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2282                                      bool HasBaseReg, LSRUse::KindType Kind,
2283                                      MemAccessTy AccessTy) {
2284   int64_t NewMinOffset = LU.MinOffset;
2285   int64_t NewMaxOffset = LU.MaxOffset;
2286   MemAccessTy NewAccessTy = AccessTy;
2287 
2288   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2289   // something conservative, however this can pessimize in the case that one of
2290   // the uses will have all its uses outside the loop, for example.
2291   if (LU.Kind != Kind)
2292     return false;
2293 
2294   // Check for a mismatched access type, and fall back conservatively as needed.
2295   // TODO: Be less conservative when the type is similar and can use the same
2296   // addressing modes.
2297   if (Kind == LSRUse::Address) {
2298     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2299       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2300                                             AccessTy.AddrSpace);
2301     }
2302   }
2303 
2304   // Conservatively assume HasBaseReg is true for now.
2305   if (NewOffset < LU.MinOffset) {
2306     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2307                           LU.MaxOffset - NewOffset, HasBaseReg))
2308       return false;
2309     NewMinOffset = NewOffset;
2310   } else if (NewOffset > LU.MaxOffset) {
2311     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2312                           NewOffset - LU.MinOffset, HasBaseReg))
2313       return false;
2314     NewMaxOffset = NewOffset;
2315   }
2316 
2317   // Update the use.
2318   LU.MinOffset = NewMinOffset;
2319   LU.MaxOffset = NewMaxOffset;
2320   LU.AccessTy = NewAccessTy;
2321   return true;
2322 }
2323 
2324 /// Return an LSRUse index and an offset value for a fixup which needs the given
2325 /// expression, with the given kind and optional access type.  Either reuse an
2326 /// existing use or create a new one, as needed.
2327 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2328                                                LSRUse::KindType Kind,
2329                                                MemAccessTy AccessTy) {
2330   const SCEV *Copy = Expr;
2331   int64_t Offset = ExtractImmediate(Expr, SE);
2332 
2333   // Basic uses can't accept any offset, for example.
2334   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2335                         Offset, /*HasBaseReg=*/ true)) {
2336     Expr = Copy;
2337     Offset = 0;
2338   }
2339 
2340   std::pair<UseMapTy::iterator, bool> P =
2341     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2342   if (!P.second) {
2343     // A use already existed with this base.
2344     size_t LUIdx = P.first->second;
2345     LSRUse &LU = Uses[LUIdx];
2346     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2347       // Reuse this use.
2348       return std::make_pair(LUIdx, Offset);
2349   }
2350 
2351   // Create a new use.
2352   size_t LUIdx = Uses.size();
2353   P.first->second = LUIdx;
2354   Uses.push_back(LSRUse(Kind, AccessTy));
2355   LSRUse &LU = Uses[LUIdx];
2356 
2357   LU.MinOffset = Offset;
2358   LU.MaxOffset = Offset;
2359   return std::make_pair(LUIdx, Offset);
2360 }
2361 
2362 /// Delete the given use from the Uses list.
2363 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2364   if (&LU != &Uses.back())
2365     std::swap(LU, Uses.back());
2366   Uses.pop_back();
2367 
2368   // Update RegUses.
2369   RegUses.swapAndDropUse(LUIdx, Uses.size());
2370 }
2371 
2372 /// Look for a use distinct from OrigLU which is has a formula that has the same
2373 /// registers as the given formula.
2374 LSRUse *
2375 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2376                                        const LSRUse &OrigLU) {
2377   // Search all uses for the formula. This could be more clever.
2378   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2379     LSRUse &LU = Uses[LUIdx];
2380     // Check whether this use is close enough to OrigLU, to see whether it's
2381     // worthwhile looking through its formulae.
2382     // Ignore ICmpZero uses because they may contain formulae generated by
2383     // GenerateICmpZeroScales, in which case adding fixup offsets may
2384     // be invalid.
2385     if (&LU != &OrigLU &&
2386         LU.Kind != LSRUse::ICmpZero &&
2387         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2388         LU.WidestFixupType == OrigLU.WidestFixupType &&
2389         LU.HasFormulaWithSameRegs(OrigF)) {
2390       // Scan through this use's formulae.
2391       for (const Formula &F : LU.Formulae) {
2392         // Check to see if this formula has the same registers and symbols
2393         // as OrigF.
2394         if (F.BaseRegs == OrigF.BaseRegs &&
2395             F.ScaledReg == OrigF.ScaledReg &&
2396             F.BaseGV == OrigF.BaseGV &&
2397             F.Scale == OrigF.Scale &&
2398             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2399           if (F.BaseOffset == 0)
2400             return &LU;
2401           // This is the formula where all the registers and symbols matched;
2402           // there aren't going to be any others. Since we declined it, we
2403           // can skip the rest of the formulae and proceed to the next LSRUse.
2404           break;
2405         }
2406       }
2407     }
2408   }
2409 
2410   // Nothing looked good.
2411   return nullptr;
2412 }
2413 
2414 void LSRInstance::CollectInterestingTypesAndFactors() {
2415   SmallSetVector<const SCEV *, 4> Strides;
2416 
2417   // Collect interesting types and strides.
2418   SmallVector<const SCEV *, 4> Worklist;
2419   for (const IVStrideUse &U : IU) {
2420     const SCEV *Expr = IU.getExpr(U);
2421 
2422     // Collect interesting types.
2423     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2424 
2425     // Add strides for mentioned loops.
2426     Worklist.push_back(Expr);
2427     do {
2428       const SCEV *S = Worklist.pop_back_val();
2429       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2430         if (AR->getLoop() == L)
2431           Strides.insert(AR->getStepRecurrence(SE));
2432         Worklist.push_back(AR->getStart());
2433       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2434         Worklist.append(Add->op_begin(), Add->op_end());
2435       }
2436     } while (!Worklist.empty());
2437   }
2438 
2439   // Compute interesting factors from the set of interesting strides.
2440   for (SmallSetVector<const SCEV *, 4>::const_iterator
2441        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2442     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2443          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2444       const SCEV *OldStride = *I;
2445       const SCEV *NewStride = *NewStrideIter;
2446 
2447       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2448           SE.getTypeSizeInBits(NewStride->getType())) {
2449         if (SE.getTypeSizeInBits(OldStride->getType()) >
2450             SE.getTypeSizeInBits(NewStride->getType()))
2451           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2452         else
2453           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2454       }
2455       if (const SCEVConstant *Factor =
2456             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2457                                                         SE, true))) {
2458         if (Factor->getAPInt().getMinSignedBits() <= 64)
2459           Factors.insert(Factor->getAPInt().getSExtValue());
2460       } else if (const SCEVConstant *Factor =
2461                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2462                                                                NewStride,
2463                                                                SE, true))) {
2464         if (Factor->getAPInt().getMinSignedBits() <= 64)
2465           Factors.insert(Factor->getAPInt().getSExtValue());
2466       }
2467     }
2468 
2469   // If all uses use the same type, don't bother looking for truncation-based
2470   // reuse.
2471   if (Types.size() == 1)
2472     Types.clear();
2473 
2474   DEBUG(print_factors_and_types(dbgs()));
2475 }
2476 
2477 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2478 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2479 /// IVStrideUses, we could partially skip this.
2480 static User::op_iterator
2481 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2482               Loop *L, ScalarEvolution &SE) {
2483   for(; OI != OE; ++OI) {
2484     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2485       if (!SE.isSCEVable(Oper->getType()))
2486         continue;
2487 
2488       if (const SCEVAddRecExpr *AR =
2489           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2490         if (AR->getLoop() == L)
2491           break;
2492       }
2493     }
2494   }
2495   return OI;
2496 }
2497 
2498 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2499 /// a convenient helper.
2500 static Value *getWideOperand(Value *Oper) {
2501   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2502     return Trunc->getOperand(0);
2503   return Oper;
2504 }
2505 
2506 /// Return true if we allow an IV chain to include both types.
2507 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2508   Type *LType = LVal->getType();
2509   Type *RType = RVal->getType();
2510   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2511 }
2512 
2513 /// Return an approximation of this SCEV expression's "base", or NULL for any
2514 /// constant. Returning the expression itself is conservative. Returning a
2515 /// deeper subexpression is more precise and valid as long as it isn't less
2516 /// complex than another subexpression. For expressions involving multiple
2517 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2518 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2519 /// IVInc==b-a.
2520 ///
2521 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2522 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2523 static const SCEV *getExprBase(const SCEV *S) {
2524   switch (S->getSCEVType()) {
2525   default: // uncluding scUnknown.
2526     return S;
2527   case scConstant:
2528     return nullptr;
2529   case scTruncate:
2530     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2531   case scZeroExtend:
2532     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2533   case scSignExtend:
2534     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2535   case scAddExpr: {
2536     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2537     // there's nothing more complex.
2538     // FIXME: not sure if we want to recognize negation.
2539     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2540     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2541            E(Add->op_begin()); I != E; ++I) {
2542       const SCEV *SubExpr = *I;
2543       if (SubExpr->getSCEVType() == scAddExpr)
2544         return getExprBase(SubExpr);
2545 
2546       if (SubExpr->getSCEVType() != scMulExpr)
2547         return SubExpr;
2548     }
2549     return S; // all operands are scaled, be conservative.
2550   }
2551   case scAddRecExpr:
2552     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2553   }
2554 }
2555 
2556 /// Return true if the chain increment is profitable to expand into a loop
2557 /// invariant value, which may require its own register. A profitable chain
2558 /// increment will be an offset relative to the same base. We allow such offsets
2559 /// to potentially be used as chain increment as long as it's not obviously
2560 /// expensive to expand using real instructions.
2561 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2562                                     const SCEV *IncExpr,
2563                                     ScalarEvolution &SE) {
2564   // Aggressively form chains when -stress-ivchain.
2565   if (StressIVChain)
2566     return true;
2567 
2568   // Do not replace a constant offset from IV head with a nonconstant IV
2569   // increment.
2570   if (!isa<SCEVConstant>(IncExpr)) {
2571     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2572     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2573       return false;
2574   }
2575 
2576   SmallPtrSet<const SCEV*, 8> Processed;
2577   return !isHighCostExpansion(IncExpr, Processed, SE);
2578 }
2579 
2580 /// Return true if the number of registers needed for the chain is estimated to
2581 /// be less than the number required for the individual IV users. First prohibit
2582 /// any IV users that keep the IV live across increments (the Users set should
2583 /// be empty). Next count the number and type of increments in the chain.
2584 ///
2585 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2586 /// effectively use postinc addressing modes. Only consider it profitable it the
2587 /// increments can be computed in fewer registers when chained.
2588 ///
2589 /// TODO: Consider IVInc free if it's already used in another chains.
2590 static bool
2591 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2592                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2593   if (StressIVChain)
2594     return true;
2595 
2596   if (!Chain.hasIncs())
2597     return false;
2598 
2599   if (!Users.empty()) {
2600     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2601           for (Instruction *Inst : Users) {
2602             dbgs() << "  " << *Inst << "\n";
2603           });
2604     return false;
2605   }
2606   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2607 
2608   // The chain itself may require a register, so intialize cost to 1.
2609   int cost = 1;
2610 
2611   // A complete chain likely eliminates the need for keeping the original IV in
2612   // a register. LSR does not currently know how to form a complete chain unless
2613   // the header phi already exists.
2614   if (isa<PHINode>(Chain.tailUserInst())
2615       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2616     --cost;
2617   }
2618   const SCEV *LastIncExpr = nullptr;
2619   unsigned NumConstIncrements = 0;
2620   unsigned NumVarIncrements = 0;
2621   unsigned NumReusedIncrements = 0;
2622   for (const IVInc &Inc : Chain) {
2623     if (Inc.IncExpr->isZero())
2624       continue;
2625 
2626     // Incrementing by zero or some constant is neutral. We assume constants can
2627     // be folded into an addressing mode or an add's immediate operand.
2628     if (isa<SCEVConstant>(Inc.IncExpr)) {
2629       ++NumConstIncrements;
2630       continue;
2631     }
2632 
2633     if (Inc.IncExpr == LastIncExpr)
2634       ++NumReusedIncrements;
2635     else
2636       ++NumVarIncrements;
2637 
2638     LastIncExpr = Inc.IncExpr;
2639   }
2640   // An IV chain with a single increment is handled by LSR's postinc
2641   // uses. However, a chain with multiple increments requires keeping the IV's
2642   // value live longer than it needs to be if chained.
2643   if (NumConstIncrements > 1)
2644     --cost;
2645 
2646   // Materializing increment expressions in the preheader that didn't exist in
2647   // the original code may cost a register. For example, sign-extended array
2648   // indices can produce ridiculous increments like this:
2649   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2650   cost += NumVarIncrements;
2651 
2652   // Reusing variable increments likely saves a register to hold the multiple of
2653   // the stride.
2654   cost -= NumReusedIncrements;
2655 
2656   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2657                << "\n");
2658 
2659   return cost < 0;
2660 }
2661 
2662 /// Add this IV user to an existing chain or make it the head of a new chain.
2663 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2664                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2665   // When IVs are used as types of varying widths, they are generally converted
2666   // to a wider type with some uses remaining narrow under a (free) trunc.
2667   Value *const NextIV = getWideOperand(IVOper);
2668   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2669   const SCEV *const OperExprBase = getExprBase(OperExpr);
2670 
2671   // Visit all existing chains. Check if its IVOper can be computed as a
2672   // profitable loop invariant increment from the last link in the Chain.
2673   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2674   const SCEV *LastIncExpr = nullptr;
2675   for (; ChainIdx < NChains; ++ChainIdx) {
2676     IVChain &Chain = IVChainVec[ChainIdx];
2677 
2678     // Prune the solution space aggressively by checking that both IV operands
2679     // are expressions that operate on the same unscaled SCEVUnknown. This
2680     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2681     // first avoids creating extra SCEV expressions.
2682     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2683       continue;
2684 
2685     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2686     if (!isCompatibleIVType(PrevIV, NextIV))
2687       continue;
2688 
2689     // A phi node terminates a chain.
2690     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2691       continue;
2692 
2693     // The increment must be loop-invariant so it can be kept in a register.
2694     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2695     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2696     if (!SE.isLoopInvariant(IncExpr, L))
2697       continue;
2698 
2699     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2700       LastIncExpr = IncExpr;
2701       break;
2702     }
2703   }
2704   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2705   // bother for phi nodes, because they must be last in the chain.
2706   if (ChainIdx == NChains) {
2707     if (isa<PHINode>(UserInst))
2708       return;
2709     if (NChains >= MaxChains && !StressIVChain) {
2710       DEBUG(dbgs() << "IV Chain Limit\n");
2711       return;
2712     }
2713     LastIncExpr = OperExpr;
2714     // IVUsers may have skipped over sign/zero extensions. We don't currently
2715     // attempt to form chains involving extensions unless they can be hoisted
2716     // into this loop's AddRec.
2717     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2718       return;
2719     ++NChains;
2720     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2721                                  OperExprBase));
2722     ChainUsersVec.resize(NChains);
2723     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2724                  << ") IV=" << *LastIncExpr << "\n");
2725   } else {
2726     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2727                  << ") IV+" << *LastIncExpr << "\n");
2728     // Add this IV user to the end of the chain.
2729     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2730   }
2731   IVChain &Chain = IVChainVec[ChainIdx];
2732 
2733   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2734   // This chain's NearUsers become FarUsers.
2735   if (!LastIncExpr->isZero()) {
2736     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2737                                             NearUsers.end());
2738     NearUsers.clear();
2739   }
2740 
2741   // All other uses of IVOperand become near uses of the chain.
2742   // We currently ignore intermediate values within SCEV expressions, assuming
2743   // they will eventually be used be the current chain, or can be computed
2744   // from one of the chain increments. To be more precise we could
2745   // transitively follow its user and only add leaf IV users to the set.
2746   for (User *U : IVOper->users()) {
2747     Instruction *OtherUse = dyn_cast<Instruction>(U);
2748     if (!OtherUse)
2749       continue;
2750     // Uses in the chain will no longer be uses if the chain is formed.
2751     // Include the head of the chain in this iteration (not Chain.begin()).
2752     IVChain::const_iterator IncIter = Chain.Incs.begin();
2753     IVChain::const_iterator IncEnd = Chain.Incs.end();
2754     for( ; IncIter != IncEnd; ++IncIter) {
2755       if (IncIter->UserInst == OtherUse)
2756         break;
2757     }
2758     if (IncIter != IncEnd)
2759       continue;
2760 
2761     if (SE.isSCEVable(OtherUse->getType())
2762         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2763         && IU.isIVUserOrOperand(OtherUse)) {
2764       continue;
2765     }
2766     NearUsers.insert(OtherUse);
2767   }
2768 
2769   // Since this user is part of the chain, it's no longer considered a use
2770   // of the chain.
2771   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2772 }
2773 
2774 /// Populate the vector of Chains.
2775 ///
2776 /// This decreases ILP at the architecture level. Targets with ample registers,
2777 /// multiple memory ports, and no register renaming probably don't want
2778 /// this. However, such targets should probably disable LSR altogether.
2779 ///
2780 /// The job of LSR is to make a reasonable choice of induction variables across
2781 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2782 /// ILP *within the loop* if the target wants it.
2783 ///
2784 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2785 /// will not reorder memory operations, it will recognize this as a chain, but
2786 /// will generate redundant IV increments. Ideally this would be corrected later
2787 /// by a smart scheduler:
2788 ///        = A[i]
2789 ///        = A[i+x]
2790 /// A[i]   =
2791 /// A[i+x] =
2792 ///
2793 /// TODO: Walk the entire domtree within this loop, not just the path to the
2794 /// loop latch. This will discover chains on side paths, but requires
2795 /// maintaining multiple copies of the Chains state.
2796 void LSRInstance::CollectChains() {
2797   DEBUG(dbgs() << "Collecting IV Chains.\n");
2798   SmallVector<ChainUsers, 8> ChainUsersVec;
2799 
2800   SmallVector<BasicBlock *,8> LatchPath;
2801   BasicBlock *LoopHeader = L->getHeader();
2802   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2803        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2804     LatchPath.push_back(Rung->getBlock());
2805   }
2806   LatchPath.push_back(LoopHeader);
2807 
2808   // Walk the instruction stream from the loop header to the loop latch.
2809   for (BasicBlock *BB : reverse(LatchPath)) {
2810     for (Instruction &I : *BB) {
2811       // Skip instructions that weren't seen by IVUsers analysis.
2812       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2813         continue;
2814 
2815       // Ignore users that are part of a SCEV expression. This way we only
2816       // consider leaf IV Users. This effectively rediscovers a portion of
2817       // IVUsers analysis but in program order this time.
2818       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2819         continue;
2820 
2821       // Remove this instruction from any NearUsers set it may be in.
2822       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2823            ChainIdx < NChains; ++ChainIdx) {
2824         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2825       }
2826       // Search for operands that can be chained.
2827       SmallPtrSet<Instruction*, 4> UniqueOperands;
2828       User::op_iterator IVOpEnd = I.op_end();
2829       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2830       while (IVOpIter != IVOpEnd) {
2831         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2832         if (UniqueOperands.insert(IVOpInst).second)
2833           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2834         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2835       }
2836     } // Continue walking down the instructions.
2837   } // Continue walking down the domtree.
2838   // Visit phi backedges to determine if the chain can generate the IV postinc.
2839   for (BasicBlock::iterator I = L->getHeader()->begin();
2840        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2841     if (!SE.isSCEVable(PN->getType()))
2842       continue;
2843 
2844     Instruction *IncV =
2845       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2846     if (IncV)
2847       ChainInstruction(PN, IncV, ChainUsersVec);
2848   }
2849   // Remove any unprofitable chains.
2850   unsigned ChainIdx = 0;
2851   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2852        UsersIdx < NChains; ++UsersIdx) {
2853     if (!isProfitableChain(IVChainVec[UsersIdx],
2854                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2855       continue;
2856     // Preserve the chain at UsesIdx.
2857     if (ChainIdx != UsersIdx)
2858       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2859     FinalizeChain(IVChainVec[ChainIdx]);
2860     ++ChainIdx;
2861   }
2862   IVChainVec.resize(ChainIdx);
2863 }
2864 
2865 void LSRInstance::FinalizeChain(IVChain &Chain) {
2866   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2867   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2868 
2869   for (const IVInc &Inc : Chain) {
2870     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
2871     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2872     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2873     IVIncSet.insert(UseI);
2874   }
2875 }
2876 
2877 /// Return true if the IVInc can be folded into an addressing mode.
2878 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2879                              Value *Operand, const TargetTransformInfo &TTI) {
2880   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2881   if (!IncConst || !isAddressUse(UserInst, Operand))
2882     return false;
2883 
2884   if (IncConst->getAPInt().getMinSignedBits() > 64)
2885     return false;
2886 
2887   MemAccessTy AccessTy = getAccessType(UserInst);
2888   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2889   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2890                         IncOffset, /*HaseBaseReg=*/false))
2891     return false;
2892 
2893   return true;
2894 }
2895 
2896 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2897 /// user's operand from the previous IV user's operand.
2898 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2899                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2900   // Find the new IVOperand for the head of the chain. It may have been replaced
2901   // by LSR.
2902   const IVInc &Head = Chain.Incs[0];
2903   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2904   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2905   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2906                                              IVOpEnd, L, SE);
2907   Value *IVSrc = nullptr;
2908   while (IVOpIter != IVOpEnd) {
2909     IVSrc = getWideOperand(*IVOpIter);
2910 
2911     // If this operand computes the expression that the chain needs, we may use
2912     // it. (Check this after setting IVSrc which is used below.)
2913     //
2914     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2915     // narrow for the chain, so we can no longer use it. We do allow using a
2916     // wider phi, assuming the LSR checked for free truncation. In that case we
2917     // should already have a truncate on this operand such that
2918     // getSCEV(IVSrc) == IncExpr.
2919     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2920         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2921       break;
2922     }
2923     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2924   }
2925   if (IVOpIter == IVOpEnd) {
2926     // Gracefully give up on this chain.
2927     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2928     return;
2929   }
2930 
2931   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2932   Type *IVTy = IVSrc->getType();
2933   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2934   const SCEV *LeftOverExpr = nullptr;
2935   for (const IVInc &Inc : Chain) {
2936     Instruction *InsertPt = Inc.UserInst;
2937     if (isa<PHINode>(InsertPt))
2938       InsertPt = L->getLoopLatch()->getTerminator();
2939 
2940     // IVOper will replace the current IV User's operand. IVSrc is the IV
2941     // value currently held in a register.
2942     Value *IVOper = IVSrc;
2943     if (!Inc.IncExpr->isZero()) {
2944       // IncExpr was the result of subtraction of two narrow values, so must
2945       // be signed.
2946       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2947       LeftOverExpr = LeftOverExpr ?
2948         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2949     }
2950     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2951       // Expand the IV increment.
2952       Rewriter.clearPostInc();
2953       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2954       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2955                                              SE.getUnknown(IncV));
2956       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2957 
2958       // If an IV increment can't be folded, use it as the next IV value.
2959       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2960         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2961         IVSrc = IVOper;
2962         LeftOverExpr = nullptr;
2963       }
2964     }
2965     Type *OperTy = Inc.IVOperand->getType();
2966     if (IVTy != OperTy) {
2967       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2968              "cannot extend a chained IV");
2969       IRBuilder<> Builder(InsertPt);
2970       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2971     }
2972     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2973     DeadInsts.emplace_back(Inc.IVOperand);
2974   }
2975   // If LSR created a new, wider phi, we may also replace its postinc. We only
2976   // do this if we also found a wide value for the head of the chain.
2977   if (isa<PHINode>(Chain.tailUserInst())) {
2978     for (BasicBlock::iterator I = L->getHeader()->begin();
2979          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2980       if (!isCompatibleIVType(Phi, IVSrc))
2981         continue;
2982       Instruction *PostIncV = dyn_cast<Instruction>(
2983         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2984       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2985         continue;
2986       Value *IVOper = IVSrc;
2987       Type *PostIncTy = PostIncV->getType();
2988       if (IVTy != PostIncTy) {
2989         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2990         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2991         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2992         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2993       }
2994       Phi->replaceUsesOfWith(PostIncV, IVOper);
2995       DeadInsts.emplace_back(PostIncV);
2996     }
2997   }
2998 }
2999 
3000 void LSRInstance::CollectFixupsAndInitialFormulae() {
3001   for (const IVStrideUse &U : IU) {
3002     Instruction *UserInst = U.getUser();
3003     // Skip IV users that are part of profitable IV Chains.
3004     User::op_iterator UseI =
3005         find(UserInst->operands(), U.getOperandValToReplace());
3006     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3007     if (IVIncSet.count(UseI)) {
3008       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3009       continue;
3010     }
3011 
3012     LSRUse::KindType Kind = LSRUse::Basic;
3013     MemAccessTy AccessTy;
3014     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3015       Kind = LSRUse::Address;
3016       AccessTy = getAccessType(UserInst);
3017     }
3018 
3019     const SCEV *S = IU.getExpr(U);
3020     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3021 
3022     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3023     // (N - i == 0), and this allows (N - i) to be the expression that we work
3024     // with rather than just N or i, so we can consider the register
3025     // requirements for both N and i at the same time. Limiting this code to
3026     // equality icmps is not a problem because all interesting loops use
3027     // equality icmps, thanks to IndVarSimplify.
3028     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3029       if (CI->isEquality()) {
3030         // Swap the operands if needed to put the OperandValToReplace on the
3031         // left, for consistency.
3032         Value *NV = CI->getOperand(1);
3033         if (NV == U.getOperandValToReplace()) {
3034           CI->setOperand(1, CI->getOperand(0));
3035           CI->setOperand(0, NV);
3036           NV = CI->getOperand(1);
3037           Changed = true;
3038         }
3039 
3040         // x == y  -->  x - y == 0
3041         const SCEV *N = SE.getSCEV(NV);
3042         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3043           // S is normalized, so normalize N before folding it into S
3044           // to keep the result normalized.
3045           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
3046                                      TmpPostIncLoops, SE, DT);
3047           Kind = LSRUse::ICmpZero;
3048           S = SE.getMinusSCEV(N, S);
3049         }
3050 
3051         // -1 and the negations of all interesting strides (except the negation
3052         // of -1) are now also interesting.
3053         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3054           if (Factors[i] != -1)
3055             Factors.insert(-(uint64_t)Factors[i]);
3056         Factors.insert(-1);
3057       }
3058 
3059     // Get or create an LSRUse.
3060     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3061     size_t LUIdx = P.first;
3062     int64_t Offset = P.second;
3063     LSRUse &LU = Uses[LUIdx];
3064 
3065     // Record the fixup.
3066     LSRFixup &LF = LU.getNewFixup();
3067     LF.UserInst = UserInst;
3068     LF.OperandValToReplace = U.getOperandValToReplace();
3069     LF.PostIncLoops = TmpPostIncLoops;
3070     LF.Offset = Offset;
3071     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3072 
3073     if (!LU.WidestFixupType ||
3074         SE.getTypeSizeInBits(LU.WidestFixupType) <
3075         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3076       LU.WidestFixupType = LF.OperandValToReplace->getType();
3077 
3078     // If this is the first use of this LSRUse, give it a formula.
3079     if (LU.Formulae.empty()) {
3080       InsertInitialFormula(S, LU, LUIdx);
3081       CountRegisters(LU.Formulae.back(), LUIdx);
3082     }
3083   }
3084 
3085   DEBUG(print_fixups(dbgs()));
3086 }
3087 
3088 /// Insert a formula for the given expression into the given use, separating out
3089 /// loop-variant portions from loop-invariant and loop-computable portions.
3090 void
3091 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3092   // Mark uses whose expressions cannot be expanded.
3093   if (!isSafeToExpand(S, SE))
3094     LU.RigidFormula = true;
3095 
3096   Formula F;
3097   F.initialMatch(S, L, SE);
3098   bool Inserted = InsertFormula(LU, LUIdx, F);
3099   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3100 }
3101 
3102 /// Insert a simple single-register formula for the given expression into the
3103 /// given use.
3104 void
3105 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3106                                        LSRUse &LU, size_t LUIdx) {
3107   Formula F;
3108   F.BaseRegs.push_back(S);
3109   F.HasBaseReg = true;
3110   bool Inserted = InsertFormula(LU, LUIdx, F);
3111   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3112 }
3113 
3114 /// Note which registers are used by the given formula, updating RegUses.
3115 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3116   if (F.ScaledReg)
3117     RegUses.countRegister(F.ScaledReg, LUIdx);
3118   for (const SCEV *BaseReg : F.BaseRegs)
3119     RegUses.countRegister(BaseReg, LUIdx);
3120 }
3121 
3122 /// If the given formula has not yet been inserted, add it to the list, and
3123 /// return true. Return false otherwise.
3124 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3125   // Do not insert formula that we will not be able to expand.
3126   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3127          "Formula is illegal");
3128   if (!LU.InsertFormula(F))
3129     return false;
3130 
3131   CountRegisters(F, LUIdx);
3132   return true;
3133 }
3134 
3135 /// Check for other uses of loop-invariant values which we're tracking. These
3136 /// other uses will pin these values in registers, making them less profitable
3137 /// for elimination.
3138 /// TODO: This currently misses non-constant addrec step registers.
3139 /// TODO: Should this give more weight to users inside the loop?
3140 void
3141 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3142   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3143   SmallPtrSet<const SCEV *, 32> Visited;
3144 
3145   while (!Worklist.empty()) {
3146     const SCEV *S = Worklist.pop_back_val();
3147 
3148     // Don't process the same SCEV twice
3149     if (!Visited.insert(S).second)
3150       continue;
3151 
3152     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3153       Worklist.append(N->op_begin(), N->op_end());
3154     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3155       Worklist.push_back(C->getOperand());
3156     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3157       Worklist.push_back(D->getLHS());
3158       Worklist.push_back(D->getRHS());
3159     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3160       const Value *V = US->getValue();
3161       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3162         // Look for instructions defined outside the loop.
3163         if (L->contains(Inst)) continue;
3164       } else if (isa<UndefValue>(V))
3165         // Undef doesn't have a live range, so it doesn't matter.
3166         continue;
3167       for (const Use &U : V->uses()) {
3168         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3169         // Ignore non-instructions.
3170         if (!UserInst)
3171           continue;
3172         // Ignore instructions in other functions (as can happen with
3173         // Constants).
3174         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3175           continue;
3176         // Ignore instructions not dominated by the loop.
3177         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3178           UserInst->getParent() :
3179           cast<PHINode>(UserInst)->getIncomingBlock(
3180             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3181         if (!DT.dominates(L->getHeader(), UseBB))
3182           continue;
3183         // Don't bother if the instruction is in a BB which ends in an EHPad.
3184         if (UseBB->getTerminator()->isEHPad())
3185           continue;
3186         // Don't bother rewriting PHIs in catchswitch blocks.
3187         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3188           continue;
3189         // Ignore uses which are part of other SCEV expressions, to avoid
3190         // analyzing them multiple times.
3191         if (SE.isSCEVable(UserInst->getType())) {
3192           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3193           // If the user is a no-op, look through to its uses.
3194           if (!isa<SCEVUnknown>(UserS))
3195             continue;
3196           if (UserS == US) {
3197             Worklist.push_back(
3198               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3199             continue;
3200           }
3201         }
3202         // Ignore icmp instructions which are already being analyzed.
3203         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3204           unsigned OtherIdx = !U.getOperandNo();
3205           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3206           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3207             continue;
3208         }
3209 
3210         std::pair<size_t, int64_t> P = getUse(
3211             S, LSRUse::Basic, MemAccessTy());
3212         size_t LUIdx = P.first;
3213         int64_t Offset = P.second;
3214         LSRUse &LU = Uses[LUIdx];
3215         LSRFixup &LF = LU.getNewFixup();
3216         LF.UserInst = const_cast<Instruction *>(UserInst);
3217         LF.OperandValToReplace = U;
3218         LF.Offset = Offset;
3219         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3220         if (!LU.WidestFixupType ||
3221             SE.getTypeSizeInBits(LU.WidestFixupType) <
3222             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3223           LU.WidestFixupType = LF.OperandValToReplace->getType();
3224         InsertSupplementalFormula(US, LU, LUIdx);
3225         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3226         break;
3227       }
3228     }
3229   }
3230 }
3231 
3232 /// Split S into subexpressions which can be pulled out into separate
3233 /// registers. If C is non-null, multiply each subexpression by C.
3234 ///
3235 /// Return remainder expression after factoring the subexpressions captured by
3236 /// Ops. If Ops is complete, return NULL.
3237 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3238                                    SmallVectorImpl<const SCEV *> &Ops,
3239                                    const Loop *L,
3240                                    ScalarEvolution &SE,
3241                                    unsigned Depth = 0) {
3242   // Arbitrarily cap recursion to protect compile time.
3243   if (Depth >= 3)
3244     return S;
3245 
3246   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3247     // Break out add operands.
3248     for (const SCEV *S : Add->operands()) {
3249       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3250       if (Remainder)
3251         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3252     }
3253     return nullptr;
3254   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3255     // Split a non-zero base out of an addrec.
3256     if (AR->getStart()->isZero() || !AR->isAffine())
3257       return S;
3258 
3259     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3260                                             C, Ops, L, SE, Depth+1);
3261     // Split the non-zero AddRec unless it is part of a nested recurrence that
3262     // does not pertain to this loop.
3263     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3264       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3265       Remainder = nullptr;
3266     }
3267     if (Remainder != AR->getStart()) {
3268       if (!Remainder)
3269         Remainder = SE.getConstant(AR->getType(), 0);
3270       return SE.getAddRecExpr(Remainder,
3271                               AR->getStepRecurrence(SE),
3272                               AR->getLoop(),
3273                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3274                               SCEV::FlagAnyWrap);
3275     }
3276   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3277     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3278     if (Mul->getNumOperands() != 2)
3279       return S;
3280     if (const SCEVConstant *Op0 =
3281         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3282       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3283       const SCEV *Remainder =
3284         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3285       if (Remainder)
3286         Ops.push_back(SE.getMulExpr(C, Remainder));
3287       return nullptr;
3288     }
3289   }
3290   return S;
3291 }
3292 
3293 /// \brief Helper function for LSRInstance::GenerateReassociations.
3294 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3295                                              const Formula &Base,
3296                                              unsigned Depth, size_t Idx,
3297                                              bool IsScaledReg) {
3298   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3299   SmallVector<const SCEV *, 8> AddOps;
3300   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3301   if (Remainder)
3302     AddOps.push_back(Remainder);
3303 
3304   if (AddOps.size() == 1)
3305     return;
3306 
3307   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3308                                                      JE = AddOps.end();
3309        J != JE; ++J) {
3310 
3311     // Loop-variant "unknown" values are uninteresting; we won't be able to
3312     // do anything meaningful with them.
3313     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3314       continue;
3315 
3316     // Don't pull a constant into a register if the constant could be folded
3317     // into an immediate field.
3318     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3319                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3320       continue;
3321 
3322     // Collect all operands except *J.
3323     SmallVector<const SCEV *, 8> InnerAddOps(
3324         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3325     InnerAddOps.append(std::next(J),
3326                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3327 
3328     // Don't leave just a constant behind in a register if the constant could
3329     // be folded into an immediate field.
3330     if (InnerAddOps.size() == 1 &&
3331         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3332                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3333       continue;
3334 
3335     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3336     if (InnerSum->isZero())
3337       continue;
3338     Formula F = Base;
3339 
3340     // Add the remaining pieces of the add back into the new formula.
3341     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3342     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3343         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3344                                 InnerSumSC->getValue()->getZExtValue())) {
3345       F.UnfoldedOffset =
3346           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3347       if (IsScaledReg)
3348         F.ScaledReg = nullptr;
3349       else
3350         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3351     } else if (IsScaledReg)
3352       F.ScaledReg = InnerSum;
3353     else
3354       F.BaseRegs[Idx] = InnerSum;
3355 
3356     // Add J as its own register, or an unfolded immediate.
3357     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3358     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3359         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3360                                 SC->getValue()->getZExtValue()))
3361       F.UnfoldedOffset =
3362           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3363     else
3364       F.BaseRegs.push_back(*J);
3365     // We may have changed the number of register in base regs, adjust the
3366     // formula accordingly.
3367     F.canonicalize();
3368 
3369     if (InsertFormula(LU, LUIdx, F))
3370       // If that formula hadn't been seen before, recurse to find more like
3371       // it.
3372       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3373   }
3374 }
3375 
3376 /// Split out subexpressions from adds and the bases of addrecs.
3377 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3378                                          Formula Base, unsigned Depth) {
3379   assert(Base.isCanonical() && "Input must be in the canonical form");
3380   // Arbitrarily cap recursion to protect compile time.
3381   if (Depth >= 3)
3382     return;
3383 
3384   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3385     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3386 
3387   if (Base.Scale == 1)
3388     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3389                                /* Idx */ -1, /* IsScaledReg */ true);
3390 }
3391 
3392 ///  Generate a formula consisting of all of the loop-dominating registers added
3393 /// into a single register.
3394 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3395                                        Formula Base) {
3396   // This method is only interesting on a plurality of registers.
3397   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3398     return;
3399 
3400   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3401   // processing the formula.
3402   Base.unscale();
3403   Formula F = Base;
3404   F.BaseRegs.clear();
3405   SmallVector<const SCEV *, 4> Ops;
3406   for (const SCEV *BaseReg : Base.BaseRegs) {
3407     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3408         !SE.hasComputableLoopEvolution(BaseReg, L))
3409       Ops.push_back(BaseReg);
3410     else
3411       F.BaseRegs.push_back(BaseReg);
3412   }
3413   if (Ops.size() > 1) {
3414     const SCEV *Sum = SE.getAddExpr(Ops);
3415     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3416     // opportunity to fold something. For now, just ignore such cases
3417     // rather than proceed with zero in a register.
3418     if (!Sum->isZero()) {
3419       F.BaseRegs.push_back(Sum);
3420       F.canonicalize();
3421       (void)InsertFormula(LU, LUIdx, F);
3422     }
3423   }
3424 }
3425 
3426 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3427 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3428                                               const Formula &Base, size_t Idx,
3429                                               bool IsScaledReg) {
3430   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3431   GlobalValue *GV = ExtractSymbol(G, SE);
3432   if (G->isZero() || !GV)
3433     return;
3434   Formula F = Base;
3435   F.BaseGV = GV;
3436   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3437     return;
3438   if (IsScaledReg)
3439     F.ScaledReg = G;
3440   else
3441     F.BaseRegs[Idx] = G;
3442   (void)InsertFormula(LU, LUIdx, F);
3443 }
3444 
3445 /// Generate reuse formulae using symbolic offsets.
3446 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3447                                           Formula Base) {
3448   // We can't add a symbolic offset if the address already contains one.
3449   if (Base.BaseGV) return;
3450 
3451   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3452     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3453   if (Base.Scale == 1)
3454     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3455                                 /* IsScaledReg */ true);
3456 }
3457 
3458 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3459 void LSRInstance::GenerateConstantOffsetsImpl(
3460     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3461     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3462   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3463   for (int64_t Offset : Worklist) {
3464     Formula F = Base;
3465     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3466     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3467                    LU.AccessTy, F)) {
3468       // Add the offset to the base register.
3469       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3470       // If it cancelled out, drop the base register, otherwise update it.
3471       if (NewG->isZero()) {
3472         if (IsScaledReg) {
3473           F.Scale = 0;
3474           F.ScaledReg = nullptr;
3475         } else
3476           F.deleteBaseReg(F.BaseRegs[Idx]);
3477         F.canonicalize();
3478       } else if (IsScaledReg)
3479         F.ScaledReg = NewG;
3480       else
3481         F.BaseRegs[Idx] = NewG;
3482 
3483       (void)InsertFormula(LU, LUIdx, F);
3484     }
3485   }
3486 
3487   int64_t Imm = ExtractImmediate(G, SE);
3488   if (G->isZero() || Imm == 0)
3489     return;
3490   Formula F = Base;
3491   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3492   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3493     return;
3494   if (IsScaledReg)
3495     F.ScaledReg = G;
3496   else
3497     F.BaseRegs[Idx] = G;
3498   (void)InsertFormula(LU, LUIdx, F);
3499 }
3500 
3501 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3502 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3503                                           Formula Base) {
3504   // TODO: For now, just add the min and max offset, because it usually isn't
3505   // worthwhile looking at everything inbetween.
3506   SmallVector<int64_t, 2> Worklist;
3507   Worklist.push_back(LU.MinOffset);
3508   if (LU.MaxOffset != LU.MinOffset)
3509     Worklist.push_back(LU.MaxOffset);
3510 
3511   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3512     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3513   if (Base.Scale == 1)
3514     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3515                                 /* IsScaledReg */ true);
3516 }
3517 
3518 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3519 /// == y -> x*c == y*c.
3520 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3521                                          Formula Base) {
3522   if (LU.Kind != LSRUse::ICmpZero) return;
3523 
3524   // Determine the integer type for the base formula.
3525   Type *IntTy = Base.getType();
3526   if (!IntTy) return;
3527   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3528 
3529   // Don't do this if there is more than one offset.
3530   if (LU.MinOffset != LU.MaxOffset) return;
3531 
3532   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3533 
3534   // Check each interesting stride.
3535   for (int64_t Factor : Factors) {
3536     // Check that the multiplication doesn't overflow.
3537     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3538       continue;
3539     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3540     if (NewBaseOffset / Factor != Base.BaseOffset)
3541       continue;
3542     // If the offset will be truncated at this use, check that it is in bounds.
3543     if (!IntTy->isPointerTy() &&
3544         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3545       continue;
3546 
3547     // Check that multiplying with the use offset doesn't overflow.
3548     int64_t Offset = LU.MinOffset;
3549     if (Offset == INT64_MIN && Factor == -1)
3550       continue;
3551     Offset = (uint64_t)Offset * Factor;
3552     if (Offset / Factor != LU.MinOffset)
3553       continue;
3554     // If the offset will be truncated at this use, check that it is in bounds.
3555     if (!IntTy->isPointerTy() &&
3556         !ConstantInt::isValueValidForType(IntTy, Offset))
3557       continue;
3558 
3559     Formula F = Base;
3560     F.BaseOffset = NewBaseOffset;
3561 
3562     // Check that this scale is legal.
3563     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3564       continue;
3565 
3566     // Compensate for the use having MinOffset built into it.
3567     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3568 
3569     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3570 
3571     // Check that multiplying with each base register doesn't overflow.
3572     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3573       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3574       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3575         goto next;
3576     }
3577 
3578     // Check that multiplying with the scaled register doesn't overflow.
3579     if (F.ScaledReg) {
3580       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3581       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3582         continue;
3583     }
3584 
3585     // Check that multiplying with the unfolded offset doesn't overflow.
3586     if (F.UnfoldedOffset != 0) {
3587       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3588         continue;
3589       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3590       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3591         continue;
3592       // If the offset will be truncated, check that it is in bounds.
3593       if (!IntTy->isPointerTy() &&
3594           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3595         continue;
3596     }
3597 
3598     // If we make it here and it's legal, add it.
3599     (void)InsertFormula(LU, LUIdx, F);
3600   next:;
3601   }
3602 }
3603 
3604 /// Generate stride factor reuse formulae by making use of scaled-offset address
3605 /// modes, for example.
3606 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3607   // Determine the integer type for the base formula.
3608   Type *IntTy = Base.getType();
3609   if (!IntTy) return;
3610 
3611   // If this Formula already has a scaled register, we can't add another one.
3612   // Try to unscale the formula to generate a better scale.
3613   if (Base.Scale != 0 && !Base.unscale())
3614     return;
3615 
3616   assert(Base.Scale == 0 && "unscale did not did its job!");
3617 
3618   // Check each interesting stride.
3619   for (int64_t Factor : Factors) {
3620     Base.Scale = Factor;
3621     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3622     // Check whether this scale is going to be legal.
3623     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3624                     Base)) {
3625       // As a special-case, handle special out-of-loop Basic users specially.
3626       // TODO: Reconsider this special case.
3627       if (LU.Kind == LSRUse::Basic &&
3628           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3629                      LU.AccessTy, Base) &&
3630           LU.AllFixupsOutsideLoop)
3631         LU.Kind = LSRUse::Special;
3632       else
3633         continue;
3634     }
3635     // For an ICmpZero, negating a solitary base register won't lead to
3636     // new solutions.
3637     if (LU.Kind == LSRUse::ICmpZero &&
3638         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3639       continue;
3640     // For each addrec base reg, apply the scale, if possible.
3641     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3642       if (const SCEVAddRecExpr *AR =
3643             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3644         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3645         if (FactorS->isZero())
3646           continue;
3647         // Divide out the factor, ignoring high bits, since we'll be
3648         // scaling the value back up in the end.
3649         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3650           // TODO: This could be optimized to avoid all the copying.
3651           Formula F = Base;
3652           F.ScaledReg = Quotient;
3653           F.deleteBaseReg(F.BaseRegs[i]);
3654           // The canonical representation of 1*reg is reg, which is already in
3655           // Base. In that case, do not try to insert the formula, it will be
3656           // rejected anyway.
3657           if (F.Scale == 1 && F.BaseRegs.empty())
3658             continue;
3659           (void)InsertFormula(LU, LUIdx, F);
3660         }
3661       }
3662   }
3663 }
3664 
3665 /// Generate reuse formulae from different IV types.
3666 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3667   // Don't bother truncating symbolic values.
3668   if (Base.BaseGV) return;
3669 
3670   // Determine the integer type for the base formula.
3671   Type *DstTy = Base.getType();
3672   if (!DstTy) return;
3673   DstTy = SE.getEffectiveSCEVType(DstTy);
3674 
3675   for (Type *SrcTy : Types) {
3676     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3677       Formula F = Base;
3678 
3679       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3680       for (const SCEV *&BaseReg : F.BaseRegs)
3681         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3682 
3683       // TODO: This assumes we've done basic processing on all uses and
3684       // have an idea what the register usage is.
3685       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3686         continue;
3687 
3688       (void)InsertFormula(LU, LUIdx, F);
3689     }
3690   }
3691 }
3692 
3693 namespace {
3694 
3695 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3696 /// modifications so that the search phase doesn't have to worry about the data
3697 /// structures moving underneath it.
3698 struct WorkItem {
3699   size_t LUIdx;
3700   int64_t Imm;
3701   const SCEV *OrigReg;
3702 
3703   WorkItem(size_t LI, int64_t I, const SCEV *R)
3704     : LUIdx(LI), Imm(I), OrigReg(R) {}
3705 
3706   void print(raw_ostream &OS) const;
3707   void dump() const;
3708 };
3709 
3710 } // end anonymous namespace
3711 
3712 void WorkItem::print(raw_ostream &OS) const {
3713   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3714      << " , add offset " << Imm;
3715 }
3716 
3717 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3718 LLVM_DUMP_METHOD void WorkItem::dump() const {
3719   print(errs()); errs() << '\n';
3720 }
3721 #endif
3722 
3723 /// Look for registers which are a constant distance apart and try to form reuse
3724 /// opportunities between them.
3725 void LSRInstance::GenerateCrossUseConstantOffsets() {
3726   // Group the registers by their value without any added constant offset.
3727   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3728   DenseMap<const SCEV *, ImmMapTy> Map;
3729   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3730   SmallVector<const SCEV *, 8> Sequence;
3731   for (const SCEV *Use : RegUses) {
3732     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3733     int64_t Imm = ExtractImmediate(Reg, SE);
3734     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3735     if (Pair.second)
3736       Sequence.push_back(Reg);
3737     Pair.first->second.insert(std::make_pair(Imm, Use));
3738     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3739   }
3740 
3741   // Now examine each set of registers with the same base value. Build up
3742   // a list of work to do and do the work in a separate step so that we're
3743   // not adding formulae and register counts while we're searching.
3744   SmallVector<WorkItem, 32> WorkItems;
3745   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3746   for (const SCEV *Reg : Sequence) {
3747     const ImmMapTy &Imms = Map.find(Reg)->second;
3748 
3749     // It's not worthwhile looking for reuse if there's only one offset.
3750     if (Imms.size() == 1)
3751       continue;
3752 
3753     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3754           for (const auto &Entry : Imms)
3755             dbgs() << ' ' << Entry.first;
3756           dbgs() << '\n');
3757 
3758     // Examine each offset.
3759     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3760          J != JE; ++J) {
3761       const SCEV *OrigReg = J->second;
3762 
3763       int64_t JImm = J->first;
3764       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3765 
3766       if (!isa<SCEVConstant>(OrigReg) &&
3767           UsedByIndicesMap[Reg].count() == 1) {
3768         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3769         continue;
3770       }
3771 
3772       // Conservatively examine offsets between this orig reg a few selected
3773       // other orig regs.
3774       ImmMapTy::const_iterator OtherImms[] = {
3775         Imms.begin(), std::prev(Imms.end()),
3776         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3777                          2)
3778       };
3779       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3780         ImmMapTy::const_iterator M = OtherImms[i];
3781         if (M == J || M == JE) continue;
3782 
3783         // Compute the difference between the two.
3784         int64_t Imm = (uint64_t)JImm - M->first;
3785         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3786              LUIdx = UsedByIndices.find_next(LUIdx))
3787           // Make a memo of this use, offset, and register tuple.
3788           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3789             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3790       }
3791     }
3792   }
3793 
3794   Map.clear();
3795   Sequence.clear();
3796   UsedByIndicesMap.clear();
3797   UniqueItems.clear();
3798 
3799   // Now iterate through the worklist and add new formulae.
3800   for (const WorkItem &WI : WorkItems) {
3801     size_t LUIdx = WI.LUIdx;
3802     LSRUse &LU = Uses[LUIdx];
3803     int64_t Imm = WI.Imm;
3804     const SCEV *OrigReg = WI.OrigReg;
3805 
3806     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3807     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3808     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3809 
3810     // TODO: Use a more targeted data structure.
3811     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3812       Formula F = LU.Formulae[L];
3813       // FIXME: The code for the scaled and unscaled registers looks
3814       // very similar but slightly different. Investigate if they
3815       // could be merged. That way, we would not have to unscale the
3816       // Formula.
3817       F.unscale();
3818       // Use the immediate in the scaled register.
3819       if (F.ScaledReg == OrigReg) {
3820         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3821         // Don't create 50 + reg(-50).
3822         if (F.referencesReg(SE.getSCEV(
3823                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3824           continue;
3825         Formula NewF = F;
3826         NewF.BaseOffset = Offset;
3827         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3828                         NewF))
3829           continue;
3830         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3831 
3832         // If the new scale is a constant in a register, and adding the constant
3833         // value to the immediate would produce a value closer to zero than the
3834         // immediate itself, then the formula isn't worthwhile.
3835         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3836           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3837               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3838                   .ule(std::abs(NewF.BaseOffset)))
3839             continue;
3840 
3841         // OK, looks good.
3842         NewF.canonicalize();
3843         (void)InsertFormula(LU, LUIdx, NewF);
3844       } else {
3845         // Use the immediate in a base register.
3846         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3847           const SCEV *BaseReg = F.BaseRegs[N];
3848           if (BaseReg != OrigReg)
3849             continue;
3850           Formula NewF = F;
3851           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3852           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3853                           LU.Kind, LU.AccessTy, NewF)) {
3854             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3855               continue;
3856             NewF = F;
3857             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3858           }
3859           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3860 
3861           // If the new formula has a constant in a register, and adding the
3862           // constant value to the immediate would produce a value closer to
3863           // zero than the immediate itself, then the formula isn't worthwhile.
3864           for (const SCEV *NewReg : NewF.BaseRegs)
3865             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3866               if ((C->getAPInt() + NewF.BaseOffset)
3867                       .abs()
3868                       .slt(std::abs(NewF.BaseOffset)) &&
3869                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3870                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3871                 goto skip_formula;
3872 
3873           // Ok, looks good.
3874           NewF.canonicalize();
3875           (void)InsertFormula(LU, LUIdx, NewF);
3876           break;
3877         skip_formula:;
3878         }
3879       }
3880     }
3881   }
3882 }
3883 
3884 /// Generate formulae for each use.
3885 void
3886 LSRInstance::GenerateAllReuseFormulae() {
3887   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3888   // queries are more precise.
3889   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3890     LSRUse &LU = Uses[LUIdx];
3891     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3892       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3893     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3894       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3895   }
3896   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3897     LSRUse &LU = Uses[LUIdx];
3898     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3899       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3900     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3901       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3902     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3903       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3904     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3905       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3906   }
3907   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3908     LSRUse &LU = Uses[LUIdx];
3909     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3910       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3911   }
3912 
3913   GenerateCrossUseConstantOffsets();
3914 
3915   DEBUG(dbgs() << "\n"
3916                   "After generating reuse formulae:\n";
3917         print_uses(dbgs()));
3918 }
3919 
3920 /// If there are multiple formulae with the same set of registers used
3921 /// by other uses, pick the best one and delete the others.
3922 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3923   DenseSet<const SCEV *> VisitedRegs;
3924   SmallPtrSet<const SCEV *, 16> Regs;
3925   SmallPtrSet<const SCEV *, 16> LoserRegs;
3926 #ifndef NDEBUG
3927   bool ChangedFormulae = false;
3928 #endif
3929 
3930   // Collect the best formula for each unique set of shared registers. This
3931   // is reset for each use.
3932   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3933     BestFormulaeTy;
3934   BestFormulaeTy BestFormulae;
3935 
3936   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3937     LSRUse &LU = Uses[LUIdx];
3938     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3939 
3940     bool Any = false;
3941     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3942          FIdx != NumForms; ++FIdx) {
3943       Formula &F = LU.Formulae[FIdx];
3944 
3945       // Some formulas are instant losers. For example, they may depend on
3946       // nonexistent AddRecs from other loops. These need to be filtered
3947       // immediately, otherwise heuristics could choose them over others leading
3948       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3949       // avoids the need to recompute this information across formulae using the
3950       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3951       // the corresponding bad register from the Regs set.
3952       Cost CostF;
3953       Regs.clear();
3954       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
3955       if (CostF.isLoser()) {
3956         // During initial formula generation, undesirable formulae are generated
3957         // by uses within other loops that have some non-trivial address mode or
3958         // use the postinc form of the IV. LSR needs to provide these formulae
3959         // as the basis of rediscovering the desired formula that uses an AddRec
3960         // corresponding to the existing phi. Once all formulae have been
3961         // generated, these initial losers may be pruned.
3962         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3963               dbgs() << "\n");
3964       }
3965       else {
3966         SmallVector<const SCEV *, 4> Key;
3967         for (const SCEV *Reg : F.BaseRegs) {
3968           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3969             Key.push_back(Reg);
3970         }
3971         if (F.ScaledReg &&
3972             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3973           Key.push_back(F.ScaledReg);
3974         // Unstable sort by host order ok, because this is only used for
3975         // uniquifying.
3976         std::sort(Key.begin(), Key.end());
3977 
3978         std::pair<BestFormulaeTy::const_iterator, bool> P =
3979           BestFormulae.insert(std::make_pair(Key, FIdx));
3980         if (P.second)
3981           continue;
3982 
3983         Formula &Best = LU.Formulae[P.first->second];
3984 
3985         Cost CostBest;
3986         Regs.clear();
3987         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
3988         if (CostF < CostBest)
3989           std::swap(F, Best);
3990         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3991               dbgs() << "\n"
3992                         "    in favor of formula "; Best.print(dbgs());
3993               dbgs() << '\n');
3994       }
3995 #ifndef NDEBUG
3996       ChangedFormulae = true;
3997 #endif
3998       LU.DeleteFormula(F);
3999       --FIdx;
4000       --NumForms;
4001       Any = true;
4002     }
4003 
4004     // Now that we've filtered out some formulae, recompute the Regs set.
4005     if (Any)
4006       LU.RecomputeRegs(LUIdx, RegUses);
4007 
4008     // Reset this to prepare for the next use.
4009     BestFormulae.clear();
4010   }
4011 
4012   DEBUG(if (ChangedFormulae) {
4013           dbgs() << "\n"
4014                     "After filtering out undesirable candidates:\n";
4015           print_uses(dbgs());
4016         });
4017 }
4018 
4019 // This is a rough guess that seems to work fairly well.
4020 static const size_t ComplexityLimit = UINT16_MAX;
4021 
4022 /// Estimate the worst-case number of solutions the solver might have to
4023 /// consider. It almost never considers this many solutions because it prune the
4024 /// search space, but the pruning isn't always sufficient.
4025 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4026   size_t Power = 1;
4027   for (const LSRUse &LU : Uses) {
4028     size_t FSize = LU.Formulae.size();
4029     if (FSize >= ComplexityLimit) {
4030       Power = ComplexityLimit;
4031       break;
4032     }
4033     Power *= FSize;
4034     if (Power >= ComplexityLimit)
4035       break;
4036   }
4037   return Power;
4038 }
4039 
4040 /// When one formula uses a superset of the registers of another formula, it
4041 /// won't help reduce register pressure (though it may not necessarily hurt
4042 /// register pressure); remove it to simplify the system.
4043 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4044   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4045     DEBUG(dbgs() << "The search space is too complex.\n");
4046 
4047     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4048                     "which use a superset of registers used by other "
4049                     "formulae.\n");
4050 
4051     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4052       LSRUse &LU = Uses[LUIdx];
4053       bool Any = false;
4054       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4055         Formula &F = LU.Formulae[i];
4056         // Look for a formula with a constant or GV in a register. If the use
4057         // also has a formula with that same value in an immediate field,
4058         // delete the one that uses a register.
4059         for (SmallVectorImpl<const SCEV *>::const_iterator
4060              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4061           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4062             Formula NewF = F;
4063             NewF.BaseOffset += C->getValue()->getSExtValue();
4064             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4065                                 (I - F.BaseRegs.begin()));
4066             if (LU.HasFormulaWithSameRegs(NewF)) {
4067               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4068               LU.DeleteFormula(F);
4069               --i;
4070               --e;
4071               Any = true;
4072               break;
4073             }
4074           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4075             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4076               if (!F.BaseGV) {
4077                 Formula NewF = F;
4078                 NewF.BaseGV = GV;
4079                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4080                                     (I - F.BaseRegs.begin()));
4081                 if (LU.HasFormulaWithSameRegs(NewF)) {
4082                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4083                         dbgs() << '\n');
4084                   LU.DeleteFormula(F);
4085                   --i;
4086                   --e;
4087                   Any = true;
4088                   break;
4089                 }
4090               }
4091           }
4092         }
4093       }
4094       if (Any)
4095         LU.RecomputeRegs(LUIdx, RegUses);
4096     }
4097 
4098     DEBUG(dbgs() << "After pre-selection:\n";
4099           print_uses(dbgs()));
4100   }
4101 }
4102 
4103 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4104 /// allocate a single register for them.
4105 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4106   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4107     return;
4108 
4109   DEBUG(dbgs() << "The search space is too complex.\n"
4110                   "Narrowing the search space by assuming that uses separated "
4111                   "by a constant offset will use the same registers.\n");
4112 
4113   // This is especially useful for unrolled loops.
4114 
4115   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4116     LSRUse &LU = Uses[LUIdx];
4117     for (const Formula &F : LU.Formulae) {
4118       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4119         continue;
4120 
4121       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4122       if (!LUThatHas)
4123         continue;
4124 
4125       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4126                               LU.Kind, LU.AccessTy))
4127         continue;
4128 
4129       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4130 
4131       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4132 
4133       // Transfer the fixups of LU to LUThatHas.
4134       for (LSRFixup &Fixup : LU.Fixups) {
4135         Fixup.Offset += F.BaseOffset;
4136         LUThatHas->pushFixup(Fixup);
4137         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4138       }
4139 
4140       // Delete formulae from the new use which are no longer legal.
4141       bool Any = false;
4142       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4143         Formula &F = LUThatHas->Formulae[i];
4144         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4145                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4146           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4147                 dbgs() << '\n');
4148           LUThatHas->DeleteFormula(F);
4149           --i;
4150           --e;
4151           Any = true;
4152         }
4153       }
4154 
4155       if (Any)
4156         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4157 
4158       // Delete the old use.
4159       DeleteUse(LU, LUIdx);
4160       --LUIdx;
4161       --NumUses;
4162       break;
4163     }
4164   }
4165 
4166   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4167 }
4168 
4169 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4170 /// we've done more filtering, as it may be able to find more formulae to
4171 /// eliminate.
4172 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4173   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4174     DEBUG(dbgs() << "The search space is too complex.\n");
4175 
4176     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4177                     "undesirable dedicated registers.\n");
4178 
4179     FilterOutUndesirableDedicatedRegisters();
4180 
4181     DEBUG(dbgs() << "After pre-selection:\n";
4182           print_uses(dbgs()));
4183   }
4184 }
4185 
4186 /// Pick a register which seems likely to be profitable, and then in any use
4187 /// which has any reference to that register, delete all formulae which do not
4188 /// reference that register.
4189 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4190   // With all other options exhausted, loop until the system is simple
4191   // enough to handle.
4192   SmallPtrSet<const SCEV *, 4> Taken;
4193   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4194     // Ok, we have too many of formulae on our hands to conveniently handle.
4195     // Use a rough heuristic to thin out the list.
4196     DEBUG(dbgs() << "The search space is too complex.\n");
4197 
4198     // Pick the register which is used by the most LSRUses, which is likely
4199     // to be a good reuse register candidate.
4200     const SCEV *Best = nullptr;
4201     unsigned BestNum = 0;
4202     for (const SCEV *Reg : RegUses) {
4203       if (Taken.count(Reg))
4204         continue;
4205       if (!Best) {
4206         Best = Reg;
4207         BestNum = RegUses.getUsedByIndices(Reg).count();
4208       } else {
4209         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4210         if (Count > BestNum) {
4211           Best = Reg;
4212           BestNum = Count;
4213         }
4214       }
4215     }
4216 
4217     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4218                  << " will yield profitable reuse.\n");
4219     Taken.insert(Best);
4220 
4221     // In any use with formulae which references this register, delete formulae
4222     // which don't reference it.
4223     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4224       LSRUse &LU = Uses[LUIdx];
4225       if (!LU.Regs.count(Best)) continue;
4226 
4227       bool Any = false;
4228       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4229         Formula &F = LU.Formulae[i];
4230         if (!F.referencesReg(Best)) {
4231           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4232           LU.DeleteFormula(F);
4233           --e;
4234           --i;
4235           Any = true;
4236           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4237           continue;
4238         }
4239       }
4240 
4241       if (Any)
4242         LU.RecomputeRegs(LUIdx, RegUses);
4243     }
4244 
4245     DEBUG(dbgs() << "After pre-selection:\n";
4246           print_uses(dbgs()));
4247   }
4248 }
4249 
4250 /// If there are an extraordinary number of formulae to choose from, use some
4251 /// rough heuristics to prune down the number of formulae. This keeps the main
4252 /// solver from taking an extraordinary amount of time in some worst-case
4253 /// scenarios.
4254 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4255   NarrowSearchSpaceByDetectingSupersets();
4256   NarrowSearchSpaceByCollapsingUnrolledCode();
4257   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4258   NarrowSearchSpaceByPickingWinnerRegs();
4259 }
4260 
4261 /// This is the recursive solver.
4262 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4263                                Cost &SolutionCost,
4264                                SmallVectorImpl<const Formula *> &Workspace,
4265                                const Cost &CurCost,
4266                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4267                                DenseSet<const SCEV *> &VisitedRegs) const {
4268   // Some ideas:
4269   //  - prune more:
4270   //    - use more aggressive filtering
4271   //    - sort the formula so that the most profitable solutions are found first
4272   //    - sort the uses too
4273   //  - search faster:
4274   //    - don't compute a cost, and then compare. compare while computing a cost
4275   //      and bail early.
4276   //    - track register sets with SmallBitVector
4277 
4278   const LSRUse &LU = Uses[Workspace.size()];
4279 
4280   // If this use references any register that's already a part of the
4281   // in-progress solution, consider it a requirement that a formula must
4282   // reference that register in order to be considered. This prunes out
4283   // unprofitable searching.
4284   SmallSetVector<const SCEV *, 4> ReqRegs;
4285   for (const SCEV *S : CurRegs)
4286     if (LU.Regs.count(S))
4287       ReqRegs.insert(S);
4288 
4289   SmallPtrSet<const SCEV *, 16> NewRegs;
4290   Cost NewCost;
4291   for (const Formula &F : LU.Formulae) {
4292     // Ignore formulae which may not be ideal in terms of register reuse of
4293     // ReqRegs.  The formula should use all required registers before
4294     // introducing new ones.
4295     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4296     for (const SCEV *Reg : ReqRegs) {
4297       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4298           is_contained(F.BaseRegs, Reg)) {
4299         --NumReqRegsToFind;
4300         if (NumReqRegsToFind == 0)
4301           break;
4302       }
4303     }
4304     if (NumReqRegsToFind != 0) {
4305       // If none of the formulae satisfied the required registers, then we could
4306       // clear ReqRegs and try again. Currently, we simply give up in this case.
4307       continue;
4308     }
4309 
4310     // Evaluate the cost of the current formula. If it's already worse than
4311     // the current best, prune the search at that point.
4312     NewCost = CurCost;
4313     NewRegs = CurRegs;
4314     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4315     if (NewCost < SolutionCost) {
4316       Workspace.push_back(&F);
4317       if (Workspace.size() != Uses.size()) {
4318         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4319                      NewRegs, VisitedRegs);
4320         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4321           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4322       } else {
4323         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4324               dbgs() << ".\n Regs:";
4325               for (const SCEV *S : NewRegs)
4326                 dbgs() << ' ' << *S;
4327               dbgs() << '\n');
4328 
4329         SolutionCost = NewCost;
4330         Solution = Workspace;
4331       }
4332       Workspace.pop_back();
4333     }
4334   }
4335 }
4336 
4337 /// Choose one formula from each use. Return the results in the given Solution
4338 /// vector.
4339 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4340   SmallVector<const Formula *, 8> Workspace;
4341   Cost SolutionCost;
4342   SolutionCost.Lose();
4343   Cost CurCost;
4344   SmallPtrSet<const SCEV *, 16> CurRegs;
4345   DenseSet<const SCEV *> VisitedRegs;
4346   Workspace.reserve(Uses.size());
4347 
4348   // SolveRecurse does all the work.
4349   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4350                CurRegs, VisitedRegs);
4351   if (Solution.empty()) {
4352     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4353     return;
4354   }
4355 
4356   // Ok, we've now made all our decisions.
4357   DEBUG(dbgs() << "\n"
4358                   "The chosen solution requires "; SolutionCost.print(dbgs());
4359         dbgs() << ":\n";
4360         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4361           dbgs() << "  ";
4362           Uses[i].print(dbgs());
4363           dbgs() << "\n"
4364                     "    ";
4365           Solution[i]->print(dbgs());
4366           dbgs() << '\n';
4367         });
4368 
4369   assert(Solution.size() == Uses.size() && "Malformed solution!");
4370 }
4371 
4372 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4373 /// we can go while still being dominated by the input positions. This helps
4374 /// canonicalize the insert position, which encourages sharing.
4375 BasicBlock::iterator
4376 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4377                                  const SmallVectorImpl<Instruction *> &Inputs)
4378                                                                          const {
4379   Instruction *Tentative = &*IP;
4380   while (true) {
4381     bool AllDominate = true;
4382     Instruction *BetterPos = nullptr;
4383     // Don't bother attempting to insert before a catchswitch, their basic block
4384     // cannot have other non-PHI instructions.
4385     if (isa<CatchSwitchInst>(Tentative))
4386       return IP;
4387 
4388     for (Instruction *Inst : Inputs) {
4389       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4390         AllDominate = false;
4391         break;
4392       }
4393       // Attempt to find an insert position in the middle of the block,
4394       // instead of at the end, so that it can be used for other expansions.
4395       if (Tentative->getParent() == Inst->getParent() &&
4396           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4397         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4398     }
4399     if (!AllDominate)
4400       break;
4401     if (BetterPos)
4402       IP = BetterPos->getIterator();
4403     else
4404       IP = Tentative->getIterator();
4405 
4406     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4407     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4408 
4409     BasicBlock *IDom;
4410     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4411       if (!Rung) return IP;
4412       Rung = Rung->getIDom();
4413       if (!Rung) return IP;
4414       IDom = Rung->getBlock();
4415 
4416       // Don't climb into a loop though.
4417       const Loop *IDomLoop = LI.getLoopFor(IDom);
4418       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4419       if (IDomDepth <= IPLoopDepth &&
4420           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4421         break;
4422     }
4423 
4424     Tentative = IDom->getTerminator();
4425   }
4426 
4427   return IP;
4428 }
4429 
4430 /// Determine an input position which will be dominated by the operands and
4431 /// which will dominate the result.
4432 BasicBlock::iterator
4433 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4434                                            const LSRFixup &LF,
4435                                            const LSRUse &LU,
4436                                            SCEVExpander &Rewriter) const {
4437   // Collect some instructions which must be dominated by the
4438   // expanding replacement. These must be dominated by any operands that
4439   // will be required in the expansion.
4440   SmallVector<Instruction *, 4> Inputs;
4441   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4442     Inputs.push_back(I);
4443   if (LU.Kind == LSRUse::ICmpZero)
4444     if (Instruction *I =
4445           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4446       Inputs.push_back(I);
4447   if (LF.PostIncLoops.count(L)) {
4448     if (LF.isUseFullyOutsideLoop(L))
4449       Inputs.push_back(L->getLoopLatch()->getTerminator());
4450     else
4451       Inputs.push_back(IVIncInsertPos);
4452   }
4453   // The expansion must also be dominated by the increment positions of any
4454   // loops it for which it is using post-inc mode.
4455   for (const Loop *PIL : LF.PostIncLoops) {
4456     if (PIL == L) continue;
4457 
4458     // Be dominated by the loop exit.
4459     SmallVector<BasicBlock *, 4> ExitingBlocks;
4460     PIL->getExitingBlocks(ExitingBlocks);
4461     if (!ExitingBlocks.empty()) {
4462       BasicBlock *BB = ExitingBlocks[0];
4463       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4464         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4465       Inputs.push_back(BB->getTerminator());
4466     }
4467   }
4468 
4469   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4470          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4471          "Insertion point must be a normal instruction");
4472 
4473   // Then, climb up the immediate dominator tree as far as we can go while
4474   // still being dominated by the input positions.
4475   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4476 
4477   // Don't insert instructions before PHI nodes.
4478   while (isa<PHINode>(IP)) ++IP;
4479 
4480   // Ignore landingpad instructions.
4481   while (IP->isEHPad()) ++IP;
4482 
4483   // Ignore debug intrinsics.
4484   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4485 
4486   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4487   // IP consistent across expansions and allows the previously inserted
4488   // instructions to be reused by subsequent expansion.
4489   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4490     ++IP;
4491 
4492   return IP;
4493 }
4494 
4495 /// Emit instructions for the leading candidate expression for this LSRUse (this
4496 /// is called "expanding").
4497 Value *LSRInstance::Expand(const LSRUse &LU,
4498                            const LSRFixup &LF,
4499                            const Formula &F,
4500                            BasicBlock::iterator IP,
4501                            SCEVExpander &Rewriter,
4502                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4503   if (LU.RigidFormula)
4504     return LF.OperandValToReplace;
4505 
4506   // Determine an input position which will be dominated by the operands and
4507   // which will dominate the result.
4508   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4509   Rewriter.setInsertPoint(&*IP);
4510 
4511   // Inform the Rewriter if we have a post-increment use, so that it can
4512   // perform an advantageous expansion.
4513   Rewriter.setPostInc(LF.PostIncLoops);
4514 
4515   // This is the type that the user actually needs.
4516   Type *OpTy = LF.OperandValToReplace->getType();
4517   // This will be the type that we'll initially expand to.
4518   Type *Ty = F.getType();
4519   if (!Ty)
4520     // No type known; just expand directly to the ultimate type.
4521     Ty = OpTy;
4522   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4523     // Expand directly to the ultimate type if it's the right size.
4524     Ty = OpTy;
4525   // This is the type to do integer arithmetic in.
4526   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4527 
4528   // Build up a list of operands to add together to form the full base.
4529   SmallVector<const SCEV *, 8> Ops;
4530 
4531   // Expand the BaseRegs portion.
4532   for (const SCEV *Reg : F.BaseRegs) {
4533     assert(!Reg->isZero() && "Zero allocated in a base register!");
4534 
4535     // If we're expanding for a post-inc user, make the post-inc adjustment.
4536     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4537     Reg = TransformForPostIncUse(Denormalize, Reg,
4538                                  LF.UserInst, LF.OperandValToReplace,
4539                                  Loops, SE, DT);
4540 
4541     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4542   }
4543 
4544   // Expand the ScaledReg portion.
4545   Value *ICmpScaledV = nullptr;
4546   if (F.Scale != 0) {
4547     const SCEV *ScaledS = F.ScaledReg;
4548 
4549     // If we're expanding for a post-inc user, make the post-inc adjustment.
4550     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4551     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4552                                      LF.UserInst, LF.OperandValToReplace,
4553                                      Loops, SE, DT);
4554 
4555     if (LU.Kind == LSRUse::ICmpZero) {
4556       // Expand ScaleReg as if it was part of the base regs.
4557       if (F.Scale == 1)
4558         Ops.push_back(
4559             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4560       else {
4561         // An interesting way of "folding" with an icmp is to use a negated
4562         // scale, which we'll implement by inserting it into the other operand
4563         // of the icmp.
4564         assert(F.Scale == -1 &&
4565                "The only scale supported by ICmpZero uses is -1!");
4566         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4567       }
4568     } else {
4569       // Otherwise just expand the scaled register and an explicit scale,
4570       // which is expected to be matched as part of the address.
4571 
4572       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4573       // Unless the addressing mode will not be folded.
4574       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4575           isAMCompletelyFolded(TTI, LU, F)) {
4576         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4577         Ops.clear();
4578         Ops.push_back(SE.getUnknown(FullV));
4579       }
4580       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4581       if (F.Scale != 1)
4582         ScaledS =
4583             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4584       Ops.push_back(ScaledS);
4585     }
4586   }
4587 
4588   // Expand the GV portion.
4589   if (F.BaseGV) {
4590     // Flush the operand list to suppress SCEVExpander hoisting.
4591     if (!Ops.empty()) {
4592       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4593       Ops.clear();
4594       Ops.push_back(SE.getUnknown(FullV));
4595     }
4596     Ops.push_back(SE.getUnknown(F.BaseGV));
4597   }
4598 
4599   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4600   // unfolded offsets. LSR assumes they both live next to their uses.
4601   if (!Ops.empty()) {
4602     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4603     Ops.clear();
4604     Ops.push_back(SE.getUnknown(FullV));
4605   }
4606 
4607   // Expand the immediate portion.
4608   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4609   if (Offset != 0) {
4610     if (LU.Kind == LSRUse::ICmpZero) {
4611       // The other interesting way of "folding" with an ICmpZero is to use a
4612       // negated immediate.
4613       if (!ICmpScaledV)
4614         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4615       else {
4616         Ops.push_back(SE.getUnknown(ICmpScaledV));
4617         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4618       }
4619     } else {
4620       // Just add the immediate values. These again are expected to be matched
4621       // as part of the address.
4622       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4623     }
4624   }
4625 
4626   // Expand the unfolded offset portion.
4627   int64_t UnfoldedOffset = F.UnfoldedOffset;
4628   if (UnfoldedOffset != 0) {
4629     // Just add the immediate values.
4630     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4631                                                        UnfoldedOffset)));
4632   }
4633 
4634   // Emit instructions summing all the operands.
4635   const SCEV *FullS = Ops.empty() ?
4636                       SE.getConstant(IntTy, 0) :
4637                       SE.getAddExpr(Ops);
4638   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4639 
4640   // We're done expanding now, so reset the rewriter.
4641   Rewriter.clearPostInc();
4642 
4643   // An ICmpZero Formula represents an ICmp which we're handling as a
4644   // comparison against zero. Now that we've expanded an expression for that
4645   // form, update the ICmp's other operand.
4646   if (LU.Kind == LSRUse::ICmpZero) {
4647     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4648     DeadInsts.emplace_back(CI->getOperand(1));
4649     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4650                            "a scale at the same time!");
4651     if (F.Scale == -1) {
4652       if (ICmpScaledV->getType() != OpTy) {
4653         Instruction *Cast =
4654           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4655                                                    OpTy, false),
4656                            ICmpScaledV, OpTy, "tmp", CI);
4657         ICmpScaledV = Cast;
4658       }
4659       CI->setOperand(1, ICmpScaledV);
4660     } else {
4661       // A scale of 1 means that the scale has been expanded as part of the
4662       // base regs.
4663       assert((F.Scale == 0 || F.Scale == 1) &&
4664              "ICmp does not support folding a global value and "
4665              "a scale at the same time!");
4666       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4667                                            -(uint64_t)Offset);
4668       if (C->getType() != OpTy)
4669         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4670                                                           OpTy, false),
4671                                   C, OpTy);
4672 
4673       CI->setOperand(1, C);
4674     }
4675   }
4676 
4677   return FullV;
4678 }
4679 
4680 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4681 /// effectively happens in their predecessor blocks, so the expression may need
4682 /// to be expanded in multiple places.
4683 void LSRInstance::RewriteForPHI(PHINode *PN,
4684                                 const LSRUse &LU,
4685                                 const LSRFixup &LF,
4686                                 const Formula &F,
4687                                 SCEVExpander &Rewriter,
4688                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4689   DenseMap<BasicBlock *, Value *> Inserted;
4690   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4691     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4692       BasicBlock *BB = PN->getIncomingBlock(i);
4693 
4694       // If this is a critical edge, split the edge so that we do not insert
4695       // the code on all predecessor/successor paths.  We do this unless this
4696       // is the canonical backedge for this loop, which complicates post-inc
4697       // users.
4698       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4699           !isa<IndirectBrInst>(BB->getTerminator()) &&
4700           !isa<CatchSwitchInst>(BB->getTerminator())) {
4701         BasicBlock *Parent = PN->getParent();
4702         Loop *PNLoop = LI.getLoopFor(Parent);
4703         if (!PNLoop || Parent != PNLoop->getHeader()) {
4704           // Split the critical edge.
4705           BasicBlock *NewBB = nullptr;
4706           if (!Parent->isLandingPad()) {
4707             NewBB = SplitCriticalEdge(BB, Parent,
4708                                       CriticalEdgeSplittingOptions(&DT, &LI)
4709                                           .setMergeIdenticalEdges()
4710                                           .setDontDeleteUselessPHIs());
4711           } else {
4712             SmallVector<BasicBlock*, 2> NewBBs;
4713             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4714             NewBB = NewBBs[0];
4715           }
4716           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4717           // phi predecessors are identical. The simple thing to do is skip
4718           // splitting in this case rather than complicate the API.
4719           if (NewBB) {
4720             // If PN is outside of the loop and BB is in the loop, we want to
4721             // move the block to be immediately before the PHI block, not
4722             // immediately after BB.
4723             if (L->contains(BB) && !L->contains(PN))
4724               NewBB->moveBefore(PN->getParent());
4725 
4726             // Splitting the edge can reduce the number of PHI entries we have.
4727             e = PN->getNumIncomingValues();
4728             BB = NewBB;
4729             i = PN->getBasicBlockIndex(BB);
4730           }
4731         }
4732       }
4733 
4734       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4735         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4736       if (!Pair.second)
4737         PN->setIncomingValue(i, Pair.first->second);
4738       else {
4739         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4740                               Rewriter, DeadInsts);
4741 
4742         // If this is reuse-by-noop-cast, insert the noop cast.
4743         Type *OpTy = LF.OperandValToReplace->getType();
4744         if (FullV->getType() != OpTy)
4745           FullV =
4746             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4747                                                      OpTy, false),
4748                              FullV, LF.OperandValToReplace->getType(),
4749                              "tmp", BB->getTerminator());
4750 
4751         PN->setIncomingValue(i, FullV);
4752         Pair.first->second = FullV;
4753       }
4754     }
4755 }
4756 
4757 /// Emit instructions for the leading candidate expression for this LSRUse (this
4758 /// is called "expanding"), and update the UserInst to reference the newly
4759 /// expanded value.
4760 void LSRInstance::Rewrite(const LSRUse &LU,
4761                           const LSRFixup &LF,
4762                           const Formula &F,
4763                           SCEVExpander &Rewriter,
4764                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4765   // First, find an insertion point that dominates UserInst. For PHI nodes,
4766   // find the nearest block which dominates all the relevant uses.
4767   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4768     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
4769   } else {
4770     Value *FullV =
4771       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4772 
4773     // If this is reuse-by-noop-cast, insert the noop cast.
4774     Type *OpTy = LF.OperandValToReplace->getType();
4775     if (FullV->getType() != OpTy) {
4776       Instruction *Cast =
4777         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4778                          FullV, OpTy, "tmp", LF.UserInst);
4779       FullV = Cast;
4780     }
4781 
4782     // Update the user. ICmpZero is handled specially here (for now) because
4783     // Expand may have updated one of the operands of the icmp already, and
4784     // its new value may happen to be equal to LF.OperandValToReplace, in
4785     // which case doing replaceUsesOfWith leads to replacing both operands
4786     // with the same value. TODO: Reorganize this.
4787     if (LU.Kind == LSRUse::ICmpZero)
4788       LF.UserInst->setOperand(0, FullV);
4789     else
4790       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4791   }
4792 
4793   DeadInsts.emplace_back(LF.OperandValToReplace);
4794 }
4795 
4796 /// Rewrite all the fixup locations with new values, following the chosen
4797 /// solution.
4798 void LSRInstance::ImplementSolution(
4799     const SmallVectorImpl<const Formula *> &Solution) {
4800   // Keep track of instructions we may have made dead, so that
4801   // we can remove them after we are done working.
4802   SmallVector<WeakVH, 16> DeadInsts;
4803 
4804   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4805                         "lsr");
4806 #ifndef NDEBUG
4807   Rewriter.setDebugType(DEBUG_TYPE);
4808 #endif
4809   Rewriter.disableCanonicalMode();
4810   Rewriter.enableLSRMode();
4811   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4812 
4813   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4814   for (const IVChain &Chain : IVChainVec) {
4815     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4816       Rewriter.setChainedPhi(PN);
4817   }
4818 
4819   // Expand the new value definitions and update the users.
4820   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
4821     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
4822       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
4823       Changed = true;
4824     }
4825 
4826   for (const IVChain &Chain : IVChainVec) {
4827     GenerateIVChain(Chain, Rewriter, DeadInsts);
4828     Changed = true;
4829   }
4830   // Clean up after ourselves. This must be done before deleting any
4831   // instructions.
4832   Rewriter.clear();
4833 
4834   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4835 }
4836 
4837 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4838                          DominatorTree &DT, LoopInfo &LI,
4839                          const TargetTransformInfo &TTI)
4840     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4841       IVIncInsertPos(nullptr) {
4842   // If LoopSimplify form is not available, stay out of trouble.
4843   if (!L->isLoopSimplifyForm())
4844     return;
4845 
4846   // If there's no interesting work to be done, bail early.
4847   if (IU.empty()) return;
4848 
4849   // If there's too much analysis to be done, bail early. We won't be able to
4850   // model the problem anyway.
4851   unsigned NumUsers = 0;
4852   for (const IVStrideUse &U : IU) {
4853     if (++NumUsers > MaxIVUsers) {
4854       (void)U;
4855       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4856       return;
4857     }
4858     // Bail out if we have a PHI on an EHPad that gets a value from a
4859     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4860     // no good place to stick any instructions.
4861     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4862        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4863        if (isa<FuncletPadInst>(FirstNonPHI) ||
4864            isa<CatchSwitchInst>(FirstNonPHI))
4865          for (BasicBlock *PredBB : PN->blocks())
4866            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4867              return;
4868     }
4869   }
4870 
4871 #ifndef NDEBUG
4872   // All dominating loops must have preheaders, or SCEVExpander may not be able
4873   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4874   //
4875   // IVUsers analysis should only create users that are dominated by simple loop
4876   // headers. Since this loop should dominate all of its users, its user list
4877   // should be empty if this loop itself is not within a simple loop nest.
4878   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4879        Rung; Rung = Rung->getIDom()) {
4880     BasicBlock *BB = Rung->getBlock();
4881     const Loop *DomLoop = LI.getLoopFor(BB);
4882     if (DomLoop && DomLoop->getHeader() == BB) {
4883       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4884     }
4885   }
4886 #endif // DEBUG
4887 
4888   DEBUG(dbgs() << "\nLSR on loop ";
4889         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4890         dbgs() << ":\n");
4891 
4892   // First, perform some low-level loop optimizations.
4893   OptimizeShadowIV();
4894   OptimizeLoopTermCond();
4895 
4896   // If loop preparation eliminates all interesting IV users, bail.
4897   if (IU.empty()) return;
4898 
4899   // Skip nested loops until we can model them better with formulae.
4900   if (!L->empty()) {
4901     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4902     return;
4903   }
4904 
4905   // Start collecting data and preparing for the solver.
4906   CollectChains();
4907   CollectInterestingTypesAndFactors();
4908   CollectFixupsAndInitialFormulae();
4909   CollectLoopInvariantFixupsAndFormulae();
4910 
4911   assert(!Uses.empty() && "IVUsers reported at least one use");
4912   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4913         print_uses(dbgs()));
4914 
4915   // Now use the reuse data to generate a bunch of interesting ways
4916   // to formulate the values needed for the uses.
4917   GenerateAllReuseFormulae();
4918 
4919   FilterOutUndesirableDedicatedRegisters();
4920   NarrowSearchSpaceUsingHeuristics();
4921 
4922   SmallVector<const Formula *, 8> Solution;
4923   Solve(Solution);
4924 
4925   // Release memory that is no longer needed.
4926   Factors.clear();
4927   Types.clear();
4928   RegUses.clear();
4929 
4930   if (Solution.empty())
4931     return;
4932 
4933 #ifndef NDEBUG
4934   // Formulae should be legal.
4935   for (const LSRUse &LU : Uses) {
4936     for (const Formula &F : LU.Formulae)
4937       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4938                         F) && "Illegal formula generated!");
4939   };
4940 #endif
4941 
4942   // Now that we've decided what we want, make it so.
4943   ImplementSolution(Solution);
4944 }
4945 
4946 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4947   if (Factors.empty() && Types.empty()) return;
4948 
4949   OS << "LSR has identified the following interesting factors and types: ";
4950   bool First = true;
4951 
4952   for (int64_t Factor : Factors) {
4953     if (!First) OS << ", ";
4954     First = false;
4955     OS << '*' << Factor;
4956   }
4957 
4958   for (Type *Ty : Types) {
4959     if (!First) OS << ", ";
4960     First = false;
4961     OS << '(' << *Ty << ')';
4962   }
4963   OS << '\n';
4964 }
4965 
4966 void LSRInstance::print_fixups(raw_ostream &OS) const {
4967   OS << "LSR is examining the following fixup sites:\n";
4968   for (const LSRUse &LU : Uses)
4969     for (const LSRFixup &LF : LU.Fixups) {
4970       dbgs() << "  ";
4971       LF.print(OS);
4972       OS << '\n';
4973     }
4974 }
4975 
4976 void LSRInstance::print_uses(raw_ostream &OS) const {
4977   OS << "LSR is examining the following uses:\n";
4978   for (const LSRUse &LU : Uses) {
4979     dbgs() << "  ";
4980     LU.print(OS);
4981     OS << '\n';
4982     for (const Formula &F : LU.Formulae) {
4983       OS << "    ";
4984       F.print(OS);
4985       OS << '\n';
4986     }
4987   }
4988 }
4989 
4990 void LSRInstance::print(raw_ostream &OS) const {
4991   print_factors_and_types(OS);
4992   print_fixups(OS);
4993   print_uses(OS);
4994 }
4995 
4996 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4997 LLVM_DUMP_METHOD void LSRInstance::dump() const {
4998   print(errs()); errs() << '\n';
4999 }
5000 #endif
5001 
5002 namespace {
5003 
5004 class LoopStrengthReduce : public LoopPass {
5005 public:
5006   static char ID; // Pass ID, replacement for typeid
5007 
5008   LoopStrengthReduce();
5009 
5010 private:
5011   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5012   void getAnalysisUsage(AnalysisUsage &AU) const override;
5013 };
5014 
5015 } // end anonymous namespace
5016 
5017 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5018   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5019 }
5020 
5021 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5022   // We split critical edges, so we change the CFG.  However, we do update
5023   // many analyses if they are around.
5024   AU.addPreservedID(LoopSimplifyID);
5025 
5026   AU.addRequired<LoopInfoWrapperPass>();
5027   AU.addPreserved<LoopInfoWrapperPass>();
5028   AU.addRequiredID(LoopSimplifyID);
5029   AU.addRequired<DominatorTreeWrapperPass>();
5030   AU.addPreserved<DominatorTreeWrapperPass>();
5031   AU.addRequired<ScalarEvolutionWrapperPass>();
5032   AU.addPreserved<ScalarEvolutionWrapperPass>();
5033   // Requiring LoopSimplify a second time here prevents IVUsers from running
5034   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5035   AU.addRequiredID(LoopSimplifyID);
5036   AU.addRequired<IVUsersWrapperPass>();
5037   AU.addPreserved<IVUsersWrapperPass>();
5038   AU.addRequired<TargetTransformInfoWrapperPass>();
5039 }
5040 
5041 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5042                                DominatorTree &DT, LoopInfo &LI,
5043                                const TargetTransformInfo &TTI) {
5044   bool Changed = false;
5045 
5046   // Run the main LSR transformation.
5047   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5048 
5049   // Remove any extra phis created by processing inner loops.
5050   Changed |= DeleteDeadPHIs(L->getHeader());
5051   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5052     SmallVector<WeakVH, 16> DeadInsts;
5053     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5054     SCEVExpander Rewriter(SE, DL, "lsr");
5055 #ifndef NDEBUG
5056     Rewriter.setDebugType(DEBUG_TYPE);
5057 #endif
5058     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5059     if (numFolded) {
5060       Changed = true;
5061       DeleteTriviallyDeadInstructions(DeadInsts);
5062       DeleteDeadPHIs(L->getHeader());
5063     }
5064   }
5065   return Changed;
5066 }
5067 
5068 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5069   if (skipLoop(L))
5070     return false;
5071 
5072   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5073   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5074   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5075   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5076   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5077       *L->getHeader()->getParent());
5078   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5079 }
5080 
5081 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5082                                               LoopStandardAnalysisResults &AR,
5083                                               LPMUpdater &) {
5084   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5085                           AR.DT, AR.LI, AR.TTI))
5086     return PreservedAnalyses::all();
5087 
5088   return getLoopPassPreservedAnalyses();
5089 }
5090 
5091 char LoopStrengthReduce::ID = 0;
5092 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5093                       "Loop Strength Reduction", false, false)
5094 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5095 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5096 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5097 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5098 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5099 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5100 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5101                     "Loop Strength Reduction", false, false)
5102 
5103 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5104