1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar.h"
57 #include "llvm/ADT/DenseSet.h"
58 #include "llvm/ADT/Hashing.h"
59 #include "llvm/ADT/STLExtras.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/ADT/SmallBitVector.h"
62 #include "llvm/Analysis/IVUsers.h"
63 #include "llvm/Analysis/LoopPass.h"
64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
65 #include "llvm/Analysis/TargetTransformInfo.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/Dominators.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/IR/IntrinsicInst.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/ValueHandle.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include <algorithm>
79 using namespace llvm;
80 
81 #define DEBUG_TYPE "loop-reduce"
82 
83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
84 /// bail out. This threshold is far beyond the number of users that LSR can
85 /// conceivably solve, so it should not affect generated code, but catches the
86 /// worst cases before LSR burns too much compile time and stack space.
87 static const unsigned MaxIVUsers = 200;
88 
89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
90 // It's currently disabled until we can determine whether it's truly useful or
91 // not. The flag should be removed after the v3.0 release.
92 // This is now needed for ivchains.
93 static cl::opt<bool> EnablePhiElim(
94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
95   cl::desc("Enable LSR phi elimination"));
96 
97 #ifndef NDEBUG
98 // Stress test IV chain generation.
99 static cl::opt<bool> StressIVChain(
100   "stress-ivchain", cl::Hidden, cl::init(false),
101   cl::desc("Stress test LSR IV chains"));
102 #else
103 static bool StressIVChain = false;
104 #endif
105 
106 namespace {
107 
108 struct MemAccessTy {
109   /// Used in situations where the accessed memory type is unknown.
110   static const unsigned UnknownAddressSpace = ~0u;
111 
112   Type *MemTy;
113   unsigned AddrSpace;
114 
115   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
116 
117   MemAccessTy(Type *Ty, unsigned AS) :
118     MemTy(Ty), AddrSpace(AS) {}
119 
120   bool operator==(MemAccessTy Other) const {
121     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
122   }
123 
124   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
125 
126   static MemAccessTy getUnknown(LLVMContext &Ctx) {
127     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
128   }
129 };
130 
131 /// This class holds data which is used to order reuse candidates.
132 class RegSortData {
133 public:
134   /// This represents the set of LSRUse indices which reference
135   /// a particular register.
136   SmallBitVector UsedByIndices;
137 
138   void print(raw_ostream &OS) const;
139   void dump() const;
140 };
141 
142 }
143 
144 void RegSortData::print(raw_ostream &OS) const {
145   OS << "[NumUses=" << UsedByIndices.count() << ']';
146 }
147 
148 LLVM_DUMP_METHOD
149 void RegSortData::dump() const {
150   print(errs()); errs() << '\n';
151 }
152 
153 namespace {
154 
155 /// Map register candidates to information about how they are used.
156 class RegUseTracker {
157   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
158 
159   RegUsesTy RegUsesMap;
160   SmallVector<const SCEV *, 16> RegSequence;
161 
162 public:
163   void countRegister(const SCEV *Reg, size_t LUIdx);
164   void dropRegister(const SCEV *Reg, size_t LUIdx);
165   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
166 
167   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
168 
169   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
170 
171   void clear();
172 
173   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
174   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
175   iterator begin() { return RegSequence.begin(); }
176   iterator end()   { return RegSequence.end(); }
177   const_iterator begin() const { return RegSequence.begin(); }
178   const_iterator end() const   { return RegSequence.end(); }
179 };
180 
181 }
182 
183 void
184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
185   std::pair<RegUsesTy::iterator, bool> Pair =
186     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
187   RegSortData &RSD = Pair.first->second;
188   if (Pair.second)
189     RegSequence.push_back(Reg);
190   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
191   RSD.UsedByIndices.set(LUIdx);
192 }
193 
194 void
195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
196   RegUsesTy::iterator It = RegUsesMap.find(Reg);
197   assert(It != RegUsesMap.end());
198   RegSortData &RSD = It->second;
199   assert(RSD.UsedByIndices.size() > LUIdx);
200   RSD.UsedByIndices.reset(LUIdx);
201 }
202 
203 void
204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
205   assert(LUIdx <= LastLUIdx);
206 
207   // Update RegUses. The data structure is not optimized for this purpose;
208   // we must iterate through it and update each of the bit vectors.
209   for (auto &Pair : RegUsesMap) {
210     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
211     if (LUIdx < UsedByIndices.size())
212       UsedByIndices[LUIdx] =
213         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
214     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
215   }
216 }
217 
218 bool
219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
220   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
221   if (I == RegUsesMap.end())
222     return false;
223   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
224   int i = UsedByIndices.find_first();
225   if (i == -1) return false;
226   if ((size_t)i != LUIdx) return true;
227   return UsedByIndices.find_next(i) != -1;
228 }
229 
230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
231   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
232   assert(I != RegUsesMap.end() && "Unknown register!");
233   return I->second.UsedByIndices;
234 }
235 
236 void RegUseTracker::clear() {
237   RegUsesMap.clear();
238   RegSequence.clear();
239 }
240 
241 namespace {
242 
243 /// This class holds information that describes a formula for computing
244 /// satisfying a use. It may include broken-out immediates and scaled registers.
245 struct Formula {
246   /// Global base address used for complex addressing.
247   GlobalValue *BaseGV;
248 
249   /// Base offset for complex addressing.
250   int64_t BaseOffset;
251 
252   /// Whether any complex addressing has a base register.
253   bool HasBaseReg;
254 
255   /// The scale of any complex addressing.
256   int64_t Scale;
257 
258   /// The list of "base" registers for this use. When this is non-empty. The
259   /// canonical representation of a formula is
260   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
261   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
262   /// #1 enforces that the scaled register is always used when at least two
263   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
264   /// #2 enforces that 1 * reg is reg.
265   /// This invariant can be temporarly broken while building a formula.
266   /// However, every formula inserted into the LSRInstance must be in canonical
267   /// form.
268   SmallVector<const SCEV *, 4> BaseRegs;
269 
270   /// The 'scaled' register for this use. This should be non-null when Scale is
271   /// not zero.
272   const SCEV *ScaledReg;
273 
274   /// An additional constant offset which added near the use. This requires a
275   /// temporary register, but the offset itself can live in an add immediate
276   /// field rather than a register.
277   int64_t UnfoldedOffset;
278 
279   Formula()
280       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
281         ScaledReg(nullptr), UnfoldedOffset(0) {}
282 
283   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
284 
285   bool isCanonical() const;
286 
287   void canonicalize();
288 
289   bool unscale();
290 
291   size_t getNumRegs() const;
292   Type *getType() const;
293 
294   void deleteBaseReg(const SCEV *&S);
295 
296   bool referencesReg(const SCEV *S) const;
297   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
298                                   const RegUseTracker &RegUses) const;
299 
300   void print(raw_ostream &OS) const;
301   void dump() const;
302 };
303 
304 }
305 
306 /// Recursion helper for initialMatch.
307 static void DoInitialMatch(const SCEV *S, Loop *L,
308                            SmallVectorImpl<const SCEV *> &Good,
309                            SmallVectorImpl<const SCEV *> &Bad,
310                            ScalarEvolution &SE) {
311   // Collect expressions which properly dominate the loop header.
312   if (SE.properlyDominates(S, L->getHeader())) {
313     Good.push_back(S);
314     return;
315   }
316 
317   // Look at add operands.
318   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
319     for (const SCEV *S : Add->operands())
320       DoInitialMatch(S, L, Good, Bad, SE);
321     return;
322   }
323 
324   // Look at addrec operands.
325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
326     if (!AR->getStart()->isZero()) {
327       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
328       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
329                                       AR->getStepRecurrence(SE),
330                                       // FIXME: AR->getNoWrapFlags()
331                                       AR->getLoop(), SCEV::FlagAnyWrap),
332                      L, Good, Bad, SE);
333       return;
334     }
335 
336   // Handle a multiplication by -1 (negation) if it didn't fold.
337   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
338     if (Mul->getOperand(0)->isAllOnesValue()) {
339       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
340       const SCEV *NewMul = SE.getMulExpr(Ops);
341 
342       SmallVector<const SCEV *, 4> MyGood;
343       SmallVector<const SCEV *, 4> MyBad;
344       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
345       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
346         SE.getEffectiveSCEVType(NewMul->getType())));
347       for (const SCEV *S : MyGood)
348         Good.push_back(SE.getMulExpr(NegOne, S));
349       for (const SCEV *S : MyBad)
350         Bad.push_back(SE.getMulExpr(NegOne, S));
351       return;
352     }
353 
354   // Ok, we can't do anything interesting. Just stuff the whole thing into a
355   // register and hope for the best.
356   Bad.push_back(S);
357 }
358 
359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
360 /// all loop-invariant and loop-computable values in a single base register.
361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
362   SmallVector<const SCEV *, 4> Good;
363   SmallVector<const SCEV *, 4> Bad;
364   DoInitialMatch(S, L, Good, Bad, SE);
365   if (!Good.empty()) {
366     const SCEV *Sum = SE.getAddExpr(Good);
367     if (!Sum->isZero())
368       BaseRegs.push_back(Sum);
369     HasBaseReg = true;
370   }
371   if (!Bad.empty()) {
372     const SCEV *Sum = SE.getAddExpr(Bad);
373     if (!Sum->isZero())
374       BaseRegs.push_back(Sum);
375     HasBaseReg = true;
376   }
377   canonicalize();
378 }
379 
380 /// \brief Check whether or not this formula statisfies the canonical
381 /// representation.
382 /// \see Formula::BaseRegs.
383 bool Formula::isCanonical() const {
384   if (ScaledReg)
385     return Scale != 1 || !BaseRegs.empty();
386   return BaseRegs.size() <= 1;
387 }
388 
389 /// \brief Helper method to morph a formula into its canonical representation.
390 /// \see Formula::BaseRegs.
391 /// Every formula having more than one base register, must use the ScaledReg
392 /// field. Otherwise, we would have to do special cases everywhere in LSR
393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
394 /// On the other hand, 1*reg should be canonicalized into reg.
395 void Formula::canonicalize() {
396   if (isCanonical())
397     return;
398   // So far we did not need this case. This is easy to implement but it is
399   // useless to maintain dead code. Beside it could hurt compile time.
400   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
401   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
402   ScaledReg = BaseRegs.back();
403   BaseRegs.pop_back();
404   Scale = 1;
405   size_t BaseRegsSize = BaseRegs.size();
406   size_t Try = 0;
407   // If ScaledReg is an invariant, try to find a variant expression.
408   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
409     std::swap(ScaledReg, BaseRegs[Try++]);
410 }
411 
412 /// \brief Get rid of the scale in the formula.
413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
414 /// \return true if it was possible to get rid of the scale, false otherwise.
415 /// \note After this operation the formula may not be in the canonical form.
416 bool Formula::unscale() {
417   if (Scale != 1)
418     return false;
419   Scale = 0;
420   BaseRegs.push_back(ScaledReg);
421   ScaledReg = nullptr;
422   return true;
423 }
424 
425 /// Return the total number of register operands used by this formula. This does
426 /// not include register uses implied by non-constant addrec strides.
427 size_t Formula::getNumRegs() const {
428   return !!ScaledReg + BaseRegs.size();
429 }
430 
431 /// Return the type of this formula, if it has one, or null otherwise. This type
432 /// is meaningless except for the bit size.
433 Type *Formula::getType() const {
434   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
435          ScaledReg ? ScaledReg->getType() :
436          BaseGV ? BaseGV->getType() :
437          nullptr;
438 }
439 
440 /// Delete the given base reg from the BaseRegs list.
441 void Formula::deleteBaseReg(const SCEV *&S) {
442   if (&S != &BaseRegs.back())
443     std::swap(S, BaseRegs.back());
444   BaseRegs.pop_back();
445 }
446 
447 /// Test if this formula references the given register.
448 bool Formula::referencesReg(const SCEV *S) const {
449   return S == ScaledReg ||
450          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
451 }
452 
453 /// Test whether this formula uses registers which are used by uses other than
454 /// the use with the given index.
455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
456                                          const RegUseTracker &RegUses) const {
457   if (ScaledReg)
458     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
459       return true;
460   for (const SCEV *BaseReg : BaseRegs)
461     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
462       return true;
463   return false;
464 }
465 
466 void Formula::print(raw_ostream &OS) const {
467   bool First = true;
468   if (BaseGV) {
469     if (!First) OS << " + "; else First = false;
470     BaseGV->printAsOperand(OS, /*PrintType=*/false);
471   }
472   if (BaseOffset != 0) {
473     if (!First) OS << " + "; else First = false;
474     OS << BaseOffset;
475   }
476   for (const SCEV *BaseReg : BaseRegs) {
477     if (!First) OS << " + "; else First = false;
478     OS << "reg(" << *BaseReg << ')';
479   }
480   if (HasBaseReg && BaseRegs.empty()) {
481     if (!First) OS << " + "; else First = false;
482     OS << "**error: HasBaseReg**";
483   } else if (!HasBaseReg && !BaseRegs.empty()) {
484     if (!First) OS << " + "; else First = false;
485     OS << "**error: !HasBaseReg**";
486   }
487   if (Scale != 0) {
488     if (!First) OS << " + "; else First = false;
489     OS << Scale << "*reg(";
490     if (ScaledReg)
491       OS << *ScaledReg;
492     else
493       OS << "<unknown>";
494     OS << ')';
495   }
496   if (UnfoldedOffset != 0) {
497     if (!First) OS << " + ";
498     OS << "imm(" << UnfoldedOffset << ')';
499   }
500 }
501 
502 LLVM_DUMP_METHOD
503 void Formula::dump() const {
504   print(errs()); errs() << '\n';
505 }
506 
507 /// Return true if the given addrec can be sign-extended without changing its
508 /// value.
509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
510   Type *WideTy =
511     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
512   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
513 }
514 
515 /// Return true if the given add can be sign-extended without changing its
516 /// value.
517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
518   Type *WideTy =
519     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
520   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
521 }
522 
523 /// Return true if the given mul can be sign-extended without changing its
524 /// value.
525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
526   Type *WideTy =
527     IntegerType::get(SE.getContext(),
528                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
529   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
530 }
531 
532 /// Return an expression for LHS /s RHS, if it can be determined and if the
533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
535 /// the multiplication may overflow, which is useful when the result will be
536 /// used in a context where the most significant bits are ignored.
537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
538                                 ScalarEvolution &SE,
539                                 bool IgnoreSignificantBits = false) {
540   // Handle the trivial case, which works for any SCEV type.
541   if (LHS == RHS)
542     return SE.getConstant(LHS->getType(), 1);
543 
544   // Handle a few RHS special cases.
545   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
546   if (RC) {
547     const APInt &RA = RC->getAPInt();
548     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
549     // some folding.
550     if (RA.isAllOnesValue())
551       return SE.getMulExpr(LHS, RC);
552     // Handle x /s 1 as x.
553     if (RA == 1)
554       return LHS;
555   }
556 
557   // Check for a division of a constant by a constant.
558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
559     if (!RC)
560       return nullptr;
561     const APInt &LA = C->getAPInt();
562     const APInt &RA = RC->getAPInt();
563     if (LA.srem(RA) != 0)
564       return nullptr;
565     return SE.getConstant(LA.sdiv(RA));
566   }
567 
568   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
569   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
570     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
571       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
572                                       IgnoreSignificantBits);
573       if (!Step) return nullptr;
574       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
575                                        IgnoreSignificantBits);
576       if (!Start) return nullptr;
577       // FlagNW is independent of the start value, step direction, and is
578       // preserved with smaller magnitude steps.
579       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
580       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
581     }
582     return nullptr;
583   }
584 
585   // Distribute the sdiv over add operands, if the add doesn't overflow.
586   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
587     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
588       SmallVector<const SCEV *, 8> Ops;
589       for (const SCEV *S : Add->operands()) {
590         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
591         if (!Op) return nullptr;
592         Ops.push_back(Op);
593       }
594       return SE.getAddExpr(Ops);
595     }
596     return nullptr;
597   }
598 
599   // Check for a multiply operand that we can pull RHS out of.
600   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
601     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
602       SmallVector<const SCEV *, 4> Ops;
603       bool Found = false;
604       for (const SCEV *S : Mul->operands()) {
605         if (!Found)
606           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
607                                            IgnoreSignificantBits)) {
608             S = Q;
609             Found = true;
610           }
611         Ops.push_back(S);
612       }
613       return Found ? SE.getMulExpr(Ops) : nullptr;
614     }
615     return nullptr;
616   }
617 
618   // Otherwise we don't know.
619   return nullptr;
620 }
621 
622 /// If S involves the addition of a constant integer value, return that integer
623 /// value, and mutate S to point to a new SCEV with that value excluded.
624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
625   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
626     if (C->getAPInt().getMinSignedBits() <= 64) {
627       S = SE.getConstant(C->getType(), 0);
628       return C->getValue()->getSExtValue();
629     }
630   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
631     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
632     int64_t Result = ExtractImmediate(NewOps.front(), SE);
633     if (Result != 0)
634       S = SE.getAddExpr(NewOps);
635     return Result;
636   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
637     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
638     int64_t Result = ExtractImmediate(NewOps.front(), SE);
639     if (Result != 0)
640       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
641                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
642                            SCEV::FlagAnyWrap);
643     return Result;
644   }
645   return 0;
646 }
647 
648 /// If S involves the addition of a GlobalValue address, return that symbol, and
649 /// mutate S to point to a new SCEV with that value excluded.
650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
651   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
652     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
653       S = SE.getConstant(GV->getType(), 0);
654       return GV;
655     }
656   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
657     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
658     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
659     if (Result)
660       S = SE.getAddExpr(NewOps);
661     return Result;
662   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
663     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
664     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
665     if (Result)
666       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
667                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
668                            SCEV::FlagAnyWrap);
669     return Result;
670   }
671   return nullptr;
672 }
673 
674 /// Returns true if the specified instruction is using the specified value as an
675 /// address.
676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
677   bool isAddress = isa<LoadInst>(Inst);
678   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
679     if (SI->getOperand(1) == OperandVal)
680       isAddress = true;
681   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
682     // Addressing modes can also be folded into prefetches and a variety
683     // of intrinsics.
684     switch (II->getIntrinsicID()) {
685       default: break;
686       case Intrinsic::prefetch:
687         if (II->getArgOperand(0) == OperandVal)
688           isAddress = true;
689         break;
690     }
691   }
692   return isAddress;
693 }
694 
695 /// Return the type of the memory being accessed.
696 static MemAccessTy getAccessType(const Instruction *Inst) {
697   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
698   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
699     AccessTy.MemTy = SI->getOperand(0)->getType();
700     AccessTy.AddrSpace = SI->getPointerAddressSpace();
701   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
702     AccessTy.AddrSpace = LI->getPointerAddressSpace();
703   }
704 
705   // All pointers have the same requirements, so canonicalize them to an
706   // arbitrary pointer type to minimize variation.
707   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
708     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
709                                       PTy->getAddressSpace());
710 
711   return AccessTy;
712 }
713 
714 /// Return true if this AddRec is already a phi in its loop.
715 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
716   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
717        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
718     if (SE.isSCEVable(PN->getType()) &&
719         (SE.getEffectiveSCEVType(PN->getType()) ==
720          SE.getEffectiveSCEVType(AR->getType())) &&
721         SE.getSCEV(PN) == AR)
722       return true;
723   }
724   return false;
725 }
726 
727 /// Check if expanding this expression is likely to incur significant cost. This
728 /// is tricky because SCEV doesn't track which expressions are actually computed
729 /// by the current IR.
730 ///
731 /// We currently allow expansion of IV increments that involve adds,
732 /// multiplication by constants, and AddRecs from existing phis.
733 ///
734 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
735 /// obvious multiple of the UDivExpr.
736 static bool isHighCostExpansion(const SCEV *S,
737                                 SmallPtrSetImpl<const SCEV*> &Processed,
738                                 ScalarEvolution &SE) {
739   // Zero/One operand expressions
740   switch (S->getSCEVType()) {
741   case scUnknown:
742   case scConstant:
743     return false;
744   case scTruncate:
745     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
746                                Processed, SE);
747   case scZeroExtend:
748     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
749                                Processed, SE);
750   case scSignExtend:
751     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
752                                Processed, SE);
753   }
754 
755   if (!Processed.insert(S).second)
756     return false;
757 
758   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
759     for (const SCEV *S : Add->operands()) {
760       if (isHighCostExpansion(S, Processed, SE))
761         return true;
762     }
763     return false;
764   }
765 
766   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
767     if (Mul->getNumOperands() == 2) {
768       // Multiplication by a constant is ok
769       if (isa<SCEVConstant>(Mul->getOperand(0)))
770         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
771 
772       // If we have the value of one operand, check if an existing
773       // multiplication already generates this expression.
774       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
775         Value *UVal = U->getValue();
776         for (User *UR : UVal->users()) {
777           // If U is a constant, it may be used by a ConstantExpr.
778           Instruction *UI = dyn_cast<Instruction>(UR);
779           if (UI && UI->getOpcode() == Instruction::Mul &&
780               SE.isSCEVable(UI->getType())) {
781             return SE.getSCEV(UI) == Mul;
782           }
783         }
784       }
785     }
786   }
787 
788   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
789     if (isExistingPhi(AR, SE))
790       return false;
791   }
792 
793   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
794   return true;
795 }
796 
797 /// If any of the instructions is the specified set are trivially dead, delete
798 /// them and see if this makes any of their operands subsequently dead.
799 static bool
800 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
801   bool Changed = false;
802 
803   while (!DeadInsts.empty()) {
804     Value *V = DeadInsts.pop_back_val();
805     Instruction *I = dyn_cast_or_null<Instruction>(V);
806 
807     if (!I || !isInstructionTriviallyDead(I))
808       continue;
809 
810     for (Use &O : I->operands())
811       if (Instruction *U = dyn_cast<Instruction>(O)) {
812         O = nullptr;
813         if (U->use_empty())
814           DeadInsts.emplace_back(U);
815       }
816 
817     I->eraseFromParent();
818     Changed = true;
819   }
820 
821   return Changed;
822 }
823 
824 namespace {
825 class LSRUse;
826 }
827 
828 /// \brief Check if the addressing mode defined by \p F is completely
829 /// folded in \p LU at isel time.
830 /// This includes address-mode folding and special icmp tricks.
831 /// This function returns true if \p LU can accommodate what \p F
832 /// defines and up to 1 base + 1 scaled + offset.
833 /// In other words, if \p F has several base registers, this function may
834 /// still return true. Therefore, users still need to account for
835 /// additional base registers and/or unfolded offsets to derive an
836 /// accurate cost model.
837 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
838                                  const LSRUse &LU, const Formula &F);
839 // Get the cost of the scaling factor used in F for LU.
840 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
841                                      const LSRUse &LU, const Formula &F);
842 
843 namespace {
844 
845 /// This class is used to measure and compare candidate formulae.
846 class Cost {
847   /// TODO: Some of these could be merged. Also, a lexical ordering
848   /// isn't always optimal.
849   unsigned NumRegs;
850   unsigned AddRecCost;
851   unsigned NumIVMuls;
852   unsigned NumBaseAdds;
853   unsigned ImmCost;
854   unsigned SetupCost;
855   unsigned ScaleCost;
856 
857 public:
858   Cost()
859     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
860       SetupCost(0), ScaleCost(0) {}
861 
862   bool operator<(const Cost &Other) const;
863 
864   void Lose();
865 
866 #ifndef NDEBUG
867   // Once any of the metrics loses, they must all remain losers.
868   bool isValid() {
869     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
870              | ImmCost | SetupCost | ScaleCost) != ~0u)
871       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
872            & ImmCost & SetupCost & ScaleCost) == ~0u);
873   }
874 #endif
875 
876   bool isLoser() {
877     assert(isValid() && "invalid cost");
878     return NumRegs == ~0u;
879   }
880 
881   void RateFormula(const TargetTransformInfo &TTI,
882                    const Formula &F,
883                    SmallPtrSetImpl<const SCEV *> &Regs,
884                    const DenseSet<const SCEV *> &VisitedRegs,
885                    const Loop *L,
886                    const SmallVectorImpl<int64_t> &Offsets,
887                    ScalarEvolution &SE, DominatorTree &DT,
888                    const LSRUse &LU,
889                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
890 
891   void print(raw_ostream &OS) const;
892   void dump() const;
893 
894 private:
895   void RateRegister(const SCEV *Reg,
896                     SmallPtrSetImpl<const SCEV *> &Regs,
897                     const Loop *L,
898                     ScalarEvolution &SE, DominatorTree &DT);
899   void RatePrimaryRegister(const SCEV *Reg,
900                            SmallPtrSetImpl<const SCEV *> &Regs,
901                            const Loop *L,
902                            ScalarEvolution &SE, DominatorTree &DT,
903                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
904 };
905 
906 }
907 
908 /// Tally up interesting quantities from the given register.
909 void Cost::RateRegister(const SCEV *Reg,
910                         SmallPtrSetImpl<const SCEV *> &Regs,
911                         const Loop *L,
912                         ScalarEvolution &SE, DominatorTree &DT) {
913   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
914     // If this is an addrec for another loop, don't second-guess its addrec phi
915     // nodes. LSR isn't currently smart enough to reason about more than one
916     // loop at a time. LSR has already run on inner loops, will not run on outer
917     // loops, and cannot be expected to change sibling loops.
918     if (AR->getLoop() != L) {
919       // If the AddRec exists, consider it's register free and leave it alone.
920       if (isExistingPhi(AR, SE))
921         return;
922 
923       // Otherwise, do not consider this formula at all.
924       Lose();
925       return;
926     }
927     AddRecCost += 1; /// TODO: This should be a function of the stride.
928 
929     // Add the step value register, if it needs one.
930     // TODO: The non-affine case isn't precisely modeled here.
931     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
932       if (!Regs.count(AR->getOperand(1))) {
933         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
934         if (isLoser())
935           return;
936       }
937     }
938   }
939   ++NumRegs;
940 
941   // Rough heuristic; favor registers which don't require extra setup
942   // instructions in the preheader.
943   if (!isa<SCEVUnknown>(Reg) &&
944       !isa<SCEVConstant>(Reg) &&
945       !(isa<SCEVAddRecExpr>(Reg) &&
946         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
947          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
948     ++SetupCost;
949 
950     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
951                  SE.hasComputableLoopEvolution(Reg, L);
952 }
953 
954 /// Record this register in the set. If we haven't seen it before, rate
955 /// it. Optional LoserRegs provides a way to declare any formula that refers to
956 /// one of those regs an instant loser.
957 void Cost::RatePrimaryRegister(const SCEV *Reg,
958                                SmallPtrSetImpl<const SCEV *> &Regs,
959                                const Loop *L,
960                                ScalarEvolution &SE, DominatorTree &DT,
961                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
962   if (LoserRegs && LoserRegs->count(Reg)) {
963     Lose();
964     return;
965   }
966   if (Regs.insert(Reg).second) {
967     RateRegister(Reg, Regs, L, SE, DT);
968     if (LoserRegs && isLoser())
969       LoserRegs->insert(Reg);
970   }
971 }
972 
973 void Cost::RateFormula(const TargetTransformInfo &TTI,
974                        const Formula &F,
975                        SmallPtrSetImpl<const SCEV *> &Regs,
976                        const DenseSet<const SCEV *> &VisitedRegs,
977                        const Loop *L,
978                        const SmallVectorImpl<int64_t> &Offsets,
979                        ScalarEvolution &SE, DominatorTree &DT,
980                        const LSRUse &LU,
981                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
982   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
983   // Tally up the registers.
984   if (const SCEV *ScaledReg = F.ScaledReg) {
985     if (VisitedRegs.count(ScaledReg)) {
986       Lose();
987       return;
988     }
989     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
990     if (isLoser())
991       return;
992   }
993   for (const SCEV *BaseReg : F.BaseRegs) {
994     if (VisitedRegs.count(BaseReg)) {
995       Lose();
996       return;
997     }
998     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
999     if (isLoser())
1000       return;
1001   }
1002 
1003   // Determine how many (unfolded) adds we'll need inside the loop.
1004   size_t NumBaseParts = F.getNumRegs();
1005   if (NumBaseParts > 1)
1006     // Do not count the base and a possible second register if the target
1007     // allows to fold 2 registers.
1008     NumBaseAdds +=
1009         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1010   NumBaseAdds += (F.UnfoldedOffset != 0);
1011 
1012   // Accumulate non-free scaling amounts.
1013   ScaleCost += getScalingFactorCost(TTI, LU, F);
1014 
1015   // Tally up the non-zero immediates.
1016   for (int64_t O : Offsets) {
1017     int64_t Offset = (uint64_t)O + F.BaseOffset;
1018     if (F.BaseGV)
1019       ImmCost += 64; // Handle symbolic values conservatively.
1020                      // TODO: This should probably be the pointer size.
1021     else if (Offset != 0)
1022       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1023   }
1024   assert(isValid() && "invalid cost");
1025 }
1026 
1027 /// Set this cost to a losing value.
1028 void Cost::Lose() {
1029   NumRegs = ~0u;
1030   AddRecCost = ~0u;
1031   NumIVMuls = ~0u;
1032   NumBaseAdds = ~0u;
1033   ImmCost = ~0u;
1034   SetupCost = ~0u;
1035   ScaleCost = ~0u;
1036 }
1037 
1038 /// Choose the lower cost.
1039 bool Cost::operator<(const Cost &Other) const {
1040   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1041                   ImmCost, SetupCost) <
1042          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1043                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1044                   Other.SetupCost);
1045 }
1046 
1047 void Cost::print(raw_ostream &OS) const {
1048   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1049   if (AddRecCost != 0)
1050     OS << ", with addrec cost " << AddRecCost;
1051   if (NumIVMuls != 0)
1052     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1053   if (NumBaseAdds != 0)
1054     OS << ", plus " << NumBaseAdds << " base add"
1055        << (NumBaseAdds == 1 ? "" : "s");
1056   if (ScaleCost != 0)
1057     OS << ", plus " << ScaleCost << " scale cost";
1058   if (ImmCost != 0)
1059     OS << ", plus " << ImmCost << " imm cost";
1060   if (SetupCost != 0)
1061     OS << ", plus " << SetupCost << " setup cost";
1062 }
1063 
1064 LLVM_DUMP_METHOD
1065 void Cost::dump() const {
1066   print(errs()); errs() << '\n';
1067 }
1068 
1069 namespace {
1070 
1071 /// An operand value in an instruction which is to be replaced with some
1072 /// equivalent, possibly strength-reduced, replacement.
1073 struct LSRFixup {
1074   /// The instruction which will be updated.
1075   Instruction *UserInst;
1076 
1077   /// The operand of the instruction which will be replaced. The operand may be
1078   /// used more than once; every instance will be replaced.
1079   Value *OperandValToReplace;
1080 
1081   /// If this user is to use the post-incremented value of an induction
1082   /// variable, this variable is non-null and holds the loop associated with the
1083   /// induction variable.
1084   PostIncLoopSet PostIncLoops;
1085 
1086   /// The index of the LSRUse describing the expression which this fixup needs,
1087   /// minus an offset (below).
1088   size_t LUIdx;
1089 
1090   /// A constant offset to be added to the LSRUse expression.  This allows
1091   /// multiple fixups to share the same LSRUse with different offsets, for
1092   /// example in an unrolled loop.
1093   int64_t Offset;
1094 
1095   bool isUseFullyOutsideLoop(const Loop *L) const;
1096 
1097   LSRFixup();
1098 
1099   void print(raw_ostream &OS) const;
1100   void dump() const;
1101 };
1102 
1103 }
1104 
1105 LSRFixup::LSRFixup()
1106   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
1107     Offset(0) {}
1108 
1109 /// Test whether this fixup always uses its value outside of the given loop.
1110 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1111   // PHI nodes use their value in their incoming blocks.
1112   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1113     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1114       if (PN->getIncomingValue(i) == OperandValToReplace &&
1115           L->contains(PN->getIncomingBlock(i)))
1116         return false;
1117     return true;
1118   }
1119 
1120   return !L->contains(UserInst);
1121 }
1122 
1123 void LSRFixup::print(raw_ostream &OS) const {
1124   OS << "UserInst=";
1125   // Store is common and interesting enough to be worth special-casing.
1126   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1127     OS << "store ";
1128     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1129   } else if (UserInst->getType()->isVoidTy())
1130     OS << UserInst->getOpcodeName();
1131   else
1132     UserInst->printAsOperand(OS, /*PrintType=*/false);
1133 
1134   OS << ", OperandValToReplace=";
1135   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1136 
1137   for (const Loop *PIL : PostIncLoops) {
1138     OS << ", PostIncLoop=";
1139     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1140   }
1141 
1142   if (LUIdx != ~size_t(0))
1143     OS << ", LUIdx=" << LUIdx;
1144 
1145   if (Offset != 0)
1146     OS << ", Offset=" << Offset;
1147 }
1148 
1149 LLVM_DUMP_METHOD
1150 void LSRFixup::dump() const {
1151   print(errs()); errs() << '\n';
1152 }
1153 
1154 namespace {
1155 
1156 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1157 /// SmallVectors of const SCEV*.
1158 struct UniquifierDenseMapInfo {
1159   static SmallVector<const SCEV *, 4> getEmptyKey() {
1160     SmallVector<const SCEV *, 4>  V;
1161     V.push_back(reinterpret_cast<const SCEV *>(-1));
1162     return V;
1163   }
1164 
1165   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1166     SmallVector<const SCEV *, 4> V;
1167     V.push_back(reinterpret_cast<const SCEV *>(-2));
1168     return V;
1169   }
1170 
1171   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1172     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1173   }
1174 
1175   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1176                       const SmallVector<const SCEV *, 4> &RHS) {
1177     return LHS == RHS;
1178   }
1179 };
1180 
1181 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1182 /// as uses invented by LSR itself. It includes information about what kinds of
1183 /// things can be folded into the user, information about the user itself, and
1184 /// information about how the use may be satisfied.  TODO: Represent multiple
1185 /// users of the same expression in common?
1186 class LSRUse {
1187   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1188 
1189 public:
1190   /// An enum for a kind of use, indicating what types of scaled and immediate
1191   /// operands it might support.
1192   enum KindType {
1193     Basic,   ///< A normal use, with no folding.
1194     Special, ///< A special case of basic, allowing -1 scales.
1195     Address, ///< An address use; folding according to TargetLowering
1196     ICmpZero ///< An equality icmp with both operands folded into one.
1197     // TODO: Add a generic icmp too?
1198   };
1199 
1200   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1201 
1202   KindType Kind;
1203   MemAccessTy AccessTy;
1204 
1205   SmallVector<int64_t, 8> Offsets;
1206   int64_t MinOffset;
1207   int64_t MaxOffset;
1208 
1209   /// This records whether all of the fixups using this LSRUse are outside of
1210   /// the loop, in which case some special-case heuristics may be used.
1211   bool AllFixupsOutsideLoop;
1212 
1213   /// RigidFormula is set to true to guarantee that this use will be associated
1214   /// with a single formula--the one that initially matched. Some SCEV
1215   /// expressions cannot be expanded. This allows LSR to consider the registers
1216   /// used by those expressions without the need to expand them later after
1217   /// changing the formula.
1218   bool RigidFormula;
1219 
1220   /// This records the widest use type for any fixup using this
1221   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1222   /// fixup widths to be equivalent, because the narrower one may be relying on
1223   /// the implicit truncation to truncate away bogus bits.
1224   Type *WidestFixupType;
1225 
1226   /// A list of ways to build a value that can satisfy this user.  After the
1227   /// list is populated, one of these is selected heuristically and used to
1228   /// formulate a replacement for OperandValToReplace in UserInst.
1229   SmallVector<Formula, 12> Formulae;
1230 
1231   /// The set of register candidates used by all formulae in this LSRUse.
1232   SmallPtrSet<const SCEV *, 4> Regs;
1233 
1234   LSRUse(KindType K, MemAccessTy AT)
1235       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1236         AllFixupsOutsideLoop(true), RigidFormula(false),
1237         WidestFixupType(nullptr) {}
1238 
1239   bool HasFormulaWithSameRegs(const Formula &F) const;
1240   bool InsertFormula(const Formula &F);
1241   void DeleteFormula(Formula &F);
1242   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1243 
1244   void print(raw_ostream &OS) const;
1245   void dump() const;
1246 };
1247 
1248 }
1249 
1250 /// Test whether this use as a formula which has the same registers as the given
1251 /// formula.
1252 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1253   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1254   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1255   // Unstable sort by host order ok, because this is only used for uniquifying.
1256   std::sort(Key.begin(), Key.end());
1257   return Uniquifier.count(Key);
1258 }
1259 
1260 /// If the given formula has not yet been inserted, add it to the list, and
1261 /// return true. Return false otherwise.  The formula must be in canonical form.
1262 bool LSRUse::InsertFormula(const Formula &F) {
1263   assert(F.isCanonical() && "Invalid canonical representation");
1264 
1265   if (!Formulae.empty() && RigidFormula)
1266     return false;
1267 
1268   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1269   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1270   // Unstable sort by host order ok, because this is only used for uniquifying.
1271   std::sort(Key.begin(), Key.end());
1272 
1273   if (!Uniquifier.insert(Key).second)
1274     return false;
1275 
1276   // Using a register to hold the value of 0 is not profitable.
1277   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1278          "Zero allocated in a scaled register!");
1279 #ifndef NDEBUG
1280   for (const SCEV *BaseReg : F.BaseRegs)
1281     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1282 #endif
1283 
1284   // Add the formula to the list.
1285   Formulae.push_back(F);
1286 
1287   // Record registers now being used by this use.
1288   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1289   if (F.ScaledReg)
1290     Regs.insert(F.ScaledReg);
1291 
1292   return true;
1293 }
1294 
1295 /// Remove the given formula from this use's list.
1296 void LSRUse::DeleteFormula(Formula &F) {
1297   if (&F != &Formulae.back())
1298     std::swap(F, Formulae.back());
1299   Formulae.pop_back();
1300 }
1301 
1302 /// Recompute the Regs field, and update RegUses.
1303 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1304   // Now that we've filtered out some formulae, recompute the Regs set.
1305   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1306   Regs.clear();
1307   for (const Formula &F : Formulae) {
1308     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1309     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1310   }
1311 
1312   // Update the RegTracker.
1313   for (const SCEV *S : OldRegs)
1314     if (!Regs.count(S))
1315       RegUses.dropRegister(S, LUIdx);
1316 }
1317 
1318 void LSRUse::print(raw_ostream &OS) const {
1319   OS << "LSR Use: Kind=";
1320   switch (Kind) {
1321   case Basic:    OS << "Basic"; break;
1322   case Special:  OS << "Special"; break;
1323   case ICmpZero: OS << "ICmpZero"; break;
1324   case Address:
1325     OS << "Address of ";
1326     if (AccessTy.MemTy->isPointerTy())
1327       OS << "pointer"; // the full pointer type could be really verbose
1328     else {
1329       OS << *AccessTy.MemTy;
1330     }
1331 
1332     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1333   }
1334 
1335   OS << ", Offsets={";
1336   bool NeedComma = false;
1337   for (int64_t O : Offsets) {
1338     if (NeedComma) OS << ',';
1339     OS << O;
1340     NeedComma = true;
1341   }
1342   OS << '}';
1343 
1344   if (AllFixupsOutsideLoop)
1345     OS << ", all-fixups-outside-loop";
1346 
1347   if (WidestFixupType)
1348     OS << ", widest fixup type: " << *WidestFixupType;
1349 }
1350 
1351 LLVM_DUMP_METHOD
1352 void LSRUse::dump() const {
1353   print(errs()); errs() << '\n';
1354 }
1355 
1356 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1357                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1358                                  GlobalValue *BaseGV, int64_t BaseOffset,
1359                                  bool HasBaseReg, int64_t Scale) {
1360   switch (Kind) {
1361   case LSRUse::Address:
1362     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1363                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1364 
1365   case LSRUse::ICmpZero:
1366     // There's not even a target hook for querying whether it would be legal to
1367     // fold a GV into an ICmp.
1368     if (BaseGV)
1369       return false;
1370 
1371     // ICmp only has two operands; don't allow more than two non-trivial parts.
1372     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1373       return false;
1374 
1375     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1376     // putting the scaled register in the other operand of the icmp.
1377     if (Scale != 0 && Scale != -1)
1378       return false;
1379 
1380     // If we have low-level target information, ask the target if it can fold an
1381     // integer immediate on an icmp.
1382     if (BaseOffset != 0) {
1383       // We have one of:
1384       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1385       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1386       // Offs is the ICmp immediate.
1387       if (Scale == 0)
1388         // The cast does the right thing with INT64_MIN.
1389         BaseOffset = -(uint64_t)BaseOffset;
1390       return TTI.isLegalICmpImmediate(BaseOffset);
1391     }
1392 
1393     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1394     return true;
1395 
1396   case LSRUse::Basic:
1397     // Only handle single-register values.
1398     return !BaseGV && Scale == 0 && BaseOffset == 0;
1399 
1400   case LSRUse::Special:
1401     // Special case Basic to handle -1 scales.
1402     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1403   }
1404 
1405   llvm_unreachable("Invalid LSRUse Kind!");
1406 }
1407 
1408 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1409                                  int64_t MinOffset, int64_t MaxOffset,
1410                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1411                                  GlobalValue *BaseGV, int64_t BaseOffset,
1412                                  bool HasBaseReg, int64_t Scale) {
1413   // Check for overflow.
1414   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1415       (MinOffset > 0))
1416     return false;
1417   MinOffset = (uint64_t)BaseOffset + MinOffset;
1418   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1419       (MaxOffset > 0))
1420     return false;
1421   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1422 
1423   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1424                               HasBaseReg, Scale) &&
1425          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1426                               HasBaseReg, Scale);
1427 }
1428 
1429 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1430                                  int64_t MinOffset, int64_t MaxOffset,
1431                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1432                                  const Formula &F) {
1433   // For the purpose of isAMCompletelyFolded either having a canonical formula
1434   // or a scale not equal to zero is correct.
1435   // Problems may arise from non canonical formulae having a scale == 0.
1436   // Strictly speaking it would best to just rely on canonical formulae.
1437   // However, when we generate the scaled formulae, we first check that the
1438   // scaling factor is profitable before computing the actual ScaledReg for
1439   // compile time sake.
1440   assert((F.isCanonical() || F.Scale != 0));
1441   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1442                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1443 }
1444 
1445 /// Test whether we know how to expand the current formula.
1446 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1447                        int64_t MaxOffset, LSRUse::KindType Kind,
1448                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1449                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1450   // We know how to expand completely foldable formulae.
1451   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1452                               BaseOffset, HasBaseReg, Scale) ||
1453          // Or formulae that use a base register produced by a sum of base
1454          // registers.
1455          (Scale == 1 &&
1456           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1457                                BaseGV, BaseOffset, true, 0));
1458 }
1459 
1460 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1461                        int64_t MaxOffset, LSRUse::KindType Kind,
1462                        MemAccessTy AccessTy, const Formula &F) {
1463   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1464                     F.BaseOffset, F.HasBaseReg, F.Scale);
1465 }
1466 
1467 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1468                                  const LSRUse &LU, const Formula &F) {
1469   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1470                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1471                               F.Scale);
1472 }
1473 
1474 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1475                                      const LSRUse &LU, const Formula &F) {
1476   if (!F.Scale)
1477     return 0;
1478 
1479   // If the use is not completely folded in that instruction, we will have to
1480   // pay an extra cost only for scale != 1.
1481   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1482                             LU.AccessTy, F))
1483     return F.Scale != 1;
1484 
1485   switch (LU.Kind) {
1486   case LSRUse::Address: {
1487     // Check the scaling factor cost with both the min and max offsets.
1488     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1489         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1490         F.Scale, LU.AccessTy.AddrSpace);
1491     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1492         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1493         F.Scale, LU.AccessTy.AddrSpace);
1494 
1495     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1496            "Legal addressing mode has an illegal cost!");
1497     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1498   }
1499   case LSRUse::ICmpZero:
1500   case LSRUse::Basic:
1501   case LSRUse::Special:
1502     // The use is completely folded, i.e., everything is folded into the
1503     // instruction.
1504     return 0;
1505   }
1506 
1507   llvm_unreachable("Invalid LSRUse Kind!");
1508 }
1509 
1510 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1511                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1512                              GlobalValue *BaseGV, int64_t BaseOffset,
1513                              bool HasBaseReg) {
1514   // Fast-path: zero is always foldable.
1515   if (BaseOffset == 0 && !BaseGV) return true;
1516 
1517   // Conservatively, create an address with an immediate and a
1518   // base and a scale.
1519   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1520 
1521   // Canonicalize a scale of 1 to a base register if the formula doesn't
1522   // already have a base register.
1523   if (!HasBaseReg && Scale == 1) {
1524     Scale = 0;
1525     HasBaseReg = true;
1526   }
1527 
1528   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1529                               HasBaseReg, Scale);
1530 }
1531 
1532 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1533                              ScalarEvolution &SE, int64_t MinOffset,
1534                              int64_t MaxOffset, LSRUse::KindType Kind,
1535                              MemAccessTy AccessTy, const SCEV *S,
1536                              bool HasBaseReg) {
1537   // Fast-path: zero is always foldable.
1538   if (S->isZero()) return true;
1539 
1540   // Conservatively, create an address with an immediate and a
1541   // base and a scale.
1542   int64_t BaseOffset = ExtractImmediate(S, SE);
1543   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1544 
1545   // If there's anything else involved, it's not foldable.
1546   if (!S->isZero()) return false;
1547 
1548   // Fast-path: zero is always foldable.
1549   if (BaseOffset == 0 && !BaseGV) return true;
1550 
1551   // Conservatively, create an address with an immediate and a
1552   // base and a scale.
1553   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1554 
1555   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1556                               BaseOffset, HasBaseReg, Scale);
1557 }
1558 
1559 namespace {
1560 
1561 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1562 /// an expression that computes the IV it uses from the IV used by the previous
1563 /// link in the Chain.
1564 ///
1565 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1566 /// original IVOperand. The head of the chain's IVOperand is only valid during
1567 /// chain collection, before LSR replaces IV users. During chain generation,
1568 /// IncExpr can be used to find the new IVOperand that computes the same
1569 /// expression.
1570 struct IVInc {
1571   Instruction *UserInst;
1572   Value* IVOperand;
1573   const SCEV *IncExpr;
1574 
1575   IVInc(Instruction *U, Value *O, const SCEV *E):
1576     UserInst(U), IVOperand(O), IncExpr(E) {}
1577 };
1578 
1579 // The list of IV increments in program order.  We typically add the head of a
1580 // chain without finding subsequent links.
1581 struct IVChain {
1582   SmallVector<IVInc,1> Incs;
1583   const SCEV *ExprBase;
1584 
1585   IVChain() : ExprBase(nullptr) {}
1586 
1587   IVChain(const IVInc &Head, const SCEV *Base)
1588     : Incs(1, Head), ExprBase(Base) {}
1589 
1590   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1591 
1592   // Return the first increment in the chain.
1593   const_iterator begin() const {
1594     assert(!Incs.empty());
1595     return std::next(Incs.begin());
1596   }
1597   const_iterator end() const {
1598     return Incs.end();
1599   }
1600 
1601   // Returns true if this chain contains any increments.
1602   bool hasIncs() const { return Incs.size() >= 2; }
1603 
1604   // Add an IVInc to the end of this chain.
1605   void add(const IVInc &X) { Incs.push_back(X); }
1606 
1607   // Returns the last UserInst in the chain.
1608   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1609 
1610   // Returns true if IncExpr can be profitably added to this chain.
1611   bool isProfitableIncrement(const SCEV *OperExpr,
1612                              const SCEV *IncExpr,
1613                              ScalarEvolution&);
1614 };
1615 
1616 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1617 /// between FarUsers that definitely cross IV increments and NearUsers that may
1618 /// be used between IV increments.
1619 struct ChainUsers {
1620   SmallPtrSet<Instruction*, 4> FarUsers;
1621   SmallPtrSet<Instruction*, 4> NearUsers;
1622 };
1623 
1624 /// This class holds state for the main loop strength reduction logic.
1625 class LSRInstance {
1626   IVUsers &IU;
1627   ScalarEvolution &SE;
1628   DominatorTree &DT;
1629   LoopInfo &LI;
1630   const TargetTransformInfo &TTI;
1631   Loop *const L;
1632   bool Changed;
1633 
1634   /// This is the insert position that the current loop's induction variable
1635   /// increment should be placed. In simple loops, this is the latch block's
1636   /// terminator. But in more complicated cases, this is a position which will
1637   /// dominate all the in-loop post-increment users.
1638   Instruction *IVIncInsertPos;
1639 
1640   /// Interesting factors between use strides.
1641   SmallSetVector<int64_t, 8> Factors;
1642 
1643   /// Interesting use types, to facilitate truncation reuse.
1644   SmallSetVector<Type *, 4> Types;
1645 
1646   /// The list of operands which are to be replaced.
1647   SmallVector<LSRFixup, 16> Fixups;
1648 
1649   /// The list of interesting uses.
1650   SmallVector<LSRUse, 16> Uses;
1651 
1652   /// Track which uses use which register candidates.
1653   RegUseTracker RegUses;
1654 
1655   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1656   // have more than a few IV increment chains in a loop. Missing a Chain falls
1657   // back to normal LSR behavior for those uses.
1658   static const unsigned MaxChains = 8;
1659 
1660   /// IV users can form a chain of IV increments.
1661   SmallVector<IVChain, MaxChains> IVChainVec;
1662 
1663   /// IV users that belong to profitable IVChains.
1664   SmallPtrSet<Use*, MaxChains> IVIncSet;
1665 
1666   void OptimizeShadowIV();
1667   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1668   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1669   void OptimizeLoopTermCond();
1670 
1671   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1672                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1673   void FinalizeChain(IVChain &Chain);
1674   void CollectChains();
1675   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1676                        SmallVectorImpl<WeakVH> &DeadInsts);
1677 
1678   void CollectInterestingTypesAndFactors();
1679   void CollectFixupsAndInitialFormulae();
1680 
1681   LSRFixup &getNewFixup() {
1682     Fixups.push_back(LSRFixup());
1683     return Fixups.back();
1684   }
1685 
1686   // Support for sharing of LSRUses between LSRFixups.
1687   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1688   UseMapTy UseMap;
1689 
1690   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1691                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1692 
1693   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1694                                     MemAccessTy AccessTy);
1695 
1696   void DeleteUse(LSRUse &LU, size_t LUIdx);
1697 
1698   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1699 
1700   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1701   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1702   void CountRegisters(const Formula &F, size_t LUIdx);
1703   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1704 
1705   void CollectLoopInvariantFixupsAndFormulae();
1706 
1707   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1708                               unsigned Depth = 0);
1709 
1710   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1711                                   const Formula &Base, unsigned Depth,
1712                                   size_t Idx, bool IsScaledReg = false);
1713   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1714   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1715                                    const Formula &Base, size_t Idx,
1716                                    bool IsScaledReg = false);
1717   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1718   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1719                                    const Formula &Base,
1720                                    const SmallVectorImpl<int64_t> &Worklist,
1721                                    size_t Idx, bool IsScaledReg = false);
1722   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1723   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1724   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1725   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1726   void GenerateCrossUseConstantOffsets();
1727   void GenerateAllReuseFormulae();
1728 
1729   void FilterOutUndesirableDedicatedRegisters();
1730 
1731   size_t EstimateSearchSpaceComplexity() const;
1732   void NarrowSearchSpaceByDetectingSupersets();
1733   void NarrowSearchSpaceByCollapsingUnrolledCode();
1734   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1735   void NarrowSearchSpaceByPickingWinnerRegs();
1736   void NarrowSearchSpaceUsingHeuristics();
1737 
1738   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1739                     Cost &SolutionCost,
1740                     SmallVectorImpl<const Formula *> &Workspace,
1741                     const Cost &CurCost,
1742                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1743                     DenseSet<const SCEV *> &VisitedRegs) const;
1744   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1745 
1746   BasicBlock::iterator
1747     HoistInsertPosition(BasicBlock::iterator IP,
1748                         const SmallVectorImpl<Instruction *> &Inputs) const;
1749   BasicBlock::iterator
1750     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1751                                   const LSRFixup &LF,
1752                                   const LSRUse &LU,
1753                                   SCEVExpander &Rewriter) const;
1754 
1755   Value *Expand(const LSRFixup &LF,
1756                 const Formula &F,
1757                 BasicBlock::iterator IP,
1758                 SCEVExpander &Rewriter,
1759                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1760   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
1761                      const Formula &F,
1762                      SCEVExpander &Rewriter,
1763                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1764   void Rewrite(const LSRFixup &LF,
1765                const Formula &F,
1766                SCEVExpander &Rewriter,
1767                SmallVectorImpl<WeakVH> &DeadInsts) const;
1768   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1769 
1770 public:
1771   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1772               LoopInfo &LI, const TargetTransformInfo &TTI);
1773 
1774   bool getChanged() const { return Changed; }
1775 
1776   void print_factors_and_types(raw_ostream &OS) const;
1777   void print_fixups(raw_ostream &OS) const;
1778   void print_uses(raw_ostream &OS) const;
1779   void print(raw_ostream &OS) const;
1780   void dump() const;
1781 };
1782 
1783 }
1784 
1785 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1786 /// the cast operation.
1787 void LSRInstance::OptimizeShadowIV() {
1788   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1789   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1790     return;
1791 
1792   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1793        UI != E; /* empty */) {
1794     IVUsers::const_iterator CandidateUI = UI;
1795     ++UI;
1796     Instruction *ShadowUse = CandidateUI->getUser();
1797     Type *DestTy = nullptr;
1798     bool IsSigned = false;
1799 
1800     /* If shadow use is a int->float cast then insert a second IV
1801        to eliminate this cast.
1802 
1803          for (unsigned i = 0; i < n; ++i)
1804            foo((double)i);
1805 
1806        is transformed into
1807 
1808          double d = 0.0;
1809          for (unsigned i = 0; i < n; ++i, ++d)
1810            foo(d);
1811     */
1812     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1813       IsSigned = false;
1814       DestTy = UCast->getDestTy();
1815     }
1816     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1817       IsSigned = true;
1818       DestTy = SCast->getDestTy();
1819     }
1820     if (!DestTy) continue;
1821 
1822     // If target does not support DestTy natively then do not apply
1823     // this transformation.
1824     if (!TTI.isTypeLegal(DestTy)) continue;
1825 
1826     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1827     if (!PH) continue;
1828     if (PH->getNumIncomingValues() != 2) continue;
1829 
1830     Type *SrcTy = PH->getType();
1831     int Mantissa = DestTy->getFPMantissaWidth();
1832     if (Mantissa == -1) continue;
1833     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1834       continue;
1835 
1836     unsigned Entry, Latch;
1837     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1838       Entry = 0;
1839       Latch = 1;
1840     } else {
1841       Entry = 1;
1842       Latch = 0;
1843     }
1844 
1845     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1846     if (!Init) continue;
1847     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1848                                         (double)Init->getSExtValue() :
1849                                         (double)Init->getZExtValue());
1850 
1851     BinaryOperator *Incr =
1852       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1853     if (!Incr) continue;
1854     if (Incr->getOpcode() != Instruction::Add
1855         && Incr->getOpcode() != Instruction::Sub)
1856       continue;
1857 
1858     /* Initialize new IV, double d = 0.0 in above example. */
1859     ConstantInt *C = nullptr;
1860     if (Incr->getOperand(0) == PH)
1861       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1862     else if (Incr->getOperand(1) == PH)
1863       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1864     else
1865       continue;
1866 
1867     if (!C) continue;
1868 
1869     // Ignore negative constants, as the code below doesn't handle them
1870     // correctly. TODO: Remove this restriction.
1871     if (!C->getValue().isStrictlyPositive()) continue;
1872 
1873     /* Add new PHINode. */
1874     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1875 
1876     /* create new increment. '++d' in above example. */
1877     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1878     BinaryOperator *NewIncr =
1879       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1880                                Instruction::FAdd : Instruction::FSub,
1881                              NewPH, CFP, "IV.S.next.", Incr);
1882 
1883     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1884     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1885 
1886     /* Remove cast operation */
1887     ShadowUse->replaceAllUsesWith(NewPH);
1888     ShadowUse->eraseFromParent();
1889     Changed = true;
1890     break;
1891   }
1892 }
1893 
1894 /// If Cond has an operand that is an expression of an IV, set the IV user and
1895 /// stride information and return true, otherwise return false.
1896 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1897   for (IVStrideUse &U : IU)
1898     if (U.getUser() == Cond) {
1899       // NOTE: we could handle setcc instructions with multiple uses here, but
1900       // InstCombine does it as well for simple uses, it's not clear that it
1901       // occurs enough in real life to handle.
1902       CondUse = &U;
1903       return true;
1904     }
1905   return false;
1906 }
1907 
1908 /// Rewrite the loop's terminating condition if it uses a max computation.
1909 ///
1910 /// This is a narrow solution to a specific, but acute, problem. For loops
1911 /// like this:
1912 ///
1913 ///   i = 0;
1914 ///   do {
1915 ///     p[i] = 0.0;
1916 ///   } while (++i < n);
1917 ///
1918 /// the trip count isn't just 'n', because 'n' might not be positive. And
1919 /// unfortunately this can come up even for loops where the user didn't use
1920 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1921 /// will commonly be lowered like this:
1922 //
1923 ///   if (n > 0) {
1924 ///     i = 0;
1925 ///     do {
1926 ///       p[i] = 0.0;
1927 ///     } while (++i < n);
1928 ///   }
1929 ///
1930 /// and then it's possible for subsequent optimization to obscure the if
1931 /// test in such a way that indvars can't find it.
1932 ///
1933 /// When indvars can't find the if test in loops like this, it creates a
1934 /// max expression, which allows it to give the loop a canonical
1935 /// induction variable:
1936 ///
1937 ///   i = 0;
1938 ///   max = n < 1 ? 1 : n;
1939 ///   do {
1940 ///     p[i] = 0.0;
1941 ///   } while (++i != max);
1942 ///
1943 /// Canonical induction variables are necessary because the loop passes
1944 /// are designed around them. The most obvious example of this is the
1945 /// LoopInfo analysis, which doesn't remember trip count values. It
1946 /// expects to be able to rediscover the trip count each time it is
1947 /// needed, and it does this using a simple analysis that only succeeds if
1948 /// the loop has a canonical induction variable.
1949 ///
1950 /// However, when it comes time to generate code, the maximum operation
1951 /// can be quite costly, especially if it's inside of an outer loop.
1952 ///
1953 /// This function solves this problem by detecting this type of loop and
1954 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1955 /// the instructions for the maximum computation.
1956 ///
1957 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
1958   // Check that the loop matches the pattern we're looking for.
1959   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
1960       Cond->getPredicate() != CmpInst::ICMP_NE)
1961     return Cond;
1962 
1963   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
1964   if (!Sel || !Sel->hasOneUse()) return Cond;
1965 
1966   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1967   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1968     return Cond;
1969   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
1970 
1971   // Add one to the backedge-taken count to get the trip count.
1972   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
1973   if (IterationCount != SE.getSCEV(Sel)) return Cond;
1974 
1975   // Check for a max calculation that matches the pattern. There's no check
1976   // for ICMP_ULE here because the comparison would be with zero, which
1977   // isn't interesting.
1978   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1979   const SCEVNAryExpr *Max = nullptr;
1980   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
1981     Pred = ICmpInst::ICMP_SLE;
1982     Max = S;
1983   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
1984     Pred = ICmpInst::ICMP_SLT;
1985     Max = S;
1986   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
1987     Pred = ICmpInst::ICMP_ULT;
1988     Max = U;
1989   } else {
1990     // No match; bail.
1991     return Cond;
1992   }
1993 
1994   // To handle a max with more than two operands, this optimization would
1995   // require additional checking and setup.
1996   if (Max->getNumOperands() != 2)
1997     return Cond;
1998 
1999   const SCEV *MaxLHS = Max->getOperand(0);
2000   const SCEV *MaxRHS = Max->getOperand(1);
2001 
2002   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2003   // for a comparison with 1. For <= and >=, a comparison with zero.
2004   if (!MaxLHS ||
2005       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2006     return Cond;
2007 
2008   // Check the relevant induction variable for conformance to
2009   // the pattern.
2010   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2011   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2012   if (!AR || !AR->isAffine() ||
2013       AR->getStart() != One ||
2014       AR->getStepRecurrence(SE) != One)
2015     return Cond;
2016 
2017   assert(AR->getLoop() == L &&
2018          "Loop condition operand is an addrec in a different loop!");
2019 
2020   // Check the right operand of the select, and remember it, as it will
2021   // be used in the new comparison instruction.
2022   Value *NewRHS = nullptr;
2023   if (ICmpInst::isTrueWhenEqual(Pred)) {
2024     // Look for n+1, and grab n.
2025     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2026       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2027          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2028            NewRHS = BO->getOperand(0);
2029     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2030       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2031         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2032           NewRHS = BO->getOperand(0);
2033     if (!NewRHS)
2034       return Cond;
2035   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2036     NewRHS = Sel->getOperand(1);
2037   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2038     NewRHS = Sel->getOperand(2);
2039   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2040     NewRHS = SU->getValue();
2041   else
2042     // Max doesn't match expected pattern.
2043     return Cond;
2044 
2045   // Determine the new comparison opcode. It may be signed or unsigned,
2046   // and the original comparison may be either equality or inequality.
2047   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2048     Pred = CmpInst::getInversePredicate(Pred);
2049 
2050   // Ok, everything looks ok to change the condition into an SLT or SGE and
2051   // delete the max calculation.
2052   ICmpInst *NewCond =
2053     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2054 
2055   // Delete the max calculation instructions.
2056   Cond->replaceAllUsesWith(NewCond);
2057   CondUse->setUser(NewCond);
2058   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2059   Cond->eraseFromParent();
2060   Sel->eraseFromParent();
2061   if (Cmp->use_empty())
2062     Cmp->eraseFromParent();
2063   return NewCond;
2064 }
2065 
2066 /// Change loop terminating condition to use the postinc iv when possible.
2067 void
2068 LSRInstance::OptimizeLoopTermCond() {
2069   SmallPtrSet<Instruction *, 4> PostIncs;
2070 
2071   BasicBlock *LatchBlock = L->getLoopLatch();
2072   SmallVector<BasicBlock*, 8> ExitingBlocks;
2073   L->getExitingBlocks(ExitingBlocks);
2074 
2075   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2076 
2077     // Get the terminating condition for the loop if possible.  If we
2078     // can, we want to change it to use a post-incremented version of its
2079     // induction variable, to allow coalescing the live ranges for the IV into
2080     // one register value.
2081 
2082     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2083     if (!TermBr)
2084       continue;
2085     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2086     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2087       continue;
2088 
2089     // Search IVUsesByStride to find Cond's IVUse if there is one.
2090     IVStrideUse *CondUse = nullptr;
2091     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2092     if (!FindIVUserForCond(Cond, CondUse))
2093       continue;
2094 
2095     // If the trip count is computed in terms of a max (due to ScalarEvolution
2096     // being unable to find a sufficient guard, for example), change the loop
2097     // comparison to use SLT or ULT instead of NE.
2098     // One consequence of doing this now is that it disrupts the count-down
2099     // optimization. That's not always a bad thing though, because in such
2100     // cases it may still be worthwhile to avoid a max.
2101     Cond = OptimizeMax(Cond, CondUse);
2102 
2103     // If this exiting block dominates the latch block, it may also use
2104     // the post-inc value if it won't be shared with other uses.
2105     // Check for dominance.
2106     if (!DT.dominates(ExitingBlock, LatchBlock))
2107       continue;
2108 
2109     // Conservatively avoid trying to use the post-inc value in non-latch
2110     // exits if there may be pre-inc users in intervening blocks.
2111     if (LatchBlock != ExitingBlock)
2112       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2113         // Test if the use is reachable from the exiting block. This dominator
2114         // query is a conservative approximation of reachability.
2115         if (&*UI != CondUse &&
2116             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2117           // Conservatively assume there may be reuse if the quotient of their
2118           // strides could be a legal scale.
2119           const SCEV *A = IU.getStride(*CondUse, L);
2120           const SCEV *B = IU.getStride(*UI, L);
2121           if (!A || !B) continue;
2122           if (SE.getTypeSizeInBits(A->getType()) !=
2123               SE.getTypeSizeInBits(B->getType())) {
2124             if (SE.getTypeSizeInBits(A->getType()) >
2125                 SE.getTypeSizeInBits(B->getType()))
2126               B = SE.getSignExtendExpr(B, A->getType());
2127             else
2128               A = SE.getSignExtendExpr(A, B->getType());
2129           }
2130           if (const SCEVConstant *D =
2131                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2132             const ConstantInt *C = D->getValue();
2133             // Stride of one or negative one can have reuse with non-addresses.
2134             if (C->isOne() || C->isAllOnesValue())
2135               goto decline_post_inc;
2136             // Avoid weird situations.
2137             if (C->getValue().getMinSignedBits() >= 64 ||
2138                 C->getValue().isMinSignedValue())
2139               goto decline_post_inc;
2140             // Check for possible scaled-address reuse.
2141             MemAccessTy AccessTy = getAccessType(UI->getUser());
2142             int64_t Scale = C->getSExtValue();
2143             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2144                                           /*BaseOffset=*/0,
2145                                           /*HasBaseReg=*/false, Scale,
2146                                           AccessTy.AddrSpace))
2147               goto decline_post_inc;
2148             Scale = -Scale;
2149             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2150                                           /*BaseOffset=*/0,
2151                                           /*HasBaseReg=*/false, Scale,
2152                                           AccessTy.AddrSpace))
2153               goto decline_post_inc;
2154           }
2155         }
2156 
2157     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2158                  << *Cond << '\n');
2159 
2160     // It's possible for the setcc instruction to be anywhere in the loop, and
2161     // possible for it to have multiple users.  If it is not immediately before
2162     // the exiting block branch, move it.
2163     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2164       if (Cond->hasOneUse()) {
2165         Cond->moveBefore(TermBr);
2166       } else {
2167         // Clone the terminating condition and insert into the loopend.
2168         ICmpInst *OldCond = Cond;
2169         Cond = cast<ICmpInst>(Cond->clone());
2170         Cond->setName(L->getHeader()->getName() + ".termcond");
2171         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2172 
2173         // Clone the IVUse, as the old use still exists!
2174         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2175         TermBr->replaceUsesOfWith(OldCond, Cond);
2176       }
2177     }
2178 
2179     // If we get to here, we know that we can transform the setcc instruction to
2180     // use the post-incremented version of the IV, allowing us to coalesce the
2181     // live ranges for the IV correctly.
2182     CondUse->transformToPostInc(L);
2183     Changed = true;
2184 
2185     PostIncs.insert(Cond);
2186   decline_post_inc:;
2187   }
2188 
2189   // Determine an insertion point for the loop induction variable increment. It
2190   // must dominate all the post-inc comparisons we just set up, and it must
2191   // dominate the loop latch edge.
2192   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2193   for (Instruction *Inst : PostIncs) {
2194     BasicBlock *BB =
2195       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2196                                     Inst->getParent());
2197     if (BB == Inst->getParent())
2198       IVIncInsertPos = Inst;
2199     else if (BB != IVIncInsertPos->getParent())
2200       IVIncInsertPos = BB->getTerminator();
2201   }
2202 }
2203 
2204 /// Determine if the given use can accommodate a fixup at the given offset and
2205 /// other details. If so, update the use and return true.
2206 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2207                                      bool HasBaseReg, LSRUse::KindType Kind,
2208                                      MemAccessTy AccessTy) {
2209   int64_t NewMinOffset = LU.MinOffset;
2210   int64_t NewMaxOffset = LU.MaxOffset;
2211   MemAccessTy NewAccessTy = AccessTy;
2212 
2213   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2214   // something conservative, however this can pessimize in the case that one of
2215   // the uses will have all its uses outside the loop, for example.
2216   if (LU.Kind != Kind)
2217     return false;
2218 
2219   // Check for a mismatched access type, and fall back conservatively as needed.
2220   // TODO: Be less conservative when the type is similar and can use the same
2221   // addressing modes.
2222   if (Kind == LSRUse::Address) {
2223     if (AccessTy != LU.AccessTy)
2224       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2225   }
2226 
2227   // Conservatively assume HasBaseReg is true for now.
2228   if (NewOffset < LU.MinOffset) {
2229     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2230                           LU.MaxOffset - NewOffset, HasBaseReg))
2231       return false;
2232     NewMinOffset = NewOffset;
2233   } else if (NewOffset > LU.MaxOffset) {
2234     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2235                           NewOffset - LU.MinOffset, HasBaseReg))
2236       return false;
2237     NewMaxOffset = NewOffset;
2238   }
2239 
2240   // Update the use.
2241   LU.MinOffset = NewMinOffset;
2242   LU.MaxOffset = NewMaxOffset;
2243   LU.AccessTy = NewAccessTy;
2244   if (NewOffset != LU.Offsets.back())
2245     LU.Offsets.push_back(NewOffset);
2246   return true;
2247 }
2248 
2249 /// Return an LSRUse index and an offset value for a fixup which needs the given
2250 /// expression, with the given kind and optional access type.  Either reuse an
2251 /// existing use or create a new one, as needed.
2252 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2253                                                LSRUse::KindType Kind,
2254                                                MemAccessTy AccessTy) {
2255   const SCEV *Copy = Expr;
2256   int64_t Offset = ExtractImmediate(Expr, SE);
2257 
2258   // Basic uses can't accept any offset, for example.
2259   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2260                         Offset, /*HasBaseReg=*/ true)) {
2261     Expr = Copy;
2262     Offset = 0;
2263   }
2264 
2265   std::pair<UseMapTy::iterator, bool> P =
2266     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2267   if (!P.second) {
2268     // A use already existed with this base.
2269     size_t LUIdx = P.first->second;
2270     LSRUse &LU = Uses[LUIdx];
2271     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2272       // Reuse this use.
2273       return std::make_pair(LUIdx, Offset);
2274   }
2275 
2276   // Create a new use.
2277   size_t LUIdx = Uses.size();
2278   P.first->second = LUIdx;
2279   Uses.push_back(LSRUse(Kind, AccessTy));
2280   LSRUse &LU = Uses[LUIdx];
2281 
2282   // We don't need to track redundant offsets, but we don't need to go out
2283   // of our way here to avoid them.
2284   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
2285     LU.Offsets.push_back(Offset);
2286 
2287   LU.MinOffset = Offset;
2288   LU.MaxOffset = Offset;
2289   return std::make_pair(LUIdx, Offset);
2290 }
2291 
2292 /// Delete the given use from the Uses list.
2293 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2294   if (&LU != &Uses.back())
2295     std::swap(LU, Uses.back());
2296   Uses.pop_back();
2297 
2298   // Update RegUses.
2299   RegUses.swapAndDropUse(LUIdx, Uses.size());
2300 }
2301 
2302 /// Look for a use distinct from OrigLU which is has a formula that has the same
2303 /// registers as the given formula.
2304 LSRUse *
2305 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2306                                        const LSRUse &OrigLU) {
2307   // Search all uses for the formula. This could be more clever.
2308   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2309     LSRUse &LU = Uses[LUIdx];
2310     // Check whether this use is close enough to OrigLU, to see whether it's
2311     // worthwhile looking through its formulae.
2312     // Ignore ICmpZero uses because they may contain formulae generated by
2313     // GenerateICmpZeroScales, in which case adding fixup offsets may
2314     // be invalid.
2315     if (&LU != &OrigLU &&
2316         LU.Kind != LSRUse::ICmpZero &&
2317         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2318         LU.WidestFixupType == OrigLU.WidestFixupType &&
2319         LU.HasFormulaWithSameRegs(OrigF)) {
2320       // Scan through this use's formulae.
2321       for (const Formula &F : LU.Formulae) {
2322         // Check to see if this formula has the same registers and symbols
2323         // as OrigF.
2324         if (F.BaseRegs == OrigF.BaseRegs &&
2325             F.ScaledReg == OrigF.ScaledReg &&
2326             F.BaseGV == OrigF.BaseGV &&
2327             F.Scale == OrigF.Scale &&
2328             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2329           if (F.BaseOffset == 0)
2330             return &LU;
2331           // This is the formula where all the registers and symbols matched;
2332           // there aren't going to be any others. Since we declined it, we
2333           // can skip the rest of the formulae and proceed to the next LSRUse.
2334           break;
2335         }
2336       }
2337     }
2338   }
2339 
2340   // Nothing looked good.
2341   return nullptr;
2342 }
2343 
2344 void LSRInstance::CollectInterestingTypesAndFactors() {
2345   SmallSetVector<const SCEV *, 4> Strides;
2346 
2347   // Collect interesting types and strides.
2348   SmallVector<const SCEV *, 4> Worklist;
2349   for (const IVStrideUse &U : IU) {
2350     const SCEV *Expr = IU.getExpr(U);
2351 
2352     // Collect interesting types.
2353     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2354 
2355     // Add strides for mentioned loops.
2356     Worklist.push_back(Expr);
2357     do {
2358       const SCEV *S = Worklist.pop_back_val();
2359       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2360         if (AR->getLoop() == L)
2361           Strides.insert(AR->getStepRecurrence(SE));
2362         Worklist.push_back(AR->getStart());
2363       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2364         Worklist.append(Add->op_begin(), Add->op_end());
2365       }
2366     } while (!Worklist.empty());
2367   }
2368 
2369   // Compute interesting factors from the set of interesting strides.
2370   for (SmallSetVector<const SCEV *, 4>::const_iterator
2371        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2372     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2373          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2374       const SCEV *OldStride = *I;
2375       const SCEV *NewStride = *NewStrideIter;
2376 
2377       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2378           SE.getTypeSizeInBits(NewStride->getType())) {
2379         if (SE.getTypeSizeInBits(OldStride->getType()) >
2380             SE.getTypeSizeInBits(NewStride->getType()))
2381           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2382         else
2383           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2384       }
2385       if (const SCEVConstant *Factor =
2386             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2387                                                         SE, true))) {
2388         if (Factor->getAPInt().getMinSignedBits() <= 64)
2389           Factors.insert(Factor->getAPInt().getSExtValue());
2390       } else if (const SCEVConstant *Factor =
2391                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2392                                                                NewStride,
2393                                                                SE, true))) {
2394         if (Factor->getAPInt().getMinSignedBits() <= 64)
2395           Factors.insert(Factor->getAPInt().getSExtValue());
2396       }
2397     }
2398 
2399   // If all uses use the same type, don't bother looking for truncation-based
2400   // reuse.
2401   if (Types.size() == 1)
2402     Types.clear();
2403 
2404   DEBUG(print_factors_and_types(dbgs()));
2405 }
2406 
2407 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2408 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2409 /// IVStrideUses, we could partially skip this.
2410 static User::op_iterator
2411 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2412               Loop *L, ScalarEvolution &SE) {
2413   for(; OI != OE; ++OI) {
2414     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2415       if (!SE.isSCEVable(Oper->getType()))
2416         continue;
2417 
2418       if (const SCEVAddRecExpr *AR =
2419           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2420         if (AR->getLoop() == L)
2421           break;
2422       }
2423     }
2424   }
2425   return OI;
2426 }
2427 
2428 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2429 /// a convenient helper.
2430 static Value *getWideOperand(Value *Oper) {
2431   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2432     return Trunc->getOperand(0);
2433   return Oper;
2434 }
2435 
2436 /// Return true if we allow an IV chain to include both types.
2437 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2438   Type *LType = LVal->getType();
2439   Type *RType = RVal->getType();
2440   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2441 }
2442 
2443 /// Return an approximation of this SCEV expression's "base", or NULL for any
2444 /// constant. Returning the expression itself is conservative. Returning a
2445 /// deeper subexpression is more precise and valid as long as it isn't less
2446 /// complex than another subexpression. For expressions involving multiple
2447 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2448 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2449 /// IVInc==b-a.
2450 ///
2451 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2452 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2453 static const SCEV *getExprBase(const SCEV *S) {
2454   switch (S->getSCEVType()) {
2455   default: // uncluding scUnknown.
2456     return S;
2457   case scConstant:
2458     return nullptr;
2459   case scTruncate:
2460     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2461   case scZeroExtend:
2462     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2463   case scSignExtend:
2464     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2465   case scAddExpr: {
2466     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2467     // there's nothing more complex.
2468     // FIXME: not sure if we want to recognize negation.
2469     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2470     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2471            E(Add->op_begin()); I != E; ++I) {
2472       const SCEV *SubExpr = *I;
2473       if (SubExpr->getSCEVType() == scAddExpr)
2474         return getExprBase(SubExpr);
2475 
2476       if (SubExpr->getSCEVType() != scMulExpr)
2477         return SubExpr;
2478     }
2479     return S; // all operands are scaled, be conservative.
2480   }
2481   case scAddRecExpr:
2482     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2483   }
2484 }
2485 
2486 /// Return true if the chain increment is profitable to expand into a loop
2487 /// invariant value, which may require its own register. A profitable chain
2488 /// increment will be an offset relative to the same base. We allow such offsets
2489 /// to potentially be used as chain increment as long as it's not obviously
2490 /// expensive to expand using real instructions.
2491 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2492                                     const SCEV *IncExpr,
2493                                     ScalarEvolution &SE) {
2494   // Aggressively form chains when -stress-ivchain.
2495   if (StressIVChain)
2496     return true;
2497 
2498   // Do not replace a constant offset from IV head with a nonconstant IV
2499   // increment.
2500   if (!isa<SCEVConstant>(IncExpr)) {
2501     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2502     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2503       return 0;
2504   }
2505 
2506   SmallPtrSet<const SCEV*, 8> Processed;
2507   return !isHighCostExpansion(IncExpr, Processed, SE);
2508 }
2509 
2510 /// Return true if the number of registers needed for the chain is estimated to
2511 /// be less than the number required for the individual IV users. First prohibit
2512 /// any IV users that keep the IV live across increments (the Users set should
2513 /// be empty). Next count the number and type of increments in the chain.
2514 ///
2515 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2516 /// effectively use postinc addressing modes. Only consider it profitable it the
2517 /// increments can be computed in fewer registers when chained.
2518 ///
2519 /// TODO: Consider IVInc free if it's already used in another chains.
2520 static bool
2521 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2522                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2523   if (StressIVChain)
2524     return true;
2525 
2526   if (!Chain.hasIncs())
2527     return false;
2528 
2529   if (!Users.empty()) {
2530     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2531           for (Instruction *Inst : Users) {
2532             dbgs() << "  " << *Inst << "\n";
2533           });
2534     return false;
2535   }
2536   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2537 
2538   // The chain itself may require a register, so intialize cost to 1.
2539   int cost = 1;
2540 
2541   // A complete chain likely eliminates the need for keeping the original IV in
2542   // a register. LSR does not currently know how to form a complete chain unless
2543   // the header phi already exists.
2544   if (isa<PHINode>(Chain.tailUserInst())
2545       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2546     --cost;
2547   }
2548   const SCEV *LastIncExpr = nullptr;
2549   unsigned NumConstIncrements = 0;
2550   unsigned NumVarIncrements = 0;
2551   unsigned NumReusedIncrements = 0;
2552   for (const IVInc &Inc : Chain) {
2553     if (Inc.IncExpr->isZero())
2554       continue;
2555 
2556     // Incrementing by zero or some constant is neutral. We assume constants can
2557     // be folded into an addressing mode or an add's immediate operand.
2558     if (isa<SCEVConstant>(Inc.IncExpr)) {
2559       ++NumConstIncrements;
2560       continue;
2561     }
2562 
2563     if (Inc.IncExpr == LastIncExpr)
2564       ++NumReusedIncrements;
2565     else
2566       ++NumVarIncrements;
2567 
2568     LastIncExpr = Inc.IncExpr;
2569   }
2570   // An IV chain with a single increment is handled by LSR's postinc
2571   // uses. However, a chain with multiple increments requires keeping the IV's
2572   // value live longer than it needs to be if chained.
2573   if (NumConstIncrements > 1)
2574     --cost;
2575 
2576   // Materializing increment expressions in the preheader that didn't exist in
2577   // the original code may cost a register. For example, sign-extended array
2578   // indices can produce ridiculous increments like this:
2579   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2580   cost += NumVarIncrements;
2581 
2582   // Reusing variable increments likely saves a register to hold the multiple of
2583   // the stride.
2584   cost -= NumReusedIncrements;
2585 
2586   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2587                << "\n");
2588 
2589   return cost < 0;
2590 }
2591 
2592 /// Add this IV user to an existing chain or make it the head of a new chain.
2593 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2594                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2595   // When IVs are used as types of varying widths, they are generally converted
2596   // to a wider type with some uses remaining narrow under a (free) trunc.
2597   Value *const NextIV = getWideOperand(IVOper);
2598   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2599   const SCEV *const OperExprBase = getExprBase(OperExpr);
2600 
2601   // Visit all existing chains. Check if its IVOper can be computed as a
2602   // profitable loop invariant increment from the last link in the Chain.
2603   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2604   const SCEV *LastIncExpr = nullptr;
2605   for (; ChainIdx < NChains; ++ChainIdx) {
2606     IVChain &Chain = IVChainVec[ChainIdx];
2607 
2608     // Prune the solution space aggressively by checking that both IV operands
2609     // are expressions that operate on the same unscaled SCEVUnknown. This
2610     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2611     // first avoids creating extra SCEV expressions.
2612     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2613       continue;
2614 
2615     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2616     if (!isCompatibleIVType(PrevIV, NextIV))
2617       continue;
2618 
2619     // A phi node terminates a chain.
2620     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2621       continue;
2622 
2623     // The increment must be loop-invariant so it can be kept in a register.
2624     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2625     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2626     if (!SE.isLoopInvariant(IncExpr, L))
2627       continue;
2628 
2629     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2630       LastIncExpr = IncExpr;
2631       break;
2632     }
2633   }
2634   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2635   // bother for phi nodes, because they must be last in the chain.
2636   if (ChainIdx == NChains) {
2637     if (isa<PHINode>(UserInst))
2638       return;
2639     if (NChains >= MaxChains && !StressIVChain) {
2640       DEBUG(dbgs() << "IV Chain Limit\n");
2641       return;
2642     }
2643     LastIncExpr = OperExpr;
2644     // IVUsers may have skipped over sign/zero extensions. We don't currently
2645     // attempt to form chains involving extensions unless they can be hoisted
2646     // into this loop's AddRec.
2647     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2648       return;
2649     ++NChains;
2650     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2651                                  OperExprBase));
2652     ChainUsersVec.resize(NChains);
2653     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2654                  << ") IV=" << *LastIncExpr << "\n");
2655   } else {
2656     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2657                  << ") IV+" << *LastIncExpr << "\n");
2658     // Add this IV user to the end of the chain.
2659     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2660   }
2661   IVChain &Chain = IVChainVec[ChainIdx];
2662 
2663   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2664   // This chain's NearUsers become FarUsers.
2665   if (!LastIncExpr->isZero()) {
2666     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2667                                             NearUsers.end());
2668     NearUsers.clear();
2669   }
2670 
2671   // All other uses of IVOperand become near uses of the chain.
2672   // We currently ignore intermediate values within SCEV expressions, assuming
2673   // they will eventually be used be the current chain, or can be computed
2674   // from one of the chain increments. To be more precise we could
2675   // transitively follow its user and only add leaf IV users to the set.
2676   for (User *U : IVOper->users()) {
2677     Instruction *OtherUse = dyn_cast<Instruction>(U);
2678     if (!OtherUse)
2679       continue;
2680     // Uses in the chain will no longer be uses if the chain is formed.
2681     // Include the head of the chain in this iteration (not Chain.begin()).
2682     IVChain::const_iterator IncIter = Chain.Incs.begin();
2683     IVChain::const_iterator IncEnd = Chain.Incs.end();
2684     for( ; IncIter != IncEnd; ++IncIter) {
2685       if (IncIter->UserInst == OtherUse)
2686         break;
2687     }
2688     if (IncIter != IncEnd)
2689       continue;
2690 
2691     if (SE.isSCEVable(OtherUse->getType())
2692         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2693         && IU.isIVUserOrOperand(OtherUse)) {
2694       continue;
2695     }
2696     NearUsers.insert(OtherUse);
2697   }
2698 
2699   // Since this user is part of the chain, it's no longer considered a use
2700   // of the chain.
2701   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2702 }
2703 
2704 /// Populate the vector of Chains.
2705 ///
2706 /// This decreases ILP at the architecture level. Targets with ample registers,
2707 /// multiple memory ports, and no register renaming probably don't want
2708 /// this. However, such targets should probably disable LSR altogether.
2709 ///
2710 /// The job of LSR is to make a reasonable choice of induction variables across
2711 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2712 /// ILP *within the loop* if the target wants it.
2713 ///
2714 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2715 /// will not reorder memory operations, it will recognize this as a chain, but
2716 /// will generate redundant IV increments. Ideally this would be corrected later
2717 /// by a smart scheduler:
2718 ///        = A[i]
2719 ///        = A[i+x]
2720 /// A[i]   =
2721 /// A[i+x] =
2722 ///
2723 /// TODO: Walk the entire domtree within this loop, not just the path to the
2724 /// loop latch. This will discover chains on side paths, but requires
2725 /// maintaining multiple copies of the Chains state.
2726 void LSRInstance::CollectChains() {
2727   DEBUG(dbgs() << "Collecting IV Chains.\n");
2728   SmallVector<ChainUsers, 8> ChainUsersVec;
2729 
2730   SmallVector<BasicBlock *,8> LatchPath;
2731   BasicBlock *LoopHeader = L->getHeader();
2732   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2733        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2734     LatchPath.push_back(Rung->getBlock());
2735   }
2736   LatchPath.push_back(LoopHeader);
2737 
2738   // Walk the instruction stream from the loop header to the loop latch.
2739   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
2740          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
2741        BBIter != BBEnd; ++BBIter) {
2742     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
2743          I != E; ++I) {
2744       // Skip instructions that weren't seen by IVUsers analysis.
2745       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I))
2746         continue;
2747 
2748       // Ignore users that are part of a SCEV expression. This way we only
2749       // consider leaf IV Users. This effectively rediscovers a portion of
2750       // IVUsers analysis but in program order this time.
2751       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I)))
2752         continue;
2753 
2754       // Remove this instruction from any NearUsers set it may be in.
2755       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2756            ChainIdx < NChains; ++ChainIdx) {
2757         ChainUsersVec[ChainIdx].NearUsers.erase(&*I);
2758       }
2759       // Search for operands that can be chained.
2760       SmallPtrSet<Instruction*, 4> UniqueOperands;
2761       User::op_iterator IVOpEnd = I->op_end();
2762       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
2763       while (IVOpIter != IVOpEnd) {
2764         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2765         if (UniqueOperands.insert(IVOpInst).second)
2766           ChainInstruction(&*I, IVOpInst, ChainUsersVec);
2767         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2768       }
2769     } // Continue walking down the instructions.
2770   } // Continue walking down the domtree.
2771   // Visit phi backedges to determine if the chain can generate the IV postinc.
2772   for (BasicBlock::iterator I = L->getHeader()->begin();
2773        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2774     if (!SE.isSCEVable(PN->getType()))
2775       continue;
2776 
2777     Instruction *IncV =
2778       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2779     if (IncV)
2780       ChainInstruction(PN, IncV, ChainUsersVec);
2781   }
2782   // Remove any unprofitable chains.
2783   unsigned ChainIdx = 0;
2784   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2785        UsersIdx < NChains; ++UsersIdx) {
2786     if (!isProfitableChain(IVChainVec[UsersIdx],
2787                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2788       continue;
2789     // Preserve the chain at UsesIdx.
2790     if (ChainIdx != UsersIdx)
2791       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2792     FinalizeChain(IVChainVec[ChainIdx]);
2793     ++ChainIdx;
2794   }
2795   IVChainVec.resize(ChainIdx);
2796 }
2797 
2798 void LSRInstance::FinalizeChain(IVChain &Chain) {
2799   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2800   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2801 
2802   for (const IVInc &Inc : Chain) {
2803     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
2804     auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
2805                           Inc.IVOperand);
2806     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2807     IVIncSet.insert(UseI);
2808   }
2809 }
2810 
2811 /// Return true if the IVInc can be folded into an addressing mode.
2812 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2813                              Value *Operand, const TargetTransformInfo &TTI) {
2814   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2815   if (!IncConst || !isAddressUse(UserInst, Operand))
2816     return false;
2817 
2818   if (IncConst->getAPInt().getMinSignedBits() > 64)
2819     return false;
2820 
2821   MemAccessTy AccessTy = getAccessType(UserInst);
2822   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2823   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2824                         IncOffset, /*HaseBaseReg=*/false))
2825     return false;
2826 
2827   return true;
2828 }
2829 
2830 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2831 /// user's operand from the previous IV user's operand.
2832 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2833                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2834   // Find the new IVOperand for the head of the chain. It may have been replaced
2835   // by LSR.
2836   const IVInc &Head = Chain.Incs[0];
2837   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2838   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2839   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2840                                              IVOpEnd, L, SE);
2841   Value *IVSrc = nullptr;
2842   while (IVOpIter != IVOpEnd) {
2843     IVSrc = getWideOperand(*IVOpIter);
2844 
2845     // If this operand computes the expression that the chain needs, we may use
2846     // it. (Check this after setting IVSrc which is used below.)
2847     //
2848     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2849     // narrow for the chain, so we can no longer use it. We do allow using a
2850     // wider phi, assuming the LSR checked for free truncation. In that case we
2851     // should already have a truncate on this operand such that
2852     // getSCEV(IVSrc) == IncExpr.
2853     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2854         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2855       break;
2856     }
2857     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2858   }
2859   if (IVOpIter == IVOpEnd) {
2860     // Gracefully give up on this chain.
2861     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2862     return;
2863   }
2864 
2865   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2866   Type *IVTy = IVSrc->getType();
2867   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2868   const SCEV *LeftOverExpr = nullptr;
2869   for (const IVInc &Inc : Chain) {
2870     Instruction *InsertPt = Inc.UserInst;
2871     if (isa<PHINode>(InsertPt))
2872       InsertPt = L->getLoopLatch()->getTerminator();
2873 
2874     // IVOper will replace the current IV User's operand. IVSrc is the IV
2875     // value currently held in a register.
2876     Value *IVOper = IVSrc;
2877     if (!Inc.IncExpr->isZero()) {
2878       // IncExpr was the result of subtraction of two narrow values, so must
2879       // be signed.
2880       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2881       LeftOverExpr = LeftOverExpr ?
2882         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2883     }
2884     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2885       // Expand the IV increment.
2886       Rewriter.clearPostInc();
2887       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2888       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2889                                              SE.getUnknown(IncV));
2890       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2891 
2892       // If an IV increment can't be folded, use it as the next IV value.
2893       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2894         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2895         IVSrc = IVOper;
2896         LeftOverExpr = nullptr;
2897       }
2898     }
2899     Type *OperTy = Inc.IVOperand->getType();
2900     if (IVTy != OperTy) {
2901       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2902              "cannot extend a chained IV");
2903       IRBuilder<> Builder(InsertPt);
2904       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2905     }
2906     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2907     DeadInsts.emplace_back(Inc.IVOperand);
2908   }
2909   // If LSR created a new, wider phi, we may also replace its postinc. We only
2910   // do this if we also found a wide value for the head of the chain.
2911   if (isa<PHINode>(Chain.tailUserInst())) {
2912     for (BasicBlock::iterator I = L->getHeader()->begin();
2913          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2914       if (!isCompatibleIVType(Phi, IVSrc))
2915         continue;
2916       Instruction *PostIncV = dyn_cast<Instruction>(
2917         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2918       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2919         continue;
2920       Value *IVOper = IVSrc;
2921       Type *PostIncTy = PostIncV->getType();
2922       if (IVTy != PostIncTy) {
2923         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2924         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2925         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2926         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2927       }
2928       Phi->replaceUsesOfWith(PostIncV, IVOper);
2929       DeadInsts.emplace_back(PostIncV);
2930     }
2931   }
2932 }
2933 
2934 void LSRInstance::CollectFixupsAndInitialFormulae() {
2935   for (const IVStrideUse &U : IU) {
2936     Instruction *UserInst = U.getUser();
2937     // Skip IV users that are part of profitable IV Chains.
2938     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
2939                                        U.getOperandValToReplace());
2940     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2941     if (IVIncSet.count(UseI))
2942       continue;
2943 
2944     // Record the uses.
2945     LSRFixup &LF = getNewFixup();
2946     LF.UserInst = UserInst;
2947     LF.OperandValToReplace = U.getOperandValToReplace();
2948     LF.PostIncLoops = U.getPostIncLoops();
2949 
2950     LSRUse::KindType Kind = LSRUse::Basic;
2951     MemAccessTy AccessTy;
2952     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
2953       Kind = LSRUse::Address;
2954       AccessTy = getAccessType(LF.UserInst);
2955     }
2956 
2957     const SCEV *S = IU.getExpr(U);
2958 
2959     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
2960     // (N - i == 0), and this allows (N - i) to be the expression that we work
2961     // with rather than just N or i, so we can consider the register
2962     // requirements for both N and i at the same time. Limiting this code to
2963     // equality icmps is not a problem because all interesting loops use
2964     // equality icmps, thanks to IndVarSimplify.
2965     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
2966       if (CI->isEquality()) {
2967         // Swap the operands if needed to put the OperandValToReplace on the
2968         // left, for consistency.
2969         Value *NV = CI->getOperand(1);
2970         if (NV == LF.OperandValToReplace) {
2971           CI->setOperand(1, CI->getOperand(0));
2972           CI->setOperand(0, NV);
2973           NV = CI->getOperand(1);
2974           Changed = true;
2975         }
2976 
2977         // x == y  -->  x - y == 0
2978         const SCEV *N = SE.getSCEV(NV);
2979         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
2980           // S is normalized, so normalize N before folding it into S
2981           // to keep the result normalized.
2982           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
2983                                      LF.PostIncLoops, SE, DT);
2984           Kind = LSRUse::ICmpZero;
2985           S = SE.getMinusSCEV(N, S);
2986         }
2987 
2988         // -1 and the negations of all interesting strides (except the negation
2989         // of -1) are now also interesting.
2990         for (size_t i = 0, e = Factors.size(); i != e; ++i)
2991           if (Factors[i] != -1)
2992             Factors.insert(-(uint64_t)Factors[i]);
2993         Factors.insert(-1);
2994       }
2995 
2996     // Set up the initial formula for this use.
2997     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
2998     LF.LUIdx = P.first;
2999     LF.Offset = P.second;
3000     LSRUse &LU = Uses[LF.LUIdx];
3001     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3002     if (!LU.WidestFixupType ||
3003         SE.getTypeSizeInBits(LU.WidestFixupType) <
3004         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3005       LU.WidestFixupType = LF.OperandValToReplace->getType();
3006 
3007     // If this is the first use of this LSRUse, give it a formula.
3008     if (LU.Formulae.empty()) {
3009       InsertInitialFormula(S, LU, LF.LUIdx);
3010       CountRegisters(LU.Formulae.back(), LF.LUIdx);
3011     }
3012   }
3013 
3014   DEBUG(print_fixups(dbgs()));
3015 }
3016 
3017 /// Insert a formula for the given expression into the given use, separating out
3018 /// loop-variant portions from loop-invariant and loop-computable portions.
3019 void
3020 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3021   // Mark uses whose expressions cannot be expanded.
3022   if (!isSafeToExpand(S, SE))
3023     LU.RigidFormula = true;
3024 
3025   Formula F;
3026   F.initialMatch(S, L, SE);
3027   bool Inserted = InsertFormula(LU, LUIdx, F);
3028   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3029 }
3030 
3031 /// Insert a simple single-register formula for the given expression into the
3032 /// given use.
3033 void
3034 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3035                                        LSRUse &LU, size_t LUIdx) {
3036   Formula F;
3037   F.BaseRegs.push_back(S);
3038   F.HasBaseReg = true;
3039   bool Inserted = InsertFormula(LU, LUIdx, F);
3040   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3041 }
3042 
3043 /// Note which registers are used by the given formula, updating RegUses.
3044 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3045   if (F.ScaledReg)
3046     RegUses.countRegister(F.ScaledReg, LUIdx);
3047   for (const SCEV *BaseReg : F.BaseRegs)
3048     RegUses.countRegister(BaseReg, LUIdx);
3049 }
3050 
3051 /// If the given formula has not yet been inserted, add it to the list, and
3052 /// return true. Return false otherwise.
3053 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3054   // Do not insert formula that we will not be able to expand.
3055   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3056          "Formula is illegal");
3057   if (!LU.InsertFormula(F))
3058     return false;
3059 
3060   CountRegisters(F, LUIdx);
3061   return true;
3062 }
3063 
3064 /// Check for other uses of loop-invariant values which we're tracking. These
3065 /// other uses will pin these values in registers, making them less profitable
3066 /// for elimination.
3067 /// TODO: This currently misses non-constant addrec step registers.
3068 /// TODO: Should this give more weight to users inside the loop?
3069 void
3070 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3071   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3072   SmallPtrSet<const SCEV *, 32> Visited;
3073 
3074   while (!Worklist.empty()) {
3075     const SCEV *S = Worklist.pop_back_val();
3076 
3077     // Don't process the same SCEV twice
3078     if (!Visited.insert(S).second)
3079       continue;
3080 
3081     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3082       Worklist.append(N->op_begin(), N->op_end());
3083     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3084       Worklist.push_back(C->getOperand());
3085     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3086       Worklist.push_back(D->getLHS());
3087       Worklist.push_back(D->getRHS());
3088     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3089       const Value *V = US->getValue();
3090       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3091         // Look for instructions defined outside the loop.
3092         if (L->contains(Inst)) continue;
3093       } else if (isa<UndefValue>(V))
3094         // Undef doesn't have a live range, so it doesn't matter.
3095         continue;
3096       for (const Use &U : V->uses()) {
3097         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3098         // Ignore non-instructions.
3099         if (!UserInst)
3100           continue;
3101         // Ignore instructions in other functions (as can happen with
3102         // Constants).
3103         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3104           continue;
3105         // Ignore instructions not dominated by the loop.
3106         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3107           UserInst->getParent() :
3108           cast<PHINode>(UserInst)->getIncomingBlock(
3109             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3110         if (!DT.dominates(L->getHeader(), UseBB))
3111           continue;
3112         // Don't bother if the instruction is in a BB which ends in an EHPad.
3113         if (UseBB->getTerminator()->isEHPad())
3114           continue;
3115         // Ignore uses which are part of other SCEV expressions, to avoid
3116         // analyzing them multiple times.
3117         if (SE.isSCEVable(UserInst->getType())) {
3118           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3119           // If the user is a no-op, look through to its uses.
3120           if (!isa<SCEVUnknown>(UserS))
3121             continue;
3122           if (UserS == US) {
3123             Worklist.push_back(
3124               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3125             continue;
3126           }
3127         }
3128         // Ignore icmp instructions which are already being analyzed.
3129         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3130           unsigned OtherIdx = !U.getOperandNo();
3131           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3132           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3133             continue;
3134         }
3135 
3136         LSRFixup &LF = getNewFixup();
3137         LF.UserInst = const_cast<Instruction *>(UserInst);
3138         LF.OperandValToReplace = U;
3139         std::pair<size_t, int64_t> P = getUse(
3140             S, LSRUse::Basic, MemAccessTy());
3141         LF.LUIdx = P.first;
3142         LF.Offset = P.second;
3143         LSRUse &LU = Uses[LF.LUIdx];
3144         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3145         if (!LU.WidestFixupType ||
3146             SE.getTypeSizeInBits(LU.WidestFixupType) <
3147             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3148           LU.WidestFixupType = LF.OperandValToReplace->getType();
3149         InsertSupplementalFormula(US, LU, LF.LUIdx);
3150         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3151         break;
3152       }
3153     }
3154   }
3155 }
3156 
3157 /// Split S into subexpressions which can be pulled out into separate
3158 /// registers. If C is non-null, multiply each subexpression by C.
3159 ///
3160 /// Return remainder expression after factoring the subexpressions captured by
3161 /// Ops. If Ops is complete, return NULL.
3162 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3163                                    SmallVectorImpl<const SCEV *> &Ops,
3164                                    const Loop *L,
3165                                    ScalarEvolution &SE,
3166                                    unsigned Depth = 0) {
3167   // Arbitrarily cap recursion to protect compile time.
3168   if (Depth >= 3)
3169     return S;
3170 
3171   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3172     // Break out add operands.
3173     for (const SCEV *S : Add->operands()) {
3174       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3175       if (Remainder)
3176         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3177     }
3178     return nullptr;
3179   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3180     // Split a non-zero base out of an addrec.
3181     if (AR->getStart()->isZero())
3182       return S;
3183 
3184     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3185                                             C, Ops, L, SE, Depth+1);
3186     // Split the non-zero AddRec unless it is part of a nested recurrence that
3187     // does not pertain to this loop.
3188     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3189       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3190       Remainder = nullptr;
3191     }
3192     if (Remainder != AR->getStart()) {
3193       if (!Remainder)
3194         Remainder = SE.getConstant(AR->getType(), 0);
3195       return SE.getAddRecExpr(Remainder,
3196                               AR->getStepRecurrence(SE),
3197                               AR->getLoop(),
3198                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3199                               SCEV::FlagAnyWrap);
3200     }
3201   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3202     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3203     if (Mul->getNumOperands() != 2)
3204       return S;
3205     if (const SCEVConstant *Op0 =
3206         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3207       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3208       const SCEV *Remainder =
3209         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3210       if (Remainder)
3211         Ops.push_back(SE.getMulExpr(C, Remainder));
3212       return nullptr;
3213     }
3214   }
3215   return S;
3216 }
3217 
3218 /// \brief Helper function for LSRInstance::GenerateReassociations.
3219 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3220                                              const Formula &Base,
3221                                              unsigned Depth, size_t Idx,
3222                                              bool IsScaledReg) {
3223   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3224   SmallVector<const SCEV *, 8> AddOps;
3225   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3226   if (Remainder)
3227     AddOps.push_back(Remainder);
3228 
3229   if (AddOps.size() == 1)
3230     return;
3231 
3232   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3233                                                      JE = AddOps.end();
3234        J != JE; ++J) {
3235 
3236     // Loop-variant "unknown" values are uninteresting; we won't be able to
3237     // do anything meaningful with them.
3238     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3239       continue;
3240 
3241     // Don't pull a constant into a register if the constant could be folded
3242     // into an immediate field.
3243     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3244                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3245       continue;
3246 
3247     // Collect all operands except *J.
3248     SmallVector<const SCEV *, 8> InnerAddOps(
3249         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3250     InnerAddOps.append(std::next(J),
3251                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3252 
3253     // Don't leave just a constant behind in a register if the constant could
3254     // be folded into an immediate field.
3255     if (InnerAddOps.size() == 1 &&
3256         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3257                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3258       continue;
3259 
3260     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3261     if (InnerSum->isZero())
3262       continue;
3263     Formula F = Base;
3264 
3265     // Add the remaining pieces of the add back into the new formula.
3266     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3267     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3268         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3269                                 InnerSumSC->getValue()->getZExtValue())) {
3270       F.UnfoldedOffset =
3271           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3272       if (IsScaledReg)
3273         F.ScaledReg = nullptr;
3274       else
3275         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3276     } else if (IsScaledReg)
3277       F.ScaledReg = InnerSum;
3278     else
3279       F.BaseRegs[Idx] = InnerSum;
3280 
3281     // Add J as its own register, or an unfolded immediate.
3282     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3283     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3284         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3285                                 SC->getValue()->getZExtValue()))
3286       F.UnfoldedOffset =
3287           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3288     else
3289       F.BaseRegs.push_back(*J);
3290     // We may have changed the number of register in base regs, adjust the
3291     // formula accordingly.
3292     F.canonicalize();
3293 
3294     if (InsertFormula(LU, LUIdx, F))
3295       // If that formula hadn't been seen before, recurse to find more like
3296       // it.
3297       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3298   }
3299 }
3300 
3301 /// Split out subexpressions from adds and the bases of addrecs.
3302 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3303                                          Formula Base, unsigned Depth) {
3304   assert(Base.isCanonical() && "Input must be in the canonical form");
3305   // Arbitrarily cap recursion to protect compile time.
3306   if (Depth >= 3)
3307     return;
3308 
3309   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3310     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3311 
3312   if (Base.Scale == 1)
3313     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3314                                /* Idx */ -1, /* IsScaledReg */ true);
3315 }
3316 
3317 ///  Generate a formula consisting of all of the loop-dominating registers added
3318 /// into a single register.
3319 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3320                                        Formula Base) {
3321   // This method is only interesting on a plurality of registers.
3322   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3323     return;
3324 
3325   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3326   // processing the formula.
3327   Base.unscale();
3328   Formula F = Base;
3329   F.BaseRegs.clear();
3330   SmallVector<const SCEV *, 4> Ops;
3331   for (const SCEV *BaseReg : Base.BaseRegs) {
3332     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3333         !SE.hasComputableLoopEvolution(BaseReg, L))
3334       Ops.push_back(BaseReg);
3335     else
3336       F.BaseRegs.push_back(BaseReg);
3337   }
3338   if (Ops.size() > 1) {
3339     const SCEV *Sum = SE.getAddExpr(Ops);
3340     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3341     // opportunity to fold something. For now, just ignore such cases
3342     // rather than proceed with zero in a register.
3343     if (!Sum->isZero()) {
3344       F.BaseRegs.push_back(Sum);
3345       F.canonicalize();
3346       (void)InsertFormula(LU, LUIdx, F);
3347     }
3348   }
3349 }
3350 
3351 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3352 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3353                                               const Formula &Base, size_t Idx,
3354                                               bool IsScaledReg) {
3355   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3356   GlobalValue *GV = ExtractSymbol(G, SE);
3357   if (G->isZero() || !GV)
3358     return;
3359   Formula F = Base;
3360   F.BaseGV = GV;
3361   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3362     return;
3363   if (IsScaledReg)
3364     F.ScaledReg = G;
3365   else
3366     F.BaseRegs[Idx] = G;
3367   (void)InsertFormula(LU, LUIdx, F);
3368 }
3369 
3370 /// Generate reuse formulae using symbolic offsets.
3371 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3372                                           Formula Base) {
3373   // We can't add a symbolic offset if the address already contains one.
3374   if (Base.BaseGV) return;
3375 
3376   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3377     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3378   if (Base.Scale == 1)
3379     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3380                                 /* IsScaledReg */ true);
3381 }
3382 
3383 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3384 void LSRInstance::GenerateConstantOffsetsImpl(
3385     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3386     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3387   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3388   for (int64_t Offset : Worklist) {
3389     Formula F = Base;
3390     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3391     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3392                    LU.AccessTy, F)) {
3393       // Add the offset to the base register.
3394       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3395       // If it cancelled out, drop the base register, otherwise update it.
3396       if (NewG->isZero()) {
3397         if (IsScaledReg) {
3398           F.Scale = 0;
3399           F.ScaledReg = nullptr;
3400         } else
3401           F.deleteBaseReg(F.BaseRegs[Idx]);
3402         F.canonicalize();
3403       } else if (IsScaledReg)
3404         F.ScaledReg = NewG;
3405       else
3406         F.BaseRegs[Idx] = NewG;
3407 
3408       (void)InsertFormula(LU, LUIdx, F);
3409     }
3410   }
3411 
3412   int64_t Imm = ExtractImmediate(G, SE);
3413   if (G->isZero() || Imm == 0)
3414     return;
3415   Formula F = Base;
3416   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3417   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3418     return;
3419   if (IsScaledReg)
3420     F.ScaledReg = G;
3421   else
3422     F.BaseRegs[Idx] = G;
3423   (void)InsertFormula(LU, LUIdx, F);
3424 }
3425 
3426 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3427 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3428                                           Formula Base) {
3429   // TODO: For now, just add the min and max offset, because it usually isn't
3430   // worthwhile looking at everything inbetween.
3431   SmallVector<int64_t, 2> Worklist;
3432   Worklist.push_back(LU.MinOffset);
3433   if (LU.MaxOffset != LU.MinOffset)
3434     Worklist.push_back(LU.MaxOffset);
3435 
3436   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3437     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3438   if (Base.Scale == 1)
3439     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3440                                 /* IsScaledReg */ true);
3441 }
3442 
3443 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3444 /// == y -> x*c == y*c.
3445 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3446                                          Formula Base) {
3447   if (LU.Kind != LSRUse::ICmpZero) return;
3448 
3449   // Determine the integer type for the base formula.
3450   Type *IntTy = Base.getType();
3451   if (!IntTy) return;
3452   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3453 
3454   // Don't do this if there is more than one offset.
3455   if (LU.MinOffset != LU.MaxOffset) return;
3456 
3457   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3458 
3459   // Check each interesting stride.
3460   for (int64_t Factor : Factors) {
3461     // Check that the multiplication doesn't overflow.
3462     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3463       continue;
3464     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3465     if (NewBaseOffset / Factor != Base.BaseOffset)
3466       continue;
3467     // If the offset will be truncated at this use, check that it is in bounds.
3468     if (!IntTy->isPointerTy() &&
3469         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3470       continue;
3471 
3472     // Check that multiplying with the use offset doesn't overflow.
3473     int64_t Offset = LU.MinOffset;
3474     if (Offset == INT64_MIN && Factor == -1)
3475       continue;
3476     Offset = (uint64_t)Offset * Factor;
3477     if (Offset / Factor != LU.MinOffset)
3478       continue;
3479     // If the offset will be truncated at this use, check that it is in bounds.
3480     if (!IntTy->isPointerTy() &&
3481         !ConstantInt::isValueValidForType(IntTy, Offset))
3482       continue;
3483 
3484     Formula F = Base;
3485     F.BaseOffset = NewBaseOffset;
3486 
3487     // Check that this scale is legal.
3488     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3489       continue;
3490 
3491     // Compensate for the use having MinOffset built into it.
3492     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3493 
3494     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3495 
3496     // Check that multiplying with each base register doesn't overflow.
3497     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3498       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3499       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3500         goto next;
3501     }
3502 
3503     // Check that multiplying with the scaled register doesn't overflow.
3504     if (F.ScaledReg) {
3505       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3506       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3507         continue;
3508     }
3509 
3510     // Check that multiplying with the unfolded offset doesn't overflow.
3511     if (F.UnfoldedOffset != 0) {
3512       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3513         continue;
3514       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3515       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3516         continue;
3517       // If the offset will be truncated, check that it is in bounds.
3518       if (!IntTy->isPointerTy() &&
3519           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3520         continue;
3521     }
3522 
3523     // If we make it here and it's legal, add it.
3524     (void)InsertFormula(LU, LUIdx, F);
3525   next:;
3526   }
3527 }
3528 
3529 /// Generate stride factor reuse formulae by making use of scaled-offset address
3530 /// modes, for example.
3531 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3532   // Determine the integer type for the base formula.
3533   Type *IntTy = Base.getType();
3534   if (!IntTy) return;
3535 
3536   // If this Formula already has a scaled register, we can't add another one.
3537   // Try to unscale the formula to generate a better scale.
3538   if (Base.Scale != 0 && !Base.unscale())
3539     return;
3540 
3541   assert(Base.Scale == 0 && "unscale did not did its job!");
3542 
3543   // Check each interesting stride.
3544   for (int64_t Factor : Factors) {
3545     Base.Scale = Factor;
3546     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3547     // Check whether this scale is going to be legal.
3548     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3549                     Base)) {
3550       // As a special-case, handle special out-of-loop Basic users specially.
3551       // TODO: Reconsider this special case.
3552       if (LU.Kind == LSRUse::Basic &&
3553           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3554                      LU.AccessTy, Base) &&
3555           LU.AllFixupsOutsideLoop)
3556         LU.Kind = LSRUse::Special;
3557       else
3558         continue;
3559     }
3560     // For an ICmpZero, negating a solitary base register won't lead to
3561     // new solutions.
3562     if (LU.Kind == LSRUse::ICmpZero &&
3563         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3564       continue;
3565     // For each addrec base reg, apply the scale, if possible.
3566     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3567       if (const SCEVAddRecExpr *AR =
3568             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3569         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3570         if (FactorS->isZero())
3571           continue;
3572         // Divide out the factor, ignoring high bits, since we'll be
3573         // scaling the value back up in the end.
3574         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3575           // TODO: This could be optimized to avoid all the copying.
3576           Formula F = Base;
3577           F.ScaledReg = Quotient;
3578           F.deleteBaseReg(F.BaseRegs[i]);
3579           // The canonical representation of 1*reg is reg, which is already in
3580           // Base. In that case, do not try to insert the formula, it will be
3581           // rejected anyway.
3582           if (F.Scale == 1 && F.BaseRegs.empty())
3583             continue;
3584           (void)InsertFormula(LU, LUIdx, F);
3585         }
3586       }
3587   }
3588 }
3589 
3590 /// Generate reuse formulae from different IV types.
3591 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3592   // Don't bother truncating symbolic values.
3593   if (Base.BaseGV) return;
3594 
3595   // Determine the integer type for the base formula.
3596   Type *DstTy = Base.getType();
3597   if (!DstTy) return;
3598   DstTy = SE.getEffectiveSCEVType(DstTy);
3599 
3600   for (Type *SrcTy : Types) {
3601     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3602       Formula F = Base;
3603 
3604       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3605       for (const SCEV *&BaseReg : F.BaseRegs)
3606         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3607 
3608       // TODO: This assumes we've done basic processing on all uses and
3609       // have an idea what the register usage is.
3610       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3611         continue;
3612 
3613       (void)InsertFormula(LU, LUIdx, F);
3614     }
3615   }
3616 }
3617 
3618 namespace {
3619 
3620 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3621 /// modifications so that the search phase doesn't have to worry about the data
3622 /// structures moving underneath it.
3623 struct WorkItem {
3624   size_t LUIdx;
3625   int64_t Imm;
3626   const SCEV *OrigReg;
3627 
3628   WorkItem(size_t LI, int64_t I, const SCEV *R)
3629     : LUIdx(LI), Imm(I), OrigReg(R) {}
3630 
3631   void print(raw_ostream &OS) const;
3632   void dump() const;
3633 };
3634 
3635 }
3636 
3637 void WorkItem::print(raw_ostream &OS) const {
3638   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3639      << " , add offset " << Imm;
3640 }
3641 
3642 LLVM_DUMP_METHOD
3643 void WorkItem::dump() const {
3644   print(errs()); errs() << '\n';
3645 }
3646 
3647 /// Look for registers which are a constant distance apart and try to form reuse
3648 /// opportunities between them.
3649 void LSRInstance::GenerateCrossUseConstantOffsets() {
3650   // Group the registers by their value without any added constant offset.
3651   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3652   DenseMap<const SCEV *, ImmMapTy> Map;
3653   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3654   SmallVector<const SCEV *, 8> Sequence;
3655   for (const SCEV *Use : RegUses) {
3656     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3657     int64_t Imm = ExtractImmediate(Reg, SE);
3658     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3659     if (Pair.second)
3660       Sequence.push_back(Reg);
3661     Pair.first->second.insert(std::make_pair(Imm, Use));
3662     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3663   }
3664 
3665   // Now examine each set of registers with the same base value. Build up
3666   // a list of work to do and do the work in a separate step so that we're
3667   // not adding formulae and register counts while we're searching.
3668   SmallVector<WorkItem, 32> WorkItems;
3669   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3670   for (const SCEV *Reg : Sequence) {
3671     const ImmMapTy &Imms = Map.find(Reg)->second;
3672 
3673     // It's not worthwhile looking for reuse if there's only one offset.
3674     if (Imms.size() == 1)
3675       continue;
3676 
3677     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3678           for (const auto &Entry : Imms)
3679             dbgs() << ' ' << Entry.first;
3680           dbgs() << '\n');
3681 
3682     // Examine each offset.
3683     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3684          J != JE; ++J) {
3685       const SCEV *OrigReg = J->second;
3686 
3687       int64_t JImm = J->first;
3688       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3689 
3690       if (!isa<SCEVConstant>(OrigReg) &&
3691           UsedByIndicesMap[Reg].count() == 1) {
3692         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3693         continue;
3694       }
3695 
3696       // Conservatively examine offsets between this orig reg a few selected
3697       // other orig regs.
3698       ImmMapTy::const_iterator OtherImms[] = {
3699         Imms.begin(), std::prev(Imms.end()),
3700         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3701                          2)
3702       };
3703       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3704         ImmMapTy::const_iterator M = OtherImms[i];
3705         if (M == J || M == JE) continue;
3706 
3707         // Compute the difference between the two.
3708         int64_t Imm = (uint64_t)JImm - M->first;
3709         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3710              LUIdx = UsedByIndices.find_next(LUIdx))
3711           // Make a memo of this use, offset, and register tuple.
3712           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3713             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3714       }
3715     }
3716   }
3717 
3718   Map.clear();
3719   Sequence.clear();
3720   UsedByIndicesMap.clear();
3721   UniqueItems.clear();
3722 
3723   // Now iterate through the worklist and add new formulae.
3724   for (const WorkItem &WI : WorkItems) {
3725     size_t LUIdx = WI.LUIdx;
3726     LSRUse &LU = Uses[LUIdx];
3727     int64_t Imm = WI.Imm;
3728     const SCEV *OrigReg = WI.OrigReg;
3729 
3730     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3731     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3732     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3733 
3734     // TODO: Use a more targeted data structure.
3735     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3736       Formula F = LU.Formulae[L];
3737       // FIXME: The code for the scaled and unscaled registers looks
3738       // very similar but slightly different. Investigate if they
3739       // could be merged. That way, we would not have to unscale the
3740       // Formula.
3741       F.unscale();
3742       // Use the immediate in the scaled register.
3743       if (F.ScaledReg == OrigReg) {
3744         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3745         // Don't create 50 + reg(-50).
3746         if (F.referencesReg(SE.getSCEV(
3747                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3748           continue;
3749         Formula NewF = F;
3750         NewF.BaseOffset = Offset;
3751         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3752                         NewF))
3753           continue;
3754         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3755 
3756         // If the new scale is a constant in a register, and adding the constant
3757         // value to the immediate would produce a value closer to zero than the
3758         // immediate itself, then the formula isn't worthwhile.
3759         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3760           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3761               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3762                   .ule(std::abs(NewF.BaseOffset)))
3763             continue;
3764 
3765         // OK, looks good.
3766         NewF.canonicalize();
3767         (void)InsertFormula(LU, LUIdx, NewF);
3768       } else {
3769         // Use the immediate in a base register.
3770         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3771           const SCEV *BaseReg = F.BaseRegs[N];
3772           if (BaseReg != OrigReg)
3773             continue;
3774           Formula NewF = F;
3775           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3776           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3777                           LU.Kind, LU.AccessTy, NewF)) {
3778             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3779               continue;
3780             NewF = F;
3781             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3782           }
3783           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3784 
3785           // If the new formula has a constant in a register, and adding the
3786           // constant value to the immediate would produce a value closer to
3787           // zero than the immediate itself, then the formula isn't worthwhile.
3788           for (const SCEV *NewReg : NewF.BaseRegs)
3789             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3790               if ((C->getAPInt() + NewF.BaseOffset)
3791                       .abs()
3792                       .slt(std::abs(NewF.BaseOffset)) &&
3793                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3794                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3795                 goto skip_formula;
3796 
3797           // Ok, looks good.
3798           NewF.canonicalize();
3799           (void)InsertFormula(LU, LUIdx, NewF);
3800           break;
3801         skip_formula:;
3802         }
3803       }
3804     }
3805   }
3806 }
3807 
3808 /// Generate formulae for each use.
3809 void
3810 LSRInstance::GenerateAllReuseFormulae() {
3811   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3812   // queries are more precise.
3813   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3814     LSRUse &LU = Uses[LUIdx];
3815     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3816       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3817     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3818       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3819   }
3820   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3821     LSRUse &LU = Uses[LUIdx];
3822     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3823       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3824     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3825       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3826     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3827       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3828     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3829       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3830   }
3831   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3832     LSRUse &LU = Uses[LUIdx];
3833     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3834       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3835   }
3836 
3837   GenerateCrossUseConstantOffsets();
3838 
3839   DEBUG(dbgs() << "\n"
3840                   "After generating reuse formulae:\n";
3841         print_uses(dbgs()));
3842 }
3843 
3844 /// If there are multiple formulae with the same set of registers used
3845 /// by other uses, pick the best one and delete the others.
3846 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3847   DenseSet<const SCEV *> VisitedRegs;
3848   SmallPtrSet<const SCEV *, 16> Regs;
3849   SmallPtrSet<const SCEV *, 16> LoserRegs;
3850 #ifndef NDEBUG
3851   bool ChangedFormulae = false;
3852 #endif
3853 
3854   // Collect the best formula for each unique set of shared registers. This
3855   // is reset for each use.
3856   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3857     BestFormulaeTy;
3858   BestFormulaeTy BestFormulae;
3859 
3860   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3861     LSRUse &LU = Uses[LUIdx];
3862     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3863 
3864     bool Any = false;
3865     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3866          FIdx != NumForms; ++FIdx) {
3867       Formula &F = LU.Formulae[FIdx];
3868 
3869       // Some formulas are instant losers. For example, they may depend on
3870       // nonexistent AddRecs from other loops. These need to be filtered
3871       // immediately, otherwise heuristics could choose them over others leading
3872       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3873       // avoids the need to recompute this information across formulae using the
3874       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3875       // the corresponding bad register from the Regs set.
3876       Cost CostF;
3877       Regs.clear();
3878       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
3879                         &LoserRegs);
3880       if (CostF.isLoser()) {
3881         // During initial formula generation, undesirable formulae are generated
3882         // by uses within other loops that have some non-trivial address mode or
3883         // use the postinc form of the IV. LSR needs to provide these formulae
3884         // as the basis of rediscovering the desired formula that uses an AddRec
3885         // corresponding to the existing phi. Once all formulae have been
3886         // generated, these initial losers may be pruned.
3887         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3888               dbgs() << "\n");
3889       }
3890       else {
3891         SmallVector<const SCEV *, 4> Key;
3892         for (const SCEV *Reg : F.BaseRegs) {
3893           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3894             Key.push_back(Reg);
3895         }
3896         if (F.ScaledReg &&
3897             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3898           Key.push_back(F.ScaledReg);
3899         // Unstable sort by host order ok, because this is only used for
3900         // uniquifying.
3901         std::sort(Key.begin(), Key.end());
3902 
3903         std::pair<BestFormulaeTy::const_iterator, bool> P =
3904           BestFormulae.insert(std::make_pair(Key, FIdx));
3905         if (P.second)
3906           continue;
3907 
3908         Formula &Best = LU.Formulae[P.first->second];
3909 
3910         Cost CostBest;
3911         Regs.clear();
3912         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
3913                              DT, LU);
3914         if (CostF < CostBest)
3915           std::swap(F, Best);
3916         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3917               dbgs() << "\n"
3918                         "    in favor of formula "; Best.print(dbgs());
3919               dbgs() << '\n');
3920       }
3921 #ifndef NDEBUG
3922       ChangedFormulae = true;
3923 #endif
3924       LU.DeleteFormula(F);
3925       --FIdx;
3926       --NumForms;
3927       Any = true;
3928     }
3929 
3930     // Now that we've filtered out some formulae, recompute the Regs set.
3931     if (Any)
3932       LU.RecomputeRegs(LUIdx, RegUses);
3933 
3934     // Reset this to prepare for the next use.
3935     BestFormulae.clear();
3936   }
3937 
3938   DEBUG(if (ChangedFormulae) {
3939           dbgs() << "\n"
3940                     "After filtering out undesirable candidates:\n";
3941           print_uses(dbgs());
3942         });
3943 }
3944 
3945 // This is a rough guess that seems to work fairly well.
3946 static const size_t ComplexityLimit = UINT16_MAX;
3947 
3948 /// Estimate the worst-case number of solutions the solver might have to
3949 /// consider. It almost never considers this many solutions because it prune the
3950 /// search space, but the pruning isn't always sufficient.
3951 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
3952   size_t Power = 1;
3953   for (const LSRUse &LU : Uses) {
3954     size_t FSize = LU.Formulae.size();
3955     if (FSize >= ComplexityLimit) {
3956       Power = ComplexityLimit;
3957       break;
3958     }
3959     Power *= FSize;
3960     if (Power >= ComplexityLimit)
3961       break;
3962   }
3963   return Power;
3964 }
3965 
3966 /// When one formula uses a superset of the registers of another formula, it
3967 /// won't help reduce register pressure (though it may not necessarily hurt
3968 /// register pressure); remove it to simplify the system.
3969 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
3970   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
3971     DEBUG(dbgs() << "The search space is too complex.\n");
3972 
3973     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
3974                     "which use a superset of registers used by other "
3975                     "formulae.\n");
3976 
3977     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3978       LSRUse &LU = Uses[LUIdx];
3979       bool Any = false;
3980       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
3981         Formula &F = LU.Formulae[i];
3982         // Look for a formula with a constant or GV in a register. If the use
3983         // also has a formula with that same value in an immediate field,
3984         // delete the one that uses a register.
3985         for (SmallVectorImpl<const SCEV *>::const_iterator
3986              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
3987           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
3988             Formula NewF = F;
3989             NewF.BaseOffset += C->getValue()->getSExtValue();
3990             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
3991                                 (I - F.BaseRegs.begin()));
3992             if (LU.HasFormulaWithSameRegs(NewF)) {
3993               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
3994               LU.DeleteFormula(F);
3995               --i;
3996               --e;
3997               Any = true;
3998               break;
3999             }
4000           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4001             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4002               if (!F.BaseGV) {
4003                 Formula NewF = F;
4004                 NewF.BaseGV = GV;
4005                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4006                                     (I - F.BaseRegs.begin()));
4007                 if (LU.HasFormulaWithSameRegs(NewF)) {
4008                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4009                         dbgs() << '\n');
4010                   LU.DeleteFormula(F);
4011                   --i;
4012                   --e;
4013                   Any = true;
4014                   break;
4015                 }
4016               }
4017           }
4018         }
4019       }
4020       if (Any)
4021         LU.RecomputeRegs(LUIdx, RegUses);
4022     }
4023 
4024     DEBUG(dbgs() << "After pre-selection:\n";
4025           print_uses(dbgs()));
4026   }
4027 }
4028 
4029 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4030 /// allocate a single register for them.
4031 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4032   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4033     return;
4034 
4035   DEBUG(dbgs() << "The search space is too complex.\n"
4036                   "Narrowing the search space by assuming that uses separated "
4037                   "by a constant offset will use the same registers.\n");
4038 
4039   // This is especially useful for unrolled loops.
4040 
4041   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4042     LSRUse &LU = Uses[LUIdx];
4043     for (const Formula &F : LU.Formulae) {
4044       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4045         continue;
4046 
4047       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4048       if (!LUThatHas)
4049         continue;
4050 
4051       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4052                               LU.Kind, LU.AccessTy))
4053         continue;
4054 
4055       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4056 
4057       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4058 
4059       // Update the relocs to reference the new use.
4060       for (LSRFixup &Fixup : Fixups) {
4061         if (Fixup.LUIdx == LUIdx) {
4062           Fixup.LUIdx = LUThatHas - &Uses.front();
4063           Fixup.Offset += F.BaseOffset;
4064           // Add the new offset to LUThatHas' offset list.
4065           if (LUThatHas->Offsets.back() != Fixup.Offset) {
4066             LUThatHas->Offsets.push_back(Fixup.Offset);
4067             if (Fixup.Offset > LUThatHas->MaxOffset)
4068               LUThatHas->MaxOffset = Fixup.Offset;
4069             if (Fixup.Offset < LUThatHas->MinOffset)
4070               LUThatHas->MinOffset = Fixup.Offset;
4071           }
4072           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4073         }
4074         if (Fixup.LUIdx == NumUses-1)
4075           Fixup.LUIdx = LUIdx;
4076       }
4077 
4078       // Delete formulae from the new use which are no longer legal.
4079       bool Any = false;
4080       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4081         Formula &F = LUThatHas->Formulae[i];
4082         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4083                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4084           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4085                 dbgs() << '\n');
4086           LUThatHas->DeleteFormula(F);
4087           --i;
4088           --e;
4089           Any = true;
4090         }
4091       }
4092 
4093       if (Any)
4094         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4095 
4096       // Delete the old use.
4097       DeleteUse(LU, LUIdx);
4098       --LUIdx;
4099       --NumUses;
4100       break;
4101     }
4102   }
4103 
4104   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4105 }
4106 
4107 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4108 /// we've done more filtering, as it may be able to find more formulae to
4109 /// eliminate.
4110 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4111   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4112     DEBUG(dbgs() << "The search space is too complex.\n");
4113 
4114     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4115                     "undesirable dedicated registers.\n");
4116 
4117     FilterOutUndesirableDedicatedRegisters();
4118 
4119     DEBUG(dbgs() << "After pre-selection:\n";
4120           print_uses(dbgs()));
4121   }
4122 }
4123 
4124 /// Pick a register which seems likely to be profitable, and then in any use
4125 /// which has any reference to that register, delete all formulae which do not
4126 /// reference that register.
4127 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4128   // With all other options exhausted, loop until the system is simple
4129   // enough to handle.
4130   SmallPtrSet<const SCEV *, 4> Taken;
4131   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4132     // Ok, we have too many of formulae on our hands to conveniently handle.
4133     // Use a rough heuristic to thin out the list.
4134     DEBUG(dbgs() << "The search space is too complex.\n");
4135 
4136     // Pick the register which is used by the most LSRUses, which is likely
4137     // to be a good reuse register candidate.
4138     const SCEV *Best = nullptr;
4139     unsigned BestNum = 0;
4140     for (const SCEV *Reg : RegUses) {
4141       if (Taken.count(Reg))
4142         continue;
4143       if (!Best)
4144         Best = Reg;
4145       else {
4146         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4147         if (Count > BestNum) {
4148           Best = Reg;
4149           BestNum = Count;
4150         }
4151       }
4152     }
4153 
4154     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4155                  << " will yield profitable reuse.\n");
4156     Taken.insert(Best);
4157 
4158     // In any use with formulae which references this register, delete formulae
4159     // which don't reference it.
4160     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4161       LSRUse &LU = Uses[LUIdx];
4162       if (!LU.Regs.count(Best)) continue;
4163 
4164       bool Any = false;
4165       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4166         Formula &F = LU.Formulae[i];
4167         if (!F.referencesReg(Best)) {
4168           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4169           LU.DeleteFormula(F);
4170           --e;
4171           --i;
4172           Any = true;
4173           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4174           continue;
4175         }
4176       }
4177 
4178       if (Any)
4179         LU.RecomputeRegs(LUIdx, RegUses);
4180     }
4181 
4182     DEBUG(dbgs() << "After pre-selection:\n";
4183           print_uses(dbgs()));
4184   }
4185 }
4186 
4187 /// If there are an extraordinary number of formulae to choose from, use some
4188 /// rough heuristics to prune down the number of formulae. This keeps the main
4189 /// solver from taking an extraordinary amount of time in some worst-case
4190 /// scenarios.
4191 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4192   NarrowSearchSpaceByDetectingSupersets();
4193   NarrowSearchSpaceByCollapsingUnrolledCode();
4194   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4195   NarrowSearchSpaceByPickingWinnerRegs();
4196 }
4197 
4198 /// This is the recursive solver.
4199 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4200                                Cost &SolutionCost,
4201                                SmallVectorImpl<const Formula *> &Workspace,
4202                                const Cost &CurCost,
4203                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4204                                DenseSet<const SCEV *> &VisitedRegs) const {
4205   // Some ideas:
4206   //  - prune more:
4207   //    - use more aggressive filtering
4208   //    - sort the formula so that the most profitable solutions are found first
4209   //    - sort the uses too
4210   //  - search faster:
4211   //    - don't compute a cost, and then compare. compare while computing a cost
4212   //      and bail early.
4213   //    - track register sets with SmallBitVector
4214 
4215   const LSRUse &LU = Uses[Workspace.size()];
4216 
4217   // If this use references any register that's already a part of the
4218   // in-progress solution, consider it a requirement that a formula must
4219   // reference that register in order to be considered. This prunes out
4220   // unprofitable searching.
4221   SmallSetVector<const SCEV *, 4> ReqRegs;
4222   for (const SCEV *S : CurRegs)
4223     if (LU.Regs.count(S))
4224       ReqRegs.insert(S);
4225 
4226   SmallPtrSet<const SCEV *, 16> NewRegs;
4227   Cost NewCost;
4228   for (const Formula &F : LU.Formulae) {
4229     // Ignore formulae which may not be ideal in terms of register reuse of
4230     // ReqRegs.  The formula should use all required registers before
4231     // introducing new ones.
4232     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4233     for (const SCEV *Reg : ReqRegs) {
4234       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4235           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
4236           F.BaseRegs.end()) {
4237         --NumReqRegsToFind;
4238         if (NumReqRegsToFind == 0)
4239           break;
4240       }
4241     }
4242     if (NumReqRegsToFind != 0) {
4243       // If none of the formulae satisfied the required registers, then we could
4244       // clear ReqRegs and try again. Currently, we simply give up in this case.
4245       continue;
4246     }
4247 
4248     // Evaluate the cost of the current formula. If it's already worse than
4249     // the current best, prune the search at that point.
4250     NewCost = CurCost;
4251     NewRegs = CurRegs;
4252     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
4253                         LU);
4254     if (NewCost < SolutionCost) {
4255       Workspace.push_back(&F);
4256       if (Workspace.size() != Uses.size()) {
4257         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4258                      NewRegs, VisitedRegs);
4259         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4260           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4261       } else {
4262         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4263               dbgs() << ".\n Regs:";
4264               for (const SCEV *S : NewRegs)
4265                 dbgs() << ' ' << *S;
4266               dbgs() << '\n');
4267 
4268         SolutionCost = NewCost;
4269         Solution = Workspace;
4270       }
4271       Workspace.pop_back();
4272     }
4273   }
4274 }
4275 
4276 /// Choose one formula from each use. Return the results in the given Solution
4277 /// vector.
4278 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4279   SmallVector<const Formula *, 8> Workspace;
4280   Cost SolutionCost;
4281   SolutionCost.Lose();
4282   Cost CurCost;
4283   SmallPtrSet<const SCEV *, 16> CurRegs;
4284   DenseSet<const SCEV *> VisitedRegs;
4285   Workspace.reserve(Uses.size());
4286 
4287   // SolveRecurse does all the work.
4288   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4289                CurRegs, VisitedRegs);
4290   if (Solution.empty()) {
4291     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4292     return;
4293   }
4294 
4295   // Ok, we've now made all our decisions.
4296   DEBUG(dbgs() << "\n"
4297                   "The chosen solution requires "; SolutionCost.print(dbgs());
4298         dbgs() << ":\n";
4299         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4300           dbgs() << "  ";
4301           Uses[i].print(dbgs());
4302           dbgs() << "\n"
4303                     "    ";
4304           Solution[i]->print(dbgs());
4305           dbgs() << '\n';
4306         });
4307 
4308   assert(Solution.size() == Uses.size() && "Malformed solution!");
4309 }
4310 
4311 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4312 /// we can go while still being dominated by the input positions. This helps
4313 /// canonicalize the insert position, which encourages sharing.
4314 BasicBlock::iterator
4315 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4316                                  const SmallVectorImpl<Instruction *> &Inputs)
4317                                                                          const {
4318   for (;;) {
4319     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4320     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4321 
4322     BasicBlock *IDom;
4323     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4324       if (!Rung) return IP;
4325       Rung = Rung->getIDom();
4326       if (!Rung) return IP;
4327       IDom = Rung->getBlock();
4328 
4329       // Don't climb into a loop though.
4330       const Loop *IDomLoop = LI.getLoopFor(IDom);
4331       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4332       if (IDomDepth <= IPLoopDepth &&
4333           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4334         break;
4335     }
4336 
4337     bool AllDominate = true;
4338     Instruction *BetterPos = nullptr;
4339     Instruction *Tentative = IDom->getTerminator();
4340     // Don't bother attempting to insert before a catchswitch, their basic block
4341     // cannot have other non-PHI instructions.
4342     if (isa<CatchSwitchInst>(Tentative))
4343       return IP;
4344 
4345     for (Instruction *Inst : Inputs) {
4346       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4347         AllDominate = false;
4348         break;
4349       }
4350       // Attempt to find an insert position in the middle of the block,
4351       // instead of at the end, so that it can be used for other expansions.
4352       if (IDom == Inst->getParent() &&
4353           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4354         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4355     }
4356     if (!AllDominate)
4357       break;
4358     if (BetterPos)
4359       IP = BetterPos->getIterator();
4360     else
4361       IP = Tentative->getIterator();
4362   }
4363 
4364   return IP;
4365 }
4366 
4367 /// Determine an input position which will be dominated by the operands and
4368 /// which will dominate the result.
4369 BasicBlock::iterator
4370 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4371                                            const LSRFixup &LF,
4372                                            const LSRUse &LU,
4373                                            SCEVExpander &Rewriter) const {
4374   // Collect some instructions which must be dominated by the
4375   // expanding replacement. These must be dominated by any operands that
4376   // will be required in the expansion.
4377   SmallVector<Instruction *, 4> Inputs;
4378   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4379     Inputs.push_back(I);
4380   if (LU.Kind == LSRUse::ICmpZero)
4381     if (Instruction *I =
4382           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4383       Inputs.push_back(I);
4384   if (LF.PostIncLoops.count(L)) {
4385     if (LF.isUseFullyOutsideLoop(L))
4386       Inputs.push_back(L->getLoopLatch()->getTerminator());
4387     else
4388       Inputs.push_back(IVIncInsertPos);
4389   }
4390   // The expansion must also be dominated by the increment positions of any
4391   // loops it for which it is using post-inc mode.
4392   for (const Loop *PIL : LF.PostIncLoops) {
4393     if (PIL == L) continue;
4394 
4395     // Be dominated by the loop exit.
4396     SmallVector<BasicBlock *, 4> ExitingBlocks;
4397     PIL->getExitingBlocks(ExitingBlocks);
4398     if (!ExitingBlocks.empty()) {
4399       BasicBlock *BB = ExitingBlocks[0];
4400       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4401         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4402       Inputs.push_back(BB->getTerminator());
4403     }
4404   }
4405 
4406   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4407          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4408          "Insertion point must be a normal instruction");
4409 
4410   // Then, climb up the immediate dominator tree as far as we can go while
4411   // still being dominated by the input positions.
4412   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4413 
4414   // Don't insert instructions before PHI nodes.
4415   while (isa<PHINode>(IP)) ++IP;
4416 
4417   // Ignore landingpad instructions.
4418   while (IP->isEHPad()) ++IP;
4419 
4420   // Ignore debug intrinsics.
4421   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4422 
4423   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4424   // IP consistent across expansions and allows the previously inserted
4425   // instructions to be reused by subsequent expansion.
4426   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4427     ++IP;
4428 
4429   return IP;
4430 }
4431 
4432 /// Emit instructions for the leading candidate expression for this LSRUse (this
4433 /// is called "expanding").
4434 Value *LSRInstance::Expand(const LSRFixup &LF,
4435                            const Formula &F,
4436                            BasicBlock::iterator IP,
4437                            SCEVExpander &Rewriter,
4438                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4439   const LSRUse &LU = Uses[LF.LUIdx];
4440   if (LU.RigidFormula)
4441     return LF.OperandValToReplace;
4442 
4443   // Determine an input position which will be dominated by the operands and
4444   // which will dominate the result.
4445   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4446 
4447   // Inform the Rewriter if we have a post-increment use, so that it can
4448   // perform an advantageous expansion.
4449   Rewriter.setPostInc(LF.PostIncLoops);
4450 
4451   // This is the type that the user actually needs.
4452   Type *OpTy = LF.OperandValToReplace->getType();
4453   // This will be the type that we'll initially expand to.
4454   Type *Ty = F.getType();
4455   if (!Ty)
4456     // No type known; just expand directly to the ultimate type.
4457     Ty = OpTy;
4458   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4459     // Expand directly to the ultimate type if it's the right size.
4460     Ty = OpTy;
4461   // This is the type to do integer arithmetic in.
4462   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4463 
4464   // Build up a list of operands to add together to form the full base.
4465   SmallVector<const SCEV *, 8> Ops;
4466 
4467   // Expand the BaseRegs portion.
4468   for (const SCEV *Reg : F.BaseRegs) {
4469     assert(!Reg->isZero() && "Zero allocated in a base register!");
4470 
4471     // If we're expanding for a post-inc user, make the post-inc adjustment.
4472     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4473     Reg = TransformForPostIncUse(Denormalize, Reg,
4474                                  LF.UserInst, LF.OperandValToReplace,
4475                                  Loops, SE, DT);
4476 
4477     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
4478   }
4479 
4480   // Expand the ScaledReg portion.
4481   Value *ICmpScaledV = nullptr;
4482   if (F.Scale != 0) {
4483     const SCEV *ScaledS = F.ScaledReg;
4484 
4485     // If we're expanding for a post-inc user, make the post-inc adjustment.
4486     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4487     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4488                                      LF.UserInst, LF.OperandValToReplace,
4489                                      Loops, SE, DT);
4490 
4491     if (LU.Kind == LSRUse::ICmpZero) {
4492       // Expand ScaleReg as if it was part of the base regs.
4493       if (F.Scale == 1)
4494         Ops.push_back(
4495             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
4496       else {
4497         // An interesting way of "folding" with an icmp is to use a negated
4498         // scale, which we'll implement by inserting it into the other operand
4499         // of the icmp.
4500         assert(F.Scale == -1 &&
4501                "The only scale supported by ICmpZero uses is -1!");
4502         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
4503       }
4504     } else {
4505       // Otherwise just expand the scaled register and an explicit scale,
4506       // which is expected to be matched as part of the address.
4507 
4508       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4509       // Unless the addressing mode will not be folded.
4510       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4511           isAMCompletelyFolded(TTI, LU, F)) {
4512         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4513         Ops.clear();
4514         Ops.push_back(SE.getUnknown(FullV));
4515       }
4516       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
4517       if (F.Scale != 1)
4518         ScaledS =
4519             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4520       Ops.push_back(ScaledS);
4521     }
4522   }
4523 
4524   // Expand the GV portion.
4525   if (F.BaseGV) {
4526     // Flush the operand list to suppress SCEVExpander hoisting.
4527     if (!Ops.empty()) {
4528       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4529       Ops.clear();
4530       Ops.push_back(SE.getUnknown(FullV));
4531     }
4532     Ops.push_back(SE.getUnknown(F.BaseGV));
4533   }
4534 
4535   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4536   // unfolded offsets. LSR assumes they both live next to their uses.
4537   if (!Ops.empty()) {
4538     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
4539     Ops.clear();
4540     Ops.push_back(SE.getUnknown(FullV));
4541   }
4542 
4543   // Expand the immediate portion.
4544   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4545   if (Offset != 0) {
4546     if (LU.Kind == LSRUse::ICmpZero) {
4547       // The other interesting way of "folding" with an ICmpZero is to use a
4548       // negated immediate.
4549       if (!ICmpScaledV)
4550         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4551       else {
4552         Ops.push_back(SE.getUnknown(ICmpScaledV));
4553         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4554       }
4555     } else {
4556       // Just add the immediate values. These again are expected to be matched
4557       // as part of the address.
4558       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4559     }
4560   }
4561 
4562   // Expand the unfolded offset portion.
4563   int64_t UnfoldedOffset = F.UnfoldedOffset;
4564   if (UnfoldedOffset != 0) {
4565     // Just add the immediate values.
4566     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4567                                                        UnfoldedOffset)));
4568   }
4569 
4570   // Emit instructions summing all the operands.
4571   const SCEV *FullS = Ops.empty() ?
4572                       SE.getConstant(IntTy, 0) :
4573                       SE.getAddExpr(Ops);
4574   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
4575 
4576   // We're done expanding now, so reset the rewriter.
4577   Rewriter.clearPostInc();
4578 
4579   // An ICmpZero Formula represents an ICmp which we're handling as a
4580   // comparison against zero. Now that we've expanded an expression for that
4581   // form, update the ICmp's other operand.
4582   if (LU.Kind == LSRUse::ICmpZero) {
4583     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4584     DeadInsts.emplace_back(CI->getOperand(1));
4585     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4586                            "a scale at the same time!");
4587     if (F.Scale == -1) {
4588       if (ICmpScaledV->getType() != OpTy) {
4589         Instruction *Cast =
4590           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4591                                                    OpTy, false),
4592                            ICmpScaledV, OpTy, "tmp", CI);
4593         ICmpScaledV = Cast;
4594       }
4595       CI->setOperand(1, ICmpScaledV);
4596     } else {
4597       // A scale of 1 means that the scale has been expanded as part of the
4598       // base regs.
4599       assert((F.Scale == 0 || F.Scale == 1) &&
4600              "ICmp does not support folding a global value and "
4601              "a scale at the same time!");
4602       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4603                                            -(uint64_t)Offset);
4604       if (C->getType() != OpTy)
4605         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4606                                                           OpTy, false),
4607                                   C, OpTy);
4608 
4609       CI->setOperand(1, C);
4610     }
4611   }
4612 
4613   return FullV;
4614 }
4615 
4616 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4617 /// effectively happens in their predecessor blocks, so the expression may need
4618 /// to be expanded in multiple places.
4619 void LSRInstance::RewriteForPHI(PHINode *PN,
4620                                 const LSRFixup &LF,
4621                                 const Formula &F,
4622                                 SCEVExpander &Rewriter,
4623                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4624   DenseMap<BasicBlock *, Value *> Inserted;
4625   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4626     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4627       BasicBlock *BB = PN->getIncomingBlock(i);
4628 
4629       // If this is a critical edge, split the edge so that we do not insert
4630       // the code on all predecessor/successor paths.  We do this unless this
4631       // is the canonical backedge for this loop, which complicates post-inc
4632       // users.
4633       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4634           !isa<IndirectBrInst>(BB->getTerminator())) {
4635         BasicBlock *Parent = PN->getParent();
4636         Loop *PNLoop = LI.getLoopFor(Parent);
4637         if (!PNLoop || Parent != PNLoop->getHeader()) {
4638           // Split the critical edge.
4639           BasicBlock *NewBB = nullptr;
4640           if (!Parent->isLandingPad()) {
4641             NewBB = SplitCriticalEdge(BB, Parent,
4642                                       CriticalEdgeSplittingOptions(&DT, &LI)
4643                                           .setMergeIdenticalEdges()
4644                                           .setDontDeleteUselessPHIs());
4645           } else {
4646             SmallVector<BasicBlock*, 2> NewBBs;
4647             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4648             NewBB = NewBBs[0];
4649           }
4650           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4651           // phi predecessors are identical. The simple thing to do is skip
4652           // splitting in this case rather than complicate the API.
4653           if (NewBB) {
4654             // If PN is outside of the loop and BB is in the loop, we want to
4655             // move the block to be immediately before the PHI block, not
4656             // immediately after BB.
4657             if (L->contains(BB) && !L->contains(PN))
4658               NewBB->moveBefore(PN->getParent());
4659 
4660             // Splitting the edge can reduce the number of PHI entries we have.
4661             e = PN->getNumIncomingValues();
4662             BB = NewBB;
4663             i = PN->getBasicBlockIndex(BB);
4664           }
4665         }
4666       }
4667 
4668       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4669         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4670       if (!Pair.second)
4671         PN->setIncomingValue(i, Pair.first->second);
4672       else {
4673         Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
4674                               Rewriter, DeadInsts);
4675 
4676         // If this is reuse-by-noop-cast, insert the noop cast.
4677         Type *OpTy = LF.OperandValToReplace->getType();
4678         if (FullV->getType() != OpTy)
4679           FullV =
4680             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4681                                                      OpTy, false),
4682                              FullV, LF.OperandValToReplace->getType(),
4683                              "tmp", BB->getTerminator());
4684 
4685         PN->setIncomingValue(i, FullV);
4686         Pair.first->second = FullV;
4687       }
4688     }
4689 }
4690 
4691 /// Emit instructions for the leading candidate expression for this LSRUse (this
4692 /// is called "expanding"), and update the UserInst to reference the newly
4693 /// expanded value.
4694 void LSRInstance::Rewrite(const LSRFixup &LF,
4695                           const Formula &F,
4696                           SCEVExpander &Rewriter,
4697                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4698   // First, find an insertion point that dominates UserInst. For PHI nodes,
4699   // find the nearest block which dominates all the relevant uses.
4700   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4701     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
4702   } else {
4703     Value *FullV =
4704         Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4705 
4706     // If this is reuse-by-noop-cast, insert the noop cast.
4707     Type *OpTy = LF.OperandValToReplace->getType();
4708     if (FullV->getType() != OpTy) {
4709       Instruction *Cast =
4710         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4711                          FullV, OpTy, "tmp", LF.UserInst);
4712       FullV = Cast;
4713     }
4714 
4715     // Update the user. ICmpZero is handled specially here (for now) because
4716     // Expand may have updated one of the operands of the icmp already, and
4717     // its new value may happen to be equal to LF.OperandValToReplace, in
4718     // which case doing replaceUsesOfWith leads to replacing both operands
4719     // with the same value. TODO: Reorganize this.
4720     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
4721       LF.UserInst->setOperand(0, FullV);
4722     else
4723       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4724   }
4725 
4726   DeadInsts.emplace_back(LF.OperandValToReplace);
4727 }
4728 
4729 /// Rewrite all the fixup locations with new values, following the chosen
4730 /// solution.
4731 void LSRInstance::ImplementSolution(
4732     const SmallVectorImpl<const Formula *> &Solution) {
4733   // Keep track of instructions we may have made dead, so that
4734   // we can remove them after we are done working.
4735   SmallVector<WeakVH, 16> DeadInsts;
4736 
4737   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4738                         "lsr");
4739 #ifndef NDEBUG
4740   Rewriter.setDebugType(DEBUG_TYPE);
4741 #endif
4742   Rewriter.disableCanonicalMode();
4743   Rewriter.enableLSRMode();
4744   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4745 
4746   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4747   for (const IVChain &Chain : IVChainVec) {
4748     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4749       Rewriter.setChainedPhi(PN);
4750   }
4751 
4752   // Expand the new value definitions and update the users.
4753   for (const LSRFixup &Fixup : Fixups) {
4754     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
4755 
4756     Changed = true;
4757   }
4758 
4759   for (const IVChain &Chain : IVChainVec) {
4760     GenerateIVChain(Chain, Rewriter, DeadInsts);
4761     Changed = true;
4762   }
4763   // Clean up after ourselves. This must be done before deleting any
4764   // instructions.
4765   Rewriter.clear();
4766 
4767   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4768 }
4769 
4770 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4771                          DominatorTree &DT, LoopInfo &LI,
4772                          const TargetTransformInfo &TTI)
4773     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4774       IVIncInsertPos(nullptr) {
4775   // If LoopSimplify form is not available, stay out of trouble.
4776   if (!L->isLoopSimplifyForm())
4777     return;
4778 
4779   // If there's no interesting work to be done, bail early.
4780   if (IU.empty()) return;
4781 
4782   // If there's too much analysis to be done, bail early. We won't be able to
4783   // model the problem anyway.
4784   unsigned NumUsers = 0;
4785   for (const IVStrideUse &U : IU) {
4786     if (++NumUsers > MaxIVUsers) {
4787       (void)U;
4788       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4789       return;
4790     }
4791     // Bail out if we have a PHI on an EHPad that gets a value from a
4792     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4793     // no good place to stick any instructions.
4794     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4795        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4796        if (isa<FuncletPadInst>(FirstNonPHI) ||
4797            isa<CatchSwitchInst>(FirstNonPHI))
4798          for (BasicBlock *PredBB : PN->blocks())
4799            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4800              return;
4801     }
4802   }
4803 
4804 #ifndef NDEBUG
4805   // All dominating loops must have preheaders, or SCEVExpander may not be able
4806   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4807   //
4808   // IVUsers analysis should only create users that are dominated by simple loop
4809   // headers. Since this loop should dominate all of its users, its user list
4810   // should be empty if this loop itself is not within a simple loop nest.
4811   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4812        Rung; Rung = Rung->getIDom()) {
4813     BasicBlock *BB = Rung->getBlock();
4814     const Loop *DomLoop = LI.getLoopFor(BB);
4815     if (DomLoop && DomLoop->getHeader() == BB) {
4816       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4817     }
4818   }
4819 #endif // DEBUG
4820 
4821   DEBUG(dbgs() << "\nLSR on loop ";
4822         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4823         dbgs() << ":\n");
4824 
4825   // First, perform some low-level loop optimizations.
4826   OptimizeShadowIV();
4827   OptimizeLoopTermCond();
4828 
4829   // If loop preparation eliminates all interesting IV users, bail.
4830   if (IU.empty()) return;
4831 
4832   // Skip nested loops until we can model them better with formulae.
4833   if (!L->empty()) {
4834     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4835     return;
4836   }
4837 
4838   // Start collecting data and preparing for the solver.
4839   CollectChains();
4840   CollectInterestingTypesAndFactors();
4841   CollectFixupsAndInitialFormulae();
4842   CollectLoopInvariantFixupsAndFormulae();
4843 
4844   assert(!Uses.empty() && "IVUsers reported at least one use");
4845   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4846         print_uses(dbgs()));
4847 
4848   // Now use the reuse data to generate a bunch of interesting ways
4849   // to formulate the values needed for the uses.
4850   GenerateAllReuseFormulae();
4851 
4852   FilterOutUndesirableDedicatedRegisters();
4853   NarrowSearchSpaceUsingHeuristics();
4854 
4855   SmallVector<const Formula *, 8> Solution;
4856   Solve(Solution);
4857 
4858   // Release memory that is no longer needed.
4859   Factors.clear();
4860   Types.clear();
4861   RegUses.clear();
4862 
4863   if (Solution.empty())
4864     return;
4865 
4866 #ifndef NDEBUG
4867   // Formulae should be legal.
4868   for (const LSRUse &LU : Uses) {
4869     for (const Formula &F : LU.Formulae)
4870       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4871                         F) && "Illegal formula generated!");
4872   };
4873 #endif
4874 
4875   // Now that we've decided what we want, make it so.
4876   ImplementSolution(Solution);
4877 }
4878 
4879 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4880   if (Factors.empty() && Types.empty()) return;
4881 
4882   OS << "LSR has identified the following interesting factors and types: ";
4883   bool First = true;
4884 
4885   for (int64_t Factor : Factors) {
4886     if (!First) OS << ", ";
4887     First = false;
4888     OS << '*' << Factor;
4889   }
4890 
4891   for (Type *Ty : Types) {
4892     if (!First) OS << ", ";
4893     First = false;
4894     OS << '(' << *Ty << ')';
4895   }
4896   OS << '\n';
4897 }
4898 
4899 void LSRInstance::print_fixups(raw_ostream &OS) const {
4900   OS << "LSR is examining the following fixup sites:\n";
4901   for (const LSRFixup &LF : Fixups) {
4902     dbgs() << "  ";
4903     LF.print(OS);
4904     OS << '\n';
4905   }
4906 }
4907 
4908 void LSRInstance::print_uses(raw_ostream &OS) const {
4909   OS << "LSR is examining the following uses:\n";
4910   for (const LSRUse &LU : Uses) {
4911     dbgs() << "  ";
4912     LU.print(OS);
4913     OS << '\n';
4914     for (const Formula &F : LU.Formulae) {
4915       OS << "    ";
4916       F.print(OS);
4917       OS << '\n';
4918     }
4919   }
4920 }
4921 
4922 void LSRInstance::print(raw_ostream &OS) const {
4923   print_factors_and_types(OS);
4924   print_fixups(OS);
4925   print_uses(OS);
4926 }
4927 
4928 LLVM_DUMP_METHOD
4929 void LSRInstance::dump() const {
4930   print(errs()); errs() << '\n';
4931 }
4932 
4933 namespace {
4934 
4935 class LoopStrengthReduce : public LoopPass {
4936 public:
4937   static char ID; // Pass ID, replacement for typeid
4938   LoopStrengthReduce();
4939 
4940 private:
4941   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4942   void getAnalysisUsage(AnalysisUsage &AU) const override;
4943 };
4944 
4945 }
4946 
4947 char LoopStrengthReduce::ID = 0;
4948 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
4949                 "Loop Strength Reduction", false, false)
4950 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4951 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4952 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
4953 INITIALIZE_PASS_DEPENDENCY(IVUsers)
4954 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
4955 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
4956 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
4957                 "Loop Strength Reduction", false, false)
4958 
4959 
4960 Pass *llvm::createLoopStrengthReducePass() {
4961   return new LoopStrengthReduce();
4962 }
4963 
4964 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
4965   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
4966 }
4967 
4968 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
4969   // We split critical edges, so we change the CFG.  However, we do update
4970   // many analyses if they are around.
4971   AU.addPreservedID(LoopSimplifyID);
4972 
4973   AU.addRequired<LoopInfoWrapperPass>();
4974   AU.addPreserved<LoopInfoWrapperPass>();
4975   AU.addRequiredID(LoopSimplifyID);
4976   AU.addRequired<DominatorTreeWrapperPass>();
4977   AU.addPreserved<DominatorTreeWrapperPass>();
4978   AU.addRequired<ScalarEvolutionWrapperPass>();
4979   AU.addPreserved<ScalarEvolutionWrapperPass>();
4980   // Requiring LoopSimplify a second time here prevents IVUsers from running
4981   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
4982   AU.addRequiredID(LoopSimplifyID);
4983   AU.addRequired<IVUsers>();
4984   AU.addPreserved<IVUsers>();
4985   AU.addRequired<TargetTransformInfoWrapperPass>();
4986 }
4987 
4988 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
4989   if (skipLoop(L))
4990     return false;
4991 
4992   auto &IU = getAnalysis<IVUsers>();
4993   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4994   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4995   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4996   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
4997       *L->getHeader()->getParent());
4998   bool Changed = false;
4999 
5000   // Run the main LSR transformation.
5001   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5002 
5003   // Remove any extra phis created by processing inner loops.
5004   Changed |= DeleteDeadPHIs(L->getHeader());
5005   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5006     SmallVector<WeakVH, 16> DeadInsts;
5007     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5008     SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL,
5009                           "lsr");
5010 #ifndef NDEBUG
5011     Rewriter.setDebugType(DEBUG_TYPE);
5012 #endif
5013     unsigned numFolded = Rewriter.replaceCongruentIVs(
5014         L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts,
5015         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5016             *L->getHeader()->getParent()));
5017     if (numFolded) {
5018       Changed = true;
5019       DeleteTriviallyDeadInstructions(DeadInsts);
5020       DeleteDeadPHIs(L->getHeader());
5021     }
5022   }
5023   return Changed;
5024 }
5025