1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <map>
120 #include <utility>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "loop-reduce"
125 
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
131 
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137   "enable-lsr-phielim", cl::Hidden, cl::init(true),
138   cl::desc("Enable LSR phi elimination"));
139 
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142   "lsr-insns-cost", cl::Hidden, cl::init(true),
143   cl::desc("Add instruction count to a LSR cost model"));
144 
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147   "lsr-exp-narrow", cl::Hidden, cl::init(false),
148   cl::desc("Narrow LSR complex solution using"
149            " expectation of registers number"));
150 
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156              " with the same ScaledReg and Scale"));
157 
158 static cl::opt<bool> EnableBackedgeIndexing(
159   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
160   cl::desc("Enable the generation of cross iteration indexed memops"));
161 
162 static cl::opt<unsigned> ComplexityLimit(
163   "lsr-complexity-limit", cl::Hidden,
164   cl::init(std::numeric_limits<uint16_t>::max()),
165   cl::desc("LSR search space complexity limit"));
166 
167 static cl::opt<unsigned> SetupCostDepthLimit(
168     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
169     cl::desc("The limit on recursion depth for LSRs setup cost"));
170 
171 #ifndef NDEBUG
172 // Stress test IV chain generation.
173 static cl::opt<bool> StressIVChain(
174   "stress-ivchain", cl::Hidden, cl::init(false),
175   cl::desc("Stress test LSR IV chains"));
176 #else
177 static bool StressIVChain = false;
178 #endif
179 
180 namespace {
181 
182 struct MemAccessTy {
183   /// Used in situations where the accessed memory type is unknown.
184   static const unsigned UnknownAddressSpace =
185       std::numeric_limits<unsigned>::max();
186 
187   Type *MemTy = nullptr;
188   unsigned AddrSpace = UnknownAddressSpace;
189 
190   MemAccessTy() = default;
191   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
192 
193   bool operator==(MemAccessTy Other) const {
194     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
195   }
196 
197   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
198 
199   static MemAccessTy getUnknown(LLVMContext &Ctx,
200                                 unsigned AS = UnknownAddressSpace) {
201     return MemAccessTy(Type::getVoidTy(Ctx), AS);
202   }
203 
204   Type *getType() { return MemTy; }
205 };
206 
207 /// This class holds data which is used to order reuse candidates.
208 class RegSortData {
209 public:
210   /// This represents the set of LSRUse indices which reference
211   /// a particular register.
212   SmallBitVector UsedByIndices;
213 
214   void print(raw_ostream &OS) const;
215   void dump() const;
216 };
217 
218 } // end anonymous namespace
219 
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream &OS) const {
222   OS << "[NumUses=" << UsedByIndices.count() << ']';
223 }
224 
225 LLVM_DUMP_METHOD void RegSortData::dump() const {
226   print(errs()); errs() << '\n';
227 }
228 #endif
229 
230 namespace {
231 
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker {
234   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
235 
236   RegUsesTy RegUsesMap;
237   SmallVector<const SCEV *, 16> RegSequence;
238 
239 public:
240   void countRegister(const SCEV *Reg, size_t LUIdx);
241   void dropRegister(const SCEV *Reg, size_t LUIdx);
242   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
243 
244   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
245 
246   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
247 
248   void clear();
249 
250   using iterator = SmallVectorImpl<const SCEV *>::iterator;
251   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
252 
253   iterator begin() { return RegSequence.begin(); }
254   iterator end()   { return RegSequence.end(); }
255   const_iterator begin() const { return RegSequence.begin(); }
256   const_iterator end() const   { return RegSequence.end(); }
257 };
258 
259 } // end anonymous namespace
260 
261 void
262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
263   std::pair<RegUsesTy::iterator, bool> Pair =
264     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
265   RegSortData &RSD = Pair.first->second;
266   if (Pair.second)
267     RegSequence.push_back(Reg);
268   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
269   RSD.UsedByIndices.set(LUIdx);
270 }
271 
272 void
273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
274   RegUsesTy::iterator It = RegUsesMap.find(Reg);
275   assert(It != RegUsesMap.end());
276   RegSortData &RSD = It->second;
277   assert(RSD.UsedByIndices.size() > LUIdx);
278   RSD.UsedByIndices.reset(LUIdx);
279 }
280 
281 void
282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
283   assert(LUIdx <= LastLUIdx);
284 
285   // Update RegUses. The data structure is not optimized for this purpose;
286   // we must iterate through it and update each of the bit vectors.
287   for (auto &Pair : RegUsesMap) {
288     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
289     if (LUIdx < UsedByIndices.size())
290       UsedByIndices[LUIdx] =
291         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
292     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
293   }
294 }
295 
296 bool
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
298   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
299   if (I == RegUsesMap.end())
300     return false;
301   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
302   int i = UsedByIndices.find_first();
303   if (i == -1) return false;
304   if ((size_t)i != LUIdx) return true;
305   return UsedByIndices.find_next(i) != -1;
306 }
307 
308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
309   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
310   assert(I != RegUsesMap.end() && "Unknown register!");
311   return I->second.UsedByIndices;
312 }
313 
314 void RegUseTracker::clear() {
315   RegUsesMap.clear();
316   RegSequence.clear();
317 }
318 
319 namespace {
320 
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
323 struct Formula {
324   /// Global base address used for complex addressing.
325   GlobalValue *BaseGV = nullptr;
326 
327   /// Base offset for complex addressing.
328   int64_t BaseOffset = 0;
329 
330   /// Whether any complex addressing has a base register.
331   bool HasBaseReg = false;
332 
333   /// The scale of any complex addressing.
334   int64_t Scale = 0;
335 
336   /// The list of "base" registers for this use. When this is non-empty. The
337   /// canonical representation of a formula is
338   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340   /// 3. The reg containing recurrent expr related with currect loop in the
341   /// formula should be put in the ScaledReg.
342   /// #1 enforces that the scaled register is always used when at least two
343   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344   /// #2 enforces that 1 * reg is reg.
345   /// #3 ensures invariant regs with respect to current loop can be combined
346   /// together in LSR codegen.
347   /// This invariant can be temporarily broken while building a formula.
348   /// However, every formula inserted into the LSRInstance must be in canonical
349   /// form.
350   SmallVector<const SCEV *, 4> BaseRegs;
351 
352   /// The 'scaled' register for this use. This should be non-null when Scale is
353   /// not zero.
354   const SCEV *ScaledReg = nullptr;
355 
356   /// An additional constant offset which added near the use. This requires a
357   /// temporary register, but the offset itself can live in an add immediate
358   /// field rather than a register.
359   int64_t UnfoldedOffset = 0;
360 
361   Formula() = default;
362 
363   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
364 
365   bool isCanonical(const Loop &L) const;
366 
367   void canonicalize(const Loop &L);
368 
369   bool unscale();
370 
371   bool hasZeroEnd() const;
372 
373   size_t getNumRegs() const;
374   Type *getType() const;
375 
376   void deleteBaseReg(const SCEV *&S);
377 
378   bool referencesReg(const SCEV *S) const;
379   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
380                                   const RegUseTracker &RegUses) const;
381 
382   void print(raw_ostream &OS) const;
383   void dump() const;
384 };
385 
386 } // end anonymous namespace
387 
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV *S, Loop *L,
390                            SmallVectorImpl<const SCEV *> &Good,
391                            SmallVectorImpl<const SCEV *> &Bad,
392                            ScalarEvolution &SE) {
393   // Collect expressions which properly dominate the loop header.
394   if (SE.properlyDominates(S, L->getHeader())) {
395     Good.push_back(S);
396     return;
397   }
398 
399   // Look at add operands.
400   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
401     for (const SCEV *S : Add->operands())
402       DoInitialMatch(S, L, Good, Bad, SE);
403     return;
404   }
405 
406   // Look at addrec operands.
407   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
408     if (!AR->getStart()->isZero() && AR->isAffine()) {
409       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
410       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
411                                       AR->getStepRecurrence(SE),
412                                       // FIXME: AR->getNoWrapFlags()
413                                       AR->getLoop(), SCEV::FlagAnyWrap),
414                      L, Good, Bad, SE);
415       return;
416     }
417 
418   // Handle a multiplication by -1 (negation) if it didn't fold.
419   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
420     if (Mul->getOperand(0)->isAllOnesValue()) {
421       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
422       const SCEV *NewMul = SE.getMulExpr(Ops);
423 
424       SmallVector<const SCEV *, 4> MyGood;
425       SmallVector<const SCEV *, 4> MyBad;
426       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
427       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
428         SE.getEffectiveSCEVType(NewMul->getType())));
429       for (const SCEV *S : MyGood)
430         Good.push_back(SE.getMulExpr(NegOne, S));
431       for (const SCEV *S : MyBad)
432         Bad.push_back(SE.getMulExpr(NegOne, S));
433       return;
434     }
435 
436   // Ok, we can't do anything interesting. Just stuff the whole thing into a
437   // register and hope for the best.
438   Bad.push_back(S);
439 }
440 
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
444   SmallVector<const SCEV *, 4> Good;
445   SmallVector<const SCEV *, 4> Bad;
446   DoInitialMatch(S, L, Good, Bad, SE);
447   if (!Good.empty()) {
448     const SCEV *Sum = SE.getAddExpr(Good);
449     if (!Sum->isZero())
450       BaseRegs.push_back(Sum);
451     HasBaseReg = true;
452   }
453   if (!Bad.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Bad);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   canonicalize(*L);
460 }
461 
462 /// Check whether or not this formula satisfies the canonical
463 /// representation.
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop &L) const {
466   if (!ScaledReg)
467     return BaseRegs.size() <= 1;
468 
469   if (Scale != 1)
470     return true;
471 
472   if (Scale == 1 && BaseRegs.empty())
473     return false;
474 
475   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
476   if (SAR && SAR->getLoop() == &L)
477     return true;
478 
479   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481   // loop, we want to swap the reg in BaseRegs with ScaledReg.
482   auto I =
483       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
484         return isa<const SCEVAddRecExpr>(S) &&
485                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
486       });
487   return I == BaseRegs.end();
488 }
489 
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop &L) {
497   if (isCanonical(L))
498     return;
499   // So far we did not need this case. This is easy to implement but it is
500   // useless to maintain dead code. Beside it could hurt compile time.
501   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
502 
503   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
504   if (!ScaledReg) {
505     ScaledReg = BaseRegs.back();
506     BaseRegs.pop_back();
507     Scale = 1;
508   }
509 
510   // If ScaledReg is an invariant with respect to L, find the reg from
511   // BaseRegs containing the recurrent expr related with Loop L. Swap the
512   // reg with ScaledReg.
513   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
514   if (!SAR || SAR->getLoop() != &L) {
515     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
516                      [&](const SCEV *S) {
517                        return isa<const SCEVAddRecExpr>(S) &&
518                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
519                      });
520     if (I != BaseRegs.end())
521       std::swap(ScaledReg, *I);
522   }
523 }
524 
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
530   if (Scale != 1)
531     return false;
532   Scale = 0;
533   BaseRegs.push_back(ScaledReg);
534   ScaledReg = nullptr;
535   return true;
536 }
537 
538 bool Formula::hasZeroEnd() const {
539   if (UnfoldedOffset || BaseOffset)
540     return false;
541   if (BaseRegs.size() != 1 || ScaledReg)
542     return false;
543   return true;
544 }
545 
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549   return !!ScaledReg + BaseRegs.size();
550 }
551 
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type *Formula::getType() const {
555   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
556          ScaledReg ? ScaledReg->getType() :
557          BaseGV ? BaseGV->getType() :
558          nullptr;
559 }
560 
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV *&S) {
563   if (&S != &BaseRegs.back())
564     std::swap(S, BaseRegs.back());
565   BaseRegs.pop_back();
566 }
567 
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV *S) const {
570   return S == ScaledReg || is_contained(BaseRegs, S);
571 }
572 
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
576                                          const RegUseTracker &RegUses) const {
577   if (ScaledReg)
578     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
579       return true;
580   for (const SCEV *BaseReg : BaseRegs)
581     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
582       return true;
583   return false;
584 }
585 
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream &OS) const {
588   bool First = true;
589   if (BaseGV) {
590     if (!First) OS << " + "; else First = false;
591     BaseGV->printAsOperand(OS, /*PrintType=*/false);
592   }
593   if (BaseOffset != 0) {
594     if (!First) OS << " + "; else First = false;
595     OS << BaseOffset;
596   }
597   for (const SCEV *BaseReg : BaseRegs) {
598     if (!First) OS << " + "; else First = false;
599     OS << "reg(" << *BaseReg << ')';
600   }
601   if (HasBaseReg && BaseRegs.empty()) {
602     if (!First) OS << " + "; else First = false;
603     OS << "**error: HasBaseReg**";
604   } else if (!HasBaseReg && !BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: !HasBaseReg**";
607   }
608   if (Scale != 0) {
609     if (!First) OS << " + "; else First = false;
610     OS << Scale << "*reg(";
611     if (ScaledReg)
612       OS << *ScaledReg;
613     else
614       OS << "<unknown>";
615     OS << ')';
616   }
617   if (UnfoldedOffset != 0) {
618     if (!First) OS << " + ";
619     OS << "imm(" << UnfoldedOffset << ')';
620   }
621 }
622 
623 LLVM_DUMP_METHOD void Formula::dump() const {
624   print(errs()); errs() << '\n';
625 }
626 #endif
627 
628 /// Return true if the given addrec can be sign-extended without changing its
629 /// value.
630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
631   Type *WideTy =
632     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
633   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
634 }
635 
636 /// Return true if the given add can be sign-extended without changing its
637 /// value.
638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
639   Type *WideTy =
640     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
641   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
642 }
643 
644 /// Return true if the given mul can be sign-extended without changing its
645 /// value.
646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
647   Type *WideTy =
648     IntegerType::get(SE.getContext(),
649                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
650   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
651 }
652 
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
659                                 ScalarEvolution &SE,
660                                 bool IgnoreSignificantBits = false) {
661   // Handle the trivial case, which works for any SCEV type.
662   if (LHS == RHS)
663     return SE.getConstant(LHS->getType(), 1);
664 
665   // Handle a few RHS special cases.
666   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
667   if (RC) {
668     const APInt &RA = RC->getAPInt();
669     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
670     // some folding.
671     if (RA.isAllOnesValue())
672       return SE.getMulExpr(LHS, RC);
673     // Handle x /s 1 as x.
674     if (RA == 1)
675       return LHS;
676   }
677 
678   // Check for a division of a constant by a constant.
679   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
680     if (!RC)
681       return nullptr;
682     const APInt &LA = C->getAPInt();
683     const APInt &RA = RC->getAPInt();
684     if (LA.srem(RA) != 0)
685       return nullptr;
686     return SE.getConstant(LA.sdiv(RA));
687   }
688 
689   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
691     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
692       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
693                                       IgnoreSignificantBits);
694       if (!Step) return nullptr;
695       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
696                                        IgnoreSignificantBits);
697       if (!Start) return nullptr;
698       // FlagNW is independent of the start value, step direction, and is
699       // preserved with smaller magnitude steps.
700       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
702     }
703     return nullptr;
704   }
705 
706   // Distribute the sdiv over add operands, if the add doesn't overflow.
707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
708     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
709       SmallVector<const SCEV *, 8> Ops;
710       for (const SCEV *S : Add->operands()) {
711         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
712         if (!Op) return nullptr;
713         Ops.push_back(Op);
714       }
715       return SE.getAddExpr(Ops);
716     }
717     return nullptr;
718   }
719 
720   // Check for a multiply operand that we can pull RHS out of.
721   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
722     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
723       SmallVector<const SCEV *, 4> Ops;
724       bool Found = false;
725       for (const SCEV *S : Mul->operands()) {
726         if (!Found)
727           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
728                                            IgnoreSignificantBits)) {
729             S = Q;
730             Found = true;
731           }
732         Ops.push_back(S);
733       }
734       return Found ? SE.getMulExpr(Ops) : nullptr;
735     }
736     return nullptr;
737   }
738 
739   // Otherwise we don't know.
740   return nullptr;
741 }
742 
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
746   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
747     if (C->getAPInt().getMinSignedBits() <= 64) {
748       S = SE.getConstant(C->getType(), 0);
749       return C->getValue()->getSExtValue();
750     }
751   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
752     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
753     int64_t Result = ExtractImmediate(NewOps.front(), SE);
754     if (Result != 0)
755       S = SE.getAddExpr(NewOps);
756     return Result;
757   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
758     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
759     int64_t Result = ExtractImmediate(NewOps.front(), SE);
760     if (Result != 0)
761       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
762                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
763                            SCEV::FlagAnyWrap);
764     return Result;
765   }
766   return 0;
767 }
768 
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
772   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
773     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
774       S = SE.getConstant(GV->getType(), 0);
775       return GV;
776     }
777   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
778     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
779     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
780     if (Result)
781       S = SE.getAddExpr(NewOps);
782     return Result;
783   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
784     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
785     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
786     if (Result)
787       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
788                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
789                            SCEV::FlagAnyWrap);
790     return Result;
791   }
792   return nullptr;
793 }
794 
795 /// Returns true if the specified instruction is using the specified value as an
796 /// address.
797 static bool isAddressUse(const TargetTransformInfo &TTI,
798                          Instruction *Inst, Value *OperandVal) {
799   bool isAddress = isa<LoadInst>(Inst);
800   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
801     if (SI->getPointerOperand() == OperandVal)
802       isAddress = true;
803   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
804     // Addressing modes can also be folded into prefetches and a variety
805     // of intrinsics.
806     switch (II->getIntrinsicID()) {
807     case Intrinsic::memset:
808     case Intrinsic::prefetch:
809       if (II->getArgOperand(0) == OperandVal)
810         isAddress = true;
811       break;
812     case Intrinsic::memmove:
813     case Intrinsic::memcpy:
814       if (II->getArgOperand(0) == OperandVal ||
815           II->getArgOperand(1) == OperandVal)
816         isAddress = true;
817       break;
818     default: {
819       MemIntrinsicInfo IntrInfo;
820       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
821         if (IntrInfo.PtrVal == OperandVal)
822           isAddress = true;
823       }
824     }
825     }
826   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
827     if (RMW->getPointerOperand() == OperandVal)
828       isAddress = true;
829   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
830     if (CmpX->getPointerOperand() == OperandVal)
831       isAddress = true;
832   }
833   return isAddress;
834 }
835 
836 /// Return the type of the memory being accessed.
837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
838                                  Instruction *Inst, Value *OperandVal) {
839   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
840   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
841     AccessTy.MemTy = SI->getOperand(0)->getType();
842     AccessTy.AddrSpace = SI->getPointerAddressSpace();
843   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
844     AccessTy.AddrSpace = LI->getPointerAddressSpace();
845   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
846     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
847   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
849   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
850     switch (II->getIntrinsicID()) {
851     case Intrinsic::prefetch:
852     case Intrinsic::memset:
853       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
854       AccessTy.MemTy = OperandVal->getType();
855       break;
856     case Intrinsic::memmove:
857     case Intrinsic::memcpy:
858       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
859       AccessTy.MemTy = OperandVal->getType();
860       break;
861     default: {
862       MemIntrinsicInfo IntrInfo;
863       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
864         AccessTy.AddrSpace
865           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
866       }
867 
868       break;
869     }
870     }
871   }
872 
873   // All pointers have the same requirements, so canonicalize them to an
874   // arbitrary pointer type to minimize variation.
875   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
876     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
877                                       PTy->getAddressSpace());
878 
879   return AccessTy;
880 }
881 
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
884   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
885     if (SE.isSCEVable(PN.getType()) &&
886         (SE.getEffectiveSCEVType(PN.getType()) ==
887          SE.getEffectiveSCEVType(AR->getType())) &&
888         SE.getSCEV(&PN) == AR)
889       return true;
890   }
891   return false;
892 }
893 
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
897 ///
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
900 ///
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV *S,
904                                 SmallPtrSetImpl<const SCEV*> &Processed,
905                                 ScalarEvolution &SE) {
906   // Zero/One operand expressions
907   switch (S->getSCEVType()) {
908   case scUnknown:
909   case scConstant:
910     return false;
911   case scTruncate:
912     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
913                                Processed, SE);
914   case scZeroExtend:
915     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
916                                Processed, SE);
917   case scSignExtend:
918     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
919                                Processed, SE);
920   }
921 
922   if (!Processed.insert(S).second)
923     return false;
924 
925   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
926     for (const SCEV *S : Add->operands()) {
927       if (isHighCostExpansion(S, Processed, SE))
928         return true;
929     }
930     return false;
931   }
932 
933   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
934     if (Mul->getNumOperands() == 2) {
935       // Multiplication by a constant is ok
936       if (isa<SCEVConstant>(Mul->getOperand(0)))
937         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
938 
939       // If we have the value of one operand, check if an existing
940       // multiplication already generates this expression.
941       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
942         Value *UVal = U->getValue();
943         for (User *UR : UVal->users()) {
944           // If U is a constant, it may be used by a ConstantExpr.
945           Instruction *UI = dyn_cast<Instruction>(UR);
946           if (UI && UI->getOpcode() == Instruction::Mul &&
947               SE.isSCEVable(UI->getType())) {
948             return SE.getSCEV(UI) == Mul;
949           }
950         }
951       }
952     }
953   }
954 
955   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
956     if (isExistingPhi(AR, SE))
957       return false;
958   }
959 
960   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
961   return true;
962 }
963 
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
966 static bool
967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
968   bool Changed = false;
969 
970   while (!DeadInsts.empty()) {
971     Value *V = DeadInsts.pop_back_val();
972     Instruction *I = dyn_cast_or_null<Instruction>(V);
973 
974     if (!I || !isInstructionTriviallyDead(I))
975       continue;
976 
977     for (Use &O : I->operands())
978       if (Instruction *U = dyn_cast<Instruction>(O)) {
979         O = nullptr;
980         if (U->use_empty())
981           DeadInsts.emplace_back(U);
982       }
983 
984     I->eraseFromParent();
985     Changed = true;
986   }
987 
988   return Changed;
989 }
990 
991 namespace {
992 
993 class LSRUse;
994 
995 } // end anonymous namespace
996 
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1007                                  const LSRUse &LU, const Formula &F);
1008 
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1011                                      const LSRUse &LU, const Formula &F,
1012                                      const Loop &L);
1013 
1014 namespace {
1015 
1016 /// This class is used to measure and compare candidate formulae.
1017 class Cost {
1018   const Loop *L = nullptr;
1019   ScalarEvolution *SE = nullptr;
1020   const TargetTransformInfo *TTI = nullptr;
1021   TargetTransformInfo::LSRCost C;
1022 
1023 public:
1024   Cost() = delete;
1025   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1026     L(L), SE(&SE), TTI(&TTI) {
1027     C.Insns = 0;
1028     C.NumRegs = 0;
1029     C.AddRecCost = 0;
1030     C.NumIVMuls = 0;
1031     C.NumBaseAdds = 0;
1032     C.ImmCost = 0;
1033     C.SetupCost = 0;
1034     C.ScaleCost = 0;
1035   }
1036 
1037   bool isLess(Cost &Other);
1038 
1039   void Lose();
1040 
1041 #ifndef NDEBUG
1042   // Once any of the metrics loses, they must all remain losers.
1043   bool isValid() {
1044     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1045              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1046       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1047            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1048   }
1049 #endif
1050 
1051   bool isLoser() {
1052     assert(isValid() && "invalid cost");
1053     return C.NumRegs == ~0u;
1054   }
1055 
1056   void RateFormula(const Formula &F,
1057                    SmallPtrSetImpl<const SCEV *> &Regs,
1058                    const DenseSet<const SCEV *> &VisitedRegs,
1059                    const LSRUse &LU,
1060                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1061 
1062   void print(raw_ostream &OS) const;
1063   void dump() const;
1064 
1065 private:
1066   void RateRegister(const Formula &F, const SCEV *Reg,
1067                     SmallPtrSetImpl<const SCEV *> &Regs);
1068   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1069                            SmallPtrSetImpl<const SCEV *> &Regs,
1070                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1071 };
1072 
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1075 struct LSRFixup {
1076   /// The instruction which will be updated.
1077   Instruction *UserInst = nullptr;
1078 
1079   /// The operand of the instruction which will be replaced. The operand may be
1080   /// used more than once; every instance will be replaced.
1081   Value *OperandValToReplace = nullptr;
1082 
1083   /// If this user is to use the post-incremented value of an induction
1084   /// variable, this set is non-empty and holds the loops associated with the
1085   /// induction variable.
1086   PostIncLoopSet PostIncLoops;
1087 
1088   /// A constant offset to be added to the LSRUse expression.  This allows
1089   /// multiple fixups to share the same LSRUse with different offsets, for
1090   /// example in an unrolled loop.
1091   int64_t Offset = 0;
1092 
1093   LSRFixup() = default;
1094 
1095   bool isUseFullyOutsideLoop(const Loop *L) const;
1096 
1097   void print(raw_ostream &OS) const;
1098   void dump() const;
1099 };
1100 
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo {
1104   static SmallVector<const SCEV *, 4> getEmptyKey() {
1105     SmallVector<const SCEV *, 4>  V;
1106     V.push_back(reinterpret_cast<const SCEV *>(-1));
1107     return V;
1108   }
1109 
1110   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1111     SmallVector<const SCEV *, 4> V;
1112     V.push_back(reinterpret_cast<const SCEV *>(-2));
1113     return V;
1114   }
1115 
1116   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1117     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1118   }
1119 
1120   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1121                       const SmallVector<const SCEV *, 4> &RHS) {
1122     return LHS == RHS;
1123   }
1124 };
1125 
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied.  TODO: Represent multiple
1130 /// users of the same expression in common?
1131 class LSRUse {
1132   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1133 
1134 public:
1135   /// An enum for a kind of use, indicating what types of scaled and immediate
1136   /// operands it might support.
1137   enum KindType {
1138     Basic,   ///< A normal use, with no folding.
1139     Special, ///< A special case of basic, allowing -1 scales.
1140     Address, ///< An address use; folding according to TargetLowering
1141     ICmpZero ///< An equality icmp with both operands folded into one.
1142     // TODO: Add a generic icmp too?
1143   };
1144 
1145   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1146 
1147   KindType Kind;
1148   MemAccessTy AccessTy;
1149 
1150   /// The list of operands which are to be replaced.
1151   SmallVector<LSRFixup, 8> Fixups;
1152 
1153   /// Keep track of the min and max offsets of the fixups.
1154   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1155   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1156 
1157   /// This records whether all of the fixups using this LSRUse are outside of
1158   /// the loop, in which case some special-case heuristics may be used.
1159   bool AllFixupsOutsideLoop = true;
1160 
1161   /// RigidFormula is set to true to guarantee that this use will be associated
1162   /// with a single formula--the one that initially matched. Some SCEV
1163   /// expressions cannot be expanded. This allows LSR to consider the registers
1164   /// used by those expressions without the need to expand them later after
1165   /// changing the formula.
1166   bool RigidFormula = false;
1167 
1168   /// This records the widest use type for any fixup using this
1169   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170   /// fixup widths to be equivalent, because the narrower one may be relying on
1171   /// the implicit truncation to truncate away bogus bits.
1172   Type *WidestFixupType = nullptr;
1173 
1174   /// A list of ways to build a value that can satisfy this user.  After the
1175   /// list is populated, one of these is selected heuristically and used to
1176   /// formulate a replacement for OperandValToReplace in UserInst.
1177   SmallVector<Formula, 12> Formulae;
1178 
1179   /// The set of register candidates used by all formulae in this LSRUse.
1180   SmallPtrSet<const SCEV *, 4> Regs;
1181 
1182   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1183 
1184   LSRFixup &getNewFixup() {
1185     Fixups.push_back(LSRFixup());
1186     return Fixups.back();
1187   }
1188 
1189   void pushFixup(LSRFixup &f) {
1190     Fixups.push_back(f);
1191     if (f.Offset > MaxOffset)
1192       MaxOffset = f.Offset;
1193     if (f.Offset < MinOffset)
1194       MinOffset = f.Offset;
1195   }
1196 
1197   bool HasFormulaWithSameRegs(const Formula &F) const;
1198   float getNotSelectedProbability(const SCEV *Reg) const;
1199   bool InsertFormula(const Formula &F, const Loop &L);
1200   void DeleteFormula(Formula &F);
1201   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1202 
1203   void print(raw_ostream &OS) const;
1204   void dump() const;
1205 };
1206 
1207 } // end anonymous namespace
1208 
1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1210                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1211                                  GlobalValue *BaseGV, int64_t BaseOffset,
1212                                  bool HasBaseReg, int64_t Scale,
1213                                  Instruction *Fixup = nullptr);
1214 
1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1216   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1217     return 1;
1218   if (Depth == 0)
1219     return 0;
1220   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1221     return getSetupCost(S->getStart(), Depth - 1);
1222   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1223     return getSetupCost(S->getOperand(), Depth - 1);
1224   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1225     return std::accumulate(S->op_begin(), S->op_end(), 0,
1226                            [&](unsigned i, const SCEV *Reg) {
1227                              return i + getSetupCost(Reg, Depth - 1);
1228                            });
1229   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1230     return getSetupCost(S->getLHS(), Depth - 1) +
1231            getSetupCost(S->getRHS(), Depth - 1);
1232   return 0;
1233 }
1234 
1235 /// Tally up interesting quantities from the given register.
1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1237                         SmallPtrSetImpl<const SCEV *> &Regs) {
1238   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1239     // If this is an addrec for another loop, it should be an invariant
1240     // with respect to L since L is the innermost loop (at least
1241     // for now LSR only handles innermost loops).
1242     if (AR->getLoop() != L) {
1243       // If the AddRec exists, consider it's register free and leave it alone.
1244       if (isExistingPhi(AR, *SE))
1245         return;
1246 
1247       // It is bad to allow LSR for current loop to add induction variables
1248       // for its sibling loops.
1249       if (!AR->getLoop()->contains(L)) {
1250         Lose();
1251         return;
1252       }
1253 
1254       // Otherwise, it will be an invariant with respect to Loop L.
1255       ++C.NumRegs;
1256       return;
1257     }
1258 
1259     unsigned LoopCost = 1;
1260     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1261         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1262 
1263       // If the step size matches the base offset, we could use pre-indexed
1264       // addressing.
1265       if (TTI->shouldFavorBackedgeIndex(L)) {
1266         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1267           if (Step->getAPInt() == F.BaseOffset)
1268             LoopCost = 0;
1269       }
1270 
1271       if (TTI->shouldFavorPostInc()) {
1272         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1273         if (isa<SCEVConstant>(LoopStep)) {
1274           const SCEV *LoopStart = AR->getStart();
1275           if (!isa<SCEVConstant>(LoopStart) &&
1276               SE->isLoopInvariant(LoopStart, L))
1277             LoopCost = 0;
1278         }
1279       }
1280     }
1281     C.AddRecCost += LoopCost;
1282 
1283     // Add the step value register, if it needs one.
1284     // TODO: The non-affine case isn't precisely modeled here.
1285     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1286       if (!Regs.count(AR->getOperand(1))) {
1287         RateRegister(F, AR->getOperand(1), Regs);
1288         if (isLoser())
1289           return;
1290       }
1291     }
1292   }
1293   ++C.NumRegs;
1294 
1295   // Rough heuristic; favor registers which don't require extra setup
1296   // instructions in the preheader.
1297   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1298   // Ensure we don't, even with the recusion limit, produce invalid costs.
1299   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1300 
1301   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1302                SE->hasComputableLoopEvolution(Reg, L);
1303 }
1304 
1305 /// Record this register in the set. If we haven't seen it before, rate
1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1307 /// one of those regs an instant loser.
1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1309                                SmallPtrSetImpl<const SCEV *> &Regs,
1310                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1311   if (LoserRegs && LoserRegs->count(Reg)) {
1312     Lose();
1313     return;
1314   }
1315   if (Regs.insert(Reg).second) {
1316     RateRegister(F, Reg, Regs);
1317     if (LoserRegs && isLoser())
1318       LoserRegs->insert(Reg);
1319   }
1320 }
1321 
1322 void Cost::RateFormula(const Formula &F,
1323                        SmallPtrSetImpl<const SCEV *> &Regs,
1324                        const DenseSet<const SCEV *> &VisitedRegs,
1325                        const LSRUse &LU,
1326                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1327   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1328   // Tally up the registers.
1329   unsigned PrevAddRecCost = C.AddRecCost;
1330   unsigned PrevNumRegs = C.NumRegs;
1331   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1332   if (const SCEV *ScaledReg = F.ScaledReg) {
1333     if (VisitedRegs.count(ScaledReg)) {
1334       Lose();
1335       return;
1336     }
1337     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1338     if (isLoser())
1339       return;
1340   }
1341   for (const SCEV *BaseReg : F.BaseRegs) {
1342     if (VisitedRegs.count(BaseReg)) {
1343       Lose();
1344       return;
1345     }
1346     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1347     if (isLoser())
1348       return;
1349   }
1350 
1351   // Determine how many (unfolded) adds we'll need inside the loop.
1352   size_t NumBaseParts = F.getNumRegs();
1353   if (NumBaseParts > 1)
1354     // Do not count the base and a possible second register if the target
1355     // allows to fold 2 registers.
1356     C.NumBaseAdds +=
1357         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1358   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1359 
1360   // Accumulate non-free scaling amounts.
1361   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1362 
1363   // Tally up the non-zero immediates.
1364   for (const LSRFixup &Fixup : LU.Fixups) {
1365     int64_t O = Fixup.Offset;
1366     int64_t Offset = (uint64_t)O + F.BaseOffset;
1367     if (F.BaseGV)
1368       C.ImmCost += 64; // Handle symbolic values conservatively.
1369                      // TODO: This should probably be the pointer size.
1370     else if (Offset != 0)
1371       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1372 
1373     // Check with target if this offset with this instruction is
1374     // specifically not supported.
1375     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1376         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1377                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1378       C.NumBaseAdds++;
1379   }
1380 
1381   // If we don't count instruction cost exit here.
1382   if (!InsnsCost) {
1383     assert(isValid() && "invalid cost");
1384     return;
1385   }
1386 
1387   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1388   // additional instruction (at least fill).
1389   unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1;
1390   if (C.NumRegs > TTIRegNum) {
1391     // Cost already exceeded TTIRegNum, then only newly added register can add
1392     // new instructions.
1393     if (PrevNumRegs > TTIRegNum)
1394       C.Insns += (C.NumRegs - PrevNumRegs);
1395     else
1396       C.Insns += (C.NumRegs - TTIRegNum);
1397   }
1398 
1399   // If ICmpZero formula ends with not 0, it could not be replaced by
1400   // just add or sub. We'll need to compare final result of AddRec.
1401   // That means we'll need an additional instruction. But if the target can
1402   // macro-fuse a compare with a branch, don't count this extra instruction.
1403   // For -10 + {0, +, 1}:
1404   // i = i + 1;
1405   // cmp i, 10
1406   //
1407   // For {-10, +, 1}:
1408   // i = i + 1;
1409   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1410       !TTI->canMacroFuseCmp())
1411     C.Insns++;
1412   // Each new AddRec adds 1 instruction to calculation.
1413   C.Insns += (C.AddRecCost - PrevAddRecCost);
1414 
1415   // BaseAdds adds instructions for unfolded registers.
1416   if (LU.Kind != LSRUse::ICmpZero)
1417     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1418   assert(isValid() && "invalid cost");
1419 }
1420 
1421 /// Set this cost to a losing value.
1422 void Cost::Lose() {
1423   C.Insns = std::numeric_limits<unsigned>::max();
1424   C.NumRegs = std::numeric_limits<unsigned>::max();
1425   C.AddRecCost = std::numeric_limits<unsigned>::max();
1426   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1427   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1428   C.ImmCost = std::numeric_limits<unsigned>::max();
1429   C.SetupCost = std::numeric_limits<unsigned>::max();
1430   C.ScaleCost = std::numeric_limits<unsigned>::max();
1431 }
1432 
1433 /// Choose the lower cost.
1434 bool Cost::isLess(Cost &Other) {
1435   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1436       C.Insns != Other.C.Insns)
1437     return C.Insns < Other.C.Insns;
1438   return TTI->isLSRCostLess(C, Other.C);
1439 }
1440 
1441 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1442 void Cost::print(raw_ostream &OS) const {
1443   if (InsnsCost)
1444     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1445   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1446   if (C.AddRecCost != 0)
1447     OS << ", with addrec cost " << C.AddRecCost;
1448   if (C.NumIVMuls != 0)
1449     OS << ", plus " << C.NumIVMuls << " IV mul"
1450        << (C.NumIVMuls == 1 ? "" : "s");
1451   if (C.NumBaseAdds != 0)
1452     OS << ", plus " << C.NumBaseAdds << " base add"
1453        << (C.NumBaseAdds == 1 ? "" : "s");
1454   if (C.ScaleCost != 0)
1455     OS << ", plus " << C.ScaleCost << " scale cost";
1456   if (C.ImmCost != 0)
1457     OS << ", plus " << C.ImmCost << " imm cost";
1458   if (C.SetupCost != 0)
1459     OS << ", plus " << C.SetupCost << " setup cost";
1460 }
1461 
1462 LLVM_DUMP_METHOD void Cost::dump() const {
1463   print(errs()); errs() << '\n';
1464 }
1465 #endif
1466 
1467 /// Test whether this fixup always uses its value outside of the given loop.
1468 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1469   // PHI nodes use their value in their incoming blocks.
1470   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1471     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1472       if (PN->getIncomingValue(i) == OperandValToReplace &&
1473           L->contains(PN->getIncomingBlock(i)))
1474         return false;
1475     return true;
1476   }
1477 
1478   return !L->contains(UserInst);
1479 }
1480 
1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1482 void LSRFixup::print(raw_ostream &OS) const {
1483   OS << "UserInst=";
1484   // Store is common and interesting enough to be worth special-casing.
1485   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1486     OS << "store ";
1487     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1488   } else if (UserInst->getType()->isVoidTy())
1489     OS << UserInst->getOpcodeName();
1490   else
1491     UserInst->printAsOperand(OS, /*PrintType=*/false);
1492 
1493   OS << ", OperandValToReplace=";
1494   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1495 
1496   for (const Loop *PIL : PostIncLoops) {
1497     OS << ", PostIncLoop=";
1498     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1499   }
1500 
1501   if (Offset != 0)
1502     OS << ", Offset=" << Offset;
1503 }
1504 
1505 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1506   print(errs()); errs() << '\n';
1507 }
1508 #endif
1509 
1510 /// Test whether this use as a formula which has the same registers as the given
1511 /// formula.
1512 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1513   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1514   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1515   // Unstable sort by host order ok, because this is only used for uniquifying.
1516   llvm::sort(Key);
1517   return Uniquifier.count(Key);
1518 }
1519 
1520 /// The function returns a probability of selecting formula without Reg.
1521 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1522   unsigned FNum = 0;
1523   for (const Formula &F : Formulae)
1524     if (F.referencesReg(Reg))
1525       FNum++;
1526   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1527 }
1528 
1529 /// If the given formula has not yet been inserted, add it to the list, and
1530 /// return true. Return false otherwise.  The formula must be in canonical form.
1531 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1532   assert(F.isCanonical(L) && "Invalid canonical representation");
1533 
1534   if (!Formulae.empty() && RigidFormula)
1535     return false;
1536 
1537   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1538   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1539   // Unstable sort by host order ok, because this is only used for uniquifying.
1540   llvm::sort(Key);
1541 
1542   if (!Uniquifier.insert(Key).second)
1543     return false;
1544 
1545   // Using a register to hold the value of 0 is not profitable.
1546   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1547          "Zero allocated in a scaled register!");
1548 #ifndef NDEBUG
1549   for (const SCEV *BaseReg : F.BaseRegs)
1550     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1551 #endif
1552 
1553   // Add the formula to the list.
1554   Formulae.push_back(F);
1555 
1556   // Record registers now being used by this use.
1557   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1558   if (F.ScaledReg)
1559     Regs.insert(F.ScaledReg);
1560 
1561   return true;
1562 }
1563 
1564 /// Remove the given formula from this use's list.
1565 void LSRUse::DeleteFormula(Formula &F) {
1566   if (&F != &Formulae.back())
1567     std::swap(F, Formulae.back());
1568   Formulae.pop_back();
1569 }
1570 
1571 /// Recompute the Regs field, and update RegUses.
1572 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1573   // Now that we've filtered out some formulae, recompute the Regs set.
1574   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1575   Regs.clear();
1576   for (const Formula &F : Formulae) {
1577     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1578     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1579   }
1580 
1581   // Update the RegTracker.
1582   for (const SCEV *S : OldRegs)
1583     if (!Regs.count(S))
1584       RegUses.dropRegister(S, LUIdx);
1585 }
1586 
1587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1588 void LSRUse::print(raw_ostream &OS) const {
1589   OS << "LSR Use: Kind=";
1590   switch (Kind) {
1591   case Basic:    OS << "Basic"; break;
1592   case Special:  OS << "Special"; break;
1593   case ICmpZero: OS << "ICmpZero"; break;
1594   case Address:
1595     OS << "Address of ";
1596     if (AccessTy.MemTy->isPointerTy())
1597       OS << "pointer"; // the full pointer type could be really verbose
1598     else {
1599       OS << *AccessTy.MemTy;
1600     }
1601 
1602     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1603   }
1604 
1605   OS << ", Offsets={";
1606   bool NeedComma = false;
1607   for (const LSRFixup &Fixup : Fixups) {
1608     if (NeedComma) OS << ',';
1609     OS << Fixup.Offset;
1610     NeedComma = true;
1611   }
1612   OS << '}';
1613 
1614   if (AllFixupsOutsideLoop)
1615     OS << ", all-fixups-outside-loop";
1616 
1617   if (WidestFixupType)
1618     OS << ", widest fixup type: " << *WidestFixupType;
1619 }
1620 
1621 LLVM_DUMP_METHOD void LSRUse::dump() const {
1622   print(errs()); errs() << '\n';
1623 }
1624 #endif
1625 
1626 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1627                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1628                                  GlobalValue *BaseGV, int64_t BaseOffset,
1629                                  bool HasBaseReg, int64_t Scale,
1630                                  Instruction *Fixup/*= nullptr*/) {
1631   switch (Kind) {
1632   case LSRUse::Address:
1633     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1634                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1635 
1636   case LSRUse::ICmpZero:
1637     // There's not even a target hook for querying whether it would be legal to
1638     // fold a GV into an ICmp.
1639     if (BaseGV)
1640       return false;
1641 
1642     // ICmp only has two operands; don't allow more than two non-trivial parts.
1643     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1644       return false;
1645 
1646     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1647     // putting the scaled register in the other operand of the icmp.
1648     if (Scale != 0 && Scale != -1)
1649       return false;
1650 
1651     // If we have low-level target information, ask the target if it can fold an
1652     // integer immediate on an icmp.
1653     if (BaseOffset != 0) {
1654       // We have one of:
1655       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1656       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1657       // Offs is the ICmp immediate.
1658       if (Scale == 0)
1659         // The cast does the right thing with
1660         // std::numeric_limits<int64_t>::min().
1661         BaseOffset = -(uint64_t)BaseOffset;
1662       return TTI.isLegalICmpImmediate(BaseOffset);
1663     }
1664 
1665     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1666     return true;
1667 
1668   case LSRUse::Basic:
1669     // Only handle single-register values.
1670     return !BaseGV && Scale == 0 && BaseOffset == 0;
1671 
1672   case LSRUse::Special:
1673     // Special case Basic to handle -1 scales.
1674     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1675   }
1676 
1677   llvm_unreachable("Invalid LSRUse Kind!");
1678 }
1679 
1680 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1681                                  int64_t MinOffset, int64_t MaxOffset,
1682                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1683                                  GlobalValue *BaseGV, int64_t BaseOffset,
1684                                  bool HasBaseReg, int64_t Scale) {
1685   // Check for overflow.
1686   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1687       (MinOffset > 0))
1688     return false;
1689   MinOffset = (uint64_t)BaseOffset + MinOffset;
1690   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1691       (MaxOffset > 0))
1692     return false;
1693   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1694 
1695   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1696                               HasBaseReg, Scale) &&
1697          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1698                               HasBaseReg, Scale);
1699 }
1700 
1701 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1702                                  int64_t MinOffset, int64_t MaxOffset,
1703                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1704                                  const Formula &F, const Loop &L) {
1705   // For the purpose of isAMCompletelyFolded either having a canonical formula
1706   // or a scale not equal to zero is correct.
1707   // Problems may arise from non canonical formulae having a scale == 0.
1708   // Strictly speaking it would best to just rely on canonical formulae.
1709   // However, when we generate the scaled formulae, we first check that the
1710   // scaling factor is profitable before computing the actual ScaledReg for
1711   // compile time sake.
1712   assert((F.isCanonical(L) || F.Scale != 0));
1713   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1714                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1715 }
1716 
1717 /// Test whether we know how to expand the current formula.
1718 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1719                        int64_t MaxOffset, LSRUse::KindType Kind,
1720                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1721                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1722   // We know how to expand completely foldable formulae.
1723   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1724                               BaseOffset, HasBaseReg, Scale) ||
1725          // Or formulae that use a base register produced by a sum of base
1726          // registers.
1727          (Scale == 1 &&
1728           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1729                                BaseGV, BaseOffset, true, 0));
1730 }
1731 
1732 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1733                        int64_t MaxOffset, LSRUse::KindType Kind,
1734                        MemAccessTy AccessTy, const Formula &F) {
1735   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1736                     F.BaseOffset, F.HasBaseReg, F.Scale);
1737 }
1738 
1739 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1740                                  const LSRUse &LU, const Formula &F) {
1741   // Target may want to look at the user instructions.
1742   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1743     for (const LSRFixup &Fixup : LU.Fixups)
1744       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1745                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1746                                 F.Scale, Fixup.UserInst))
1747         return false;
1748     return true;
1749   }
1750 
1751   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1752                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1753                               F.Scale);
1754 }
1755 
1756 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1757                                      const LSRUse &LU, const Formula &F,
1758                                      const Loop &L) {
1759   if (!F.Scale)
1760     return 0;
1761 
1762   // If the use is not completely folded in that instruction, we will have to
1763   // pay an extra cost only for scale != 1.
1764   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1765                             LU.AccessTy, F, L))
1766     return F.Scale != 1;
1767 
1768   switch (LU.Kind) {
1769   case LSRUse::Address: {
1770     // Check the scaling factor cost with both the min and max offsets.
1771     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1772         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1773         F.Scale, LU.AccessTy.AddrSpace);
1774     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1775         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1776         F.Scale, LU.AccessTy.AddrSpace);
1777 
1778     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1779            "Legal addressing mode has an illegal cost!");
1780     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1781   }
1782   case LSRUse::ICmpZero:
1783   case LSRUse::Basic:
1784   case LSRUse::Special:
1785     // The use is completely folded, i.e., everything is folded into the
1786     // instruction.
1787     return 0;
1788   }
1789 
1790   llvm_unreachable("Invalid LSRUse Kind!");
1791 }
1792 
1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1794                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1795                              GlobalValue *BaseGV, int64_t BaseOffset,
1796                              bool HasBaseReg) {
1797   // Fast-path: zero is always foldable.
1798   if (BaseOffset == 0 && !BaseGV) return true;
1799 
1800   // Conservatively, create an address with an immediate and a
1801   // base and a scale.
1802   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1803 
1804   // Canonicalize a scale of 1 to a base register if the formula doesn't
1805   // already have a base register.
1806   if (!HasBaseReg && Scale == 1) {
1807     Scale = 0;
1808     HasBaseReg = true;
1809   }
1810 
1811   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1812                               HasBaseReg, Scale);
1813 }
1814 
1815 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1816                              ScalarEvolution &SE, int64_t MinOffset,
1817                              int64_t MaxOffset, LSRUse::KindType Kind,
1818                              MemAccessTy AccessTy, const SCEV *S,
1819                              bool HasBaseReg) {
1820   // Fast-path: zero is always foldable.
1821   if (S->isZero()) return true;
1822 
1823   // Conservatively, create an address with an immediate and a
1824   // base and a scale.
1825   int64_t BaseOffset = ExtractImmediate(S, SE);
1826   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1827 
1828   // If there's anything else involved, it's not foldable.
1829   if (!S->isZero()) return false;
1830 
1831   // Fast-path: zero is always foldable.
1832   if (BaseOffset == 0 && !BaseGV) return true;
1833 
1834   // Conservatively, create an address with an immediate and a
1835   // base and a scale.
1836   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1837 
1838   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1839                               BaseOffset, HasBaseReg, Scale);
1840 }
1841 
1842 namespace {
1843 
1844 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1845 /// an expression that computes the IV it uses from the IV used by the previous
1846 /// link in the Chain.
1847 ///
1848 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1849 /// original IVOperand. The head of the chain's IVOperand is only valid during
1850 /// chain collection, before LSR replaces IV users. During chain generation,
1851 /// IncExpr can be used to find the new IVOperand that computes the same
1852 /// expression.
1853 struct IVInc {
1854   Instruction *UserInst;
1855   Value* IVOperand;
1856   const SCEV *IncExpr;
1857 
1858   IVInc(Instruction *U, Value *O, const SCEV *E)
1859       : UserInst(U), IVOperand(O), IncExpr(E) {}
1860 };
1861 
1862 // The list of IV increments in program order.  We typically add the head of a
1863 // chain without finding subsequent links.
1864 struct IVChain {
1865   SmallVector<IVInc, 1> Incs;
1866   const SCEV *ExprBase = nullptr;
1867 
1868   IVChain() = default;
1869   IVChain(const IVInc &Head, const SCEV *Base)
1870       : Incs(1, Head), ExprBase(Base) {}
1871 
1872   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1873 
1874   // Return the first increment in the chain.
1875   const_iterator begin() const {
1876     assert(!Incs.empty());
1877     return std::next(Incs.begin());
1878   }
1879   const_iterator end() const {
1880     return Incs.end();
1881   }
1882 
1883   // Returns true if this chain contains any increments.
1884   bool hasIncs() const { return Incs.size() >= 2; }
1885 
1886   // Add an IVInc to the end of this chain.
1887   void add(const IVInc &X) { Incs.push_back(X); }
1888 
1889   // Returns the last UserInst in the chain.
1890   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1891 
1892   // Returns true if IncExpr can be profitably added to this chain.
1893   bool isProfitableIncrement(const SCEV *OperExpr,
1894                              const SCEV *IncExpr,
1895                              ScalarEvolution&);
1896 };
1897 
1898 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1899 /// between FarUsers that definitely cross IV increments and NearUsers that may
1900 /// be used between IV increments.
1901 struct ChainUsers {
1902   SmallPtrSet<Instruction*, 4> FarUsers;
1903   SmallPtrSet<Instruction*, 4> NearUsers;
1904 };
1905 
1906 /// This class holds state for the main loop strength reduction logic.
1907 class LSRInstance {
1908   IVUsers &IU;
1909   ScalarEvolution &SE;
1910   DominatorTree &DT;
1911   LoopInfo &LI;
1912   const TargetTransformInfo &TTI;
1913   Loop *const L;
1914   bool FavorBackedgeIndex = false;
1915   bool Changed = false;
1916 
1917   /// This is the insert position that the current loop's induction variable
1918   /// increment should be placed. In simple loops, this is the latch block's
1919   /// terminator. But in more complicated cases, this is a position which will
1920   /// dominate all the in-loop post-increment users.
1921   Instruction *IVIncInsertPos = nullptr;
1922 
1923   /// Interesting factors between use strides.
1924   ///
1925   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1926   /// default, a SmallDenseSet, because we need to use the full range of
1927   /// int64_ts, and there's currently no good way of doing that with
1928   /// SmallDenseSet.
1929   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1930 
1931   /// Interesting use types, to facilitate truncation reuse.
1932   SmallSetVector<Type *, 4> Types;
1933 
1934   /// The list of interesting uses.
1935   mutable SmallVector<LSRUse, 16> Uses;
1936 
1937   /// Track which uses use which register candidates.
1938   RegUseTracker RegUses;
1939 
1940   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1941   // have more than a few IV increment chains in a loop. Missing a Chain falls
1942   // back to normal LSR behavior for those uses.
1943   static const unsigned MaxChains = 8;
1944 
1945   /// IV users can form a chain of IV increments.
1946   SmallVector<IVChain, MaxChains> IVChainVec;
1947 
1948   /// IV users that belong to profitable IVChains.
1949   SmallPtrSet<Use*, MaxChains> IVIncSet;
1950 
1951   void OptimizeShadowIV();
1952   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1953   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1954   void OptimizeLoopTermCond();
1955 
1956   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1957                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1958   void FinalizeChain(IVChain &Chain);
1959   void CollectChains();
1960   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1961                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1962 
1963   void CollectInterestingTypesAndFactors();
1964   void CollectFixupsAndInitialFormulae();
1965 
1966   // Support for sharing of LSRUses between LSRFixups.
1967   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1968   UseMapTy UseMap;
1969 
1970   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1971                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1972 
1973   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1974                                     MemAccessTy AccessTy);
1975 
1976   void DeleteUse(LSRUse &LU, size_t LUIdx);
1977 
1978   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1979 
1980   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1981   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1982   void CountRegisters(const Formula &F, size_t LUIdx);
1983   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1984 
1985   void CollectLoopInvariantFixupsAndFormulae();
1986 
1987   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1988                               unsigned Depth = 0);
1989 
1990   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1991                                   const Formula &Base, unsigned Depth,
1992                                   size_t Idx, bool IsScaledReg = false);
1993   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1994   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1995                                    const Formula &Base, size_t Idx,
1996                                    bool IsScaledReg = false);
1997   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1998   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1999                                    const Formula &Base,
2000                                    const SmallVectorImpl<int64_t> &Worklist,
2001                                    size_t Idx, bool IsScaledReg = false);
2002   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2004   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2005   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2006   void GenerateCrossUseConstantOffsets();
2007   void GenerateAllReuseFormulae();
2008 
2009   void FilterOutUndesirableDedicatedRegisters();
2010 
2011   size_t EstimateSearchSpaceComplexity() const;
2012   void NarrowSearchSpaceByDetectingSupersets();
2013   void NarrowSearchSpaceByCollapsingUnrolledCode();
2014   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2015   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2016   void NarrowSearchSpaceByDeletingCostlyFormulas();
2017   void NarrowSearchSpaceByPickingWinnerRegs();
2018   void NarrowSearchSpaceUsingHeuristics();
2019 
2020   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2021                     Cost &SolutionCost,
2022                     SmallVectorImpl<const Formula *> &Workspace,
2023                     const Cost &CurCost,
2024                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2025                     DenseSet<const SCEV *> &VisitedRegs) const;
2026   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2027 
2028   BasicBlock::iterator
2029     HoistInsertPosition(BasicBlock::iterator IP,
2030                         const SmallVectorImpl<Instruction *> &Inputs) const;
2031   BasicBlock::iterator
2032     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2033                                   const LSRFixup &LF,
2034                                   const LSRUse &LU,
2035                                   SCEVExpander &Rewriter) const;
2036 
2037   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2038                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2039                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2040   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2041                      const Formula &F, SCEVExpander &Rewriter,
2042                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2043   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2044                SCEVExpander &Rewriter,
2045                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2046   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2047 
2048 public:
2049   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2050               LoopInfo &LI, const TargetTransformInfo &TTI);
2051 
2052   bool getChanged() const { return Changed; }
2053 
2054   void print_factors_and_types(raw_ostream &OS) const;
2055   void print_fixups(raw_ostream &OS) const;
2056   void print_uses(raw_ostream &OS) const;
2057   void print(raw_ostream &OS) const;
2058   void dump() const;
2059 };
2060 
2061 } // end anonymous namespace
2062 
2063 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2064 /// the cast operation.
2065 void LSRInstance::OptimizeShadowIV() {
2066   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2067   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2068     return;
2069 
2070   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2071        UI != E; /* empty */) {
2072     IVUsers::const_iterator CandidateUI = UI;
2073     ++UI;
2074     Instruction *ShadowUse = CandidateUI->getUser();
2075     Type *DestTy = nullptr;
2076     bool IsSigned = false;
2077 
2078     /* If shadow use is a int->float cast then insert a second IV
2079        to eliminate this cast.
2080 
2081          for (unsigned i = 0; i < n; ++i)
2082            foo((double)i);
2083 
2084        is transformed into
2085 
2086          double d = 0.0;
2087          for (unsigned i = 0; i < n; ++i, ++d)
2088            foo(d);
2089     */
2090     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2091       IsSigned = false;
2092       DestTy = UCast->getDestTy();
2093     }
2094     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2095       IsSigned = true;
2096       DestTy = SCast->getDestTy();
2097     }
2098     if (!DestTy) continue;
2099 
2100     // If target does not support DestTy natively then do not apply
2101     // this transformation.
2102     if (!TTI.isTypeLegal(DestTy)) continue;
2103 
2104     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2105     if (!PH) continue;
2106     if (PH->getNumIncomingValues() != 2) continue;
2107 
2108     // If the calculation in integers overflows, the result in FP type will
2109     // differ. So we only can do this transformation if we are guaranteed to not
2110     // deal with overflowing values
2111     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2112     if (!AR) continue;
2113     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2114     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2115 
2116     Type *SrcTy = PH->getType();
2117     int Mantissa = DestTy->getFPMantissaWidth();
2118     if (Mantissa == -1) continue;
2119     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2120       continue;
2121 
2122     unsigned Entry, Latch;
2123     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2124       Entry = 0;
2125       Latch = 1;
2126     } else {
2127       Entry = 1;
2128       Latch = 0;
2129     }
2130 
2131     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2132     if (!Init) continue;
2133     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2134                                         (double)Init->getSExtValue() :
2135                                         (double)Init->getZExtValue());
2136 
2137     BinaryOperator *Incr =
2138       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2139     if (!Incr) continue;
2140     if (Incr->getOpcode() != Instruction::Add
2141         && Incr->getOpcode() != Instruction::Sub)
2142       continue;
2143 
2144     /* Initialize new IV, double d = 0.0 in above example. */
2145     ConstantInt *C = nullptr;
2146     if (Incr->getOperand(0) == PH)
2147       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2148     else if (Incr->getOperand(1) == PH)
2149       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2150     else
2151       continue;
2152 
2153     if (!C) continue;
2154 
2155     // Ignore negative constants, as the code below doesn't handle them
2156     // correctly. TODO: Remove this restriction.
2157     if (!C->getValue().isStrictlyPositive()) continue;
2158 
2159     /* Add new PHINode. */
2160     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2161 
2162     /* create new increment. '++d' in above example. */
2163     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2164     BinaryOperator *NewIncr =
2165       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2166                                Instruction::FAdd : Instruction::FSub,
2167                              NewPH, CFP, "IV.S.next.", Incr);
2168 
2169     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2170     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2171 
2172     /* Remove cast operation */
2173     ShadowUse->replaceAllUsesWith(NewPH);
2174     ShadowUse->eraseFromParent();
2175     Changed = true;
2176     break;
2177   }
2178 }
2179 
2180 /// If Cond has an operand that is an expression of an IV, set the IV user and
2181 /// stride information and return true, otherwise return false.
2182 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2183   for (IVStrideUse &U : IU)
2184     if (U.getUser() == Cond) {
2185       // NOTE: we could handle setcc instructions with multiple uses here, but
2186       // InstCombine does it as well for simple uses, it's not clear that it
2187       // occurs enough in real life to handle.
2188       CondUse = &U;
2189       return true;
2190     }
2191   return false;
2192 }
2193 
2194 /// Rewrite the loop's terminating condition if it uses a max computation.
2195 ///
2196 /// This is a narrow solution to a specific, but acute, problem. For loops
2197 /// like this:
2198 ///
2199 ///   i = 0;
2200 ///   do {
2201 ///     p[i] = 0.0;
2202 ///   } while (++i < n);
2203 ///
2204 /// the trip count isn't just 'n', because 'n' might not be positive. And
2205 /// unfortunately this can come up even for loops where the user didn't use
2206 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2207 /// will commonly be lowered like this:
2208 ///
2209 ///   if (n > 0) {
2210 ///     i = 0;
2211 ///     do {
2212 ///       p[i] = 0.0;
2213 ///     } while (++i < n);
2214 ///   }
2215 ///
2216 /// and then it's possible for subsequent optimization to obscure the if
2217 /// test in such a way that indvars can't find it.
2218 ///
2219 /// When indvars can't find the if test in loops like this, it creates a
2220 /// max expression, which allows it to give the loop a canonical
2221 /// induction variable:
2222 ///
2223 ///   i = 0;
2224 ///   max = n < 1 ? 1 : n;
2225 ///   do {
2226 ///     p[i] = 0.0;
2227 ///   } while (++i != max);
2228 ///
2229 /// Canonical induction variables are necessary because the loop passes
2230 /// are designed around them. The most obvious example of this is the
2231 /// LoopInfo analysis, which doesn't remember trip count values. It
2232 /// expects to be able to rediscover the trip count each time it is
2233 /// needed, and it does this using a simple analysis that only succeeds if
2234 /// the loop has a canonical induction variable.
2235 ///
2236 /// However, when it comes time to generate code, the maximum operation
2237 /// can be quite costly, especially if it's inside of an outer loop.
2238 ///
2239 /// This function solves this problem by detecting this type of loop and
2240 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2241 /// the instructions for the maximum computation.
2242 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2243   // Check that the loop matches the pattern we're looking for.
2244   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2245       Cond->getPredicate() != CmpInst::ICMP_NE)
2246     return Cond;
2247 
2248   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2249   if (!Sel || !Sel->hasOneUse()) return Cond;
2250 
2251   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2252   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2253     return Cond;
2254   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2255 
2256   // Add one to the backedge-taken count to get the trip count.
2257   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2258   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2259 
2260   // Check for a max calculation that matches the pattern. There's no check
2261   // for ICMP_ULE here because the comparison would be with zero, which
2262   // isn't interesting.
2263   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2264   const SCEVNAryExpr *Max = nullptr;
2265   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2266     Pred = ICmpInst::ICMP_SLE;
2267     Max = S;
2268   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2269     Pred = ICmpInst::ICMP_SLT;
2270     Max = S;
2271   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2272     Pred = ICmpInst::ICMP_ULT;
2273     Max = U;
2274   } else {
2275     // No match; bail.
2276     return Cond;
2277   }
2278 
2279   // To handle a max with more than two operands, this optimization would
2280   // require additional checking and setup.
2281   if (Max->getNumOperands() != 2)
2282     return Cond;
2283 
2284   const SCEV *MaxLHS = Max->getOperand(0);
2285   const SCEV *MaxRHS = Max->getOperand(1);
2286 
2287   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2288   // for a comparison with 1. For <= and >=, a comparison with zero.
2289   if (!MaxLHS ||
2290       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2291     return Cond;
2292 
2293   // Check the relevant induction variable for conformance to
2294   // the pattern.
2295   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2296   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2297   if (!AR || !AR->isAffine() ||
2298       AR->getStart() != One ||
2299       AR->getStepRecurrence(SE) != One)
2300     return Cond;
2301 
2302   assert(AR->getLoop() == L &&
2303          "Loop condition operand is an addrec in a different loop!");
2304 
2305   // Check the right operand of the select, and remember it, as it will
2306   // be used in the new comparison instruction.
2307   Value *NewRHS = nullptr;
2308   if (ICmpInst::isTrueWhenEqual(Pred)) {
2309     // Look for n+1, and grab n.
2310     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2311       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2312          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2313            NewRHS = BO->getOperand(0);
2314     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2315       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2316         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2317           NewRHS = BO->getOperand(0);
2318     if (!NewRHS)
2319       return Cond;
2320   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2321     NewRHS = Sel->getOperand(1);
2322   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2323     NewRHS = Sel->getOperand(2);
2324   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2325     NewRHS = SU->getValue();
2326   else
2327     // Max doesn't match expected pattern.
2328     return Cond;
2329 
2330   // Determine the new comparison opcode. It may be signed or unsigned,
2331   // and the original comparison may be either equality or inequality.
2332   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2333     Pred = CmpInst::getInversePredicate(Pred);
2334 
2335   // Ok, everything looks ok to change the condition into an SLT or SGE and
2336   // delete the max calculation.
2337   ICmpInst *NewCond =
2338     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2339 
2340   // Delete the max calculation instructions.
2341   Cond->replaceAllUsesWith(NewCond);
2342   CondUse->setUser(NewCond);
2343   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2344   Cond->eraseFromParent();
2345   Sel->eraseFromParent();
2346   if (Cmp->use_empty())
2347     Cmp->eraseFromParent();
2348   return NewCond;
2349 }
2350 
2351 /// Change loop terminating condition to use the postinc iv when possible.
2352 void
2353 LSRInstance::OptimizeLoopTermCond() {
2354   SmallPtrSet<Instruction *, 4> PostIncs;
2355 
2356   // We need a different set of heuristics for rotated and non-rotated loops.
2357   // If a loop is rotated then the latch is also the backedge, so inserting
2358   // post-inc expressions just before the latch is ideal. To reduce live ranges
2359   // it also makes sense to rewrite terminating conditions to use post-inc
2360   // expressions.
2361   //
2362   // If the loop is not rotated then the latch is not a backedge; the latch
2363   // check is done in the loop head. Adding post-inc expressions before the
2364   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2365   // in the loop body. In this case we do *not* want to use post-inc expressions
2366   // in the latch check, and we want to insert post-inc expressions before
2367   // the backedge.
2368   BasicBlock *LatchBlock = L->getLoopLatch();
2369   SmallVector<BasicBlock*, 8> ExitingBlocks;
2370   L->getExitingBlocks(ExitingBlocks);
2371   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2372         return LatchBlock != BB;
2373       })) {
2374     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2375     IVIncInsertPos = LatchBlock->getTerminator();
2376     return;
2377   }
2378 
2379   // Otherwise treat this as a rotated loop.
2380   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2381     // Get the terminating condition for the loop if possible.  If we
2382     // can, we want to change it to use a post-incremented version of its
2383     // induction variable, to allow coalescing the live ranges for the IV into
2384     // one register value.
2385 
2386     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2387     if (!TermBr)
2388       continue;
2389     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2390     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2391       continue;
2392 
2393     // Search IVUsesByStride to find Cond's IVUse if there is one.
2394     IVStrideUse *CondUse = nullptr;
2395     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2396     if (!FindIVUserForCond(Cond, CondUse))
2397       continue;
2398 
2399     // If the trip count is computed in terms of a max (due to ScalarEvolution
2400     // being unable to find a sufficient guard, for example), change the loop
2401     // comparison to use SLT or ULT instead of NE.
2402     // One consequence of doing this now is that it disrupts the count-down
2403     // optimization. That's not always a bad thing though, because in such
2404     // cases it may still be worthwhile to avoid a max.
2405     Cond = OptimizeMax(Cond, CondUse);
2406 
2407     // If this exiting block dominates the latch block, it may also use
2408     // the post-inc value if it won't be shared with other uses.
2409     // Check for dominance.
2410     if (!DT.dominates(ExitingBlock, LatchBlock))
2411       continue;
2412 
2413     // Conservatively avoid trying to use the post-inc value in non-latch
2414     // exits if there may be pre-inc users in intervening blocks.
2415     if (LatchBlock != ExitingBlock)
2416       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2417         // Test if the use is reachable from the exiting block. This dominator
2418         // query is a conservative approximation of reachability.
2419         if (&*UI != CondUse &&
2420             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2421           // Conservatively assume there may be reuse if the quotient of their
2422           // strides could be a legal scale.
2423           const SCEV *A = IU.getStride(*CondUse, L);
2424           const SCEV *B = IU.getStride(*UI, L);
2425           if (!A || !B) continue;
2426           if (SE.getTypeSizeInBits(A->getType()) !=
2427               SE.getTypeSizeInBits(B->getType())) {
2428             if (SE.getTypeSizeInBits(A->getType()) >
2429                 SE.getTypeSizeInBits(B->getType()))
2430               B = SE.getSignExtendExpr(B, A->getType());
2431             else
2432               A = SE.getSignExtendExpr(A, B->getType());
2433           }
2434           if (const SCEVConstant *D =
2435                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2436             const ConstantInt *C = D->getValue();
2437             // Stride of one or negative one can have reuse with non-addresses.
2438             if (C->isOne() || C->isMinusOne())
2439               goto decline_post_inc;
2440             // Avoid weird situations.
2441             if (C->getValue().getMinSignedBits() >= 64 ||
2442                 C->getValue().isMinSignedValue())
2443               goto decline_post_inc;
2444             // Check for possible scaled-address reuse.
2445             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2446               MemAccessTy AccessTy = getAccessType(
2447                   TTI, UI->getUser(), UI->getOperandValToReplace());
2448               int64_t Scale = C->getSExtValue();
2449               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2450                                             /*BaseOffset=*/0,
2451                                             /*HasBaseReg=*/false, Scale,
2452                                             AccessTy.AddrSpace))
2453                 goto decline_post_inc;
2454               Scale = -Scale;
2455               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2456                                             /*BaseOffset=*/0,
2457                                             /*HasBaseReg=*/false, Scale,
2458                                             AccessTy.AddrSpace))
2459                 goto decline_post_inc;
2460             }
2461           }
2462         }
2463 
2464     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2465                       << *Cond << '\n');
2466 
2467     // It's possible for the setcc instruction to be anywhere in the loop, and
2468     // possible for it to have multiple users.  If it is not immediately before
2469     // the exiting block branch, move it.
2470     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2471       if (Cond->hasOneUse()) {
2472         Cond->moveBefore(TermBr);
2473       } else {
2474         // Clone the terminating condition and insert into the loopend.
2475         ICmpInst *OldCond = Cond;
2476         Cond = cast<ICmpInst>(Cond->clone());
2477         Cond->setName(L->getHeader()->getName() + ".termcond");
2478         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2479 
2480         // Clone the IVUse, as the old use still exists!
2481         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2482         TermBr->replaceUsesOfWith(OldCond, Cond);
2483       }
2484     }
2485 
2486     // If we get to here, we know that we can transform the setcc instruction to
2487     // use the post-incremented version of the IV, allowing us to coalesce the
2488     // live ranges for the IV correctly.
2489     CondUse->transformToPostInc(L);
2490     Changed = true;
2491 
2492     PostIncs.insert(Cond);
2493   decline_post_inc:;
2494   }
2495 
2496   // Determine an insertion point for the loop induction variable increment. It
2497   // must dominate all the post-inc comparisons we just set up, and it must
2498   // dominate the loop latch edge.
2499   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2500   for (Instruction *Inst : PostIncs) {
2501     BasicBlock *BB =
2502       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2503                                     Inst->getParent());
2504     if (BB == Inst->getParent())
2505       IVIncInsertPos = Inst;
2506     else if (BB != IVIncInsertPos->getParent())
2507       IVIncInsertPos = BB->getTerminator();
2508   }
2509 }
2510 
2511 /// Determine if the given use can accommodate a fixup at the given offset and
2512 /// other details. If so, update the use and return true.
2513 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2514                                      bool HasBaseReg, LSRUse::KindType Kind,
2515                                      MemAccessTy AccessTy) {
2516   int64_t NewMinOffset = LU.MinOffset;
2517   int64_t NewMaxOffset = LU.MaxOffset;
2518   MemAccessTy NewAccessTy = AccessTy;
2519 
2520   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2521   // something conservative, however this can pessimize in the case that one of
2522   // the uses will have all its uses outside the loop, for example.
2523   if (LU.Kind != Kind)
2524     return false;
2525 
2526   // Check for a mismatched access type, and fall back conservatively as needed.
2527   // TODO: Be less conservative when the type is similar and can use the same
2528   // addressing modes.
2529   if (Kind == LSRUse::Address) {
2530     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2531       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2532                                             AccessTy.AddrSpace);
2533     }
2534   }
2535 
2536   // Conservatively assume HasBaseReg is true for now.
2537   if (NewOffset < LU.MinOffset) {
2538     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2539                           LU.MaxOffset - NewOffset, HasBaseReg))
2540       return false;
2541     NewMinOffset = NewOffset;
2542   } else if (NewOffset > LU.MaxOffset) {
2543     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2544                           NewOffset - LU.MinOffset, HasBaseReg))
2545       return false;
2546     NewMaxOffset = NewOffset;
2547   }
2548 
2549   // Update the use.
2550   LU.MinOffset = NewMinOffset;
2551   LU.MaxOffset = NewMaxOffset;
2552   LU.AccessTy = NewAccessTy;
2553   return true;
2554 }
2555 
2556 /// Return an LSRUse index and an offset value for a fixup which needs the given
2557 /// expression, with the given kind and optional access type.  Either reuse an
2558 /// existing use or create a new one, as needed.
2559 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2560                                                LSRUse::KindType Kind,
2561                                                MemAccessTy AccessTy) {
2562   const SCEV *Copy = Expr;
2563   int64_t Offset = ExtractImmediate(Expr, SE);
2564 
2565   // Basic uses can't accept any offset, for example.
2566   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2567                         Offset, /*HasBaseReg=*/ true)) {
2568     Expr = Copy;
2569     Offset = 0;
2570   }
2571 
2572   std::pair<UseMapTy::iterator, bool> P =
2573     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2574   if (!P.second) {
2575     // A use already existed with this base.
2576     size_t LUIdx = P.first->second;
2577     LSRUse &LU = Uses[LUIdx];
2578     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2579       // Reuse this use.
2580       return std::make_pair(LUIdx, Offset);
2581   }
2582 
2583   // Create a new use.
2584   size_t LUIdx = Uses.size();
2585   P.first->second = LUIdx;
2586   Uses.push_back(LSRUse(Kind, AccessTy));
2587   LSRUse &LU = Uses[LUIdx];
2588 
2589   LU.MinOffset = Offset;
2590   LU.MaxOffset = Offset;
2591   return std::make_pair(LUIdx, Offset);
2592 }
2593 
2594 /// Delete the given use from the Uses list.
2595 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2596   if (&LU != &Uses.back())
2597     std::swap(LU, Uses.back());
2598   Uses.pop_back();
2599 
2600   // Update RegUses.
2601   RegUses.swapAndDropUse(LUIdx, Uses.size());
2602 }
2603 
2604 /// Look for a use distinct from OrigLU which is has a formula that has the same
2605 /// registers as the given formula.
2606 LSRUse *
2607 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2608                                        const LSRUse &OrigLU) {
2609   // Search all uses for the formula. This could be more clever.
2610   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2611     LSRUse &LU = Uses[LUIdx];
2612     // Check whether this use is close enough to OrigLU, to see whether it's
2613     // worthwhile looking through its formulae.
2614     // Ignore ICmpZero uses because they may contain formulae generated by
2615     // GenerateICmpZeroScales, in which case adding fixup offsets may
2616     // be invalid.
2617     if (&LU != &OrigLU &&
2618         LU.Kind != LSRUse::ICmpZero &&
2619         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2620         LU.WidestFixupType == OrigLU.WidestFixupType &&
2621         LU.HasFormulaWithSameRegs(OrigF)) {
2622       // Scan through this use's formulae.
2623       for (const Formula &F : LU.Formulae) {
2624         // Check to see if this formula has the same registers and symbols
2625         // as OrigF.
2626         if (F.BaseRegs == OrigF.BaseRegs &&
2627             F.ScaledReg == OrigF.ScaledReg &&
2628             F.BaseGV == OrigF.BaseGV &&
2629             F.Scale == OrigF.Scale &&
2630             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2631           if (F.BaseOffset == 0)
2632             return &LU;
2633           // This is the formula where all the registers and symbols matched;
2634           // there aren't going to be any others. Since we declined it, we
2635           // can skip the rest of the formulae and proceed to the next LSRUse.
2636           break;
2637         }
2638       }
2639     }
2640   }
2641 
2642   // Nothing looked good.
2643   return nullptr;
2644 }
2645 
2646 void LSRInstance::CollectInterestingTypesAndFactors() {
2647   SmallSetVector<const SCEV *, 4> Strides;
2648 
2649   // Collect interesting types and strides.
2650   SmallVector<const SCEV *, 4> Worklist;
2651   for (const IVStrideUse &U : IU) {
2652     const SCEV *Expr = IU.getExpr(U);
2653 
2654     // Collect interesting types.
2655     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2656 
2657     // Add strides for mentioned loops.
2658     Worklist.push_back(Expr);
2659     do {
2660       const SCEV *S = Worklist.pop_back_val();
2661       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2662         if (AR->getLoop() == L)
2663           Strides.insert(AR->getStepRecurrence(SE));
2664         Worklist.push_back(AR->getStart());
2665       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2666         Worklist.append(Add->op_begin(), Add->op_end());
2667       }
2668     } while (!Worklist.empty());
2669   }
2670 
2671   // Compute interesting factors from the set of interesting strides.
2672   for (SmallSetVector<const SCEV *, 4>::const_iterator
2673        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2674     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2675          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2676       const SCEV *OldStride = *I;
2677       const SCEV *NewStride = *NewStrideIter;
2678 
2679       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2680           SE.getTypeSizeInBits(NewStride->getType())) {
2681         if (SE.getTypeSizeInBits(OldStride->getType()) >
2682             SE.getTypeSizeInBits(NewStride->getType()))
2683           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2684         else
2685           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2686       }
2687       if (const SCEVConstant *Factor =
2688             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2689                                                         SE, true))) {
2690         if (Factor->getAPInt().getMinSignedBits() <= 64)
2691           Factors.insert(Factor->getAPInt().getSExtValue());
2692       } else if (const SCEVConstant *Factor =
2693                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2694                                                                NewStride,
2695                                                                SE, true))) {
2696         if (Factor->getAPInt().getMinSignedBits() <= 64)
2697           Factors.insert(Factor->getAPInt().getSExtValue());
2698       }
2699     }
2700 
2701   // If all uses use the same type, don't bother looking for truncation-based
2702   // reuse.
2703   if (Types.size() == 1)
2704     Types.clear();
2705 
2706   LLVM_DEBUG(print_factors_and_types(dbgs()));
2707 }
2708 
2709 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2710 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2711 /// IVStrideUses, we could partially skip this.
2712 static User::op_iterator
2713 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2714               Loop *L, ScalarEvolution &SE) {
2715   for(; OI != OE; ++OI) {
2716     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2717       if (!SE.isSCEVable(Oper->getType()))
2718         continue;
2719 
2720       if (const SCEVAddRecExpr *AR =
2721           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2722         if (AR->getLoop() == L)
2723           break;
2724       }
2725     }
2726   }
2727   return OI;
2728 }
2729 
2730 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2731 /// a convenient helper.
2732 static Value *getWideOperand(Value *Oper) {
2733   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2734     return Trunc->getOperand(0);
2735   return Oper;
2736 }
2737 
2738 /// Return true if we allow an IV chain to include both types.
2739 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2740   Type *LType = LVal->getType();
2741   Type *RType = RVal->getType();
2742   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2743                               // Different address spaces means (possibly)
2744                               // different types of the pointer implementation,
2745                               // e.g. i16 vs i32 so disallow that.
2746                               (LType->getPointerAddressSpace() ==
2747                                RType->getPointerAddressSpace()));
2748 }
2749 
2750 /// Return an approximation of this SCEV expression's "base", or NULL for any
2751 /// constant. Returning the expression itself is conservative. Returning a
2752 /// deeper subexpression is more precise and valid as long as it isn't less
2753 /// complex than another subexpression. For expressions involving multiple
2754 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2755 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2756 /// IVInc==b-a.
2757 ///
2758 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2759 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2760 static const SCEV *getExprBase(const SCEV *S) {
2761   switch (S->getSCEVType()) {
2762   default: // uncluding scUnknown.
2763     return S;
2764   case scConstant:
2765     return nullptr;
2766   case scTruncate:
2767     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2768   case scZeroExtend:
2769     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2770   case scSignExtend:
2771     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2772   case scAddExpr: {
2773     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2774     // there's nothing more complex.
2775     // FIXME: not sure if we want to recognize negation.
2776     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2777     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2778            E(Add->op_begin()); I != E; ++I) {
2779       const SCEV *SubExpr = *I;
2780       if (SubExpr->getSCEVType() == scAddExpr)
2781         return getExprBase(SubExpr);
2782 
2783       if (SubExpr->getSCEVType() != scMulExpr)
2784         return SubExpr;
2785     }
2786     return S; // all operands are scaled, be conservative.
2787   }
2788   case scAddRecExpr:
2789     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2790   }
2791 }
2792 
2793 /// Return true if the chain increment is profitable to expand into a loop
2794 /// invariant value, which may require its own register. A profitable chain
2795 /// increment will be an offset relative to the same base. We allow such offsets
2796 /// to potentially be used as chain increment as long as it's not obviously
2797 /// expensive to expand using real instructions.
2798 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2799                                     const SCEV *IncExpr,
2800                                     ScalarEvolution &SE) {
2801   // Aggressively form chains when -stress-ivchain.
2802   if (StressIVChain)
2803     return true;
2804 
2805   // Do not replace a constant offset from IV head with a nonconstant IV
2806   // increment.
2807   if (!isa<SCEVConstant>(IncExpr)) {
2808     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2809     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2810       return false;
2811   }
2812 
2813   SmallPtrSet<const SCEV*, 8> Processed;
2814   return !isHighCostExpansion(IncExpr, Processed, SE);
2815 }
2816 
2817 /// Return true if the number of registers needed for the chain is estimated to
2818 /// be less than the number required for the individual IV users. First prohibit
2819 /// any IV users that keep the IV live across increments (the Users set should
2820 /// be empty). Next count the number and type of increments in the chain.
2821 ///
2822 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2823 /// effectively use postinc addressing modes. Only consider it profitable it the
2824 /// increments can be computed in fewer registers when chained.
2825 ///
2826 /// TODO: Consider IVInc free if it's already used in another chains.
2827 static bool
2828 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2829                   ScalarEvolution &SE) {
2830   if (StressIVChain)
2831     return true;
2832 
2833   if (!Chain.hasIncs())
2834     return false;
2835 
2836   if (!Users.empty()) {
2837     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2838                for (Instruction *Inst
2839                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2840     return false;
2841   }
2842   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2843 
2844   // The chain itself may require a register, so intialize cost to 1.
2845   int cost = 1;
2846 
2847   // A complete chain likely eliminates the need for keeping the original IV in
2848   // a register. LSR does not currently know how to form a complete chain unless
2849   // the header phi already exists.
2850   if (isa<PHINode>(Chain.tailUserInst())
2851       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2852     --cost;
2853   }
2854   const SCEV *LastIncExpr = nullptr;
2855   unsigned NumConstIncrements = 0;
2856   unsigned NumVarIncrements = 0;
2857   unsigned NumReusedIncrements = 0;
2858   for (const IVInc &Inc : Chain) {
2859     if (Inc.IncExpr->isZero())
2860       continue;
2861 
2862     // Incrementing by zero or some constant is neutral. We assume constants can
2863     // be folded into an addressing mode or an add's immediate operand.
2864     if (isa<SCEVConstant>(Inc.IncExpr)) {
2865       ++NumConstIncrements;
2866       continue;
2867     }
2868 
2869     if (Inc.IncExpr == LastIncExpr)
2870       ++NumReusedIncrements;
2871     else
2872       ++NumVarIncrements;
2873 
2874     LastIncExpr = Inc.IncExpr;
2875   }
2876   // An IV chain with a single increment is handled by LSR's postinc
2877   // uses. However, a chain with multiple increments requires keeping the IV's
2878   // value live longer than it needs to be if chained.
2879   if (NumConstIncrements > 1)
2880     --cost;
2881 
2882   // Materializing increment expressions in the preheader that didn't exist in
2883   // the original code may cost a register. For example, sign-extended array
2884   // indices can produce ridiculous increments like this:
2885   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2886   cost += NumVarIncrements;
2887 
2888   // Reusing variable increments likely saves a register to hold the multiple of
2889   // the stride.
2890   cost -= NumReusedIncrements;
2891 
2892   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2893                     << "\n");
2894 
2895   return cost < 0;
2896 }
2897 
2898 /// Add this IV user to an existing chain or make it the head of a new chain.
2899 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2900                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2901   // When IVs are used as types of varying widths, they are generally converted
2902   // to a wider type with some uses remaining narrow under a (free) trunc.
2903   Value *const NextIV = getWideOperand(IVOper);
2904   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2905   const SCEV *const OperExprBase = getExprBase(OperExpr);
2906 
2907   // Visit all existing chains. Check if its IVOper can be computed as a
2908   // profitable loop invariant increment from the last link in the Chain.
2909   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2910   const SCEV *LastIncExpr = nullptr;
2911   for (; ChainIdx < NChains; ++ChainIdx) {
2912     IVChain &Chain = IVChainVec[ChainIdx];
2913 
2914     // Prune the solution space aggressively by checking that both IV operands
2915     // are expressions that operate on the same unscaled SCEVUnknown. This
2916     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2917     // first avoids creating extra SCEV expressions.
2918     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2919       continue;
2920 
2921     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2922     if (!isCompatibleIVType(PrevIV, NextIV))
2923       continue;
2924 
2925     // A phi node terminates a chain.
2926     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2927       continue;
2928 
2929     // The increment must be loop-invariant so it can be kept in a register.
2930     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2931     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2932     if (!SE.isLoopInvariant(IncExpr, L))
2933       continue;
2934 
2935     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2936       LastIncExpr = IncExpr;
2937       break;
2938     }
2939   }
2940   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2941   // bother for phi nodes, because they must be last in the chain.
2942   if (ChainIdx == NChains) {
2943     if (isa<PHINode>(UserInst))
2944       return;
2945     if (NChains >= MaxChains && !StressIVChain) {
2946       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2947       return;
2948     }
2949     LastIncExpr = OperExpr;
2950     // IVUsers may have skipped over sign/zero extensions. We don't currently
2951     // attempt to form chains involving extensions unless they can be hoisted
2952     // into this loop's AddRec.
2953     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2954       return;
2955     ++NChains;
2956     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2957                                  OperExprBase));
2958     ChainUsersVec.resize(NChains);
2959     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2960                       << ") IV=" << *LastIncExpr << "\n");
2961   } else {
2962     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2963                       << ") IV+" << *LastIncExpr << "\n");
2964     // Add this IV user to the end of the chain.
2965     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2966   }
2967   IVChain &Chain = IVChainVec[ChainIdx];
2968 
2969   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2970   // This chain's NearUsers become FarUsers.
2971   if (!LastIncExpr->isZero()) {
2972     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2973                                             NearUsers.end());
2974     NearUsers.clear();
2975   }
2976 
2977   // All other uses of IVOperand become near uses of the chain.
2978   // We currently ignore intermediate values within SCEV expressions, assuming
2979   // they will eventually be used be the current chain, or can be computed
2980   // from one of the chain increments. To be more precise we could
2981   // transitively follow its user and only add leaf IV users to the set.
2982   for (User *U : IVOper->users()) {
2983     Instruction *OtherUse = dyn_cast<Instruction>(U);
2984     if (!OtherUse)
2985       continue;
2986     // Uses in the chain will no longer be uses if the chain is formed.
2987     // Include the head of the chain in this iteration (not Chain.begin()).
2988     IVChain::const_iterator IncIter = Chain.Incs.begin();
2989     IVChain::const_iterator IncEnd = Chain.Incs.end();
2990     for( ; IncIter != IncEnd; ++IncIter) {
2991       if (IncIter->UserInst == OtherUse)
2992         break;
2993     }
2994     if (IncIter != IncEnd)
2995       continue;
2996 
2997     if (SE.isSCEVable(OtherUse->getType())
2998         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2999         && IU.isIVUserOrOperand(OtherUse)) {
3000       continue;
3001     }
3002     NearUsers.insert(OtherUse);
3003   }
3004 
3005   // Since this user is part of the chain, it's no longer considered a use
3006   // of the chain.
3007   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3008 }
3009 
3010 /// Populate the vector of Chains.
3011 ///
3012 /// This decreases ILP at the architecture level. Targets with ample registers,
3013 /// multiple memory ports, and no register renaming probably don't want
3014 /// this. However, such targets should probably disable LSR altogether.
3015 ///
3016 /// The job of LSR is to make a reasonable choice of induction variables across
3017 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3018 /// ILP *within the loop* if the target wants it.
3019 ///
3020 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3021 /// will not reorder memory operations, it will recognize this as a chain, but
3022 /// will generate redundant IV increments. Ideally this would be corrected later
3023 /// by a smart scheduler:
3024 ///        = A[i]
3025 ///        = A[i+x]
3026 /// A[i]   =
3027 /// A[i+x] =
3028 ///
3029 /// TODO: Walk the entire domtree within this loop, not just the path to the
3030 /// loop latch. This will discover chains on side paths, but requires
3031 /// maintaining multiple copies of the Chains state.
3032 void LSRInstance::CollectChains() {
3033   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3034   SmallVector<ChainUsers, 8> ChainUsersVec;
3035 
3036   SmallVector<BasicBlock *,8> LatchPath;
3037   BasicBlock *LoopHeader = L->getHeader();
3038   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3039        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3040     LatchPath.push_back(Rung->getBlock());
3041   }
3042   LatchPath.push_back(LoopHeader);
3043 
3044   // Walk the instruction stream from the loop header to the loop latch.
3045   for (BasicBlock *BB : reverse(LatchPath)) {
3046     for (Instruction &I : *BB) {
3047       // Skip instructions that weren't seen by IVUsers analysis.
3048       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3049         continue;
3050 
3051       // Ignore users that are part of a SCEV expression. This way we only
3052       // consider leaf IV Users. This effectively rediscovers a portion of
3053       // IVUsers analysis but in program order this time.
3054       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3055           continue;
3056 
3057       // Remove this instruction from any NearUsers set it may be in.
3058       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3059            ChainIdx < NChains; ++ChainIdx) {
3060         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3061       }
3062       // Search for operands that can be chained.
3063       SmallPtrSet<Instruction*, 4> UniqueOperands;
3064       User::op_iterator IVOpEnd = I.op_end();
3065       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3066       while (IVOpIter != IVOpEnd) {
3067         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3068         if (UniqueOperands.insert(IVOpInst).second)
3069           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3070         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3071       }
3072     } // Continue walking down the instructions.
3073   } // Continue walking down the domtree.
3074   // Visit phi backedges to determine if the chain can generate the IV postinc.
3075   for (PHINode &PN : L->getHeader()->phis()) {
3076     if (!SE.isSCEVable(PN.getType()))
3077       continue;
3078 
3079     Instruction *IncV =
3080         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3081     if (IncV)
3082       ChainInstruction(&PN, IncV, ChainUsersVec);
3083   }
3084   // Remove any unprofitable chains.
3085   unsigned ChainIdx = 0;
3086   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3087        UsersIdx < NChains; ++UsersIdx) {
3088     if (!isProfitableChain(IVChainVec[UsersIdx],
3089                            ChainUsersVec[UsersIdx].FarUsers, SE))
3090       continue;
3091     // Preserve the chain at UsesIdx.
3092     if (ChainIdx != UsersIdx)
3093       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3094     FinalizeChain(IVChainVec[ChainIdx]);
3095     ++ChainIdx;
3096   }
3097   IVChainVec.resize(ChainIdx);
3098 }
3099 
3100 void LSRInstance::FinalizeChain(IVChain &Chain) {
3101   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3102   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3103 
3104   for (const IVInc &Inc : Chain) {
3105     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3106     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3107     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3108     IVIncSet.insert(UseI);
3109   }
3110 }
3111 
3112 /// Return true if the IVInc can be folded into an addressing mode.
3113 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3114                              Value *Operand, const TargetTransformInfo &TTI) {
3115   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3116   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3117     return false;
3118 
3119   if (IncConst->getAPInt().getMinSignedBits() > 64)
3120     return false;
3121 
3122   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3123   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3124   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3125                         IncOffset, /*HaseBaseReg=*/false))
3126     return false;
3127 
3128   return true;
3129 }
3130 
3131 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3132 /// user's operand from the previous IV user's operand.
3133 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3134                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3135   // Find the new IVOperand for the head of the chain. It may have been replaced
3136   // by LSR.
3137   const IVInc &Head = Chain.Incs[0];
3138   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3139   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3140   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3141                                              IVOpEnd, L, SE);
3142   Value *IVSrc = nullptr;
3143   while (IVOpIter != IVOpEnd) {
3144     IVSrc = getWideOperand(*IVOpIter);
3145 
3146     // If this operand computes the expression that the chain needs, we may use
3147     // it. (Check this after setting IVSrc which is used below.)
3148     //
3149     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3150     // narrow for the chain, so we can no longer use it. We do allow using a
3151     // wider phi, assuming the LSR checked for free truncation. In that case we
3152     // should already have a truncate on this operand such that
3153     // getSCEV(IVSrc) == IncExpr.
3154     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3155         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3156       break;
3157     }
3158     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3159   }
3160   if (IVOpIter == IVOpEnd) {
3161     // Gracefully give up on this chain.
3162     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3163     return;
3164   }
3165 
3166   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3167   Type *IVTy = IVSrc->getType();
3168   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3169   const SCEV *LeftOverExpr = nullptr;
3170   for (const IVInc &Inc : Chain) {
3171     Instruction *InsertPt = Inc.UserInst;
3172     if (isa<PHINode>(InsertPt))
3173       InsertPt = L->getLoopLatch()->getTerminator();
3174 
3175     // IVOper will replace the current IV User's operand. IVSrc is the IV
3176     // value currently held in a register.
3177     Value *IVOper = IVSrc;
3178     if (!Inc.IncExpr->isZero()) {
3179       // IncExpr was the result of subtraction of two narrow values, so must
3180       // be signed.
3181       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3182       LeftOverExpr = LeftOverExpr ?
3183         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3184     }
3185     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3186       // Expand the IV increment.
3187       Rewriter.clearPostInc();
3188       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3189       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3190                                              SE.getUnknown(IncV));
3191       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3192 
3193       // If an IV increment can't be folded, use it as the next IV value.
3194       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3195         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3196         IVSrc = IVOper;
3197         LeftOverExpr = nullptr;
3198       }
3199     }
3200     Type *OperTy = Inc.IVOperand->getType();
3201     if (IVTy != OperTy) {
3202       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3203              "cannot extend a chained IV");
3204       IRBuilder<> Builder(InsertPt);
3205       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3206     }
3207     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3208     DeadInsts.emplace_back(Inc.IVOperand);
3209   }
3210   // If LSR created a new, wider phi, we may also replace its postinc. We only
3211   // do this if we also found a wide value for the head of the chain.
3212   if (isa<PHINode>(Chain.tailUserInst())) {
3213     for (PHINode &Phi : L->getHeader()->phis()) {
3214       if (!isCompatibleIVType(&Phi, IVSrc))
3215         continue;
3216       Instruction *PostIncV = dyn_cast<Instruction>(
3217           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3218       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3219         continue;
3220       Value *IVOper = IVSrc;
3221       Type *PostIncTy = PostIncV->getType();
3222       if (IVTy != PostIncTy) {
3223         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3224         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3225         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3226         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3227       }
3228       Phi.replaceUsesOfWith(PostIncV, IVOper);
3229       DeadInsts.emplace_back(PostIncV);
3230     }
3231   }
3232 }
3233 
3234 void LSRInstance::CollectFixupsAndInitialFormulae() {
3235   for (const IVStrideUse &U : IU) {
3236     Instruction *UserInst = U.getUser();
3237     // Skip IV users that are part of profitable IV Chains.
3238     User::op_iterator UseI =
3239         find(UserInst->operands(), U.getOperandValToReplace());
3240     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3241     if (IVIncSet.count(UseI)) {
3242       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3243       continue;
3244     }
3245 
3246     LSRUse::KindType Kind = LSRUse::Basic;
3247     MemAccessTy AccessTy;
3248     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3249       Kind = LSRUse::Address;
3250       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3251     }
3252 
3253     const SCEV *S = IU.getExpr(U);
3254     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3255 
3256     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3257     // (N - i == 0), and this allows (N - i) to be the expression that we work
3258     // with rather than just N or i, so we can consider the register
3259     // requirements for both N and i at the same time. Limiting this code to
3260     // equality icmps is not a problem because all interesting loops use
3261     // equality icmps, thanks to IndVarSimplify.
3262     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3263       if (CI->isEquality()) {
3264         // Swap the operands if needed to put the OperandValToReplace on the
3265         // left, for consistency.
3266         Value *NV = CI->getOperand(1);
3267         if (NV == U.getOperandValToReplace()) {
3268           CI->setOperand(1, CI->getOperand(0));
3269           CI->setOperand(0, NV);
3270           NV = CI->getOperand(1);
3271           Changed = true;
3272         }
3273 
3274         // x == y  -->  x - y == 0
3275         const SCEV *N = SE.getSCEV(NV);
3276         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3277           // S is normalized, so normalize N before folding it into S
3278           // to keep the result normalized.
3279           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3280           Kind = LSRUse::ICmpZero;
3281           S = SE.getMinusSCEV(N, S);
3282         }
3283 
3284         // -1 and the negations of all interesting strides (except the negation
3285         // of -1) are now also interesting.
3286         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3287           if (Factors[i] != -1)
3288             Factors.insert(-(uint64_t)Factors[i]);
3289         Factors.insert(-1);
3290       }
3291 
3292     // Get or create an LSRUse.
3293     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3294     size_t LUIdx = P.first;
3295     int64_t Offset = P.second;
3296     LSRUse &LU = Uses[LUIdx];
3297 
3298     // Record the fixup.
3299     LSRFixup &LF = LU.getNewFixup();
3300     LF.UserInst = UserInst;
3301     LF.OperandValToReplace = U.getOperandValToReplace();
3302     LF.PostIncLoops = TmpPostIncLoops;
3303     LF.Offset = Offset;
3304     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3305 
3306     if (!LU.WidestFixupType ||
3307         SE.getTypeSizeInBits(LU.WidestFixupType) <
3308         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3309       LU.WidestFixupType = LF.OperandValToReplace->getType();
3310 
3311     // If this is the first use of this LSRUse, give it a formula.
3312     if (LU.Formulae.empty()) {
3313       InsertInitialFormula(S, LU, LUIdx);
3314       CountRegisters(LU.Formulae.back(), LUIdx);
3315     }
3316   }
3317 
3318   LLVM_DEBUG(print_fixups(dbgs()));
3319 }
3320 
3321 /// Insert a formula for the given expression into the given use, separating out
3322 /// loop-variant portions from loop-invariant and loop-computable portions.
3323 void
3324 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3325   // Mark uses whose expressions cannot be expanded.
3326   if (!isSafeToExpand(S, SE))
3327     LU.RigidFormula = true;
3328 
3329   Formula F;
3330   F.initialMatch(S, L, SE);
3331   bool Inserted = InsertFormula(LU, LUIdx, F);
3332   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3333 }
3334 
3335 /// Insert a simple single-register formula for the given expression into the
3336 /// given use.
3337 void
3338 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3339                                        LSRUse &LU, size_t LUIdx) {
3340   Formula F;
3341   F.BaseRegs.push_back(S);
3342   F.HasBaseReg = true;
3343   bool Inserted = InsertFormula(LU, LUIdx, F);
3344   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3345 }
3346 
3347 /// Note which registers are used by the given formula, updating RegUses.
3348 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3349   if (F.ScaledReg)
3350     RegUses.countRegister(F.ScaledReg, LUIdx);
3351   for (const SCEV *BaseReg : F.BaseRegs)
3352     RegUses.countRegister(BaseReg, LUIdx);
3353 }
3354 
3355 /// If the given formula has not yet been inserted, add it to the list, and
3356 /// return true. Return false otherwise.
3357 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3358   // Do not insert formula that we will not be able to expand.
3359   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3360          "Formula is illegal");
3361 
3362   if (!LU.InsertFormula(F, *L))
3363     return false;
3364 
3365   CountRegisters(F, LUIdx);
3366   return true;
3367 }
3368 
3369 /// Check for other uses of loop-invariant values which we're tracking. These
3370 /// other uses will pin these values in registers, making them less profitable
3371 /// for elimination.
3372 /// TODO: This currently misses non-constant addrec step registers.
3373 /// TODO: Should this give more weight to users inside the loop?
3374 void
3375 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3376   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3377   SmallPtrSet<const SCEV *, 32> Visited;
3378 
3379   while (!Worklist.empty()) {
3380     const SCEV *S = Worklist.pop_back_val();
3381 
3382     // Don't process the same SCEV twice
3383     if (!Visited.insert(S).second)
3384       continue;
3385 
3386     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3387       Worklist.append(N->op_begin(), N->op_end());
3388     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3389       Worklist.push_back(C->getOperand());
3390     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3391       Worklist.push_back(D->getLHS());
3392       Worklist.push_back(D->getRHS());
3393     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3394       const Value *V = US->getValue();
3395       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3396         // Look for instructions defined outside the loop.
3397         if (L->contains(Inst)) continue;
3398       } else if (isa<UndefValue>(V))
3399         // Undef doesn't have a live range, so it doesn't matter.
3400         continue;
3401       for (const Use &U : V->uses()) {
3402         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3403         // Ignore non-instructions.
3404         if (!UserInst)
3405           continue;
3406         // Ignore instructions in other functions (as can happen with
3407         // Constants).
3408         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3409           continue;
3410         // Ignore instructions not dominated by the loop.
3411         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3412           UserInst->getParent() :
3413           cast<PHINode>(UserInst)->getIncomingBlock(
3414             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3415         if (!DT.dominates(L->getHeader(), UseBB))
3416           continue;
3417         // Don't bother if the instruction is in a BB which ends in an EHPad.
3418         if (UseBB->getTerminator()->isEHPad())
3419           continue;
3420         // Don't bother rewriting PHIs in catchswitch blocks.
3421         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3422           continue;
3423         // Ignore uses which are part of other SCEV expressions, to avoid
3424         // analyzing them multiple times.
3425         if (SE.isSCEVable(UserInst->getType())) {
3426           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3427           // If the user is a no-op, look through to its uses.
3428           if (!isa<SCEVUnknown>(UserS))
3429             continue;
3430           if (UserS == US) {
3431             Worklist.push_back(
3432               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3433             continue;
3434           }
3435         }
3436         // Ignore icmp instructions which are already being analyzed.
3437         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3438           unsigned OtherIdx = !U.getOperandNo();
3439           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3440           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3441             continue;
3442         }
3443 
3444         std::pair<size_t, int64_t> P = getUse(
3445             S, LSRUse::Basic, MemAccessTy());
3446         size_t LUIdx = P.first;
3447         int64_t Offset = P.second;
3448         LSRUse &LU = Uses[LUIdx];
3449         LSRFixup &LF = LU.getNewFixup();
3450         LF.UserInst = const_cast<Instruction *>(UserInst);
3451         LF.OperandValToReplace = U;
3452         LF.Offset = Offset;
3453         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3454         if (!LU.WidestFixupType ||
3455             SE.getTypeSizeInBits(LU.WidestFixupType) <
3456             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3457           LU.WidestFixupType = LF.OperandValToReplace->getType();
3458         InsertSupplementalFormula(US, LU, LUIdx);
3459         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3460         break;
3461       }
3462     }
3463   }
3464 }
3465 
3466 /// Split S into subexpressions which can be pulled out into separate
3467 /// registers. If C is non-null, multiply each subexpression by C.
3468 ///
3469 /// Return remainder expression after factoring the subexpressions captured by
3470 /// Ops. If Ops is complete, return NULL.
3471 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3472                                    SmallVectorImpl<const SCEV *> &Ops,
3473                                    const Loop *L,
3474                                    ScalarEvolution &SE,
3475                                    unsigned Depth = 0) {
3476   // Arbitrarily cap recursion to protect compile time.
3477   if (Depth >= 3)
3478     return S;
3479 
3480   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3481     // Break out add operands.
3482     for (const SCEV *S : Add->operands()) {
3483       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3484       if (Remainder)
3485         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3486     }
3487     return nullptr;
3488   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3489     // Split a non-zero base out of an addrec.
3490     if (AR->getStart()->isZero() || !AR->isAffine())
3491       return S;
3492 
3493     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3494                                             C, Ops, L, SE, Depth+1);
3495     // Split the non-zero AddRec unless it is part of a nested recurrence that
3496     // does not pertain to this loop.
3497     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3498       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3499       Remainder = nullptr;
3500     }
3501     if (Remainder != AR->getStart()) {
3502       if (!Remainder)
3503         Remainder = SE.getConstant(AR->getType(), 0);
3504       return SE.getAddRecExpr(Remainder,
3505                               AR->getStepRecurrence(SE),
3506                               AR->getLoop(),
3507                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3508                               SCEV::FlagAnyWrap);
3509     }
3510   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3511     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3512     if (Mul->getNumOperands() != 2)
3513       return S;
3514     if (const SCEVConstant *Op0 =
3515         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3516       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3517       const SCEV *Remainder =
3518         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3519       if (Remainder)
3520         Ops.push_back(SE.getMulExpr(C, Remainder));
3521       return nullptr;
3522     }
3523   }
3524   return S;
3525 }
3526 
3527 /// Return true if the SCEV represents a value that may end up as a
3528 /// post-increment operation.
3529 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3530                               LSRUse &LU, const SCEV *S, const Loop *L,
3531                               ScalarEvolution &SE) {
3532   if (LU.Kind != LSRUse::Address ||
3533       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3534     return false;
3535   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3536   if (!AR)
3537     return false;
3538   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3539   if (!isa<SCEVConstant>(LoopStep))
3540     return false;
3541   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3542       LoopStep->getType()->getScalarSizeInBits())
3543     return false;
3544   // Check if a post-indexed load/store can be used.
3545   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3546       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3547     const SCEV *LoopStart = AR->getStart();
3548     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3549       return true;
3550   }
3551   return false;
3552 }
3553 
3554 /// Helper function for LSRInstance::GenerateReassociations.
3555 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3556                                              const Formula &Base,
3557                                              unsigned Depth, size_t Idx,
3558                                              bool IsScaledReg) {
3559   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3560   // Don't generate reassociations for the base register of a value that
3561   // may generate a post-increment operator. The reason is that the
3562   // reassociations cause extra base+register formula to be created,
3563   // and possibly chosen, but the post-increment is more efficient.
3564   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3565     return;
3566   SmallVector<const SCEV *, 8> AddOps;
3567   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3568   if (Remainder)
3569     AddOps.push_back(Remainder);
3570 
3571   if (AddOps.size() == 1)
3572     return;
3573 
3574   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3575                                                      JE = AddOps.end();
3576        J != JE; ++J) {
3577     // Loop-variant "unknown" values are uninteresting; we won't be able to
3578     // do anything meaningful with them.
3579     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3580       continue;
3581 
3582     // Don't pull a constant into a register if the constant could be folded
3583     // into an immediate field.
3584     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3585                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3586       continue;
3587 
3588     // Collect all operands except *J.
3589     SmallVector<const SCEV *, 8> InnerAddOps(
3590         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3591     InnerAddOps.append(std::next(J),
3592                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3593 
3594     // Don't leave just a constant behind in a register if the constant could
3595     // be folded into an immediate field.
3596     if (InnerAddOps.size() == 1 &&
3597         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3598                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3599       continue;
3600 
3601     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3602     if (InnerSum->isZero())
3603       continue;
3604     Formula F = Base;
3605 
3606     // Add the remaining pieces of the add back into the new formula.
3607     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3608     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3609         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3610                                 InnerSumSC->getValue()->getZExtValue())) {
3611       F.UnfoldedOffset =
3612           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3613       if (IsScaledReg)
3614         F.ScaledReg = nullptr;
3615       else
3616         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3617     } else if (IsScaledReg)
3618       F.ScaledReg = InnerSum;
3619     else
3620       F.BaseRegs[Idx] = InnerSum;
3621 
3622     // Add J as its own register, or an unfolded immediate.
3623     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3624     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3625         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3626                                 SC->getValue()->getZExtValue()))
3627       F.UnfoldedOffset =
3628           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3629     else
3630       F.BaseRegs.push_back(*J);
3631     // We may have changed the number of register in base regs, adjust the
3632     // formula accordingly.
3633     F.canonicalize(*L);
3634 
3635     if (InsertFormula(LU, LUIdx, F))
3636       // If that formula hadn't been seen before, recurse to find more like
3637       // it.
3638       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3639       // Because just Depth is not enough to bound compile time.
3640       // This means that every time AddOps.size() is greater 16^x we will add
3641       // x to Depth.
3642       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3643                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3644   }
3645 }
3646 
3647 /// Split out subexpressions from adds and the bases of addrecs.
3648 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3649                                          Formula Base, unsigned Depth) {
3650   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3651   // Arbitrarily cap recursion to protect compile time.
3652   if (Depth >= 3)
3653     return;
3654 
3655   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3656     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3657 
3658   if (Base.Scale == 1)
3659     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3660                                /* Idx */ -1, /* IsScaledReg */ true);
3661 }
3662 
3663 ///  Generate a formula consisting of all of the loop-dominating registers added
3664 /// into a single register.
3665 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3666                                        Formula Base) {
3667   // This method is only interesting on a plurality of registers.
3668   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3669       (Base.UnfoldedOffset != 0) <= 1)
3670     return;
3671 
3672   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3673   // processing the formula.
3674   Base.unscale();
3675   SmallVector<const SCEV *, 4> Ops;
3676   Formula NewBase = Base;
3677   NewBase.BaseRegs.clear();
3678   Type *CombinedIntegerType = nullptr;
3679   for (const SCEV *BaseReg : Base.BaseRegs) {
3680     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3681         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3682       if (!CombinedIntegerType)
3683         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3684       Ops.push_back(BaseReg);
3685     }
3686     else
3687       NewBase.BaseRegs.push_back(BaseReg);
3688   }
3689 
3690   // If no register is relevant, we're done.
3691   if (Ops.size() == 0)
3692     return;
3693 
3694   // Utility function for generating the required variants of the combined
3695   // registers.
3696   auto GenerateFormula = [&](const SCEV *Sum) {
3697     Formula F = NewBase;
3698 
3699     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3700     // opportunity to fold something. For now, just ignore such cases
3701     // rather than proceed with zero in a register.
3702     if (Sum->isZero())
3703       return;
3704 
3705     F.BaseRegs.push_back(Sum);
3706     F.canonicalize(*L);
3707     (void)InsertFormula(LU, LUIdx, F);
3708   };
3709 
3710   // If we collected at least two registers, generate a formula combining them.
3711   if (Ops.size() > 1) {
3712     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3713     GenerateFormula(SE.getAddExpr(OpsCopy));
3714   }
3715 
3716   // If we have an unfolded offset, generate a formula combining it with the
3717   // registers collected.
3718   if (NewBase.UnfoldedOffset) {
3719     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3720     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3721                                  true));
3722     NewBase.UnfoldedOffset = 0;
3723     GenerateFormula(SE.getAddExpr(Ops));
3724   }
3725 }
3726 
3727 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3728 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3729                                               const Formula &Base, size_t Idx,
3730                                               bool IsScaledReg) {
3731   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3732   GlobalValue *GV = ExtractSymbol(G, SE);
3733   if (G->isZero() || !GV)
3734     return;
3735   Formula F = Base;
3736   F.BaseGV = GV;
3737   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3738     return;
3739   if (IsScaledReg)
3740     F.ScaledReg = G;
3741   else
3742     F.BaseRegs[Idx] = G;
3743   (void)InsertFormula(LU, LUIdx, F);
3744 }
3745 
3746 /// Generate reuse formulae using symbolic offsets.
3747 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3748                                           Formula Base) {
3749   // We can't add a symbolic offset if the address already contains one.
3750   if (Base.BaseGV) return;
3751 
3752   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3753     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3754   if (Base.Scale == 1)
3755     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3756                                 /* IsScaledReg */ true);
3757 }
3758 
3759 /// Helper function for LSRInstance::GenerateConstantOffsets.
3760 void LSRInstance::GenerateConstantOffsetsImpl(
3761     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3762     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3763 
3764   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3765     Formula F = Base;
3766     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3767 
3768     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3769                    LU.AccessTy, F)) {
3770       // Add the offset to the base register.
3771       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3772       // If it cancelled out, drop the base register, otherwise update it.
3773       if (NewG->isZero()) {
3774         if (IsScaledReg) {
3775           F.Scale = 0;
3776           F.ScaledReg = nullptr;
3777         } else
3778           F.deleteBaseReg(F.BaseRegs[Idx]);
3779         F.canonicalize(*L);
3780       } else if (IsScaledReg)
3781         F.ScaledReg = NewG;
3782       else
3783         F.BaseRegs[Idx] = NewG;
3784 
3785       (void)InsertFormula(LU, LUIdx, F);
3786     }
3787   };
3788 
3789   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3790 
3791   // With constant offsets and constant steps, we can generate pre-inc
3792   // accesses by having the offset equal the step. So, for access #0 with a
3793   // step of 8, we generate a G - 8 base which would require the first access
3794   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3795   // for itself and hopefully becomes the base for other accesses. This means
3796   // means that a single pre-indexed access can be generated to become the new
3797   // base pointer for each iteration of the loop, resulting in no extra add/sub
3798   // instructions for pointer updating.
3799   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3800     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3801       if (auto *StepRec =
3802           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3803         const APInt &StepInt = StepRec->getAPInt();
3804         int64_t Step = StepInt.isNegative() ?
3805           StepInt.getSExtValue() : StepInt.getZExtValue();
3806 
3807         for (int64_t Offset : Worklist) {
3808           Offset -= Step;
3809           GenerateOffset(G, Offset);
3810         }
3811       }
3812     }
3813   }
3814   for (int64_t Offset : Worklist)
3815     GenerateOffset(G, Offset);
3816 
3817   int64_t Imm = ExtractImmediate(G, SE);
3818   if (G->isZero() || Imm == 0)
3819     return;
3820   Formula F = Base;
3821   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3822   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3823     return;
3824   if (IsScaledReg)
3825     F.ScaledReg = G;
3826   else
3827     F.BaseRegs[Idx] = G;
3828   (void)InsertFormula(LU, LUIdx, F);
3829 }
3830 
3831 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3832 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3833                                           Formula Base) {
3834   // TODO: For now, just add the min and max offset, because it usually isn't
3835   // worthwhile looking at everything inbetween.
3836   SmallVector<int64_t, 2> Worklist;
3837   Worklist.push_back(LU.MinOffset);
3838   if (LU.MaxOffset != LU.MinOffset)
3839     Worklist.push_back(LU.MaxOffset);
3840 
3841   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3842     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3843   if (Base.Scale == 1)
3844     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3845                                 /* IsScaledReg */ true);
3846 }
3847 
3848 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3849 /// == y -> x*c == y*c.
3850 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3851                                          Formula Base) {
3852   if (LU.Kind != LSRUse::ICmpZero) return;
3853 
3854   // Determine the integer type for the base formula.
3855   Type *IntTy = Base.getType();
3856   if (!IntTy) return;
3857   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3858 
3859   // Don't do this if there is more than one offset.
3860   if (LU.MinOffset != LU.MaxOffset) return;
3861 
3862   // Check if transformation is valid. It is illegal to multiply pointer.
3863   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3864     return;
3865   for (const SCEV *BaseReg : Base.BaseRegs)
3866     if (BaseReg->getType()->isPointerTy())
3867       return;
3868   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3869 
3870   // Check each interesting stride.
3871   for (int64_t Factor : Factors) {
3872     // Check that the multiplication doesn't overflow.
3873     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3874       continue;
3875     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3876     if (NewBaseOffset / Factor != Base.BaseOffset)
3877       continue;
3878     // If the offset will be truncated at this use, check that it is in bounds.
3879     if (!IntTy->isPointerTy() &&
3880         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3881       continue;
3882 
3883     // Check that multiplying with the use offset doesn't overflow.
3884     int64_t Offset = LU.MinOffset;
3885     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3886       continue;
3887     Offset = (uint64_t)Offset * Factor;
3888     if (Offset / Factor != LU.MinOffset)
3889       continue;
3890     // If the offset will be truncated at this use, check that it is in bounds.
3891     if (!IntTy->isPointerTy() &&
3892         !ConstantInt::isValueValidForType(IntTy, Offset))
3893       continue;
3894 
3895     Formula F = Base;
3896     F.BaseOffset = NewBaseOffset;
3897 
3898     // Check that this scale is legal.
3899     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3900       continue;
3901 
3902     // Compensate for the use having MinOffset built into it.
3903     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3904 
3905     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3906 
3907     // Check that multiplying with each base register doesn't overflow.
3908     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3909       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3910       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3911         goto next;
3912     }
3913 
3914     // Check that multiplying with the scaled register doesn't overflow.
3915     if (F.ScaledReg) {
3916       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3917       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3918         continue;
3919     }
3920 
3921     // Check that multiplying with the unfolded offset doesn't overflow.
3922     if (F.UnfoldedOffset != 0) {
3923       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3924           Factor == -1)
3925         continue;
3926       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3927       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3928         continue;
3929       // If the offset will be truncated, check that it is in bounds.
3930       if (!IntTy->isPointerTy() &&
3931           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3932         continue;
3933     }
3934 
3935     // If we make it here and it's legal, add it.
3936     (void)InsertFormula(LU, LUIdx, F);
3937   next:;
3938   }
3939 }
3940 
3941 /// Generate stride factor reuse formulae by making use of scaled-offset address
3942 /// modes, for example.
3943 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3944   // Determine the integer type for the base formula.
3945   Type *IntTy = Base.getType();
3946   if (!IntTy) return;
3947 
3948   // If this Formula already has a scaled register, we can't add another one.
3949   // Try to unscale the formula to generate a better scale.
3950   if (Base.Scale != 0 && !Base.unscale())
3951     return;
3952 
3953   assert(Base.Scale == 0 && "unscale did not did its job!");
3954 
3955   // Check each interesting stride.
3956   for (int64_t Factor : Factors) {
3957     Base.Scale = Factor;
3958     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3959     // Check whether this scale is going to be legal.
3960     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3961                     Base)) {
3962       // As a special-case, handle special out-of-loop Basic users specially.
3963       // TODO: Reconsider this special case.
3964       if (LU.Kind == LSRUse::Basic &&
3965           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3966                      LU.AccessTy, Base) &&
3967           LU.AllFixupsOutsideLoop)
3968         LU.Kind = LSRUse::Special;
3969       else
3970         continue;
3971     }
3972     // For an ICmpZero, negating a solitary base register won't lead to
3973     // new solutions.
3974     if (LU.Kind == LSRUse::ICmpZero &&
3975         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3976       continue;
3977     // For each addrec base reg, if its loop is current loop, apply the scale.
3978     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3979       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3980       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3981         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3982         if (FactorS->isZero())
3983           continue;
3984         // Divide out the factor, ignoring high bits, since we'll be
3985         // scaling the value back up in the end.
3986         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3987           // TODO: This could be optimized to avoid all the copying.
3988           Formula F = Base;
3989           F.ScaledReg = Quotient;
3990           F.deleteBaseReg(F.BaseRegs[i]);
3991           // The canonical representation of 1*reg is reg, which is already in
3992           // Base. In that case, do not try to insert the formula, it will be
3993           // rejected anyway.
3994           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3995                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3996             continue;
3997           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3998           // non canonical Formula with ScaledReg's loop not being L.
3999           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4000             F.canonicalize(*L);
4001           (void)InsertFormula(LU, LUIdx, F);
4002         }
4003       }
4004     }
4005   }
4006 }
4007 
4008 /// Generate reuse formulae from different IV types.
4009 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4010   // Don't bother truncating symbolic values.
4011   if (Base.BaseGV) return;
4012 
4013   // Determine the integer type for the base formula.
4014   Type *DstTy = Base.getType();
4015   if (!DstTy) return;
4016   DstTy = SE.getEffectiveSCEVType(DstTy);
4017 
4018   for (Type *SrcTy : Types) {
4019     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4020       Formula F = Base;
4021 
4022       // Sometimes SCEV is able to prove zero during ext transform. It may
4023       // happen if SCEV did not do all possible transforms while creating the
4024       // initial node (maybe due to depth limitations), but it can do them while
4025       // taking ext.
4026       if (F.ScaledReg) {
4027         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4028         if (NewScaledReg->isZero())
4029          continue;
4030         F.ScaledReg = NewScaledReg;
4031       }
4032       bool HasZeroBaseReg = false;
4033       for (const SCEV *&BaseReg : F.BaseRegs) {
4034         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4035         if (NewBaseReg->isZero()) {
4036           HasZeroBaseReg = true;
4037           break;
4038         }
4039         BaseReg = NewBaseReg;
4040       }
4041       if (HasZeroBaseReg)
4042         continue;
4043 
4044       // TODO: This assumes we've done basic processing on all uses and
4045       // have an idea what the register usage is.
4046       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4047         continue;
4048 
4049       F.canonicalize(*L);
4050       (void)InsertFormula(LU, LUIdx, F);
4051     }
4052   }
4053 }
4054 
4055 namespace {
4056 
4057 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4058 /// modifications so that the search phase doesn't have to worry about the data
4059 /// structures moving underneath it.
4060 struct WorkItem {
4061   size_t LUIdx;
4062   int64_t Imm;
4063   const SCEV *OrigReg;
4064 
4065   WorkItem(size_t LI, int64_t I, const SCEV *R)
4066       : LUIdx(LI), Imm(I), OrigReg(R) {}
4067 
4068   void print(raw_ostream &OS) const;
4069   void dump() const;
4070 };
4071 
4072 } // end anonymous namespace
4073 
4074 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4075 void WorkItem::print(raw_ostream &OS) const {
4076   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4077      << " , add offset " << Imm;
4078 }
4079 
4080 LLVM_DUMP_METHOD void WorkItem::dump() const {
4081   print(errs()); errs() << '\n';
4082 }
4083 #endif
4084 
4085 /// Look for registers which are a constant distance apart and try to form reuse
4086 /// opportunities between them.
4087 void LSRInstance::GenerateCrossUseConstantOffsets() {
4088   // Group the registers by their value without any added constant offset.
4089   using ImmMapTy = std::map<int64_t, const SCEV *>;
4090 
4091   DenseMap<const SCEV *, ImmMapTy> Map;
4092   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4093   SmallVector<const SCEV *, 8> Sequence;
4094   for (const SCEV *Use : RegUses) {
4095     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4096     int64_t Imm = ExtractImmediate(Reg, SE);
4097     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4098     if (Pair.second)
4099       Sequence.push_back(Reg);
4100     Pair.first->second.insert(std::make_pair(Imm, Use));
4101     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4102   }
4103 
4104   // Now examine each set of registers with the same base value. Build up
4105   // a list of work to do and do the work in a separate step so that we're
4106   // not adding formulae and register counts while we're searching.
4107   SmallVector<WorkItem, 32> WorkItems;
4108   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4109   for (const SCEV *Reg : Sequence) {
4110     const ImmMapTy &Imms = Map.find(Reg)->second;
4111 
4112     // It's not worthwhile looking for reuse if there's only one offset.
4113     if (Imms.size() == 1)
4114       continue;
4115 
4116     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4117                for (const auto &Entry
4118                     : Imms) dbgs()
4119                << ' ' << Entry.first;
4120                dbgs() << '\n');
4121 
4122     // Examine each offset.
4123     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4124          J != JE; ++J) {
4125       const SCEV *OrigReg = J->second;
4126 
4127       int64_t JImm = J->first;
4128       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4129 
4130       if (!isa<SCEVConstant>(OrigReg) &&
4131           UsedByIndicesMap[Reg].count() == 1) {
4132         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4133                           << '\n');
4134         continue;
4135       }
4136 
4137       // Conservatively examine offsets between this orig reg a few selected
4138       // other orig regs.
4139       int64_t First = Imms.begin()->first;
4140       int64_t Last = std::prev(Imms.end())->first;
4141       // Compute (First + Last)  / 2 without overflow using the fact that
4142       // First + Last = 2 * (First + Last) + (First ^ Last).
4143       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4144       // If the result is negative and First is odd and Last even (or vice versa),
4145       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4146       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4147       ImmMapTy::const_iterator OtherImms[] = {
4148           Imms.begin(), std::prev(Imms.end()),
4149          Imms.lower_bound(Avg)};
4150       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4151         ImmMapTy::const_iterator M = OtherImms[i];
4152         if (M == J || M == JE) continue;
4153 
4154         // Compute the difference between the two.
4155         int64_t Imm = (uint64_t)JImm - M->first;
4156         for (unsigned LUIdx : UsedByIndices.set_bits())
4157           // Make a memo of this use, offset, and register tuple.
4158           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4159             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4160       }
4161     }
4162   }
4163 
4164   Map.clear();
4165   Sequence.clear();
4166   UsedByIndicesMap.clear();
4167   UniqueItems.clear();
4168 
4169   // Now iterate through the worklist and add new formulae.
4170   for (const WorkItem &WI : WorkItems) {
4171     size_t LUIdx = WI.LUIdx;
4172     LSRUse &LU = Uses[LUIdx];
4173     int64_t Imm = WI.Imm;
4174     const SCEV *OrigReg = WI.OrigReg;
4175 
4176     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4177     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4178     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4179 
4180     // TODO: Use a more targeted data structure.
4181     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4182       Formula F = LU.Formulae[L];
4183       // FIXME: The code for the scaled and unscaled registers looks
4184       // very similar but slightly different. Investigate if they
4185       // could be merged. That way, we would not have to unscale the
4186       // Formula.
4187       F.unscale();
4188       // Use the immediate in the scaled register.
4189       if (F.ScaledReg == OrigReg) {
4190         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4191         // Don't create 50 + reg(-50).
4192         if (F.referencesReg(SE.getSCEV(
4193                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4194           continue;
4195         Formula NewF = F;
4196         NewF.BaseOffset = Offset;
4197         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4198                         NewF))
4199           continue;
4200         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4201 
4202         // If the new scale is a constant in a register, and adding the constant
4203         // value to the immediate would produce a value closer to zero than the
4204         // immediate itself, then the formula isn't worthwhile.
4205         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4206           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4207               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4208                   .ule(std::abs(NewF.BaseOffset)))
4209             continue;
4210 
4211         // OK, looks good.
4212         NewF.canonicalize(*this->L);
4213         (void)InsertFormula(LU, LUIdx, NewF);
4214       } else {
4215         // Use the immediate in a base register.
4216         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4217           const SCEV *BaseReg = F.BaseRegs[N];
4218           if (BaseReg != OrigReg)
4219             continue;
4220           Formula NewF = F;
4221           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4222           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4223                           LU.Kind, LU.AccessTy, NewF)) {
4224             if (TTI.shouldFavorPostInc() &&
4225                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4226               continue;
4227             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4228               continue;
4229             NewF = F;
4230             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4231           }
4232           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4233 
4234           // If the new formula has a constant in a register, and adding the
4235           // constant value to the immediate would produce a value closer to
4236           // zero than the immediate itself, then the formula isn't worthwhile.
4237           for (const SCEV *NewReg : NewF.BaseRegs)
4238             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4239               if ((C->getAPInt() + NewF.BaseOffset)
4240                       .abs()
4241                       .slt(std::abs(NewF.BaseOffset)) &&
4242                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4243                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4244                 goto skip_formula;
4245 
4246           // Ok, looks good.
4247           NewF.canonicalize(*this->L);
4248           (void)InsertFormula(LU, LUIdx, NewF);
4249           break;
4250         skip_formula:;
4251         }
4252       }
4253     }
4254   }
4255 }
4256 
4257 /// Generate formulae for each use.
4258 void
4259 LSRInstance::GenerateAllReuseFormulae() {
4260   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4261   // queries are more precise.
4262   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4263     LSRUse &LU = Uses[LUIdx];
4264     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4265       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4266     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4267       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4268   }
4269   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4270     LSRUse &LU = Uses[LUIdx];
4271     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4272       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4273     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4274       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4275     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4276       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4277     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4278       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4279   }
4280   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4281     LSRUse &LU = Uses[LUIdx];
4282     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4283       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4284   }
4285 
4286   GenerateCrossUseConstantOffsets();
4287 
4288   LLVM_DEBUG(dbgs() << "\n"
4289                        "After generating reuse formulae:\n";
4290              print_uses(dbgs()));
4291 }
4292 
4293 /// If there are multiple formulae with the same set of registers used
4294 /// by other uses, pick the best one and delete the others.
4295 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4296   DenseSet<const SCEV *> VisitedRegs;
4297   SmallPtrSet<const SCEV *, 16> Regs;
4298   SmallPtrSet<const SCEV *, 16> LoserRegs;
4299 #ifndef NDEBUG
4300   bool ChangedFormulae = false;
4301 #endif
4302 
4303   // Collect the best formula for each unique set of shared registers. This
4304   // is reset for each use.
4305   using BestFormulaeTy =
4306       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4307 
4308   BestFormulaeTy BestFormulae;
4309 
4310   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4311     LSRUse &LU = Uses[LUIdx];
4312     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4313                dbgs() << '\n');
4314 
4315     bool Any = false;
4316     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4317          FIdx != NumForms; ++FIdx) {
4318       Formula &F = LU.Formulae[FIdx];
4319 
4320       // Some formulas are instant losers. For example, they may depend on
4321       // nonexistent AddRecs from other loops. These need to be filtered
4322       // immediately, otherwise heuristics could choose them over others leading
4323       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4324       // avoids the need to recompute this information across formulae using the
4325       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4326       // the corresponding bad register from the Regs set.
4327       Cost CostF(L, SE, TTI);
4328       Regs.clear();
4329       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4330       if (CostF.isLoser()) {
4331         // During initial formula generation, undesirable formulae are generated
4332         // by uses within other loops that have some non-trivial address mode or
4333         // use the postinc form of the IV. LSR needs to provide these formulae
4334         // as the basis of rediscovering the desired formula that uses an AddRec
4335         // corresponding to the existing phi. Once all formulae have been
4336         // generated, these initial losers may be pruned.
4337         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4338                    dbgs() << "\n");
4339       }
4340       else {
4341         SmallVector<const SCEV *, 4> Key;
4342         for (const SCEV *Reg : F.BaseRegs) {
4343           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4344             Key.push_back(Reg);
4345         }
4346         if (F.ScaledReg &&
4347             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4348           Key.push_back(F.ScaledReg);
4349         // Unstable sort by host order ok, because this is only used for
4350         // uniquifying.
4351         llvm::sort(Key);
4352 
4353         std::pair<BestFormulaeTy::const_iterator, bool> P =
4354           BestFormulae.insert(std::make_pair(Key, FIdx));
4355         if (P.second)
4356           continue;
4357 
4358         Formula &Best = LU.Formulae[P.first->second];
4359 
4360         Cost CostBest(L, SE, TTI);
4361         Regs.clear();
4362         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4363         if (CostF.isLess(CostBest))
4364           std::swap(F, Best);
4365         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4366                    dbgs() << "\n"
4367                              "    in favor of formula ";
4368                    Best.print(dbgs()); dbgs() << '\n');
4369       }
4370 #ifndef NDEBUG
4371       ChangedFormulae = true;
4372 #endif
4373       LU.DeleteFormula(F);
4374       --FIdx;
4375       --NumForms;
4376       Any = true;
4377     }
4378 
4379     // Now that we've filtered out some formulae, recompute the Regs set.
4380     if (Any)
4381       LU.RecomputeRegs(LUIdx, RegUses);
4382 
4383     // Reset this to prepare for the next use.
4384     BestFormulae.clear();
4385   }
4386 
4387   LLVM_DEBUG(if (ChangedFormulae) {
4388     dbgs() << "\n"
4389               "After filtering out undesirable candidates:\n";
4390     print_uses(dbgs());
4391   });
4392 }
4393 
4394 /// Estimate the worst-case number of solutions the solver might have to
4395 /// consider. It almost never considers this many solutions because it prune the
4396 /// search space, but the pruning isn't always sufficient.
4397 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4398   size_t Power = 1;
4399   for (const LSRUse &LU : Uses) {
4400     size_t FSize = LU.Formulae.size();
4401     if (FSize >= ComplexityLimit) {
4402       Power = ComplexityLimit;
4403       break;
4404     }
4405     Power *= FSize;
4406     if (Power >= ComplexityLimit)
4407       break;
4408   }
4409   return Power;
4410 }
4411 
4412 /// When one formula uses a superset of the registers of another formula, it
4413 /// won't help reduce register pressure (though it may not necessarily hurt
4414 /// register pressure); remove it to simplify the system.
4415 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4416   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4417     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4418 
4419     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4420                          "which use a superset of registers used by other "
4421                          "formulae.\n");
4422 
4423     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4424       LSRUse &LU = Uses[LUIdx];
4425       bool Any = false;
4426       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4427         Formula &F = LU.Formulae[i];
4428         // Look for a formula with a constant or GV in a register. If the use
4429         // also has a formula with that same value in an immediate field,
4430         // delete the one that uses a register.
4431         for (SmallVectorImpl<const SCEV *>::const_iterator
4432              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4433           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4434             Formula NewF = F;
4435             //FIXME: Formulas should store bitwidth to do wrapping properly.
4436             //       See PR41034.
4437             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4438             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4439                                 (I - F.BaseRegs.begin()));
4440             if (LU.HasFormulaWithSameRegs(NewF)) {
4441               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4442                          dbgs() << '\n');
4443               LU.DeleteFormula(F);
4444               --i;
4445               --e;
4446               Any = true;
4447               break;
4448             }
4449           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4450             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4451               if (!F.BaseGV) {
4452                 Formula NewF = F;
4453                 NewF.BaseGV = GV;
4454                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4455                                     (I - F.BaseRegs.begin()));
4456                 if (LU.HasFormulaWithSameRegs(NewF)) {
4457                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4458                              dbgs() << '\n');
4459                   LU.DeleteFormula(F);
4460                   --i;
4461                   --e;
4462                   Any = true;
4463                   break;
4464                 }
4465               }
4466           }
4467         }
4468       }
4469       if (Any)
4470         LU.RecomputeRegs(LUIdx, RegUses);
4471     }
4472 
4473     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4474   }
4475 }
4476 
4477 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4478 /// allocate a single register for them.
4479 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4480   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4481     return;
4482 
4483   LLVM_DEBUG(
4484       dbgs() << "The search space is too complex.\n"
4485                 "Narrowing the search space by assuming that uses separated "
4486                 "by a constant offset will use the same registers.\n");
4487 
4488   // This is especially useful for unrolled loops.
4489 
4490   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4491     LSRUse &LU = Uses[LUIdx];
4492     for (const Formula &F : LU.Formulae) {
4493       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4494         continue;
4495 
4496       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4497       if (!LUThatHas)
4498         continue;
4499 
4500       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4501                               LU.Kind, LU.AccessTy))
4502         continue;
4503 
4504       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4505 
4506       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4507 
4508       // Transfer the fixups of LU to LUThatHas.
4509       for (LSRFixup &Fixup : LU.Fixups) {
4510         Fixup.Offset += F.BaseOffset;
4511         LUThatHas->pushFixup(Fixup);
4512         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4513       }
4514 
4515       // Delete formulae from the new use which are no longer legal.
4516       bool Any = false;
4517       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4518         Formula &F = LUThatHas->Formulae[i];
4519         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4520                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4521           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4522           LUThatHas->DeleteFormula(F);
4523           --i;
4524           --e;
4525           Any = true;
4526         }
4527       }
4528 
4529       if (Any)
4530         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4531 
4532       // Delete the old use.
4533       DeleteUse(LU, LUIdx);
4534       --LUIdx;
4535       --NumUses;
4536       break;
4537     }
4538   }
4539 
4540   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4541 }
4542 
4543 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4544 /// we've done more filtering, as it may be able to find more formulae to
4545 /// eliminate.
4546 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4547   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4548     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4549 
4550     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4551                          "undesirable dedicated registers.\n");
4552 
4553     FilterOutUndesirableDedicatedRegisters();
4554 
4555     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4556   }
4557 }
4558 
4559 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4560 /// Pick the best one and delete the others.
4561 /// This narrowing heuristic is to keep as many formulae with different
4562 /// Scale and ScaledReg pair as possible while narrowing the search space.
4563 /// The benefit is that it is more likely to find out a better solution
4564 /// from a formulae set with more Scale and ScaledReg variations than
4565 /// a formulae set with the same Scale and ScaledReg. The picking winner
4566 /// reg heuristic will often keep the formulae with the same Scale and
4567 /// ScaledReg and filter others, and we want to avoid that if possible.
4568 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4569   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4570     return;
4571 
4572   LLVM_DEBUG(
4573       dbgs() << "The search space is too complex.\n"
4574                 "Narrowing the search space by choosing the best Formula "
4575                 "from the Formulae with the same Scale and ScaledReg.\n");
4576 
4577   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4578   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4579 
4580   BestFormulaeTy BestFormulae;
4581 #ifndef NDEBUG
4582   bool ChangedFormulae = false;
4583 #endif
4584   DenseSet<const SCEV *> VisitedRegs;
4585   SmallPtrSet<const SCEV *, 16> Regs;
4586 
4587   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4588     LSRUse &LU = Uses[LUIdx];
4589     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4590                dbgs() << '\n');
4591 
4592     // Return true if Formula FA is better than Formula FB.
4593     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4594       // First we will try to choose the Formula with fewer new registers.
4595       // For a register used by current Formula, the more the register is
4596       // shared among LSRUses, the less we increase the register number
4597       // counter of the formula.
4598       size_t FARegNum = 0;
4599       for (const SCEV *Reg : FA.BaseRegs) {
4600         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4601         FARegNum += (NumUses - UsedByIndices.count() + 1);
4602       }
4603       size_t FBRegNum = 0;
4604       for (const SCEV *Reg : FB.BaseRegs) {
4605         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4606         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4607       }
4608       if (FARegNum != FBRegNum)
4609         return FARegNum < FBRegNum;
4610 
4611       // If the new register numbers are the same, choose the Formula with
4612       // less Cost.
4613       Cost CostFA(L, SE, TTI);
4614       Cost CostFB(L, SE, TTI);
4615       Regs.clear();
4616       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4617       Regs.clear();
4618       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4619       return CostFA.isLess(CostFB);
4620     };
4621 
4622     bool Any = false;
4623     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4624          ++FIdx) {
4625       Formula &F = LU.Formulae[FIdx];
4626       if (!F.ScaledReg)
4627         continue;
4628       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4629       if (P.second)
4630         continue;
4631 
4632       Formula &Best = LU.Formulae[P.first->second];
4633       if (IsBetterThan(F, Best))
4634         std::swap(F, Best);
4635       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4636                  dbgs() << "\n"
4637                            "    in favor of formula ";
4638                  Best.print(dbgs()); dbgs() << '\n');
4639 #ifndef NDEBUG
4640       ChangedFormulae = true;
4641 #endif
4642       LU.DeleteFormula(F);
4643       --FIdx;
4644       --NumForms;
4645       Any = true;
4646     }
4647     if (Any)
4648       LU.RecomputeRegs(LUIdx, RegUses);
4649 
4650     // Reset this to prepare for the next use.
4651     BestFormulae.clear();
4652   }
4653 
4654   LLVM_DEBUG(if (ChangedFormulae) {
4655     dbgs() << "\n"
4656               "After filtering out undesirable candidates:\n";
4657     print_uses(dbgs());
4658   });
4659 }
4660 
4661 /// The function delete formulas with high registers number expectation.
4662 /// Assuming we don't know the value of each formula (already delete
4663 /// all inefficient), generate probability of not selecting for each
4664 /// register.
4665 /// For example,
4666 /// Use1:
4667 ///  reg(a) + reg({0,+,1})
4668 ///  reg(a) + reg({-1,+,1}) + 1
4669 ///  reg({a,+,1})
4670 /// Use2:
4671 ///  reg(b) + reg({0,+,1})
4672 ///  reg(b) + reg({-1,+,1}) + 1
4673 ///  reg({b,+,1})
4674 /// Use3:
4675 ///  reg(c) + reg(b) + reg({0,+,1})
4676 ///  reg(c) + reg({b,+,1})
4677 ///
4678 /// Probability of not selecting
4679 ///                 Use1   Use2    Use3
4680 /// reg(a)         (1/3) *   1   *   1
4681 /// reg(b)           1   * (1/3) * (1/2)
4682 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4683 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4684 /// reg({a,+,1})   (2/3) *   1   *   1
4685 /// reg({b,+,1})     1   * (2/3) * (2/3)
4686 /// reg(c)           1   *   1   *   0
4687 ///
4688 /// Now count registers number mathematical expectation for each formula:
4689 /// Note that for each use we exclude probability if not selecting for the use.
4690 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4691 /// probabilty 1/3 of not selecting for Use1).
4692 /// Use1:
4693 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4694 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4695 ///  reg({a,+,1})                   1
4696 /// Use2:
4697 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4698 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4699 ///  reg({b,+,1})                   2/3
4700 /// Use3:
4701 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4702 ///  reg(c) + reg({b,+,1})          1 + 2/3
4703 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4704   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4705     return;
4706   // Ok, we have too many of formulae on our hands to conveniently handle.
4707   // Use a rough heuristic to thin out the list.
4708 
4709   // Set of Regs wich will be 100% used in final solution.
4710   // Used in each formula of a solution (in example above this is reg(c)).
4711   // We can skip them in calculations.
4712   SmallPtrSet<const SCEV *, 4> UniqRegs;
4713   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4714 
4715   // Map each register to probability of not selecting
4716   DenseMap <const SCEV *, float> RegNumMap;
4717   for (const SCEV *Reg : RegUses) {
4718     if (UniqRegs.count(Reg))
4719       continue;
4720     float PNotSel = 1;
4721     for (const LSRUse &LU : Uses) {
4722       if (!LU.Regs.count(Reg))
4723         continue;
4724       float P = LU.getNotSelectedProbability(Reg);
4725       if (P != 0.0)
4726         PNotSel *= P;
4727       else
4728         UniqRegs.insert(Reg);
4729     }
4730     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4731   }
4732 
4733   LLVM_DEBUG(
4734       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4735 
4736   // Delete formulas where registers number expectation is high.
4737   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4738     LSRUse &LU = Uses[LUIdx];
4739     // If nothing to delete - continue.
4740     if (LU.Formulae.size() < 2)
4741       continue;
4742     // This is temporary solution to test performance. Float should be
4743     // replaced with round independent type (based on integers) to avoid
4744     // different results for different target builds.
4745     float FMinRegNum = LU.Formulae[0].getNumRegs();
4746     float FMinARegNum = LU.Formulae[0].getNumRegs();
4747     size_t MinIdx = 0;
4748     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4749       Formula &F = LU.Formulae[i];
4750       float FRegNum = 0;
4751       float FARegNum = 0;
4752       for (const SCEV *BaseReg : F.BaseRegs) {
4753         if (UniqRegs.count(BaseReg))
4754           continue;
4755         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4756         if (isa<SCEVAddRecExpr>(BaseReg))
4757           FARegNum +=
4758               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4759       }
4760       if (const SCEV *ScaledReg = F.ScaledReg) {
4761         if (!UniqRegs.count(ScaledReg)) {
4762           FRegNum +=
4763               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4764           if (isa<SCEVAddRecExpr>(ScaledReg))
4765             FARegNum +=
4766                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4767         }
4768       }
4769       if (FMinRegNum > FRegNum ||
4770           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4771         FMinRegNum = FRegNum;
4772         FMinARegNum = FARegNum;
4773         MinIdx = i;
4774       }
4775     }
4776     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4777                dbgs() << " with min reg num " << FMinRegNum << '\n');
4778     if (MinIdx != 0)
4779       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4780     while (LU.Formulae.size() != 1) {
4781       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4782                  dbgs() << '\n');
4783       LU.Formulae.pop_back();
4784     }
4785     LU.RecomputeRegs(LUIdx, RegUses);
4786     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4787     Formula &F = LU.Formulae[0];
4788     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4789     // When we choose the formula, the regs become unique.
4790     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4791     if (F.ScaledReg)
4792       UniqRegs.insert(F.ScaledReg);
4793   }
4794   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4795 }
4796 
4797 /// Pick a register which seems likely to be profitable, and then in any use
4798 /// which has any reference to that register, delete all formulae which do not
4799 /// reference that register.
4800 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4801   // With all other options exhausted, loop until the system is simple
4802   // enough to handle.
4803   SmallPtrSet<const SCEV *, 4> Taken;
4804   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4805     // Ok, we have too many of formulae on our hands to conveniently handle.
4806     // Use a rough heuristic to thin out the list.
4807     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4808 
4809     // Pick the register which is used by the most LSRUses, which is likely
4810     // to be a good reuse register candidate.
4811     const SCEV *Best = nullptr;
4812     unsigned BestNum = 0;
4813     for (const SCEV *Reg : RegUses) {
4814       if (Taken.count(Reg))
4815         continue;
4816       if (!Best) {
4817         Best = Reg;
4818         BestNum = RegUses.getUsedByIndices(Reg).count();
4819       } else {
4820         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4821         if (Count > BestNum) {
4822           Best = Reg;
4823           BestNum = Count;
4824         }
4825       }
4826     }
4827 
4828     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4829                       << " will yield profitable reuse.\n");
4830     Taken.insert(Best);
4831 
4832     // In any use with formulae which references this register, delete formulae
4833     // which don't reference it.
4834     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4835       LSRUse &LU = Uses[LUIdx];
4836       if (!LU.Regs.count(Best)) continue;
4837 
4838       bool Any = false;
4839       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4840         Formula &F = LU.Formulae[i];
4841         if (!F.referencesReg(Best)) {
4842           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4843           LU.DeleteFormula(F);
4844           --e;
4845           --i;
4846           Any = true;
4847           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4848           continue;
4849         }
4850       }
4851 
4852       if (Any)
4853         LU.RecomputeRegs(LUIdx, RegUses);
4854     }
4855 
4856     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4857   }
4858 }
4859 
4860 /// If there are an extraordinary number of formulae to choose from, use some
4861 /// rough heuristics to prune down the number of formulae. This keeps the main
4862 /// solver from taking an extraordinary amount of time in some worst-case
4863 /// scenarios.
4864 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4865   NarrowSearchSpaceByDetectingSupersets();
4866   NarrowSearchSpaceByCollapsingUnrolledCode();
4867   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4868   if (FilterSameScaledReg)
4869     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4870   if (LSRExpNarrow)
4871     NarrowSearchSpaceByDeletingCostlyFormulas();
4872   else
4873     NarrowSearchSpaceByPickingWinnerRegs();
4874 }
4875 
4876 /// This is the recursive solver.
4877 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4878                                Cost &SolutionCost,
4879                                SmallVectorImpl<const Formula *> &Workspace,
4880                                const Cost &CurCost,
4881                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4882                                DenseSet<const SCEV *> &VisitedRegs) const {
4883   // Some ideas:
4884   //  - prune more:
4885   //    - use more aggressive filtering
4886   //    - sort the formula so that the most profitable solutions are found first
4887   //    - sort the uses too
4888   //  - search faster:
4889   //    - don't compute a cost, and then compare. compare while computing a cost
4890   //      and bail early.
4891   //    - track register sets with SmallBitVector
4892 
4893   const LSRUse &LU = Uses[Workspace.size()];
4894 
4895   // If this use references any register that's already a part of the
4896   // in-progress solution, consider it a requirement that a formula must
4897   // reference that register in order to be considered. This prunes out
4898   // unprofitable searching.
4899   SmallSetVector<const SCEV *, 4> ReqRegs;
4900   for (const SCEV *S : CurRegs)
4901     if (LU.Regs.count(S))
4902       ReqRegs.insert(S);
4903 
4904   SmallPtrSet<const SCEV *, 16> NewRegs;
4905   Cost NewCost(L, SE, TTI);
4906   for (const Formula &F : LU.Formulae) {
4907     // Ignore formulae which may not be ideal in terms of register reuse of
4908     // ReqRegs.  The formula should use all required registers before
4909     // introducing new ones.
4910     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4911     for (const SCEV *Reg : ReqRegs) {
4912       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4913           is_contained(F.BaseRegs, Reg)) {
4914         --NumReqRegsToFind;
4915         if (NumReqRegsToFind == 0)
4916           break;
4917       }
4918     }
4919     if (NumReqRegsToFind != 0) {
4920       // If none of the formulae satisfied the required registers, then we could
4921       // clear ReqRegs and try again. Currently, we simply give up in this case.
4922       continue;
4923     }
4924 
4925     // Evaluate the cost of the current formula. If it's already worse than
4926     // the current best, prune the search at that point.
4927     NewCost = CurCost;
4928     NewRegs = CurRegs;
4929     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4930     if (NewCost.isLess(SolutionCost)) {
4931       Workspace.push_back(&F);
4932       if (Workspace.size() != Uses.size()) {
4933         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4934                      NewRegs, VisitedRegs);
4935         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4936           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4937       } else {
4938         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4939                    dbgs() << ".\nRegs:\n";
4940                    for (const SCEV *S : NewRegs) dbgs()
4941                       << "- " << *S << "\n";
4942                    dbgs() << '\n');
4943 
4944         SolutionCost = NewCost;
4945         Solution = Workspace;
4946       }
4947       Workspace.pop_back();
4948     }
4949   }
4950 }
4951 
4952 /// Choose one formula from each use. Return the results in the given Solution
4953 /// vector.
4954 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4955   SmallVector<const Formula *, 8> Workspace;
4956   Cost SolutionCost(L, SE, TTI);
4957   SolutionCost.Lose();
4958   Cost CurCost(L, SE, TTI);
4959   SmallPtrSet<const SCEV *, 16> CurRegs;
4960   DenseSet<const SCEV *> VisitedRegs;
4961   Workspace.reserve(Uses.size());
4962 
4963   // SolveRecurse does all the work.
4964   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4965                CurRegs, VisitedRegs);
4966   if (Solution.empty()) {
4967     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4968     return;
4969   }
4970 
4971   // Ok, we've now made all our decisions.
4972   LLVM_DEBUG(dbgs() << "\n"
4973                        "The chosen solution requires ";
4974              SolutionCost.print(dbgs()); dbgs() << ":\n";
4975              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4976                dbgs() << "  ";
4977                Uses[i].print(dbgs());
4978                dbgs() << "\n"
4979                          "    ";
4980                Solution[i]->print(dbgs());
4981                dbgs() << '\n';
4982              });
4983 
4984   assert(Solution.size() == Uses.size() && "Malformed solution!");
4985 }
4986 
4987 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4988 /// we can go while still being dominated by the input positions. This helps
4989 /// canonicalize the insert position, which encourages sharing.
4990 BasicBlock::iterator
4991 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4992                                  const SmallVectorImpl<Instruction *> &Inputs)
4993                                                                          const {
4994   Instruction *Tentative = &*IP;
4995   while (true) {
4996     bool AllDominate = true;
4997     Instruction *BetterPos = nullptr;
4998     // Don't bother attempting to insert before a catchswitch, their basic block
4999     // cannot have other non-PHI instructions.
5000     if (isa<CatchSwitchInst>(Tentative))
5001       return IP;
5002 
5003     for (Instruction *Inst : Inputs) {
5004       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5005         AllDominate = false;
5006         break;
5007       }
5008       // Attempt to find an insert position in the middle of the block,
5009       // instead of at the end, so that it can be used for other expansions.
5010       if (Tentative->getParent() == Inst->getParent() &&
5011           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5012         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5013     }
5014     if (!AllDominate)
5015       break;
5016     if (BetterPos)
5017       IP = BetterPos->getIterator();
5018     else
5019       IP = Tentative->getIterator();
5020 
5021     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5022     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5023 
5024     BasicBlock *IDom;
5025     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5026       if (!Rung) return IP;
5027       Rung = Rung->getIDom();
5028       if (!Rung) return IP;
5029       IDom = Rung->getBlock();
5030 
5031       // Don't climb into a loop though.
5032       const Loop *IDomLoop = LI.getLoopFor(IDom);
5033       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5034       if (IDomDepth <= IPLoopDepth &&
5035           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5036         break;
5037     }
5038 
5039     Tentative = IDom->getTerminator();
5040   }
5041 
5042   return IP;
5043 }
5044 
5045 /// Determine an input position which will be dominated by the operands and
5046 /// which will dominate the result.
5047 BasicBlock::iterator
5048 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5049                                            const LSRFixup &LF,
5050                                            const LSRUse &LU,
5051                                            SCEVExpander &Rewriter) const {
5052   // Collect some instructions which must be dominated by the
5053   // expanding replacement. These must be dominated by any operands that
5054   // will be required in the expansion.
5055   SmallVector<Instruction *, 4> Inputs;
5056   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5057     Inputs.push_back(I);
5058   if (LU.Kind == LSRUse::ICmpZero)
5059     if (Instruction *I =
5060           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5061       Inputs.push_back(I);
5062   if (LF.PostIncLoops.count(L)) {
5063     if (LF.isUseFullyOutsideLoop(L))
5064       Inputs.push_back(L->getLoopLatch()->getTerminator());
5065     else
5066       Inputs.push_back(IVIncInsertPos);
5067   }
5068   // The expansion must also be dominated by the increment positions of any
5069   // loops it for which it is using post-inc mode.
5070   for (const Loop *PIL : LF.PostIncLoops) {
5071     if (PIL == L) continue;
5072 
5073     // Be dominated by the loop exit.
5074     SmallVector<BasicBlock *, 4> ExitingBlocks;
5075     PIL->getExitingBlocks(ExitingBlocks);
5076     if (!ExitingBlocks.empty()) {
5077       BasicBlock *BB = ExitingBlocks[0];
5078       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5079         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5080       Inputs.push_back(BB->getTerminator());
5081     }
5082   }
5083 
5084   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5085          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5086          "Insertion point must be a normal instruction");
5087 
5088   // Then, climb up the immediate dominator tree as far as we can go while
5089   // still being dominated by the input positions.
5090   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5091 
5092   // Don't insert instructions before PHI nodes.
5093   while (isa<PHINode>(IP)) ++IP;
5094 
5095   // Ignore landingpad instructions.
5096   while (IP->isEHPad()) ++IP;
5097 
5098   // Ignore debug intrinsics.
5099   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5100 
5101   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5102   // IP consistent across expansions and allows the previously inserted
5103   // instructions to be reused by subsequent expansion.
5104   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5105     ++IP;
5106 
5107   return IP;
5108 }
5109 
5110 /// Emit instructions for the leading candidate expression for this LSRUse (this
5111 /// is called "expanding").
5112 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5113                            const Formula &F, BasicBlock::iterator IP,
5114                            SCEVExpander &Rewriter,
5115                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5116   if (LU.RigidFormula)
5117     return LF.OperandValToReplace;
5118 
5119   // Determine an input position which will be dominated by the operands and
5120   // which will dominate the result.
5121   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5122   Rewriter.setInsertPoint(&*IP);
5123 
5124   // Inform the Rewriter if we have a post-increment use, so that it can
5125   // perform an advantageous expansion.
5126   Rewriter.setPostInc(LF.PostIncLoops);
5127 
5128   // This is the type that the user actually needs.
5129   Type *OpTy = LF.OperandValToReplace->getType();
5130   // This will be the type that we'll initially expand to.
5131   Type *Ty = F.getType();
5132   if (!Ty)
5133     // No type known; just expand directly to the ultimate type.
5134     Ty = OpTy;
5135   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5136     // Expand directly to the ultimate type if it's the right size.
5137     Ty = OpTy;
5138   // This is the type to do integer arithmetic in.
5139   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5140 
5141   // Build up a list of operands to add together to form the full base.
5142   SmallVector<const SCEV *, 8> Ops;
5143 
5144   // Expand the BaseRegs portion.
5145   for (const SCEV *Reg : F.BaseRegs) {
5146     assert(!Reg->isZero() && "Zero allocated in a base register!");
5147 
5148     // If we're expanding for a post-inc user, make the post-inc adjustment.
5149     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5150     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5151   }
5152 
5153   // Expand the ScaledReg portion.
5154   Value *ICmpScaledV = nullptr;
5155   if (F.Scale != 0) {
5156     const SCEV *ScaledS = F.ScaledReg;
5157 
5158     // If we're expanding for a post-inc user, make the post-inc adjustment.
5159     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5160     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5161 
5162     if (LU.Kind == LSRUse::ICmpZero) {
5163       // Expand ScaleReg as if it was part of the base regs.
5164       if (F.Scale == 1)
5165         Ops.push_back(
5166             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5167       else {
5168         // An interesting way of "folding" with an icmp is to use a negated
5169         // scale, which we'll implement by inserting it into the other operand
5170         // of the icmp.
5171         assert(F.Scale == -1 &&
5172                "The only scale supported by ICmpZero uses is -1!");
5173         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5174       }
5175     } else {
5176       // Otherwise just expand the scaled register and an explicit scale,
5177       // which is expected to be matched as part of the address.
5178 
5179       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5180       // Unless the addressing mode will not be folded.
5181       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5182           isAMCompletelyFolded(TTI, LU, F)) {
5183         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5184         Ops.clear();
5185         Ops.push_back(SE.getUnknown(FullV));
5186       }
5187       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5188       if (F.Scale != 1)
5189         ScaledS =
5190             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5191       Ops.push_back(ScaledS);
5192     }
5193   }
5194 
5195   // Expand the GV portion.
5196   if (F.BaseGV) {
5197     // Flush the operand list to suppress SCEVExpander hoisting.
5198     if (!Ops.empty()) {
5199       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5200       Ops.clear();
5201       Ops.push_back(SE.getUnknown(FullV));
5202     }
5203     Ops.push_back(SE.getUnknown(F.BaseGV));
5204   }
5205 
5206   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5207   // unfolded offsets. LSR assumes they both live next to their uses.
5208   if (!Ops.empty()) {
5209     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5210     Ops.clear();
5211     Ops.push_back(SE.getUnknown(FullV));
5212   }
5213 
5214   // Expand the immediate portion.
5215   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5216   if (Offset != 0) {
5217     if (LU.Kind == LSRUse::ICmpZero) {
5218       // The other interesting way of "folding" with an ICmpZero is to use a
5219       // negated immediate.
5220       if (!ICmpScaledV)
5221         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5222       else {
5223         Ops.push_back(SE.getUnknown(ICmpScaledV));
5224         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5225       }
5226     } else {
5227       // Just add the immediate values. These again are expected to be matched
5228       // as part of the address.
5229       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5230     }
5231   }
5232 
5233   // Expand the unfolded offset portion.
5234   int64_t UnfoldedOffset = F.UnfoldedOffset;
5235   if (UnfoldedOffset != 0) {
5236     // Just add the immediate values.
5237     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5238                                                        UnfoldedOffset)));
5239   }
5240 
5241   // Emit instructions summing all the operands.
5242   const SCEV *FullS = Ops.empty() ?
5243                       SE.getConstant(IntTy, 0) :
5244                       SE.getAddExpr(Ops);
5245   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5246 
5247   // We're done expanding now, so reset the rewriter.
5248   Rewriter.clearPostInc();
5249 
5250   // An ICmpZero Formula represents an ICmp which we're handling as a
5251   // comparison against zero. Now that we've expanded an expression for that
5252   // form, update the ICmp's other operand.
5253   if (LU.Kind == LSRUse::ICmpZero) {
5254     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5255     DeadInsts.emplace_back(CI->getOperand(1));
5256     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5257                            "a scale at the same time!");
5258     if (F.Scale == -1) {
5259       if (ICmpScaledV->getType() != OpTy) {
5260         Instruction *Cast =
5261           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5262                                                    OpTy, false),
5263                            ICmpScaledV, OpTy, "tmp", CI);
5264         ICmpScaledV = Cast;
5265       }
5266       CI->setOperand(1, ICmpScaledV);
5267     } else {
5268       // A scale of 1 means that the scale has been expanded as part of the
5269       // base regs.
5270       assert((F.Scale == 0 || F.Scale == 1) &&
5271              "ICmp does not support folding a global value and "
5272              "a scale at the same time!");
5273       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5274                                            -(uint64_t)Offset);
5275       if (C->getType() != OpTy)
5276         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5277                                                           OpTy, false),
5278                                   C, OpTy);
5279 
5280       CI->setOperand(1, C);
5281     }
5282   }
5283 
5284   return FullV;
5285 }
5286 
5287 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5288 /// effectively happens in their predecessor blocks, so the expression may need
5289 /// to be expanded in multiple places.
5290 void LSRInstance::RewriteForPHI(
5291     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5292     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5293   DenseMap<BasicBlock *, Value *> Inserted;
5294   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5295     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5296       bool needUpdateFixups = false;
5297       BasicBlock *BB = PN->getIncomingBlock(i);
5298 
5299       // If this is a critical edge, split the edge so that we do not insert
5300       // the code on all predecessor/successor paths.  We do this unless this
5301       // is the canonical backedge for this loop, which complicates post-inc
5302       // users.
5303       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5304           !isa<IndirectBrInst>(BB->getTerminator()) &&
5305           !isa<CatchSwitchInst>(BB->getTerminator())) {
5306         BasicBlock *Parent = PN->getParent();
5307         Loop *PNLoop = LI.getLoopFor(Parent);
5308         if (!PNLoop || Parent != PNLoop->getHeader()) {
5309           // Split the critical edge.
5310           BasicBlock *NewBB = nullptr;
5311           if (!Parent->isLandingPad()) {
5312             NewBB = SplitCriticalEdge(BB, Parent,
5313                                       CriticalEdgeSplittingOptions(&DT, &LI)
5314                                           .setMergeIdenticalEdges()
5315                                           .setKeepOneInputPHIs());
5316           } else {
5317             SmallVector<BasicBlock*, 2> NewBBs;
5318             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5319             NewBB = NewBBs[0];
5320           }
5321           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5322           // phi predecessors are identical. The simple thing to do is skip
5323           // splitting in this case rather than complicate the API.
5324           if (NewBB) {
5325             // If PN is outside of the loop and BB is in the loop, we want to
5326             // move the block to be immediately before the PHI block, not
5327             // immediately after BB.
5328             if (L->contains(BB) && !L->contains(PN))
5329               NewBB->moveBefore(PN->getParent());
5330 
5331             // Splitting the edge can reduce the number of PHI entries we have.
5332             e = PN->getNumIncomingValues();
5333             BB = NewBB;
5334             i = PN->getBasicBlockIndex(BB);
5335 
5336             needUpdateFixups = true;
5337           }
5338         }
5339       }
5340 
5341       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5342         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5343       if (!Pair.second)
5344         PN->setIncomingValue(i, Pair.first->second);
5345       else {
5346         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5347                               Rewriter, DeadInsts);
5348 
5349         // If this is reuse-by-noop-cast, insert the noop cast.
5350         Type *OpTy = LF.OperandValToReplace->getType();
5351         if (FullV->getType() != OpTy)
5352           FullV =
5353             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5354                                                      OpTy, false),
5355                              FullV, LF.OperandValToReplace->getType(),
5356                              "tmp", BB->getTerminator());
5357 
5358         PN->setIncomingValue(i, FullV);
5359         Pair.first->second = FullV;
5360       }
5361 
5362       // If LSR splits critical edge and phi node has other pending
5363       // fixup operands, we need to update those pending fixups. Otherwise
5364       // formulae will not be implemented completely and some instructions
5365       // will not be eliminated.
5366       if (needUpdateFixups) {
5367         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5368           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5369             // If fixup is supposed to rewrite some operand in the phi
5370             // that was just updated, it may be already moved to
5371             // another phi node. Such fixup requires update.
5372             if (Fixup.UserInst == PN) {
5373               // Check if the operand we try to replace still exists in the
5374               // original phi.
5375               bool foundInOriginalPHI = false;
5376               for (const auto &val : PN->incoming_values())
5377                 if (val == Fixup.OperandValToReplace) {
5378                   foundInOriginalPHI = true;
5379                   break;
5380                 }
5381 
5382               // If fixup operand found in original PHI - nothing to do.
5383               if (foundInOriginalPHI)
5384                 continue;
5385 
5386               // Otherwise it might be moved to another PHI and requires update.
5387               // If fixup operand not found in any of the incoming blocks that
5388               // means we have already rewritten it - nothing to do.
5389               for (const auto &Block : PN->blocks())
5390                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5391                      ++I) {
5392                   PHINode *NewPN = cast<PHINode>(I);
5393                   for (const auto &val : NewPN->incoming_values())
5394                     if (val == Fixup.OperandValToReplace)
5395                       Fixup.UserInst = NewPN;
5396                 }
5397             }
5398       }
5399     }
5400 }
5401 
5402 /// Emit instructions for the leading candidate expression for this LSRUse (this
5403 /// is called "expanding"), and update the UserInst to reference the newly
5404 /// expanded value.
5405 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5406                           const Formula &F, SCEVExpander &Rewriter,
5407                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5408   // First, find an insertion point that dominates UserInst. For PHI nodes,
5409   // find the nearest block which dominates all the relevant uses.
5410   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5411     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5412   } else {
5413     Value *FullV =
5414       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5415 
5416     // If this is reuse-by-noop-cast, insert the noop cast.
5417     Type *OpTy = LF.OperandValToReplace->getType();
5418     if (FullV->getType() != OpTy) {
5419       Instruction *Cast =
5420         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5421                          FullV, OpTy, "tmp", LF.UserInst);
5422       FullV = Cast;
5423     }
5424 
5425     // Update the user. ICmpZero is handled specially here (for now) because
5426     // Expand may have updated one of the operands of the icmp already, and
5427     // its new value may happen to be equal to LF.OperandValToReplace, in
5428     // which case doing replaceUsesOfWith leads to replacing both operands
5429     // with the same value. TODO: Reorganize this.
5430     if (LU.Kind == LSRUse::ICmpZero)
5431       LF.UserInst->setOperand(0, FullV);
5432     else
5433       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5434   }
5435 
5436   DeadInsts.emplace_back(LF.OperandValToReplace);
5437 }
5438 
5439 /// Rewrite all the fixup locations with new values, following the chosen
5440 /// solution.
5441 void LSRInstance::ImplementSolution(
5442     const SmallVectorImpl<const Formula *> &Solution) {
5443   // Keep track of instructions we may have made dead, so that
5444   // we can remove them after we are done working.
5445   SmallVector<WeakTrackingVH, 16> DeadInsts;
5446 
5447   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5448                         "lsr");
5449 #ifndef NDEBUG
5450   Rewriter.setDebugType(DEBUG_TYPE);
5451 #endif
5452   Rewriter.disableCanonicalMode();
5453   Rewriter.enableLSRMode();
5454   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5455 
5456   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5457   for (const IVChain &Chain : IVChainVec) {
5458     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5459       Rewriter.setChainedPhi(PN);
5460   }
5461 
5462   // Expand the new value definitions and update the users.
5463   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5464     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5465       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5466       Changed = true;
5467     }
5468 
5469   for (const IVChain &Chain : IVChainVec) {
5470     GenerateIVChain(Chain, Rewriter, DeadInsts);
5471     Changed = true;
5472   }
5473   // Clean up after ourselves. This must be done before deleting any
5474   // instructions.
5475   Rewriter.clear();
5476 
5477   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5478 }
5479 
5480 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5481                          DominatorTree &DT, LoopInfo &LI,
5482                          const TargetTransformInfo &TTI)
5483     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L),
5484       FavorBackedgeIndex(EnableBackedgeIndexing &&
5485                          TTI.shouldFavorBackedgeIndex(L)) {
5486   // If LoopSimplify form is not available, stay out of trouble.
5487   if (!L->isLoopSimplifyForm())
5488     return;
5489 
5490   // If there's no interesting work to be done, bail early.
5491   if (IU.empty()) return;
5492 
5493   // If there's too much analysis to be done, bail early. We won't be able to
5494   // model the problem anyway.
5495   unsigned NumUsers = 0;
5496   for (const IVStrideUse &U : IU) {
5497     if (++NumUsers > MaxIVUsers) {
5498       (void)U;
5499       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5500                         << "\n");
5501       return;
5502     }
5503     // Bail out if we have a PHI on an EHPad that gets a value from a
5504     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5505     // no good place to stick any instructions.
5506     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5507        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5508        if (isa<FuncletPadInst>(FirstNonPHI) ||
5509            isa<CatchSwitchInst>(FirstNonPHI))
5510          for (BasicBlock *PredBB : PN->blocks())
5511            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5512              return;
5513     }
5514   }
5515 
5516 #ifndef NDEBUG
5517   // All dominating loops must have preheaders, or SCEVExpander may not be able
5518   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5519   //
5520   // IVUsers analysis should only create users that are dominated by simple loop
5521   // headers. Since this loop should dominate all of its users, its user list
5522   // should be empty if this loop itself is not within a simple loop nest.
5523   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5524        Rung; Rung = Rung->getIDom()) {
5525     BasicBlock *BB = Rung->getBlock();
5526     const Loop *DomLoop = LI.getLoopFor(BB);
5527     if (DomLoop && DomLoop->getHeader() == BB) {
5528       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5529     }
5530   }
5531 #endif // DEBUG
5532 
5533   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5534              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5535              dbgs() << ":\n");
5536 
5537   // First, perform some low-level loop optimizations.
5538   OptimizeShadowIV();
5539   OptimizeLoopTermCond();
5540 
5541   // If loop preparation eliminates all interesting IV users, bail.
5542   if (IU.empty()) return;
5543 
5544   // Skip nested loops until we can model them better with formulae.
5545   if (!L->empty()) {
5546     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5547     return;
5548   }
5549 
5550   // Start collecting data and preparing for the solver.
5551   CollectChains();
5552   CollectInterestingTypesAndFactors();
5553   CollectFixupsAndInitialFormulae();
5554   CollectLoopInvariantFixupsAndFormulae();
5555 
5556   if (Uses.empty())
5557     return;
5558 
5559   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5560              print_uses(dbgs()));
5561 
5562   // Now use the reuse data to generate a bunch of interesting ways
5563   // to formulate the values needed for the uses.
5564   GenerateAllReuseFormulae();
5565 
5566   FilterOutUndesirableDedicatedRegisters();
5567   NarrowSearchSpaceUsingHeuristics();
5568 
5569   SmallVector<const Formula *, 8> Solution;
5570   Solve(Solution);
5571 
5572   // Release memory that is no longer needed.
5573   Factors.clear();
5574   Types.clear();
5575   RegUses.clear();
5576 
5577   if (Solution.empty())
5578     return;
5579 
5580 #ifndef NDEBUG
5581   // Formulae should be legal.
5582   for (const LSRUse &LU : Uses) {
5583     for (const Formula &F : LU.Formulae)
5584       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5585                         F) && "Illegal formula generated!");
5586   };
5587 #endif
5588 
5589   // Now that we've decided what we want, make it so.
5590   ImplementSolution(Solution);
5591 }
5592 
5593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5594 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5595   if (Factors.empty() && Types.empty()) return;
5596 
5597   OS << "LSR has identified the following interesting factors and types: ";
5598   bool First = true;
5599 
5600   for (int64_t Factor : Factors) {
5601     if (!First) OS << ", ";
5602     First = false;
5603     OS << '*' << Factor;
5604   }
5605 
5606   for (Type *Ty : Types) {
5607     if (!First) OS << ", ";
5608     First = false;
5609     OS << '(' << *Ty << ')';
5610   }
5611   OS << '\n';
5612 }
5613 
5614 void LSRInstance::print_fixups(raw_ostream &OS) const {
5615   OS << "LSR is examining the following fixup sites:\n";
5616   for (const LSRUse &LU : Uses)
5617     for (const LSRFixup &LF : LU.Fixups) {
5618       dbgs() << "  ";
5619       LF.print(OS);
5620       OS << '\n';
5621     }
5622 }
5623 
5624 void LSRInstance::print_uses(raw_ostream &OS) const {
5625   OS << "LSR is examining the following uses:\n";
5626   for (const LSRUse &LU : Uses) {
5627     dbgs() << "  ";
5628     LU.print(OS);
5629     OS << '\n';
5630     for (const Formula &F : LU.Formulae) {
5631       OS << "    ";
5632       F.print(OS);
5633       OS << '\n';
5634     }
5635   }
5636 }
5637 
5638 void LSRInstance::print(raw_ostream &OS) const {
5639   print_factors_and_types(OS);
5640   print_fixups(OS);
5641   print_uses(OS);
5642 }
5643 
5644 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5645   print(errs()); errs() << '\n';
5646 }
5647 #endif
5648 
5649 namespace {
5650 
5651 class LoopStrengthReduce : public LoopPass {
5652 public:
5653   static char ID; // Pass ID, replacement for typeid
5654 
5655   LoopStrengthReduce();
5656 
5657 private:
5658   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5659   void getAnalysisUsage(AnalysisUsage &AU) const override;
5660 };
5661 
5662 } // end anonymous namespace
5663 
5664 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5665   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5666 }
5667 
5668 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5669   // We split critical edges, so we change the CFG.  However, we do update
5670   // many analyses if they are around.
5671   AU.addPreservedID(LoopSimplifyID);
5672 
5673   AU.addRequired<LoopInfoWrapperPass>();
5674   AU.addPreserved<LoopInfoWrapperPass>();
5675   AU.addRequiredID(LoopSimplifyID);
5676   AU.addRequired<DominatorTreeWrapperPass>();
5677   AU.addPreserved<DominatorTreeWrapperPass>();
5678   AU.addRequired<ScalarEvolutionWrapperPass>();
5679   AU.addPreserved<ScalarEvolutionWrapperPass>();
5680   // Requiring LoopSimplify a second time here prevents IVUsers from running
5681   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5682   AU.addRequiredID(LoopSimplifyID);
5683   AU.addRequired<IVUsersWrapperPass>();
5684   AU.addPreserved<IVUsersWrapperPass>();
5685   AU.addRequired<TargetTransformInfoWrapperPass>();
5686 }
5687 
5688 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5689                                DominatorTree &DT, LoopInfo &LI,
5690                                const TargetTransformInfo &TTI) {
5691   bool Changed = false;
5692 
5693   // Run the main LSR transformation.
5694   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5695 
5696   // Remove any extra phis created by processing inner loops.
5697   Changed |= DeleteDeadPHIs(L->getHeader());
5698   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5699     SmallVector<WeakTrackingVH, 16> DeadInsts;
5700     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5701     SCEVExpander Rewriter(SE, DL, "lsr");
5702 #ifndef NDEBUG
5703     Rewriter.setDebugType(DEBUG_TYPE);
5704 #endif
5705     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5706     if (numFolded) {
5707       Changed = true;
5708       DeleteTriviallyDeadInstructions(DeadInsts);
5709       DeleteDeadPHIs(L->getHeader());
5710     }
5711   }
5712   return Changed;
5713 }
5714 
5715 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5716   if (skipLoop(L))
5717     return false;
5718 
5719   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5720   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5721   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5722   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5723   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5724       *L->getHeader()->getParent());
5725   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5726 }
5727 
5728 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5729                                               LoopStandardAnalysisResults &AR,
5730                                               LPMUpdater &) {
5731   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5732                           AR.DT, AR.LI, AR.TTI))
5733     return PreservedAnalyses::all();
5734 
5735   return getLoopPassPreservedAnalyses();
5736 }
5737 
5738 char LoopStrengthReduce::ID = 0;
5739 
5740 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5741                       "Loop Strength Reduction", false, false)
5742 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5743 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5744 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5745 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5746 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5747 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5748 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5749                     "Loop Strength Reduction", false, false)
5750 
5751 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5752