1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <map> 120 #include <utility> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "loop-reduce" 125 126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 127 /// bail out. This threshold is far beyond the number of users that LSR can 128 /// conceivably solve, so it should not affect generated code, but catches the 129 /// worst cases before LSR burns too much compile time and stack space. 130 static const unsigned MaxIVUsers = 200; 131 132 // Temporary flag to cleanup congruent phis after LSR phi expansion. 133 // It's currently disabled until we can determine whether it's truly useful or 134 // not. The flag should be removed after the v3.0 release. 135 // This is now needed for ivchains. 136 static cl::opt<bool> EnablePhiElim( 137 "enable-lsr-phielim", cl::Hidden, cl::init(true), 138 cl::desc("Enable LSR phi elimination")); 139 140 // The flag adds instruction count to solutions cost comparision. 141 static cl::opt<bool> InsnsCost( 142 "lsr-insns-cost", cl::Hidden, cl::init(true), 143 cl::desc("Add instruction count to a LSR cost model")); 144 145 // Flag to choose how to narrow complex lsr solution 146 static cl::opt<bool> LSRExpNarrow( 147 "lsr-exp-narrow", cl::Hidden, cl::init(false), 148 cl::desc("Narrow LSR complex solution using" 149 " expectation of registers number")); 150 151 // Flag to narrow search space by filtering non-optimal formulae with 152 // the same ScaledReg and Scale. 153 static cl::opt<bool> FilterSameScaledReg( 154 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 155 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 156 " with the same ScaledReg and Scale")); 157 158 static cl::opt<bool> EnableBackedgeIndexing( 159 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 160 cl::desc("Enable the generation of cross iteration indexed memops")); 161 162 static cl::opt<unsigned> ComplexityLimit( 163 "lsr-complexity-limit", cl::Hidden, 164 cl::init(std::numeric_limits<uint16_t>::max()), 165 cl::desc("LSR search space complexity limit")); 166 167 static cl::opt<unsigned> SetupCostDepthLimit( 168 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 169 cl::desc("The limit on recursion depth for LSRs setup cost")); 170 171 #ifndef NDEBUG 172 // Stress test IV chain generation. 173 static cl::opt<bool> StressIVChain( 174 "stress-ivchain", cl::Hidden, cl::init(false), 175 cl::desc("Stress test LSR IV chains")); 176 #else 177 static bool StressIVChain = false; 178 #endif 179 180 namespace { 181 182 struct MemAccessTy { 183 /// Used in situations where the accessed memory type is unknown. 184 static const unsigned UnknownAddressSpace = 185 std::numeric_limits<unsigned>::max(); 186 187 Type *MemTy = nullptr; 188 unsigned AddrSpace = UnknownAddressSpace; 189 190 MemAccessTy() = default; 191 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 192 193 bool operator==(MemAccessTy Other) const { 194 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 195 } 196 197 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 198 199 static MemAccessTy getUnknown(LLVMContext &Ctx, 200 unsigned AS = UnknownAddressSpace) { 201 return MemAccessTy(Type::getVoidTy(Ctx), AS); 202 } 203 204 Type *getType() { return MemTy; } 205 }; 206 207 /// This class holds data which is used to order reuse candidates. 208 class RegSortData { 209 public: 210 /// This represents the set of LSRUse indices which reference 211 /// a particular register. 212 SmallBitVector UsedByIndices; 213 214 void print(raw_ostream &OS) const; 215 void dump() const; 216 }; 217 218 } // end anonymous namespace 219 220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 221 void RegSortData::print(raw_ostream &OS) const { 222 OS << "[NumUses=" << UsedByIndices.count() << ']'; 223 } 224 225 LLVM_DUMP_METHOD void RegSortData::dump() const { 226 print(errs()); errs() << '\n'; 227 } 228 #endif 229 230 namespace { 231 232 /// Map register candidates to information about how they are used. 233 class RegUseTracker { 234 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 235 236 RegUsesTy RegUsesMap; 237 SmallVector<const SCEV *, 16> RegSequence; 238 239 public: 240 void countRegister(const SCEV *Reg, size_t LUIdx); 241 void dropRegister(const SCEV *Reg, size_t LUIdx); 242 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 243 244 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 245 246 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 247 248 void clear(); 249 250 using iterator = SmallVectorImpl<const SCEV *>::iterator; 251 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 252 253 iterator begin() { return RegSequence.begin(); } 254 iterator end() { return RegSequence.end(); } 255 const_iterator begin() const { return RegSequence.begin(); } 256 const_iterator end() const { return RegSequence.end(); } 257 }; 258 259 } // end anonymous namespace 260 261 void 262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 263 std::pair<RegUsesTy::iterator, bool> Pair = 264 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 265 RegSortData &RSD = Pair.first->second; 266 if (Pair.second) 267 RegSequence.push_back(Reg); 268 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 269 RSD.UsedByIndices.set(LUIdx); 270 } 271 272 void 273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 274 RegUsesTy::iterator It = RegUsesMap.find(Reg); 275 assert(It != RegUsesMap.end()); 276 RegSortData &RSD = It->second; 277 assert(RSD.UsedByIndices.size() > LUIdx); 278 RSD.UsedByIndices.reset(LUIdx); 279 } 280 281 void 282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 283 assert(LUIdx <= LastLUIdx); 284 285 // Update RegUses. The data structure is not optimized for this purpose; 286 // we must iterate through it and update each of the bit vectors. 287 for (auto &Pair : RegUsesMap) { 288 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 289 if (LUIdx < UsedByIndices.size()) 290 UsedByIndices[LUIdx] = 291 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 292 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 293 } 294 } 295 296 bool 297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 298 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 299 if (I == RegUsesMap.end()) 300 return false; 301 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 302 int i = UsedByIndices.find_first(); 303 if (i == -1) return false; 304 if ((size_t)i != LUIdx) return true; 305 return UsedByIndices.find_next(i) != -1; 306 } 307 308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 309 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 310 assert(I != RegUsesMap.end() && "Unknown register!"); 311 return I->second.UsedByIndices; 312 } 313 314 void RegUseTracker::clear() { 315 RegUsesMap.clear(); 316 RegSequence.clear(); 317 } 318 319 namespace { 320 321 /// This class holds information that describes a formula for computing 322 /// satisfying a use. It may include broken-out immediates and scaled registers. 323 struct Formula { 324 /// Global base address used for complex addressing. 325 GlobalValue *BaseGV = nullptr; 326 327 /// Base offset for complex addressing. 328 int64_t BaseOffset = 0; 329 330 /// Whether any complex addressing has a base register. 331 bool HasBaseReg = false; 332 333 /// The scale of any complex addressing. 334 int64_t Scale = 0; 335 336 /// The list of "base" registers for this use. When this is non-empty. The 337 /// canonical representation of a formula is 338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 340 /// 3. The reg containing recurrent expr related with currect loop in the 341 /// formula should be put in the ScaledReg. 342 /// #1 enforces that the scaled register is always used when at least two 343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 344 /// #2 enforces that 1 * reg is reg. 345 /// #3 ensures invariant regs with respect to current loop can be combined 346 /// together in LSR codegen. 347 /// This invariant can be temporarily broken while building a formula. 348 /// However, every formula inserted into the LSRInstance must be in canonical 349 /// form. 350 SmallVector<const SCEV *, 4> BaseRegs; 351 352 /// The 'scaled' register for this use. This should be non-null when Scale is 353 /// not zero. 354 const SCEV *ScaledReg = nullptr; 355 356 /// An additional constant offset which added near the use. This requires a 357 /// temporary register, but the offset itself can live in an add immediate 358 /// field rather than a register. 359 int64_t UnfoldedOffset = 0; 360 361 Formula() = default; 362 363 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 364 365 bool isCanonical(const Loop &L) const; 366 367 void canonicalize(const Loop &L); 368 369 bool unscale(); 370 371 bool hasZeroEnd() const; 372 373 size_t getNumRegs() const; 374 Type *getType() const; 375 376 void deleteBaseReg(const SCEV *&S); 377 378 bool referencesReg(const SCEV *S) const; 379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 380 const RegUseTracker &RegUses) const; 381 382 void print(raw_ostream &OS) const; 383 void dump() const; 384 }; 385 386 } // end anonymous namespace 387 388 /// Recursion helper for initialMatch. 389 static void DoInitialMatch(const SCEV *S, Loop *L, 390 SmallVectorImpl<const SCEV *> &Good, 391 SmallVectorImpl<const SCEV *> &Bad, 392 ScalarEvolution &SE) { 393 // Collect expressions which properly dominate the loop header. 394 if (SE.properlyDominates(S, L->getHeader())) { 395 Good.push_back(S); 396 return; 397 } 398 399 // Look at add operands. 400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 401 for (const SCEV *S : Add->operands()) 402 DoInitialMatch(S, L, Good, Bad, SE); 403 return; 404 } 405 406 // Look at addrec operands. 407 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 408 if (!AR->getStart()->isZero() && AR->isAffine()) { 409 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 410 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 411 AR->getStepRecurrence(SE), 412 // FIXME: AR->getNoWrapFlags() 413 AR->getLoop(), SCEV::FlagAnyWrap), 414 L, Good, Bad, SE); 415 return; 416 } 417 418 // Handle a multiplication by -1 (negation) if it didn't fold. 419 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 420 if (Mul->getOperand(0)->isAllOnesValue()) { 421 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 422 const SCEV *NewMul = SE.getMulExpr(Ops); 423 424 SmallVector<const SCEV *, 4> MyGood; 425 SmallVector<const SCEV *, 4> MyBad; 426 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 427 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 428 SE.getEffectiveSCEVType(NewMul->getType()))); 429 for (const SCEV *S : MyGood) 430 Good.push_back(SE.getMulExpr(NegOne, S)); 431 for (const SCEV *S : MyBad) 432 Bad.push_back(SE.getMulExpr(NegOne, S)); 433 return; 434 } 435 436 // Ok, we can't do anything interesting. Just stuff the whole thing into a 437 // register and hope for the best. 438 Bad.push_back(S); 439 } 440 441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 442 /// all loop-invariant and loop-computable values in a single base register. 443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 444 SmallVector<const SCEV *, 4> Good; 445 SmallVector<const SCEV *, 4> Bad; 446 DoInitialMatch(S, L, Good, Bad, SE); 447 if (!Good.empty()) { 448 const SCEV *Sum = SE.getAddExpr(Good); 449 if (!Sum->isZero()) 450 BaseRegs.push_back(Sum); 451 HasBaseReg = true; 452 } 453 if (!Bad.empty()) { 454 const SCEV *Sum = SE.getAddExpr(Bad); 455 if (!Sum->isZero()) 456 BaseRegs.push_back(Sum); 457 HasBaseReg = true; 458 } 459 canonicalize(*L); 460 } 461 462 /// Check whether or not this formula satisfies the canonical 463 /// representation. 464 /// \see Formula::BaseRegs. 465 bool Formula::isCanonical(const Loop &L) const { 466 if (!ScaledReg) 467 return BaseRegs.size() <= 1; 468 469 if (Scale != 1) 470 return true; 471 472 if (Scale == 1 && BaseRegs.empty()) 473 return false; 474 475 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 476 if (SAR && SAR->getLoop() == &L) 477 return true; 478 479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 481 // loop, we want to swap the reg in BaseRegs with ScaledReg. 482 auto I = 483 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 484 return isa<const SCEVAddRecExpr>(S) && 485 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 486 }); 487 return I == BaseRegs.end(); 488 } 489 490 /// Helper method to morph a formula into its canonical representation. 491 /// \see Formula::BaseRegs. 492 /// Every formula having more than one base register, must use the ScaledReg 493 /// field. Otherwise, we would have to do special cases everywhere in LSR 494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 495 /// On the other hand, 1*reg should be canonicalized into reg. 496 void Formula::canonicalize(const Loop &L) { 497 if (isCanonical(L)) 498 return; 499 // So far we did not need this case. This is easy to implement but it is 500 // useless to maintain dead code. Beside it could hurt compile time. 501 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 502 503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 504 if (!ScaledReg) { 505 ScaledReg = BaseRegs.back(); 506 BaseRegs.pop_back(); 507 Scale = 1; 508 } 509 510 // If ScaledReg is an invariant with respect to L, find the reg from 511 // BaseRegs containing the recurrent expr related with Loop L. Swap the 512 // reg with ScaledReg. 513 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 514 if (!SAR || SAR->getLoop() != &L) { 515 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 516 [&](const SCEV *S) { 517 return isa<const SCEVAddRecExpr>(S) && 518 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 519 }); 520 if (I != BaseRegs.end()) 521 std::swap(ScaledReg, *I); 522 } 523 } 524 525 /// Get rid of the scale in the formula. 526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 527 /// \return true if it was possible to get rid of the scale, false otherwise. 528 /// \note After this operation the formula may not be in the canonical form. 529 bool Formula::unscale() { 530 if (Scale != 1) 531 return false; 532 Scale = 0; 533 BaseRegs.push_back(ScaledReg); 534 ScaledReg = nullptr; 535 return true; 536 } 537 538 bool Formula::hasZeroEnd() const { 539 if (UnfoldedOffset || BaseOffset) 540 return false; 541 if (BaseRegs.size() != 1 || ScaledReg) 542 return false; 543 return true; 544 } 545 546 /// Return the total number of register operands used by this formula. This does 547 /// not include register uses implied by non-constant addrec strides. 548 size_t Formula::getNumRegs() const { 549 return !!ScaledReg + BaseRegs.size(); 550 } 551 552 /// Return the type of this formula, if it has one, or null otherwise. This type 553 /// is meaningless except for the bit size. 554 Type *Formula::getType() const { 555 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 556 ScaledReg ? ScaledReg->getType() : 557 BaseGV ? BaseGV->getType() : 558 nullptr; 559 } 560 561 /// Delete the given base reg from the BaseRegs list. 562 void Formula::deleteBaseReg(const SCEV *&S) { 563 if (&S != &BaseRegs.back()) 564 std::swap(S, BaseRegs.back()); 565 BaseRegs.pop_back(); 566 } 567 568 /// Test if this formula references the given register. 569 bool Formula::referencesReg(const SCEV *S) const { 570 return S == ScaledReg || is_contained(BaseRegs, S); 571 } 572 573 /// Test whether this formula uses registers which are used by uses other than 574 /// the use with the given index. 575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 576 const RegUseTracker &RegUses) const { 577 if (ScaledReg) 578 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 579 return true; 580 for (const SCEV *BaseReg : BaseRegs) 581 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 582 return true; 583 return false; 584 } 585 586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 587 void Formula::print(raw_ostream &OS) const { 588 bool First = true; 589 if (BaseGV) { 590 if (!First) OS << " + "; else First = false; 591 BaseGV->printAsOperand(OS, /*PrintType=*/false); 592 } 593 if (BaseOffset != 0) { 594 if (!First) OS << " + "; else First = false; 595 OS << BaseOffset; 596 } 597 for (const SCEV *BaseReg : BaseRegs) { 598 if (!First) OS << " + "; else First = false; 599 OS << "reg(" << *BaseReg << ')'; 600 } 601 if (HasBaseReg && BaseRegs.empty()) { 602 if (!First) OS << " + "; else First = false; 603 OS << "**error: HasBaseReg**"; 604 } else if (!HasBaseReg && !BaseRegs.empty()) { 605 if (!First) OS << " + "; else First = false; 606 OS << "**error: !HasBaseReg**"; 607 } 608 if (Scale != 0) { 609 if (!First) OS << " + "; else First = false; 610 OS << Scale << "*reg("; 611 if (ScaledReg) 612 OS << *ScaledReg; 613 else 614 OS << "<unknown>"; 615 OS << ')'; 616 } 617 if (UnfoldedOffset != 0) { 618 if (!First) OS << " + "; 619 OS << "imm(" << UnfoldedOffset << ')'; 620 } 621 } 622 623 LLVM_DUMP_METHOD void Formula::dump() const { 624 print(errs()); errs() << '\n'; 625 } 626 #endif 627 628 /// Return true if the given addrec can be sign-extended without changing its 629 /// value. 630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 631 Type *WideTy = 632 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 633 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 634 } 635 636 /// Return true if the given add can be sign-extended without changing its 637 /// value. 638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 639 Type *WideTy = 640 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 641 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 642 } 643 644 /// Return true if the given mul can be sign-extended without changing its 645 /// value. 646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 647 Type *WideTy = 648 IntegerType::get(SE.getContext(), 649 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 650 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 651 } 652 653 /// Return an expression for LHS /s RHS, if it can be determined and if the 654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 656 /// the multiplication may overflow, which is useful when the result will be 657 /// used in a context where the most significant bits are ignored. 658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 659 ScalarEvolution &SE, 660 bool IgnoreSignificantBits = false) { 661 // Handle the trivial case, which works for any SCEV type. 662 if (LHS == RHS) 663 return SE.getConstant(LHS->getType(), 1); 664 665 // Handle a few RHS special cases. 666 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 667 if (RC) { 668 const APInt &RA = RC->getAPInt(); 669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 670 // some folding. 671 if (RA.isAllOnesValue()) 672 return SE.getMulExpr(LHS, RC); 673 // Handle x /s 1 as x. 674 if (RA == 1) 675 return LHS; 676 } 677 678 // Check for a division of a constant by a constant. 679 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 680 if (!RC) 681 return nullptr; 682 const APInt &LA = C->getAPInt(); 683 const APInt &RA = RC->getAPInt(); 684 if (LA.srem(RA) != 0) 685 return nullptr; 686 return SE.getConstant(LA.sdiv(RA)); 687 } 688 689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 690 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 691 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 692 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 693 IgnoreSignificantBits); 694 if (!Step) return nullptr; 695 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 696 IgnoreSignificantBits); 697 if (!Start) return nullptr; 698 // FlagNW is independent of the start value, step direction, and is 699 // preserved with smaller magnitude steps. 700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 701 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 702 } 703 return nullptr; 704 } 705 706 // Distribute the sdiv over add operands, if the add doesn't overflow. 707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 708 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 709 SmallVector<const SCEV *, 8> Ops; 710 for (const SCEV *S : Add->operands()) { 711 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 712 if (!Op) return nullptr; 713 Ops.push_back(Op); 714 } 715 return SE.getAddExpr(Ops); 716 } 717 return nullptr; 718 } 719 720 // Check for a multiply operand that we can pull RHS out of. 721 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 722 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 723 SmallVector<const SCEV *, 4> Ops; 724 bool Found = false; 725 for (const SCEV *S : Mul->operands()) { 726 if (!Found) 727 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 728 IgnoreSignificantBits)) { 729 S = Q; 730 Found = true; 731 } 732 Ops.push_back(S); 733 } 734 return Found ? SE.getMulExpr(Ops) : nullptr; 735 } 736 return nullptr; 737 } 738 739 // Otherwise we don't know. 740 return nullptr; 741 } 742 743 /// If S involves the addition of a constant integer value, return that integer 744 /// value, and mutate S to point to a new SCEV with that value excluded. 745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 746 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 747 if (C->getAPInt().getMinSignedBits() <= 64) { 748 S = SE.getConstant(C->getType(), 0); 749 return C->getValue()->getSExtValue(); 750 } 751 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 752 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 753 int64_t Result = ExtractImmediate(NewOps.front(), SE); 754 if (Result != 0) 755 S = SE.getAddExpr(NewOps); 756 return Result; 757 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 758 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 759 int64_t Result = ExtractImmediate(NewOps.front(), SE); 760 if (Result != 0) 761 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 763 SCEV::FlagAnyWrap); 764 return Result; 765 } 766 return 0; 767 } 768 769 /// If S involves the addition of a GlobalValue address, return that symbol, and 770 /// mutate S to point to a new SCEV with that value excluded. 771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 772 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 773 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 774 S = SE.getConstant(GV->getType(), 0); 775 return GV; 776 } 777 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 778 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 779 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 780 if (Result) 781 S = SE.getAddExpr(NewOps); 782 return Result; 783 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 784 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 785 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 786 if (Result) 787 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 789 SCEV::FlagAnyWrap); 790 return Result; 791 } 792 return nullptr; 793 } 794 795 /// Returns true if the specified instruction is using the specified value as an 796 /// address. 797 static bool isAddressUse(const TargetTransformInfo &TTI, 798 Instruction *Inst, Value *OperandVal) { 799 bool isAddress = isa<LoadInst>(Inst); 800 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 801 if (SI->getPointerOperand() == OperandVal) 802 isAddress = true; 803 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 804 // Addressing modes can also be folded into prefetches and a variety 805 // of intrinsics. 806 switch (II->getIntrinsicID()) { 807 case Intrinsic::memset: 808 case Intrinsic::prefetch: 809 if (II->getArgOperand(0) == OperandVal) 810 isAddress = true; 811 break; 812 case Intrinsic::memmove: 813 case Intrinsic::memcpy: 814 if (II->getArgOperand(0) == OperandVal || 815 II->getArgOperand(1) == OperandVal) 816 isAddress = true; 817 break; 818 default: { 819 MemIntrinsicInfo IntrInfo; 820 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 821 if (IntrInfo.PtrVal == OperandVal) 822 isAddress = true; 823 } 824 } 825 } 826 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 827 if (RMW->getPointerOperand() == OperandVal) 828 isAddress = true; 829 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 830 if (CmpX->getPointerOperand() == OperandVal) 831 isAddress = true; 832 } 833 return isAddress; 834 } 835 836 /// Return the type of the memory being accessed. 837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 838 Instruction *Inst, Value *OperandVal) { 839 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 840 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 841 AccessTy.MemTy = SI->getOperand(0)->getType(); 842 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 843 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 844 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 845 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 846 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 847 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 848 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 849 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 850 switch (II->getIntrinsicID()) { 851 case Intrinsic::prefetch: 852 case Intrinsic::memset: 853 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 854 AccessTy.MemTy = OperandVal->getType(); 855 break; 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 859 AccessTy.MemTy = OperandVal->getType(); 860 break; 861 default: { 862 MemIntrinsicInfo IntrInfo; 863 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 864 AccessTy.AddrSpace 865 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 866 } 867 868 break; 869 } 870 } 871 } 872 873 // All pointers have the same requirements, so canonicalize them to an 874 // arbitrary pointer type to minimize variation. 875 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 876 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 877 PTy->getAddressSpace()); 878 879 return AccessTy; 880 } 881 882 /// Return true if this AddRec is already a phi in its loop. 883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 884 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 885 if (SE.isSCEVable(PN.getType()) && 886 (SE.getEffectiveSCEVType(PN.getType()) == 887 SE.getEffectiveSCEVType(AR->getType())) && 888 SE.getSCEV(&PN) == AR) 889 return true; 890 } 891 return false; 892 } 893 894 /// Check if expanding this expression is likely to incur significant cost. This 895 /// is tricky because SCEV doesn't track which expressions are actually computed 896 /// by the current IR. 897 /// 898 /// We currently allow expansion of IV increments that involve adds, 899 /// multiplication by constants, and AddRecs from existing phis. 900 /// 901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 902 /// obvious multiple of the UDivExpr. 903 static bool isHighCostExpansion(const SCEV *S, 904 SmallPtrSetImpl<const SCEV*> &Processed, 905 ScalarEvolution &SE) { 906 // Zero/One operand expressions 907 switch (S->getSCEVType()) { 908 case scUnknown: 909 case scConstant: 910 return false; 911 case scTruncate: 912 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 913 Processed, SE); 914 case scZeroExtend: 915 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 916 Processed, SE); 917 case scSignExtend: 918 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 919 Processed, SE); 920 } 921 922 if (!Processed.insert(S).second) 923 return false; 924 925 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 926 for (const SCEV *S : Add->operands()) { 927 if (isHighCostExpansion(S, Processed, SE)) 928 return true; 929 } 930 return false; 931 } 932 933 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 934 if (Mul->getNumOperands() == 2) { 935 // Multiplication by a constant is ok 936 if (isa<SCEVConstant>(Mul->getOperand(0))) 937 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 938 939 // If we have the value of one operand, check if an existing 940 // multiplication already generates this expression. 941 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 942 Value *UVal = U->getValue(); 943 for (User *UR : UVal->users()) { 944 // If U is a constant, it may be used by a ConstantExpr. 945 Instruction *UI = dyn_cast<Instruction>(UR); 946 if (UI && UI->getOpcode() == Instruction::Mul && 947 SE.isSCEVable(UI->getType())) { 948 return SE.getSCEV(UI) == Mul; 949 } 950 } 951 } 952 } 953 } 954 955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 956 if (isExistingPhi(AR, SE)) 957 return false; 958 } 959 960 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 961 return true; 962 } 963 964 /// If any of the instructions in the specified set are trivially dead, delete 965 /// them and see if this makes any of their operands subsequently dead. 966 static bool 967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 968 bool Changed = false; 969 970 while (!DeadInsts.empty()) { 971 Value *V = DeadInsts.pop_back_val(); 972 Instruction *I = dyn_cast_or_null<Instruction>(V); 973 974 if (!I || !isInstructionTriviallyDead(I)) 975 continue; 976 977 for (Use &O : I->operands()) 978 if (Instruction *U = dyn_cast<Instruction>(O)) { 979 O = nullptr; 980 if (U->use_empty()) 981 DeadInsts.emplace_back(U); 982 } 983 984 I->eraseFromParent(); 985 Changed = true; 986 } 987 988 return Changed; 989 } 990 991 namespace { 992 993 class LSRUse; 994 995 } // end anonymous namespace 996 997 /// Check if the addressing mode defined by \p F is completely 998 /// folded in \p LU at isel time. 999 /// This includes address-mode folding and special icmp tricks. 1000 /// This function returns true if \p LU can accommodate what \p F 1001 /// defines and up to 1 base + 1 scaled + offset. 1002 /// In other words, if \p F has several base registers, this function may 1003 /// still return true. Therefore, users still need to account for 1004 /// additional base registers and/or unfolded offsets to derive an 1005 /// accurate cost model. 1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1007 const LSRUse &LU, const Formula &F); 1008 1009 // Get the cost of the scaling factor used in F for LU. 1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1011 const LSRUse &LU, const Formula &F, 1012 const Loop &L); 1013 1014 namespace { 1015 1016 /// This class is used to measure and compare candidate formulae. 1017 class Cost { 1018 const Loop *L = nullptr; 1019 ScalarEvolution *SE = nullptr; 1020 const TargetTransformInfo *TTI = nullptr; 1021 TargetTransformInfo::LSRCost C; 1022 1023 public: 1024 Cost() = delete; 1025 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1026 L(L), SE(&SE), TTI(&TTI) { 1027 C.Insns = 0; 1028 C.NumRegs = 0; 1029 C.AddRecCost = 0; 1030 C.NumIVMuls = 0; 1031 C.NumBaseAdds = 0; 1032 C.ImmCost = 0; 1033 C.SetupCost = 0; 1034 C.ScaleCost = 0; 1035 } 1036 1037 bool isLess(Cost &Other); 1038 1039 void Lose(); 1040 1041 #ifndef NDEBUG 1042 // Once any of the metrics loses, they must all remain losers. 1043 bool isValid() { 1044 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1045 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1046 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1047 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1048 } 1049 #endif 1050 1051 bool isLoser() { 1052 assert(isValid() && "invalid cost"); 1053 return C.NumRegs == ~0u; 1054 } 1055 1056 void RateFormula(const Formula &F, 1057 SmallPtrSetImpl<const SCEV *> &Regs, 1058 const DenseSet<const SCEV *> &VisitedRegs, 1059 const LSRUse &LU, 1060 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1061 1062 void print(raw_ostream &OS) const; 1063 void dump() const; 1064 1065 private: 1066 void RateRegister(const Formula &F, const SCEV *Reg, 1067 SmallPtrSetImpl<const SCEV *> &Regs); 1068 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1069 SmallPtrSetImpl<const SCEV *> &Regs, 1070 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1071 }; 1072 1073 /// An operand value in an instruction which is to be replaced with some 1074 /// equivalent, possibly strength-reduced, replacement. 1075 struct LSRFixup { 1076 /// The instruction which will be updated. 1077 Instruction *UserInst = nullptr; 1078 1079 /// The operand of the instruction which will be replaced. The operand may be 1080 /// used more than once; every instance will be replaced. 1081 Value *OperandValToReplace = nullptr; 1082 1083 /// If this user is to use the post-incremented value of an induction 1084 /// variable, this set is non-empty and holds the loops associated with the 1085 /// induction variable. 1086 PostIncLoopSet PostIncLoops; 1087 1088 /// A constant offset to be added to the LSRUse expression. This allows 1089 /// multiple fixups to share the same LSRUse with different offsets, for 1090 /// example in an unrolled loop. 1091 int64_t Offset = 0; 1092 1093 LSRFixup() = default; 1094 1095 bool isUseFullyOutsideLoop(const Loop *L) const; 1096 1097 void print(raw_ostream &OS) const; 1098 void dump() const; 1099 }; 1100 1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1102 /// SmallVectors of const SCEV*. 1103 struct UniquifierDenseMapInfo { 1104 static SmallVector<const SCEV *, 4> getEmptyKey() { 1105 SmallVector<const SCEV *, 4> V; 1106 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1107 return V; 1108 } 1109 1110 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1111 SmallVector<const SCEV *, 4> V; 1112 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1113 return V; 1114 } 1115 1116 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1117 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1118 } 1119 1120 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1121 const SmallVector<const SCEV *, 4> &RHS) { 1122 return LHS == RHS; 1123 } 1124 }; 1125 1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1127 /// as uses invented by LSR itself. It includes information about what kinds of 1128 /// things can be folded into the user, information about the user itself, and 1129 /// information about how the use may be satisfied. TODO: Represent multiple 1130 /// users of the same expression in common? 1131 class LSRUse { 1132 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1133 1134 public: 1135 /// An enum for a kind of use, indicating what types of scaled and immediate 1136 /// operands it might support. 1137 enum KindType { 1138 Basic, ///< A normal use, with no folding. 1139 Special, ///< A special case of basic, allowing -1 scales. 1140 Address, ///< An address use; folding according to TargetLowering 1141 ICmpZero ///< An equality icmp with both operands folded into one. 1142 // TODO: Add a generic icmp too? 1143 }; 1144 1145 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1146 1147 KindType Kind; 1148 MemAccessTy AccessTy; 1149 1150 /// The list of operands which are to be replaced. 1151 SmallVector<LSRFixup, 8> Fixups; 1152 1153 /// Keep track of the min and max offsets of the fixups. 1154 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1155 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1156 1157 /// This records whether all of the fixups using this LSRUse are outside of 1158 /// the loop, in which case some special-case heuristics may be used. 1159 bool AllFixupsOutsideLoop = true; 1160 1161 /// RigidFormula is set to true to guarantee that this use will be associated 1162 /// with a single formula--the one that initially matched. Some SCEV 1163 /// expressions cannot be expanded. This allows LSR to consider the registers 1164 /// used by those expressions without the need to expand them later after 1165 /// changing the formula. 1166 bool RigidFormula = false; 1167 1168 /// This records the widest use type for any fixup using this 1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1170 /// fixup widths to be equivalent, because the narrower one may be relying on 1171 /// the implicit truncation to truncate away bogus bits. 1172 Type *WidestFixupType = nullptr; 1173 1174 /// A list of ways to build a value that can satisfy this user. After the 1175 /// list is populated, one of these is selected heuristically and used to 1176 /// formulate a replacement for OperandValToReplace in UserInst. 1177 SmallVector<Formula, 12> Formulae; 1178 1179 /// The set of register candidates used by all formulae in this LSRUse. 1180 SmallPtrSet<const SCEV *, 4> Regs; 1181 1182 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1183 1184 LSRFixup &getNewFixup() { 1185 Fixups.push_back(LSRFixup()); 1186 return Fixups.back(); 1187 } 1188 1189 void pushFixup(LSRFixup &f) { 1190 Fixups.push_back(f); 1191 if (f.Offset > MaxOffset) 1192 MaxOffset = f.Offset; 1193 if (f.Offset < MinOffset) 1194 MinOffset = f.Offset; 1195 } 1196 1197 bool HasFormulaWithSameRegs(const Formula &F) const; 1198 float getNotSelectedProbability(const SCEV *Reg) const; 1199 bool InsertFormula(const Formula &F, const Loop &L); 1200 void DeleteFormula(Formula &F); 1201 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1202 1203 void print(raw_ostream &OS) const; 1204 void dump() const; 1205 }; 1206 1207 } // end anonymous namespace 1208 1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1210 LSRUse::KindType Kind, MemAccessTy AccessTy, 1211 GlobalValue *BaseGV, int64_t BaseOffset, 1212 bool HasBaseReg, int64_t Scale, 1213 Instruction *Fixup = nullptr); 1214 1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1216 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1217 return 1; 1218 if (Depth == 0) 1219 return 0; 1220 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1221 return getSetupCost(S->getStart(), Depth - 1); 1222 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1223 return getSetupCost(S->getOperand(), Depth - 1); 1224 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1225 return std::accumulate(S->op_begin(), S->op_end(), 0, 1226 [&](unsigned i, const SCEV *Reg) { 1227 return i + getSetupCost(Reg, Depth - 1); 1228 }); 1229 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1230 return getSetupCost(S->getLHS(), Depth - 1) + 1231 getSetupCost(S->getRHS(), Depth - 1); 1232 return 0; 1233 } 1234 1235 /// Tally up interesting quantities from the given register. 1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1237 SmallPtrSetImpl<const SCEV *> &Regs) { 1238 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1239 // If this is an addrec for another loop, it should be an invariant 1240 // with respect to L since L is the innermost loop (at least 1241 // for now LSR only handles innermost loops). 1242 if (AR->getLoop() != L) { 1243 // If the AddRec exists, consider it's register free and leave it alone. 1244 if (isExistingPhi(AR, *SE)) 1245 return; 1246 1247 // It is bad to allow LSR for current loop to add induction variables 1248 // for its sibling loops. 1249 if (!AR->getLoop()->contains(L)) { 1250 Lose(); 1251 return; 1252 } 1253 1254 // Otherwise, it will be an invariant with respect to Loop L. 1255 ++C.NumRegs; 1256 return; 1257 } 1258 1259 unsigned LoopCost = 1; 1260 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1261 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1262 1263 // If the step size matches the base offset, we could use pre-indexed 1264 // addressing. 1265 if (TTI->shouldFavorBackedgeIndex(L)) { 1266 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1267 if (Step->getAPInt() == F.BaseOffset) 1268 LoopCost = 0; 1269 } 1270 1271 if (TTI->shouldFavorPostInc()) { 1272 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1273 if (isa<SCEVConstant>(LoopStep)) { 1274 const SCEV *LoopStart = AR->getStart(); 1275 if (!isa<SCEVConstant>(LoopStart) && 1276 SE->isLoopInvariant(LoopStart, L)) 1277 LoopCost = 0; 1278 } 1279 } 1280 } 1281 C.AddRecCost += LoopCost; 1282 1283 // Add the step value register, if it needs one. 1284 // TODO: The non-affine case isn't precisely modeled here. 1285 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1286 if (!Regs.count(AR->getOperand(1))) { 1287 RateRegister(F, AR->getOperand(1), Regs); 1288 if (isLoser()) 1289 return; 1290 } 1291 } 1292 } 1293 ++C.NumRegs; 1294 1295 // Rough heuristic; favor registers which don't require extra setup 1296 // instructions in the preheader. 1297 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1298 // Ensure we don't, even with the recusion limit, produce invalid costs. 1299 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1300 1301 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1302 SE->hasComputableLoopEvolution(Reg, L); 1303 } 1304 1305 /// Record this register in the set. If we haven't seen it before, rate 1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1307 /// one of those regs an instant loser. 1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1309 SmallPtrSetImpl<const SCEV *> &Regs, 1310 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1311 if (LoserRegs && LoserRegs->count(Reg)) { 1312 Lose(); 1313 return; 1314 } 1315 if (Regs.insert(Reg).second) { 1316 RateRegister(F, Reg, Regs); 1317 if (LoserRegs && isLoser()) 1318 LoserRegs->insert(Reg); 1319 } 1320 } 1321 1322 void Cost::RateFormula(const Formula &F, 1323 SmallPtrSetImpl<const SCEV *> &Regs, 1324 const DenseSet<const SCEV *> &VisitedRegs, 1325 const LSRUse &LU, 1326 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1327 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1328 // Tally up the registers. 1329 unsigned PrevAddRecCost = C.AddRecCost; 1330 unsigned PrevNumRegs = C.NumRegs; 1331 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1332 if (const SCEV *ScaledReg = F.ScaledReg) { 1333 if (VisitedRegs.count(ScaledReg)) { 1334 Lose(); 1335 return; 1336 } 1337 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1338 if (isLoser()) 1339 return; 1340 } 1341 for (const SCEV *BaseReg : F.BaseRegs) { 1342 if (VisitedRegs.count(BaseReg)) { 1343 Lose(); 1344 return; 1345 } 1346 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1347 if (isLoser()) 1348 return; 1349 } 1350 1351 // Determine how many (unfolded) adds we'll need inside the loop. 1352 size_t NumBaseParts = F.getNumRegs(); 1353 if (NumBaseParts > 1) 1354 // Do not count the base and a possible second register if the target 1355 // allows to fold 2 registers. 1356 C.NumBaseAdds += 1357 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1358 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1359 1360 // Accumulate non-free scaling amounts. 1361 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1362 1363 // Tally up the non-zero immediates. 1364 for (const LSRFixup &Fixup : LU.Fixups) { 1365 int64_t O = Fixup.Offset; 1366 int64_t Offset = (uint64_t)O + F.BaseOffset; 1367 if (F.BaseGV) 1368 C.ImmCost += 64; // Handle symbolic values conservatively. 1369 // TODO: This should probably be the pointer size. 1370 else if (Offset != 0) 1371 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1372 1373 // Check with target if this offset with this instruction is 1374 // specifically not supported. 1375 if (LU.Kind == LSRUse::Address && Offset != 0 && 1376 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1377 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1378 C.NumBaseAdds++; 1379 } 1380 1381 // If we don't count instruction cost exit here. 1382 if (!InsnsCost) { 1383 assert(isValid() && "invalid cost"); 1384 return; 1385 } 1386 1387 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1388 // additional instruction (at least fill). 1389 unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1; 1390 if (C.NumRegs > TTIRegNum) { 1391 // Cost already exceeded TTIRegNum, then only newly added register can add 1392 // new instructions. 1393 if (PrevNumRegs > TTIRegNum) 1394 C.Insns += (C.NumRegs - PrevNumRegs); 1395 else 1396 C.Insns += (C.NumRegs - TTIRegNum); 1397 } 1398 1399 // If ICmpZero formula ends with not 0, it could not be replaced by 1400 // just add or sub. We'll need to compare final result of AddRec. 1401 // That means we'll need an additional instruction. But if the target can 1402 // macro-fuse a compare with a branch, don't count this extra instruction. 1403 // For -10 + {0, +, 1}: 1404 // i = i + 1; 1405 // cmp i, 10 1406 // 1407 // For {-10, +, 1}: 1408 // i = i + 1; 1409 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1410 !TTI->canMacroFuseCmp()) 1411 C.Insns++; 1412 // Each new AddRec adds 1 instruction to calculation. 1413 C.Insns += (C.AddRecCost - PrevAddRecCost); 1414 1415 // BaseAdds adds instructions for unfolded registers. 1416 if (LU.Kind != LSRUse::ICmpZero) 1417 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1418 assert(isValid() && "invalid cost"); 1419 } 1420 1421 /// Set this cost to a losing value. 1422 void Cost::Lose() { 1423 C.Insns = std::numeric_limits<unsigned>::max(); 1424 C.NumRegs = std::numeric_limits<unsigned>::max(); 1425 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1426 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1427 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1428 C.ImmCost = std::numeric_limits<unsigned>::max(); 1429 C.SetupCost = std::numeric_limits<unsigned>::max(); 1430 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1431 } 1432 1433 /// Choose the lower cost. 1434 bool Cost::isLess(Cost &Other) { 1435 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1436 C.Insns != Other.C.Insns) 1437 return C.Insns < Other.C.Insns; 1438 return TTI->isLSRCostLess(C, Other.C); 1439 } 1440 1441 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1442 void Cost::print(raw_ostream &OS) const { 1443 if (InsnsCost) 1444 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1445 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1446 if (C.AddRecCost != 0) 1447 OS << ", with addrec cost " << C.AddRecCost; 1448 if (C.NumIVMuls != 0) 1449 OS << ", plus " << C.NumIVMuls << " IV mul" 1450 << (C.NumIVMuls == 1 ? "" : "s"); 1451 if (C.NumBaseAdds != 0) 1452 OS << ", plus " << C.NumBaseAdds << " base add" 1453 << (C.NumBaseAdds == 1 ? "" : "s"); 1454 if (C.ScaleCost != 0) 1455 OS << ", plus " << C.ScaleCost << " scale cost"; 1456 if (C.ImmCost != 0) 1457 OS << ", plus " << C.ImmCost << " imm cost"; 1458 if (C.SetupCost != 0) 1459 OS << ", plus " << C.SetupCost << " setup cost"; 1460 } 1461 1462 LLVM_DUMP_METHOD void Cost::dump() const { 1463 print(errs()); errs() << '\n'; 1464 } 1465 #endif 1466 1467 /// Test whether this fixup always uses its value outside of the given loop. 1468 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1469 // PHI nodes use their value in their incoming blocks. 1470 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1471 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1472 if (PN->getIncomingValue(i) == OperandValToReplace && 1473 L->contains(PN->getIncomingBlock(i))) 1474 return false; 1475 return true; 1476 } 1477 1478 return !L->contains(UserInst); 1479 } 1480 1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1482 void LSRFixup::print(raw_ostream &OS) const { 1483 OS << "UserInst="; 1484 // Store is common and interesting enough to be worth special-casing. 1485 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1486 OS << "store "; 1487 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1488 } else if (UserInst->getType()->isVoidTy()) 1489 OS << UserInst->getOpcodeName(); 1490 else 1491 UserInst->printAsOperand(OS, /*PrintType=*/false); 1492 1493 OS << ", OperandValToReplace="; 1494 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1495 1496 for (const Loop *PIL : PostIncLoops) { 1497 OS << ", PostIncLoop="; 1498 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1499 } 1500 1501 if (Offset != 0) 1502 OS << ", Offset=" << Offset; 1503 } 1504 1505 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1506 print(errs()); errs() << '\n'; 1507 } 1508 #endif 1509 1510 /// Test whether this use as a formula which has the same registers as the given 1511 /// formula. 1512 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1513 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1514 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1515 // Unstable sort by host order ok, because this is only used for uniquifying. 1516 llvm::sort(Key); 1517 return Uniquifier.count(Key); 1518 } 1519 1520 /// The function returns a probability of selecting formula without Reg. 1521 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1522 unsigned FNum = 0; 1523 for (const Formula &F : Formulae) 1524 if (F.referencesReg(Reg)) 1525 FNum++; 1526 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1527 } 1528 1529 /// If the given formula has not yet been inserted, add it to the list, and 1530 /// return true. Return false otherwise. The formula must be in canonical form. 1531 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1532 assert(F.isCanonical(L) && "Invalid canonical representation"); 1533 1534 if (!Formulae.empty() && RigidFormula) 1535 return false; 1536 1537 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1538 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1539 // Unstable sort by host order ok, because this is only used for uniquifying. 1540 llvm::sort(Key); 1541 1542 if (!Uniquifier.insert(Key).second) 1543 return false; 1544 1545 // Using a register to hold the value of 0 is not profitable. 1546 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1547 "Zero allocated in a scaled register!"); 1548 #ifndef NDEBUG 1549 for (const SCEV *BaseReg : F.BaseRegs) 1550 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1551 #endif 1552 1553 // Add the formula to the list. 1554 Formulae.push_back(F); 1555 1556 // Record registers now being used by this use. 1557 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1558 if (F.ScaledReg) 1559 Regs.insert(F.ScaledReg); 1560 1561 return true; 1562 } 1563 1564 /// Remove the given formula from this use's list. 1565 void LSRUse::DeleteFormula(Formula &F) { 1566 if (&F != &Formulae.back()) 1567 std::swap(F, Formulae.back()); 1568 Formulae.pop_back(); 1569 } 1570 1571 /// Recompute the Regs field, and update RegUses. 1572 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1573 // Now that we've filtered out some formulae, recompute the Regs set. 1574 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1575 Regs.clear(); 1576 for (const Formula &F : Formulae) { 1577 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1578 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1579 } 1580 1581 // Update the RegTracker. 1582 for (const SCEV *S : OldRegs) 1583 if (!Regs.count(S)) 1584 RegUses.dropRegister(S, LUIdx); 1585 } 1586 1587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1588 void LSRUse::print(raw_ostream &OS) const { 1589 OS << "LSR Use: Kind="; 1590 switch (Kind) { 1591 case Basic: OS << "Basic"; break; 1592 case Special: OS << "Special"; break; 1593 case ICmpZero: OS << "ICmpZero"; break; 1594 case Address: 1595 OS << "Address of "; 1596 if (AccessTy.MemTy->isPointerTy()) 1597 OS << "pointer"; // the full pointer type could be really verbose 1598 else { 1599 OS << *AccessTy.MemTy; 1600 } 1601 1602 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1603 } 1604 1605 OS << ", Offsets={"; 1606 bool NeedComma = false; 1607 for (const LSRFixup &Fixup : Fixups) { 1608 if (NeedComma) OS << ','; 1609 OS << Fixup.Offset; 1610 NeedComma = true; 1611 } 1612 OS << '}'; 1613 1614 if (AllFixupsOutsideLoop) 1615 OS << ", all-fixups-outside-loop"; 1616 1617 if (WidestFixupType) 1618 OS << ", widest fixup type: " << *WidestFixupType; 1619 } 1620 1621 LLVM_DUMP_METHOD void LSRUse::dump() const { 1622 print(errs()); errs() << '\n'; 1623 } 1624 #endif 1625 1626 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1627 LSRUse::KindType Kind, MemAccessTy AccessTy, 1628 GlobalValue *BaseGV, int64_t BaseOffset, 1629 bool HasBaseReg, int64_t Scale, 1630 Instruction *Fixup/*= nullptr*/) { 1631 switch (Kind) { 1632 case LSRUse::Address: 1633 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1634 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1635 1636 case LSRUse::ICmpZero: 1637 // There's not even a target hook for querying whether it would be legal to 1638 // fold a GV into an ICmp. 1639 if (BaseGV) 1640 return false; 1641 1642 // ICmp only has two operands; don't allow more than two non-trivial parts. 1643 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1644 return false; 1645 1646 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1647 // putting the scaled register in the other operand of the icmp. 1648 if (Scale != 0 && Scale != -1) 1649 return false; 1650 1651 // If we have low-level target information, ask the target if it can fold an 1652 // integer immediate on an icmp. 1653 if (BaseOffset != 0) { 1654 // We have one of: 1655 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1656 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1657 // Offs is the ICmp immediate. 1658 if (Scale == 0) 1659 // The cast does the right thing with 1660 // std::numeric_limits<int64_t>::min(). 1661 BaseOffset = -(uint64_t)BaseOffset; 1662 return TTI.isLegalICmpImmediate(BaseOffset); 1663 } 1664 1665 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1666 return true; 1667 1668 case LSRUse::Basic: 1669 // Only handle single-register values. 1670 return !BaseGV && Scale == 0 && BaseOffset == 0; 1671 1672 case LSRUse::Special: 1673 // Special case Basic to handle -1 scales. 1674 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1675 } 1676 1677 llvm_unreachable("Invalid LSRUse Kind!"); 1678 } 1679 1680 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1681 int64_t MinOffset, int64_t MaxOffset, 1682 LSRUse::KindType Kind, MemAccessTy AccessTy, 1683 GlobalValue *BaseGV, int64_t BaseOffset, 1684 bool HasBaseReg, int64_t Scale) { 1685 // Check for overflow. 1686 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1687 (MinOffset > 0)) 1688 return false; 1689 MinOffset = (uint64_t)BaseOffset + MinOffset; 1690 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1691 (MaxOffset > 0)) 1692 return false; 1693 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1694 1695 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1696 HasBaseReg, Scale) && 1697 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1698 HasBaseReg, Scale); 1699 } 1700 1701 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1702 int64_t MinOffset, int64_t MaxOffset, 1703 LSRUse::KindType Kind, MemAccessTy AccessTy, 1704 const Formula &F, const Loop &L) { 1705 // For the purpose of isAMCompletelyFolded either having a canonical formula 1706 // or a scale not equal to zero is correct. 1707 // Problems may arise from non canonical formulae having a scale == 0. 1708 // Strictly speaking it would best to just rely on canonical formulae. 1709 // However, when we generate the scaled formulae, we first check that the 1710 // scaling factor is profitable before computing the actual ScaledReg for 1711 // compile time sake. 1712 assert((F.isCanonical(L) || F.Scale != 0)); 1713 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1714 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1715 } 1716 1717 /// Test whether we know how to expand the current formula. 1718 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1719 int64_t MaxOffset, LSRUse::KindType Kind, 1720 MemAccessTy AccessTy, GlobalValue *BaseGV, 1721 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1722 // We know how to expand completely foldable formulae. 1723 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1724 BaseOffset, HasBaseReg, Scale) || 1725 // Or formulae that use a base register produced by a sum of base 1726 // registers. 1727 (Scale == 1 && 1728 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1729 BaseGV, BaseOffset, true, 0)); 1730 } 1731 1732 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1733 int64_t MaxOffset, LSRUse::KindType Kind, 1734 MemAccessTy AccessTy, const Formula &F) { 1735 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1736 F.BaseOffset, F.HasBaseReg, F.Scale); 1737 } 1738 1739 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1740 const LSRUse &LU, const Formula &F) { 1741 // Target may want to look at the user instructions. 1742 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1743 for (const LSRFixup &Fixup : LU.Fixups) 1744 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1745 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1746 F.Scale, Fixup.UserInst)) 1747 return false; 1748 return true; 1749 } 1750 1751 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1752 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1753 F.Scale); 1754 } 1755 1756 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1757 const LSRUse &LU, const Formula &F, 1758 const Loop &L) { 1759 if (!F.Scale) 1760 return 0; 1761 1762 // If the use is not completely folded in that instruction, we will have to 1763 // pay an extra cost only for scale != 1. 1764 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1765 LU.AccessTy, F, L)) 1766 return F.Scale != 1; 1767 1768 switch (LU.Kind) { 1769 case LSRUse::Address: { 1770 // Check the scaling factor cost with both the min and max offsets. 1771 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1772 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1773 F.Scale, LU.AccessTy.AddrSpace); 1774 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1775 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1776 F.Scale, LU.AccessTy.AddrSpace); 1777 1778 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1779 "Legal addressing mode has an illegal cost!"); 1780 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1781 } 1782 case LSRUse::ICmpZero: 1783 case LSRUse::Basic: 1784 case LSRUse::Special: 1785 // The use is completely folded, i.e., everything is folded into the 1786 // instruction. 1787 return 0; 1788 } 1789 1790 llvm_unreachable("Invalid LSRUse Kind!"); 1791 } 1792 1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1794 LSRUse::KindType Kind, MemAccessTy AccessTy, 1795 GlobalValue *BaseGV, int64_t BaseOffset, 1796 bool HasBaseReg) { 1797 // Fast-path: zero is always foldable. 1798 if (BaseOffset == 0 && !BaseGV) return true; 1799 1800 // Conservatively, create an address with an immediate and a 1801 // base and a scale. 1802 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1803 1804 // Canonicalize a scale of 1 to a base register if the formula doesn't 1805 // already have a base register. 1806 if (!HasBaseReg && Scale == 1) { 1807 Scale = 0; 1808 HasBaseReg = true; 1809 } 1810 1811 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1812 HasBaseReg, Scale); 1813 } 1814 1815 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1816 ScalarEvolution &SE, int64_t MinOffset, 1817 int64_t MaxOffset, LSRUse::KindType Kind, 1818 MemAccessTy AccessTy, const SCEV *S, 1819 bool HasBaseReg) { 1820 // Fast-path: zero is always foldable. 1821 if (S->isZero()) return true; 1822 1823 // Conservatively, create an address with an immediate and a 1824 // base and a scale. 1825 int64_t BaseOffset = ExtractImmediate(S, SE); 1826 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1827 1828 // If there's anything else involved, it's not foldable. 1829 if (!S->isZero()) return false; 1830 1831 // Fast-path: zero is always foldable. 1832 if (BaseOffset == 0 && !BaseGV) return true; 1833 1834 // Conservatively, create an address with an immediate and a 1835 // base and a scale. 1836 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1837 1838 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1839 BaseOffset, HasBaseReg, Scale); 1840 } 1841 1842 namespace { 1843 1844 /// An individual increment in a Chain of IV increments. Relate an IV user to 1845 /// an expression that computes the IV it uses from the IV used by the previous 1846 /// link in the Chain. 1847 /// 1848 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1849 /// original IVOperand. The head of the chain's IVOperand is only valid during 1850 /// chain collection, before LSR replaces IV users. During chain generation, 1851 /// IncExpr can be used to find the new IVOperand that computes the same 1852 /// expression. 1853 struct IVInc { 1854 Instruction *UserInst; 1855 Value* IVOperand; 1856 const SCEV *IncExpr; 1857 1858 IVInc(Instruction *U, Value *O, const SCEV *E) 1859 : UserInst(U), IVOperand(O), IncExpr(E) {} 1860 }; 1861 1862 // The list of IV increments in program order. We typically add the head of a 1863 // chain without finding subsequent links. 1864 struct IVChain { 1865 SmallVector<IVInc, 1> Incs; 1866 const SCEV *ExprBase = nullptr; 1867 1868 IVChain() = default; 1869 IVChain(const IVInc &Head, const SCEV *Base) 1870 : Incs(1, Head), ExprBase(Base) {} 1871 1872 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1873 1874 // Return the first increment in the chain. 1875 const_iterator begin() const { 1876 assert(!Incs.empty()); 1877 return std::next(Incs.begin()); 1878 } 1879 const_iterator end() const { 1880 return Incs.end(); 1881 } 1882 1883 // Returns true if this chain contains any increments. 1884 bool hasIncs() const { return Incs.size() >= 2; } 1885 1886 // Add an IVInc to the end of this chain. 1887 void add(const IVInc &X) { Incs.push_back(X); } 1888 1889 // Returns the last UserInst in the chain. 1890 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1891 1892 // Returns true if IncExpr can be profitably added to this chain. 1893 bool isProfitableIncrement(const SCEV *OperExpr, 1894 const SCEV *IncExpr, 1895 ScalarEvolution&); 1896 }; 1897 1898 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1899 /// between FarUsers that definitely cross IV increments and NearUsers that may 1900 /// be used between IV increments. 1901 struct ChainUsers { 1902 SmallPtrSet<Instruction*, 4> FarUsers; 1903 SmallPtrSet<Instruction*, 4> NearUsers; 1904 }; 1905 1906 /// This class holds state for the main loop strength reduction logic. 1907 class LSRInstance { 1908 IVUsers &IU; 1909 ScalarEvolution &SE; 1910 DominatorTree &DT; 1911 LoopInfo &LI; 1912 const TargetTransformInfo &TTI; 1913 Loop *const L; 1914 bool FavorBackedgeIndex = false; 1915 bool Changed = false; 1916 1917 /// This is the insert position that the current loop's induction variable 1918 /// increment should be placed. In simple loops, this is the latch block's 1919 /// terminator. But in more complicated cases, this is a position which will 1920 /// dominate all the in-loop post-increment users. 1921 Instruction *IVIncInsertPos = nullptr; 1922 1923 /// Interesting factors between use strides. 1924 /// 1925 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1926 /// default, a SmallDenseSet, because we need to use the full range of 1927 /// int64_ts, and there's currently no good way of doing that with 1928 /// SmallDenseSet. 1929 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1930 1931 /// Interesting use types, to facilitate truncation reuse. 1932 SmallSetVector<Type *, 4> Types; 1933 1934 /// The list of interesting uses. 1935 mutable SmallVector<LSRUse, 16> Uses; 1936 1937 /// Track which uses use which register candidates. 1938 RegUseTracker RegUses; 1939 1940 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1941 // have more than a few IV increment chains in a loop. Missing a Chain falls 1942 // back to normal LSR behavior for those uses. 1943 static const unsigned MaxChains = 8; 1944 1945 /// IV users can form a chain of IV increments. 1946 SmallVector<IVChain, MaxChains> IVChainVec; 1947 1948 /// IV users that belong to profitable IVChains. 1949 SmallPtrSet<Use*, MaxChains> IVIncSet; 1950 1951 void OptimizeShadowIV(); 1952 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1953 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1954 void OptimizeLoopTermCond(); 1955 1956 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1957 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1958 void FinalizeChain(IVChain &Chain); 1959 void CollectChains(); 1960 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1961 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1962 1963 void CollectInterestingTypesAndFactors(); 1964 void CollectFixupsAndInitialFormulae(); 1965 1966 // Support for sharing of LSRUses between LSRFixups. 1967 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1968 UseMapTy UseMap; 1969 1970 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1971 LSRUse::KindType Kind, MemAccessTy AccessTy); 1972 1973 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1974 MemAccessTy AccessTy); 1975 1976 void DeleteUse(LSRUse &LU, size_t LUIdx); 1977 1978 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1979 1980 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1981 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1982 void CountRegisters(const Formula &F, size_t LUIdx); 1983 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1984 1985 void CollectLoopInvariantFixupsAndFormulae(); 1986 1987 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1988 unsigned Depth = 0); 1989 1990 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1991 const Formula &Base, unsigned Depth, 1992 size_t Idx, bool IsScaledReg = false); 1993 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1994 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1995 const Formula &Base, size_t Idx, 1996 bool IsScaledReg = false); 1997 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1998 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1999 const Formula &Base, 2000 const SmallVectorImpl<int64_t> &Worklist, 2001 size_t Idx, bool IsScaledReg = false); 2002 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2003 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2004 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2005 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2006 void GenerateCrossUseConstantOffsets(); 2007 void GenerateAllReuseFormulae(); 2008 2009 void FilterOutUndesirableDedicatedRegisters(); 2010 2011 size_t EstimateSearchSpaceComplexity() const; 2012 void NarrowSearchSpaceByDetectingSupersets(); 2013 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2014 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2015 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2016 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2017 void NarrowSearchSpaceByPickingWinnerRegs(); 2018 void NarrowSearchSpaceUsingHeuristics(); 2019 2020 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2021 Cost &SolutionCost, 2022 SmallVectorImpl<const Formula *> &Workspace, 2023 const Cost &CurCost, 2024 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2025 DenseSet<const SCEV *> &VisitedRegs) const; 2026 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2027 2028 BasicBlock::iterator 2029 HoistInsertPosition(BasicBlock::iterator IP, 2030 const SmallVectorImpl<Instruction *> &Inputs) const; 2031 BasicBlock::iterator 2032 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2033 const LSRFixup &LF, 2034 const LSRUse &LU, 2035 SCEVExpander &Rewriter) const; 2036 2037 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2038 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2039 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2040 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2041 const Formula &F, SCEVExpander &Rewriter, 2042 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2043 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2044 SCEVExpander &Rewriter, 2045 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2046 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2047 2048 public: 2049 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2050 LoopInfo &LI, const TargetTransformInfo &TTI); 2051 2052 bool getChanged() const { return Changed; } 2053 2054 void print_factors_and_types(raw_ostream &OS) const; 2055 void print_fixups(raw_ostream &OS) const; 2056 void print_uses(raw_ostream &OS) const; 2057 void print(raw_ostream &OS) const; 2058 void dump() const; 2059 }; 2060 2061 } // end anonymous namespace 2062 2063 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2064 /// the cast operation. 2065 void LSRInstance::OptimizeShadowIV() { 2066 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2067 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2068 return; 2069 2070 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2071 UI != E; /* empty */) { 2072 IVUsers::const_iterator CandidateUI = UI; 2073 ++UI; 2074 Instruction *ShadowUse = CandidateUI->getUser(); 2075 Type *DestTy = nullptr; 2076 bool IsSigned = false; 2077 2078 /* If shadow use is a int->float cast then insert a second IV 2079 to eliminate this cast. 2080 2081 for (unsigned i = 0; i < n; ++i) 2082 foo((double)i); 2083 2084 is transformed into 2085 2086 double d = 0.0; 2087 for (unsigned i = 0; i < n; ++i, ++d) 2088 foo(d); 2089 */ 2090 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2091 IsSigned = false; 2092 DestTy = UCast->getDestTy(); 2093 } 2094 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2095 IsSigned = true; 2096 DestTy = SCast->getDestTy(); 2097 } 2098 if (!DestTy) continue; 2099 2100 // If target does not support DestTy natively then do not apply 2101 // this transformation. 2102 if (!TTI.isTypeLegal(DestTy)) continue; 2103 2104 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2105 if (!PH) continue; 2106 if (PH->getNumIncomingValues() != 2) continue; 2107 2108 // If the calculation in integers overflows, the result in FP type will 2109 // differ. So we only can do this transformation if we are guaranteed to not 2110 // deal with overflowing values 2111 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2112 if (!AR) continue; 2113 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2114 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2115 2116 Type *SrcTy = PH->getType(); 2117 int Mantissa = DestTy->getFPMantissaWidth(); 2118 if (Mantissa == -1) continue; 2119 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2120 continue; 2121 2122 unsigned Entry, Latch; 2123 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2124 Entry = 0; 2125 Latch = 1; 2126 } else { 2127 Entry = 1; 2128 Latch = 0; 2129 } 2130 2131 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2132 if (!Init) continue; 2133 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2134 (double)Init->getSExtValue() : 2135 (double)Init->getZExtValue()); 2136 2137 BinaryOperator *Incr = 2138 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2139 if (!Incr) continue; 2140 if (Incr->getOpcode() != Instruction::Add 2141 && Incr->getOpcode() != Instruction::Sub) 2142 continue; 2143 2144 /* Initialize new IV, double d = 0.0 in above example. */ 2145 ConstantInt *C = nullptr; 2146 if (Incr->getOperand(0) == PH) 2147 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2148 else if (Incr->getOperand(1) == PH) 2149 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2150 else 2151 continue; 2152 2153 if (!C) continue; 2154 2155 // Ignore negative constants, as the code below doesn't handle them 2156 // correctly. TODO: Remove this restriction. 2157 if (!C->getValue().isStrictlyPositive()) continue; 2158 2159 /* Add new PHINode. */ 2160 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2161 2162 /* create new increment. '++d' in above example. */ 2163 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2164 BinaryOperator *NewIncr = 2165 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2166 Instruction::FAdd : Instruction::FSub, 2167 NewPH, CFP, "IV.S.next.", Incr); 2168 2169 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2170 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2171 2172 /* Remove cast operation */ 2173 ShadowUse->replaceAllUsesWith(NewPH); 2174 ShadowUse->eraseFromParent(); 2175 Changed = true; 2176 break; 2177 } 2178 } 2179 2180 /// If Cond has an operand that is an expression of an IV, set the IV user and 2181 /// stride information and return true, otherwise return false. 2182 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2183 for (IVStrideUse &U : IU) 2184 if (U.getUser() == Cond) { 2185 // NOTE: we could handle setcc instructions with multiple uses here, but 2186 // InstCombine does it as well for simple uses, it's not clear that it 2187 // occurs enough in real life to handle. 2188 CondUse = &U; 2189 return true; 2190 } 2191 return false; 2192 } 2193 2194 /// Rewrite the loop's terminating condition if it uses a max computation. 2195 /// 2196 /// This is a narrow solution to a specific, but acute, problem. For loops 2197 /// like this: 2198 /// 2199 /// i = 0; 2200 /// do { 2201 /// p[i] = 0.0; 2202 /// } while (++i < n); 2203 /// 2204 /// the trip count isn't just 'n', because 'n' might not be positive. And 2205 /// unfortunately this can come up even for loops where the user didn't use 2206 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2207 /// will commonly be lowered like this: 2208 /// 2209 /// if (n > 0) { 2210 /// i = 0; 2211 /// do { 2212 /// p[i] = 0.0; 2213 /// } while (++i < n); 2214 /// } 2215 /// 2216 /// and then it's possible for subsequent optimization to obscure the if 2217 /// test in such a way that indvars can't find it. 2218 /// 2219 /// When indvars can't find the if test in loops like this, it creates a 2220 /// max expression, which allows it to give the loop a canonical 2221 /// induction variable: 2222 /// 2223 /// i = 0; 2224 /// max = n < 1 ? 1 : n; 2225 /// do { 2226 /// p[i] = 0.0; 2227 /// } while (++i != max); 2228 /// 2229 /// Canonical induction variables are necessary because the loop passes 2230 /// are designed around them. The most obvious example of this is the 2231 /// LoopInfo analysis, which doesn't remember trip count values. It 2232 /// expects to be able to rediscover the trip count each time it is 2233 /// needed, and it does this using a simple analysis that only succeeds if 2234 /// the loop has a canonical induction variable. 2235 /// 2236 /// However, when it comes time to generate code, the maximum operation 2237 /// can be quite costly, especially if it's inside of an outer loop. 2238 /// 2239 /// This function solves this problem by detecting this type of loop and 2240 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2241 /// the instructions for the maximum computation. 2242 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2243 // Check that the loop matches the pattern we're looking for. 2244 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2245 Cond->getPredicate() != CmpInst::ICMP_NE) 2246 return Cond; 2247 2248 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2249 if (!Sel || !Sel->hasOneUse()) return Cond; 2250 2251 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2252 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2253 return Cond; 2254 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2255 2256 // Add one to the backedge-taken count to get the trip count. 2257 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2258 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2259 2260 // Check for a max calculation that matches the pattern. There's no check 2261 // for ICMP_ULE here because the comparison would be with zero, which 2262 // isn't interesting. 2263 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2264 const SCEVNAryExpr *Max = nullptr; 2265 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2266 Pred = ICmpInst::ICMP_SLE; 2267 Max = S; 2268 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2269 Pred = ICmpInst::ICMP_SLT; 2270 Max = S; 2271 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2272 Pred = ICmpInst::ICMP_ULT; 2273 Max = U; 2274 } else { 2275 // No match; bail. 2276 return Cond; 2277 } 2278 2279 // To handle a max with more than two operands, this optimization would 2280 // require additional checking and setup. 2281 if (Max->getNumOperands() != 2) 2282 return Cond; 2283 2284 const SCEV *MaxLHS = Max->getOperand(0); 2285 const SCEV *MaxRHS = Max->getOperand(1); 2286 2287 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2288 // for a comparison with 1. For <= and >=, a comparison with zero. 2289 if (!MaxLHS || 2290 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2291 return Cond; 2292 2293 // Check the relevant induction variable for conformance to 2294 // the pattern. 2295 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2296 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2297 if (!AR || !AR->isAffine() || 2298 AR->getStart() != One || 2299 AR->getStepRecurrence(SE) != One) 2300 return Cond; 2301 2302 assert(AR->getLoop() == L && 2303 "Loop condition operand is an addrec in a different loop!"); 2304 2305 // Check the right operand of the select, and remember it, as it will 2306 // be used in the new comparison instruction. 2307 Value *NewRHS = nullptr; 2308 if (ICmpInst::isTrueWhenEqual(Pred)) { 2309 // Look for n+1, and grab n. 2310 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2311 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2312 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2313 NewRHS = BO->getOperand(0); 2314 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2315 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2316 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2317 NewRHS = BO->getOperand(0); 2318 if (!NewRHS) 2319 return Cond; 2320 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2321 NewRHS = Sel->getOperand(1); 2322 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2323 NewRHS = Sel->getOperand(2); 2324 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2325 NewRHS = SU->getValue(); 2326 else 2327 // Max doesn't match expected pattern. 2328 return Cond; 2329 2330 // Determine the new comparison opcode. It may be signed or unsigned, 2331 // and the original comparison may be either equality or inequality. 2332 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2333 Pred = CmpInst::getInversePredicate(Pred); 2334 2335 // Ok, everything looks ok to change the condition into an SLT or SGE and 2336 // delete the max calculation. 2337 ICmpInst *NewCond = 2338 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2339 2340 // Delete the max calculation instructions. 2341 Cond->replaceAllUsesWith(NewCond); 2342 CondUse->setUser(NewCond); 2343 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2344 Cond->eraseFromParent(); 2345 Sel->eraseFromParent(); 2346 if (Cmp->use_empty()) 2347 Cmp->eraseFromParent(); 2348 return NewCond; 2349 } 2350 2351 /// Change loop terminating condition to use the postinc iv when possible. 2352 void 2353 LSRInstance::OptimizeLoopTermCond() { 2354 SmallPtrSet<Instruction *, 4> PostIncs; 2355 2356 // We need a different set of heuristics for rotated and non-rotated loops. 2357 // If a loop is rotated then the latch is also the backedge, so inserting 2358 // post-inc expressions just before the latch is ideal. To reduce live ranges 2359 // it also makes sense to rewrite terminating conditions to use post-inc 2360 // expressions. 2361 // 2362 // If the loop is not rotated then the latch is not a backedge; the latch 2363 // check is done in the loop head. Adding post-inc expressions before the 2364 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2365 // in the loop body. In this case we do *not* want to use post-inc expressions 2366 // in the latch check, and we want to insert post-inc expressions before 2367 // the backedge. 2368 BasicBlock *LatchBlock = L->getLoopLatch(); 2369 SmallVector<BasicBlock*, 8> ExitingBlocks; 2370 L->getExitingBlocks(ExitingBlocks); 2371 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2372 return LatchBlock != BB; 2373 })) { 2374 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2375 IVIncInsertPos = LatchBlock->getTerminator(); 2376 return; 2377 } 2378 2379 // Otherwise treat this as a rotated loop. 2380 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2381 // Get the terminating condition for the loop if possible. If we 2382 // can, we want to change it to use a post-incremented version of its 2383 // induction variable, to allow coalescing the live ranges for the IV into 2384 // one register value. 2385 2386 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2387 if (!TermBr) 2388 continue; 2389 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2390 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2391 continue; 2392 2393 // Search IVUsesByStride to find Cond's IVUse if there is one. 2394 IVStrideUse *CondUse = nullptr; 2395 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2396 if (!FindIVUserForCond(Cond, CondUse)) 2397 continue; 2398 2399 // If the trip count is computed in terms of a max (due to ScalarEvolution 2400 // being unable to find a sufficient guard, for example), change the loop 2401 // comparison to use SLT or ULT instead of NE. 2402 // One consequence of doing this now is that it disrupts the count-down 2403 // optimization. That's not always a bad thing though, because in such 2404 // cases it may still be worthwhile to avoid a max. 2405 Cond = OptimizeMax(Cond, CondUse); 2406 2407 // If this exiting block dominates the latch block, it may also use 2408 // the post-inc value if it won't be shared with other uses. 2409 // Check for dominance. 2410 if (!DT.dominates(ExitingBlock, LatchBlock)) 2411 continue; 2412 2413 // Conservatively avoid trying to use the post-inc value in non-latch 2414 // exits if there may be pre-inc users in intervening blocks. 2415 if (LatchBlock != ExitingBlock) 2416 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2417 // Test if the use is reachable from the exiting block. This dominator 2418 // query is a conservative approximation of reachability. 2419 if (&*UI != CondUse && 2420 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2421 // Conservatively assume there may be reuse if the quotient of their 2422 // strides could be a legal scale. 2423 const SCEV *A = IU.getStride(*CondUse, L); 2424 const SCEV *B = IU.getStride(*UI, L); 2425 if (!A || !B) continue; 2426 if (SE.getTypeSizeInBits(A->getType()) != 2427 SE.getTypeSizeInBits(B->getType())) { 2428 if (SE.getTypeSizeInBits(A->getType()) > 2429 SE.getTypeSizeInBits(B->getType())) 2430 B = SE.getSignExtendExpr(B, A->getType()); 2431 else 2432 A = SE.getSignExtendExpr(A, B->getType()); 2433 } 2434 if (const SCEVConstant *D = 2435 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2436 const ConstantInt *C = D->getValue(); 2437 // Stride of one or negative one can have reuse with non-addresses. 2438 if (C->isOne() || C->isMinusOne()) 2439 goto decline_post_inc; 2440 // Avoid weird situations. 2441 if (C->getValue().getMinSignedBits() >= 64 || 2442 C->getValue().isMinSignedValue()) 2443 goto decline_post_inc; 2444 // Check for possible scaled-address reuse. 2445 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2446 MemAccessTy AccessTy = getAccessType( 2447 TTI, UI->getUser(), UI->getOperandValToReplace()); 2448 int64_t Scale = C->getSExtValue(); 2449 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2450 /*BaseOffset=*/0, 2451 /*HasBaseReg=*/false, Scale, 2452 AccessTy.AddrSpace)) 2453 goto decline_post_inc; 2454 Scale = -Scale; 2455 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2456 /*BaseOffset=*/0, 2457 /*HasBaseReg=*/false, Scale, 2458 AccessTy.AddrSpace)) 2459 goto decline_post_inc; 2460 } 2461 } 2462 } 2463 2464 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2465 << *Cond << '\n'); 2466 2467 // It's possible for the setcc instruction to be anywhere in the loop, and 2468 // possible for it to have multiple users. If it is not immediately before 2469 // the exiting block branch, move it. 2470 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2471 if (Cond->hasOneUse()) { 2472 Cond->moveBefore(TermBr); 2473 } else { 2474 // Clone the terminating condition and insert into the loopend. 2475 ICmpInst *OldCond = Cond; 2476 Cond = cast<ICmpInst>(Cond->clone()); 2477 Cond->setName(L->getHeader()->getName() + ".termcond"); 2478 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2479 2480 // Clone the IVUse, as the old use still exists! 2481 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2482 TermBr->replaceUsesOfWith(OldCond, Cond); 2483 } 2484 } 2485 2486 // If we get to here, we know that we can transform the setcc instruction to 2487 // use the post-incremented version of the IV, allowing us to coalesce the 2488 // live ranges for the IV correctly. 2489 CondUse->transformToPostInc(L); 2490 Changed = true; 2491 2492 PostIncs.insert(Cond); 2493 decline_post_inc:; 2494 } 2495 2496 // Determine an insertion point for the loop induction variable increment. It 2497 // must dominate all the post-inc comparisons we just set up, and it must 2498 // dominate the loop latch edge. 2499 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2500 for (Instruction *Inst : PostIncs) { 2501 BasicBlock *BB = 2502 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2503 Inst->getParent()); 2504 if (BB == Inst->getParent()) 2505 IVIncInsertPos = Inst; 2506 else if (BB != IVIncInsertPos->getParent()) 2507 IVIncInsertPos = BB->getTerminator(); 2508 } 2509 } 2510 2511 /// Determine if the given use can accommodate a fixup at the given offset and 2512 /// other details. If so, update the use and return true. 2513 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2514 bool HasBaseReg, LSRUse::KindType Kind, 2515 MemAccessTy AccessTy) { 2516 int64_t NewMinOffset = LU.MinOffset; 2517 int64_t NewMaxOffset = LU.MaxOffset; 2518 MemAccessTy NewAccessTy = AccessTy; 2519 2520 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2521 // something conservative, however this can pessimize in the case that one of 2522 // the uses will have all its uses outside the loop, for example. 2523 if (LU.Kind != Kind) 2524 return false; 2525 2526 // Check for a mismatched access type, and fall back conservatively as needed. 2527 // TODO: Be less conservative when the type is similar and can use the same 2528 // addressing modes. 2529 if (Kind == LSRUse::Address) { 2530 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2531 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2532 AccessTy.AddrSpace); 2533 } 2534 } 2535 2536 // Conservatively assume HasBaseReg is true for now. 2537 if (NewOffset < LU.MinOffset) { 2538 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2539 LU.MaxOffset - NewOffset, HasBaseReg)) 2540 return false; 2541 NewMinOffset = NewOffset; 2542 } else if (NewOffset > LU.MaxOffset) { 2543 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2544 NewOffset - LU.MinOffset, HasBaseReg)) 2545 return false; 2546 NewMaxOffset = NewOffset; 2547 } 2548 2549 // Update the use. 2550 LU.MinOffset = NewMinOffset; 2551 LU.MaxOffset = NewMaxOffset; 2552 LU.AccessTy = NewAccessTy; 2553 return true; 2554 } 2555 2556 /// Return an LSRUse index and an offset value for a fixup which needs the given 2557 /// expression, with the given kind and optional access type. Either reuse an 2558 /// existing use or create a new one, as needed. 2559 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2560 LSRUse::KindType Kind, 2561 MemAccessTy AccessTy) { 2562 const SCEV *Copy = Expr; 2563 int64_t Offset = ExtractImmediate(Expr, SE); 2564 2565 // Basic uses can't accept any offset, for example. 2566 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2567 Offset, /*HasBaseReg=*/ true)) { 2568 Expr = Copy; 2569 Offset = 0; 2570 } 2571 2572 std::pair<UseMapTy::iterator, bool> P = 2573 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2574 if (!P.second) { 2575 // A use already existed with this base. 2576 size_t LUIdx = P.first->second; 2577 LSRUse &LU = Uses[LUIdx]; 2578 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2579 // Reuse this use. 2580 return std::make_pair(LUIdx, Offset); 2581 } 2582 2583 // Create a new use. 2584 size_t LUIdx = Uses.size(); 2585 P.first->second = LUIdx; 2586 Uses.push_back(LSRUse(Kind, AccessTy)); 2587 LSRUse &LU = Uses[LUIdx]; 2588 2589 LU.MinOffset = Offset; 2590 LU.MaxOffset = Offset; 2591 return std::make_pair(LUIdx, Offset); 2592 } 2593 2594 /// Delete the given use from the Uses list. 2595 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2596 if (&LU != &Uses.back()) 2597 std::swap(LU, Uses.back()); 2598 Uses.pop_back(); 2599 2600 // Update RegUses. 2601 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2602 } 2603 2604 /// Look for a use distinct from OrigLU which is has a formula that has the same 2605 /// registers as the given formula. 2606 LSRUse * 2607 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2608 const LSRUse &OrigLU) { 2609 // Search all uses for the formula. This could be more clever. 2610 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2611 LSRUse &LU = Uses[LUIdx]; 2612 // Check whether this use is close enough to OrigLU, to see whether it's 2613 // worthwhile looking through its formulae. 2614 // Ignore ICmpZero uses because they may contain formulae generated by 2615 // GenerateICmpZeroScales, in which case adding fixup offsets may 2616 // be invalid. 2617 if (&LU != &OrigLU && 2618 LU.Kind != LSRUse::ICmpZero && 2619 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2620 LU.WidestFixupType == OrigLU.WidestFixupType && 2621 LU.HasFormulaWithSameRegs(OrigF)) { 2622 // Scan through this use's formulae. 2623 for (const Formula &F : LU.Formulae) { 2624 // Check to see if this formula has the same registers and symbols 2625 // as OrigF. 2626 if (F.BaseRegs == OrigF.BaseRegs && 2627 F.ScaledReg == OrigF.ScaledReg && 2628 F.BaseGV == OrigF.BaseGV && 2629 F.Scale == OrigF.Scale && 2630 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2631 if (F.BaseOffset == 0) 2632 return &LU; 2633 // This is the formula where all the registers and symbols matched; 2634 // there aren't going to be any others. Since we declined it, we 2635 // can skip the rest of the formulae and proceed to the next LSRUse. 2636 break; 2637 } 2638 } 2639 } 2640 } 2641 2642 // Nothing looked good. 2643 return nullptr; 2644 } 2645 2646 void LSRInstance::CollectInterestingTypesAndFactors() { 2647 SmallSetVector<const SCEV *, 4> Strides; 2648 2649 // Collect interesting types and strides. 2650 SmallVector<const SCEV *, 4> Worklist; 2651 for (const IVStrideUse &U : IU) { 2652 const SCEV *Expr = IU.getExpr(U); 2653 2654 // Collect interesting types. 2655 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2656 2657 // Add strides for mentioned loops. 2658 Worklist.push_back(Expr); 2659 do { 2660 const SCEV *S = Worklist.pop_back_val(); 2661 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2662 if (AR->getLoop() == L) 2663 Strides.insert(AR->getStepRecurrence(SE)); 2664 Worklist.push_back(AR->getStart()); 2665 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2666 Worklist.append(Add->op_begin(), Add->op_end()); 2667 } 2668 } while (!Worklist.empty()); 2669 } 2670 2671 // Compute interesting factors from the set of interesting strides. 2672 for (SmallSetVector<const SCEV *, 4>::const_iterator 2673 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2674 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2675 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2676 const SCEV *OldStride = *I; 2677 const SCEV *NewStride = *NewStrideIter; 2678 2679 if (SE.getTypeSizeInBits(OldStride->getType()) != 2680 SE.getTypeSizeInBits(NewStride->getType())) { 2681 if (SE.getTypeSizeInBits(OldStride->getType()) > 2682 SE.getTypeSizeInBits(NewStride->getType())) 2683 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2684 else 2685 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2686 } 2687 if (const SCEVConstant *Factor = 2688 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2689 SE, true))) { 2690 if (Factor->getAPInt().getMinSignedBits() <= 64) 2691 Factors.insert(Factor->getAPInt().getSExtValue()); 2692 } else if (const SCEVConstant *Factor = 2693 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2694 NewStride, 2695 SE, true))) { 2696 if (Factor->getAPInt().getMinSignedBits() <= 64) 2697 Factors.insert(Factor->getAPInt().getSExtValue()); 2698 } 2699 } 2700 2701 // If all uses use the same type, don't bother looking for truncation-based 2702 // reuse. 2703 if (Types.size() == 1) 2704 Types.clear(); 2705 2706 LLVM_DEBUG(print_factors_and_types(dbgs())); 2707 } 2708 2709 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2710 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2711 /// IVStrideUses, we could partially skip this. 2712 static User::op_iterator 2713 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2714 Loop *L, ScalarEvolution &SE) { 2715 for(; OI != OE; ++OI) { 2716 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2717 if (!SE.isSCEVable(Oper->getType())) 2718 continue; 2719 2720 if (const SCEVAddRecExpr *AR = 2721 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2722 if (AR->getLoop() == L) 2723 break; 2724 } 2725 } 2726 } 2727 return OI; 2728 } 2729 2730 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2731 /// a convenient helper. 2732 static Value *getWideOperand(Value *Oper) { 2733 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2734 return Trunc->getOperand(0); 2735 return Oper; 2736 } 2737 2738 /// Return true if we allow an IV chain to include both types. 2739 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2740 Type *LType = LVal->getType(); 2741 Type *RType = RVal->getType(); 2742 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2743 // Different address spaces means (possibly) 2744 // different types of the pointer implementation, 2745 // e.g. i16 vs i32 so disallow that. 2746 (LType->getPointerAddressSpace() == 2747 RType->getPointerAddressSpace())); 2748 } 2749 2750 /// Return an approximation of this SCEV expression's "base", or NULL for any 2751 /// constant. Returning the expression itself is conservative. Returning a 2752 /// deeper subexpression is more precise and valid as long as it isn't less 2753 /// complex than another subexpression. For expressions involving multiple 2754 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2755 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2756 /// IVInc==b-a. 2757 /// 2758 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2759 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2760 static const SCEV *getExprBase(const SCEV *S) { 2761 switch (S->getSCEVType()) { 2762 default: // uncluding scUnknown. 2763 return S; 2764 case scConstant: 2765 return nullptr; 2766 case scTruncate: 2767 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2768 case scZeroExtend: 2769 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2770 case scSignExtend: 2771 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2772 case scAddExpr: { 2773 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2774 // there's nothing more complex. 2775 // FIXME: not sure if we want to recognize negation. 2776 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2777 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2778 E(Add->op_begin()); I != E; ++I) { 2779 const SCEV *SubExpr = *I; 2780 if (SubExpr->getSCEVType() == scAddExpr) 2781 return getExprBase(SubExpr); 2782 2783 if (SubExpr->getSCEVType() != scMulExpr) 2784 return SubExpr; 2785 } 2786 return S; // all operands are scaled, be conservative. 2787 } 2788 case scAddRecExpr: 2789 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2790 } 2791 } 2792 2793 /// Return true if the chain increment is profitable to expand into a loop 2794 /// invariant value, which may require its own register. A profitable chain 2795 /// increment will be an offset relative to the same base. We allow such offsets 2796 /// to potentially be used as chain increment as long as it's not obviously 2797 /// expensive to expand using real instructions. 2798 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2799 const SCEV *IncExpr, 2800 ScalarEvolution &SE) { 2801 // Aggressively form chains when -stress-ivchain. 2802 if (StressIVChain) 2803 return true; 2804 2805 // Do not replace a constant offset from IV head with a nonconstant IV 2806 // increment. 2807 if (!isa<SCEVConstant>(IncExpr)) { 2808 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2809 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2810 return false; 2811 } 2812 2813 SmallPtrSet<const SCEV*, 8> Processed; 2814 return !isHighCostExpansion(IncExpr, Processed, SE); 2815 } 2816 2817 /// Return true if the number of registers needed for the chain is estimated to 2818 /// be less than the number required for the individual IV users. First prohibit 2819 /// any IV users that keep the IV live across increments (the Users set should 2820 /// be empty). Next count the number and type of increments in the chain. 2821 /// 2822 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2823 /// effectively use postinc addressing modes. Only consider it profitable it the 2824 /// increments can be computed in fewer registers when chained. 2825 /// 2826 /// TODO: Consider IVInc free if it's already used in another chains. 2827 static bool 2828 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2829 ScalarEvolution &SE) { 2830 if (StressIVChain) 2831 return true; 2832 2833 if (!Chain.hasIncs()) 2834 return false; 2835 2836 if (!Users.empty()) { 2837 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2838 for (Instruction *Inst 2839 : Users) { dbgs() << " " << *Inst << "\n"; }); 2840 return false; 2841 } 2842 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2843 2844 // The chain itself may require a register, so intialize cost to 1. 2845 int cost = 1; 2846 2847 // A complete chain likely eliminates the need for keeping the original IV in 2848 // a register. LSR does not currently know how to form a complete chain unless 2849 // the header phi already exists. 2850 if (isa<PHINode>(Chain.tailUserInst()) 2851 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2852 --cost; 2853 } 2854 const SCEV *LastIncExpr = nullptr; 2855 unsigned NumConstIncrements = 0; 2856 unsigned NumVarIncrements = 0; 2857 unsigned NumReusedIncrements = 0; 2858 for (const IVInc &Inc : Chain) { 2859 if (Inc.IncExpr->isZero()) 2860 continue; 2861 2862 // Incrementing by zero or some constant is neutral. We assume constants can 2863 // be folded into an addressing mode or an add's immediate operand. 2864 if (isa<SCEVConstant>(Inc.IncExpr)) { 2865 ++NumConstIncrements; 2866 continue; 2867 } 2868 2869 if (Inc.IncExpr == LastIncExpr) 2870 ++NumReusedIncrements; 2871 else 2872 ++NumVarIncrements; 2873 2874 LastIncExpr = Inc.IncExpr; 2875 } 2876 // An IV chain with a single increment is handled by LSR's postinc 2877 // uses. However, a chain with multiple increments requires keeping the IV's 2878 // value live longer than it needs to be if chained. 2879 if (NumConstIncrements > 1) 2880 --cost; 2881 2882 // Materializing increment expressions in the preheader that didn't exist in 2883 // the original code may cost a register. For example, sign-extended array 2884 // indices can produce ridiculous increments like this: 2885 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2886 cost += NumVarIncrements; 2887 2888 // Reusing variable increments likely saves a register to hold the multiple of 2889 // the stride. 2890 cost -= NumReusedIncrements; 2891 2892 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2893 << "\n"); 2894 2895 return cost < 0; 2896 } 2897 2898 /// Add this IV user to an existing chain or make it the head of a new chain. 2899 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2900 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2901 // When IVs are used as types of varying widths, they are generally converted 2902 // to a wider type with some uses remaining narrow under a (free) trunc. 2903 Value *const NextIV = getWideOperand(IVOper); 2904 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2905 const SCEV *const OperExprBase = getExprBase(OperExpr); 2906 2907 // Visit all existing chains. Check if its IVOper can be computed as a 2908 // profitable loop invariant increment from the last link in the Chain. 2909 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2910 const SCEV *LastIncExpr = nullptr; 2911 for (; ChainIdx < NChains; ++ChainIdx) { 2912 IVChain &Chain = IVChainVec[ChainIdx]; 2913 2914 // Prune the solution space aggressively by checking that both IV operands 2915 // are expressions that operate on the same unscaled SCEVUnknown. This 2916 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2917 // first avoids creating extra SCEV expressions. 2918 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2919 continue; 2920 2921 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2922 if (!isCompatibleIVType(PrevIV, NextIV)) 2923 continue; 2924 2925 // A phi node terminates a chain. 2926 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2927 continue; 2928 2929 // The increment must be loop-invariant so it can be kept in a register. 2930 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2931 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2932 if (!SE.isLoopInvariant(IncExpr, L)) 2933 continue; 2934 2935 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2936 LastIncExpr = IncExpr; 2937 break; 2938 } 2939 } 2940 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2941 // bother for phi nodes, because they must be last in the chain. 2942 if (ChainIdx == NChains) { 2943 if (isa<PHINode>(UserInst)) 2944 return; 2945 if (NChains >= MaxChains && !StressIVChain) { 2946 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2947 return; 2948 } 2949 LastIncExpr = OperExpr; 2950 // IVUsers may have skipped over sign/zero extensions. We don't currently 2951 // attempt to form chains involving extensions unless they can be hoisted 2952 // into this loop's AddRec. 2953 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2954 return; 2955 ++NChains; 2956 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2957 OperExprBase)); 2958 ChainUsersVec.resize(NChains); 2959 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2960 << ") IV=" << *LastIncExpr << "\n"); 2961 } else { 2962 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2963 << ") IV+" << *LastIncExpr << "\n"); 2964 // Add this IV user to the end of the chain. 2965 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2966 } 2967 IVChain &Chain = IVChainVec[ChainIdx]; 2968 2969 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2970 // This chain's NearUsers become FarUsers. 2971 if (!LastIncExpr->isZero()) { 2972 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2973 NearUsers.end()); 2974 NearUsers.clear(); 2975 } 2976 2977 // All other uses of IVOperand become near uses of the chain. 2978 // We currently ignore intermediate values within SCEV expressions, assuming 2979 // they will eventually be used be the current chain, or can be computed 2980 // from one of the chain increments. To be more precise we could 2981 // transitively follow its user and only add leaf IV users to the set. 2982 for (User *U : IVOper->users()) { 2983 Instruction *OtherUse = dyn_cast<Instruction>(U); 2984 if (!OtherUse) 2985 continue; 2986 // Uses in the chain will no longer be uses if the chain is formed. 2987 // Include the head of the chain in this iteration (not Chain.begin()). 2988 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2989 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2990 for( ; IncIter != IncEnd; ++IncIter) { 2991 if (IncIter->UserInst == OtherUse) 2992 break; 2993 } 2994 if (IncIter != IncEnd) 2995 continue; 2996 2997 if (SE.isSCEVable(OtherUse->getType()) 2998 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2999 && IU.isIVUserOrOperand(OtherUse)) { 3000 continue; 3001 } 3002 NearUsers.insert(OtherUse); 3003 } 3004 3005 // Since this user is part of the chain, it's no longer considered a use 3006 // of the chain. 3007 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3008 } 3009 3010 /// Populate the vector of Chains. 3011 /// 3012 /// This decreases ILP at the architecture level. Targets with ample registers, 3013 /// multiple memory ports, and no register renaming probably don't want 3014 /// this. However, such targets should probably disable LSR altogether. 3015 /// 3016 /// The job of LSR is to make a reasonable choice of induction variables across 3017 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3018 /// ILP *within the loop* if the target wants it. 3019 /// 3020 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3021 /// will not reorder memory operations, it will recognize this as a chain, but 3022 /// will generate redundant IV increments. Ideally this would be corrected later 3023 /// by a smart scheduler: 3024 /// = A[i] 3025 /// = A[i+x] 3026 /// A[i] = 3027 /// A[i+x] = 3028 /// 3029 /// TODO: Walk the entire domtree within this loop, not just the path to the 3030 /// loop latch. This will discover chains on side paths, but requires 3031 /// maintaining multiple copies of the Chains state. 3032 void LSRInstance::CollectChains() { 3033 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3034 SmallVector<ChainUsers, 8> ChainUsersVec; 3035 3036 SmallVector<BasicBlock *,8> LatchPath; 3037 BasicBlock *LoopHeader = L->getHeader(); 3038 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3039 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3040 LatchPath.push_back(Rung->getBlock()); 3041 } 3042 LatchPath.push_back(LoopHeader); 3043 3044 // Walk the instruction stream from the loop header to the loop latch. 3045 for (BasicBlock *BB : reverse(LatchPath)) { 3046 for (Instruction &I : *BB) { 3047 // Skip instructions that weren't seen by IVUsers analysis. 3048 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3049 continue; 3050 3051 // Ignore users that are part of a SCEV expression. This way we only 3052 // consider leaf IV Users. This effectively rediscovers a portion of 3053 // IVUsers analysis but in program order this time. 3054 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3055 continue; 3056 3057 // Remove this instruction from any NearUsers set it may be in. 3058 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3059 ChainIdx < NChains; ++ChainIdx) { 3060 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3061 } 3062 // Search for operands that can be chained. 3063 SmallPtrSet<Instruction*, 4> UniqueOperands; 3064 User::op_iterator IVOpEnd = I.op_end(); 3065 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3066 while (IVOpIter != IVOpEnd) { 3067 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3068 if (UniqueOperands.insert(IVOpInst).second) 3069 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3070 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3071 } 3072 } // Continue walking down the instructions. 3073 } // Continue walking down the domtree. 3074 // Visit phi backedges to determine if the chain can generate the IV postinc. 3075 for (PHINode &PN : L->getHeader()->phis()) { 3076 if (!SE.isSCEVable(PN.getType())) 3077 continue; 3078 3079 Instruction *IncV = 3080 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3081 if (IncV) 3082 ChainInstruction(&PN, IncV, ChainUsersVec); 3083 } 3084 // Remove any unprofitable chains. 3085 unsigned ChainIdx = 0; 3086 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3087 UsersIdx < NChains; ++UsersIdx) { 3088 if (!isProfitableChain(IVChainVec[UsersIdx], 3089 ChainUsersVec[UsersIdx].FarUsers, SE)) 3090 continue; 3091 // Preserve the chain at UsesIdx. 3092 if (ChainIdx != UsersIdx) 3093 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3094 FinalizeChain(IVChainVec[ChainIdx]); 3095 ++ChainIdx; 3096 } 3097 IVChainVec.resize(ChainIdx); 3098 } 3099 3100 void LSRInstance::FinalizeChain(IVChain &Chain) { 3101 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3102 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3103 3104 for (const IVInc &Inc : Chain) { 3105 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3106 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3107 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3108 IVIncSet.insert(UseI); 3109 } 3110 } 3111 3112 /// Return true if the IVInc can be folded into an addressing mode. 3113 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3114 Value *Operand, const TargetTransformInfo &TTI) { 3115 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3116 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3117 return false; 3118 3119 if (IncConst->getAPInt().getMinSignedBits() > 64) 3120 return false; 3121 3122 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3123 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3124 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3125 IncOffset, /*HaseBaseReg=*/false)) 3126 return false; 3127 3128 return true; 3129 } 3130 3131 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3132 /// user's operand from the previous IV user's operand. 3133 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3134 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3135 // Find the new IVOperand for the head of the chain. It may have been replaced 3136 // by LSR. 3137 const IVInc &Head = Chain.Incs[0]; 3138 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3139 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3140 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3141 IVOpEnd, L, SE); 3142 Value *IVSrc = nullptr; 3143 while (IVOpIter != IVOpEnd) { 3144 IVSrc = getWideOperand(*IVOpIter); 3145 3146 // If this operand computes the expression that the chain needs, we may use 3147 // it. (Check this after setting IVSrc which is used below.) 3148 // 3149 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3150 // narrow for the chain, so we can no longer use it. We do allow using a 3151 // wider phi, assuming the LSR checked for free truncation. In that case we 3152 // should already have a truncate on this operand such that 3153 // getSCEV(IVSrc) == IncExpr. 3154 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3155 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3156 break; 3157 } 3158 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3159 } 3160 if (IVOpIter == IVOpEnd) { 3161 // Gracefully give up on this chain. 3162 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3163 return; 3164 } 3165 3166 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3167 Type *IVTy = IVSrc->getType(); 3168 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3169 const SCEV *LeftOverExpr = nullptr; 3170 for (const IVInc &Inc : Chain) { 3171 Instruction *InsertPt = Inc.UserInst; 3172 if (isa<PHINode>(InsertPt)) 3173 InsertPt = L->getLoopLatch()->getTerminator(); 3174 3175 // IVOper will replace the current IV User's operand. IVSrc is the IV 3176 // value currently held in a register. 3177 Value *IVOper = IVSrc; 3178 if (!Inc.IncExpr->isZero()) { 3179 // IncExpr was the result of subtraction of two narrow values, so must 3180 // be signed. 3181 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3182 LeftOverExpr = LeftOverExpr ? 3183 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3184 } 3185 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3186 // Expand the IV increment. 3187 Rewriter.clearPostInc(); 3188 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3189 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3190 SE.getUnknown(IncV)); 3191 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3192 3193 // If an IV increment can't be folded, use it as the next IV value. 3194 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3195 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3196 IVSrc = IVOper; 3197 LeftOverExpr = nullptr; 3198 } 3199 } 3200 Type *OperTy = Inc.IVOperand->getType(); 3201 if (IVTy != OperTy) { 3202 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3203 "cannot extend a chained IV"); 3204 IRBuilder<> Builder(InsertPt); 3205 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3206 } 3207 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3208 DeadInsts.emplace_back(Inc.IVOperand); 3209 } 3210 // If LSR created a new, wider phi, we may also replace its postinc. We only 3211 // do this if we also found a wide value for the head of the chain. 3212 if (isa<PHINode>(Chain.tailUserInst())) { 3213 for (PHINode &Phi : L->getHeader()->phis()) { 3214 if (!isCompatibleIVType(&Phi, IVSrc)) 3215 continue; 3216 Instruction *PostIncV = dyn_cast<Instruction>( 3217 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3218 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3219 continue; 3220 Value *IVOper = IVSrc; 3221 Type *PostIncTy = PostIncV->getType(); 3222 if (IVTy != PostIncTy) { 3223 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3224 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3225 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3226 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3227 } 3228 Phi.replaceUsesOfWith(PostIncV, IVOper); 3229 DeadInsts.emplace_back(PostIncV); 3230 } 3231 } 3232 } 3233 3234 void LSRInstance::CollectFixupsAndInitialFormulae() { 3235 for (const IVStrideUse &U : IU) { 3236 Instruction *UserInst = U.getUser(); 3237 // Skip IV users that are part of profitable IV Chains. 3238 User::op_iterator UseI = 3239 find(UserInst->operands(), U.getOperandValToReplace()); 3240 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3241 if (IVIncSet.count(UseI)) { 3242 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3243 continue; 3244 } 3245 3246 LSRUse::KindType Kind = LSRUse::Basic; 3247 MemAccessTy AccessTy; 3248 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3249 Kind = LSRUse::Address; 3250 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3251 } 3252 3253 const SCEV *S = IU.getExpr(U); 3254 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3255 3256 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3257 // (N - i == 0), and this allows (N - i) to be the expression that we work 3258 // with rather than just N or i, so we can consider the register 3259 // requirements for both N and i at the same time. Limiting this code to 3260 // equality icmps is not a problem because all interesting loops use 3261 // equality icmps, thanks to IndVarSimplify. 3262 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3263 if (CI->isEquality()) { 3264 // Swap the operands if needed to put the OperandValToReplace on the 3265 // left, for consistency. 3266 Value *NV = CI->getOperand(1); 3267 if (NV == U.getOperandValToReplace()) { 3268 CI->setOperand(1, CI->getOperand(0)); 3269 CI->setOperand(0, NV); 3270 NV = CI->getOperand(1); 3271 Changed = true; 3272 } 3273 3274 // x == y --> x - y == 0 3275 const SCEV *N = SE.getSCEV(NV); 3276 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3277 // S is normalized, so normalize N before folding it into S 3278 // to keep the result normalized. 3279 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3280 Kind = LSRUse::ICmpZero; 3281 S = SE.getMinusSCEV(N, S); 3282 } 3283 3284 // -1 and the negations of all interesting strides (except the negation 3285 // of -1) are now also interesting. 3286 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3287 if (Factors[i] != -1) 3288 Factors.insert(-(uint64_t)Factors[i]); 3289 Factors.insert(-1); 3290 } 3291 3292 // Get or create an LSRUse. 3293 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3294 size_t LUIdx = P.first; 3295 int64_t Offset = P.second; 3296 LSRUse &LU = Uses[LUIdx]; 3297 3298 // Record the fixup. 3299 LSRFixup &LF = LU.getNewFixup(); 3300 LF.UserInst = UserInst; 3301 LF.OperandValToReplace = U.getOperandValToReplace(); 3302 LF.PostIncLoops = TmpPostIncLoops; 3303 LF.Offset = Offset; 3304 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3305 3306 if (!LU.WidestFixupType || 3307 SE.getTypeSizeInBits(LU.WidestFixupType) < 3308 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3309 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3310 3311 // If this is the first use of this LSRUse, give it a formula. 3312 if (LU.Formulae.empty()) { 3313 InsertInitialFormula(S, LU, LUIdx); 3314 CountRegisters(LU.Formulae.back(), LUIdx); 3315 } 3316 } 3317 3318 LLVM_DEBUG(print_fixups(dbgs())); 3319 } 3320 3321 /// Insert a formula for the given expression into the given use, separating out 3322 /// loop-variant portions from loop-invariant and loop-computable portions. 3323 void 3324 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3325 // Mark uses whose expressions cannot be expanded. 3326 if (!isSafeToExpand(S, SE)) 3327 LU.RigidFormula = true; 3328 3329 Formula F; 3330 F.initialMatch(S, L, SE); 3331 bool Inserted = InsertFormula(LU, LUIdx, F); 3332 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3333 } 3334 3335 /// Insert a simple single-register formula for the given expression into the 3336 /// given use. 3337 void 3338 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3339 LSRUse &LU, size_t LUIdx) { 3340 Formula F; 3341 F.BaseRegs.push_back(S); 3342 F.HasBaseReg = true; 3343 bool Inserted = InsertFormula(LU, LUIdx, F); 3344 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3345 } 3346 3347 /// Note which registers are used by the given formula, updating RegUses. 3348 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3349 if (F.ScaledReg) 3350 RegUses.countRegister(F.ScaledReg, LUIdx); 3351 for (const SCEV *BaseReg : F.BaseRegs) 3352 RegUses.countRegister(BaseReg, LUIdx); 3353 } 3354 3355 /// If the given formula has not yet been inserted, add it to the list, and 3356 /// return true. Return false otherwise. 3357 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3358 // Do not insert formula that we will not be able to expand. 3359 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3360 "Formula is illegal"); 3361 3362 if (!LU.InsertFormula(F, *L)) 3363 return false; 3364 3365 CountRegisters(F, LUIdx); 3366 return true; 3367 } 3368 3369 /// Check for other uses of loop-invariant values which we're tracking. These 3370 /// other uses will pin these values in registers, making them less profitable 3371 /// for elimination. 3372 /// TODO: This currently misses non-constant addrec step registers. 3373 /// TODO: Should this give more weight to users inside the loop? 3374 void 3375 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3376 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3377 SmallPtrSet<const SCEV *, 32> Visited; 3378 3379 while (!Worklist.empty()) { 3380 const SCEV *S = Worklist.pop_back_val(); 3381 3382 // Don't process the same SCEV twice 3383 if (!Visited.insert(S).second) 3384 continue; 3385 3386 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3387 Worklist.append(N->op_begin(), N->op_end()); 3388 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3389 Worklist.push_back(C->getOperand()); 3390 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3391 Worklist.push_back(D->getLHS()); 3392 Worklist.push_back(D->getRHS()); 3393 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3394 const Value *V = US->getValue(); 3395 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3396 // Look for instructions defined outside the loop. 3397 if (L->contains(Inst)) continue; 3398 } else if (isa<UndefValue>(V)) 3399 // Undef doesn't have a live range, so it doesn't matter. 3400 continue; 3401 for (const Use &U : V->uses()) { 3402 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3403 // Ignore non-instructions. 3404 if (!UserInst) 3405 continue; 3406 // Ignore instructions in other functions (as can happen with 3407 // Constants). 3408 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3409 continue; 3410 // Ignore instructions not dominated by the loop. 3411 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3412 UserInst->getParent() : 3413 cast<PHINode>(UserInst)->getIncomingBlock( 3414 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3415 if (!DT.dominates(L->getHeader(), UseBB)) 3416 continue; 3417 // Don't bother if the instruction is in a BB which ends in an EHPad. 3418 if (UseBB->getTerminator()->isEHPad()) 3419 continue; 3420 // Don't bother rewriting PHIs in catchswitch blocks. 3421 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3422 continue; 3423 // Ignore uses which are part of other SCEV expressions, to avoid 3424 // analyzing them multiple times. 3425 if (SE.isSCEVable(UserInst->getType())) { 3426 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3427 // If the user is a no-op, look through to its uses. 3428 if (!isa<SCEVUnknown>(UserS)) 3429 continue; 3430 if (UserS == US) { 3431 Worklist.push_back( 3432 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3433 continue; 3434 } 3435 } 3436 // Ignore icmp instructions which are already being analyzed. 3437 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3438 unsigned OtherIdx = !U.getOperandNo(); 3439 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3440 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3441 continue; 3442 } 3443 3444 std::pair<size_t, int64_t> P = getUse( 3445 S, LSRUse::Basic, MemAccessTy()); 3446 size_t LUIdx = P.first; 3447 int64_t Offset = P.second; 3448 LSRUse &LU = Uses[LUIdx]; 3449 LSRFixup &LF = LU.getNewFixup(); 3450 LF.UserInst = const_cast<Instruction *>(UserInst); 3451 LF.OperandValToReplace = U; 3452 LF.Offset = Offset; 3453 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3454 if (!LU.WidestFixupType || 3455 SE.getTypeSizeInBits(LU.WidestFixupType) < 3456 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3457 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3458 InsertSupplementalFormula(US, LU, LUIdx); 3459 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3460 break; 3461 } 3462 } 3463 } 3464 } 3465 3466 /// Split S into subexpressions which can be pulled out into separate 3467 /// registers. If C is non-null, multiply each subexpression by C. 3468 /// 3469 /// Return remainder expression after factoring the subexpressions captured by 3470 /// Ops. If Ops is complete, return NULL. 3471 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3472 SmallVectorImpl<const SCEV *> &Ops, 3473 const Loop *L, 3474 ScalarEvolution &SE, 3475 unsigned Depth = 0) { 3476 // Arbitrarily cap recursion to protect compile time. 3477 if (Depth >= 3) 3478 return S; 3479 3480 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3481 // Break out add operands. 3482 for (const SCEV *S : Add->operands()) { 3483 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3484 if (Remainder) 3485 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3486 } 3487 return nullptr; 3488 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3489 // Split a non-zero base out of an addrec. 3490 if (AR->getStart()->isZero() || !AR->isAffine()) 3491 return S; 3492 3493 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3494 C, Ops, L, SE, Depth+1); 3495 // Split the non-zero AddRec unless it is part of a nested recurrence that 3496 // does not pertain to this loop. 3497 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3498 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3499 Remainder = nullptr; 3500 } 3501 if (Remainder != AR->getStart()) { 3502 if (!Remainder) 3503 Remainder = SE.getConstant(AR->getType(), 0); 3504 return SE.getAddRecExpr(Remainder, 3505 AR->getStepRecurrence(SE), 3506 AR->getLoop(), 3507 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3508 SCEV::FlagAnyWrap); 3509 } 3510 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3511 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3512 if (Mul->getNumOperands() != 2) 3513 return S; 3514 if (const SCEVConstant *Op0 = 3515 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3516 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3517 const SCEV *Remainder = 3518 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3519 if (Remainder) 3520 Ops.push_back(SE.getMulExpr(C, Remainder)); 3521 return nullptr; 3522 } 3523 } 3524 return S; 3525 } 3526 3527 /// Return true if the SCEV represents a value that may end up as a 3528 /// post-increment operation. 3529 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3530 LSRUse &LU, const SCEV *S, const Loop *L, 3531 ScalarEvolution &SE) { 3532 if (LU.Kind != LSRUse::Address || 3533 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3534 return false; 3535 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3536 if (!AR) 3537 return false; 3538 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3539 if (!isa<SCEVConstant>(LoopStep)) 3540 return false; 3541 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3542 LoopStep->getType()->getScalarSizeInBits()) 3543 return false; 3544 // Check if a post-indexed load/store can be used. 3545 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3546 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3547 const SCEV *LoopStart = AR->getStart(); 3548 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3549 return true; 3550 } 3551 return false; 3552 } 3553 3554 /// Helper function for LSRInstance::GenerateReassociations. 3555 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3556 const Formula &Base, 3557 unsigned Depth, size_t Idx, 3558 bool IsScaledReg) { 3559 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3560 // Don't generate reassociations for the base register of a value that 3561 // may generate a post-increment operator. The reason is that the 3562 // reassociations cause extra base+register formula to be created, 3563 // and possibly chosen, but the post-increment is more efficient. 3564 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3565 return; 3566 SmallVector<const SCEV *, 8> AddOps; 3567 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3568 if (Remainder) 3569 AddOps.push_back(Remainder); 3570 3571 if (AddOps.size() == 1) 3572 return; 3573 3574 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3575 JE = AddOps.end(); 3576 J != JE; ++J) { 3577 // Loop-variant "unknown" values are uninteresting; we won't be able to 3578 // do anything meaningful with them. 3579 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3580 continue; 3581 3582 // Don't pull a constant into a register if the constant could be folded 3583 // into an immediate field. 3584 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3585 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3586 continue; 3587 3588 // Collect all operands except *J. 3589 SmallVector<const SCEV *, 8> InnerAddOps( 3590 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3591 InnerAddOps.append(std::next(J), 3592 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3593 3594 // Don't leave just a constant behind in a register if the constant could 3595 // be folded into an immediate field. 3596 if (InnerAddOps.size() == 1 && 3597 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3598 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3599 continue; 3600 3601 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3602 if (InnerSum->isZero()) 3603 continue; 3604 Formula F = Base; 3605 3606 // Add the remaining pieces of the add back into the new formula. 3607 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3608 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3609 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3610 InnerSumSC->getValue()->getZExtValue())) { 3611 F.UnfoldedOffset = 3612 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3613 if (IsScaledReg) 3614 F.ScaledReg = nullptr; 3615 else 3616 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3617 } else if (IsScaledReg) 3618 F.ScaledReg = InnerSum; 3619 else 3620 F.BaseRegs[Idx] = InnerSum; 3621 3622 // Add J as its own register, or an unfolded immediate. 3623 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3624 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3625 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3626 SC->getValue()->getZExtValue())) 3627 F.UnfoldedOffset = 3628 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3629 else 3630 F.BaseRegs.push_back(*J); 3631 // We may have changed the number of register in base regs, adjust the 3632 // formula accordingly. 3633 F.canonicalize(*L); 3634 3635 if (InsertFormula(LU, LUIdx, F)) 3636 // If that formula hadn't been seen before, recurse to find more like 3637 // it. 3638 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3639 // Because just Depth is not enough to bound compile time. 3640 // This means that every time AddOps.size() is greater 16^x we will add 3641 // x to Depth. 3642 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3643 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3644 } 3645 } 3646 3647 /// Split out subexpressions from adds and the bases of addrecs. 3648 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3649 Formula Base, unsigned Depth) { 3650 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3651 // Arbitrarily cap recursion to protect compile time. 3652 if (Depth >= 3) 3653 return; 3654 3655 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3656 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3657 3658 if (Base.Scale == 1) 3659 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3660 /* Idx */ -1, /* IsScaledReg */ true); 3661 } 3662 3663 /// Generate a formula consisting of all of the loop-dominating registers added 3664 /// into a single register. 3665 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3666 Formula Base) { 3667 // This method is only interesting on a plurality of registers. 3668 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3669 (Base.UnfoldedOffset != 0) <= 1) 3670 return; 3671 3672 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3673 // processing the formula. 3674 Base.unscale(); 3675 SmallVector<const SCEV *, 4> Ops; 3676 Formula NewBase = Base; 3677 NewBase.BaseRegs.clear(); 3678 Type *CombinedIntegerType = nullptr; 3679 for (const SCEV *BaseReg : Base.BaseRegs) { 3680 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3681 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3682 if (!CombinedIntegerType) 3683 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3684 Ops.push_back(BaseReg); 3685 } 3686 else 3687 NewBase.BaseRegs.push_back(BaseReg); 3688 } 3689 3690 // If no register is relevant, we're done. 3691 if (Ops.size() == 0) 3692 return; 3693 3694 // Utility function for generating the required variants of the combined 3695 // registers. 3696 auto GenerateFormula = [&](const SCEV *Sum) { 3697 Formula F = NewBase; 3698 3699 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3700 // opportunity to fold something. For now, just ignore such cases 3701 // rather than proceed with zero in a register. 3702 if (Sum->isZero()) 3703 return; 3704 3705 F.BaseRegs.push_back(Sum); 3706 F.canonicalize(*L); 3707 (void)InsertFormula(LU, LUIdx, F); 3708 }; 3709 3710 // If we collected at least two registers, generate a formula combining them. 3711 if (Ops.size() > 1) { 3712 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3713 GenerateFormula(SE.getAddExpr(OpsCopy)); 3714 } 3715 3716 // If we have an unfolded offset, generate a formula combining it with the 3717 // registers collected. 3718 if (NewBase.UnfoldedOffset) { 3719 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3720 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3721 true)); 3722 NewBase.UnfoldedOffset = 0; 3723 GenerateFormula(SE.getAddExpr(Ops)); 3724 } 3725 } 3726 3727 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3728 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3729 const Formula &Base, size_t Idx, 3730 bool IsScaledReg) { 3731 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3732 GlobalValue *GV = ExtractSymbol(G, SE); 3733 if (G->isZero() || !GV) 3734 return; 3735 Formula F = Base; 3736 F.BaseGV = GV; 3737 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3738 return; 3739 if (IsScaledReg) 3740 F.ScaledReg = G; 3741 else 3742 F.BaseRegs[Idx] = G; 3743 (void)InsertFormula(LU, LUIdx, F); 3744 } 3745 3746 /// Generate reuse formulae using symbolic offsets. 3747 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3748 Formula Base) { 3749 // We can't add a symbolic offset if the address already contains one. 3750 if (Base.BaseGV) return; 3751 3752 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3753 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3754 if (Base.Scale == 1) 3755 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3756 /* IsScaledReg */ true); 3757 } 3758 3759 /// Helper function for LSRInstance::GenerateConstantOffsets. 3760 void LSRInstance::GenerateConstantOffsetsImpl( 3761 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3762 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3763 3764 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3765 Formula F = Base; 3766 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3767 3768 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3769 LU.AccessTy, F)) { 3770 // Add the offset to the base register. 3771 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3772 // If it cancelled out, drop the base register, otherwise update it. 3773 if (NewG->isZero()) { 3774 if (IsScaledReg) { 3775 F.Scale = 0; 3776 F.ScaledReg = nullptr; 3777 } else 3778 F.deleteBaseReg(F.BaseRegs[Idx]); 3779 F.canonicalize(*L); 3780 } else if (IsScaledReg) 3781 F.ScaledReg = NewG; 3782 else 3783 F.BaseRegs[Idx] = NewG; 3784 3785 (void)InsertFormula(LU, LUIdx, F); 3786 } 3787 }; 3788 3789 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3790 3791 // With constant offsets and constant steps, we can generate pre-inc 3792 // accesses by having the offset equal the step. So, for access #0 with a 3793 // step of 8, we generate a G - 8 base which would require the first access 3794 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3795 // for itself and hopefully becomes the base for other accesses. This means 3796 // means that a single pre-indexed access can be generated to become the new 3797 // base pointer for each iteration of the loop, resulting in no extra add/sub 3798 // instructions for pointer updating. 3799 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3800 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3801 if (auto *StepRec = 3802 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3803 const APInt &StepInt = StepRec->getAPInt(); 3804 int64_t Step = StepInt.isNegative() ? 3805 StepInt.getSExtValue() : StepInt.getZExtValue(); 3806 3807 for (int64_t Offset : Worklist) { 3808 Offset -= Step; 3809 GenerateOffset(G, Offset); 3810 } 3811 } 3812 } 3813 } 3814 for (int64_t Offset : Worklist) 3815 GenerateOffset(G, Offset); 3816 3817 int64_t Imm = ExtractImmediate(G, SE); 3818 if (G->isZero() || Imm == 0) 3819 return; 3820 Formula F = Base; 3821 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3822 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3823 return; 3824 if (IsScaledReg) 3825 F.ScaledReg = G; 3826 else 3827 F.BaseRegs[Idx] = G; 3828 (void)InsertFormula(LU, LUIdx, F); 3829 } 3830 3831 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3832 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3833 Formula Base) { 3834 // TODO: For now, just add the min and max offset, because it usually isn't 3835 // worthwhile looking at everything inbetween. 3836 SmallVector<int64_t, 2> Worklist; 3837 Worklist.push_back(LU.MinOffset); 3838 if (LU.MaxOffset != LU.MinOffset) 3839 Worklist.push_back(LU.MaxOffset); 3840 3841 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3842 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3843 if (Base.Scale == 1) 3844 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3845 /* IsScaledReg */ true); 3846 } 3847 3848 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3849 /// == y -> x*c == y*c. 3850 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3851 Formula Base) { 3852 if (LU.Kind != LSRUse::ICmpZero) return; 3853 3854 // Determine the integer type for the base formula. 3855 Type *IntTy = Base.getType(); 3856 if (!IntTy) return; 3857 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3858 3859 // Don't do this if there is more than one offset. 3860 if (LU.MinOffset != LU.MaxOffset) return; 3861 3862 // Check if transformation is valid. It is illegal to multiply pointer. 3863 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3864 return; 3865 for (const SCEV *BaseReg : Base.BaseRegs) 3866 if (BaseReg->getType()->isPointerTy()) 3867 return; 3868 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3869 3870 // Check each interesting stride. 3871 for (int64_t Factor : Factors) { 3872 // Check that the multiplication doesn't overflow. 3873 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3874 continue; 3875 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3876 if (NewBaseOffset / Factor != Base.BaseOffset) 3877 continue; 3878 // If the offset will be truncated at this use, check that it is in bounds. 3879 if (!IntTy->isPointerTy() && 3880 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3881 continue; 3882 3883 // Check that multiplying with the use offset doesn't overflow. 3884 int64_t Offset = LU.MinOffset; 3885 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3886 continue; 3887 Offset = (uint64_t)Offset * Factor; 3888 if (Offset / Factor != LU.MinOffset) 3889 continue; 3890 // If the offset will be truncated at this use, check that it is in bounds. 3891 if (!IntTy->isPointerTy() && 3892 !ConstantInt::isValueValidForType(IntTy, Offset)) 3893 continue; 3894 3895 Formula F = Base; 3896 F.BaseOffset = NewBaseOffset; 3897 3898 // Check that this scale is legal. 3899 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3900 continue; 3901 3902 // Compensate for the use having MinOffset built into it. 3903 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3904 3905 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3906 3907 // Check that multiplying with each base register doesn't overflow. 3908 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3909 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3910 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3911 goto next; 3912 } 3913 3914 // Check that multiplying with the scaled register doesn't overflow. 3915 if (F.ScaledReg) { 3916 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3917 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3918 continue; 3919 } 3920 3921 // Check that multiplying with the unfolded offset doesn't overflow. 3922 if (F.UnfoldedOffset != 0) { 3923 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3924 Factor == -1) 3925 continue; 3926 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3927 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3928 continue; 3929 // If the offset will be truncated, check that it is in bounds. 3930 if (!IntTy->isPointerTy() && 3931 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3932 continue; 3933 } 3934 3935 // If we make it here and it's legal, add it. 3936 (void)InsertFormula(LU, LUIdx, F); 3937 next:; 3938 } 3939 } 3940 3941 /// Generate stride factor reuse formulae by making use of scaled-offset address 3942 /// modes, for example. 3943 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3944 // Determine the integer type for the base formula. 3945 Type *IntTy = Base.getType(); 3946 if (!IntTy) return; 3947 3948 // If this Formula already has a scaled register, we can't add another one. 3949 // Try to unscale the formula to generate a better scale. 3950 if (Base.Scale != 0 && !Base.unscale()) 3951 return; 3952 3953 assert(Base.Scale == 0 && "unscale did not did its job!"); 3954 3955 // Check each interesting stride. 3956 for (int64_t Factor : Factors) { 3957 Base.Scale = Factor; 3958 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3959 // Check whether this scale is going to be legal. 3960 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3961 Base)) { 3962 // As a special-case, handle special out-of-loop Basic users specially. 3963 // TODO: Reconsider this special case. 3964 if (LU.Kind == LSRUse::Basic && 3965 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3966 LU.AccessTy, Base) && 3967 LU.AllFixupsOutsideLoop) 3968 LU.Kind = LSRUse::Special; 3969 else 3970 continue; 3971 } 3972 // For an ICmpZero, negating a solitary base register won't lead to 3973 // new solutions. 3974 if (LU.Kind == LSRUse::ICmpZero && 3975 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3976 continue; 3977 // For each addrec base reg, if its loop is current loop, apply the scale. 3978 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3979 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3980 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3981 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3982 if (FactorS->isZero()) 3983 continue; 3984 // Divide out the factor, ignoring high bits, since we'll be 3985 // scaling the value back up in the end. 3986 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3987 // TODO: This could be optimized to avoid all the copying. 3988 Formula F = Base; 3989 F.ScaledReg = Quotient; 3990 F.deleteBaseReg(F.BaseRegs[i]); 3991 // The canonical representation of 1*reg is reg, which is already in 3992 // Base. In that case, do not try to insert the formula, it will be 3993 // rejected anyway. 3994 if (F.Scale == 1 && (F.BaseRegs.empty() || 3995 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3996 continue; 3997 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3998 // non canonical Formula with ScaledReg's loop not being L. 3999 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4000 F.canonicalize(*L); 4001 (void)InsertFormula(LU, LUIdx, F); 4002 } 4003 } 4004 } 4005 } 4006 } 4007 4008 /// Generate reuse formulae from different IV types. 4009 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4010 // Don't bother truncating symbolic values. 4011 if (Base.BaseGV) return; 4012 4013 // Determine the integer type for the base formula. 4014 Type *DstTy = Base.getType(); 4015 if (!DstTy) return; 4016 DstTy = SE.getEffectiveSCEVType(DstTy); 4017 4018 for (Type *SrcTy : Types) { 4019 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4020 Formula F = Base; 4021 4022 // Sometimes SCEV is able to prove zero during ext transform. It may 4023 // happen if SCEV did not do all possible transforms while creating the 4024 // initial node (maybe due to depth limitations), but it can do them while 4025 // taking ext. 4026 if (F.ScaledReg) { 4027 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4028 if (NewScaledReg->isZero()) 4029 continue; 4030 F.ScaledReg = NewScaledReg; 4031 } 4032 bool HasZeroBaseReg = false; 4033 for (const SCEV *&BaseReg : F.BaseRegs) { 4034 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4035 if (NewBaseReg->isZero()) { 4036 HasZeroBaseReg = true; 4037 break; 4038 } 4039 BaseReg = NewBaseReg; 4040 } 4041 if (HasZeroBaseReg) 4042 continue; 4043 4044 // TODO: This assumes we've done basic processing on all uses and 4045 // have an idea what the register usage is. 4046 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4047 continue; 4048 4049 F.canonicalize(*L); 4050 (void)InsertFormula(LU, LUIdx, F); 4051 } 4052 } 4053 } 4054 4055 namespace { 4056 4057 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4058 /// modifications so that the search phase doesn't have to worry about the data 4059 /// structures moving underneath it. 4060 struct WorkItem { 4061 size_t LUIdx; 4062 int64_t Imm; 4063 const SCEV *OrigReg; 4064 4065 WorkItem(size_t LI, int64_t I, const SCEV *R) 4066 : LUIdx(LI), Imm(I), OrigReg(R) {} 4067 4068 void print(raw_ostream &OS) const; 4069 void dump() const; 4070 }; 4071 4072 } // end anonymous namespace 4073 4074 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4075 void WorkItem::print(raw_ostream &OS) const { 4076 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4077 << " , add offset " << Imm; 4078 } 4079 4080 LLVM_DUMP_METHOD void WorkItem::dump() const { 4081 print(errs()); errs() << '\n'; 4082 } 4083 #endif 4084 4085 /// Look for registers which are a constant distance apart and try to form reuse 4086 /// opportunities between them. 4087 void LSRInstance::GenerateCrossUseConstantOffsets() { 4088 // Group the registers by their value without any added constant offset. 4089 using ImmMapTy = std::map<int64_t, const SCEV *>; 4090 4091 DenseMap<const SCEV *, ImmMapTy> Map; 4092 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4093 SmallVector<const SCEV *, 8> Sequence; 4094 for (const SCEV *Use : RegUses) { 4095 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4096 int64_t Imm = ExtractImmediate(Reg, SE); 4097 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4098 if (Pair.second) 4099 Sequence.push_back(Reg); 4100 Pair.first->second.insert(std::make_pair(Imm, Use)); 4101 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4102 } 4103 4104 // Now examine each set of registers with the same base value. Build up 4105 // a list of work to do and do the work in a separate step so that we're 4106 // not adding formulae and register counts while we're searching. 4107 SmallVector<WorkItem, 32> WorkItems; 4108 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4109 for (const SCEV *Reg : Sequence) { 4110 const ImmMapTy &Imms = Map.find(Reg)->second; 4111 4112 // It's not worthwhile looking for reuse if there's only one offset. 4113 if (Imms.size() == 1) 4114 continue; 4115 4116 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4117 for (const auto &Entry 4118 : Imms) dbgs() 4119 << ' ' << Entry.first; 4120 dbgs() << '\n'); 4121 4122 // Examine each offset. 4123 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4124 J != JE; ++J) { 4125 const SCEV *OrigReg = J->second; 4126 4127 int64_t JImm = J->first; 4128 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4129 4130 if (!isa<SCEVConstant>(OrigReg) && 4131 UsedByIndicesMap[Reg].count() == 1) { 4132 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4133 << '\n'); 4134 continue; 4135 } 4136 4137 // Conservatively examine offsets between this orig reg a few selected 4138 // other orig regs. 4139 int64_t First = Imms.begin()->first; 4140 int64_t Last = std::prev(Imms.end())->first; 4141 // Compute (First + Last) / 2 without overflow using the fact that 4142 // First + Last = 2 * (First + Last) + (First ^ Last). 4143 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4144 // If the result is negative and First is odd and Last even (or vice versa), 4145 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4146 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4147 ImmMapTy::const_iterator OtherImms[] = { 4148 Imms.begin(), std::prev(Imms.end()), 4149 Imms.lower_bound(Avg)}; 4150 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4151 ImmMapTy::const_iterator M = OtherImms[i]; 4152 if (M == J || M == JE) continue; 4153 4154 // Compute the difference between the two. 4155 int64_t Imm = (uint64_t)JImm - M->first; 4156 for (unsigned LUIdx : UsedByIndices.set_bits()) 4157 // Make a memo of this use, offset, and register tuple. 4158 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4159 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4160 } 4161 } 4162 } 4163 4164 Map.clear(); 4165 Sequence.clear(); 4166 UsedByIndicesMap.clear(); 4167 UniqueItems.clear(); 4168 4169 // Now iterate through the worklist and add new formulae. 4170 for (const WorkItem &WI : WorkItems) { 4171 size_t LUIdx = WI.LUIdx; 4172 LSRUse &LU = Uses[LUIdx]; 4173 int64_t Imm = WI.Imm; 4174 const SCEV *OrigReg = WI.OrigReg; 4175 4176 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4177 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4178 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4179 4180 // TODO: Use a more targeted data structure. 4181 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4182 Formula F = LU.Formulae[L]; 4183 // FIXME: The code for the scaled and unscaled registers looks 4184 // very similar but slightly different. Investigate if they 4185 // could be merged. That way, we would not have to unscale the 4186 // Formula. 4187 F.unscale(); 4188 // Use the immediate in the scaled register. 4189 if (F.ScaledReg == OrigReg) { 4190 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4191 // Don't create 50 + reg(-50). 4192 if (F.referencesReg(SE.getSCEV( 4193 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4194 continue; 4195 Formula NewF = F; 4196 NewF.BaseOffset = Offset; 4197 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4198 NewF)) 4199 continue; 4200 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4201 4202 // If the new scale is a constant in a register, and adding the constant 4203 // value to the immediate would produce a value closer to zero than the 4204 // immediate itself, then the formula isn't worthwhile. 4205 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4206 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4207 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4208 .ule(std::abs(NewF.BaseOffset))) 4209 continue; 4210 4211 // OK, looks good. 4212 NewF.canonicalize(*this->L); 4213 (void)InsertFormula(LU, LUIdx, NewF); 4214 } else { 4215 // Use the immediate in a base register. 4216 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4217 const SCEV *BaseReg = F.BaseRegs[N]; 4218 if (BaseReg != OrigReg) 4219 continue; 4220 Formula NewF = F; 4221 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4222 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4223 LU.Kind, LU.AccessTy, NewF)) { 4224 if (TTI.shouldFavorPostInc() && 4225 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4226 continue; 4227 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4228 continue; 4229 NewF = F; 4230 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4231 } 4232 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4233 4234 // If the new formula has a constant in a register, and adding the 4235 // constant value to the immediate would produce a value closer to 4236 // zero than the immediate itself, then the formula isn't worthwhile. 4237 for (const SCEV *NewReg : NewF.BaseRegs) 4238 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4239 if ((C->getAPInt() + NewF.BaseOffset) 4240 .abs() 4241 .slt(std::abs(NewF.BaseOffset)) && 4242 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4243 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4244 goto skip_formula; 4245 4246 // Ok, looks good. 4247 NewF.canonicalize(*this->L); 4248 (void)InsertFormula(LU, LUIdx, NewF); 4249 break; 4250 skip_formula:; 4251 } 4252 } 4253 } 4254 } 4255 } 4256 4257 /// Generate formulae for each use. 4258 void 4259 LSRInstance::GenerateAllReuseFormulae() { 4260 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4261 // queries are more precise. 4262 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4263 LSRUse &LU = Uses[LUIdx]; 4264 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4265 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4266 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4267 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4268 } 4269 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4270 LSRUse &LU = Uses[LUIdx]; 4271 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4272 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4273 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4274 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4275 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4276 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4277 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4278 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4279 } 4280 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4281 LSRUse &LU = Uses[LUIdx]; 4282 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4283 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4284 } 4285 4286 GenerateCrossUseConstantOffsets(); 4287 4288 LLVM_DEBUG(dbgs() << "\n" 4289 "After generating reuse formulae:\n"; 4290 print_uses(dbgs())); 4291 } 4292 4293 /// If there are multiple formulae with the same set of registers used 4294 /// by other uses, pick the best one and delete the others. 4295 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4296 DenseSet<const SCEV *> VisitedRegs; 4297 SmallPtrSet<const SCEV *, 16> Regs; 4298 SmallPtrSet<const SCEV *, 16> LoserRegs; 4299 #ifndef NDEBUG 4300 bool ChangedFormulae = false; 4301 #endif 4302 4303 // Collect the best formula for each unique set of shared registers. This 4304 // is reset for each use. 4305 using BestFormulaeTy = 4306 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4307 4308 BestFormulaeTy BestFormulae; 4309 4310 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4311 LSRUse &LU = Uses[LUIdx]; 4312 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4313 dbgs() << '\n'); 4314 4315 bool Any = false; 4316 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4317 FIdx != NumForms; ++FIdx) { 4318 Formula &F = LU.Formulae[FIdx]; 4319 4320 // Some formulas are instant losers. For example, they may depend on 4321 // nonexistent AddRecs from other loops. These need to be filtered 4322 // immediately, otherwise heuristics could choose them over others leading 4323 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4324 // avoids the need to recompute this information across formulae using the 4325 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4326 // the corresponding bad register from the Regs set. 4327 Cost CostF(L, SE, TTI); 4328 Regs.clear(); 4329 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4330 if (CostF.isLoser()) { 4331 // During initial formula generation, undesirable formulae are generated 4332 // by uses within other loops that have some non-trivial address mode or 4333 // use the postinc form of the IV. LSR needs to provide these formulae 4334 // as the basis of rediscovering the desired formula that uses an AddRec 4335 // corresponding to the existing phi. Once all formulae have been 4336 // generated, these initial losers may be pruned. 4337 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4338 dbgs() << "\n"); 4339 } 4340 else { 4341 SmallVector<const SCEV *, 4> Key; 4342 for (const SCEV *Reg : F.BaseRegs) { 4343 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4344 Key.push_back(Reg); 4345 } 4346 if (F.ScaledReg && 4347 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4348 Key.push_back(F.ScaledReg); 4349 // Unstable sort by host order ok, because this is only used for 4350 // uniquifying. 4351 llvm::sort(Key); 4352 4353 std::pair<BestFormulaeTy::const_iterator, bool> P = 4354 BestFormulae.insert(std::make_pair(Key, FIdx)); 4355 if (P.second) 4356 continue; 4357 4358 Formula &Best = LU.Formulae[P.first->second]; 4359 4360 Cost CostBest(L, SE, TTI); 4361 Regs.clear(); 4362 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4363 if (CostF.isLess(CostBest)) 4364 std::swap(F, Best); 4365 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4366 dbgs() << "\n" 4367 " in favor of formula "; 4368 Best.print(dbgs()); dbgs() << '\n'); 4369 } 4370 #ifndef NDEBUG 4371 ChangedFormulae = true; 4372 #endif 4373 LU.DeleteFormula(F); 4374 --FIdx; 4375 --NumForms; 4376 Any = true; 4377 } 4378 4379 // Now that we've filtered out some formulae, recompute the Regs set. 4380 if (Any) 4381 LU.RecomputeRegs(LUIdx, RegUses); 4382 4383 // Reset this to prepare for the next use. 4384 BestFormulae.clear(); 4385 } 4386 4387 LLVM_DEBUG(if (ChangedFormulae) { 4388 dbgs() << "\n" 4389 "After filtering out undesirable candidates:\n"; 4390 print_uses(dbgs()); 4391 }); 4392 } 4393 4394 /// Estimate the worst-case number of solutions the solver might have to 4395 /// consider. It almost never considers this many solutions because it prune the 4396 /// search space, but the pruning isn't always sufficient. 4397 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4398 size_t Power = 1; 4399 for (const LSRUse &LU : Uses) { 4400 size_t FSize = LU.Formulae.size(); 4401 if (FSize >= ComplexityLimit) { 4402 Power = ComplexityLimit; 4403 break; 4404 } 4405 Power *= FSize; 4406 if (Power >= ComplexityLimit) 4407 break; 4408 } 4409 return Power; 4410 } 4411 4412 /// When one formula uses a superset of the registers of another formula, it 4413 /// won't help reduce register pressure (though it may not necessarily hurt 4414 /// register pressure); remove it to simplify the system. 4415 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4416 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4417 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4418 4419 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4420 "which use a superset of registers used by other " 4421 "formulae.\n"); 4422 4423 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4424 LSRUse &LU = Uses[LUIdx]; 4425 bool Any = false; 4426 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4427 Formula &F = LU.Formulae[i]; 4428 // Look for a formula with a constant or GV in a register. If the use 4429 // also has a formula with that same value in an immediate field, 4430 // delete the one that uses a register. 4431 for (SmallVectorImpl<const SCEV *>::const_iterator 4432 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4433 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4434 Formula NewF = F; 4435 //FIXME: Formulas should store bitwidth to do wrapping properly. 4436 // See PR41034. 4437 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4438 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4439 (I - F.BaseRegs.begin())); 4440 if (LU.HasFormulaWithSameRegs(NewF)) { 4441 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4442 dbgs() << '\n'); 4443 LU.DeleteFormula(F); 4444 --i; 4445 --e; 4446 Any = true; 4447 break; 4448 } 4449 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4450 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4451 if (!F.BaseGV) { 4452 Formula NewF = F; 4453 NewF.BaseGV = GV; 4454 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4455 (I - F.BaseRegs.begin())); 4456 if (LU.HasFormulaWithSameRegs(NewF)) { 4457 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4458 dbgs() << '\n'); 4459 LU.DeleteFormula(F); 4460 --i; 4461 --e; 4462 Any = true; 4463 break; 4464 } 4465 } 4466 } 4467 } 4468 } 4469 if (Any) 4470 LU.RecomputeRegs(LUIdx, RegUses); 4471 } 4472 4473 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4474 } 4475 } 4476 4477 /// When there are many registers for expressions like A, A+1, A+2, etc., 4478 /// allocate a single register for them. 4479 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4480 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4481 return; 4482 4483 LLVM_DEBUG( 4484 dbgs() << "The search space is too complex.\n" 4485 "Narrowing the search space by assuming that uses separated " 4486 "by a constant offset will use the same registers.\n"); 4487 4488 // This is especially useful for unrolled loops. 4489 4490 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4491 LSRUse &LU = Uses[LUIdx]; 4492 for (const Formula &F : LU.Formulae) { 4493 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4494 continue; 4495 4496 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4497 if (!LUThatHas) 4498 continue; 4499 4500 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4501 LU.Kind, LU.AccessTy)) 4502 continue; 4503 4504 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4505 4506 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4507 4508 // Transfer the fixups of LU to LUThatHas. 4509 for (LSRFixup &Fixup : LU.Fixups) { 4510 Fixup.Offset += F.BaseOffset; 4511 LUThatHas->pushFixup(Fixup); 4512 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4513 } 4514 4515 // Delete formulae from the new use which are no longer legal. 4516 bool Any = false; 4517 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4518 Formula &F = LUThatHas->Formulae[i]; 4519 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4520 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4521 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4522 LUThatHas->DeleteFormula(F); 4523 --i; 4524 --e; 4525 Any = true; 4526 } 4527 } 4528 4529 if (Any) 4530 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4531 4532 // Delete the old use. 4533 DeleteUse(LU, LUIdx); 4534 --LUIdx; 4535 --NumUses; 4536 break; 4537 } 4538 } 4539 4540 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4541 } 4542 4543 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4544 /// we've done more filtering, as it may be able to find more formulae to 4545 /// eliminate. 4546 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4547 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4548 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4549 4550 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4551 "undesirable dedicated registers.\n"); 4552 4553 FilterOutUndesirableDedicatedRegisters(); 4554 4555 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4556 } 4557 } 4558 4559 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4560 /// Pick the best one and delete the others. 4561 /// This narrowing heuristic is to keep as many formulae with different 4562 /// Scale and ScaledReg pair as possible while narrowing the search space. 4563 /// The benefit is that it is more likely to find out a better solution 4564 /// from a formulae set with more Scale and ScaledReg variations than 4565 /// a formulae set with the same Scale and ScaledReg. The picking winner 4566 /// reg heuristic will often keep the formulae with the same Scale and 4567 /// ScaledReg and filter others, and we want to avoid that if possible. 4568 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4569 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4570 return; 4571 4572 LLVM_DEBUG( 4573 dbgs() << "The search space is too complex.\n" 4574 "Narrowing the search space by choosing the best Formula " 4575 "from the Formulae with the same Scale and ScaledReg.\n"); 4576 4577 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4578 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4579 4580 BestFormulaeTy BestFormulae; 4581 #ifndef NDEBUG 4582 bool ChangedFormulae = false; 4583 #endif 4584 DenseSet<const SCEV *> VisitedRegs; 4585 SmallPtrSet<const SCEV *, 16> Regs; 4586 4587 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4588 LSRUse &LU = Uses[LUIdx]; 4589 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4590 dbgs() << '\n'); 4591 4592 // Return true if Formula FA is better than Formula FB. 4593 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4594 // First we will try to choose the Formula with fewer new registers. 4595 // For a register used by current Formula, the more the register is 4596 // shared among LSRUses, the less we increase the register number 4597 // counter of the formula. 4598 size_t FARegNum = 0; 4599 for (const SCEV *Reg : FA.BaseRegs) { 4600 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4601 FARegNum += (NumUses - UsedByIndices.count() + 1); 4602 } 4603 size_t FBRegNum = 0; 4604 for (const SCEV *Reg : FB.BaseRegs) { 4605 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4606 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4607 } 4608 if (FARegNum != FBRegNum) 4609 return FARegNum < FBRegNum; 4610 4611 // If the new register numbers are the same, choose the Formula with 4612 // less Cost. 4613 Cost CostFA(L, SE, TTI); 4614 Cost CostFB(L, SE, TTI); 4615 Regs.clear(); 4616 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4617 Regs.clear(); 4618 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4619 return CostFA.isLess(CostFB); 4620 }; 4621 4622 bool Any = false; 4623 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4624 ++FIdx) { 4625 Formula &F = LU.Formulae[FIdx]; 4626 if (!F.ScaledReg) 4627 continue; 4628 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4629 if (P.second) 4630 continue; 4631 4632 Formula &Best = LU.Formulae[P.first->second]; 4633 if (IsBetterThan(F, Best)) 4634 std::swap(F, Best); 4635 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4636 dbgs() << "\n" 4637 " in favor of formula "; 4638 Best.print(dbgs()); dbgs() << '\n'); 4639 #ifndef NDEBUG 4640 ChangedFormulae = true; 4641 #endif 4642 LU.DeleteFormula(F); 4643 --FIdx; 4644 --NumForms; 4645 Any = true; 4646 } 4647 if (Any) 4648 LU.RecomputeRegs(LUIdx, RegUses); 4649 4650 // Reset this to prepare for the next use. 4651 BestFormulae.clear(); 4652 } 4653 4654 LLVM_DEBUG(if (ChangedFormulae) { 4655 dbgs() << "\n" 4656 "After filtering out undesirable candidates:\n"; 4657 print_uses(dbgs()); 4658 }); 4659 } 4660 4661 /// The function delete formulas with high registers number expectation. 4662 /// Assuming we don't know the value of each formula (already delete 4663 /// all inefficient), generate probability of not selecting for each 4664 /// register. 4665 /// For example, 4666 /// Use1: 4667 /// reg(a) + reg({0,+,1}) 4668 /// reg(a) + reg({-1,+,1}) + 1 4669 /// reg({a,+,1}) 4670 /// Use2: 4671 /// reg(b) + reg({0,+,1}) 4672 /// reg(b) + reg({-1,+,1}) + 1 4673 /// reg({b,+,1}) 4674 /// Use3: 4675 /// reg(c) + reg(b) + reg({0,+,1}) 4676 /// reg(c) + reg({b,+,1}) 4677 /// 4678 /// Probability of not selecting 4679 /// Use1 Use2 Use3 4680 /// reg(a) (1/3) * 1 * 1 4681 /// reg(b) 1 * (1/3) * (1/2) 4682 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4683 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4684 /// reg({a,+,1}) (2/3) * 1 * 1 4685 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4686 /// reg(c) 1 * 1 * 0 4687 /// 4688 /// Now count registers number mathematical expectation for each formula: 4689 /// Note that for each use we exclude probability if not selecting for the use. 4690 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4691 /// probabilty 1/3 of not selecting for Use1). 4692 /// Use1: 4693 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4694 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4695 /// reg({a,+,1}) 1 4696 /// Use2: 4697 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4698 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4699 /// reg({b,+,1}) 2/3 4700 /// Use3: 4701 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4702 /// reg(c) + reg({b,+,1}) 1 + 2/3 4703 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4704 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4705 return; 4706 // Ok, we have too many of formulae on our hands to conveniently handle. 4707 // Use a rough heuristic to thin out the list. 4708 4709 // Set of Regs wich will be 100% used in final solution. 4710 // Used in each formula of a solution (in example above this is reg(c)). 4711 // We can skip them in calculations. 4712 SmallPtrSet<const SCEV *, 4> UniqRegs; 4713 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4714 4715 // Map each register to probability of not selecting 4716 DenseMap <const SCEV *, float> RegNumMap; 4717 for (const SCEV *Reg : RegUses) { 4718 if (UniqRegs.count(Reg)) 4719 continue; 4720 float PNotSel = 1; 4721 for (const LSRUse &LU : Uses) { 4722 if (!LU.Regs.count(Reg)) 4723 continue; 4724 float P = LU.getNotSelectedProbability(Reg); 4725 if (P != 0.0) 4726 PNotSel *= P; 4727 else 4728 UniqRegs.insert(Reg); 4729 } 4730 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4731 } 4732 4733 LLVM_DEBUG( 4734 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4735 4736 // Delete formulas where registers number expectation is high. 4737 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4738 LSRUse &LU = Uses[LUIdx]; 4739 // If nothing to delete - continue. 4740 if (LU.Formulae.size() < 2) 4741 continue; 4742 // This is temporary solution to test performance. Float should be 4743 // replaced with round independent type (based on integers) to avoid 4744 // different results for different target builds. 4745 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4746 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4747 size_t MinIdx = 0; 4748 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4749 Formula &F = LU.Formulae[i]; 4750 float FRegNum = 0; 4751 float FARegNum = 0; 4752 for (const SCEV *BaseReg : F.BaseRegs) { 4753 if (UniqRegs.count(BaseReg)) 4754 continue; 4755 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4756 if (isa<SCEVAddRecExpr>(BaseReg)) 4757 FARegNum += 4758 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4759 } 4760 if (const SCEV *ScaledReg = F.ScaledReg) { 4761 if (!UniqRegs.count(ScaledReg)) { 4762 FRegNum += 4763 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4764 if (isa<SCEVAddRecExpr>(ScaledReg)) 4765 FARegNum += 4766 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4767 } 4768 } 4769 if (FMinRegNum > FRegNum || 4770 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4771 FMinRegNum = FRegNum; 4772 FMinARegNum = FARegNum; 4773 MinIdx = i; 4774 } 4775 } 4776 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4777 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4778 if (MinIdx != 0) 4779 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4780 while (LU.Formulae.size() != 1) { 4781 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4782 dbgs() << '\n'); 4783 LU.Formulae.pop_back(); 4784 } 4785 LU.RecomputeRegs(LUIdx, RegUses); 4786 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4787 Formula &F = LU.Formulae[0]; 4788 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4789 // When we choose the formula, the regs become unique. 4790 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4791 if (F.ScaledReg) 4792 UniqRegs.insert(F.ScaledReg); 4793 } 4794 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4795 } 4796 4797 /// Pick a register which seems likely to be profitable, and then in any use 4798 /// which has any reference to that register, delete all formulae which do not 4799 /// reference that register. 4800 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4801 // With all other options exhausted, loop until the system is simple 4802 // enough to handle. 4803 SmallPtrSet<const SCEV *, 4> Taken; 4804 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4805 // Ok, we have too many of formulae on our hands to conveniently handle. 4806 // Use a rough heuristic to thin out the list. 4807 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4808 4809 // Pick the register which is used by the most LSRUses, which is likely 4810 // to be a good reuse register candidate. 4811 const SCEV *Best = nullptr; 4812 unsigned BestNum = 0; 4813 for (const SCEV *Reg : RegUses) { 4814 if (Taken.count(Reg)) 4815 continue; 4816 if (!Best) { 4817 Best = Reg; 4818 BestNum = RegUses.getUsedByIndices(Reg).count(); 4819 } else { 4820 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4821 if (Count > BestNum) { 4822 Best = Reg; 4823 BestNum = Count; 4824 } 4825 } 4826 } 4827 4828 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4829 << " will yield profitable reuse.\n"); 4830 Taken.insert(Best); 4831 4832 // In any use with formulae which references this register, delete formulae 4833 // which don't reference it. 4834 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4835 LSRUse &LU = Uses[LUIdx]; 4836 if (!LU.Regs.count(Best)) continue; 4837 4838 bool Any = false; 4839 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4840 Formula &F = LU.Formulae[i]; 4841 if (!F.referencesReg(Best)) { 4842 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4843 LU.DeleteFormula(F); 4844 --e; 4845 --i; 4846 Any = true; 4847 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4848 continue; 4849 } 4850 } 4851 4852 if (Any) 4853 LU.RecomputeRegs(LUIdx, RegUses); 4854 } 4855 4856 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4857 } 4858 } 4859 4860 /// If there are an extraordinary number of formulae to choose from, use some 4861 /// rough heuristics to prune down the number of formulae. This keeps the main 4862 /// solver from taking an extraordinary amount of time in some worst-case 4863 /// scenarios. 4864 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4865 NarrowSearchSpaceByDetectingSupersets(); 4866 NarrowSearchSpaceByCollapsingUnrolledCode(); 4867 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4868 if (FilterSameScaledReg) 4869 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4870 if (LSRExpNarrow) 4871 NarrowSearchSpaceByDeletingCostlyFormulas(); 4872 else 4873 NarrowSearchSpaceByPickingWinnerRegs(); 4874 } 4875 4876 /// This is the recursive solver. 4877 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4878 Cost &SolutionCost, 4879 SmallVectorImpl<const Formula *> &Workspace, 4880 const Cost &CurCost, 4881 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4882 DenseSet<const SCEV *> &VisitedRegs) const { 4883 // Some ideas: 4884 // - prune more: 4885 // - use more aggressive filtering 4886 // - sort the formula so that the most profitable solutions are found first 4887 // - sort the uses too 4888 // - search faster: 4889 // - don't compute a cost, and then compare. compare while computing a cost 4890 // and bail early. 4891 // - track register sets with SmallBitVector 4892 4893 const LSRUse &LU = Uses[Workspace.size()]; 4894 4895 // If this use references any register that's already a part of the 4896 // in-progress solution, consider it a requirement that a formula must 4897 // reference that register in order to be considered. This prunes out 4898 // unprofitable searching. 4899 SmallSetVector<const SCEV *, 4> ReqRegs; 4900 for (const SCEV *S : CurRegs) 4901 if (LU.Regs.count(S)) 4902 ReqRegs.insert(S); 4903 4904 SmallPtrSet<const SCEV *, 16> NewRegs; 4905 Cost NewCost(L, SE, TTI); 4906 for (const Formula &F : LU.Formulae) { 4907 // Ignore formulae which may not be ideal in terms of register reuse of 4908 // ReqRegs. The formula should use all required registers before 4909 // introducing new ones. 4910 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4911 for (const SCEV *Reg : ReqRegs) { 4912 if ((F.ScaledReg && F.ScaledReg == Reg) || 4913 is_contained(F.BaseRegs, Reg)) { 4914 --NumReqRegsToFind; 4915 if (NumReqRegsToFind == 0) 4916 break; 4917 } 4918 } 4919 if (NumReqRegsToFind != 0) { 4920 // If none of the formulae satisfied the required registers, then we could 4921 // clear ReqRegs and try again. Currently, we simply give up in this case. 4922 continue; 4923 } 4924 4925 // Evaluate the cost of the current formula. If it's already worse than 4926 // the current best, prune the search at that point. 4927 NewCost = CurCost; 4928 NewRegs = CurRegs; 4929 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4930 if (NewCost.isLess(SolutionCost)) { 4931 Workspace.push_back(&F); 4932 if (Workspace.size() != Uses.size()) { 4933 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4934 NewRegs, VisitedRegs); 4935 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4936 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4937 } else { 4938 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4939 dbgs() << ".\nRegs:\n"; 4940 for (const SCEV *S : NewRegs) dbgs() 4941 << "- " << *S << "\n"; 4942 dbgs() << '\n'); 4943 4944 SolutionCost = NewCost; 4945 Solution = Workspace; 4946 } 4947 Workspace.pop_back(); 4948 } 4949 } 4950 } 4951 4952 /// Choose one formula from each use. Return the results in the given Solution 4953 /// vector. 4954 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4955 SmallVector<const Formula *, 8> Workspace; 4956 Cost SolutionCost(L, SE, TTI); 4957 SolutionCost.Lose(); 4958 Cost CurCost(L, SE, TTI); 4959 SmallPtrSet<const SCEV *, 16> CurRegs; 4960 DenseSet<const SCEV *> VisitedRegs; 4961 Workspace.reserve(Uses.size()); 4962 4963 // SolveRecurse does all the work. 4964 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4965 CurRegs, VisitedRegs); 4966 if (Solution.empty()) { 4967 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4968 return; 4969 } 4970 4971 // Ok, we've now made all our decisions. 4972 LLVM_DEBUG(dbgs() << "\n" 4973 "The chosen solution requires "; 4974 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4975 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4976 dbgs() << " "; 4977 Uses[i].print(dbgs()); 4978 dbgs() << "\n" 4979 " "; 4980 Solution[i]->print(dbgs()); 4981 dbgs() << '\n'; 4982 }); 4983 4984 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4985 } 4986 4987 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4988 /// we can go while still being dominated by the input positions. This helps 4989 /// canonicalize the insert position, which encourages sharing. 4990 BasicBlock::iterator 4991 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4992 const SmallVectorImpl<Instruction *> &Inputs) 4993 const { 4994 Instruction *Tentative = &*IP; 4995 while (true) { 4996 bool AllDominate = true; 4997 Instruction *BetterPos = nullptr; 4998 // Don't bother attempting to insert before a catchswitch, their basic block 4999 // cannot have other non-PHI instructions. 5000 if (isa<CatchSwitchInst>(Tentative)) 5001 return IP; 5002 5003 for (Instruction *Inst : Inputs) { 5004 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5005 AllDominate = false; 5006 break; 5007 } 5008 // Attempt to find an insert position in the middle of the block, 5009 // instead of at the end, so that it can be used for other expansions. 5010 if (Tentative->getParent() == Inst->getParent() && 5011 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5012 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5013 } 5014 if (!AllDominate) 5015 break; 5016 if (BetterPos) 5017 IP = BetterPos->getIterator(); 5018 else 5019 IP = Tentative->getIterator(); 5020 5021 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5022 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5023 5024 BasicBlock *IDom; 5025 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5026 if (!Rung) return IP; 5027 Rung = Rung->getIDom(); 5028 if (!Rung) return IP; 5029 IDom = Rung->getBlock(); 5030 5031 // Don't climb into a loop though. 5032 const Loop *IDomLoop = LI.getLoopFor(IDom); 5033 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5034 if (IDomDepth <= IPLoopDepth && 5035 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5036 break; 5037 } 5038 5039 Tentative = IDom->getTerminator(); 5040 } 5041 5042 return IP; 5043 } 5044 5045 /// Determine an input position which will be dominated by the operands and 5046 /// which will dominate the result. 5047 BasicBlock::iterator 5048 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5049 const LSRFixup &LF, 5050 const LSRUse &LU, 5051 SCEVExpander &Rewriter) const { 5052 // Collect some instructions which must be dominated by the 5053 // expanding replacement. These must be dominated by any operands that 5054 // will be required in the expansion. 5055 SmallVector<Instruction *, 4> Inputs; 5056 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5057 Inputs.push_back(I); 5058 if (LU.Kind == LSRUse::ICmpZero) 5059 if (Instruction *I = 5060 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5061 Inputs.push_back(I); 5062 if (LF.PostIncLoops.count(L)) { 5063 if (LF.isUseFullyOutsideLoop(L)) 5064 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5065 else 5066 Inputs.push_back(IVIncInsertPos); 5067 } 5068 // The expansion must also be dominated by the increment positions of any 5069 // loops it for which it is using post-inc mode. 5070 for (const Loop *PIL : LF.PostIncLoops) { 5071 if (PIL == L) continue; 5072 5073 // Be dominated by the loop exit. 5074 SmallVector<BasicBlock *, 4> ExitingBlocks; 5075 PIL->getExitingBlocks(ExitingBlocks); 5076 if (!ExitingBlocks.empty()) { 5077 BasicBlock *BB = ExitingBlocks[0]; 5078 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5079 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5080 Inputs.push_back(BB->getTerminator()); 5081 } 5082 } 5083 5084 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5085 && !isa<DbgInfoIntrinsic>(LowestIP) && 5086 "Insertion point must be a normal instruction"); 5087 5088 // Then, climb up the immediate dominator tree as far as we can go while 5089 // still being dominated by the input positions. 5090 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5091 5092 // Don't insert instructions before PHI nodes. 5093 while (isa<PHINode>(IP)) ++IP; 5094 5095 // Ignore landingpad instructions. 5096 while (IP->isEHPad()) ++IP; 5097 5098 // Ignore debug intrinsics. 5099 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5100 5101 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5102 // IP consistent across expansions and allows the previously inserted 5103 // instructions to be reused by subsequent expansion. 5104 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5105 ++IP; 5106 5107 return IP; 5108 } 5109 5110 /// Emit instructions for the leading candidate expression for this LSRUse (this 5111 /// is called "expanding"). 5112 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5113 const Formula &F, BasicBlock::iterator IP, 5114 SCEVExpander &Rewriter, 5115 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5116 if (LU.RigidFormula) 5117 return LF.OperandValToReplace; 5118 5119 // Determine an input position which will be dominated by the operands and 5120 // which will dominate the result. 5121 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5122 Rewriter.setInsertPoint(&*IP); 5123 5124 // Inform the Rewriter if we have a post-increment use, so that it can 5125 // perform an advantageous expansion. 5126 Rewriter.setPostInc(LF.PostIncLoops); 5127 5128 // This is the type that the user actually needs. 5129 Type *OpTy = LF.OperandValToReplace->getType(); 5130 // This will be the type that we'll initially expand to. 5131 Type *Ty = F.getType(); 5132 if (!Ty) 5133 // No type known; just expand directly to the ultimate type. 5134 Ty = OpTy; 5135 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5136 // Expand directly to the ultimate type if it's the right size. 5137 Ty = OpTy; 5138 // This is the type to do integer arithmetic in. 5139 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5140 5141 // Build up a list of operands to add together to form the full base. 5142 SmallVector<const SCEV *, 8> Ops; 5143 5144 // Expand the BaseRegs portion. 5145 for (const SCEV *Reg : F.BaseRegs) { 5146 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5147 5148 // If we're expanding for a post-inc user, make the post-inc adjustment. 5149 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5150 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5151 } 5152 5153 // Expand the ScaledReg portion. 5154 Value *ICmpScaledV = nullptr; 5155 if (F.Scale != 0) { 5156 const SCEV *ScaledS = F.ScaledReg; 5157 5158 // If we're expanding for a post-inc user, make the post-inc adjustment. 5159 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5160 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5161 5162 if (LU.Kind == LSRUse::ICmpZero) { 5163 // Expand ScaleReg as if it was part of the base regs. 5164 if (F.Scale == 1) 5165 Ops.push_back( 5166 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5167 else { 5168 // An interesting way of "folding" with an icmp is to use a negated 5169 // scale, which we'll implement by inserting it into the other operand 5170 // of the icmp. 5171 assert(F.Scale == -1 && 5172 "The only scale supported by ICmpZero uses is -1!"); 5173 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5174 } 5175 } else { 5176 // Otherwise just expand the scaled register and an explicit scale, 5177 // which is expected to be matched as part of the address. 5178 5179 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5180 // Unless the addressing mode will not be folded. 5181 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5182 isAMCompletelyFolded(TTI, LU, F)) { 5183 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5184 Ops.clear(); 5185 Ops.push_back(SE.getUnknown(FullV)); 5186 } 5187 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5188 if (F.Scale != 1) 5189 ScaledS = 5190 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5191 Ops.push_back(ScaledS); 5192 } 5193 } 5194 5195 // Expand the GV portion. 5196 if (F.BaseGV) { 5197 // Flush the operand list to suppress SCEVExpander hoisting. 5198 if (!Ops.empty()) { 5199 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5200 Ops.clear(); 5201 Ops.push_back(SE.getUnknown(FullV)); 5202 } 5203 Ops.push_back(SE.getUnknown(F.BaseGV)); 5204 } 5205 5206 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5207 // unfolded offsets. LSR assumes they both live next to their uses. 5208 if (!Ops.empty()) { 5209 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5210 Ops.clear(); 5211 Ops.push_back(SE.getUnknown(FullV)); 5212 } 5213 5214 // Expand the immediate portion. 5215 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5216 if (Offset != 0) { 5217 if (LU.Kind == LSRUse::ICmpZero) { 5218 // The other interesting way of "folding" with an ICmpZero is to use a 5219 // negated immediate. 5220 if (!ICmpScaledV) 5221 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5222 else { 5223 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5224 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5225 } 5226 } else { 5227 // Just add the immediate values. These again are expected to be matched 5228 // as part of the address. 5229 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5230 } 5231 } 5232 5233 // Expand the unfolded offset portion. 5234 int64_t UnfoldedOffset = F.UnfoldedOffset; 5235 if (UnfoldedOffset != 0) { 5236 // Just add the immediate values. 5237 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5238 UnfoldedOffset))); 5239 } 5240 5241 // Emit instructions summing all the operands. 5242 const SCEV *FullS = Ops.empty() ? 5243 SE.getConstant(IntTy, 0) : 5244 SE.getAddExpr(Ops); 5245 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5246 5247 // We're done expanding now, so reset the rewriter. 5248 Rewriter.clearPostInc(); 5249 5250 // An ICmpZero Formula represents an ICmp which we're handling as a 5251 // comparison against zero. Now that we've expanded an expression for that 5252 // form, update the ICmp's other operand. 5253 if (LU.Kind == LSRUse::ICmpZero) { 5254 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5255 DeadInsts.emplace_back(CI->getOperand(1)); 5256 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5257 "a scale at the same time!"); 5258 if (F.Scale == -1) { 5259 if (ICmpScaledV->getType() != OpTy) { 5260 Instruction *Cast = 5261 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5262 OpTy, false), 5263 ICmpScaledV, OpTy, "tmp", CI); 5264 ICmpScaledV = Cast; 5265 } 5266 CI->setOperand(1, ICmpScaledV); 5267 } else { 5268 // A scale of 1 means that the scale has been expanded as part of the 5269 // base regs. 5270 assert((F.Scale == 0 || F.Scale == 1) && 5271 "ICmp does not support folding a global value and " 5272 "a scale at the same time!"); 5273 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5274 -(uint64_t)Offset); 5275 if (C->getType() != OpTy) 5276 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5277 OpTy, false), 5278 C, OpTy); 5279 5280 CI->setOperand(1, C); 5281 } 5282 } 5283 5284 return FullV; 5285 } 5286 5287 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5288 /// effectively happens in their predecessor blocks, so the expression may need 5289 /// to be expanded in multiple places. 5290 void LSRInstance::RewriteForPHI( 5291 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5292 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5293 DenseMap<BasicBlock *, Value *> Inserted; 5294 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5295 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5296 bool needUpdateFixups = false; 5297 BasicBlock *BB = PN->getIncomingBlock(i); 5298 5299 // If this is a critical edge, split the edge so that we do not insert 5300 // the code on all predecessor/successor paths. We do this unless this 5301 // is the canonical backedge for this loop, which complicates post-inc 5302 // users. 5303 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5304 !isa<IndirectBrInst>(BB->getTerminator()) && 5305 !isa<CatchSwitchInst>(BB->getTerminator())) { 5306 BasicBlock *Parent = PN->getParent(); 5307 Loop *PNLoop = LI.getLoopFor(Parent); 5308 if (!PNLoop || Parent != PNLoop->getHeader()) { 5309 // Split the critical edge. 5310 BasicBlock *NewBB = nullptr; 5311 if (!Parent->isLandingPad()) { 5312 NewBB = SplitCriticalEdge(BB, Parent, 5313 CriticalEdgeSplittingOptions(&DT, &LI) 5314 .setMergeIdenticalEdges() 5315 .setKeepOneInputPHIs()); 5316 } else { 5317 SmallVector<BasicBlock*, 2> NewBBs; 5318 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5319 NewBB = NewBBs[0]; 5320 } 5321 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5322 // phi predecessors are identical. The simple thing to do is skip 5323 // splitting in this case rather than complicate the API. 5324 if (NewBB) { 5325 // If PN is outside of the loop and BB is in the loop, we want to 5326 // move the block to be immediately before the PHI block, not 5327 // immediately after BB. 5328 if (L->contains(BB) && !L->contains(PN)) 5329 NewBB->moveBefore(PN->getParent()); 5330 5331 // Splitting the edge can reduce the number of PHI entries we have. 5332 e = PN->getNumIncomingValues(); 5333 BB = NewBB; 5334 i = PN->getBasicBlockIndex(BB); 5335 5336 needUpdateFixups = true; 5337 } 5338 } 5339 } 5340 5341 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5342 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5343 if (!Pair.second) 5344 PN->setIncomingValue(i, Pair.first->second); 5345 else { 5346 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5347 Rewriter, DeadInsts); 5348 5349 // If this is reuse-by-noop-cast, insert the noop cast. 5350 Type *OpTy = LF.OperandValToReplace->getType(); 5351 if (FullV->getType() != OpTy) 5352 FullV = 5353 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5354 OpTy, false), 5355 FullV, LF.OperandValToReplace->getType(), 5356 "tmp", BB->getTerminator()); 5357 5358 PN->setIncomingValue(i, FullV); 5359 Pair.first->second = FullV; 5360 } 5361 5362 // If LSR splits critical edge and phi node has other pending 5363 // fixup operands, we need to update those pending fixups. Otherwise 5364 // formulae will not be implemented completely and some instructions 5365 // will not be eliminated. 5366 if (needUpdateFixups) { 5367 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5368 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5369 // If fixup is supposed to rewrite some operand in the phi 5370 // that was just updated, it may be already moved to 5371 // another phi node. Such fixup requires update. 5372 if (Fixup.UserInst == PN) { 5373 // Check if the operand we try to replace still exists in the 5374 // original phi. 5375 bool foundInOriginalPHI = false; 5376 for (const auto &val : PN->incoming_values()) 5377 if (val == Fixup.OperandValToReplace) { 5378 foundInOriginalPHI = true; 5379 break; 5380 } 5381 5382 // If fixup operand found in original PHI - nothing to do. 5383 if (foundInOriginalPHI) 5384 continue; 5385 5386 // Otherwise it might be moved to another PHI and requires update. 5387 // If fixup operand not found in any of the incoming blocks that 5388 // means we have already rewritten it - nothing to do. 5389 for (const auto &Block : PN->blocks()) 5390 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5391 ++I) { 5392 PHINode *NewPN = cast<PHINode>(I); 5393 for (const auto &val : NewPN->incoming_values()) 5394 if (val == Fixup.OperandValToReplace) 5395 Fixup.UserInst = NewPN; 5396 } 5397 } 5398 } 5399 } 5400 } 5401 5402 /// Emit instructions for the leading candidate expression for this LSRUse (this 5403 /// is called "expanding"), and update the UserInst to reference the newly 5404 /// expanded value. 5405 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5406 const Formula &F, SCEVExpander &Rewriter, 5407 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5408 // First, find an insertion point that dominates UserInst. For PHI nodes, 5409 // find the nearest block which dominates all the relevant uses. 5410 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5411 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5412 } else { 5413 Value *FullV = 5414 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5415 5416 // If this is reuse-by-noop-cast, insert the noop cast. 5417 Type *OpTy = LF.OperandValToReplace->getType(); 5418 if (FullV->getType() != OpTy) { 5419 Instruction *Cast = 5420 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5421 FullV, OpTy, "tmp", LF.UserInst); 5422 FullV = Cast; 5423 } 5424 5425 // Update the user. ICmpZero is handled specially here (for now) because 5426 // Expand may have updated one of the operands of the icmp already, and 5427 // its new value may happen to be equal to LF.OperandValToReplace, in 5428 // which case doing replaceUsesOfWith leads to replacing both operands 5429 // with the same value. TODO: Reorganize this. 5430 if (LU.Kind == LSRUse::ICmpZero) 5431 LF.UserInst->setOperand(0, FullV); 5432 else 5433 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5434 } 5435 5436 DeadInsts.emplace_back(LF.OperandValToReplace); 5437 } 5438 5439 /// Rewrite all the fixup locations with new values, following the chosen 5440 /// solution. 5441 void LSRInstance::ImplementSolution( 5442 const SmallVectorImpl<const Formula *> &Solution) { 5443 // Keep track of instructions we may have made dead, so that 5444 // we can remove them after we are done working. 5445 SmallVector<WeakTrackingVH, 16> DeadInsts; 5446 5447 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5448 "lsr"); 5449 #ifndef NDEBUG 5450 Rewriter.setDebugType(DEBUG_TYPE); 5451 #endif 5452 Rewriter.disableCanonicalMode(); 5453 Rewriter.enableLSRMode(); 5454 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5455 5456 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5457 for (const IVChain &Chain : IVChainVec) { 5458 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5459 Rewriter.setChainedPhi(PN); 5460 } 5461 5462 // Expand the new value definitions and update the users. 5463 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5464 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5465 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5466 Changed = true; 5467 } 5468 5469 for (const IVChain &Chain : IVChainVec) { 5470 GenerateIVChain(Chain, Rewriter, DeadInsts); 5471 Changed = true; 5472 } 5473 // Clean up after ourselves. This must be done before deleting any 5474 // instructions. 5475 Rewriter.clear(); 5476 5477 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5478 } 5479 5480 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5481 DominatorTree &DT, LoopInfo &LI, 5482 const TargetTransformInfo &TTI) 5483 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), 5484 FavorBackedgeIndex(EnableBackedgeIndexing && 5485 TTI.shouldFavorBackedgeIndex(L)) { 5486 // If LoopSimplify form is not available, stay out of trouble. 5487 if (!L->isLoopSimplifyForm()) 5488 return; 5489 5490 // If there's no interesting work to be done, bail early. 5491 if (IU.empty()) return; 5492 5493 // If there's too much analysis to be done, bail early. We won't be able to 5494 // model the problem anyway. 5495 unsigned NumUsers = 0; 5496 for (const IVStrideUse &U : IU) { 5497 if (++NumUsers > MaxIVUsers) { 5498 (void)U; 5499 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5500 << "\n"); 5501 return; 5502 } 5503 // Bail out if we have a PHI on an EHPad that gets a value from a 5504 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5505 // no good place to stick any instructions. 5506 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5507 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5508 if (isa<FuncletPadInst>(FirstNonPHI) || 5509 isa<CatchSwitchInst>(FirstNonPHI)) 5510 for (BasicBlock *PredBB : PN->blocks()) 5511 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5512 return; 5513 } 5514 } 5515 5516 #ifndef NDEBUG 5517 // All dominating loops must have preheaders, or SCEVExpander may not be able 5518 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5519 // 5520 // IVUsers analysis should only create users that are dominated by simple loop 5521 // headers. Since this loop should dominate all of its users, its user list 5522 // should be empty if this loop itself is not within a simple loop nest. 5523 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5524 Rung; Rung = Rung->getIDom()) { 5525 BasicBlock *BB = Rung->getBlock(); 5526 const Loop *DomLoop = LI.getLoopFor(BB); 5527 if (DomLoop && DomLoop->getHeader() == BB) { 5528 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5529 } 5530 } 5531 #endif // DEBUG 5532 5533 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5534 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5535 dbgs() << ":\n"); 5536 5537 // First, perform some low-level loop optimizations. 5538 OptimizeShadowIV(); 5539 OptimizeLoopTermCond(); 5540 5541 // If loop preparation eliminates all interesting IV users, bail. 5542 if (IU.empty()) return; 5543 5544 // Skip nested loops until we can model them better with formulae. 5545 if (!L->empty()) { 5546 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5547 return; 5548 } 5549 5550 // Start collecting data and preparing for the solver. 5551 CollectChains(); 5552 CollectInterestingTypesAndFactors(); 5553 CollectFixupsAndInitialFormulae(); 5554 CollectLoopInvariantFixupsAndFormulae(); 5555 5556 if (Uses.empty()) 5557 return; 5558 5559 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5560 print_uses(dbgs())); 5561 5562 // Now use the reuse data to generate a bunch of interesting ways 5563 // to formulate the values needed for the uses. 5564 GenerateAllReuseFormulae(); 5565 5566 FilterOutUndesirableDedicatedRegisters(); 5567 NarrowSearchSpaceUsingHeuristics(); 5568 5569 SmallVector<const Formula *, 8> Solution; 5570 Solve(Solution); 5571 5572 // Release memory that is no longer needed. 5573 Factors.clear(); 5574 Types.clear(); 5575 RegUses.clear(); 5576 5577 if (Solution.empty()) 5578 return; 5579 5580 #ifndef NDEBUG 5581 // Formulae should be legal. 5582 for (const LSRUse &LU : Uses) { 5583 for (const Formula &F : LU.Formulae) 5584 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5585 F) && "Illegal formula generated!"); 5586 }; 5587 #endif 5588 5589 // Now that we've decided what we want, make it so. 5590 ImplementSolution(Solution); 5591 } 5592 5593 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5594 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5595 if (Factors.empty() && Types.empty()) return; 5596 5597 OS << "LSR has identified the following interesting factors and types: "; 5598 bool First = true; 5599 5600 for (int64_t Factor : Factors) { 5601 if (!First) OS << ", "; 5602 First = false; 5603 OS << '*' << Factor; 5604 } 5605 5606 for (Type *Ty : Types) { 5607 if (!First) OS << ", "; 5608 First = false; 5609 OS << '(' << *Ty << ')'; 5610 } 5611 OS << '\n'; 5612 } 5613 5614 void LSRInstance::print_fixups(raw_ostream &OS) const { 5615 OS << "LSR is examining the following fixup sites:\n"; 5616 for (const LSRUse &LU : Uses) 5617 for (const LSRFixup &LF : LU.Fixups) { 5618 dbgs() << " "; 5619 LF.print(OS); 5620 OS << '\n'; 5621 } 5622 } 5623 5624 void LSRInstance::print_uses(raw_ostream &OS) const { 5625 OS << "LSR is examining the following uses:\n"; 5626 for (const LSRUse &LU : Uses) { 5627 dbgs() << " "; 5628 LU.print(OS); 5629 OS << '\n'; 5630 for (const Formula &F : LU.Formulae) { 5631 OS << " "; 5632 F.print(OS); 5633 OS << '\n'; 5634 } 5635 } 5636 } 5637 5638 void LSRInstance::print(raw_ostream &OS) const { 5639 print_factors_and_types(OS); 5640 print_fixups(OS); 5641 print_uses(OS); 5642 } 5643 5644 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5645 print(errs()); errs() << '\n'; 5646 } 5647 #endif 5648 5649 namespace { 5650 5651 class LoopStrengthReduce : public LoopPass { 5652 public: 5653 static char ID; // Pass ID, replacement for typeid 5654 5655 LoopStrengthReduce(); 5656 5657 private: 5658 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5659 void getAnalysisUsage(AnalysisUsage &AU) const override; 5660 }; 5661 5662 } // end anonymous namespace 5663 5664 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5665 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5666 } 5667 5668 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5669 // We split critical edges, so we change the CFG. However, we do update 5670 // many analyses if they are around. 5671 AU.addPreservedID(LoopSimplifyID); 5672 5673 AU.addRequired<LoopInfoWrapperPass>(); 5674 AU.addPreserved<LoopInfoWrapperPass>(); 5675 AU.addRequiredID(LoopSimplifyID); 5676 AU.addRequired<DominatorTreeWrapperPass>(); 5677 AU.addPreserved<DominatorTreeWrapperPass>(); 5678 AU.addRequired<ScalarEvolutionWrapperPass>(); 5679 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5680 // Requiring LoopSimplify a second time here prevents IVUsers from running 5681 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5682 AU.addRequiredID(LoopSimplifyID); 5683 AU.addRequired<IVUsersWrapperPass>(); 5684 AU.addPreserved<IVUsersWrapperPass>(); 5685 AU.addRequired<TargetTransformInfoWrapperPass>(); 5686 } 5687 5688 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5689 DominatorTree &DT, LoopInfo &LI, 5690 const TargetTransformInfo &TTI) { 5691 bool Changed = false; 5692 5693 // Run the main LSR transformation. 5694 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5695 5696 // Remove any extra phis created by processing inner loops. 5697 Changed |= DeleteDeadPHIs(L->getHeader()); 5698 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5699 SmallVector<WeakTrackingVH, 16> DeadInsts; 5700 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5701 SCEVExpander Rewriter(SE, DL, "lsr"); 5702 #ifndef NDEBUG 5703 Rewriter.setDebugType(DEBUG_TYPE); 5704 #endif 5705 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5706 if (numFolded) { 5707 Changed = true; 5708 DeleteTriviallyDeadInstructions(DeadInsts); 5709 DeleteDeadPHIs(L->getHeader()); 5710 } 5711 } 5712 return Changed; 5713 } 5714 5715 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5716 if (skipLoop(L)) 5717 return false; 5718 5719 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5720 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5721 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5722 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5723 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5724 *L->getHeader()->getParent()); 5725 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5726 } 5727 5728 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5729 LoopStandardAnalysisResults &AR, 5730 LPMUpdater &) { 5731 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5732 AR.DT, AR.LI, AR.TTI)) 5733 return PreservedAnalyses::all(); 5734 5735 return getLoopPassPreservedAnalyses(); 5736 } 5737 5738 char LoopStrengthReduce::ID = 0; 5739 5740 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5741 "Loop Strength Reduction", false, false) 5742 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5743 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5744 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5745 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5746 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5747 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5748 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5749 "Loop Strength Reduction", false, false) 5750 5751 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5752