1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/ScalarEvolution.h" 74 #include "llvm/Analysis/ScalarEvolutionExpander.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DerivedTypes.h" 82 #include "llvm/IR/Dominators.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/IRBuilder.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/Module.h" 91 #include "llvm/IR/OperandTraits.h" 92 #include "llvm/IR/Operator.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Use.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/IR/ValueHandle.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstdlib> 115 #include <iterator> 116 #include <limits> 117 #include <map> 118 #include <utility> 119 120 using namespace llvm; 121 122 #define DEBUG_TYPE "loop-reduce" 123 124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 125 /// bail out. This threshold is far beyond the number of users that LSR can 126 /// conceivably solve, so it should not affect generated code, but catches the 127 /// worst cases before LSR burns too much compile time and stack space. 128 static const unsigned MaxIVUsers = 200; 129 130 // Temporary flag to cleanup congruent phis after LSR phi expansion. 131 // It's currently disabled until we can determine whether it's truly useful or 132 // not. The flag should be removed after the v3.0 release. 133 // This is now needed for ivchains. 134 static cl::opt<bool> EnablePhiElim( 135 "enable-lsr-phielim", cl::Hidden, cl::init(true), 136 cl::desc("Enable LSR phi elimination")); 137 138 // The flag adds instruction count to solutions cost comparision. 139 static cl::opt<bool> InsnsCost( 140 "lsr-insns-cost", cl::Hidden, cl::init(true), 141 cl::desc("Add instruction count to a LSR cost model")); 142 143 // Flag to choose how to narrow complex lsr solution 144 static cl::opt<bool> LSRExpNarrow( 145 "lsr-exp-narrow", cl::Hidden, cl::init(false), 146 cl::desc("Narrow LSR complex solution using" 147 " expectation of registers number")); 148 149 // Flag to narrow search space by filtering non-optimal formulae with 150 // the same ScaledReg and Scale. 151 static cl::opt<bool> FilterSameScaledReg( 152 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 153 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 154 " with the same ScaledReg and Scale")); 155 156 #ifndef NDEBUG 157 // Stress test IV chain generation. 158 static cl::opt<bool> StressIVChain( 159 "stress-ivchain", cl::Hidden, cl::init(false), 160 cl::desc("Stress test LSR IV chains")); 161 #else 162 static bool StressIVChain = false; 163 #endif 164 165 namespace { 166 167 struct MemAccessTy { 168 /// Used in situations where the accessed memory type is unknown. 169 static const unsigned UnknownAddressSpace = 170 std::numeric_limits<unsigned>::max(); 171 172 Type *MemTy = nullptr; 173 unsigned AddrSpace = UnknownAddressSpace; 174 175 MemAccessTy() = default; 176 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 177 178 bool operator==(MemAccessTy Other) const { 179 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 180 } 181 182 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 183 184 static MemAccessTy getUnknown(LLVMContext &Ctx, 185 unsigned AS = UnknownAddressSpace) { 186 return MemAccessTy(Type::getVoidTy(Ctx), AS); 187 } 188 }; 189 190 /// This class holds data which is used to order reuse candidates. 191 class RegSortData { 192 public: 193 /// This represents the set of LSRUse indices which reference 194 /// a particular register. 195 SmallBitVector UsedByIndices; 196 197 void print(raw_ostream &OS) const; 198 void dump() const; 199 }; 200 201 } // end anonymous namespace 202 203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 204 void RegSortData::print(raw_ostream &OS) const { 205 OS << "[NumUses=" << UsedByIndices.count() << ']'; 206 } 207 208 LLVM_DUMP_METHOD void RegSortData::dump() const { 209 print(errs()); errs() << '\n'; 210 } 211 #endif 212 213 namespace { 214 215 /// Map register candidates to information about how they are used. 216 class RegUseTracker { 217 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 218 219 RegUsesTy RegUsesMap; 220 SmallVector<const SCEV *, 16> RegSequence; 221 222 public: 223 void countRegister(const SCEV *Reg, size_t LUIdx); 224 void dropRegister(const SCEV *Reg, size_t LUIdx); 225 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 226 227 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 228 229 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 230 231 void clear(); 232 233 using iterator = SmallVectorImpl<const SCEV *>::iterator; 234 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 235 236 iterator begin() { return RegSequence.begin(); } 237 iterator end() { return RegSequence.end(); } 238 const_iterator begin() const { return RegSequence.begin(); } 239 const_iterator end() const { return RegSequence.end(); } 240 }; 241 242 } // end anonymous namespace 243 244 void 245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 246 std::pair<RegUsesTy::iterator, bool> Pair = 247 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 248 RegSortData &RSD = Pair.first->second; 249 if (Pair.second) 250 RegSequence.push_back(Reg); 251 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 252 RSD.UsedByIndices.set(LUIdx); 253 } 254 255 void 256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 257 RegUsesTy::iterator It = RegUsesMap.find(Reg); 258 assert(It != RegUsesMap.end()); 259 RegSortData &RSD = It->second; 260 assert(RSD.UsedByIndices.size() > LUIdx); 261 RSD.UsedByIndices.reset(LUIdx); 262 } 263 264 void 265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 266 assert(LUIdx <= LastLUIdx); 267 268 // Update RegUses. The data structure is not optimized for this purpose; 269 // we must iterate through it and update each of the bit vectors. 270 for (auto &Pair : RegUsesMap) { 271 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 272 if (LUIdx < UsedByIndices.size()) 273 UsedByIndices[LUIdx] = 274 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 275 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 276 } 277 } 278 279 bool 280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 281 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 282 if (I == RegUsesMap.end()) 283 return false; 284 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 285 int i = UsedByIndices.find_first(); 286 if (i == -1) return false; 287 if ((size_t)i != LUIdx) return true; 288 return UsedByIndices.find_next(i) != -1; 289 } 290 291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 292 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 293 assert(I != RegUsesMap.end() && "Unknown register!"); 294 return I->second.UsedByIndices; 295 } 296 297 void RegUseTracker::clear() { 298 RegUsesMap.clear(); 299 RegSequence.clear(); 300 } 301 302 namespace { 303 304 /// This class holds information that describes a formula for computing 305 /// satisfying a use. It may include broken-out immediates and scaled registers. 306 struct Formula { 307 /// Global base address used for complex addressing. 308 GlobalValue *BaseGV = nullptr; 309 310 /// Base offset for complex addressing. 311 int64_t BaseOffset = 0; 312 313 /// Whether any complex addressing has a base register. 314 bool HasBaseReg = false; 315 316 /// The scale of any complex addressing. 317 int64_t Scale = 0; 318 319 /// The list of "base" registers for this use. When this is non-empty. The 320 /// canonical representation of a formula is 321 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 322 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 323 /// 3. The reg containing recurrent expr related with currect loop in the 324 /// formula should be put in the ScaledReg. 325 /// #1 enforces that the scaled register is always used when at least two 326 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 327 /// #2 enforces that 1 * reg is reg. 328 /// #3 ensures invariant regs with respect to current loop can be combined 329 /// together in LSR codegen. 330 /// This invariant can be temporarly broken while building a formula. 331 /// However, every formula inserted into the LSRInstance must be in canonical 332 /// form. 333 SmallVector<const SCEV *, 4> BaseRegs; 334 335 /// The 'scaled' register for this use. This should be non-null when Scale is 336 /// not zero. 337 const SCEV *ScaledReg = nullptr; 338 339 /// An additional constant offset which added near the use. This requires a 340 /// temporary register, but the offset itself can live in an add immediate 341 /// field rather than a register. 342 int64_t UnfoldedOffset = 0; 343 344 Formula() = default; 345 346 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 347 348 bool isCanonical(const Loop &L) const; 349 350 void canonicalize(const Loop &L); 351 352 bool unscale(); 353 354 bool hasZeroEnd() const; 355 356 size_t getNumRegs() const; 357 Type *getType() const; 358 359 void deleteBaseReg(const SCEV *&S); 360 361 bool referencesReg(const SCEV *S) const; 362 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 363 const RegUseTracker &RegUses) const; 364 365 void print(raw_ostream &OS) const; 366 void dump() const; 367 }; 368 369 } // end anonymous namespace 370 371 /// Recursion helper for initialMatch. 372 static void DoInitialMatch(const SCEV *S, Loop *L, 373 SmallVectorImpl<const SCEV *> &Good, 374 SmallVectorImpl<const SCEV *> &Bad, 375 ScalarEvolution &SE) { 376 // Collect expressions which properly dominate the loop header. 377 if (SE.properlyDominates(S, L->getHeader())) { 378 Good.push_back(S); 379 return; 380 } 381 382 // Look at add operands. 383 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 384 for (const SCEV *S : Add->operands()) 385 DoInitialMatch(S, L, Good, Bad, SE); 386 return; 387 } 388 389 // Look at addrec operands. 390 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 391 if (!AR->getStart()->isZero() && AR->isAffine()) { 392 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 393 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 394 AR->getStepRecurrence(SE), 395 // FIXME: AR->getNoWrapFlags() 396 AR->getLoop(), SCEV::FlagAnyWrap), 397 L, Good, Bad, SE); 398 return; 399 } 400 401 // Handle a multiplication by -1 (negation) if it didn't fold. 402 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 403 if (Mul->getOperand(0)->isAllOnesValue()) { 404 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 405 const SCEV *NewMul = SE.getMulExpr(Ops); 406 407 SmallVector<const SCEV *, 4> MyGood; 408 SmallVector<const SCEV *, 4> MyBad; 409 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 410 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 411 SE.getEffectiveSCEVType(NewMul->getType()))); 412 for (const SCEV *S : MyGood) 413 Good.push_back(SE.getMulExpr(NegOne, S)); 414 for (const SCEV *S : MyBad) 415 Bad.push_back(SE.getMulExpr(NegOne, S)); 416 return; 417 } 418 419 // Ok, we can't do anything interesting. Just stuff the whole thing into a 420 // register and hope for the best. 421 Bad.push_back(S); 422 } 423 424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 425 /// all loop-invariant and loop-computable values in a single base register. 426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 427 SmallVector<const SCEV *, 4> Good; 428 SmallVector<const SCEV *, 4> Bad; 429 DoInitialMatch(S, L, Good, Bad, SE); 430 if (!Good.empty()) { 431 const SCEV *Sum = SE.getAddExpr(Good); 432 if (!Sum->isZero()) 433 BaseRegs.push_back(Sum); 434 HasBaseReg = true; 435 } 436 if (!Bad.empty()) { 437 const SCEV *Sum = SE.getAddExpr(Bad); 438 if (!Sum->isZero()) 439 BaseRegs.push_back(Sum); 440 HasBaseReg = true; 441 } 442 canonicalize(*L); 443 } 444 445 /// \brief Check whether or not this formula satisfies the canonical 446 /// representation. 447 /// \see Formula::BaseRegs. 448 bool Formula::isCanonical(const Loop &L) const { 449 if (!ScaledReg) 450 return BaseRegs.size() <= 1; 451 452 if (Scale != 1) 453 return true; 454 455 if (Scale == 1 && BaseRegs.empty()) 456 return false; 457 458 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 459 if (SAR && SAR->getLoop() == &L) 460 return true; 461 462 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 463 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 464 // loop, we want to swap the reg in BaseRegs with ScaledReg. 465 auto I = 466 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 467 return isa<const SCEVAddRecExpr>(S) && 468 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 469 }); 470 return I == BaseRegs.end(); 471 } 472 473 /// \brief Helper method to morph a formula into its canonical representation. 474 /// \see Formula::BaseRegs. 475 /// Every formula having more than one base register, must use the ScaledReg 476 /// field. Otherwise, we would have to do special cases everywhere in LSR 477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 478 /// On the other hand, 1*reg should be canonicalized into reg. 479 void Formula::canonicalize(const Loop &L) { 480 if (isCanonical(L)) 481 return; 482 // So far we did not need this case. This is easy to implement but it is 483 // useless to maintain dead code. Beside it could hurt compile time. 484 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 485 486 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 487 if (!ScaledReg) { 488 ScaledReg = BaseRegs.back(); 489 BaseRegs.pop_back(); 490 Scale = 1; 491 } 492 493 // If ScaledReg is an invariant with respect to L, find the reg from 494 // BaseRegs containing the recurrent expr related with Loop L. Swap the 495 // reg with ScaledReg. 496 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 497 if (!SAR || SAR->getLoop() != &L) { 498 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 499 [&](const SCEV *S) { 500 return isa<const SCEVAddRecExpr>(S) && 501 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 502 }); 503 if (I != BaseRegs.end()) 504 std::swap(ScaledReg, *I); 505 } 506 } 507 508 /// \brief Get rid of the scale in the formula. 509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 510 /// \return true if it was possible to get rid of the scale, false otherwise. 511 /// \note After this operation the formula may not be in the canonical form. 512 bool Formula::unscale() { 513 if (Scale != 1) 514 return false; 515 Scale = 0; 516 BaseRegs.push_back(ScaledReg); 517 ScaledReg = nullptr; 518 return true; 519 } 520 521 bool Formula::hasZeroEnd() const { 522 if (UnfoldedOffset || BaseOffset) 523 return false; 524 if (BaseRegs.size() != 1 || ScaledReg) 525 return false; 526 return true; 527 } 528 529 /// Return the total number of register operands used by this formula. This does 530 /// not include register uses implied by non-constant addrec strides. 531 size_t Formula::getNumRegs() const { 532 return !!ScaledReg + BaseRegs.size(); 533 } 534 535 /// Return the type of this formula, if it has one, or null otherwise. This type 536 /// is meaningless except for the bit size. 537 Type *Formula::getType() const { 538 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 539 ScaledReg ? ScaledReg->getType() : 540 BaseGV ? BaseGV->getType() : 541 nullptr; 542 } 543 544 /// Delete the given base reg from the BaseRegs list. 545 void Formula::deleteBaseReg(const SCEV *&S) { 546 if (&S != &BaseRegs.back()) 547 std::swap(S, BaseRegs.back()); 548 BaseRegs.pop_back(); 549 } 550 551 /// Test if this formula references the given register. 552 bool Formula::referencesReg(const SCEV *S) const { 553 return S == ScaledReg || is_contained(BaseRegs, S); 554 } 555 556 /// Test whether this formula uses registers which are used by uses other than 557 /// the use with the given index. 558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 559 const RegUseTracker &RegUses) const { 560 if (ScaledReg) 561 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 562 return true; 563 for (const SCEV *BaseReg : BaseRegs) 564 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 565 return true; 566 return false; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 void Formula::print(raw_ostream &OS) const { 571 bool First = true; 572 if (BaseGV) { 573 if (!First) OS << " + "; else First = false; 574 BaseGV->printAsOperand(OS, /*PrintType=*/false); 575 } 576 if (BaseOffset != 0) { 577 if (!First) OS << " + "; else First = false; 578 OS << BaseOffset; 579 } 580 for (const SCEV *BaseReg : BaseRegs) { 581 if (!First) OS << " + "; else First = false; 582 OS << "reg(" << *BaseReg << ')'; 583 } 584 if (HasBaseReg && BaseRegs.empty()) { 585 if (!First) OS << " + "; else First = false; 586 OS << "**error: HasBaseReg**"; 587 } else if (!HasBaseReg && !BaseRegs.empty()) { 588 if (!First) OS << " + "; else First = false; 589 OS << "**error: !HasBaseReg**"; 590 } 591 if (Scale != 0) { 592 if (!First) OS << " + "; else First = false; 593 OS << Scale << "*reg("; 594 if (ScaledReg) 595 OS << *ScaledReg; 596 else 597 OS << "<unknown>"; 598 OS << ')'; 599 } 600 if (UnfoldedOffset != 0) { 601 if (!First) OS << " + "; 602 OS << "imm(" << UnfoldedOffset << ')'; 603 } 604 } 605 606 LLVM_DUMP_METHOD void Formula::dump() const { 607 print(errs()); errs() << '\n'; 608 } 609 #endif 610 611 /// Return true if the given addrec can be sign-extended without changing its 612 /// value. 613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 614 Type *WideTy = 615 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 616 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 617 } 618 619 /// Return true if the given add can be sign-extended without changing its 620 /// value. 621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 622 Type *WideTy = 623 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 624 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 625 } 626 627 /// Return true if the given mul can be sign-extended without changing its 628 /// value. 629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 630 Type *WideTy = 631 IntegerType::get(SE.getContext(), 632 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 633 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 634 } 635 636 /// Return an expression for LHS /s RHS, if it can be determined and if the 637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 639 /// the multiplication may overflow, which is useful when the result will be 640 /// used in a context where the most significant bits are ignored. 641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 642 ScalarEvolution &SE, 643 bool IgnoreSignificantBits = false) { 644 // Handle the trivial case, which works for any SCEV type. 645 if (LHS == RHS) 646 return SE.getConstant(LHS->getType(), 1); 647 648 // Handle a few RHS special cases. 649 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 650 if (RC) { 651 const APInt &RA = RC->getAPInt(); 652 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 653 // some folding. 654 if (RA.isAllOnesValue()) 655 return SE.getMulExpr(LHS, RC); 656 // Handle x /s 1 as x. 657 if (RA == 1) 658 return LHS; 659 } 660 661 // Check for a division of a constant by a constant. 662 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 663 if (!RC) 664 return nullptr; 665 const APInt &LA = C->getAPInt(); 666 const APInt &RA = RC->getAPInt(); 667 if (LA.srem(RA) != 0) 668 return nullptr; 669 return SE.getConstant(LA.sdiv(RA)); 670 } 671 672 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 674 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 675 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 676 IgnoreSignificantBits); 677 if (!Step) return nullptr; 678 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 679 IgnoreSignificantBits); 680 if (!Start) return nullptr; 681 // FlagNW is independent of the start value, step direction, and is 682 // preserved with smaller magnitude steps. 683 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 684 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 685 } 686 return nullptr; 687 } 688 689 // Distribute the sdiv over add operands, if the add doesn't overflow. 690 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 691 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 692 SmallVector<const SCEV *, 8> Ops; 693 for (const SCEV *S : Add->operands()) { 694 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 695 if (!Op) return nullptr; 696 Ops.push_back(Op); 697 } 698 return SE.getAddExpr(Ops); 699 } 700 return nullptr; 701 } 702 703 // Check for a multiply operand that we can pull RHS out of. 704 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 705 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 706 SmallVector<const SCEV *, 4> Ops; 707 bool Found = false; 708 for (const SCEV *S : Mul->operands()) { 709 if (!Found) 710 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 711 IgnoreSignificantBits)) { 712 S = Q; 713 Found = true; 714 } 715 Ops.push_back(S); 716 } 717 return Found ? SE.getMulExpr(Ops) : nullptr; 718 } 719 return nullptr; 720 } 721 722 // Otherwise we don't know. 723 return nullptr; 724 } 725 726 /// If S involves the addition of a constant integer value, return that integer 727 /// value, and mutate S to point to a new SCEV with that value excluded. 728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 729 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 730 if (C->getAPInt().getMinSignedBits() <= 64) { 731 S = SE.getConstant(C->getType(), 0); 732 return C->getValue()->getSExtValue(); 733 } 734 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 735 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 736 int64_t Result = ExtractImmediate(NewOps.front(), SE); 737 if (Result != 0) 738 S = SE.getAddExpr(NewOps); 739 return Result; 740 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 741 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 742 int64_t Result = ExtractImmediate(NewOps.front(), SE); 743 if (Result != 0) 744 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 745 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 746 SCEV::FlagAnyWrap); 747 return Result; 748 } 749 return 0; 750 } 751 752 /// If S involves the addition of a GlobalValue address, return that symbol, and 753 /// mutate S to point to a new SCEV with that value excluded. 754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 755 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 756 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 757 S = SE.getConstant(GV->getType(), 0); 758 return GV; 759 } 760 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 761 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 762 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 763 if (Result) 764 S = SE.getAddExpr(NewOps); 765 return Result; 766 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 767 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 768 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 769 if (Result) 770 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 771 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 772 SCEV::FlagAnyWrap); 773 return Result; 774 } 775 return nullptr; 776 } 777 778 /// Returns true if the specified instruction is using the specified value as an 779 /// address. 780 static bool isAddressUse(const TargetTransformInfo &TTI, 781 Instruction *Inst, Value *OperandVal) { 782 bool isAddress = isa<LoadInst>(Inst); 783 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 784 if (SI->getPointerOperand() == OperandVal) 785 isAddress = true; 786 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 787 // Addressing modes can also be folded into prefetches and a variety 788 // of intrinsics. 789 switch (II->getIntrinsicID()) { 790 case Intrinsic::memset: 791 case Intrinsic::prefetch: 792 if (II->getArgOperand(0) == OperandVal) 793 isAddress = true; 794 break; 795 case Intrinsic::memmove: 796 case Intrinsic::memcpy: 797 if (II->getArgOperand(0) == OperandVal || 798 II->getArgOperand(1) == OperandVal) 799 isAddress = true; 800 break; 801 default: { 802 MemIntrinsicInfo IntrInfo; 803 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 804 if (IntrInfo.PtrVal == OperandVal) 805 isAddress = true; 806 } 807 } 808 } 809 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 810 if (RMW->getPointerOperand() == OperandVal) 811 isAddress = true; 812 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 813 if (CmpX->getPointerOperand() == OperandVal) 814 isAddress = true; 815 } 816 return isAddress; 817 } 818 819 /// Return the type of the memory being accessed. 820 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 821 Instruction *Inst) { 822 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 823 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 824 AccessTy.MemTy = SI->getOperand(0)->getType(); 825 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 826 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 827 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 828 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 829 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 830 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 831 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 832 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 833 switch (II->getIntrinsicID()) { 834 case Intrinsic::prefetch: 835 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 836 break; 837 default: { 838 MemIntrinsicInfo IntrInfo; 839 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 840 AccessTy.AddrSpace 841 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 842 } 843 844 break; 845 } 846 } 847 } 848 849 // All pointers have the same requirements, so canonicalize them to an 850 // arbitrary pointer type to minimize variation. 851 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 852 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 853 PTy->getAddressSpace()); 854 855 return AccessTy; 856 } 857 858 /// Return true if this AddRec is already a phi in its loop. 859 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 860 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 861 if (SE.isSCEVable(PN.getType()) && 862 (SE.getEffectiveSCEVType(PN.getType()) == 863 SE.getEffectiveSCEVType(AR->getType())) && 864 SE.getSCEV(&PN) == AR) 865 return true; 866 } 867 return false; 868 } 869 870 /// Check if expanding this expression is likely to incur significant cost. This 871 /// is tricky because SCEV doesn't track which expressions are actually computed 872 /// by the current IR. 873 /// 874 /// We currently allow expansion of IV increments that involve adds, 875 /// multiplication by constants, and AddRecs from existing phis. 876 /// 877 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 878 /// obvious multiple of the UDivExpr. 879 static bool isHighCostExpansion(const SCEV *S, 880 SmallPtrSetImpl<const SCEV*> &Processed, 881 ScalarEvolution &SE) { 882 // Zero/One operand expressions 883 switch (S->getSCEVType()) { 884 case scUnknown: 885 case scConstant: 886 return false; 887 case scTruncate: 888 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 889 Processed, SE); 890 case scZeroExtend: 891 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 892 Processed, SE); 893 case scSignExtend: 894 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 895 Processed, SE); 896 } 897 898 if (!Processed.insert(S).second) 899 return false; 900 901 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 902 for (const SCEV *S : Add->operands()) { 903 if (isHighCostExpansion(S, Processed, SE)) 904 return true; 905 } 906 return false; 907 } 908 909 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 910 if (Mul->getNumOperands() == 2) { 911 // Multiplication by a constant is ok 912 if (isa<SCEVConstant>(Mul->getOperand(0))) 913 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 914 915 // If we have the value of one operand, check if an existing 916 // multiplication already generates this expression. 917 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 918 Value *UVal = U->getValue(); 919 for (User *UR : UVal->users()) { 920 // If U is a constant, it may be used by a ConstantExpr. 921 Instruction *UI = dyn_cast<Instruction>(UR); 922 if (UI && UI->getOpcode() == Instruction::Mul && 923 SE.isSCEVable(UI->getType())) { 924 return SE.getSCEV(UI) == Mul; 925 } 926 } 927 } 928 } 929 } 930 931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 932 if (isExistingPhi(AR, SE)) 933 return false; 934 } 935 936 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 937 return true; 938 } 939 940 /// If any of the instructions in the specified set are trivially dead, delete 941 /// them and see if this makes any of their operands subsequently dead. 942 static bool 943 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 944 bool Changed = false; 945 946 while (!DeadInsts.empty()) { 947 Value *V = DeadInsts.pop_back_val(); 948 Instruction *I = dyn_cast_or_null<Instruction>(V); 949 950 if (!I || !isInstructionTriviallyDead(I)) 951 continue; 952 953 for (Use &O : I->operands()) 954 if (Instruction *U = dyn_cast<Instruction>(O)) { 955 O = nullptr; 956 if (U->use_empty()) 957 DeadInsts.emplace_back(U); 958 } 959 960 I->eraseFromParent(); 961 Changed = true; 962 } 963 964 return Changed; 965 } 966 967 namespace { 968 969 class LSRUse; 970 971 } // end anonymous namespace 972 973 /// \brief Check if the addressing mode defined by \p F is completely 974 /// folded in \p LU at isel time. 975 /// This includes address-mode folding and special icmp tricks. 976 /// This function returns true if \p LU can accommodate what \p F 977 /// defines and up to 1 base + 1 scaled + offset. 978 /// In other words, if \p F has several base registers, this function may 979 /// still return true. Therefore, users still need to account for 980 /// additional base registers and/or unfolded offsets to derive an 981 /// accurate cost model. 982 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 983 const LSRUse &LU, const Formula &F); 984 985 // Get the cost of the scaling factor used in F for LU. 986 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 987 const LSRUse &LU, const Formula &F, 988 const Loop &L); 989 990 namespace { 991 992 /// This class is used to measure and compare candidate formulae. 993 class Cost { 994 TargetTransformInfo::LSRCost C; 995 996 public: 997 Cost() { 998 C.Insns = 0; 999 C.NumRegs = 0; 1000 C.AddRecCost = 0; 1001 C.NumIVMuls = 0; 1002 C.NumBaseAdds = 0; 1003 C.ImmCost = 0; 1004 C.SetupCost = 0; 1005 C.ScaleCost = 0; 1006 } 1007 1008 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1009 1010 void Lose(); 1011 1012 #ifndef NDEBUG 1013 // Once any of the metrics loses, they must all remain losers. 1014 bool isValid() { 1015 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1016 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1017 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1018 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1019 } 1020 #endif 1021 1022 bool isLoser() { 1023 assert(isValid() && "invalid cost"); 1024 return C.NumRegs == ~0u; 1025 } 1026 1027 void RateFormula(const TargetTransformInfo &TTI, 1028 const Formula &F, 1029 SmallPtrSetImpl<const SCEV *> &Regs, 1030 const DenseSet<const SCEV *> &VisitedRegs, 1031 const Loop *L, 1032 ScalarEvolution &SE, DominatorTree &DT, 1033 const LSRUse &LU, 1034 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1035 1036 void print(raw_ostream &OS) const; 1037 void dump() const; 1038 1039 private: 1040 void RateRegister(const SCEV *Reg, 1041 SmallPtrSetImpl<const SCEV *> &Regs, 1042 const Loop *L, 1043 ScalarEvolution &SE, DominatorTree &DT); 1044 void RatePrimaryRegister(const SCEV *Reg, 1045 SmallPtrSetImpl<const SCEV *> &Regs, 1046 const Loop *L, 1047 ScalarEvolution &SE, DominatorTree &DT, 1048 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1049 }; 1050 1051 /// An operand value in an instruction which is to be replaced with some 1052 /// equivalent, possibly strength-reduced, replacement. 1053 struct LSRFixup { 1054 /// The instruction which will be updated. 1055 Instruction *UserInst = nullptr; 1056 1057 /// The operand of the instruction which will be replaced. The operand may be 1058 /// used more than once; every instance will be replaced. 1059 Value *OperandValToReplace = nullptr; 1060 1061 /// If this user is to use the post-incremented value of an induction 1062 /// variable, this set is non-empty and holds the loops associated with the 1063 /// induction variable. 1064 PostIncLoopSet PostIncLoops; 1065 1066 /// A constant offset to be added to the LSRUse expression. This allows 1067 /// multiple fixups to share the same LSRUse with different offsets, for 1068 /// example in an unrolled loop. 1069 int64_t Offset = 0; 1070 1071 LSRFixup() = default; 1072 1073 bool isUseFullyOutsideLoop(const Loop *L) const; 1074 1075 void print(raw_ostream &OS) const; 1076 void dump() const; 1077 }; 1078 1079 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1080 /// SmallVectors of const SCEV*. 1081 struct UniquifierDenseMapInfo { 1082 static SmallVector<const SCEV *, 4> getEmptyKey() { 1083 SmallVector<const SCEV *, 4> V; 1084 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1085 return V; 1086 } 1087 1088 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1089 SmallVector<const SCEV *, 4> V; 1090 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1091 return V; 1092 } 1093 1094 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1095 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1096 } 1097 1098 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1099 const SmallVector<const SCEV *, 4> &RHS) { 1100 return LHS == RHS; 1101 } 1102 }; 1103 1104 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1105 /// as uses invented by LSR itself. It includes information about what kinds of 1106 /// things can be folded into the user, information about the user itself, and 1107 /// information about how the use may be satisfied. TODO: Represent multiple 1108 /// users of the same expression in common? 1109 class LSRUse { 1110 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1111 1112 public: 1113 /// An enum for a kind of use, indicating what types of scaled and immediate 1114 /// operands it might support. 1115 enum KindType { 1116 Basic, ///< A normal use, with no folding. 1117 Special, ///< A special case of basic, allowing -1 scales. 1118 Address, ///< An address use; folding according to TargetLowering 1119 ICmpZero ///< An equality icmp with both operands folded into one. 1120 // TODO: Add a generic icmp too? 1121 }; 1122 1123 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1124 1125 KindType Kind; 1126 MemAccessTy AccessTy; 1127 1128 /// The list of operands which are to be replaced. 1129 SmallVector<LSRFixup, 8> Fixups; 1130 1131 /// Keep track of the min and max offsets of the fixups. 1132 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1133 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1134 1135 /// This records whether all of the fixups using this LSRUse are outside of 1136 /// the loop, in which case some special-case heuristics may be used. 1137 bool AllFixupsOutsideLoop = true; 1138 1139 /// RigidFormula is set to true to guarantee that this use will be associated 1140 /// with a single formula--the one that initially matched. Some SCEV 1141 /// expressions cannot be expanded. This allows LSR to consider the registers 1142 /// used by those expressions without the need to expand them later after 1143 /// changing the formula. 1144 bool RigidFormula = false; 1145 1146 /// This records the widest use type for any fixup using this 1147 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1148 /// fixup widths to be equivalent, because the narrower one may be relying on 1149 /// the implicit truncation to truncate away bogus bits. 1150 Type *WidestFixupType = nullptr; 1151 1152 /// A list of ways to build a value that can satisfy this user. After the 1153 /// list is populated, one of these is selected heuristically and used to 1154 /// formulate a replacement for OperandValToReplace in UserInst. 1155 SmallVector<Formula, 12> Formulae; 1156 1157 /// The set of register candidates used by all formulae in this LSRUse. 1158 SmallPtrSet<const SCEV *, 4> Regs; 1159 1160 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1161 1162 LSRFixup &getNewFixup() { 1163 Fixups.push_back(LSRFixup()); 1164 return Fixups.back(); 1165 } 1166 1167 void pushFixup(LSRFixup &f) { 1168 Fixups.push_back(f); 1169 if (f.Offset > MaxOffset) 1170 MaxOffset = f.Offset; 1171 if (f.Offset < MinOffset) 1172 MinOffset = f.Offset; 1173 } 1174 1175 bool HasFormulaWithSameRegs(const Formula &F) const; 1176 float getNotSelectedProbability(const SCEV *Reg) const; 1177 bool InsertFormula(const Formula &F, const Loop &L); 1178 void DeleteFormula(Formula &F); 1179 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1180 1181 void print(raw_ostream &OS) const; 1182 void dump() const; 1183 }; 1184 1185 } // end anonymous namespace 1186 1187 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1188 LSRUse::KindType Kind, MemAccessTy AccessTy, 1189 GlobalValue *BaseGV, int64_t BaseOffset, 1190 bool HasBaseReg, int64_t Scale, 1191 Instruction *Fixup = nullptr); 1192 1193 /// Tally up interesting quantities from the given register. 1194 void Cost::RateRegister(const SCEV *Reg, 1195 SmallPtrSetImpl<const SCEV *> &Regs, 1196 const Loop *L, 1197 ScalarEvolution &SE, DominatorTree &DT) { 1198 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1199 // If this is an addrec for another loop, it should be an invariant 1200 // with respect to L since L is the innermost loop (at least 1201 // for now LSR only handles innermost loops). 1202 if (AR->getLoop() != L) { 1203 // If the AddRec exists, consider it's register free and leave it alone. 1204 if (isExistingPhi(AR, SE)) 1205 return; 1206 1207 // It is bad to allow LSR for current loop to add induction variables 1208 // for its sibling loops. 1209 if (!AR->getLoop()->contains(L)) { 1210 Lose(); 1211 return; 1212 } 1213 1214 // Otherwise, it will be an invariant with respect to Loop L. 1215 ++C.NumRegs; 1216 return; 1217 } 1218 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1219 1220 // Add the step value register, if it needs one. 1221 // TODO: The non-affine case isn't precisely modeled here. 1222 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1223 if (!Regs.count(AR->getOperand(1))) { 1224 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1225 if (isLoser()) 1226 return; 1227 } 1228 } 1229 } 1230 ++C.NumRegs; 1231 1232 // Rough heuristic; favor registers which don't require extra setup 1233 // instructions in the preheader. 1234 if (!isa<SCEVUnknown>(Reg) && 1235 !isa<SCEVConstant>(Reg) && 1236 !(isa<SCEVAddRecExpr>(Reg) && 1237 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1238 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1239 ++C.SetupCost; 1240 1241 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1242 SE.hasComputableLoopEvolution(Reg, L); 1243 } 1244 1245 /// Record this register in the set. If we haven't seen it before, rate 1246 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1247 /// one of those regs an instant loser. 1248 void Cost::RatePrimaryRegister(const SCEV *Reg, 1249 SmallPtrSetImpl<const SCEV *> &Regs, 1250 const Loop *L, 1251 ScalarEvolution &SE, DominatorTree &DT, 1252 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1253 if (LoserRegs && LoserRegs->count(Reg)) { 1254 Lose(); 1255 return; 1256 } 1257 if (Regs.insert(Reg).second) { 1258 RateRegister(Reg, Regs, L, SE, DT); 1259 if (LoserRegs && isLoser()) 1260 LoserRegs->insert(Reg); 1261 } 1262 } 1263 1264 void Cost::RateFormula(const TargetTransformInfo &TTI, 1265 const Formula &F, 1266 SmallPtrSetImpl<const SCEV *> &Regs, 1267 const DenseSet<const SCEV *> &VisitedRegs, 1268 const Loop *L, 1269 ScalarEvolution &SE, DominatorTree &DT, 1270 const LSRUse &LU, 1271 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1272 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1273 // Tally up the registers. 1274 unsigned PrevAddRecCost = C.AddRecCost; 1275 unsigned PrevNumRegs = C.NumRegs; 1276 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1277 if (const SCEV *ScaledReg = F.ScaledReg) { 1278 if (VisitedRegs.count(ScaledReg)) { 1279 Lose(); 1280 return; 1281 } 1282 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1283 if (isLoser()) 1284 return; 1285 } 1286 for (const SCEV *BaseReg : F.BaseRegs) { 1287 if (VisitedRegs.count(BaseReg)) { 1288 Lose(); 1289 return; 1290 } 1291 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1292 if (isLoser()) 1293 return; 1294 } 1295 1296 // Determine how many (unfolded) adds we'll need inside the loop. 1297 size_t NumBaseParts = F.getNumRegs(); 1298 if (NumBaseParts > 1) 1299 // Do not count the base and a possible second register if the target 1300 // allows to fold 2 registers. 1301 C.NumBaseAdds += 1302 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1303 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1304 1305 // Accumulate non-free scaling amounts. 1306 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1307 1308 // Tally up the non-zero immediates. 1309 for (const LSRFixup &Fixup : LU.Fixups) { 1310 int64_t O = Fixup.Offset; 1311 int64_t Offset = (uint64_t)O + F.BaseOffset; 1312 if (F.BaseGV) 1313 C.ImmCost += 64; // Handle symbolic values conservatively. 1314 // TODO: This should probably be the pointer size. 1315 else if (Offset != 0) 1316 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1317 1318 // Check with target if this offset with this instruction is 1319 // specifically not supported. 1320 if (LU.Kind == LSRUse::Address && Offset != 0 && 1321 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1322 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1323 C.NumBaseAdds++; 1324 } 1325 1326 // If we don't count instruction cost exit here. 1327 if (!InsnsCost) { 1328 assert(isValid() && "invalid cost"); 1329 return; 1330 } 1331 1332 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1333 // additional instruction (at least fill). 1334 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1335 if (C.NumRegs > TTIRegNum) { 1336 // Cost already exceeded TTIRegNum, then only newly added register can add 1337 // new instructions. 1338 if (PrevNumRegs > TTIRegNum) 1339 C.Insns += (C.NumRegs - PrevNumRegs); 1340 else 1341 C.Insns += (C.NumRegs - TTIRegNum); 1342 } 1343 1344 // If ICmpZero formula ends with not 0, it could not be replaced by 1345 // just add or sub. We'll need to compare final result of AddRec. 1346 // That means we'll need an additional instruction. 1347 // For -10 + {0, +, 1}: 1348 // i = i + 1; 1349 // cmp i, 10 1350 // 1351 // For {-10, +, 1}: 1352 // i = i + 1; 1353 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1354 C.Insns++; 1355 // Each new AddRec adds 1 instruction to calculation. 1356 C.Insns += (C.AddRecCost - PrevAddRecCost); 1357 1358 // BaseAdds adds instructions for unfolded registers. 1359 if (LU.Kind != LSRUse::ICmpZero) 1360 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1361 assert(isValid() && "invalid cost"); 1362 } 1363 1364 /// Set this cost to a losing value. 1365 void Cost::Lose() { 1366 C.Insns = std::numeric_limits<unsigned>::max(); 1367 C.NumRegs = std::numeric_limits<unsigned>::max(); 1368 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1369 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1370 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1371 C.ImmCost = std::numeric_limits<unsigned>::max(); 1372 C.SetupCost = std::numeric_limits<unsigned>::max(); 1373 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1374 } 1375 1376 /// Choose the lower cost. 1377 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1378 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1379 C.Insns != Other.C.Insns) 1380 return C.Insns < Other.C.Insns; 1381 return TTI.isLSRCostLess(C, Other.C); 1382 } 1383 1384 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1385 void Cost::print(raw_ostream &OS) const { 1386 if (InsnsCost) 1387 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1388 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1389 if (C.AddRecCost != 0) 1390 OS << ", with addrec cost " << C.AddRecCost; 1391 if (C.NumIVMuls != 0) 1392 OS << ", plus " << C.NumIVMuls << " IV mul" 1393 << (C.NumIVMuls == 1 ? "" : "s"); 1394 if (C.NumBaseAdds != 0) 1395 OS << ", plus " << C.NumBaseAdds << " base add" 1396 << (C.NumBaseAdds == 1 ? "" : "s"); 1397 if (C.ScaleCost != 0) 1398 OS << ", plus " << C.ScaleCost << " scale cost"; 1399 if (C.ImmCost != 0) 1400 OS << ", plus " << C.ImmCost << " imm cost"; 1401 if (C.SetupCost != 0) 1402 OS << ", plus " << C.SetupCost << " setup cost"; 1403 } 1404 1405 LLVM_DUMP_METHOD void Cost::dump() const { 1406 print(errs()); errs() << '\n'; 1407 } 1408 #endif 1409 1410 /// Test whether this fixup always uses its value outside of the given loop. 1411 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1412 // PHI nodes use their value in their incoming blocks. 1413 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1414 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1415 if (PN->getIncomingValue(i) == OperandValToReplace && 1416 L->contains(PN->getIncomingBlock(i))) 1417 return false; 1418 return true; 1419 } 1420 1421 return !L->contains(UserInst); 1422 } 1423 1424 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1425 void LSRFixup::print(raw_ostream &OS) const { 1426 OS << "UserInst="; 1427 // Store is common and interesting enough to be worth special-casing. 1428 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1429 OS << "store "; 1430 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1431 } else if (UserInst->getType()->isVoidTy()) 1432 OS << UserInst->getOpcodeName(); 1433 else 1434 UserInst->printAsOperand(OS, /*PrintType=*/false); 1435 1436 OS << ", OperandValToReplace="; 1437 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1438 1439 for (const Loop *PIL : PostIncLoops) { 1440 OS << ", PostIncLoop="; 1441 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1442 } 1443 1444 if (Offset != 0) 1445 OS << ", Offset=" << Offset; 1446 } 1447 1448 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1449 print(errs()); errs() << '\n'; 1450 } 1451 #endif 1452 1453 /// Test whether this use as a formula which has the same registers as the given 1454 /// formula. 1455 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1456 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1457 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1458 // Unstable sort by host order ok, because this is only used for uniquifying. 1459 std::sort(Key.begin(), Key.end()); 1460 return Uniquifier.count(Key); 1461 } 1462 1463 /// The function returns a probability of selecting formula without Reg. 1464 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1465 unsigned FNum = 0; 1466 for (const Formula &F : Formulae) 1467 if (F.referencesReg(Reg)) 1468 FNum++; 1469 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1470 } 1471 1472 /// If the given formula has not yet been inserted, add it to the list, and 1473 /// return true. Return false otherwise. The formula must be in canonical form. 1474 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1475 assert(F.isCanonical(L) && "Invalid canonical representation"); 1476 1477 if (!Formulae.empty() && RigidFormula) 1478 return false; 1479 1480 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1481 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1482 // Unstable sort by host order ok, because this is only used for uniquifying. 1483 std::sort(Key.begin(), Key.end()); 1484 1485 if (!Uniquifier.insert(Key).second) 1486 return false; 1487 1488 // Using a register to hold the value of 0 is not profitable. 1489 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1490 "Zero allocated in a scaled register!"); 1491 #ifndef NDEBUG 1492 for (const SCEV *BaseReg : F.BaseRegs) 1493 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1494 #endif 1495 1496 // Add the formula to the list. 1497 Formulae.push_back(F); 1498 1499 // Record registers now being used by this use. 1500 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1501 if (F.ScaledReg) 1502 Regs.insert(F.ScaledReg); 1503 1504 return true; 1505 } 1506 1507 /// Remove the given formula from this use's list. 1508 void LSRUse::DeleteFormula(Formula &F) { 1509 if (&F != &Formulae.back()) 1510 std::swap(F, Formulae.back()); 1511 Formulae.pop_back(); 1512 } 1513 1514 /// Recompute the Regs field, and update RegUses. 1515 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1516 // Now that we've filtered out some formulae, recompute the Regs set. 1517 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1518 Regs.clear(); 1519 for (const Formula &F : Formulae) { 1520 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1521 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1522 } 1523 1524 // Update the RegTracker. 1525 for (const SCEV *S : OldRegs) 1526 if (!Regs.count(S)) 1527 RegUses.dropRegister(S, LUIdx); 1528 } 1529 1530 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1531 void LSRUse::print(raw_ostream &OS) const { 1532 OS << "LSR Use: Kind="; 1533 switch (Kind) { 1534 case Basic: OS << "Basic"; break; 1535 case Special: OS << "Special"; break; 1536 case ICmpZero: OS << "ICmpZero"; break; 1537 case Address: 1538 OS << "Address of "; 1539 if (AccessTy.MemTy->isPointerTy()) 1540 OS << "pointer"; // the full pointer type could be really verbose 1541 else { 1542 OS << *AccessTy.MemTy; 1543 } 1544 1545 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1546 } 1547 1548 OS << ", Offsets={"; 1549 bool NeedComma = false; 1550 for (const LSRFixup &Fixup : Fixups) { 1551 if (NeedComma) OS << ','; 1552 OS << Fixup.Offset; 1553 NeedComma = true; 1554 } 1555 OS << '}'; 1556 1557 if (AllFixupsOutsideLoop) 1558 OS << ", all-fixups-outside-loop"; 1559 1560 if (WidestFixupType) 1561 OS << ", widest fixup type: " << *WidestFixupType; 1562 } 1563 1564 LLVM_DUMP_METHOD void LSRUse::dump() const { 1565 print(errs()); errs() << '\n'; 1566 } 1567 #endif 1568 1569 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1570 LSRUse::KindType Kind, MemAccessTy AccessTy, 1571 GlobalValue *BaseGV, int64_t BaseOffset, 1572 bool HasBaseReg, int64_t Scale, 1573 Instruction *Fixup/*= nullptr*/) { 1574 switch (Kind) { 1575 case LSRUse::Address: 1576 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1577 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1578 1579 case LSRUse::ICmpZero: 1580 // There's not even a target hook for querying whether it would be legal to 1581 // fold a GV into an ICmp. 1582 if (BaseGV) 1583 return false; 1584 1585 // ICmp only has two operands; don't allow more than two non-trivial parts. 1586 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1587 return false; 1588 1589 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1590 // putting the scaled register in the other operand of the icmp. 1591 if (Scale != 0 && Scale != -1) 1592 return false; 1593 1594 // If we have low-level target information, ask the target if it can fold an 1595 // integer immediate on an icmp. 1596 if (BaseOffset != 0) { 1597 // We have one of: 1598 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1599 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1600 // Offs is the ICmp immediate. 1601 if (Scale == 0) 1602 // The cast does the right thing with 1603 // std::numeric_limits<int64_t>::min(). 1604 BaseOffset = -(uint64_t)BaseOffset; 1605 return TTI.isLegalICmpImmediate(BaseOffset); 1606 } 1607 1608 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1609 return true; 1610 1611 case LSRUse::Basic: 1612 // Only handle single-register values. 1613 return !BaseGV && Scale == 0 && BaseOffset == 0; 1614 1615 case LSRUse::Special: 1616 // Special case Basic to handle -1 scales. 1617 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1618 } 1619 1620 llvm_unreachable("Invalid LSRUse Kind!"); 1621 } 1622 1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1624 int64_t MinOffset, int64_t MaxOffset, 1625 LSRUse::KindType Kind, MemAccessTy AccessTy, 1626 GlobalValue *BaseGV, int64_t BaseOffset, 1627 bool HasBaseReg, int64_t Scale) { 1628 // Check for overflow. 1629 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1630 (MinOffset > 0)) 1631 return false; 1632 MinOffset = (uint64_t)BaseOffset + MinOffset; 1633 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1634 (MaxOffset > 0)) 1635 return false; 1636 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1637 1638 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1639 HasBaseReg, Scale) && 1640 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1641 HasBaseReg, Scale); 1642 } 1643 1644 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1645 int64_t MinOffset, int64_t MaxOffset, 1646 LSRUse::KindType Kind, MemAccessTy AccessTy, 1647 const Formula &F, const Loop &L) { 1648 // For the purpose of isAMCompletelyFolded either having a canonical formula 1649 // or a scale not equal to zero is correct. 1650 // Problems may arise from non canonical formulae having a scale == 0. 1651 // Strictly speaking it would best to just rely on canonical formulae. 1652 // However, when we generate the scaled formulae, we first check that the 1653 // scaling factor is profitable before computing the actual ScaledReg for 1654 // compile time sake. 1655 assert((F.isCanonical(L) || F.Scale != 0)); 1656 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1657 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1658 } 1659 1660 /// Test whether we know how to expand the current formula. 1661 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1662 int64_t MaxOffset, LSRUse::KindType Kind, 1663 MemAccessTy AccessTy, GlobalValue *BaseGV, 1664 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1665 // We know how to expand completely foldable formulae. 1666 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1667 BaseOffset, HasBaseReg, Scale) || 1668 // Or formulae that use a base register produced by a sum of base 1669 // registers. 1670 (Scale == 1 && 1671 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1672 BaseGV, BaseOffset, true, 0)); 1673 } 1674 1675 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1676 int64_t MaxOffset, LSRUse::KindType Kind, 1677 MemAccessTy AccessTy, const Formula &F) { 1678 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1679 F.BaseOffset, F.HasBaseReg, F.Scale); 1680 } 1681 1682 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1683 const LSRUse &LU, const Formula &F) { 1684 // Target may want to look at the user instructions. 1685 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1686 for (const LSRFixup &Fixup : LU.Fixups) 1687 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1688 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1689 F.Scale, Fixup.UserInst)) 1690 return false; 1691 return true; 1692 } 1693 1694 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1695 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1696 F.Scale); 1697 } 1698 1699 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1700 const LSRUse &LU, const Formula &F, 1701 const Loop &L) { 1702 if (!F.Scale) 1703 return 0; 1704 1705 // If the use is not completely folded in that instruction, we will have to 1706 // pay an extra cost only for scale != 1. 1707 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1708 LU.AccessTy, F, L)) 1709 return F.Scale != 1; 1710 1711 switch (LU.Kind) { 1712 case LSRUse::Address: { 1713 // Check the scaling factor cost with both the min and max offsets. 1714 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1715 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1716 F.Scale, LU.AccessTy.AddrSpace); 1717 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1718 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1719 F.Scale, LU.AccessTy.AddrSpace); 1720 1721 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1722 "Legal addressing mode has an illegal cost!"); 1723 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1724 } 1725 case LSRUse::ICmpZero: 1726 case LSRUse::Basic: 1727 case LSRUse::Special: 1728 // The use is completely folded, i.e., everything is folded into the 1729 // instruction. 1730 return 0; 1731 } 1732 1733 llvm_unreachable("Invalid LSRUse Kind!"); 1734 } 1735 1736 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1737 LSRUse::KindType Kind, MemAccessTy AccessTy, 1738 GlobalValue *BaseGV, int64_t BaseOffset, 1739 bool HasBaseReg) { 1740 // Fast-path: zero is always foldable. 1741 if (BaseOffset == 0 && !BaseGV) return true; 1742 1743 // Conservatively, create an address with an immediate and a 1744 // base and a scale. 1745 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1746 1747 // Canonicalize a scale of 1 to a base register if the formula doesn't 1748 // already have a base register. 1749 if (!HasBaseReg && Scale == 1) { 1750 Scale = 0; 1751 HasBaseReg = true; 1752 } 1753 1754 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1755 HasBaseReg, Scale); 1756 } 1757 1758 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1759 ScalarEvolution &SE, int64_t MinOffset, 1760 int64_t MaxOffset, LSRUse::KindType Kind, 1761 MemAccessTy AccessTy, const SCEV *S, 1762 bool HasBaseReg) { 1763 // Fast-path: zero is always foldable. 1764 if (S->isZero()) return true; 1765 1766 // Conservatively, create an address with an immediate and a 1767 // base and a scale. 1768 int64_t BaseOffset = ExtractImmediate(S, SE); 1769 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1770 1771 // If there's anything else involved, it's not foldable. 1772 if (!S->isZero()) return false; 1773 1774 // Fast-path: zero is always foldable. 1775 if (BaseOffset == 0 && !BaseGV) return true; 1776 1777 // Conservatively, create an address with an immediate and a 1778 // base and a scale. 1779 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1780 1781 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1782 BaseOffset, HasBaseReg, Scale); 1783 } 1784 1785 namespace { 1786 1787 /// An individual increment in a Chain of IV increments. Relate an IV user to 1788 /// an expression that computes the IV it uses from the IV used by the previous 1789 /// link in the Chain. 1790 /// 1791 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1792 /// original IVOperand. The head of the chain's IVOperand is only valid during 1793 /// chain collection, before LSR replaces IV users. During chain generation, 1794 /// IncExpr can be used to find the new IVOperand that computes the same 1795 /// expression. 1796 struct IVInc { 1797 Instruction *UserInst; 1798 Value* IVOperand; 1799 const SCEV *IncExpr; 1800 1801 IVInc(Instruction *U, Value *O, const SCEV *E) 1802 : UserInst(U), IVOperand(O), IncExpr(E) {} 1803 }; 1804 1805 // The list of IV increments in program order. We typically add the head of a 1806 // chain without finding subsequent links. 1807 struct IVChain { 1808 SmallVector<IVInc, 1> Incs; 1809 const SCEV *ExprBase = nullptr; 1810 1811 IVChain() = default; 1812 IVChain(const IVInc &Head, const SCEV *Base) 1813 : Incs(1, Head), ExprBase(Base) {} 1814 1815 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1816 1817 // Return the first increment in the chain. 1818 const_iterator begin() const { 1819 assert(!Incs.empty()); 1820 return std::next(Incs.begin()); 1821 } 1822 const_iterator end() const { 1823 return Incs.end(); 1824 } 1825 1826 // Returns true if this chain contains any increments. 1827 bool hasIncs() const { return Incs.size() >= 2; } 1828 1829 // Add an IVInc to the end of this chain. 1830 void add(const IVInc &X) { Incs.push_back(X); } 1831 1832 // Returns the last UserInst in the chain. 1833 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1834 1835 // Returns true if IncExpr can be profitably added to this chain. 1836 bool isProfitableIncrement(const SCEV *OperExpr, 1837 const SCEV *IncExpr, 1838 ScalarEvolution&); 1839 }; 1840 1841 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1842 /// between FarUsers that definitely cross IV increments and NearUsers that may 1843 /// be used between IV increments. 1844 struct ChainUsers { 1845 SmallPtrSet<Instruction*, 4> FarUsers; 1846 SmallPtrSet<Instruction*, 4> NearUsers; 1847 }; 1848 1849 /// This class holds state for the main loop strength reduction logic. 1850 class LSRInstance { 1851 IVUsers &IU; 1852 ScalarEvolution &SE; 1853 DominatorTree &DT; 1854 LoopInfo &LI; 1855 const TargetTransformInfo &TTI; 1856 Loop *const L; 1857 bool Changed = false; 1858 1859 /// This is the insert position that the current loop's induction variable 1860 /// increment should be placed. In simple loops, this is the latch block's 1861 /// terminator. But in more complicated cases, this is a position which will 1862 /// dominate all the in-loop post-increment users. 1863 Instruction *IVIncInsertPos = nullptr; 1864 1865 /// Interesting factors between use strides. 1866 /// 1867 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1868 /// default, a SmallDenseSet, because we need to use the full range of 1869 /// int64_ts, and there's currently no good way of doing that with 1870 /// SmallDenseSet. 1871 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1872 1873 /// Interesting use types, to facilitate truncation reuse. 1874 SmallSetVector<Type *, 4> Types; 1875 1876 /// The list of interesting uses. 1877 SmallVector<LSRUse, 16> Uses; 1878 1879 /// Track which uses use which register candidates. 1880 RegUseTracker RegUses; 1881 1882 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1883 // have more than a few IV increment chains in a loop. Missing a Chain falls 1884 // back to normal LSR behavior for those uses. 1885 static const unsigned MaxChains = 8; 1886 1887 /// IV users can form a chain of IV increments. 1888 SmallVector<IVChain, MaxChains> IVChainVec; 1889 1890 /// IV users that belong to profitable IVChains. 1891 SmallPtrSet<Use*, MaxChains> IVIncSet; 1892 1893 void OptimizeShadowIV(); 1894 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1895 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1896 void OptimizeLoopTermCond(); 1897 1898 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1899 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1900 void FinalizeChain(IVChain &Chain); 1901 void CollectChains(); 1902 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1903 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1904 1905 void CollectInterestingTypesAndFactors(); 1906 void CollectFixupsAndInitialFormulae(); 1907 1908 // Support for sharing of LSRUses between LSRFixups. 1909 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1910 UseMapTy UseMap; 1911 1912 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1913 LSRUse::KindType Kind, MemAccessTy AccessTy); 1914 1915 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1916 MemAccessTy AccessTy); 1917 1918 void DeleteUse(LSRUse &LU, size_t LUIdx); 1919 1920 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1921 1922 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1923 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1924 void CountRegisters(const Formula &F, size_t LUIdx); 1925 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1926 1927 void CollectLoopInvariantFixupsAndFormulae(); 1928 1929 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1930 unsigned Depth = 0); 1931 1932 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1933 const Formula &Base, unsigned Depth, 1934 size_t Idx, bool IsScaledReg = false); 1935 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1936 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1937 const Formula &Base, size_t Idx, 1938 bool IsScaledReg = false); 1939 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1940 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1941 const Formula &Base, 1942 const SmallVectorImpl<int64_t> &Worklist, 1943 size_t Idx, bool IsScaledReg = false); 1944 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1945 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1946 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1947 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1948 void GenerateCrossUseConstantOffsets(); 1949 void GenerateAllReuseFormulae(); 1950 1951 void FilterOutUndesirableDedicatedRegisters(); 1952 1953 size_t EstimateSearchSpaceComplexity() const; 1954 void NarrowSearchSpaceByDetectingSupersets(); 1955 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1956 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1957 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1958 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1959 void NarrowSearchSpaceByPickingWinnerRegs(); 1960 void NarrowSearchSpaceUsingHeuristics(); 1961 1962 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1963 Cost &SolutionCost, 1964 SmallVectorImpl<const Formula *> &Workspace, 1965 const Cost &CurCost, 1966 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1967 DenseSet<const SCEV *> &VisitedRegs) const; 1968 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1969 1970 BasicBlock::iterator 1971 HoistInsertPosition(BasicBlock::iterator IP, 1972 const SmallVectorImpl<Instruction *> &Inputs) const; 1973 BasicBlock::iterator 1974 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1975 const LSRFixup &LF, 1976 const LSRUse &LU, 1977 SCEVExpander &Rewriter) const; 1978 1979 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1980 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1981 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1982 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1983 const Formula &F, SCEVExpander &Rewriter, 1984 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1985 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1986 SCEVExpander &Rewriter, 1987 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1988 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1989 1990 public: 1991 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1992 LoopInfo &LI, const TargetTransformInfo &TTI); 1993 1994 bool getChanged() const { return Changed; } 1995 1996 void print_factors_and_types(raw_ostream &OS) const; 1997 void print_fixups(raw_ostream &OS) const; 1998 void print_uses(raw_ostream &OS) const; 1999 void print(raw_ostream &OS) const; 2000 void dump() const; 2001 }; 2002 2003 } // end anonymous namespace 2004 2005 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2006 /// the cast operation. 2007 void LSRInstance::OptimizeShadowIV() { 2008 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2009 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2010 return; 2011 2012 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2013 UI != E; /* empty */) { 2014 IVUsers::const_iterator CandidateUI = UI; 2015 ++UI; 2016 Instruction *ShadowUse = CandidateUI->getUser(); 2017 Type *DestTy = nullptr; 2018 bool IsSigned = false; 2019 2020 /* If shadow use is a int->float cast then insert a second IV 2021 to eliminate this cast. 2022 2023 for (unsigned i = 0; i < n; ++i) 2024 foo((double)i); 2025 2026 is transformed into 2027 2028 double d = 0.0; 2029 for (unsigned i = 0; i < n; ++i, ++d) 2030 foo(d); 2031 */ 2032 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2033 IsSigned = false; 2034 DestTy = UCast->getDestTy(); 2035 } 2036 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2037 IsSigned = true; 2038 DestTy = SCast->getDestTy(); 2039 } 2040 if (!DestTy) continue; 2041 2042 // If target does not support DestTy natively then do not apply 2043 // this transformation. 2044 if (!TTI.isTypeLegal(DestTy)) continue; 2045 2046 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2047 if (!PH) continue; 2048 if (PH->getNumIncomingValues() != 2) continue; 2049 2050 // If the calculation in integers overflows, the result in FP type will 2051 // differ. So we only can do this transformation if we are guaranteed to not 2052 // deal with overflowing values 2053 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2054 if (!AR) continue; 2055 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2056 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2057 2058 Type *SrcTy = PH->getType(); 2059 int Mantissa = DestTy->getFPMantissaWidth(); 2060 if (Mantissa == -1) continue; 2061 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2062 continue; 2063 2064 unsigned Entry, Latch; 2065 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2066 Entry = 0; 2067 Latch = 1; 2068 } else { 2069 Entry = 1; 2070 Latch = 0; 2071 } 2072 2073 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2074 if (!Init) continue; 2075 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2076 (double)Init->getSExtValue() : 2077 (double)Init->getZExtValue()); 2078 2079 BinaryOperator *Incr = 2080 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2081 if (!Incr) continue; 2082 if (Incr->getOpcode() != Instruction::Add 2083 && Incr->getOpcode() != Instruction::Sub) 2084 continue; 2085 2086 /* Initialize new IV, double d = 0.0 in above example. */ 2087 ConstantInt *C = nullptr; 2088 if (Incr->getOperand(0) == PH) 2089 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2090 else if (Incr->getOperand(1) == PH) 2091 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2092 else 2093 continue; 2094 2095 if (!C) continue; 2096 2097 // Ignore negative constants, as the code below doesn't handle them 2098 // correctly. TODO: Remove this restriction. 2099 if (!C->getValue().isStrictlyPositive()) continue; 2100 2101 /* Add new PHINode. */ 2102 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2103 2104 /* create new increment. '++d' in above example. */ 2105 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2106 BinaryOperator *NewIncr = 2107 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2108 Instruction::FAdd : Instruction::FSub, 2109 NewPH, CFP, "IV.S.next.", Incr); 2110 2111 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2112 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2113 2114 /* Remove cast operation */ 2115 ShadowUse->replaceAllUsesWith(NewPH); 2116 ShadowUse->eraseFromParent(); 2117 Changed = true; 2118 break; 2119 } 2120 } 2121 2122 /// If Cond has an operand that is an expression of an IV, set the IV user and 2123 /// stride information and return true, otherwise return false. 2124 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2125 for (IVStrideUse &U : IU) 2126 if (U.getUser() == Cond) { 2127 // NOTE: we could handle setcc instructions with multiple uses here, but 2128 // InstCombine does it as well for simple uses, it's not clear that it 2129 // occurs enough in real life to handle. 2130 CondUse = &U; 2131 return true; 2132 } 2133 return false; 2134 } 2135 2136 /// Rewrite the loop's terminating condition if it uses a max computation. 2137 /// 2138 /// This is a narrow solution to a specific, but acute, problem. For loops 2139 /// like this: 2140 /// 2141 /// i = 0; 2142 /// do { 2143 /// p[i] = 0.0; 2144 /// } while (++i < n); 2145 /// 2146 /// the trip count isn't just 'n', because 'n' might not be positive. And 2147 /// unfortunately this can come up even for loops where the user didn't use 2148 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2149 /// will commonly be lowered like this: 2150 /// 2151 /// if (n > 0) { 2152 /// i = 0; 2153 /// do { 2154 /// p[i] = 0.0; 2155 /// } while (++i < n); 2156 /// } 2157 /// 2158 /// and then it's possible for subsequent optimization to obscure the if 2159 /// test in such a way that indvars can't find it. 2160 /// 2161 /// When indvars can't find the if test in loops like this, it creates a 2162 /// max expression, which allows it to give the loop a canonical 2163 /// induction variable: 2164 /// 2165 /// i = 0; 2166 /// max = n < 1 ? 1 : n; 2167 /// do { 2168 /// p[i] = 0.0; 2169 /// } while (++i != max); 2170 /// 2171 /// Canonical induction variables are necessary because the loop passes 2172 /// are designed around them. The most obvious example of this is the 2173 /// LoopInfo analysis, which doesn't remember trip count values. It 2174 /// expects to be able to rediscover the trip count each time it is 2175 /// needed, and it does this using a simple analysis that only succeeds if 2176 /// the loop has a canonical induction variable. 2177 /// 2178 /// However, when it comes time to generate code, the maximum operation 2179 /// can be quite costly, especially if it's inside of an outer loop. 2180 /// 2181 /// This function solves this problem by detecting this type of loop and 2182 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2183 /// the instructions for the maximum computation. 2184 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2185 // Check that the loop matches the pattern we're looking for. 2186 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2187 Cond->getPredicate() != CmpInst::ICMP_NE) 2188 return Cond; 2189 2190 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2191 if (!Sel || !Sel->hasOneUse()) return Cond; 2192 2193 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2194 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2195 return Cond; 2196 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2197 2198 // Add one to the backedge-taken count to get the trip count. 2199 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2200 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2201 2202 // Check for a max calculation that matches the pattern. There's no check 2203 // for ICMP_ULE here because the comparison would be with zero, which 2204 // isn't interesting. 2205 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2206 const SCEVNAryExpr *Max = nullptr; 2207 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2208 Pred = ICmpInst::ICMP_SLE; 2209 Max = S; 2210 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2211 Pred = ICmpInst::ICMP_SLT; 2212 Max = S; 2213 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2214 Pred = ICmpInst::ICMP_ULT; 2215 Max = U; 2216 } else { 2217 // No match; bail. 2218 return Cond; 2219 } 2220 2221 // To handle a max with more than two operands, this optimization would 2222 // require additional checking and setup. 2223 if (Max->getNumOperands() != 2) 2224 return Cond; 2225 2226 const SCEV *MaxLHS = Max->getOperand(0); 2227 const SCEV *MaxRHS = Max->getOperand(1); 2228 2229 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2230 // for a comparison with 1. For <= and >=, a comparison with zero. 2231 if (!MaxLHS || 2232 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2233 return Cond; 2234 2235 // Check the relevant induction variable for conformance to 2236 // the pattern. 2237 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2238 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2239 if (!AR || !AR->isAffine() || 2240 AR->getStart() != One || 2241 AR->getStepRecurrence(SE) != One) 2242 return Cond; 2243 2244 assert(AR->getLoop() == L && 2245 "Loop condition operand is an addrec in a different loop!"); 2246 2247 // Check the right operand of the select, and remember it, as it will 2248 // be used in the new comparison instruction. 2249 Value *NewRHS = nullptr; 2250 if (ICmpInst::isTrueWhenEqual(Pred)) { 2251 // Look for n+1, and grab n. 2252 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2253 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2254 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2255 NewRHS = BO->getOperand(0); 2256 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2257 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2258 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2259 NewRHS = BO->getOperand(0); 2260 if (!NewRHS) 2261 return Cond; 2262 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2263 NewRHS = Sel->getOperand(1); 2264 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2265 NewRHS = Sel->getOperand(2); 2266 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2267 NewRHS = SU->getValue(); 2268 else 2269 // Max doesn't match expected pattern. 2270 return Cond; 2271 2272 // Determine the new comparison opcode. It may be signed or unsigned, 2273 // and the original comparison may be either equality or inequality. 2274 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2275 Pred = CmpInst::getInversePredicate(Pred); 2276 2277 // Ok, everything looks ok to change the condition into an SLT or SGE and 2278 // delete the max calculation. 2279 ICmpInst *NewCond = 2280 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2281 2282 // Delete the max calculation instructions. 2283 Cond->replaceAllUsesWith(NewCond); 2284 CondUse->setUser(NewCond); 2285 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2286 Cond->eraseFromParent(); 2287 Sel->eraseFromParent(); 2288 if (Cmp->use_empty()) 2289 Cmp->eraseFromParent(); 2290 return NewCond; 2291 } 2292 2293 /// Change loop terminating condition to use the postinc iv when possible. 2294 void 2295 LSRInstance::OptimizeLoopTermCond() { 2296 SmallPtrSet<Instruction *, 4> PostIncs; 2297 2298 // We need a different set of heuristics for rotated and non-rotated loops. 2299 // If a loop is rotated then the latch is also the backedge, so inserting 2300 // post-inc expressions just before the latch is ideal. To reduce live ranges 2301 // it also makes sense to rewrite terminating conditions to use post-inc 2302 // expressions. 2303 // 2304 // If the loop is not rotated then the latch is not a backedge; the latch 2305 // check is done in the loop head. Adding post-inc expressions before the 2306 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2307 // in the loop body. In this case we do *not* want to use post-inc expressions 2308 // in the latch check, and we want to insert post-inc expressions before 2309 // the backedge. 2310 BasicBlock *LatchBlock = L->getLoopLatch(); 2311 SmallVector<BasicBlock*, 8> ExitingBlocks; 2312 L->getExitingBlocks(ExitingBlocks); 2313 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2314 return LatchBlock != BB; 2315 })) { 2316 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2317 IVIncInsertPos = LatchBlock->getTerminator(); 2318 return; 2319 } 2320 2321 // Otherwise treat this as a rotated loop. 2322 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2323 // Get the terminating condition for the loop if possible. If we 2324 // can, we want to change it to use a post-incremented version of its 2325 // induction variable, to allow coalescing the live ranges for the IV into 2326 // one register value. 2327 2328 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2329 if (!TermBr) 2330 continue; 2331 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2332 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2333 continue; 2334 2335 // Search IVUsesByStride to find Cond's IVUse if there is one. 2336 IVStrideUse *CondUse = nullptr; 2337 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2338 if (!FindIVUserForCond(Cond, CondUse)) 2339 continue; 2340 2341 // If the trip count is computed in terms of a max (due to ScalarEvolution 2342 // being unable to find a sufficient guard, for example), change the loop 2343 // comparison to use SLT or ULT instead of NE. 2344 // One consequence of doing this now is that it disrupts the count-down 2345 // optimization. That's not always a bad thing though, because in such 2346 // cases it may still be worthwhile to avoid a max. 2347 Cond = OptimizeMax(Cond, CondUse); 2348 2349 // If this exiting block dominates the latch block, it may also use 2350 // the post-inc value if it won't be shared with other uses. 2351 // Check for dominance. 2352 if (!DT.dominates(ExitingBlock, LatchBlock)) 2353 continue; 2354 2355 // Conservatively avoid trying to use the post-inc value in non-latch 2356 // exits if there may be pre-inc users in intervening blocks. 2357 if (LatchBlock != ExitingBlock) 2358 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2359 // Test if the use is reachable from the exiting block. This dominator 2360 // query is a conservative approximation of reachability. 2361 if (&*UI != CondUse && 2362 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2363 // Conservatively assume there may be reuse if the quotient of their 2364 // strides could be a legal scale. 2365 const SCEV *A = IU.getStride(*CondUse, L); 2366 const SCEV *B = IU.getStride(*UI, L); 2367 if (!A || !B) continue; 2368 if (SE.getTypeSizeInBits(A->getType()) != 2369 SE.getTypeSizeInBits(B->getType())) { 2370 if (SE.getTypeSizeInBits(A->getType()) > 2371 SE.getTypeSizeInBits(B->getType())) 2372 B = SE.getSignExtendExpr(B, A->getType()); 2373 else 2374 A = SE.getSignExtendExpr(A, B->getType()); 2375 } 2376 if (const SCEVConstant *D = 2377 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2378 const ConstantInt *C = D->getValue(); 2379 // Stride of one or negative one can have reuse with non-addresses. 2380 if (C->isOne() || C->isMinusOne()) 2381 goto decline_post_inc; 2382 // Avoid weird situations. 2383 if (C->getValue().getMinSignedBits() >= 64 || 2384 C->getValue().isMinSignedValue()) 2385 goto decline_post_inc; 2386 // Check for possible scaled-address reuse. 2387 MemAccessTy AccessTy = getAccessType(TTI, UI->getUser()); 2388 int64_t Scale = C->getSExtValue(); 2389 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2390 /*BaseOffset=*/0, 2391 /*HasBaseReg=*/false, Scale, 2392 AccessTy.AddrSpace)) 2393 goto decline_post_inc; 2394 Scale = -Scale; 2395 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2396 /*BaseOffset=*/0, 2397 /*HasBaseReg=*/false, Scale, 2398 AccessTy.AddrSpace)) 2399 goto decline_post_inc; 2400 } 2401 } 2402 2403 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2404 << *Cond << '\n'); 2405 2406 // It's possible for the setcc instruction to be anywhere in the loop, and 2407 // possible for it to have multiple users. If it is not immediately before 2408 // the exiting block branch, move it. 2409 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2410 if (Cond->hasOneUse()) { 2411 Cond->moveBefore(TermBr); 2412 } else { 2413 // Clone the terminating condition and insert into the loopend. 2414 ICmpInst *OldCond = Cond; 2415 Cond = cast<ICmpInst>(Cond->clone()); 2416 Cond->setName(L->getHeader()->getName() + ".termcond"); 2417 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2418 2419 // Clone the IVUse, as the old use still exists! 2420 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2421 TermBr->replaceUsesOfWith(OldCond, Cond); 2422 } 2423 } 2424 2425 // If we get to here, we know that we can transform the setcc instruction to 2426 // use the post-incremented version of the IV, allowing us to coalesce the 2427 // live ranges for the IV correctly. 2428 CondUse->transformToPostInc(L); 2429 Changed = true; 2430 2431 PostIncs.insert(Cond); 2432 decline_post_inc:; 2433 } 2434 2435 // Determine an insertion point for the loop induction variable increment. It 2436 // must dominate all the post-inc comparisons we just set up, and it must 2437 // dominate the loop latch edge. 2438 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2439 for (Instruction *Inst : PostIncs) { 2440 BasicBlock *BB = 2441 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2442 Inst->getParent()); 2443 if (BB == Inst->getParent()) 2444 IVIncInsertPos = Inst; 2445 else if (BB != IVIncInsertPos->getParent()) 2446 IVIncInsertPos = BB->getTerminator(); 2447 } 2448 } 2449 2450 /// Determine if the given use can accommodate a fixup at the given offset and 2451 /// other details. If so, update the use and return true. 2452 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2453 bool HasBaseReg, LSRUse::KindType Kind, 2454 MemAccessTy AccessTy) { 2455 int64_t NewMinOffset = LU.MinOffset; 2456 int64_t NewMaxOffset = LU.MaxOffset; 2457 MemAccessTy NewAccessTy = AccessTy; 2458 2459 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2460 // something conservative, however this can pessimize in the case that one of 2461 // the uses will have all its uses outside the loop, for example. 2462 if (LU.Kind != Kind) 2463 return false; 2464 2465 // Check for a mismatched access type, and fall back conservatively as needed. 2466 // TODO: Be less conservative when the type is similar and can use the same 2467 // addressing modes. 2468 if (Kind == LSRUse::Address) { 2469 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2470 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2471 AccessTy.AddrSpace); 2472 } 2473 } 2474 2475 // Conservatively assume HasBaseReg is true for now. 2476 if (NewOffset < LU.MinOffset) { 2477 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2478 LU.MaxOffset - NewOffset, HasBaseReg)) 2479 return false; 2480 NewMinOffset = NewOffset; 2481 } else if (NewOffset > LU.MaxOffset) { 2482 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2483 NewOffset - LU.MinOffset, HasBaseReg)) 2484 return false; 2485 NewMaxOffset = NewOffset; 2486 } 2487 2488 // Update the use. 2489 LU.MinOffset = NewMinOffset; 2490 LU.MaxOffset = NewMaxOffset; 2491 LU.AccessTy = NewAccessTy; 2492 return true; 2493 } 2494 2495 /// Return an LSRUse index and an offset value for a fixup which needs the given 2496 /// expression, with the given kind and optional access type. Either reuse an 2497 /// existing use or create a new one, as needed. 2498 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2499 LSRUse::KindType Kind, 2500 MemAccessTy AccessTy) { 2501 const SCEV *Copy = Expr; 2502 int64_t Offset = ExtractImmediate(Expr, SE); 2503 2504 // Basic uses can't accept any offset, for example. 2505 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2506 Offset, /*HasBaseReg=*/ true)) { 2507 Expr = Copy; 2508 Offset = 0; 2509 } 2510 2511 std::pair<UseMapTy::iterator, bool> P = 2512 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2513 if (!P.second) { 2514 // A use already existed with this base. 2515 size_t LUIdx = P.first->second; 2516 LSRUse &LU = Uses[LUIdx]; 2517 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2518 // Reuse this use. 2519 return std::make_pair(LUIdx, Offset); 2520 } 2521 2522 // Create a new use. 2523 size_t LUIdx = Uses.size(); 2524 P.first->second = LUIdx; 2525 Uses.push_back(LSRUse(Kind, AccessTy)); 2526 LSRUse &LU = Uses[LUIdx]; 2527 2528 LU.MinOffset = Offset; 2529 LU.MaxOffset = Offset; 2530 return std::make_pair(LUIdx, Offset); 2531 } 2532 2533 /// Delete the given use from the Uses list. 2534 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2535 if (&LU != &Uses.back()) 2536 std::swap(LU, Uses.back()); 2537 Uses.pop_back(); 2538 2539 // Update RegUses. 2540 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2541 } 2542 2543 /// Look for a use distinct from OrigLU which is has a formula that has the same 2544 /// registers as the given formula. 2545 LSRUse * 2546 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2547 const LSRUse &OrigLU) { 2548 // Search all uses for the formula. This could be more clever. 2549 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2550 LSRUse &LU = Uses[LUIdx]; 2551 // Check whether this use is close enough to OrigLU, to see whether it's 2552 // worthwhile looking through its formulae. 2553 // Ignore ICmpZero uses because they may contain formulae generated by 2554 // GenerateICmpZeroScales, in which case adding fixup offsets may 2555 // be invalid. 2556 if (&LU != &OrigLU && 2557 LU.Kind != LSRUse::ICmpZero && 2558 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2559 LU.WidestFixupType == OrigLU.WidestFixupType && 2560 LU.HasFormulaWithSameRegs(OrigF)) { 2561 // Scan through this use's formulae. 2562 for (const Formula &F : LU.Formulae) { 2563 // Check to see if this formula has the same registers and symbols 2564 // as OrigF. 2565 if (F.BaseRegs == OrigF.BaseRegs && 2566 F.ScaledReg == OrigF.ScaledReg && 2567 F.BaseGV == OrigF.BaseGV && 2568 F.Scale == OrigF.Scale && 2569 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2570 if (F.BaseOffset == 0) 2571 return &LU; 2572 // This is the formula where all the registers and symbols matched; 2573 // there aren't going to be any others. Since we declined it, we 2574 // can skip the rest of the formulae and proceed to the next LSRUse. 2575 break; 2576 } 2577 } 2578 } 2579 } 2580 2581 // Nothing looked good. 2582 return nullptr; 2583 } 2584 2585 void LSRInstance::CollectInterestingTypesAndFactors() { 2586 SmallSetVector<const SCEV *, 4> Strides; 2587 2588 // Collect interesting types and strides. 2589 SmallVector<const SCEV *, 4> Worklist; 2590 for (const IVStrideUse &U : IU) { 2591 const SCEV *Expr = IU.getExpr(U); 2592 2593 // Collect interesting types. 2594 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2595 2596 // Add strides for mentioned loops. 2597 Worklist.push_back(Expr); 2598 do { 2599 const SCEV *S = Worklist.pop_back_val(); 2600 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2601 if (AR->getLoop() == L) 2602 Strides.insert(AR->getStepRecurrence(SE)); 2603 Worklist.push_back(AR->getStart()); 2604 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2605 Worklist.append(Add->op_begin(), Add->op_end()); 2606 } 2607 } while (!Worklist.empty()); 2608 } 2609 2610 // Compute interesting factors from the set of interesting strides. 2611 for (SmallSetVector<const SCEV *, 4>::const_iterator 2612 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2613 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2614 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2615 const SCEV *OldStride = *I; 2616 const SCEV *NewStride = *NewStrideIter; 2617 2618 if (SE.getTypeSizeInBits(OldStride->getType()) != 2619 SE.getTypeSizeInBits(NewStride->getType())) { 2620 if (SE.getTypeSizeInBits(OldStride->getType()) > 2621 SE.getTypeSizeInBits(NewStride->getType())) 2622 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2623 else 2624 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2625 } 2626 if (const SCEVConstant *Factor = 2627 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2628 SE, true))) { 2629 if (Factor->getAPInt().getMinSignedBits() <= 64) 2630 Factors.insert(Factor->getAPInt().getSExtValue()); 2631 } else if (const SCEVConstant *Factor = 2632 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2633 NewStride, 2634 SE, true))) { 2635 if (Factor->getAPInt().getMinSignedBits() <= 64) 2636 Factors.insert(Factor->getAPInt().getSExtValue()); 2637 } 2638 } 2639 2640 // If all uses use the same type, don't bother looking for truncation-based 2641 // reuse. 2642 if (Types.size() == 1) 2643 Types.clear(); 2644 2645 DEBUG(print_factors_and_types(dbgs())); 2646 } 2647 2648 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2649 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2650 /// IVStrideUses, we could partially skip this. 2651 static User::op_iterator 2652 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2653 Loop *L, ScalarEvolution &SE) { 2654 for(; OI != OE; ++OI) { 2655 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2656 if (!SE.isSCEVable(Oper->getType())) 2657 continue; 2658 2659 if (const SCEVAddRecExpr *AR = 2660 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2661 if (AR->getLoop() == L) 2662 break; 2663 } 2664 } 2665 } 2666 return OI; 2667 } 2668 2669 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2670 /// a convenient helper. 2671 static Value *getWideOperand(Value *Oper) { 2672 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2673 return Trunc->getOperand(0); 2674 return Oper; 2675 } 2676 2677 /// Return true if we allow an IV chain to include both types. 2678 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2679 Type *LType = LVal->getType(); 2680 Type *RType = RVal->getType(); 2681 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2682 // Different address spaces means (possibly) 2683 // different types of the pointer implementation, 2684 // e.g. i16 vs i32 so disallow that. 2685 (LType->getPointerAddressSpace() == 2686 RType->getPointerAddressSpace())); 2687 } 2688 2689 /// Return an approximation of this SCEV expression's "base", or NULL for any 2690 /// constant. Returning the expression itself is conservative. Returning a 2691 /// deeper subexpression is more precise and valid as long as it isn't less 2692 /// complex than another subexpression. For expressions involving multiple 2693 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2694 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2695 /// IVInc==b-a. 2696 /// 2697 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2698 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2699 static const SCEV *getExprBase(const SCEV *S) { 2700 switch (S->getSCEVType()) { 2701 default: // uncluding scUnknown. 2702 return S; 2703 case scConstant: 2704 return nullptr; 2705 case scTruncate: 2706 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2707 case scZeroExtend: 2708 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2709 case scSignExtend: 2710 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2711 case scAddExpr: { 2712 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2713 // there's nothing more complex. 2714 // FIXME: not sure if we want to recognize negation. 2715 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2716 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2717 E(Add->op_begin()); I != E; ++I) { 2718 const SCEV *SubExpr = *I; 2719 if (SubExpr->getSCEVType() == scAddExpr) 2720 return getExprBase(SubExpr); 2721 2722 if (SubExpr->getSCEVType() != scMulExpr) 2723 return SubExpr; 2724 } 2725 return S; // all operands are scaled, be conservative. 2726 } 2727 case scAddRecExpr: 2728 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2729 } 2730 } 2731 2732 /// Return true if the chain increment is profitable to expand into a loop 2733 /// invariant value, which may require its own register. A profitable chain 2734 /// increment will be an offset relative to the same base. We allow such offsets 2735 /// to potentially be used as chain increment as long as it's not obviously 2736 /// expensive to expand using real instructions. 2737 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2738 const SCEV *IncExpr, 2739 ScalarEvolution &SE) { 2740 // Aggressively form chains when -stress-ivchain. 2741 if (StressIVChain) 2742 return true; 2743 2744 // Do not replace a constant offset from IV head with a nonconstant IV 2745 // increment. 2746 if (!isa<SCEVConstant>(IncExpr)) { 2747 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2748 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2749 return false; 2750 } 2751 2752 SmallPtrSet<const SCEV*, 8> Processed; 2753 return !isHighCostExpansion(IncExpr, Processed, SE); 2754 } 2755 2756 /// Return true if the number of registers needed for the chain is estimated to 2757 /// be less than the number required for the individual IV users. First prohibit 2758 /// any IV users that keep the IV live across increments (the Users set should 2759 /// be empty). Next count the number and type of increments in the chain. 2760 /// 2761 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2762 /// effectively use postinc addressing modes. Only consider it profitable it the 2763 /// increments can be computed in fewer registers when chained. 2764 /// 2765 /// TODO: Consider IVInc free if it's already used in another chains. 2766 static bool 2767 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2768 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2769 if (StressIVChain) 2770 return true; 2771 2772 if (!Chain.hasIncs()) 2773 return false; 2774 2775 if (!Users.empty()) { 2776 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2777 for (Instruction *Inst : Users) { 2778 dbgs() << " " << *Inst << "\n"; 2779 }); 2780 return false; 2781 } 2782 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2783 2784 // The chain itself may require a register, so intialize cost to 1. 2785 int cost = 1; 2786 2787 // A complete chain likely eliminates the need for keeping the original IV in 2788 // a register. LSR does not currently know how to form a complete chain unless 2789 // the header phi already exists. 2790 if (isa<PHINode>(Chain.tailUserInst()) 2791 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2792 --cost; 2793 } 2794 const SCEV *LastIncExpr = nullptr; 2795 unsigned NumConstIncrements = 0; 2796 unsigned NumVarIncrements = 0; 2797 unsigned NumReusedIncrements = 0; 2798 for (const IVInc &Inc : Chain) { 2799 if (Inc.IncExpr->isZero()) 2800 continue; 2801 2802 // Incrementing by zero or some constant is neutral. We assume constants can 2803 // be folded into an addressing mode or an add's immediate operand. 2804 if (isa<SCEVConstant>(Inc.IncExpr)) { 2805 ++NumConstIncrements; 2806 continue; 2807 } 2808 2809 if (Inc.IncExpr == LastIncExpr) 2810 ++NumReusedIncrements; 2811 else 2812 ++NumVarIncrements; 2813 2814 LastIncExpr = Inc.IncExpr; 2815 } 2816 // An IV chain with a single increment is handled by LSR's postinc 2817 // uses. However, a chain with multiple increments requires keeping the IV's 2818 // value live longer than it needs to be if chained. 2819 if (NumConstIncrements > 1) 2820 --cost; 2821 2822 // Materializing increment expressions in the preheader that didn't exist in 2823 // the original code may cost a register. For example, sign-extended array 2824 // indices can produce ridiculous increments like this: 2825 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2826 cost += NumVarIncrements; 2827 2828 // Reusing variable increments likely saves a register to hold the multiple of 2829 // the stride. 2830 cost -= NumReusedIncrements; 2831 2832 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2833 << "\n"); 2834 2835 return cost < 0; 2836 } 2837 2838 /// Add this IV user to an existing chain or make it the head of a new chain. 2839 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2840 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2841 // When IVs are used as types of varying widths, they are generally converted 2842 // to a wider type with some uses remaining narrow under a (free) trunc. 2843 Value *const NextIV = getWideOperand(IVOper); 2844 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2845 const SCEV *const OperExprBase = getExprBase(OperExpr); 2846 2847 // Visit all existing chains. Check if its IVOper can be computed as a 2848 // profitable loop invariant increment from the last link in the Chain. 2849 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2850 const SCEV *LastIncExpr = nullptr; 2851 for (; ChainIdx < NChains; ++ChainIdx) { 2852 IVChain &Chain = IVChainVec[ChainIdx]; 2853 2854 // Prune the solution space aggressively by checking that both IV operands 2855 // are expressions that operate on the same unscaled SCEVUnknown. This 2856 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2857 // first avoids creating extra SCEV expressions. 2858 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2859 continue; 2860 2861 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2862 if (!isCompatibleIVType(PrevIV, NextIV)) 2863 continue; 2864 2865 // A phi node terminates a chain. 2866 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2867 continue; 2868 2869 // The increment must be loop-invariant so it can be kept in a register. 2870 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2871 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2872 if (!SE.isLoopInvariant(IncExpr, L)) 2873 continue; 2874 2875 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2876 LastIncExpr = IncExpr; 2877 break; 2878 } 2879 } 2880 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2881 // bother for phi nodes, because they must be last in the chain. 2882 if (ChainIdx == NChains) { 2883 if (isa<PHINode>(UserInst)) 2884 return; 2885 if (NChains >= MaxChains && !StressIVChain) { 2886 DEBUG(dbgs() << "IV Chain Limit\n"); 2887 return; 2888 } 2889 LastIncExpr = OperExpr; 2890 // IVUsers may have skipped over sign/zero extensions. We don't currently 2891 // attempt to form chains involving extensions unless they can be hoisted 2892 // into this loop's AddRec. 2893 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2894 return; 2895 ++NChains; 2896 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2897 OperExprBase)); 2898 ChainUsersVec.resize(NChains); 2899 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2900 << ") IV=" << *LastIncExpr << "\n"); 2901 } else { 2902 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2903 << ") IV+" << *LastIncExpr << "\n"); 2904 // Add this IV user to the end of the chain. 2905 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2906 } 2907 IVChain &Chain = IVChainVec[ChainIdx]; 2908 2909 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2910 // This chain's NearUsers become FarUsers. 2911 if (!LastIncExpr->isZero()) { 2912 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2913 NearUsers.end()); 2914 NearUsers.clear(); 2915 } 2916 2917 // All other uses of IVOperand become near uses of the chain. 2918 // We currently ignore intermediate values within SCEV expressions, assuming 2919 // they will eventually be used be the current chain, or can be computed 2920 // from one of the chain increments. To be more precise we could 2921 // transitively follow its user and only add leaf IV users to the set. 2922 for (User *U : IVOper->users()) { 2923 Instruction *OtherUse = dyn_cast<Instruction>(U); 2924 if (!OtherUse) 2925 continue; 2926 // Uses in the chain will no longer be uses if the chain is formed. 2927 // Include the head of the chain in this iteration (not Chain.begin()). 2928 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2929 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2930 for( ; IncIter != IncEnd; ++IncIter) { 2931 if (IncIter->UserInst == OtherUse) 2932 break; 2933 } 2934 if (IncIter != IncEnd) 2935 continue; 2936 2937 if (SE.isSCEVable(OtherUse->getType()) 2938 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2939 && IU.isIVUserOrOperand(OtherUse)) { 2940 continue; 2941 } 2942 NearUsers.insert(OtherUse); 2943 } 2944 2945 // Since this user is part of the chain, it's no longer considered a use 2946 // of the chain. 2947 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2948 } 2949 2950 /// Populate the vector of Chains. 2951 /// 2952 /// This decreases ILP at the architecture level. Targets with ample registers, 2953 /// multiple memory ports, and no register renaming probably don't want 2954 /// this. However, such targets should probably disable LSR altogether. 2955 /// 2956 /// The job of LSR is to make a reasonable choice of induction variables across 2957 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2958 /// ILP *within the loop* if the target wants it. 2959 /// 2960 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2961 /// will not reorder memory operations, it will recognize this as a chain, but 2962 /// will generate redundant IV increments. Ideally this would be corrected later 2963 /// by a smart scheduler: 2964 /// = A[i] 2965 /// = A[i+x] 2966 /// A[i] = 2967 /// A[i+x] = 2968 /// 2969 /// TODO: Walk the entire domtree within this loop, not just the path to the 2970 /// loop latch. This will discover chains on side paths, but requires 2971 /// maintaining multiple copies of the Chains state. 2972 void LSRInstance::CollectChains() { 2973 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2974 SmallVector<ChainUsers, 8> ChainUsersVec; 2975 2976 SmallVector<BasicBlock *,8> LatchPath; 2977 BasicBlock *LoopHeader = L->getHeader(); 2978 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2979 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2980 LatchPath.push_back(Rung->getBlock()); 2981 } 2982 LatchPath.push_back(LoopHeader); 2983 2984 // Walk the instruction stream from the loop header to the loop latch. 2985 for (BasicBlock *BB : reverse(LatchPath)) { 2986 for (Instruction &I : *BB) { 2987 // Skip instructions that weren't seen by IVUsers analysis. 2988 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2989 continue; 2990 2991 // Ignore users that are part of a SCEV expression. This way we only 2992 // consider leaf IV Users. This effectively rediscovers a portion of 2993 // IVUsers analysis but in program order this time. 2994 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2995 continue; 2996 2997 // Remove this instruction from any NearUsers set it may be in. 2998 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2999 ChainIdx < NChains; ++ChainIdx) { 3000 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3001 } 3002 // Search for operands that can be chained. 3003 SmallPtrSet<Instruction*, 4> UniqueOperands; 3004 User::op_iterator IVOpEnd = I.op_end(); 3005 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3006 while (IVOpIter != IVOpEnd) { 3007 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3008 if (UniqueOperands.insert(IVOpInst).second) 3009 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3010 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3011 } 3012 } // Continue walking down the instructions. 3013 } // Continue walking down the domtree. 3014 // Visit phi backedges to determine if the chain can generate the IV postinc. 3015 for (PHINode &PN : L->getHeader()->phis()) { 3016 if (!SE.isSCEVable(PN.getType())) 3017 continue; 3018 3019 Instruction *IncV = 3020 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3021 if (IncV) 3022 ChainInstruction(&PN, IncV, ChainUsersVec); 3023 } 3024 // Remove any unprofitable chains. 3025 unsigned ChainIdx = 0; 3026 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3027 UsersIdx < NChains; ++UsersIdx) { 3028 if (!isProfitableChain(IVChainVec[UsersIdx], 3029 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3030 continue; 3031 // Preserve the chain at UsesIdx. 3032 if (ChainIdx != UsersIdx) 3033 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3034 FinalizeChain(IVChainVec[ChainIdx]); 3035 ++ChainIdx; 3036 } 3037 IVChainVec.resize(ChainIdx); 3038 } 3039 3040 void LSRInstance::FinalizeChain(IVChain &Chain) { 3041 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3042 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3043 3044 for (const IVInc &Inc : Chain) { 3045 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3046 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3047 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3048 IVIncSet.insert(UseI); 3049 } 3050 } 3051 3052 /// Return true if the IVInc can be folded into an addressing mode. 3053 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3054 Value *Operand, const TargetTransformInfo &TTI) { 3055 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3056 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3057 return false; 3058 3059 if (IncConst->getAPInt().getMinSignedBits() > 64) 3060 return false; 3061 3062 MemAccessTy AccessTy = getAccessType(TTI, UserInst); 3063 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3064 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3065 IncOffset, /*HaseBaseReg=*/false)) 3066 return false; 3067 3068 return true; 3069 } 3070 3071 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3072 /// user's operand from the previous IV user's operand. 3073 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3074 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3075 // Find the new IVOperand for the head of the chain. It may have been replaced 3076 // by LSR. 3077 const IVInc &Head = Chain.Incs[0]; 3078 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3079 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3080 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3081 IVOpEnd, L, SE); 3082 Value *IVSrc = nullptr; 3083 while (IVOpIter != IVOpEnd) { 3084 IVSrc = getWideOperand(*IVOpIter); 3085 3086 // If this operand computes the expression that the chain needs, we may use 3087 // it. (Check this after setting IVSrc which is used below.) 3088 // 3089 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3090 // narrow for the chain, so we can no longer use it. We do allow using a 3091 // wider phi, assuming the LSR checked for free truncation. In that case we 3092 // should already have a truncate on this operand such that 3093 // getSCEV(IVSrc) == IncExpr. 3094 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3095 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3096 break; 3097 } 3098 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3099 } 3100 if (IVOpIter == IVOpEnd) { 3101 // Gracefully give up on this chain. 3102 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3103 return; 3104 } 3105 3106 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3107 Type *IVTy = IVSrc->getType(); 3108 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3109 const SCEV *LeftOverExpr = nullptr; 3110 for (const IVInc &Inc : Chain) { 3111 Instruction *InsertPt = Inc.UserInst; 3112 if (isa<PHINode>(InsertPt)) 3113 InsertPt = L->getLoopLatch()->getTerminator(); 3114 3115 // IVOper will replace the current IV User's operand. IVSrc is the IV 3116 // value currently held in a register. 3117 Value *IVOper = IVSrc; 3118 if (!Inc.IncExpr->isZero()) { 3119 // IncExpr was the result of subtraction of two narrow values, so must 3120 // be signed. 3121 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3122 LeftOverExpr = LeftOverExpr ? 3123 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3124 } 3125 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3126 // Expand the IV increment. 3127 Rewriter.clearPostInc(); 3128 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3129 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3130 SE.getUnknown(IncV)); 3131 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3132 3133 // If an IV increment can't be folded, use it as the next IV value. 3134 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3135 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3136 IVSrc = IVOper; 3137 LeftOverExpr = nullptr; 3138 } 3139 } 3140 Type *OperTy = Inc.IVOperand->getType(); 3141 if (IVTy != OperTy) { 3142 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3143 "cannot extend a chained IV"); 3144 IRBuilder<> Builder(InsertPt); 3145 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3146 } 3147 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3148 DeadInsts.emplace_back(Inc.IVOperand); 3149 } 3150 // If LSR created a new, wider phi, we may also replace its postinc. We only 3151 // do this if we also found a wide value for the head of the chain. 3152 if (isa<PHINode>(Chain.tailUserInst())) { 3153 for (PHINode &Phi : L->getHeader()->phis()) { 3154 if (!isCompatibleIVType(&Phi, IVSrc)) 3155 continue; 3156 Instruction *PostIncV = dyn_cast<Instruction>( 3157 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3158 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3159 continue; 3160 Value *IVOper = IVSrc; 3161 Type *PostIncTy = PostIncV->getType(); 3162 if (IVTy != PostIncTy) { 3163 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3164 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3165 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3166 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3167 } 3168 Phi.replaceUsesOfWith(PostIncV, IVOper); 3169 DeadInsts.emplace_back(PostIncV); 3170 } 3171 } 3172 } 3173 3174 void LSRInstance::CollectFixupsAndInitialFormulae() { 3175 for (const IVStrideUse &U : IU) { 3176 Instruction *UserInst = U.getUser(); 3177 // Skip IV users that are part of profitable IV Chains. 3178 User::op_iterator UseI = 3179 find(UserInst->operands(), U.getOperandValToReplace()); 3180 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3181 if (IVIncSet.count(UseI)) { 3182 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3183 continue; 3184 } 3185 3186 LSRUse::KindType Kind = LSRUse::Basic; 3187 MemAccessTy AccessTy; 3188 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3189 Kind = LSRUse::Address; 3190 AccessTy = getAccessType(TTI, UserInst); 3191 } 3192 3193 const SCEV *S = IU.getExpr(U); 3194 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3195 3196 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3197 // (N - i == 0), and this allows (N - i) to be the expression that we work 3198 // with rather than just N or i, so we can consider the register 3199 // requirements for both N and i at the same time. Limiting this code to 3200 // equality icmps is not a problem because all interesting loops use 3201 // equality icmps, thanks to IndVarSimplify. 3202 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3203 if (CI->isEquality()) { 3204 // Swap the operands if needed to put the OperandValToReplace on the 3205 // left, for consistency. 3206 Value *NV = CI->getOperand(1); 3207 if (NV == U.getOperandValToReplace()) { 3208 CI->setOperand(1, CI->getOperand(0)); 3209 CI->setOperand(0, NV); 3210 NV = CI->getOperand(1); 3211 Changed = true; 3212 } 3213 3214 // x == y --> x - y == 0 3215 const SCEV *N = SE.getSCEV(NV); 3216 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3217 // S is normalized, so normalize N before folding it into S 3218 // to keep the result normalized. 3219 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3220 Kind = LSRUse::ICmpZero; 3221 S = SE.getMinusSCEV(N, S); 3222 } 3223 3224 // -1 and the negations of all interesting strides (except the negation 3225 // of -1) are now also interesting. 3226 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3227 if (Factors[i] != -1) 3228 Factors.insert(-(uint64_t)Factors[i]); 3229 Factors.insert(-1); 3230 } 3231 3232 // Get or create an LSRUse. 3233 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3234 size_t LUIdx = P.first; 3235 int64_t Offset = P.second; 3236 LSRUse &LU = Uses[LUIdx]; 3237 3238 // Record the fixup. 3239 LSRFixup &LF = LU.getNewFixup(); 3240 LF.UserInst = UserInst; 3241 LF.OperandValToReplace = U.getOperandValToReplace(); 3242 LF.PostIncLoops = TmpPostIncLoops; 3243 LF.Offset = Offset; 3244 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3245 3246 if (!LU.WidestFixupType || 3247 SE.getTypeSizeInBits(LU.WidestFixupType) < 3248 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3249 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3250 3251 // If this is the first use of this LSRUse, give it a formula. 3252 if (LU.Formulae.empty()) { 3253 InsertInitialFormula(S, LU, LUIdx); 3254 CountRegisters(LU.Formulae.back(), LUIdx); 3255 } 3256 } 3257 3258 DEBUG(print_fixups(dbgs())); 3259 } 3260 3261 /// Insert a formula for the given expression into the given use, separating out 3262 /// loop-variant portions from loop-invariant and loop-computable portions. 3263 void 3264 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3265 // Mark uses whose expressions cannot be expanded. 3266 if (!isSafeToExpand(S, SE)) 3267 LU.RigidFormula = true; 3268 3269 Formula F; 3270 F.initialMatch(S, L, SE); 3271 bool Inserted = InsertFormula(LU, LUIdx, F); 3272 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3273 } 3274 3275 /// Insert a simple single-register formula for the given expression into the 3276 /// given use. 3277 void 3278 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3279 LSRUse &LU, size_t LUIdx) { 3280 Formula F; 3281 F.BaseRegs.push_back(S); 3282 F.HasBaseReg = true; 3283 bool Inserted = InsertFormula(LU, LUIdx, F); 3284 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3285 } 3286 3287 /// Note which registers are used by the given formula, updating RegUses. 3288 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3289 if (F.ScaledReg) 3290 RegUses.countRegister(F.ScaledReg, LUIdx); 3291 for (const SCEV *BaseReg : F.BaseRegs) 3292 RegUses.countRegister(BaseReg, LUIdx); 3293 } 3294 3295 /// If the given formula has not yet been inserted, add it to the list, and 3296 /// return true. Return false otherwise. 3297 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3298 // Do not insert formula that we will not be able to expand. 3299 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3300 "Formula is illegal"); 3301 3302 if (!LU.InsertFormula(F, *L)) 3303 return false; 3304 3305 CountRegisters(F, LUIdx); 3306 return true; 3307 } 3308 3309 /// Check for other uses of loop-invariant values which we're tracking. These 3310 /// other uses will pin these values in registers, making them less profitable 3311 /// for elimination. 3312 /// TODO: This currently misses non-constant addrec step registers. 3313 /// TODO: Should this give more weight to users inside the loop? 3314 void 3315 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3316 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3317 SmallPtrSet<const SCEV *, 32> Visited; 3318 3319 while (!Worklist.empty()) { 3320 const SCEV *S = Worklist.pop_back_val(); 3321 3322 // Don't process the same SCEV twice 3323 if (!Visited.insert(S).second) 3324 continue; 3325 3326 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3327 Worklist.append(N->op_begin(), N->op_end()); 3328 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3329 Worklist.push_back(C->getOperand()); 3330 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3331 Worklist.push_back(D->getLHS()); 3332 Worklist.push_back(D->getRHS()); 3333 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3334 const Value *V = US->getValue(); 3335 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3336 // Look for instructions defined outside the loop. 3337 if (L->contains(Inst)) continue; 3338 } else if (isa<UndefValue>(V)) 3339 // Undef doesn't have a live range, so it doesn't matter. 3340 continue; 3341 for (const Use &U : V->uses()) { 3342 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3343 // Ignore non-instructions. 3344 if (!UserInst) 3345 continue; 3346 // Ignore instructions in other functions (as can happen with 3347 // Constants). 3348 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3349 continue; 3350 // Ignore instructions not dominated by the loop. 3351 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3352 UserInst->getParent() : 3353 cast<PHINode>(UserInst)->getIncomingBlock( 3354 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3355 if (!DT.dominates(L->getHeader(), UseBB)) 3356 continue; 3357 // Don't bother if the instruction is in a BB which ends in an EHPad. 3358 if (UseBB->getTerminator()->isEHPad()) 3359 continue; 3360 // Don't bother rewriting PHIs in catchswitch blocks. 3361 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3362 continue; 3363 // Ignore uses which are part of other SCEV expressions, to avoid 3364 // analyzing them multiple times. 3365 if (SE.isSCEVable(UserInst->getType())) { 3366 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3367 // If the user is a no-op, look through to its uses. 3368 if (!isa<SCEVUnknown>(UserS)) 3369 continue; 3370 if (UserS == US) { 3371 Worklist.push_back( 3372 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3373 continue; 3374 } 3375 } 3376 // Ignore icmp instructions which are already being analyzed. 3377 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3378 unsigned OtherIdx = !U.getOperandNo(); 3379 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3380 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3381 continue; 3382 } 3383 3384 std::pair<size_t, int64_t> P = getUse( 3385 S, LSRUse::Basic, MemAccessTy()); 3386 size_t LUIdx = P.first; 3387 int64_t Offset = P.second; 3388 LSRUse &LU = Uses[LUIdx]; 3389 LSRFixup &LF = LU.getNewFixup(); 3390 LF.UserInst = const_cast<Instruction *>(UserInst); 3391 LF.OperandValToReplace = U; 3392 LF.Offset = Offset; 3393 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3394 if (!LU.WidestFixupType || 3395 SE.getTypeSizeInBits(LU.WidestFixupType) < 3396 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3397 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3398 InsertSupplementalFormula(US, LU, LUIdx); 3399 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3400 break; 3401 } 3402 } 3403 } 3404 } 3405 3406 /// Split S into subexpressions which can be pulled out into separate 3407 /// registers. If C is non-null, multiply each subexpression by C. 3408 /// 3409 /// Return remainder expression after factoring the subexpressions captured by 3410 /// Ops. If Ops is complete, return NULL. 3411 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3412 SmallVectorImpl<const SCEV *> &Ops, 3413 const Loop *L, 3414 ScalarEvolution &SE, 3415 unsigned Depth = 0) { 3416 // Arbitrarily cap recursion to protect compile time. 3417 if (Depth >= 3) 3418 return S; 3419 3420 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3421 // Break out add operands. 3422 for (const SCEV *S : Add->operands()) { 3423 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3424 if (Remainder) 3425 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3426 } 3427 return nullptr; 3428 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3429 // Split a non-zero base out of an addrec. 3430 if (AR->getStart()->isZero() || !AR->isAffine()) 3431 return S; 3432 3433 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3434 C, Ops, L, SE, Depth+1); 3435 // Split the non-zero AddRec unless it is part of a nested recurrence that 3436 // does not pertain to this loop. 3437 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3438 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3439 Remainder = nullptr; 3440 } 3441 if (Remainder != AR->getStart()) { 3442 if (!Remainder) 3443 Remainder = SE.getConstant(AR->getType(), 0); 3444 return SE.getAddRecExpr(Remainder, 3445 AR->getStepRecurrence(SE), 3446 AR->getLoop(), 3447 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3448 SCEV::FlagAnyWrap); 3449 } 3450 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3451 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3452 if (Mul->getNumOperands() != 2) 3453 return S; 3454 if (const SCEVConstant *Op0 = 3455 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3456 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3457 const SCEV *Remainder = 3458 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3459 if (Remainder) 3460 Ops.push_back(SE.getMulExpr(C, Remainder)); 3461 return nullptr; 3462 } 3463 } 3464 return S; 3465 } 3466 3467 /// \brief Helper function for LSRInstance::GenerateReassociations. 3468 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3469 const Formula &Base, 3470 unsigned Depth, size_t Idx, 3471 bool IsScaledReg) { 3472 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3473 SmallVector<const SCEV *, 8> AddOps; 3474 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3475 if (Remainder) 3476 AddOps.push_back(Remainder); 3477 3478 if (AddOps.size() == 1) 3479 return; 3480 3481 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3482 JE = AddOps.end(); 3483 J != JE; ++J) { 3484 // Loop-variant "unknown" values are uninteresting; we won't be able to 3485 // do anything meaningful with them. 3486 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3487 continue; 3488 3489 // Don't pull a constant into a register if the constant could be folded 3490 // into an immediate field. 3491 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3492 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3493 continue; 3494 3495 // Collect all operands except *J. 3496 SmallVector<const SCEV *, 8> InnerAddOps( 3497 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3498 InnerAddOps.append(std::next(J), 3499 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3500 3501 // Don't leave just a constant behind in a register if the constant could 3502 // be folded into an immediate field. 3503 if (InnerAddOps.size() == 1 && 3504 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3505 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3506 continue; 3507 3508 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3509 if (InnerSum->isZero()) 3510 continue; 3511 Formula F = Base; 3512 3513 // Add the remaining pieces of the add back into the new formula. 3514 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3515 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3516 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3517 InnerSumSC->getValue()->getZExtValue())) { 3518 F.UnfoldedOffset = 3519 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3520 if (IsScaledReg) 3521 F.ScaledReg = nullptr; 3522 else 3523 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3524 } else if (IsScaledReg) 3525 F.ScaledReg = InnerSum; 3526 else 3527 F.BaseRegs[Idx] = InnerSum; 3528 3529 // Add J as its own register, or an unfolded immediate. 3530 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3531 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3532 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3533 SC->getValue()->getZExtValue())) 3534 F.UnfoldedOffset = 3535 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3536 else 3537 F.BaseRegs.push_back(*J); 3538 // We may have changed the number of register in base regs, adjust the 3539 // formula accordingly. 3540 F.canonicalize(*L); 3541 3542 if (InsertFormula(LU, LUIdx, F)) 3543 // If that formula hadn't been seen before, recurse to find more like 3544 // it. 3545 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3546 } 3547 } 3548 3549 /// Split out subexpressions from adds and the bases of addrecs. 3550 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3551 Formula Base, unsigned Depth) { 3552 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3553 // Arbitrarily cap recursion to protect compile time. 3554 if (Depth >= 3) 3555 return; 3556 3557 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3558 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3559 3560 if (Base.Scale == 1) 3561 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3562 /* Idx */ -1, /* IsScaledReg */ true); 3563 } 3564 3565 /// Generate a formula consisting of all of the loop-dominating registers added 3566 /// into a single register. 3567 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3568 Formula Base) { 3569 // This method is only interesting on a plurality of registers. 3570 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3571 return; 3572 3573 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3574 // processing the formula. 3575 Base.unscale(); 3576 Formula F = Base; 3577 F.BaseRegs.clear(); 3578 SmallVector<const SCEV *, 4> Ops; 3579 for (const SCEV *BaseReg : Base.BaseRegs) { 3580 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3581 !SE.hasComputableLoopEvolution(BaseReg, L)) 3582 Ops.push_back(BaseReg); 3583 else 3584 F.BaseRegs.push_back(BaseReg); 3585 } 3586 if (Ops.size() > 1) { 3587 const SCEV *Sum = SE.getAddExpr(Ops); 3588 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3589 // opportunity to fold something. For now, just ignore such cases 3590 // rather than proceed with zero in a register. 3591 if (!Sum->isZero()) { 3592 F.BaseRegs.push_back(Sum); 3593 F.canonicalize(*L); 3594 (void)InsertFormula(LU, LUIdx, F); 3595 } 3596 } 3597 } 3598 3599 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3600 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3601 const Formula &Base, size_t Idx, 3602 bool IsScaledReg) { 3603 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3604 GlobalValue *GV = ExtractSymbol(G, SE); 3605 if (G->isZero() || !GV) 3606 return; 3607 Formula F = Base; 3608 F.BaseGV = GV; 3609 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3610 return; 3611 if (IsScaledReg) 3612 F.ScaledReg = G; 3613 else 3614 F.BaseRegs[Idx] = G; 3615 (void)InsertFormula(LU, LUIdx, F); 3616 } 3617 3618 /// Generate reuse formulae using symbolic offsets. 3619 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3620 Formula Base) { 3621 // We can't add a symbolic offset if the address already contains one. 3622 if (Base.BaseGV) return; 3623 3624 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3625 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3626 if (Base.Scale == 1) 3627 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3628 /* IsScaledReg */ true); 3629 } 3630 3631 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3632 void LSRInstance::GenerateConstantOffsetsImpl( 3633 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3634 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3635 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3636 for (int64_t Offset : Worklist) { 3637 Formula F = Base; 3638 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3639 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3640 LU.AccessTy, F)) { 3641 // Add the offset to the base register. 3642 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3643 // If it cancelled out, drop the base register, otherwise update it. 3644 if (NewG->isZero()) { 3645 if (IsScaledReg) { 3646 F.Scale = 0; 3647 F.ScaledReg = nullptr; 3648 } else 3649 F.deleteBaseReg(F.BaseRegs[Idx]); 3650 F.canonicalize(*L); 3651 } else if (IsScaledReg) 3652 F.ScaledReg = NewG; 3653 else 3654 F.BaseRegs[Idx] = NewG; 3655 3656 (void)InsertFormula(LU, LUIdx, F); 3657 } 3658 } 3659 3660 int64_t Imm = ExtractImmediate(G, SE); 3661 if (G->isZero() || Imm == 0) 3662 return; 3663 Formula F = Base; 3664 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3665 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3666 return; 3667 if (IsScaledReg) 3668 F.ScaledReg = G; 3669 else 3670 F.BaseRegs[Idx] = G; 3671 (void)InsertFormula(LU, LUIdx, F); 3672 } 3673 3674 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3675 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3676 Formula Base) { 3677 // TODO: For now, just add the min and max offset, because it usually isn't 3678 // worthwhile looking at everything inbetween. 3679 SmallVector<int64_t, 2> Worklist; 3680 Worklist.push_back(LU.MinOffset); 3681 if (LU.MaxOffset != LU.MinOffset) 3682 Worklist.push_back(LU.MaxOffset); 3683 3684 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3685 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3686 if (Base.Scale == 1) 3687 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3688 /* IsScaledReg */ true); 3689 } 3690 3691 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3692 /// == y -> x*c == y*c. 3693 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3694 Formula Base) { 3695 if (LU.Kind != LSRUse::ICmpZero) return; 3696 3697 // Determine the integer type for the base formula. 3698 Type *IntTy = Base.getType(); 3699 if (!IntTy) return; 3700 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3701 3702 // Don't do this if there is more than one offset. 3703 if (LU.MinOffset != LU.MaxOffset) return; 3704 3705 // Check if transformation is valid. It is illegal to multiply pointer. 3706 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3707 return; 3708 for (const SCEV *BaseReg : Base.BaseRegs) 3709 if (BaseReg->getType()->isPointerTy()) 3710 return; 3711 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3712 3713 // Check each interesting stride. 3714 for (int64_t Factor : Factors) { 3715 // Check that the multiplication doesn't overflow. 3716 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3717 continue; 3718 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3719 if (NewBaseOffset / Factor != Base.BaseOffset) 3720 continue; 3721 // If the offset will be truncated at this use, check that it is in bounds. 3722 if (!IntTy->isPointerTy() && 3723 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3724 continue; 3725 3726 // Check that multiplying with the use offset doesn't overflow. 3727 int64_t Offset = LU.MinOffset; 3728 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3729 continue; 3730 Offset = (uint64_t)Offset * Factor; 3731 if (Offset / Factor != LU.MinOffset) 3732 continue; 3733 // If the offset will be truncated at this use, check that it is in bounds. 3734 if (!IntTy->isPointerTy() && 3735 !ConstantInt::isValueValidForType(IntTy, Offset)) 3736 continue; 3737 3738 Formula F = Base; 3739 F.BaseOffset = NewBaseOffset; 3740 3741 // Check that this scale is legal. 3742 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3743 continue; 3744 3745 // Compensate for the use having MinOffset built into it. 3746 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3747 3748 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3749 3750 // Check that multiplying with each base register doesn't overflow. 3751 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3752 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3753 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3754 goto next; 3755 } 3756 3757 // Check that multiplying with the scaled register doesn't overflow. 3758 if (F.ScaledReg) { 3759 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3760 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3761 continue; 3762 } 3763 3764 // Check that multiplying with the unfolded offset doesn't overflow. 3765 if (F.UnfoldedOffset != 0) { 3766 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3767 Factor == -1) 3768 continue; 3769 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3770 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3771 continue; 3772 // If the offset will be truncated, check that it is in bounds. 3773 if (!IntTy->isPointerTy() && 3774 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3775 continue; 3776 } 3777 3778 // If we make it here and it's legal, add it. 3779 (void)InsertFormula(LU, LUIdx, F); 3780 next:; 3781 } 3782 } 3783 3784 /// Generate stride factor reuse formulae by making use of scaled-offset address 3785 /// modes, for example. 3786 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3787 // Determine the integer type for the base formula. 3788 Type *IntTy = Base.getType(); 3789 if (!IntTy) return; 3790 3791 // If this Formula already has a scaled register, we can't add another one. 3792 // Try to unscale the formula to generate a better scale. 3793 if (Base.Scale != 0 && !Base.unscale()) 3794 return; 3795 3796 assert(Base.Scale == 0 && "unscale did not did its job!"); 3797 3798 // Check each interesting stride. 3799 for (int64_t Factor : Factors) { 3800 Base.Scale = Factor; 3801 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3802 // Check whether this scale is going to be legal. 3803 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3804 Base)) { 3805 // As a special-case, handle special out-of-loop Basic users specially. 3806 // TODO: Reconsider this special case. 3807 if (LU.Kind == LSRUse::Basic && 3808 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3809 LU.AccessTy, Base) && 3810 LU.AllFixupsOutsideLoop) 3811 LU.Kind = LSRUse::Special; 3812 else 3813 continue; 3814 } 3815 // For an ICmpZero, negating a solitary base register won't lead to 3816 // new solutions. 3817 if (LU.Kind == LSRUse::ICmpZero && 3818 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3819 continue; 3820 // For each addrec base reg, if its loop is current loop, apply the scale. 3821 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3822 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3823 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3824 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3825 if (FactorS->isZero()) 3826 continue; 3827 // Divide out the factor, ignoring high bits, since we'll be 3828 // scaling the value back up in the end. 3829 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3830 // TODO: This could be optimized to avoid all the copying. 3831 Formula F = Base; 3832 F.ScaledReg = Quotient; 3833 F.deleteBaseReg(F.BaseRegs[i]); 3834 // The canonical representation of 1*reg is reg, which is already in 3835 // Base. In that case, do not try to insert the formula, it will be 3836 // rejected anyway. 3837 if (F.Scale == 1 && (F.BaseRegs.empty() || 3838 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3839 continue; 3840 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3841 // non canonical Formula with ScaledReg's loop not being L. 3842 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3843 F.canonicalize(*L); 3844 (void)InsertFormula(LU, LUIdx, F); 3845 } 3846 } 3847 } 3848 } 3849 } 3850 3851 /// Generate reuse formulae from different IV types. 3852 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3853 // Don't bother truncating symbolic values. 3854 if (Base.BaseGV) return; 3855 3856 // Determine the integer type for the base formula. 3857 Type *DstTy = Base.getType(); 3858 if (!DstTy) return; 3859 DstTy = SE.getEffectiveSCEVType(DstTy); 3860 3861 for (Type *SrcTy : Types) { 3862 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3863 Formula F = Base; 3864 3865 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3866 for (const SCEV *&BaseReg : F.BaseRegs) 3867 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3868 3869 // TODO: This assumes we've done basic processing on all uses and 3870 // have an idea what the register usage is. 3871 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3872 continue; 3873 3874 F.canonicalize(*L); 3875 (void)InsertFormula(LU, LUIdx, F); 3876 } 3877 } 3878 } 3879 3880 namespace { 3881 3882 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3883 /// modifications so that the search phase doesn't have to worry about the data 3884 /// structures moving underneath it. 3885 struct WorkItem { 3886 size_t LUIdx; 3887 int64_t Imm; 3888 const SCEV *OrigReg; 3889 3890 WorkItem(size_t LI, int64_t I, const SCEV *R) 3891 : LUIdx(LI), Imm(I), OrigReg(R) {} 3892 3893 void print(raw_ostream &OS) const; 3894 void dump() const; 3895 }; 3896 3897 } // end anonymous namespace 3898 3899 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3900 void WorkItem::print(raw_ostream &OS) const { 3901 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3902 << " , add offset " << Imm; 3903 } 3904 3905 LLVM_DUMP_METHOD void WorkItem::dump() const { 3906 print(errs()); errs() << '\n'; 3907 } 3908 #endif 3909 3910 /// Look for registers which are a constant distance apart and try to form reuse 3911 /// opportunities between them. 3912 void LSRInstance::GenerateCrossUseConstantOffsets() { 3913 // Group the registers by their value without any added constant offset. 3914 using ImmMapTy = std::map<int64_t, const SCEV *>; 3915 3916 DenseMap<const SCEV *, ImmMapTy> Map; 3917 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3918 SmallVector<const SCEV *, 8> Sequence; 3919 for (const SCEV *Use : RegUses) { 3920 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3921 int64_t Imm = ExtractImmediate(Reg, SE); 3922 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3923 if (Pair.second) 3924 Sequence.push_back(Reg); 3925 Pair.first->second.insert(std::make_pair(Imm, Use)); 3926 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3927 } 3928 3929 // Now examine each set of registers with the same base value. Build up 3930 // a list of work to do and do the work in a separate step so that we're 3931 // not adding formulae and register counts while we're searching. 3932 SmallVector<WorkItem, 32> WorkItems; 3933 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3934 for (const SCEV *Reg : Sequence) { 3935 const ImmMapTy &Imms = Map.find(Reg)->second; 3936 3937 // It's not worthwhile looking for reuse if there's only one offset. 3938 if (Imms.size() == 1) 3939 continue; 3940 3941 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3942 for (const auto &Entry : Imms) 3943 dbgs() << ' ' << Entry.first; 3944 dbgs() << '\n'); 3945 3946 // Examine each offset. 3947 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3948 J != JE; ++J) { 3949 const SCEV *OrigReg = J->second; 3950 3951 int64_t JImm = J->first; 3952 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3953 3954 if (!isa<SCEVConstant>(OrigReg) && 3955 UsedByIndicesMap[Reg].count() == 1) { 3956 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3957 continue; 3958 } 3959 3960 // Conservatively examine offsets between this orig reg a few selected 3961 // other orig regs. 3962 ImmMapTy::const_iterator OtherImms[] = { 3963 Imms.begin(), std::prev(Imms.end()), 3964 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3965 2) 3966 }; 3967 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3968 ImmMapTy::const_iterator M = OtherImms[i]; 3969 if (M == J || M == JE) continue; 3970 3971 // Compute the difference between the two. 3972 int64_t Imm = (uint64_t)JImm - M->first; 3973 for (unsigned LUIdx : UsedByIndices.set_bits()) 3974 // Make a memo of this use, offset, and register tuple. 3975 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3976 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3977 } 3978 } 3979 } 3980 3981 Map.clear(); 3982 Sequence.clear(); 3983 UsedByIndicesMap.clear(); 3984 UniqueItems.clear(); 3985 3986 // Now iterate through the worklist and add new formulae. 3987 for (const WorkItem &WI : WorkItems) { 3988 size_t LUIdx = WI.LUIdx; 3989 LSRUse &LU = Uses[LUIdx]; 3990 int64_t Imm = WI.Imm; 3991 const SCEV *OrigReg = WI.OrigReg; 3992 3993 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3994 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3995 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3996 3997 // TODO: Use a more targeted data structure. 3998 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3999 Formula F = LU.Formulae[L]; 4000 // FIXME: The code for the scaled and unscaled registers looks 4001 // very similar but slightly different. Investigate if they 4002 // could be merged. That way, we would not have to unscale the 4003 // Formula. 4004 F.unscale(); 4005 // Use the immediate in the scaled register. 4006 if (F.ScaledReg == OrigReg) { 4007 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4008 // Don't create 50 + reg(-50). 4009 if (F.referencesReg(SE.getSCEV( 4010 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4011 continue; 4012 Formula NewF = F; 4013 NewF.BaseOffset = Offset; 4014 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4015 NewF)) 4016 continue; 4017 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4018 4019 // If the new scale is a constant in a register, and adding the constant 4020 // value to the immediate would produce a value closer to zero than the 4021 // immediate itself, then the formula isn't worthwhile. 4022 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4023 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4024 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4025 .ule(std::abs(NewF.BaseOffset))) 4026 continue; 4027 4028 // OK, looks good. 4029 NewF.canonicalize(*this->L); 4030 (void)InsertFormula(LU, LUIdx, NewF); 4031 } else { 4032 // Use the immediate in a base register. 4033 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4034 const SCEV *BaseReg = F.BaseRegs[N]; 4035 if (BaseReg != OrigReg) 4036 continue; 4037 Formula NewF = F; 4038 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4039 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4040 LU.Kind, LU.AccessTy, NewF)) { 4041 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4042 continue; 4043 NewF = F; 4044 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4045 } 4046 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4047 4048 // If the new formula has a constant in a register, and adding the 4049 // constant value to the immediate would produce a value closer to 4050 // zero than the immediate itself, then the formula isn't worthwhile. 4051 for (const SCEV *NewReg : NewF.BaseRegs) 4052 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4053 if ((C->getAPInt() + NewF.BaseOffset) 4054 .abs() 4055 .slt(std::abs(NewF.BaseOffset)) && 4056 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4057 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4058 goto skip_formula; 4059 4060 // Ok, looks good. 4061 NewF.canonicalize(*this->L); 4062 (void)InsertFormula(LU, LUIdx, NewF); 4063 break; 4064 skip_formula:; 4065 } 4066 } 4067 } 4068 } 4069 } 4070 4071 /// Generate formulae for each use. 4072 void 4073 LSRInstance::GenerateAllReuseFormulae() { 4074 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4075 // queries are more precise. 4076 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4077 LSRUse &LU = Uses[LUIdx]; 4078 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4079 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4080 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4081 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4082 } 4083 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4084 LSRUse &LU = Uses[LUIdx]; 4085 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4086 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4087 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4088 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4089 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4090 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4091 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4092 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4093 } 4094 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4095 LSRUse &LU = Uses[LUIdx]; 4096 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4097 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4098 } 4099 4100 GenerateCrossUseConstantOffsets(); 4101 4102 DEBUG(dbgs() << "\n" 4103 "After generating reuse formulae:\n"; 4104 print_uses(dbgs())); 4105 } 4106 4107 /// If there are multiple formulae with the same set of registers used 4108 /// by other uses, pick the best one and delete the others. 4109 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4110 DenseSet<const SCEV *> VisitedRegs; 4111 SmallPtrSet<const SCEV *, 16> Regs; 4112 SmallPtrSet<const SCEV *, 16> LoserRegs; 4113 #ifndef NDEBUG 4114 bool ChangedFormulae = false; 4115 #endif 4116 4117 // Collect the best formula for each unique set of shared registers. This 4118 // is reset for each use. 4119 using BestFormulaeTy = 4120 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4121 4122 BestFormulaeTy BestFormulae; 4123 4124 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4125 LSRUse &LU = Uses[LUIdx]; 4126 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4127 4128 bool Any = false; 4129 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4130 FIdx != NumForms; ++FIdx) { 4131 Formula &F = LU.Formulae[FIdx]; 4132 4133 // Some formulas are instant losers. For example, they may depend on 4134 // nonexistent AddRecs from other loops. These need to be filtered 4135 // immediately, otherwise heuristics could choose them over others leading 4136 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4137 // avoids the need to recompute this information across formulae using the 4138 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4139 // the corresponding bad register from the Regs set. 4140 Cost CostF; 4141 Regs.clear(); 4142 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4143 if (CostF.isLoser()) { 4144 // During initial formula generation, undesirable formulae are generated 4145 // by uses within other loops that have some non-trivial address mode or 4146 // use the postinc form of the IV. LSR needs to provide these formulae 4147 // as the basis of rediscovering the desired formula that uses an AddRec 4148 // corresponding to the existing phi. Once all formulae have been 4149 // generated, these initial losers may be pruned. 4150 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4151 dbgs() << "\n"); 4152 } 4153 else { 4154 SmallVector<const SCEV *, 4> Key; 4155 for (const SCEV *Reg : F.BaseRegs) { 4156 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4157 Key.push_back(Reg); 4158 } 4159 if (F.ScaledReg && 4160 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4161 Key.push_back(F.ScaledReg); 4162 // Unstable sort by host order ok, because this is only used for 4163 // uniquifying. 4164 std::sort(Key.begin(), Key.end()); 4165 4166 std::pair<BestFormulaeTy::const_iterator, bool> P = 4167 BestFormulae.insert(std::make_pair(Key, FIdx)); 4168 if (P.second) 4169 continue; 4170 4171 Formula &Best = LU.Formulae[P.first->second]; 4172 4173 Cost CostBest; 4174 Regs.clear(); 4175 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4176 if (CostF.isLess(CostBest, TTI)) 4177 std::swap(F, Best); 4178 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4179 dbgs() << "\n" 4180 " in favor of formula "; Best.print(dbgs()); 4181 dbgs() << '\n'); 4182 } 4183 #ifndef NDEBUG 4184 ChangedFormulae = true; 4185 #endif 4186 LU.DeleteFormula(F); 4187 --FIdx; 4188 --NumForms; 4189 Any = true; 4190 } 4191 4192 // Now that we've filtered out some formulae, recompute the Regs set. 4193 if (Any) 4194 LU.RecomputeRegs(LUIdx, RegUses); 4195 4196 // Reset this to prepare for the next use. 4197 BestFormulae.clear(); 4198 } 4199 4200 DEBUG(if (ChangedFormulae) { 4201 dbgs() << "\n" 4202 "After filtering out undesirable candidates:\n"; 4203 print_uses(dbgs()); 4204 }); 4205 } 4206 4207 // This is a rough guess that seems to work fairly well. 4208 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); 4209 4210 /// Estimate the worst-case number of solutions the solver might have to 4211 /// consider. It almost never considers this many solutions because it prune the 4212 /// search space, but the pruning isn't always sufficient. 4213 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4214 size_t Power = 1; 4215 for (const LSRUse &LU : Uses) { 4216 size_t FSize = LU.Formulae.size(); 4217 if (FSize >= ComplexityLimit) { 4218 Power = ComplexityLimit; 4219 break; 4220 } 4221 Power *= FSize; 4222 if (Power >= ComplexityLimit) 4223 break; 4224 } 4225 return Power; 4226 } 4227 4228 /// When one formula uses a superset of the registers of another formula, it 4229 /// won't help reduce register pressure (though it may not necessarily hurt 4230 /// register pressure); remove it to simplify the system. 4231 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4232 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4233 DEBUG(dbgs() << "The search space is too complex.\n"); 4234 4235 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4236 "which use a superset of registers used by other " 4237 "formulae.\n"); 4238 4239 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4240 LSRUse &LU = Uses[LUIdx]; 4241 bool Any = false; 4242 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4243 Formula &F = LU.Formulae[i]; 4244 // Look for a formula with a constant or GV in a register. If the use 4245 // also has a formula with that same value in an immediate field, 4246 // delete the one that uses a register. 4247 for (SmallVectorImpl<const SCEV *>::const_iterator 4248 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4249 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4250 Formula NewF = F; 4251 NewF.BaseOffset += C->getValue()->getSExtValue(); 4252 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4253 (I - F.BaseRegs.begin())); 4254 if (LU.HasFormulaWithSameRegs(NewF)) { 4255 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4256 LU.DeleteFormula(F); 4257 --i; 4258 --e; 4259 Any = true; 4260 break; 4261 } 4262 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4263 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4264 if (!F.BaseGV) { 4265 Formula NewF = F; 4266 NewF.BaseGV = GV; 4267 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4268 (I - F.BaseRegs.begin())); 4269 if (LU.HasFormulaWithSameRegs(NewF)) { 4270 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4271 dbgs() << '\n'); 4272 LU.DeleteFormula(F); 4273 --i; 4274 --e; 4275 Any = true; 4276 break; 4277 } 4278 } 4279 } 4280 } 4281 } 4282 if (Any) 4283 LU.RecomputeRegs(LUIdx, RegUses); 4284 } 4285 4286 DEBUG(dbgs() << "After pre-selection:\n"; 4287 print_uses(dbgs())); 4288 } 4289 } 4290 4291 /// When there are many registers for expressions like A, A+1, A+2, etc., 4292 /// allocate a single register for them. 4293 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4294 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4295 return; 4296 4297 DEBUG(dbgs() << "The search space is too complex.\n" 4298 "Narrowing the search space by assuming that uses separated " 4299 "by a constant offset will use the same registers.\n"); 4300 4301 // This is especially useful for unrolled loops. 4302 4303 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4304 LSRUse &LU = Uses[LUIdx]; 4305 for (const Formula &F : LU.Formulae) { 4306 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4307 continue; 4308 4309 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4310 if (!LUThatHas) 4311 continue; 4312 4313 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4314 LU.Kind, LU.AccessTy)) 4315 continue; 4316 4317 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4318 4319 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4320 4321 // Transfer the fixups of LU to LUThatHas. 4322 for (LSRFixup &Fixup : LU.Fixups) { 4323 Fixup.Offset += F.BaseOffset; 4324 LUThatHas->pushFixup(Fixup); 4325 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4326 } 4327 4328 // Delete formulae from the new use which are no longer legal. 4329 bool Any = false; 4330 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4331 Formula &F = LUThatHas->Formulae[i]; 4332 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4333 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4334 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4335 dbgs() << '\n'); 4336 LUThatHas->DeleteFormula(F); 4337 --i; 4338 --e; 4339 Any = true; 4340 } 4341 } 4342 4343 if (Any) 4344 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4345 4346 // Delete the old use. 4347 DeleteUse(LU, LUIdx); 4348 --LUIdx; 4349 --NumUses; 4350 break; 4351 } 4352 } 4353 4354 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4355 } 4356 4357 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4358 /// we've done more filtering, as it may be able to find more formulae to 4359 /// eliminate. 4360 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4361 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4362 DEBUG(dbgs() << "The search space is too complex.\n"); 4363 4364 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4365 "undesirable dedicated registers.\n"); 4366 4367 FilterOutUndesirableDedicatedRegisters(); 4368 4369 DEBUG(dbgs() << "After pre-selection:\n"; 4370 print_uses(dbgs())); 4371 } 4372 } 4373 4374 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4375 /// Pick the best one and delete the others. 4376 /// This narrowing heuristic is to keep as many formulae with different 4377 /// Scale and ScaledReg pair as possible while narrowing the search space. 4378 /// The benefit is that it is more likely to find out a better solution 4379 /// from a formulae set with more Scale and ScaledReg variations than 4380 /// a formulae set with the same Scale and ScaledReg. The picking winner 4381 /// reg heurstic will often keep the formulae with the same Scale and 4382 /// ScaledReg and filter others, and we want to avoid that if possible. 4383 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4384 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4385 return; 4386 4387 DEBUG(dbgs() << "The search space is too complex.\n" 4388 "Narrowing the search space by choosing the best Formula " 4389 "from the Formulae with the same Scale and ScaledReg.\n"); 4390 4391 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4392 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4393 4394 BestFormulaeTy BestFormulae; 4395 #ifndef NDEBUG 4396 bool ChangedFormulae = false; 4397 #endif 4398 DenseSet<const SCEV *> VisitedRegs; 4399 SmallPtrSet<const SCEV *, 16> Regs; 4400 4401 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4402 LSRUse &LU = Uses[LUIdx]; 4403 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4404 4405 // Return true if Formula FA is better than Formula FB. 4406 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4407 // First we will try to choose the Formula with fewer new registers. 4408 // For a register used by current Formula, the more the register is 4409 // shared among LSRUses, the less we increase the register number 4410 // counter of the formula. 4411 size_t FARegNum = 0; 4412 for (const SCEV *Reg : FA.BaseRegs) { 4413 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4414 FARegNum += (NumUses - UsedByIndices.count() + 1); 4415 } 4416 size_t FBRegNum = 0; 4417 for (const SCEV *Reg : FB.BaseRegs) { 4418 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4419 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4420 } 4421 if (FARegNum != FBRegNum) 4422 return FARegNum < FBRegNum; 4423 4424 // If the new register numbers are the same, choose the Formula with 4425 // less Cost. 4426 Cost CostFA, CostFB; 4427 Regs.clear(); 4428 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4429 Regs.clear(); 4430 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4431 return CostFA.isLess(CostFB, TTI); 4432 }; 4433 4434 bool Any = false; 4435 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4436 ++FIdx) { 4437 Formula &F = LU.Formulae[FIdx]; 4438 if (!F.ScaledReg) 4439 continue; 4440 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4441 if (P.second) 4442 continue; 4443 4444 Formula &Best = LU.Formulae[P.first->second]; 4445 if (IsBetterThan(F, Best)) 4446 std::swap(F, Best); 4447 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4448 dbgs() << "\n" 4449 " in favor of formula "; 4450 Best.print(dbgs()); dbgs() << '\n'); 4451 #ifndef NDEBUG 4452 ChangedFormulae = true; 4453 #endif 4454 LU.DeleteFormula(F); 4455 --FIdx; 4456 --NumForms; 4457 Any = true; 4458 } 4459 if (Any) 4460 LU.RecomputeRegs(LUIdx, RegUses); 4461 4462 // Reset this to prepare for the next use. 4463 BestFormulae.clear(); 4464 } 4465 4466 DEBUG(if (ChangedFormulae) { 4467 dbgs() << "\n" 4468 "After filtering out undesirable candidates:\n"; 4469 print_uses(dbgs()); 4470 }); 4471 } 4472 4473 /// The function delete formulas with high registers number expectation. 4474 /// Assuming we don't know the value of each formula (already delete 4475 /// all inefficient), generate probability of not selecting for each 4476 /// register. 4477 /// For example, 4478 /// Use1: 4479 /// reg(a) + reg({0,+,1}) 4480 /// reg(a) + reg({-1,+,1}) + 1 4481 /// reg({a,+,1}) 4482 /// Use2: 4483 /// reg(b) + reg({0,+,1}) 4484 /// reg(b) + reg({-1,+,1}) + 1 4485 /// reg({b,+,1}) 4486 /// Use3: 4487 /// reg(c) + reg(b) + reg({0,+,1}) 4488 /// reg(c) + reg({b,+,1}) 4489 /// 4490 /// Probability of not selecting 4491 /// Use1 Use2 Use3 4492 /// reg(a) (1/3) * 1 * 1 4493 /// reg(b) 1 * (1/3) * (1/2) 4494 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4495 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4496 /// reg({a,+,1}) (2/3) * 1 * 1 4497 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4498 /// reg(c) 1 * 1 * 0 4499 /// 4500 /// Now count registers number mathematical expectation for each formula: 4501 /// Note that for each use we exclude probability if not selecting for the use. 4502 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4503 /// probabilty 1/3 of not selecting for Use1). 4504 /// Use1: 4505 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4506 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4507 /// reg({a,+,1}) 1 4508 /// Use2: 4509 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4510 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4511 /// reg({b,+,1}) 2/3 4512 /// Use3: 4513 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4514 /// reg(c) + reg({b,+,1}) 1 + 2/3 4515 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4516 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4517 return; 4518 // Ok, we have too many of formulae on our hands to conveniently handle. 4519 // Use a rough heuristic to thin out the list. 4520 4521 // Set of Regs wich will be 100% used in final solution. 4522 // Used in each formula of a solution (in example above this is reg(c)). 4523 // We can skip them in calculations. 4524 SmallPtrSet<const SCEV *, 4> UniqRegs; 4525 DEBUG(dbgs() << "The search space is too complex.\n"); 4526 4527 // Map each register to probability of not selecting 4528 DenseMap <const SCEV *, float> RegNumMap; 4529 for (const SCEV *Reg : RegUses) { 4530 if (UniqRegs.count(Reg)) 4531 continue; 4532 float PNotSel = 1; 4533 for (const LSRUse &LU : Uses) { 4534 if (!LU.Regs.count(Reg)) 4535 continue; 4536 float P = LU.getNotSelectedProbability(Reg); 4537 if (P != 0.0) 4538 PNotSel *= P; 4539 else 4540 UniqRegs.insert(Reg); 4541 } 4542 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4543 } 4544 4545 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4546 4547 // Delete formulas where registers number expectation is high. 4548 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4549 LSRUse &LU = Uses[LUIdx]; 4550 // If nothing to delete - continue. 4551 if (LU.Formulae.size() < 2) 4552 continue; 4553 // This is temporary solution to test performance. Float should be 4554 // replaced with round independent type (based on integers) to avoid 4555 // different results for different target builds. 4556 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4557 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4558 size_t MinIdx = 0; 4559 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4560 Formula &F = LU.Formulae[i]; 4561 float FRegNum = 0; 4562 float FARegNum = 0; 4563 for (const SCEV *BaseReg : F.BaseRegs) { 4564 if (UniqRegs.count(BaseReg)) 4565 continue; 4566 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4567 if (isa<SCEVAddRecExpr>(BaseReg)) 4568 FARegNum += 4569 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4570 } 4571 if (const SCEV *ScaledReg = F.ScaledReg) { 4572 if (!UniqRegs.count(ScaledReg)) { 4573 FRegNum += 4574 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4575 if (isa<SCEVAddRecExpr>(ScaledReg)) 4576 FARegNum += 4577 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4578 } 4579 } 4580 if (FMinRegNum > FRegNum || 4581 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4582 FMinRegNum = FRegNum; 4583 FMinARegNum = FARegNum; 4584 MinIdx = i; 4585 } 4586 } 4587 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4588 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4589 if (MinIdx != 0) 4590 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4591 while (LU.Formulae.size() != 1) { 4592 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4593 dbgs() << '\n'); 4594 LU.Formulae.pop_back(); 4595 } 4596 LU.RecomputeRegs(LUIdx, RegUses); 4597 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4598 Formula &F = LU.Formulae[0]; 4599 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4600 // When we choose the formula, the regs become unique. 4601 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4602 if (F.ScaledReg) 4603 UniqRegs.insert(F.ScaledReg); 4604 } 4605 DEBUG(dbgs() << "After pre-selection:\n"; 4606 print_uses(dbgs())); 4607 } 4608 4609 /// Pick a register which seems likely to be profitable, and then in any use 4610 /// which has any reference to that register, delete all formulae which do not 4611 /// reference that register. 4612 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4613 // With all other options exhausted, loop until the system is simple 4614 // enough to handle. 4615 SmallPtrSet<const SCEV *, 4> Taken; 4616 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4617 // Ok, we have too many of formulae on our hands to conveniently handle. 4618 // Use a rough heuristic to thin out the list. 4619 DEBUG(dbgs() << "The search space is too complex.\n"); 4620 4621 // Pick the register which is used by the most LSRUses, which is likely 4622 // to be a good reuse register candidate. 4623 const SCEV *Best = nullptr; 4624 unsigned BestNum = 0; 4625 for (const SCEV *Reg : RegUses) { 4626 if (Taken.count(Reg)) 4627 continue; 4628 if (!Best) { 4629 Best = Reg; 4630 BestNum = RegUses.getUsedByIndices(Reg).count(); 4631 } else { 4632 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4633 if (Count > BestNum) { 4634 Best = Reg; 4635 BestNum = Count; 4636 } 4637 } 4638 } 4639 4640 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4641 << " will yield profitable reuse.\n"); 4642 Taken.insert(Best); 4643 4644 // In any use with formulae which references this register, delete formulae 4645 // which don't reference it. 4646 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4647 LSRUse &LU = Uses[LUIdx]; 4648 if (!LU.Regs.count(Best)) continue; 4649 4650 bool Any = false; 4651 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4652 Formula &F = LU.Formulae[i]; 4653 if (!F.referencesReg(Best)) { 4654 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4655 LU.DeleteFormula(F); 4656 --e; 4657 --i; 4658 Any = true; 4659 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4660 continue; 4661 } 4662 } 4663 4664 if (Any) 4665 LU.RecomputeRegs(LUIdx, RegUses); 4666 } 4667 4668 DEBUG(dbgs() << "After pre-selection:\n"; 4669 print_uses(dbgs())); 4670 } 4671 } 4672 4673 /// If there are an extraordinary number of formulae to choose from, use some 4674 /// rough heuristics to prune down the number of formulae. This keeps the main 4675 /// solver from taking an extraordinary amount of time in some worst-case 4676 /// scenarios. 4677 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4678 NarrowSearchSpaceByDetectingSupersets(); 4679 NarrowSearchSpaceByCollapsingUnrolledCode(); 4680 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4681 if (FilterSameScaledReg) 4682 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4683 if (LSRExpNarrow) 4684 NarrowSearchSpaceByDeletingCostlyFormulas(); 4685 else 4686 NarrowSearchSpaceByPickingWinnerRegs(); 4687 } 4688 4689 /// This is the recursive solver. 4690 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4691 Cost &SolutionCost, 4692 SmallVectorImpl<const Formula *> &Workspace, 4693 const Cost &CurCost, 4694 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4695 DenseSet<const SCEV *> &VisitedRegs) const { 4696 // Some ideas: 4697 // - prune more: 4698 // - use more aggressive filtering 4699 // - sort the formula so that the most profitable solutions are found first 4700 // - sort the uses too 4701 // - search faster: 4702 // - don't compute a cost, and then compare. compare while computing a cost 4703 // and bail early. 4704 // - track register sets with SmallBitVector 4705 4706 const LSRUse &LU = Uses[Workspace.size()]; 4707 4708 // If this use references any register that's already a part of the 4709 // in-progress solution, consider it a requirement that a formula must 4710 // reference that register in order to be considered. This prunes out 4711 // unprofitable searching. 4712 SmallSetVector<const SCEV *, 4> ReqRegs; 4713 for (const SCEV *S : CurRegs) 4714 if (LU.Regs.count(S)) 4715 ReqRegs.insert(S); 4716 4717 SmallPtrSet<const SCEV *, 16> NewRegs; 4718 Cost NewCost; 4719 for (const Formula &F : LU.Formulae) { 4720 // Ignore formulae which may not be ideal in terms of register reuse of 4721 // ReqRegs. The formula should use all required registers before 4722 // introducing new ones. 4723 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4724 for (const SCEV *Reg : ReqRegs) { 4725 if ((F.ScaledReg && F.ScaledReg == Reg) || 4726 is_contained(F.BaseRegs, Reg)) { 4727 --NumReqRegsToFind; 4728 if (NumReqRegsToFind == 0) 4729 break; 4730 } 4731 } 4732 if (NumReqRegsToFind != 0) { 4733 // If none of the formulae satisfied the required registers, then we could 4734 // clear ReqRegs and try again. Currently, we simply give up in this case. 4735 continue; 4736 } 4737 4738 // Evaluate the cost of the current formula. If it's already worse than 4739 // the current best, prune the search at that point. 4740 NewCost = CurCost; 4741 NewRegs = CurRegs; 4742 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4743 if (NewCost.isLess(SolutionCost, TTI)) { 4744 Workspace.push_back(&F); 4745 if (Workspace.size() != Uses.size()) { 4746 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4747 NewRegs, VisitedRegs); 4748 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4749 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4750 } else { 4751 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4752 dbgs() << ".\n Regs:"; 4753 for (const SCEV *S : NewRegs) 4754 dbgs() << ' ' << *S; 4755 dbgs() << '\n'); 4756 4757 SolutionCost = NewCost; 4758 Solution = Workspace; 4759 } 4760 Workspace.pop_back(); 4761 } 4762 } 4763 } 4764 4765 /// Choose one formula from each use. Return the results in the given Solution 4766 /// vector. 4767 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4768 SmallVector<const Formula *, 8> Workspace; 4769 Cost SolutionCost; 4770 SolutionCost.Lose(); 4771 Cost CurCost; 4772 SmallPtrSet<const SCEV *, 16> CurRegs; 4773 DenseSet<const SCEV *> VisitedRegs; 4774 Workspace.reserve(Uses.size()); 4775 4776 // SolveRecurse does all the work. 4777 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4778 CurRegs, VisitedRegs); 4779 if (Solution.empty()) { 4780 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4781 return; 4782 } 4783 4784 // Ok, we've now made all our decisions. 4785 DEBUG(dbgs() << "\n" 4786 "The chosen solution requires "; SolutionCost.print(dbgs()); 4787 dbgs() << ":\n"; 4788 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4789 dbgs() << " "; 4790 Uses[i].print(dbgs()); 4791 dbgs() << "\n" 4792 " "; 4793 Solution[i]->print(dbgs()); 4794 dbgs() << '\n'; 4795 }); 4796 4797 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4798 } 4799 4800 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4801 /// we can go while still being dominated by the input positions. This helps 4802 /// canonicalize the insert position, which encourages sharing. 4803 BasicBlock::iterator 4804 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4805 const SmallVectorImpl<Instruction *> &Inputs) 4806 const { 4807 Instruction *Tentative = &*IP; 4808 while (true) { 4809 bool AllDominate = true; 4810 Instruction *BetterPos = nullptr; 4811 // Don't bother attempting to insert before a catchswitch, their basic block 4812 // cannot have other non-PHI instructions. 4813 if (isa<CatchSwitchInst>(Tentative)) 4814 return IP; 4815 4816 for (Instruction *Inst : Inputs) { 4817 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4818 AllDominate = false; 4819 break; 4820 } 4821 // Attempt to find an insert position in the middle of the block, 4822 // instead of at the end, so that it can be used for other expansions. 4823 if (Tentative->getParent() == Inst->getParent() && 4824 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4825 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4826 } 4827 if (!AllDominate) 4828 break; 4829 if (BetterPos) 4830 IP = BetterPos->getIterator(); 4831 else 4832 IP = Tentative->getIterator(); 4833 4834 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4835 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4836 4837 BasicBlock *IDom; 4838 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4839 if (!Rung) return IP; 4840 Rung = Rung->getIDom(); 4841 if (!Rung) return IP; 4842 IDom = Rung->getBlock(); 4843 4844 // Don't climb into a loop though. 4845 const Loop *IDomLoop = LI.getLoopFor(IDom); 4846 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4847 if (IDomDepth <= IPLoopDepth && 4848 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4849 break; 4850 } 4851 4852 Tentative = IDom->getTerminator(); 4853 } 4854 4855 return IP; 4856 } 4857 4858 /// Determine an input position which will be dominated by the operands and 4859 /// which will dominate the result. 4860 BasicBlock::iterator 4861 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4862 const LSRFixup &LF, 4863 const LSRUse &LU, 4864 SCEVExpander &Rewriter) const { 4865 // Collect some instructions which must be dominated by the 4866 // expanding replacement. These must be dominated by any operands that 4867 // will be required in the expansion. 4868 SmallVector<Instruction *, 4> Inputs; 4869 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4870 Inputs.push_back(I); 4871 if (LU.Kind == LSRUse::ICmpZero) 4872 if (Instruction *I = 4873 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4874 Inputs.push_back(I); 4875 if (LF.PostIncLoops.count(L)) { 4876 if (LF.isUseFullyOutsideLoop(L)) 4877 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4878 else 4879 Inputs.push_back(IVIncInsertPos); 4880 } 4881 // The expansion must also be dominated by the increment positions of any 4882 // loops it for which it is using post-inc mode. 4883 for (const Loop *PIL : LF.PostIncLoops) { 4884 if (PIL == L) continue; 4885 4886 // Be dominated by the loop exit. 4887 SmallVector<BasicBlock *, 4> ExitingBlocks; 4888 PIL->getExitingBlocks(ExitingBlocks); 4889 if (!ExitingBlocks.empty()) { 4890 BasicBlock *BB = ExitingBlocks[0]; 4891 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4892 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4893 Inputs.push_back(BB->getTerminator()); 4894 } 4895 } 4896 4897 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4898 && !isa<DbgInfoIntrinsic>(LowestIP) && 4899 "Insertion point must be a normal instruction"); 4900 4901 // Then, climb up the immediate dominator tree as far as we can go while 4902 // still being dominated by the input positions. 4903 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4904 4905 // Don't insert instructions before PHI nodes. 4906 while (isa<PHINode>(IP)) ++IP; 4907 4908 // Ignore landingpad instructions. 4909 while (IP->isEHPad()) ++IP; 4910 4911 // Ignore debug intrinsics. 4912 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4913 4914 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4915 // IP consistent across expansions and allows the previously inserted 4916 // instructions to be reused by subsequent expansion. 4917 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4918 ++IP; 4919 4920 return IP; 4921 } 4922 4923 /// Emit instructions for the leading candidate expression for this LSRUse (this 4924 /// is called "expanding"). 4925 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4926 const Formula &F, BasicBlock::iterator IP, 4927 SCEVExpander &Rewriter, 4928 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4929 if (LU.RigidFormula) 4930 return LF.OperandValToReplace; 4931 4932 // Determine an input position which will be dominated by the operands and 4933 // which will dominate the result. 4934 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4935 Rewriter.setInsertPoint(&*IP); 4936 4937 // Inform the Rewriter if we have a post-increment use, so that it can 4938 // perform an advantageous expansion. 4939 Rewriter.setPostInc(LF.PostIncLoops); 4940 4941 // This is the type that the user actually needs. 4942 Type *OpTy = LF.OperandValToReplace->getType(); 4943 // This will be the type that we'll initially expand to. 4944 Type *Ty = F.getType(); 4945 if (!Ty) 4946 // No type known; just expand directly to the ultimate type. 4947 Ty = OpTy; 4948 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4949 // Expand directly to the ultimate type if it's the right size. 4950 Ty = OpTy; 4951 // This is the type to do integer arithmetic in. 4952 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4953 4954 // Build up a list of operands to add together to form the full base. 4955 SmallVector<const SCEV *, 8> Ops; 4956 4957 // Expand the BaseRegs portion. 4958 for (const SCEV *Reg : F.BaseRegs) { 4959 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4960 4961 // If we're expanding for a post-inc user, make the post-inc adjustment. 4962 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4963 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4964 } 4965 4966 // Expand the ScaledReg portion. 4967 Value *ICmpScaledV = nullptr; 4968 if (F.Scale != 0) { 4969 const SCEV *ScaledS = F.ScaledReg; 4970 4971 // If we're expanding for a post-inc user, make the post-inc adjustment. 4972 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4973 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4974 4975 if (LU.Kind == LSRUse::ICmpZero) { 4976 // Expand ScaleReg as if it was part of the base regs. 4977 if (F.Scale == 1) 4978 Ops.push_back( 4979 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4980 else { 4981 // An interesting way of "folding" with an icmp is to use a negated 4982 // scale, which we'll implement by inserting it into the other operand 4983 // of the icmp. 4984 assert(F.Scale == -1 && 4985 "The only scale supported by ICmpZero uses is -1!"); 4986 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4987 } 4988 } else { 4989 // Otherwise just expand the scaled register and an explicit scale, 4990 // which is expected to be matched as part of the address. 4991 4992 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4993 // Unless the addressing mode will not be folded. 4994 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4995 isAMCompletelyFolded(TTI, LU, F)) { 4996 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4997 Ops.clear(); 4998 Ops.push_back(SE.getUnknown(FullV)); 4999 } 5000 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5001 if (F.Scale != 1) 5002 ScaledS = 5003 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5004 Ops.push_back(ScaledS); 5005 } 5006 } 5007 5008 // Expand the GV portion. 5009 if (F.BaseGV) { 5010 // Flush the operand list to suppress SCEVExpander hoisting. 5011 if (!Ops.empty()) { 5012 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5013 Ops.clear(); 5014 Ops.push_back(SE.getUnknown(FullV)); 5015 } 5016 Ops.push_back(SE.getUnknown(F.BaseGV)); 5017 } 5018 5019 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5020 // unfolded offsets. LSR assumes they both live next to their uses. 5021 if (!Ops.empty()) { 5022 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5023 Ops.clear(); 5024 Ops.push_back(SE.getUnknown(FullV)); 5025 } 5026 5027 // Expand the immediate portion. 5028 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5029 if (Offset != 0) { 5030 if (LU.Kind == LSRUse::ICmpZero) { 5031 // The other interesting way of "folding" with an ICmpZero is to use a 5032 // negated immediate. 5033 if (!ICmpScaledV) 5034 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5035 else { 5036 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5037 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5038 } 5039 } else { 5040 // Just add the immediate values. These again are expected to be matched 5041 // as part of the address. 5042 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5043 } 5044 } 5045 5046 // Expand the unfolded offset portion. 5047 int64_t UnfoldedOffset = F.UnfoldedOffset; 5048 if (UnfoldedOffset != 0) { 5049 // Just add the immediate values. 5050 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5051 UnfoldedOffset))); 5052 } 5053 5054 // Emit instructions summing all the operands. 5055 const SCEV *FullS = Ops.empty() ? 5056 SE.getConstant(IntTy, 0) : 5057 SE.getAddExpr(Ops); 5058 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5059 5060 // We're done expanding now, so reset the rewriter. 5061 Rewriter.clearPostInc(); 5062 5063 // An ICmpZero Formula represents an ICmp which we're handling as a 5064 // comparison against zero. Now that we've expanded an expression for that 5065 // form, update the ICmp's other operand. 5066 if (LU.Kind == LSRUse::ICmpZero) { 5067 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5068 DeadInsts.emplace_back(CI->getOperand(1)); 5069 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5070 "a scale at the same time!"); 5071 if (F.Scale == -1) { 5072 if (ICmpScaledV->getType() != OpTy) { 5073 Instruction *Cast = 5074 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5075 OpTy, false), 5076 ICmpScaledV, OpTy, "tmp", CI); 5077 ICmpScaledV = Cast; 5078 } 5079 CI->setOperand(1, ICmpScaledV); 5080 } else { 5081 // A scale of 1 means that the scale has been expanded as part of the 5082 // base regs. 5083 assert((F.Scale == 0 || F.Scale == 1) && 5084 "ICmp does not support folding a global value and " 5085 "a scale at the same time!"); 5086 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5087 -(uint64_t)Offset); 5088 if (C->getType() != OpTy) 5089 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5090 OpTy, false), 5091 C, OpTy); 5092 5093 CI->setOperand(1, C); 5094 } 5095 } 5096 5097 return FullV; 5098 } 5099 5100 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5101 /// effectively happens in their predecessor blocks, so the expression may need 5102 /// to be expanded in multiple places. 5103 void LSRInstance::RewriteForPHI( 5104 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5105 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5106 DenseMap<BasicBlock *, Value *> Inserted; 5107 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5108 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5109 BasicBlock *BB = PN->getIncomingBlock(i); 5110 5111 // If this is a critical edge, split the edge so that we do not insert 5112 // the code on all predecessor/successor paths. We do this unless this 5113 // is the canonical backedge for this loop, which complicates post-inc 5114 // users. 5115 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5116 !isa<IndirectBrInst>(BB->getTerminator()) && 5117 !isa<CatchSwitchInst>(BB->getTerminator())) { 5118 BasicBlock *Parent = PN->getParent(); 5119 Loop *PNLoop = LI.getLoopFor(Parent); 5120 if (!PNLoop || Parent != PNLoop->getHeader()) { 5121 // Split the critical edge. 5122 BasicBlock *NewBB = nullptr; 5123 if (!Parent->isLandingPad()) { 5124 NewBB = SplitCriticalEdge(BB, Parent, 5125 CriticalEdgeSplittingOptions(&DT, &LI) 5126 .setMergeIdenticalEdges() 5127 .setDontDeleteUselessPHIs()); 5128 } else { 5129 SmallVector<BasicBlock*, 2> NewBBs; 5130 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5131 NewBB = NewBBs[0]; 5132 } 5133 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5134 // phi predecessors are identical. The simple thing to do is skip 5135 // splitting in this case rather than complicate the API. 5136 if (NewBB) { 5137 // If PN is outside of the loop and BB is in the loop, we want to 5138 // move the block to be immediately before the PHI block, not 5139 // immediately after BB. 5140 if (L->contains(BB) && !L->contains(PN)) 5141 NewBB->moveBefore(PN->getParent()); 5142 5143 // Splitting the edge can reduce the number of PHI entries we have. 5144 e = PN->getNumIncomingValues(); 5145 BB = NewBB; 5146 i = PN->getBasicBlockIndex(BB); 5147 } 5148 } 5149 } 5150 5151 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5152 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5153 if (!Pair.second) 5154 PN->setIncomingValue(i, Pair.first->second); 5155 else { 5156 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5157 Rewriter, DeadInsts); 5158 5159 // If this is reuse-by-noop-cast, insert the noop cast. 5160 Type *OpTy = LF.OperandValToReplace->getType(); 5161 if (FullV->getType() != OpTy) 5162 FullV = 5163 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5164 OpTy, false), 5165 FullV, LF.OperandValToReplace->getType(), 5166 "tmp", BB->getTerminator()); 5167 5168 PN->setIncomingValue(i, FullV); 5169 Pair.first->second = FullV; 5170 } 5171 } 5172 } 5173 5174 /// Emit instructions for the leading candidate expression for this LSRUse (this 5175 /// is called "expanding"), and update the UserInst to reference the newly 5176 /// expanded value. 5177 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5178 const Formula &F, SCEVExpander &Rewriter, 5179 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5180 // First, find an insertion point that dominates UserInst. For PHI nodes, 5181 // find the nearest block which dominates all the relevant uses. 5182 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5183 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5184 } else { 5185 Value *FullV = 5186 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5187 5188 // If this is reuse-by-noop-cast, insert the noop cast. 5189 Type *OpTy = LF.OperandValToReplace->getType(); 5190 if (FullV->getType() != OpTy) { 5191 Instruction *Cast = 5192 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5193 FullV, OpTy, "tmp", LF.UserInst); 5194 FullV = Cast; 5195 } 5196 5197 // Update the user. ICmpZero is handled specially here (for now) because 5198 // Expand may have updated one of the operands of the icmp already, and 5199 // its new value may happen to be equal to LF.OperandValToReplace, in 5200 // which case doing replaceUsesOfWith leads to replacing both operands 5201 // with the same value. TODO: Reorganize this. 5202 if (LU.Kind == LSRUse::ICmpZero) 5203 LF.UserInst->setOperand(0, FullV); 5204 else 5205 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5206 } 5207 5208 DeadInsts.emplace_back(LF.OperandValToReplace); 5209 } 5210 5211 /// Rewrite all the fixup locations with new values, following the chosen 5212 /// solution. 5213 void LSRInstance::ImplementSolution( 5214 const SmallVectorImpl<const Formula *> &Solution) { 5215 // Keep track of instructions we may have made dead, so that 5216 // we can remove them after we are done working. 5217 SmallVector<WeakTrackingVH, 16> DeadInsts; 5218 5219 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5220 "lsr"); 5221 #ifndef NDEBUG 5222 Rewriter.setDebugType(DEBUG_TYPE); 5223 #endif 5224 Rewriter.disableCanonicalMode(); 5225 Rewriter.enableLSRMode(); 5226 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5227 5228 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5229 for (const IVChain &Chain : IVChainVec) { 5230 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5231 Rewriter.setChainedPhi(PN); 5232 } 5233 5234 // Expand the new value definitions and update the users. 5235 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5236 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5237 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5238 Changed = true; 5239 } 5240 5241 for (const IVChain &Chain : IVChainVec) { 5242 GenerateIVChain(Chain, Rewriter, DeadInsts); 5243 Changed = true; 5244 } 5245 // Clean up after ourselves. This must be done before deleting any 5246 // instructions. 5247 Rewriter.clear(); 5248 5249 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5250 } 5251 5252 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5253 DominatorTree &DT, LoopInfo &LI, 5254 const TargetTransformInfo &TTI) 5255 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5256 // If LoopSimplify form is not available, stay out of trouble. 5257 if (!L->isLoopSimplifyForm()) 5258 return; 5259 5260 // If there's no interesting work to be done, bail early. 5261 if (IU.empty()) return; 5262 5263 // If there's too much analysis to be done, bail early. We won't be able to 5264 // model the problem anyway. 5265 unsigned NumUsers = 0; 5266 for (const IVStrideUse &U : IU) { 5267 if (++NumUsers > MaxIVUsers) { 5268 (void)U; 5269 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5270 return; 5271 } 5272 // Bail out if we have a PHI on an EHPad that gets a value from a 5273 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5274 // no good place to stick any instructions. 5275 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5276 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5277 if (isa<FuncletPadInst>(FirstNonPHI) || 5278 isa<CatchSwitchInst>(FirstNonPHI)) 5279 for (BasicBlock *PredBB : PN->blocks()) 5280 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5281 return; 5282 } 5283 } 5284 5285 #ifndef NDEBUG 5286 // All dominating loops must have preheaders, or SCEVExpander may not be able 5287 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5288 // 5289 // IVUsers analysis should only create users that are dominated by simple loop 5290 // headers. Since this loop should dominate all of its users, its user list 5291 // should be empty if this loop itself is not within a simple loop nest. 5292 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5293 Rung; Rung = Rung->getIDom()) { 5294 BasicBlock *BB = Rung->getBlock(); 5295 const Loop *DomLoop = LI.getLoopFor(BB); 5296 if (DomLoop && DomLoop->getHeader() == BB) { 5297 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5298 } 5299 } 5300 #endif // DEBUG 5301 5302 DEBUG(dbgs() << "\nLSR on loop "; 5303 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5304 dbgs() << ":\n"); 5305 5306 // First, perform some low-level loop optimizations. 5307 OptimizeShadowIV(); 5308 OptimizeLoopTermCond(); 5309 5310 // If loop preparation eliminates all interesting IV users, bail. 5311 if (IU.empty()) return; 5312 5313 // Skip nested loops until we can model them better with formulae. 5314 if (!L->empty()) { 5315 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5316 return; 5317 } 5318 5319 // Start collecting data and preparing for the solver. 5320 CollectChains(); 5321 CollectInterestingTypesAndFactors(); 5322 CollectFixupsAndInitialFormulae(); 5323 CollectLoopInvariantFixupsAndFormulae(); 5324 5325 assert(!Uses.empty() && "IVUsers reported at least one use"); 5326 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5327 print_uses(dbgs())); 5328 5329 // Now use the reuse data to generate a bunch of interesting ways 5330 // to formulate the values needed for the uses. 5331 GenerateAllReuseFormulae(); 5332 5333 FilterOutUndesirableDedicatedRegisters(); 5334 NarrowSearchSpaceUsingHeuristics(); 5335 5336 SmallVector<const Formula *, 8> Solution; 5337 Solve(Solution); 5338 5339 // Release memory that is no longer needed. 5340 Factors.clear(); 5341 Types.clear(); 5342 RegUses.clear(); 5343 5344 if (Solution.empty()) 5345 return; 5346 5347 #ifndef NDEBUG 5348 // Formulae should be legal. 5349 for (const LSRUse &LU : Uses) { 5350 for (const Formula &F : LU.Formulae) 5351 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5352 F) && "Illegal formula generated!"); 5353 }; 5354 #endif 5355 5356 // Now that we've decided what we want, make it so. 5357 ImplementSolution(Solution); 5358 } 5359 5360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5361 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5362 if (Factors.empty() && Types.empty()) return; 5363 5364 OS << "LSR has identified the following interesting factors and types: "; 5365 bool First = true; 5366 5367 for (int64_t Factor : Factors) { 5368 if (!First) OS << ", "; 5369 First = false; 5370 OS << '*' << Factor; 5371 } 5372 5373 for (Type *Ty : Types) { 5374 if (!First) OS << ", "; 5375 First = false; 5376 OS << '(' << *Ty << ')'; 5377 } 5378 OS << '\n'; 5379 } 5380 5381 void LSRInstance::print_fixups(raw_ostream &OS) const { 5382 OS << "LSR is examining the following fixup sites:\n"; 5383 for (const LSRUse &LU : Uses) 5384 for (const LSRFixup &LF : LU.Fixups) { 5385 dbgs() << " "; 5386 LF.print(OS); 5387 OS << '\n'; 5388 } 5389 } 5390 5391 void LSRInstance::print_uses(raw_ostream &OS) const { 5392 OS << "LSR is examining the following uses:\n"; 5393 for (const LSRUse &LU : Uses) { 5394 dbgs() << " "; 5395 LU.print(OS); 5396 OS << '\n'; 5397 for (const Formula &F : LU.Formulae) { 5398 OS << " "; 5399 F.print(OS); 5400 OS << '\n'; 5401 } 5402 } 5403 } 5404 5405 void LSRInstance::print(raw_ostream &OS) const { 5406 print_factors_and_types(OS); 5407 print_fixups(OS); 5408 print_uses(OS); 5409 } 5410 5411 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5412 print(errs()); errs() << '\n'; 5413 } 5414 #endif 5415 5416 namespace { 5417 5418 class LoopStrengthReduce : public LoopPass { 5419 public: 5420 static char ID; // Pass ID, replacement for typeid 5421 5422 LoopStrengthReduce(); 5423 5424 private: 5425 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5426 void getAnalysisUsage(AnalysisUsage &AU) const override; 5427 }; 5428 5429 } // end anonymous namespace 5430 5431 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5432 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5433 } 5434 5435 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5436 // We split critical edges, so we change the CFG. However, we do update 5437 // many analyses if they are around. 5438 AU.addPreservedID(LoopSimplifyID); 5439 5440 AU.addRequired<LoopInfoWrapperPass>(); 5441 AU.addPreserved<LoopInfoWrapperPass>(); 5442 AU.addRequiredID(LoopSimplifyID); 5443 AU.addRequired<DominatorTreeWrapperPass>(); 5444 AU.addPreserved<DominatorTreeWrapperPass>(); 5445 AU.addRequired<ScalarEvolutionWrapperPass>(); 5446 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5447 // Requiring LoopSimplify a second time here prevents IVUsers from running 5448 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5449 AU.addRequiredID(LoopSimplifyID); 5450 AU.addRequired<IVUsersWrapperPass>(); 5451 AU.addPreserved<IVUsersWrapperPass>(); 5452 AU.addRequired<TargetTransformInfoWrapperPass>(); 5453 } 5454 5455 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5456 DominatorTree &DT, LoopInfo &LI, 5457 const TargetTransformInfo &TTI) { 5458 bool Changed = false; 5459 5460 // Run the main LSR transformation. 5461 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5462 5463 // Remove any extra phis created by processing inner loops. 5464 Changed |= DeleteDeadPHIs(L->getHeader()); 5465 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5466 SmallVector<WeakTrackingVH, 16> DeadInsts; 5467 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5468 SCEVExpander Rewriter(SE, DL, "lsr"); 5469 #ifndef NDEBUG 5470 Rewriter.setDebugType(DEBUG_TYPE); 5471 #endif 5472 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5473 if (numFolded) { 5474 Changed = true; 5475 DeleteTriviallyDeadInstructions(DeadInsts); 5476 DeleteDeadPHIs(L->getHeader()); 5477 } 5478 } 5479 return Changed; 5480 } 5481 5482 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5483 if (skipLoop(L)) 5484 return false; 5485 5486 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5487 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5488 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5489 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5490 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5491 *L->getHeader()->getParent()); 5492 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5493 } 5494 5495 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5496 LoopStandardAnalysisResults &AR, 5497 LPMUpdater &) { 5498 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5499 AR.DT, AR.LI, AR.TTI)) 5500 return PreservedAnalyses::all(); 5501 5502 return getLoopPassPreservedAnalyses(); 5503 } 5504 5505 char LoopStrengthReduce::ID = 0; 5506 5507 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5508 "Loop Strength Reduction", false, false) 5509 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5510 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5511 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5512 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5513 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5514 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5515 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5516 "Loop Strength Reduction", false, false) 5517 5518 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5519