1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 #define DEBUG_TYPE "loop-reduce" 82 83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 84 /// bail out. This threshold is far beyond the number of users that LSR can 85 /// conceivably solve, so it should not affect generated code, but catches the 86 /// worst cases before LSR burns too much compile time and stack space. 87 static const unsigned MaxIVUsers = 200; 88 89 // Temporary flag to cleanup congruent phis after LSR phi expansion. 90 // It's currently disabled until we can determine whether it's truly useful or 91 // not. The flag should be removed after the v3.0 release. 92 // This is now needed for ivchains. 93 static cl::opt<bool> EnablePhiElim( 94 "enable-lsr-phielim", cl::Hidden, cl::init(true), 95 cl::desc("Enable LSR phi elimination")); 96 97 #ifndef NDEBUG 98 // Stress test IV chain generation. 99 static cl::opt<bool> StressIVChain( 100 "stress-ivchain", cl::Hidden, cl::init(false), 101 cl::desc("Stress test LSR IV chains")); 102 #else 103 static bool StressIVChain = false; 104 #endif 105 106 namespace { 107 108 struct MemAccessTy { 109 /// Used in situations where the accessed memory type is unknown. 110 static const unsigned UnknownAddressSpace = ~0u; 111 112 Type *MemTy; 113 unsigned AddrSpace; 114 115 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 116 117 MemAccessTy(Type *Ty, unsigned AS) : 118 MemTy(Ty), AddrSpace(AS) {} 119 120 bool operator==(MemAccessTy Other) const { 121 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 122 } 123 124 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 125 126 static MemAccessTy getUnknown(LLVMContext &Ctx) { 127 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 128 } 129 }; 130 131 /// This class holds data which is used to order reuse candidates. 132 class RegSortData { 133 public: 134 /// This represents the set of LSRUse indices which reference 135 /// a particular register. 136 SmallBitVector UsedByIndices; 137 138 void print(raw_ostream &OS) const; 139 void dump() const; 140 }; 141 142 } 143 144 void RegSortData::print(raw_ostream &OS) const { 145 OS << "[NumUses=" << UsedByIndices.count() << ']'; 146 } 147 148 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 149 void RegSortData::dump() const { 150 print(errs()); errs() << '\n'; 151 } 152 #endif 153 154 namespace { 155 156 /// Map register candidates to information about how they are used. 157 class RegUseTracker { 158 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 159 160 RegUsesTy RegUsesMap; 161 SmallVector<const SCEV *, 16> RegSequence; 162 163 public: 164 void countRegister(const SCEV *Reg, size_t LUIdx); 165 void dropRegister(const SCEV *Reg, size_t LUIdx); 166 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 167 168 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 169 170 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 171 172 void clear(); 173 174 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 175 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 176 iterator begin() { return RegSequence.begin(); } 177 iterator end() { return RegSequence.end(); } 178 const_iterator begin() const { return RegSequence.begin(); } 179 const_iterator end() const { return RegSequence.end(); } 180 }; 181 182 } 183 184 void 185 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 186 std::pair<RegUsesTy::iterator, bool> Pair = 187 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 188 RegSortData &RSD = Pair.first->second; 189 if (Pair.second) 190 RegSequence.push_back(Reg); 191 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 192 RSD.UsedByIndices.set(LUIdx); 193 } 194 195 void 196 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 197 RegUsesTy::iterator It = RegUsesMap.find(Reg); 198 assert(It != RegUsesMap.end()); 199 RegSortData &RSD = It->second; 200 assert(RSD.UsedByIndices.size() > LUIdx); 201 RSD.UsedByIndices.reset(LUIdx); 202 } 203 204 void 205 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 206 assert(LUIdx <= LastLUIdx); 207 208 // Update RegUses. The data structure is not optimized for this purpose; 209 // we must iterate through it and update each of the bit vectors. 210 for (auto &Pair : RegUsesMap) { 211 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 212 if (LUIdx < UsedByIndices.size()) 213 UsedByIndices[LUIdx] = 214 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 215 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 216 } 217 } 218 219 bool 220 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 221 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 222 if (I == RegUsesMap.end()) 223 return false; 224 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 225 int i = UsedByIndices.find_first(); 226 if (i == -1) return false; 227 if ((size_t)i != LUIdx) return true; 228 return UsedByIndices.find_next(i) != -1; 229 } 230 231 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 232 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 233 assert(I != RegUsesMap.end() && "Unknown register!"); 234 return I->second.UsedByIndices; 235 } 236 237 void RegUseTracker::clear() { 238 RegUsesMap.clear(); 239 RegSequence.clear(); 240 } 241 242 namespace { 243 244 /// This class holds information that describes a formula for computing 245 /// satisfying a use. It may include broken-out immediates and scaled registers. 246 struct Formula { 247 /// Global base address used for complex addressing. 248 GlobalValue *BaseGV; 249 250 /// Base offset for complex addressing. 251 int64_t BaseOffset; 252 253 /// Whether any complex addressing has a base register. 254 bool HasBaseReg; 255 256 /// The scale of any complex addressing. 257 int64_t Scale; 258 259 /// The list of "base" registers for this use. When this is non-empty. The 260 /// canonical representation of a formula is 261 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 262 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 263 /// #1 enforces that the scaled register is always used when at least two 264 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 265 /// #2 enforces that 1 * reg is reg. 266 /// This invariant can be temporarly broken while building a formula. 267 /// However, every formula inserted into the LSRInstance must be in canonical 268 /// form. 269 SmallVector<const SCEV *, 4> BaseRegs; 270 271 /// The 'scaled' register for this use. This should be non-null when Scale is 272 /// not zero. 273 const SCEV *ScaledReg; 274 275 /// An additional constant offset which added near the use. This requires a 276 /// temporary register, but the offset itself can live in an add immediate 277 /// field rather than a register. 278 int64_t UnfoldedOffset; 279 280 Formula() 281 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 282 ScaledReg(nullptr), UnfoldedOffset(0) {} 283 284 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 285 286 bool isCanonical() const; 287 288 void canonicalize(); 289 290 bool unscale(); 291 292 size_t getNumRegs() const; 293 Type *getType() const; 294 295 void deleteBaseReg(const SCEV *&S); 296 297 bool referencesReg(const SCEV *S) const; 298 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 299 const RegUseTracker &RegUses) const; 300 301 void print(raw_ostream &OS) const; 302 void dump() const; 303 }; 304 305 } 306 307 /// Recursion helper for initialMatch. 308 static void DoInitialMatch(const SCEV *S, Loop *L, 309 SmallVectorImpl<const SCEV *> &Good, 310 SmallVectorImpl<const SCEV *> &Bad, 311 ScalarEvolution &SE) { 312 // Collect expressions which properly dominate the loop header. 313 if (SE.properlyDominates(S, L->getHeader())) { 314 Good.push_back(S); 315 return; 316 } 317 318 // Look at add operands. 319 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 320 for (const SCEV *S : Add->operands()) 321 DoInitialMatch(S, L, Good, Bad, SE); 322 return; 323 } 324 325 // Look at addrec operands. 326 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 327 if (!AR->getStart()->isZero()) { 328 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 329 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 330 AR->getStepRecurrence(SE), 331 // FIXME: AR->getNoWrapFlags() 332 AR->getLoop(), SCEV::FlagAnyWrap), 333 L, Good, Bad, SE); 334 return; 335 } 336 337 // Handle a multiplication by -1 (negation) if it didn't fold. 338 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 339 if (Mul->getOperand(0)->isAllOnesValue()) { 340 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 341 const SCEV *NewMul = SE.getMulExpr(Ops); 342 343 SmallVector<const SCEV *, 4> MyGood; 344 SmallVector<const SCEV *, 4> MyBad; 345 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 346 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 347 SE.getEffectiveSCEVType(NewMul->getType()))); 348 for (const SCEV *S : MyGood) 349 Good.push_back(SE.getMulExpr(NegOne, S)); 350 for (const SCEV *S : MyBad) 351 Bad.push_back(SE.getMulExpr(NegOne, S)); 352 return; 353 } 354 355 // Ok, we can't do anything interesting. Just stuff the whole thing into a 356 // register and hope for the best. 357 Bad.push_back(S); 358 } 359 360 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 361 /// all loop-invariant and loop-computable values in a single base register. 362 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 363 SmallVector<const SCEV *, 4> Good; 364 SmallVector<const SCEV *, 4> Bad; 365 DoInitialMatch(S, L, Good, Bad, SE); 366 if (!Good.empty()) { 367 const SCEV *Sum = SE.getAddExpr(Good); 368 if (!Sum->isZero()) 369 BaseRegs.push_back(Sum); 370 HasBaseReg = true; 371 } 372 if (!Bad.empty()) { 373 const SCEV *Sum = SE.getAddExpr(Bad); 374 if (!Sum->isZero()) 375 BaseRegs.push_back(Sum); 376 HasBaseReg = true; 377 } 378 canonicalize(); 379 } 380 381 /// \brief Check whether or not this formula statisfies the canonical 382 /// representation. 383 /// \see Formula::BaseRegs. 384 bool Formula::isCanonical() const { 385 if (ScaledReg) 386 return Scale != 1 || !BaseRegs.empty(); 387 return BaseRegs.size() <= 1; 388 } 389 390 /// \brief Helper method to morph a formula into its canonical representation. 391 /// \see Formula::BaseRegs. 392 /// Every formula having more than one base register, must use the ScaledReg 393 /// field. Otherwise, we would have to do special cases everywhere in LSR 394 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 395 /// On the other hand, 1*reg should be canonicalized into reg. 396 void Formula::canonicalize() { 397 if (isCanonical()) 398 return; 399 // So far we did not need this case. This is easy to implement but it is 400 // useless to maintain dead code. Beside it could hurt compile time. 401 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 402 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 403 ScaledReg = BaseRegs.back(); 404 BaseRegs.pop_back(); 405 Scale = 1; 406 size_t BaseRegsSize = BaseRegs.size(); 407 size_t Try = 0; 408 // If ScaledReg is an invariant, try to find a variant expression. 409 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 410 std::swap(ScaledReg, BaseRegs[Try++]); 411 } 412 413 /// \brief Get rid of the scale in the formula. 414 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 415 /// \return true if it was possible to get rid of the scale, false otherwise. 416 /// \note After this operation the formula may not be in the canonical form. 417 bool Formula::unscale() { 418 if (Scale != 1) 419 return false; 420 Scale = 0; 421 BaseRegs.push_back(ScaledReg); 422 ScaledReg = nullptr; 423 return true; 424 } 425 426 /// Return the total number of register operands used by this formula. This does 427 /// not include register uses implied by non-constant addrec strides. 428 size_t Formula::getNumRegs() const { 429 return !!ScaledReg + BaseRegs.size(); 430 } 431 432 /// Return the type of this formula, if it has one, or null otherwise. This type 433 /// is meaningless except for the bit size. 434 Type *Formula::getType() const { 435 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 436 ScaledReg ? ScaledReg->getType() : 437 BaseGV ? BaseGV->getType() : 438 nullptr; 439 } 440 441 /// Delete the given base reg from the BaseRegs list. 442 void Formula::deleteBaseReg(const SCEV *&S) { 443 if (&S != &BaseRegs.back()) 444 std::swap(S, BaseRegs.back()); 445 BaseRegs.pop_back(); 446 } 447 448 /// Test if this formula references the given register. 449 bool Formula::referencesReg(const SCEV *S) const { 450 return S == ScaledReg || 451 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 452 } 453 454 /// Test whether this formula uses registers which are used by uses other than 455 /// the use with the given index. 456 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 457 const RegUseTracker &RegUses) const { 458 if (ScaledReg) 459 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 460 return true; 461 for (const SCEV *BaseReg : BaseRegs) 462 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 463 return true; 464 return false; 465 } 466 467 void Formula::print(raw_ostream &OS) const { 468 bool First = true; 469 if (BaseGV) { 470 if (!First) OS << " + "; else First = false; 471 BaseGV->printAsOperand(OS, /*PrintType=*/false); 472 } 473 if (BaseOffset != 0) { 474 if (!First) OS << " + "; else First = false; 475 OS << BaseOffset; 476 } 477 for (const SCEV *BaseReg : BaseRegs) { 478 if (!First) OS << " + "; else First = false; 479 OS << "reg(" << *BaseReg << ')'; 480 } 481 if (HasBaseReg && BaseRegs.empty()) { 482 if (!First) OS << " + "; else First = false; 483 OS << "**error: HasBaseReg**"; 484 } else if (!HasBaseReg && !BaseRegs.empty()) { 485 if (!First) OS << " + "; else First = false; 486 OS << "**error: !HasBaseReg**"; 487 } 488 if (Scale != 0) { 489 if (!First) OS << " + "; else First = false; 490 OS << Scale << "*reg("; 491 if (ScaledReg) 492 OS << *ScaledReg; 493 else 494 OS << "<unknown>"; 495 OS << ')'; 496 } 497 if (UnfoldedOffset != 0) { 498 if (!First) OS << " + "; 499 OS << "imm(" << UnfoldedOffset << ')'; 500 } 501 } 502 503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 504 void Formula::dump() const { 505 print(errs()); errs() << '\n'; 506 } 507 #endif 508 509 /// Return true if the given addrec can be sign-extended without changing its 510 /// value. 511 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 512 Type *WideTy = 513 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 514 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 515 } 516 517 /// Return true if the given add can be sign-extended without changing its 518 /// value. 519 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 520 Type *WideTy = 521 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 522 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 523 } 524 525 /// Return true if the given mul can be sign-extended without changing its 526 /// value. 527 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 528 Type *WideTy = 529 IntegerType::get(SE.getContext(), 530 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 531 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 532 } 533 534 /// Return an expression for LHS /s RHS, if it can be determined and if the 535 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 536 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 537 /// the multiplication may overflow, which is useful when the result will be 538 /// used in a context where the most significant bits are ignored. 539 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 540 ScalarEvolution &SE, 541 bool IgnoreSignificantBits = false) { 542 // Handle the trivial case, which works for any SCEV type. 543 if (LHS == RHS) 544 return SE.getConstant(LHS->getType(), 1); 545 546 // Handle a few RHS special cases. 547 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 548 if (RC) { 549 const APInt &RA = RC->getValue()->getValue(); 550 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 551 // some folding. 552 if (RA.isAllOnesValue()) 553 return SE.getMulExpr(LHS, RC); 554 // Handle x /s 1 as x. 555 if (RA == 1) 556 return LHS; 557 } 558 559 // Check for a division of a constant by a constant. 560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 561 if (!RC) 562 return nullptr; 563 const APInt &LA = C->getValue()->getValue(); 564 const APInt &RA = RC->getValue()->getValue(); 565 if (LA.srem(RA) != 0) 566 return nullptr; 567 return SE.getConstant(LA.sdiv(RA)); 568 } 569 570 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 571 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 572 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 573 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 574 IgnoreSignificantBits); 575 if (!Step) return nullptr; 576 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 577 IgnoreSignificantBits); 578 if (!Start) return nullptr; 579 // FlagNW is independent of the start value, step direction, and is 580 // preserved with smaller magnitude steps. 581 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 582 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 583 } 584 return nullptr; 585 } 586 587 // Distribute the sdiv over add operands, if the add doesn't overflow. 588 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 589 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 590 SmallVector<const SCEV *, 8> Ops; 591 for (const SCEV *S : Add->operands()) { 592 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 593 if (!Op) return nullptr; 594 Ops.push_back(Op); 595 } 596 return SE.getAddExpr(Ops); 597 } 598 return nullptr; 599 } 600 601 // Check for a multiply operand that we can pull RHS out of. 602 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 603 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 604 SmallVector<const SCEV *, 4> Ops; 605 bool Found = false; 606 for (const SCEV *S : Mul->operands()) { 607 if (!Found) 608 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 609 IgnoreSignificantBits)) { 610 S = Q; 611 Found = true; 612 } 613 Ops.push_back(S); 614 } 615 return Found ? SE.getMulExpr(Ops) : nullptr; 616 } 617 return nullptr; 618 } 619 620 // Otherwise we don't know. 621 return nullptr; 622 } 623 624 /// If S involves the addition of a constant integer value, return that integer 625 /// value, and mutate S to point to a new SCEV with that value excluded. 626 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 627 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 628 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 629 S = SE.getConstant(C->getType(), 0); 630 return C->getValue()->getSExtValue(); 631 } 632 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 633 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 634 int64_t Result = ExtractImmediate(NewOps.front(), SE); 635 if (Result != 0) 636 S = SE.getAddExpr(NewOps); 637 return Result; 638 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 639 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 640 int64_t Result = ExtractImmediate(NewOps.front(), SE); 641 if (Result != 0) 642 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 643 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 644 SCEV::FlagAnyWrap); 645 return Result; 646 } 647 return 0; 648 } 649 650 /// If S involves the addition of a GlobalValue address, return that symbol, and 651 /// mutate S to point to a new SCEV with that value excluded. 652 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 654 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 655 S = SE.getConstant(GV->getType(), 0); 656 return GV; 657 } 658 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 659 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 660 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 661 if (Result) 662 S = SE.getAddExpr(NewOps); 663 return Result; 664 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 665 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 666 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 667 if (Result) 668 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 669 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 670 SCEV::FlagAnyWrap); 671 return Result; 672 } 673 return nullptr; 674 } 675 676 /// Returns true if the specified instruction is using the specified value as an 677 /// address. 678 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 679 bool isAddress = isa<LoadInst>(Inst); 680 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 681 if (SI->getOperand(1) == OperandVal) 682 isAddress = true; 683 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 684 // Addressing modes can also be folded into prefetches and a variety 685 // of intrinsics. 686 switch (II->getIntrinsicID()) { 687 default: break; 688 case Intrinsic::prefetch: 689 case Intrinsic::x86_sse_storeu_ps: 690 case Intrinsic::x86_sse2_storeu_pd: 691 case Intrinsic::x86_sse2_storeu_dq: 692 case Intrinsic::x86_sse2_storel_dq: 693 if (II->getArgOperand(0) == OperandVal) 694 isAddress = true; 695 break; 696 } 697 } 698 return isAddress; 699 } 700 701 /// Return the type of the memory being accessed. 702 static MemAccessTy getAccessType(const Instruction *Inst) { 703 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 704 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 705 AccessTy.MemTy = SI->getOperand(0)->getType(); 706 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 707 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 708 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 709 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 710 // Addressing modes can also be folded into prefetches and a variety 711 // of intrinsics. 712 switch (II->getIntrinsicID()) { 713 default: break; 714 case Intrinsic::x86_sse_storeu_ps: 715 case Intrinsic::x86_sse2_storeu_pd: 716 case Intrinsic::x86_sse2_storeu_dq: 717 case Intrinsic::x86_sse2_storel_dq: 718 AccessTy.MemTy = II->getArgOperand(0)->getType(); 719 break; 720 } 721 } 722 723 // All pointers have the same requirements, so canonicalize them to an 724 // arbitrary pointer type to minimize variation. 725 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 726 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 727 PTy->getAddressSpace()); 728 729 return AccessTy; 730 } 731 732 /// Return true if this AddRec is already a phi in its loop. 733 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 734 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 735 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 736 if (SE.isSCEVable(PN->getType()) && 737 (SE.getEffectiveSCEVType(PN->getType()) == 738 SE.getEffectiveSCEVType(AR->getType())) && 739 SE.getSCEV(PN) == AR) 740 return true; 741 } 742 return false; 743 } 744 745 /// Check if expanding this expression is likely to incur significant cost. This 746 /// is tricky because SCEV doesn't track which expressions are actually computed 747 /// by the current IR. 748 /// 749 /// We currently allow expansion of IV increments that involve adds, 750 /// multiplication by constants, and AddRecs from existing phis. 751 /// 752 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 753 /// obvious multiple of the UDivExpr. 754 static bool isHighCostExpansion(const SCEV *S, 755 SmallPtrSetImpl<const SCEV*> &Processed, 756 ScalarEvolution &SE) { 757 // Zero/One operand expressions 758 switch (S->getSCEVType()) { 759 case scUnknown: 760 case scConstant: 761 return false; 762 case scTruncate: 763 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 764 Processed, SE); 765 case scZeroExtend: 766 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 767 Processed, SE); 768 case scSignExtend: 769 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 770 Processed, SE); 771 } 772 773 if (!Processed.insert(S).second) 774 return false; 775 776 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 777 for (const SCEV *S : Add->operands()) { 778 if (isHighCostExpansion(S, Processed, SE)) 779 return true; 780 } 781 return false; 782 } 783 784 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 785 if (Mul->getNumOperands() == 2) { 786 // Multiplication by a constant is ok 787 if (isa<SCEVConstant>(Mul->getOperand(0))) 788 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 789 790 // If we have the value of one operand, check if an existing 791 // multiplication already generates this expression. 792 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 793 Value *UVal = U->getValue(); 794 for (User *UR : UVal->users()) { 795 // If U is a constant, it may be used by a ConstantExpr. 796 Instruction *UI = dyn_cast<Instruction>(UR); 797 if (UI && UI->getOpcode() == Instruction::Mul && 798 SE.isSCEVable(UI->getType())) { 799 return SE.getSCEV(UI) == Mul; 800 } 801 } 802 } 803 } 804 } 805 806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 807 if (isExistingPhi(AR, SE)) 808 return false; 809 } 810 811 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 812 return true; 813 } 814 815 /// If any of the instructions is the specified set are trivially dead, delete 816 /// them and see if this makes any of their operands subsequently dead. 817 static bool 818 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 819 bool Changed = false; 820 821 while (!DeadInsts.empty()) { 822 Value *V = DeadInsts.pop_back_val(); 823 Instruction *I = dyn_cast_or_null<Instruction>(V); 824 825 if (!I || !isInstructionTriviallyDead(I)) 826 continue; 827 828 for (Use &O : I->operands()) 829 if (Instruction *U = dyn_cast<Instruction>(O)) { 830 O = nullptr; 831 if (U->use_empty()) 832 DeadInsts.emplace_back(U); 833 } 834 835 I->eraseFromParent(); 836 Changed = true; 837 } 838 839 return Changed; 840 } 841 842 namespace { 843 class LSRUse; 844 } 845 846 /// \brief Check if the addressing mode defined by \p F is completely 847 /// folded in \p LU at isel time. 848 /// This includes address-mode folding and special icmp tricks. 849 /// This function returns true if \p LU can accommodate what \p F 850 /// defines and up to 1 base + 1 scaled + offset. 851 /// In other words, if \p F has several base registers, this function may 852 /// still return true. Therefore, users still need to account for 853 /// additional base registers and/or unfolded offsets to derive an 854 /// accurate cost model. 855 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 856 const LSRUse &LU, const Formula &F); 857 // Get the cost of the scaling factor used in F for LU. 858 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 859 const LSRUse &LU, const Formula &F); 860 861 namespace { 862 863 /// This class is used to measure and compare candidate formulae. 864 class Cost { 865 /// TODO: Some of these could be merged. Also, a lexical ordering 866 /// isn't always optimal. 867 unsigned NumRegs; 868 unsigned AddRecCost; 869 unsigned NumIVMuls; 870 unsigned NumBaseAdds; 871 unsigned ImmCost; 872 unsigned SetupCost; 873 unsigned ScaleCost; 874 875 public: 876 Cost() 877 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 878 SetupCost(0), ScaleCost(0) {} 879 880 bool operator<(const Cost &Other) const; 881 882 void Lose(); 883 884 #ifndef NDEBUG 885 // Once any of the metrics loses, they must all remain losers. 886 bool isValid() { 887 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 888 | ImmCost | SetupCost | ScaleCost) != ~0u) 889 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 890 & ImmCost & SetupCost & ScaleCost) == ~0u); 891 } 892 #endif 893 894 bool isLoser() { 895 assert(isValid() && "invalid cost"); 896 return NumRegs == ~0u; 897 } 898 899 void RateFormula(const TargetTransformInfo &TTI, 900 const Formula &F, 901 SmallPtrSetImpl<const SCEV *> &Regs, 902 const DenseSet<const SCEV *> &VisitedRegs, 903 const Loop *L, 904 const SmallVectorImpl<int64_t> &Offsets, 905 ScalarEvolution &SE, DominatorTree &DT, 906 const LSRUse &LU, 907 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 908 909 void print(raw_ostream &OS) const; 910 void dump() const; 911 912 private: 913 void RateRegister(const SCEV *Reg, 914 SmallPtrSetImpl<const SCEV *> &Regs, 915 const Loop *L, 916 ScalarEvolution &SE, DominatorTree &DT); 917 void RatePrimaryRegister(const SCEV *Reg, 918 SmallPtrSetImpl<const SCEV *> &Regs, 919 const Loop *L, 920 ScalarEvolution &SE, DominatorTree &DT, 921 SmallPtrSetImpl<const SCEV *> *LoserRegs); 922 }; 923 924 } 925 926 /// Tally up interesting quantities from the given register. 927 void Cost::RateRegister(const SCEV *Reg, 928 SmallPtrSetImpl<const SCEV *> &Regs, 929 const Loop *L, 930 ScalarEvolution &SE, DominatorTree &DT) { 931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 932 // If this is an addrec for another loop, don't second-guess its addrec phi 933 // nodes. LSR isn't currently smart enough to reason about more than one 934 // loop at a time. LSR has already run on inner loops, will not run on outer 935 // loops, and cannot be expected to change sibling loops. 936 if (AR->getLoop() != L) { 937 // If the AddRec exists, consider it's register free and leave it alone. 938 if (isExistingPhi(AR, SE)) 939 return; 940 941 // Otherwise, do not consider this formula at all. 942 Lose(); 943 return; 944 } 945 AddRecCost += 1; /// TODO: This should be a function of the stride. 946 947 // Add the step value register, if it needs one. 948 // TODO: The non-affine case isn't precisely modeled here. 949 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 950 if (!Regs.count(AR->getOperand(1))) { 951 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 952 if (isLoser()) 953 return; 954 } 955 } 956 } 957 ++NumRegs; 958 959 // Rough heuristic; favor registers which don't require extra setup 960 // instructions in the preheader. 961 if (!isa<SCEVUnknown>(Reg) && 962 !isa<SCEVConstant>(Reg) && 963 !(isa<SCEVAddRecExpr>(Reg) && 964 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 965 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 966 ++SetupCost; 967 968 NumIVMuls += isa<SCEVMulExpr>(Reg) && 969 SE.hasComputableLoopEvolution(Reg, L); 970 } 971 972 /// Record this register in the set. If we haven't seen it before, rate 973 /// it. Optional LoserRegs provides a way to declare any formula that refers to 974 /// one of those regs an instant loser. 975 void Cost::RatePrimaryRegister(const SCEV *Reg, 976 SmallPtrSetImpl<const SCEV *> &Regs, 977 const Loop *L, 978 ScalarEvolution &SE, DominatorTree &DT, 979 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 980 if (LoserRegs && LoserRegs->count(Reg)) { 981 Lose(); 982 return; 983 } 984 if (Regs.insert(Reg).second) { 985 RateRegister(Reg, Regs, L, SE, DT); 986 if (LoserRegs && isLoser()) 987 LoserRegs->insert(Reg); 988 } 989 } 990 991 void Cost::RateFormula(const TargetTransformInfo &TTI, 992 const Formula &F, 993 SmallPtrSetImpl<const SCEV *> &Regs, 994 const DenseSet<const SCEV *> &VisitedRegs, 995 const Loop *L, 996 const SmallVectorImpl<int64_t> &Offsets, 997 ScalarEvolution &SE, DominatorTree &DT, 998 const LSRUse &LU, 999 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1000 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1001 // Tally up the registers. 1002 if (const SCEV *ScaledReg = F.ScaledReg) { 1003 if (VisitedRegs.count(ScaledReg)) { 1004 Lose(); 1005 return; 1006 } 1007 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1008 if (isLoser()) 1009 return; 1010 } 1011 for (const SCEV *BaseReg : F.BaseRegs) { 1012 if (VisitedRegs.count(BaseReg)) { 1013 Lose(); 1014 return; 1015 } 1016 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1017 if (isLoser()) 1018 return; 1019 } 1020 1021 // Determine how many (unfolded) adds we'll need inside the loop. 1022 size_t NumBaseParts = F.getNumRegs(); 1023 if (NumBaseParts > 1) 1024 // Do not count the base and a possible second register if the target 1025 // allows to fold 2 registers. 1026 NumBaseAdds += 1027 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1028 NumBaseAdds += (F.UnfoldedOffset != 0); 1029 1030 // Accumulate non-free scaling amounts. 1031 ScaleCost += getScalingFactorCost(TTI, LU, F); 1032 1033 // Tally up the non-zero immediates. 1034 for (int64_t O : Offsets) { 1035 int64_t Offset = (uint64_t)O + F.BaseOffset; 1036 if (F.BaseGV) 1037 ImmCost += 64; // Handle symbolic values conservatively. 1038 // TODO: This should probably be the pointer size. 1039 else if (Offset != 0) 1040 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1041 } 1042 assert(isValid() && "invalid cost"); 1043 } 1044 1045 /// Set this cost to a losing value. 1046 void Cost::Lose() { 1047 NumRegs = ~0u; 1048 AddRecCost = ~0u; 1049 NumIVMuls = ~0u; 1050 NumBaseAdds = ~0u; 1051 ImmCost = ~0u; 1052 SetupCost = ~0u; 1053 ScaleCost = ~0u; 1054 } 1055 1056 /// Choose the lower cost. 1057 bool Cost::operator<(const Cost &Other) const { 1058 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1059 ImmCost, SetupCost) < 1060 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1061 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1062 Other.SetupCost); 1063 } 1064 1065 void Cost::print(raw_ostream &OS) const { 1066 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1067 if (AddRecCost != 0) 1068 OS << ", with addrec cost " << AddRecCost; 1069 if (NumIVMuls != 0) 1070 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1071 if (NumBaseAdds != 0) 1072 OS << ", plus " << NumBaseAdds << " base add" 1073 << (NumBaseAdds == 1 ? "" : "s"); 1074 if (ScaleCost != 0) 1075 OS << ", plus " << ScaleCost << " scale cost"; 1076 if (ImmCost != 0) 1077 OS << ", plus " << ImmCost << " imm cost"; 1078 if (SetupCost != 0) 1079 OS << ", plus " << SetupCost << " setup cost"; 1080 } 1081 1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1083 void Cost::dump() const { 1084 print(errs()); errs() << '\n'; 1085 } 1086 #endif 1087 1088 namespace { 1089 1090 /// An operand value in an instruction which is to be replaced with some 1091 /// equivalent, possibly strength-reduced, replacement. 1092 struct LSRFixup { 1093 /// The instruction which will be updated. 1094 Instruction *UserInst; 1095 1096 /// The operand of the instruction which will be replaced. The operand may be 1097 /// used more than once; every instance will be replaced. 1098 Value *OperandValToReplace; 1099 1100 /// If this user is to use the post-incremented value of an induction 1101 /// variable, this variable is non-null and holds the loop associated with the 1102 /// induction variable. 1103 PostIncLoopSet PostIncLoops; 1104 1105 /// The index of the LSRUse describing the expression which this fixup needs, 1106 /// minus an offset (below). 1107 size_t LUIdx; 1108 1109 /// A constant offset to be added to the LSRUse expression. This allows 1110 /// multiple fixups to share the same LSRUse with different offsets, for 1111 /// example in an unrolled loop. 1112 int64_t Offset; 1113 1114 bool isUseFullyOutsideLoop(const Loop *L) const; 1115 1116 LSRFixup(); 1117 1118 void print(raw_ostream &OS) const; 1119 void dump() const; 1120 }; 1121 1122 } 1123 1124 LSRFixup::LSRFixup() 1125 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1126 Offset(0) {} 1127 1128 /// Test whether this fixup always uses its value outside of the given loop. 1129 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1130 // PHI nodes use their value in their incoming blocks. 1131 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1132 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1133 if (PN->getIncomingValue(i) == OperandValToReplace && 1134 L->contains(PN->getIncomingBlock(i))) 1135 return false; 1136 return true; 1137 } 1138 1139 return !L->contains(UserInst); 1140 } 1141 1142 void LSRFixup::print(raw_ostream &OS) const { 1143 OS << "UserInst="; 1144 // Store is common and interesting enough to be worth special-casing. 1145 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1146 OS << "store "; 1147 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1148 } else if (UserInst->getType()->isVoidTy()) 1149 OS << UserInst->getOpcodeName(); 1150 else 1151 UserInst->printAsOperand(OS, /*PrintType=*/false); 1152 1153 OS << ", OperandValToReplace="; 1154 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1155 1156 for (const Loop *PIL : PostIncLoops) { 1157 OS << ", PostIncLoop="; 1158 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1159 } 1160 1161 if (LUIdx != ~size_t(0)) 1162 OS << ", LUIdx=" << LUIdx; 1163 1164 if (Offset != 0) 1165 OS << ", Offset=" << Offset; 1166 } 1167 1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1169 void LSRFixup::dump() const { 1170 print(errs()); errs() << '\n'; 1171 } 1172 #endif 1173 1174 namespace { 1175 1176 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1177 /// SmallVectors of const SCEV*. 1178 struct UniquifierDenseMapInfo { 1179 static SmallVector<const SCEV *, 4> getEmptyKey() { 1180 SmallVector<const SCEV *, 4> V; 1181 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1182 return V; 1183 } 1184 1185 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1186 SmallVector<const SCEV *, 4> V; 1187 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1188 return V; 1189 } 1190 1191 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1192 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1193 } 1194 1195 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1196 const SmallVector<const SCEV *, 4> &RHS) { 1197 return LHS == RHS; 1198 } 1199 }; 1200 1201 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1202 /// as uses invented by LSR itself. It includes information about what kinds of 1203 /// things can be folded into the user, information about the user itself, and 1204 /// information about how the use may be satisfied. TODO: Represent multiple 1205 /// users of the same expression in common? 1206 class LSRUse { 1207 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1208 1209 public: 1210 /// An enum for a kind of use, indicating what types of scaled and immediate 1211 /// operands it might support. 1212 enum KindType { 1213 Basic, ///< A normal use, with no folding. 1214 Special, ///< A special case of basic, allowing -1 scales. 1215 Address, ///< An address use; folding according to TargetLowering 1216 ICmpZero ///< An equality icmp with both operands folded into one. 1217 // TODO: Add a generic icmp too? 1218 }; 1219 1220 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1221 1222 KindType Kind; 1223 MemAccessTy AccessTy; 1224 1225 SmallVector<int64_t, 8> Offsets; 1226 int64_t MinOffset; 1227 int64_t MaxOffset; 1228 1229 /// This records whether all of the fixups using this LSRUse are outside of 1230 /// the loop, in which case some special-case heuristics may be used. 1231 bool AllFixupsOutsideLoop; 1232 1233 /// RigidFormula is set to true to guarantee that this use will be associated 1234 /// with a single formula--the one that initially matched. Some SCEV 1235 /// expressions cannot be expanded. This allows LSR to consider the registers 1236 /// used by those expressions without the need to expand them later after 1237 /// changing the formula. 1238 bool RigidFormula; 1239 1240 /// This records the widest use type for any fixup using this 1241 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1242 /// fixup widths to be equivalent, because the narrower one may be relying on 1243 /// the implicit truncation to truncate away bogus bits. 1244 Type *WidestFixupType; 1245 1246 /// A list of ways to build a value that can satisfy this user. After the 1247 /// list is populated, one of these is selected heuristically and used to 1248 /// formulate a replacement for OperandValToReplace in UserInst. 1249 SmallVector<Formula, 12> Formulae; 1250 1251 /// The set of register candidates used by all formulae in this LSRUse. 1252 SmallPtrSet<const SCEV *, 4> Regs; 1253 1254 LSRUse(KindType K, MemAccessTy AT) 1255 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1256 AllFixupsOutsideLoop(true), RigidFormula(false), 1257 WidestFixupType(nullptr) {} 1258 1259 bool HasFormulaWithSameRegs(const Formula &F) const; 1260 bool InsertFormula(const Formula &F); 1261 void DeleteFormula(Formula &F); 1262 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1263 1264 void print(raw_ostream &OS) const; 1265 void dump() const; 1266 }; 1267 1268 } 1269 1270 /// Test whether this use as a formula which has the same registers as the given 1271 /// formula. 1272 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1273 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1274 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1275 // Unstable sort by host order ok, because this is only used for uniquifying. 1276 std::sort(Key.begin(), Key.end()); 1277 return Uniquifier.count(Key); 1278 } 1279 1280 /// If the given formula has not yet been inserted, add it to the list, and 1281 /// return true. Return false otherwise. The formula must be in canonical form. 1282 bool LSRUse::InsertFormula(const Formula &F) { 1283 assert(F.isCanonical() && "Invalid canonical representation"); 1284 1285 if (!Formulae.empty() && RigidFormula) 1286 return false; 1287 1288 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1289 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1290 // Unstable sort by host order ok, because this is only used for uniquifying. 1291 std::sort(Key.begin(), Key.end()); 1292 1293 if (!Uniquifier.insert(Key).second) 1294 return false; 1295 1296 // Using a register to hold the value of 0 is not profitable. 1297 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1298 "Zero allocated in a scaled register!"); 1299 #ifndef NDEBUG 1300 for (const SCEV *BaseReg : F.BaseRegs) 1301 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1302 #endif 1303 1304 // Add the formula to the list. 1305 Formulae.push_back(F); 1306 1307 // Record registers now being used by this use. 1308 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1309 if (F.ScaledReg) 1310 Regs.insert(F.ScaledReg); 1311 1312 return true; 1313 } 1314 1315 /// Remove the given formula from this use's list. 1316 void LSRUse::DeleteFormula(Formula &F) { 1317 if (&F != &Formulae.back()) 1318 std::swap(F, Formulae.back()); 1319 Formulae.pop_back(); 1320 } 1321 1322 /// Recompute the Regs field, and update RegUses. 1323 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1324 // Now that we've filtered out some formulae, recompute the Regs set. 1325 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1326 Regs.clear(); 1327 for (const Formula &F : Formulae) { 1328 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1329 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1330 } 1331 1332 // Update the RegTracker. 1333 for (const SCEV *S : OldRegs) 1334 if (!Regs.count(S)) 1335 RegUses.dropRegister(S, LUIdx); 1336 } 1337 1338 void LSRUse::print(raw_ostream &OS) const { 1339 OS << "LSR Use: Kind="; 1340 switch (Kind) { 1341 case Basic: OS << "Basic"; break; 1342 case Special: OS << "Special"; break; 1343 case ICmpZero: OS << "ICmpZero"; break; 1344 case Address: 1345 OS << "Address of "; 1346 if (AccessTy.MemTy->isPointerTy()) 1347 OS << "pointer"; // the full pointer type could be really verbose 1348 else { 1349 OS << *AccessTy.MemTy; 1350 } 1351 1352 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1353 } 1354 1355 OS << ", Offsets={"; 1356 bool NeedComma = false; 1357 for (int64_t O : Offsets) { 1358 if (NeedComma) OS << ','; 1359 OS << O; 1360 NeedComma = true; 1361 } 1362 OS << '}'; 1363 1364 if (AllFixupsOutsideLoop) 1365 OS << ", all-fixups-outside-loop"; 1366 1367 if (WidestFixupType) 1368 OS << ", widest fixup type: " << *WidestFixupType; 1369 } 1370 1371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1372 void LSRUse::dump() const { 1373 print(errs()); errs() << '\n'; 1374 } 1375 #endif 1376 1377 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1378 LSRUse::KindType Kind, MemAccessTy AccessTy, 1379 GlobalValue *BaseGV, int64_t BaseOffset, 1380 bool HasBaseReg, int64_t Scale) { 1381 switch (Kind) { 1382 case LSRUse::Address: 1383 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1384 HasBaseReg, Scale, AccessTy.AddrSpace); 1385 1386 case LSRUse::ICmpZero: 1387 // There's not even a target hook for querying whether it would be legal to 1388 // fold a GV into an ICmp. 1389 if (BaseGV) 1390 return false; 1391 1392 // ICmp only has two operands; don't allow more than two non-trivial parts. 1393 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1394 return false; 1395 1396 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1397 // putting the scaled register in the other operand of the icmp. 1398 if (Scale != 0 && Scale != -1) 1399 return false; 1400 1401 // If we have low-level target information, ask the target if it can fold an 1402 // integer immediate on an icmp. 1403 if (BaseOffset != 0) { 1404 // We have one of: 1405 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1406 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1407 // Offs is the ICmp immediate. 1408 if (Scale == 0) 1409 // The cast does the right thing with INT64_MIN. 1410 BaseOffset = -(uint64_t)BaseOffset; 1411 return TTI.isLegalICmpImmediate(BaseOffset); 1412 } 1413 1414 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1415 return true; 1416 1417 case LSRUse::Basic: 1418 // Only handle single-register values. 1419 return !BaseGV && Scale == 0 && BaseOffset == 0; 1420 1421 case LSRUse::Special: 1422 // Special case Basic to handle -1 scales. 1423 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1424 } 1425 1426 llvm_unreachable("Invalid LSRUse Kind!"); 1427 } 1428 1429 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1430 int64_t MinOffset, int64_t MaxOffset, 1431 LSRUse::KindType Kind, MemAccessTy AccessTy, 1432 GlobalValue *BaseGV, int64_t BaseOffset, 1433 bool HasBaseReg, int64_t Scale) { 1434 // Check for overflow. 1435 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1436 (MinOffset > 0)) 1437 return false; 1438 MinOffset = (uint64_t)BaseOffset + MinOffset; 1439 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1440 (MaxOffset > 0)) 1441 return false; 1442 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1443 1444 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1445 HasBaseReg, Scale) && 1446 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1447 HasBaseReg, Scale); 1448 } 1449 1450 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1451 int64_t MinOffset, int64_t MaxOffset, 1452 LSRUse::KindType Kind, MemAccessTy AccessTy, 1453 const Formula &F) { 1454 // For the purpose of isAMCompletelyFolded either having a canonical formula 1455 // or a scale not equal to zero is correct. 1456 // Problems may arise from non canonical formulae having a scale == 0. 1457 // Strictly speaking it would best to just rely on canonical formulae. 1458 // However, when we generate the scaled formulae, we first check that the 1459 // scaling factor is profitable before computing the actual ScaledReg for 1460 // compile time sake. 1461 assert((F.isCanonical() || F.Scale != 0)); 1462 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1463 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1464 } 1465 1466 /// Test whether we know how to expand the current formula. 1467 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1468 int64_t MaxOffset, LSRUse::KindType Kind, 1469 MemAccessTy AccessTy, GlobalValue *BaseGV, 1470 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1471 // We know how to expand completely foldable formulae. 1472 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1473 BaseOffset, HasBaseReg, Scale) || 1474 // Or formulae that use a base register produced by a sum of base 1475 // registers. 1476 (Scale == 1 && 1477 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1478 BaseGV, BaseOffset, true, 0)); 1479 } 1480 1481 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1482 int64_t MaxOffset, LSRUse::KindType Kind, 1483 MemAccessTy AccessTy, const Formula &F) { 1484 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1485 F.BaseOffset, F.HasBaseReg, F.Scale); 1486 } 1487 1488 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1489 const LSRUse &LU, const Formula &F) { 1490 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1491 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1492 F.Scale); 1493 } 1494 1495 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1496 const LSRUse &LU, const Formula &F) { 1497 if (!F.Scale) 1498 return 0; 1499 1500 // If the use is not completely folded in that instruction, we will have to 1501 // pay an extra cost only for scale != 1. 1502 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1503 LU.AccessTy, F)) 1504 return F.Scale != 1; 1505 1506 switch (LU.Kind) { 1507 case LSRUse::Address: { 1508 // Check the scaling factor cost with both the min and max offsets. 1509 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1510 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1511 F.Scale, LU.AccessTy.AddrSpace); 1512 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1513 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1514 F.Scale, LU.AccessTy.AddrSpace); 1515 1516 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1517 "Legal addressing mode has an illegal cost!"); 1518 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1519 } 1520 case LSRUse::ICmpZero: 1521 case LSRUse::Basic: 1522 case LSRUse::Special: 1523 // The use is completely folded, i.e., everything is folded into the 1524 // instruction. 1525 return 0; 1526 } 1527 1528 llvm_unreachable("Invalid LSRUse Kind!"); 1529 } 1530 1531 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1532 LSRUse::KindType Kind, MemAccessTy AccessTy, 1533 GlobalValue *BaseGV, int64_t BaseOffset, 1534 bool HasBaseReg) { 1535 // Fast-path: zero is always foldable. 1536 if (BaseOffset == 0 && !BaseGV) return true; 1537 1538 // Conservatively, create an address with an immediate and a 1539 // base and a scale. 1540 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1541 1542 // Canonicalize a scale of 1 to a base register if the formula doesn't 1543 // already have a base register. 1544 if (!HasBaseReg && Scale == 1) { 1545 Scale = 0; 1546 HasBaseReg = true; 1547 } 1548 1549 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1550 HasBaseReg, Scale); 1551 } 1552 1553 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1554 ScalarEvolution &SE, int64_t MinOffset, 1555 int64_t MaxOffset, LSRUse::KindType Kind, 1556 MemAccessTy AccessTy, const SCEV *S, 1557 bool HasBaseReg) { 1558 // Fast-path: zero is always foldable. 1559 if (S->isZero()) return true; 1560 1561 // Conservatively, create an address with an immediate and a 1562 // base and a scale. 1563 int64_t BaseOffset = ExtractImmediate(S, SE); 1564 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1565 1566 // If there's anything else involved, it's not foldable. 1567 if (!S->isZero()) return false; 1568 1569 // Fast-path: zero is always foldable. 1570 if (BaseOffset == 0 && !BaseGV) return true; 1571 1572 // Conservatively, create an address with an immediate and a 1573 // base and a scale. 1574 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1575 1576 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1577 BaseOffset, HasBaseReg, Scale); 1578 } 1579 1580 namespace { 1581 1582 /// An individual increment in a Chain of IV increments. Relate an IV user to 1583 /// an expression that computes the IV it uses from the IV used by the previous 1584 /// link in the Chain. 1585 /// 1586 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1587 /// original IVOperand. The head of the chain's IVOperand is only valid during 1588 /// chain collection, before LSR replaces IV users. During chain generation, 1589 /// IncExpr can be used to find the new IVOperand that computes the same 1590 /// expression. 1591 struct IVInc { 1592 Instruction *UserInst; 1593 Value* IVOperand; 1594 const SCEV *IncExpr; 1595 1596 IVInc(Instruction *U, Value *O, const SCEV *E): 1597 UserInst(U), IVOperand(O), IncExpr(E) {} 1598 }; 1599 1600 // The list of IV increments in program order. We typically add the head of a 1601 // chain without finding subsequent links. 1602 struct IVChain { 1603 SmallVector<IVInc,1> Incs; 1604 const SCEV *ExprBase; 1605 1606 IVChain() : ExprBase(nullptr) {} 1607 1608 IVChain(const IVInc &Head, const SCEV *Base) 1609 : Incs(1, Head), ExprBase(Base) {} 1610 1611 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1612 1613 // Return the first increment in the chain. 1614 const_iterator begin() const { 1615 assert(!Incs.empty()); 1616 return std::next(Incs.begin()); 1617 } 1618 const_iterator end() const { 1619 return Incs.end(); 1620 } 1621 1622 // Returns true if this chain contains any increments. 1623 bool hasIncs() const { return Incs.size() >= 2; } 1624 1625 // Add an IVInc to the end of this chain. 1626 void add(const IVInc &X) { Incs.push_back(X); } 1627 1628 // Returns the last UserInst in the chain. 1629 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1630 1631 // Returns true if IncExpr can be profitably added to this chain. 1632 bool isProfitableIncrement(const SCEV *OperExpr, 1633 const SCEV *IncExpr, 1634 ScalarEvolution&); 1635 }; 1636 1637 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1638 /// between FarUsers that definitely cross IV increments and NearUsers that may 1639 /// be used between IV increments. 1640 struct ChainUsers { 1641 SmallPtrSet<Instruction*, 4> FarUsers; 1642 SmallPtrSet<Instruction*, 4> NearUsers; 1643 }; 1644 1645 /// This class holds state for the main loop strength reduction logic. 1646 class LSRInstance { 1647 IVUsers &IU; 1648 ScalarEvolution &SE; 1649 DominatorTree &DT; 1650 LoopInfo &LI; 1651 const TargetTransformInfo &TTI; 1652 Loop *const L; 1653 bool Changed; 1654 1655 /// This is the insert position that the current loop's induction variable 1656 /// increment should be placed. In simple loops, this is the latch block's 1657 /// terminator. But in more complicated cases, this is a position which will 1658 /// dominate all the in-loop post-increment users. 1659 Instruction *IVIncInsertPos; 1660 1661 /// Interesting factors between use strides. 1662 SmallSetVector<int64_t, 8> Factors; 1663 1664 /// Interesting use types, to facilitate truncation reuse. 1665 SmallSetVector<Type *, 4> Types; 1666 1667 /// The list of operands which are to be replaced. 1668 SmallVector<LSRFixup, 16> Fixups; 1669 1670 /// The list of interesting uses. 1671 SmallVector<LSRUse, 16> Uses; 1672 1673 /// Track which uses use which register candidates. 1674 RegUseTracker RegUses; 1675 1676 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1677 // have more than a few IV increment chains in a loop. Missing a Chain falls 1678 // back to normal LSR behavior for those uses. 1679 static const unsigned MaxChains = 8; 1680 1681 /// IV users can form a chain of IV increments. 1682 SmallVector<IVChain, MaxChains> IVChainVec; 1683 1684 /// IV users that belong to profitable IVChains. 1685 SmallPtrSet<Use*, MaxChains> IVIncSet; 1686 1687 void OptimizeShadowIV(); 1688 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1689 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1690 void OptimizeLoopTermCond(); 1691 1692 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1693 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1694 void FinalizeChain(IVChain &Chain); 1695 void CollectChains(); 1696 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1697 SmallVectorImpl<WeakVH> &DeadInsts); 1698 1699 void CollectInterestingTypesAndFactors(); 1700 void CollectFixupsAndInitialFormulae(); 1701 1702 LSRFixup &getNewFixup() { 1703 Fixups.push_back(LSRFixup()); 1704 return Fixups.back(); 1705 } 1706 1707 // Support for sharing of LSRUses between LSRFixups. 1708 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1709 UseMapTy UseMap; 1710 1711 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1712 LSRUse::KindType Kind, MemAccessTy AccessTy); 1713 1714 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1715 MemAccessTy AccessTy); 1716 1717 void DeleteUse(LSRUse &LU, size_t LUIdx); 1718 1719 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1720 1721 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1722 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1723 void CountRegisters(const Formula &F, size_t LUIdx); 1724 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1725 1726 void CollectLoopInvariantFixupsAndFormulae(); 1727 1728 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1729 unsigned Depth = 0); 1730 1731 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1732 const Formula &Base, unsigned Depth, 1733 size_t Idx, bool IsScaledReg = false); 1734 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1735 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1736 const Formula &Base, size_t Idx, 1737 bool IsScaledReg = false); 1738 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1739 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1740 const Formula &Base, 1741 const SmallVectorImpl<int64_t> &Worklist, 1742 size_t Idx, bool IsScaledReg = false); 1743 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1744 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1745 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1746 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1747 void GenerateCrossUseConstantOffsets(); 1748 void GenerateAllReuseFormulae(); 1749 1750 void FilterOutUndesirableDedicatedRegisters(); 1751 1752 size_t EstimateSearchSpaceComplexity() const; 1753 void NarrowSearchSpaceByDetectingSupersets(); 1754 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1755 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1756 void NarrowSearchSpaceByPickingWinnerRegs(); 1757 void NarrowSearchSpaceUsingHeuristics(); 1758 1759 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1760 Cost &SolutionCost, 1761 SmallVectorImpl<const Formula *> &Workspace, 1762 const Cost &CurCost, 1763 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1764 DenseSet<const SCEV *> &VisitedRegs) const; 1765 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1766 1767 BasicBlock::iterator 1768 HoistInsertPosition(BasicBlock::iterator IP, 1769 const SmallVectorImpl<Instruction *> &Inputs) const; 1770 BasicBlock::iterator 1771 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1772 const LSRFixup &LF, 1773 const LSRUse &LU, 1774 SCEVExpander &Rewriter) const; 1775 1776 Value *Expand(const LSRFixup &LF, 1777 const Formula &F, 1778 BasicBlock::iterator IP, 1779 SCEVExpander &Rewriter, 1780 SmallVectorImpl<WeakVH> &DeadInsts) const; 1781 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1782 const Formula &F, 1783 SCEVExpander &Rewriter, 1784 SmallVectorImpl<WeakVH> &DeadInsts, 1785 Pass *P) const; 1786 void Rewrite(const LSRFixup &LF, 1787 const Formula &F, 1788 SCEVExpander &Rewriter, 1789 SmallVectorImpl<WeakVH> &DeadInsts, 1790 Pass *P) const; 1791 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1792 Pass *P); 1793 1794 public: 1795 LSRInstance(Loop *L, Pass *P); 1796 1797 bool getChanged() const { return Changed; } 1798 1799 void print_factors_and_types(raw_ostream &OS) const; 1800 void print_fixups(raw_ostream &OS) const; 1801 void print_uses(raw_ostream &OS) const; 1802 void print(raw_ostream &OS) const; 1803 void dump() const; 1804 }; 1805 1806 } 1807 1808 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1809 /// the cast operation. 1810 void LSRInstance::OptimizeShadowIV() { 1811 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1812 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1813 return; 1814 1815 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1816 UI != E; /* empty */) { 1817 IVUsers::const_iterator CandidateUI = UI; 1818 ++UI; 1819 Instruction *ShadowUse = CandidateUI->getUser(); 1820 Type *DestTy = nullptr; 1821 bool IsSigned = false; 1822 1823 /* If shadow use is a int->float cast then insert a second IV 1824 to eliminate this cast. 1825 1826 for (unsigned i = 0; i < n; ++i) 1827 foo((double)i); 1828 1829 is transformed into 1830 1831 double d = 0.0; 1832 for (unsigned i = 0; i < n; ++i, ++d) 1833 foo(d); 1834 */ 1835 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1836 IsSigned = false; 1837 DestTy = UCast->getDestTy(); 1838 } 1839 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1840 IsSigned = true; 1841 DestTy = SCast->getDestTy(); 1842 } 1843 if (!DestTy) continue; 1844 1845 // If target does not support DestTy natively then do not apply 1846 // this transformation. 1847 if (!TTI.isTypeLegal(DestTy)) continue; 1848 1849 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1850 if (!PH) continue; 1851 if (PH->getNumIncomingValues() != 2) continue; 1852 1853 Type *SrcTy = PH->getType(); 1854 int Mantissa = DestTy->getFPMantissaWidth(); 1855 if (Mantissa == -1) continue; 1856 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1857 continue; 1858 1859 unsigned Entry, Latch; 1860 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1861 Entry = 0; 1862 Latch = 1; 1863 } else { 1864 Entry = 1; 1865 Latch = 0; 1866 } 1867 1868 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1869 if (!Init) continue; 1870 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1871 (double)Init->getSExtValue() : 1872 (double)Init->getZExtValue()); 1873 1874 BinaryOperator *Incr = 1875 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1876 if (!Incr) continue; 1877 if (Incr->getOpcode() != Instruction::Add 1878 && Incr->getOpcode() != Instruction::Sub) 1879 continue; 1880 1881 /* Initialize new IV, double d = 0.0 in above example. */ 1882 ConstantInt *C = nullptr; 1883 if (Incr->getOperand(0) == PH) 1884 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1885 else if (Incr->getOperand(1) == PH) 1886 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1887 else 1888 continue; 1889 1890 if (!C) continue; 1891 1892 // Ignore negative constants, as the code below doesn't handle them 1893 // correctly. TODO: Remove this restriction. 1894 if (!C->getValue().isStrictlyPositive()) continue; 1895 1896 /* Add new PHINode. */ 1897 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1898 1899 /* create new increment. '++d' in above example. */ 1900 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1901 BinaryOperator *NewIncr = 1902 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1903 Instruction::FAdd : Instruction::FSub, 1904 NewPH, CFP, "IV.S.next.", Incr); 1905 1906 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1907 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1908 1909 /* Remove cast operation */ 1910 ShadowUse->replaceAllUsesWith(NewPH); 1911 ShadowUse->eraseFromParent(); 1912 Changed = true; 1913 break; 1914 } 1915 } 1916 1917 /// If Cond has an operand that is an expression of an IV, set the IV user and 1918 /// stride information and return true, otherwise return false. 1919 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1920 for (IVStrideUse &U : IU) 1921 if (U.getUser() == Cond) { 1922 // NOTE: we could handle setcc instructions with multiple uses here, but 1923 // InstCombine does it as well for simple uses, it's not clear that it 1924 // occurs enough in real life to handle. 1925 CondUse = &U; 1926 return true; 1927 } 1928 return false; 1929 } 1930 1931 /// Rewrite the loop's terminating condition if it uses a max computation. 1932 /// 1933 /// This is a narrow solution to a specific, but acute, problem. For loops 1934 /// like this: 1935 /// 1936 /// i = 0; 1937 /// do { 1938 /// p[i] = 0.0; 1939 /// } while (++i < n); 1940 /// 1941 /// the trip count isn't just 'n', because 'n' might not be positive. And 1942 /// unfortunately this can come up even for loops where the user didn't use 1943 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1944 /// will commonly be lowered like this: 1945 // 1946 /// if (n > 0) { 1947 /// i = 0; 1948 /// do { 1949 /// p[i] = 0.0; 1950 /// } while (++i < n); 1951 /// } 1952 /// 1953 /// and then it's possible for subsequent optimization to obscure the if 1954 /// test in such a way that indvars can't find it. 1955 /// 1956 /// When indvars can't find the if test in loops like this, it creates a 1957 /// max expression, which allows it to give the loop a canonical 1958 /// induction variable: 1959 /// 1960 /// i = 0; 1961 /// max = n < 1 ? 1 : n; 1962 /// do { 1963 /// p[i] = 0.0; 1964 /// } while (++i != max); 1965 /// 1966 /// Canonical induction variables are necessary because the loop passes 1967 /// are designed around them. The most obvious example of this is the 1968 /// LoopInfo analysis, which doesn't remember trip count values. It 1969 /// expects to be able to rediscover the trip count each time it is 1970 /// needed, and it does this using a simple analysis that only succeeds if 1971 /// the loop has a canonical induction variable. 1972 /// 1973 /// However, when it comes time to generate code, the maximum operation 1974 /// can be quite costly, especially if it's inside of an outer loop. 1975 /// 1976 /// This function solves this problem by detecting this type of loop and 1977 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1978 /// the instructions for the maximum computation. 1979 /// 1980 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1981 // Check that the loop matches the pattern we're looking for. 1982 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1983 Cond->getPredicate() != CmpInst::ICMP_NE) 1984 return Cond; 1985 1986 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1987 if (!Sel || !Sel->hasOneUse()) return Cond; 1988 1989 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1990 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1991 return Cond; 1992 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1993 1994 // Add one to the backedge-taken count to get the trip count. 1995 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1996 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1997 1998 // Check for a max calculation that matches the pattern. There's no check 1999 // for ICMP_ULE here because the comparison would be with zero, which 2000 // isn't interesting. 2001 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2002 const SCEVNAryExpr *Max = nullptr; 2003 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2004 Pred = ICmpInst::ICMP_SLE; 2005 Max = S; 2006 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2007 Pred = ICmpInst::ICMP_SLT; 2008 Max = S; 2009 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2010 Pred = ICmpInst::ICMP_ULT; 2011 Max = U; 2012 } else { 2013 // No match; bail. 2014 return Cond; 2015 } 2016 2017 // To handle a max with more than two operands, this optimization would 2018 // require additional checking and setup. 2019 if (Max->getNumOperands() != 2) 2020 return Cond; 2021 2022 const SCEV *MaxLHS = Max->getOperand(0); 2023 const SCEV *MaxRHS = Max->getOperand(1); 2024 2025 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2026 // for a comparison with 1. For <= and >=, a comparison with zero. 2027 if (!MaxLHS || 2028 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2029 return Cond; 2030 2031 // Check the relevant induction variable for conformance to 2032 // the pattern. 2033 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2034 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2035 if (!AR || !AR->isAffine() || 2036 AR->getStart() != One || 2037 AR->getStepRecurrence(SE) != One) 2038 return Cond; 2039 2040 assert(AR->getLoop() == L && 2041 "Loop condition operand is an addrec in a different loop!"); 2042 2043 // Check the right operand of the select, and remember it, as it will 2044 // be used in the new comparison instruction. 2045 Value *NewRHS = nullptr; 2046 if (ICmpInst::isTrueWhenEqual(Pred)) { 2047 // Look for n+1, and grab n. 2048 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2049 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2050 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2051 NewRHS = BO->getOperand(0); 2052 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2053 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2054 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2055 NewRHS = BO->getOperand(0); 2056 if (!NewRHS) 2057 return Cond; 2058 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2059 NewRHS = Sel->getOperand(1); 2060 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2061 NewRHS = Sel->getOperand(2); 2062 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2063 NewRHS = SU->getValue(); 2064 else 2065 // Max doesn't match expected pattern. 2066 return Cond; 2067 2068 // Determine the new comparison opcode. It may be signed or unsigned, 2069 // and the original comparison may be either equality or inequality. 2070 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2071 Pred = CmpInst::getInversePredicate(Pred); 2072 2073 // Ok, everything looks ok to change the condition into an SLT or SGE and 2074 // delete the max calculation. 2075 ICmpInst *NewCond = 2076 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2077 2078 // Delete the max calculation instructions. 2079 Cond->replaceAllUsesWith(NewCond); 2080 CondUse->setUser(NewCond); 2081 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2082 Cond->eraseFromParent(); 2083 Sel->eraseFromParent(); 2084 if (Cmp->use_empty()) 2085 Cmp->eraseFromParent(); 2086 return NewCond; 2087 } 2088 2089 /// Change loop terminating condition to use the postinc iv when possible. 2090 void 2091 LSRInstance::OptimizeLoopTermCond() { 2092 SmallPtrSet<Instruction *, 4> PostIncs; 2093 2094 BasicBlock *LatchBlock = L->getLoopLatch(); 2095 SmallVector<BasicBlock*, 8> ExitingBlocks; 2096 L->getExitingBlocks(ExitingBlocks); 2097 2098 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2099 2100 // Get the terminating condition for the loop if possible. If we 2101 // can, we want to change it to use a post-incremented version of its 2102 // induction variable, to allow coalescing the live ranges for the IV into 2103 // one register value. 2104 2105 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2106 if (!TermBr) 2107 continue; 2108 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2109 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2110 continue; 2111 2112 // Search IVUsesByStride to find Cond's IVUse if there is one. 2113 IVStrideUse *CondUse = nullptr; 2114 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2115 if (!FindIVUserForCond(Cond, CondUse)) 2116 continue; 2117 2118 // If the trip count is computed in terms of a max (due to ScalarEvolution 2119 // being unable to find a sufficient guard, for example), change the loop 2120 // comparison to use SLT or ULT instead of NE. 2121 // One consequence of doing this now is that it disrupts the count-down 2122 // optimization. That's not always a bad thing though, because in such 2123 // cases it may still be worthwhile to avoid a max. 2124 Cond = OptimizeMax(Cond, CondUse); 2125 2126 // If this exiting block dominates the latch block, it may also use 2127 // the post-inc value if it won't be shared with other uses. 2128 // Check for dominance. 2129 if (!DT.dominates(ExitingBlock, LatchBlock)) 2130 continue; 2131 2132 // Conservatively avoid trying to use the post-inc value in non-latch 2133 // exits if there may be pre-inc users in intervening blocks. 2134 if (LatchBlock != ExitingBlock) 2135 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2136 // Test if the use is reachable from the exiting block. This dominator 2137 // query is a conservative approximation of reachability. 2138 if (&*UI != CondUse && 2139 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2140 // Conservatively assume there may be reuse if the quotient of their 2141 // strides could be a legal scale. 2142 const SCEV *A = IU.getStride(*CondUse, L); 2143 const SCEV *B = IU.getStride(*UI, L); 2144 if (!A || !B) continue; 2145 if (SE.getTypeSizeInBits(A->getType()) != 2146 SE.getTypeSizeInBits(B->getType())) { 2147 if (SE.getTypeSizeInBits(A->getType()) > 2148 SE.getTypeSizeInBits(B->getType())) 2149 B = SE.getSignExtendExpr(B, A->getType()); 2150 else 2151 A = SE.getSignExtendExpr(A, B->getType()); 2152 } 2153 if (const SCEVConstant *D = 2154 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2155 const ConstantInt *C = D->getValue(); 2156 // Stride of one or negative one can have reuse with non-addresses. 2157 if (C->isOne() || C->isAllOnesValue()) 2158 goto decline_post_inc; 2159 // Avoid weird situations. 2160 if (C->getValue().getMinSignedBits() >= 64 || 2161 C->getValue().isMinSignedValue()) 2162 goto decline_post_inc; 2163 // Check for possible scaled-address reuse. 2164 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2165 int64_t Scale = C->getSExtValue(); 2166 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2167 /*BaseOffset=*/0, 2168 /*HasBaseReg=*/false, Scale, 2169 AccessTy.AddrSpace)) 2170 goto decline_post_inc; 2171 Scale = -Scale; 2172 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2173 /*BaseOffset=*/0, 2174 /*HasBaseReg=*/false, Scale, 2175 AccessTy.AddrSpace)) 2176 goto decline_post_inc; 2177 } 2178 } 2179 2180 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2181 << *Cond << '\n'); 2182 2183 // It's possible for the setcc instruction to be anywhere in the loop, and 2184 // possible for it to have multiple users. If it is not immediately before 2185 // the exiting block branch, move it. 2186 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2187 if (Cond->hasOneUse()) { 2188 Cond->moveBefore(TermBr); 2189 } else { 2190 // Clone the terminating condition and insert into the loopend. 2191 ICmpInst *OldCond = Cond; 2192 Cond = cast<ICmpInst>(Cond->clone()); 2193 Cond->setName(L->getHeader()->getName() + ".termcond"); 2194 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2195 2196 // Clone the IVUse, as the old use still exists! 2197 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2198 TermBr->replaceUsesOfWith(OldCond, Cond); 2199 } 2200 } 2201 2202 // If we get to here, we know that we can transform the setcc instruction to 2203 // use the post-incremented version of the IV, allowing us to coalesce the 2204 // live ranges for the IV correctly. 2205 CondUse->transformToPostInc(L); 2206 Changed = true; 2207 2208 PostIncs.insert(Cond); 2209 decline_post_inc:; 2210 } 2211 2212 // Determine an insertion point for the loop induction variable increment. It 2213 // must dominate all the post-inc comparisons we just set up, and it must 2214 // dominate the loop latch edge. 2215 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2216 for (Instruction *Inst : PostIncs) { 2217 BasicBlock *BB = 2218 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2219 Inst->getParent()); 2220 if (BB == Inst->getParent()) 2221 IVIncInsertPos = Inst; 2222 else if (BB != IVIncInsertPos->getParent()) 2223 IVIncInsertPos = BB->getTerminator(); 2224 } 2225 } 2226 2227 /// Determine if the given use can accommodate a fixup at the given offset and 2228 /// other details. If so, update the use and return true. 2229 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2230 bool HasBaseReg, LSRUse::KindType Kind, 2231 MemAccessTy AccessTy) { 2232 int64_t NewMinOffset = LU.MinOffset; 2233 int64_t NewMaxOffset = LU.MaxOffset; 2234 MemAccessTy NewAccessTy = AccessTy; 2235 2236 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2237 // something conservative, however this can pessimize in the case that one of 2238 // the uses will have all its uses outside the loop, for example. 2239 if (LU.Kind != Kind) 2240 return false; 2241 2242 // Check for a mismatched access type, and fall back conservatively as needed. 2243 // TODO: Be less conservative when the type is similar and can use the same 2244 // addressing modes. 2245 if (Kind == LSRUse::Address) { 2246 if (AccessTy != LU.AccessTy) 2247 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2248 } 2249 2250 // Conservatively assume HasBaseReg is true for now. 2251 if (NewOffset < LU.MinOffset) { 2252 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2253 LU.MaxOffset - NewOffset, HasBaseReg)) 2254 return false; 2255 NewMinOffset = NewOffset; 2256 } else if (NewOffset > LU.MaxOffset) { 2257 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2258 NewOffset - LU.MinOffset, HasBaseReg)) 2259 return false; 2260 NewMaxOffset = NewOffset; 2261 } 2262 2263 // Update the use. 2264 LU.MinOffset = NewMinOffset; 2265 LU.MaxOffset = NewMaxOffset; 2266 LU.AccessTy = NewAccessTy; 2267 if (NewOffset != LU.Offsets.back()) 2268 LU.Offsets.push_back(NewOffset); 2269 return true; 2270 } 2271 2272 /// Return an LSRUse index and an offset value for a fixup which needs the given 2273 /// expression, with the given kind and optional access type. Either reuse an 2274 /// existing use or create a new one, as needed. 2275 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2276 LSRUse::KindType Kind, 2277 MemAccessTy AccessTy) { 2278 const SCEV *Copy = Expr; 2279 int64_t Offset = ExtractImmediate(Expr, SE); 2280 2281 // Basic uses can't accept any offset, for example. 2282 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2283 Offset, /*HasBaseReg=*/ true)) { 2284 Expr = Copy; 2285 Offset = 0; 2286 } 2287 2288 std::pair<UseMapTy::iterator, bool> P = 2289 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2290 if (!P.second) { 2291 // A use already existed with this base. 2292 size_t LUIdx = P.first->second; 2293 LSRUse &LU = Uses[LUIdx]; 2294 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2295 // Reuse this use. 2296 return std::make_pair(LUIdx, Offset); 2297 } 2298 2299 // Create a new use. 2300 size_t LUIdx = Uses.size(); 2301 P.first->second = LUIdx; 2302 Uses.push_back(LSRUse(Kind, AccessTy)); 2303 LSRUse &LU = Uses[LUIdx]; 2304 2305 // We don't need to track redundant offsets, but we don't need to go out 2306 // of our way here to avoid them. 2307 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2308 LU.Offsets.push_back(Offset); 2309 2310 LU.MinOffset = Offset; 2311 LU.MaxOffset = Offset; 2312 return std::make_pair(LUIdx, Offset); 2313 } 2314 2315 /// Delete the given use from the Uses list. 2316 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2317 if (&LU != &Uses.back()) 2318 std::swap(LU, Uses.back()); 2319 Uses.pop_back(); 2320 2321 // Update RegUses. 2322 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2323 } 2324 2325 /// Look for a use distinct from OrigLU which is has a formula that has the same 2326 /// registers as the given formula. 2327 LSRUse * 2328 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2329 const LSRUse &OrigLU) { 2330 // Search all uses for the formula. This could be more clever. 2331 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2332 LSRUse &LU = Uses[LUIdx]; 2333 // Check whether this use is close enough to OrigLU, to see whether it's 2334 // worthwhile looking through its formulae. 2335 // Ignore ICmpZero uses because they may contain formulae generated by 2336 // GenerateICmpZeroScales, in which case adding fixup offsets may 2337 // be invalid. 2338 if (&LU != &OrigLU && 2339 LU.Kind != LSRUse::ICmpZero && 2340 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2341 LU.WidestFixupType == OrigLU.WidestFixupType && 2342 LU.HasFormulaWithSameRegs(OrigF)) { 2343 // Scan through this use's formulae. 2344 for (const Formula &F : LU.Formulae) { 2345 // Check to see if this formula has the same registers and symbols 2346 // as OrigF. 2347 if (F.BaseRegs == OrigF.BaseRegs && 2348 F.ScaledReg == OrigF.ScaledReg && 2349 F.BaseGV == OrigF.BaseGV && 2350 F.Scale == OrigF.Scale && 2351 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2352 if (F.BaseOffset == 0) 2353 return &LU; 2354 // This is the formula where all the registers and symbols matched; 2355 // there aren't going to be any others. Since we declined it, we 2356 // can skip the rest of the formulae and proceed to the next LSRUse. 2357 break; 2358 } 2359 } 2360 } 2361 } 2362 2363 // Nothing looked good. 2364 return nullptr; 2365 } 2366 2367 void LSRInstance::CollectInterestingTypesAndFactors() { 2368 SmallSetVector<const SCEV *, 4> Strides; 2369 2370 // Collect interesting types and strides. 2371 SmallVector<const SCEV *, 4> Worklist; 2372 for (const IVStrideUse &U : IU) { 2373 const SCEV *Expr = IU.getExpr(U); 2374 2375 // Collect interesting types. 2376 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2377 2378 // Add strides for mentioned loops. 2379 Worklist.push_back(Expr); 2380 do { 2381 const SCEV *S = Worklist.pop_back_val(); 2382 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2383 if (AR->getLoop() == L) 2384 Strides.insert(AR->getStepRecurrence(SE)); 2385 Worklist.push_back(AR->getStart()); 2386 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2387 Worklist.append(Add->op_begin(), Add->op_end()); 2388 } 2389 } while (!Worklist.empty()); 2390 } 2391 2392 // Compute interesting factors from the set of interesting strides. 2393 for (SmallSetVector<const SCEV *, 4>::const_iterator 2394 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2395 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2396 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2397 const SCEV *OldStride = *I; 2398 const SCEV *NewStride = *NewStrideIter; 2399 2400 if (SE.getTypeSizeInBits(OldStride->getType()) != 2401 SE.getTypeSizeInBits(NewStride->getType())) { 2402 if (SE.getTypeSizeInBits(OldStride->getType()) > 2403 SE.getTypeSizeInBits(NewStride->getType())) 2404 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2405 else 2406 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2407 } 2408 if (const SCEVConstant *Factor = 2409 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2410 SE, true))) { 2411 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2412 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2413 } else if (const SCEVConstant *Factor = 2414 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2415 NewStride, 2416 SE, true))) { 2417 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2418 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2419 } 2420 } 2421 2422 // If all uses use the same type, don't bother looking for truncation-based 2423 // reuse. 2424 if (Types.size() == 1) 2425 Types.clear(); 2426 2427 DEBUG(print_factors_and_types(dbgs())); 2428 } 2429 2430 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2431 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2432 /// IVStrideUses, we could partially skip this. 2433 static User::op_iterator 2434 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2435 Loop *L, ScalarEvolution &SE) { 2436 for(; OI != OE; ++OI) { 2437 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2438 if (!SE.isSCEVable(Oper->getType())) 2439 continue; 2440 2441 if (const SCEVAddRecExpr *AR = 2442 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2443 if (AR->getLoop() == L) 2444 break; 2445 } 2446 } 2447 } 2448 return OI; 2449 } 2450 2451 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2452 /// a convenient helper. 2453 static Value *getWideOperand(Value *Oper) { 2454 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2455 return Trunc->getOperand(0); 2456 return Oper; 2457 } 2458 2459 /// Return true if we allow an IV chain to include both types. 2460 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2461 Type *LType = LVal->getType(); 2462 Type *RType = RVal->getType(); 2463 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2464 } 2465 2466 /// Return an approximation of this SCEV expression's "base", or NULL for any 2467 /// constant. Returning the expression itself is conservative. Returning a 2468 /// deeper subexpression is more precise and valid as long as it isn't less 2469 /// complex than another subexpression. For expressions involving multiple 2470 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2471 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2472 /// IVInc==b-a. 2473 /// 2474 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2475 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2476 static const SCEV *getExprBase(const SCEV *S) { 2477 switch (S->getSCEVType()) { 2478 default: // uncluding scUnknown. 2479 return S; 2480 case scConstant: 2481 return nullptr; 2482 case scTruncate: 2483 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2484 case scZeroExtend: 2485 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2486 case scSignExtend: 2487 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2488 case scAddExpr: { 2489 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2490 // there's nothing more complex. 2491 // FIXME: not sure if we want to recognize negation. 2492 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2493 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2494 E(Add->op_begin()); I != E; ++I) { 2495 const SCEV *SubExpr = *I; 2496 if (SubExpr->getSCEVType() == scAddExpr) 2497 return getExprBase(SubExpr); 2498 2499 if (SubExpr->getSCEVType() != scMulExpr) 2500 return SubExpr; 2501 } 2502 return S; // all operands are scaled, be conservative. 2503 } 2504 case scAddRecExpr: 2505 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2506 } 2507 } 2508 2509 /// Return true if the chain increment is profitable to expand into a loop 2510 /// invariant value, which may require its own register. A profitable chain 2511 /// increment will be an offset relative to the same base. We allow such offsets 2512 /// to potentially be used as chain increment as long as it's not obviously 2513 /// expensive to expand using real instructions. 2514 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2515 const SCEV *IncExpr, 2516 ScalarEvolution &SE) { 2517 // Aggressively form chains when -stress-ivchain. 2518 if (StressIVChain) 2519 return true; 2520 2521 // Do not replace a constant offset from IV head with a nonconstant IV 2522 // increment. 2523 if (!isa<SCEVConstant>(IncExpr)) { 2524 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2525 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2526 return 0; 2527 } 2528 2529 SmallPtrSet<const SCEV*, 8> Processed; 2530 return !isHighCostExpansion(IncExpr, Processed, SE); 2531 } 2532 2533 /// Return true if the number of registers needed for the chain is estimated to 2534 /// be less than the number required for the individual IV users. First prohibit 2535 /// any IV users that keep the IV live across increments (the Users set should 2536 /// be empty). Next count the number and type of increments in the chain. 2537 /// 2538 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2539 /// effectively use postinc addressing modes. Only consider it profitable it the 2540 /// increments can be computed in fewer registers when chained. 2541 /// 2542 /// TODO: Consider IVInc free if it's already used in another chains. 2543 static bool 2544 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2545 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2546 if (StressIVChain) 2547 return true; 2548 2549 if (!Chain.hasIncs()) 2550 return false; 2551 2552 if (!Users.empty()) { 2553 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2554 for (Instruction *Inst : Users) { 2555 dbgs() << " " << *Inst << "\n"; 2556 }); 2557 return false; 2558 } 2559 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2560 2561 // The chain itself may require a register, so intialize cost to 1. 2562 int cost = 1; 2563 2564 // A complete chain likely eliminates the need for keeping the original IV in 2565 // a register. LSR does not currently know how to form a complete chain unless 2566 // the header phi already exists. 2567 if (isa<PHINode>(Chain.tailUserInst()) 2568 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2569 --cost; 2570 } 2571 const SCEV *LastIncExpr = nullptr; 2572 unsigned NumConstIncrements = 0; 2573 unsigned NumVarIncrements = 0; 2574 unsigned NumReusedIncrements = 0; 2575 for (const IVInc &Inc : Chain) { 2576 if (Inc.IncExpr->isZero()) 2577 continue; 2578 2579 // Incrementing by zero or some constant is neutral. We assume constants can 2580 // be folded into an addressing mode or an add's immediate operand. 2581 if (isa<SCEVConstant>(Inc.IncExpr)) { 2582 ++NumConstIncrements; 2583 continue; 2584 } 2585 2586 if (Inc.IncExpr == LastIncExpr) 2587 ++NumReusedIncrements; 2588 else 2589 ++NumVarIncrements; 2590 2591 LastIncExpr = Inc.IncExpr; 2592 } 2593 // An IV chain with a single increment is handled by LSR's postinc 2594 // uses. However, a chain with multiple increments requires keeping the IV's 2595 // value live longer than it needs to be if chained. 2596 if (NumConstIncrements > 1) 2597 --cost; 2598 2599 // Materializing increment expressions in the preheader that didn't exist in 2600 // the original code may cost a register. For example, sign-extended array 2601 // indices can produce ridiculous increments like this: 2602 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2603 cost += NumVarIncrements; 2604 2605 // Reusing variable increments likely saves a register to hold the multiple of 2606 // the stride. 2607 cost -= NumReusedIncrements; 2608 2609 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2610 << "\n"); 2611 2612 return cost < 0; 2613 } 2614 2615 /// Add this IV user to an existing chain or make it the head of a new chain. 2616 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2617 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2618 // When IVs are used as types of varying widths, they are generally converted 2619 // to a wider type with some uses remaining narrow under a (free) trunc. 2620 Value *const NextIV = getWideOperand(IVOper); 2621 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2622 const SCEV *const OperExprBase = getExprBase(OperExpr); 2623 2624 // Visit all existing chains. Check if its IVOper can be computed as a 2625 // profitable loop invariant increment from the last link in the Chain. 2626 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2627 const SCEV *LastIncExpr = nullptr; 2628 for (; ChainIdx < NChains; ++ChainIdx) { 2629 IVChain &Chain = IVChainVec[ChainIdx]; 2630 2631 // Prune the solution space aggressively by checking that both IV operands 2632 // are expressions that operate on the same unscaled SCEVUnknown. This 2633 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2634 // first avoids creating extra SCEV expressions. 2635 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2636 continue; 2637 2638 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2639 if (!isCompatibleIVType(PrevIV, NextIV)) 2640 continue; 2641 2642 // A phi node terminates a chain. 2643 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2644 continue; 2645 2646 // The increment must be loop-invariant so it can be kept in a register. 2647 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2648 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2649 if (!SE.isLoopInvariant(IncExpr, L)) 2650 continue; 2651 2652 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2653 LastIncExpr = IncExpr; 2654 break; 2655 } 2656 } 2657 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2658 // bother for phi nodes, because they must be last in the chain. 2659 if (ChainIdx == NChains) { 2660 if (isa<PHINode>(UserInst)) 2661 return; 2662 if (NChains >= MaxChains && !StressIVChain) { 2663 DEBUG(dbgs() << "IV Chain Limit\n"); 2664 return; 2665 } 2666 LastIncExpr = OperExpr; 2667 // IVUsers may have skipped over sign/zero extensions. We don't currently 2668 // attempt to form chains involving extensions unless they can be hoisted 2669 // into this loop's AddRec. 2670 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2671 return; 2672 ++NChains; 2673 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2674 OperExprBase)); 2675 ChainUsersVec.resize(NChains); 2676 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2677 << ") IV=" << *LastIncExpr << "\n"); 2678 } else { 2679 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2680 << ") IV+" << *LastIncExpr << "\n"); 2681 // Add this IV user to the end of the chain. 2682 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2683 } 2684 IVChain &Chain = IVChainVec[ChainIdx]; 2685 2686 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2687 // This chain's NearUsers become FarUsers. 2688 if (!LastIncExpr->isZero()) { 2689 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2690 NearUsers.end()); 2691 NearUsers.clear(); 2692 } 2693 2694 // All other uses of IVOperand become near uses of the chain. 2695 // We currently ignore intermediate values within SCEV expressions, assuming 2696 // they will eventually be used be the current chain, or can be computed 2697 // from one of the chain increments. To be more precise we could 2698 // transitively follow its user and only add leaf IV users to the set. 2699 for (User *U : IVOper->users()) { 2700 Instruction *OtherUse = dyn_cast<Instruction>(U); 2701 if (!OtherUse) 2702 continue; 2703 // Uses in the chain will no longer be uses if the chain is formed. 2704 // Include the head of the chain in this iteration (not Chain.begin()). 2705 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2706 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2707 for( ; IncIter != IncEnd; ++IncIter) { 2708 if (IncIter->UserInst == OtherUse) 2709 break; 2710 } 2711 if (IncIter != IncEnd) 2712 continue; 2713 2714 if (SE.isSCEVable(OtherUse->getType()) 2715 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2716 && IU.isIVUserOrOperand(OtherUse)) { 2717 continue; 2718 } 2719 NearUsers.insert(OtherUse); 2720 } 2721 2722 // Since this user is part of the chain, it's no longer considered a use 2723 // of the chain. 2724 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2725 } 2726 2727 /// Populate the vector of Chains. 2728 /// 2729 /// This decreases ILP at the architecture level. Targets with ample registers, 2730 /// multiple memory ports, and no register renaming probably don't want 2731 /// this. However, such targets should probably disable LSR altogether. 2732 /// 2733 /// The job of LSR is to make a reasonable choice of induction variables across 2734 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2735 /// ILP *within the loop* if the target wants it. 2736 /// 2737 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2738 /// will not reorder memory operations, it will recognize this as a chain, but 2739 /// will generate redundant IV increments. Ideally this would be corrected later 2740 /// by a smart scheduler: 2741 /// = A[i] 2742 /// = A[i+x] 2743 /// A[i] = 2744 /// A[i+x] = 2745 /// 2746 /// TODO: Walk the entire domtree within this loop, not just the path to the 2747 /// loop latch. This will discover chains on side paths, but requires 2748 /// maintaining multiple copies of the Chains state. 2749 void LSRInstance::CollectChains() { 2750 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2751 SmallVector<ChainUsers, 8> ChainUsersVec; 2752 2753 SmallVector<BasicBlock *,8> LatchPath; 2754 BasicBlock *LoopHeader = L->getHeader(); 2755 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2756 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2757 LatchPath.push_back(Rung->getBlock()); 2758 } 2759 LatchPath.push_back(LoopHeader); 2760 2761 // Walk the instruction stream from the loop header to the loop latch. 2762 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2763 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2764 BBIter != BBEnd; ++BBIter) { 2765 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2766 I != E; ++I) { 2767 // Skip instructions that weren't seen by IVUsers analysis. 2768 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I)) 2769 continue; 2770 2771 // Ignore users that are part of a SCEV expression. This way we only 2772 // consider leaf IV Users. This effectively rediscovers a portion of 2773 // IVUsers analysis but in program order this time. 2774 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I))) 2775 continue; 2776 2777 // Remove this instruction from any NearUsers set it may be in. 2778 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2779 ChainIdx < NChains; ++ChainIdx) { 2780 ChainUsersVec[ChainIdx].NearUsers.erase(&*I); 2781 } 2782 // Search for operands that can be chained. 2783 SmallPtrSet<Instruction*, 4> UniqueOperands; 2784 User::op_iterator IVOpEnd = I->op_end(); 2785 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2786 while (IVOpIter != IVOpEnd) { 2787 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2788 if (UniqueOperands.insert(IVOpInst).second) 2789 ChainInstruction(&*I, IVOpInst, ChainUsersVec); 2790 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2791 } 2792 } // Continue walking down the instructions. 2793 } // Continue walking down the domtree. 2794 // Visit phi backedges to determine if the chain can generate the IV postinc. 2795 for (BasicBlock::iterator I = L->getHeader()->begin(); 2796 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2797 if (!SE.isSCEVable(PN->getType())) 2798 continue; 2799 2800 Instruction *IncV = 2801 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2802 if (IncV) 2803 ChainInstruction(PN, IncV, ChainUsersVec); 2804 } 2805 // Remove any unprofitable chains. 2806 unsigned ChainIdx = 0; 2807 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2808 UsersIdx < NChains; ++UsersIdx) { 2809 if (!isProfitableChain(IVChainVec[UsersIdx], 2810 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2811 continue; 2812 // Preserve the chain at UsesIdx. 2813 if (ChainIdx != UsersIdx) 2814 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2815 FinalizeChain(IVChainVec[ChainIdx]); 2816 ++ChainIdx; 2817 } 2818 IVChainVec.resize(ChainIdx); 2819 } 2820 2821 void LSRInstance::FinalizeChain(IVChain &Chain) { 2822 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2823 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2824 2825 for (const IVInc &Inc : Chain) { 2826 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2827 auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(), 2828 Inc.IVOperand); 2829 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2830 IVIncSet.insert(UseI); 2831 } 2832 } 2833 2834 /// Return true if the IVInc can be folded into an addressing mode. 2835 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2836 Value *Operand, const TargetTransformInfo &TTI) { 2837 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2838 if (!IncConst || !isAddressUse(UserInst, Operand)) 2839 return false; 2840 2841 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2842 return false; 2843 2844 MemAccessTy AccessTy = getAccessType(UserInst); 2845 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2846 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2847 IncOffset, /*HaseBaseReg=*/false)) 2848 return false; 2849 2850 return true; 2851 } 2852 2853 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2854 /// user's operand from the previous IV user's operand. 2855 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2856 SmallVectorImpl<WeakVH> &DeadInsts) { 2857 // Find the new IVOperand for the head of the chain. It may have been replaced 2858 // by LSR. 2859 const IVInc &Head = Chain.Incs[0]; 2860 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2861 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2862 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2863 IVOpEnd, L, SE); 2864 Value *IVSrc = nullptr; 2865 while (IVOpIter != IVOpEnd) { 2866 IVSrc = getWideOperand(*IVOpIter); 2867 2868 // If this operand computes the expression that the chain needs, we may use 2869 // it. (Check this after setting IVSrc which is used below.) 2870 // 2871 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2872 // narrow for the chain, so we can no longer use it. We do allow using a 2873 // wider phi, assuming the LSR checked for free truncation. In that case we 2874 // should already have a truncate on this operand such that 2875 // getSCEV(IVSrc) == IncExpr. 2876 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2877 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2878 break; 2879 } 2880 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2881 } 2882 if (IVOpIter == IVOpEnd) { 2883 // Gracefully give up on this chain. 2884 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2885 return; 2886 } 2887 2888 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2889 Type *IVTy = IVSrc->getType(); 2890 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2891 const SCEV *LeftOverExpr = nullptr; 2892 for (const IVInc &Inc : Chain) { 2893 Instruction *InsertPt = Inc.UserInst; 2894 if (isa<PHINode>(InsertPt)) 2895 InsertPt = L->getLoopLatch()->getTerminator(); 2896 2897 // IVOper will replace the current IV User's operand. IVSrc is the IV 2898 // value currently held in a register. 2899 Value *IVOper = IVSrc; 2900 if (!Inc.IncExpr->isZero()) { 2901 // IncExpr was the result of subtraction of two narrow values, so must 2902 // be signed. 2903 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2904 LeftOverExpr = LeftOverExpr ? 2905 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2906 } 2907 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2908 // Expand the IV increment. 2909 Rewriter.clearPostInc(); 2910 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2911 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2912 SE.getUnknown(IncV)); 2913 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2914 2915 // If an IV increment can't be folded, use it as the next IV value. 2916 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2917 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2918 IVSrc = IVOper; 2919 LeftOverExpr = nullptr; 2920 } 2921 } 2922 Type *OperTy = Inc.IVOperand->getType(); 2923 if (IVTy != OperTy) { 2924 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2925 "cannot extend a chained IV"); 2926 IRBuilder<> Builder(InsertPt); 2927 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2928 } 2929 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2930 DeadInsts.emplace_back(Inc.IVOperand); 2931 } 2932 // If LSR created a new, wider phi, we may also replace its postinc. We only 2933 // do this if we also found a wide value for the head of the chain. 2934 if (isa<PHINode>(Chain.tailUserInst())) { 2935 for (BasicBlock::iterator I = L->getHeader()->begin(); 2936 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2937 if (!isCompatibleIVType(Phi, IVSrc)) 2938 continue; 2939 Instruction *PostIncV = dyn_cast<Instruction>( 2940 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2941 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2942 continue; 2943 Value *IVOper = IVSrc; 2944 Type *PostIncTy = PostIncV->getType(); 2945 if (IVTy != PostIncTy) { 2946 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2947 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2948 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2949 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2950 } 2951 Phi->replaceUsesOfWith(PostIncV, IVOper); 2952 DeadInsts.emplace_back(PostIncV); 2953 } 2954 } 2955 } 2956 2957 void LSRInstance::CollectFixupsAndInitialFormulae() { 2958 for (const IVStrideUse &U : IU) { 2959 Instruction *UserInst = U.getUser(); 2960 // Skip IV users that are part of profitable IV Chains. 2961 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2962 U.getOperandValToReplace()); 2963 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2964 if (IVIncSet.count(UseI)) 2965 continue; 2966 2967 // Record the uses. 2968 LSRFixup &LF = getNewFixup(); 2969 LF.UserInst = UserInst; 2970 LF.OperandValToReplace = U.getOperandValToReplace(); 2971 LF.PostIncLoops = U.getPostIncLoops(); 2972 2973 LSRUse::KindType Kind = LSRUse::Basic; 2974 MemAccessTy AccessTy; 2975 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2976 Kind = LSRUse::Address; 2977 AccessTy = getAccessType(LF.UserInst); 2978 } 2979 2980 const SCEV *S = IU.getExpr(U); 2981 2982 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2983 // (N - i == 0), and this allows (N - i) to be the expression that we work 2984 // with rather than just N or i, so we can consider the register 2985 // requirements for both N and i at the same time. Limiting this code to 2986 // equality icmps is not a problem because all interesting loops use 2987 // equality icmps, thanks to IndVarSimplify. 2988 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2989 if (CI->isEquality()) { 2990 // Swap the operands if needed to put the OperandValToReplace on the 2991 // left, for consistency. 2992 Value *NV = CI->getOperand(1); 2993 if (NV == LF.OperandValToReplace) { 2994 CI->setOperand(1, CI->getOperand(0)); 2995 CI->setOperand(0, NV); 2996 NV = CI->getOperand(1); 2997 Changed = true; 2998 } 2999 3000 // x == y --> x - y == 0 3001 const SCEV *N = SE.getSCEV(NV); 3002 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3003 // S is normalized, so normalize N before folding it into S 3004 // to keep the result normalized. 3005 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3006 LF.PostIncLoops, SE, DT); 3007 Kind = LSRUse::ICmpZero; 3008 S = SE.getMinusSCEV(N, S); 3009 } 3010 3011 // -1 and the negations of all interesting strides (except the negation 3012 // of -1) are now also interesting. 3013 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3014 if (Factors[i] != -1) 3015 Factors.insert(-(uint64_t)Factors[i]); 3016 Factors.insert(-1); 3017 } 3018 3019 // Set up the initial formula for this use. 3020 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3021 LF.LUIdx = P.first; 3022 LF.Offset = P.second; 3023 LSRUse &LU = Uses[LF.LUIdx]; 3024 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3025 if (!LU.WidestFixupType || 3026 SE.getTypeSizeInBits(LU.WidestFixupType) < 3027 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3028 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3029 3030 // If this is the first use of this LSRUse, give it a formula. 3031 if (LU.Formulae.empty()) { 3032 InsertInitialFormula(S, LU, LF.LUIdx); 3033 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3034 } 3035 } 3036 3037 DEBUG(print_fixups(dbgs())); 3038 } 3039 3040 /// Insert a formula for the given expression into the given use, separating out 3041 /// loop-variant portions from loop-invariant and loop-computable portions. 3042 void 3043 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3044 // Mark uses whose expressions cannot be expanded. 3045 if (!isSafeToExpand(S, SE)) 3046 LU.RigidFormula = true; 3047 3048 Formula F; 3049 F.initialMatch(S, L, SE); 3050 bool Inserted = InsertFormula(LU, LUIdx, F); 3051 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3052 } 3053 3054 /// Insert a simple single-register formula for the given expression into the 3055 /// given use. 3056 void 3057 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3058 LSRUse &LU, size_t LUIdx) { 3059 Formula F; 3060 F.BaseRegs.push_back(S); 3061 F.HasBaseReg = true; 3062 bool Inserted = InsertFormula(LU, LUIdx, F); 3063 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3064 } 3065 3066 /// Note which registers are used by the given formula, updating RegUses. 3067 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3068 if (F.ScaledReg) 3069 RegUses.countRegister(F.ScaledReg, LUIdx); 3070 for (const SCEV *BaseReg : F.BaseRegs) 3071 RegUses.countRegister(BaseReg, LUIdx); 3072 } 3073 3074 /// If the given formula has not yet been inserted, add it to the list, and 3075 /// return true. Return false otherwise. 3076 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3077 // Do not insert formula that we will not be able to expand. 3078 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3079 "Formula is illegal"); 3080 if (!LU.InsertFormula(F)) 3081 return false; 3082 3083 CountRegisters(F, LUIdx); 3084 return true; 3085 } 3086 3087 /// Check for other uses of loop-invariant values which we're tracking. These 3088 /// other uses will pin these values in registers, making them less profitable 3089 /// for elimination. 3090 /// TODO: This currently misses non-constant addrec step registers. 3091 /// TODO: Should this give more weight to users inside the loop? 3092 void 3093 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3094 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3095 SmallPtrSet<const SCEV *, 32> Visited; 3096 3097 while (!Worklist.empty()) { 3098 const SCEV *S = Worklist.pop_back_val(); 3099 3100 // Don't process the same SCEV twice 3101 if (!Visited.insert(S).second) 3102 continue; 3103 3104 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3105 Worklist.append(N->op_begin(), N->op_end()); 3106 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3107 Worklist.push_back(C->getOperand()); 3108 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3109 Worklist.push_back(D->getLHS()); 3110 Worklist.push_back(D->getRHS()); 3111 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3112 const Value *V = US->getValue(); 3113 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3114 // Look for instructions defined outside the loop. 3115 if (L->contains(Inst)) continue; 3116 } else if (isa<UndefValue>(V)) 3117 // Undef doesn't have a live range, so it doesn't matter. 3118 continue; 3119 for (const Use &U : V->uses()) { 3120 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3121 // Ignore non-instructions. 3122 if (!UserInst) 3123 continue; 3124 // Ignore instructions in other functions (as can happen with 3125 // Constants). 3126 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3127 continue; 3128 // Ignore instructions not dominated by the loop. 3129 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3130 UserInst->getParent() : 3131 cast<PHINode>(UserInst)->getIncomingBlock( 3132 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3133 if (!DT.dominates(L->getHeader(), UseBB)) 3134 continue; 3135 // Don't bother if the instruction is in a BB which ends in an EHPad. 3136 if (UseBB->getTerminator()->isEHPad()) 3137 continue; 3138 // Ignore uses which are part of other SCEV expressions, to avoid 3139 // analyzing them multiple times. 3140 if (SE.isSCEVable(UserInst->getType())) { 3141 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3142 // If the user is a no-op, look through to its uses. 3143 if (!isa<SCEVUnknown>(UserS)) 3144 continue; 3145 if (UserS == US) { 3146 Worklist.push_back( 3147 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3148 continue; 3149 } 3150 } 3151 // Ignore icmp instructions which are already being analyzed. 3152 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3153 unsigned OtherIdx = !U.getOperandNo(); 3154 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3155 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3156 continue; 3157 } 3158 3159 LSRFixup &LF = getNewFixup(); 3160 LF.UserInst = const_cast<Instruction *>(UserInst); 3161 LF.OperandValToReplace = U; 3162 std::pair<size_t, int64_t> P = getUse( 3163 S, LSRUse::Basic, MemAccessTy()); 3164 LF.LUIdx = P.first; 3165 LF.Offset = P.second; 3166 LSRUse &LU = Uses[LF.LUIdx]; 3167 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3168 if (!LU.WidestFixupType || 3169 SE.getTypeSizeInBits(LU.WidestFixupType) < 3170 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3171 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3172 InsertSupplementalFormula(US, LU, LF.LUIdx); 3173 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3174 break; 3175 } 3176 } 3177 } 3178 } 3179 3180 /// Split S into subexpressions which can be pulled out into separate 3181 /// registers. If C is non-null, multiply each subexpression by C. 3182 /// 3183 /// Return remainder expression after factoring the subexpressions captured by 3184 /// Ops. If Ops is complete, return NULL. 3185 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3186 SmallVectorImpl<const SCEV *> &Ops, 3187 const Loop *L, 3188 ScalarEvolution &SE, 3189 unsigned Depth = 0) { 3190 // Arbitrarily cap recursion to protect compile time. 3191 if (Depth >= 3) 3192 return S; 3193 3194 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3195 // Break out add operands. 3196 for (const SCEV *S : Add->operands()) { 3197 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3198 if (Remainder) 3199 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3200 } 3201 return nullptr; 3202 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3203 // Split a non-zero base out of an addrec. 3204 if (AR->getStart()->isZero()) 3205 return S; 3206 3207 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3208 C, Ops, L, SE, Depth+1); 3209 // Split the non-zero AddRec unless it is part of a nested recurrence that 3210 // does not pertain to this loop. 3211 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3212 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3213 Remainder = nullptr; 3214 } 3215 if (Remainder != AR->getStart()) { 3216 if (!Remainder) 3217 Remainder = SE.getConstant(AR->getType(), 0); 3218 return SE.getAddRecExpr(Remainder, 3219 AR->getStepRecurrence(SE), 3220 AR->getLoop(), 3221 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3222 SCEV::FlagAnyWrap); 3223 } 3224 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3225 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3226 if (Mul->getNumOperands() != 2) 3227 return S; 3228 if (const SCEVConstant *Op0 = 3229 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3230 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3231 const SCEV *Remainder = 3232 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3233 if (Remainder) 3234 Ops.push_back(SE.getMulExpr(C, Remainder)); 3235 return nullptr; 3236 } 3237 } 3238 return S; 3239 } 3240 3241 /// \brief Helper function for LSRInstance::GenerateReassociations. 3242 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3243 const Formula &Base, 3244 unsigned Depth, size_t Idx, 3245 bool IsScaledReg) { 3246 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3247 SmallVector<const SCEV *, 8> AddOps; 3248 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3249 if (Remainder) 3250 AddOps.push_back(Remainder); 3251 3252 if (AddOps.size() == 1) 3253 return; 3254 3255 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3256 JE = AddOps.end(); 3257 J != JE; ++J) { 3258 3259 // Loop-variant "unknown" values are uninteresting; we won't be able to 3260 // do anything meaningful with them. 3261 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3262 continue; 3263 3264 // Don't pull a constant into a register if the constant could be folded 3265 // into an immediate field. 3266 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3267 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3268 continue; 3269 3270 // Collect all operands except *J. 3271 SmallVector<const SCEV *, 8> InnerAddOps( 3272 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3273 InnerAddOps.append(std::next(J), 3274 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3275 3276 // Don't leave just a constant behind in a register if the constant could 3277 // be folded into an immediate field. 3278 if (InnerAddOps.size() == 1 && 3279 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3280 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3281 continue; 3282 3283 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3284 if (InnerSum->isZero()) 3285 continue; 3286 Formula F = Base; 3287 3288 // Add the remaining pieces of the add back into the new formula. 3289 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3290 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3291 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3292 InnerSumSC->getValue()->getZExtValue())) { 3293 F.UnfoldedOffset = 3294 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3295 if (IsScaledReg) 3296 F.ScaledReg = nullptr; 3297 else 3298 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3299 } else if (IsScaledReg) 3300 F.ScaledReg = InnerSum; 3301 else 3302 F.BaseRegs[Idx] = InnerSum; 3303 3304 // Add J as its own register, or an unfolded immediate. 3305 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3306 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3307 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3308 SC->getValue()->getZExtValue())) 3309 F.UnfoldedOffset = 3310 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3311 else 3312 F.BaseRegs.push_back(*J); 3313 // We may have changed the number of register in base regs, adjust the 3314 // formula accordingly. 3315 F.canonicalize(); 3316 3317 if (InsertFormula(LU, LUIdx, F)) 3318 // If that formula hadn't been seen before, recurse to find more like 3319 // it. 3320 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3321 } 3322 } 3323 3324 /// Split out subexpressions from adds and the bases of addrecs. 3325 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3326 Formula Base, unsigned Depth) { 3327 assert(Base.isCanonical() && "Input must be in the canonical form"); 3328 // Arbitrarily cap recursion to protect compile time. 3329 if (Depth >= 3) 3330 return; 3331 3332 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3333 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3334 3335 if (Base.Scale == 1) 3336 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3337 /* Idx */ -1, /* IsScaledReg */ true); 3338 } 3339 3340 /// Generate a formula consisting of all of the loop-dominating registers added 3341 /// into a single register. 3342 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3343 Formula Base) { 3344 // This method is only interesting on a plurality of registers. 3345 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3346 return; 3347 3348 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3349 // processing the formula. 3350 Base.unscale(); 3351 Formula F = Base; 3352 F.BaseRegs.clear(); 3353 SmallVector<const SCEV *, 4> Ops; 3354 for (const SCEV *BaseReg : Base.BaseRegs) { 3355 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3356 !SE.hasComputableLoopEvolution(BaseReg, L)) 3357 Ops.push_back(BaseReg); 3358 else 3359 F.BaseRegs.push_back(BaseReg); 3360 } 3361 if (Ops.size() > 1) { 3362 const SCEV *Sum = SE.getAddExpr(Ops); 3363 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3364 // opportunity to fold something. For now, just ignore such cases 3365 // rather than proceed with zero in a register. 3366 if (!Sum->isZero()) { 3367 F.BaseRegs.push_back(Sum); 3368 F.canonicalize(); 3369 (void)InsertFormula(LU, LUIdx, F); 3370 } 3371 } 3372 } 3373 3374 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3375 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3376 const Formula &Base, size_t Idx, 3377 bool IsScaledReg) { 3378 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3379 GlobalValue *GV = ExtractSymbol(G, SE); 3380 if (G->isZero() || !GV) 3381 return; 3382 Formula F = Base; 3383 F.BaseGV = GV; 3384 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3385 return; 3386 if (IsScaledReg) 3387 F.ScaledReg = G; 3388 else 3389 F.BaseRegs[Idx] = G; 3390 (void)InsertFormula(LU, LUIdx, F); 3391 } 3392 3393 /// Generate reuse formulae using symbolic offsets. 3394 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3395 Formula Base) { 3396 // We can't add a symbolic offset if the address already contains one. 3397 if (Base.BaseGV) return; 3398 3399 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3400 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3401 if (Base.Scale == 1) 3402 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3403 /* IsScaledReg */ true); 3404 } 3405 3406 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3407 void LSRInstance::GenerateConstantOffsetsImpl( 3408 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3409 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3410 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3411 for (int64_t Offset : Worklist) { 3412 Formula F = Base; 3413 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3414 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3415 LU.AccessTy, F)) { 3416 // Add the offset to the base register. 3417 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3418 // If it cancelled out, drop the base register, otherwise update it. 3419 if (NewG->isZero()) { 3420 if (IsScaledReg) { 3421 F.Scale = 0; 3422 F.ScaledReg = nullptr; 3423 } else 3424 F.deleteBaseReg(F.BaseRegs[Idx]); 3425 F.canonicalize(); 3426 } else if (IsScaledReg) 3427 F.ScaledReg = NewG; 3428 else 3429 F.BaseRegs[Idx] = NewG; 3430 3431 (void)InsertFormula(LU, LUIdx, F); 3432 } 3433 } 3434 3435 int64_t Imm = ExtractImmediate(G, SE); 3436 if (G->isZero() || Imm == 0) 3437 return; 3438 Formula F = Base; 3439 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3440 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3441 return; 3442 if (IsScaledReg) 3443 F.ScaledReg = G; 3444 else 3445 F.BaseRegs[Idx] = G; 3446 (void)InsertFormula(LU, LUIdx, F); 3447 } 3448 3449 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3450 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3451 Formula Base) { 3452 // TODO: For now, just add the min and max offset, because it usually isn't 3453 // worthwhile looking at everything inbetween. 3454 SmallVector<int64_t, 2> Worklist; 3455 Worklist.push_back(LU.MinOffset); 3456 if (LU.MaxOffset != LU.MinOffset) 3457 Worklist.push_back(LU.MaxOffset); 3458 3459 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3460 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3461 if (Base.Scale == 1) 3462 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3463 /* IsScaledReg */ true); 3464 } 3465 3466 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3467 /// == y -> x*c == y*c. 3468 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3469 Formula Base) { 3470 if (LU.Kind != LSRUse::ICmpZero) return; 3471 3472 // Determine the integer type for the base formula. 3473 Type *IntTy = Base.getType(); 3474 if (!IntTy) return; 3475 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3476 3477 // Don't do this if there is more than one offset. 3478 if (LU.MinOffset != LU.MaxOffset) return; 3479 3480 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3481 3482 // Check each interesting stride. 3483 for (int64_t Factor : Factors) { 3484 // Check that the multiplication doesn't overflow. 3485 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3486 continue; 3487 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3488 if (NewBaseOffset / Factor != Base.BaseOffset) 3489 continue; 3490 // If the offset will be truncated at this use, check that it is in bounds. 3491 if (!IntTy->isPointerTy() && 3492 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3493 continue; 3494 3495 // Check that multiplying with the use offset doesn't overflow. 3496 int64_t Offset = LU.MinOffset; 3497 if (Offset == INT64_MIN && Factor == -1) 3498 continue; 3499 Offset = (uint64_t)Offset * Factor; 3500 if (Offset / Factor != LU.MinOffset) 3501 continue; 3502 // If the offset will be truncated at this use, check that it is in bounds. 3503 if (!IntTy->isPointerTy() && 3504 !ConstantInt::isValueValidForType(IntTy, Offset)) 3505 continue; 3506 3507 Formula F = Base; 3508 F.BaseOffset = NewBaseOffset; 3509 3510 // Check that this scale is legal. 3511 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3512 continue; 3513 3514 // Compensate for the use having MinOffset built into it. 3515 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3516 3517 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3518 3519 // Check that multiplying with each base register doesn't overflow. 3520 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3521 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3522 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3523 goto next; 3524 } 3525 3526 // Check that multiplying with the scaled register doesn't overflow. 3527 if (F.ScaledReg) { 3528 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3529 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3530 continue; 3531 } 3532 3533 // Check that multiplying with the unfolded offset doesn't overflow. 3534 if (F.UnfoldedOffset != 0) { 3535 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3536 continue; 3537 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3538 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3539 continue; 3540 // If the offset will be truncated, check that it is in bounds. 3541 if (!IntTy->isPointerTy() && 3542 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3543 continue; 3544 } 3545 3546 // If we make it here and it's legal, add it. 3547 (void)InsertFormula(LU, LUIdx, F); 3548 next:; 3549 } 3550 } 3551 3552 /// Generate stride factor reuse formulae by making use of scaled-offset address 3553 /// modes, for example. 3554 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3555 // Determine the integer type for the base formula. 3556 Type *IntTy = Base.getType(); 3557 if (!IntTy) return; 3558 3559 // If this Formula already has a scaled register, we can't add another one. 3560 // Try to unscale the formula to generate a better scale. 3561 if (Base.Scale != 0 && !Base.unscale()) 3562 return; 3563 3564 assert(Base.Scale == 0 && "unscale did not did its job!"); 3565 3566 // Check each interesting stride. 3567 for (int64_t Factor : Factors) { 3568 Base.Scale = Factor; 3569 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3570 // Check whether this scale is going to be legal. 3571 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3572 Base)) { 3573 // As a special-case, handle special out-of-loop Basic users specially. 3574 // TODO: Reconsider this special case. 3575 if (LU.Kind == LSRUse::Basic && 3576 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3577 LU.AccessTy, Base) && 3578 LU.AllFixupsOutsideLoop) 3579 LU.Kind = LSRUse::Special; 3580 else 3581 continue; 3582 } 3583 // For an ICmpZero, negating a solitary base register won't lead to 3584 // new solutions. 3585 if (LU.Kind == LSRUse::ICmpZero && 3586 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3587 continue; 3588 // For each addrec base reg, apply the scale, if possible. 3589 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3590 if (const SCEVAddRecExpr *AR = 3591 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3592 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3593 if (FactorS->isZero()) 3594 continue; 3595 // Divide out the factor, ignoring high bits, since we'll be 3596 // scaling the value back up in the end. 3597 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3598 // TODO: This could be optimized to avoid all the copying. 3599 Formula F = Base; 3600 F.ScaledReg = Quotient; 3601 F.deleteBaseReg(F.BaseRegs[i]); 3602 // The canonical representation of 1*reg is reg, which is already in 3603 // Base. In that case, do not try to insert the formula, it will be 3604 // rejected anyway. 3605 if (F.Scale == 1 && F.BaseRegs.empty()) 3606 continue; 3607 (void)InsertFormula(LU, LUIdx, F); 3608 } 3609 } 3610 } 3611 } 3612 3613 /// Generate reuse formulae from different IV types. 3614 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3615 // Don't bother truncating symbolic values. 3616 if (Base.BaseGV) return; 3617 3618 // Determine the integer type for the base formula. 3619 Type *DstTy = Base.getType(); 3620 if (!DstTy) return; 3621 DstTy = SE.getEffectiveSCEVType(DstTy); 3622 3623 for (Type *SrcTy : Types) { 3624 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3625 Formula F = Base; 3626 3627 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3628 for (const SCEV *&BaseReg : F.BaseRegs) 3629 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3630 3631 // TODO: This assumes we've done basic processing on all uses and 3632 // have an idea what the register usage is. 3633 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3634 continue; 3635 3636 (void)InsertFormula(LU, LUIdx, F); 3637 } 3638 } 3639 } 3640 3641 namespace { 3642 3643 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3644 /// modifications so that the search phase doesn't have to worry about the data 3645 /// structures moving underneath it. 3646 struct WorkItem { 3647 size_t LUIdx; 3648 int64_t Imm; 3649 const SCEV *OrigReg; 3650 3651 WorkItem(size_t LI, int64_t I, const SCEV *R) 3652 : LUIdx(LI), Imm(I), OrigReg(R) {} 3653 3654 void print(raw_ostream &OS) const; 3655 void dump() const; 3656 }; 3657 3658 } 3659 3660 void WorkItem::print(raw_ostream &OS) const { 3661 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3662 << " , add offset " << Imm; 3663 } 3664 3665 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3666 void WorkItem::dump() const { 3667 print(errs()); errs() << '\n'; 3668 } 3669 #endif 3670 3671 /// Look for registers which are a constant distance apart and try to form reuse 3672 /// opportunities between them. 3673 void LSRInstance::GenerateCrossUseConstantOffsets() { 3674 // Group the registers by their value without any added constant offset. 3675 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3676 DenseMap<const SCEV *, ImmMapTy> Map; 3677 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3678 SmallVector<const SCEV *, 8> Sequence; 3679 for (const SCEV *Use : RegUses) { 3680 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3681 int64_t Imm = ExtractImmediate(Reg, SE); 3682 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3683 if (Pair.second) 3684 Sequence.push_back(Reg); 3685 Pair.first->second.insert(std::make_pair(Imm, Use)); 3686 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3687 } 3688 3689 // Now examine each set of registers with the same base value. Build up 3690 // a list of work to do and do the work in a separate step so that we're 3691 // not adding formulae and register counts while we're searching. 3692 SmallVector<WorkItem, 32> WorkItems; 3693 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3694 for (const SCEV *Reg : Sequence) { 3695 const ImmMapTy &Imms = Map.find(Reg)->second; 3696 3697 // It's not worthwhile looking for reuse if there's only one offset. 3698 if (Imms.size() == 1) 3699 continue; 3700 3701 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3702 for (const auto &Entry : Imms) 3703 dbgs() << ' ' << Entry.first; 3704 dbgs() << '\n'); 3705 3706 // Examine each offset. 3707 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3708 J != JE; ++J) { 3709 const SCEV *OrigReg = J->second; 3710 3711 int64_t JImm = J->first; 3712 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3713 3714 if (!isa<SCEVConstant>(OrigReg) && 3715 UsedByIndicesMap[Reg].count() == 1) { 3716 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3717 continue; 3718 } 3719 3720 // Conservatively examine offsets between this orig reg a few selected 3721 // other orig regs. 3722 ImmMapTy::const_iterator OtherImms[] = { 3723 Imms.begin(), std::prev(Imms.end()), 3724 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3725 2) 3726 }; 3727 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3728 ImmMapTy::const_iterator M = OtherImms[i]; 3729 if (M == J || M == JE) continue; 3730 3731 // Compute the difference between the two. 3732 int64_t Imm = (uint64_t)JImm - M->first; 3733 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3734 LUIdx = UsedByIndices.find_next(LUIdx)) 3735 // Make a memo of this use, offset, and register tuple. 3736 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3737 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3738 } 3739 } 3740 } 3741 3742 Map.clear(); 3743 Sequence.clear(); 3744 UsedByIndicesMap.clear(); 3745 UniqueItems.clear(); 3746 3747 // Now iterate through the worklist and add new formulae. 3748 for (const WorkItem &WI : WorkItems) { 3749 size_t LUIdx = WI.LUIdx; 3750 LSRUse &LU = Uses[LUIdx]; 3751 int64_t Imm = WI.Imm; 3752 const SCEV *OrigReg = WI.OrigReg; 3753 3754 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3755 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3756 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3757 3758 // TODO: Use a more targeted data structure. 3759 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3760 Formula F = LU.Formulae[L]; 3761 // FIXME: The code for the scaled and unscaled registers looks 3762 // very similar but slightly different. Investigate if they 3763 // could be merged. That way, we would not have to unscale the 3764 // Formula. 3765 F.unscale(); 3766 // Use the immediate in the scaled register. 3767 if (F.ScaledReg == OrigReg) { 3768 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3769 // Don't create 50 + reg(-50). 3770 if (F.referencesReg(SE.getSCEV( 3771 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3772 continue; 3773 Formula NewF = F; 3774 NewF.BaseOffset = Offset; 3775 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3776 NewF)) 3777 continue; 3778 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3779 3780 // If the new scale is a constant in a register, and adding the constant 3781 // value to the immediate would produce a value closer to zero than the 3782 // immediate itself, then the formula isn't worthwhile. 3783 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3784 if (C->getValue()->isNegative() != 3785 (NewF.BaseOffset < 0) && 3786 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3787 .ule(std::abs(NewF.BaseOffset))) 3788 continue; 3789 3790 // OK, looks good. 3791 NewF.canonicalize(); 3792 (void)InsertFormula(LU, LUIdx, NewF); 3793 } else { 3794 // Use the immediate in a base register. 3795 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3796 const SCEV *BaseReg = F.BaseRegs[N]; 3797 if (BaseReg != OrigReg) 3798 continue; 3799 Formula NewF = F; 3800 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3801 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3802 LU.Kind, LU.AccessTy, NewF)) { 3803 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3804 continue; 3805 NewF = F; 3806 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3807 } 3808 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3809 3810 // If the new formula has a constant in a register, and adding the 3811 // constant value to the immediate would produce a value closer to 3812 // zero than the immediate itself, then the formula isn't worthwhile. 3813 for (const SCEV *NewReg : NewF.BaseRegs) 3814 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3815 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3816 std::abs(NewF.BaseOffset)) && 3817 (C->getValue()->getValue() + 3818 NewF.BaseOffset).countTrailingZeros() >= 3819 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3820 goto skip_formula; 3821 3822 // Ok, looks good. 3823 NewF.canonicalize(); 3824 (void)InsertFormula(LU, LUIdx, NewF); 3825 break; 3826 skip_formula:; 3827 } 3828 } 3829 } 3830 } 3831 } 3832 3833 /// Generate formulae for each use. 3834 void 3835 LSRInstance::GenerateAllReuseFormulae() { 3836 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3837 // queries are more precise. 3838 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3839 LSRUse &LU = Uses[LUIdx]; 3840 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3841 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3842 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3843 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3844 } 3845 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3846 LSRUse &LU = Uses[LUIdx]; 3847 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3848 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3849 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3850 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3851 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3852 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3853 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3854 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3855 } 3856 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3857 LSRUse &LU = Uses[LUIdx]; 3858 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3859 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3860 } 3861 3862 GenerateCrossUseConstantOffsets(); 3863 3864 DEBUG(dbgs() << "\n" 3865 "After generating reuse formulae:\n"; 3866 print_uses(dbgs())); 3867 } 3868 3869 /// If there are multiple formulae with the same set of registers used 3870 /// by other uses, pick the best one and delete the others. 3871 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3872 DenseSet<const SCEV *> VisitedRegs; 3873 SmallPtrSet<const SCEV *, 16> Regs; 3874 SmallPtrSet<const SCEV *, 16> LoserRegs; 3875 #ifndef NDEBUG 3876 bool ChangedFormulae = false; 3877 #endif 3878 3879 // Collect the best formula for each unique set of shared registers. This 3880 // is reset for each use. 3881 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3882 BestFormulaeTy; 3883 BestFormulaeTy BestFormulae; 3884 3885 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3886 LSRUse &LU = Uses[LUIdx]; 3887 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3888 3889 bool Any = false; 3890 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3891 FIdx != NumForms; ++FIdx) { 3892 Formula &F = LU.Formulae[FIdx]; 3893 3894 // Some formulas are instant losers. For example, they may depend on 3895 // nonexistent AddRecs from other loops. These need to be filtered 3896 // immediately, otherwise heuristics could choose them over others leading 3897 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3898 // avoids the need to recompute this information across formulae using the 3899 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3900 // the corresponding bad register from the Regs set. 3901 Cost CostF; 3902 Regs.clear(); 3903 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3904 &LoserRegs); 3905 if (CostF.isLoser()) { 3906 // During initial formula generation, undesirable formulae are generated 3907 // by uses within other loops that have some non-trivial address mode or 3908 // use the postinc form of the IV. LSR needs to provide these formulae 3909 // as the basis of rediscovering the desired formula that uses an AddRec 3910 // corresponding to the existing phi. Once all formulae have been 3911 // generated, these initial losers may be pruned. 3912 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3913 dbgs() << "\n"); 3914 } 3915 else { 3916 SmallVector<const SCEV *, 4> Key; 3917 for (const SCEV *Reg : F.BaseRegs) { 3918 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3919 Key.push_back(Reg); 3920 } 3921 if (F.ScaledReg && 3922 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3923 Key.push_back(F.ScaledReg); 3924 // Unstable sort by host order ok, because this is only used for 3925 // uniquifying. 3926 std::sort(Key.begin(), Key.end()); 3927 3928 std::pair<BestFormulaeTy::const_iterator, bool> P = 3929 BestFormulae.insert(std::make_pair(Key, FIdx)); 3930 if (P.second) 3931 continue; 3932 3933 Formula &Best = LU.Formulae[P.first->second]; 3934 3935 Cost CostBest; 3936 Regs.clear(); 3937 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3938 DT, LU); 3939 if (CostF < CostBest) 3940 std::swap(F, Best); 3941 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3942 dbgs() << "\n" 3943 " in favor of formula "; Best.print(dbgs()); 3944 dbgs() << '\n'); 3945 } 3946 #ifndef NDEBUG 3947 ChangedFormulae = true; 3948 #endif 3949 LU.DeleteFormula(F); 3950 --FIdx; 3951 --NumForms; 3952 Any = true; 3953 } 3954 3955 // Now that we've filtered out some formulae, recompute the Regs set. 3956 if (Any) 3957 LU.RecomputeRegs(LUIdx, RegUses); 3958 3959 // Reset this to prepare for the next use. 3960 BestFormulae.clear(); 3961 } 3962 3963 DEBUG(if (ChangedFormulae) { 3964 dbgs() << "\n" 3965 "After filtering out undesirable candidates:\n"; 3966 print_uses(dbgs()); 3967 }); 3968 } 3969 3970 // This is a rough guess that seems to work fairly well. 3971 static const size_t ComplexityLimit = UINT16_MAX; 3972 3973 /// Estimate the worst-case number of solutions the solver might have to 3974 /// consider. It almost never considers this many solutions because it prune the 3975 /// search space, but the pruning isn't always sufficient. 3976 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3977 size_t Power = 1; 3978 for (const LSRUse &LU : Uses) { 3979 size_t FSize = LU.Formulae.size(); 3980 if (FSize >= ComplexityLimit) { 3981 Power = ComplexityLimit; 3982 break; 3983 } 3984 Power *= FSize; 3985 if (Power >= ComplexityLimit) 3986 break; 3987 } 3988 return Power; 3989 } 3990 3991 /// When one formula uses a superset of the registers of another formula, it 3992 /// won't help reduce register pressure (though it may not necessarily hurt 3993 /// register pressure); remove it to simplify the system. 3994 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3995 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3996 DEBUG(dbgs() << "The search space is too complex.\n"); 3997 3998 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3999 "which use a superset of registers used by other " 4000 "formulae.\n"); 4001 4002 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4003 LSRUse &LU = Uses[LUIdx]; 4004 bool Any = false; 4005 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4006 Formula &F = LU.Formulae[i]; 4007 // Look for a formula with a constant or GV in a register. If the use 4008 // also has a formula with that same value in an immediate field, 4009 // delete the one that uses a register. 4010 for (SmallVectorImpl<const SCEV *>::const_iterator 4011 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4012 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4013 Formula NewF = F; 4014 NewF.BaseOffset += C->getValue()->getSExtValue(); 4015 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4016 (I - F.BaseRegs.begin())); 4017 if (LU.HasFormulaWithSameRegs(NewF)) { 4018 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4019 LU.DeleteFormula(F); 4020 --i; 4021 --e; 4022 Any = true; 4023 break; 4024 } 4025 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4026 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4027 if (!F.BaseGV) { 4028 Formula NewF = F; 4029 NewF.BaseGV = GV; 4030 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4031 (I - F.BaseRegs.begin())); 4032 if (LU.HasFormulaWithSameRegs(NewF)) { 4033 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4034 dbgs() << '\n'); 4035 LU.DeleteFormula(F); 4036 --i; 4037 --e; 4038 Any = true; 4039 break; 4040 } 4041 } 4042 } 4043 } 4044 } 4045 if (Any) 4046 LU.RecomputeRegs(LUIdx, RegUses); 4047 } 4048 4049 DEBUG(dbgs() << "After pre-selection:\n"; 4050 print_uses(dbgs())); 4051 } 4052 } 4053 4054 /// When there are many registers for expressions like A, A+1, A+2, etc., 4055 /// allocate a single register for them. 4056 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4057 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4058 return; 4059 4060 DEBUG(dbgs() << "The search space is too complex.\n" 4061 "Narrowing the search space by assuming that uses separated " 4062 "by a constant offset will use the same registers.\n"); 4063 4064 // This is especially useful for unrolled loops. 4065 4066 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4067 LSRUse &LU = Uses[LUIdx]; 4068 for (const Formula &F : LU.Formulae) { 4069 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4070 continue; 4071 4072 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4073 if (!LUThatHas) 4074 continue; 4075 4076 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4077 LU.Kind, LU.AccessTy)) 4078 continue; 4079 4080 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4081 4082 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4083 4084 // Update the relocs to reference the new use. 4085 for (LSRFixup &Fixup : Fixups) { 4086 if (Fixup.LUIdx == LUIdx) { 4087 Fixup.LUIdx = LUThatHas - &Uses.front(); 4088 Fixup.Offset += F.BaseOffset; 4089 // Add the new offset to LUThatHas' offset list. 4090 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4091 LUThatHas->Offsets.push_back(Fixup.Offset); 4092 if (Fixup.Offset > LUThatHas->MaxOffset) 4093 LUThatHas->MaxOffset = Fixup.Offset; 4094 if (Fixup.Offset < LUThatHas->MinOffset) 4095 LUThatHas->MinOffset = Fixup.Offset; 4096 } 4097 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4098 } 4099 if (Fixup.LUIdx == NumUses-1) 4100 Fixup.LUIdx = LUIdx; 4101 } 4102 4103 // Delete formulae from the new use which are no longer legal. 4104 bool Any = false; 4105 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4106 Formula &F = LUThatHas->Formulae[i]; 4107 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4108 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4109 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4110 dbgs() << '\n'); 4111 LUThatHas->DeleteFormula(F); 4112 --i; 4113 --e; 4114 Any = true; 4115 } 4116 } 4117 4118 if (Any) 4119 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4120 4121 // Delete the old use. 4122 DeleteUse(LU, LUIdx); 4123 --LUIdx; 4124 --NumUses; 4125 break; 4126 } 4127 } 4128 4129 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4130 } 4131 4132 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4133 /// we've done more filtering, as it may be able to find more formulae to 4134 /// eliminate. 4135 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4136 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4137 DEBUG(dbgs() << "The search space is too complex.\n"); 4138 4139 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4140 "undesirable dedicated registers.\n"); 4141 4142 FilterOutUndesirableDedicatedRegisters(); 4143 4144 DEBUG(dbgs() << "After pre-selection:\n"; 4145 print_uses(dbgs())); 4146 } 4147 } 4148 4149 /// Pick a register which seems likely to be profitable, and then in any use 4150 /// which has any reference to that register, delete all formulae which do not 4151 /// reference that register. 4152 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4153 // With all other options exhausted, loop until the system is simple 4154 // enough to handle. 4155 SmallPtrSet<const SCEV *, 4> Taken; 4156 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4157 // Ok, we have too many of formulae on our hands to conveniently handle. 4158 // Use a rough heuristic to thin out the list. 4159 DEBUG(dbgs() << "The search space is too complex.\n"); 4160 4161 // Pick the register which is used by the most LSRUses, which is likely 4162 // to be a good reuse register candidate. 4163 const SCEV *Best = nullptr; 4164 unsigned BestNum = 0; 4165 for (const SCEV *Reg : RegUses) { 4166 if (Taken.count(Reg)) 4167 continue; 4168 if (!Best) 4169 Best = Reg; 4170 else { 4171 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4172 if (Count > BestNum) { 4173 Best = Reg; 4174 BestNum = Count; 4175 } 4176 } 4177 } 4178 4179 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4180 << " will yield profitable reuse.\n"); 4181 Taken.insert(Best); 4182 4183 // In any use with formulae which references this register, delete formulae 4184 // which don't reference it. 4185 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4186 LSRUse &LU = Uses[LUIdx]; 4187 if (!LU.Regs.count(Best)) continue; 4188 4189 bool Any = false; 4190 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4191 Formula &F = LU.Formulae[i]; 4192 if (!F.referencesReg(Best)) { 4193 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4194 LU.DeleteFormula(F); 4195 --e; 4196 --i; 4197 Any = true; 4198 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4199 continue; 4200 } 4201 } 4202 4203 if (Any) 4204 LU.RecomputeRegs(LUIdx, RegUses); 4205 } 4206 4207 DEBUG(dbgs() << "After pre-selection:\n"; 4208 print_uses(dbgs())); 4209 } 4210 } 4211 4212 /// If there are an extraordinary number of formulae to choose from, use some 4213 /// rough heuristics to prune down the number of formulae. This keeps the main 4214 /// solver from taking an extraordinary amount of time in some worst-case 4215 /// scenarios. 4216 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4217 NarrowSearchSpaceByDetectingSupersets(); 4218 NarrowSearchSpaceByCollapsingUnrolledCode(); 4219 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4220 NarrowSearchSpaceByPickingWinnerRegs(); 4221 } 4222 4223 /// This is the recursive solver. 4224 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4225 Cost &SolutionCost, 4226 SmallVectorImpl<const Formula *> &Workspace, 4227 const Cost &CurCost, 4228 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4229 DenseSet<const SCEV *> &VisitedRegs) const { 4230 // Some ideas: 4231 // - prune more: 4232 // - use more aggressive filtering 4233 // - sort the formula so that the most profitable solutions are found first 4234 // - sort the uses too 4235 // - search faster: 4236 // - don't compute a cost, and then compare. compare while computing a cost 4237 // and bail early. 4238 // - track register sets with SmallBitVector 4239 4240 const LSRUse &LU = Uses[Workspace.size()]; 4241 4242 // If this use references any register that's already a part of the 4243 // in-progress solution, consider it a requirement that a formula must 4244 // reference that register in order to be considered. This prunes out 4245 // unprofitable searching. 4246 SmallSetVector<const SCEV *, 4> ReqRegs; 4247 for (const SCEV *S : CurRegs) 4248 if (LU.Regs.count(S)) 4249 ReqRegs.insert(S); 4250 4251 SmallPtrSet<const SCEV *, 16> NewRegs; 4252 Cost NewCost; 4253 for (const Formula &F : LU.Formulae) { 4254 // Ignore formulae which may not be ideal in terms of register reuse of 4255 // ReqRegs. The formula should use all required registers before 4256 // introducing new ones. 4257 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4258 for (const SCEV *Reg : ReqRegs) { 4259 if ((F.ScaledReg && F.ScaledReg == Reg) || 4260 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4261 F.BaseRegs.end()) { 4262 --NumReqRegsToFind; 4263 if (NumReqRegsToFind == 0) 4264 break; 4265 } 4266 } 4267 if (NumReqRegsToFind != 0) { 4268 // If none of the formulae satisfied the required registers, then we could 4269 // clear ReqRegs and try again. Currently, we simply give up in this case. 4270 continue; 4271 } 4272 4273 // Evaluate the cost of the current formula. If it's already worse than 4274 // the current best, prune the search at that point. 4275 NewCost = CurCost; 4276 NewRegs = CurRegs; 4277 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4278 LU); 4279 if (NewCost < SolutionCost) { 4280 Workspace.push_back(&F); 4281 if (Workspace.size() != Uses.size()) { 4282 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4283 NewRegs, VisitedRegs); 4284 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4285 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4286 } else { 4287 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4288 dbgs() << ".\n Regs:"; 4289 for (const SCEV *S : NewRegs) 4290 dbgs() << ' ' << *S; 4291 dbgs() << '\n'); 4292 4293 SolutionCost = NewCost; 4294 Solution = Workspace; 4295 } 4296 Workspace.pop_back(); 4297 } 4298 } 4299 } 4300 4301 /// Choose one formula from each use. Return the results in the given Solution 4302 /// vector. 4303 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4304 SmallVector<const Formula *, 8> Workspace; 4305 Cost SolutionCost; 4306 SolutionCost.Lose(); 4307 Cost CurCost; 4308 SmallPtrSet<const SCEV *, 16> CurRegs; 4309 DenseSet<const SCEV *> VisitedRegs; 4310 Workspace.reserve(Uses.size()); 4311 4312 // SolveRecurse does all the work. 4313 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4314 CurRegs, VisitedRegs); 4315 if (Solution.empty()) { 4316 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4317 return; 4318 } 4319 4320 // Ok, we've now made all our decisions. 4321 DEBUG(dbgs() << "\n" 4322 "The chosen solution requires "; SolutionCost.print(dbgs()); 4323 dbgs() << ":\n"; 4324 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4325 dbgs() << " "; 4326 Uses[i].print(dbgs()); 4327 dbgs() << "\n" 4328 " "; 4329 Solution[i]->print(dbgs()); 4330 dbgs() << '\n'; 4331 }); 4332 4333 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4334 } 4335 4336 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4337 /// we can go while still being dominated by the input positions. This helps 4338 /// canonicalize the insert position, which encourages sharing. 4339 BasicBlock::iterator 4340 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4341 const SmallVectorImpl<Instruction *> &Inputs) 4342 const { 4343 for (;;) { 4344 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4345 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4346 4347 BasicBlock *IDom; 4348 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4349 if (!Rung) return IP; 4350 Rung = Rung->getIDom(); 4351 if (!Rung) return IP; 4352 IDom = Rung->getBlock(); 4353 4354 // Don't climb into a loop though. 4355 const Loop *IDomLoop = LI.getLoopFor(IDom); 4356 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4357 if (IDomDepth <= IPLoopDepth && 4358 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4359 break; 4360 } 4361 4362 bool AllDominate = true; 4363 Instruction *BetterPos = nullptr; 4364 Instruction *Tentative = IDom->getTerminator(); 4365 for (Instruction *Inst : Inputs) { 4366 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4367 AllDominate = false; 4368 break; 4369 } 4370 // Attempt to find an insert position in the middle of the block, 4371 // instead of at the end, so that it can be used for other expansions. 4372 if (IDom == Inst->getParent() && 4373 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4374 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4375 } 4376 if (!AllDominate) 4377 break; 4378 if (BetterPos) 4379 IP = BetterPos->getIterator(); 4380 else 4381 IP = Tentative->getIterator(); 4382 } 4383 4384 return IP; 4385 } 4386 4387 /// Determine an input position which will be dominated by the operands and 4388 /// which will dominate the result. 4389 BasicBlock::iterator 4390 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4391 const LSRFixup &LF, 4392 const LSRUse &LU, 4393 SCEVExpander &Rewriter) const { 4394 // Collect some instructions which must be dominated by the 4395 // expanding replacement. These must be dominated by any operands that 4396 // will be required in the expansion. 4397 SmallVector<Instruction *, 4> Inputs; 4398 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4399 Inputs.push_back(I); 4400 if (LU.Kind == LSRUse::ICmpZero) 4401 if (Instruction *I = 4402 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4403 Inputs.push_back(I); 4404 if (LF.PostIncLoops.count(L)) { 4405 if (LF.isUseFullyOutsideLoop(L)) 4406 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4407 else 4408 Inputs.push_back(IVIncInsertPos); 4409 } 4410 // The expansion must also be dominated by the increment positions of any 4411 // loops it for which it is using post-inc mode. 4412 for (const Loop *PIL : LF.PostIncLoops) { 4413 if (PIL == L) continue; 4414 4415 // Be dominated by the loop exit. 4416 SmallVector<BasicBlock *, 4> ExitingBlocks; 4417 PIL->getExitingBlocks(ExitingBlocks); 4418 if (!ExitingBlocks.empty()) { 4419 BasicBlock *BB = ExitingBlocks[0]; 4420 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4421 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4422 Inputs.push_back(BB->getTerminator()); 4423 } 4424 } 4425 4426 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4427 && !isa<DbgInfoIntrinsic>(LowestIP) && 4428 "Insertion point must be a normal instruction"); 4429 4430 // Then, climb up the immediate dominator tree as far as we can go while 4431 // still being dominated by the input positions. 4432 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4433 4434 // Don't insert instructions before PHI nodes. 4435 while (isa<PHINode>(IP)) ++IP; 4436 4437 // Ignore landingpad instructions. 4438 while (!isa<TerminatorInst>(IP) && IP->isEHPad()) ++IP; 4439 4440 // Ignore debug intrinsics. 4441 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4442 4443 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4444 // IP consistent across expansions and allows the previously inserted 4445 // instructions to be reused by subsequent expansion. 4446 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4447 ++IP; 4448 4449 return IP; 4450 } 4451 4452 /// Emit instructions for the leading candidate expression for this LSRUse (this 4453 /// is called "expanding"). 4454 Value *LSRInstance::Expand(const LSRFixup &LF, 4455 const Formula &F, 4456 BasicBlock::iterator IP, 4457 SCEVExpander &Rewriter, 4458 SmallVectorImpl<WeakVH> &DeadInsts) const { 4459 const LSRUse &LU = Uses[LF.LUIdx]; 4460 if (LU.RigidFormula) 4461 return LF.OperandValToReplace; 4462 4463 // Determine an input position which will be dominated by the operands and 4464 // which will dominate the result. 4465 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4466 4467 // Inform the Rewriter if we have a post-increment use, so that it can 4468 // perform an advantageous expansion. 4469 Rewriter.setPostInc(LF.PostIncLoops); 4470 4471 // This is the type that the user actually needs. 4472 Type *OpTy = LF.OperandValToReplace->getType(); 4473 // This will be the type that we'll initially expand to. 4474 Type *Ty = F.getType(); 4475 if (!Ty) 4476 // No type known; just expand directly to the ultimate type. 4477 Ty = OpTy; 4478 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4479 // Expand directly to the ultimate type if it's the right size. 4480 Ty = OpTy; 4481 // This is the type to do integer arithmetic in. 4482 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4483 4484 // Build up a list of operands to add together to form the full base. 4485 SmallVector<const SCEV *, 8> Ops; 4486 4487 // Expand the BaseRegs portion. 4488 for (const SCEV *Reg : F.BaseRegs) { 4489 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4490 4491 // If we're expanding for a post-inc user, make the post-inc adjustment. 4492 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4493 Reg = TransformForPostIncUse(Denormalize, Reg, 4494 LF.UserInst, LF.OperandValToReplace, 4495 Loops, SE, DT); 4496 4497 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP))); 4498 } 4499 4500 // Expand the ScaledReg portion. 4501 Value *ICmpScaledV = nullptr; 4502 if (F.Scale != 0) { 4503 const SCEV *ScaledS = F.ScaledReg; 4504 4505 // If we're expanding for a post-inc user, make the post-inc adjustment. 4506 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4507 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4508 LF.UserInst, LF.OperandValToReplace, 4509 Loops, SE, DT); 4510 4511 if (LU.Kind == LSRUse::ICmpZero) { 4512 // Expand ScaleReg as if it was part of the base regs. 4513 if (F.Scale == 1) 4514 Ops.push_back( 4515 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP))); 4516 else { 4517 // An interesting way of "folding" with an icmp is to use a negated 4518 // scale, which we'll implement by inserting it into the other operand 4519 // of the icmp. 4520 assert(F.Scale == -1 && 4521 "The only scale supported by ICmpZero uses is -1!"); 4522 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP); 4523 } 4524 } else { 4525 // Otherwise just expand the scaled register and an explicit scale, 4526 // which is expected to be matched as part of the address. 4527 4528 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4529 // Unless the addressing mode will not be folded. 4530 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4531 isAMCompletelyFolded(TTI, LU, F)) { 4532 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4533 Ops.clear(); 4534 Ops.push_back(SE.getUnknown(FullV)); 4535 } 4536 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)); 4537 if (F.Scale != 1) 4538 ScaledS = 4539 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4540 Ops.push_back(ScaledS); 4541 } 4542 } 4543 4544 // Expand the GV portion. 4545 if (F.BaseGV) { 4546 // Flush the operand list to suppress SCEVExpander hoisting. 4547 if (!Ops.empty()) { 4548 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4549 Ops.clear(); 4550 Ops.push_back(SE.getUnknown(FullV)); 4551 } 4552 Ops.push_back(SE.getUnknown(F.BaseGV)); 4553 } 4554 4555 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4556 // unfolded offsets. LSR assumes they both live next to their uses. 4557 if (!Ops.empty()) { 4558 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP); 4559 Ops.clear(); 4560 Ops.push_back(SE.getUnknown(FullV)); 4561 } 4562 4563 // Expand the immediate portion. 4564 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4565 if (Offset != 0) { 4566 if (LU.Kind == LSRUse::ICmpZero) { 4567 // The other interesting way of "folding" with an ICmpZero is to use a 4568 // negated immediate. 4569 if (!ICmpScaledV) 4570 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4571 else { 4572 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4573 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4574 } 4575 } else { 4576 // Just add the immediate values. These again are expected to be matched 4577 // as part of the address. 4578 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4579 } 4580 } 4581 4582 // Expand the unfolded offset portion. 4583 int64_t UnfoldedOffset = F.UnfoldedOffset; 4584 if (UnfoldedOffset != 0) { 4585 // Just add the immediate values. 4586 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4587 UnfoldedOffset))); 4588 } 4589 4590 // Emit instructions summing all the operands. 4591 const SCEV *FullS = Ops.empty() ? 4592 SE.getConstant(IntTy, 0) : 4593 SE.getAddExpr(Ops); 4594 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP); 4595 4596 // We're done expanding now, so reset the rewriter. 4597 Rewriter.clearPostInc(); 4598 4599 // An ICmpZero Formula represents an ICmp which we're handling as a 4600 // comparison against zero. Now that we've expanded an expression for that 4601 // form, update the ICmp's other operand. 4602 if (LU.Kind == LSRUse::ICmpZero) { 4603 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4604 DeadInsts.emplace_back(CI->getOperand(1)); 4605 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4606 "a scale at the same time!"); 4607 if (F.Scale == -1) { 4608 if (ICmpScaledV->getType() != OpTy) { 4609 Instruction *Cast = 4610 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4611 OpTy, false), 4612 ICmpScaledV, OpTy, "tmp", CI); 4613 ICmpScaledV = Cast; 4614 } 4615 CI->setOperand(1, ICmpScaledV); 4616 } else { 4617 // A scale of 1 means that the scale has been expanded as part of the 4618 // base regs. 4619 assert((F.Scale == 0 || F.Scale == 1) && 4620 "ICmp does not support folding a global value and " 4621 "a scale at the same time!"); 4622 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4623 -(uint64_t)Offset); 4624 if (C->getType() != OpTy) 4625 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4626 OpTy, false), 4627 C, OpTy); 4628 4629 CI->setOperand(1, C); 4630 } 4631 } 4632 4633 return FullV; 4634 } 4635 4636 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4637 /// effectively happens in their predecessor blocks, so the expression may need 4638 /// to be expanded in multiple places. 4639 void LSRInstance::RewriteForPHI(PHINode *PN, 4640 const LSRFixup &LF, 4641 const Formula &F, 4642 SCEVExpander &Rewriter, 4643 SmallVectorImpl<WeakVH> &DeadInsts, 4644 Pass *P) const { 4645 DenseMap<BasicBlock *, Value *> Inserted; 4646 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4647 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4648 BasicBlock *BB = PN->getIncomingBlock(i); 4649 4650 // If this is a critical edge, split the edge so that we do not insert 4651 // the code on all predecessor/successor paths. We do this unless this 4652 // is the canonical backedge for this loop, which complicates post-inc 4653 // users. 4654 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4655 !isa<IndirectBrInst>(BB->getTerminator())) { 4656 BasicBlock *Parent = PN->getParent(); 4657 Loop *PNLoop = LI.getLoopFor(Parent); 4658 if (!PNLoop || Parent != PNLoop->getHeader()) { 4659 // Split the critical edge. 4660 BasicBlock *NewBB = nullptr; 4661 if (!Parent->isLandingPad()) { 4662 NewBB = SplitCriticalEdge(BB, Parent, 4663 CriticalEdgeSplittingOptions(&DT, &LI) 4664 .setMergeIdenticalEdges() 4665 .setDontDeleteUselessPHIs()); 4666 } else { 4667 SmallVector<BasicBlock*, 2> NewBBs; 4668 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4669 NewBB = NewBBs[0]; 4670 } 4671 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4672 // phi predecessors are identical. The simple thing to do is skip 4673 // splitting in this case rather than complicate the API. 4674 if (NewBB) { 4675 // If PN is outside of the loop and BB is in the loop, we want to 4676 // move the block to be immediately before the PHI block, not 4677 // immediately after BB. 4678 if (L->contains(BB) && !L->contains(PN)) 4679 NewBB->moveBefore(PN->getParent()); 4680 4681 // Splitting the edge can reduce the number of PHI entries we have. 4682 e = PN->getNumIncomingValues(); 4683 BB = NewBB; 4684 i = PN->getBasicBlockIndex(BB); 4685 } 4686 } 4687 } 4688 4689 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4690 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4691 if (!Pair.second) 4692 PN->setIncomingValue(i, Pair.first->second); 4693 else { 4694 Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(), 4695 Rewriter, DeadInsts); 4696 4697 // If this is reuse-by-noop-cast, insert the noop cast. 4698 Type *OpTy = LF.OperandValToReplace->getType(); 4699 if (FullV->getType() != OpTy) 4700 FullV = 4701 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4702 OpTy, false), 4703 FullV, LF.OperandValToReplace->getType(), 4704 "tmp", BB->getTerminator()); 4705 4706 PN->setIncomingValue(i, FullV); 4707 Pair.first->second = FullV; 4708 } 4709 } 4710 } 4711 4712 /// Emit instructions for the leading candidate expression for this LSRUse (this 4713 /// is called "expanding"), and update the UserInst to reference the newly 4714 /// expanded value. 4715 void LSRInstance::Rewrite(const LSRFixup &LF, 4716 const Formula &F, 4717 SCEVExpander &Rewriter, 4718 SmallVectorImpl<WeakVH> &DeadInsts, 4719 Pass *P) const { 4720 // First, find an insertion point that dominates UserInst. For PHI nodes, 4721 // find the nearest block which dominates all the relevant uses. 4722 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4723 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4724 } else { 4725 Value *FullV = 4726 Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4727 4728 // If this is reuse-by-noop-cast, insert the noop cast. 4729 Type *OpTy = LF.OperandValToReplace->getType(); 4730 if (FullV->getType() != OpTy) { 4731 Instruction *Cast = 4732 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4733 FullV, OpTy, "tmp", LF.UserInst); 4734 FullV = Cast; 4735 } 4736 4737 // Update the user. ICmpZero is handled specially here (for now) because 4738 // Expand may have updated one of the operands of the icmp already, and 4739 // its new value may happen to be equal to LF.OperandValToReplace, in 4740 // which case doing replaceUsesOfWith leads to replacing both operands 4741 // with the same value. TODO: Reorganize this. 4742 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4743 LF.UserInst->setOperand(0, FullV); 4744 else 4745 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4746 } 4747 4748 DeadInsts.emplace_back(LF.OperandValToReplace); 4749 } 4750 4751 /// Rewrite all the fixup locations with new values, following the chosen 4752 /// solution. 4753 void 4754 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4755 Pass *P) { 4756 // Keep track of instructions we may have made dead, so that 4757 // we can remove them after we are done working. 4758 SmallVector<WeakVH, 16> DeadInsts; 4759 4760 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4761 "lsr"); 4762 #ifndef NDEBUG 4763 Rewriter.setDebugType(DEBUG_TYPE); 4764 #endif 4765 Rewriter.disableCanonicalMode(); 4766 Rewriter.enableLSRMode(); 4767 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4768 4769 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4770 for (const IVChain &Chain : IVChainVec) { 4771 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4772 Rewriter.setChainedPhi(PN); 4773 } 4774 4775 // Expand the new value definitions and update the users. 4776 for (const LSRFixup &Fixup : Fixups) { 4777 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4778 4779 Changed = true; 4780 } 4781 4782 for (const IVChain &Chain : IVChainVec) { 4783 GenerateIVChain(Chain, Rewriter, DeadInsts); 4784 Changed = true; 4785 } 4786 // Clean up after ourselves. This must be done before deleting any 4787 // instructions. 4788 Rewriter.clear(); 4789 4790 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4791 } 4792 4793 LSRInstance::LSRInstance(Loop *L, Pass *P) 4794 : IU(P->getAnalysis<IVUsers>()), 4795 SE(P->getAnalysis<ScalarEvolutionWrapperPass>().getSE()), 4796 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4797 LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), 4798 TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 4799 *L->getHeader()->getParent())), 4800 L(L), Changed(false), IVIncInsertPos(nullptr) { 4801 // If LoopSimplify form is not available, stay out of trouble. 4802 if (!L->isLoopSimplifyForm()) 4803 return; 4804 4805 // If there's no interesting work to be done, bail early. 4806 if (IU.empty()) return; 4807 4808 // If there's too much analysis to be done, bail early. We won't be able to 4809 // model the problem anyway. 4810 unsigned NumUsers = 0; 4811 for (const IVStrideUse &U : IU) { 4812 if (++NumUsers > MaxIVUsers) { 4813 (void)U; 4814 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4815 return; 4816 } 4817 } 4818 4819 #ifndef NDEBUG 4820 // All dominating loops must have preheaders, or SCEVExpander may not be able 4821 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4822 // 4823 // IVUsers analysis should only create users that are dominated by simple loop 4824 // headers. Since this loop should dominate all of its users, its user list 4825 // should be empty if this loop itself is not within a simple loop nest. 4826 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4827 Rung; Rung = Rung->getIDom()) { 4828 BasicBlock *BB = Rung->getBlock(); 4829 const Loop *DomLoop = LI.getLoopFor(BB); 4830 if (DomLoop && DomLoop->getHeader() == BB) { 4831 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4832 } 4833 } 4834 #endif // DEBUG 4835 4836 DEBUG(dbgs() << "\nLSR on loop "; 4837 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4838 dbgs() << ":\n"); 4839 4840 // First, perform some low-level loop optimizations. 4841 OptimizeShadowIV(); 4842 OptimizeLoopTermCond(); 4843 4844 // If loop preparation eliminates all interesting IV users, bail. 4845 if (IU.empty()) return; 4846 4847 // Skip nested loops until we can model them better with formulae. 4848 if (!L->empty()) { 4849 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4850 return; 4851 } 4852 4853 // Start collecting data and preparing for the solver. 4854 CollectChains(); 4855 CollectInterestingTypesAndFactors(); 4856 CollectFixupsAndInitialFormulae(); 4857 CollectLoopInvariantFixupsAndFormulae(); 4858 4859 assert(!Uses.empty() && "IVUsers reported at least one use"); 4860 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4861 print_uses(dbgs())); 4862 4863 // Now use the reuse data to generate a bunch of interesting ways 4864 // to formulate the values needed for the uses. 4865 GenerateAllReuseFormulae(); 4866 4867 FilterOutUndesirableDedicatedRegisters(); 4868 NarrowSearchSpaceUsingHeuristics(); 4869 4870 SmallVector<const Formula *, 8> Solution; 4871 Solve(Solution); 4872 4873 // Release memory that is no longer needed. 4874 Factors.clear(); 4875 Types.clear(); 4876 RegUses.clear(); 4877 4878 if (Solution.empty()) 4879 return; 4880 4881 #ifndef NDEBUG 4882 // Formulae should be legal. 4883 for (const LSRUse &LU : Uses) { 4884 for (const Formula &F : LU.Formulae) 4885 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4886 F) && "Illegal formula generated!"); 4887 }; 4888 #endif 4889 4890 // Now that we've decided what we want, make it so. 4891 ImplementSolution(Solution, P); 4892 } 4893 4894 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4895 if (Factors.empty() && Types.empty()) return; 4896 4897 OS << "LSR has identified the following interesting factors and types: "; 4898 bool First = true; 4899 4900 for (int64_t Factor : Factors) { 4901 if (!First) OS << ", "; 4902 First = false; 4903 OS << '*' << Factor; 4904 } 4905 4906 for (Type *Ty : Types) { 4907 if (!First) OS << ", "; 4908 First = false; 4909 OS << '(' << *Ty << ')'; 4910 } 4911 OS << '\n'; 4912 } 4913 4914 void LSRInstance::print_fixups(raw_ostream &OS) const { 4915 OS << "LSR is examining the following fixup sites:\n"; 4916 for (const LSRFixup &LF : Fixups) { 4917 dbgs() << " "; 4918 LF.print(OS); 4919 OS << '\n'; 4920 } 4921 } 4922 4923 void LSRInstance::print_uses(raw_ostream &OS) const { 4924 OS << "LSR is examining the following uses:\n"; 4925 for (const LSRUse &LU : Uses) { 4926 dbgs() << " "; 4927 LU.print(OS); 4928 OS << '\n'; 4929 for (const Formula &F : LU.Formulae) { 4930 OS << " "; 4931 F.print(OS); 4932 OS << '\n'; 4933 } 4934 } 4935 } 4936 4937 void LSRInstance::print(raw_ostream &OS) const { 4938 print_factors_and_types(OS); 4939 print_fixups(OS); 4940 print_uses(OS); 4941 } 4942 4943 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4944 void LSRInstance::dump() const { 4945 print(errs()); errs() << '\n'; 4946 } 4947 #endif 4948 4949 namespace { 4950 4951 class LoopStrengthReduce : public LoopPass { 4952 public: 4953 static char ID; // Pass ID, replacement for typeid 4954 LoopStrengthReduce(); 4955 4956 private: 4957 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4958 void getAnalysisUsage(AnalysisUsage &AU) const override; 4959 }; 4960 4961 } 4962 4963 char LoopStrengthReduce::ID = 0; 4964 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4965 "Loop Strength Reduction", false, false) 4966 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4967 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4968 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4969 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4970 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4971 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4972 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4973 "Loop Strength Reduction", false, false) 4974 4975 4976 Pass *llvm::createLoopStrengthReducePass() { 4977 return new LoopStrengthReduce(); 4978 } 4979 4980 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4981 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4982 } 4983 4984 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4985 // We split critical edges, so we change the CFG. However, we do update 4986 // many analyses if they are around. 4987 AU.addPreservedID(LoopSimplifyID); 4988 4989 AU.addRequired<LoopInfoWrapperPass>(); 4990 AU.addPreserved<LoopInfoWrapperPass>(); 4991 AU.addRequiredID(LoopSimplifyID); 4992 AU.addRequired<DominatorTreeWrapperPass>(); 4993 AU.addPreserved<DominatorTreeWrapperPass>(); 4994 AU.addRequired<ScalarEvolutionWrapperPass>(); 4995 AU.addPreserved<ScalarEvolutionWrapperPass>(); 4996 // Requiring LoopSimplify a second time here prevents IVUsers from running 4997 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4998 AU.addRequiredID(LoopSimplifyID); 4999 AU.addRequired<IVUsers>(); 5000 AU.addPreserved<IVUsers>(); 5001 AU.addRequired<TargetTransformInfoWrapperPass>(); 5002 } 5003 5004 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5005 if (skipOptnoneFunction(L)) 5006 return false; 5007 5008 bool Changed = false; 5009 5010 // Run the main LSR transformation. 5011 Changed |= LSRInstance(L, this).getChanged(); 5012 5013 // Remove any extra phis created by processing inner loops. 5014 Changed |= DeleteDeadPHIs(L->getHeader()); 5015 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5016 SmallVector<WeakVH, 16> DeadInsts; 5017 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5018 SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL, 5019 "lsr"); 5020 #ifndef NDEBUG 5021 Rewriter.setDebugType(DEBUG_TYPE); 5022 #endif 5023 unsigned numFolded = Rewriter.replaceCongruentIVs( 5024 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5025 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5026 *L->getHeader()->getParent())); 5027 if (numFolded) { 5028 Changed = true; 5029 DeleteTriviallyDeadInstructions(DeadInsts); 5030 DeleteDeadPHIs(L->getHeader()); 5031 } 5032 } 5033 return Changed; 5034 } 5035