1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetLowering.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 static cl::opt<bool> EnableNested( 81 "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); 82 83 static cl::opt<bool> EnableRetry( 84 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 static cl::opt<bool> EnablePhiElim( 90 "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination")); 91 92 namespace { 93 94 /// RegSortData - This class holds data which is used to order reuse candidates. 95 class RegSortData { 96 public: 97 /// UsedByIndices - This represents the set of LSRUse indices which reference 98 /// a particular register. 99 SmallBitVector UsedByIndices; 100 101 RegSortData() {} 102 103 void print(raw_ostream &OS) const; 104 void dump() const; 105 }; 106 107 } 108 109 void RegSortData::print(raw_ostream &OS) const { 110 OS << "[NumUses=" << UsedByIndices.count() << ']'; 111 } 112 113 void RegSortData::dump() const { 114 print(errs()); errs() << '\n'; 115 } 116 117 namespace { 118 119 /// RegUseTracker - Map register candidates to information about how they are 120 /// used. 121 class RegUseTracker { 122 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 123 124 RegUsesTy RegUsesMap; 125 SmallVector<const SCEV *, 16> RegSequence; 126 127 public: 128 void CountRegister(const SCEV *Reg, size_t LUIdx); 129 void DropRegister(const SCEV *Reg, size_t LUIdx); 130 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 131 132 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 133 134 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 135 136 void clear(); 137 138 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 139 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 140 iterator begin() { return RegSequence.begin(); } 141 iterator end() { return RegSequence.end(); } 142 const_iterator begin() const { return RegSequence.begin(); } 143 const_iterator end() const { return RegSequence.end(); } 144 }; 145 146 } 147 148 void 149 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 150 std::pair<RegUsesTy::iterator, bool> Pair = 151 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 152 RegSortData &RSD = Pair.first->second; 153 if (Pair.second) 154 RegSequence.push_back(Reg); 155 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 156 RSD.UsedByIndices.set(LUIdx); 157 } 158 159 void 160 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 161 RegUsesTy::iterator It = RegUsesMap.find(Reg); 162 assert(It != RegUsesMap.end()); 163 RegSortData &RSD = It->second; 164 assert(RSD.UsedByIndices.size() > LUIdx); 165 RSD.UsedByIndices.reset(LUIdx); 166 } 167 168 void 169 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 170 assert(LUIdx <= LastLUIdx); 171 172 // Update RegUses. The data structure is not optimized for this purpose; 173 // we must iterate through it and update each of the bit vectors. 174 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 175 I != E; ++I) { 176 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 177 if (LUIdx < UsedByIndices.size()) 178 UsedByIndices[LUIdx] = 179 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 180 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 181 } 182 } 183 184 bool 185 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 186 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 187 if (I == RegUsesMap.end()) 188 return false; 189 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 190 int i = UsedByIndices.find_first(); 191 if (i == -1) return false; 192 if ((size_t)i != LUIdx) return true; 193 return UsedByIndices.find_next(i) != -1; 194 } 195 196 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 198 assert(I != RegUsesMap.end() && "Unknown register!"); 199 return I->second.UsedByIndices; 200 } 201 202 void RegUseTracker::clear() { 203 RegUsesMap.clear(); 204 RegSequence.clear(); 205 } 206 207 namespace { 208 209 /// Formula - This class holds information that describes a formula for 210 /// computing satisfying a use. It may include broken-out immediates and scaled 211 /// registers. 212 struct Formula { 213 /// AM - This is used to represent complex addressing, as well as other kinds 214 /// of interesting uses. 215 TargetLowering::AddrMode AM; 216 217 /// BaseRegs - The list of "base" registers for this use. When this is 218 /// non-empty, AM.HasBaseReg should be set to true. 219 SmallVector<const SCEV *, 2> BaseRegs; 220 221 /// ScaledReg - The 'scaled' register for this use. This should be non-null 222 /// when AM.Scale is not zero. 223 const SCEV *ScaledReg; 224 225 /// UnfoldedOffset - An additional constant offset which added near the 226 /// use. This requires a temporary register, but the offset itself can 227 /// live in an add immediate field rather than a register. 228 int64_t UnfoldedOffset; 229 230 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 231 232 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 233 234 unsigned getNumRegs() const; 235 Type *getType() const; 236 237 void DeleteBaseReg(const SCEV *&S); 238 239 bool referencesReg(const SCEV *S) const; 240 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 241 const RegUseTracker &RegUses) const; 242 243 void print(raw_ostream &OS) const; 244 void dump() const; 245 }; 246 247 } 248 249 /// DoInitialMatch - Recursion helper for InitialMatch. 250 static void DoInitialMatch(const SCEV *S, Loop *L, 251 SmallVectorImpl<const SCEV *> &Good, 252 SmallVectorImpl<const SCEV *> &Bad, 253 ScalarEvolution &SE) { 254 // Collect expressions which properly dominate the loop header. 255 if (SE.properlyDominates(S, L->getHeader())) { 256 Good.push_back(S); 257 return; 258 } 259 260 // Look at add operands. 261 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 262 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 263 I != E; ++I) 264 DoInitialMatch(*I, L, Good, Bad, SE); 265 return; 266 } 267 268 // Look at addrec operands. 269 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 270 if (!AR->getStart()->isZero()) { 271 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 272 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 273 AR->getStepRecurrence(SE), 274 // FIXME: AR->getNoWrapFlags() 275 AR->getLoop(), SCEV::FlagAnyWrap), 276 L, Good, Bad, SE); 277 return; 278 } 279 280 // Handle a multiplication by -1 (negation) if it didn't fold. 281 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 282 if (Mul->getOperand(0)->isAllOnesValue()) { 283 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 284 const SCEV *NewMul = SE.getMulExpr(Ops); 285 286 SmallVector<const SCEV *, 4> MyGood; 287 SmallVector<const SCEV *, 4> MyBad; 288 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 289 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 290 SE.getEffectiveSCEVType(NewMul->getType()))); 291 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 292 E = MyGood.end(); I != E; ++I) 293 Good.push_back(SE.getMulExpr(NegOne, *I)); 294 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 295 E = MyBad.end(); I != E; ++I) 296 Bad.push_back(SE.getMulExpr(NegOne, *I)); 297 return; 298 } 299 300 // Ok, we can't do anything interesting. Just stuff the whole thing into a 301 // register and hope for the best. 302 Bad.push_back(S); 303 } 304 305 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 306 /// attempting to keep all loop-invariant and loop-computable values in a 307 /// single base register. 308 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 309 SmallVector<const SCEV *, 4> Good; 310 SmallVector<const SCEV *, 4> Bad; 311 DoInitialMatch(S, L, Good, Bad, SE); 312 if (!Good.empty()) { 313 const SCEV *Sum = SE.getAddExpr(Good); 314 if (!Sum->isZero()) 315 BaseRegs.push_back(Sum); 316 AM.HasBaseReg = true; 317 } 318 if (!Bad.empty()) { 319 const SCEV *Sum = SE.getAddExpr(Bad); 320 if (!Sum->isZero()) 321 BaseRegs.push_back(Sum); 322 AM.HasBaseReg = true; 323 } 324 } 325 326 /// getNumRegs - Return the total number of register operands used by this 327 /// formula. This does not include register uses implied by non-constant 328 /// addrec strides. 329 unsigned Formula::getNumRegs() const { 330 return !!ScaledReg + BaseRegs.size(); 331 } 332 333 /// getType - Return the type of this formula, if it has one, or null 334 /// otherwise. This type is meaningless except for the bit size. 335 Type *Formula::getType() const { 336 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 337 ScaledReg ? ScaledReg->getType() : 338 AM.BaseGV ? AM.BaseGV->getType() : 339 0; 340 } 341 342 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 343 void Formula::DeleteBaseReg(const SCEV *&S) { 344 if (&S != &BaseRegs.back()) 345 std::swap(S, BaseRegs.back()); 346 BaseRegs.pop_back(); 347 } 348 349 /// referencesReg - Test if this formula references the given register. 350 bool Formula::referencesReg(const SCEV *S) const { 351 return S == ScaledReg || 352 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 353 } 354 355 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 356 /// which are used by uses other than the use with the given index. 357 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 358 const RegUseTracker &RegUses) const { 359 if (ScaledReg) 360 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 361 return true; 362 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 363 E = BaseRegs.end(); I != E; ++I) 364 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 365 return true; 366 return false; 367 } 368 369 void Formula::print(raw_ostream &OS) const { 370 bool First = true; 371 if (AM.BaseGV) { 372 if (!First) OS << " + "; else First = false; 373 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 374 } 375 if (AM.BaseOffs != 0) { 376 if (!First) OS << " + "; else First = false; 377 OS << AM.BaseOffs; 378 } 379 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 380 E = BaseRegs.end(); I != E; ++I) { 381 if (!First) OS << " + "; else First = false; 382 OS << "reg(" << **I << ')'; 383 } 384 if (AM.HasBaseReg && BaseRegs.empty()) { 385 if (!First) OS << " + "; else First = false; 386 OS << "**error: HasBaseReg**"; 387 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 388 if (!First) OS << " + "; else First = false; 389 OS << "**error: !HasBaseReg**"; 390 } 391 if (AM.Scale != 0) { 392 if (!First) OS << " + "; else First = false; 393 OS << AM.Scale << "*reg("; 394 if (ScaledReg) 395 OS << *ScaledReg; 396 else 397 OS << "<unknown>"; 398 OS << ')'; 399 } 400 if (UnfoldedOffset != 0) { 401 if (!First) OS << " + "; else First = false; 402 OS << "imm(" << UnfoldedOffset << ')'; 403 } 404 } 405 406 void Formula::dump() const { 407 print(errs()); errs() << '\n'; 408 } 409 410 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 411 /// without changing its value. 412 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 413 Type *WideTy = 414 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 415 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 416 } 417 418 /// isAddSExtable - Return true if the given add can be sign-extended 419 /// without changing its value. 420 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 421 Type *WideTy = 422 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 423 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 424 } 425 426 /// isMulSExtable - Return true if the given mul can be sign-extended 427 /// without changing its value. 428 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 429 Type *WideTy = 430 IntegerType::get(SE.getContext(), 431 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 432 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 433 } 434 435 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 436 /// and if the remainder is known to be zero, or null otherwise. If 437 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 438 /// to Y, ignoring that the multiplication may overflow, which is useful when 439 /// the result will be used in a context where the most significant bits are 440 /// ignored. 441 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 442 ScalarEvolution &SE, 443 bool IgnoreSignificantBits = false) { 444 // Handle the trivial case, which works for any SCEV type. 445 if (LHS == RHS) 446 return SE.getConstant(LHS->getType(), 1); 447 448 // Handle a few RHS special cases. 449 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 450 if (RC) { 451 const APInt &RA = RC->getValue()->getValue(); 452 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 453 // some folding. 454 if (RA.isAllOnesValue()) 455 return SE.getMulExpr(LHS, RC); 456 // Handle x /s 1 as x. 457 if (RA == 1) 458 return LHS; 459 } 460 461 // Check for a division of a constant by a constant. 462 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 463 if (!RC) 464 return 0; 465 const APInt &LA = C->getValue()->getValue(); 466 const APInt &RA = RC->getValue()->getValue(); 467 if (LA.srem(RA) != 0) 468 return 0; 469 return SE.getConstant(LA.sdiv(RA)); 470 } 471 472 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 473 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 474 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 475 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 476 IgnoreSignificantBits); 477 if (!Step) return 0; 478 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 479 IgnoreSignificantBits); 480 if (!Start) return 0; 481 // FlagNW is independent of the start value, step direction, and is 482 // preserved with smaller magnitude steps. 483 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 484 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 485 } 486 return 0; 487 } 488 489 // Distribute the sdiv over add operands, if the add doesn't overflow. 490 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 491 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 492 SmallVector<const SCEV *, 8> Ops; 493 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 494 I != E; ++I) { 495 const SCEV *Op = getExactSDiv(*I, RHS, SE, 496 IgnoreSignificantBits); 497 if (!Op) return 0; 498 Ops.push_back(Op); 499 } 500 return SE.getAddExpr(Ops); 501 } 502 return 0; 503 } 504 505 // Check for a multiply operand that we can pull RHS out of. 506 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 507 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 508 SmallVector<const SCEV *, 4> Ops; 509 bool Found = false; 510 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 511 I != E; ++I) { 512 const SCEV *S = *I; 513 if (!Found) 514 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 515 IgnoreSignificantBits)) { 516 S = Q; 517 Found = true; 518 } 519 Ops.push_back(S); 520 } 521 return Found ? SE.getMulExpr(Ops) : 0; 522 } 523 return 0; 524 } 525 526 // Otherwise we don't know. 527 return 0; 528 } 529 530 /// ExtractImmediate - If S involves the addition of a constant integer value, 531 /// return that integer value, and mutate S to point to a new SCEV with that 532 /// value excluded. 533 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 534 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 535 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 536 S = SE.getConstant(C->getType(), 0); 537 return C->getValue()->getSExtValue(); 538 } 539 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 540 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 541 int64_t Result = ExtractImmediate(NewOps.front(), SE); 542 if (Result != 0) 543 S = SE.getAddExpr(NewOps); 544 return Result; 545 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 546 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 547 int64_t Result = ExtractImmediate(NewOps.front(), SE); 548 if (Result != 0) 549 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 550 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 551 SCEV::FlagAnyWrap); 552 return Result; 553 } 554 return 0; 555 } 556 557 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 558 /// return that symbol, and mutate S to point to a new SCEV with that 559 /// value excluded. 560 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 561 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 562 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 563 S = SE.getConstant(GV->getType(), 0); 564 return GV; 565 } 566 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 567 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 568 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 569 if (Result) 570 S = SE.getAddExpr(NewOps); 571 return Result; 572 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 573 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 574 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 575 if (Result) 576 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 577 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 578 SCEV::FlagAnyWrap); 579 return Result; 580 } 581 return 0; 582 } 583 584 /// isAddressUse - Returns true if the specified instruction is using the 585 /// specified value as an address. 586 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 587 bool isAddress = isa<LoadInst>(Inst); 588 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 589 if (SI->getOperand(1) == OperandVal) 590 isAddress = true; 591 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 592 // Addressing modes can also be folded into prefetches and a variety 593 // of intrinsics. 594 switch (II->getIntrinsicID()) { 595 default: break; 596 case Intrinsic::prefetch: 597 case Intrinsic::x86_sse_storeu_ps: 598 case Intrinsic::x86_sse2_storeu_pd: 599 case Intrinsic::x86_sse2_storeu_dq: 600 case Intrinsic::x86_sse2_storel_dq: 601 if (II->getArgOperand(0) == OperandVal) 602 isAddress = true; 603 break; 604 } 605 } 606 return isAddress; 607 } 608 609 /// getAccessType - Return the type of the memory being accessed. 610 static Type *getAccessType(const Instruction *Inst) { 611 Type *AccessTy = Inst->getType(); 612 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 613 AccessTy = SI->getOperand(0)->getType(); 614 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 615 // Addressing modes can also be folded into prefetches and a variety 616 // of intrinsics. 617 switch (II->getIntrinsicID()) { 618 default: break; 619 case Intrinsic::x86_sse_storeu_ps: 620 case Intrinsic::x86_sse2_storeu_pd: 621 case Intrinsic::x86_sse2_storeu_dq: 622 case Intrinsic::x86_sse2_storel_dq: 623 AccessTy = II->getArgOperand(0)->getType(); 624 break; 625 } 626 } 627 628 // All pointers have the same requirements, so canonicalize them to an 629 // arbitrary pointer type to minimize variation. 630 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 631 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 632 PTy->getAddressSpace()); 633 634 return AccessTy; 635 } 636 637 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 638 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 639 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 640 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 641 if (SE.isSCEVable(PN->getType()) && 642 (SE.getEffectiveSCEVType(PN->getType()) == 643 SE.getEffectiveSCEVType(AR->getType())) && 644 SE.getSCEV(PN) == AR) 645 return true; 646 } 647 return false; 648 } 649 650 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 651 /// specified set are trivially dead, delete them and see if this makes any of 652 /// their operands subsequently dead. 653 static bool 654 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 655 bool Changed = false; 656 657 while (!DeadInsts.empty()) { 658 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 659 660 if (I == 0 || !isInstructionTriviallyDead(I)) 661 continue; 662 663 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 664 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 665 *OI = 0; 666 if (U->use_empty()) 667 DeadInsts.push_back(U); 668 } 669 670 I->eraseFromParent(); 671 Changed = true; 672 } 673 674 return Changed; 675 } 676 677 namespace { 678 679 /// Cost - This class is used to measure and compare candidate formulae. 680 class Cost { 681 /// TODO: Some of these could be merged. Also, a lexical ordering 682 /// isn't always optimal. 683 unsigned NumRegs; 684 unsigned AddRecCost; 685 unsigned NumIVMuls; 686 unsigned NumBaseAdds; 687 unsigned ImmCost; 688 unsigned SetupCost; 689 690 public: 691 Cost() 692 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 693 SetupCost(0) {} 694 695 bool operator<(const Cost &Other) const; 696 697 void Loose(); 698 699 #ifndef NDEBUG 700 // Once any of the metrics loses, they must all remain losers. 701 bool isValid() { 702 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 703 | ImmCost | SetupCost) != ~0u) 704 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 705 & ImmCost & SetupCost) == ~0u); 706 } 707 #endif 708 709 bool isLoser() { 710 assert(isValid() && "invalid cost"); 711 return NumRegs == ~0u; 712 } 713 714 void RateFormula(const Formula &F, 715 SmallPtrSet<const SCEV *, 16> &Regs, 716 const DenseSet<const SCEV *> &VisitedRegs, 717 const Loop *L, 718 const SmallVectorImpl<int64_t> &Offsets, 719 ScalarEvolution &SE, DominatorTree &DT, 720 SmallPtrSet<const SCEV *, 16> *LoserRegs = 0); 721 722 void print(raw_ostream &OS) const; 723 void dump() const; 724 725 private: 726 void RateRegister(const SCEV *Reg, 727 SmallPtrSet<const SCEV *, 16> &Regs, 728 const Loop *L, 729 ScalarEvolution &SE, DominatorTree &DT); 730 void RatePrimaryRegister(const SCEV *Reg, 731 SmallPtrSet<const SCEV *, 16> &Regs, 732 const Loop *L, 733 ScalarEvolution &SE, DominatorTree &DT, 734 SmallPtrSet<const SCEV *, 16> *LoserRegs); 735 }; 736 737 } 738 739 /// RateRegister - Tally up interesting quantities from the given register. 740 void Cost::RateRegister(const SCEV *Reg, 741 SmallPtrSet<const SCEV *, 16> &Regs, 742 const Loop *L, 743 ScalarEvolution &SE, DominatorTree &DT) { 744 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 745 if (AR->getLoop() == L) 746 AddRecCost += 1; /// TODO: This should be a function of the stride. 747 748 // If this is an addrec for another loop, don't second-guess its addrec phi 749 // nodes. LSR isn't currently smart enough to reason about more than one 750 // loop at a time. LSR has either already run on inner loops, will not run 751 // on other loops, and cannot be expected to change sibling loops. If the 752 // AddRec exists, consider it's register free and leave it alone. Otherwise, 753 // do not consider this formula at all. 754 else if (!EnableNested || L->contains(AR->getLoop()) || 755 (!AR->getLoop()->contains(L) && 756 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 757 if (isExistingPhi(AR, SE)) 758 return; 759 760 // For !EnableNested, never rewrite IVs in other loops. 761 if (!EnableNested) { 762 Loose(); 763 return; 764 } 765 // If this isn't one of the addrecs that the loop already has, it 766 // would require a costly new phi and add. TODO: This isn't 767 // precisely modeled right now. 768 ++NumBaseAdds; 769 if (!Regs.count(AR->getStart())) { 770 RateRegister(AR->getStart(), Regs, L, SE, DT); 771 if (isLoser()) 772 return; 773 } 774 } 775 776 // Add the step value register, if it needs one. 777 // TODO: The non-affine case isn't precisely modeled here. 778 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 779 if (!Regs.count(AR->getOperand(1))) { 780 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 781 if (isLoser()) 782 return; 783 } 784 } 785 } 786 ++NumRegs; 787 788 // Rough heuristic; favor registers which don't require extra setup 789 // instructions in the preheader. 790 if (!isa<SCEVUnknown>(Reg) && 791 !isa<SCEVConstant>(Reg) && 792 !(isa<SCEVAddRecExpr>(Reg) && 793 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 794 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 795 ++SetupCost; 796 797 NumIVMuls += isa<SCEVMulExpr>(Reg) && 798 SE.hasComputableLoopEvolution(Reg, L); 799 } 800 801 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 802 /// before, rate it. Optional LoserRegs provides a way to declare any formula 803 /// that refers to one of those regs an instant loser. 804 void Cost::RatePrimaryRegister(const SCEV *Reg, 805 SmallPtrSet<const SCEV *, 16> &Regs, 806 const Loop *L, 807 ScalarEvolution &SE, DominatorTree &DT, 808 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 809 if (LoserRegs && LoserRegs->count(Reg)) { 810 Loose(); 811 return; 812 } 813 if (Regs.insert(Reg)) { 814 RateRegister(Reg, Regs, L, SE, DT); 815 if (isLoser()) 816 LoserRegs->insert(Reg); 817 } 818 } 819 820 void Cost::RateFormula(const Formula &F, 821 SmallPtrSet<const SCEV *, 16> &Regs, 822 const DenseSet<const SCEV *> &VisitedRegs, 823 const Loop *L, 824 const SmallVectorImpl<int64_t> &Offsets, 825 ScalarEvolution &SE, DominatorTree &DT, 826 SmallPtrSet<const SCEV *, 16> *LoserRegs) { 827 // Tally up the registers. 828 if (const SCEV *ScaledReg = F.ScaledReg) { 829 if (VisitedRegs.count(ScaledReg)) { 830 Loose(); 831 return; 832 } 833 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 834 if (isLoser()) 835 return; 836 } 837 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 838 E = F.BaseRegs.end(); I != E; ++I) { 839 const SCEV *BaseReg = *I; 840 if (VisitedRegs.count(BaseReg)) { 841 Loose(); 842 return; 843 } 844 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 845 if (isLoser()) 846 return; 847 } 848 849 // Determine how many (unfolded) adds we'll need inside the loop. 850 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 851 if (NumBaseParts > 1) 852 NumBaseAdds += NumBaseParts - 1; 853 854 // Tally up the non-zero immediates. 855 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 856 E = Offsets.end(); I != E; ++I) { 857 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 858 if (F.AM.BaseGV) 859 ImmCost += 64; // Handle symbolic values conservatively. 860 // TODO: This should probably be the pointer size. 861 else if (Offset != 0) 862 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 863 } 864 assert(isValid() && "invalid cost"); 865 } 866 867 /// Loose - Set this cost to a losing value. 868 void Cost::Loose() { 869 NumRegs = ~0u; 870 AddRecCost = ~0u; 871 NumIVMuls = ~0u; 872 NumBaseAdds = ~0u; 873 ImmCost = ~0u; 874 SetupCost = ~0u; 875 } 876 877 /// operator< - Choose the lower cost. 878 bool Cost::operator<(const Cost &Other) const { 879 if (NumRegs != Other.NumRegs) 880 return NumRegs < Other.NumRegs; 881 if (AddRecCost != Other.AddRecCost) 882 return AddRecCost < Other.AddRecCost; 883 if (NumIVMuls != Other.NumIVMuls) 884 return NumIVMuls < Other.NumIVMuls; 885 if (NumBaseAdds != Other.NumBaseAdds) 886 return NumBaseAdds < Other.NumBaseAdds; 887 if (ImmCost != Other.ImmCost) 888 return ImmCost < Other.ImmCost; 889 if (SetupCost != Other.SetupCost) 890 return SetupCost < Other.SetupCost; 891 return false; 892 } 893 894 void Cost::print(raw_ostream &OS) const { 895 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 896 if (AddRecCost != 0) 897 OS << ", with addrec cost " << AddRecCost; 898 if (NumIVMuls != 0) 899 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 900 if (NumBaseAdds != 0) 901 OS << ", plus " << NumBaseAdds << " base add" 902 << (NumBaseAdds == 1 ? "" : "s"); 903 if (ImmCost != 0) 904 OS << ", plus " << ImmCost << " imm cost"; 905 if (SetupCost != 0) 906 OS << ", plus " << SetupCost << " setup cost"; 907 } 908 909 void Cost::dump() const { 910 print(errs()); errs() << '\n'; 911 } 912 913 namespace { 914 915 /// LSRFixup - An operand value in an instruction which is to be replaced 916 /// with some equivalent, possibly strength-reduced, replacement. 917 struct LSRFixup { 918 /// UserInst - The instruction which will be updated. 919 Instruction *UserInst; 920 921 /// OperandValToReplace - The operand of the instruction which will 922 /// be replaced. The operand may be used more than once; every instance 923 /// will be replaced. 924 Value *OperandValToReplace; 925 926 /// PostIncLoops - If this user is to use the post-incremented value of an 927 /// induction variable, this variable is non-null and holds the loop 928 /// associated with the induction variable. 929 PostIncLoopSet PostIncLoops; 930 931 /// LUIdx - The index of the LSRUse describing the expression which 932 /// this fixup needs, minus an offset (below). 933 size_t LUIdx; 934 935 /// Offset - A constant offset to be added to the LSRUse expression. 936 /// This allows multiple fixups to share the same LSRUse with different 937 /// offsets, for example in an unrolled loop. 938 int64_t Offset; 939 940 bool isUseFullyOutsideLoop(const Loop *L) const; 941 942 LSRFixup(); 943 944 void print(raw_ostream &OS) const; 945 void dump() const; 946 }; 947 948 } 949 950 LSRFixup::LSRFixup() 951 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 952 953 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 954 /// value outside of the given loop. 955 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 956 // PHI nodes use their value in their incoming blocks. 957 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 958 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 959 if (PN->getIncomingValue(i) == OperandValToReplace && 960 L->contains(PN->getIncomingBlock(i))) 961 return false; 962 return true; 963 } 964 965 return !L->contains(UserInst); 966 } 967 968 void LSRFixup::print(raw_ostream &OS) const { 969 OS << "UserInst="; 970 // Store is common and interesting enough to be worth special-casing. 971 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 972 OS << "store "; 973 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 974 } else if (UserInst->getType()->isVoidTy()) 975 OS << UserInst->getOpcodeName(); 976 else 977 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 978 979 OS << ", OperandValToReplace="; 980 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 981 982 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 983 E = PostIncLoops.end(); I != E; ++I) { 984 OS << ", PostIncLoop="; 985 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 986 } 987 988 if (LUIdx != ~size_t(0)) 989 OS << ", LUIdx=" << LUIdx; 990 991 if (Offset != 0) 992 OS << ", Offset=" << Offset; 993 } 994 995 void LSRFixup::dump() const { 996 print(errs()); errs() << '\n'; 997 } 998 999 namespace { 1000 1001 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1002 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1003 struct UniquifierDenseMapInfo { 1004 static SmallVector<const SCEV *, 2> getEmptyKey() { 1005 SmallVector<const SCEV *, 2> V; 1006 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1007 return V; 1008 } 1009 1010 static SmallVector<const SCEV *, 2> getTombstoneKey() { 1011 SmallVector<const SCEV *, 2> V; 1012 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1013 return V; 1014 } 1015 1016 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 1017 unsigned Result = 0; 1018 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 1019 E = V.end(); I != E; ++I) 1020 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1021 return Result; 1022 } 1023 1024 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 1025 const SmallVector<const SCEV *, 2> &RHS) { 1026 return LHS == RHS; 1027 } 1028 }; 1029 1030 /// LSRUse - This class holds the state that LSR keeps for each use in 1031 /// IVUsers, as well as uses invented by LSR itself. It includes information 1032 /// about what kinds of things can be folded into the user, information about 1033 /// the user itself, and information about how the use may be satisfied. 1034 /// TODO: Represent multiple users of the same expression in common? 1035 class LSRUse { 1036 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 1037 1038 public: 1039 /// KindType - An enum for a kind of use, indicating what types of 1040 /// scaled and immediate operands it might support. 1041 enum KindType { 1042 Basic, ///< A normal use, with no folding. 1043 Special, ///< A special case of basic, allowing -1 scales. 1044 Address, ///< An address use; folding according to TargetLowering 1045 ICmpZero ///< An equality icmp with both operands folded into one. 1046 // TODO: Add a generic icmp too? 1047 }; 1048 1049 KindType Kind; 1050 Type *AccessTy; 1051 1052 SmallVector<int64_t, 8> Offsets; 1053 int64_t MinOffset; 1054 int64_t MaxOffset; 1055 1056 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1057 /// LSRUse are outside of the loop, in which case some special-case heuristics 1058 /// may be used. 1059 bool AllFixupsOutsideLoop; 1060 1061 /// WidestFixupType - This records the widest use type for any fixup using 1062 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1063 /// max fixup widths to be equivalent, because the narrower one may be relying 1064 /// on the implicit truncation to truncate away bogus bits. 1065 Type *WidestFixupType; 1066 1067 /// Formulae - A list of ways to build a value that can satisfy this user. 1068 /// After the list is populated, one of these is selected heuristically and 1069 /// used to formulate a replacement for OperandValToReplace in UserInst. 1070 SmallVector<Formula, 12> Formulae; 1071 1072 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1073 SmallPtrSet<const SCEV *, 4> Regs; 1074 1075 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1076 MinOffset(INT64_MAX), 1077 MaxOffset(INT64_MIN), 1078 AllFixupsOutsideLoop(true), 1079 WidestFixupType(0) {} 1080 1081 bool HasFormulaWithSameRegs(const Formula &F) const; 1082 bool InsertFormula(const Formula &F); 1083 void DeleteFormula(Formula &F); 1084 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1085 1086 void print(raw_ostream &OS) const; 1087 void dump() const; 1088 }; 1089 1090 } 1091 1092 /// HasFormula - Test whether this use as a formula which has the same 1093 /// registers as the given formula. 1094 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1095 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1096 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1097 // Unstable sort by host order ok, because this is only used for uniquifying. 1098 std::sort(Key.begin(), Key.end()); 1099 return Uniquifier.count(Key); 1100 } 1101 1102 /// InsertFormula - If the given formula has not yet been inserted, add it to 1103 /// the list, and return true. Return false otherwise. 1104 bool LSRUse::InsertFormula(const Formula &F) { 1105 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1106 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1107 // Unstable sort by host order ok, because this is only used for uniquifying. 1108 std::sort(Key.begin(), Key.end()); 1109 1110 if (!Uniquifier.insert(Key).second) 1111 return false; 1112 1113 // Using a register to hold the value of 0 is not profitable. 1114 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1115 "Zero allocated in a scaled register!"); 1116 #ifndef NDEBUG 1117 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1118 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1119 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1120 #endif 1121 1122 // Add the formula to the list. 1123 Formulae.push_back(F); 1124 1125 // Record registers now being used by this use. 1126 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1127 1128 return true; 1129 } 1130 1131 /// DeleteFormula - Remove the given formula from this use's list. 1132 void LSRUse::DeleteFormula(Formula &F) { 1133 if (&F != &Formulae.back()) 1134 std::swap(F, Formulae.back()); 1135 Formulae.pop_back(); 1136 } 1137 1138 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1139 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1140 // Now that we've filtered out some formulae, recompute the Regs set. 1141 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1142 Regs.clear(); 1143 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1144 E = Formulae.end(); I != E; ++I) { 1145 const Formula &F = *I; 1146 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1147 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1148 } 1149 1150 // Update the RegTracker. 1151 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1152 E = OldRegs.end(); I != E; ++I) 1153 if (!Regs.count(*I)) 1154 RegUses.DropRegister(*I, LUIdx); 1155 } 1156 1157 void LSRUse::print(raw_ostream &OS) const { 1158 OS << "LSR Use: Kind="; 1159 switch (Kind) { 1160 case Basic: OS << "Basic"; break; 1161 case Special: OS << "Special"; break; 1162 case ICmpZero: OS << "ICmpZero"; break; 1163 case Address: 1164 OS << "Address of "; 1165 if (AccessTy->isPointerTy()) 1166 OS << "pointer"; // the full pointer type could be really verbose 1167 else 1168 OS << *AccessTy; 1169 } 1170 1171 OS << ", Offsets={"; 1172 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1173 E = Offsets.end(); I != E; ++I) { 1174 OS << *I; 1175 if (llvm::next(I) != E) 1176 OS << ','; 1177 } 1178 OS << '}'; 1179 1180 if (AllFixupsOutsideLoop) 1181 OS << ", all-fixups-outside-loop"; 1182 1183 if (WidestFixupType) 1184 OS << ", widest fixup type: " << *WidestFixupType; 1185 } 1186 1187 void LSRUse::dump() const { 1188 print(errs()); errs() << '\n'; 1189 } 1190 1191 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1192 /// be completely folded into the user instruction at isel time. This includes 1193 /// address-mode folding and special icmp tricks. 1194 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1195 LSRUse::KindType Kind, Type *AccessTy, 1196 const TargetLowering *TLI) { 1197 switch (Kind) { 1198 case LSRUse::Address: 1199 // If we have low-level target information, ask the target if it can 1200 // completely fold this address. 1201 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1202 1203 // Otherwise, just guess that reg+reg addressing is legal. 1204 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1205 1206 case LSRUse::ICmpZero: 1207 // There's not even a target hook for querying whether it would be legal to 1208 // fold a GV into an ICmp. 1209 if (AM.BaseGV) 1210 return false; 1211 1212 // ICmp only has two operands; don't allow more than two non-trivial parts. 1213 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1214 return false; 1215 1216 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1217 // putting the scaled register in the other operand of the icmp. 1218 if (AM.Scale != 0 && AM.Scale != -1) 1219 return false; 1220 1221 // If we have low-level target information, ask the target if it can fold an 1222 // integer immediate on an icmp. 1223 if (AM.BaseOffs != 0) { 1224 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); 1225 return false; 1226 } 1227 1228 return true; 1229 1230 case LSRUse::Basic: 1231 // Only handle single-register values. 1232 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1233 1234 case LSRUse::Special: 1235 // Only handle -1 scales, or no scale. 1236 return AM.Scale == 0 || AM.Scale == -1; 1237 } 1238 1239 return false; 1240 } 1241 1242 static bool isLegalUse(TargetLowering::AddrMode AM, 1243 int64_t MinOffset, int64_t MaxOffset, 1244 LSRUse::KindType Kind, Type *AccessTy, 1245 const TargetLowering *TLI) { 1246 // Check for overflow. 1247 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1248 (MinOffset > 0)) 1249 return false; 1250 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1251 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1252 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1253 // Check for overflow. 1254 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1255 (MaxOffset > 0)) 1256 return false; 1257 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1258 return isLegalUse(AM, Kind, AccessTy, TLI); 1259 } 1260 return false; 1261 } 1262 1263 static bool isAlwaysFoldable(int64_t BaseOffs, 1264 GlobalValue *BaseGV, 1265 bool HasBaseReg, 1266 LSRUse::KindType Kind, Type *AccessTy, 1267 const TargetLowering *TLI) { 1268 // Fast-path: zero is always foldable. 1269 if (BaseOffs == 0 && !BaseGV) return true; 1270 1271 // Conservatively, create an address with an immediate and a 1272 // base and a scale. 1273 TargetLowering::AddrMode AM; 1274 AM.BaseOffs = BaseOffs; 1275 AM.BaseGV = BaseGV; 1276 AM.HasBaseReg = HasBaseReg; 1277 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1278 1279 // Canonicalize a scale of 1 to a base register if the formula doesn't 1280 // already have a base register. 1281 if (!AM.HasBaseReg && AM.Scale == 1) { 1282 AM.Scale = 0; 1283 AM.HasBaseReg = true; 1284 } 1285 1286 return isLegalUse(AM, Kind, AccessTy, TLI); 1287 } 1288 1289 static bool isAlwaysFoldable(const SCEV *S, 1290 int64_t MinOffset, int64_t MaxOffset, 1291 bool HasBaseReg, 1292 LSRUse::KindType Kind, Type *AccessTy, 1293 const TargetLowering *TLI, 1294 ScalarEvolution &SE) { 1295 // Fast-path: zero is always foldable. 1296 if (S->isZero()) return true; 1297 1298 // Conservatively, create an address with an immediate and a 1299 // base and a scale. 1300 int64_t BaseOffs = ExtractImmediate(S, SE); 1301 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1302 1303 // If there's anything else involved, it's not foldable. 1304 if (!S->isZero()) return false; 1305 1306 // Fast-path: zero is always foldable. 1307 if (BaseOffs == 0 && !BaseGV) return true; 1308 1309 // Conservatively, create an address with an immediate and a 1310 // base and a scale. 1311 TargetLowering::AddrMode AM; 1312 AM.BaseOffs = BaseOffs; 1313 AM.BaseGV = BaseGV; 1314 AM.HasBaseReg = HasBaseReg; 1315 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1316 1317 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1318 } 1319 1320 namespace { 1321 1322 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1323 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1324 struct UseMapDenseMapInfo { 1325 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1326 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1327 } 1328 1329 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1330 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1331 } 1332 1333 static unsigned 1334 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1335 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1336 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1337 return Result; 1338 } 1339 1340 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1341 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1342 return LHS == RHS; 1343 } 1344 }; 1345 1346 /// LSRInstance - This class holds state for the main loop strength reduction 1347 /// logic. 1348 class LSRInstance { 1349 IVUsers &IU; 1350 ScalarEvolution &SE; 1351 DominatorTree &DT; 1352 LoopInfo &LI; 1353 const TargetLowering *const TLI; 1354 Loop *const L; 1355 bool Changed; 1356 1357 /// IVIncInsertPos - This is the insert position that the current loop's 1358 /// induction variable increment should be placed. In simple loops, this is 1359 /// the latch block's terminator. But in more complicated cases, this is a 1360 /// position which will dominate all the in-loop post-increment users. 1361 Instruction *IVIncInsertPos; 1362 1363 /// Factors - Interesting factors between use strides. 1364 SmallSetVector<int64_t, 8> Factors; 1365 1366 /// Types - Interesting use types, to facilitate truncation reuse. 1367 SmallSetVector<Type *, 4> Types; 1368 1369 /// Fixups - The list of operands which are to be replaced. 1370 SmallVector<LSRFixup, 16> Fixups; 1371 1372 /// Uses - The list of interesting uses. 1373 SmallVector<LSRUse, 16> Uses; 1374 1375 /// RegUses - Track which uses use which register candidates. 1376 RegUseTracker RegUses; 1377 1378 void OptimizeShadowIV(); 1379 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1380 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1381 void OptimizeLoopTermCond(); 1382 1383 void CollectInterestingTypesAndFactors(); 1384 void CollectFixupsAndInitialFormulae(); 1385 1386 LSRFixup &getNewFixup() { 1387 Fixups.push_back(LSRFixup()); 1388 return Fixups.back(); 1389 } 1390 1391 // Support for sharing of LSRUses between LSRFixups. 1392 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1393 size_t, 1394 UseMapDenseMapInfo> UseMapTy; 1395 UseMapTy UseMap; 1396 1397 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1398 LSRUse::KindType Kind, Type *AccessTy); 1399 1400 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1401 LSRUse::KindType Kind, 1402 Type *AccessTy); 1403 1404 void DeleteUse(LSRUse &LU, size_t LUIdx); 1405 1406 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1407 1408 public: 1409 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1410 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1411 void CountRegisters(const Formula &F, size_t LUIdx); 1412 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1413 1414 void CollectLoopInvariantFixupsAndFormulae(); 1415 1416 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1417 unsigned Depth = 0); 1418 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1419 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1420 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1421 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1422 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1423 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1424 void GenerateCrossUseConstantOffsets(); 1425 void GenerateAllReuseFormulae(); 1426 1427 void FilterOutUndesirableDedicatedRegisters(); 1428 1429 size_t EstimateSearchSpaceComplexity() const; 1430 void NarrowSearchSpaceByDetectingSupersets(); 1431 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1432 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1433 void NarrowSearchSpaceByPickingWinnerRegs(); 1434 void NarrowSearchSpaceUsingHeuristics(); 1435 1436 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1437 Cost &SolutionCost, 1438 SmallVectorImpl<const Formula *> &Workspace, 1439 const Cost &CurCost, 1440 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1441 DenseSet<const SCEV *> &VisitedRegs) const; 1442 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1443 1444 BasicBlock::iterator 1445 HoistInsertPosition(BasicBlock::iterator IP, 1446 const SmallVectorImpl<Instruction *> &Inputs) const; 1447 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1448 const LSRFixup &LF, 1449 const LSRUse &LU) const; 1450 1451 Value *Expand(const LSRFixup &LF, 1452 const Formula &F, 1453 BasicBlock::iterator IP, 1454 SCEVExpander &Rewriter, 1455 SmallVectorImpl<WeakVH> &DeadInsts) const; 1456 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1457 const Formula &F, 1458 SCEVExpander &Rewriter, 1459 SmallVectorImpl<WeakVH> &DeadInsts, 1460 Pass *P) const; 1461 void Rewrite(const LSRFixup &LF, 1462 const Formula &F, 1463 SCEVExpander &Rewriter, 1464 SmallVectorImpl<WeakVH> &DeadInsts, 1465 Pass *P) const; 1466 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1467 Pass *P); 1468 1469 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1470 1471 bool getChanged() const { return Changed; } 1472 1473 void print_factors_and_types(raw_ostream &OS) const; 1474 void print_fixups(raw_ostream &OS) const; 1475 void print_uses(raw_ostream &OS) const; 1476 void print(raw_ostream &OS) const; 1477 void dump() const; 1478 }; 1479 1480 } 1481 1482 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1483 /// inside the loop then try to eliminate the cast operation. 1484 void LSRInstance::OptimizeShadowIV() { 1485 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1486 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1487 return; 1488 1489 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1490 UI != E; /* empty */) { 1491 IVUsers::const_iterator CandidateUI = UI; 1492 ++UI; 1493 Instruction *ShadowUse = CandidateUI->getUser(); 1494 Type *DestTy = NULL; 1495 bool IsSigned = false; 1496 1497 /* If shadow use is a int->float cast then insert a second IV 1498 to eliminate this cast. 1499 1500 for (unsigned i = 0; i < n; ++i) 1501 foo((double)i); 1502 1503 is transformed into 1504 1505 double d = 0.0; 1506 for (unsigned i = 0; i < n; ++i, ++d) 1507 foo(d); 1508 */ 1509 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1510 IsSigned = false; 1511 DestTy = UCast->getDestTy(); 1512 } 1513 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1514 IsSigned = true; 1515 DestTy = SCast->getDestTy(); 1516 } 1517 if (!DestTy) continue; 1518 1519 if (TLI) { 1520 // If target does not support DestTy natively then do not apply 1521 // this transformation. 1522 EVT DVT = TLI->getValueType(DestTy); 1523 if (!TLI->isTypeLegal(DVT)) continue; 1524 } 1525 1526 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1527 if (!PH) continue; 1528 if (PH->getNumIncomingValues() != 2) continue; 1529 1530 Type *SrcTy = PH->getType(); 1531 int Mantissa = DestTy->getFPMantissaWidth(); 1532 if (Mantissa == -1) continue; 1533 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1534 continue; 1535 1536 unsigned Entry, Latch; 1537 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1538 Entry = 0; 1539 Latch = 1; 1540 } else { 1541 Entry = 1; 1542 Latch = 0; 1543 } 1544 1545 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1546 if (!Init) continue; 1547 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1548 (double)Init->getSExtValue() : 1549 (double)Init->getZExtValue()); 1550 1551 BinaryOperator *Incr = 1552 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1553 if (!Incr) continue; 1554 if (Incr->getOpcode() != Instruction::Add 1555 && Incr->getOpcode() != Instruction::Sub) 1556 continue; 1557 1558 /* Initialize new IV, double d = 0.0 in above example. */ 1559 ConstantInt *C = NULL; 1560 if (Incr->getOperand(0) == PH) 1561 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1562 else if (Incr->getOperand(1) == PH) 1563 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1564 else 1565 continue; 1566 1567 if (!C) continue; 1568 1569 // Ignore negative constants, as the code below doesn't handle them 1570 // correctly. TODO: Remove this restriction. 1571 if (!C->getValue().isStrictlyPositive()) continue; 1572 1573 /* Add new PHINode. */ 1574 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1575 1576 /* create new increment. '++d' in above example. */ 1577 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1578 BinaryOperator *NewIncr = 1579 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1580 Instruction::FAdd : Instruction::FSub, 1581 NewPH, CFP, "IV.S.next.", Incr); 1582 1583 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1584 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1585 1586 /* Remove cast operation */ 1587 ShadowUse->replaceAllUsesWith(NewPH); 1588 ShadowUse->eraseFromParent(); 1589 Changed = true; 1590 break; 1591 } 1592 } 1593 1594 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1595 /// set the IV user and stride information and return true, otherwise return 1596 /// false. 1597 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1598 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1599 if (UI->getUser() == Cond) { 1600 // NOTE: we could handle setcc instructions with multiple uses here, but 1601 // InstCombine does it as well for simple uses, it's not clear that it 1602 // occurs enough in real life to handle. 1603 CondUse = UI; 1604 return true; 1605 } 1606 return false; 1607 } 1608 1609 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1610 /// a max computation. 1611 /// 1612 /// This is a narrow solution to a specific, but acute, problem. For loops 1613 /// like this: 1614 /// 1615 /// i = 0; 1616 /// do { 1617 /// p[i] = 0.0; 1618 /// } while (++i < n); 1619 /// 1620 /// the trip count isn't just 'n', because 'n' might not be positive. And 1621 /// unfortunately this can come up even for loops where the user didn't use 1622 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1623 /// will commonly be lowered like this: 1624 // 1625 /// if (n > 0) { 1626 /// i = 0; 1627 /// do { 1628 /// p[i] = 0.0; 1629 /// } while (++i < n); 1630 /// } 1631 /// 1632 /// and then it's possible for subsequent optimization to obscure the if 1633 /// test in such a way that indvars can't find it. 1634 /// 1635 /// When indvars can't find the if test in loops like this, it creates a 1636 /// max expression, which allows it to give the loop a canonical 1637 /// induction variable: 1638 /// 1639 /// i = 0; 1640 /// max = n < 1 ? 1 : n; 1641 /// do { 1642 /// p[i] = 0.0; 1643 /// } while (++i != max); 1644 /// 1645 /// Canonical induction variables are necessary because the loop passes 1646 /// are designed around them. The most obvious example of this is the 1647 /// LoopInfo analysis, which doesn't remember trip count values. It 1648 /// expects to be able to rediscover the trip count each time it is 1649 /// needed, and it does this using a simple analysis that only succeeds if 1650 /// the loop has a canonical induction variable. 1651 /// 1652 /// However, when it comes time to generate code, the maximum operation 1653 /// can be quite costly, especially if it's inside of an outer loop. 1654 /// 1655 /// This function solves this problem by detecting this type of loop and 1656 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1657 /// the instructions for the maximum computation. 1658 /// 1659 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1660 // Check that the loop matches the pattern we're looking for. 1661 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1662 Cond->getPredicate() != CmpInst::ICMP_NE) 1663 return Cond; 1664 1665 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1666 if (!Sel || !Sel->hasOneUse()) return Cond; 1667 1668 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1669 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1670 return Cond; 1671 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1672 1673 // Add one to the backedge-taken count to get the trip count. 1674 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1675 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1676 1677 // Check for a max calculation that matches the pattern. There's no check 1678 // for ICMP_ULE here because the comparison would be with zero, which 1679 // isn't interesting. 1680 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1681 const SCEVNAryExpr *Max = 0; 1682 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1683 Pred = ICmpInst::ICMP_SLE; 1684 Max = S; 1685 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1686 Pred = ICmpInst::ICMP_SLT; 1687 Max = S; 1688 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1689 Pred = ICmpInst::ICMP_ULT; 1690 Max = U; 1691 } else { 1692 // No match; bail. 1693 return Cond; 1694 } 1695 1696 // To handle a max with more than two operands, this optimization would 1697 // require additional checking and setup. 1698 if (Max->getNumOperands() != 2) 1699 return Cond; 1700 1701 const SCEV *MaxLHS = Max->getOperand(0); 1702 const SCEV *MaxRHS = Max->getOperand(1); 1703 1704 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1705 // for a comparison with 1. For <= and >=, a comparison with zero. 1706 if (!MaxLHS || 1707 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1708 return Cond; 1709 1710 // Check the relevant induction variable for conformance to 1711 // the pattern. 1712 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1713 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1714 if (!AR || !AR->isAffine() || 1715 AR->getStart() != One || 1716 AR->getStepRecurrence(SE) != One) 1717 return Cond; 1718 1719 assert(AR->getLoop() == L && 1720 "Loop condition operand is an addrec in a different loop!"); 1721 1722 // Check the right operand of the select, and remember it, as it will 1723 // be used in the new comparison instruction. 1724 Value *NewRHS = 0; 1725 if (ICmpInst::isTrueWhenEqual(Pred)) { 1726 // Look for n+1, and grab n. 1727 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1728 if (isa<ConstantInt>(BO->getOperand(1)) && 1729 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1730 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1731 NewRHS = BO->getOperand(0); 1732 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1733 if (isa<ConstantInt>(BO->getOperand(1)) && 1734 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1735 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1736 NewRHS = BO->getOperand(0); 1737 if (!NewRHS) 1738 return Cond; 1739 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1740 NewRHS = Sel->getOperand(1); 1741 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1742 NewRHS = Sel->getOperand(2); 1743 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1744 NewRHS = SU->getValue(); 1745 else 1746 // Max doesn't match expected pattern. 1747 return Cond; 1748 1749 // Determine the new comparison opcode. It may be signed or unsigned, 1750 // and the original comparison may be either equality or inequality. 1751 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1752 Pred = CmpInst::getInversePredicate(Pred); 1753 1754 // Ok, everything looks ok to change the condition into an SLT or SGE and 1755 // delete the max calculation. 1756 ICmpInst *NewCond = 1757 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1758 1759 // Delete the max calculation instructions. 1760 Cond->replaceAllUsesWith(NewCond); 1761 CondUse->setUser(NewCond); 1762 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1763 Cond->eraseFromParent(); 1764 Sel->eraseFromParent(); 1765 if (Cmp->use_empty()) 1766 Cmp->eraseFromParent(); 1767 return NewCond; 1768 } 1769 1770 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1771 /// postinc iv when possible. 1772 void 1773 LSRInstance::OptimizeLoopTermCond() { 1774 SmallPtrSet<Instruction *, 4> PostIncs; 1775 1776 BasicBlock *LatchBlock = L->getLoopLatch(); 1777 SmallVector<BasicBlock*, 8> ExitingBlocks; 1778 L->getExitingBlocks(ExitingBlocks); 1779 1780 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1781 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1782 1783 // Get the terminating condition for the loop if possible. If we 1784 // can, we want to change it to use a post-incremented version of its 1785 // induction variable, to allow coalescing the live ranges for the IV into 1786 // one register value. 1787 1788 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1789 if (!TermBr) 1790 continue; 1791 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1792 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1793 continue; 1794 1795 // Search IVUsesByStride to find Cond's IVUse if there is one. 1796 IVStrideUse *CondUse = 0; 1797 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1798 if (!FindIVUserForCond(Cond, CondUse)) 1799 continue; 1800 1801 // If the trip count is computed in terms of a max (due to ScalarEvolution 1802 // being unable to find a sufficient guard, for example), change the loop 1803 // comparison to use SLT or ULT instead of NE. 1804 // One consequence of doing this now is that it disrupts the count-down 1805 // optimization. That's not always a bad thing though, because in such 1806 // cases it may still be worthwhile to avoid a max. 1807 Cond = OptimizeMax(Cond, CondUse); 1808 1809 // If this exiting block dominates the latch block, it may also use 1810 // the post-inc value if it won't be shared with other uses. 1811 // Check for dominance. 1812 if (!DT.dominates(ExitingBlock, LatchBlock)) 1813 continue; 1814 1815 // Conservatively avoid trying to use the post-inc value in non-latch 1816 // exits if there may be pre-inc users in intervening blocks. 1817 if (LatchBlock != ExitingBlock) 1818 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1819 // Test if the use is reachable from the exiting block. This dominator 1820 // query is a conservative approximation of reachability. 1821 if (&*UI != CondUse && 1822 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1823 // Conservatively assume there may be reuse if the quotient of their 1824 // strides could be a legal scale. 1825 const SCEV *A = IU.getStride(*CondUse, L); 1826 const SCEV *B = IU.getStride(*UI, L); 1827 if (!A || !B) continue; 1828 if (SE.getTypeSizeInBits(A->getType()) != 1829 SE.getTypeSizeInBits(B->getType())) { 1830 if (SE.getTypeSizeInBits(A->getType()) > 1831 SE.getTypeSizeInBits(B->getType())) 1832 B = SE.getSignExtendExpr(B, A->getType()); 1833 else 1834 A = SE.getSignExtendExpr(A, B->getType()); 1835 } 1836 if (const SCEVConstant *D = 1837 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1838 const ConstantInt *C = D->getValue(); 1839 // Stride of one or negative one can have reuse with non-addresses. 1840 if (C->isOne() || C->isAllOnesValue()) 1841 goto decline_post_inc; 1842 // Avoid weird situations. 1843 if (C->getValue().getMinSignedBits() >= 64 || 1844 C->getValue().isMinSignedValue()) 1845 goto decline_post_inc; 1846 // Without TLI, assume that any stride might be valid, and so any 1847 // use might be shared. 1848 if (!TLI) 1849 goto decline_post_inc; 1850 // Check for possible scaled-address reuse. 1851 Type *AccessTy = getAccessType(UI->getUser()); 1852 TargetLowering::AddrMode AM; 1853 AM.Scale = C->getSExtValue(); 1854 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1855 goto decline_post_inc; 1856 AM.Scale = -AM.Scale; 1857 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1858 goto decline_post_inc; 1859 } 1860 } 1861 1862 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1863 << *Cond << '\n'); 1864 1865 // It's possible for the setcc instruction to be anywhere in the loop, and 1866 // possible for it to have multiple users. If it is not immediately before 1867 // the exiting block branch, move it. 1868 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1869 if (Cond->hasOneUse()) { 1870 Cond->moveBefore(TermBr); 1871 } else { 1872 // Clone the terminating condition and insert into the loopend. 1873 ICmpInst *OldCond = Cond; 1874 Cond = cast<ICmpInst>(Cond->clone()); 1875 Cond->setName(L->getHeader()->getName() + ".termcond"); 1876 ExitingBlock->getInstList().insert(TermBr, Cond); 1877 1878 // Clone the IVUse, as the old use still exists! 1879 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1880 TermBr->replaceUsesOfWith(OldCond, Cond); 1881 } 1882 } 1883 1884 // If we get to here, we know that we can transform the setcc instruction to 1885 // use the post-incremented version of the IV, allowing us to coalesce the 1886 // live ranges for the IV correctly. 1887 CondUse->transformToPostInc(L); 1888 Changed = true; 1889 1890 PostIncs.insert(Cond); 1891 decline_post_inc:; 1892 } 1893 1894 // Determine an insertion point for the loop induction variable increment. It 1895 // must dominate all the post-inc comparisons we just set up, and it must 1896 // dominate the loop latch edge. 1897 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1898 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1899 E = PostIncs.end(); I != E; ++I) { 1900 BasicBlock *BB = 1901 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1902 (*I)->getParent()); 1903 if (BB == (*I)->getParent()) 1904 IVIncInsertPos = *I; 1905 else if (BB != IVIncInsertPos->getParent()) 1906 IVIncInsertPos = BB->getTerminator(); 1907 } 1908 } 1909 1910 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1911 /// at the given offset and other details. If so, update the use and 1912 /// return true. 1913 bool 1914 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1915 LSRUse::KindType Kind, Type *AccessTy) { 1916 int64_t NewMinOffset = LU.MinOffset; 1917 int64_t NewMaxOffset = LU.MaxOffset; 1918 Type *NewAccessTy = AccessTy; 1919 1920 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1921 // something conservative, however this can pessimize in the case that one of 1922 // the uses will have all its uses outside the loop, for example. 1923 if (LU.Kind != Kind) 1924 return false; 1925 // Conservatively assume HasBaseReg is true for now. 1926 if (NewOffset < LU.MinOffset) { 1927 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1928 Kind, AccessTy, TLI)) 1929 return false; 1930 NewMinOffset = NewOffset; 1931 } else if (NewOffset > LU.MaxOffset) { 1932 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1933 Kind, AccessTy, TLI)) 1934 return false; 1935 NewMaxOffset = NewOffset; 1936 } 1937 // Check for a mismatched access type, and fall back conservatively as needed. 1938 // TODO: Be less conservative when the type is similar and can use the same 1939 // addressing modes. 1940 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1941 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1942 1943 // Update the use. 1944 LU.MinOffset = NewMinOffset; 1945 LU.MaxOffset = NewMaxOffset; 1946 LU.AccessTy = NewAccessTy; 1947 if (NewOffset != LU.Offsets.back()) 1948 LU.Offsets.push_back(NewOffset); 1949 return true; 1950 } 1951 1952 /// getUse - Return an LSRUse index and an offset value for a fixup which 1953 /// needs the given expression, with the given kind and optional access type. 1954 /// Either reuse an existing use or create a new one, as needed. 1955 std::pair<size_t, int64_t> 1956 LSRInstance::getUse(const SCEV *&Expr, 1957 LSRUse::KindType Kind, Type *AccessTy) { 1958 const SCEV *Copy = Expr; 1959 int64_t Offset = ExtractImmediate(Expr, SE); 1960 1961 // Basic uses can't accept any offset, for example. 1962 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1963 Expr = Copy; 1964 Offset = 0; 1965 } 1966 1967 std::pair<UseMapTy::iterator, bool> P = 1968 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1969 if (!P.second) { 1970 // A use already existed with this base. 1971 size_t LUIdx = P.first->second; 1972 LSRUse &LU = Uses[LUIdx]; 1973 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1974 // Reuse this use. 1975 return std::make_pair(LUIdx, Offset); 1976 } 1977 1978 // Create a new use. 1979 size_t LUIdx = Uses.size(); 1980 P.first->second = LUIdx; 1981 Uses.push_back(LSRUse(Kind, AccessTy)); 1982 LSRUse &LU = Uses[LUIdx]; 1983 1984 // We don't need to track redundant offsets, but we don't need to go out 1985 // of our way here to avoid them. 1986 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1987 LU.Offsets.push_back(Offset); 1988 1989 LU.MinOffset = Offset; 1990 LU.MaxOffset = Offset; 1991 return std::make_pair(LUIdx, Offset); 1992 } 1993 1994 /// DeleteUse - Delete the given use from the Uses list. 1995 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1996 if (&LU != &Uses.back()) 1997 std::swap(LU, Uses.back()); 1998 Uses.pop_back(); 1999 2000 // Update RegUses. 2001 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2002 } 2003 2004 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2005 /// a formula that has the same registers as the given formula. 2006 LSRUse * 2007 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2008 const LSRUse &OrigLU) { 2009 // Search all uses for the formula. This could be more clever. 2010 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2011 LSRUse &LU = Uses[LUIdx]; 2012 // Check whether this use is close enough to OrigLU, to see whether it's 2013 // worthwhile looking through its formulae. 2014 // Ignore ICmpZero uses because they may contain formulae generated by 2015 // GenerateICmpZeroScales, in which case adding fixup offsets may 2016 // be invalid. 2017 if (&LU != &OrigLU && 2018 LU.Kind != LSRUse::ICmpZero && 2019 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2020 LU.WidestFixupType == OrigLU.WidestFixupType && 2021 LU.HasFormulaWithSameRegs(OrigF)) { 2022 // Scan through this use's formulae. 2023 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2024 E = LU.Formulae.end(); I != E; ++I) { 2025 const Formula &F = *I; 2026 // Check to see if this formula has the same registers and symbols 2027 // as OrigF. 2028 if (F.BaseRegs == OrigF.BaseRegs && 2029 F.ScaledReg == OrigF.ScaledReg && 2030 F.AM.BaseGV == OrigF.AM.BaseGV && 2031 F.AM.Scale == OrigF.AM.Scale && 2032 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2033 if (F.AM.BaseOffs == 0) 2034 return &LU; 2035 // This is the formula where all the registers and symbols matched; 2036 // there aren't going to be any others. Since we declined it, we 2037 // can skip the rest of the formulae and procede to the next LSRUse. 2038 break; 2039 } 2040 } 2041 } 2042 } 2043 2044 // Nothing looked good. 2045 return 0; 2046 } 2047 2048 void LSRInstance::CollectInterestingTypesAndFactors() { 2049 SmallSetVector<const SCEV *, 4> Strides; 2050 2051 // Collect interesting types and strides. 2052 SmallVector<const SCEV *, 4> Worklist; 2053 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2054 const SCEV *Expr = IU.getExpr(*UI); 2055 2056 // Collect interesting types. 2057 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2058 2059 // Add strides for mentioned loops. 2060 Worklist.push_back(Expr); 2061 do { 2062 const SCEV *S = Worklist.pop_back_val(); 2063 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2064 Strides.insert(AR->getStepRecurrence(SE)); 2065 Worklist.push_back(AR->getStart()); 2066 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2067 Worklist.append(Add->op_begin(), Add->op_end()); 2068 } 2069 } while (!Worklist.empty()); 2070 } 2071 2072 // Compute interesting factors from the set of interesting strides. 2073 for (SmallSetVector<const SCEV *, 4>::const_iterator 2074 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2075 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2076 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2077 const SCEV *OldStride = *I; 2078 const SCEV *NewStride = *NewStrideIter; 2079 2080 if (SE.getTypeSizeInBits(OldStride->getType()) != 2081 SE.getTypeSizeInBits(NewStride->getType())) { 2082 if (SE.getTypeSizeInBits(OldStride->getType()) > 2083 SE.getTypeSizeInBits(NewStride->getType())) 2084 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2085 else 2086 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2087 } 2088 if (const SCEVConstant *Factor = 2089 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2090 SE, true))) { 2091 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2092 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2093 } else if (const SCEVConstant *Factor = 2094 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2095 NewStride, 2096 SE, true))) { 2097 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2098 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2099 } 2100 } 2101 2102 // If all uses use the same type, don't bother looking for truncation-based 2103 // reuse. 2104 if (Types.size() == 1) 2105 Types.clear(); 2106 2107 DEBUG(print_factors_and_types(dbgs())); 2108 } 2109 2110 void LSRInstance::CollectFixupsAndInitialFormulae() { 2111 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2112 // Record the uses. 2113 LSRFixup &LF = getNewFixup(); 2114 LF.UserInst = UI->getUser(); 2115 LF.OperandValToReplace = UI->getOperandValToReplace(); 2116 LF.PostIncLoops = UI->getPostIncLoops(); 2117 2118 LSRUse::KindType Kind = LSRUse::Basic; 2119 Type *AccessTy = 0; 2120 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2121 Kind = LSRUse::Address; 2122 AccessTy = getAccessType(LF.UserInst); 2123 } 2124 2125 const SCEV *S = IU.getExpr(*UI); 2126 2127 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2128 // (N - i == 0), and this allows (N - i) to be the expression that we work 2129 // with rather than just N or i, so we can consider the register 2130 // requirements for both N and i at the same time. Limiting this code to 2131 // equality icmps is not a problem because all interesting loops use 2132 // equality icmps, thanks to IndVarSimplify. 2133 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2134 if (CI->isEquality()) { 2135 // Swap the operands if needed to put the OperandValToReplace on the 2136 // left, for consistency. 2137 Value *NV = CI->getOperand(1); 2138 if (NV == LF.OperandValToReplace) { 2139 CI->setOperand(1, CI->getOperand(0)); 2140 CI->setOperand(0, NV); 2141 NV = CI->getOperand(1); 2142 Changed = true; 2143 } 2144 2145 // x == y --> x - y == 0 2146 const SCEV *N = SE.getSCEV(NV); 2147 if (SE.isLoopInvariant(N, L)) { 2148 // S is normalized, so normalize N before folding it into S 2149 // to keep the result normalized. 2150 N = TransformForPostIncUse(Normalize, N, CI, 0, 2151 LF.PostIncLoops, SE, DT); 2152 Kind = LSRUse::ICmpZero; 2153 S = SE.getMinusSCEV(N, S); 2154 } 2155 2156 // -1 and the negations of all interesting strides (except the negation 2157 // of -1) are now also interesting. 2158 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2159 if (Factors[i] != -1) 2160 Factors.insert(-(uint64_t)Factors[i]); 2161 Factors.insert(-1); 2162 } 2163 2164 // Set up the initial formula for this use. 2165 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2166 LF.LUIdx = P.first; 2167 LF.Offset = P.second; 2168 LSRUse &LU = Uses[LF.LUIdx]; 2169 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2170 if (!LU.WidestFixupType || 2171 SE.getTypeSizeInBits(LU.WidestFixupType) < 2172 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2173 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2174 2175 // If this is the first use of this LSRUse, give it a formula. 2176 if (LU.Formulae.empty()) { 2177 InsertInitialFormula(S, LU, LF.LUIdx); 2178 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2179 } 2180 } 2181 2182 DEBUG(print_fixups(dbgs())); 2183 } 2184 2185 /// InsertInitialFormula - Insert a formula for the given expression into 2186 /// the given use, separating out loop-variant portions from loop-invariant 2187 /// and loop-computable portions. 2188 void 2189 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2190 Formula F; 2191 F.InitialMatch(S, L, SE); 2192 bool Inserted = InsertFormula(LU, LUIdx, F); 2193 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2194 } 2195 2196 /// InsertSupplementalFormula - Insert a simple single-register formula for 2197 /// the given expression into the given use. 2198 void 2199 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2200 LSRUse &LU, size_t LUIdx) { 2201 Formula F; 2202 F.BaseRegs.push_back(S); 2203 F.AM.HasBaseReg = true; 2204 bool Inserted = InsertFormula(LU, LUIdx, F); 2205 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2206 } 2207 2208 /// CountRegisters - Note which registers are used by the given formula, 2209 /// updating RegUses. 2210 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2211 if (F.ScaledReg) 2212 RegUses.CountRegister(F.ScaledReg, LUIdx); 2213 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2214 E = F.BaseRegs.end(); I != E; ++I) 2215 RegUses.CountRegister(*I, LUIdx); 2216 } 2217 2218 /// InsertFormula - If the given formula has not yet been inserted, add it to 2219 /// the list, and return true. Return false otherwise. 2220 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2221 if (!LU.InsertFormula(F)) 2222 return false; 2223 2224 CountRegisters(F, LUIdx); 2225 return true; 2226 } 2227 2228 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2229 /// loop-invariant values which we're tracking. These other uses will pin these 2230 /// values in registers, making them less profitable for elimination. 2231 /// TODO: This currently misses non-constant addrec step registers. 2232 /// TODO: Should this give more weight to users inside the loop? 2233 void 2234 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2235 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2236 SmallPtrSet<const SCEV *, 8> Inserted; 2237 2238 while (!Worklist.empty()) { 2239 const SCEV *S = Worklist.pop_back_val(); 2240 2241 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2242 Worklist.append(N->op_begin(), N->op_end()); 2243 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2244 Worklist.push_back(C->getOperand()); 2245 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2246 Worklist.push_back(D->getLHS()); 2247 Worklist.push_back(D->getRHS()); 2248 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2249 if (!Inserted.insert(U)) continue; 2250 const Value *V = U->getValue(); 2251 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2252 // Look for instructions defined outside the loop. 2253 if (L->contains(Inst)) continue; 2254 } else if (isa<UndefValue>(V)) 2255 // Undef doesn't have a live range, so it doesn't matter. 2256 continue; 2257 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2258 UI != UE; ++UI) { 2259 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2260 // Ignore non-instructions. 2261 if (!UserInst) 2262 continue; 2263 // Ignore instructions in other functions (as can happen with 2264 // Constants). 2265 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2266 continue; 2267 // Ignore instructions not dominated by the loop. 2268 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2269 UserInst->getParent() : 2270 cast<PHINode>(UserInst)->getIncomingBlock( 2271 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2272 if (!DT.dominates(L->getHeader(), UseBB)) 2273 continue; 2274 // Ignore uses which are part of other SCEV expressions, to avoid 2275 // analyzing them multiple times. 2276 if (SE.isSCEVable(UserInst->getType())) { 2277 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2278 // If the user is a no-op, look through to its uses. 2279 if (!isa<SCEVUnknown>(UserS)) 2280 continue; 2281 if (UserS == U) { 2282 Worklist.push_back( 2283 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2284 continue; 2285 } 2286 } 2287 // Ignore icmp instructions which are already being analyzed. 2288 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2289 unsigned OtherIdx = !UI.getOperandNo(); 2290 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2291 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2292 continue; 2293 } 2294 2295 LSRFixup &LF = getNewFixup(); 2296 LF.UserInst = const_cast<Instruction *>(UserInst); 2297 LF.OperandValToReplace = UI.getUse(); 2298 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2299 LF.LUIdx = P.first; 2300 LF.Offset = P.second; 2301 LSRUse &LU = Uses[LF.LUIdx]; 2302 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2303 if (!LU.WidestFixupType || 2304 SE.getTypeSizeInBits(LU.WidestFixupType) < 2305 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2306 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2307 InsertSupplementalFormula(U, LU, LF.LUIdx); 2308 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2309 break; 2310 } 2311 } 2312 } 2313 } 2314 2315 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2316 /// separate registers. If C is non-null, multiply each subexpression by C. 2317 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2318 SmallVectorImpl<const SCEV *> &Ops, 2319 const Loop *L, 2320 ScalarEvolution &SE) { 2321 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2322 // Break out add operands. 2323 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2324 I != E; ++I) 2325 CollectSubexprs(*I, C, Ops, L, SE); 2326 return; 2327 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2328 // Split a non-zero base out of an addrec. 2329 if (!AR->getStart()->isZero()) { 2330 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2331 AR->getStepRecurrence(SE), 2332 AR->getLoop(), 2333 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2334 SCEV::FlagAnyWrap), 2335 C, Ops, L, SE); 2336 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2337 return; 2338 } 2339 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2340 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2341 if (Mul->getNumOperands() == 2) 2342 if (const SCEVConstant *Op0 = 2343 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2344 CollectSubexprs(Mul->getOperand(1), 2345 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2346 Ops, L, SE); 2347 return; 2348 } 2349 } 2350 2351 // Otherwise use the value itself, optionally with a scale applied. 2352 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2353 } 2354 2355 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2356 /// addrecs. 2357 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2358 Formula Base, 2359 unsigned Depth) { 2360 // Arbitrarily cap recursion to protect compile time. 2361 if (Depth >= 3) return; 2362 2363 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2364 const SCEV *BaseReg = Base.BaseRegs[i]; 2365 2366 SmallVector<const SCEV *, 8> AddOps; 2367 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2368 2369 if (AddOps.size() == 1) continue; 2370 2371 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2372 JE = AddOps.end(); J != JE; ++J) { 2373 2374 // Loop-variant "unknown" values are uninteresting; we won't be able to 2375 // do anything meaningful with them. 2376 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2377 continue; 2378 2379 // Don't pull a constant into a register if the constant could be folded 2380 // into an immediate field. 2381 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2382 Base.getNumRegs() > 1, 2383 LU.Kind, LU.AccessTy, TLI, SE)) 2384 continue; 2385 2386 // Collect all operands except *J. 2387 SmallVector<const SCEV *, 8> InnerAddOps 2388 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2389 InnerAddOps.append 2390 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2391 2392 // Don't leave just a constant behind in a register if the constant could 2393 // be folded into an immediate field. 2394 if (InnerAddOps.size() == 1 && 2395 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2396 Base.getNumRegs() > 1, 2397 LU.Kind, LU.AccessTy, TLI, SE)) 2398 continue; 2399 2400 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2401 if (InnerSum->isZero()) 2402 continue; 2403 Formula F = Base; 2404 2405 // Add the remaining pieces of the add back into the new formula. 2406 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 2407 if (TLI && InnerSumSC && 2408 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 2409 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2410 InnerSumSC->getValue()->getZExtValue())) { 2411 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2412 InnerSumSC->getValue()->getZExtValue(); 2413 F.BaseRegs.erase(F.BaseRegs.begin() + i); 2414 } else 2415 F.BaseRegs[i] = InnerSum; 2416 2417 // Add J as its own register, or an unfolded immediate. 2418 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 2419 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 2420 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2421 SC->getValue()->getZExtValue())) 2422 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2423 SC->getValue()->getZExtValue(); 2424 else 2425 F.BaseRegs.push_back(*J); 2426 2427 if (InsertFormula(LU, LUIdx, F)) 2428 // If that formula hadn't been seen before, recurse to find more like 2429 // it. 2430 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2431 } 2432 } 2433 } 2434 2435 /// GenerateCombinations - Generate a formula consisting of all of the 2436 /// loop-dominating registers added into a single register. 2437 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2438 Formula Base) { 2439 // This method is only interesting on a plurality of registers. 2440 if (Base.BaseRegs.size() <= 1) return; 2441 2442 Formula F = Base; 2443 F.BaseRegs.clear(); 2444 SmallVector<const SCEV *, 4> Ops; 2445 for (SmallVectorImpl<const SCEV *>::const_iterator 2446 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2447 const SCEV *BaseReg = *I; 2448 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2449 !SE.hasComputableLoopEvolution(BaseReg, L)) 2450 Ops.push_back(BaseReg); 2451 else 2452 F.BaseRegs.push_back(BaseReg); 2453 } 2454 if (Ops.size() > 1) { 2455 const SCEV *Sum = SE.getAddExpr(Ops); 2456 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2457 // opportunity to fold something. For now, just ignore such cases 2458 // rather than proceed with zero in a register. 2459 if (!Sum->isZero()) { 2460 F.BaseRegs.push_back(Sum); 2461 (void)InsertFormula(LU, LUIdx, F); 2462 } 2463 } 2464 } 2465 2466 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2467 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2468 Formula Base) { 2469 // We can't add a symbolic offset if the address already contains one. 2470 if (Base.AM.BaseGV) return; 2471 2472 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2473 const SCEV *G = Base.BaseRegs[i]; 2474 GlobalValue *GV = ExtractSymbol(G, SE); 2475 if (G->isZero() || !GV) 2476 continue; 2477 Formula F = Base; 2478 F.AM.BaseGV = GV; 2479 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2480 LU.Kind, LU.AccessTy, TLI)) 2481 continue; 2482 F.BaseRegs[i] = G; 2483 (void)InsertFormula(LU, LUIdx, F); 2484 } 2485 } 2486 2487 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2488 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2489 Formula Base) { 2490 // TODO: For now, just add the min and max offset, because it usually isn't 2491 // worthwhile looking at everything inbetween. 2492 SmallVector<int64_t, 2> Worklist; 2493 Worklist.push_back(LU.MinOffset); 2494 if (LU.MaxOffset != LU.MinOffset) 2495 Worklist.push_back(LU.MaxOffset); 2496 2497 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2498 const SCEV *G = Base.BaseRegs[i]; 2499 2500 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2501 E = Worklist.end(); I != E; ++I) { 2502 Formula F = Base; 2503 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2504 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2505 LU.Kind, LU.AccessTy, TLI)) { 2506 // Add the offset to the base register. 2507 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2508 // If it cancelled out, drop the base register, otherwise update it. 2509 if (NewG->isZero()) { 2510 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2511 F.BaseRegs.pop_back(); 2512 } else 2513 F.BaseRegs[i] = NewG; 2514 2515 (void)InsertFormula(LU, LUIdx, F); 2516 } 2517 } 2518 2519 int64_t Imm = ExtractImmediate(G, SE); 2520 if (G->isZero() || Imm == 0) 2521 continue; 2522 Formula F = Base; 2523 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2524 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2525 LU.Kind, LU.AccessTy, TLI)) 2526 continue; 2527 F.BaseRegs[i] = G; 2528 (void)InsertFormula(LU, LUIdx, F); 2529 } 2530 } 2531 2532 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2533 /// the comparison. For example, x == y -> x*c == y*c. 2534 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2535 Formula Base) { 2536 if (LU.Kind != LSRUse::ICmpZero) return; 2537 2538 // Determine the integer type for the base formula. 2539 Type *IntTy = Base.getType(); 2540 if (!IntTy) return; 2541 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2542 2543 // Don't do this if there is more than one offset. 2544 if (LU.MinOffset != LU.MaxOffset) return; 2545 2546 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2547 2548 // Check each interesting stride. 2549 for (SmallSetVector<int64_t, 8>::const_iterator 2550 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2551 int64_t Factor = *I; 2552 2553 // Check that the multiplication doesn't overflow. 2554 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2555 continue; 2556 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2557 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2558 continue; 2559 2560 // Check that multiplying with the use offset doesn't overflow. 2561 int64_t Offset = LU.MinOffset; 2562 if (Offset == INT64_MIN && Factor == -1) 2563 continue; 2564 Offset = (uint64_t)Offset * Factor; 2565 if (Offset / Factor != LU.MinOffset) 2566 continue; 2567 2568 Formula F = Base; 2569 F.AM.BaseOffs = NewBaseOffs; 2570 2571 // Check that this scale is legal. 2572 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2573 continue; 2574 2575 // Compensate for the use having MinOffset built into it. 2576 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2577 2578 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2579 2580 // Check that multiplying with each base register doesn't overflow. 2581 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2582 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2583 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2584 goto next; 2585 } 2586 2587 // Check that multiplying with the scaled register doesn't overflow. 2588 if (F.ScaledReg) { 2589 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2590 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2591 continue; 2592 } 2593 2594 // Check that multiplying with the unfolded offset doesn't overflow. 2595 if (F.UnfoldedOffset != 0) { 2596 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 2597 continue; 2598 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 2599 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 2600 continue; 2601 } 2602 2603 // If we make it here and it's legal, add it. 2604 (void)InsertFormula(LU, LUIdx, F); 2605 next:; 2606 } 2607 } 2608 2609 /// GenerateScales - Generate stride factor reuse formulae by making use of 2610 /// scaled-offset address modes, for example. 2611 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2612 // Determine the integer type for the base formula. 2613 Type *IntTy = Base.getType(); 2614 if (!IntTy) return; 2615 2616 // If this Formula already has a scaled register, we can't add another one. 2617 if (Base.AM.Scale != 0) return; 2618 2619 // Check each interesting stride. 2620 for (SmallSetVector<int64_t, 8>::const_iterator 2621 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2622 int64_t Factor = *I; 2623 2624 Base.AM.Scale = Factor; 2625 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2626 // Check whether this scale is going to be legal. 2627 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2628 LU.Kind, LU.AccessTy, TLI)) { 2629 // As a special-case, handle special out-of-loop Basic users specially. 2630 // TODO: Reconsider this special case. 2631 if (LU.Kind == LSRUse::Basic && 2632 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2633 LSRUse::Special, LU.AccessTy, TLI) && 2634 LU.AllFixupsOutsideLoop) 2635 LU.Kind = LSRUse::Special; 2636 else 2637 continue; 2638 } 2639 // For an ICmpZero, negating a solitary base register won't lead to 2640 // new solutions. 2641 if (LU.Kind == LSRUse::ICmpZero && 2642 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2643 continue; 2644 // For each addrec base reg, apply the scale, if possible. 2645 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2646 if (const SCEVAddRecExpr *AR = 2647 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2648 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2649 if (FactorS->isZero()) 2650 continue; 2651 // Divide out the factor, ignoring high bits, since we'll be 2652 // scaling the value back up in the end. 2653 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2654 // TODO: This could be optimized to avoid all the copying. 2655 Formula F = Base; 2656 F.ScaledReg = Quotient; 2657 F.DeleteBaseReg(F.BaseRegs[i]); 2658 (void)InsertFormula(LU, LUIdx, F); 2659 } 2660 } 2661 } 2662 } 2663 2664 /// GenerateTruncates - Generate reuse formulae from different IV types. 2665 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2666 // This requires TargetLowering to tell us which truncates are free. 2667 if (!TLI) return; 2668 2669 // Don't bother truncating symbolic values. 2670 if (Base.AM.BaseGV) return; 2671 2672 // Determine the integer type for the base formula. 2673 Type *DstTy = Base.getType(); 2674 if (!DstTy) return; 2675 DstTy = SE.getEffectiveSCEVType(DstTy); 2676 2677 for (SmallSetVector<Type *, 4>::const_iterator 2678 I = Types.begin(), E = Types.end(); I != E; ++I) { 2679 Type *SrcTy = *I; 2680 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2681 Formula F = Base; 2682 2683 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2684 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2685 JE = F.BaseRegs.end(); J != JE; ++J) 2686 *J = SE.getAnyExtendExpr(*J, SrcTy); 2687 2688 // TODO: This assumes we've done basic processing on all uses and 2689 // have an idea what the register usage is. 2690 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2691 continue; 2692 2693 (void)InsertFormula(LU, LUIdx, F); 2694 } 2695 } 2696 } 2697 2698 namespace { 2699 2700 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2701 /// defer modifications so that the search phase doesn't have to worry about 2702 /// the data structures moving underneath it. 2703 struct WorkItem { 2704 size_t LUIdx; 2705 int64_t Imm; 2706 const SCEV *OrigReg; 2707 2708 WorkItem(size_t LI, int64_t I, const SCEV *R) 2709 : LUIdx(LI), Imm(I), OrigReg(R) {} 2710 2711 void print(raw_ostream &OS) const; 2712 void dump() const; 2713 }; 2714 2715 } 2716 2717 void WorkItem::print(raw_ostream &OS) const { 2718 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2719 << " , add offset " << Imm; 2720 } 2721 2722 void WorkItem::dump() const { 2723 print(errs()); errs() << '\n'; 2724 } 2725 2726 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2727 /// distance apart and try to form reuse opportunities between them. 2728 void LSRInstance::GenerateCrossUseConstantOffsets() { 2729 // Group the registers by their value without any added constant offset. 2730 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2731 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2732 RegMapTy Map; 2733 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2734 SmallVector<const SCEV *, 8> Sequence; 2735 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2736 I != E; ++I) { 2737 const SCEV *Reg = *I; 2738 int64_t Imm = ExtractImmediate(Reg, SE); 2739 std::pair<RegMapTy::iterator, bool> Pair = 2740 Map.insert(std::make_pair(Reg, ImmMapTy())); 2741 if (Pair.second) 2742 Sequence.push_back(Reg); 2743 Pair.first->second.insert(std::make_pair(Imm, *I)); 2744 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2745 } 2746 2747 // Now examine each set of registers with the same base value. Build up 2748 // a list of work to do and do the work in a separate step so that we're 2749 // not adding formulae and register counts while we're searching. 2750 SmallVector<WorkItem, 32> WorkItems; 2751 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2752 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2753 E = Sequence.end(); I != E; ++I) { 2754 const SCEV *Reg = *I; 2755 const ImmMapTy &Imms = Map.find(Reg)->second; 2756 2757 // It's not worthwhile looking for reuse if there's only one offset. 2758 if (Imms.size() == 1) 2759 continue; 2760 2761 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2762 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2763 J != JE; ++J) 2764 dbgs() << ' ' << J->first; 2765 dbgs() << '\n'); 2766 2767 // Examine each offset. 2768 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2769 J != JE; ++J) { 2770 const SCEV *OrigReg = J->second; 2771 2772 int64_t JImm = J->first; 2773 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2774 2775 if (!isa<SCEVConstant>(OrigReg) && 2776 UsedByIndicesMap[Reg].count() == 1) { 2777 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2778 continue; 2779 } 2780 2781 // Conservatively examine offsets between this orig reg a few selected 2782 // other orig regs. 2783 ImmMapTy::const_iterator OtherImms[] = { 2784 Imms.begin(), prior(Imms.end()), 2785 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2786 }; 2787 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2788 ImmMapTy::const_iterator M = OtherImms[i]; 2789 if (M == J || M == JE) continue; 2790 2791 // Compute the difference between the two. 2792 int64_t Imm = (uint64_t)JImm - M->first; 2793 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2794 LUIdx = UsedByIndices.find_next(LUIdx)) 2795 // Make a memo of this use, offset, and register tuple. 2796 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2797 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2798 } 2799 } 2800 } 2801 2802 Map.clear(); 2803 Sequence.clear(); 2804 UsedByIndicesMap.clear(); 2805 UniqueItems.clear(); 2806 2807 // Now iterate through the worklist and add new formulae. 2808 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2809 E = WorkItems.end(); I != E; ++I) { 2810 const WorkItem &WI = *I; 2811 size_t LUIdx = WI.LUIdx; 2812 LSRUse &LU = Uses[LUIdx]; 2813 int64_t Imm = WI.Imm; 2814 const SCEV *OrigReg = WI.OrigReg; 2815 2816 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2817 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2818 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2819 2820 // TODO: Use a more targeted data structure. 2821 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2822 const Formula &F = LU.Formulae[L]; 2823 // Use the immediate in the scaled register. 2824 if (F.ScaledReg == OrigReg) { 2825 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2826 Imm * (uint64_t)F.AM.Scale; 2827 // Don't create 50 + reg(-50). 2828 if (F.referencesReg(SE.getSCEV( 2829 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2830 continue; 2831 Formula NewF = F; 2832 NewF.AM.BaseOffs = Offs; 2833 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2834 LU.Kind, LU.AccessTy, TLI)) 2835 continue; 2836 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2837 2838 // If the new scale is a constant in a register, and adding the constant 2839 // value to the immediate would produce a value closer to zero than the 2840 // immediate itself, then the formula isn't worthwhile. 2841 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2842 if (C->getValue()->isNegative() != 2843 (NewF.AM.BaseOffs < 0) && 2844 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2845 .ule(abs64(NewF.AM.BaseOffs))) 2846 continue; 2847 2848 // OK, looks good. 2849 (void)InsertFormula(LU, LUIdx, NewF); 2850 } else { 2851 // Use the immediate in a base register. 2852 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2853 const SCEV *BaseReg = F.BaseRegs[N]; 2854 if (BaseReg != OrigReg) 2855 continue; 2856 Formula NewF = F; 2857 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2858 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2859 LU.Kind, LU.AccessTy, TLI)) { 2860 if (!TLI || 2861 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 2862 continue; 2863 NewF = F; 2864 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 2865 } 2866 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2867 2868 // If the new formula has a constant in a register, and adding the 2869 // constant value to the immediate would produce a value closer to 2870 // zero than the immediate itself, then the formula isn't worthwhile. 2871 for (SmallVectorImpl<const SCEV *>::const_iterator 2872 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2873 J != JE; ++J) 2874 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2875 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2876 abs64(NewF.AM.BaseOffs)) && 2877 (C->getValue()->getValue() + 2878 NewF.AM.BaseOffs).countTrailingZeros() >= 2879 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2880 goto skip_formula; 2881 2882 // Ok, looks good. 2883 (void)InsertFormula(LU, LUIdx, NewF); 2884 break; 2885 skip_formula:; 2886 } 2887 } 2888 } 2889 } 2890 } 2891 2892 /// GenerateAllReuseFormulae - Generate formulae for each use. 2893 void 2894 LSRInstance::GenerateAllReuseFormulae() { 2895 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2896 // queries are more precise. 2897 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2898 LSRUse &LU = Uses[LUIdx]; 2899 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2900 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2901 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2902 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2903 } 2904 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2905 LSRUse &LU = Uses[LUIdx]; 2906 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2907 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2908 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2909 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2910 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2911 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2912 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2913 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2914 } 2915 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2916 LSRUse &LU = Uses[LUIdx]; 2917 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2918 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2919 } 2920 2921 GenerateCrossUseConstantOffsets(); 2922 2923 DEBUG(dbgs() << "\n" 2924 "After generating reuse formulae:\n"; 2925 print_uses(dbgs())); 2926 } 2927 2928 /// If there are multiple formulae with the same set of registers used 2929 /// by other uses, pick the best one and delete the others. 2930 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2931 DenseSet<const SCEV *> VisitedRegs; 2932 SmallPtrSet<const SCEV *, 16> Regs; 2933 SmallPtrSet<const SCEV *, 16> LoserRegs; 2934 #ifndef NDEBUG 2935 bool ChangedFormulae = false; 2936 #endif 2937 2938 // Collect the best formula for each unique set of shared registers. This 2939 // is reset for each use. 2940 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2941 BestFormulaeTy; 2942 BestFormulaeTy BestFormulae; 2943 2944 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2945 LSRUse &LU = Uses[LUIdx]; 2946 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2947 2948 bool Any = false; 2949 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2950 FIdx != NumForms; ++FIdx) { 2951 Formula &F = LU.Formulae[FIdx]; 2952 2953 // Some formulas are instant losers. For example, they may depend on 2954 // nonexistent AddRecs from other loops. These need to be filtered 2955 // immediately, otherwise heuristics could choose them over others leading 2956 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 2957 // avoids the need to recompute this information across formulae using the 2958 // same bad AddRec. Passing LoserRegs is also essential unless we remove 2959 // the corresponding bad register from the Regs set. 2960 Cost CostF; 2961 Regs.clear(); 2962 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, 2963 &LoserRegs); 2964 if (CostF.isLoser()) { 2965 // During initial formula generation, undesirable formulae are generated 2966 // by uses within other loops that have some non-trivial address mode or 2967 // use the postinc form of the IV. LSR needs to provide these formulae 2968 // as the basis of rediscovering the desired formula that uses an AddRec 2969 // corresponding to the existing phi. Once all formulae have been 2970 // generated, these initial losers may be pruned. 2971 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 2972 dbgs() << "\n"); 2973 } 2974 else { 2975 SmallVector<const SCEV *, 2> Key; 2976 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2977 JE = F.BaseRegs.end(); J != JE; ++J) { 2978 const SCEV *Reg = *J; 2979 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2980 Key.push_back(Reg); 2981 } 2982 if (F.ScaledReg && 2983 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2984 Key.push_back(F.ScaledReg); 2985 // Unstable sort by host order ok, because this is only used for 2986 // uniquifying. 2987 std::sort(Key.begin(), Key.end()); 2988 2989 std::pair<BestFormulaeTy::const_iterator, bool> P = 2990 BestFormulae.insert(std::make_pair(Key, FIdx)); 2991 if (P.second) 2992 continue; 2993 2994 Formula &Best = LU.Formulae[P.first->second]; 2995 2996 Cost CostBest; 2997 Regs.clear(); 2998 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2999 if (CostF < CostBest) 3000 std::swap(F, Best); 3001 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3002 dbgs() << "\n" 3003 " in favor of formula "; Best.print(dbgs()); 3004 dbgs() << '\n'); 3005 } 3006 #ifndef NDEBUG 3007 ChangedFormulae = true; 3008 #endif 3009 LU.DeleteFormula(F); 3010 --FIdx; 3011 --NumForms; 3012 Any = true; 3013 } 3014 3015 // Now that we've filtered out some formulae, recompute the Regs set. 3016 if (Any) 3017 LU.RecomputeRegs(LUIdx, RegUses); 3018 3019 // Reset this to prepare for the next use. 3020 BestFormulae.clear(); 3021 } 3022 3023 DEBUG(if (ChangedFormulae) { 3024 dbgs() << "\n" 3025 "After filtering out undesirable candidates:\n"; 3026 print_uses(dbgs()); 3027 }); 3028 } 3029 3030 // This is a rough guess that seems to work fairly well. 3031 static const size_t ComplexityLimit = UINT16_MAX; 3032 3033 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 3034 /// solutions the solver might have to consider. It almost never considers 3035 /// this many solutions because it prune the search space, but the pruning 3036 /// isn't always sufficient. 3037 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3038 size_t Power = 1; 3039 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3040 E = Uses.end(); I != E; ++I) { 3041 size_t FSize = I->Formulae.size(); 3042 if (FSize >= ComplexityLimit) { 3043 Power = ComplexityLimit; 3044 break; 3045 } 3046 Power *= FSize; 3047 if (Power >= ComplexityLimit) 3048 break; 3049 } 3050 return Power; 3051 } 3052 3053 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3054 /// of the registers of another formula, it won't help reduce register 3055 /// pressure (though it may not necessarily hurt register pressure); remove 3056 /// it to simplify the system. 3057 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3058 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3059 DEBUG(dbgs() << "The search space is too complex.\n"); 3060 3061 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3062 "which use a superset of registers used by other " 3063 "formulae.\n"); 3064 3065 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3066 LSRUse &LU = Uses[LUIdx]; 3067 bool Any = false; 3068 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3069 Formula &F = LU.Formulae[i]; 3070 // Look for a formula with a constant or GV in a register. If the use 3071 // also has a formula with that same value in an immediate field, 3072 // delete the one that uses a register. 3073 for (SmallVectorImpl<const SCEV *>::const_iterator 3074 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3075 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3076 Formula NewF = F; 3077 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 3078 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3079 (I - F.BaseRegs.begin())); 3080 if (LU.HasFormulaWithSameRegs(NewF)) { 3081 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3082 LU.DeleteFormula(F); 3083 --i; 3084 --e; 3085 Any = true; 3086 break; 3087 } 3088 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3089 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3090 if (!F.AM.BaseGV) { 3091 Formula NewF = F; 3092 NewF.AM.BaseGV = GV; 3093 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3094 (I - F.BaseRegs.begin())); 3095 if (LU.HasFormulaWithSameRegs(NewF)) { 3096 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3097 dbgs() << '\n'); 3098 LU.DeleteFormula(F); 3099 --i; 3100 --e; 3101 Any = true; 3102 break; 3103 } 3104 } 3105 } 3106 } 3107 } 3108 if (Any) 3109 LU.RecomputeRegs(LUIdx, RegUses); 3110 } 3111 3112 DEBUG(dbgs() << "After pre-selection:\n"; 3113 print_uses(dbgs())); 3114 } 3115 } 3116 3117 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3118 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3119 /// them. 3120 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3121 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3122 DEBUG(dbgs() << "The search space is too complex.\n"); 3123 3124 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3125 "separated by a constant offset will use the same " 3126 "registers.\n"); 3127 3128 // This is especially useful for unrolled loops. 3129 3130 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3131 LSRUse &LU = Uses[LUIdx]; 3132 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3133 E = LU.Formulae.end(); I != E; ++I) { 3134 const Formula &F = *I; 3135 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3136 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3137 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3138 /*HasBaseReg=*/false, 3139 LU.Kind, LU.AccessTy)) { 3140 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3141 dbgs() << '\n'); 3142 3143 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3144 3145 // Update the relocs to reference the new use. 3146 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3147 E = Fixups.end(); I != E; ++I) { 3148 LSRFixup &Fixup = *I; 3149 if (Fixup.LUIdx == LUIdx) { 3150 Fixup.LUIdx = LUThatHas - &Uses.front(); 3151 Fixup.Offset += F.AM.BaseOffs; 3152 // Add the new offset to LUThatHas' offset list. 3153 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3154 LUThatHas->Offsets.push_back(Fixup.Offset); 3155 if (Fixup.Offset > LUThatHas->MaxOffset) 3156 LUThatHas->MaxOffset = Fixup.Offset; 3157 if (Fixup.Offset < LUThatHas->MinOffset) 3158 LUThatHas->MinOffset = Fixup.Offset; 3159 } 3160 DEBUG(dbgs() << "New fixup has offset " 3161 << Fixup.Offset << '\n'); 3162 } 3163 if (Fixup.LUIdx == NumUses-1) 3164 Fixup.LUIdx = LUIdx; 3165 } 3166 3167 // Delete formulae from the new use which are no longer legal. 3168 bool Any = false; 3169 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3170 Formula &F = LUThatHas->Formulae[i]; 3171 if (!isLegalUse(F.AM, 3172 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3173 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3174 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3175 dbgs() << '\n'); 3176 LUThatHas->DeleteFormula(F); 3177 --i; 3178 --e; 3179 Any = true; 3180 } 3181 } 3182 if (Any) 3183 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3184 3185 // Delete the old use. 3186 DeleteUse(LU, LUIdx); 3187 --LUIdx; 3188 --NumUses; 3189 break; 3190 } 3191 } 3192 } 3193 } 3194 } 3195 3196 DEBUG(dbgs() << "After pre-selection:\n"; 3197 print_uses(dbgs())); 3198 } 3199 } 3200 3201 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3202 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3203 /// we've done more filtering, as it may be able to find more formulae to 3204 /// eliminate. 3205 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3206 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3207 DEBUG(dbgs() << "The search space is too complex.\n"); 3208 3209 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3210 "undesirable dedicated registers.\n"); 3211 3212 FilterOutUndesirableDedicatedRegisters(); 3213 3214 DEBUG(dbgs() << "After pre-selection:\n"; 3215 print_uses(dbgs())); 3216 } 3217 } 3218 3219 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3220 /// to be profitable, and then in any use which has any reference to that 3221 /// register, delete all formulae which do not reference that register. 3222 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3223 // With all other options exhausted, loop until the system is simple 3224 // enough to handle. 3225 SmallPtrSet<const SCEV *, 4> Taken; 3226 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3227 // Ok, we have too many of formulae on our hands to conveniently handle. 3228 // Use a rough heuristic to thin out the list. 3229 DEBUG(dbgs() << "The search space is too complex.\n"); 3230 3231 // Pick the register which is used by the most LSRUses, which is likely 3232 // to be a good reuse register candidate. 3233 const SCEV *Best = 0; 3234 unsigned BestNum = 0; 3235 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3236 I != E; ++I) { 3237 const SCEV *Reg = *I; 3238 if (Taken.count(Reg)) 3239 continue; 3240 if (!Best) 3241 Best = Reg; 3242 else { 3243 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3244 if (Count > BestNum) { 3245 Best = Reg; 3246 BestNum = Count; 3247 } 3248 } 3249 } 3250 3251 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3252 << " will yield profitable reuse.\n"); 3253 Taken.insert(Best); 3254 3255 // In any use with formulae which references this register, delete formulae 3256 // which don't reference it. 3257 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3258 LSRUse &LU = Uses[LUIdx]; 3259 if (!LU.Regs.count(Best)) continue; 3260 3261 bool Any = false; 3262 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3263 Formula &F = LU.Formulae[i]; 3264 if (!F.referencesReg(Best)) { 3265 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3266 LU.DeleteFormula(F); 3267 --e; 3268 --i; 3269 Any = true; 3270 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3271 continue; 3272 } 3273 } 3274 3275 if (Any) 3276 LU.RecomputeRegs(LUIdx, RegUses); 3277 } 3278 3279 DEBUG(dbgs() << "After pre-selection:\n"; 3280 print_uses(dbgs())); 3281 } 3282 } 3283 3284 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3285 /// formulae to choose from, use some rough heuristics to prune down the number 3286 /// of formulae. This keeps the main solver from taking an extraordinary amount 3287 /// of time in some worst-case scenarios. 3288 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3289 NarrowSearchSpaceByDetectingSupersets(); 3290 NarrowSearchSpaceByCollapsingUnrolledCode(); 3291 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3292 NarrowSearchSpaceByPickingWinnerRegs(); 3293 } 3294 3295 /// SolveRecurse - This is the recursive solver. 3296 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3297 Cost &SolutionCost, 3298 SmallVectorImpl<const Formula *> &Workspace, 3299 const Cost &CurCost, 3300 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3301 DenseSet<const SCEV *> &VisitedRegs) const { 3302 // Some ideas: 3303 // - prune more: 3304 // - use more aggressive filtering 3305 // - sort the formula so that the most profitable solutions are found first 3306 // - sort the uses too 3307 // - search faster: 3308 // - don't compute a cost, and then compare. compare while computing a cost 3309 // and bail early. 3310 // - track register sets with SmallBitVector 3311 3312 const LSRUse &LU = Uses[Workspace.size()]; 3313 3314 // If this use references any register that's already a part of the 3315 // in-progress solution, consider it a requirement that a formula must 3316 // reference that register in order to be considered. This prunes out 3317 // unprofitable searching. 3318 SmallSetVector<const SCEV *, 4> ReqRegs; 3319 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3320 E = CurRegs.end(); I != E; ++I) 3321 if (LU.Regs.count(*I)) 3322 ReqRegs.insert(*I); 3323 3324 bool AnySatisfiedReqRegs = false; 3325 SmallPtrSet<const SCEV *, 16> NewRegs; 3326 Cost NewCost; 3327 retry: 3328 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3329 E = LU.Formulae.end(); I != E; ++I) { 3330 const Formula &F = *I; 3331 3332 // Ignore formulae which do not use any of the required registers. 3333 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3334 JE = ReqRegs.end(); J != JE; ++J) { 3335 const SCEV *Reg = *J; 3336 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3337 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3338 F.BaseRegs.end()) 3339 goto skip; 3340 } 3341 AnySatisfiedReqRegs = true; 3342 3343 // Evaluate the cost of the current formula. If it's already worse than 3344 // the current best, prune the search at that point. 3345 NewCost = CurCost; 3346 NewRegs = CurRegs; 3347 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3348 if (NewCost < SolutionCost) { 3349 Workspace.push_back(&F); 3350 if (Workspace.size() != Uses.size()) { 3351 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3352 NewRegs, VisitedRegs); 3353 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3354 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3355 } else { 3356 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3357 dbgs() << ". Regs:"; 3358 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3359 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3360 dbgs() << ' ' << **I; 3361 dbgs() << '\n'); 3362 3363 SolutionCost = NewCost; 3364 Solution = Workspace; 3365 } 3366 Workspace.pop_back(); 3367 } 3368 skip:; 3369 } 3370 3371 if (!EnableRetry && !AnySatisfiedReqRegs) 3372 return; 3373 3374 // If none of the formulae had all of the required registers, relax the 3375 // constraint so that we don't exclude all formulae. 3376 if (!AnySatisfiedReqRegs) { 3377 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3378 ReqRegs.clear(); 3379 goto retry; 3380 } 3381 } 3382 3383 /// Solve - Choose one formula from each use. Return the results in the given 3384 /// Solution vector. 3385 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3386 SmallVector<const Formula *, 8> Workspace; 3387 Cost SolutionCost; 3388 SolutionCost.Loose(); 3389 Cost CurCost; 3390 SmallPtrSet<const SCEV *, 16> CurRegs; 3391 DenseSet<const SCEV *> VisitedRegs; 3392 Workspace.reserve(Uses.size()); 3393 3394 // SolveRecurse does all the work. 3395 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3396 CurRegs, VisitedRegs); 3397 if (Solution.empty()) { 3398 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 3399 return; 3400 } 3401 3402 // Ok, we've now made all our decisions. 3403 DEBUG(dbgs() << "\n" 3404 "The chosen solution requires "; SolutionCost.print(dbgs()); 3405 dbgs() << ":\n"; 3406 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3407 dbgs() << " "; 3408 Uses[i].print(dbgs()); 3409 dbgs() << "\n" 3410 " "; 3411 Solution[i]->print(dbgs()); 3412 dbgs() << '\n'; 3413 }); 3414 3415 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3416 } 3417 3418 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3419 /// the dominator tree far as we can go while still being dominated by the 3420 /// input positions. This helps canonicalize the insert position, which 3421 /// encourages sharing. 3422 BasicBlock::iterator 3423 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3424 const SmallVectorImpl<Instruction *> &Inputs) 3425 const { 3426 for (;;) { 3427 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3428 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3429 3430 BasicBlock *IDom; 3431 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3432 if (!Rung) return IP; 3433 Rung = Rung->getIDom(); 3434 if (!Rung) return IP; 3435 IDom = Rung->getBlock(); 3436 3437 // Don't climb into a loop though. 3438 const Loop *IDomLoop = LI.getLoopFor(IDom); 3439 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3440 if (IDomDepth <= IPLoopDepth && 3441 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3442 break; 3443 } 3444 3445 bool AllDominate = true; 3446 Instruction *BetterPos = 0; 3447 Instruction *Tentative = IDom->getTerminator(); 3448 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3449 E = Inputs.end(); I != E; ++I) { 3450 Instruction *Inst = *I; 3451 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3452 AllDominate = false; 3453 break; 3454 } 3455 // Attempt to find an insert position in the middle of the block, 3456 // instead of at the end, so that it can be used for other expansions. 3457 if (IDom == Inst->getParent() && 3458 (!BetterPos || DT.dominates(BetterPos, Inst))) 3459 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3460 } 3461 if (!AllDominate) 3462 break; 3463 if (BetterPos) 3464 IP = BetterPos; 3465 else 3466 IP = Tentative; 3467 } 3468 3469 return IP; 3470 } 3471 3472 /// AdjustInsertPositionForExpand - Determine an input position which will be 3473 /// dominated by the operands and which will dominate the result. 3474 BasicBlock::iterator 3475 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3476 const LSRFixup &LF, 3477 const LSRUse &LU) const { 3478 // Collect some instructions which must be dominated by the 3479 // expanding replacement. These must be dominated by any operands that 3480 // will be required in the expansion. 3481 SmallVector<Instruction *, 4> Inputs; 3482 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3483 Inputs.push_back(I); 3484 if (LU.Kind == LSRUse::ICmpZero) 3485 if (Instruction *I = 3486 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3487 Inputs.push_back(I); 3488 if (LF.PostIncLoops.count(L)) { 3489 if (LF.isUseFullyOutsideLoop(L)) 3490 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3491 else 3492 Inputs.push_back(IVIncInsertPos); 3493 } 3494 // The expansion must also be dominated by the increment positions of any 3495 // loops it for which it is using post-inc mode. 3496 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3497 E = LF.PostIncLoops.end(); I != E; ++I) { 3498 const Loop *PIL = *I; 3499 if (PIL == L) continue; 3500 3501 // Be dominated by the loop exit. 3502 SmallVector<BasicBlock *, 4> ExitingBlocks; 3503 PIL->getExitingBlocks(ExitingBlocks); 3504 if (!ExitingBlocks.empty()) { 3505 BasicBlock *BB = ExitingBlocks[0]; 3506 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3507 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3508 Inputs.push_back(BB->getTerminator()); 3509 } 3510 } 3511 3512 // Then, climb up the immediate dominator tree as far as we can go while 3513 // still being dominated by the input positions. 3514 IP = HoistInsertPosition(IP, Inputs); 3515 3516 // Don't insert instructions before PHI nodes. 3517 while (isa<PHINode>(IP)) ++IP; 3518 3519 // Ignore landingpad instructions. 3520 while (isa<LandingPadInst>(IP)) ++IP; 3521 3522 // Ignore debug intrinsics. 3523 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3524 3525 return IP; 3526 } 3527 3528 /// Expand - Emit instructions for the leading candidate expression for this 3529 /// LSRUse (this is called "expanding"). 3530 Value *LSRInstance::Expand(const LSRFixup &LF, 3531 const Formula &F, 3532 BasicBlock::iterator IP, 3533 SCEVExpander &Rewriter, 3534 SmallVectorImpl<WeakVH> &DeadInsts) const { 3535 const LSRUse &LU = Uses[LF.LUIdx]; 3536 3537 // Determine an input position which will be dominated by the operands and 3538 // which will dominate the result. 3539 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3540 3541 // Inform the Rewriter if we have a post-increment use, so that it can 3542 // perform an advantageous expansion. 3543 Rewriter.setPostInc(LF.PostIncLoops); 3544 3545 // This is the type that the user actually needs. 3546 Type *OpTy = LF.OperandValToReplace->getType(); 3547 // This will be the type that we'll initially expand to. 3548 Type *Ty = F.getType(); 3549 if (!Ty) 3550 // No type known; just expand directly to the ultimate type. 3551 Ty = OpTy; 3552 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3553 // Expand directly to the ultimate type if it's the right size. 3554 Ty = OpTy; 3555 // This is the type to do integer arithmetic in. 3556 Type *IntTy = SE.getEffectiveSCEVType(Ty); 3557 3558 // Build up a list of operands to add together to form the full base. 3559 SmallVector<const SCEV *, 8> Ops; 3560 3561 // Expand the BaseRegs portion. 3562 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3563 E = F.BaseRegs.end(); I != E; ++I) { 3564 const SCEV *Reg = *I; 3565 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3566 3567 // If we're expanding for a post-inc user, make the post-inc adjustment. 3568 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3569 Reg = TransformForPostIncUse(Denormalize, Reg, 3570 LF.UserInst, LF.OperandValToReplace, 3571 Loops, SE, DT); 3572 3573 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3574 } 3575 3576 // Flush the operand list to suppress SCEVExpander hoisting. 3577 if (!Ops.empty()) { 3578 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3579 Ops.clear(); 3580 Ops.push_back(SE.getUnknown(FullV)); 3581 } 3582 3583 // Expand the ScaledReg portion. 3584 Value *ICmpScaledV = 0; 3585 if (F.AM.Scale != 0) { 3586 const SCEV *ScaledS = F.ScaledReg; 3587 3588 // If we're expanding for a post-inc user, make the post-inc adjustment. 3589 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3590 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3591 LF.UserInst, LF.OperandValToReplace, 3592 Loops, SE, DT); 3593 3594 if (LU.Kind == LSRUse::ICmpZero) { 3595 // An interesting way of "folding" with an icmp is to use a negated 3596 // scale, which we'll implement by inserting it into the other operand 3597 // of the icmp. 3598 assert(F.AM.Scale == -1 && 3599 "The only scale supported by ICmpZero uses is -1!"); 3600 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3601 } else { 3602 // Otherwise just expand the scaled register and an explicit scale, 3603 // which is expected to be matched as part of the address. 3604 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3605 ScaledS = SE.getMulExpr(ScaledS, 3606 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3607 Ops.push_back(ScaledS); 3608 3609 // Flush the operand list to suppress SCEVExpander hoisting. 3610 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3611 Ops.clear(); 3612 Ops.push_back(SE.getUnknown(FullV)); 3613 } 3614 } 3615 3616 // Expand the GV portion. 3617 if (F.AM.BaseGV) { 3618 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3619 3620 // Flush the operand list to suppress SCEVExpander hoisting. 3621 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3622 Ops.clear(); 3623 Ops.push_back(SE.getUnknown(FullV)); 3624 } 3625 3626 // Expand the immediate portion. 3627 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3628 if (Offset != 0) { 3629 if (LU.Kind == LSRUse::ICmpZero) { 3630 // The other interesting way of "folding" with an ICmpZero is to use a 3631 // negated immediate. 3632 if (!ICmpScaledV) 3633 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 3634 else { 3635 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3636 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3637 } 3638 } else { 3639 // Just add the immediate values. These again are expected to be matched 3640 // as part of the address. 3641 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3642 } 3643 } 3644 3645 // Expand the unfolded offset portion. 3646 int64_t UnfoldedOffset = F.UnfoldedOffset; 3647 if (UnfoldedOffset != 0) { 3648 // Just add the immediate values. 3649 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 3650 UnfoldedOffset))); 3651 } 3652 3653 // Emit instructions summing all the operands. 3654 const SCEV *FullS = Ops.empty() ? 3655 SE.getConstant(IntTy, 0) : 3656 SE.getAddExpr(Ops); 3657 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3658 3659 // We're done expanding now, so reset the rewriter. 3660 Rewriter.clearPostInc(); 3661 3662 // An ICmpZero Formula represents an ICmp which we're handling as a 3663 // comparison against zero. Now that we've expanded an expression for that 3664 // form, update the ICmp's other operand. 3665 if (LU.Kind == LSRUse::ICmpZero) { 3666 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3667 DeadInsts.push_back(CI->getOperand(1)); 3668 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3669 "a scale at the same time!"); 3670 if (F.AM.Scale == -1) { 3671 if (ICmpScaledV->getType() != OpTy) { 3672 Instruction *Cast = 3673 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3674 OpTy, false), 3675 ICmpScaledV, OpTy, "tmp", CI); 3676 ICmpScaledV = Cast; 3677 } 3678 CI->setOperand(1, ICmpScaledV); 3679 } else { 3680 assert(F.AM.Scale == 0 && 3681 "ICmp does not support folding a global value and " 3682 "a scale at the same time!"); 3683 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3684 -(uint64_t)Offset); 3685 if (C->getType() != OpTy) 3686 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3687 OpTy, false), 3688 C, OpTy); 3689 3690 CI->setOperand(1, C); 3691 } 3692 } 3693 3694 return FullV; 3695 } 3696 3697 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3698 /// of their operands effectively happens in their predecessor blocks, so the 3699 /// expression may need to be expanded in multiple places. 3700 void LSRInstance::RewriteForPHI(PHINode *PN, 3701 const LSRFixup &LF, 3702 const Formula &F, 3703 SCEVExpander &Rewriter, 3704 SmallVectorImpl<WeakVH> &DeadInsts, 3705 Pass *P) const { 3706 DenseMap<BasicBlock *, Value *> Inserted; 3707 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3708 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3709 BasicBlock *BB = PN->getIncomingBlock(i); 3710 3711 // If this is a critical edge, split the edge so that we do not insert 3712 // the code on all predecessor/successor paths. We do this unless this 3713 // is the canonical backedge for this loop, which complicates post-inc 3714 // users. 3715 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3716 !isa<IndirectBrInst>(BB->getTerminator())) { 3717 BasicBlock *Parent = PN->getParent(); 3718 Loop *PNLoop = LI.getLoopFor(Parent); 3719 if (!PNLoop || Parent != PNLoop->getHeader()) { 3720 // Split the critical edge. 3721 BasicBlock *NewBB = 0; 3722 if (!Parent->isLandingPad()) { 3723 NewBB = SplitCriticalEdge(BB, Parent, P, 3724 /*MergeIdenticalEdges=*/true, 3725 /*DontDeleteUselessPhis=*/true); 3726 } else { 3727 SmallVector<BasicBlock*, 2> NewBBs; 3728 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 3729 NewBB = NewBBs[0]; 3730 } 3731 3732 // If PN is outside of the loop and BB is in the loop, we want to 3733 // move the block to be immediately before the PHI block, not 3734 // immediately after BB. 3735 if (L->contains(BB) && !L->contains(PN)) 3736 NewBB->moveBefore(PN->getParent()); 3737 3738 // Splitting the edge can reduce the number of PHI entries we have. 3739 e = PN->getNumIncomingValues(); 3740 BB = NewBB; 3741 i = PN->getBasicBlockIndex(BB); 3742 } 3743 } 3744 3745 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3746 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3747 if (!Pair.second) 3748 PN->setIncomingValue(i, Pair.first->second); 3749 else { 3750 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3751 3752 // If this is reuse-by-noop-cast, insert the noop cast. 3753 Type *OpTy = LF.OperandValToReplace->getType(); 3754 if (FullV->getType() != OpTy) 3755 FullV = 3756 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3757 OpTy, false), 3758 FullV, LF.OperandValToReplace->getType(), 3759 "tmp", BB->getTerminator()); 3760 3761 PN->setIncomingValue(i, FullV); 3762 Pair.first->second = FullV; 3763 } 3764 } 3765 } 3766 3767 /// Rewrite - Emit instructions for the leading candidate expression for this 3768 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3769 /// the newly expanded value. 3770 void LSRInstance::Rewrite(const LSRFixup &LF, 3771 const Formula &F, 3772 SCEVExpander &Rewriter, 3773 SmallVectorImpl<WeakVH> &DeadInsts, 3774 Pass *P) const { 3775 // First, find an insertion point that dominates UserInst. For PHI nodes, 3776 // find the nearest block which dominates all the relevant uses. 3777 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3778 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3779 } else { 3780 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3781 3782 // If this is reuse-by-noop-cast, insert the noop cast. 3783 Type *OpTy = LF.OperandValToReplace->getType(); 3784 if (FullV->getType() != OpTy) { 3785 Instruction *Cast = 3786 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3787 FullV, OpTy, "tmp", LF.UserInst); 3788 FullV = Cast; 3789 } 3790 3791 // Update the user. ICmpZero is handled specially here (for now) because 3792 // Expand may have updated one of the operands of the icmp already, and 3793 // its new value may happen to be equal to LF.OperandValToReplace, in 3794 // which case doing replaceUsesOfWith leads to replacing both operands 3795 // with the same value. TODO: Reorganize this. 3796 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3797 LF.UserInst->setOperand(0, FullV); 3798 else 3799 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3800 } 3801 3802 DeadInsts.push_back(LF.OperandValToReplace); 3803 } 3804 3805 /// ImplementSolution - Rewrite all the fixup locations with new values, 3806 /// following the chosen solution. 3807 void 3808 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3809 Pass *P) { 3810 // Keep track of instructions we may have made dead, so that 3811 // we can remove them after we are done working. 3812 SmallVector<WeakVH, 16> DeadInsts; 3813 3814 SCEVExpander Rewriter(SE, "lsr"); 3815 Rewriter.disableCanonicalMode(); 3816 Rewriter.enableLSRMode(); 3817 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3818 3819 // Expand the new value definitions and update the users. 3820 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3821 E = Fixups.end(); I != E; ++I) { 3822 const LSRFixup &Fixup = *I; 3823 3824 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3825 3826 Changed = true; 3827 } 3828 3829 // Clean up after ourselves. This must be done before deleting any 3830 // instructions. 3831 Rewriter.clear(); 3832 3833 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3834 } 3835 3836 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3837 : IU(P->getAnalysis<IVUsers>()), 3838 SE(P->getAnalysis<ScalarEvolution>()), 3839 DT(P->getAnalysis<DominatorTree>()), 3840 LI(P->getAnalysis<LoopInfo>()), 3841 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3842 3843 // If LoopSimplify form is not available, stay out of trouble. 3844 if (!L->isLoopSimplifyForm()) return; 3845 3846 // If there's no interesting work to be done, bail early. 3847 if (IU.empty()) return; 3848 3849 DEBUG(dbgs() << "\nLSR on loop "; 3850 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3851 dbgs() << ":\n"); 3852 3853 // First, perform some low-level loop optimizations. 3854 OptimizeShadowIV(); 3855 OptimizeLoopTermCond(); 3856 3857 // If loop preparation eliminates all interesting IV users, bail. 3858 if (IU.empty()) return; 3859 3860 // Skip nested loops until we can model them better with formulae. 3861 if (!EnableNested && !L->empty()) { 3862 3863 if (EnablePhiElim) { 3864 // Remove any extra phis created by processing inner loops. 3865 SmallVector<WeakVH, 16> DeadInsts; 3866 SCEVExpander Rewriter(SE, "lsr"); 3867 Changed |= (bool)Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); 3868 Changed |= (bool)DeleteTriviallyDeadInstructions(DeadInsts); 3869 } 3870 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 3871 return; 3872 } 3873 3874 // Start collecting data and preparing for the solver. 3875 CollectInterestingTypesAndFactors(); 3876 CollectFixupsAndInitialFormulae(); 3877 CollectLoopInvariantFixupsAndFormulae(); 3878 3879 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3880 print_uses(dbgs())); 3881 3882 // Now use the reuse data to generate a bunch of interesting ways 3883 // to formulate the values needed for the uses. 3884 GenerateAllReuseFormulae(); 3885 3886 FilterOutUndesirableDedicatedRegisters(); 3887 NarrowSearchSpaceUsingHeuristics(); 3888 3889 SmallVector<const Formula *, 8> Solution; 3890 Solve(Solution); 3891 3892 // Release memory that is no longer needed. 3893 Factors.clear(); 3894 Types.clear(); 3895 RegUses.clear(); 3896 3897 if (Solution.empty()) 3898 return; 3899 3900 #ifndef NDEBUG 3901 // Formulae should be legal. 3902 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3903 E = Uses.end(); I != E; ++I) { 3904 const LSRUse &LU = *I; 3905 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3906 JE = LU.Formulae.end(); J != JE; ++J) 3907 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3908 LU.Kind, LU.AccessTy, TLI) && 3909 "Illegal formula generated!"); 3910 }; 3911 #endif 3912 3913 // Now that we've decided what we want, make it so. 3914 ImplementSolution(Solution, P); 3915 3916 if (EnablePhiElim) { 3917 // Remove any extra phis created by processing inner loops. 3918 SmallVector<WeakVH, 16> DeadInsts; 3919 SCEVExpander Rewriter(SE, "lsr"); 3920 Changed |= (bool)Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); 3921 Changed |= (bool)DeleteTriviallyDeadInstructions(DeadInsts); 3922 } 3923 } 3924 3925 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3926 if (Factors.empty() && Types.empty()) return; 3927 3928 OS << "LSR has identified the following interesting factors and types: "; 3929 bool First = true; 3930 3931 for (SmallSetVector<int64_t, 8>::const_iterator 3932 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3933 if (!First) OS << ", "; 3934 First = false; 3935 OS << '*' << *I; 3936 } 3937 3938 for (SmallSetVector<Type *, 4>::const_iterator 3939 I = Types.begin(), E = Types.end(); I != E; ++I) { 3940 if (!First) OS << ", "; 3941 First = false; 3942 OS << '(' << **I << ')'; 3943 } 3944 OS << '\n'; 3945 } 3946 3947 void LSRInstance::print_fixups(raw_ostream &OS) const { 3948 OS << "LSR is examining the following fixup sites:\n"; 3949 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3950 E = Fixups.end(); I != E; ++I) { 3951 dbgs() << " "; 3952 I->print(OS); 3953 OS << '\n'; 3954 } 3955 } 3956 3957 void LSRInstance::print_uses(raw_ostream &OS) const { 3958 OS << "LSR is examining the following uses:\n"; 3959 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3960 E = Uses.end(); I != E; ++I) { 3961 const LSRUse &LU = *I; 3962 dbgs() << " "; 3963 LU.print(OS); 3964 OS << '\n'; 3965 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3966 JE = LU.Formulae.end(); J != JE; ++J) { 3967 OS << " "; 3968 J->print(OS); 3969 OS << '\n'; 3970 } 3971 } 3972 } 3973 3974 void LSRInstance::print(raw_ostream &OS) const { 3975 print_factors_and_types(OS); 3976 print_fixups(OS); 3977 print_uses(OS); 3978 } 3979 3980 void LSRInstance::dump() const { 3981 print(errs()); errs() << '\n'; 3982 } 3983 3984 namespace { 3985 3986 class LoopStrengthReduce : public LoopPass { 3987 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3988 /// transformation profitability. 3989 const TargetLowering *const TLI; 3990 3991 public: 3992 static char ID; // Pass ID, replacement for typeid 3993 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3994 3995 private: 3996 bool runOnLoop(Loop *L, LPPassManager &LPM); 3997 void getAnalysisUsage(AnalysisUsage &AU) const; 3998 }; 3999 4000 } 4001 4002 char LoopStrengthReduce::ID = 0; 4003 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4004 "Loop Strength Reduction", false, false) 4005 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 4006 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 4007 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4008 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 4009 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4010 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4011 "Loop Strength Reduction", false, false) 4012 4013 4014 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 4015 return new LoopStrengthReduce(TLI); 4016 } 4017 4018 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 4019 : LoopPass(ID), TLI(tli) { 4020 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4021 } 4022 4023 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4024 // We split critical edges, so we change the CFG. However, we do update 4025 // many analyses if they are around. 4026 AU.addPreservedID(LoopSimplifyID); 4027 4028 AU.addRequired<LoopInfo>(); 4029 AU.addPreserved<LoopInfo>(); 4030 AU.addRequiredID(LoopSimplifyID); 4031 AU.addRequired<DominatorTree>(); 4032 AU.addPreserved<DominatorTree>(); 4033 AU.addRequired<ScalarEvolution>(); 4034 AU.addPreserved<ScalarEvolution>(); 4035 // Requiring LoopSimplify a second time here prevents IVUsers from running 4036 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4037 AU.addRequiredID(LoopSimplifyID); 4038 AU.addRequired<IVUsers>(); 4039 AU.addPreserved<IVUsers>(); 4040 } 4041 4042 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4043 bool Changed = false; 4044 4045 // Run the main LSR transformation. 4046 Changed |= LSRInstance(TLI, L, this).getChanged(); 4047 4048 // At this point, it is worth checking to see if any recurrence PHIs are also 4049 // dead, so that we can remove them as well. 4050 Changed |= DeleteDeadPHIs(L->getHeader()); 4051 4052 return Changed; 4053 } 4054