1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/ScalarEvolution.h"
74 #include "llvm/Analysis/ScalarEvolutionExpander.h"
75 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
76 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
77 #include "llvm/Analysis/TargetTransformInfo.h"
78 #include "llvm/Transforms/Utils/Local.h"
79 #include "llvm/Config/llvm-config.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DerivedTypes.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/IRBuilder.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/OperandTraits.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/IR/ValueHandle.h"
101 #include "llvm/Pass.h"
102 #include "llvm/Support/Casting.h"
103 #include "llvm/Support/CommandLine.h"
104 #include "llvm/Support/Compiler.h"
105 #include "llvm/Support/Debug.h"
106 #include "llvm/Support/ErrorHandling.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Transforms/Scalar.h"
110 #include "llvm/Transforms/Utils.h"
111 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstdlib>
117 #include <iterator>
118 #include <limits>
119 #include <map>
120 #include <utility>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "loop-reduce"
125 
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
131 
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137   "enable-lsr-phielim", cl::Hidden, cl::init(true),
138   cl::desc("Enable LSR phi elimination"));
139 
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142   "lsr-insns-cost", cl::Hidden, cl::init(true),
143   cl::desc("Add instruction count to a LSR cost model"));
144 
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147   "lsr-exp-narrow", cl::Hidden, cl::init(false),
148   cl::desc("Narrow LSR complex solution using"
149            " expectation of registers number"));
150 
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156              " with the same ScaledReg and Scale"));
157 
158 #ifndef NDEBUG
159 // Stress test IV chain generation.
160 static cl::opt<bool> StressIVChain(
161   "stress-ivchain", cl::Hidden, cl::init(false),
162   cl::desc("Stress test LSR IV chains"));
163 #else
164 static bool StressIVChain = false;
165 #endif
166 
167 namespace {
168 
169 struct MemAccessTy {
170   /// Used in situations where the accessed memory type is unknown.
171   static const unsigned UnknownAddressSpace =
172       std::numeric_limits<unsigned>::max();
173 
174   Type *MemTy = nullptr;
175   unsigned AddrSpace = UnknownAddressSpace;
176 
177   MemAccessTy() = default;
178   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
179 
180   bool operator==(MemAccessTy Other) const {
181     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
182   }
183 
184   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
185 
186   static MemAccessTy getUnknown(LLVMContext &Ctx,
187                                 unsigned AS = UnknownAddressSpace) {
188     return MemAccessTy(Type::getVoidTy(Ctx), AS);
189   }
190 
191   Type *getType() { return MemTy; }
192 };
193 
194 /// This class holds data which is used to order reuse candidates.
195 class RegSortData {
196 public:
197   /// This represents the set of LSRUse indices which reference
198   /// a particular register.
199   SmallBitVector UsedByIndices;
200 
201   void print(raw_ostream &OS) const;
202   void dump() const;
203 };
204 
205 } // end anonymous namespace
206 
207 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
208 void RegSortData::print(raw_ostream &OS) const {
209   OS << "[NumUses=" << UsedByIndices.count() << ']';
210 }
211 
212 LLVM_DUMP_METHOD void RegSortData::dump() const {
213   print(errs()); errs() << '\n';
214 }
215 #endif
216 
217 namespace {
218 
219 /// Map register candidates to information about how they are used.
220 class RegUseTracker {
221   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
222 
223   RegUsesTy RegUsesMap;
224   SmallVector<const SCEV *, 16> RegSequence;
225 
226 public:
227   void countRegister(const SCEV *Reg, size_t LUIdx);
228   void dropRegister(const SCEV *Reg, size_t LUIdx);
229   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
230 
231   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
232 
233   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
234 
235   void clear();
236 
237   using iterator = SmallVectorImpl<const SCEV *>::iterator;
238   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
239 
240   iterator begin() { return RegSequence.begin(); }
241   iterator end()   { return RegSequence.end(); }
242   const_iterator begin() const { return RegSequence.begin(); }
243   const_iterator end() const   { return RegSequence.end(); }
244 };
245 
246 } // end anonymous namespace
247 
248 void
249 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
250   std::pair<RegUsesTy::iterator, bool> Pair =
251     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
252   RegSortData &RSD = Pair.first->second;
253   if (Pair.second)
254     RegSequence.push_back(Reg);
255   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
256   RSD.UsedByIndices.set(LUIdx);
257 }
258 
259 void
260 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
261   RegUsesTy::iterator It = RegUsesMap.find(Reg);
262   assert(It != RegUsesMap.end());
263   RegSortData &RSD = It->second;
264   assert(RSD.UsedByIndices.size() > LUIdx);
265   RSD.UsedByIndices.reset(LUIdx);
266 }
267 
268 void
269 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
270   assert(LUIdx <= LastLUIdx);
271 
272   // Update RegUses. The data structure is not optimized for this purpose;
273   // we must iterate through it and update each of the bit vectors.
274   for (auto &Pair : RegUsesMap) {
275     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
276     if (LUIdx < UsedByIndices.size())
277       UsedByIndices[LUIdx] =
278         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
279     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
280   }
281 }
282 
283 bool
284 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
285   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
286   if (I == RegUsesMap.end())
287     return false;
288   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
289   int i = UsedByIndices.find_first();
290   if (i == -1) return false;
291   if ((size_t)i != LUIdx) return true;
292   return UsedByIndices.find_next(i) != -1;
293 }
294 
295 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
296   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
297   assert(I != RegUsesMap.end() && "Unknown register!");
298   return I->second.UsedByIndices;
299 }
300 
301 void RegUseTracker::clear() {
302   RegUsesMap.clear();
303   RegSequence.clear();
304 }
305 
306 namespace {
307 
308 /// This class holds information that describes a formula for computing
309 /// satisfying a use. It may include broken-out immediates and scaled registers.
310 struct Formula {
311   /// Global base address used for complex addressing.
312   GlobalValue *BaseGV = nullptr;
313 
314   /// Base offset for complex addressing.
315   int64_t BaseOffset = 0;
316 
317   /// Whether any complex addressing has a base register.
318   bool HasBaseReg = false;
319 
320   /// The scale of any complex addressing.
321   int64_t Scale = 0;
322 
323   /// The list of "base" registers for this use. When this is non-empty. The
324   /// canonical representation of a formula is
325   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
326   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
327   /// 3. The reg containing recurrent expr related with currect loop in the
328   /// formula should be put in the ScaledReg.
329   /// #1 enforces that the scaled register is always used when at least two
330   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
331   /// #2 enforces that 1 * reg is reg.
332   /// #3 ensures invariant regs with respect to current loop can be combined
333   /// together in LSR codegen.
334   /// This invariant can be temporarily broken while building a formula.
335   /// However, every formula inserted into the LSRInstance must be in canonical
336   /// form.
337   SmallVector<const SCEV *, 4> BaseRegs;
338 
339   /// The 'scaled' register for this use. This should be non-null when Scale is
340   /// not zero.
341   const SCEV *ScaledReg = nullptr;
342 
343   /// An additional constant offset which added near the use. This requires a
344   /// temporary register, but the offset itself can live in an add immediate
345   /// field rather than a register.
346   int64_t UnfoldedOffset = 0;
347 
348   Formula() = default;
349 
350   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
351 
352   bool isCanonical(const Loop &L) const;
353 
354   void canonicalize(const Loop &L);
355 
356   bool unscale();
357 
358   bool hasZeroEnd() const;
359 
360   size_t getNumRegs() const;
361   Type *getType() const;
362 
363   void deleteBaseReg(const SCEV *&S);
364 
365   bool referencesReg(const SCEV *S) const;
366   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
367                                   const RegUseTracker &RegUses) const;
368 
369   void print(raw_ostream &OS) const;
370   void dump() const;
371 };
372 
373 } // end anonymous namespace
374 
375 /// Recursion helper for initialMatch.
376 static void DoInitialMatch(const SCEV *S, Loop *L,
377                            SmallVectorImpl<const SCEV *> &Good,
378                            SmallVectorImpl<const SCEV *> &Bad,
379                            ScalarEvolution &SE) {
380   // Collect expressions which properly dominate the loop header.
381   if (SE.properlyDominates(S, L->getHeader())) {
382     Good.push_back(S);
383     return;
384   }
385 
386   // Look at add operands.
387   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
388     for (const SCEV *S : Add->operands())
389       DoInitialMatch(S, L, Good, Bad, SE);
390     return;
391   }
392 
393   // Look at addrec operands.
394   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
395     if (!AR->getStart()->isZero() && AR->isAffine()) {
396       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
397       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
398                                       AR->getStepRecurrence(SE),
399                                       // FIXME: AR->getNoWrapFlags()
400                                       AR->getLoop(), SCEV::FlagAnyWrap),
401                      L, Good, Bad, SE);
402       return;
403     }
404 
405   // Handle a multiplication by -1 (negation) if it didn't fold.
406   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
407     if (Mul->getOperand(0)->isAllOnesValue()) {
408       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
409       const SCEV *NewMul = SE.getMulExpr(Ops);
410 
411       SmallVector<const SCEV *, 4> MyGood;
412       SmallVector<const SCEV *, 4> MyBad;
413       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
414       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
415         SE.getEffectiveSCEVType(NewMul->getType())));
416       for (const SCEV *S : MyGood)
417         Good.push_back(SE.getMulExpr(NegOne, S));
418       for (const SCEV *S : MyBad)
419         Bad.push_back(SE.getMulExpr(NegOne, S));
420       return;
421     }
422 
423   // Ok, we can't do anything interesting. Just stuff the whole thing into a
424   // register and hope for the best.
425   Bad.push_back(S);
426 }
427 
428 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
429 /// all loop-invariant and loop-computable values in a single base register.
430 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
431   SmallVector<const SCEV *, 4> Good;
432   SmallVector<const SCEV *, 4> Bad;
433   DoInitialMatch(S, L, Good, Bad, SE);
434   if (!Good.empty()) {
435     const SCEV *Sum = SE.getAddExpr(Good);
436     if (!Sum->isZero())
437       BaseRegs.push_back(Sum);
438     HasBaseReg = true;
439   }
440   if (!Bad.empty()) {
441     const SCEV *Sum = SE.getAddExpr(Bad);
442     if (!Sum->isZero())
443       BaseRegs.push_back(Sum);
444     HasBaseReg = true;
445   }
446   canonicalize(*L);
447 }
448 
449 /// Check whether or not this formula satisfies the canonical
450 /// representation.
451 /// \see Formula::BaseRegs.
452 bool Formula::isCanonical(const Loop &L) const {
453   if (!ScaledReg)
454     return BaseRegs.size() <= 1;
455 
456   if (Scale != 1)
457     return true;
458 
459   if (Scale == 1 && BaseRegs.empty())
460     return false;
461 
462   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
463   if (SAR && SAR->getLoop() == &L)
464     return true;
465 
466   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
467   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
468   // loop, we want to swap the reg in BaseRegs with ScaledReg.
469   auto I =
470       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
471         return isa<const SCEVAddRecExpr>(S) &&
472                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
473       });
474   return I == BaseRegs.end();
475 }
476 
477 /// Helper method to morph a formula into its canonical representation.
478 /// \see Formula::BaseRegs.
479 /// Every formula having more than one base register, must use the ScaledReg
480 /// field. Otherwise, we would have to do special cases everywhere in LSR
481 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
482 /// On the other hand, 1*reg should be canonicalized into reg.
483 void Formula::canonicalize(const Loop &L) {
484   if (isCanonical(L))
485     return;
486   // So far we did not need this case. This is easy to implement but it is
487   // useless to maintain dead code. Beside it could hurt compile time.
488   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
489 
490   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
491   if (!ScaledReg) {
492     ScaledReg = BaseRegs.back();
493     BaseRegs.pop_back();
494     Scale = 1;
495   }
496 
497   // If ScaledReg is an invariant with respect to L, find the reg from
498   // BaseRegs containing the recurrent expr related with Loop L. Swap the
499   // reg with ScaledReg.
500   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
501   if (!SAR || SAR->getLoop() != &L) {
502     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
503                      [&](const SCEV *S) {
504                        return isa<const SCEVAddRecExpr>(S) &&
505                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
506                      });
507     if (I != BaseRegs.end())
508       std::swap(ScaledReg, *I);
509   }
510 }
511 
512 /// Get rid of the scale in the formula.
513 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
514 /// \return true if it was possible to get rid of the scale, false otherwise.
515 /// \note After this operation the formula may not be in the canonical form.
516 bool Formula::unscale() {
517   if (Scale != 1)
518     return false;
519   Scale = 0;
520   BaseRegs.push_back(ScaledReg);
521   ScaledReg = nullptr;
522   return true;
523 }
524 
525 bool Formula::hasZeroEnd() const {
526   if (UnfoldedOffset || BaseOffset)
527     return false;
528   if (BaseRegs.size() != 1 || ScaledReg)
529     return false;
530   return true;
531 }
532 
533 /// Return the total number of register operands used by this formula. This does
534 /// not include register uses implied by non-constant addrec strides.
535 size_t Formula::getNumRegs() const {
536   return !!ScaledReg + BaseRegs.size();
537 }
538 
539 /// Return the type of this formula, if it has one, or null otherwise. This type
540 /// is meaningless except for the bit size.
541 Type *Formula::getType() const {
542   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
543          ScaledReg ? ScaledReg->getType() :
544          BaseGV ? BaseGV->getType() :
545          nullptr;
546 }
547 
548 /// Delete the given base reg from the BaseRegs list.
549 void Formula::deleteBaseReg(const SCEV *&S) {
550   if (&S != &BaseRegs.back())
551     std::swap(S, BaseRegs.back());
552   BaseRegs.pop_back();
553 }
554 
555 /// Test if this formula references the given register.
556 bool Formula::referencesReg(const SCEV *S) const {
557   return S == ScaledReg || is_contained(BaseRegs, S);
558 }
559 
560 /// Test whether this formula uses registers which are used by uses other than
561 /// the use with the given index.
562 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
563                                          const RegUseTracker &RegUses) const {
564   if (ScaledReg)
565     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
566       return true;
567   for (const SCEV *BaseReg : BaseRegs)
568     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
569       return true;
570   return false;
571 }
572 
573 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
574 void Formula::print(raw_ostream &OS) const {
575   bool First = true;
576   if (BaseGV) {
577     if (!First) OS << " + "; else First = false;
578     BaseGV->printAsOperand(OS, /*PrintType=*/false);
579   }
580   if (BaseOffset != 0) {
581     if (!First) OS << " + "; else First = false;
582     OS << BaseOffset;
583   }
584   for (const SCEV *BaseReg : BaseRegs) {
585     if (!First) OS << " + "; else First = false;
586     OS << "reg(" << *BaseReg << ')';
587   }
588   if (HasBaseReg && BaseRegs.empty()) {
589     if (!First) OS << " + "; else First = false;
590     OS << "**error: HasBaseReg**";
591   } else if (!HasBaseReg && !BaseRegs.empty()) {
592     if (!First) OS << " + "; else First = false;
593     OS << "**error: !HasBaseReg**";
594   }
595   if (Scale != 0) {
596     if (!First) OS << " + "; else First = false;
597     OS << Scale << "*reg(";
598     if (ScaledReg)
599       OS << *ScaledReg;
600     else
601       OS << "<unknown>";
602     OS << ')';
603   }
604   if (UnfoldedOffset != 0) {
605     if (!First) OS << " + ";
606     OS << "imm(" << UnfoldedOffset << ')';
607   }
608 }
609 
610 LLVM_DUMP_METHOD void Formula::dump() const {
611   print(errs()); errs() << '\n';
612 }
613 #endif
614 
615 /// Return true if the given addrec can be sign-extended without changing its
616 /// value.
617 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
618   Type *WideTy =
619     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
620   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
621 }
622 
623 /// Return true if the given add can be sign-extended without changing its
624 /// value.
625 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
626   Type *WideTy =
627     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
628   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
629 }
630 
631 /// Return true if the given mul can be sign-extended without changing its
632 /// value.
633 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
634   Type *WideTy =
635     IntegerType::get(SE.getContext(),
636                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
637   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
638 }
639 
640 /// Return an expression for LHS /s RHS, if it can be determined and if the
641 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
642 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
643 /// the multiplication may overflow, which is useful when the result will be
644 /// used in a context where the most significant bits are ignored.
645 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
646                                 ScalarEvolution &SE,
647                                 bool IgnoreSignificantBits = false) {
648   // Handle the trivial case, which works for any SCEV type.
649   if (LHS == RHS)
650     return SE.getConstant(LHS->getType(), 1);
651 
652   // Handle a few RHS special cases.
653   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
654   if (RC) {
655     const APInt &RA = RC->getAPInt();
656     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
657     // some folding.
658     if (RA.isAllOnesValue())
659       return SE.getMulExpr(LHS, RC);
660     // Handle x /s 1 as x.
661     if (RA == 1)
662       return LHS;
663   }
664 
665   // Check for a division of a constant by a constant.
666   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
667     if (!RC)
668       return nullptr;
669     const APInt &LA = C->getAPInt();
670     const APInt &RA = RC->getAPInt();
671     if (LA.srem(RA) != 0)
672       return nullptr;
673     return SE.getConstant(LA.sdiv(RA));
674   }
675 
676   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
677   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
678     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
679       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
680                                       IgnoreSignificantBits);
681       if (!Step) return nullptr;
682       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
683                                        IgnoreSignificantBits);
684       if (!Start) return nullptr;
685       // FlagNW is independent of the start value, step direction, and is
686       // preserved with smaller magnitude steps.
687       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
688       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
689     }
690     return nullptr;
691   }
692 
693   // Distribute the sdiv over add operands, if the add doesn't overflow.
694   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
695     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
696       SmallVector<const SCEV *, 8> Ops;
697       for (const SCEV *S : Add->operands()) {
698         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
699         if (!Op) return nullptr;
700         Ops.push_back(Op);
701       }
702       return SE.getAddExpr(Ops);
703     }
704     return nullptr;
705   }
706 
707   // Check for a multiply operand that we can pull RHS out of.
708   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
709     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
710       SmallVector<const SCEV *, 4> Ops;
711       bool Found = false;
712       for (const SCEV *S : Mul->operands()) {
713         if (!Found)
714           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
715                                            IgnoreSignificantBits)) {
716             S = Q;
717             Found = true;
718           }
719         Ops.push_back(S);
720       }
721       return Found ? SE.getMulExpr(Ops) : nullptr;
722     }
723     return nullptr;
724   }
725 
726   // Otherwise we don't know.
727   return nullptr;
728 }
729 
730 /// If S involves the addition of a constant integer value, return that integer
731 /// value, and mutate S to point to a new SCEV with that value excluded.
732 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
733   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
734     if (C->getAPInt().getMinSignedBits() <= 64) {
735       S = SE.getConstant(C->getType(), 0);
736       return C->getValue()->getSExtValue();
737     }
738   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
739     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
740     int64_t Result = ExtractImmediate(NewOps.front(), SE);
741     if (Result != 0)
742       S = SE.getAddExpr(NewOps);
743     return Result;
744   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
745     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
746     int64_t Result = ExtractImmediate(NewOps.front(), SE);
747     if (Result != 0)
748       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
749                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
750                            SCEV::FlagAnyWrap);
751     return Result;
752   }
753   return 0;
754 }
755 
756 /// If S involves the addition of a GlobalValue address, return that symbol, and
757 /// mutate S to point to a new SCEV with that value excluded.
758 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
759   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
760     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
761       S = SE.getConstant(GV->getType(), 0);
762       return GV;
763     }
764   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
765     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
766     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
767     if (Result)
768       S = SE.getAddExpr(NewOps);
769     return Result;
770   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
771     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
772     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
773     if (Result)
774       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
775                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
776                            SCEV::FlagAnyWrap);
777     return Result;
778   }
779   return nullptr;
780 }
781 
782 /// Returns true if the specified instruction is using the specified value as an
783 /// address.
784 static bool isAddressUse(const TargetTransformInfo &TTI,
785                          Instruction *Inst, Value *OperandVal) {
786   bool isAddress = isa<LoadInst>(Inst);
787   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
788     if (SI->getPointerOperand() == OperandVal)
789       isAddress = true;
790   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
791     // Addressing modes can also be folded into prefetches and a variety
792     // of intrinsics.
793     switch (II->getIntrinsicID()) {
794     case Intrinsic::memset:
795     case Intrinsic::prefetch:
796       if (II->getArgOperand(0) == OperandVal)
797         isAddress = true;
798       break;
799     case Intrinsic::memmove:
800     case Intrinsic::memcpy:
801       if (II->getArgOperand(0) == OperandVal ||
802           II->getArgOperand(1) == OperandVal)
803         isAddress = true;
804       break;
805     default: {
806       MemIntrinsicInfo IntrInfo;
807       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
808         if (IntrInfo.PtrVal == OperandVal)
809           isAddress = true;
810       }
811     }
812     }
813   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
814     if (RMW->getPointerOperand() == OperandVal)
815       isAddress = true;
816   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
817     if (CmpX->getPointerOperand() == OperandVal)
818       isAddress = true;
819   }
820   return isAddress;
821 }
822 
823 /// Return the type of the memory being accessed.
824 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
825                                  Instruction *Inst, Value *OperandVal) {
826   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
827   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
828     AccessTy.MemTy = SI->getOperand(0)->getType();
829     AccessTy.AddrSpace = SI->getPointerAddressSpace();
830   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
831     AccessTy.AddrSpace = LI->getPointerAddressSpace();
832   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
833     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
834   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
835     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
836   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
837     switch (II->getIntrinsicID()) {
838     case Intrinsic::prefetch:
839     case Intrinsic::memset:
840       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
841       AccessTy.MemTy = OperandVal->getType();
842       break;
843     case Intrinsic::memmove:
844     case Intrinsic::memcpy:
845       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
846       AccessTy.MemTy = OperandVal->getType();
847       break;
848     default: {
849       MemIntrinsicInfo IntrInfo;
850       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
851         AccessTy.AddrSpace
852           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
853       }
854 
855       break;
856     }
857     }
858   }
859 
860   // All pointers have the same requirements, so canonicalize them to an
861   // arbitrary pointer type to minimize variation.
862   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
863     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
864                                       PTy->getAddressSpace());
865 
866   return AccessTy;
867 }
868 
869 /// Return true if this AddRec is already a phi in its loop.
870 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
871   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
872     if (SE.isSCEVable(PN.getType()) &&
873         (SE.getEffectiveSCEVType(PN.getType()) ==
874          SE.getEffectiveSCEVType(AR->getType())) &&
875         SE.getSCEV(&PN) == AR)
876       return true;
877   }
878   return false;
879 }
880 
881 /// Check if expanding this expression is likely to incur significant cost. This
882 /// is tricky because SCEV doesn't track which expressions are actually computed
883 /// by the current IR.
884 ///
885 /// We currently allow expansion of IV increments that involve adds,
886 /// multiplication by constants, and AddRecs from existing phis.
887 ///
888 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
889 /// obvious multiple of the UDivExpr.
890 static bool isHighCostExpansion(const SCEV *S,
891                                 SmallPtrSetImpl<const SCEV*> &Processed,
892                                 ScalarEvolution &SE) {
893   // Zero/One operand expressions
894   switch (S->getSCEVType()) {
895   case scUnknown:
896   case scConstant:
897     return false;
898   case scTruncate:
899     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
900                                Processed, SE);
901   case scZeroExtend:
902     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
903                                Processed, SE);
904   case scSignExtend:
905     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
906                                Processed, SE);
907   }
908 
909   if (!Processed.insert(S).second)
910     return false;
911 
912   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
913     for (const SCEV *S : Add->operands()) {
914       if (isHighCostExpansion(S, Processed, SE))
915         return true;
916     }
917     return false;
918   }
919 
920   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
921     if (Mul->getNumOperands() == 2) {
922       // Multiplication by a constant is ok
923       if (isa<SCEVConstant>(Mul->getOperand(0)))
924         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
925 
926       // If we have the value of one operand, check if an existing
927       // multiplication already generates this expression.
928       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
929         Value *UVal = U->getValue();
930         for (User *UR : UVal->users()) {
931           // If U is a constant, it may be used by a ConstantExpr.
932           Instruction *UI = dyn_cast<Instruction>(UR);
933           if (UI && UI->getOpcode() == Instruction::Mul &&
934               SE.isSCEVable(UI->getType())) {
935             return SE.getSCEV(UI) == Mul;
936           }
937         }
938       }
939     }
940   }
941 
942   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
943     if (isExistingPhi(AR, SE))
944       return false;
945   }
946 
947   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
948   return true;
949 }
950 
951 /// If any of the instructions in the specified set are trivially dead, delete
952 /// them and see if this makes any of their operands subsequently dead.
953 static bool
954 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
955   bool Changed = false;
956 
957   while (!DeadInsts.empty()) {
958     Value *V = DeadInsts.pop_back_val();
959     Instruction *I = dyn_cast_or_null<Instruction>(V);
960 
961     if (!I || !isInstructionTriviallyDead(I))
962       continue;
963 
964     for (Use &O : I->operands())
965       if (Instruction *U = dyn_cast<Instruction>(O)) {
966         O = nullptr;
967         if (U->use_empty())
968           DeadInsts.emplace_back(U);
969       }
970 
971     I->eraseFromParent();
972     Changed = true;
973   }
974 
975   return Changed;
976 }
977 
978 namespace {
979 
980 class LSRUse;
981 
982 } // end anonymous namespace
983 
984 /// Check if the addressing mode defined by \p F is completely
985 /// folded in \p LU at isel time.
986 /// This includes address-mode folding and special icmp tricks.
987 /// This function returns true if \p LU can accommodate what \p F
988 /// defines and up to 1 base + 1 scaled + offset.
989 /// In other words, if \p F has several base registers, this function may
990 /// still return true. Therefore, users still need to account for
991 /// additional base registers and/or unfolded offsets to derive an
992 /// accurate cost model.
993 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
994                                  const LSRUse &LU, const Formula &F);
995 
996 // Get the cost of the scaling factor used in F for LU.
997 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
998                                      const LSRUse &LU, const Formula &F,
999                                      const Loop &L);
1000 
1001 namespace {
1002 
1003 /// This class is used to measure and compare candidate formulae.
1004 class Cost {
1005   TargetTransformInfo::LSRCost C;
1006 
1007 public:
1008   Cost() {
1009     C.Insns = 0;
1010     C.NumRegs = 0;
1011     C.AddRecCost = 0;
1012     C.NumIVMuls = 0;
1013     C.NumBaseAdds = 0;
1014     C.ImmCost = 0;
1015     C.SetupCost = 0;
1016     C.ScaleCost = 0;
1017   }
1018 
1019   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
1020 
1021   void Lose();
1022 
1023 #ifndef NDEBUG
1024   // Once any of the metrics loses, they must all remain losers.
1025   bool isValid() {
1026     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1027              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1028       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1029            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1030   }
1031 #endif
1032 
1033   bool isLoser() {
1034     assert(isValid() && "invalid cost");
1035     return C.NumRegs == ~0u;
1036   }
1037 
1038   void RateFormula(const TargetTransformInfo &TTI,
1039                    const Formula &F,
1040                    SmallPtrSetImpl<const SCEV *> &Regs,
1041                    const DenseSet<const SCEV *> &VisitedRegs,
1042                    const Loop *L,
1043                    ScalarEvolution &SE, DominatorTree &DT,
1044                    const LSRUse &LU,
1045                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1046 
1047   void print(raw_ostream &OS) const;
1048   void dump() const;
1049 
1050 private:
1051   void RateRegister(const SCEV *Reg,
1052                     SmallPtrSetImpl<const SCEV *> &Regs,
1053                     const Loop *L,
1054                     ScalarEvolution &SE, DominatorTree &DT,
1055                     const TargetTransformInfo &TTI);
1056   void RatePrimaryRegister(const SCEV *Reg,
1057                            SmallPtrSetImpl<const SCEV *> &Regs,
1058                            const Loop *L,
1059                            ScalarEvolution &SE, DominatorTree &DT,
1060                            SmallPtrSetImpl<const SCEV *> *LoserRegs,
1061                            const TargetTransformInfo &TTI);
1062 };
1063 
1064 /// An operand value in an instruction which is to be replaced with some
1065 /// equivalent, possibly strength-reduced, replacement.
1066 struct LSRFixup {
1067   /// The instruction which will be updated.
1068   Instruction *UserInst = nullptr;
1069 
1070   /// The operand of the instruction which will be replaced. The operand may be
1071   /// used more than once; every instance will be replaced.
1072   Value *OperandValToReplace = nullptr;
1073 
1074   /// If this user is to use the post-incremented value of an induction
1075   /// variable, this set is non-empty and holds the loops associated with the
1076   /// induction variable.
1077   PostIncLoopSet PostIncLoops;
1078 
1079   /// A constant offset to be added to the LSRUse expression.  This allows
1080   /// multiple fixups to share the same LSRUse with different offsets, for
1081   /// example in an unrolled loop.
1082   int64_t Offset = 0;
1083 
1084   LSRFixup() = default;
1085 
1086   bool isUseFullyOutsideLoop(const Loop *L) const;
1087 
1088   void print(raw_ostream &OS) const;
1089   void dump() const;
1090 };
1091 
1092 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1093 /// SmallVectors of const SCEV*.
1094 struct UniquifierDenseMapInfo {
1095   static SmallVector<const SCEV *, 4> getEmptyKey() {
1096     SmallVector<const SCEV *, 4>  V;
1097     V.push_back(reinterpret_cast<const SCEV *>(-1));
1098     return V;
1099   }
1100 
1101   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1102     SmallVector<const SCEV *, 4> V;
1103     V.push_back(reinterpret_cast<const SCEV *>(-2));
1104     return V;
1105   }
1106 
1107   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1108     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1109   }
1110 
1111   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1112                       const SmallVector<const SCEV *, 4> &RHS) {
1113     return LHS == RHS;
1114   }
1115 };
1116 
1117 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1118 /// as uses invented by LSR itself. It includes information about what kinds of
1119 /// things can be folded into the user, information about the user itself, and
1120 /// information about how the use may be satisfied.  TODO: Represent multiple
1121 /// users of the same expression in common?
1122 class LSRUse {
1123   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1124 
1125 public:
1126   /// An enum for a kind of use, indicating what types of scaled and immediate
1127   /// operands it might support.
1128   enum KindType {
1129     Basic,   ///< A normal use, with no folding.
1130     Special, ///< A special case of basic, allowing -1 scales.
1131     Address, ///< An address use; folding according to TargetLowering
1132     ICmpZero ///< An equality icmp with both operands folded into one.
1133     // TODO: Add a generic icmp too?
1134   };
1135 
1136   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1137 
1138   KindType Kind;
1139   MemAccessTy AccessTy;
1140 
1141   /// The list of operands which are to be replaced.
1142   SmallVector<LSRFixup, 8> Fixups;
1143 
1144   /// Keep track of the min and max offsets of the fixups.
1145   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1146   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1147 
1148   /// This records whether all of the fixups using this LSRUse are outside of
1149   /// the loop, in which case some special-case heuristics may be used.
1150   bool AllFixupsOutsideLoop = true;
1151 
1152   /// RigidFormula is set to true to guarantee that this use will be associated
1153   /// with a single formula--the one that initially matched. Some SCEV
1154   /// expressions cannot be expanded. This allows LSR to consider the registers
1155   /// used by those expressions without the need to expand them later after
1156   /// changing the formula.
1157   bool RigidFormula = false;
1158 
1159   /// This records the widest use type for any fixup using this
1160   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1161   /// fixup widths to be equivalent, because the narrower one may be relying on
1162   /// the implicit truncation to truncate away bogus bits.
1163   Type *WidestFixupType = nullptr;
1164 
1165   /// A list of ways to build a value that can satisfy this user.  After the
1166   /// list is populated, one of these is selected heuristically and used to
1167   /// formulate a replacement for OperandValToReplace in UserInst.
1168   SmallVector<Formula, 12> Formulae;
1169 
1170   /// The set of register candidates used by all formulae in this LSRUse.
1171   SmallPtrSet<const SCEV *, 4> Regs;
1172 
1173   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1174 
1175   LSRFixup &getNewFixup() {
1176     Fixups.push_back(LSRFixup());
1177     return Fixups.back();
1178   }
1179 
1180   void pushFixup(LSRFixup &f) {
1181     Fixups.push_back(f);
1182     if (f.Offset > MaxOffset)
1183       MaxOffset = f.Offset;
1184     if (f.Offset < MinOffset)
1185       MinOffset = f.Offset;
1186   }
1187 
1188   bool HasFormulaWithSameRegs(const Formula &F) const;
1189   float getNotSelectedProbability(const SCEV *Reg) const;
1190   bool InsertFormula(const Formula &F, const Loop &L);
1191   void DeleteFormula(Formula &F);
1192   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1193 
1194   void print(raw_ostream &OS) const;
1195   void dump() const;
1196 };
1197 
1198 } // end anonymous namespace
1199 
1200 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1201                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1202                                  GlobalValue *BaseGV, int64_t BaseOffset,
1203                                  bool HasBaseReg, int64_t Scale,
1204                                  Instruction *Fixup = nullptr);
1205 
1206 /// Tally up interesting quantities from the given register.
1207 void Cost::RateRegister(const SCEV *Reg,
1208                         SmallPtrSetImpl<const SCEV *> &Regs,
1209                         const Loop *L,
1210                         ScalarEvolution &SE, DominatorTree &DT,
1211                         const TargetTransformInfo &TTI) {
1212   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1213     // If this is an addrec for another loop, it should be an invariant
1214     // with respect to L since L is the innermost loop (at least
1215     // for now LSR only handles innermost loops).
1216     if (AR->getLoop() != L) {
1217       // If the AddRec exists, consider it's register free and leave it alone.
1218       if (isExistingPhi(AR, SE))
1219         return;
1220 
1221       // It is bad to allow LSR for current loop to add induction variables
1222       // for its sibling loops.
1223       if (!AR->getLoop()->contains(L)) {
1224         Lose();
1225         return;
1226       }
1227 
1228       // Otherwise, it will be an invariant with respect to Loop L.
1229       ++C.NumRegs;
1230       return;
1231     }
1232 
1233     unsigned LoopCost = 1;
1234     if (TTI.shouldFavorPostInc()) {
1235       const SCEV *LoopStep = AR->getStepRecurrence(SE);
1236       if (isa<SCEVConstant>(LoopStep)) {
1237         // Check if a post-indexed load/store can be used.
1238         if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
1239             TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
1240           const SCEV *LoopStart = AR->getStart();
1241           if (!isa<SCEVConstant>(LoopStart) &&
1242             SE.isLoopInvariant(LoopStart, L))
1243               LoopCost = 0;
1244         }
1245       }
1246     }
1247     C.AddRecCost += LoopCost;
1248 
1249     // Add the step value register, if it needs one.
1250     // TODO: The non-affine case isn't precisely modeled here.
1251     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1252       if (!Regs.count(AR->getOperand(1))) {
1253         RateRegister(AR->getOperand(1), Regs, L, SE, DT, TTI);
1254         if (isLoser())
1255           return;
1256       }
1257     }
1258   }
1259   ++C.NumRegs;
1260 
1261   // Rough heuristic; favor registers which don't require extra setup
1262   // instructions in the preheader.
1263   if (!isa<SCEVUnknown>(Reg) &&
1264       !isa<SCEVConstant>(Reg) &&
1265       !(isa<SCEVAddRecExpr>(Reg) &&
1266         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1267          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1268     ++C.SetupCost;
1269 
1270   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1271                SE.hasComputableLoopEvolution(Reg, L);
1272 }
1273 
1274 /// Record this register in the set. If we haven't seen it before, rate
1275 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1276 /// one of those regs an instant loser.
1277 void Cost::RatePrimaryRegister(const SCEV *Reg,
1278                                SmallPtrSetImpl<const SCEV *> &Regs,
1279                                const Loop *L,
1280                                ScalarEvolution &SE, DominatorTree &DT,
1281                                SmallPtrSetImpl<const SCEV *> *LoserRegs,
1282                                const TargetTransformInfo &TTI) {
1283   if (LoserRegs && LoserRegs->count(Reg)) {
1284     Lose();
1285     return;
1286   }
1287   if (Regs.insert(Reg).second) {
1288     RateRegister(Reg, Regs, L, SE, DT, TTI);
1289     if (LoserRegs && isLoser())
1290       LoserRegs->insert(Reg);
1291   }
1292 }
1293 
1294 void Cost::RateFormula(const TargetTransformInfo &TTI,
1295                        const Formula &F,
1296                        SmallPtrSetImpl<const SCEV *> &Regs,
1297                        const DenseSet<const SCEV *> &VisitedRegs,
1298                        const Loop *L,
1299                        ScalarEvolution &SE, DominatorTree &DT,
1300                        const LSRUse &LU,
1301                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1302   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1303   // Tally up the registers.
1304   unsigned PrevAddRecCost = C.AddRecCost;
1305   unsigned PrevNumRegs = C.NumRegs;
1306   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1307   if (const SCEV *ScaledReg = F.ScaledReg) {
1308     if (VisitedRegs.count(ScaledReg)) {
1309       Lose();
1310       return;
1311     }
1312     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs, TTI);
1313     if (isLoser())
1314       return;
1315   }
1316   for (const SCEV *BaseReg : F.BaseRegs) {
1317     if (VisitedRegs.count(BaseReg)) {
1318       Lose();
1319       return;
1320     }
1321     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs, TTI);
1322     if (isLoser())
1323       return;
1324   }
1325 
1326   // Determine how many (unfolded) adds we'll need inside the loop.
1327   size_t NumBaseParts = F.getNumRegs();
1328   if (NumBaseParts > 1)
1329     // Do not count the base and a possible second register if the target
1330     // allows to fold 2 registers.
1331     C.NumBaseAdds +=
1332         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1333   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1334 
1335   // Accumulate non-free scaling amounts.
1336   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1337 
1338   // Tally up the non-zero immediates.
1339   for (const LSRFixup &Fixup : LU.Fixups) {
1340     int64_t O = Fixup.Offset;
1341     int64_t Offset = (uint64_t)O + F.BaseOffset;
1342     if (F.BaseGV)
1343       C.ImmCost += 64; // Handle symbolic values conservatively.
1344                      // TODO: This should probably be the pointer size.
1345     else if (Offset != 0)
1346       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1347 
1348     // Check with target if this offset with this instruction is
1349     // specifically not supported.
1350     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1351         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1352                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1353       C.NumBaseAdds++;
1354   }
1355 
1356   // If we don't count instruction cost exit here.
1357   if (!InsnsCost) {
1358     assert(isValid() && "invalid cost");
1359     return;
1360   }
1361 
1362   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1363   // additional instruction (at least fill).
1364   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1365   if (C.NumRegs > TTIRegNum) {
1366     // Cost already exceeded TTIRegNum, then only newly added register can add
1367     // new instructions.
1368     if (PrevNumRegs > TTIRegNum)
1369       C.Insns += (C.NumRegs - PrevNumRegs);
1370     else
1371       C.Insns += (C.NumRegs - TTIRegNum);
1372   }
1373 
1374   // If ICmpZero formula ends with not 0, it could not be replaced by
1375   // just add or sub. We'll need to compare final result of AddRec.
1376   // That means we'll need an additional instruction. But if the target can
1377   // macro-fuse a compare with a branch, don't count this extra instruction.
1378   // For -10 + {0, +, 1}:
1379   // i = i + 1;
1380   // cmp i, 10
1381   //
1382   // For {-10, +, 1}:
1383   // i = i + 1;
1384   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp())
1385     C.Insns++;
1386   // Each new AddRec adds 1 instruction to calculation.
1387   C.Insns += (C.AddRecCost - PrevAddRecCost);
1388 
1389   // BaseAdds adds instructions for unfolded registers.
1390   if (LU.Kind != LSRUse::ICmpZero)
1391     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1392   assert(isValid() && "invalid cost");
1393 }
1394 
1395 /// Set this cost to a losing value.
1396 void Cost::Lose() {
1397   C.Insns = std::numeric_limits<unsigned>::max();
1398   C.NumRegs = std::numeric_limits<unsigned>::max();
1399   C.AddRecCost = std::numeric_limits<unsigned>::max();
1400   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1401   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1402   C.ImmCost = std::numeric_limits<unsigned>::max();
1403   C.SetupCost = std::numeric_limits<unsigned>::max();
1404   C.ScaleCost = std::numeric_limits<unsigned>::max();
1405 }
1406 
1407 /// Choose the lower cost.
1408 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1409   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1410       C.Insns != Other.C.Insns)
1411     return C.Insns < Other.C.Insns;
1412   return TTI.isLSRCostLess(C, Other.C);
1413 }
1414 
1415 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1416 void Cost::print(raw_ostream &OS) const {
1417   if (InsnsCost)
1418     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1419   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1420   if (C.AddRecCost != 0)
1421     OS << ", with addrec cost " << C.AddRecCost;
1422   if (C.NumIVMuls != 0)
1423     OS << ", plus " << C.NumIVMuls << " IV mul"
1424        << (C.NumIVMuls == 1 ? "" : "s");
1425   if (C.NumBaseAdds != 0)
1426     OS << ", plus " << C.NumBaseAdds << " base add"
1427        << (C.NumBaseAdds == 1 ? "" : "s");
1428   if (C.ScaleCost != 0)
1429     OS << ", plus " << C.ScaleCost << " scale cost";
1430   if (C.ImmCost != 0)
1431     OS << ", plus " << C.ImmCost << " imm cost";
1432   if (C.SetupCost != 0)
1433     OS << ", plus " << C.SetupCost << " setup cost";
1434 }
1435 
1436 LLVM_DUMP_METHOD void Cost::dump() const {
1437   print(errs()); errs() << '\n';
1438 }
1439 #endif
1440 
1441 /// Test whether this fixup always uses its value outside of the given loop.
1442 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1443   // PHI nodes use their value in their incoming blocks.
1444   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1445     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1446       if (PN->getIncomingValue(i) == OperandValToReplace &&
1447           L->contains(PN->getIncomingBlock(i)))
1448         return false;
1449     return true;
1450   }
1451 
1452   return !L->contains(UserInst);
1453 }
1454 
1455 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1456 void LSRFixup::print(raw_ostream &OS) const {
1457   OS << "UserInst=";
1458   // Store is common and interesting enough to be worth special-casing.
1459   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1460     OS << "store ";
1461     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1462   } else if (UserInst->getType()->isVoidTy())
1463     OS << UserInst->getOpcodeName();
1464   else
1465     UserInst->printAsOperand(OS, /*PrintType=*/false);
1466 
1467   OS << ", OperandValToReplace=";
1468   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1469 
1470   for (const Loop *PIL : PostIncLoops) {
1471     OS << ", PostIncLoop=";
1472     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1473   }
1474 
1475   if (Offset != 0)
1476     OS << ", Offset=" << Offset;
1477 }
1478 
1479 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1480   print(errs()); errs() << '\n';
1481 }
1482 #endif
1483 
1484 /// Test whether this use as a formula which has the same registers as the given
1485 /// formula.
1486 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1487   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1488   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1489   // Unstable sort by host order ok, because this is only used for uniquifying.
1490   llvm::sort(Key.begin(), Key.end());
1491   return Uniquifier.count(Key);
1492 }
1493 
1494 /// The function returns a probability of selecting formula without Reg.
1495 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1496   unsigned FNum = 0;
1497   for (const Formula &F : Formulae)
1498     if (F.referencesReg(Reg))
1499       FNum++;
1500   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1501 }
1502 
1503 /// If the given formula has not yet been inserted, add it to the list, and
1504 /// return true. Return false otherwise.  The formula must be in canonical form.
1505 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1506   assert(F.isCanonical(L) && "Invalid canonical representation");
1507 
1508   if (!Formulae.empty() && RigidFormula)
1509     return false;
1510 
1511   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1512   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1513   // Unstable sort by host order ok, because this is only used for uniquifying.
1514   llvm::sort(Key.begin(), Key.end());
1515 
1516   if (!Uniquifier.insert(Key).second)
1517     return false;
1518 
1519   // Using a register to hold the value of 0 is not profitable.
1520   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1521          "Zero allocated in a scaled register!");
1522 #ifndef NDEBUG
1523   for (const SCEV *BaseReg : F.BaseRegs)
1524     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1525 #endif
1526 
1527   // Add the formula to the list.
1528   Formulae.push_back(F);
1529 
1530   // Record registers now being used by this use.
1531   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1532   if (F.ScaledReg)
1533     Regs.insert(F.ScaledReg);
1534 
1535   return true;
1536 }
1537 
1538 /// Remove the given formula from this use's list.
1539 void LSRUse::DeleteFormula(Formula &F) {
1540   if (&F != &Formulae.back())
1541     std::swap(F, Formulae.back());
1542   Formulae.pop_back();
1543 }
1544 
1545 /// Recompute the Regs field, and update RegUses.
1546 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1547   // Now that we've filtered out some formulae, recompute the Regs set.
1548   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1549   Regs.clear();
1550   for (const Formula &F : Formulae) {
1551     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1552     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1553   }
1554 
1555   // Update the RegTracker.
1556   for (const SCEV *S : OldRegs)
1557     if (!Regs.count(S))
1558       RegUses.dropRegister(S, LUIdx);
1559 }
1560 
1561 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1562 void LSRUse::print(raw_ostream &OS) const {
1563   OS << "LSR Use: Kind=";
1564   switch (Kind) {
1565   case Basic:    OS << "Basic"; break;
1566   case Special:  OS << "Special"; break;
1567   case ICmpZero: OS << "ICmpZero"; break;
1568   case Address:
1569     OS << "Address of ";
1570     if (AccessTy.MemTy->isPointerTy())
1571       OS << "pointer"; // the full pointer type could be really verbose
1572     else {
1573       OS << *AccessTy.MemTy;
1574     }
1575 
1576     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1577   }
1578 
1579   OS << ", Offsets={";
1580   bool NeedComma = false;
1581   for (const LSRFixup &Fixup : Fixups) {
1582     if (NeedComma) OS << ',';
1583     OS << Fixup.Offset;
1584     NeedComma = true;
1585   }
1586   OS << '}';
1587 
1588   if (AllFixupsOutsideLoop)
1589     OS << ", all-fixups-outside-loop";
1590 
1591   if (WidestFixupType)
1592     OS << ", widest fixup type: " << *WidestFixupType;
1593 }
1594 
1595 LLVM_DUMP_METHOD void LSRUse::dump() const {
1596   print(errs()); errs() << '\n';
1597 }
1598 #endif
1599 
1600 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1601                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1602                                  GlobalValue *BaseGV, int64_t BaseOffset,
1603                                  bool HasBaseReg, int64_t Scale,
1604                                  Instruction *Fixup/*= nullptr*/) {
1605   switch (Kind) {
1606   case LSRUse::Address:
1607     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1608                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1609 
1610   case LSRUse::ICmpZero:
1611     // There's not even a target hook for querying whether it would be legal to
1612     // fold a GV into an ICmp.
1613     if (BaseGV)
1614       return false;
1615 
1616     // ICmp only has two operands; don't allow more than two non-trivial parts.
1617     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1618       return false;
1619 
1620     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1621     // putting the scaled register in the other operand of the icmp.
1622     if (Scale != 0 && Scale != -1)
1623       return false;
1624 
1625     // If we have low-level target information, ask the target if it can fold an
1626     // integer immediate on an icmp.
1627     if (BaseOffset != 0) {
1628       // We have one of:
1629       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1630       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1631       // Offs is the ICmp immediate.
1632       if (Scale == 0)
1633         // The cast does the right thing with
1634         // std::numeric_limits<int64_t>::min().
1635         BaseOffset = -(uint64_t)BaseOffset;
1636       return TTI.isLegalICmpImmediate(BaseOffset);
1637     }
1638 
1639     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1640     return true;
1641 
1642   case LSRUse::Basic:
1643     // Only handle single-register values.
1644     return !BaseGV && Scale == 0 && BaseOffset == 0;
1645 
1646   case LSRUse::Special:
1647     // Special case Basic to handle -1 scales.
1648     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1649   }
1650 
1651   llvm_unreachable("Invalid LSRUse Kind!");
1652 }
1653 
1654 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1655                                  int64_t MinOffset, int64_t MaxOffset,
1656                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1657                                  GlobalValue *BaseGV, int64_t BaseOffset,
1658                                  bool HasBaseReg, int64_t Scale) {
1659   // Check for overflow.
1660   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1661       (MinOffset > 0))
1662     return false;
1663   MinOffset = (uint64_t)BaseOffset + MinOffset;
1664   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1665       (MaxOffset > 0))
1666     return false;
1667   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1668 
1669   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1670                               HasBaseReg, Scale) &&
1671          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1672                               HasBaseReg, Scale);
1673 }
1674 
1675 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1676                                  int64_t MinOffset, int64_t MaxOffset,
1677                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1678                                  const Formula &F, const Loop &L) {
1679   // For the purpose of isAMCompletelyFolded either having a canonical formula
1680   // or a scale not equal to zero is correct.
1681   // Problems may arise from non canonical formulae having a scale == 0.
1682   // Strictly speaking it would best to just rely on canonical formulae.
1683   // However, when we generate the scaled formulae, we first check that the
1684   // scaling factor is profitable before computing the actual ScaledReg for
1685   // compile time sake.
1686   assert((F.isCanonical(L) || F.Scale != 0));
1687   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1688                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1689 }
1690 
1691 /// Test whether we know how to expand the current formula.
1692 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1693                        int64_t MaxOffset, LSRUse::KindType Kind,
1694                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1695                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1696   // We know how to expand completely foldable formulae.
1697   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1698                               BaseOffset, HasBaseReg, Scale) ||
1699          // Or formulae that use a base register produced by a sum of base
1700          // registers.
1701          (Scale == 1 &&
1702           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1703                                BaseGV, BaseOffset, true, 0));
1704 }
1705 
1706 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1707                        int64_t MaxOffset, LSRUse::KindType Kind,
1708                        MemAccessTy AccessTy, const Formula &F) {
1709   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1710                     F.BaseOffset, F.HasBaseReg, F.Scale);
1711 }
1712 
1713 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1714                                  const LSRUse &LU, const Formula &F) {
1715   // Target may want to look at the user instructions.
1716   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1717     for (const LSRFixup &Fixup : LU.Fixups)
1718       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1719                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1720                                 F.Scale, Fixup.UserInst))
1721         return false;
1722     return true;
1723   }
1724 
1725   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1726                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1727                               F.Scale);
1728 }
1729 
1730 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1731                                      const LSRUse &LU, const Formula &F,
1732                                      const Loop &L) {
1733   if (!F.Scale)
1734     return 0;
1735 
1736   // If the use is not completely folded in that instruction, we will have to
1737   // pay an extra cost only for scale != 1.
1738   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1739                             LU.AccessTy, F, L))
1740     return F.Scale != 1;
1741 
1742   switch (LU.Kind) {
1743   case LSRUse::Address: {
1744     // Check the scaling factor cost with both the min and max offsets.
1745     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1746         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1747         F.Scale, LU.AccessTy.AddrSpace);
1748     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1749         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1750         F.Scale, LU.AccessTy.AddrSpace);
1751 
1752     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1753            "Legal addressing mode has an illegal cost!");
1754     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1755   }
1756   case LSRUse::ICmpZero:
1757   case LSRUse::Basic:
1758   case LSRUse::Special:
1759     // The use is completely folded, i.e., everything is folded into the
1760     // instruction.
1761     return 0;
1762   }
1763 
1764   llvm_unreachable("Invalid LSRUse Kind!");
1765 }
1766 
1767 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1768                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1769                              GlobalValue *BaseGV, int64_t BaseOffset,
1770                              bool HasBaseReg) {
1771   // Fast-path: zero is always foldable.
1772   if (BaseOffset == 0 && !BaseGV) return true;
1773 
1774   // Conservatively, create an address with an immediate and a
1775   // base and a scale.
1776   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1777 
1778   // Canonicalize a scale of 1 to a base register if the formula doesn't
1779   // already have a base register.
1780   if (!HasBaseReg && Scale == 1) {
1781     Scale = 0;
1782     HasBaseReg = true;
1783   }
1784 
1785   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1786                               HasBaseReg, Scale);
1787 }
1788 
1789 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1790                              ScalarEvolution &SE, int64_t MinOffset,
1791                              int64_t MaxOffset, LSRUse::KindType Kind,
1792                              MemAccessTy AccessTy, const SCEV *S,
1793                              bool HasBaseReg) {
1794   // Fast-path: zero is always foldable.
1795   if (S->isZero()) return true;
1796 
1797   // Conservatively, create an address with an immediate and a
1798   // base and a scale.
1799   int64_t BaseOffset = ExtractImmediate(S, SE);
1800   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1801 
1802   // If there's anything else involved, it's not foldable.
1803   if (!S->isZero()) return false;
1804 
1805   // Fast-path: zero is always foldable.
1806   if (BaseOffset == 0 && !BaseGV) return true;
1807 
1808   // Conservatively, create an address with an immediate and a
1809   // base and a scale.
1810   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1811 
1812   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1813                               BaseOffset, HasBaseReg, Scale);
1814 }
1815 
1816 namespace {
1817 
1818 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1819 /// an expression that computes the IV it uses from the IV used by the previous
1820 /// link in the Chain.
1821 ///
1822 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1823 /// original IVOperand. The head of the chain's IVOperand is only valid during
1824 /// chain collection, before LSR replaces IV users. During chain generation,
1825 /// IncExpr can be used to find the new IVOperand that computes the same
1826 /// expression.
1827 struct IVInc {
1828   Instruction *UserInst;
1829   Value* IVOperand;
1830   const SCEV *IncExpr;
1831 
1832   IVInc(Instruction *U, Value *O, const SCEV *E)
1833       : UserInst(U), IVOperand(O), IncExpr(E) {}
1834 };
1835 
1836 // The list of IV increments in program order.  We typically add the head of a
1837 // chain without finding subsequent links.
1838 struct IVChain {
1839   SmallVector<IVInc, 1> Incs;
1840   const SCEV *ExprBase = nullptr;
1841 
1842   IVChain() = default;
1843   IVChain(const IVInc &Head, const SCEV *Base)
1844       : Incs(1, Head), ExprBase(Base) {}
1845 
1846   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1847 
1848   // Return the first increment in the chain.
1849   const_iterator begin() const {
1850     assert(!Incs.empty());
1851     return std::next(Incs.begin());
1852   }
1853   const_iterator end() const {
1854     return Incs.end();
1855   }
1856 
1857   // Returns true if this chain contains any increments.
1858   bool hasIncs() const { return Incs.size() >= 2; }
1859 
1860   // Add an IVInc to the end of this chain.
1861   void add(const IVInc &X) { Incs.push_back(X); }
1862 
1863   // Returns the last UserInst in the chain.
1864   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1865 
1866   // Returns true if IncExpr can be profitably added to this chain.
1867   bool isProfitableIncrement(const SCEV *OperExpr,
1868                              const SCEV *IncExpr,
1869                              ScalarEvolution&);
1870 };
1871 
1872 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1873 /// between FarUsers that definitely cross IV increments and NearUsers that may
1874 /// be used between IV increments.
1875 struct ChainUsers {
1876   SmallPtrSet<Instruction*, 4> FarUsers;
1877   SmallPtrSet<Instruction*, 4> NearUsers;
1878 };
1879 
1880 /// This class holds state for the main loop strength reduction logic.
1881 class LSRInstance {
1882   IVUsers &IU;
1883   ScalarEvolution &SE;
1884   DominatorTree &DT;
1885   LoopInfo &LI;
1886   const TargetTransformInfo &TTI;
1887   Loop *const L;
1888   bool Changed = false;
1889 
1890   /// This is the insert position that the current loop's induction variable
1891   /// increment should be placed. In simple loops, this is the latch block's
1892   /// terminator. But in more complicated cases, this is a position which will
1893   /// dominate all the in-loop post-increment users.
1894   Instruction *IVIncInsertPos = nullptr;
1895 
1896   /// Interesting factors between use strides.
1897   ///
1898   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1899   /// default, a SmallDenseSet, because we need to use the full range of
1900   /// int64_ts, and there's currently no good way of doing that with
1901   /// SmallDenseSet.
1902   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1903 
1904   /// Interesting use types, to facilitate truncation reuse.
1905   SmallSetVector<Type *, 4> Types;
1906 
1907   /// The list of interesting uses.
1908   SmallVector<LSRUse, 16> Uses;
1909 
1910   /// Track which uses use which register candidates.
1911   RegUseTracker RegUses;
1912 
1913   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1914   // have more than a few IV increment chains in a loop. Missing a Chain falls
1915   // back to normal LSR behavior for those uses.
1916   static const unsigned MaxChains = 8;
1917 
1918   /// IV users can form a chain of IV increments.
1919   SmallVector<IVChain, MaxChains> IVChainVec;
1920 
1921   /// IV users that belong to profitable IVChains.
1922   SmallPtrSet<Use*, MaxChains> IVIncSet;
1923 
1924   void OptimizeShadowIV();
1925   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1926   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1927   void OptimizeLoopTermCond();
1928 
1929   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1930                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1931   void FinalizeChain(IVChain &Chain);
1932   void CollectChains();
1933   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1934                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1935 
1936   void CollectInterestingTypesAndFactors();
1937   void CollectFixupsAndInitialFormulae();
1938 
1939   // Support for sharing of LSRUses between LSRFixups.
1940   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1941   UseMapTy UseMap;
1942 
1943   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1944                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1945 
1946   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1947                                     MemAccessTy AccessTy);
1948 
1949   void DeleteUse(LSRUse &LU, size_t LUIdx);
1950 
1951   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1952 
1953   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1954   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1955   void CountRegisters(const Formula &F, size_t LUIdx);
1956   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1957 
1958   void CollectLoopInvariantFixupsAndFormulae();
1959 
1960   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1961                               unsigned Depth = 0);
1962 
1963   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1964                                   const Formula &Base, unsigned Depth,
1965                                   size_t Idx, bool IsScaledReg = false);
1966   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1967   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1968                                    const Formula &Base, size_t Idx,
1969                                    bool IsScaledReg = false);
1970   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1971   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1972                                    const Formula &Base,
1973                                    const SmallVectorImpl<int64_t> &Worklist,
1974                                    size_t Idx, bool IsScaledReg = false);
1975   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1976   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1977   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1978   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1979   void GenerateCrossUseConstantOffsets();
1980   void GenerateAllReuseFormulae();
1981 
1982   void FilterOutUndesirableDedicatedRegisters();
1983 
1984   size_t EstimateSearchSpaceComplexity() const;
1985   void NarrowSearchSpaceByDetectingSupersets();
1986   void NarrowSearchSpaceByCollapsingUnrolledCode();
1987   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1988   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1989   void NarrowSearchSpaceByDeletingCostlyFormulas();
1990   void NarrowSearchSpaceByPickingWinnerRegs();
1991   void NarrowSearchSpaceUsingHeuristics();
1992 
1993   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1994                     Cost &SolutionCost,
1995                     SmallVectorImpl<const Formula *> &Workspace,
1996                     const Cost &CurCost,
1997                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1998                     DenseSet<const SCEV *> &VisitedRegs) const;
1999   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2000 
2001   BasicBlock::iterator
2002     HoistInsertPosition(BasicBlock::iterator IP,
2003                         const SmallVectorImpl<Instruction *> &Inputs) const;
2004   BasicBlock::iterator
2005     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2006                                   const LSRFixup &LF,
2007                                   const LSRUse &LU,
2008                                   SCEVExpander &Rewriter) const;
2009 
2010   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2011                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2012                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2013   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2014                      const Formula &F, SCEVExpander &Rewriter,
2015                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2016   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2017                SCEVExpander &Rewriter,
2018                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2019   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2020 
2021 public:
2022   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2023               LoopInfo &LI, const TargetTransformInfo &TTI);
2024 
2025   bool getChanged() const { return Changed; }
2026 
2027   void print_factors_and_types(raw_ostream &OS) const;
2028   void print_fixups(raw_ostream &OS) const;
2029   void print_uses(raw_ostream &OS) const;
2030   void print(raw_ostream &OS) const;
2031   void dump() const;
2032 };
2033 
2034 } // end anonymous namespace
2035 
2036 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2037 /// the cast operation.
2038 void LSRInstance::OptimizeShadowIV() {
2039   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2040   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2041     return;
2042 
2043   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2044        UI != E; /* empty */) {
2045     IVUsers::const_iterator CandidateUI = UI;
2046     ++UI;
2047     Instruction *ShadowUse = CandidateUI->getUser();
2048     Type *DestTy = nullptr;
2049     bool IsSigned = false;
2050 
2051     /* If shadow use is a int->float cast then insert a second IV
2052        to eliminate this cast.
2053 
2054          for (unsigned i = 0; i < n; ++i)
2055            foo((double)i);
2056 
2057        is transformed into
2058 
2059          double d = 0.0;
2060          for (unsigned i = 0; i < n; ++i, ++d)
2061            foo(d);
2062     */
2063     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2064       IsSigned = false;
2065       DestTy = UCast->getDestTy();
2066     }
2067     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2068       IsSigned = true;
2069       DestTy = SCast->getDestTy();
2070     }
2071     if (!DestTy) continue;
2072 
2073     // If target does not support DestTy natively then do not apply
2074     // this transformation.
2075     if (!TTI.isTypeLegal(DestTy)) continue;
2076 
2077     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2078     if (!PH) continue;
2079     if (PH->getNumIncomingValues() != 2) continue;
2080 
2081     // If the calculation in integers overflows, the result in FP type will
2082     // differ. So we only can do this transformation if we are guaranteed to not
2083     // deal with overflowing values
2084     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2085     if (!AR) continue;
2086     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2087     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2088 
2089     Type *SrcTy = PH->getType();
2090     int Mantissa = DestTy->getFPMantissaWidth();
2091     if (Mantissa == -1) continue;
2092     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2093       continue;
2094 
2095     unsigned Entry, Latch;
2096     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2097       Entry = 0;
2098       Latch = 1;
2099     } else {
2100       Entry = 1;
2101       Latch = 0;
2102     }
2103 
2104     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2105     if (!Init) continue;
2106     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2107                                         (double)Init->getSExtValue() :
2108                                         (double)Init->getZExtValue());
2109 
2110     BinaryOperator *Incr =
2111       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2112     if (!Incr) continue;
2113     if (Incr->getOpcode() != Instruction::Add
2114         && Incr->getOpcode() != Instruction::Sub)
2115       continue;
2116 
2117     /* Initialize new IV, double d = 0.0 in above example. */
2118     ConstantInt *C = nullptr;
2119     if (Incr->getOperand(0) == PH)
2120       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2121     else if (Incr->getOperand(1) == PH)
2122       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2123     else
2124       continue;
2125 
2126     if (!C) continue;
2127 
2128     // Ignore negative constants, as the code below doesn't handle them
2129     // correctly. TODO: Remove this restriction.
2130     if (!C->getValue().isStrictlyPositive()) continue;
2131 
2132     /* Add new PHINode. */
2133     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2134 
2135     /* create new increment. '++d' in above example. */
2136     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2137     BinaryOperator *NewIncr =
2138       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2139                                Instruction::FAdd : Instruction::FSub,
2140                              NewPH, CFP, "IV.S.next.", Incr);
2141 
2142     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2143     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2144 
2145     /* Remove cast operation */
2146     ShadowUse->replaceAllUsesWith(NewPH);
2147     ShadowUse->eraseFromParent();
2148     Changed = true;
2149     break;
2150   }
2151 }
2152 
2153 /// If Cond has an operand that is an expression of an IV, set the IV user and
2154 /// stride information and return true, otherwise return false.
2155 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2156   for (IVStrideUse &U : IU)
2157     if (U.getUser() == Cond) {
2158       // NOTE: we could handle setcc instructions with multiple uses here, but
2159       // InstCombine does it as well for simple uses, it's not clear that it
2160       // occurs enough in real life to handle.
2161       CondUse = &U;
2162       return true;
2163     }
2164   return false;
2165 }
2166 
2167 /// Rewrite the loop's terminating condition if it uses a max computation.
2168 ///
2169 /// This is a narrow solution to a specific, but acute, problem. For loops
2170 /// like this:
2171 ///
2172 ///   i = 0;
2173 ///   do {
2174 ///     p[i] = 0.0;
2175 ///   } while (++i < n);
2176 ///
2177 /// the trip count isn't just 'n', because 'n' might not be positive. And
2178 /// unfortunately this can come up even for loops where the user didn't use
2179 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2180 /// will commonly be lowered like this:
2181 ///
2182 ///   if (n > 0) {
2183 ///     i = 0;
2184 ///     do {
2185 ///       p[i] = 0.0;
2186 ///     } while (++i < n);
2187 ///   }
2188 ///
2189 /// and then it's possible for subsequent optimization to obscure the if
2190 /// test in such a way that indvars can't find it.
2191 ///
2192 /// When indvars can't find the if test in loops like this, it creates a
2193 /// max expression, which allows it to give the loop a canonical
2194 /// induction variable:
2195 ///
2196 ///   i = 0;
2197 ///   max = n < 1 ? 1 : n;
2198 ///   do {
2199 ///     p[i] = 0.0;
2200 ///   } while (++i != max);
2201 ///
2202 /// Canonical induction variables are necessary because the loop passes
2203 /// are designed around them. The most obvious example of this is the
2204 /// LoopInfo analysis, which doesn't remember trip count values. It
2205 /// expects to be able to rediscover the trip count each time it is
2206 /// needed, and it does this using a simple analysis that only succeeds if
2207 /// the loop has a canonical induction variable.
2208 ///
2209 /// However, when it comes time to generate code, the maximum operation
2210 /// can be quite costly, especially if it's inside of an outer loop.
2211 ///
2212 /// This function solves this problem by detecting this type of loop and
2213 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2214 /// the instructions for the maximum computation.
2215 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2216   // Check that the loop matches the pattern we're looking for.
2217   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2218       Cond->getPredicate() != CmpInst::ICMP_NE)
2219     return Cond;
2220 
2221   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2222   if (!Sel || !Sel->hasOneUse()) return Cond;
2223 
2224   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2225   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2226     return Cond;
2227   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2228 
2229   // Add one to the backedge-taken count to get the trip count.
2230   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2231   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2232 
2233   // Check for a max calculation that matches the pattern. There's no check
2234   // for ICMP_ULE here because the comparison would be with zero, which
2235   // isn't interesting.
2236   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2237   const SCEVNAryExpr *Max = nullptr;
2238   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2239     Pred = ICmpInst::ICMP_SLE;
2240     Max = S;
2241   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2242     Pred = ICmpInst::ICMP_SLT;
2243     Max = S;
2244   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2245     Pred = ICmpInst::ICMP_ULT;
2246     Max = U;
2247   } else {
2248     // No match; bail.
2249     return Cond;
2250   }
2251 
2252   // To handle a max with more than two operands, this optimization would
2253   // require additional checking and setup.
2254   if (Max->getNumOperands() != 2)
2255     return Cond;
2256 
2257   const SCEV *MaxLHS = Max->getOperand(0);
2258   const SCEV *MaxRHS = Max->getOperand(1);
2259 
2260   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2261   // for a comparison with 1. For <= and >=, a comparison with zero.
2262   if (!MaxLHS ||
2263       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2264     return Cond;
2265 
2266   // Check the relevant induction variable for conformance to
2267   // the pattern.
2268   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2269   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2270   if (!AR || !AR->isAffine() ||
2271       AR->getStart() != One ||
2272       AR->getStepRecurrence(SE) != One)
2273     return Cond;
2274 
2275   assert(AR->getLoop() == L &&
2276          "Loop condition operand is an addrec in a different loop!");
2277 
2278   // Check the right operand of the select, and remember it, as it will
2279   // be used in the new comparison instruction.
2280   Value *NewRHS = nullptr;
2281   if (ICmpInst::isTrueWhenEqual(Pred)) {
2282     // Look for n+1, and grab n.
2283     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2284       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2285          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2286            NewRHS = BO->getOperand(0);
2287     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2288       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2289         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2290           NewRHS = BO->getOperand(0);
2291     if (!NewRHS)
2292       return Cond;
2293   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2294     NewRHS = Sel->getOperand(1);
2295   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2296     NewRHS = Sel->getOperand(2);
2297   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2298     NewRHS = SU->getValue();
2299   else
2300     // Max doesn't match expected pattern.
2301     return Cond;
2302 
2303   // Determine the new comparison opcode. It may be signed or unsigned,
2304   // and the original comparison may be either equality or inequality.
2305   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2306     Pred = CmpInst::getInversePredicate(Pred);
2307 
2308   // Ok, everything looks ok to change the condition into an SLT or SGE and
2309   // delete the max calculation.
2310   ICmpInst *NewCond =
2311     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2312 
2313   // Delete the max calculation instructions.
2314   Cond->replaceAllUsesWith(NewCond);
2315   CondUse->setUser(NewCond);
2316   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2317   Cond->eraseFromParent();
2318   Sel->eraseFromParent();
2319   if (Cmp->use_empty())
2320     Cmp->eraseFromParent();
2321   return NewCond;
2322 }
2323 
2324 /// Change loop terminating condition to use the postinc iv when possible.
2325 void
2326 LSRInstance::OptimizeLoopTermCond() {
2327   SmallPtrSet<Instruction *, 4> PostIncs;
2328 
2329   // We need a different set of heuristics for rotated and non-rotated loops.
2330   // If a loop is rotated then the latch is also the backedge, so inserting
2331   // post-inc expressions just before the latch is ideal. To reduce live ranges
2332   // it also makes sense to rewrite terminating conditions to use post-inc
2333   // expressions.
2334   //
2335   // If the loop is not rotated then the latch is not a backedge; the latch
2336   // check is done in the loop head. Adding post-inc expressions before the
2337   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2338   // in the loop body. In this case we do *not* want to use post-inc expressions
2339   // in the latch check, and we want to insert post-inc expressions before
2340   // the backedge.
2341   BasicBlock *LatchBlock = L->getLoopLatch();
2342   SmallVector<BasicBlock*, 8> ExitingBlocks;
2343   L->getExitingBlocks(ExitingBlocks);
2344   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2345         return LatchBlock != BB;
2346       })) {
2347     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2348     IVIncInsertPos = LatchBlock->getTerminator();
2349     return;
2350   }
2351 
2352   // Otherwise treat this as a rotated loop.
2353   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2354     // Get the terminating condition for the loop if possible.  If we
2355     // can, we want to change it to use a post-incremented version of its
2356     // induction variable, to allow coalescing the live ranges for the IV into
2357     // one register value.
2358 
2359     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2360     if (!TermBr)
2361       continue;
2362     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2363     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2364       continue;
2365 
2366     // Search IVUsesByStride to find Cond's IVUse if there is one.
2367     IVStrideUse *CondUse = nullptr;
2368     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2369     if (!FindIVUserForCond(Cond, CondUse))
2370       continue;
2371 
2372     // If the trip count is computed in terms of a max (due to ScalarEvolution
2373     // being unable to find a sufficient guard, for example), change the loop
2374     // comparison to use SLT or ULT instead of NE.
2375     // One consequence of doing this now is that it disrupts the count-down
2376     // optimization. That's not always a bad thing though, because in such
2377     // cases it may still be worthwhile to avoid a max.
2378     Cond = OptimizeMax(Cond, CondUse);
2379 
2380     // If this exiting block dominates the latch block, it may also use
2381     // the post-inc value if it won't be shared with other uses.
2382     // Check for dominance.
2383     if (!DT.dominates(ExitingBlock, LatchBlock))
2384       continue;
2385 
2386     // Conservatively avoid trying to use the post-inc value in non-latch
2387     // exits if there may be pre-inc users in intervening blocks.
2388     if (LatchBlock != ExitingBlock)
2389       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2390         // Test if the use is reachable from the exiting block. This dominator
2391         // query is a conservative approximation of reachability.
2392         if (&*UI != CondUse &&
2393             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2394           // Conservatively assume there may be reuse if the quotient of their
2395           // strides could be a legal scale.
2396           const SCEV *A = IU.getStride(*CondUse, L);
2397           const SCEV *B = IU.getStride(*UI, L);
2398           if (!A || !B) continue;
2399           if (SE.getTypeSizeInBits(A->getType()) !=
2400               SE.getTypeSizeInBits(B->getType())) {
2401             if (SE.getTypeSizeInBits(A->getType()) >
2402                 SE.getTypeSizeInBits(B->getType()))
2403               B = SE.getSignExtendExpr(B, A->getType());
2404             else
2405               A = SE.getSignExtendExpr(A, B->getType());
2406           }
2407           if (const SCEVConstant *D =
2408                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2409             const ConstantInt *C = D->getValue();
2410             // Stride of one or negative one can have reuse with non-addresses.
2411             if (C->isOne() || C->isMinusOne())
2412               goto decline_post_inc;
2413             // Avoid weird situations.
2414             if (C->getValue().getMinSignedBits() >= 64 ||
2415                 C->getValue().isMinSignedValue())
2416               goto decline_post_inc;
2417             // Check for possible scaled-address reuse.
2418             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2419               MemAccessTy AccessTy = getAccessType(
2420                   TTI, UI->getUser(), UI->getOperandValToReplace());
2421               int64_t Scale = C->getSExtValue();
2422               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2423                                             /*BaseOffset=*/0,
2424                                             /*HasBaseReg=*/false, Scale,
2425                                             AccessTy.AddrSpace))
2426                 goto decline_post_inc;
2427               Scale = -Scale;
2428               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2429                                             /*BaseOffset=*/0,
2430                                             /*HasBaseReg=*/false, Scale,
2431                                             AccessTy.AddrSpace))
2432                 goto decline_post_inc;
2433             }
2434           }
2435         }
2436 
2437     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2438                       << *Cond << '\n');
2439 
2440     // It's possible for the setcc instruction to be anywhere in the loop, and
2441     // possible for it to have multiple users.  If it is not immediately before
2442     // the exiting block branch, move it.
2443     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2444       if (Cond->hasOneUse()) {
2445         Cond->moveBefore(TermBr);
2446       } else {
2447         // Clone the terminating condition and insert into the loopend.
2448         ICmpInst *OldCond = Cond;
2449         Cond = cast<ICmpInst>(Cond->clone());
2450         Cond->setName(L->getHeader()->getName() + ".termcond");
2451         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2452 
2453         // Clone the IVUse, as the old use still exists!
2454         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2455         TermBr->replaceUsesOfWith(OldCond, Cond);
2456       }
2457     }
2458 
2459     // If we get to here, we know that we can transform the setcc instruction to
2460     // use the post-incremented version of the IV, allowing us to coalesce the
2461     // live ranges for the IV correctly.
2462     CondUse->transformToPostInc(L);
2463     Changed = true;
2464 
2465     PostIncs.insert(Cond);
2466   decline_post_inc:;
2467   }
2468 
2469   // Determine an insertion point for the loop induction variable increment. It
2470   // must dominate all the post-inc comparisons we just set up, and it must
2471   // dominate the loop latch edge.
2472   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2473   for (Instruction *Inst : PostIncs) {
2474     BasicBlock *BB =
2475       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2476                                     Inst->getParent());
2477     if (BB == Inst->getParent())
2478       IVIncInsertPos = Inst;
2479     else if (BB != IVIncInsertPos->getParent())
2480       IVIncInsertPos = BB->getTerminator();
2481   }
2482 }
2483 
2484 /// Determine if the given use can accommodate a fixup at the given offset and
2485 /// other details. If so, update the use and return true.
2486 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2487                                      bool HasBaseReg, LSRUse::KindType Kind,
2488                                      MemAccessTy AccessTy) {
2489   int64_t NewMinOffset = LU.MinOffset;
2490   int64_t NewMaxOffset = LU.MaxOffset;
2491   MemAccessTy NewAccessTy = AccessTy;
2492 
2493   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2494   // something conservative, however this can pessimize in the case that one of
2495   // the uses will have all its uses outside the loop, for example.
2496   if (LU.Kind != Kind)
2497     return false;
2498 
2499   // Check for a mismatched access type, and fall back conservatively as needed.
2500   // TODO: Be less conservative when the type is similar and can use the same
2501   // addressing modes.
2502   if (Kind == LSRUse::Address) {
2503     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2504       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2505                                             AccessTy.AddrSpace);
2506     }
2507   }
2508 
2509   // Conservatively assume HasBaseReg is true for now.
2510   if (NewOffset < LU.MinOffset) {
2511     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2512                           LU.MaxOffset - NewOffset, HasBaseReg))
2513       return false;
2514     NewMinOffset = NewOffset;
2515   } else if (NewOffset > LU.MaxOffset) {
2516     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2517                           NewOffset - LU.MinOffset, HasBaseReg))
2518       return false;
2519     NewMaxOffset = NewOffset;
2520   }
2521 
2522   // Update the use.
2523   LU.MinOffset = NewMinOffset;
2524   LU.MaxOffset = NewMaxOffset;
2525   LU.AccessTy = NewAccessTy;
2526   return true;
2527 }
2528 
2529 /// Return an LSRUse index and an offset value for a fixup which needs the given
2530 /// expression, with the given kind and optional access type.  Either reuse an
2531 /// existing use or create a new one, as needed.
2532 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2533                                                LSRUse::KindType Kind,
2534                                                MemAccessTy AccessTy) {
2535   const SCEV *Copy = Expr;
2536   int64_t Offset = ExtractImmediate(Expr, SE);
2537 
2538   // Basic uses can't accept any offset, for example.
2539   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2540                         Offset, /*HasBaseReg=*/ true)) {
2541     Expr = Copy;
2542     Offset = 0;
2543   }
2544 
2545   std::pair<UseMapTy::iterator, bool> P =
2546     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2547   if (!P.second) {
2548     // A use already existed with this base.
2549     size_t LUIdx = P.first->second;
2550     LSRUse &LU = Uses[LUIdx];
2551     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2552       // Reuse this use.
2553       return std::make_pair(LUIdx, Offset);
2554   }
2555 
2556   // Create a new use.
2557   size_t LUIdx = Uses.size();
2558   P.first->second = LUIdx;
2559   Uses.push_back(LSRUse(Kind, AccessTy));
2560   LSRUse &LU = Uses[LUIdx];
2561 
2562   LU.MinOffset = Offset;
2563   LU.MaxOffset = Offset;
2564   return std::make_pair(LUIdx, Offset);
2565 }
2566 
2567 /// Delete the given use from the Uses list.
2568 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2569   if (&LU != &Uses.back())
2570     std::swap(LU, Uses.back());
2571   Uses.pop_back();
2572 
2573   // Update RegUses.
2574   RegUses.swapAndDropUse(LUIdx, Uses.size());
2575 }
2576 
2577 /// Look for a use distinct from OrigLU which is has a formula that has the same
2578 /// registers as the given formula.
2579 LSRUse *
2580 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2581                                        const LSRUse &OrigLU) {
2582   // Search all uses for the formula. This could be more clever.
2583   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2584     LSRUse &LU = Uses[LUIdx];
2585     // Check whether this use is close enough to OrigLU, to see whether it's
2586     // worthwhile looking through its formulae.
2587     // Ignore ICmpZero uses because they may contain formulae generated by
2588     // GenerateICmpZeroScales, in which case adding fixup offsets may
2589     // be invalid.
2590     if (&LU != &OrigLU &&
2591         LU.Kind != LSRUse::ICmpZero &&
2592         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2593         LU.WidestFixupType == OrigLU.WidestFixupType &&
2594         LU.HasFormulaWithSameRegs(OrigF)) {
2595       // Scan through this use's formulae.
2596       for (const Formula &F : LU.Formulae) {
2597         // Check to see if this formula has the same registers and symbols
2598         // as OrigF.
2599         if (F.BaseRegs == OrigF.BaseRegs &&
2600             F.ScaledReg == OrigF.ScaledReg &&
2601             F.BaseGV == OrigF.BaseGV &&
2602             F.Scale == OrigF.Scale &&
2603             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2604           if (F.BaseOffset == 0)
2605             return &LU;
2606           // This is the formula where all the registers and symbols matched;
2607           // there aren't going to be any others. Since we declined it, we
2608           // can skip the rest of the formulae and proceed to the next LSRUse.
2609           break;
2610         }
2611       }
2612     }
2613   }
2614 
2615   // Nothing looked good.
2616   return nullptr;
2617 }
2618 
2619 void LSRInstance::CollectInterestingTypesAndFactors() {
2620   SmallSetVector<const SCEV *, 4> Strides;
2621 
2622   // Collect interesting types and strides.
2623   SmallVector<const SCEV *, 4> Worklist;
2624   for (const IVStrideUse &U : IU) {
2625     const SCEV *Expr = IU.getExpr(U);
2626 
2627     // Collect interesting types.
2628     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2629 
2630     // Add strides for mentioned loops.
2631     Worklist.push_back(Expr);
2632     do {
2633       const SCEV *S = Worklist.pop_back_val();
2634       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2635         if (AR->getLoop() == L)
2636           Strides.insert(AR->getStepRecurrence(SE));
2637         Worklist.push_back(AR->getStart());
2638       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2639         Worklist.append(Add->op_begin(), Add->op_end());
2640       }
2641     } while (!Worklist.empty());
2642   }
2643 
2644   // Compute interesting factors from the set of interesting strides.
2645   for (SmallSetVector<const SCEV *, 4>::const_iterator
2646        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2647     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2648          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2649       const SCEV *OldStride = *I;
2650       const SCEV *NewStride = *NewStrideIter;
2651 
2652       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2653           SE.getTypeSizeInBits(NewStride->getType())) {
2654         if (SE.getTypeSizeInBits(OldStride->getType()) >
2655             SE.getTypeSizeInBits(NewStride->getType()))
2656           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2657         else
2658           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2659       }
2660       if (const SCEVConstant *Factor =
2661             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2662                                                         SE, true))) {
2663         if (Factor->getAPInt().getMinSignedBits() <= 64)
2664           Factors.insert(Factor->getAPInt().getSExtValue());
2665       } else if (const SCEVConstant *Factor =
2666                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2667                                                                NewStride,
2668                                                                SE, true))) {
2669         if (Factor->getAPInt().getMinSignedBits() <= 64)
2670           Factors.insert(Factor->getAPInt().getSExtValue());
2671       }
2672     }
2673 
2674   // If all uses use the same type, don't bother looking for truncation-based
2675   // reuse.
2676   if (Types.size() == 1)
2677     Types.clear();
2678 
2679   LLVM_DEBUG(print_factors_and_types(dbgs()));
2680 }
2681 
2682 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2683 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2684 /// IVStrideUses, we could partially skip this.
2685 static User::op_iterator
2686 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2687               Loop *L, ScalarEvolution &SE) {
2688   for(; OI != OE; ++OI) {
2689     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2690       if (!SE.isSCEVable(Oper->getType()))
2691         continue;
2692 
2693       if (const SCEVAddRecExpr *AR =
2694           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2695         if (AR->getLoop() == L)
2696           break;
2697       }
2698     }
2699   }
2700   return OI;
2701 }
2702 
2703 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2704 /// a convenient helper.
2705 static Value *getWideOperand(Value *Oper) {
2706   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2707     return Trunc->getOperand(0);
2708   return Oper;
2709 }
2710 
2711 /// Return true if we allow an IV chain to include both types.
2712 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2713   Type *LType = LVal->getType();
2714   Type *RType = RVal->getType();
2715   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2716                               // Different address spaces means (possibly)
2717                               // different types of the pointer implementation,
2718                               // e.g. i16 vs i32 so disallow that.
2719                               (LType->getPointerAddressSpace() ==
2720                                RType->getPointerAddressSpace()));
2721 }
2722 
2723 /// Return an approximation of this SCEV expression's "base", or NULL for any
2724 /// constant. Returning the expression itself is conservative. Returning a
2725 /// deeper subexpression is more precise and valid as long as it isn't less
2726 /// complex than another subexpression. For expressions involving multiple
2727 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2728 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2729 /// IVInc==b-a.
2730 ///
2731 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2732 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2733 static const SCEV *getExprBase(const SCEV *S) {
2734   switch (S->getSCEVType()) {
2735   default: // uncluding scUnknown.
2736     return S;
2737   case scConstant:
2738     return nullptr;
2739   case scTruncate:
2740     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2741   case scZeroExtend:
2742     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2743   case scSignExtend:
2744     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2745   case scAddExpr: {
2746     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2747     // there's nothing more complex.
2748     // FIXME: not sure if we want to recognize negation.
2749     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2750     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2751            E(Add->op_begin()); I != E; ++I) {
2752       const SCEV *SubExpr = *I;
2753       if (SubExpr->getSCEVType() == scAddExpr)
2754         return getExprBase(SubExpr);
2755 
2756       if (SubExpr->getSCEVType() != scMulExpr)
2757         return SubExpr;
2758     }
2759     return S; // all operands are scaled, be conservative.
2760   }
2761   case scAddRecExpr:
2762     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2763   }
2764 }
2765 
2766 /// Return true if the chain increment is profitable to expand into a loop
2767 /// invariant value, which may require its own register. A profitable chain
2768 /// increment will be an offset relative to the same base. We allow such offsets
2769 /// to potentially be used as chain increment as long as it's not obviously
2770 /// expensive to expand using real instructions.
2771 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2772                                     const SCEV *IncExpr,
2773                                     ScalarEvolution &SE) {
2774   // Aggressively form chains when -stress-ivchain.
2775   if (StressIVChain)
2776     return true;
2777 
2778   // Do not replace a constant offset from IV head with a nonconstant IV
2779   // increment.
2780   if (!isa<SCEVConstant>(IncExpr)) {
2781     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2782     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2783       return false;
2784   }
2785 
2786   SmallPtrSet<const SCEV*, 8> Processed;
2787   return !isHighCostExpansion(IncExpr, Processed, SE);
2788 }
2789 
2790 /// Return true if the number of registers needed for the chain is estimated to
2791 /// be less than the number required for the individual IV users. First prohibit
2792 /// any IV users that keep the IV live across increments (the Users set should
2793 /// be empty). Next count the number and type of increments in the chain.
2794 ///
2795 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2796 /// effectively use postinc addressing modes. Only consider it profitable it the
2797 /// increments can be computed in fewer registers when chained.
2798 ///
2799 /// TODO: Consider IVInc free if it's already used in another chains.
2800 static bool
2801 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2802                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2803   if (StressIVChain)
2804     return true;
2805 
2806   if (!Chain.hasIncs())
2807     return false;
2808 
2809   if (!Users.empty()) {
2810     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2811                for (Instruction *Inst
2812                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2813     return false;
2814   }
2815   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2816 
2817   // The chain itself may require a register, so intialize cost to 1.
2818   int cost = 1;
2819 
2820   // A complete chain likely eliminates the need for keeping the original IV in
2821   // a register. LSR does not currently know how to form a complete chain unless
2822   // the header phi already exists.
2823   if (isa<PHINode>(Chain.tailUserInst())
2824       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2825     --cost;
2826   }
2827   const SCEV *LastIncExpr = nullptr;
2828   unsigned NumConstIncrements = 0;
2829   unsigned NumVarIncrements = 0;
2830   unsigned NumReusedIncrements = 0;
2831   for (const IVInc &Inc : Chain) {
2832     if (Inc.IncExpr->isZero())
2833       continue;
2834 
2835     // Incrementing by zero or some constant is neutral. We assume constants can
2836     // be folded into an addressing mode or an add's immediate operand.
2837     if (isa<SCEVConstant>(Inc.IncExpr)) {
2838       ++NumConstIncrements;
2839       continue;
2840     }
2841 
2842     if (Inc.IncExpr == LastIncExpr)
2843       ++NumReusedIncrements;
2844     else
2845       ++NumVarIncrements;
2846 
2847     LastIncExpr = Inc.IncExpr;
2848   }
2849   // An IV chain with a single increment is handled by LSR's postinc
2850   // uses. However, a chain with multiple increments requires keeping the IV's
2851   // value live longer than it needs to be if chained.
2852   if (NumConstIncrements > 1)
2853     --cost;
2854 
2855   // Materializing increment expressions in the preheader that didn't exist in
2856   // the original code may cost a register. For example, sign-extended array
2857   // indices can produce ridiculous increments like this:
2858   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2859   cost += NumVarIncrements;
2860 
2861   // Reusing variable increments likely saves a register to hold the multiple of
2862   // the stride.
2863   cost -= NumReusedIncrements;
2864 
2865   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2866                     << "\n");
2867 
2868   return cost < 0;
2869 }
2870 
2871 /// Add this IV user to an existing chain or make it the head of a new chain.
2872 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2873                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2874   // When IVs are used as types of varying widths, they are generally converted
2875   // to a wider type with some uses remaining narrow under a (free) trunc.
2876   Value *const NextIV = getWideOperand(IVOper);
2877   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2878   const SCEV *const OperExprBase = getExprBase(OperExpr);
2879 
2880   // Visit all existing chains. Check if its IVOper can be computed as a
2881   // profitable loop invariant increment from the last link in the Chain.
2882   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2883   const SCEV *LastIncExpr = nullptr;
2884   for (; ChainIdx < NChains; ++ChainIdx) {
2885     IVChain &Chain = IVChainVec[ChainIdx];
2886 
2887     // Prune the solution space aggressively by checking that both IV operands
2888     // are expressions that operate on the same unscaled SCEVUnknown. This
2889     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2890     // first avoids creating extra SCEV expressions.
2891     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2892       continue;
2893 
2894     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2895     if (!isCompatibleIVType(PrevIV, NextIV))
2896       continue;
2897 
2898     // A phi node terminates a chain.
2899     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2900       continue;
2901 
2902     // The increment must be loop-invariant so it can be kept in a register.
2903     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2904     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2905     if (!SE.isLoopInvariant(IncExpr, L))
2906       continue;
2907 
2908     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2909       LastIncExpr = IncExpr;
2910       break;
2911     }
2912   }
2913   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2914   // bother for phi nodes, because they must be last in the chain.
2915   if (ChainIdx == NChains) {
2916     if (isa<PHINode>(UserInst))
2917       return;
2918     if (NChains >= MaxChains && !StressIVChain) {
2919       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2920       return;
2921     }
2922     LastIncExpr = OperExpr;
2923     // IVUsers may have skipped over sign/zero extensions. We don't currently
2924     // attempt to form chains involving extensions unless they can be hoisted
2925     // into this loop's AddRec.
2926     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2927       return;
2928     ++NChains;
2929     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2930                                  OperExprBase));
2931     ChainUsersVec.resize(NChains);
2932     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2933                       << ") IV=" << *LastIncExpr << "\n");
2934   } else {
2935     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2936                       << ") IV+" << *LastIncExpr << "\n");
2937     // Add this IV user to the end of the chain.
2938     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2939   }
2940   IVChain &Chain = IVChainVec[ChainIdx];
2941 
2942   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2943   // This chain's NearUsers become FarUsers.
2944   if (!LastIncExpr->isZero()) {
2945     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2946                                             NearUsers.end());
2947     NearUsers.clear();
2948   }
2949 
2950   // All other uses of IVOperand become near uses of the chain.
2951   // We currently ignore intermediate values within SCEV expressions, assuming
2952   // they will eventually be used be the current chain, or can be computed
2953   // from one of the chain increments. To be more precise we could
2954   // transitively follow its user and only add leaf IV users to the set.
2955   for (User *U : IVOper->users()) {
2956     Instruction *OtherUse = dyn_cast<Instruction>(U);
2957     if (!OtherUse)
2958       continue;
2959     // Uses in the chain will no longer be uses if the chain is formed.
2960     // Include the head of the chain in this iteration (not Chain.begin()).
2961     IVChain::const_iterator IncIter = Chain.Incs.begin();
2962     IVChain::const_iterator IncEnd = Chain.Incs.end();
2963     for( ; IncIter != IncEnd; ++IncIter) {
2964       if (IncIter->UserInst == OtherUse)
2965         break;
2966     }
2967     if (IncIter != IncEnd)
2968       continue;
2969 
2970     if (SE.isSCEVable(OtherUse->getType())
2971         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2972         && IU.isIVUserOrOperand(OtherUse)) {
2973       continue;
2974     }
2975     NearUsers.insert(OtherUse);
2976   }
2977 
2978   // Since this user is part of the chain, it's no longer considered a use
2979   // of the chain.
2980   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2981 }
2982 
2983 /// Populate the vector of Chains.
2984 ///
2985 /// This decreases ILP at the architecture level. Targets with ample registers,
2986 /// multiple memory ports, and no register renaming probably don't want
2987 /// this. However, such targets should probably disable LSR altogether.
2988 ///
2989 /// The job of LSR is to make a reasonable choice of induction variables across
2990 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2991 /// ILP *within the loop* if the target wants it.
2992 ///
2993 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2994 /// will not reorder memory operations, it will recognize this as a chain, but
2995 /// will generate redundant IV increments. Ideally this would be corrected later
2996 /// by a smart scheduler:
2997 ///        = A[i]
2998 ///        = A[i+x]
2999 /// A[i]   =
3000 /// A[i+x] =
3001 ///
3002 /// TODO: Walk the entire domtree within this loop, not just the path to the
3003 /// loop latch. This will discover chains on side paths, but requires
3004 /// maintaining multiple copies of the Chains state.
3005 void LSRInstance::CollectChains() {
3006   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3007   SmallVector<ChainUsers, 8> ChainUsersVec;
3008 
3009   SmallVector<BasicBlock *,8> LatchPath;
3010   BasicBlock *LoopHeader = L->getHeader();
3011   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3012        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3013     LatchPath.push_back(Rung->getBlock());
3014   }
3015   LatchPath.push_back(LoopHeader);
3016 
3017   // Walk the instruction stream from the loop header to the loop latch.
3018   for (BasicBlock *BB : reverse(LatchPath)) {
3019     for (Instruction &I : *BB) {
3020       // Skip instructions that weren't seen by IVUsers analysis.
3021       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3022         continue;
3023 
3024       // Ignore users that are part of a SCEV expression. This way we only
3025       // consider leaf IV Users. This effectively rediscovers a portion of
3026       // IVUsers analysis but in program order this time.
3027       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3028           continue;
3029 
3030       // Remove this instruction from any NearUsers set it may be in.
3031       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3032            ChainIdx < NChains; ++ChainIdx) {
3033         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3034       }
3035       // Search for operands that can be chained.
3036       SmallPtrSet<Instruction*, 4> UniqueOperands;
3037       User::op_iterator IVOpEnd = I.op_end();
3038       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3039       while (IVOpIter != IVOpEnd) {
3040         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3041         if (UniqueOperands.insert(IVOpInst).second)
3042           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3043         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3044       }
3045     } // Continue walking down the instructions.
3046   } // Continue walking down the domtree.
3047   // Visit phi backedges to determine if the chain can generate the IV postinc.
3048   for (PHINode &PN : L->getHeader()->phis()) {
3049     if (!SE.isSCEVable(PN.getType()))
3050       continue;
3051 
3052     Instruction *IncV =
3053         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3054     if (IncV)
3055       ChainInstruction(&PN, IncV, ChainUsersVec);
3056   }
3057   // Remove any unprofitable chains.
3058   unsigned ChainIdx = 0;
3059   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3060        UsersIdx < NChains; ++UsersIdx) {
3061     if (!isProfitableChain(IVChainVec[UsersIdx],
3062                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3063       continue;
3064     // Preserve the chain at UsesIdx.
3065     if (ChainIdx != UsersIdx)
3066       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3067     FinalizeChain(IVChainVec[ChainIdx]);
3068     ++ChainIdx;
3069   }
3070   IVChainVec.resize(ChainIdx);
3071 }
3072 
3073 void LSRInstance::FinalizeChain(IVChain &Chain) {
3074   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3075   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3076 
3077   for (const IVInc &Inc : Chain) {
3078     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3079     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3080     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3081     IVIncSet.insert(UseI);
3082   }
3083 }
3084 
3085 /// Return true if the IVInc can be folded into an addressing mode.
3086 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3087                              Value *Operand, const TargetTransformInfo &TTI) {
3088   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3089   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3090     return false;
3091 
3092   if (IncConst->getAPInt().getMinSignedBits() > 64)
3093     return false;
3094 
3095   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3096   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3097   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3098                         IncOffset, /*HaseBaseReg=*/false))
3099     return false;
3100 
3101   return true;
3102 }
3103 
3104 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3105 /// user's operand from the previous IV user's operand.
3106 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3107                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3108   // Find the new IVOperand for the head of the chain. It may have been replaced
3109   // by LSR.
3110   const IVInc &Head = Chain.Incs[0];
3111   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3112   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3113   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3114                                              IVOpEnd, L, SE);
3115   Value *IVSrc = nullptr;
3116   while (IVOpIter != IVOpEnd) {
3117     IVSrc = getWideOperand(*IVOpIter);
3118 
3119     // If this operand computes the expression that the chain needs, we may use
3120     // it. (Check this after setting IVSrc which is used below.)
3121     //
3122     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3123     // narrow for the chain, so we can no longer use it. We do allow using a
3124     // wider phi, assuming the LSR checked for free truncation. In that case we
3125     // should already have a truncate on this operand such that
3126     // getSCEV(IVSrc) == IncExpr.
3127     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3128         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3129       break;
3130     }
3131     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3132   }
3133   if (IVOpIter == IVOpEnd) {
3134     // Gracefully give up on this chain.
3135     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3136     return;
3137   }
3138 
3139   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3140   Type *IVTy = IVSrc->getType();
3141   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3142   const SCEV *LeftOverExpr = nullptr;
3143   for (const IVInc &Inc : Chain) {
3144     Instruction *InsertPt = Inc.UserInst;
3145     if (isa<PHINode>(InsertPt))
3146       InsertPt = L->getLoopLatch()->getTerminator();
3147 
3148     // IVOper will replace the current IV User's operand. IVSrc is the IV
3149     // value currently held in a register.
3150     Value *IVOper = IVSrc;
3151     if (!Inc.IncExpr->isZero()) {
3152       // IncExpr was the result of subtraction of two narrow values, so must
3153       // be signed.
3154       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3155       LeftOverExpr = LeftOverExpr ?
3156         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3157     }
3158     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3159       // Expand the IV increment.
3160       Rewriter.clearPostInc();
3161       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3162       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3163                                              SE.getUnknown(IncV));
3164       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3165 
3166       // If an IV increment can't be folded, use it as the next IV value.
3167       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3168         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3169         IVSrc = IVOper;
3170         LeftOverExpr = nullptr;
3171       }
3172     }
3173     Type *OperTy = Inc.IVOperand->getType();
3174     if (IVTy != OperTy) {
3175       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3176              "cannot extend a chained IV");
3177       IRBuilder<> Builder(InsertPt);
3178       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3179     }
3180     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3181     DeadInsts.emplace_back(Inc.IVOperand);
3182   }
3183   // If LSR created a new, wider phi, we may also replace its postinc. We only
3184   // do this if we also found a wide value for the head of the chain.
3185   if (isa<PHINode>(Chain.tailUserInst())) {
3186     for (PHINode &Phi : L->getHeader()->phis()) {
3187       if (!isCompatibleIVType(&Phi, IVSrc))
3188         continue;
3189       Instruction *PostIncV = dyn_cast<Instruction>(
3190           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3191       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3192         continue;
3193       Value *IVOper = IVSrc;
3194       Type *PostIncTy = PostIncV->getType();
3195       if (IVTy != PostIncTy) {
3196         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3197         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3198         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3199         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3200       }
3201       Phi.replaceUsesOfWith(PostIncV, IVOper);
3202       DeadInsts.emplace_back(PostIncV);
3203     }
3204   }
3205 }
3206 
3207 void LSRInstance::CollectFixupsAndInitialFormulae() {
3208   for (const IVStrideUse &U : IU) {
3209     Instruction *UserInst = U.getUser();
3210     // Skip IV users that are part of profitable IV Chains.
3211     User::op_iterator UseI =
3212         find(UserInst->operands(), U.getOperandValToReplace());
3213     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3214     if (IVIncSet.count(UseI)) {
3215       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3216       continue;
3217     }
3218 
3219     LSRUse::KindType Kind = LSRUse::Basic;
3220     MemAccessTy AccessTy;
3221     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3222       Kind = LSRUse::Address;
3223       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3224     }
3225 
3226     const SCEV *S = IU.getExpr(U);
3227     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3228 
3229     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3230     // (N - i == 0), and this allows (N - i) to be the expression that we work
3231     // with rather than just N or i, so we can consider the register
3232     // requirements for both N and i at the same time. Limiting this code to
3233     // equality icmps is not a problem because all interesting loops use
3234     // equality icmps, thanks to IndVarSimplify.
3235     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3236       if (CI->isEquality()) {
3237         // Swap the operands if needed to put the OperandValToReplace on the
3238         // left, for consistency.
3239         Value *NV = CI->getOperand(1);
3240         if (NV == U.getOperandValToReplace()) {
3241           CI->setOperand(1, CI->getOperand(0));
3242           CI->setOperand(0, NV);
3243           NV = CI->getOperand(1);
3244           Changed = true;
3245         }
3246 
3247         // x == y  -->  x - y == 0
3248         const SCEV *N = SE.getSCEV(NV);
3249         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3250           // S is normalized, so normalize N before folding it into S
3251           // to keep the result normalized.
3252           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3253           Kind = LSRUse::ICmpZero;
3254           S = SE.getMinusSCEV(N, S);
3255         }
3256 
3257         // -1 and the negations of all interesting strides (except the negation
3258         // of -1) are now also interesting.
3259         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3260           if (Factors[i] != -1)
3261             Factors.insert(-(uint64_t)Factors[i]);
3262         Factors.insert(-1);
3263       }
3264 
3265     // Get or create an LSRUse.
3266     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3267     size_t LUIdx = P.first;
3268     int64_t Offset = P.second;
3269     LSRUse &LU = Uses[LUIdx];
3270 
3271     // Record the fixup.
3272     LSRFixup &LF = LU.getNewFixup();
3273     LF.UserInst = UserInst;
3274     LF.OperandValToReplace = U.getOperandValToReplace();
3275     LF.PostIncLoops = TmpPostIncLoops;
3276     LF.Offset = Offset;
3277     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3278 
3279     if (!LU.WidestFixupType ||
3280         SE.getTypeSizeInBits(LU.WidestFixupType) <
3281         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3282       LU.WidestFixupType = LF.OperandValToReplace->getType();
3283 
3284     // If this is the first use of this LSRUse, give it a formula.
3285     if (LU.Formulae.empty()) {
3286       InsertInitialFormula(S, LU, LUIdx);
3287       CountRegisters(LU.Formulae.back(), LUIdx);
3288     }
3289   }
3290 
3291   LLVM_DEBUG(print_fixups(dbgs()));
3292 }
3293 
3294 /// Insert a formula for the given expression into the given use, separating out
3295 /// loop-variant portions from loop-invariant and loop-computable portions.
3296 void
3297 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3298   // Mark uses whose expressions cannot be expanded.
3299   if (!isSafeToExpand(S, SE))
3300     LU.RigidFormula = true;
3301 
3302   Formula F;
3303   F.initialMatch(S, L, SE);
3304   bool Inserted = InsertFormula(LU, LUIdx, F);
3305   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3306 }
3307 
3308 /// Insert a simple single-register formula for the given expression into the
3309 /// given use.
3310 void
3311 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3312                                        LSRUse &LU, size_t LUIdx) {
3313   Formula F;
3314   F.BaseRegs.push_back(S);
3315   F.HasBaseReg = true;
3316   bool Inserted = InsertFormula(LU, LUIdx, F);
3317   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3318 }
3319 
3320 /// Note which registers are used by the given formula, updating RegUses.
3321 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3322   if (F.ScaledReg)
3323     RegUses.countRegister(F.ScaledReg, LUIdx);
3324   for (const SCEV *BaseReg : F.BaseRegs)
3325     RegUses.countRegister(BaseReg, LUIdx);
3326 }
3327 
3328 /// If the given formula has not yet been inserted, add it to the list, and
3329 /// return true. Return false otherwise.
3330 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3331   // Do not insert formula that we will not be able to expand.
3332   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3333          "Formula is illegal");
3334 
3335   if (!LU.InsertFormula(F, *L))
3336     return false;
3337 
3338   CountRegisters(F, LUIdx);
3339   return true;
3340 }
3341 
3342 /// Check for other uses of loop-invariant values which we're tracking. These
3343 /// other uses will pin these values in registers, making them less profitable
3344 /// for elimination.
3345 /// TODO: This currently misses non-constant addrec step registers.
3346 /// TODO: Should this give more weight to users inside the loop?
3347 void
3348 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3349   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3350   SmallPtrSet<const SCEV *, 32> Visited;
3351 
3352   while (!Worklist.empty()) {
3353     const SCEV *S = Worklist.pop_back_val();
3354 
3355     // Don't process the same SCEV twice
3356     if (!Visited.insert(S).second)
3357       continue;
3358 
3359     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3360       Worklist.append(N->op_begin(), N->op_end());
3361     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3362       Worklist.push_back(C->getOperand());
3363     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3364       Worklist.push_back(D->getLHS());
3365       Worklist.push_back(D->getRHS());
3366     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3367       const Value *V = US->getValue();
3368       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3369         // Look for instructions defined outside the loop.
3370         if (L->contains(Inst)) continue;
3371       } else if (isa<UndefValue>(V))
3372         // Undef doesn't have a live range, so it doesn't matter.
3373         continue;
3374       for (const Use &U : V->uses()) {
3375         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3376         // Ignore non-instructions.
3377         if (!UserInst)
3378           continue;
3379         // Ignore instructions in other functions (as can happen with
3380         // Constants).
3381         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3382           continue;
3383         // Ignore instructions not dominated by the loop.
3384         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3385           UserInst->getParent() :
3386           cast<PHINode>(UserInst)->getIncomingBlock(
3387             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3388         if (!DT.dominates(L->getHeader(), UseBB))
3389           continue;
3390         // Don't bother if the instruction is in a BB which ends in an EHPad.
3391         if (UseBB->getTerminator()->isEHPad())
3392           continue;
3393         // Don't bother rewriting PHIs in catchswitch blocks.
3394         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3395           continue;
3396         // Ignore uses which are part of other SCEV expressions, to avoid
3397         // analyzing them multiple times.
3398         if (SE.isSCEVable(UserInst->getType())) {
3399           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3400           // If the user is a no-op, look through to its uses.
3401           if (!isa<SCEVUnknown>(UserS))
3402             continue;
3403           if (UserS == US) {
3404             Worklist.push_back(
3405               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3406             continue;
3407           }
3408         }
3409         // Ignore icmp instructions which are already being analyzed.
3410         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3411           unsigned OtherIdx = !U.getOperandNo();
3412           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3413           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3414             continue;
3415         }
3416 
3417         std::pair<size_t, int64_t> P = getUse(
3418             S, LSRUse::Basic, MemAccessTy());
3419         size_t LUIdx = P.first;
3420         int64_t Offset = P.second;
3421         LSRUse &LU = Uses[LUIdx];
3422         LSRFixup &LF = LU.getNewFixup();
3423         LF.UserInst = const_cast<Instruction *>(UserInst);
3424         LF.OperandValToReplace = U;
3425         LF.Offset = Offset;
3426         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3427         if (!LU.WidestFixupType ||
3428             SE.getTypeSizeInBits(LU.WidestFixupType) <
3429             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3430           LU.WidestFixupType = LF.OperandValToReplace->getType();
3431         InsertSupplementalFormula(US, LU, LUIdx);
3432         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3433         break;
3434       }
3435     }
3436   }
3437 }
3438 
3439 /// Split S into subexpressions which can be pulled out into separate
3440 /// registers. If C is non-null, multiply each subexpression by C.
3441 ///
3442 /// Return remainder expression after factoring the subexpressions captured by
3443 /// Ops. If Ops is complete, return NULL.
3444 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3445                                    SmallVectorImpl<const SCEV *> &Ops,
3446                                    const Loop *L,
3447                                    ScalarEvolution &SE,
3448                                    unsigned Depth = 0) {
3449   // Arbitrarily cap recursion to protect compile time.
3450   if (Depth >= 3)
3451     return S;
3452 
3453   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3454     // Break out add operands.
3455     for (const SCEV *S : Add->operands()) {
3456       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3457       if (Remainder)
3458         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3459     }
3460     return nullptr;
3461   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3462     // Split a non-zero base out of an addrec.
3463     if (AR->getStart()->isZero() || !AR->isAffine())
3464       return S;
3465 
3466     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3467                                             C, Ops, L, SE, Depth+1);
3468     // Split the non-zero AddRec unless it is part of a nested recurrence that
3469     // does not pertain to this loop.
3470     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3471       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3472       Remainder = nullptr;
3473     }
3474     if (Remainder != AR->getStart()) {
3475       if (!Remainder)
3476         Remainder = SE.getConstant(AR->getType(), 0);
3477       return SE.getAddRecExpr(Remainder,
3478                               AR->getStepRecurrence(SE),
3479                               AR->getLoop(),
3480                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3481                               SCEV::FlagAnyWrap);
3482     }
3483   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3484     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3485     if (Mul->getNumOperands() != 2)
3486       return S;
3487     if (const SCEVConstant *Op0 =
3488         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3489       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3490       const SCEV *Remainder =
3491         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3492       if (Remainder)
3493         Ops.push_back(SE.getMulExpr(C, Remainder));
3494       return nullptr;
3495     }
3496   }
3497   return S;
3498 }
3499 
3500 /// Return true if the SCEV represents a value that may end up as a
3501 /// post-increment operation.
3502 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3503                               LSRUse &LU, const SCEV *S, const Loop *L,
3504                               ScalarEvolution &SE) {
3505   if (LU.Kind != LSRUse::Address ||
3506       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3507     return false;
3508   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3509   if (!AR)
3510     return false;
3511   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3512   if (!isa<SCEVConstant>(LoopStep))
3513     return false;
3514   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3515       LoopStep->getType()->getScalarSizeInBits())
3516     return false;
3517   // Check if a post-indexed load/store can be used.
3518   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3519       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3520     const SCEV *LoopStart = AR->getStart();
3521     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3522       return true;
3523   }
3524   return false;
3525 }
3526 
3527 /// Helper function for LSRInstance::GenerateReassociations.
3528 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3529                                              const Formula &Base,
3530                                              unsigned Depth, size_t Idx,
3531                                              bool IsScaledReg) {
3532   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3533   // Don't generate reassociations for the base register of a value that
3534   // may generate a post-increment operator. The reason is that the
3535   // reassociations cause extra base+register formula to be created,
3536   // and possibly chosen, but the post-increment is more efficient.
3537   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3538     return;
3539   SmallVector<const SCEV *, 8> AddOps;
3540   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3541   if (Remainder)
3542     AddOps.push_back(Remainder);
3543 
3544   if (AddOps.size() == 1)
3545     return;
3546 
3547   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3548                                                      JE = AddOps.end();
3549        J != JE; ++J) {
3550     // Loop-variant "unknown" values are uninteresting; we won't be able to
3551     // do anything meaningful with them.
3552     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3553       continue;
3554 
3555     // Don't pull a constant into a register if the constant could be folded
3556     // into an immediate field.
3557     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3558                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3559       continue;
3560 
3561     // Collect all operands except *J.
3562     SmallVector<const SCEV *, 8> InnerAddOps(
3563         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3564     InnerAddOps.append(std::next(J),
3565                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3566 
3567     // Don't leave just a constant behind in a register if the constant could
3568     // be folded into an immediate field.
3569     if (InnerAddOps.size() == 1 &&
3570         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3571                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3572       continue;
3573 
3574     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3575     if (InnerSum->isZero())
3576       continue;
3577     Formula F = Base;
3578 
3579     // Add the remaining pieces of the add back into the new formula.
3580     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3581     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3582         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3583                                 InnerSumSC->getValue()->getZExtValue())) {
3584       F.UnfoldedOffset =
3585           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3586       if (IsScaledReg)
3587         F.ScaledReg = nullptr;
3588       else
3589         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3590     } else if (IsScaledReg)
3591       F.ScaledReg = InnerSum;
3592     else
3593       F.BaseRegs[Idx] = InnerSum;
3594 
3595     // Add J as its own register, or an unfolded immediate.
3596     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3597     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3598         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3599                                 SC->getValue()->getZExtValue()))
3600       F.UnfoldedOffset =
3601           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3602     else
3603       F.BaseRegs.push_back(*J);
3604     // We may have changed the number of register in base regs, adjust the
3605     // formula accordingly.
3606     F.canonicalize(*L);
3607 
3608     if (InsertFormula(LU, LUIdx, F))
3609       // If that formula hadn't been seen before, recurse to find more like
3610       // it.
3611       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3612       // Because just Depth is not enough to bound compile time.
3613       // This means that every time AddOps.size() is greater 16^x we will add
3614       // x to Depth.
3615       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3616                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3617   }
3618 }
3619 
3620 /// Split out subexpressions from adds and the bases of addrecs.
3621 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3622                                          Formula Base, unsigned Depth) {
3623   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3624   // Arbitrarily cap recursion to protect compile time.
3625   if (Depth >= 3)
3626     return;
3627 
3628   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3629     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3630 
3631   if (Base.Scale == 1)
3632     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3633                                /* Idx */ -1, /* IsScaledReg */ true);
3634 }
3635 
3636 ///  Generate a formula consisting of all of the loop-dominating registers added
3637 /// into a single register.
3638 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3639                                        Formula Base) {
3640   // This method is only interesting on a plurality of registers.
3641   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3642     return;
3643 
3644   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3645   // processing the formula.
3646   Base.unscale();
3647   Formula F = Base;
3648   F.BaseRegs.clear();
3649   SmallVector<const SCEV *, 4> Ops;
3650   for (const SCEV *BaseReg : Base.BaseRegs) {
3651     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3652         !SE.hasComputableLoopEvolution(BaseReg, L))
3653       Ops.push_back(BaseReg);
3654     else
3655       F.BaseRegs.push_back(BaseReg);
3656   }
3657   if (Ops.size() > 1) {
3658     const SCEV *Sum = SE.getAddExpr(Ops);
3659     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3660     // opportunity to fold something. For now, just ignore such cases
3661     // rather than proceed with zero in a register.
3662     if (!Sum->isZero()) {
3663       F.BaseRegs.push_back(Sum);
3664       F.canonicalize(*L);
3665       (void)InsertFormula(LU, LUIdx, F);
3666     }
3667   }
3668 }
3669 
3670 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3671 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3672                                               const Formula &Base, size_t Idx,
3673                                               bool IsScaledReg) {
3674   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3675   GlobalValue *GV = ExtractSymbol(G, SE);
3676   if (G->isZero() || !GV)
3677     return;
3678   Formula F = Base;
3679   F.BaseGV = GV;
3680   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3681     return;
3682   if (IsScaledReg)
3683     F.ScaledReg = G;
3684   else
3685     F.BaseRegs[Idx] = G;
3686   (void)InsertFormula(LU, LUIdx, F);
3687 }
3688 
3689 /// Generate reuse formulae using symbolic offsets.
3690 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3691                                           Formula Base) {
3692   // We can't add a symbolic offset if the address already contains one.
3693   if (Base.BaseGV) return;
3694 
3695   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3696     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3697   if (Base.Scale == 1)
3698     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3699                                 /* IsScaledReg */ true);
3700 }
3701 
3702 /// Helper function for LSRInstance::GenerateConstantOffsets.
3703 void LSRInstance::GenerateConstantOffsetsImpl(
3704     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3705     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3706   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3707   for (int64_t Offset : Worklist) {
3708     Formula F = Base;
3709     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3710     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3711                    LU.AccessTy, F)) {
3712       // Add the offset to the base register.
3713       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3714       // If it cancelled out, drop the base register, otherwise update it.
3715       if (NewG->isZero()) {
3716         if (IsScaledReg) {
3717           F.Scale = 0;
3718           F.ScaledReg = nullptr;
3719         } else
3720           F.deleteBaseReg(F.BaseRegs[Idx]);
3721         F.canonicalize(*L);
3722       } else if (IsScaledReg)
3723         F.ScaledReg = NewG;
3724       else
3725         F.BaseRegs[Idx] = NewG;
3726 
3727       (void)InsertFormula(LU, LUIdx, F);
3728     }
3729   }
3730 
3731   int64_t Imm = ExtractImmediate(G, SE);
3732   if (G->isZero() || Imm == 0)
3733     return;
3734   Formula F = Base;
3735   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3736   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3737     return;
3738   if (IsScaledReg)
3739     F.ScaledReg = G;
3740   else
3741     F.BaseRegs[Idx] = G;
3742   (void)InsertFormula(LU, LUIdx, F);
3743 }
3744 
3745 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3746 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3747                                           Formula Base) {
3748   // TODO: For now, just add the min and max offset, because it usually isn't
3749   // worthwhile looking at everything inbetween.
3750   SmallVector<int64_t, 2> Worklist;
3751   Worklist.push_back(LU.MinOffset);
3752   if (LU.MaxOffset != LU.MinOffset)
3753     Worklist.push_back(LU.MaxOffset);
3754 
3755   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3756     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3757   if (Base.Scale == 1)
3758     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3759                                 /* IsScaledReg */ true);
3760 }
3761 
3762 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3763 /// == y -> x*c == y*c.
3764 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3765                                          Formula Base) {
3766   if (LU.Kind != LSRUse::ICmpZero) return;
3767 
3768   // Determine the integer type for the base formula.
3769   Type *IntTy = Base.getType();
3770   if (!IntTy) return;
3771   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3772 
3773   // Don't do this if there is more than one offset.
3774   if (LU.MinOffset != LU.MaxOffset) return;
3775 
3776   // Check if transformation is valid. It is illegal to multiply pointer.
3777   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3778     return;
3779   for (const SCEV *BaseReg : Base.BaseRegs)
3780     if (BaseReg->getType()->isPointerTy())
3781       return;
3782   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3783 
3784   // Check each interesting stride.
3785   for (int64_t Factor : Factors) {
3786     // Check that the multiplication doesn't overflow.
3787     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3788       continue;
3789     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3790     if (NewBaseOffset / Factor != Base.BaseOffset)
3791       continue;
3792     // If the offset will be truncated at this use, check that it is in bounds.
3793     if (!IntTy->isPointerTy() &&
3794         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3795       continue;
3796 
3797     // Check that multiplying with the use offset doesn't overflow.
3798     int64_t Offset = LU.MinOffset;
3799     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3800       continue;
3801     Offset = (uint64_t)Offset * Factor;
3802     if (Offset / Factor != LU.MinOffset)
3803       continue;
3804     // If the offset will be truncated at this use, check that it is in bounds.
3805     if (!IntTy->isPointerTy() &&
3806         !ConstantInt::isValueValidForType(IntTy, Offset))
3807       continue;
3808 
3809     Formula F = Base;
3810     F.BaseOffset = NewBaseOffset;
3811 
3812     // Check that this scale is legal.
3813     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3814       continue;
3815 
3816     // Compensate for the use having MinOffset built into it.
3817     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3818 
3819     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3820 
3821     // Check that multiplying with each base register doesn't overflow.
3822     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3823       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3824       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3825         goto next;
3826     }
3827 
3828     // Check that multiplying with the scaled register doesn't overflow.
3829     if (F.ScaledReg) {
3830       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3831       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3832         continue;
3833     }
3834 
3835     // Check that multiplying with the unfolded offset doesn't overflow.
3836     if (F.UnfoldedOffset != 0) {
3837       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3838           Factor == -1)
3839         continue;
3840       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3841       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3842         continue;
3843       // If the offset will be truncated, check that it is in bounds.
3844       if (!IntTy->isPointerTy() &&
3845           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3846         continue;
3847     }
3848 
3849     // If we make it here and it's legal, add it.
3850     (void)InsertFormula(LU, LUIdx, F);
3851   next:;
3852   }
3853 }
3854 
3855 /// Generate stride factor reuse formulae by making use of scaled-offset address
3856 /// modes, for example.
3857 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3858   // Determine the integer type for the base formula.
3859   Type *IntTy = Base.getType();
3860   if (!IntTy) return;
3861 
3862   // If this Formula already has a scaled register, we can't add another one.
3863   // Try to unscale the formula to generate a better scale.
3864   if (Base.Scale != 0 && !Base.unscale())
3865     return;
3866 
3867   assert(Base.Scale == 0 && "unscale did not did its job!");
3868 
3869   // Check each interesting stride.
3870   for (int64_t Factor : Factors) {
3871     Base.Scale = Factor;
3872     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3873     // Check whether this scale is going to be legal.
3874     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3875                     Base)) {
3876       // As a special-case, handle special out-of-loop Basic users specially.
3877       // TODO: Reconsider this special case.
3878       if (LU.Kind == LSRUse::Basic &&
3879           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3880                      LU.AccessTy, Base) &&
3881           LU.AllFixupsOutsideLoop)
3882         LU.Kind = LSRUse::Special;
3883       else
3884         continue;
3885     }
3886     // For an ICmpZero, negating a solitary base register won't lead to
3887     // new solutions.
3888     if (LU.Kind == LSRUse::ICmpZero &&
3889         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3890       continue;
3891     // For each addrec base reg, if its loop is current loop, apply the scale.
3892     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3893       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3894       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3895         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3896         if (FactorS->isZero())
3897           continue;
3898         // Divide out the factor, ignoring high bits, since we'll be
3899         // scaling the value back up in the end.
3900         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3901           // TODO: This could be optimized to avoid all the copying.
3902           Formula F = Base;
3903           F.ScaledReg = Quotient;
3904           F.deleteBaseReg(F.BaseRegs[i]);
3905           // The canonical representation of 1*reg is reg, which is already in
3906           // Base. In that case, do not try to insert the formula, it will be
3907           // rejected anyway.
3908           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3909                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3910             continue;
3911           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3912           // non canonical Formula with ScaledReg's loop not being L.
3913           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3914             F.canonicalize(*L);
3915           (void)InsertFormula(LU, LUIdx, F);
3916         }
3917       }
3918     }
3919   }
3920 }
3921 
3922 /// Generate reuse formulae from different IV types.
3923 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3924   // Don't bother truncating symbolic values.
3925   if (Base.BaseGV) return;
3926 
3927   // Determine the integer type for the base formula.
3928   Type *DstTy = Base.getType();
3929   if (!DstTy) return;
3930   DstTy = SE.getEffectiveSCEVType(DstTy);
3931 
3932   for (Type *SrcTy : Types) {
3933     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3934       Formula F = Base;
3935 
3936       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3937       for (const SCEV *&BaseReg : F.BaseRegs)
3938         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3939 
3940       // TODO: This assumes we've done basic processing on all uses and
3941       // have an idea what the register usage is.
3942       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3943         continue;
3944 
3945       F.canonicalize(*L);
3946       (void)InsertFormula(LU, LUIdx, F);
3947     }
3948   }
3949 }
3950 
3951 namespace {
3952 
3953 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3954 /// modifications so that the search phase doesn't have to worry about the data
3955 /// structures moving underneath it.
3956 struct WorkItem {
3957   size_t LUIdx;
3958   int64_t Imm;
3959   const SCEV *OrigReg;
3960 
3961   WorkItem(size_t LI, int64_t I, const SCEV *R)
3962       : LUIdx(LI), Imm(I), OrigReg(R) {}
3963 
3964   void print(raw_ostream &OS) const;
3965   void dump() const;
3966 };
3967 
3968 } // end anonymous namespace
3969 
3970 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3971 void WorkItem::print(raw_ostream &OS) const {
3972   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3973      << " , add offset " << Imm;
3974 }
3975 
3976 LLVM_DUMP_METHOD void WorkItem::dump() const {
3977   print(errs()); errs() << '\n';
3978 }
3979 #endif
3980 
3981 /// Look for registers which are a constant distance apart and try to form reuse
3982 /// opportunities between them.
3983 void LSRInstance::GenerateCrossUseConstantOffsets() {
3984   // Group the registers by their value without any added constant offset.
3985   using ImmMapTy = std::map<int64_t, const SCEV *>;
3986 
3987   DenseMap<const SCEV *, ImmMapTy> Map;
3988   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3989   SmallVector<const SCEV *, 8> Sequence;
3990   for (const SCEV *Use : RegUses) {
3991     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3992     int64_t Imm = ExtractImmediate(Reg, SE);
3993     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3994     if (Pair.second)
3995       Sequence.push_back(Reg);
3996     Pair.first->second.insert(std::make_pair(Imm, Use));
3997     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3998   }
3999 
4000   // Now examine each set of registers with the same base value. Build up
4001   // a list of work to do and do the work in a separate step so that we're
4002   // not adding formulae and register counts while we're searching.
4003   SmallVector<WorkItem, 32> WorkItems;
4004   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4005   for (const SCEV *Reg : Sequence) {
4006     const ImmMapTy &Imms = Map.find(Reg)->second;
4007 
4008     // It's not worthwhile looking for reuse if there's only one offset.
4009     if (Imms.size() == 1)
4010       continue;
4011 
4012     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4013                for (const auto &Entry
4014                     : Imms) dbgs()
4015                << ' ' << Entry.first;
4016                dbgs() << '\n');
4017 
4018     // Examine each offset.
4019     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4020          J != JE; ++J) {
4021       const SCEV *OrigReg = J->second;
4022 
4023       int64_t JImm = J->first;
4024       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4025 
4026       if (!isa<SCEVConstant>(OrigReg) &&
4027           UsedByIndicesMap[Reg].count() == 1) {
4028         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4029                           << '\n');
4030         continue;
4031       }
4032 
4033       // Conservatively examine offsets between this orig reg a few selected
4034       // other orig regs.
4035       ImmMapTy::const_iterator OtherImms[] = {
4036         Imms.begin(), std::prev(Imms.end()),
4037         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
4038                          2)
4039       };
4040       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4041         ImmMapTy::const_iterator M = OtherImms[i];
4042         if (M == J || M == JE) continue;
4043 
4044         // Compute the difference between the two.
4045         int64_t Imm = (uint64_t)JImm - M->first;
4046         for (unsigned LUIdx : UsedByIndices.set_bits())
4047           // Make a memo of this use, offset, and register tuple.
4048           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4049             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4050       }
4051     }
4052   }
4053 
4054   Map.clear();
4055   Sequence.clear();
4056   UsedByIndicesMap.clear();
4057   UniqueItems.clear();
4058 
4059   // Now iterate through the worklist and add new formulae.
4060   for (const WorkItem &WI : WorkItems) {
4061     size_t LUIdx = WI.LUIdx;
4062     LSRUse &LU = Uses[LUIdx];
4063     int64_t Imm = WI.Imm;
4064     const SCEV *OrigReg = WI.OrigReg;
4065 
4066     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4067     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4068     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4069 
4070     // TODO: Use a more targeted data structure.
4071     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4072       Formula F = LU.Formulae[L];
4073       // FIXME: The code for the scaled and unscaled registers looks
4074       // very similar but slightly different. Investigate if they
4075       // could be merged. That way, we would not have to unscale the
4076       // Formula.
4077       F.unscale();
4078       // Use the immediate in the scaled register.
4079       if (F.ScaledReg == OrigReg) {
4080         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4081         // Don't create 50 + reg(-50).
4082         if (F.referencesReg(SE.getSCEV(
4083                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4084           continue;
4085         Formula NewF = F;
4086         NewF.BaseOffset = Offset;
4087         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4088                         NewF))
4089           continue;
4090         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4091 
4092         // If the new scale is a constant in a register, and adding the constant
4093         // value to the immediate would produce a value closer to zero than the
4094         // immediate itself, then the formula isn't worthwhile.
4095         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4096           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4097               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4098                   .ule(std::abs(NewF.BaseOffset)))
4099             continue;
4100 
4101         // OK, looks good.
4102         NewF.canonicalize(*this->L);
4103         (void)InsertFormula(LU, LUIdx, NewF);
4104       } else {
4105         // Use the immediate in a base register.
4106         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4107           const SCEV *BaseReg = F.BaseRegs[N];
4108           if (BaseReg != OrigReg)
4109             continue;
4110           Formula NewF = F;
4111           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4112           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4113                           LU.Kind, LU.AccessTy, NewF)) {
4114             if (TTI.shouldFavorPostInc() &&
4115                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4116               continue;
4117             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4118               continue;
4119             NewF = F;
4120             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4121           }
4122           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4123 
4124           // If the new formula has a constant in a register, and adding the
4125           // constant value to the immediate would produce a value closer to
4126           // zero than the immediate itself, then the formula isn't worthwhile.
4127           for (const SCEV *NewReg : NewF.BaseRegs)
4128             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4129               if ((C->getAPInt() + NewF.BaseOffset)
4130                       .abs()
4131                       .slt(std::abs(NewF.BaseOffset)) &&
4132                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4133                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4134                 goto skip_formula;
4135 
4136           // Ok, looks good.
4137           NewF.canonicalize(*this->L);
4138           (void)InsertFormula(LU, LUIdx, NewF);
4139           break;
4140         skip_formula:;
4141         }
4142       }
4143     }
4144   }
4145 }
4146 
4147 /// Generate formulae for each use.
4148 void
4149 LSRInstance::GenerateAllReuseFormulae() {
4150   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4151   // queries are more precise.
4152   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4153     LSRUse &LU = Uses[LUIdx];
4154     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4155       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4156     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4157       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4158   }
4159   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4160     LSRUse &LU = Uses[LUIdx];
4161     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4162       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4163     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4164       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4165     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4166       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4167     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4168       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4169   }
4170   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4171     LSRUse &LU = Uses[LUIdx];
4172     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4173       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4174   }
4175 
4176   GenerateCrossUseConstantOffsets();
4177 
4178   LLVM_DEBUG(dbgs() << "\n"
4179                        "After generating reuse formulae:\n";
4180              print_uses(dbgs()));
4181 }
4182 
4183 /// If there are multiple formulae with the same set of registers used
4184 /// by other uses, pick the best one and delete the others.
4185 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4186   DenseSet<const SCEV *> VisitedRegs;
4187   SmallPtrSet<const SCEV *, 16> Regs;
4188   SmallPtrSet<const SCEV *, 16> LoserRegs;
4189 #ifndef NDEBUG
4190   bool ChangedFormulae = false;
4191 #endif
4192 
4193   // Collect the best formula for each unique set of shared registers. This
4194   // is reset for each use.
4195   using BestFormulaeTy =
4196       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4197 
4198   BestFormulaeTy BestFormulae;
4199 
4200   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4201     LSRUse &LU = Uses[LUIdx];
4202     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4203                dbgs() << '\n');
4204 
4205     bool Any = false;
4206     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4207          FIdx != NumForms; ++FIdx) {
4208       Formula &F = LU.Formulae[FIdx];
4209 
4210       // Some formulas are instant losers. For example, they may depend on
4211       // nonexistent AddRecs from other loops. These need to be filtered
4212       // immediately, otherwise heuristics could choose them over others leading
4213       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4214       // avoids the need to recompute this information across formulae using the
4215       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4216       // the corresponding bad register from the Regs set.
4217       Cost CostF;
4218       Regs.clear();
4219       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4220       if (CostF.isLoser()) {
4221         // During initial formula generation, undesirable formulae are generated
4222         // by uses within other loops that have some non-trivial address mode or
4223         // use the postinc form of the IV. LSR needs to provide these formulae
4224         // as the basis of rediscovering the desired formula that uses an AddRec
4225         // corresponding to the existing phi. Once all formulae have been
4226         // generated, these initial losers may be pruned.
4227         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4228                    dbgs() << "\n");
4229       }
4230       else {
4231         SmallVector<const SCEV *, 4> Key;
4232         for (const SCEV *Reg : F.BaseRegs) {
4233           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4234             Key.push_back(Reg);
4235         }
4236         if (F.ScaledReg &&
4237             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4238           Key.push_back(F.ScaledReg);
4239         // Unstable sort by host order ok, because this is only used for
4240         // uniquifying.
4241         llvm::sort(Key.begin(), Key.end());
4242 
4243         std::pair<BestFormulaeTy::const_iterator, bool> P =
4244           BestFormulae.insert(std::make_pair(Key, FIdx));
4245         if (P.second)
4246           continue;
4247 
4248         Formula &Best = LU.Formulae[P.first->second];
4249 
4250         Cost CostBest;
4251         Regs.clear();
4252         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4253         if (CostF.isLess(CostBest, TTI))
4254           std::swap(F, Best);
4255         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4256                    dbgs() << "\n"
4257                              "    in favor of formula ";
4258                    Best.print(dbgs()); dbgs() << '\n');
4259       }
4260 #ifndef NDEBUG
4261       ChangedFormulae = true;
4262 #endif
4263       LU.DeleteFormula(F);
4264       --FIdx;
4265       --NumForms;
4266       Any = true;
4267     }
4268 
4269     // Now that we've filtered out some formulae, recompute the Regs set.
4270     if (Any)
4271       LU.RecomputeRegs(LUIdx, RegUses);
4272 
4273     // Reset this to prepare for the next use.
4274     BestFormulae.clear();
4275   }
4276 
4277   LLVM_DEBUG(if (ChangedFormulae) {
4278     dbgs() << "\n"
4279               "After filtering out undesirable candidates:\n";
4280     print_uses(dbgs());
4281   });
4282 }
4283 
4284 // This is a rough guess that seems to work fairly well.
4285 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max();
4286 
4287 /// Estimate the worst-case number of solutions the solver might have to
4288 /// consider. It almost never considers this many solutions because it prune the
4289 /// search space, but the pruning isn't always sufficient.
4290 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4291   size_t Power = 1;
4292   for (const LSRUse &LU : Uses) {
4293     size_t FSize = LU.Formulae.size();
4294     if (FSize >= ComplexityLimit) {
4295       Power = ComplexityLimit;
4296       break;
4297     }
4298     Power *= FSize;
4299     if (Power >= ComplexityLimit)
4300       break;
4301   }
4302   return Power;
4303 }
4304 
4305 /// When one formula uses a superset of the registers of another formula, it
4306 /// won't help reduce register pressure (though it may not necessarily hurt
4307 /// register pressure); remove it to simplify the system.
4308 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4309   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4310     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4311 
4312     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4313                          "which use a superset of registers used by other "
4314                          "formulae.\n");
4315 
4316     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4317       LSRUse &LU = Uses[LUIdx];
4318       bool Any = false;
4319       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4320         Formula &F = LU.Formulae[i];
4321         // Look for a formula with a constant or GV in a register. If the use
4322         // also has a formula with that same value in an immediate field,
4323         // delete the one that uses a register.
4324         for (SmallVectorImpl<const SCEV *>::const_iterator
4325              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4326           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4327             Formula NewF = F;
4328             NewF.BaseOffset += C->getValue()->getSExtValue();
4329             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4330                                 (I - F.BaseRegs.begin()));
4331             if (LU.HasFormulaWithSameRegs(NewF)) {
4332               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4333                          dbgs() << '\n');
4334               LU.DeleteFormula(F);
4335               --i;
4336               --e;
4337               Any = true;
4338               break;
4339             }
4340           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4341             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4342               if (!F.BaseGV) {
4343                 Formula NewF = F;
4344                 NewF.BaseGV = GV;
4345                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4346                                     (I - F.BaseRegs.begin()));
4347                 if (LU.HasFormulaWithSameRegs(NewF)) {
4348                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4349                              dbgs() << '\n');
4350                   LU.DeleteFormula(F);
4351                   --i;
4352                   --e;
4353                   Any = true;
4354                   break;
4355                 }
4356               }
4357           }
4358         }
4359       }
4360       if (Any)
4361         LU.RecomputeRegs(LUIdx, RegUses);
4362     }
4363 
4364     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4365   }
4366 }
4367 
4368 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4369 /// allocate a single register for them.
4370 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4371   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4372     return;
4373 
4374   LLVM_DEBUG(
4375       dbgs() << "The search space is too complex.\n"
4376                 "Narrowing the search space by assuming that uses separated "
4377                 "by a constant offset will use the same registers.\n");
4378 
4379   // This is especially useful for unrolled loops.
4380 
4381   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4382     LSRUse &LU = Uses[LUIdx];
4383     for (const Formula &F : LU.Formulae) {
4384       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4385         continue;
4386 
4387       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4388       if (!LUThatHas)
4389         continue;
4390 
4391       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4392                               LU.Kind, LU.AccessTy))
4393         continue;
4394 
4395       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4396 
4397       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4398 
4399       // Transfer the fixups of LU to LUThatHas.
4400       for (LSRFixup &Fixup : LU.Fixups) {
4401         Fixup.Offset += F.BaseOffset;
4402         LUThatHas->pushFixup(Fixup);
4403         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4404       }
4405 
4406       // Delete formulae from the new use which are no longer legal.
4407       bool Any = false;
4408       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4409         Formula &F = LUThatHas->Formulae[i];
4410         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4411                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4412           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4413           LUThatHas->DeleteFormula(F);
4414           --i;
4415           --e;
4416           Any = true;
4417         }
4418       }
4419 
4420       if (Any)
4421         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4422 
4423       // Delete the old use.
4424       DeleteUse(LU, LUIdx);
4425       --LUIdx;
4426       --NumUses;
4427       break;
4428     }
4429   }
4430 
4431   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4432 }
4433 
4434 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4435 /// we've done more filtering, as it may be able to find more formulae to
4436 /// eliminate.
4437 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4438   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4439     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4440 
4441     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4442                          "undesirable dedicated registers.\n");
4443 
4444     FilterOutUndesirableDedicatedRegisters();
4445 
4446     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4447   }
4448 }
4449 
4450 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4451 /// Pick the best one and delete the others.
4452 /// This narrowing heuristic is to keep as many formulae with different
4453 /// Scale and ScaledReg pair as possible while narrowing the search space.
4454 /// The benefit is that it is more likely to find out a better solution
4455 /// from a formulae set with more Scale and ScaledReg variations than
4456 /// a formulae set with the same Scale and ScaledReg. The picking winner
4457 /// reg heuristic will often keep the formulae with the same Scale and
4458 /// ScaledReg and filter others, and we want to avoid that if possible.
4459 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4460   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4461     return;
4462 
4463   LLVM_DEBUG(
4464       dbgs() << "The search space is too complex.\n"
4465                 "Narrowing the search space by choosing the best Formula "
4466                 "from the Formulae with the same Scale and ScaledReg.\n");
4467 
4468   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4469   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4470 
4471   BestFormulaeTy BestFormulae;
4472 #ifndef NDEBUG
4473   bool ChangedFormulae = false;
4474 #endif
4475   DenseSet<const SCEV *> VisitedRegs;
4476   SmallPtrSet<const SCEV *, 16> Regs;
4477 
4478   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4479     LSRUse &LU = Uses[LUIdx];
4480     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4481                dbgs() << '\n');
4482 
4483     // Return true if Formula FA is better than Formula FB.
4484     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4485       // First we will try to choose the Formula with fewer new registers.
4486       // For a register used by current Formula, the more the register is
4487       // shared among LSRUses, the less we increase the register number
4488       // counter of the formula.
4489       size_t FARegNum = 0;
4490       for (const SCEV *Reg : FA.BaseRegs) {
4491         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4492         FARegNum += (NumUses - UsedByIndices.count() + 1);
4493       }
4494       size_t FBRegNum = 0;
4495       for (const SCEV *Reg : FB.BaseRegs) {
4496         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4497         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4498       }
4499       if (FARegNum != FBRegNum)
4500         return FARegNum < FBRegNum;
4501 
4502       // If the new register numbers are the same, choose the Formula with
4503       // less Cost.
4504       Cost CostFA, CostFB;
4505       Regs.clear();
4506       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4507       Regs.clear();
4508       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4509       return CostFA.isLess(CostFB, TTI);
4510     };
4511 
4512     bool Any = false;
4513     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4514          ++FIdx) {
4515       Formula &F = LU.Formulae[FIdx];
4516       if (!F.ScaledReg)
4517         continue;
4518       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4519       if (P.second)
4520         continue;
4521 
4522       Formula &Best = LU.Formulae[P.first->second];
4523       if (IsBetterThan(F, Best))
4524         std::swap(F, Best);
4525       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4526                  dbgs() << "\n"
4527                            "    in favor of formula ";
4528                  Best.print(dbgs()); dbgs() << '\n');
4529 #ifndef NDEBUG
4530       ChangedFormulae = true;
4531 #endif
4532       LU.DeleteFormula(F);
4533       --FIdx;
4534       --NumForms;
4535       Any = true;
4536     }
4537     if (Any)
4538       LU.RecomputeRegs(LUIdx, RegUses);
4539 
4540     // Reset this to prepare for the next use.
4541     BestFormulae.clear();
4542   }
4543 
4544   LLVM_DEBUG(if (ChangedFormulae) {
4545     dbgs() << "\n"
4546               "After filtering out undesirable candidates:\n";
4547     print_uses(dbgs());
4548   });
4549 }
4550 
4551 /// The function delete formulas with high registers number expectation.
4552 /// Assuming we don't know the value of each formula (already delete
4553 /// all inefficient), generate probability of not selecting for each
4554 /// register.
4555 /// For example,
4556 /// Use1:
4557 ///  reg(a) + reg({0,+,1})
4558 ///  reg(a) + reg({-1,+,1}) + 1
4559 ///  reg({a,+,1})
4560 /// Use2:
4561 ///  reg(b) + reg({0,+,1})
4562 ///  reg(b) + reg({-1,+,1}) + 1
4563 ///  reg({b,+,1})
4564 /// Use3:
4565 ///  reg(c) + reg(b) + reg({0,+,1})
4566 ///  reg(c) + reg({b,+,1})
4567 ///
4568 /// Probability of not selecting
4569 ///                 Use1   Use2    Use3
4570 /// reg(a)         (1/3) *   1   *   1
4571 /// reg(b)           1   * (1/3) * (1/2)
4572 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4573 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4574 /// reg({a,+,1})   (2/3) *   1   *   1
4575 /// reg({b,+,1})     1   * (2/3) * (2/3)
4576 /// reg(c)           1   *   1   *   0
4577 ///
4578 /// Now count registers number mathematical expectation for each formula:
4579 /// Note that for each use we exclude probability if not selecting for the use.
4580 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4581 /// probabilty 1/3 of not selecting for Use1).
4582 /// Use1:
4583 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4584 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4585 ///  reg({a,+,1})                   1
4586 /// Use2:
4587 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4588 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4589 ///  reg({b,+,1})                   2/3
4590 /// Use3:
4591 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4592 ///  reg(c) + reg({b,+,1})          1 + 2/3
4593 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4594   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4595     return;
4596   // Ok, we have too many of formulae on our hands to conveniently handle.
4597   // Use a rough heuristic to thin out the list.
4598 
4599   // Set of Regs wich will be 100% used in final solution.
4600   // Used in each formula of a solution (in example above this is reg(c)).
4601   // We can skip them in calculations.
4602   SmallPtrSet<const SCEV *, 4> UniqRegs;
4603   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4604 
4605   // Map each register to probability of not selecting
4606   DenseMap <const SCEV *, float> RegNumMap;
4607   for (const SCEV *Reg : RegUses) {
4608     if (UniqRegs.count(Reg))
4609       continue;
4610     float PNotSel = 1;
4611     for (const LSRUse &LU : Uses) {
4612       if (!LU.Regs.count(Reg))
4613         continue;
4614       float P = LU.getNotSelectedProbability(Reg);
4615       if (P != 0.0)
4616         PNotSel *= P;
4617       else
4618         UniqRegs.insert(Reg);
4619     }
4620     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4621   }
4622 
4623   LLVM_DEBUG(
4624       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4625 
4626   // Delete formulas where registers number expectation is high.
4627   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4628     LSRUse &LU = Uses[LUIdx];
4629     // If nothing to delete - continue.
4630     if (LU.Formulae.size() < 2)
4631       continue;
4632     // This is temporary solution to test performance. Float should be
4633     // replaced with round independent type (based on integers) to avoid
4634     // different results for different target builds.
4635     float FMinRegNum = LU.Formulae[0].getNumRegs();
4636     float FMinARegNum = LU.Formulae[0].getNumRegs();
4637     size_t MinIdx = 0;
4638     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4639       Formula &F = LU.Formulae[i];
4640       float FRegNum = 0;
4641       float FARegNum = 0;
4642       for (const SCEV *BaseReg : F.BaseRegs) {
4643         if (UniqRegs.count(BaseReg))
4644           continue;
4645         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4646         if (isa<SCEVAddRecExpr>(BaseReg))
4647           FARegNum +=
4648               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4649       }
4650       if (const SCEV *ScaledReg = F.ScaledReg) {
4651         if (!UniqRegs.count(ScaledReg)) {
4652           FRegNum +=
4653               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4654           if (isa<SCEVAddRecExpr>(ScaledReg))
4655             FARegNum +=
4656                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4657         }
4658       }
4659       if (FMinRegNum > FRegNum ||
4660           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4661         FMinRegNum = FRegNum;
4662         FMinARegNum = FARegNum;
4663         MinIdx = i;
4664       }
4665     }
4666     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4667                dbgs() << " with min reg num " << FMinRegNum << '\n');
4668     if (MinIdx != 0)
4669       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4670     while (LU.Formulae.size() != 1) {
4671       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4672                  dbgs() << '\n');
4673       LU.Formulae.pop_back();
4674     }
4675     LU.RecomputeRegs(LUIdx, RegUses);
4676     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4677     Formula &F = LU.Formulae[0];
4678     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4679     // When we choose the formula, the regs become unique.
4680     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4681     if (F.ScaledReg)
4682       UniqRegs.insert(F.ScaledReg);
4683   }
4684   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4685 }
4686 
4687 /// Pick a register which seems likely to be profitable, and then in any use
4688 /// which has any reference to that register, delete all formulae which do not
4689 /// reference that register.
4690 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4691   // With all other options exhausted, loop until the system is simple
4692   // enough to handle.
4693   SmallPtrSet<const SCEV *, 4> Taken;
4694   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4695     // Ok, we have too many of formulae on our hands to conveniently handle.
4696     // Use a rough heuristic to thin out the list.
4697     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4698 
4699     // Pick the register which is used by the most LSRUses, which is likely
4700     // to be a good reuse register candidate.
4701     const SCEV *Best = nullptr;
4702     unsigned BestNum = 0;
4703     for (const SCEV *Reg : RegUses) {
4704       if (Taken.count(Reg))
4705         continue;
4706       if (!Best) {
4707         Best = Reg;
4708         BestNum = RegUses.getUsedByIndices(Reg).count();
4709       } else {
4710         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4711         if (Count > BestNum) {
4712           Best = Reg;
4713           BestNum = Count;
4714         }
4715       }
4716     }
4717 
4718     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4719                       << " will yield profitable reuse.\n");
4720     Taken.insert(Best);
4721 
4722     // In any use with formulae which references this register, delete formulae
4723     // which don't reference it.
4724     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4725       LSRUse &LU = Uses[LUIdx];
4726       if (!LU.Regs.count(Best)) continue;
4727 
4728       bool Any = false;
4729       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4730         Formula &F = LU.Formulae[i];
4731         if (!F.referencesReg(Best)) {
4732           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4733           LU.DeleteFormula(F);
4734           --e;
4735           --i;
4736           Any = true;
4737           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4738           continue;
4739         }
4740       }
4741 
4742       if (Any)
4743         LU.RecomputeRegs(LUIdx, RegUses);
4744     }
4745 
4746     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4747   }
4748 }
4749 
4750 /// If there are an extraordinary number of formulae to choose from, use some
4751 /// rough heuristics to prune down the number of formulae. This keeps the main
4752 /// solver from taking an extraordinary amount of time in some worst-case
4753 /// scenarios.
4754 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4755   NarrowSearchSpaceByDetectingSupersets();
4756   NarrowSearchSpaceByCollapsingUnrolledCode();
4757   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4758   if (FilterSameScaledReg)
4759     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4760   if (LSRExpNarrow)
4761     NarrowSearchSpaceByDeletingCostlyFormulas();
4762   else
4763     NarrowSearchSpaceByPickingWinnerRegs();
4764 }
4765 
4766 /// This is the recursive solver.
4767 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4768                                Cost &SolutionCost,
4769                                SmallVectorImpl<const Formula *> &Workspace,
4770                                const Cost &CurCost,
4771                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4772                                DenseSet<const SCEV *> &VisitedRegs) const {
4773   // Some ideas:
4774   //  - prune more:
4775   //    - use more aggressive filtering
4776   //    - sort the formula so that the most profitable solutions are found first
4777   //    - sort the uses too
4778   //  - search faster:
4779   //    - don't compute a cost, and then compare. compare while computing a cost
4780   //      and bail early.
4781   //    - track register sets with SmallBitVector
4782 
4783   const LSRUse &LU = Uses[Workspace.size()];
4784 
4785   // If this use references any register that's already a part of the
4786   // in-progress solution, consider it a requirement that a formula must
4787   // reference that register in order to be considered. This prunes out
4788   // unprofitable searching.
4789   SmallSetVector<const SCEV *, 4> ReqRegs;
4790   for (const SCEV *S : CurRegs)
4791     if (LU.Regs.count(S))
4792       ReqRegs.insert(S);
4793 
4794   SmallPtrSet<const SCEV *, 16> NewRegs;
4795   Cost NewCost;
4796   for (const Formula &F : LU.Formulae) {
4797     // Ignore formulae which may not be ideal in terms of register reuse of
4798     // ReqRegs.  The formula should use all required registers before
4799     // introducing new ones.
4800     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4801     for (const SCEV *Reg : ReqRegs) {
4802       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4803           is_contained(F.BaseRegs, Reg)) {
4804         --NumReqRegsToFind;
4805         if (NumReqRegsToFind == 0)
4806           break;
4807       }
4808     }
4809     if (NumReqRegsToFind != 0) {
4810       // If none of the formulae satisfied the required registers, then we could
4811       // clear ReqRegs and try again. Currently, we simply give up in this case.
4812       continue;
4813     }
4814 
4815     // Evaluate the cost of the current formula. If it's already worse than
4816     // the current best, prune the search at that point.
4817     NewCost = CurCost;
4818     NewRegs = CurRegs;
4819     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4820     if (NewCost.isLess(SolutionCost, TTI)) {
4821       Workspace.push_back(&F);
4822       if (Workspace.size() != Uses.size()) {
4823         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4824                      NewRegs, VisitedRegs);
4825         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4826           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4827       } else {
4828         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4829                    dbgs() << ".\n Regs:"; for (const SCEV *S
4830                                                : NewRegs) dbgs()
4831                                           << ' ' << *S;
4832                    dbgs() << '\n');
4833 
4834         SolutionCost = NewCost;
4835         Solution = Workspace;
4836       }
4837       Workspace.pop_back();
4838     }
4839   }
4840 }
4841 
4842 /// Choose one formula from each use. Return the results in the given Solution
4843 /// vector.
4844 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4845   SmallVector<const Formula *, 8> Workspace;
4846   Cost SolutionCost;
4847   SolutionCost.Lose();
4848   Cost CurCost;
4849   SmallPtrSet<const SCEV *, 16> CurRegs;
4850   DenseSet<const SCEV *> VisitedRegs;
4851   Workspace.reserve(Uses.size());
4852 
4853   // SolveRecurse does all the work.
4854   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4855                CurRegs, VisitedRegs);
4856   if (Solution.empty()) {
4857     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4858     return;
4859   }
4860 
4861   // Ok, we've now made all our decisions.
4862   LLVM_DEBUG(dbgs() << "\n"
4863                        "The chosen solution requires ";
4864              SolutionCost.print(dbgs()); dbgs() << ":\n";
4865              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4866                dbgs() << "  ";
4867                Uses[i].print(dbgs());
4868                dbgs() << "\n"
4869                          "    ";
4870                Solution[i]->print(dbgs());
4871                dbgs() << '\n';
4872              });
4873 
4874   assert(Solution.size() == Uses.size() && "Malformed solution!");
4875 }
4876 
4877 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4878 /// we can go while still being dominated by the input positions. This helps
4879 /// canonicalize the insert position, which encourages sharing.
4880 BasicBlock::iterator
4881 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4882                                  const SmallVectorImpl<Instruction *> &Inputs)
4883                                                                          const {
4884   Instruction *Tentative = &*IP;
4885   while (true) {
4886     bool AllDominate = true;
4887     Instruction *BetterPos = nullptr;
4888     // Don't bother attempting to insert before a catchswitch, their basic block
4889     // cannot have other non-PHI instructions.
4890     if (isa<CatchSwitchInst>(Tentative))
4891       return IP;
4892 
4893     for (Instruction *Inst : Inputs) {
4894       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4895         AllDominate = false;
4896         break;
4897       }
4898       // Attempt to find an insert position in the middle of the block,
4899       // instead of at the end, so that it can be used for other expansions.
4900       if (Tentative->getParent() == Inst->getParent() &&
4901           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4902         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4903     }
4904     if (!AllDominate)
4905       break;
4906     if (BetterPos)
4907       IP = BetterPos->getIterator();
4908     else
4909       IP = Tentative->getIterator();
4910 
4911     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4912     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4913 
4914     BasicBlock *IDom;
4915     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4916       if (!Rung) return IP;
4917       Rung = Rung->getIDom();
4918       if (!Rung) return IP;
4919       IDom = Rung->getBlock();
4920 
4921       // Don't climb into a loop though.
4922       const Loop *IDomLoop = LI.getLoopFor(IDom);
4923       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4924       if (IDomDepth <= IPLoopDepth &&
4925           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4926         break;
4927     }
4928 
4929     Tentative = IDom->getTerminator();
4930   }
4931 
4932   return IP;
4933 }
4934 
4935 /// Determine an input position which will be dominated by the operands and
4936 /// which will dominate the result.
4937 BasicBlock::iterator
4938 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4939                                            const LSRFixup &LF,
4940                                            const LSRUse &LU,
4941                                            SCEVExpander &Rewriter) const {
4942   // Collect some instructions which must be dominated by the
4943   // expanding replacement. These must be dominated by any operands that
4944   // will be required in the expansion.
4945   SmallVector<Instruction *, 4> Inputs;
4946   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4947     Inputs.push_back(I);
4948   if (LU.Kind == LSRUse::ICmpZero)
4949     if (Instruction *I =
4950           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4951       Inputs.push_back(I);
4952   if (LF.PostIncLoops.count(L)) {
4953     if (LF.isUseFullyOutsideLoop(L))
4954       Inputs.push_back(L->getLoopLatch()->getTerminator());
4955     else
4956       Inputs.push_back(IVIncInsertPos);
4957   }
4958   // The expansion must also be dominated by the increment positions of any
4959   // loops it for which it is using post-inc mode.
4960   for (const Loop *PIL : LF.PostIncLoops) {
4961     if (PIL == L) continue;
4962 
4963     // Be dominated by the loop exit.
4964     SmallVector<BasicBlock *, 4> ExitingBlocks;
4965     PIL->getExitingBlocks(ExitingBlocks);
4966     if (!ExitingBlocks.empty()) {
4967       BasicBlock *BB = ExitingBlocks[0];
4968       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4969         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4970       Inputs.push_back(BB->getTerminator());
4971     }
4972   }
4973 
4974   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4975          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4976          "Insertion point must be a normal instruction");
4977 
4978   // Then, climb up the immediate dominator tree as far as we can go while
4979   // still being dominated by the input positions.
4980   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4981 
4982   // Don't insert instructions before PHI nodes.
4983   while (isa<PHINode>(IP)) ++IP;
4984 
4985   // Ignore landingpad instructions.
4986   while (IP->isEHPad()) ++IP;
4987 
4988   // Ignore debug intrinsics.
4989   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4990 
4991   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4992   // IP consistent across expansions and allows the previously inserted
4993   // instructions to be reused by subsequent expansion.
4994   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4995     ++IP;
4996 
4997   return IP;
4998 }
4999 
5000 /// Emit instructions for the leading candidate expression for this LSRUse (this
5001 /// is called "expanding").
5002 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5003                            const Formula &F, BasicBlock::iterator IP,
5004                            SCEVExpander &Rewriter,
5005                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5006   if (LU.RigidFormula)
5007     return LF.OperandValToReplace;
5008 
5009   // Determine an input position which will be dominated by the operands and
5010   // which will dominate the result.
5011   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5012   Rewriter.setInsertPoint(&*IP);
5013 
5014   // Inform the Rewriter if we have a post-increment use, so that it can
5015   // perform an advantageous expansion.
5016   Rewriter.setPostInc(LF.PostIncLoops);
5017 
5018   // This is the type that the user actually needs.
5019   Type *OpTy = LF.OperandValToReplace->getType();
5020   // This will be the type that we'll initially expand to.
5021   Type *Ty = F.getType();
5022   if (!Ty)
5023     // No type known; just expand directly to the ultimate type.
5024     Ty = OpTy;
5025   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5026     // Expand directly to the ultimate type if it's the right size.
5027     Ty = OpTy;
5028   // This is the type to do integer arithmetic in.
5029   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5030 
5031   // Build up a list of operands to add together to form the full base.
5032   SmallVector<const SCEV *, 8> Ops;
5033 
5034   // Expand the BaseRegs portion.
5035   for (const SCEV *Reg : F.BaseRegs) {
5036     assert(!Reg->isZero() && "Zero allocated in a base register!");
5037 
5038     // If we're expanding for a post-inc user, make the post-inc adjustment.
5039     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5040     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5041   }
5042 
5043   // Expand the ScaledReg portion.
5044   Value *ICmpScaledV = nullptr;
5045   if (F.Scale != 0) {
5046     const SCEV *ScaledS = F.ScaledReg;
5047 
5048     // If we're expanding for a post-inc user, make the post-inc adjustment.
5049     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5050     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5051 
5052     if (LU.Kind == LSRUse::ICmpZero) {
5053       // Expand ScaleReg as if it was part of the base regs.
5054       if (F.Scale == 1)
5055         Ops.push_back(
5056             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5057       else {
5058         // An interesting way of "folding" with an icmp is to use a negated
5059         // scale, which we'll implement by inserting it into the other operand
5060         // of the icmp.
5061         assert(F.Scale == -1 &&
5062                "The only scale supported by ICmpZero uses is -1!");
5063         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5064       }
5065     } else {
5066       // Otherwise just expand the scaled register and an explicit scale,
5067       // which is expected to be matched as part of the address.
5068 
5069       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5070       // Unless the addressing mode will not be folded.
5071       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5072           isAMCompletelyFolded(TTI, LU, F)) {
5073         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5074         Ops.clear();
5075         Ops.push_back(SE.getUnknown(FullV));
5076       }
5077       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5078       if (F.Scale != 1)
5079         ScaledS =
5080             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5081       Ops.push_back(ScaledS);
5082     }
5083   }
5084 
5085   // Expand the GV portion.
5086   if (F.BaseGV) {
5087     // Flush the operand list to suppress SCEVExpander hoisting.
5088     if (!Ops.empty()) {
5089       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5090       Ops.clear();
5091       Ops.push_back(SE.getUnknown(FullV));
5092     }
5093     Ops.push_back(SE.getUnknown(F.BaseGV));
5094   }
5095 
5096   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5097   // unfolded offsets. LSR assumes they both live next to their uses.
5098   if (!Ops.empty()) {
5099     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5100     Ops.clear();
5101     Ops.push_back(SE.getUnknown(FullV));
5102   }
5103 
5104   // Expand the immediate portion.
5105   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5106   if (Offset != 0) {
5107     if (LU.Kind == LSRUse::ICmpZero) {
5108       // The other interesting way of "folding" with an ICmpZero is to use a
5109       // negated immediate.
5110       if (!ICmpScaledV)
5111         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5112       else {
5113         Ops.push_back(SE.getUnknown(ICmpScaledV));
5114         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5115       }
5116     } else {
5117       // Just add the immediate values. These again are expected to be matched
5118       // as part of the address.
5119       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5120     }
5121   }
5122 
5123   // Expand the unfolded offset portion.
5124   int64_t UnfoldedOffset = F.UnfoldedOffset;
5125   if (UnfoldedOffset != 0) {
5126     // Just add the immediate values.
5127     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5128                                                        UnfoldedOffset)));
5129   }
5130 
5131   // Emit instructions summing all the operands.
5132   const SCEV *FullS = Ops.empty() ?
5133                       SE.getConstant(IntTy, 0) :
5134                       SE.getAddExpr(Ops);
5135   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5136 
5137   // We're done expanding now, so reset the rewriter.
5138   Rewriter.clearPostInc();
5139 
5140   // An ICmpZero Formula represents an ICmp which we're handling as a
5141   // comparison against zero. Now that we've expanded an expression for that
5142   // form, update the ICmp's other operand.
5143   if (LU.Kind == LSRUse::ICmpZero) {
5144     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5145     DeadInsts.emplace_back(CI->getOperand(1));
5146     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5147                            "a scale at the same time!");
5148     if (F.Scale == -1) {
5149       if (ICmpScaledV->getType() != OpTy) {
5150         Instruction *Cast =
5151           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5152                                                    OpTy, false),
5153                            ICmpScaledV, OpTy, "tmp", CI);
5154         ICmpScaledV = Cast;
5155       }
5156       CI->setOperand(1, ICmpScaledV);
5157     } else {
5158       // A scale of 1 means that the scale has been expanded as part of the
5159       // base regs.
5160       assert((F.Scale == 0 || F.Scale == 1) &&
5161              "ICmp does not support folding a global value and "
5162              "a scale at the same time!");
5163       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5164                                            -(uint64_t)Offset);
5165       if (C->getType() != OpTy)
5166         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5167                                                           OpTy, false),
5168                                   C, OpTy);
5169 
5170       CI->setOperand(1, C);
5171     }
5172   }
5173 
5174   return FullV;
5175 }
5176 
5177 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5178 /// effectively happens in their predecessor blocks, so the expression may need
5179 /// to be expanded in multiple places.
5180 void LSRInstance::RewriteForPHI(
5181     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5182     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5183   DenseMap<BasicBlock *, Value *> Inserted;
5184   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5185     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5186       BasicBlock *BB = PN->getIncomingBlock(i);
5187 
5188       // If this is a critical edge, split the edge so that we do not insert
5189       // the code on all predecessor/successor paths.  We do this unless this
5190       // is the canonical backedge for this loop, which complicates post-inc
5191       // users.
5192       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5193           !isa<IndirectBrInst>(BB->getTerminator()) &&
5194           !isa<CatchSwitchInst>(BB->getTerminator())) {
5195         BasicBlock *Parent = PN->getParent();
5196         Loop *PNLoop = LI.getLoopFor(Parent);
5197         if (!PNLoop || Parent != PNLoop->getHeader()) {
5198           // Split the critical edge.
5199           BasicBlock *NewBB = nullptr;
5200           if (!Parent->isLandingPad()) {
5201             NewBB = SplitCriticalEdge(BB, Parent,
5202                                       CriticalEdgeSplittingOptions(&DT, &LI)
5203                                           .setMergeIdenticalEdges()
5204                                           .setDontDeleteUselessPHIs());
5205           } else {
5206             SmallVector<BasicBlock*, 2> NewBBs;
5207             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5208             NewBB = NewBBs[0];
5209           }
5210           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5211           // phi predecessors are identical. The simple thing to do is skip
5212           // splitting in this case rather than complicate the API.
5213           if (NewBB) {
5214             // If PN is outside of the loop and BB is in the loop, we want to
5215             // move the block to be immediately before the PHI block, not
5216             // immediately after BB.
5217             if (L->contains(BB) && !L->contains(PN))
5218               NewBB->moveBefore(PN->getParent());
5219 
5220             // Splitting the edge can reduce the number of PHI entries we have.
5221             e = PN->getNumIncomingValues();
5222             BB = NewBB;
5223             i = PN->getBasicBlockIndex(BB);
5224           }
5225         }
5226       }
5227 
5228       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5229         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5230       if (!Pair.second)
5231         PN->setIncomingValue(i, Pair.first->second);
5232       else {
5233         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5234                               Rewriter, DeadInsts);
5235 
5236         // If this is reuse-by-noop-cast, insert the noop cast.
5237         Type *OpTy = LF.OperandValToReplace->getType();
5238         if (FullV->getType() != OpTy)
5239           FullV =
5240             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5241                                                      OpTy, false),
5242                              FullV, LF.OperandValToReplace->getType(),
5243                              "tmp", BB->getTerminator());
5244 
5245         PN->setIncomingValue(i, FullV);
5246         Pair.first->second = FullV;
5247       }
5248     }
5249 }
5250 
5251 /// Emit instructions for the leading candidate expression for this LSRUse (this
5252 /// is called "expanding"), and update the UserInst to reference the newly
5253 /// expanded value.
5254 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5255                           const Formula &F, SCEVExpander &Rewriter,
5256                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5257   // First, find an insertion point that dominates UserInst. For PHI nodes,
5258   // find the nearest block which dominates all the relevant uses.
5259   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5260     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5261   } else {
5262     Value *FullV =
5263       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5264 
5265     // If this is reuse-by-noop-cast, insert the noop cast.
5266     Type *OpTy = LF.OperandValToReplace->getType();
5267     if (FullV->getType() != OpTy) {
5268       Instruction *Cast =
5269         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5270                          FullV, OpTy, "tmp", LF.UserInst);
5271       FullV = Cast;
5272     }
5273 
5274     // Update the user. ICmpZero is handled specially here (for now) because
5275     // Expand may have updated one of the operands of the icmp already, and
5276     // its new value may happen to be equal to LF.OperandValToReplace, in
5277     // which case doing replaceUsesOfWith leads to replacing both operands
5278     // with the same value. TODO: Reorganize this.
5279     if (LU.Kind == LSRUse::ICmpZero)
5280       LF.UserInst->setOperand(0, FullV);
5281     else
5282       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5283   }
5284 
5285   DeadInsts.emplace_back(LF.OperandValToReplace);
5286 }
5287 
5288 /// Rewrite all the fixup locations with new values, following the chosen
5289 /// solution.
5290 void LSRInstance::ImplementSolution(
5291     const SmallVectorImpl<const Formula *> &Solution) {
5292   // Keep track of instructions we may have made dead, so that
5293   // we can remove them after we are done working.
5294   SmallVector<WeakTrackingVH, 16> DeadInsts;
5295 
5296   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5297                         "lsr");
5298 #ifndef NDEBUG
5299   Rewriter.setDebugType(DEBUG_TYPE);
5300 #endif
5301   Rewriter.disableCanonicalMode();
5302   Rewriter.enableLSRMode();
5303   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5304 
5305   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5306   for (const IVChain &Chain : IVChainVec) {
5307     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5308       Rewriter.setChainedPhi(PN);
5309   }
5310 
5311   // Expand the new value definitions and update the users.
5312   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5313     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5314       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5315       Changed = true;
5316     }
5317 
5318   for (const IVChain &Chain : IVChainVec) {
5319     GenerateIVChain(Chain, Rewriter, DeadInsts);
5320     Changed = true;
5321   }
5322   // Clean up after ourselves. This must be done before deleting any
5323   // instructions.
5324   Rewriter.clear();
5325 
5326   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5327 }
5328 
5329 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5330                          DominatorTree &DT, LoopInfo &LI,
5331                          const TargetTransformInfo &TTI)
5332     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) {
5333   // If LoopSimplify form is not available, stay out of trouble.
5334   if (!L->isLoopSimplifyForm())
5335     return;
5336 
5337   // If there's no interesting work to be done, bail early.
5338   if (IU.empty()) return;
5339 
5340   // If there's too much analysis to be done, bail early. We won't be able to
5341   // model the problem anyway.
5342   unsigned NumUsers = 0;
5343   for (const IVStrideUse &U : IU) {
5344     if (++NumUsers > MaxIVUsers) {
5345       (void)U;
5346       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5347                         << "\n");
5348       return;
5349     }
5350     // Bail out if we have a PHI on an EHPad that gets a value from a
5351     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5352     // no good place to stick any instructions.
5353     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5354        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5355        if (isa<FuncletPadInst>(FirstNonPHI) ||
5356            isa<CatchSwitchInst>(FirstNonPHI))
5357          for (BasicBlock *PredBB : PN->blocks())
5358            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5359              return;
5360     }
5361   }
5362 
5363 #ifndef NDEBUG
5364   // All dominating loops must have preheaders, or SCEVExpander may not be able
5365   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5366   //
5367   // IVUsers analysis should only create users that are dominated by simple loop
5368   // headers. Since this loop should dominate all of its users, its user list
5369   // should be empty if this loop itself is not within a simple loop nest.
5370   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5371        Rung; Rung = Rung->getIDom()) {
5372     BasicBlock *BB = Rung->getBlock();
5373     const Loop *DomLoop = LI.getLoopFor(BB);
5374     if (DomLoop && DomLoop->getHeader() == BB) {
5375       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5376     }
5377   }
5378 #endif // DEBUG
5379 
5380   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5381              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5382              dbgs() << ":\n");
5383 
5384   // First, perform some low-level loop optimizations.
5385   OptimizeShadowIV();
5386   OptimizeLoopTermCond();
5387 
5388   // If loop preparation eliminates all interesting IV users, bail.
5389   if (IU.empty()) return;
5390 
5391   // Skip nested loops until we can model them better with formulae.
5392   if (!L->empty()) {
5393     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5394     return;
5395   }
5396 
5397   // Start collecting data and preparing for the solver.
5398   CollectChains();
5399   CollectInterestingTypesAndFactors();
5400   CollectFixupsAndInitialFormulae();
5401   CollectLoopInvariantFixupsAndFormulae();
5402 
5403   if (Uses.empty())
5404     return;
5405 
5406   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5407              print_uses(dbgs()));
5408 
5409   // Now use the reuse data to generate a bunch of interesting ways
5410   // to formulate the values needed for the uses.
5411   GenerateAllReuseFormulae();
5412 
5413   FilterOutUndesirableDedicatedRegisters();
5414   NarrowSearchSpaceUsingHeuristics();
5415 
5416   SmallVector<const Formula *, 8> Solution;
5417   Solve(Solution);
5418 
5419   // Release memory that is no longer needed.
5420   Factors.clear();
5421   Types.clear();
5422   RegUses.clear();
5423 
5424   if (Solution.empty())
5425     return;
5426 
5427 #ifndef NDEBUG
5428   // Formulae should be legal.
5429   for (const LSRUse &LU : Uses) {
5430     for (const Formula &F : LU.Formulae)
5431       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5432                         F) && "Illegal formula generated!");
5433   };
5434 #endif
5435 
5436   // Now that we've decided what we want, make it so.
5437   ImplementSolution(Solution);
5438 }
5439 
5440 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5441 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5442   if (Factors.empty() && Types.empty()) return;
5443 
5444   OS << "LSR has identified the following interesting factors and types: ";
5445   bool First = true;
5446 
5447   for (int64_t Factor : Factors) {
5448     if (!First) OS << ", ";
5449     First = false;
5450     OS << '*' << Factor;
5451   }
5452 
5453   for (Type *Ty : Types) {
5454     if (!First) OS << ", ";
5455     First = false;
5456     OS << '(' << *Ty << ')';
5457   }
5458   OS << '\n';
5459 }
5460 
5461 void LSRInstance::print_fixups(raw_ostream &OS) const {
5462   OS << "LSR is examining the following fixup sites:\n";
5463   for (const LSRUse &LU : Uses)
5464     for (const LSRFixup &LF : LU.Fixups) {
5465       dbgs() << "  ";
5466       LF.print(OS);
5467       OS << '\n';
5468     }
5469 }
5470 
5471 void LSRInstance::print_uses(raw_ostream &OS) const {
5472   OS << "LSR is examining the following uses:\n";
5473   for (const LSRUse &LU : Uses) {
5474     dbgs() << "  ";
5475     LU.print(OS);
5476     OS << '\n';
5477     for (const Formula &F : LU.Formulae) {
5478       OS << "    ";
5479       F.print(OS);
5480       OS << '\n';
5481     }
5482   }
5483 }
5484 
5485 void LSRInstance::print(raw_ostream &OS) const {
5486   print_factors_and_types(OS);
5487   print_fixups(OS);
5488   print_uses(OS);
5489 }
5490 
5491 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5492   print(errs()); errs() << '\n';
5493 }
5494 #endif
5495 
5496 namespace {
5497 
5498 class LoopStrengthReduce : public LoopPass {
5499 public:
5500   static char ID; // Pass ID, replacement for typeid
5501 
5502   LoopStrengthReduce();
5503 
5504 private:
5505   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5506   void getAnalysisUsage(AnalysisUsage &AU) const override;
5507 };
5508 
5509 } // end anonymous namespace
5510 
5511 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5512   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5513 }
5514 
5515 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5516   // We split critical edges, so we change the CFG.  However, we do update
5517   // many analyses if they are around.
5518   AU.addPreservedID(LoopSimplifyID);
5519 
5520   AU.addRequired<LoopInfoWrapperPass>();
5521   AU.addPreserved<LoopInfoWrapperPass>();
5522   AU.addRequiredID(LoopSimplifyID);
5523   AU.addRequired<DominatorTreeWrapperPass>();
5524   AU.addPreserved<DominatorTreeWrapperPass>();
5525   AU.addRequired<ScalarEvolutionWrapperPass>();
5526   AU.addPreserved<ScalarEvolutionWrapperPass>();
5527   // Requiring LoopSimplify a second time here prevents IVUsers from running
5528   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5529   AU.addRequiredID(LoopSimplifyID);
5530   AU.addRequired<IVUsersWrapperPass>();
5531   AU.addPreserved<IVUsersWrapperPass>();
5532   AU.addRequired<TargetTransformInfoWrapperPass>();
5533 }
5534 
5535 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5536                                DominatorTree &DT, LoopInfo &LI,
5537                                const TargetTransformInfo &TTI) {
5538   bool Changed = false;
5539 
5540   // Run the main LSR transformation.
5541   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5542 
5543   // Remove any extra phis created by processing inner loops.
5544   Changed |= DeleteDeadPHIs(L->getHeader());
5545   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5546     SmallVector<WeakTrackingVH, 16> DeadInsts;
5547     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5548     SCEVExpander Rewriter(SE, DL, "lsr");
5549 #ifndef NDEBUG
5550     Rewriter.setDebugType(DEBUG_TYPE);
5551 #endif
5552     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5553     if (numFolded) {
5554       Changed = true;
5555       DeleteTriviallyDeadInstructions(DeadInsts);
5556       DeleteDeadPHIs(L->getHeader());
5557     }
5558   }
5559   return Changed;
5560 }
5561 
5562 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5563   if (skipLoop(L))
5564     return false;
5565 
5566   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5567   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5568   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5569   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5570   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5571       *L->getHeader()->getParent());
5572   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5573 }
5574 
5575 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5576                                               LoopStandardAnalysisResults &AR,
5577                                               LPMUpdater &) {
5578   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5579                           AR.DT, AR.LI, AR.TTI))
5580     return PreservedAnalyses::all();
5581 
5582   return getLoopPassPreservedAnalyses();
5583 }
5584 
5585 char LoopStrengthReduce::ID = 0;
5586 
5587 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5588                       "Loop Strength Reduction", false, false)
5589 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5590 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5591 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5592 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5593 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5594 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5595 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5596                     "Loop Strength Reduction", false, false)
5597 
5598 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5599