1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/ADT/SmallBitVector.h" 69 #include "llvm/ADT/SetVector.h" 70 #include "llvm/ADT/DenseSet.h" 71 #include "llvm/Support/Debug.h" 72 #include "llvm/Support/ValueHandle.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/Target/TargetLowering.h" 75 #include <algorithm> 76 using namespace llvm; 77 78 namespace { 79 80 /// RegSortData - This class holds data which is used to order reuse candidates. 81 class RegSortData { 82 public: 83 /// UsedByIndices - This represents the set of LSRUse indices which reference 84 /// a particular register. 85 SmallBitVector UsedByIndices; 86 87 RegSortData() {} 88 89 void print(raw_ostream &OS) const; 90 void dump() const; 91 }; 92 93 } 94 95 void RegSortData::print(raw_ostream &OS) const { 96 OS << "[NumUses=" << UsedByIndices.count() << ']'; 97 } 98 99 void RegSortData::dump() const { 100 print(errs()); errs() << '\n'; 101 } 102 103 namespace { 104 105 /// RegUseTracker - Map register candidates to information about how they are 106 /// used. 107 class RegUseTracker { 108 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 109 110 RegUsesTy RegUsesMap; 111 SmallVector<const SCEV *, 16> RegSequence; 112 113 public: 114 void CountRegister(const SCEV *Reg, size_t LUIdx); 115 void DropRegister(const SCEV *Reg, size_t LUIdx); 116 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 117 118 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 119 120 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 121 122 void clear(); 123 124 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 125 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 126 iterator begin() { return RegSequence.begin(); } 127 iterator end() { return RegSequence.end(); } 128 const_iterator begin() const { return RegSequence.begin(); } 129 const_iterator end() const { return RegSequence.end(); } 130 }; 131 132 } 133 134 void 135 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 136 std::pair<RegUsesTy::iterator, bool> Pair = 137 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 138 RegSortData &RSD = Pair.first->second; 139 if (Pair.second) 140 RegSequence.push_back(Reg); 141 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 142 RSD.UsedByIndices.set(LUIdx); 143 } 144 145 void 146 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 147 RegUsesTy::iterator It = RegUsesMap.find(Reg); 148 assert(It != RegUsesMap.end()); 149 RegSortData &RSD = It->second; 150 assert(RSD.UsedByIndices.size() > LUIdx); 151 RSD.UsedByIndices.reset(LUIdx); 152 } 153 154 void 155 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 156 assert(LUIdx <= LastLUIdx); 157 158 // Update RegUses. The data structure is not optimized for this purpose; 159 // we must iterate through it and update each of the bit vectors. 160 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 161 I != E; ++I) { 162 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 163 if (LUIdx < UsedByIndices.size()) 164 UsedByIndices[LUIdx] = 165 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 166 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 167 } 168 } 169 170 bool 171 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 172 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 173 if (I == RegUsesMap.end()) 174 return false; 175 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 176 int i = UsedByIndices.find_first(); 177 if (i == -1) return false; 178 if ((size_t)i != LUIdx) return true; 179 return UsedByIndices.find_next(i) != -1; 180 } 181 182 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 183 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 184 assert(I != RegUsesMap.end() && "Unknown register!"); 185 return I->second.UsedByIndices; 186 } 187 188 void RegUseTracker::clear() { 189 RegUsesMap.clear(); 190 RegSequence.clear(); 191 } 192 193 namespace { 194 195 /// Formula - This class holds information that describes a formula for 196 /// computing satisfying a use. It may include broken-out immediates and scaled 197 /// registers. 198 struct Formula { 199 /// AM - This is used to represent complex addressing, as well as other kinds 200 /// of interesting uses. 201 TargetLowering::AddrMode AM; 202 203 /// BaseRegs - The list of "base" registers for this use. When this is 204 /// non-empty, AM.HasBaseReg should be set to true. 205 SmallVector<const SCEV *, 2> BaseRegs; 206 207 /// ScaledReg - The 'scaled' register for this use. This should be non-null 208 /// when AM.Scale is not zero. 209 const SCEV *ScaledReg; 210 211 Formula() : ScaledReg(0) {} 212 213 void InitialMatch(const SCEV *S, Loop *L, 214 ScalarEvolution &SE, DominatorTree &DT); 215 216 unsigned getNumRegs() const; 217 const Type *getType() const; 218 219 void DeleteBaseReg(const SCEV *&S); 220 221 bool referencesReg(const SCEV *S) const; 222 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 223 const RegUseTracker &RegUses) const; 224 225 void print(raw_ostream &OS) const; 226 void dump() const; 227 }; 228 229 } 230 231 /// DoInitialMatch - Recursion helper for InitialMatch. 232 static void DoInitialMatch(const SCEV *S, Loop *L, 233 SmallVectorImpl<const SCEV *> &Good, 234 SmallVectorImpl<const SCEV *> &Bad, 235 ScalarEvolution &SE, DominatorTree &DT) { 236 // Collect expressions which properly dominate the loop header. 237 if (S->properlyDominates(L->getHeader(), &DT)) { 238 Good.push_back(S); 239 return; 240 } 241 242 // Look at add operands. 243 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 244 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 245 I != E; ++I) 246 DoInitialMatch(*I, L, Good, Bad, SE, DT); 247 return; 248 } 249 250 // Look at addrec operands. 251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 252 if (!AR->getStart()->isZero()) { 253 DoInitialMatch(AR->getStart(), L, Good, Bad, SE, DT); 254 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 255 AR->getStepRecurrence(SE), 256 AR->getLoop()), 257 L, Good, Bad, SE, DT); 258 return; 259 } 260 261 // Handle a multiplication by -1 (negation) if it didn't fold. 262 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 263 if (Mul->getOperand(0)->isAllOnesValue()) { 264 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 265 const SCEV *NewMul = SE.getMulExpr(Ops); 266 267 SmallVector<const SCEV *, 4> MyGood; 268 SmallVector<const SCEV *, 4> MyBad; 269 DoInitialMatch(NewMul, L, MyGood, MyBad, SE, DT); 270 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 271 SE.getEffectiveSCEVType(NewMul->getType()))); 272 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 273 E = MyGood.end(); I != E; ++I) 274 Good.push_back(SE.getMulExpr(NegOne, *I)); 275 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 276 E = MyBad.end(); I != E; ++I) 277 Bad.push_back(SE.getMulExpr(NegOne, *I)); 278 return; 279 } 280 281 // Ok, we can't do anything interesting. Just stuff the whole thing into a 282 // register and hope for the best. 283 Bad.push_back(S); 284 } 285 286 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 287 /// attempting to keep all loop-invariant and loop-computable values in a 288 /// single base register. 289 void Formula::InitialMatch(const SCEV *S, Loop *L, 290 ScalarEvolution &SE, DominatorTree &DT) { 291 SmallVector<const SCEV *, 4> Good; 292 SmallVector<const SCEV *, 4> Bad; 293 DoInitialMatch(S, L, Good, Bad, SE, DT); 294 if (!Good.empty()) { 295 const SCEV *Sum = SE.getAddExpr(Good); 296 if (!Sum->isZero()) 297 BaseRegs.push_back(Sum); 298 AM.HasBaseReg = true; 299 } 300 if (!Bad.empty()) { 301 const SCEV *Sum = SE.getAddExpr(Bad); 302 if (!Sum->isZero()) 303 BaseRegs.push_back(Sum); 304 AM.HasBaseReg = true; 305 } 306 } 307 308 /// getNumRegs - Return the total number of register operands used by this 309 /// formula. This does not include register uses implied by non-constant 310 /// addrec strides. 311 unsigned Formula::getNumRegs() const { 312 return !!ScaledReg + BaseRegs.size(); 313 } 314 315 /// getType - Return the type of this formula, if it has one, or null 316 /// otherwise. This type is meaningless except for the bit size. 317 const Type *Formula::getType() const { 318 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 319 ScaledReg ? ScaledReg->getType() : 320 AM.BaseGV ? AM.BaseGV->getType() : 321 0; 322 } 323 324 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 325 void Formula::DeleteBaseReg(const SCEV *&S) { 326 if (&S != &BaseRegs.back()) 327 std::swap(S, BaseRegs.back()); 328 BaseRegs.pop_back(); 329 } 330 331 /// referencesReg - Test if this formula references the given register. 332 bool Formula::referencesReg(const SCEV *S) const { 333 return S == ScaledReg || 334 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 335 } 336 337 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 338 /// which are used by uses other than the use with the given index. 339 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 340 const RegUseTracker &RegUses) const { 341 if (ScaledReg) 342 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 343 return true; 344 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 345 E = BaseRegs.end(); I != E; ++I) 346 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 347 return true; 348 return false; 349 } 350 351 void Formula::print(raw_ostream &OS) const { 352 bool First = true; 353 if (AM.BaseGV) { 354 if (!First) OS << " + "; else First = false; 355 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 356 } 357 if (AM.BaseOffs != 0) { 358 if (!First) OS << " + "; else First = false; 359 OS << AM.BaseOffs; 360 } 361 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 362 E = BaseRegs.end(); I != E; ++I) { 363 if (!First) OS << " + "; else First = false; 364 OS << "reg(" << **I << ')'; 365 } 366 if (AM.HasBaseReg && BaseRegs.empty()) { 367 if (!First) OS << " + "; else First = false; 368 OS << "**error: HasBaseReg**"; 369 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 370 if (!First) OS << " + "; else First = false; 371 OS << "**error: !HasBaseReg**"; 372 } 373 if (AM.Scale != 0) { 374 if (!First) OS << " + "; else First = false; 375 OS << AM.Scale << "*reg("; 376 if (ScaledReg) 377 OS << *ScaledReg; 378 else 379 OS << "<unknown>"; 380 OS << ')'; 381 } 382 } 383 384 void Formula::dump() const { 385 print(errs()); errs() << '\n'; 386 } 387 388 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 389 /// without changing its value. 390 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 391 const Type *WideTy = 392 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 393 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 394 } 395 396 /// isAddSExtable - Return true if the given add can be sign-extended 397 /// without changing its value. 398 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 399 const Type *WideTy = 400 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 401 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 402 } 403 404 /// isMulSExtable - Return true if the given mul can be sign-extended 405 /// without changing its value. 406 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 407 const Type *WideTy = 408 IntegerType::get(SE.getContext(), 409 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 410 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 411 } 412 413 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 414 /// and if the remainder is known to be zero, or null otherwise. If 415 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 416 /// to Y, ignoring that the multiplication may overflow, which is useful when 417 /// the result will be used in a context where the most significant bits are 418 /// ignored. 419 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 420 ScalarEvolution &SE, 421 bool IgnoreSignificantBits = false) { 422 // Handle the trivial case, which works for any SCEV type. 423 if (LHS == RHS) 424 return SE.getConstant(LHS->getType(), 1); 425 426 // Handle a few RHS special cases. 427 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 428 if (RC) { 429 const APInt &RA = RC->getValue()->getValue(); 430 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 431 // some folding. 432 if (RA.isAllOnesValue()) 433 return SE.getMulExpr(LHS, RC); 434 // Handle x /s 1 as x. 435 if (RA == 1) 436 return LHS; 437 } 438 439 // Check for a division of a constant by a constant. 440 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 441 if (!RC) 442 return 0; 443 const APInt &LA = C->getValue()->getValue(); 444 const APInt &RA = RC->getValue()->getValue(); 445 if (LA.srem(RA) != 0) 446 return 0; 447 return SE.getConstant(LA.sdiv(RA)); 448 } 449 450 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 451 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 452 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 453 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 454 IgnoreSignificantBits); 455 if (!Step) return 0; 456 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 457 IgnoreSignificantBits); 458 if (!Start) return 0; 459 return SE.getAddRecExpr(Start, Step, AR->getLoop()); 460 } 461 return 0; 462 } 463 464 // Distribute the sdiv over add operands, if the add doesn't overflow. 465 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 466 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 467 SmallVector<const SCEV *, 8> Ops; 468 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 469 I != E; ++I) { 470 const SCEV *Op = getExactSDiv(*I, RHS, SE, 471 IgnoreSignificantBits); 472 if (!Op) return 0; 473 Ops.push_back(Op); 474 } 475 return SE.getAddExpr(Ops); 476 } 477 return 0; 478 } 479 480 // Check for a multiply operand that we can pull RHS out of. 481 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 482 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 483 SmallVector<const SCEV *, 4> Ops; 484 bool Found = false; 485 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 486 I != E; ++I) { 487 const SCEV *S = *I; 488 if (!Found) 489 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 490 IgnoreSignificantBits)) { 491 S = Q; 492 Found = true; 493 } 494 Ops.push_back(S); 495 } 496 return Found ? SE.getMulExpr(Ops) : 0; 497 } 498 return 0; 499 } 500 501 // Otherwise we don't know. 502 return 0; 503 } 504 505 /// ExtractImmediate - If S involves the addition of a constant integer value, 506 /// return that integer value, and mutate S to point to a new SCEV with that 507 /// value excluded. 508 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 509 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 510 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 511 S = SE.getConstant(C->getType(), 0); 512 return C->getValue()->getSExtValue(); 513 } 514 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 515 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 516 int64_t Result = ExtractImmediate(NewOps.front(), SE); 517 if (Result != 0) 518 S = SE.getAddExpr(NewOps); 519 return Result; 520 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 521 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 522 int64_t Result = ExtractImmediate(NewOps.front(), SE); 523 if (Result != 0) 524 S = SE.getAddRecExpr(NewOps, AR->getLoop()); 525 return Result; 526 } 527 return 0; 528 } 529 530 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 531 /// return that symbol, and mutate S to point to a new SCEV with that 532 /// value excluded. 533 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 534 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 535 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 536 S = SE.getConstant(GV->getType(), 0); 537 return GV; 538 } 539 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 540 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 541 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 542 if (Result) 543 S = SE.getAddExpr(NewOps); 544 return Result; 545 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 546 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 547 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 548 if (Result) 549 S = SE.getAddRecExpr(NewOps, AR->getLoop()); 550 return Result; 551 } 552 return 0; 553 } 554 555 /// isAddressUse - Returns true if the specified instruction is using the 556 /// specified value as an address. 557 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 558 bool isAddress = isa<LoadInst>(Inst); 559 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 560 if (SI->getOperand(1) == OperandVal) 561 isAddress = true; 562 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 563 // Addressing modes can also be folded into prefetches and a variety 564 // of intrinsics. 565 switch (II->getIntrinsicID()) { 566 default: break; 567 case Intrinsic::prefetch: 568 case Intrinsic::x86_sse2_loadu_dq: 569 case Intrinsic::x86_sse2_loadu_pd: 570 case Intrinsic::x86_sse_loadu_ps: 571 case Intrinsic::x86_sse_storeu_ps: 572 case Intrinsic::x86_sse2_storeu_pd: 573 case Intrinsic::x86_sse2_storeu_dq: 574 case Intrinsic::x86_sse2_storel_dq: 575 if (II->getArgOperand(0) == OperandVal) 576 isAddress = true; 577 break; 578 } 579 } 580 return isAddress; 581 } 582 583 /// getAccessType - Return the type of the memory being accessed. 584 static const Type *getAccessType(const Instruction *Inst) { 585 const Type *AccessTy = Inst->getType(); 586 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 587 AccessTy = SI->getOperand(0)->getType(); 588 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 589 // Addressing modes can also be folded into prefetches and a variety 590 // of intrinsics. 591 switch (II->getIntrinsicID()) { 592 default: break; 593 case Intrinsic::x86_sse_storeu_ps: 594 case Intrinsic::x86_sse2_storeu_pd: 595 case Intrinsic::x86_sse2_storeu_dq: 596 case Intrinsic::x86_sse2_storel_dq: 597 AccessTy = II->getArgOperand(0)->getType(); 598 break; 599 } 600 } 601 602 // All pointers have the same requirements, so canonicalize them to an 603 // arbitrary pointer type to minimize variation. 604 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 605 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 606 PTy->getAddressSpace()); 607 608 return AccessTy; 609 } 610 611 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 612 /// specified set are trivially dead, delete them and see if this makes any of 613 /// their operands subsequently dead. 614 static bool 615 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 616 bool Changed = false; 617 618 while (!DeadInsts.empty()) { 619 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 620 621 if (I == 0 || !isInstructionTriviallyDead(I)) 622 continue; 623 624 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 625 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 626 *OI = 0; 627 if (U->use_empty()) 628 DeadInsts.push_back(U); 629 } 630 631 I->eraseFromParent(); 632 Changed = true; 633 } 634 635 return Changed; 636 } 637 638 namespace { 639 640 /// Cost - This class is used to measure and compare candidate formulae. 641 class Cost { 642 /// TODO: Some of these could be merged. Also, a lexical ordering 643 /// isn't always optimal. 644 unsigned NumRegs; 645 unsigned AddRecCost; 646 unsigned NumIVMuls; 647 unsigned NumBaseAdds; 648 unsigned ImmCost; 649 unsigned SetupCost; 650 651 public: 652 Cost() 653 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 654 SetupCost(0) {} 655 656 bool operator<(const Cost &Other) const; 657 658 void Loose(); 659 660 void RateFormula(const Formula &F, 661 SmallPtrSet<const SCEV *, 16> &Regs, 662 const DenseSet<const SCEV *> &VisitedRegs, 663 const Loop *L, 664 const SmallVectorImpl<int64_t> &Offsets, 665 ScalarEvolution &SE, DominatorTree &DT); 666 667 void print(raw_ostream &OS) const; 668 void dump() const; 669 670 private: 671 void RateRegister(const SCEV *Reg, 672 SmallPtrSet<const SCEV *, 16> &Regs, 673 const Loop *L, 674 ScalarEvolution &SE, DominatorTree &DT); 675 void RatePrimaryRegister(const SCEV *Reg, 676 SmallPtrSet<const SCEV *, 16> &Regs, 677 const Loop *L, 678 ScalarEvolution &SE, DominatorTree &DT); 679 }; 680 681 } 682 683 /// RateRegister - Tally up interesting quantities from the given register. 684 void Cost::RateRegister(const SCEV *Reg, 685 SmallPtrSet<const SCEV *, 16> &Regs, 686 const Loop *L, 687 ScalarEvolution &SE, DominatorTree &DT) { 688 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 689 if (AR->getLoop() == L) 690 AddRecCost += 1; /// TODO: This should be a function of the stride. 691 692 // If this is an addrec for a loop that's already been visited by LSR, 693 // don't second-guess its addrec phi nodes. LSR isn't currently smart 694 // enough to reason about more than one loop at a time. Consider these 695 // registers free and leave them alone. 696 else if (L->contains(AR->getLoop()) || 697 (!AR->getLoop()->contains(L) && 698 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 699 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 700 PHINode *PN = dyn_cast<PHINode>(I); ++I) 701 if (SE.isSCEVable(PN->getType()) && 702 (SE.getEffectiveSCEVType(PN->getType()) == 703 SE.getEffectiveSCEVType(AR->getType())) && 704 SE.getSCEV(PN) == AR) 705 return; 706 707 // If this isn't one of the addrecs that the loop already has, it 708 // would require a costly new phi and add. TODO: This isn't 709 // precisely modeled right now. 710 ++NumBaseAdds; 711 if (!Regs.count(AR->getStart())) 712 RateRegister(AR->getStart(), Regs, L, SE, DT); 713 } 714 715 // Add the step value register, if it needs one. 716 // TODO: The non-affine case isn't precisely modeled here. 717 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) 718 if (!Regs.count(AR->getStart())) 719 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 720 } 721 ++NumRegs; 722 723 // Rough heuristic; favor registers which don't require extra setup 724 // instructions in the preheader. 725 if (!isa<SCEVUnknown>(Reg) && 726 !isa<SCEVConstant>(Reg) && 727 !(isa<SCEVAddRecExpr>(Reg) && 728 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 729 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 730 ++SetupCost; 731 732 NumIVMuls += isa<SCEVMulExpr>(Reg) && 733 Reg->hasComputableLoopEvolution(L); 734 } 735 736 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 737 /// before, rate it. 738 void Cost::RatePrimaryRegister(const SCEV *Reg, 739 SmallPtrSet<const SCEV *, 16> &Regs, 740 const Loop *L, 741 ScalarEvolution &SE, DominatorTree &DT) { 742 if (Regs.insert(Reg)) 743 RateRegister(Reg, Regs, L, SE, DT); 744 } 745 746 void Cost::RateFormula(const Formula &F, 747 SmallPtrSet<const SCEV *, 16> &Regs, 748 const DenseSet<const SCEV *> &VisitedRegs, 749 const Loop *L, 750 const SmallVectorImpl<int64_t> &Offsets, 751 ScalarEvolution &SE, DominatorTree &DT) { 752 // Tally up the registers. 753 if (const SCEV *ScaledReg = F.ScaledReg) { 754 if (VisitedRegs.count(ScaledReg)) { 755 Loose(); 756 return; 757 } 758 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); 759 } 760 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 761 E = F.BaseRegs.end(); I != E; ++I) { 762 const SCEV *BaseReg = *I; 763 if (VisitedRegs.count(BaseReg)) { 764 Loose(); 765 return; 766 } 767 RatePrimaryRegister(BaseReg, Regs, L, SE, DT); 768 } 769 770 if (F.BaseRegs.size() > 1) 771 NumBaseAdds += F.BaseRegs.size() - 1; 772 773 // Tally up the non-zero immediates. 774 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 775 E = Offsets.end(); I != E; ++I) { 776 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 777 if (F.AM.BaseGV) 778 ImmCost += 64; // Handle symbolic values conservatively. 779 // TODO: This should probably be the pointer size. 780 else if (Offset != 0) 781 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 782 } 783 } 784 785 /// Loose - Set this cost to a loosing value. 786 void Cost::Loose() { 787 NumRegs = ~0u; 788 AddRecCost = ~0u; 789 NumIVMuls = ~0u; 790 NumBaseAdds = ~0u; 791 ImmCost = ~0u; 792 SetupCost = ~0u; 793 } 794 795 /// operator< - Choose the lower cost. 796 bool Cost::operator<(const Cost &Other) const { 797 if (NumRegs != Other.NumRegs) 798 return NumRegs < Other.NumRegs; 799 if (AddRecCost != Other.AddRecCost) 800 return AddRecCost < Other.AddRecCost; 801 if (NumIVMuls != Other.NumIVMuls) 802 return NumIVMuls < Other.NumIVMuls; 803 if (NumBaseAdds != Other.NumBaseAdds) 804 return NumBaseAdds < Other.NumBaseAdds; 805 if (ImmCost != Other.ImmCost) 806 return ImmCost < Other.ImmCost; 807 if (SetupCost != Other.SetupCost) 808 return SetupCost < Other.SetupCost; 809 return false; 810 } 811 812 void Cost::print(raw_ostream &OS) const { 813 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 814 if (AddRecCost != 0) 815 OS << ", with addrec cost " << AddRecCost; 816 if (NumIVMuls != 0) 817 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 818 if (NumBaseAdds != 0) 819 OS << ", plus " << NumBaseAdds << " base add" 820 << (NumBaseAdds == 1 ? "" : "s"); 821 if (ImmCost != 0) 822 OS << ", plus " << ImmCost << " imm cost"; 823 if (SetupCost != 0) 824 OS << ", plus " << SetupCost << " setup cost"; 825 } 826 827 void Cost::dump() const { 828 print(errs()); errs() << '\n'; 829 } 830 831 namespace { 832 833 /// LSRFixup - An operand value in an instruction which is to be replaced 834 /// with some equivalent, possibly strength-reduced, replacement. 835 struct LSRFixup { 836 /// UserInst - The instruction which will be updated. 837 Instruction *UserInst; 838 839 /// OperandValToReplace - The operand of the instruction which will 840 /// be replaced. The operand may be used more than once; every instance 841 /// will be replaced. 842 Value *OperandValToReplace; 843 844 /// PostIncLoops - If this user is to use the post-incremented value of an 845 /// induction variable, this variable is non-null and holds the loop 846 /// associated with the induction variable. 847 PostIncLoopSet PostIncLoops; 848 849 /// LUIdx - The index of the LSRUse describing the expression which 850 /// this fixup needs, minus an offset (below). 851 size_t LUIdx; 852 853 /// Offset - A constant offset to be added to the LSRUse expression. 854 /// This allows multiple fixups to share the same LSRUse with different 855 /// offsets, for example in an unrolled loop. 856 int64_t Offset; 857 858 bool isUseFullyOutsideLoop(const Loop *L) const; 859 860 LSRFixup(); 861 862 void print(raw_ostream &OS) const; 863 void dump() const; 864 }; 865 866 } 867 868 LSRFixup::LSRFixup() 869 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 870 871 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 872 /// value outside of the given loop. 873 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 874 // PHI nodes use their value in their incoming blocks. 875 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 876 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 877 if (PN->getIncomingValue(i) == OperandValToReplace && 878 L->contains(PN->getIncomingBlock(i))) 879 return false; 880 return true; 881 } 882 883 return !L->contains(UserInst); 884 } 885 886 void LSRFixup::print(raw_ostream &OS) const { 887 OS << "UserInst="; 888 // Store is common and interesting enough to be worth special-casing. 889 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 890 OS << "store "; 891 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 892 } else if (UserInst->getType()->isVoidTy()) 893 OS << UserInst->getOpcodeName(); 894 else 895 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 896 897 OS << ", OperandValToReplace="; 898 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 899 900 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 901 E = PostIncLoops.end(); I != E; ++I) { 902 OS << ", PostIncLoop="; 903 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 904 } 905 906 if (LUIdx != ~size_t(0)) 907 OS << ", LUIdx=" << LUIdx; 908 909 if (Offset != 0) 910 OS << ", Offset=" << Offset; 911 } 912 913 void LSRFixup::dump() const { 914 print(errs()); errs() << '\n'; 915 } 916 917 namespace { 918 919 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 920 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 921 struct UniquifierDenseMapInfo { 922 static SmallVector<const SCEV *, 2> getEmptyKey() { 923 SmallVector<const SCEV *, 2> V; 924 V.push_back(reinterpret_cast<const SCEV *>(-1)); 925 return V; 926 } 927 928 static SmallVector<const SCEV *, 2> getTombstoneKey() { 929 SmallVector<const SCEV *, 2> V; 930 V.push_back(reinterpret_cast<const SCEV *>(-2)); 931 return V; 932 } 933 934 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 935 unsigned Result = 0; 936 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 937 E = V.end(); I != E; ++I) 938 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 939 return Result; 940 } 941 942 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 943 const SmallVector<const SCEV *, 2> &RHS) { 944 return LHS == RHS; 945 } 946 }; 947 948 /// LSRUse - This class holds the state that LSR keeps for each use in 949 /// IVUsers, as well as uses invented by LSR itself. It includes information 950 /// about what kinds of things can be folded into the user, information about 951 /// the user itself, and information about how the use may be satisfied. 952 /// TODO: Represent multiple users of the same expression in common? 953 class LSRUse { 954 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 955 956 public: 957 /// KindType - An enum for a kind of use, indicating what types of 958 /// scaled and immediate operands it might support. 959 enum KindType { 960 Basic, ///< A normal use, with no folding. 961 Special, ///< A special case of basic, allowing -1 scales. 962 Address, ///< An address use; folding according to TargetLowering 963 ICmpZero ///< An equality icmp with both operands folded into one. 964 // TODO: Add a generic icmp too? 965 }; 966 967 KindType Kind; 968 const Type *AccessTy; 969 970 SmallVector<int64_t, 8> Offsets; 971 int64_t MinOffset; 972 int64_t MaxOffset; 973 974 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 975 /// LSRUse are outside of the loop, in which case some special-case heuristics 976 /// may be used. 977 bool AllFixupsOutsideLoop; 978 979 /// WidestFixupType - This records the widest use type for any fixup using 980 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 981 /// max fixup widths to be equivalent, because the narrower one may be relying 982 /// on the implicit truncation to truncate away bogus bits. 983 const Type *WidestFixupType; 984 985 /// Formulae - A list of ways to build a value that can satisfy this user. 986 /// After the list is populated, one of these is selected heuristically and 987 /// used to formulate a replacement for OperandValToReplace in UserInst. 988 SmallVector<Formula, 12> Formulae; 989 990 /// Regs - The set of register candidates used by all formulae in this LSRUse. 991 SmallPtrSet<const SCEV *, 4> Regs; 992 993 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T), 994 MinOffset(INT64_MAX), 995 MaxOffset(INT64_MIN), 996 AllFixupsOutsideLoop(true), 997 WidestFixupType(0) {} 998 999 bool HasFormulaWithSameRegs(const Formula &F) const; 1000 bool InsertFormula(const Formula &F); 1001 void DeleteFormula(Formula &F); 1002 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1003 1004 void print(raw_ostream &OS) const; 1005 void dump() const; 1006 }; 1007 1008 } 1009 1010 /// HasFormula - Test whether this use as a formula which has the same 1011 /// registers as the given formula. 1012 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1013 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1014 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1015 // Unstable sort by host order ok, because this is only used for uniquifying. 1016 std::sort(Key.begin(), Key.end()); 1017 return Uniquifier.count(Key); 1018 } 1019 1020 /// InsertFormula - If the given formula has not yet been inserted, add it to 1021 /// the list, and return true. Return false otherwise. 1022 bool LSRUse::InsertFormula(const Formula &F) { 1023 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1024 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1025 // Unstable sort by host order ok, because this is only used for uniquifying. 1026 std::sort(Key.begin(), Key.end()); 1027 1028 if (!Uniquifier.insert(Key).second) 1029 return false; 1030 1031 // Using a register to hold the value of 0 is not profitable. 1032 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1033 "Zero allocated in a scaled register!"); 1034 #ifndef NDEBUG 1035 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1036 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1037 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1038 #endif 1039 1040 // Add the formula to the list. 1041 Formulae.push_back(F); 1042 1043 // Record registers now being used by this use. 1044 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1045 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1046 1047 return true; 1048 } 1049 1050 /// DeleteFormula - Remove the given formula from this use's list. 1051 void LSRUse::DeleteFormula(Formula &F) { 1052 if (&F != &Formulae.back()) 1053 std::swap(F, Formulae.back()); 1054 Formulae.pop_back(); 1055 assert(!Formulae.empty() && "LSRUse has no formulae left!"); 1056 } 1057 1058 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1059 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1060 // Now that we've filtered out some formulae, recompute the Regs set. 1061 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1062 Regs.clear(); 1063 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1064 E = Formulae.end(); I != E; ++I) { 1065 const Formula &F = *I; 1066 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1067 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1068 } 1069 1070 // Update the RegTracker. 1071 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1072 E = OldRegs.end(); I != E; ++I) 1073 if (!Regs.count(*I)) 1074 RegUses.DropRegister(*I, LUIdx); 1075 } 1076 1077 void LSRUse::print(raw_ostream &OS) const { 1078 OS << "LSR Use: Kind="; 1079 switch (Kind) { 1080 case Basic: OS << "Basic"; break; 1081 case Special: OS << "Special"; break; 1082 case ICmpZero: OS << "ICmpZero"; break; 1083 case Address: 1084 OS << "Address of "; 1085 if (AccessTy->isPointerTy()) 1086 OS << "pointer"; // the full pointer type could be really verbose 1087 else 1088 OS << *AccessTy; 1089 } 1090 1091 OS << ", Offsets={"; 1092 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1093 E = Offsets.end(); I != E; ++I) { 1094 OS << *I; 1095 if (llvm::next(I) != E) 1096 OS << ','; 1097 } 1098 OS << '}'; 1099 1100 if (AllFixupsOutsideLoop) 1101 OS << ", all-fixups-outside-loop"; 1102 1103 if (WidestFixupType) 1104 OS << ", widest fixup type: " << *WidestFixupType; 1105 } 1106 1107 void LSRUse::dump() const { 1108 print(errs()); errs() << '\n'; 1109 } 1110 1111 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1112 /// be completely folded into the user instruction at isel time. This includes 1113 /// address-mode folding and special icmp tricks. 1114 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1115 LSRUse::KindType Kind, const Type *AccessTy, 1116 const TargetLowering *TLI) { 1117 switch (Kind) { 1118 case LSRUse::Address: 1119 // If we have low-level target information, ask the target if it can 1120 // completely fold this address. 1121 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1122 1123 // Otherwise, just guess that reg+reg addressing is legal. 1124 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1125 1126 case LSRUse::ICmpZero: 1127 // There's not even a target hook for querying whether it would be legal to 1128 // fold a GV into an ICmp. 1129 if (AM.BaseGV) 1130 return false; 1131 1132 // ICmp only has two operands; don't allow more than two non-trivial parts. 1133 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1134 return false; 1135 1136 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1137 // putting the scaled register in the other operand of the icmp. 1138 if (AM.Scale != 0 && AM.Scale != -1) 1139 return false; 1140 1141 // If we have low-level target information, ask the target if it can fold an 1142 // integer immediate on an icmp. 1143 if (AM.BaseOffs != 0) { 1144 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs); 1145 return false; 1146 } 1147 1148 return true; 1149 1150 case LSRUse::Basic: 1151 // Only handle single-register values. 1152 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1153 1154 case LSRUse::Special: 1155 // Only handle -1 scales, or no scale. 1156 return AM.Scale == 0 || AM.Scale == -1; 1157 } 1158 1159 return false; 1160 } 1161 1162 static bool isLegalUse(TargetLowering::AddrMode AM, 1163 int64_t MinOffset, int64_t MaxOffset, 1164 LSRUse::KindType Kind, const Type *AccessTy, 1165 const TargetLowering *TLI) { 1166 // Check for overflow. 1167 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1168 (MinOffset > 0)) 1169 return false; 1170 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1171 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1172 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1173 // Check for overflow. 1174 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1175 (MaxOffset > 0)) 1176 return false; 1177 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1178 return isLegalUse(AM, Kind, AccessTy, TLI); 1179 } 1180 return false; 1181 } 1182 1183 static bool isAlwaysFoldable(int64_t BaseOffs, 1184 GlobalValue *BaseGV, 1185 bool HasBaseReg, 1186 LSRUse::KindType Kind, const Type *AccessTy, 1187 const TargetLowering *TLI) { 1188 // Fast-path: zero is always foldable. 1189 if (BaseOffs == 0 && !BaseGV) return true; 1190 1191 // Conservatively, create an address with an immediate and a 1192 // base and a scale. 1193 TargetLowering::AddrMode AM; 1194 AM.BaseOffs = BaseOffs; 1195 AM.BaseGV = BaseGV; 1196 AM.HasBaseReg = HasBaseReg; 1197 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1198 1199 // Canonicalize a scale of 1 to a base register if the formula doesn't 1200 // already have a base register. 1201 if (!AM.HasBaseReg && AM.Scale == 1) { 1202 AM.Scale = 0; 1203 AM.HasBaseReg = true; 1204 } 1205 1206 return isLegalUse(AM, Kind, AccessTy, TLI); 1207 } 1208 1209 static bool isAlwaysFoldable(const SCEV *S, 1210 int64_t MinOffset, int64_t MaxOffset, 1211 bool HasBaseReg, 1212 LSRUse::KindType Kind, const Type *AccessTy, 1213 const TargetLowering *TLI, 1214 ScalarEvolution &SE) { 1215 // Fast-path: zero is always foldable. 1216 if (S->isZero()) return true; 1217 1218 // Conservatively, create an address with an immediate and a 1219 // base and a scale. 1220 int64_t BaseOffs = ExtractImmediate(S, SE); 1221 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1222 1223 // If there's anything else involved, it's not foldable. 1224 if (!S->isZero()) return false; 1225 1226 // Fast-path: zero is always foldable. 1227 if (BaseOffs == 0 && !BaseGV) return true; 1228 1229 // Conservatively, create an address with an immediate and a 1230 // base and a scale. 1231 TargetLowering::AddrMode AM; 1232 AM.BaseOffs = BaseOffs; 1233 AM.BaseGV = BaseGV; 1234 AM.HasBaseReg = HasBaseReg; 1235 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1236 1237 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1238 } 1239 1240 namespace { 1241 1242 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1243 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1244 struct UseMapDenseMapInfo { 1245 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1246 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1247 } 1248 1249 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1250 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1251 } 1252 1253 static unsigned 1254 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1255 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1256 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1257 return Result; 1258 } 1259 1260 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1261 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1262 return LHS == RHS; 1263 } 1264 }; 1265 1266 /// LSRInstance - This class holds state for the main loop strength reduction 1267 /// logic. 1268 class LSRInstance { 1269 IVUsers &IU; 1270 ScalarEvolution &SE; 1271 DominatorTree &DT; 1272 LoopInfo &LI; 1273 const TargetLowering *const TLI; 1274 Loop *const L; 1275 bool Changed; 1276 1277 /// IVIncInsertPos - This is the insert position that the current loop's 1278 /// induction variable increment should be placed. In simple loops, this is 1279 /// the latch block's terminator. But in more complicated cases, this is a 1280 /// position which will dominate all the in-loop post-increment users. 1281 Instruction *IVIncInsertPos; 1282 1283 /// Factors - Interesting factors between use strides. 1284 SmallSetVector<int64_t, 8> Factors; 1285 1286 /// Types - Interesting use types, to facilitate truncation reuse. 1287 SmallSetVector<const Type *, 4> Types; 1288 1289 /// Fixups - The list of operands which are to be replaced. 1290 SmallVector<LSRFixup, 16> Fixups; 1291 1292 /// Uses - The list of interesting uses. 1293 SmallVector<LSRUse, 16> Uses; 1294 1295 /// RegUses - Track which uses use which register candidates. 1296 RegUseTracker RegUses; 1297 1298 void OptimizeShadowIV(); 1299 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1300 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1301 void OptimizeLoopTermCond(); 1302 1303 void CollectInterestingTypesAndFactors(); 1304 void CollectFixupsAndInitialFormulae(); 1305 1306 LSRFixup &getNewFixup() { 1307 Fixups.push_back(LSRFixup()); 1308 return Fixups.back(); 1309 } 1310 1311 // Support for sharing of LSRUses between LSRFixups. 1312 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1313 size_t, 1314 UseMapDenseMapInfo> UseMapTy; 1315 UseMapTy UseMap; 1316 1317 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1318 LSRUse::KindType Kind, const Type *AccessTy); 1319 1320 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1321 LSRUse::KindType Kind, 1322 const Type *AccessTy); 1323 1324 void DeleteUse(LSRUse &LU, size_t LUIdx); 1325 1326 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1327 1328 public: 1329 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1330 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1331 void CountRegisters(const Formula &F, size_t LUIdx); 1332 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1333 1334 void CollectLoopInvariantFixupsAndFormulae(); 1335 1336 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1337 unsigned Depth = 0); 1338 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1339 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1340 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1341 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1342 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1343 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1344 void GenerateCrossUseConstantOffsets(); 1345 void GenerateAllReuseFormulae(); 1346 1347 void FilterOutUndesirableDedicatedRegisters(); 1348 1349 size_t EstimateSearchSpaceComplexity() const; 1350 void NarrowSearchSpaceByDetectingSupersets(); 1351 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1352 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1353 void NarrowSearchSpaceByPickingWinnerRegs(); 1354 void NarrowSearchSpaceUsingHeuristics(); 1355 1356 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1357 Cost &SolutionCost, 1358 SmallVectorImpl<const Formula *> &Workspace, 1359 const Cost &CurCost, 1360 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1361 DenseSet<const SCEV *> &VisitedRegs) const; 1362 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1363 1364 BasicBlock::iterator 1365 HoistInsertPosition(BasicBlock::iterator IP, 1366 const SmallVectorImpl<Instruction *> &Inputs) const; 1367 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1368 const LSRFixup &LF, 1369 const LSRUse &LU) const; 1370 1371 Value *Expand(const LSRFixup &LF, 1372 const Formula &F, 1373 BasicBlock::iterator IP, 1374 SCEVExpander &Rewriter, 1375 SmallVectorImpl<WeakVH> &DeadInsts) const; 1376 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1377 const Formula &F, 1378 SCEVExpander &Rewriter, 1379 SmallVectorImpl<WeakVH> &DeadInsts, 1380 Pass *P) const; 1381 void Rewrite(const LSRFixup &LF, 1382 const Formula &F, 1383 SCEVExpander &Rewriter, 1384 SmallVectorImpl<WeakVH> &DeadInsts, 1385 Pass *P) const; 1386 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1387 Pass *P); 1388 1389 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1390 1391 bool getChanged() const { return Changed; } 1392 1393 void print_factors_and_types(raw_ostream &OS) const; 1394 void print_fixups(raw_ostream &OS) const; 1395 void print_uses(raw_ostream &OS) const; 1396 void print(raw_ostream &OS) const; 1397 void dump() const; 1398 }; 1399 1400 } 1401 1402 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1403 /// inside the loop then try to eliminate the cast operation. 1404 void LSRInstance::OptimizeShadowIV() { 1405 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1406 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1407 return; 1408 1409 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1410 UI != E; /* empty */) { 1411 IVUsers::const_iterator CandidateUI = UI; 1412 ++UI; 1413 Instruction *ShadowUse = CandidateUI->getUser(); 1414 const Type *DestTy = NULL; 1415 1416 /* If shadow use is a int->float cast then insert a second IV 1417 to eliminate this cast. 1418 1419 for (unsigned i = 0; i < n; ++i) 1420 foo((double)i); 1421 1422 is transformed into 1423 1424 double d = 0.0; 1425 for (unsigned i = 0; i < n; ++i, ++d) 1426 foo(d); 1427 */ 1428 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) 1429 DestTy = UCast->getDestTy(); 1430 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) 1431 DestTy = SCast->getDestTy(); 1432 if (!DestTy) continue; 1433 1434 if (TLI) { 1435 // If target does not support DestTy natively then do not apply 1436 // this transformation. 1437 EVT DVT = TLI->getValueType(DestTy); 1438 if (!TLI->isTypeLegal(DVT)) continue; 1439 } 1440 1441 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1442 if (!PH) continue; 1443 if (PH->getNumIncomingValues() != 2) continue; 1444 1445 const Type *SrcTy = PH->getType(); 1446 int Mantissa = DestTy->getFPMantissaWidth(); 1447 if (Mantissa == -1) continue; 1448 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1449 continue; 1450 1451 unsigned Entry, Latch; 1452 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1453 Entry = 0; 1454 Latch = 1; 1455 } else { 1456 Entry = 1; 1457 Latch = 0; 1458 } 1459 1460 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1461 if (!Init) continue; 1462 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); 1463 1464 BinaryOperator *Incr = 1465 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1466 if (!Incr) continue; 1467 if (Incr->getOpcode() != Instruction::Add 1468 && Incr->getOpcode() != Instruction::Sub) 1469 continue; 1470 1471 /* Initialize new IV, double d = 0.0 in above example. */ 1472 ConstantInt *C = NULL; 1473 if (Incr->getOperand(0) == PH) 1474 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1475 else if (Incr->getOperand(1) == PH) 1476 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1477 else 1478 continue; 1479 1480 if (!C) continue; 1481 1482 // Ignore negative constants, as the code below doesn't handle them 1483 // correctly. TODO: Remove this restriction. 1484 if (!C->getValue().isStrictlyPositive()) continue; 1485 1486 /* Add new PHINode. */ 1487 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH); 1488 1489 /* create new increment. '++d' in above example. */ 1490 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1491 BinaryOperator *NewIncr = 1492 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1493 Instruction::FAdd : Instruction::FSub, 1494 NewPH, CFP, "IV.S.next.", Incr); 1495 1496 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1497 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1498 1499 /* Remove cast operation */ 1500 ShadowUse->replaceAllUsesWith(NewPH); 1501 ShadowUse->eraseFromParent(); 1502 Changed = true; 1503 break; 1504 } 1505 } 1506 1507 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1508 /// set the IV user and stride information and return true, otherwise return 1509 /// false. 1510 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1511 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1512 if (UI->getUser() == Cond) { 1513 // NOTE: we could handle setcc instructions with multiple uses here, but 1514 // InstCombine does it as well for simple uses, it's not clear that it 1515 // occurs enough in real life to handle. 1516 CondUse = UI; 1517 return true; 1518 } 1519 return false; 1520 } 1521 1522 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1523 /// a max computation. 1524 /// 1525 /// This is a narrow solution to a specific, but acute, problem. For loops 1526 /// like this: 1527 /// 1528 /// i = 0; 1529 /// do { 1530 /// p[i] = 0.0; 1531 /// } while (++i < n); 1532 /// 1533 /// the trip count isn't just 'n', because 'n' might not be positive. And 1534 /// unfortunately this can come up even for loops where the user didn't use 1535 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1536 /// will commonly be lowered like this: 1537 // 1538 /// if (n > 0) { 1539 /// i = 0; 1540 /// do { 1541 /// p[i] = 0.0; 1542 /// } while (++i < n); 1543 /// } 1544 /// 1545 /// and then it's possible for subsequent optimization to obscure the if 1546 /// test in such a way that indvars can't find it. 1547 /// 1548 /// When indvars can't find the if test in loops like this, it creates a 1549 /// max expression, which allows it to give the loop a canonical 1550 /// induction variable: 1551 /// 1552 /// i = 0; 1553 /// max = n < 1 ? 1 : n; 1554 /// do { 1555 /// p[i] = 0.0; 1556 /// } while (++i != max); 1557 /// 1558 /// Canonical induction variables are necessary because the loop passes 1559 /// are designed around them. The most obvious example of this is the 1560 /// LoopInfo analysis, which doesn't remember trip count values. It 1561 /// expects to be able to rediscover the trip count each time it is 1562 /// needed, and it does this using a simple analysis that only succeeds if 1563 /// the loop has a canonical induction variable. 1564 /// 1565 /// However, when it comes time to generate code, the maximum operation 1566 /// can be quite costly, especially if it's inside of an outer loop. 1567 /// 1568 /// This function solves this problem by detecting this type of loop and 1569 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1570 /// the instructions for the maximum computation. 1571 /// 1572 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1573 // Check that the loop matches the pattern we're looking for. 1574 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1575 Cond->getPredicate() != CmpInst::ICMP_NE) 1576 return Cond; 1577 1578 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1579 if (!Sel || !Sel->hasOneUse()) return Cond; 1580 1581 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1582 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1583 return Cond; 1584 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1585 1586 // Add one to the backedge-taken count to get the trip count. 1587 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1588 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1589 1590 // Check for a max calculation that matches the pattern. There's no check 1591 // for ICMP_ULE here because the comparison would be with zero, which 1592 // isn't interesting. 1593 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1594 const SCEVNAryExpr *Max = 0; 1595 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1596 Pred = ICmpInst::ICMP_SLE; 1597 Max = S; 1598 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1599 Pred = ICmpInst::ICMP_SLT; 1600 Max = S; 1601 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1602 Pred = ICmpInst::ICMP_ULT; 1603 Max = U; 1604 } else { 1605 // No match; bail. 1606 return Cond; 1607 } 1608 1609 // To handle a max with more than two operands, this optimization would 1610 // require additional checking and setup. 1611 if (Max->getNumOperands() != 2) 1612 return Cond; 1613 1614 const SCEV *MaxLHS = Max->getOperand(0); 1615 const SCEV *MaxRHS = Max->getOperand(1); 1616 1617 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1618 // for a comparison with 1. For <= and >=, a comparison with zero. 1619 if (!MaxLHS || 1620 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1621 return Cond; 1622 1623 // Check the relevant induction variable for conformance to 1624 // the pattern. 1625 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1626 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1627 if (!AR || !AR->isAffine() || 1628 AR->getStart() != One || 1629 AR->getStepRecurrence(SE) != One) 1630 return Cond; 1631 1632 assert(AR->getLoop() == L && 1633 "Loop condition operand is an addrec in a different loop!"); 1634 1635 // Check the right operand of the select, and remember it, as it will 1636 // be used in the new comparison instruction. 1637 Value *NewRHS = 0; 1638 if (ICmpInst::isTrueWhenEqual(Pred)) { 1639 // Look for n+1, and grab n. 1640 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1641 if (isa<ConstantInt>(BO->getOperand(1)) && 1642 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1643 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1644 NewRHS = BO->getOperand(0); 1645 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1646 if (isa<ConstantInt>(BO->getOperand(1)) && 1647 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1648 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1649 NewRHS = BO->getOperand(0); 1650 if (!NewRHS) 1651 return Cond; 1652 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1653 NewRHS = Sel->getOperand(1); 1654 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1655 NewRHS = Sel->getOperand(2); 1656 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1657 NewRHS = SU->getValue(); 1658 else 1659 // Max doesn't match expected pattern. 1660 return Cond; 1661 1662 // Determine the new comparison opcode. It may be signed or unsigned, 1663 // and the original comparison may be either equality or inequality. 1664 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1665 Pred = CmpInst::getInversePredicate(Pred); 1666 1667 // Ok, everything looks ok to change the condition into an SLT or SGE and 1668 // delete the max calculation. 1669 ICmpInst *NewCond = 1670 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1671 1672 // Delete the max calculation instructions. 1673 Cond->replaceAllUsesWith(NewCond); 1674 CondUse->setUser(NewCond); 1675 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1676 Cond->eraseFromParent(); 1677 Sel->eraseFromParent(); 1678 if (Cmp->use_empty()) 1679 Cmp->eraseFromParent(); 1680 return NewCond; 1681 } 1682 1683 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1684 /// postinc iv when possible. 1685 void 1686 LSRInstance::OptimizeLoopTermCond() { 1687 SmallPtrSet<Instruction *, 4> PostIncs; 1688 1689 BasicBlock *LatchBlock = L->getLoopLatch(); 1690 SmallVector<BasicBlock*, 8> ExitingBlocks; 1691 L->getExitingBlocks(ExitingBlocks); 1692 1693 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1694 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1695 1696 // Get the terminating condition for the loop if possible. If we 1697 // can, we want to change it to use a post-incremented version of its 1698 // induction variable, to allow coalescing the live ranges for the IV into 1699 // one register value. 1700 1701 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1702 if (!TermBr) 1703 continue; 1704 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1705 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1706 continue; 1707 1708 // Search IVUsesByStride to find Cond's IVUse if there is one. 1709 IVStrideUse *CondUse = 0; 1710 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1711 if (!FindIVUserForCond(Cond, CondUse)) 1712 continue; 1713 1714 // If the trip count is computed in terms of a max (due to ScalarEvolution 1715 // being unable to find a sufficient guard, for example), change the loop 1716 // comparison to use SLT or ULT instead of NE. 1717 // One consequence of doing this now is that it disrupts the count-down 1718 // optimization. That's not always a bad thing though, because in such 1719 // cases it may still be worthwhile to avoid a max. 1720 Cond = OptimizeMax(Cond, CondUse); 1721 1722 // If this exiting block dominates the latch block, it may also use 1723 // the post-inc value if it won't be shared with other uses. 1724 // Check for dominance. 1725 if (!DT.dominates(ExitingBlock, LatchBlock)) 1726 continue; 1727 1728 // Conservatively avoid trying to use the post-inc value in non-latch 1729 // exits if there may be pre-inc users in intervening blocks. 1730 if (LatchBlock != ExitingBlock) 1731 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1732 // Test if the use is reachable from the exiting block. This dominator 1733 // query is a conservative approximation of reachability. 1734 if (&*UI != CondUse && 1735 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1736 // Conservatively assume there may be reuse if the quotient of their 1737 // strides could be a legal scale. 1738 const SCEV *A = IU.getStride(*CondUse, L); 1739 const SCEV *B = IU.getStride(*UI, L); 1740 if (!A || !B) continue; 1741 if (SE.getTypeSizeInBits(A->getType()) != 1742 SE.getTypeSizeInBits(B->getType())) { 1743 if (SE.getTypeSizeInBits(A->getType()) > 1744 SE.getTypeSizeInBits(B->getType())) 1745 B = SE.getSignExtendExpr(B, A->getType()); 1746 else 1747 A = SE.getSignExtendExpr(A, B->getType()); 1748 } 1749 if (const SCEVConstant *D = 1750 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1751 const ConstantInt *C = D->getValue(); 1752 // Stride of one or negative one can have reuse with non-addresses. 1753 if (C->isOne() || C->isAllOnesValue()) 1754 goto decline_post_inc; 1755 // Avoid weird situations. 1756 if (C->getValue().getMinSignedBits() >= 64 || 1757 C->getValue().isMinSignedValue()) 1758 goto decline_post_inc; 1759 // Without TLI, assume that any stride might be valid, and so any 1760 // use might be shared. 1761 if (!TLI) 1762 goto decline_post_inc; 1763 // Check for possible scaled-address reuse. 1764 const Type *AccessTy = getAccessType(UI->getUser()); 1765 TargetLowering::AddrMode AM; 1766 AM.Scale = C->getSExtValue(); 1767 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1768 goto decline_post_inc; 1769 AM.Scale = -AM.Scale; 1770 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1771 goto decline_post_inc; 1772 } 1773 } 1774 1775 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1776 << *Cond << '\n'); 1777 1778 // It's possible for the setcc instruction to be anywhere in the loop, and 1779 // possible for it to have multiple users. If it is not immediately before 1780 // the exiting block branch, move it. 1781 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1782 if (Cond->hasOneUse()) { 1783 Cond->moveBefore(TermBr); 1784 } else { 1785 // Clone the terminating condition and insert into the loopend. 1786 ICmpInst *OldCond = Cond; 1787 Cond = cast<ICmpInst>(Cond->clone()); 1788 Cond->setName(L->getHeader()->getName() + ".termcond"); 1789 ExitingBlock->getInstList().insert(TermBr, Cond); 1790 1791 // Clone the IVUse, as the old use still exists! 1792 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1793 TermBr->replaceUsesOfWith(OldCond, Cond); 1794 } 1795 } 1796 1797 // If we get to here, we know that we can transform the setcc instruction to 1798 // use the post-incremented version of the IV, allowing us to coalesce the 1799 // live ranges for the IV correctly. 1800 CondUse->transformToPostInc(L); 1801 Changed = true; 1802 1803 PostIncs.insert(Cond); 1804 decline_post_inc:; 1805 } 1806 1807 // Determine an insertion point for the loop induction variable increment. It 1808 // must dominate all the post-inc comparisons we just set up, and it must 1809 // dominate the loop latch edge. 1810 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1811 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1812 E = PostIncs.end(); I != E; ++I) { 1813 BasicBlock *BB = 1814 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1815 (*I)->getParent()); 1816 if (BB == (*I)->getParent()) 1817 IVIncInsertPos = *I; 1818 else if (BB != IVIncInsertPos->getParent()) 1819 IVIncInsertPos = BB->getTerminator(); 1820 } 1821 } 1822 1823 /// reconcileNewOffset - Determine if the given use can accomodate a fixup 1824 /// at the given offset and other details. If so, update the use and 1825 /// return true. 1826 bool 1827 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1828 LSRUse::KindType Kind, const Type *AccessTy) { 1829 int64_t NewMinOffset = LU.MinOffset; 1830 int64_t NewMaxOffset = LU.MaxOffset; 1831 const Type *NewAccessTy = AccessTy; 1832 1833 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1834 // something conservative, however this can pessimize in the case that one of 1835 // the uses will have all its uses outside the loop, for example. 1836 if (LU.Kind != Kind) 1837 return false; 1838 // Conservatively assume HasBaseReg is true for now. 1839 if (NewOffset < LU.MinOffset) { 1840 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1841 Kind, AccessTy, TLI)) 1842 return false; 1843 NewMinOffset = NewOffset; 1844 } else if (NewOffset > LU.MaxOffset) { 1845 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1846 Kind, AccessTy, TLI)) 1847 return false; 1848 NewMaxOffset = NewOffset; 1849 } 1850 // Check for a mismatched access type, and fall back conservatively as needed. 1851 // TODO: Be less conservative when the type is similar and can use the same 1852 // addressing modes. 1853 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1854 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1855 1856 // Update the use. 1857 LU.MinOffset = NewMinOffset; 1858 LU.MaxOffset = NewMaxOffset; 1859 LU.AccessTy = NewAccessTy; 1860 if (NewOffset != LU.Offsets.back()) 1861 LU.Offsets.push_back(NewOffset); 1862 return true; 1863 } 1864 1865 /// getUse - Return an LSRUse index and an offset value for a fixup which 1866 /// needs the given expression, with the given kind and optional access type. 1867 /// Either reuse an existing use or create a new one, as needed. 1868 std::pair<size_t, int64_t> 1869 LSRInstance::getUse(const SCEV *&Expr, 1870 LSRUse::KindType Kind, const Type *AccessTy) { 1871 const SCEV *Copy = Expr; 1872 int64_t Offset = ExtractImmediate(Expr, SE); 1873 1874 // Basic uses can't accept any offset, for example. 1875 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1876 Expr = Copy; 1877 Offset = 0; 1878 } 1879 1880 std::pair<UseMapTy::iterator, bool> P = 1881 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1882 if (!P.second) { 1883 // A use already existed with this base. 1884 size_t LUIdx = P.first->second; 1885 LSRUse &LU = Uses[LUIdx]; 1886 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1887 // Reuse this use. 1888 return std::make_pair(LUIdx, Offset); 1889 } 1890 1891 // Create a new use. 1892 size_t LUIdx = Uses.size(); 1893 P.first->second = LUIdx; 1894 Uses.push_back(LSRUse(Kind, AccessTy)); 1895 LSRUse &LU = Uses[LUIdx]; 1896 1897 // We don't need to track redundant offsets, but we don't need to go out 1898 // of our way here to avoid them. 1899 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1900 LU.Offsets.push_back(Offset); 1901 1902 LU.MinOffset = Offset; 1903 LU.MaxOffset = Offset; 1904 return std::make_pair(LUIdx, Offset); 1905 } 1906 1907 /// DeleteUse - Delete the given use from the Uses list. 1908 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1909 if (&LU != &Uses.back()) 1910 std::swap(LU, Uses.back()); 1911 Uses.pop_back(); 1912 1913 // Update RegUses. 1914 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 1915 } 1916 1917 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 1918 /// a formula that has the same registers as the given formula. 1919 LSRUse * 1920 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 1921 const LSRUse &OrigLU) { 1922 // Search all uses for the formula. This could be more clever. 1923 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 1924 LSRUse &LU = Uses[LUIdx]; 1925 // Check whether this use is close enough to OrigLU, to see whether it's 1926 // worthwhile looking through its formulae. 1927 // Ignore ICmpZero uses because they may contain formulae generated by 1928 // GenerateICmpZeroScales, in which case adding fixup offsets may 1929 // be invalid. 1930 if (&LU != &OrigLU && 1931 LU.Kind != LSRUse::ICmpZero && 1932 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 1933 LU.WidestFixupType == OrigLU.WidestFixupType && 1934 LU.HasFormulaWithSameRegs(OrigF)) { 1935 // Scan through this use's formulae. 1936 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 1937 E = LU.Formulae.end(); I != E; ++I) { 1938 const Formula &F = *I; 1939 // Check to see if this formula has the same registers and symbols 1940 // as OrigF. 1941 if (F.BaseRegs == OrigF.BaseRegs && 1942 F.ScaledReg == OrigF.ScaledReg && 1943 F.AM.BaseGV == OrigF.AM.BaseGV && 1944 F.AM.Scale == OrigF.AM.Scale) { 1945 if (F.AM.BaseOffs == 0) 1946 return &LU; 1947 // This is the formula where all the registers and symbols matched; 1948 // there aren't going to be any others. Since we declined it, we 1949 // can skip the rest of the formulae and procede to the next LSRUse. 1950 break; 1951 } 1952 } 1953 } 1954 } 1955 1956 // Nothing looked good. 1957 return 0; 1958 } 1959 1960 void LSRInstance::CollectInterestingTypesAndFactors() { 1961 SmallSetVector<const SCEV *, 4> Strides; 1962 1963 // Collect interesting types and strides. 1964 SmallVector<const SCEV *, 4> Worklist; 1965 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 1966 const SCEV *Expr = IU.getExpr(*UI); 1967 1968 // Collect interesting types. 1969 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 1970 1971 // Add strides for mentioned loops. 1972 Worklist.push_back(Expr); 1973 do { 1974 const SCEV *S = Worklist.pop_back_val(); 1975 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1976 Strides.insert(AR->getStepRecurrence(SE)); 1977 Worklist.push_back(AR->getStart()); 1978 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1979 Worklist.append(Add->op_begin(), Add->op_end()); 1980 } 1981 } while (!Worklist.empty()); 1982 } 1983 1984 // Compute interesting factors from the set of interesting strides. 1985 for (SmallSetVector<const SCEV *, 4>::const_iterator 1986 I = Strides.begin(), E = Strides.end(); I != E; ++I) 1987 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 1988 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 1989 const SCEV *OldStride = *I; 1990 const SCEV *NewStride = *NewStrideIter; 1991 1992 if (SE.getTypeSizeInBits(OldStride->getType()) != 1993 SE.getTypeSizeInBits(NewStride->getType())) { 1994 if (SE.getTypeSizeInBits(OldStride->getType()) > 1995 SE.getTypeSizeInBits(NewStride->getType())) 1996 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 1997 else 1998 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 1999 } 2000 if (const SCEVConstant *Factor = 2001 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2002 SE, true))) { 2003 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2004 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2005 } else if (const SCEVConstant *Factor = 2006 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2007 NewStride, 2008 SE, true))) { 2009 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2010 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2011 } 2012 } 2013 2014 // If all uses use the same type, don't bother looking for truncation-based 2015 // reuse. 2016 if (Types.size() == 1) 2017 Types.clear(); 2018 2019 DEBUG(print_factors_and_types(dbgs())); 2020 } 2021 2022 void LSRInstance::CollectFixupsAndInitialFormulae() { 2023 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2024 // Record the uses. 2025 LSRFixup &LF = getNewFixup(); 2026 LF.UserInst = UI->getUser(); 2027 LF.OperandValToReplace = UI->getOperandValToReplace(); 2028 LF.PostIncLoops = UI->getPostIncLoops(); 2029 2030 LSRUse::KindType Kind = LSRUse::Basic; 2031 const Type *AccessTy = 0; 2032 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2033 Kind = LSRUse::Address; 2034 AccessTy = getAccessType(LF.UserInst); 2035 } 2036 2037 const SCEV *S = IU.getExpr(*UI); 2038 2039 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2040 // (N - i == 0), and this allows (N - i) to be the expression that we work 2041 // with rather than just N or i, so we can consider the register 2042 // requirements for both N and i at the same time. Limiting this code to 2043 // equality icmps is not a problem because all interesting loops use 2044 // equality icmps, thanks to IndVarSimplify. 2045 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2046 if (CI->isEquality()) { 2047 // Swap the operands if needed to put the OperandValToReplace on the 2048 // left, for consistency. 2049 Value *NV = CI->getOperand(1); 2050 if (NV == LF.OperandValToReplace) { 2051 CI->setOperand(1, CI->getOperand(0)); 2052 CI->setOperand(0, NV); 2053 NV = CI->getOperand(1); 2054 Changed = true; 2055 } 2056 2057 // x == y --> x - y == 0 2058 const SCEV *N = SE.getSCEV(NV); 2059 if (N->isLoopInvariant(L)) { 2060 Kind = LSRUse::ICmpZero; 2061 S = SE.getMinusSCEV(N, S); 2062 } 2063 2064 // -1 and the negations of all interesting strides (except the negation 2065 // of -1) are now also interesting. 2066 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2067 if (Factors[i] != -1) 2068 Factors.insert(-(uint64_t)Factors[i]); 2069 Factors.insert(-1); 2070 } 2071 2072 // Set up the initial formula for this use. 2073 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2074 LF.LUIdx = P.first; 2075 LF.Offset = P.second; 2076 LSRUse &LU = Uses[LF.LUIdx]; 2077 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2078 if (!LU.WidestFixupType || 2079 SE.getTypeSizeInBits(LU.WidestFixupType) < 2080 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2081 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2082 2083 // If this is the first use of this LSRUse, give it a formula. 2084 if (LU.Formulae.empty()) { 2085 InsertInitialFormula(S, LU, LF.LUIdx); 2086 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2087 } 2088 } 2089 2090 DEBUG(print_fixups(dbgs())); 2091 } 2092 2093 /// InsertInitialFormula - Insert a formula for the given expression into 2094 /// the given use, separating out loop-variant portions from loop-invariant 2095 /// and loop-computable portions. 2096 void 2097 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2098 Formula F; 2099 F.InitialMatch(S, L, SE, DT); 2100 bool Inserted = InsertFormula(LU, LUIdx, F); 2101 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2102 } 2103 2104 /// InsertSupplementalFormula - Insert a simple single-register formula for 2105 /// the given expression into the given use. 2106 void 2107 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2108 LSRUse &LU, size_t LUIdx) { 2109 Formula F; 2110 F.BaseRegs.push_back(S); 2111 F.AM.HasBaseReg = true; 2112 bool Inserted = InsertFormula(LU, LUIdx, F); 2113 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2114 } 2115 2116 /// CountRegisters - Note which registers are used by the given formula, 2117 /// updating RegUses. 2118 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2119 if (F.ScaledReg) 2120 RegUses.CountRegister(F.ScaledReg, LUIdx); 2121 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2122 E = F.BaseRegs.end(); I != E; ++I) 2123 RegUses.CountRegister(*I, LUIdx); 2124 } 2125 2126 /// InsertFormula - If the given formula has not yet been inserted, add it to 2127 /// the list, and return true. Return false otherwise. 2128 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2129 if (!LU.InsertFormula(F)) 2130 return false; 2131 2132 CountRegisters(F, LUIdx); 2133 return true; 2134 } 2135 2136 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2137 /// loop-invariant values which we're tracking. These other uses will pin these 2138 /// values in registers, making them less profitable for elimination. 2139 /// TODO: This currently misses non-constant addrec step registers. 2140 /// TODO: Should this give more weight to users inside the loop? 2141 void 2142 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2143 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2144 SmallPtrSet<const SCEV *, 8> Inserted; 2145 2146 while (!Worklist.empty()) { 2147 const SCEV *S = Worklist.pop_back_val(); 2148 2149 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2150 Worklist.append(N->op_begin(), N->op_end()); 2151 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2152 Worklist.push_back(C->getOperand()); 2153 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2154 Worklist.push_back(D->getLHS()); 2155 Worklist.push_back(D->getRHS()); 2156 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2157 if (!Inserted.insert(U)) continue; 2158 const Value *V = U->getValue(); 2159 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2160 // Look for instructions defined outside the loop. 2161 if (L->contains(Inst)) continue; 2162 } else if (isa<UndefValue>(V)) 2163 // Undef doesn't have a live range, so it doesn't matter. 2164 continue; 2165 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2166 UI != UE; ++UI) { 2167 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2168 // Ignore non-instructions. 2169 if (!UserInst) 2170 continue; 2171 // Ignore instructions in other functions (as can happen with 2172 // Constants). 2173 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2174 continue; 2175 // Ignore instructions not dominated by the loop. 2176 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2177 UserInst->getParent() : 2178 cast<PHINode>(UserInst)->getIncomingBlock( 2179 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2180 if (!DT.dominates(L->getHeader(), UseBB)) 2181 continue; 2182 // Ignore uses which are part of other SCEV expressions, to avoid 2183 // analyzing them multiple times. 2184 if (SE.isSCEVable(UserInst->getType())) { 2185 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2186 // If the user is a no-op, look through to its uses. 2187 if (!isa<SCEVUnknown>(UserS)) 2188 continue; 2189 if (UserS == U) { 2190 Worklist.push_back( 2191 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2192 continue; 2193 } 2194 } 2195 // Ignore icmp instructions which are already being analyzed. 2196 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2197 unsigned OtherIdx = !UI.getOperandNo(); 2198 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2199 if (SE.getSCEV(OtherOp)->hasComputableLoopEvolution(L)) 2200 continue; 2201 } 2202 2203 LSRFixup &LF = getNewFixup(); 2204 LF.UserInst = const_cast<Instruction *>(UserInst); 2205 LF.OperandValToReplace = UI.getUse(); 2206 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2207 LF.LUIdx = P.first; 2208 LF.Offset = P.second; 2209 LSRUse &LU = Uses[LF.LUIdx]; 2210 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2211 if (!LU.WidestFixupType || 2212 SE.getTypeSizeInBits(LU.WidestFixupType) < 2213 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2214 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2215 InsertSupplementalFormula(U, LU, LF.LUIdx); 2216 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2217 break; 2218 } 2219 } 2220 } 2221 } 2222 2223 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2224 /// separate registers. If C is non-null, multiply each subexpression by C. 2225 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2226 SmallVectorImpl<const SCEV *> &Ops, 2227 const Loop *L, 2228 ScalarEvolution &SE) { 2229 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2230 // Break out add operands. 2231 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2232 I != E; ++I) 2233 CollectSubexprs(*I, C, Ops, L, SE); 2234 return; 2235 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2236 // Split a non-zero base out of an addrec. 2237 if (!AR->getStart()->isZero()) { 2238 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2239 AR->getStepRecurrence(SE), 2240 AR->getLoop()), 2241 C, Ops, L, SE); 2242 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2243 return; 2244 } 2245 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2246 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2247 if (Mul->getNumOperands() == 2) 2248 if (const SCEVConstant *Op0 = 2249 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2250 CollectSubexprs(Mul->getOperand(1), 2251 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2252 Ops, L, SE); 2253 return; 2254 } 2255 } 2256 2257 // Otherwise use the value itself, optionally with a scale applied. 2258 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2259 } 2260 2261 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2262 /// addrecs. 2263 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2264 Formula Base, 2265 unsigned Depth) { 2266 // Arbitrarily cap recursion to protect compile time. 2267 if (Depth >= 3) return; 2268 2269 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2270 const SCEV *BaseReg = Base.BaseRegs[i]; 2271 2272 SmallVector<const SCEV *, 8> AddOps; 2273 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2274 2275 if (AddOps.size() == 1) continue; 2276 2277 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2278 JE = AddOps.end(); J != JE; ++J) { 2279 2280 // Loop-variant "unknown" values are uninteresting; we won't be able to 2281 // do anything meaningful with them. 2282 if (isa<SCEVUnknown>(*J) && !(*J)->isLoopInvariant(L)) 2283 continue; 2284 2285 // Don't pull a constant into a register if the constant could be folded 2286 // into an immediate field. 2287 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2288 Base.getNumRegs() > 1, 2289 LU.Kind, LU.AccessTy, TLI, SE)) 2290 continue; 2291 2292 // Collect all operands except *J. 2293 SmallVector<const SCEV *, 8> InnerAddOps 2294 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2295 InnerAddOps.append 2296 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2297 2298 // Don't leave just a constant behind in a register if the constant could 2299 // be folded into an immediate field. 2300 if (InnerAddOps.size() == 1 && 2301 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2302 Base.getNumRegs() > 1, 2303 LU.Kind, LU.AccessTy, TLI, SE)) 2304 continue; 2305 2306 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2307 if (InnerSum->isZero()) 2308 continue; 2309 Formula F = Base; 2310 F.BaseRegs[i] = InnerSum; 2311 F.BaseRegs.push_back(*J); 2312 if (InsertFormula(LU, LUIdx, F)) 2313 // If that formula hadn't been seen before, recurse to find more like 2314 // it. 2315 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2316 } 2317 } 2318 } 2319 2320 /// GenerateCombinations - Generate a formula consisting of all of the 2321 /// loop-dominating registers added into a single register. 2322 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2323 Formula Base) { 2324 // This method is only interesting on a plurality of registers. 2325 if (Base.BaseRegs.size() <= 1) return; 2326 2327 Formula F = Base; 2328 F.BaseRegs.clear(); 2329 SmallVector<const SCEV *, 4> Ops; 2330 for (SmallVectorImpl<const SCEV *>::const_iterator 2331 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2332 const SCEV *BaseReg = *I; 2333 if (BaseReg->properlyDominates(L->getHeader(), &DT) && 2334 !BaseReg->hasComputableLoopEvolution(L)) 2335 Ops.push_back(BaseReg); 2336 else 2337 F.BaseRegs.push_back(BaseReg); 2338 } 2339 if (Ops.size() > 1) { 2340 const SCEV *Sum = SE.getAddExpr(Ops); 2341 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2342 // opportunity to fold something. For now, just ignore such cases 2343 // rather than proceed with zero in a register. 2344 if (!Sum->isZero()) { 2345 F.BaseRegs.push_back(Sum); 2346 (void)InsertFormula(LU, LUIdx, F); 2347 } 2348 } 2349 } 2350 2351 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2352 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2353 Formula Base) { 2354 // We can't add a symbolic offset if the address already contains one. 2355 if (Base.AM.BaseGV) return; 2356 2357 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2358 const SCEV *G = Base.BaseRegs[i]; 2359 GlobalValue *GV = ExtractSymbol(G, SE); 2360 if (G->isZero() || !GV) 2361 continue; 2362 Formula F = Base; 2363 F.AM.BaseGV = GV; 2364 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2365 LU.Kind, LU.AccessTy, TLI)) 2366 continue; 2367 F.BaseRegs[i] = G; 2368 (void)InsertFormula(LU, LUIdx, F); 2369 } 2370 } 2371 2372 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2373 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2374 Formula Base) { 2375 // TODO: For now, just add the min and max offset, because it usually isn't 2376 // worthwhile looking at everything inbetween. 2377 SmallVector<int64_t, 2> Worklist; 2378 Worklist.push_back(LU.MinOffset); 2379 if (LU.MaxOffset != LU.MinOffset) 2380 Worklist.push_back(LU.MaxOffset); 2381 2382 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2383 const SCEV *G = Base.BaseRegs[i]; 2384 2385 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2386 E = Worklist.end(); I != E; ++I) { 2387 Formula F = Base; 2388 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2389 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2390 LU.Kind, LU.AccessTy, TLI)) { 2391 // Add the offset to the base register. 2392 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2393 // If it cancelled out, drop the base register, otherwise update it. 2394 if (NewG->isZero()) { 2395 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2396 F.BaseRegs.pop_back(); 2397 } else 2398 F.BaseRegs[i] = NewG; 2399 2400 (void)InsertFormula(LU, LUIdx, F); 2401 } 2402 } 2403 2404 int64_t Imm = ExtractImmediate(G, SE); 2405 if (G->isZero() || Imm == 0) 2406 continue; 2407 Formula F = Base; 2408 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2409 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2410 LU.Kind, LU.AccessTy, TLI)) 2411 continue; 2412 F.BaseRegs[i] = G; 2413 (void)InsertFormula(LU, LUIdx, F); 2414 } 2415 } 2416 2417 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2418 /// the comparison. For example, x == y -> x*c == y*c. 2419 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2420 Formula Base) { 2421 if (LU.Kind != LSRUse::ICmpZero) return; 2422 2423 // Determine the integer type for the base formula. 2424 const Type *IntTy = Base.getType(); 2425 if (!IntTy) return; 2426 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2427 2428 // Don't do this if there is more than one offset. 2429 if (LU.MinOffset != LU.MaxOffset) return; 2430 2431 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2432 2433 // Check each interesting stride. 2434 for (SmallSetVector<int64_t, 8>::const_iterator 2435 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2436 int64_t Factor = *I; 2437 2438 // Check that the multiplication doesn't overflow. 2439 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2440 continue; 2441 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2442 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2443 continue; 2444 2445 // Check that multiplying with the use offset doesn't overflow. 2446 int64_t Offset = LU.MinOffset; 2447 if (Offset == INT64_MIN && Factor == -1) 2448 continue; 2449 Offset = (uint64_t)Offset * Factor; 2450 if (Offset / Factor != LU.MinOffset) 2451 continue; 2452 2453 Formula F = Base; 2454 F.AM.BaseOffs = NewBaseOffs; 2455 2456 // Check that this scale is legal. 2457 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2458 continue; 2459 2460 // Compensate for the use having MinOffset built into it. 2461 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2462 2463 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2464 2465 // Check that multiplying with each base register doesn't overflow. 2466 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2467 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2468 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2469 goto next; 2470 } 2471 2472 // Check that multiplying with the scaled register doesn't overflow. 2473 if (F.ScaledReg) { 2474 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2475 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2476 continue; 2477 } 2478 2479 // If we make it here and it's legal, add it. 2480 (void)InsertFormula(LU, LUIdx, F); 2481 next:; 2482 } 2483 } 2484 2485 /// GenerateScales - Generate stride factor reuse formulae by making use of 2486 /// scaled-offset address modes, for example. 2487 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2488 // Determine the integer type for the base formula. 2489 const Type *IntTy = Base.getType(); 2490 if (!IntTy) return; 2491 2492 // If this Formula already has a scaled register, we can't add another one. 2493 if (Base.AM.Scale != 0) return; 2494 2495 // Check each interesting stride. 2496 for (SmallSetVector<int64_t, 8>::const_iterator 2497 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2498 int64_t Factor = *I; 2499 2500 Base.AM.Scale = Factor; 2501 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2502 // Check whether this scale is going to be legal. 2503 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2504 LU.Kind, LU.AccessTy, TLI)) { 2505 // As a special-case, handle special out-of-loop Basic users specially. 2506 // TODO: Reconsider this special case. 2507 if (LU.Kind == LSRUse::Basic && 2508 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2509 LSRUse::Special, LU.AccessTy, TLI) && 2510 LU.AllFixupsOutsideLoop) 2511 LU.Kind = LSRUse::Special; 2512 else 2513 continue; 2514 } 2515 // For an ICmpZero, negating a solitary base register won't lead to 2516 // new solutions. 2517 if (LU.Kind == LSRUse::ICmpZero && 2518 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2519 continue; 2520 // For each addrec base reg, apply the scale, if possible. 2521 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2522 if (const SCEVAddRecExpr *AR = 2523 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2524 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2525 if (FactorS->isZero()) 2526 continue; 2527 // Divide out the factor, ignoring high bits, since we'll be 2528 // scaling the value back up in the end. 2529 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2530 // TODO: This could be optimized to avoid all the copying. 2531 Formula F = Base; 2532 F.ScaledReg = Quotient; 2533 F.DeleteBaseReg(F.BaseRegs[i]); 2534 (void)InsertFormula(LU, LUIdx, F); 2535 } 2536 } 2537 } 2538 } 2539 2540 /// GenerateTruncates - Generate reuse formulae from different IV types. 2541 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2542 // This requires TargetLowering to tell us which truncates are free. 2543 if (!TLI) return; 2544 2545 // Don't bother truncating symbolic values. 2546 if (Base.AM.BaseGV) return; 2547 2548 // Determine the integer type for the base formula. 2549 const Type *DstTy = Base.getType(); 2550 if (!DstTy) return; 2551 DstTy = SE.getEffectiveSCEVType(DstTy); 2552 2553 for (SmallSetVector<const Type *, 4>::const_iterator 2554 I = Types.begin(), E = Types.end(); I != E; ++I) { 2555 const Type *SrcTy = *I; 2556 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2557 Formula F = Base; 2558 2559 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2560 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2561 JE = F.BaseRegs.end(); J != JE; ++J) 2562 *J = SE.getAnyExtendExpr(*J, SrcTy); 2563 2564 // TODO: This assumes we've done basic processing on all uses and 2565 // have an idea what the register usage is. 2566 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2567 continue; 2568 2569 (void)InsertFormula(LU, LUIdx, F); 2570 } 2571 } 2572 } 2573 2574 namespace { 2575 2576 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2577 /// defer modifications so that the search phase doesn't have to worry about 2578 /// the data structures moving underneath it. 2579 struct WorkItem { 2580 size_t LUIdx; 2581 int64_t Imm; 2582 const SCEV *OrigReg; 2583 2584 WorkItem(size_t LI, int64_t I, const SCEV *R) 2585 : LUIdx(LI), Imm(I), OrigReg(R) {} 2586 2587 void print(raw_ostream &OS) const; 2588 void dump() const; 2589 }; 2590 2591 } 2592 2593 void WorkItem::print(raw_ostream &OS) const { 2594 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2595 << " , add offset " << Imm; 2596 } 2597 2598 void WorkItem::dump() const { 2599 print(errs()); errs() << '\n'; 2600 } 2601 2602 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2603 /// distance apart and try to form reuse opportunities between them. 2604 void LSRInstance::GenerateCrossUseConstantOffsets() { 2605 // Group the registers by their value without any added constant offset. 2606 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2607 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2608 RegMapTy Map; 2609 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2610 SmallVector<const SCEV *, 8> Sequence; 2611 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2612 I != E; ++I) { 2613 const SCEV *Reg = *I; 2614 int64_t Imm = ExtractImmediate(Reg, SE); 2615 std::pair<RegMapTy::iterator, bool> Pair = 2616 Map.insert(std::make_pair(Reg, ImmMapTy())); 2617 if (Pair.second) 2618 Sequence.push_back(Reg); 2619 Pair.first->second.insert(std::make_pair(Imm, *I)); 2620 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2621 } 2622 2623 // Now examine each set of registers with the same base value. Build up 2624 // a list of work to do and do the work in a separate step so that we're 2625 // not adding formulae and register counts while we're searching. 2626 SmallVector<WorkItem, 32> WorkItems; 2627 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2628 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2629 E = Sequence.end(); I != E; ++I) { 2630 const SCEV *Reg = *I; 2631 const ImmMapTy &Imms = Map.find(Reg)->second; 2632 2633 // It's not worthwhile looking for reuse if there's only one offset. 2634 if (Imms.size() == 1) 2635 continue; 2636 2637 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2638 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2639 J != JE; ++J) 2640 dbgs() << ' ' << J->first; 2641 dbgs() << '\n'); 2642 2643 // Examine each offset. 2644 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2645 J != JE; ++J) { 2646 const SCEV *OrigReg = J->second; 2647 2648 int64_t JImm = J->first; 2649 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2650 2651 if (!isa<SCEVConstant>(OrigReg) && 2652 UsedByIndicesMap[Reg].count() == 1) { 2653 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2654 continue; 2655 } 2656 2657 // Conservatively examine offsets between this orig reg a few selected 2658 // other orig regs. 2659 ImmMapTy::const_iterator OtherImms[] = { 2660 Imms.begin(), prior(Imms.end()), 2661 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2662 }; 2663 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2664 ImmMapTy::const_iterator M = OtherImms[i]; 2665 if (M == J || M == JE) continue; 2666 2667 // Compute the difference between the two. 2668 int64_t Imm = (uint64_t)JImm - M->first; 2669 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2670 LUIdx = UsedByIndices.find_next(LUIdx)) 2671 // Make a memo of this use, offset, and register tuple. 2672 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2673 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2674 } 2675 } 2676 } 2677 2678 Map.clear(); 2679 Sequence.clear(); 2680 UsedByIndicesMap.clear(); 2681 UniqueItems.clear(); 2682 2683 // Now iterate through the worklist and add new formulae. 2684 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2685 E = WorkItems.end(); I != E; ++I) { 2686 const WorkItem &WI = *I; 2687 size_t LUIdx = WI.LUIdx; 2688 LSRUse &LU = Uses[LUIdx]; 2689 int64_t Imm = WI.Imm; 2690 const SCEV *OrigReg = WI.OrigReg; 2691 2692 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2693 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2694 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2695 2696 // TODO: Use a more targeted data structure. 2697 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2698 const Formula &F = LU.Formulae[L]; 2699 // Use the immediate in the scaled register. 2700 if (F.ScaledReg == OrigReg) { 2701 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2702 Imm * (uint64_t)F.AM.Scale; 2703 // Don't create 50 + reg(-50). 2704 if (F.referencesReg(SE.getSCEV( 2705 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2706 continue; 2707 Formula NewF = F; 2708 NewF.AM.BaseOffs = Offs; 2709 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2710 LU.Kind, LU.AccessTy, TLI)) 2711 continue; 2712 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2713 2714 // If the new scale is a constant in a register, and adding the constant 2715 // value to the immediate would produce a value closer to zero than the 2716 // immediate itself, then the formula isn't worthwhile. 2717 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2718 if (C->getValue()->getValue().isNegative() != 2719 (NewF.AM.BaseOffs < 0) && 2720 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2721 .ule(abs64(NewF.AM.BaseOffs))) 2722 continue; 2723 2724 // OK, looks good. 2725 (void)InsertFormula(LU, LUIdx, NewF); 2726 } else { 2727 // Use the immediate in a base register. 2728 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2729 const SCEV *BaseReg = F.BaseRegs[N]; 2730 if (BaseReg != OrigReg) 2731 continue; 2732 Formula NewF = F; 2733 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2734 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2735 LU.Kind, LU.AccessTy, TLI)) 2736 continue; 2737 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2738 2739 // If the new formula has a constant in a register, and adding the 2740 // constant value to the immediate would produce a value closer to 2741 // zero than the immediate itself, then the formula isn't worthwhile. 2742 for (SmallVectorImpl<const SCEV *>::const_iterator 2743 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2744 J != JE; ++J) 2745 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2746 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2747 abs64(NewF.AM.BaseOffs)) && 2748 (C->getValue()->getValue() + 2749 NewF.AM.BaseOffs).countTrailingZeros() >= 2750 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2751 goto skip_formula; 2752 2753 // Ok, looks good. 2754 (void)InsertFormula(LU, LUIdx, NewF); 2755 break; 2756 skip_formula:; 2757 } 2758 } 2759 } 2760 } 2761 } 2762 2763 /// GenerateAllReuseFormulae - Generate formulae for each use. 2764 void 2765 LSRInstance::GenerateAllReuseFormulae() { 2766 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2767 // queries are more precise. 2768 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2769 LSRUse &LU = Uses[LUIdx]; 2770 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2771 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2772 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2773 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2774 } 2775 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2776 LSRUse &LU = Uses[LUIdx]; 2777 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2778 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2779 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2780 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2781 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2782 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2783 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2784 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2785 } 2786 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2787 LSRUse &LU = Uses[LUIdx]; 2788 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2789 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2790 } 2791 2792 GenerateCrossUseConstantOffsets(); 2793 2794 DEBUG(dbgs() << "\n" 2795 "After generating reuse formulae:\n"; 2796 print_uses(dbgs())); 2797 } 2798 2799 /// If there are multiple formulae with the same set of registers used 2800 /// by other uses, pick the best one and delete the others. 2801 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2802 DenseSet<const SCEV *> VisitedRegs; 2803 SmallPtrSet<const SCEV *, 16> Regs; 2804 #ifndef NDEBUG 2805 bool ChangedFormulae = false; 2806 #endif 2807 2808 // Collect the best formula for each unique set of shared registers. This 2809 // is reset for each use. 2810 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2811 BestFormulaeTy; 2812 BestFormulaeTy BestFormulae; 2813 2814 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2815 LSRUse &LU = Uses[LUIdx]; 2816 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2817 2818 bool Any = false; 2819 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2820 FIdx != NumForms; ++FIdx) { 2821 Formula &F = LU.Formulae[FIdx]; 2822 2823 SmallVector<const SCEV *, 2> Key; 2824 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2825 JE = F.BaseRegs.end(); J != JE; ++J) { 2826 const SCEV *Reg = *J; 2827 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2828 Key.push_back(Reg); 2829 } 2830 if (F.ScaledReg && 2831 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2832 Key.push_back(F.ScaledReg); 2833 // Unstable sort by host order ok, because this is only used for 2834 // uniquifying. 2835 std::sort(Key.begin(), Key.end()); 2836 2837 std::pair<BestFormulaeTy::const_iterator, bool> P = 2838 BestFormulae.insert(std::make_pair(Key, FIdx)); 2839 if (!P.second) { 2840 Formula &Best = LU.Formulae[P.first->second]; 2841 2842 Cost CostF; 2843 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2844 Regs.clear(); 2845 Cost CostBest; 2846 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2847 Regs.clear(); 2848 if (CostF < CostBest) 2849 std::swap(F, Best); 2850 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 2851 dbgs() << "\n" 2852 " in favor of formula "; Best.print(dbgs()); 2853 dbgs() << '\n'); 2854 #ifndef NDEBUG 2855 ChangedFormulae = true; 2856 #endif 2857 LU.DeleteFormula(F); 2858 --FIdx; 2859 --NumForms; 2860 Any = true; 2861 continue; 2862 } 2863 } 2864 2865 // Now that we've filtered out some formulae, recompute the Regs set. 2866 if (Any) 2867 LU.RecomputeRegs(LUIdx, RegUses); 2868 2869 // Reset this to prepare for the next use. 2870 BestFormulae.clear(); 2871 } 2872 2873 DEBUG(if (ChangedFormulae) { 2874 dbgs() << "\n" 2875 "After filtering out undesirable candidates:\n"; 2876 print_uses(dbgs()); 2877 }); 2878 } 2879 2880 // This is a rough guess that seems to work fairly well. 2881 static const size_t ComplexityLimit = UINT16_MAX; 2882 2883 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 2884 /// solutions the solver might have to consider. It almost never considers 2885 /// this many solutions because it prune the search space, but the pruning 2886 /// isn't always sufficient. 2887 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 2888 size_t Power = 1; 2889 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 2890 E = Uses.end(); I != E; ++I) { 2891 size_t FSize = I->Formulae.size(); 2892 if (FSize >= ComplexityLimit) { 2893 Power = ComplexityLimit; 2894 break; 2895 } 2896 Power *= FSize; 2897 if (Power >= ComplexityLimit) 2898 break; 2899 } 2900 return Power; 2901 } 2902 2903 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 2904 /// of the registers of another formula, it won't help reduce register 2905 /// pressure (though it may not necessarily hurt register pressure); remove 2906 /// it to simplify the system. 2907 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 2908 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 2909 DEBUG(dbgs() << "The search space is too complex.\n"); 2910 2911 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 2912 "which use a superset of registers used by other " 2913 "formulae.\n"); 2914 2915 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2916 LSRUse &LU = Uses[LUIdx]; 2917 bool Any = false; 2918 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 2919 Formula &F = LU.Formulae[i]; 2920 // Look for a formula with a constant or GV in a register. If the use 2921 // also has a formula with that same value in an immediate field, 2922 // delete the one that uses a register. 2923 for (SmallVectorImpl<const SCEV *>::const_iterator 2924 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 2925 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 2926 Formula NewF = F; 2927 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 2928 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 2929 (I - F.BaseRegs.begin())); 2930 if (LU.HasFormulaWithSameRegs(NewF)) { 2931 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 2932 LU.DeleteFormula(F); 2933 --i; 2934 --e; 2935 Any = true; 2936 break; 2937 } 2938 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 2939 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 2940 if (!F.AM.BaseGV) { 2941 Formula NewF = F; 2942 NewF.AM.BaseGV = GV; 2943 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 2944 (I - F.BaseRegs.begin())); 2945 if (LU.HasFormulaWithSameRegs(NewF)) { 2946 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 2947 dbgs() << '\n'); 2948 LU.DeleteFormula(F); 2949 --i; 2950 --e; 2951 Any = true; 2952 break; 2953 } 2954 } 2955 } 2956 } 2957 } 2958 if (Any) 2959 LU.RecomputeRegs(LUIdx, RegUses); 2960 } 2961 2962 DEBUG(dbgs() << "After pre-selection:\n"; 2963 print_uses(dbgs())); 2964 } 2965 } 2966 2967 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 2968 /// for expressions like A, A+1, A+2, etc., allocate a single register for 2969 /// them. 2970 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 2971 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 2972 DEBUG(dbgs() << "The search space is too complex.\n"); 2973 2974 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 2975 "separated by a constant offset will use the same " 2976 "registers.\n"); 2977 2978 // This is especially useful for unrolled loops. 2979 2980 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2981 LSRUse &LU = Uses[LUIdx]; 2982 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2983 E = LU.Formulae.end(); I != E; ++I) { 2984 const Formula &F = *I; 2985 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 2986 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 2987 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 2988 /*HasBaseReg=*/false, 2989 LU.Kind, LU.AccessTy)) { 2990 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 2991 dbgs() << '\n'); 2992 2993 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 2994 2995 // Update the relocs to reference the new use. 2996 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 2997 E = Fixups.end(); I != E; ++I) { 2998 LSRFixup &Fixup = *I; 2999 if (Fixup.LUIdx == LUIdx) { 3000 Fixup.LUIdx = LUThatHas - &Uses.front(); 3001 Fixup.Offset += F.AM.BaseOffs; 3002 // Add the new offset to LUThatHas' offset list. 3003 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3004 LUThatHas->Offsets.push_back(Fixup.Offset); 3005 if (Fixup.Offset > LUThatHas->MaxOffset) 3006 LUThatHas->MaxOffset = Fixup.Offset; 3007 if (Fixup.Offset < LUThatHas->MinOffset) 3008 LUThatHas->MinOffset = Fixup.Offset; 3009 } 3010 DEBUG(dbgs() << "New fixup has offset " 3011 << Fixup.Offset << '\n'); 3012 } 3013 if (Fixup.LUIdx == NumUses-1) 3014 Fixup.LUIdx = LUIdx; 3015 } 3016 3017 // Delete formulae from the new use which are no longer legal. 3018 bool Any = false; 3019 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3020 Formula &F = LUThatHas->Formulae[i]; 3021 if (!isLegalUse(F.AM, 3022 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3023 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3024 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3025 dbgs() << '\n'); 3026 LUThatHas->DeleteFormula(F); 3027 --i; 3028 --e; 3029 Any = true; 3030 } 3031 } 3032 if (Any) 3033 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3034 3035 // Delete the old use. 3036 DeleteUse(LU, LUIdx); 3037 --LUIdx; 3038 --NumUses; 3039 break; 3040 } 3041 } 3042 } 3043 } 3044 } 3045 3046 DEBUG(dbgs() << "After pre-selection:\n"; 3047 print_uses(dbgs())); 3048 } 3049 } 3050 3051 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3052 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3053 /// we've done more filtering, as it may be able to find more formulae to 3054 /// eliminate. 3055 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3056 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3057 DEBUG(dbgs() << "The search space is too complex.\n"); 3058 3059 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3060 "undesirable dedicated registers.\n"); 3061 3062 FilterOutUndesirableDedicatedRegisters(); 3063 3064 DEBUG(dbgs() << "After pre-selection:\n"; 3065 print_uses(dbgs())); 3066 } 3067 } 3068 3069 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3070 /// to be profitable, and then in any use which has any reference to that 3071 /// register, delete all formulae which do not reference that register. 3072 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3073 // With all other options exhausted, loop until the system is simple 3074 // enough to handle. 3075 SmallPtrSet<const SCEV *, 4> Taken; 3076 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3077 // Ok, we have too many of formulae on our hands to conveniently handle. 3078 // Use a rough heuristic to thin out the list. 3079 DEBUG(dbgs() << "The search space is too complex.\n"); 3080 3081 // Pick the register which is used by the most LSRUses, which is likely 3082 // to be a good reuse register candidate. 3083 const SCEV *Best = 0; 3084 unsigned BestNum = 0; 3085 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3086 I != E; ++I) { 3087 const SCEV *Reg = *I; 3088 if (Taken.count(Reg)) 3089 continue; 3090 if (!Best) 3091 Best = Reg; 3092 else { 3093 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3094 if (Count > BestNum) { 3095 Best = Reg; 3096 BestNum = Count; 3097 } 3098 } 3099 } 3100 3101 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3102 << " will yield profitable reuse.\n"); 3103 Taken.insert(Best); 3104 3105 // In any use with formulae which references this register, delete formulae 3106 // which don't reference it. 3107 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3108 LSRUse &LU = Uses[LUIdx]; 3109 if (!LU.Regs.count(Best)) continue; 3110 3111 bool Any = false; 3112 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3113 Formula &F = LU.Formulae[i]; 3114 if (!F.referencesReg(Best)) { 3115 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3116 LU.DeleteFormula(F); 3117 --e; 3118 --i; 3119 Any = true; 3120 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3121 continue; 3122 } 3123 } 3124 3125 if (Any) 3126 LU.RecomputeRegs(LUIdx, RegUses); 3127 } 3128 3129 DEBUG(dbgs() << "After pre-selection:\n"; 3130 print_uses(dbgs())); 3131 } 3132 } 3133 3134 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3135 /// formulae to choose from, use some rough heuristics to prune down the number 3136 /// of formulae. This keeps the main solver from taking an extraordinary amount 3137 /// of time in some worst-case scenarios. 3138 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3139 NarrowSearchSpaceByDetectingSupersets(); 3140 NarrowSearchSpaceByCollapsingUnrolledCode(); 3141 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3142 NarrowSearchSpaceByPickingWinnerRegs(); 3143 } 3144 3145 /// SolveRecurse - This is the recursive solver. 3146 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3147 Cost &SolutionCost, 3148 SmallVectorImpl<const Formula *> &Workspace, 3149 const Cost &CurCost, 3150 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3151 DenseSet<const SCEV *> &VisitedRegs) const { 3152 // Some ideas: 3153 // - prune more: 3154 // - use more aggressive filtering 3155 // - sort the formula so that the most profitable solutions are found first 3156 // - sort the uses too 3157 // - search faster: 3158 // - don't compute a cost, and then compare. compare while computing a cost 3159 // and bail early. 3160 // - track register sets with SmallBitVector 3161 3162 const LSRUse &LU = Uses[Workspace.size()]; 3163 3164 // If this use references any register that's already a part of the 3165 // in-progress solution, consider it a requirement that a formula must 3166 // reference that register in order to be considered. This prunes out 3167 // unprofitable searching. 3168 SmallSetVector<const SCEV *, 4> ReqRegs; 3169 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3170 E = CurRegs.end(); I != E; ++I) 3171 if (LU.Regs.count(*I)) 3172 ReqRegs.insert(*I); 3173 3174 bool AnySatisfiedReqRegs = false; 3175 SmallPtrSet<const SCEV *, 16> NewRegs; 3176 Cost NewCost; 3177 retry: 3178 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3179 E = LU.Formulae.end(); I != E; ++I) { 3180 const Formula &F = *I; 3181 3182 // Ignore formulae which do not use any of the required registers. 3183 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3184 JE = ReqRegs.end(); J != JE; ++J) { 3185 const SCEV *Reg = *J; 3186 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3187 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3188 F.BaseRegs.end()) 3189 goto skip; 3190 } 3191 AnySatisfiedReqRegs = true; 3192 3193 // Evaluate the cost of the current formula. If it's already worse than 3194 // the current best, prune the search at that point. 3195 NewCost = CurCost; 3196 NewRegs = CurRegs; 3197 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3198 if (NewCost < SolutionCost) { 3199 Workspace.push_back(&F); 3200 if (Workspace.size() != Uses.size()) { 3201 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3202 NewRegs, VisitedRegs); 3203 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3204 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3205 } else { 3206 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3207 dbgs() << ". Regs:"; 3208 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3209 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3210 dbgs() << ' ' << **I; 3211 dbgs() << '\n'); 3212 3213 SolutionCost = NewCost; 3214 Solution = Workspace; 3215 } 3216 Workspace.pop_back(); 3217 } 3218 skip:; 3219 } 3220 3221 // If none of the formulae had all of the required registers, relax the 3222 // constraint so that we don't exclude all formulae. 3223 if (!AnySatisfiedReqRegs) { 3224 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3225 ReqRegs.clear(); 3226 goto retry; 3227 } 3228 } 3229 3230 /// Solve - Choose one formula from each use. Return the results in the given 3231 /// Solution vector. 3232 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3233 SmallVector<const Formula *, 8> Workspace; 3234 Cost SolutionCost; 3235 SolutionCost.Loose(); 3236 Cost CurCost; 3237 SmallPtrSet<const SCEV *, 16> CurRegs; 3238 DenseSet<const SCEV *> VisitedRegs; 3239 Workspace.reserve(Uses.size()); 3240 3241 // SolveRecurse does all the work. 3242 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3243 CurRegs, VisitedRegs); 3244 3245 // Ok, we've now made all our decisions. 3246 DEBUG(dbgs() << "\n" 3247 "The chosen solution requires "; SolutionCost.print(dbgs()); 3248 dbgs() << ":\n"; 3249 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3250 dbgs() << " "; 3251 Uses[i].print(dbgs()); 3252 dbgs() << "\n" 3253 " "; 3254 Solution[i]->print(dbgs()); 3255 dbgs() << '\n'; 3256 }); 3257 3258 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3259 } 3260 3261 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3262 /// the dominator tree far as we can go while still being dominated by the 3263 /// input positions. This helps canonicalize the insert position, which 3264 /// encourages sharing. 3265 BasicBlock::iterator 3266 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3267 const SmallVectorImpl<Instruction *> &Inputs) 3268 const { 3269 for (;;) { 3270 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3271 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3272 3273 BasicBlock *IDom; 3274 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3275 if (!Rung) return IP; 3276 Rung = Rung->getIDom(); 3277 if (!Rung) return IP; 3278 IDom = Rung->getBlock(); 3279 3280 // Don't climb into a loop though. 3281 const Loop *IDomLoop = LI.getLoopFor(IDom); 3282 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3283 if (IDomDepth <= IPLoopDepth && 3284 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3285 break; 3286 } 3287 3288 bool AllDominate = true; 3289 Instruction *BetterPos = 0; 3290 Instruction *Tentative = IDom->getTerminator(); 3291 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3292 E = Inputs.end(); I != E; ++I) { 3293 Instruction *Inst = *I; 3294 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3295 AllDominate = false; 3296 break; 3297 } 3298 // Attempt to find an insert position in the middle of the block, 3299 // instead of at the end, so that it can be used for other expansions. 3300 if (IDom == Inst->getParent() && 3301 (!BetterPos || DT.dominates(BetterPos, Inst))) 3302 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3303 } 3304 if (!AllDominate) 3305 break; 3306 if (BetterPos) 3307 IP = BetterPos; 3308 else 3309 IP = Tentative; 3310 } 3311 3312 return IP; 3313 } 3314 3315 /// AdjustInsertPositionForExpand - Determine an input position which will be 3316 /// dominated by the operands and which will dominate the result. 3317 BasicBlock::iterator 3318 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3319 const LSRFixup &LF, 3320 const LSRUse &LU) const { 3321 // Collect some instructions which must be dominated by the 3322 // expanding replacement. These must be dominated by any operands that 3323 // will be required in the expansion. 3324 SmallVector<Instruction *, 4> Inputs; 3325 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3326 Inputs.push_back(I); 3327 if (LU.Kind == LSRUse::ICmpZero) 3328 if (Instruction *I = 3329 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3330 Inputs.push_back(I); 3331 if (LF.PostIncLoops.count(L)) { 3332 if (LF.isUseFullyOutsideLoop(L)) 3333 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3334 else 3335 Inputs.push_back(IVIncInsertPos); 3336 } 3337 // The expansion must also be dominated by the increment positions of any 3338 // loops it for which it is using post-inc mode. 3339 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3340 E = LF.PostIncLoops.end(); I != E; ++I) { 3341 const Loop *PIL = *I; 3342 if (PIL == L) continue; 3343 3344 // Be dominated by the loop exit. 3345 SmallVector<BasicBlock *, 4> ExitingBlocks; 3346 PIL->getExitingBlocks(ExitingBlocks); 3347 if (!ExitingBlocks.empty()) { 3348 BasicBlock *BB = ExitingBlocks[0]; 3349 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3350 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3351 Inputs.push_back(BB->getTerminator()); 3352 } 3353 } 3354 3355 // Then, climb up the immediate dominator tree as far as we can go while 3356 // still being dominated by the input positions. 3357 IP = HoistInsertPosition(IP, Inputs); 3358 3359 // Don't insert instructions before PHI nodes. 3360 while (isa<PHINode>(IP)) ++IP; 3361 3362 // Ignore debug intrinsics. 3363 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3364 3365 return IP; 3366 } 3367 3368 /// Expand - Emit instructions for the leading candidate expression for this 3369 /// LSRUse (this is called "expanding"). 3370 Value *LSRInstance::Expand(const LSRFixup &LF, 3371 const Formula &F, 3372 BasicBlock::iterator IP, 3373 SCEVExpander &Rewriter, 3374 SmallVectorImpl<WeakVH> &DeadInsts) const { 3375 const LSRUse &LU = Uses[LF.LUIdx]; 3376 3377 // Determine an input position which will be dominated by the operands and 3378 // which will dominate the result. 3379 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3380 3381 // Inform the Rewriter if we have a post-increment use, so that it can 3382 // perform an advantageous expansion. 3383 Rewriter.setPostInc(LF.PostIncLoops); 3384 3385 // This is the type that the user actually needs. 3386 const Type *OpTy = LF.OperandValToReplace->getType(); 3387 // This will be the type that we'll initially expand to. 3388 const Type *Ty = F.getType(); 3389 if (!Ty) 3390 // No type known; just expand directly to the ultimate type. 3391 Ty = OpTy; 3392 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3393 // Expand directly to the ultimate type if it's the right size. 3394 Ty = OpTy; 3395 // This is the type to do integer arithmetic in. 3396 const Type *IntTy = SE.getEffectiveSCEVType(Ty); 3397 3398 // Build up a list of operands to add together to form the full base. 3399 SmallVector<const SCEV *, 8> Ops; 3400 3401 // Expand the BaseRegs portion. 3402 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3403 E = F.BaseRegs.end(); I != E; ++I) { 3404 const SCEV *Reg = *I; 3405 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3406 3407 // If we're expanding for a post-inc user, make the post-inc adjustment. 3408 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3409 Reg = TransformForPostIncUse(Denormalize, Reg, 3410 LF.UserInst, LF.OperandValToReplace, 3411 Loops, SE, DT); 3412 3413 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3414 } 3415 3416 // Flush the operand list to suppress SCEVExpander hoisting. 3417 if (!Ops.empty()) { 3418 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3419 Ops.clear(); 3420 Ops.push_back(SE.getUnknown(FullV)); 3421 } 3422 3423 // Expand the ScaledReg portion. 3424 Value *ICmpScaledV = 0; 3425 if (F.AM.Scale != 0) { 3426 const SCEV *ScaledS = F.ScaledReg; 3427 3428 // If we're expanding for a post-inc user, make the post-inc adjustment. 3429 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3430 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3431 LF.UserInst, LF.OperandValToReplace, 3432 Loops, SE, DT); 3433 3434 if (LU.Kind == LSRUse::ICmpZero) { 3435 // An interesting way of "folding" with an icmp is to use a negated 3436 // scale, which we'll implement by inserting it into the other operand 3437 // of the icmp. 3438 assert(F.AM.Scale == -1 && 3439 "The only scale supported by ICmpZero uses is -1!"); 3440 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3441 } else { 3442 // Otherwise just expand the scaled register and an explicit scale, 3443 // which is expected to be matched as part of the address. 3444 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3445 ScaledS = SE.getMulExpr(ScaledS, 3446 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3447 Ops.push_back(ScaledS); 3448 3449 // Flush the operand list to suppress SCEVExpander hoisting. 3450 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3451 Ops.clear(); 3452 Ops.push_back(SE.getUnknown(FullV)); 3453 } 3454 } 3455 3456 // Expand the GV portion. 3457 if (F.AM.BaseGV) { 3458 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3459 3460 // Flush the operand list to suppress SCEVExpander hoisting. 3461 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3462 Ops.clear(); 3463 Ops.push_back(SE.getUnknown(FullV)); 3464 } 3465 3466 // Expand the immediate portion. 3467 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3468 if (Offset != 0) { 3469 if (LU.Kind == LSRUse::ICmpZero) { 3470 // The other interesting way of "folding" with an ICmpZero is to use a 3471 // negated immediate. 3472 if (!ICmpScaledV) 3473 ICmpScaledV = ConstantInt::get(IntTy, -Offset); 3474 else { 3475 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3476 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3477 } 3478 } else { 3479 // Just add the immediate values. These again are expected to be matched 3480 // as part of the address. 3481 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3482 } 3483 } 3484 3485 // Emit instructions summing all the operands. 3486 const SCEV *FullS = Ops.empty() ? 3487 SE.getConstant(IntTy, 0) : 3488 SE.getAddExpr(Ops); 3489 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3490 3491 // We're done expanding now, so reset the rewriter. 3492 Rewriter.clearPostInc(); 3493 3494 // An ICmpZero Formula represents an ICmp which we're handling as a 3495 // comparison against zero. Now that we've expanded an expression for that 3496 // form, update the ICmp's other operand. 3497 if (LU.Kind == LSRUse::ICmpZero) { 3498 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3499 DeadInsts.push_back(CI->getOperand(1)); 3500 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3501 "a scale at the same time!"); 3502 if (F.AM.Scale == -1) { 3503 if (ICmpScaledV->getType() != OpTy) { 3504 Instruction *Cast = 3505 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3506 OpTy, false), 3507 ICmpScaledV, OpTy, "tmp", CI); 3508 ICmpScaledV = Cast; 3509 } 3510 CI->setOperand(1, ICmpScaledV); 3511 } else { 3512 assert(F.AM.Scale == 0 && 3513 "ICmp does not support folding a global value and " 3514 "a scale at the same time!"); 3515 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3516 -(uint64_t)Offset); 3517 if (C->getType() != OpTy) 3518 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3519 OpTy, false), 3520 C, OpTy); 3521 3522 CI->setOperand(1, C); 3523 } 3524 } 3525 3526 return FullV; 3527 } 3528 3529 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3530 /// of their operands effectively happens in their predecessor blocks, so the 3531 /// expression may need to be expanded in multiple places. 3532 void LSRInstance::RewriteForPHI(PHINode *PN, 3533 const LSRFixup &LF, 3534 const Formula &F, 3535 SCEVExpander &Rewriter, 3536 SmallVectorImpl<WeakVH> &DeadInsts, 3537 Pass *P) const { 3538 DenseMap<BasicBlock *, Value *> Inserted; 3539 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3540 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3541 BasicBlock *BB = PN->getIncomingBlock(i); 3542 3543 // If this is a critical edge, split the edge so that we do not insert 3544 // the code on all predecessor/successor paths. We do this unless this 3545 // is the canonical backedge for this loop, which complicates post-inc 3546 // users. 3547 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3548 !isa<IndirectBrInst>(BB->getTerminator()) && 3549 (PN->getParent() != L->getHeader() || !L->contains(BB))) { 3550 // Split the critical edge. 3551 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P); 3552 3553 // If PN is outside of the loop and BB is in the loop, we want to 3554 // move the block to be immediately before the PHI block, not 3555 // immediately after BB. 3556 if (L->contains(BB) && !L->contains(PN)) 3557 NewBB->moveBefore(PN->getParent()); 3558 3559 // Splitting the edge can reduce the number of PHI entries we have. 3560 e = PN->getNumIncomingValues(); 3561 BB = NewBB; 3562 i = PN->getBasicBlockIndex(BB); 3563 } 3564 3565 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3566 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3567 if (!Pair.second) 3568 PN->setIncomingValue(i, Pair.first->second); 3569 else { 3570 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3571 3572 // If this is reuse-by-noop-cast, insert the noop cast. 3573 const Type *OpTy = LF.OperandValToReplace->getType(); 3574 if (FullV->getType() != OpTy) 3575 FullV = 3576 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3577 OpTy, false), 3578 FullV, LF.OperandValToReplace->getType(), 3579 "tmp", BB->getTerminator()); 3580 3581 PN->setIncomingValue(i, FullV); 3582 Pair.first->second = FullV; 3583 } 3584 } 3585 } 3586 3587 /// Rewrite - Emit instructions for the leading candidate expression for this 3588 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3589 /// the newly expanded value. 3590 void LSRInstance::Rewrite(const LSRFixup &LF, 3591 const Formula &F, 3592 SCEVExpander &Rewriter, 3593 SmallVectorImpl<WeakVH> &DeadInsts, 3594 Pass *P) const { 3595 // First, find an insertion point that dominates UserInst. For PHI nodes, 3596 // find the nearest block which dominates all the relevant uses. 3597 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3598 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3599 } else { 3600 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3601 3602 // If this is reuse-by-noop-cast, insert the noop cast. 3603 const Type *OpTy = LF.OperandValToReplace->getType(); 3604 if (FullV->getType() != OpTy) { 3605 Instruction *Cast = 3606 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3607 FullV, OpTy, "tmp", LF.UserInst); 3608 FullV = Cast; 3609 } 3610 3611 // Update the user. ICmpZero is handled specially here (for now) because 3612 // Expand may have updated one of the operands of the icmp already, and 3613 // its new value may happen to be equal to LF.OperandValToReplace, in 3614 // which case doing replaceUsesOfWith leads to replacing both operands 3615 // with the same value. TODO: Reorganize this. 3616 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3617 LF.UserInst->setOperand(0, FullV); 3618 else 3619 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3620 } 3621 3622 DeadInsts.push_back(LF.OperandValToReplace); 3623 } 3624 3625 /// ImplementSolution - Rewrite all the fixup locations with new values, 3626 /// following the chosen solution. 3627 void 3628 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3629 Pass *P) { 3630 // Keep track of instructions we may have made dead, so that 3631 // we can remove them after we are done working. 3632 SmallVector<WeakVH, 16> DeadInsts; 3633 3634 SCEVExpander Rewriter(SE); 3635 Rewriter.disableCanonicalMode(); 3636 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3637 3638 // Expand the new value definitions and update the users. 3639 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3640 E = Fixups.end(); I != E; ++I) { 3641 const LSRFixup &Fixup = *I; 3642 3643 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3644 3645 Changed = true; 3646 } 3647 3648 // Clean up after ourselves. This must be done before deleting any 3649 // instructions. 3650 Rewriter.clear(); 3651 3652 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3653 } 3654 3655 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3656 : IU(P->getAnalysis<IVUsers>()), 3657 SE(P->getAnalysis<ScalarEvolution>()), 3658 DT(P->getAnalysis<DominatorTree>()), 3659 LI(P->getAnalysis<LoopInfo>()), 3660 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3661 3662 // If LoopSimplify form is not available, stay out of trouble. 3663 if (!L->isLoopSimplifyForm()) return; 3664 3665 // If there's no interesting work to be done, bail early. 3666 if (IU.empty()) return; 3667 3668 DEBUG(dbgs() << "\nLSR on loop "; 3669 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3670 dbgs() << ":\n"); 3671 3672 // First, perform some low-level loop optimizations. 3673 OptimizeShadowIV(); 3674 OptimizeLoopTermCond(); 3675 3676 // Start collecting data and preparing for the solver. 3677 CollectInterestingTypesAndFactors(); 3678 CollectFixupsAndInitialFormulae(); 3679 CollectLoopInvariantFixupsAndFormulae(); 3680 3681 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3682 print_uses(dbgs())); 3683 3684 // Now use the reuse data to generate a bunch of interesting ways 3685 // to formulate the values needed for the uses. 3686 GenerateAllReuseFormulae(); 3687 3688 FilterOutUndesirableDedicatedRegisters(); 3689 NarrowSearchSpaceUsingHeuristics(); 3690 3691 SmallVector<const Formula *, 8> Solution; 3692 Solve(Solution); 3693 3694 // Release memory that is no longer needed. 3695 Factors.clear(); 3696 Types.clear(); 3697 RegUses.clear(); 3698 3699 #ifndef NDEBUG 3700 // Formulae should be legal. 3701 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3702 E = Uses.end(); I != E; ++I) { 3703 const LSRUse &LU = *I; 3704 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3705 JE = LU.Formulae.end(); J != JE; ++J) 3706 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3707 LU.Kind, LU.AccessTy, TLI) && 3708 "Illegal formula generated!"); 3709 }; 3710 #endif 3711 3712 // Now that we've decided what we want, make it so. 3713 ImplementSolution(Solution, P); 3714 } 3715 3716 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3717 if (Factors.empty() && Types.empty()) return; 3718 3719 OS << "LSR has identified the following interesting factors and types: "; 3720 bool First = true; 3721 3722 for (SmallSetVector<int64_t, 8>::const_iterator 3723 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3724 if (!First) OS << ", "; 3725 First = false; 3726 OS << '*' << *I; 3727 } 3728 3729 for (SmallSetVector<const Type *, 4>::const_iterator 3730 I = Types.begin(), E = Types.end(); I != E; ++I) { 3731 if (!First) OS << ", "; 3732 First = false; 3733 OS << '(' << **I << ')'; 3734 } 3735 OS << '\n'; 3736 } 3737 3738 void LSRInstance::print_fixups(raw_ostream &OS) const { 3739 OS << "LSR is examining the following fixup sites:\n"; 3740 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3741 E = Fixups.end(); I != E; ++I) { 3742 dbgs() << " "; 3743 I->print(OS); 3744 OS << '\n'; 3745 } 3746 } 3747 3748 void LSRInstance::print_uses(raw_ostream &OS) const { 3749 OS << "LSR is examining the following uses:\n"; 3750 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3751 E = Uses.end(); I != E; ++I) { 3752 const LSRUse &LU = *I; 3753 dbgs() << " "; 3754 LU.print(OS); 3755 OS << '\n'; 3756 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3757 JE = LU.Formulae.end(); J != JE; ++J) { 3758 OS << " "; 3759 J->print(OS); 3760 OS << '\n'; 3761 } 3762 } 3763 } 3764 3765 void LSRInstance::print(raw_ostream &OS) const { 3766 print_factors_and_types(OS); 3767 print_fixups(OS); 3768 print_uses(OS); 3769 } 3770 3771 void LSRInstance::dump() const { 3772 print(errs()); errs() << '\n'; 3773 } 3774 3775 namespace { 3776 3777 class LoopStrengthReduce : public LoopPass { 3778 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3779 /// transformation profitability. 3780 const TargetLowering *const TLI; 3781 3782 public: 3783 static char ID; // Pass ID, replacement for typeid 3784 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3785 3786 private: 3787 bool runOnLoop(Loop *L, LPPassManager &LPM); 3788 void getAnalysisUsage(AnalysisUsage &AU) const; 3789 }; 3790 3791 } 3792 3793 char LoopStrengthReduce::ID = 0; 3794 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 3795 "Loop Strength Reduction", false, false) 3796 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 3797 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3798 INITIALIZE_PASS_DEPENDENCY(IVUsers) 3799 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 3800 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3801 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 3802 "Loop Strength Reduction", false, false) 3803 3804 3805 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 3806 return new LoopStrengthReduce(TLI); 3807 } 3808 3809 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 3810 : LoopPass(ID), TLI(tli) { 3811 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 3812 } 3813 3814 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 3815 // We split critical edges, so we change the CFG. However, we do update 3816 // many analyses if they are around. 3817 AU.addPreservedID(LoopSimplifyID); 3818 AU.addPreserved("domfrontier"); 3819 3820 AU.addRequired<LoopInfo>(); 3821 AU.addPreserved<LoopInfo>(); 3822 AU.addRequiredID(LoopSimplifyID); 3823 AU.addRequired<DominatorTree>(); 3824 AU.addPreserved<DominatorTree>(); 3825 AU.addRequired<ScalarEvolution>(); 3826 AU.addPreserved<ScalarEvolution>(); 3827 AU.addRequired<IVUsers>(); 3828 AU.addPreserved<IVUsers>(); 3829 } 3830 3831 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 3832 bool Changed = false; 3833 3834 // Run the main LSR transformation. 3835 Changed |= LSRInstance(TLI, L, this).getChanged(); 3836 3837 // At this point, it is worth checking to see if any recurrence PHIs are also 3838 // dead, so that we can remove them as well. 3839 Changed |= DeleteDeadPHIs(L->getHeader()); 3840 3841 return Changed; 3842 } 3843