1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetTransformInfo.h"
79 #include "llvm/Config/llvm-config.h"
80 #include "llvm/IR/BasicBlock.h"
81 #include "llvm/IR/Constant.h"
82 #include "llvm/IR/Constants.h"
83 #include "llvm/IR/DerivedTypes.h"
84 #include "llvm/IR/Dominators.h"
85 #include "llvm/IR/GlobalValue.h"
86 #include "llvm/IR/IRBuilder.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/Module.h"
93 #include "llvm/IR/OperandTraits.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PassManager.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Use.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/IR/ValueHandle.h"
101 #include "llvm/InitializePasses.h"
102 #include "llvm/Pass.h"
103 #include "llvm/Support/Casting.h"
104 #include "llvm/Support/CommandLine.h"
105 #include "llvm/Support/Compiler.h"
106 #include "llvm/Support/Debug.h"
107 #include "llvm/Support/ErrorHandling.h"
108 #include "llvm/Support/MathExtras.h"
109 #include "llvm/Support/raw_ostream.h"
110 #include "llvm/Transforms/Scalar.h"
111 #include "llvm/Transforms/Utils.h"
112 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
113 #include "llvm/Transforms/Utils/Local.h"
114 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
115 #include <algorithm>
116 #include <cassert>
117 #include <cstddef>
118 #include <cstdint>
119 #include <cstdlib>
120 #include <iterator>
121 #include <limits>
122 #include <map>
123 #include <numeric>
124 #include <utility>
125 
126 using namespace llvm;
127 
128 #define DEBUG_TYPE "loop-reduce"
129 
130 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
131 /// bail out. This threshold is far beyond the number of users that LSR can
132 /// conceivably solve, so it should not affect generated code, but catches the
133 /// worst cases before LSR burns too much compile time and stack space.
134 static const unsigned MaxIVUsers = 200;
135 
136 // Temporary flag to cleanup congruent phis after LSR phi expansion.
137 // It's currently disabled until we can determine whether it's truly useful or
138 // not. The flag should be removed after the v3.0 release.
139 // This is now needed for ivchains.
140 static cl::opt<bool> EnablePhiElim(
141   "enable-lsr-phielim", cl::Hidden, cl::init(true),
142   cl::desc("Enable LSR phi elimination"));
143 
144 // The flag adds instruction count to solutions cost comparision.
145 static cl::opt<bool> InsnsCost(
146   "lsr-insns-cost", cl::Hidden, cl::init(true),
147   cl::desc("Add instruction count to a LSR cost model"));
148 
149 // Flag to choose how to narrow complex lsr solution
150 static cl::opt<bool> LSRExpNarrow(
151   "lsr-exp-narrow", cl::Hidden, cl::init(false),
152   cl::desc("Narrow LSR complex solution using"
153            " expectation of registers number"));
154 
155 // Flag to narrow search space by filtering non-optimal formulae with
156 // the same ScaledReg and Scale.
157 static cl::opt<bool> FilterSameScaledReg(
158     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
159     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
160              " with the same ScaledReg and Scale"));
161 
162 static cl::opt<bool> EnableBackedgeIndexing(
163   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
164   cl::desc("Enable the generation of cross iteration indexed memops"));
165 
166 static cl::opt<unsigned> ComplexityLimit(
167   "lsr-complexity-limit", cl::Hidden,
168   cl::init(std::numeric_limits<uint16_t>::max()),
169   cl::desc("LSR search space complexity limit"));
170 
171 static cl::opt<unsigned> SetupCostDepthLimit(
172     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
173     cl::desc("The limit on recursion depth for LSRs setup cost"));
174 
175 #ifndef NDEBUG
176 // Stress test IV chain generation.
177 static cl::opt<bool> StressIVChain(
178   "stress-ivchain", cl::Hidden, cl::init(false),
179   cl::desc("Stress test LSR IV chains"));
180 #else
181 static bool StressIVChain = false;
182 #endif
183 
184 namespace {
185 
186 struct MemAccessTy {
187   /// Used in situations where the accessed memory type is unknown.
188   static const unsigned UnknownAddressSpace =
189       std::numeric_limits<unsigned>::max();
190 
191   Type *MemTy = nullptr;
192   unsigned AddrSpace = UnknownAddressSpace;
193 
194   MemAccessTy() = default;
195   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
196 
197   bool operator==(MemAccessTy Other) const {
198     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
199   }
200 
201   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
202 
203   static MemAccessTy getUnknown(LLVMContext &Ctx,
204                                 unsigned AS = UnknownAddressSpace) {
205     return MemAccessTy(Type::getVoidTy(Ctx), AS);
206   }
207 
208   Type *getType() { return MemTy; }
209 };
210 
211 /// This class holds data which is used to order reuse candidates.
212 class RegSortData {
213 public:
214   /// This represents the set of LSRUse indices which reference
215   /// a particular register.
216   SmallBitVector UsedByIndices;
217 
218   void print(raw_ostream &OS) const;
219   void dump() const;
220 };
221 
222 } // end anonymous namespace
223 
224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
225 void RegSortData::print(raw_ostream &OS) const {
226   OS << "[NumUses=" << UsedByIndices.count() << ']';
227 }
228 
229 LLVM_DUMP_METHOD void RegSortData::dump() const {
230   print(errs()); errs() << '\n';
231 }
232 #endif
233 
234 namespace {
235 
236 /// Map register candidates to information about how they are used.
237 class RegUseTracker {
238   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
239 
240   RegUsesTy RegUsesMap;
241   SmallVector<const SCEV *, 16> RegSequence;
242 
243 public:
244   void countRegister(const SCEV *Reg, size_t LUIdx);
245   void dropRegister(const SCEV *Reg, size_t LUIdx);
246   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
247 
248   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
249 
250   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
251 
252   void clear();
253 
254   using iterator = SmallVectorImpl<const SCEV *>::iterator;
255   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
256 
257   iterator begin() { return RegSequence.begin(); }
258   iterator end()   { return RegSequence.end(); }
259   const_iterator begin() const { return RegSequence.begin(); }
260   const_iterator end() const   { return RegSequence.end(); }
261 };
262 
263 } // end anonymous namespace
264 
265 void
266 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
267   std::pair<RegUsesTy::iterator, bool> Pair =
268     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
269   RegSortData &RSD = Pair.first->second;
270   if (Pair.second)
271     RegSequence.push_back(Reg);
272   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
273   RSD.UsedByIndices.set(LUIdx);
274 }
275 
276 void
277 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
278   RegUsesTy::iterator It = RegUsesMap.find(Reg);
279   assert(It != RegUsesMap.end());
280   RegSortData &RSD = It->second;
281   assert(RSD.UsedByIndices.size() > LUIdx);
282   RSD.UsedByIndices.reset(LUIdx);
283 }
284 
285 void
286 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
287   assert(LUIdx <= LastLUIdx);
288 
289   // Update RegUses. The data structure is not optimized for this purpose;
290   // we must iterate through it and update each of the bit vectors.
291   for (auto &Pair : RegUsesMap) {
292     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
293     if (LUIdx < UsedByIndices.size())
294       UsedByIndices[LUIdx] =
295         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
296     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
297   }
298 }
299 
300 bool
301 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
302   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
303   if (I == RegUsesMap.end())
304     return false;
305   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
306   int i = UsedByIndices.find_first();
307   if (i == -1) return false;
308   if ((size_t)i != LUIdx) return true;
309   return UsedByIndices.find_next(i) != -1;
310 }
311 
312 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
313   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
314   assert(I != RegUsesMap.end() && "Unknown register!");
315   return I->second.UsedByIndices;
316 }
317 
318 void RegUseTracker::clear() {
319   RegUsesMap.clear();
320   RegSequence.clear();
321 }
322 
323 namespace {
324 
325 /// This class holds information that describes a formula for computing
326 /// satisfying a use. It may include broken-out immediates and scaled registers.
327 struct Formula {
328   /// Global base address used for complex addressing.
329   GlobalValue *BaseGV = nullptr;
330 
331   /// Base offset for complex addressing.
332   int64_t BaseOffset = 0;
333 
334   /// Whether any complex addressing has a base register.
335   bool HasBaseReg = false;
336 
337   /// The scale of any complex addressing.
338   int64_t Scale = 0;
339 
340   /// The list of "base" registers for this use. When this is non-empty. The
341   /// canonical representation of a formula is
342   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
343   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
344   /// 3. The reg containing recurrent expr related with currect loop in the
345   /// formula should be put in the ScaledReg.
346   /// #1 enforces that the scaled register is always used when at least two
347   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
348   /// #2 enforces that 1 * reg is reg.
349   /// #3 ensures invariant regs with respect to current loop can be combined
350   /// together in LSR codegen.
351   /// This invariant can be temporarily broken while building a formula.
352   /// However, every formula inserted into the LSRInstance must be in canonical
353   /// form.
354   SmallVector<const SCEV *, 4> BaseRegs;
355 
356   /// The 'scaled' register for this use. This should be non-null when Scale is
357   /// not zero.
358   const SCEV *ScaledReg = nullptr;
359 
360   /// An additional constant offset which added near the use. This requires a
361   /// temporary register, but the offset itself can live in an add immediate
362   /// field rather than a register.
363   int64_t UnfoldedOffset = 0;
364 
365   Formula() = default;
366 
367   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
368 
369   bool isCanonical(const Loop &L) const;
370 
371   void canonicalize(const Loop &L);
372 
373   bool unscale();
374 
375   bool hasZeroEnd() const;
376 
377   size_t getNumRegs() const;
378   Type *getType() const;
379 
380   void deleteBaseReg(const SCEV *&S);
381 
382   bool referencesReg(const SCEV *S) const;
383   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
384                                   const RegUseTracker &RegUses) const;
385 
386   void print(raw_ostream &OS) const;
387   void dump() const;
388 };
389 
390 } // end anonymous namespace
391 
392 /// Recursion helper for initialMatch.
393 static void DoInitialMatch(const SCEV *S, Loop *L,
394                            SmallVectorImpl<const SCEV *> &Good,
395                            SmallVectorImpl<const SCEV *> &Bad,
396                            ScalarEvolution &SE) {
397   // Collect expressions which properly dominate the loop header.
398   if (SE.properlyDominates(S, L->getHeader())) {
399     Good.push_back(S);
400     return;
401   }
402 
403   // Look at add operands.
404   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
405     for (const SCEV *S : Add->operands())
406       DoInitialMatch(S, L, Good, Bad, SE);
407     return;
408   }
409 
410   // Look at addrec operands.
411   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
412     if (!AR->getStart()->isZero() && AR->isAffine()) {
413       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
414       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
415                                       AR->getStepRecurrence(SE),
416                                       // FIXME: AR->getNoWrapFlags()
417                                       AR->getLoop(), SCEV::FlagAnyWrap),
418                      L, Good, Bad, SE);
419       return;
420     }
421 
422   // Handle a multiplication by -1 (negation) if it didn't fold.
423   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
424     if (Mul->getOperand(0)->isAllOnesValue()) {
425       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
426       const SCEV *NewMul = SE.getMulExpr(Ops);
427 
428       SmallVector<const SCEV *, 4> MyGood;
429       SmallVector<const SCEV *, 4> MyBad;
430       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
431       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
432         SE.getEffectiveSCEVType(NewMul->getType())));
433       for (const SCEV *S : MyGood)
434         Good.push_back(SE.getMulExpr(NegOne, S));
435       for (const SCEV *S : MyBad)
436         Bad.push_back(SE.getMulExpr(NegOne, S));
437       return;
438     }
439 
440   // Ok, we can't do anything interesting. Just stuff the whole thing into a
441   // register and hope for the best.
442   Bad.push_back(S);
443 }
444 
445 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
446 /// all loop-invariant and loop-computable values in a single base register.
447 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
448   SmallVector<const SCEV *, 4> Good;
449   SmallVector<const SCEV *, 4> Bad;
450   DoInitialMatch(S, L, Good, Bad, SE);
451   if (!Good.empty()) {
452     const SCEV *Sum = SE.getAddExpr(Good);
453     if (!Sum->isZero())
454       BaseRegs.push_back(Sum);
455     HasBaseReg = true;
456   }
457   if (!Bad.empty()) {
458     const SCEV *Sum = SE.getAddExpr(Bad);
459     if (!Sum->isZero())
460       BaseRegs.push_back(Sum);
461     HasBaseReg = true;
462   }
463   canonicalize(*L);
464 }
465 
466 /// Check whether or not this formula satisfies the canonical
467 /// representation.
468 /// \see Formula::BaseRegs.
469 bool Formula::isCanonical(const Loop &L) const {
470   if (!ScaledReg)
471     return BaseRegs.size() <= 1;
472 
473   if (Scale != 1)
474     return true;
475 
476   if (Scale == 1 && BaseRegs.empty())
477     return false;
478 
479   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
480   if (SAR && SAR->getLoop() == &L)
481     return true;
482 
483   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
484   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
485   // loop, we want to swap the reg in BaseRegs with ScaledReg.
486   auto I =
487       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
488         return isa<const SCEVAddRecExpr>(S) &&
489                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
490       });
491   return I == BaseRegs.end();
492 }
493 
494 /// Helper method to morph a formula into its canonical representation.
495 /// \see Formula::BaseRegs.
496 /// Every formula having more than one base register, must use the ScaledReg
497 /// field. Otherwise, we would have to do special cases everywhere in LSR
498 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
499 /// On the other hand, 1*reg should be canonicalized into reg.
500 void Formula::canonicalize(const Loop &L) {
501   if (isCanonical(L))
502     return;
503   // So far we did not need this case. This is easy to implement but it is
504   // useless to maintain dead code. Beside it could hurt compile time.
505   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
506 
507   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
508   if (!ScaledReg) {
509     ScaledReg = BaseRegs.back();
510     BaseRegs.pop_back();
511     Scale = 1;
512   }
513 
514   // If ScaledReg is an invariant with respect to L, find the reg from
515   // BaseRegs containing the recurrent expr related with Loop L. Swap the
516   // reg with ScaledReg.
517   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
518   if (!SAR || SAR->getLoop() != &L) {
519     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
520                      [&](const SCEV *S) {
521                        return isa<const SCEVAddRecExpr>(S) &&
522                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
523                      });
524     if (I != BaseRegs.end())
525       std::swap(ScaledReg, *I);
526   }
527 }
528 
529 /// Get rid of the scale in the formula.
530 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
531 /// \return true if it was possible to get rid of the scale, false otherwise.
532 /// \note After this operation the formula may not be in the canonical form.
533 bool Formula::unscale() {
534   if (Scale != 1)
535     return false;
536   Scale = 0;
537   BaseRegs.push_back(ScaledReg);
538   ScaledReg = nullptr;
539   return true;
540 }
541 
542 bool Formula::hasZeroEnd() const {
543   if (UnfoldedOffset || BaseOffset)
544     return false;
545   if (BaseRegs.size() != 1 || ScaledReg)
546     return false;
547   return true;
548 }
549 
550 /// Return the total number of register operands used by this formula. This does
551 /// not include register uses implied by non-constant addrec strides.
552 size_t Formula::getNumRegs() const {
553   return !!ScaledReg + BaseRegs.size();
554 }
555 
556 /// Return the type of this formula, if it has one, or null otherwise. This type
557 /// is meaningless except for the bit size.
558 Type *Formula::getType() const {
559   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
560          ScaledReg ? ScaledReg->getType() :
561          BaseGV ? BaseGV->getType() :
562          nullptr;
563 }
564 
565 /// Delete the given base reg from the BaseRegs list.
566 void Formula::deleteBaseReg(const SCEV *&S) {
567   if (&S != &BaseRegs.back())
568     std::swap(S, BaseRegs.back());
569   BaseRegs.pop_back();
570 }
571 
572 /// Test if this formula references the given register.
573 bool Formula::referencesReg(const SCEV *S) const {
574   return S == ScaledReg || is_contained(BaseRegs, S);
575 }
576 
577 /// Test whether this formula uses registers which are used by uses other than
578 /// the use with the given index.
579 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
580                                          const RegUseTracker &RegUses) const {
581   if (ScaledReg)
582     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
583       return true;
584   for (const SCEV *BaseReg : BaseRegs)
585     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
586       return true;
587   return false;
588 }
589 
590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591 void Formula::print(raw_ostream &OS) const {
592   bool First = true;
593   if (BaseGV) {
594     if (!First) OS << " + "; else First = false;
595     BaseGV->printAsOperand(OS, /*PrintType=*/false);
596   }
597   if (BaseOffset != 0) {
598     if (!First) OS << " + "; else First = false;
599     OS << BaseOffset;
600   }
601   for (const SCEV *BaseReg : BaseRegs) {
602     if (!First) OS << " + "; else First = false;
603     OS << "reg(" << *BaseReg << ')';
604   }
605   if (HasBaseReg && BaseRegs.empty()) {
606     if (!First) OS << " + "; else First = false;
607     OS << "**error: HasBaseReg**";
608   } else if (!HasBaseReg && !BaseRegs.empty()) {
609     if (!First) OS << " + "; else First = false;
610     OS << "**error: !HasBaseReg**";
611   }
612   if (Scale != 0) {
613     if (!First) OS << " + "; else First = false;
614     OS << Scale << "*reg(";
615     if (ScaledReg)
616       OS << *ScaledReg;
617     else
618       OS << "<unknown>";
619     OS << ')';
620   }
621   if (UnfoldedOffset != 0) {
622     if (!First) OS << " + ";
623     OS << "imm(" << UnfoldedOffset << ')';
624   }
625 }
626 
627 LLVM_DUMP_METHOD void Formula::dump() const {
628   print(errs()); errs() << '\n';
629 }
630 #endif
631 
632 /// Return true if the given addrec can be sign-extended without changing its
633 /// value.
634 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
635   Type *WideTy =
636     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
637   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
638 }
639 
640 /// Return true if the given add can be sign-extended without changing its
641 /// value.
642 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
643   Type *WideTy =
644     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
645   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
646 }
647 
648 /// Return true if the given mul can be sign-extended without changing its
649 /// value.
650 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
651   Type *WideTy =
652     IntegerType::get(SE.getContext(),
653                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
654   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
655 }
656 
657 /// Return an expression for LHS /s RHS, if it can be determined and if the
658 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
659 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
660 /// the multiplication may overflow, which is useful when the result will be
661 /// used in a context where the most significant bits are ignored.
662 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
663                                 ScalarEvolution &SE,
664                                 bool IgnoreSignificantBits = false) {
665   // Handle the trivial case, which works for any SCEV type.
666   if (LHS == RHS)
667     return SE.getConstant(LHS->getType(), 1);
668 
669   // Handle a few RHS special cases.
670   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
671   if (RC) {
672     const APInt &RA = RC->getAPInt();
673     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
674     // some folding.
675     if (RA.isAllOnesValue())
676       return SE.getMulExpr(LHS, RC);
677     // Handle x /s 1 as x.
678     if (RA == 1)
679       return LHS;
680   }
681 
682   // Check for a division of a constant by a constant.
683   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
684     if (!RC)
685       return nullptr;
686     const APInt &LA = C->getAPInt();
687     const APInt &RA = RC->getAPInt();
688     if (LA.srem(RA) != 0)
689       return nullptr;
690     return SE.getConstant(LA.sdiv(RA));
691   }
692 
693   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
694   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
695     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
696       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
697                                       IgnoreSignificantBits);
698       if (!Step) return nullptr;
699       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
700                                        IgnoreSignificantBits);
701       if (!Start) return nullptr;
702       // FlagNW is independent of the start value, step direction, and is
703       // preserved with smaller magnitude steps.
704       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
705       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
706     }
707     return nullptr;
708   }
709 
710   // Distribute the sdiv over add operands, if the add doesn't overflow.
711   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
712     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
713       SmallVector<const SCEV *, 8> Ops;
714       for (const SCEV *S : Add->operands()) {
715         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
716         if (!Op) return nullptr;
717         Ops.push_back(Op);
718       }
719       return SE.getAddExpr(Ops);
720     }
721     return nullptr;
722   }
723 
724   // Check for a multiply operand that we can pull RHS out of.
725   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
726     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
727       SmallVector<const SCEV *, 4> Ops;
728       bool Found = false;
729       for (const SCEV *S : Mul->operands()) {
730         if (!Found)
731           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
732                                            IgnoreSignificantBits)) {
733             S = Q;
734             Found = true;
735           }
736         Ops.push_back(S);
737       }
738       return Found ? SE.getMulExpr(Ops) : nullptr;
739     }
740     return nullptr;
741   }
742 
743   // Otherwise we don't know.
744   return nullptr;
745 }
746 
747 /// If S involves the addition of a constant integer value, return that integer
748 /// value, and mutate S to point to a new SCEV with that value excluded.
749 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
750   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
751     if (C->getAPInt().getMinSignedBits() <= 64) {
752       S = SE.getConstant(C->getType(), 0);
753       return C->getValue()->getSExtValue();
754     }
755   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
756     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
757     int64_t Result = ExtractImmediate(NewOps.front(), SE);
758     if (Result != 0)
759       S = SE.getAddExpr(NewOps);
760     return Result;
761   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
762     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
763     int64_t Result = ExtractImmediate(NewOps.front(), SE);
764     if (Result != 0)
765       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
766                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
767                            SCEV::FlagAnyWrap);
768     return Result;
769   }
770   return 0;
771 }
772 
773 /// If S involves the addition of a GlobalValue address, return that symbol, and
774 /// mutate S to point to a new SCEV with that value excluded.
775 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
776   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
777     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
778       S = SE.getConstant(GV->getType(), 0);
779       return GV;
780     }
781   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
782     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
783     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
784     if (Result)
785       S = SE.getAddExpr(NewOps);
786     return Result;
787   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
788     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
789     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
790     if (Result)
791       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
792                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
793                            SCEV::FlagAnyWrap);
794     return Result;
795   }
796   return nullptr;
797 }
798 
799 /// Returns true if the specified instruction is using the specified value as an
800 /// address.
801 static bool isAddressUse(const TargetTransformInfo &TTI,
802                          Instruction *Inst, Value *OperandVal) {
803   bool isAddress = isa<LoadInst>(Inst);
804   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
805     if (SI->getPointerOperand() == OperandVal)
806       isAddress = true;
807   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
808     // Addressing modes can also be folded into prefetches and a variety
809     // of intrinsics.
810     switch (II->getIntrinsicID()) {
811     case Intrinsic::memset:
812     case Intrinsic::prefetch:
813     case Intrinsic::masked_load:
814       if (II->getArgOperand(0) == OperandVal)
815         isAddress = true;
816       break;
817     case Intrinsic::masked_store:
818       if (II->getArgOperand(1) == OperandVal)
819         isAddress = true;
820       break;
821     case Intrinsic::memmove:
822     case Intrinsic::memcpy:
823       if (II->getArgOperand(0) == OperandVal ||
824           II->getArgOperand(1) == OperandVal)
825         isAddress = true;
826       break;
827     default: {
828       MemIntrinsicInfo IntrInfo;
829       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
830         if (IntrInfo.PtrVal == OperandVal)
831           isAddress = true;
832       }
833     }
834     }
835   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
836     if (RMW->getPointerOperand() == OperandVal)
837       isAddress = true;
838   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
839     if (CmpX->getPointerOperand() == OperandVal)
840       isAddress = true;
841   }
842   return isAddress;
843 }
844 
845 /// Return the type of the memory being accessed.
846 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
847                                  Instruction *Inst, Value *OperandVal) {
848   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
849   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
850     AccessTy.MemTy = SI->getOperand(0)->getType();
851     AccessTy.AddrSpace = SI->getPointerAddressSpace();
852   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
853     AccessTy.AddrSpace = LI->getPointerAddressSpace();
854   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
855     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
856   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
857     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
858   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859     switch (II->getIntrinsicID()) {
860     case Intrinsic::prefetch:
861     case Intrinsic::memset:
862       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
863       AccessTy.MemTy = OperandVal->getType();
864       break;
865     case Intrinsic::memmove:
866     case Intrinsic::memcpy:
867       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
868       AccessTy.MemTy = OperandVal->getType();
869       break;
870     case Intrinsic::masked_load:
871       AccessTy.AddrSpace =
872           II->getArgOperand(0)->getType()->getPointerAddressSpace();
873       break;
874     case Intrinsic::masked_store:
875       AccessTy.MemTy = II->getOperand(0)->getType();
876       AccessTy.AddrSpace =
877           II->getArgOperand(1)->getType()->getPointerAddressSpace();
878       break;
879     default: {
880       MemIntrinsicInfo IntrInfo;
881       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
882         AccessTy.AddrSpace
883           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
884       }
885 
886       break;
887     }
888     }
889   }
890 
891   // All pointers have the same requirements, so canonicalize them to an
892   // arbitrary pointer type to minimize variation.
893   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
894     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
895                                       PTy->getAddressSpace());
896 
897   return AccessTy;
898 }
899 
900 /// Return true if this AddRec is already a phi in its loop.
901 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
902   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
903     if (SE.isSCEVable(PN.getType()) &&
904         (SE.getEffectiveSCEVType(PN.getType()) ==
905          SE.getEffectiveSCEVType(AR->getType())) &&
906         SE.getSCEV(&PN) == AR)
907       return true;
908   }
909   return false;
910 }
911 
912 /// Check if expanding this expression is likely to incur significant cost. This
913 /// is tricky because SCEV doesn't track which expressions are actually computed
914 /// by the current IR.
915 ///
916 /// We currently allow expansion of IV increments that involve adds,
917 /// multiplication by constants, and AddRecs from existing phis.
918 ///
919 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
920 /// obvious multiple of the UDivExpr.
921 static bool isHighCostExpansion(const SCEV *S,
922                                 SmallPtrSetImpl<const SCEV*> &Processed,
923                                 ScalarEvolution &SE) {
924   // Zero/One operand expressions
925   switch (S->getSCEVType()) {
926   case scUnknown:
927   case scConstant:
928     return false;
929   case scTruncate:
930     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
931                                Processed, SE);
932   case scZeroExtend:
933     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
934                                Processed, SE);
935   case scSignExtend:
936     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
937                                Processed, SE);
938   default:
939     break;
940   }
941 
942   if (!Processed.insert(S).second)
943     return false;
944 
945   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
946     for (const SCEV *S : Add->operands()) {
947       if (isHighCostExpansion(S, Processed, SE))
948         return true;
949     }
950     return false;
951   }
952 
953   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
954     if (Mul->getNumOperands() == 2) {
955       // Multiplication by a constant is ok
956       if (isa<SCEVConstant>(Mul->getOperand(0)))
957         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
958 
959       // If we have the value of one operand, check if an existing
960       // multiplication already generates this expression.
961       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
962         Value *UVal = U->getValue();
963         for (User *UR : UVal->users()) {
964           // If U is a constant, it may be used by a ConstantExpr.
965           Instruction *UI = dyn_cast<Instruction>(UR);
966           if (UI && UI->getOpcode() == Instruction::Mul &&
967               SE.isSCEVable(UI->getType())) {
968             return SE.getSCEV(UI) == Mul;
969           }
970         }
971       }
972     }
973   }
974 
975   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
976     if (isExistingPhi(AR, SE))
977       return false;
978   }
979 
980   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
981   return true;
982 }
983 
984 namespace {
985 
986 class LSRUse;
987 
988 } // end anonymous namespace
989 
990 /// Check if the addressing mode defined by \p F is completely
991 /// folded in \p LU at isel time.
992 /// This includes address-mode folding and special icmp tricks.
993 /// This function returns true if \p LU can accommodate what \p F
994 /// defines and up to 1 base + 1 scaled + offset.
995 /// In other words, if \p F has several base registers, this function may
996 /// still return true. Therefore, users still need to account for
997 /// additional base registers and/or unfolded offsets to derive an
998 /// accurate cost model.
999 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1000                                  const LSRUse &LU, const Formula &F);
1001 
1002 // Get the cost of the scaling factor used in F for LU.
1003 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1004                                      const LSRUse &LU, const Formula &F,
1005                                      const Loop &L);
1006 
1007 namespace {
1008 
1009 /// This class is used to measure and compare candidate formulae.
1010 class Cost {
1011   const Loop *L = nullptr;
1012   ScalarEvolution *SE = nullptr;
1013   const TargetTransformInfo *TTI = nullptr;
1014   TargetTransformInfo::LSRCost C;
1015 
1016 public:
1017   Cost() = delete;
1018   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1019     L(L), SE(&SE), TTI(&TTI) {
1020     C.Insns = 0;
1021     C.NumRegs = 0;
1022     C.AddRecCost = 0;
1023     C.NumIVMuls = 0;
1024     C.NumBaseAdds = 0;
1025     C.ImmCost = 0;
1026     C.SetupCost = 0;
1027     C.ScaleCost = 0;
1028   }
1029 
1030   bool isLess(Cost &Other);
1031 
1032   void Lose();
1033 
1034 #ifndef NDEBUG
1035   // Once any of the metrics loses, they must all remain losers.
1036   bool isValid() {
1037     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1038              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1039       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1040            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1041   }
1042 #endif
1043 
1044   bool isLoser() {
1045     assert(isValid() && "invalid cost");
1046     return C.NumRegs == ~0u;
1047   }
1048 
1049   void RateFormula(const Formula &F,
1050                    SmallPtrSetImpl<const SCEV *> &Regs,
1051                    const DenseSet<const SCEV *> &VisitedRegs,
1052                    const LSRUse &LU,
1053                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1054 
1055   void print(raw_ostream &OS) const;
1056   void dump() const;
1057 
1058 private:
1059   void RateRegister(const Formula &F, const SCEV *Reg,
1060                     SmallPtrSetImpl<const SCEV *> &Regs);
1061   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1062                            SmallPtrSetImpl<const SCEV *> &Regs,
1063                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1064 };
1065 
1066 /// An operand value in an instruction which is to be replaced with some
1067 /// equivalent, possibly strength-reduced, replacement.
1068 struct LSRFixup {
1069   /// The instruction which will be updated.
1070   Instruction *UserInst = nullptr;
1071 
1072   /// The operand of the instruction which will be replaced. The operand may be
1073   /// used more than once; every instance will be replaced.
1074   Value *OperandValToReplace = nullptr;
1075 
1076   /// If this user is to use the post-incremented value of an induction
1077   /// variable, this set is non-empty and holds the loops associated with the
1078   /// induction variable.
1079   PostIncLoopSet PostIncLoops;
1080 
1081   /// A constant offset to be added to the LSRUse expression.  This allows
1082   /// multiple fixups to share the same LSRUse with different offsets, for
1083   /// example in an unrolled loop.
1084   int64_t Offset = 0;
1085 
1086   LSRFixup() = default;
1087 
1088   bool isUseFullyOutsideLoop(const Loop *L) const;
1089 
1090   void print(raw_ostream &OS) const;
1091   void dump() const;
1092 };
1093 
1094 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1095 /// SmallVectors of const SCEV*.
1096 struct UniquifierDenseMapInfo {
1097   static SmallVector<const SCEV *, 4> getEmptyKey() {
1098     SmallVector<const SCEV *, 4>  V;
1099     V.push_back(reinterpret_cast<const SCEV *>(-1));
1100     return V;
1101   }
1102 
1103   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1104     SmallVector<const SCEV *, 4> V;
1105     V.push_back(reinterpret_cast<const SCEV *>(-2));
1106     return V;
1107   }
1108 
1109   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1110     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1111   }
1112 
1113   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1114                       const SmallVector<const SCEV *, 4> &RHS) {
1115     return LHS == RHS;
1116   }
1117 };
1118 
1119 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1120 /// as uses invented by LSR itself. It includes information about what kinds of
1121 /// things can be folded into the user, information about the user itself, and
1122 /// information about how the use may be satisfied.  TODO: Represent multiple
1123 /// users of the same expression in common?
1124 class LSRUse {
1125   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1126 
1127 public:
1128   /// An enum for a kind of use, indicating what types of scaled and immediate
1129   /// operands it might support.
1130   enum KindType {
1131     Basic,   ///< A normal use, with no folding.
1132     Special, ///< A special case of basic, allowing -1 scales.
1133     Address, ///< An address use; folding according to TargetLowering
1134     ICmpZero ///< An equality icmp with both operands folded into one.
1135     // TODO: Add a generic icmp too?
1136   };
1137 
1138   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1139 
1140   KindType Kind;
1141   MemAccessTy AccessTy;
1142 
1143   /// The list of operands which are to be replaced.
1144   SmallVector<LSRFixup, 8> Fixups;
1145 
1146   /// Keep track of the min and max offsets of the fixups.
1147   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1148   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1149 
1150   /// This records whether all of the fixups using this LSRUse are outside of
1151   /// the loop, in which case some special-case heuristics may be used.
1152   bool AllFixupsOutsideLoop = true;
1153 
1154   /// RigidFormula is set to true to guarantee that this use will be associated
1155   /// with a single formula--the one that initially matched. Some SCEV
1156   /// expressions cannot be expanded. This allows LSR to consider the registers
1157   /// used by those expressions without the need to expand them later after
1158   /// changing the formula.
1159   bool RigidFormula = false;
1160 
1161   /// This records the widest use type for any fixup using this
1162   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1163   /// fixup widths to be equivalent, because the narrower one may be relying on
1164   /// the implicit truncation to truncate away bogus bits.
1165   Type *WidestFixupType = nullptr;
1166 
1167   /// A list of ways to build a value that can satisfy this user.  After the
1168   /// list is populated, one of these is selected heuristically and used to
1169   /// formulate a replacement for OperandValToReplace in UserInst.
1170   SmallVector<Formula, 12> Formulae;
1171 
1172   /// The set of register candidates used by all formulae in this LSRUse.
1173   SmallPtrSet<const SCEV *, 4> Regs;
1174 
1175   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1176 
1177   LSRFixup &getNewFixup() {
1178     Fixups.push_back(LSRFixup());
1179     return Fixups.back();
1180   }
1181 
1182   void pushFixup(LSRFixup &f) {
1183     Fixups.push_back(f);
1184     if (f.Offset > MaxOffset)
1185       MaxOffset = f.Offset;
1186     if (f.Offset < MinOffset)
1187       MinOffset = f.Offset;
1188   }
1189 
1190   bool HasFormulaWithSameRegs(const Formula &F) const;
1191   float getNotSelectedProbability(const SCEV *Reg) const;
1192   bool InsertFormula(const Formula &F, const Loop &L);
1193   void DeleteFormula(Formula &F);
1194   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1195 
1196   void print(raw_ostream &OS) const;
1197   void dump() const;
1198 };
1199 
1200 } // end anonymous namespace
1201 
1202 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1203                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1204                                  GlobalValue *BaseGV, int64_t BaseOffset,
1205                                  bool HasBaseReg, int64_t Scale,
1206                                  Instruction *Fixup = nullptr);
1207 
1208 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1209   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1210     return 1;
1211   if (Depth == 0)
1212     return 0;
1213   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1214     return getSetupCost(S->getStart(), Depth - 1);
1215   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1216     return getSetupCost(S->getOperand(), Depth - 1);
1217   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1218     return std::accumulate(S->op_begin(), S->op_end(), 0,
1219                            [&](unsigned i, const SCEV *Reg) {
1220                              return i + getSetupCost(Reg, Depth - 1);
1221                            });
1222   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1223     return getSetupCost(S->getLHS(), Depth - 1) +
1224            getSetupCost(S->getRHS(), Depth - 1);
1225   return 0;
1226 }
1227 
1228 /// Tally up interesting quantities from the given register.
1229 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1230                         SmallPtrSetImpl<const SCEV *> &Regs) {
1231   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1232     // If this is an addrec for another loop, it should be an invariant
1233     // with respect to L since L is the innermost loop (at least
1234     // for now LSR only handles innermost loops).
1235     if (AR->getLoop() != L) {
1236       // If the AddRec exists, consider it's register free and leave it alone.
1237       if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc())
1238         return;
1239 
1240       // It is bad to allow LSR for current loop to add induction variables
1241       // for its sibling loops.
1242       if (!AR->getLoop()->contains(L)) {
1243         Lose();
1244         return;
1245       }
1246 
1247       // Otherwise, it will be an invariant with respect to Loop L.
1248       ++C.NumRegs;
1249       return;
1250     }
1251 
1252     unsigned LoopCost = 1;
1253     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1254         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1255 
1256       // If the step size matches the base offset, we could use pre-indexed
1257       // addressing.
1258       if (TTI->shouldFavorBackedgeIndex(L)) {
1259         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1260           if (Step->getAPInt() == F.BaseOffset)
1261             LoopCost = 0;
1262       }
1263 
1264       if (TTI->shouldFavorPostInc()) {
1265         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1266         if (isa<SCEVConstant>(LoopStep)) {
1267           const SCEV *LoopStart = AR->getStart();
1268           if (!isa<SCEVConstant>(LoopStart) &&
1269               SE->isLoopInvariant(LoopStart, L))
1270             LoopCost = 0;
1271         }
1272       }
1273     }
1274     C.AddRecCost += LoopCost;
1275 
1276     // Add the step value register, if it needs one.
1277     // TODO: The non-affine case isn't precisely modeled here.
1278     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1279       if (!Regs.count(AR->getOperand(1))) {
1280         RateRegister(F, AR->getOperand(1), Regs);
1281         if (isLoser())
1282           return;
1283       }
1284     }
1285   }
1286   ++C.NumRegs;
1287 
1288   // Rough heuristic; favor registers which don't require extra setup
1289   // instructions in the preheader.
1290   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1291   // Ensure we don't, even with the recusion limit, produce invalid costs.
1292   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1293 
1294   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1295                SE->hasComputableLoopEvolution(Reg, L);
1296 }
1297 
1298 /// Record this register in the set. If we haven't seen it before, rate
1299 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1300 /// one of those regs an instant loser.
1301 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1302                                SmallPtrSetImpl<const SCEV *> &Regs,
1303                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1304   if (LoserRegs && LoserRegs->count(Reg)) {
1305     Lose();
1306     return;
1307   }
1308   if (Regs.insert(Reg).second) {
1309     RateRegister(F, Reg, Regs);
1310     if (LoserRegs && isLoser())
1311       LoserRegs->insert(Reg);
1312   }
1313 }
1314 
1315 void Cost::RateFormula(const Formula &F,
1316                        SmallPtrSetImpl<const SCEV *> &Regs,
1317                        const DenseSet<const SCEV *> &VisitedRegs,
1318                        const LSRUse &LU,
1319                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1320   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1321   // Tally up the registers.
1322   unsigned PrevAddRecCost = C.AddRecCost;
1323   unsigned PrevNumRegs = C.NumRegs;
1324   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1325   if (const SCEV *ScaledReg = F.ScaledReg) {
1326     if (VisitedRegs.count(ScaledReg)) {
1327       Lose();
1328       return;
1329     }
1330     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1331     if (isLoser())
1332       return;
1333   }
1334   for (const SCEV *BaseReg : F.BaseRegs) {
1335     if (VisitedRegs.count(BaseReg)) {
1336       Lose();
1337       return;
1338     }
1339     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1340     if (isLoser())
1341       return;
1342   }
1343 
1344   // Determine how many (unfolded) adds we'll need inside the loop.
1345   size_t NumBaseParts = F.getNumRegs();
1346   if (NumBaseParts > 1)
1347     // Do not count the base and a possible second register if the target
1348     // allows to fold 2 registers.
1349     C.NumBaseAdds +=
1350         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1351   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1352 
1353   // Accumulate non-free scaling amounts.
1354   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1355 
1356   // Tally up the non-zero immediates.
1357   for (const LSRFixup &Fixup : LU.Fixups) {
1358     int64_t O = Fixup.Offset;
1359     int64_t Offset = (uint64_t)O + F.BaseOffset;
1360     if (F.BaseGV)
1361       C.ImmCost += 64; // Handle symbolic values conservatively.
1362                      // TODO: This should probably be the pointer size.
1363     else if (Offset != 0)
1364       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1365 
1366     // Check with target if this offset with this instruction is
1367     // specifically not supported.
1368     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1369         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1370                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1371       C.NumBaseAdds++;
1372   }
1373 
1374   // If we don't count instruction cost exit here.
1375   if (!InsnsCost) {
1376     assert(isValid() && "invalid cost");
1377     return;
1378   }
1379 
1380   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1381   // additional instruction (at least fill).
1382   // TODO: Need distinguish register class?
1383   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1384                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1385   if (C.NumRegs > TTIRegNum) {
1386     // Cost already exceeded TTIRegNum, then only newly added register can add
1387     // new instructions.
1388     if (PrevNumRegs > TTIRegNum)
1389       C.Insns += (C.NumRegs - PrevNumRegs);
1390     else
1391       C.Insns += (C.NumRegs - TTIRegNum);
1392   }
1393 
1394   // If ICmpZero formula ends with not 0, it could not be replaced by
1395   // just add or sub. We'll need to compare final result of AddRec.
1396   // That means we'll need an additional instruction. But if the target can
1397   // macro-fuse a compare with a branch, don't count this extra instruction.
1398   // For -10 + {0, +, 1}:
1399   // i = i + 1;
1400   // cmp i, 10
1401   //
1402   // For {-10, +, 1}:
1403   // i = i + 1;
1404   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1405       !TTI->canMacroFuseCmp())
1406     C.Insns++;
1407   // Each new AddRec adds 1 instruction to calculation.
1408   C.Insns += (C.AddRecCost - PrevAddRecCost);
1409 
1410   // BaseAdds adds instructions for unfolded registers.
1411   if (LU.Kind != LSRUse::ICmpZero)
1412     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1413   assert(isValid() && "invalid cost");
1414 }
1415 
1416 /// Set this cost to a losing value.
1417 void Cost::Lose() {
1418   C.Insns = std::numeric_limits<unsigned>::max();
1419   C.NumRegs = std::numeric_limits<unsigned>::max();
1420   C.AddRecCost = std::numeric_limits<unsigned>::max();
1421   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1422   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1423   C.ImmCost = std::numeric_limits<unsigned>::max();
1424   C.SetupCost = std::numeric_limits<unsigned>::max();
1425   C.ScaleCost = std::numeric_limits<unsigned>::max();
1426 }
1427 
1428 /// Choose the lower cost.
1429 bool Cost::isLess(Cost &Other) {
1430   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1431       C.Insns != Other.C.Insns)
1432     return C.Insns < Other.C.Insns;
1433   return TTI->isLSRCostLess(C, Other.C);
1434 }
1435 
1436 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1437 void Cost::print(raw_ostream &OS) const {
1438   if (InsnsCost)
1439     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1440   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1441   if (C.AddRecCost != 0)
1442     OS << ", with addrec cost " << C.AddRecCost;
1443   if (C.NumIVMuls != 0)
1444     OS << ", plus " << C.NumIVMuls << " IV mul"
1445        << (C.NumIVMuls == 1 ? "" : "s");
1446   if (C.NumBaseAdds != 0)
1447     OS << ", plus " << C.NumBaseAdds << " base add"
1448        << (C.NumBaseAdds == 1 ? "" : "s");
1449   if (C.ScaleCost != 0)
1450     OS << ", plus " << C.ScaleCost << " scale cost";
1451   if (C.ImmCost != 0)
1452     OS << ", plus " << C.ImmCost << " imm cost";
1453   if (C.SetupCost != 0)
1454     OS << ", plus " << C.SetupCost << " setup cost";
1455 }
1456 
1457 LLVM_DUMP_METHOD void Cost::dump() const {
1458   print(errs()); errs() << '\n';
1459 }
1460 #endif
1461 
1462 /// Test whether this fixup always uses its value outside of the given loop.
1463 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1464   // PHI nodes use their value in their incoming blocks.
1465   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1466     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1467       if (PN->getIncomingValue(i) == OperandValToReplace &&
1468           L->contains(PN->getIncomingBlock(i)))
1469         return false;
1470     return true;
1471   }
1472 
1473   return !L->contains(UserInst);
1474 }
1475 
1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1477 void LSRFixup::print(raw_ostream &OS) const {
1478   OS << "UserInst=";
1479   // Store is common and interesting enough to be worth special-casing.
1480   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1481     OS << "store ";
1482     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1483   } else if (UserInst->getType()->isVoidTy())
1484     OS << UserInst->getOpcodeName();
1485   else
1486     UserInst->printAsOperand(OS, /*PrintType=*/false);
1487 
1488   OS << ", OperandValToReplace=";
1489   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1490 
1491   for (const Loop *PIL : PostIncLoops) {
1492     OS << ", PostIncLoop=";
1493     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1494   }
1495 
1496   if (Offset != 0)
1497     OS << ", Offset=" << Offset;
1498 }
1499 
1500 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1501   print(errs()); errs() << '\n';
1502 }
1503 #endif
1504 
1505 /// Test whether this use as a formula which has the same registers as the given
1506 /// formula.
1507 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1508   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1509   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1510   // Unstable sort by host order ok, because this is only used for uniquifying.
1511   llvm::sort(Key);
1512   return Uniquifier.count(Key);
1513 }
1514 
1515 /// The function returns a probability of selecting formula without Reg.
1516 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1517   unsigned FNum = 0;
1518   for (const Formula &F : Formulae)
1519     if (F.referencesReg(Reg))
1520       FNum++;
1521   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1522 }
1523 
1524 /// If the given formula has not yet been inserted, add it to the list, and
1525 /// return true. Return false otherwise.  The formula must be in canonical form.
1526 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1527   assert(F.isCanonical(L) && "Invalid canonical representation");
1528 
1529   if (!Formulae.empty() && RigidFormula)
1530     return false;
1531 
1532   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1533   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1534   // Unstable sort by host order ok, because this is only used for uniquifying.
1535   llvm::sort(Key);
1536 
1537   if (!Uniquifier.insert(Key).second)
1538     return false;
1539 
1540   // Using a register to hold the value of 0 is not profitable.
1541   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1542          "Zero allocated in a scaled register!");
1543 #ifndef NDEBUG
1544   for (const SCEV *BaseReg : F.BaseRegs)
1545     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1546 #endif
1547 
1548   // Add the formula to the list.
1549   Formulae.push_back(F);
1550 
1551   // Record registers now being used by this use.
1552   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1553   if (F.ScaledReg)
1554     Regs.insert(F.ScaledReg);
1555 
1556   return true;
1557 }
1558 
1559 /// Remove the given formula from this use's list.
1560 void LSRUse::DeleteFormula(Formula &F) {
1561   if (&F != &Formulae.back())
1562     std::swap(F, Formulae.back());
1563   Formulae.pop_back();
1564 }
1565 
1566 /// Recompute the Regs field, and update RegUses.
1567 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1568   // Now that we've filtered out some formulae, recompute the Regs set.
1569   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1570   Regs.clear();
1571   for (const Formula &F : Formulae) {
1572     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1573     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1574   }
1575 
1576   // Update the RegTracker.
1577   for (const SCEV *S : OldRegs)
1578     if (!Regs.count(S))
1579       RegUses.dropRegister(S, LUIdx);
1580 }
1581 
1582 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1583 void LSRUse::print(raw_ostream &OS) const {
1584   OS << "LSR Use: Kind=";
1585   switch (Kind) {
1586   case Basic:    OS << "Basic"; break;
1587   case Special:  OS << "Special"; break;
1588   case ICmpZero: OS << "ICmpZero"; break;
1589   case Address:
1590     OS << "Address of ";
1591     if (AccessTy.MemTy->isPointerTy())
1592       OS << "pointer"; // the full pointer type could be really verbose
1593     else {
1594       OS << *AccessTy.MemTy;
1595     }
1596 
1597     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1598   }
1599 
1600   OS << ", Offsets={";
1601   bool NeedComma = false;
1602   for (const LSRFixup &Fixup : Fixups) {
1603     if (NeedComma) OS << ',';
1604     OS << Fixup.Offset;
1605     NeedComma = true;
1606   }
1607   OS << '}';
1608 
1609   if (AllFixupsOutsideLoop)
1610     OS << ", all-fixups-outside-loop";
1611 
1612   if (WidestFixupType)
1613     OS << ", widest fixup type: " << *WidestFixupType;
1614 }
1615 
1616 LLVM_DUMP_METHOD void LSRUse::dump() const {
1617   print(errs()); errs() << '\n';
1618 }
1619 #endif
1620 
1621 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1622                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1623                                  GlobalValue *BaseGV, int64_t BaseOffset,
1624                                  bool HasBaseReg, int64_t Scale,
1625                                  Instruction *Fixup/*= nullptr*/) {
1626   switch (Kind) {
1627   case LSRUse::Address:
1628     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1629                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1630 
1631   case LSRUse::ICmpZero:
1632     // There's not even a target hook for querying whether it would be legal to
1633     // fold a GV into an ICmp.
1634     if (BaseGV)
1635       return false;
1636 
1637     // ICmp only has two operands; don't allow more than two non-trivial parts.
1638     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1639       return false;
1640 
1641     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1642     // putting the scaled register in the other operand of the icmp.
1643     if (Scale != 0 && Scale != -1)
1644       return false;
1645 
1646     // If we have low-level target information, ask the target if it can fold an
1647     // integer immediate on an icmp.
1648     if (BaseOffset != 0) {
1649       // We have one of:
1650       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1651       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1652       // Offs is the ICmp immediate.
1653       if (Scale == 0)
1654         // The cast does the right thing with
1655         // std::numeric_limits<int64_t>::min().
1656         BaseOffset = -(uint64_t)BaseOffset;
1657       return TTI.isLegalICmpImmediate(BaseOffset);
1658     }
1659 
1660     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1661     return true;
1662 
1663   case LSRUse::Basic:
1664     // Only handle single-register values.
1665     return !BaseGV && Scale == 0 && BaseOffset == 0;
1666 
1667   case LSRUse::Special:
1668     // Special case Basic to handle -1 scales.
1669     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1670   }
1671 
1672   llvm_unreachable("Invalid LSRUse Kind!");
1673 }
1674 
1675 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1676                                  int64_t MinOffset, int64_t MaxOffset,
1677                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1678                                  GlobalValue *BaseGV, int64_t BaseOffset,
1679                                  bool HasBaseReg, int64_t Scale) {
1680   // Check for overflow.
1681   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1682       (MinOffset > 0))
1683     return false;
1684   MinOffset = (uint64_t)BaseOffset + MinOffset;
1685   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1686       (MaxOffset > 0))
1687     return false;
1688   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1689 
1690   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1691                               HasBaseReg, Scale) &&
1692          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1693                               HasBaseReg, Scale);
1694 }
1695 
1696 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1697                                  int64_t MinOffset, int64_t MaxOffset,
1698                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1699                                  const Formula &F, const Loop &L) {
1700   // For the purpose of isAMCompletelyFolded either having a canonical formula
1701   // or a scale not equal to zero is correct.
1702   // Problems may arise from non canonical formulae having a scale == 0.
1703   // Strictly speaking it would best to just rely on canonical formulae.
1704   // However, when we generate the scaled formulae, we first check that the
1705   // scaling factor is profitable before computing the actual ScaledReg for
1706   // compile time sake.
1707   assert((F.isCanonical(L) || F.Scale != 0));
1708   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1709                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1710 }
1711 
1712 /// Test whether we know how to expand the current formula.
1713 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1714                        int64_t MaxOffset, LSRUse::KindType Kind,
1715                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1716                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1717   // We know how to expand completely foldable formulae.
1718   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1719                               BaseOffset, HasBaseReg, Scale) ||
1720          // Or formulae that use a base register produced by a sum of base
1721          // registers.
1722          (Scale == 1 &&
1723           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1724                                BaseGV, BaseOffset, true, 0));
1725 }
1726 
1727 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1728                        int64_t MaxOffset, LSRUse::KindType Kind,
1729                        MemAccessTy AccessTy, const Formula &F) {
1730   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1731                     F.BaseOffset, F.HasBaseReg, F.Scale);
1732 }
1733 
1734 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1735                                  const LSRUse &LU, const Formula &F) {
1736   // Target may want to look at the user instructions.
1737   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1738     for (const LSRFixup &Fixup : LU.Fixups)
1739       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1740                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1741                                 F.Scale, Fixup.UserInst))
1742         return false;
1743     return true;
1744   }
1745 
1746   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1747                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1748                               F.Scale);
1749 }
1750 
1751 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1752                                      const LSRUse &LU, const Formula &F,
1753                                      const Loop &L) {
1754   if (!F.Scale)
1755     return 0;
1756 
1757   // If the use is not completely folded in that instruction, we will have to
1758   // pay an extra cost only for scale != 1.
1759   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1760                             LU.AccessTy, F, L))
1761     return F.Scale != 1;
1762 
1763   switch (LU.Kind) {
1764   case LSRUse::Address: {
1765     // Check the scaling factor cost with both the min and max offsets.
1766     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1767         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1768         F.Scale, LU.AccessTy.AddrSpace);
1769     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1770         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1771         F.Scale, LU.AccessTy.AddrSpace);
1772 
1773     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1774            "Legal addressing mode has an illegal cost!");
1775     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1776   }
1777   case LSRUse::ICmpZero:
1778   case LSRUse::Basic:
1779   case LSRUse::Special:
1780     // The use is completely folded, i.e., everything is folded into the
1781     // instruction.
1782     return 0;
1783   }
1784 
1785   llvm_unreachable("Invalid LSRUse Kind!");
1786 }
1787 
1788 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1789                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1790                              GlobalValue *BaseGV, int64_t BaseOffset,
1791                              bool HasBaseReg) {
1792   // Fast-path: zero is always foldable.
1793   if (BaseOffset == 0 && !BaseGV) return true;
1794 
1795   // Conservatively, create an address with an immediate and a
1796   // base and a scale.
1797   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1798 
1799   // Canonicalize a scale of 1 to a base register if the formula doesn't
1800   // already have a base register.
1801   if (!HasBaseReg && Scale == 1) {
1802     Scale = 0;
1803     HasBaseReg = true;
1804   }
1805 
1806   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1807                               HasBaseReg, Scale);
1808 }
1809 
1810 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1811                              ScalarEvolution &SE, int64_t MinOffset,
1812                              int64_t MaxOffset, LSRUse::KindType Kind,
1813                              MemAccessTy AccessTy, const SCEV *S,
1814                              bool HasBaseReg) {
1815   // Fast-path: zero is always foldable.
1816   if (S->isZero()) return true;
1817 
1818   // Conservatively, create an address with an immediate and a
1819   // base and a scale.
1820   int64_t BaseOffset = ExtractImmediate(S, SE);
1821   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1822 
1823   // If there's anything else involved, it's not foldable.
1824   if (!S->isZero()) return false;
1825 
1826   // Fast-path: zero is always foldable.
1827   if (BaseOffset == 0 && !BaseGV) return true;
1828 
1829   // Conservatively, create an address with an immediate and a
1830   // base and a scale.
1831   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1832 
1833   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1834                               BaseOffset, HasBaseReg, Scale);
1835 }
1836 
1837 namespace {
1838 
1839 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1840 /// an expression that computes the IV it uses from the IV used by the previous
1841 /// link in the Chain.
1842 ///
1843 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1844 /// original IVOperand. The head of the chain's IVOperand is only valid during
1845 /// chain collection, before LSR replaces IV users. During chain generation,
1846 /// IncExpr can be used to find the new IVOperand that computes the same
1847 /// expression.
1848 struct IVInc {
1849   Instruction *UserInst;
1850   Value* IVOperand;
1851   const SCEV *IncExpr;
1852 
1853   IVInc(Instruction *U, Value *O, const SCEV *E)
1854       : UserInst(U), IVOperand(O), IncExpr(E) {}
1855 };
1856 
1857 // The list of IV increments in program order.  We typically add the head of a
1858 // chain without finding subsequent links.
1859 struct IVChain {
1860   SmallVector<IVInc, 1> Incs;
1861   const SCEV *ExprBase = nullptr;
1862 
1863   IVChain() = default;
1864   IVChain(const IVInc &Head, const SCEV *Base)
1865       : Incs(1, Head), ExprBase(Base) {}
1866 
1867   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1868 
1869   // Return the first increment in the chain.
1870   const_iterator begin() const {
1871     assert(!Incs.empty());
1872     return std::next(Incs.begin());
1873   }
1874   const_iterator end() const {
1875     return Incs.end();
1876   }
1877 
1878   // Returns true if this chain contains any increments.
1879   bool hasIncs() const { return Incs.size() >= 2; }
1880 
1881   // Add an IVInc to the end of this chain.
1882   void add(const IVInc &X) { Incs.push_back(X); }
1883 
1884   // Returns the last UserInst in the chain.
1885   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1886 
1887   // Returns true if IncExpr can be profitably added to this chain.
1888   bool isProfitableIncrement(const SCEV *OperExpr,
1889                              const SCEV *IncExpr,
1890                              ScalarEvolution&);
1891 };
1892 
1893 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1894 /// between FarUsers that definitely cross IV increments and NearUsers that may
1895 /// be used between IV increments.
1896 struct ChainUsers {
1897   SmallPtrSet<Instruction*, 4> FarUsers;
1898   SmallPtrSet<Instruction*, 4> NearUsers;
1899 };
1900 
1901 /// This class holds state for the main loop strength reduction logic.
1902 class LSRInstance {
1903   IVUsers &IU;
1904   ScalarEvolution &SE;
1905   DominatorTree &DT;
1906   LoopInfo &LI;
1907   AssumptionCache &AC;
1908   TargetLibraryInfo &TLI;
1909   const TargetTransformInfo &TTI;
1910   Loop *const L;
1911   MemorySSAUpdater *MSSAU;
1912   bool FavorBackedgeIndex = false;
1913   bool Changed = false;
1914 
1915   /// This is the insert position that the current loop's induction variable
1916   /// increment should be placed. In simple loops, this is the latch block's
1917   /// terminator. But in more complicated cases, this is a position which will
1918   /// dominate all the in-loop post-increment users.
1919   Instruction *IVIncInsertPos = nullptr;
1920 
1921   /// Interesting factors between use strides.
1922   ///
1923   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1924   /// default, a SmallDenseSet, because we need to use the full range of
1925   /// int64_ts, and there's currently no good way of doing that with
1926   /// SmallDenseSet.
1927   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1928 
1929   /// Interesting use types, to facilitate truncation reuse.
1930   SmallSetVector<Type *, 4> Types;
1931 
1932   /// The list of interesting uses.
1933   mutable SmallVector<LSRUse, 16> Uses;
1934 
1935   /// Track which uses use which register candidates.
1936   RegUseTracker RegUses;
1937 
1938   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1939   // have more than a few IV increment chains in a loop. Missing a Chain falls
1940   // back to normal LSR behavior for those uses.
1941   static const unsigned MaxChains = 8;
1942 
1943   /// IV users can form a chain of IV increments.
1944   SmallVector<IVChain, MaxChains> IVChainVec;
1945 
1946   /// IV users that belong to profitable IVChains.
1947   SmallPtrSet<Use*, MaxChains> IVIncSet;
1948 
1949   void OptimizeShadowIV();
1950   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1951   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1952   void OptimizeLoopTermCond();
1953 
1954   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1955                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1956   void FinalizeChain(IVChain &Chain);
1957   void CollectChains();
1958   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1959                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1960 
1961   void CollectInterestingTypesAndFactors();
1962   void CollectFixupsAndInitialFormulae();
1963 
1964   // Support for sharing of LSRUses between LSRFixups.
1965   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1966   UseMapTy UseMap;
1967 
1968   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1969                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1970 
1971   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1972                                     MemAccessTy AccessTy);
1973 
1974   void DeleteUse(LSRUse &LU, size_t LUIdx);
1975 
1976   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1977 
1978   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1979   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1980   void CountRegisters(const Formula &F, size_t LUIdx);
1981   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1982 
1983   void CollectLoopInvariantFixupsAndFormulae();
1984 
1985   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1986                               unsigned Depth = 0);
1987 
1988   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1989                                   const Formula &Base, unsigned Depth,
1990                                   size_t Idx, bool IsScaledReg = false);
1991   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1992   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1993                                    const Formula &Base, size_t Idx,
1994                                    bool IsScaledReg = false);
1995   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1996   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1997                                    const Formula &Base,
1998                                    const SmallVectorImpl<int64_t> &Worklist,
1999                                    size_t Idx, bool IsScaledReg = false);
2000   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2002   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2004   void GenerateCrossUseConstantOffsets();
2005   void GenerateAllReuseFormulae();
2006 
2007   void FilterOutUndesirableDedicatedRegisters();
2008 
2009   size_t EstimateSearchSpaceComplexity() const;
2010   void NarrowSearchSpaceByDetectingSupersets();
2011   void NarrowSearchSpaceByCollapsingUnrolledCode();
2012   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2013   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2014   void NarrowSearchSpaceByFilterPostInc();
2015   void NarrowSearchSpaceByDeletingCostlyFormulas();
2016   void NarrowSearchSpaceByPickingWinnerRegs();
2017   void NarrowSearchSpaceUsingHeuristics();
2018 
2019   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2020                     Cost &SolutionCost,
2021                     SmallVectorImpl<const Formula *> &Workspace,
2022                     const Cost &CurCost,
2023                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2024                     DenseSet<const SCEV *> &VisitedRegs) const;
2025   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2026 
2027   BasicBlock::iterator
2028     HoistInsertPosition(BasicBlock::iterator IP,
2029                         const SmallVectorImpl<Instruction *> &Inputs) const;
2030   BasicBlock::iterator
2031     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2032                                   const LSRFixup &LF,
2033                                   const LSRUse &LU,
2034                                   SCEVExpander &Rewriter) const;
2035 
2036   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2037                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2038                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2039   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2040                      const Formula &F, SCEVExpander &Rewriter,
2041                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2042   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2043                SCEVExpander &Rewriter,
2044                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2045   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2046 
2047 public:
2048   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2049               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2050               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2051 
2052   bool getChanged() const { return Changed; }
2053 
2054   void print_factors_and_types(raw_ostream &OS) const;
2055   void print_fixups(raw_ostream &OS) const;
2056   void print_uses(raw_ostream &OS) const;
2057   void print(raw_ostream &OS) const;
2058   void dump() const;
2059 };
2060 
2061 } // end anonymous namespace
2062 
2063 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2064 /// the cast operation.
2065 void LSRInstance::OptimizeShadowIV() {
2066   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2067   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2068     return;
2069 
2070   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2071        UI != E; /* empty */) {
2072     IVUsers::const_iterator CandidateUI = UI;
2073     ++UI;
2074     Instruction *ShadowUse = CandidateUI->getUser();
2075     Type *DestTy = nullptr;
2076     bool IsSigned = false;
2077 
2078     /* If shadow use is a int->float cast then insert a second IV
2079        to eliminate this cast.
2080 
2081          for (unsigned i = 0; i < n; ++i)
2082            foo((double)i);
2083 
2084        is transformed into
2085 
2086          double d = 0.0;
2087          for (unsigned i = 0; i < n; ++i, ++d)
2088            foo(d);
2089     */
2090     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2091       IsSigned = false;
2092       DestTy = UCast->getDestTy();
2093     }
2094     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2095       IsSigned = true;
2096       DestTy = SCast->getDestTy();
2097     }
2098     if (!DestTy) continue;
2099 
2100     // If target does not support DestTy natively then do not apply
2101     // this transformation.
2102     if (!TTI.isTypeLegal(DestTy)) continue;
2103 
2104     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2105     if (!PH) continue;
2106     if (PH->getNumIncomingValues() != 2) continue;
2107 
2108     // If the calculation in integers overflows, the result in FP type will
2109     // differ. So we only can do this transformation if we are guaranteed to not
2110     // deal with overflowing values
2111     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2112     if (!AR) continue;
2113     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2114     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2115 
2116     Type *SrcTy = PH->getType();
2117     int Mantissa = DestTy->getFPMantissaWidth();
2118     if (Mantissa == -1) continue;
2119     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2120       continue;
2121 
2122     unsigned Entry, Latch;
2123     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2124       Entry = 0;
2125       Latch = 1;
2126     } else {
2127       Entry = 1;
2128       Latch = 0;
2129     }
2130 
2131     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2132     if (!Init) continue;
2133     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2134                                         (double)Init->getSExtValue() :
2135                                         (double)Init->getZExtValue());
2136 
2137     BinaryOperator *Incr =
2138       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2139     if (!Incr) continue;
2140     if (Incr->getOpcode() != Instruction::Add
2141         && Incr->getOpcode() != Instruction::Sub)
2142       continue;
2143 
2144     /* Initialize new IV, double d = 0.0 in above example. */
2145     ConstantInt *C = nullptr;
2146     if (Incr->getOperand(0) == PH)
2147       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2148     else if (Incr->getOperand(1) == PH)
2149       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2150     else
2151       continue;
2152 
2153     if (!C) continue;
2154 
2155     // Ignore negative constants, as the code below doesn't handle them
2156     // correctly. TODO: Remove this restriction.
2157     if (!C->getValue().isStrictlyPositive()) continue;
2158 
2159     /* Add new PHINode. */
2160     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2161 
2162     /* create new increment. '++d' in above example. */
2163     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2164     BinaryOperator *NewIncr =
2165       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2166                                Instruction::FAdd : Instruction::FSub,
2167                              NewPH, CFP, "IV.S.next.", Incr);
2168 
2169     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2170     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2171 
2172     /* Remove cast operation */
2173     ShadowUse->replaceAllUsesWith(NewPH);
2174     ShadowUse->eraseFromParent();
2175     Changed = true;
2176     break;
2177   }
2178 }
2179 
2180 /// If Cond has an operand that is an expression of an IV, set the IV user and
2181 /// stride information and return true, otherwise return false.
2182 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2183   for (IVStrideUse &U : IU)
2184     if (U.getUser() == Cond) {
2185       // NOTE: we could handle setcc instructions with multiple uses here, but
2186       // InstCombine does it as well for simple uses, it's not clear that it
2187       // occurs enough in real life to handle.
2188       CondUse = &U;
2189       return true;
2190     }
2191   return false;
2192 }
2193 
2194 /// Rewrite the loop's terminating condition if it uses a max computation.
2195 ///
2196 /// This is a narrow solution to a specific, but acute, problem. For loops
2197 /// like this:
2198 ///
2199 ///   i = 0;
2200 ///   do {
2201 ///     p[i] = 0.0;
2202 ///   } while (++i < n);
2203 ///
2204 /// the trip count isn't just 'n', because 'n' might not be positive. And
2205 /// unfortunately this can come up even for loops where the user didn't use
2206 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2207 /// will commonly be lowered like this:
2208 ///
2209 ///   if (n > 0) {
2210 ///     i = 0;
2211 ///     do {
2212 ///       p[i] = 0.0;
2213 ///     } while (++i < n);
2214 ///   }
2215 ///
2216 /// and then it's possible for subsequent optimization to obscure the if
2217 /// test in such a way that indvars can't find it.
2218 ///
2219 /// When indvars can't find the if test in loops like this, it creates a
2220 /// max expression, which allows it to give the loop a canonical
2221 /// induction variable:
2222 ///
2223 ///   i = 0;
2224 ///   max = n < 1 ? 1 : n;
2225 ///   do {
2226 ///     p[i] = 0.0;
2227 ///   } while (++i != max);
2228 ///
2229 /// Canonical induction variables are necessary because the loop passes
2230 /// are designed around them. The most obvious example of this is the
2231 /// LoopInfo analysis, which doesn't remember trip count values. It
2232 /// expects to be able to rediscover the trip count each time it is
2233 /// needed, and it does this using a simple analysis that only succeeds if
2234 /// the loop has a canonical induction variable.
2235 ///
2236 /// However, when it comes time to generate code, the maximum operation
2237 /// can be quite costly, especially if it's inside of an outer loop.
2238 ///
2239 /// This function solves this problem by detecting this type of loop and
2240 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2241 /// the instructions for the maximum computation.
2242 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2243   // Check that the loop matches the pattern we're looking for.
2244   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2245       Cond->getPredicate() != CmpInst::ICMP_NE)
2246     return Cond;
2247 
2248   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2249   if (!Sel || !Sel->hasOneUse()) return Cond;
2250 
2251   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2252   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2253     return Cond;
2254   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2255 
2256   // Add one to the backedge-taken count to get the trip count.
2257   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2258   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2259 
2260   // Check for a max calculation that matches the pattern. There's no check
2261   // for ICMP_ULE here because the comparison would be with zero, which
2262   // isn't interesting.
2263   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2264   const SCEVNAryExpr *Max = nullptr;
2265   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2266     Pred = ICmpInst::ICMP_SLE;
2267     Max = S;
2268   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2269     Pred = ICmpInst::ICMP_SLT;
2270     Max = S;
2271   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2272     Pred = ICmpInst::ICMP_ULT;
2273     Max = U;
2274   } else {
2275     // No match; bail.
2276     return Cond;
2277   }
2278 
2279   // To handle a max with more than two operands, this optimization would
2280   // require additional checking and setup.
2281   if (Max->getNumOperands() != 2)
2282     return Cond;
2283 
2284   const SCEV *MaxLHS = Max->getOperand(0);
2285   const SCEV *MaxRHS = Max->getOperand(1);
2286 
2287   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2288   // for a comparison with 1. For <= and >=, a comparison with zero.
2289   if (!MaxLHS ||
2290       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2291     return Cond;
2292 
2293   // Check the relevant induction variable for conformance to
2294   // the pattern.
2295   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2296   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2297   if (!AR || !AR->isAffine() ||
2298       AR->getStart() != One ||
2299       AR->getStepRecurrence(SE) != One)
2300     return Cond;
2301 
2302   assert(AR->getLoop() == L &&
2303          "Loop condition operand is an addrec in a different loop!");
2304 
2305   // Check the right operand of the select, and remember it, as it will
2306   // be used in the new comparison instruction.
2307   Value *NewRHS = nullptr;
2308   if (ICmpInst::isTrueWhenEqual(Pred)) {
2309     // Look for n+1, and grab n.
2310     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2311       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2312          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2313            NewRHS = BO->getOperand(0);
2314     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2315       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2316         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2317           NewRHS = BO->getOperand(0);
2318     if (!NewRHS)
2319       return Cond;
2320   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2321     NewRHS = Sel->getOperand(1);
2322   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2323     NewRHS = Sel->getOperand(2);
2324   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2325     NewRHS = SU->getValue();
2326   else
2327     // Max doesn't match expected pattern.
2328     return Cond;
2329 
2330   // Determine the new comparison opcode. It may be signed or unsigned,
2331   // and the original comparison may be either equality or inequality.
2332   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2333     Pred = CmpInst::getInversePredicate(Pred);
2334 
2335   // Ok, everything looks ok to change the condition into an SLT or SGE and
2336   // delete the max calculation.
2337   ICmpInst *NewCond =
2338     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2339 
2340   // Delete the max calculation instructions.
2341   Cond->replaceAllUsesWith(NewCond);
2342   CondUse->setUser(NewCond);
2343   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2344   Cond->eraseFromParent();
2345   Sel->eraseFromParent();
2346   if (Cmp->use_empty())
2347     Cmp->eraseFromParent();
2348   return NewCond;
2349 }
2350 
2351 /// Change loop terminating condition to use the postinc iv when possible.
2352 void
2353 LSRInstance::OptimizeLoopTermCond() {
2354   SmallPtrSet<Instruction *, 4> PostIncs;
2355 
2356   // We need a different set of heuristics for rotated and non-rotated loops.
2357   // If a loop is rotated then the latch is also the backedge, so inserting
2358   // post-inc expressions just before the latch is ideal. To reduce live ranges
2359   // it also makes sense to rewrite terminating conditions to use post-inc
2360   // expressions.
2361   //
2362   // If the loop is not rotated then the latch is not a backedge; the latch
2363   // check is done in the loop head. Adding post-inc expressions before the
2364   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2365   // in the loop body. In this case we do *not* want to use post-inc expressions
2366   // in the latch check, and we want to insert post-inc expressions before
2367   // the backedge.
2368   BasicBlock *LatchBlock = L->getLoopLatch();
2369   SmallVector<BasicBlock*, 8> ExitingBlocks;
2370   L->getExitingBlocks(ExitingBlocks);
2371   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2372         return LatchBlock != BB;
2373       })) {
2374     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2375     IVIncInsertPos = LatchBlock->getTerminator();
2376     return;
2377   }
2378 
2379   // Otherwise treat this as a rotated loop.
2380   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2381     // Get the terminating condition for the loop if possible.  If we
2382     // can, we want to change it to use a post-incremented version of its
2383     // induction variable, to allow coalescing the live ranges for the IV into
2384     // one register value.
2385 
2386     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2387     if (!TermBr)
2388       continue;
2389     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2390     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2391       continue;
2392 
2393     // Search IVUsesByStride to find Cond's IVUse if there is one.
2394     IVStrideUse *CondUse = nullptr;
2395     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2396     if (!FindIVUserForCond(Cond, CondUse))
2397       continue;
2398 
2399     // If the trip count is computed in terms of a max (due to ScalarEvolution
2400     // being unable to find a sufficient guard, for example), change the loop
2401     // comparison to use SLT or ULT instead of NE.
2402     // One consequence of doing this now is that it disrupts the count-down
2403     // optimization. That's not always a bad thing though, because in such
2404     // cases it may still be worthwhile to avoid a max.
2405     Cond = OptimizeMax(Cond, CondUse);
2406 
2407     // If this exiting block dominates the latch block, it may also use
2408     // the post-inc value if it won't be shared with other uses.
2409     // Check for dominance.
2410     if (!DT.dominates(ExitingBlock, LatchBlock))
2411       continue;
2412 
2413     // Conservatively avoid trying to use the post-inc value in non-latch
2414     // exits if there may be pre-inc users in intervening blocks.
2415     if (LatchBlock != ExitingBlock)
2416       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2417         // Test if the use is reachable from the exiting block. This dominator
2418         // query is a conservative approximation of reachability.
2419         if (&*UI != CondUse &&
2420             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2421           // Conservatively assume there may be reuse if the quotient of their
2422           // strides could be a legal scale.
2423           const SCEV *A = IU.getStride(*CondUse, L);
2424           const SCEV *B = IU.getStride(*UI, L);
2425           if (!A || !B) continue;
2426           if (SE.getTypeSizeInBits(A->getType()) !=
2427               SE.getTypeSizeInBits(B->getType())) {
2428             if (SE.getTypeSizeInBits(A->getType()) >
2429                 SE.getTypeSizeInBits(B->getType()))
2430               B = SE.getSignExtendExpr(B, A->getType());
2431             else
2432               A = SE.getSignExtendExpr(A, B->getType());
2433           }
2434           if (const SCEVConstant *D =
2435                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2436             const ConstantInt *C = D->getValue();
2437             // Stride of one or negative one can have reuse with non-addresses.
2438             if (C->isOne() || C->isMinusOne())
2439               goto decline_post_inc;
2440             // Avoid weird situations.
2441             if (C->getValue().getMinSignedBits() >= 64 ||
2442                 C->getValue().isMinSignedValue())
2443               goto decline_post_inc;
2444             // Check for possible scaled-address reuse.
2445             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2446               MemAccessTy AccessTy = getAccessType(
2447                   TTI, UI->getUser(), UI->getOperandValToReplace());
2448               int64_t Scale = C->getSExtValue();
2449               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2450                                             /*BaseOffset=*/0,
2451                                             /*HasBaseReg=*/false, Scale,
2452                                             AccessTy.AddrSpace))
2453                 goto decline_post_inc;
2454               Scale = -Scale;
2455               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2456                                             /*BaseOffset=*/0,
2457                                             /*HasBaseReg=*/false, Scale,
2458                                             AccessTy.AddrSpace))
2459                 goto decline_post_inc;
2460             }
2461           }
2462         }
2463 
2464     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2465                       << *Cond << '\n');
2466 
2467     // It's possible for the setcc instruction to be anywhere in the loop, and
2468     // possible for it to have multiple users.  If it is not immediately before
2469     // the exiting block branch, move it.
2470     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2471       if (Cond->hasOneUse()) {
2472         Cond->moveBefore(TermBr);
2473       } else {
2474         // Clone the terminating condition and insert into the loopend.
2475         ICmpInst *OldCond = Cond;
2476         Cond = cast<ICmpInst>(Cond->clone());
2477         Cond->setName(L->getHeader()->getName() + ".termcond");
2478         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2479 
2480         // Clone the IVUse, as the old use still exists!
2481         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2482         TermBr->replaceUsesOfWith(OldCond, Cond);
2483       }
2484     }
2485 
2486     // If we get to here, we know that we can transform the setcc instruction to
2487     // use the post-incremented version of the IV, allowing us to coalesce the
2488     // live ranges for the IV correctly.
2489     CondUse->transformToPostInc(L);
2490     Changed = true;
2491 
2492     PostIncs.insert(Cond);
2493   decline_post_inc:;
2494   }
2495 
2496   // Determine an insertion point for the loop induction variable increment. It
2497   // must dominate all the post-inc comparisons we just set up, and it must
2498   // dominate the loop latch edge.
2499   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2500   for (Instruction *Inst : PostIncs) {
2501     BasicBlock *BB =
2502       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2503                                     Inst->getParent());
2504     if (BB == Inst->getParent())
2505       IVIncInsertPos = Inst;
2506     else if (BB != IVIncInsertPos->getParent())
2507       IVIncInsertPos = BB->getTerminator();
2508   }
2509 }
2510 
2511 /// Determine if the given use can accommodate a fixup at the given offset and
2512 /// other details. If so, update the use and return true.
2513 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2514                                      bool HasBaseReg, LSRUse::KindType Kind,
2515                                      MemAccessTy AccessTy) {
2516   int64_t NewMinOffset = LU.MinOffset;
2517   int64_t NewMaxOffset = LU.MaxOffset;
2518   MemAccessTy NewAccessTy = AccessTy;
2519 
2520   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2521   // something conservative, however this can pessimize in the case that one of
2522   // the uses will have all its uses outside the loop, for example.
2523   if (LU.Kind != Kind)
2524     return false;
2525 
2526   // Check for a mismatched access type, and fall back conservatively as needed.
2527   // TODO: Be less conservative when the type is similar and can use the same
2528   // addressing modes.
2529   if (Kind == LSRUse::Address) {
2530     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2531       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2532                                             AccessTy.AddrSpace);
2533     }
2534   }
2535 
2536   // Conservatively assume HasBaseReg is true for now.
2537   if (NewOffset < LU.MinOffset) {
2538     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2539                           LU.MaxOffset - NewOffset, HasBaseReg))
2540       return false;
2541     NewMinOffset = NewOffset;
2542   } else if (NewOffset > LU.MaxOffset) {
2543     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2544                           NewOffset - LU.MinOffset, HasBaseReg))
2545       return false;
2546     NewMaxOffset = NewOffset;
2547   }
2548 
2549   // Update the use.
2550   LU.MinOffset = NewMinOffset;
2551   LU.MaxOffset = NewMaxOffset;
2552   LU.AccessTy = NewAccessTy;
2553   return true;
2554 }
2555 
2556 /// Return an LSRUse index and an offset value for a fixup which needs the given
2557 /// expression, with the given kind and optional access type.  Either reuse an
2558 /// existing use or create a new one, as needed.
2559 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2560                                                LSRUse::KindType Kind,
2561                                                MemAccessTy AccessTy) {
2562   const SCEV *Copy = Expr;
2563   int64_t Offset = ExtractImmediate(Expr, SE);
2564 
2565   // Basic uses can't accept any offset, for example.
2566   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2567                         Offset, /*HasBaseReg=*/ true)) {
2568     Expr = Copy;
2569     Offset = 0;
2570   }
2571 
2572   std::pair<UseMapTy::iterator, bool> P =
2573     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2574   if (!P.second) {
2575     // A use already existed with this base.
2576     size_t LUIdx = P.first->second;
2577     LSRUse &LU = Uses[LUIdx];
2578     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2579       // Reuse this use.
2580       return std::make_pair(LUIdx, Offset);
2581   }
2582 
2583   // Create a new use.
2584   size_t LUIdx = Uses.size();
2585   P.first->second = LUIdx;
2586   Uses.push_back(LSRUse(Kind, AccessTy));
2587   LSRUse &LU = Uses[LUIdx];
2588 
2589   LU.MinOffset = Offset;
2590   LU.MaxOffset = Offset;
2591   return std::make_pair(LUIdx, Offset);
2592 }
2593 
2594 /// Delete the given use from the Uses list.
2595 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2596   if (&LU != &Uses.back())
2597     std::swap(LU, Uses.back());
2598   Uses.pop_back();
2599 
2600   // Update RegUses.
2601   RegUses.swapAndDropUse(LUIdx, Uses.size());
2602 }
2603 
2604 /// Look for a use distinct from OrigLU which is has a formula that has the same
2605 /// registers as the given formula.
2606 LSRUse *
2607 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2608                                        const LSRUse &OrigLU) {
2609   // Search all uses for the formula. This could be more clever.
2610   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2611     LSRUse &LU = Uses[LUIdx];
2612     // Check whether this use is close enough to OrigLU, to see whether it's
2613     // worthwhile looking through its formulae.
2614     // Ignore ICmpZero uses because they may contain formulae generated by
2615     // GenerateICmpZeroScales, in which case adding fixup offsets may
2616     // be invalid.
2617     if (&LU != &OrigLU &&
2618         LU.Kind != LSRUse::ICmpZero &&
2619         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2620         LU.WidestFixupType == OrigLU.WidestFixupType &&
2621         LU.HasFormulaWithSameRegs(OrigF)) {
2622       // Scan through this use's formulae.
2623       for (const Formula &F : LU.Formulae) {
2624         // Check to see if this formula has the same registers and symbols
2625         // as OrigF.
2626         if (F.BaseRegs == OrigF.BaseRegs &&
2627             F.ScaledReg == OrigF.ScaledReg &&
2628             F.BaseGV == OrigF.BaseGV &&
2629             F.Scale == OrigF.Scale &&
2630             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2631           if (F.BaseOffset == 0)
2632             return &LU;
2633           // This is the formula where all the registers and symbols matched;
2634           // there aren't going to be any others. Since we declined it, we
2635           // can skip the rest of the formulae and proceed to the next LSRUse.
2636           break;
2637         }
2638       }
2639     }
2640   }
2641 
2642   // Nothing looked good.
2643   return nullptr;
2644 }
2645 
2646 void LSRInstance::CollectInterestingTypesAndFactors() {
2647   SmallSetVector<const SCEV *, 4> Strides;
2648 
2649   // Collect interesting types and strides.
2650   SmallVector<const SCEV *, 4> Worklist;
2651   for (const IVStrideUse &U : IU) {
2652     const SCEV *Expr = IU.getExpr(U);
2653 
2654     // Collect interesting types.
2655     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2656 
2657     // Add strides for mentioned loops.
2658     Worklist.push_back(Expr);
2659     do {
2660       const SCEV *S = Worklist.pop_back_val();
2661       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2662         if (AR->getLoop() == L)
2663           Strides.insert(AR->getStepRecurrence(SE));
2664         Worklist.push_back(AR->getStart());
2665       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2666         Worklist.append(Add->op_begin(), Add->op_end());
2667       }
2668     } while (!Worklist.empty());
2669   }
2670 
2671   // Compute interesting factors from the set of interesting strides.
2672   for (SmallSetVector<const SCEV *, 4>::const_iterator
2673        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2674     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2675          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2676       const SCEV *OldStride = *I;
2677       const SCEV *NewStride = *NewStrideIter;
2678 
2679       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2680           SE.getTypeSizeInBits(NewStride->getType())) {
2681         if (SE.getTypeSizeInBits(OldStride->getType()) >
2682             SE.getTypeSizeInBits(NewStride->getType()))
2683           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2684         else
2685           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2686       }
2687       if (const SCEVConstant *Factor =
2688             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2689                                                         SE, true))) {
2690         if (Factor->getAPInt().getMinSignedBits() <= 64)
2691           Factors.insert(Factor->getAPInt().getSExtValue());
2692       } else if (const SCEVConstant *Factor =
2693                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2694                                                                NewStride,
2695                                                                SE, true))) {
2696         if (Factor->getAPInt().getMinSignedBits() <= 64)
2697           Factors.insert(Factor->getAPInt().getSExtValue());
2698       }
2699     }
2700 
2701   // If all uses use the same type, don't bother looking for truncation-based
2702   // reuse.
2703   if (Types.size() == 1)
2704     Types.clear();
2705 
2706   LLVM_DEBUG(print_factors_and_types(dbgs()));
2707 }
2708 
2709 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2710 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2711 /// IVStrideUses, we could partially skip this.
2712 static User::op_iterator
2713 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2714               Loop *L, ScalarEvolution &SE) {
2715   for(; OI != OE; ++OI) {
2716     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2717       if (!SE.isSCEVable(Oper->getType()))
2718         continue;
2719 
2720       if (const SCEVAddRecExpr *AR =
2721           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2722         if (AR->getLoop() == L)
2723           break;
2724       }
2725     }
2726   }
2727   return OI;
2728 }
2729 
2730 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2731 /// a convenient helper.
2732 static Value *getWideOperand(Value *Oper) {
2733   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2734     return Trunc->getOperand(0);
2735   return Oper;
2736 }
2737 
2738 /// Return true if we allow an IV chain to include both types.
2739 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2740   Type *LType = LVal->getType();
2741   Type *RType = RVal->getType();
2742   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2743                               // Different address spaces means (possibly)
2744                               // different types of the pointer implementation,
2745                               // e.g. i16 vs i32 so disallow that.
2746                               (LType->getPointerAddressSpace() ==
2747                                RType->getPointerAddressSpace()));
2748 }
2749 
2750 /// Return an approximation of this SCEV expression's "base", or NULL for any
2751 /// constant. Returning the expression itself is conservative. Returning a
2752 /// deeper subexpression is more precise and valid as long as it isn't less
2753 /// complex than another subexpression. For expressions involving multiple
2754 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2755 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2756 /// IVInc==b-a.
2757 ///
2758 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2759 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2760 static const SCEV *getExprBase(const SCEV *S) {
2761   switch (S->getSCEVType()) {
2762   default: // uncluding scUnknown.
2763     return S;
2764   case scConstant:
2765     return nullptr;
2766   case scTruncate:
2767     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2768   case scZeroExtend:
2769     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2770   case scSignExtend:
2771     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2772   case scAddExpr: {
2773     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2774     // there's nothing more complex.
2775     // FIXME: not sure if we want to recognize negation.
2776     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2777     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2778            E(Add->op_begin()); I != E; ++I) {
2779       const SCEV *SubExpr = *I;
2780       if (SubExpr->getSCEVType() == scAddExpr)
2781         return getExprBase(SubExpr);
2782 
2783       if (SubExpr->getSCEVType() != scMulExpr)
2784         return SubExpr;
2785     }
2786     return S; // all operands are scaled, be conservative.
2787   }
2788   case scAddRecExpr:
2789     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2790   }
2791   llvm_unreachable("Unknown SCEV kind!");
2792 }
2793 
2794 /// Return true if the chain increment is profitable to expand into a loop
2795 /// invariant value, which may require its own register. A profitable chain
2796 /// increment will be an offset relative to the same base. We allow such offsets
2797 /// to potentially be used as chain increment as long as it's not obviously
2798 /// expensive to expand using real instructions.
2799 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2800                                     const SCEV *IncExpr,
2801                                     ScalarEvolution &SE) {
2802   // Aggressively form chains when -stress-ivchain.
2803   if (StressIVChain)
2804     return true;
2805 
2806   // Do not replace a constant offset from IV head with a nonconstant IV
2807   // increment.
2808   if (!isa<SCEVConstant>(IncExpr)) {
2809     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2810     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2811       return false;
2812   }
2813 
2814   SmallPtrSet<const SCEV*, 8> Processed;
2815   return !isHighCostExpansion(IncExpr, Processed, SE);
2816 }
2817 
2818 /// Return true if the number of registers needed for the chain is estimated to
2819 /// be less than the number required for the individual IV users. First prohibit
2820 /// any IV users that keep the IV live across increments (the Users set should
2821 /// be empty). Next count the number and type of increments in the chain.
2822 ///
2823 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2824 /// effectively use postinc addressing modes. Only consider it profitable it the
2825 /// increments can be computed in fewer registers when chained.
2826 ///
2827 /// TODO: Consider IVInc free if it's already used in another chains.
2828 static bool isProfitableChain(IVChain &Chain,
2829                               SmallPtrSetImpl<Instruction *> &Users,
2830                               ScalarEvolution &SE,
2831                               const TargetTransformInfo &TTI) {
2832   if (StressIVChain)
2833     return true;
2834 
2835   if (!Chain.hasIncs())
2836     return false;
2837 
2838   if (!Users.empty()) {
2839     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2840                for (Instruction *Inst
2841                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2842     return false;
2843   }
2844   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2845 
2846   // The chain itself may require a register, so intialize cost to 1.
2847   int cost = 1;
2848 
2849   // A complete chain likely eliminates the need for keeping the original IV in
2850   // a register. LSR does not currently know how to form a complete chain unless
2851   // the header phi already exists.
2852   if (isa<PHINode>(Chain.tailUserInst())
2853       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2854     --cost;
2855   }
2856   const SCEV *LastIncExpr = nullptr;
2857   unsigned NumConstIncrements = 0;
2858   unsigned NumVarIncrements = 0;
2859   unsigned NumReusedIncrements = 0;
2860 
2861   // If any LSRUse in the chain is marked as profitable by target, mark this
2862   // chain as profitable.
2863   for (const IVInc &Inc : Chain.Incs)
2864     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2865       return true;
2866 
2867   // If number of registers is not the major cost, we cannot benefit from this
2868   // profitable chain which is based on number of registers.
2869   // FIXME: add profitable chain optimization for other kinds major cost, for
2870   // example number of instructions.
2871   if (!TTI.isNumRegsMajorCostOfLSR())
2872     return false;
2873 
2874   for (const IVInc &Inc : Chain) {
2875     if (Inc.IncExpr->isZero())
2876       continue;
2877 
2878     // Incrementing by zero or some constant is neutral. We assume constants can
2879     // be folded into an addressing mode or an add's immediate operand.
2880     if (isa<SCEVConstant>(Inc.IncExpr)) {
2881       ++NumConstIncrements;
2882       continue;
2883     }
2884 
2885     if (Inc.IncExpr == LastIncExpr)
2886       ++NumReusedIncrements;
2887     else
2888       ++NumVarIncrements;
2889 
2890     LastIncExpr = Inc.IncExpr;
2891   }
2892   // An IV chain with a single increment is handled by LSR's postinc
2893   // uses. However, a chain with multiple increments requires keeping the IV's
2894   // value live longer than it needs to be if chained.
2895   if (NumConstIncrements > 1)
2896     --cost;
2897 
2898   // Materializing increment expressions in the preheader that didn't exist in
2899   // the original code may cost a register. For example, sign-extended array
2900   // indices can produce ridiculous increments like this:
2901   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2902   cost += NumVarIncrements;
2903 
2904   // Reusing variable increments likely saves a register to hold the multiple of
2905   // the stride.
2906   cost -= NumReusedIncrements;
2907 
2908   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2909                     << "\n");
2910 
2911   return cost < 0;
2912 }
2913 
2914 /// Add this IV user to an existing chain or make it the head of a new chain.
2915 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2916                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2917   // When IVs are used as types of varying widths, they are generally converted
2918   // to a wider type with some uses remaining narrow under a (free) trunc.
2919   Value *const NextIV = getWideOperand(IVOper);
2920   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2921   const SCEV *const OperExprBase = getExprBase(OperExpr);
2922 
2923   // Visit all existing chains. Check if its IVOper can be computed as a
2924   // profitable loop invariant increment from the last link in the Chain.
2925   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2926   const SCEV *LastIncExpr = nullptr;
2927   for (; ChainIdx < NChains; ++ChainIdx) {
2928     IVChain &Chain = IVChainVec[ChainIdx];
2929 
2930     // Prune the solution space aggressively by checking that both IV operands
2931     // are expressions that operate on the same unscaled SCEVUnknown. This
2932     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2933     // first avoids creating extra SCEV expressions.
2934     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2935       continue;
2936 
2937     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2938     if (!isCompatibleIVType(PrevIV, NextIV))
2939       continue;
2940 
2941     // A phi node terminates a chain.
2942     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2943       continue;
2944 
2945     // The increment must be loop-invariant so it can be kept in a register.
2946     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2947     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2948     if (!SE.isLoopInvariant(IncExpr, L))
2949       continue;
2950 
2951     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2952       LastIncExpr = IncExpr;
2953       break;
2954     }
2955   }
2956   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2957   // bother for phi nodes, because they must be last in the chain.
2958   if (ChainIdx == NChains) {
2959     if (isa<PHINode>(UserInst))
2960       return;
2961     if (NChains >= MaxChains && !StressIVChain) {
2962       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2963       return;
2964     }
2965     LastIncExpr = OperExpr;
2966     // IVUsers may have skipped over sign/zero extensions. We don't currently
2967     // attempt to form chains involving extensions unless they can be hoisted
2968     // into this loop's AddRec.
2969     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2970       return;
2971     ++NChains;
2972     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2973                                  OperExprBase));
2974     ChainUsersVec.resize(NChains);
2975     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2976                       << ") IV=" << *LastIncExpr << "\n");
2977   } else {
2978     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2979                       << ") IV+" << *LastIncExpr << "\n");
2980     // Add this IV user to the end of the chain.
2981     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2982   }
2983   IVChain &Chain = IVChainVec[ChainIdx];
2984 
2985   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2986   // This chain's NearUsers become FarUsers.
2987   if (!LastIncExpr->isZero()) {
2988     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2989                                             NearUsers.end());
2990     NearUsers.clear();
2991   }
2992 
2993   // All other uses of IVOperand become near uses of the chain.
2994   // We currently ignore intermediate values within SCEV expressions, assuming
2995   // they will eventually be used be the current chain, or can be computed
2996   // from one of the chain increments. To be more precise we could
2997   // transitively follow its user and only add leaf IV users to the set.
2998   for (User *U : IVOper->users()) {
2999     Instruction *OtherUse = dyn_cast<Instruction>(U);
3000     if (!OtherUse)
3001       continue;
3002     // Uses in the chain will no longer be uses if the chain is formed.
3003     // Include the head of the chain in this iteration (not Chain.begin()).
3004     IVChain::const_iterator IncIter = Chain.Incs.begin();
3005     IVChain::const_iterator IncEnd = Chain.Incs.end();
3006     for( ; IncIter != IncEnd; ++IncIter) {
3007       if (IncIter->UserInst == OtherUse)
3008         break;
3009     }
3010     if (IncIter != IncEnd)
3011       continue;
3012 
3013     if (SE.isSCEVable(OtherUse->getType())
3014         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3015         && IU.isIVUserOrOperand(OtherUse)) {
3016       continue;
3017     }
3018     NearUsers.insert(OtherUse);
3019   }
3020 
3021   // Since this user is part of the chain, it's no longer considered a use
3022   // of the chain.
3023   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3024 }
3025 
3026 /// Populate the vector of Chains.
3027 ///
3028 /// This decreases ILP at the architecture level. Targets with ample registers,
3029 /// multiple memory ports, and no register renaming probably don't want
3030 /// this. However, such targets should probably disable LSR altogether.
3031 ///
3032 /// The job of LSR is to make a reasonable choice of induction variables across
3033 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3034 /// ILP *within the loop* if the target wants it.
3035 ///
3036 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3037 /// will not reorder memory operations, it will recognize this as a chain, but
3038 /// will generate redundant IV increments. Ideally this would be corrected later
3039 /// by a smart scheduler:
3040 ///        = A[i]
3041 ///        = A[i+x]
3042 /// A[i]   =
3043 /// A[i+x] =
3044 ///
3045 /// TODO: Walk the entire domtree within this loop, not just the path to the
3046 /// loop latch. This will discover chains on side paths, but requires
3047 /// maintaining multiple copies of the Chains state.
3048 void LSRInstance::CollectChains() {
3049   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3050   SmallVector<ChainUsers, 8> ChainUsersVec;
3051 
3052   SmallVector<BasicBlock *,8> LatchPath;
3053   BasicBlock *LoopHeader = L->getHeader();
3054   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3055        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3056     LatchPath.push_back(Rung->getBlock());
3057   }
3058   LatchPath.push_back(LoopHeader);
3059 
3060   // Walk the instruction stream from the loop header to the loop latch.
3061   for (BasicBlock *BB : reverse(LatchPath)) {
3062     for (Instruction &I : *BB) {
3063       // Skip instructions that weren't seen by IVUsers analysis.
3064       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3065         continue;
3066 
3067       // Ignore users that are part of a SCEV expression. This way we only
3068       // consider leaf IV Users. This effectively rediscovers a portion of
3069       // IVUsers analysis but in program order this time.
3070       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3071           continue;
3072 
3073       // Remove this instruction from any NearUsers set it may be in.
3074       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3075            ChainIdx < NChains; ++ChainIdx) {
3076         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3077       }
3078       // Search for operands that can be chained.
3079       SmallPtrSet<Instruction*, 4> UniqueOperands;
3080       User::op_iterator IVOpEnd = I.op_end();
3081       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3082       while (IVOpIter != IVOpEnd) {
3083         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3084         if (UniqueOperands.insert(IVOpInst).second)
3085           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3086         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3087       }
3088     } // Continue walking down the instructions.
3089   } // Continue walking down the domtree.
3090   // Visit phi backedges to determine if the chain can generate the IV postinc.
3091   for (PHINode &PN : L->getHeader()->phis()) {
3092     if (!SE.isSCEVable(PN.getType()))
3093       continue;
3094 
3095     Instruction *IncV =
3096         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3097     if (IncV)
3098       ChainInstruction(&PN, IncV, ChainUsersVec);
3099   }
3100   // Remove any unprofitable chains.
3101   unsigned ChainIdx = 0;
3102   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3103        UsersIdx < NChains; ++UsersIdx) {
3104     if (!isProfitableChain(IVChainVec[UsersIdx],
3105                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3106       continue;
3107     // Preserve the chain at UsesIdx.
3108     if (ChainIdx != UsersIdx)
3109       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3110     FinalizeChain(IVChainVec[ChainIdx]);
3111     ++ChainIdx;
3112   }
3113   IVChainVec.resize(ChainIdx);
3114 }
3115 
3116 void LSRInstance::FinalizeChain(IVChain &Chain) {
3117   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3118   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3119 
3120   for (const IVInc &Inc : Chain) {
3121     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3122     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3123     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3124     IVIncSet.insert(UseI);
3125   }
3126 }
3127 
3128 /// Return true if the IVInc can be folded into an addressing mode.
3129 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3130                              Value *Operand, const TargetTransformInfo &TTI) {
3131   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3132   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3133     return false;
3134 
3135   if (IncConst->getAPInt().getMinSignedBits() > 64)
3136     return false;
3137 
3138   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3139   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3140   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3141                         IncOffset, /*HasBaseReg=*/false))
3142     return false;
3143 
3144   return true;
3145 }
3146 
3147 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3148 /// user's operand from the previous IV user's operand.
3149 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3150                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3151   // Find the new IVOperand for the head of the chain. It may have been replaced
3152   // by LSR.
3153   const IVInc &Head = Chain.Incs[0];
3154   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3155   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3156   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3157                                              IVOpEnd, L, SE);
3158   Value *IVSrc = nullptr;
3159   while (IVOpIter != IVOpEnd) {
3160     IVSrc = getWideOperand(*IVOpIter);
3161 
3162     // If this operand computes the expression that the chain needs, we may use
3163     // it. (Check this after setting IVSrc which is used below.)
3164     //
3165     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3166     // narrow for the chain, so we can no longer use it. We do allow using a
3167     // wider phi, assuming the LSR checked for free truncation. In that case we
3168     // should already have a truncate on this operand such that
3169     // getSCEV(IVSrc) == IncExpr.
3170     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3171         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3172       break;
3173     }
3174     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3175   }
3176   if (IVOpIter == IVOpEnd) {
3177     // Gracefully give up on this chain.
3178     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3179     return;
3180   }
3181   assert(IVSrc && "Failed to find IV chain source");
3182 
3183   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3184   Type *IVTy = IVSrc->getType();
3185   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3186   const SCEV *LeftOverExpr = nullptr;
3187   for (const IVInc &Inc : Chain) {
3188     Instruction *InsertPt = Inc.UserInst;
3189     if (isa<PHINode>(InsertPt))
3190       InsertPt = L->getLoopLatch()->getTerminator();
3191 
3192     // IVOper will replace the current IV User's operand. IVSrc is the IV
3193     // value currently held in a register.
3194     Value *IVOper = IVSrc;
3195     if (!Inc.IncExpr->isZero()) {
3196       // IncExpr was the result of subtraction of two narrow values, so must
3197       // be signed.
3198       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3199       LeftOverExpr = LeftOverExpr ?
3200         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3201     }
3202     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3203       // Expand the IV increment.
3204       Rewriter.clearPostInc();
3205       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3206       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3207                                              SE.getUnknown(IncV));
3208       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3209 
3210       // If an IV increment can't be folded, use it as the next IV value.
3211       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3212         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3213         IVSrc = IVOper;
3214         LeftOverExpr = nullptr;
3215       }
3216     }
3217     Type *OperTy = Inc.IVOperand->getType();
3218     if (IVTy != OperTy) {
3219       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3220              "cannot extend a chained IV");
3221       IRBuilder<> Builder(InsertPt);
3222       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3223     }
3224     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3225     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3226       DeadInsts.emplace_back(OperandIsInstr);
3227   }
3228   // If LSR created a new, wider phi, we may also replace its postinc. We only
3229   // do this if we also found a wide value for the head of the chain.
3230   if (isa<PHINode>(Chain.tailUserInst())) {
3231     for (PHINode &Phi : L->getHeader()->phis()) {
3232       if (!isCompatibleIVType(&Phi, IVSrc))
3233         continue;
3234       Instruction *PostIncV = dyn_cast<Instruction>(
3235           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3236       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3237         continue;
3238       Value *IVOper = IVSrc;
3239       Type *PostIncTy = PostIncV->getType();
3240       if (IVTy != PostIncTy) {
3241         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3242         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3243         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3244         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3245       }
3246       Phi.replaceUsesOfWith(PostIncV, IVOper);
3247       DeadInsts.emplace_back(PostIncV);
3248     }
3249   }
3250 }
3251 
3252 void LSRInstance::CollectFixupsAndInitialFormulae() {
3253   BranchInst *ExitBranch = nullptr;
3254   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3255 
3256   for (const IVStrideUse &U : IU) {
3257     Instruction *UserInst = U.getUser();
3258     // Skip IV users that are part of profitable IV Chains.
3259     User::op_iterator UseI =
3260         find(UserInst->operands(), U.getOperandValToReplace());
3261     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3262     if (IVIncSet.count(UseI)) {
3263       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3264       continue;
3265     }
3266 
3267     LSRUse::KindType Kind = LSRUse::Basic;
3268     MemAccessTy AccessTy;
3269     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3270       Kind = LSRUse::Address;
3271       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3272     }
3273 
3274     const SCEV *S = IU.getExpr(U);
3275     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3276 
3277     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3278     // (N - i == 0), and this allows (N - i) to be the expression that we work
3279     // with rather than just N or i, so we can consider the register
3280     // requirements for both N and i at the same time. Limiting this code to
3281     // equality icmps is not a problem because all interesting loops use
3282     // equality icmps, thanks to IndVarSimplify.
3283     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3284       // If CI can be saved in some target, like replaced inside hardware loop
3285       // in PowerPC, no need to generate initial formulae for it.
3286       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3287         continue;
3288       if (CI->isEquality()) {
3289         // Swap the operands if needed to put the OperandValToReplace on the
3290         // left, for consistency.
3291         Value *NV = CI->getOperand(1);
3292         if (NV == U.getOperandValToReplace()) {
3293           CI->setOperand(1, CI->getOperand(0));
3294           CI->setOperand(0, NV);
3295           NV = CI->getOperand(1);
3296           Changed = true;
3297         }
3298 
3299         // x == y  -->  x - y == 0
3300         const SCEV *N = SE.getSCEV(NV);
3301         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3302           // S is normalized, so normalize N before folding it into S
3303           // to keep the result normalized.
3304           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3305           Kind = LSRUse::ICmpZero;
3306           S = SE.getMinusSCEV(N, S);
3307         }
3308 
3309         // -1 and the negations of all interesting strides (except the negation
3310         // of -1) are now also interesting.
3311         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3312           if (Factors[i] != -1)
3313             Factors.insert(-(uint64_t)Factors[i]);
3314         Factors.insert(-1);
3315       }
3316     }
3317 
3318     // Get or create an LSRUse.
3319     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3320     size_t LUIdx = P.first;
3321     int64_t Offset = P.second;
3322     LSRUse &LU = Uses[LUIdx];
3323 
3324     // Record the fixup.
3325     LSRFixup &LF = LU.getNewFixup();
3326     LF.UserInst = UserInst;
3327     LF.OperandValToReplace = U.getOperandValToReplace();
3328     LF.PostIncLoops = TmpPostIncLoops;
3329     LF.Offset = Offset;
3330     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3331 
3332     if (!LU.WidestFixupType ||
3333         SE.getTypeSizeInBits(LU.WidestFixupType) <
3334         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3335       LU.WidestFixupType = LF.OperandValToReplace->getType();
3336 
3337     // If this is the first use of this LSRUse, give it a formula.
3338     if (LU.Formulae.empty()) {
3339       InsertInitialFormula(S, LU, LUIdx);
3340       CountRegisters(LU.Formulae.back(), LUIdx);
3341     }
3342   }
3343 
3344   LLVM_DEBUG(print_fixups(dbgs()));
3345 }
3346 
3347 /// Insert a formula for the given expression into the given use, separating out
3348 /// loop-variant portions from loop-invariant and loop-computable portions.
3349 void
3350 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3351   // Mark uses whose expressions cannot be expanded.
3352   if (!isSafeToExpand(S, SE))
3353     LU.RigidFormula = true;
3354 
3355   Formula F;
3356   F.initialMatch(S, L, SE);
3357   bool Inserted = InsertFormula(LU, LUIdx, F);
3358   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3359 }
3360 
3361 /// Insert a simple single-register formula for the given expression into the
3362 /// given use.
3363 void
3364 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3365                                        LSRUse &LU, size_t LUIdx) {
3366   Formula F;
3367   F.BaseRegs.push_back(S);
3368   F.HasBaseReg = true;
3369   bool Inserted = InsertFormula(LU, LUIdx, F);
3370   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3371 }
3372 
3373 /// Note which registers are used by the given formula, updating RegUses.
3374 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3375   if (F.ScaledReg)
3376     RegUses.countRegister(F.ScaledReg, LUIdx);
3377   for (const SCEV *BaseReg : F.BaseRegs)
3378     RegUses.countRegister(BaseReg, LUIdx);
3379 }
3380 
3381 /// If the given formula has not yet been inserted, add it to the list, and
3382 /// return true. Return false otherwise.
3383 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3384   // Do not insert formula that we will not be able to expand.
3385   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3386          "Formula is illegal");
3387 
3388   if (!LU.InsertFormula(F, *L))
3389     return false;
3390 
3391   CountRegisters(F, LUIdx);
3392   return true;
3393 }
3394 
3395 /// Check for other uses of loop-invariant values which we're tracking. These
3396 /// other uses will pin these values in registers, making them less profitable
3397 /// for elimination.
3398 /// TODO: This currently misses non-constant addrec step registers.
3399 /// TODO: Should this give more weight to users inside the loop?
3400 void
3401 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3402   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3403   SmallPtrSet<const SCEV *, 32> Visited;
3404 
3405   while (!Worklist.empty()) {
3406     const SCEV *S = Worklist.pop_back_val();
3407 
3408     // Don't process the same SCEV twice
3409     if (!Visited.insert(S).second)
3410       continue;
3411 
3412     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3413       Worklist.append(N->op_begin(), N->op_end());
3414     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3415       Worklist.push_back(C->getOperand());
3416     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3417       Worklist.push_back(D->getLHS());
3418       Worklist.push_back(D->getRHS());
3419     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3420       const Value *V = US->getValue();
3421       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3422         // Look for instructions defined outside the loop.
3423         if (L->contains(Inst)) continue;
3424       } else if (isa<UndefValue>(V))
3425         // Undef doesn't have a live range, so it doesn't matter.
3426         continue;
3427       for (const Use &U : V->uses()) {
3428         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3429         // Ignore non-instructions.
3430         if (!UserInst)
3431           continue;
3432         // Ignore instructions in other functions (as can happen with
3433         // Constants).
3434         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3435           continue;
3436         // Ignore instructions not dominated by the loop.
3437         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3438           UserInst->getParent() :
3439           cast<PHINode>(UserInst)->getIncomingBlock(
3440             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3441         if (!DT.dominates(L->getHeader(), UseBB))
3442           continue;
3443         // Don't bother if the instruction is in a BB which ends in an EHPad.
3444         if (UseBB->getTerminator()->isEHPad())
3445           continue;
3446         // Don't bother rewriting PHIs in catchswitch blocks.
3447         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3448           continue;
3449         // Ignore uses which are part of other SCEV expressions, to avoid
3450         // analyzing them multiple times.
3451         if (SE.isSCEVable(UserInst->getType())) {
3452           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3453           // If the user is a no-op, look through to its uses.
3454           if (!isa<SCEVUnknown>(UserS))
3455             continue;
3456           if (UserS == US) {
3457             Worklist.push_back(
3458               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3459             continue;
3460           }
3461         }
3462         // Ignore icmp instructions which are already being analyzed.
3463         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3464           unsigned OtherIdx = !U.getOperandNo();
3465           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3466           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3467             continue;
3468         }
3469 
3470         std::pair<size_t, int64_t> P = getUse(
3471             S, LSRUse::Basic, MemAccessTy());
3472         size_t LUIdx = P.first;
3473         int64_t Offset = P.second;
3474         LSRUse &LU = Uses[LUIdx];
3475         LSRFixup &LF = LU.getNewFixup();
3476         LF.UserInst = const_cast<Instruction *>(UserInst);
3477         LF.OperandValToReplace = U;
3478         LF.Offset = Offset;
3479         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3480         if (!LU.WidestFixupType ||
3481             SE.getTypeSizeInBits(LU.WidestFixupType) <
3482             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3483           LU.WidestFixupType = LF.OperandValToReplace->getType();
3484         InsertSupplementalFormula(US, LU, LUIdx);
3485         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3486         break;
3487       }
3488     }
3489   }
3490 }
3491 
3492 /// Split S into subexpressions which can be pulled out into separate
3493 /// registers. If C is non-null, multiply each subexpression by C.
3494 ///
3495 /// Return remainder expression after factoring the subexpressions captured by
3496 /// Ops. If Ops is complete, return NULL.
3497 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3498                                    SmallVectorImpl<const SCEV *> &Ops,
3499                                    const Loop *L,
3500                                    ScalarEvolution &SE,
3501                                    unsigned Depth = 0) {
3502   // Arbitrarily cap recursion to protect compile time.
3503   if (Depth >= 3)
3504     return S;
3505 
3506   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3507     // Break out add operands.
3508     for (const SCEV *S : Add->operands()) {
3509       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3510       if (Remainder)
3511         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3512     }
3513     return nullptr;
3514   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3515     // Split a non-zero base out of an addrec.
3516     if (AR->getStart()->isZero() || !AR->isAffine())
3517       return S;
3518 
3519     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3520                                             C, Ops, L, SE, Depth+1);
3521     // Split the non-zero AddRec unless it is part of a nested recurrence that
3522     // does not pertain to this loop.
3523     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3524       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3525       Remainder = nullptr;
3526     }
3527     if (Remainder != AR->getStart()) {
3528       if (!Remainder)
3529         Remainder = SE.getConstant(AR->getType(), 0);
3530       return SE.getAddRecExpr(Remainder,
3531                               AR->getStepRecurrence(SE),
3532                               AR->getLoop(),
3533                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3534                               SCEV::FlagAnyWrap);
3535     }
3536   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3537     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3538     if (Mul->getNumOperands() != 2)
3539       return S;
3540     if (const SCEVConstant *Op0 =
3541         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3542       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3543       const SCEV *Remainder =
3544         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3545       if (Remainder)
3546         Ops.push_back(SE.getMulExpr(C, Remainder));
3547       return nullptr;
3548     }
3549   }
3550   return S;
3551 }
3552 
3553 /// Return true if the SCEV represents a value that may end up as a
3554 /// post-increment operation.
3555 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3556                               LSRUse &LU, const SCEV *S, const Loop *L,
3557                               ScalarEvolution &SE) {
3558   if (LU.Kind != LSRUse::Address ||
3559       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3560     return false;
3561   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3562   if (!AR)
3563     return false;
3564   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3565   if (!isa<SCEVConstant>(LoopStep))
3566     return false;
3567   // Check if a post-indexed load/store can be used.
3568   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3569       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3570     const SCEV *LoopStart = AR->getStart();
3571     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3572       return true;
3573   }
3574   return false;
3575 }
3576 
3577 /// Helper function for LSRInstance::GenerateReassociations.
3578 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3579                                              const Formula &Base,
3580                                              unsigned Depth, size_t Idx,
3581                                              bool IsScaledReg) {
3582   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3583   // Don't generate reassociations for the base register of a value that
3584   // may generate a post-increment operator. The reason is that the
3585   // reassociations cause extra base+register formula to be created,
3586   // and possibly chosen, but the post-increment is more efficient.
3587   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3588     return;
3589   SmallVector<const SCEV *, 8> AddOps;
3590   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3591   if (Remainder)
3592     AddOps.push_back(Remainder);
3593 
3594   if (AddOps.size() == 1)
3595     return;
3596 
3597   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3598                                                      JE = AddOps.end();
3599        J != JE; ++J) {
3600     // Loop-variant "unknown" values are uninteresting; we won't be able to
3601     // do anything meaningful with them.
3602     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3603       continue;
3604 
3605     // Don't pull a constant into a register if the constant could be folded
3606     // into an immediate field.
3607     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3608                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3609       continue;
3610 
3611     // Collect all operands except *J.
3612     SmallVector<const SCEV *, 8> InnerAddOps(
3613         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3614     InnerAddOps.append(std::next(J),
3615                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3616 
3617     // Don't leave just a constant behind in a register if the constant could
3618     // be folded into an immediate field.
3619     if (InnerAddOps.size() == 1 &&
3620         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3621                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3622       continue;
3623 
3624     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3625     if (InnerSum->isZero())
3626       continue;
3627     Formula F = Base;
3628 
3629     // Add the remaining pieces of the add back into the new formula.
3630     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3631     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3632         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3633                                 InnerSumSC->getValue()->getZExtValue())) {
3634       F.UnfoldedOffset =
3635           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3636       if (IsScaledReg)
3637         F.ScaledReg = nullptr;
3638       else
3639         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3640     } else if (IsScaledReg)
3641       F.ScaledReg = InnerSum;
3642     else
3643       F.BaseRegs[Idx] = InnerSum;
3644 
3645     // Add J as its own register, or an unfolded immediate.
3646     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3647     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3648         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3649                                 SC->getValue()->getZExtValue()))
3650       F.UnfoldedOffset =
3651           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3652     else
3653       F.BaseRegs.push_back(*J);
3654     // We may have changed the number of register in base regs, adjust the
3655     // formula accordingly.
3656     F.canonicalize(*L);
3657 
3658     if (InsertFormula(LU, LUIdx, F))
3659       // If that formula hadn't been seen before, recurse to find more like
3660       // it.
3661       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3662       // Because just Depth is not enough to bound compile time.
3663       // This means that every time AddOps.size() is greater 16^x we will add
3664       // x to Depth.
3665       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3666                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3667   }
3668 }
3669 
3670 /// Split out subexpressions from adds and the bases of addrecs.
3671 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3672                                          Formula Base, unsigned Depth) {
3673   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3674   // Arbitrarily cap recursion to protect compile time.
3675   if (Depth >= 3)
3676     return;
3677 
3678   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3679     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3680 
3681   if (Base.Scale == 1)
3682     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3683                                /* Idx */ -1, /* IsScaledReg */ true);
3684 }
3685 
3686 ///  Generate a formula consisting of all of the loop-dominating registers added
3687 /// into a single register.
3688 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3689                                        Formula Base) {
3690   // This method is only interesting on a plurality of registers.
3691   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3692       (Base.UnfoldedOffset != 0) <= 1)
3693     return;
3694 
3695   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3696   // processing the formula.
3697   Base.unscale();
3698   SmallVector<const SCEV *, 4> Ops;
3699   Formula NewBase = Base;
3700   NewBase.BaseRegs.clear();
3701   Type *CombinedIntegerType = nullptr;
3702   for (const SCEV *BaseReg : Base.BaseRegs) {
3703     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3704         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3705       if (!CombinedIntegerType)
3706         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3707       Ops.push_back(BaseReg);
3708     }
3709     else
3710       NewBase.BaseRegs.push_back(BaseReg);
3711   }
3712 
3713   // If no register is relevant, we're done.
3714   if (Ops.size() == 0)
3715     return;
3716 
3717   // Utility function for generating the required variants of the combined
3718   // registers.
3719   auto GenerateFormula = [&](const SCEV *Sum) {
3720     Formula F = NewBase;
3721 
3722     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3723     // opportunity to fold something. For now, just ignore such cases
3724     // rather than proceed with zero in a register.
3725     if (Sum->isZero())
3726       return;
3727 
3728     F.BaseRegs.push_back(Sum);
3729     F.canonicalize(*L);
3730     (void)InsertFormula(LU, LUIdx, F);
3731   };
3732 
3733   // If we collected at least two registers, generate a formula combining them.
3734   if (Ops.size() > 1) {
3735     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3736     GenerateFormula(SE.getAddExpr(OpsCopy));
3737   }
3738 
3739   // If we have an unfolded offset, generate a formula combining it with the
3740   // registers collected.
3741   if (NewBase.UnfoldedOffset) {
3742     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3743     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3744                                  true));
3745     NewBase.UnfoldedOffset = 0;
3746     GenerateFormula(SE.getAddExpr(Ops));
3747   }
3748 }
3749 
3750 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3751 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3752                                               const Formula &Base, size_t Idx,
3753                                               bool IsScaledReg) {
3754   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3755   GlobalValue *GV = ExtractSymbol(G, SE);
3756   if (G->isZero() || !GV)
3757     return;
3758   Formula F = Base;
3759   F.BaseGV = GV;
3760   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3761     return;
3762   if (IsScaledReg)
3763     F.ScaledReg = G;
3764   else
3765     F.BaseRegs[Idx] = G;
3766   (void)InsertFormula(LU, LUIdx, F);
3767 }
3768 
3769 /// Generate reuse formulae using symbolic offsets.
3770 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3771                                           Formula Base) {
3772   // We can't add a symbolic offset if the address already contains one.
3773   if (Base.BaseGV) return;
3774 
3775   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3776     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3777   if (Base.Scale == 1)
3778     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3779                                 /* IsScaledReg */ true);
3780 }
3781 
3782 /// Helper function for LSRInstance::GenerateConstantOffsets.
3783 void LSRInstance::GenerateConstantOffsetsImpl(
3784     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3785     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3786 
3787   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3788     Formula F = Base;
3789     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3790 
3791     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3792                    LU.AccessTy, F)) {
3793       // Add the offset to the base register.
3794       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3795       // If it cancelled out, drop the base register, otherwise update it.
3796       if (NewG->isZero()) {
3797         if (IsScaledReg) {
3798           F.Scale = 0;
3799           F.ScaledReg = nullptr;
3800         } else
3801           F.deleteBaseReg(F.BaseRegs[Idx]);
3802         F.canonicalize(*L);
3803       } else if (IsScaledReg)
3804         F.ScaledReg = NewG;
3805       else
3806         F.BaseRegs[Idx] = NewG;
3807 
3808       (void)InsertFormula(LU, LUIdx, F);
3809     }
3810   };
3811 
3812   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3813 
3814   // With constant offsets and constant steps, we can generate pre-inc
3815   // accesses by having the offset equal the step. So, for access #0 with a
3816   // step of 8, we generate a G - 8 base which would require the first access
3817   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3818   // for itself and hopefully becomes the base for other accesses. This means
3819   // means that a single pre-indexed access can be generated to become the new
3820   // base pointer for each iteration of the loop, resulting in no extra add/sub
3821   // instructions for pointer updating.
3822   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3823     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3824       if (auto *StepRec =
3825           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3826         const APInt &StepInt = StepRec->getAPInt();
3827         int64_t Step = StepInt.isNegative() ?
3828           StepInt.getSExtValue() : StepInt.getZExtValue();
3829 
3830         for (int64_t Offset : Worklist) {
3831           Offset -= Step;
3832           GenerateOffset(G, Offset);
3833         }
3834       }
3835     }
3836   }
3837   for (int64_t Offset : Worklist)
3838     GenerateOffset(G, Offset);
3839 
3840   int64_t Imm = ExtractImmediate(G, SE);
3841   if (G->isZero() || Imm == 0)
3842     return;
3843   Formula F = Base;
3844   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3845   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3846     return;
3847   if (IsScaledReg) {
3848     F.ScaledReg = G;
3849   } else {
3850     F.BaseRegs[Idx] = G;
3851     // We may generate non canonical Formula if G is a recurrent expr reg
3852     // related with current loop while F.ScaledReg is not.
3853     F.canonicalize(*L);
3854   }
3855   (void)InsertFormula(LU, LUIdx, F);
3856 }
3857 
3858 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3859 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3860                                           Formula Base) {
3861   // TODO: For now, just add the min and max offset, because it usually isn't
3862   // worthwhile looking at everything inbetween.
3863   SmallVector<int64_t, 2> Worklist;
3864   Worklist.push_back(LU.MinOffset);
3865   if (LU.MaxOffset != LU.MinOffset)
3866     Worklist.push_back(LU.MaxOffset);
3867 
3868   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3869     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3870   if (Base.Scale == 1)
3871     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3872                                 /* IsScaledReg */ true);
3873 }
3874 
3875 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3876 /// == y -> x*c == y*c.
3877 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3878                                          Formula Base) {
3879   if (LU.Kind != LSRUse::ICmpZero) return;
3880 
3881   // Determine the integer type for the base formula.
3882   Type *IntTy = Base.getType();
3883   if (!IntTy) return;
3884   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3885 
3886   // Don't do this if there is more than one offset.
3887   if (LU.MinOffset != LU.MaxOffset) return;
3888 
3889   // Check if transformation is valid. It is illegal to multiply pointer.
3890   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3891     return;
3892   for (const SCEV *BaseReg : Base.BaseRegs)
3893     if (BaseReg->getType()->isPointerTy())
3894       return;
3895   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3896 
3897   // Check each interesting stride.
3898   for (int64_t Factor : Factors) {
3899     // Check that the multiplication doesn't overflow.
3900     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3901       continue;
3902     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3903     if (NewBaseOffset / Factor != Base.BaseOffset)
3904       continue;
3905     // If the offset will be truncated at this use, check that it is in bounds.
3906     if (!IntTy->isPointerTy() &&
3907         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3908       continue;
3909 
3910     // Check that multiplying with the use offset doesn't overflow.
3911     int64_t Offset = LU.MinOffset;
3912     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3913       continue;
3914     Offset = (uint64_t)Offset * Factor;
3915     if (Offset / Factor != LU.MinOffset)
3916       continue;
3917     // If the offset will be truncated at this use, check that it is in bounds.
3918     if (!IntTy->isPointerTy() &&
3919         !ConstantInt::isValueValidForType(IntTy, Offset))
3920       continue;
3921 
3922     Formula F = Base;
3923     F.BaseOffset = NewBaseOffset;
3924 
3925     // Check that this scale is legal.
3926     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3927       continue;
3928 
3929     // Compensate for the use having MinOffset built into it.
3930     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3931 
3932     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3933 
3934     // Check that multiplying with each base register doesn't overflow.
3935     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3936       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3937       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3938         goto next;
3939     }
3940 
3941     // Check that multiplying with the scaled register doesn't overflow.
3942     if (F.ScaledReg) {
3943       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3944       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3945         continue;
3946     }
3947 
3948     // Check that multiplying with the unfolded offset doesn't overflow.
3949     if (F.UnfoldedOffset != 0) {
3950       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3951           Factor == -1)
3952         continue;
3953       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3954       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3955         continue;
3956       // If the offset will be truncated, check that it is in bounds.
3957       if (!IntTy->isPointerTy() &&
3958           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3959         continue;
3960     }
3961 
3962     // If we make it here and it's legal, add it.
3963     (void)InsertFormula(LU, LUIdx, F);
3964   next:;
3965   }
3966 }
3967 
3968 /// Generate stride factor reuse formulae by making use of scaled-offset address
3969 /// modes, for example.
3970 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3971   // Determine the integer type for the base formula.
3972   Type *IntTy = Base.getType();
3973   if (!IntTy) return;
3974 
3975   // If this Formula already has a scaled register, we can't add another one.
3976   // Try to unscale the formula to generate a better scale.
3977   if (Base.Scale != 0 && !Base.unscale())
3978     return;
3979 
3980   assert(Base.Scale == 0 && "unscale did not did its job!");
3981 
3982   // Check each interesting stride.
3983   for (int64_t Factor : Factors) {
3984     Base.Scale = Factor;
3985     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3986     // Check whether this scale is going to be legal.
3987     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3988                     Base)) {
3989       // As a special-case, handle special out-of-loop Basic users specially.
3990       // TODO: Reconsider this special case.
3991       if (LU.Kind == LSRUse::Basic &&
3992           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3993                      LU.AccessTy, Base) &&
3994           LU.AllFixupsOutsideLoop)
3995         LU.Kind = LSRUse::Special;
3996       else
3997         continue;
3998     }
3999     // For an ICmpZero, negating a solitary base register won't lead to
4000     // new solutions.
4001     if (LU.Kind == LSRUse::ICmpZero &&
4002         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4003       continue;
4004     // For each addrec base reg, if its loop is current loop, apply the scale.
4005     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4006       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4007       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4008         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4009         if (FactorS->isZero())
4010           continue;
4011         // Divide out the factor, ignoring high bits, since we'll be
4012         // scaling the value back up in the end.
4013         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4014           // TODO: This could be optimized to avoid all the copying.
4015           Formula F = Base;
4016           F.ScaledReg = Quotient;
4017           F.deleteBaseReg(F.BaseRegs[i]);
4018           // The canonical representation of 1*reg is reg, which is already in
4019           // Base. In that case, do not try to insert the formula, it will be
4020           // rejected anyway.
4021           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4022                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4023             continue;
4024           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4025           // non canonical Formula with ScaledReg's loop not being L.
4026           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4027             F.canonicalize(*L);
4028           (void)InsertFormula(LU, LUIdx, F);
4029         }
4030       }
4031     }
4032   }
4033 }
4034 
4035 /// Generate reuse formulae from different IV types.
4036 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4037   // Don't bother truncating symbolic values.
4038   if (Base.BaseGV) return;
4039 
4040   // Determine the integer type for the base formula.
4041   Type *DstTy = Base.getType();
4042   if (!DstTy) return;
4043   DstTy = SE.getEffectiveSCEVType(DstTy);
4044 
4045   for (Type *SrcTy : Types) {
4046     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4047       Formula F = Base;
4048 
4049       // Sometimes SCEV is able to prove zero during ext transform. It may
4050       // happen if SCEV did not do all possible transforms while creating the
4051       // initial node (maybe due to depth limitations), but it can do them while
4052       // taking ext.
4053       if (F.ScaledReg) {
4054         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4055         if (NewScaledReg->isZero())
4056          continue;
4057         F.ScaledReg = NewScaledReg;
4058       }
4059       bool HasZeroBaseReg = false;
4060       for (const SCEV *&BaseReg : F.BaseRegs) {
4061         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4062         if (NewBaseReg->isZero()) {
4063           HasZeroBaseReg = true;
4064           break;
4065         }
4066         BaseReg = NewBaseReg;
4067       }
4068       if (HasZeroBaseReg)
4069         continue;
4070 
4071       // TODO: This assumes we've done basic processing on all uses and
4072       // have an idea what the register usage is.
4073       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4074         continue;
4075 
4076       F.canonicalize(*L);
4077       (void)InsertFormula(LU, LUIdx, F);
4078     }
4079   }
4080 }
4081 
4082 namespace {
4083 
4084 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4085 /// modifications so that the search phase doesn't have to worry about the data
4086 /// structures moving underneath it.
4087 struct WorkItem {
4088   size_t LUIdx;
4089   int64_t Imm;
4090   const SCEV *OrigReg;
4091 
4092   WorkItem(size_t LI, int64_t I, const SCEV *R)
4093       : LUIdx(LI), Imm(I), OrigReg(R) {}
4094 
4095   void print(raw_ostream &OS) const;
4096   void dump() const;
4097 };
4098 
4099 } // end anonymous namespace
4100 
4101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4102 void WorkItem::print(raw_ostream &OS) const {
4103   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4104      << " , add offset " << Imm;
4105 }
4106 
4107 LLVM_DUMP_METHOD void WorkItem::dump() const {
4108   print(errs()); errs() << '\n';
4109 }
4110 #endif
4111 
4112 /// Look for registers which are a constant distance apart and try to form reuse
4113 /// opportunities between them.
4114 void LSRInstance::GenerateCrossUseConstantOffsets() {
4115   // Group the registers by their value without any added constant offset.
4116   using ImmMapTy = std::map<int64_t, const SCEV *>;
4117 
4118   DenseMap<const SCEV *, ImmMapTy> Map;
4119   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4120   SmallVector<const SCEV *, 8> Sequence;
4121   for (const SCEV *Use : RegUses) {
4122     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4123     int64_t Imm = ExtractImmediate(Reg, SE);
4124     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4125     if (Pair.second)
4126       Sequence.push_back(Reg);
4127     Pair.first->second.insert(std::make_pair(Imm, Use));
4128     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4129   }
4130 
4131   // Now examine each set of registers with the same base value. Build up
4132   // a list of work to do and do the work in a separate step so that we're
4133   // not adding formulae and register counts while we're searching.
4134   SmallVector<WorkItem, 32> WorkItems;
4135   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4136   for (const SCEV *Reg : Sequence) {
4137     const ImmMapTy &Imms = Map.find(Reg)->second;
4138 
4139     // It's not worthwhile looking for reuse if there's only one offset.
4140     if (Imms.size() == 1)
4141       continue;
4142 
4143     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4144                for (const auto &Entry
4145                     : Imms) dbgs()
4146                << ' ' << Entry.first;
4147                dbgs() << '\n');
4148 
4149     // Examine each offset.
4150     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4151          J != JE; ++J) {
4152       const SCEV *OrigReg = J->second;
4153 
4154       int64_t JImm = J->first;
4155       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4156 
4157       if (!isa<SCEVConstant>(OrigReg) &&
4158           UsedByIndicesMap[Reg].count() == 1) {
4159         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4160                           << '\n');
4161         continue;
4162       }
4163 
4164       // Conservatively examine offsets between this orig reg a few selected
4165       // other orig regs.
4166       int64_t First = Imms.begin()->first;
4167       int64_t Last = std::prev(Imms.end())->first;
4168       // Compute (First + Last)  / 2 without overflow using the fact that
4169       // First + Last = 2 * (First + Last) + (First ^ Last).
4170       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4171       // If the result is negative and First is odd and Last even (or vice versa),
4172       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4173       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4174       ImmMapTy::const_iterator OtherImms[] = {
4175           Imms.begin(), std::prev(Imms.end()),
4176          Imms.lower_bound(Avg)};
4177       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4178         ImmMapTy::const_iterator M = OtherImms[i];
4179         if (M == J || M == JE) continue;
4180 
4181         // Compute the difference between the two.
4182         int64_t Imm = (uint64_t)JImm - M->first;
4183         for (unsigned LUIdx : UsedByIndices.set_bits())
4184           // Make a memo of this use, offset, and register tuple.
4185           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4186             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4187       }
4188     }
4189   }
4190 
4191   Map.clear();
4192   Sequence.clear();
4193   UsedByIndicesMap.clear();
4194   UniqueItems.clear();
4195 
4196   // Now iterate through the worklist and add new formulae.
4197   for (const WorkItem &WI : WorkItems) {
4198     size_t LUIdx = WI.LUIdx;
4199     LSRUse &LU = Uses[LUIdx];
4200     int64_t Imm = WI.Imm;
4201     const SCEV *OrigReg = WI.OrigReg;
4202 
4203     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4204     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4205     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4206 
4207     // TODO: Use a more targeted data structure.
4208     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4209       Formula F = LU.Formulae[L];
4210       // FIXME: The code for the scaled and unscaled registers looks
4211       // very similar but slightly different. Investigate if they
4212       // could be merged. That way, we would not have to unscale the
4213       // Formula.
4214       F.unscale();
4215       // Use the immediate in the scaled register.
4216       if (F.ScaledReg == OrigReg) {
4217         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4218         // Don't create 50 + reg(-50).
4219         if (F.referencesReg(SE.getSCEV(
4220                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4221           continue;
4222         Formula NewF = F;
4223         NewF.BaseOffset = Offset;
4224         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4225                         NewF))
4226           continue;
4227         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4228 
4229         // If the new scale is a constant in a register, and adding the constant
4230         // value to the immediate would produce a value closer to zero than the
4231         // immediate itself, then the formula isn't worthwhile.
4232         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4233           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4234               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4235                   .ule(std::abs(NewF.BaseOffset)))
4236             continue;
4237 
4238         // OK, looks good.
4239         NewF.canonicalize(*this->L);
4240         (void)InsertFormula(LU, LUIdx, NewF);
4241       } else {
4242         // Use the immediate in a base register.
4243         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4244           const SCEV *BaseReg = F.BaseRegs[N];
4245           if (BaseReg != OrigReg)
4246             continue;
4247           Formula NewF = F;
4248           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4249           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4250                           LU.Kind, LU.AccessTy, NewF)) {
4251             if (TTI.shouldFavorPostInc() &&
4252                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4253               continue;
4254             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4255               continue;
4256             NewF = F;
4257             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4258           }
4259           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4260 
4261           // If the new formula has a constant in a register, and adding the
4262           // constant value to the immediate would produce a value closer to
4263           // zero than the immediate itself, then the formula isn't worthwhile.
4264           for (const SCEV *NewReg : NewF.BaseRegs)
4265             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4266               if ((C->getAPInt() + NewF.BaseOffset)
4267                       .abs()
4268                       .slt(std::abs(NewF.BaseOffset)) &&
4269                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4270                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4271                 goto skip_formula;
4272 
4273           // Ok, looks good.
4274           NewF.canonicalize(*this->L);
4275           (void)InsertFormula(LU, LUIdx, NewF);
4276           break;
4277         skip_formula:;
4278         }
4279       }
4280     }
4281   }
4282 }
4283 
4284 /// Generate formulae for each use.
4285 void
4286 LSRInstance::GenerateAllReuseFormulae() {
4287   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4288   // queries are more precise.
4289   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4290     LSRUse &LU = Uses[LUIdx];
4291     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4292       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4293     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4294       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4295   }
4296   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4297     LSRUse &LU = Uses[LUIdx];
4298     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4299       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4300     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4301       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4302     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4303       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4304     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4305       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4306   }
4307   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4308     LSRUse &LU = Uses[LUIdx];
4309     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4310       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4311   }
4312 
4313   GenerateCrossUseConstantOffsets();
4314 
4315   LLVM_DEBUG(dbgs() << "\n"
4316                        "After generating reuse formulae:\n";
4317              print_uses(dbgs()));
4318 }
4319 
4320 /// If there are multiple formulae with the same set of registers used
4321 /// by other uses, pick the best one and delete the others.
4322 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4323   DenseSet<const SCEV *> VisitedRegs;
4324   SmallPtrSet<const SCEV *, 16> Regs;
4325   SmallPtrSet<const SCEV *, 16> LoserRegs;
4326 #ifndef NDEBUG
4327   bool ChangedFormulae = false;
4328 #endif
4329 
4330   // Collect the best formula for each unique set of shared registers. This
4331   // is reset for each use.
4332   using BestFormulaeTy =
4333       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4334 
4335   BestFormulaeTy BestFormulae;
4336 
4337   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4338     LSRUse &LU = Uses[LUIdx];
4339     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4340                dbgs() << '\n');
4341 
4342     bool Any = false;
4343     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4344          FIdx != NumForms; ++FIdx) {
4345       Formula &F = LU.Formulae[FIdx];
4346 
4347       // Some formulas are instant losers. For example, they may depend on
4348       // nonexistent AddRecs from other loops. These need to be filtered
4349       // immediately, otherwise heuristics could choose them over others leading
4350       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4351       // avoids the need to recompute this information across formulae using the
4352       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4353       // the corresponding bad register from the Regs set.
4354       Cost CostF(L, SE, TTI);
4355       Regs.clear();
4356       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4357       if (CostF.isLoser()) {
4358         // During initial formula generation, undesirable formulae are generated
4359         // by uses within other loops that have some non-trivial address mode or
4360         // use the postinc form of the IV. LSR needs to provide these formulae
4361         // as the basis of rediscovering the desired formula that uses an AddRec
4362         // corresponding to the existing phi. Once all formulae have been
4363         // generated, these initial losers may be pruned.
4364         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4365                    dbgs() << "\n");
4366       }
4367       else {
4368         SmallVector<const SCEV *, 4> Key;
4369         for (const SCEV *Reg : F.BaseRegs) {
4370           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4371             Key.push_back(Reg);
4372         }
4373         if (F.ScaledReg &&
4374             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4375           Key.push_back(F.ScaledReg);
4376         // Unstable sort by host order ok, because this is only used for
4377         // uniquifying.
4378         llvm::sort(Key);
4379 
4380         std::pair<BestFormulaeTy::const_iterator, bool> P =
4381           BestFormulae.insert(std::make_pair(Key, FIdx));
4382         if (P.second)
4383           continue;
4384 
4385         Formula &Best = LU.Formulae[P.first->second];
4386 
4387         Cost CostBest(L, SE, TTI);
4388         Regs.clear();
4389         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4390         if (CostF.isLess(CostBest))
4391           std::swap(F, Best);
4392         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4393                    dbgs() << "\n"
4394                              "    in favor of formula ";
4395                    Best.print(dbgs()); dbgs() << '\n');
4396       }
4397 #ifndef NDEBUG
4398       ChangedFormulae = true;
4399 #endif
4400       LU.DeleteFormula(F);
4401       --FIdx;
4402       --NumForms;
4403       Any = true;
4404     }
4405 
4406     // Now that we've filtered out some formulae, recompute the Regs set.
4407     if (Any)
4408       LU.RecomputeRegs(LUIdx, RegUses);
4409 
4410     // Reset this to prepare for the next use.
4411     BestFormulae.clear();
4412   }
4413 
4414   LLVM_DEBUG(if (ChangedFormulae) {
4415     dbgs() << "\n"
4416               "After filtering out undesirable candidates:\n";
4417     print_uses(dbgs());
4418   });
4419 }
4420 
4421 /// Estimate the worst-case number of solutions the solver might have to
4422 /// consider. It almost never considers this many solutions because it prune the
4423 /// search space, but the pruning isn't always sufficient.
4424 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4425   size_t Power = 1;
4426   for (const LSRUse &LU : Uses) {
4427     size_t FSize = LU.Formulae.size();
4428     if (FSize >= ComplexityLimit) {
4429       Power = ComplexityLimit;
4430       break;
4431     }
4432     Power *= FSize;
4433     if (Power >= ComplexityLimit)
4434       break;
4435   }
4436   return Power;
4437 }
4438 
4439 /// When one formula uses a superset of the registers of another formula, it
4440 /// won't help reduce register pressure (though it may not necessarily hurt
4441 /// register pressure); remove it to simplify the system.
4442 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4443   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4444     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4445 
4446     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4447                          "which use a superset of registers used by other "
4448                          "formulae.\n");
4449 
4450     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4451       LSRUse &LU = Uses[LUIdx];
4452       bool Any = false;
4453       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4454         Formula &F = LU.Formulae[i];
4455         // Look for a formula with a constant or GV in a register. If the use
4456         // also has a formula with that same value in an immediate field,
4457         // delete the one that uses a register.
4458         for (SmallVectorImpl<const SCEV *>::const_iterator
4459              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4460           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4461             Formula NewF = F;
4462             //FIXME: Formulas should store bitwidth to do wrapping properly.
4463             //       See PR41034.
4464             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4465             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4466                                 (I - F.BaseRegs.begin()));
4467             if (LU.HasFormulaWithSameRegs(NewF)) {
4468               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4469                          dbgs() << '\n');
4470               LU.DeleteFormula(F);
4471               --i;
4472               --e;
4473               Any = true;
4474               break;
4475             }
4476           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4477             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4478               if (!F.BaseGV) {
4479                 Formula NewF = F;
4480                 NewF.BaseGV = GV;
4481                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4482                                     (I - F.BaseRegs.begin()));
4483                 if (LU.HasFormulaWithSameRegs(NewF)) {
4484                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4485                              dbgs() << '\n');
4486                   LU.DeleteFormula(F);
4487                   --i;
4488                   --e;
4489                   Any = true;
4490                   break;
4491                 }
4492               }
4493           }
4494         }
4495       }
4496       if (Any)
4497         LU.RecomputeRegs(LUIdx, RegUses);
4498     }
4499 
4500     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4501   }
4502 }
4503 
4504 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4505 /// allocate a single register for them.
4506 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4507   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4508     return;
4509 
4510   LLVM_DEBUG(
4511       dbgs() << "The search space is too complex.\n"
4512                 "Narrowing the search space by assuming that uses separated "
4513                 "by a constant offset will use the same registers.\n");
4514 
4515   // This is especially useful for unrolled loops.
4516 
4517   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4518     LSRUse &LU = Uses[LUIdx];
4519     for (const Formula &F : LU.Formulae) {
4520       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4521         continue;
4522 
4523       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4524       if (!LUThatHas)
4525         continue;
4526 
4527       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4528                               LU.Kind, LU.AccessTy))
4529         continue;
4530 
4531       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4532 
4533       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4534 
4535       // Transfer the fixups of LU to LUThatHas.
4536       for (LSRFixup &Fixup : LU.Fixups) {
4537         Fixup.Offset += F.BaseOffset;
4538         LUThatHas->pushFixup(Fixup);
4539         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4540       }
4541 
4542       // Delete formulae from the new use which are no longer legal.
4543       bool Any = false;
4544       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4545         Formula &F = LUThatHas->Formulae[i];
4546         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4547                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4548           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4549           LUThatHas->DeleteFormula(F);
4550           --i;
4551           --e;
4552           Any = true;
4553         }
4554       }
4555 
4556       if (Any)
4557         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4558 
4559       // Delete the old use.
4560       DeleteUse(LU, LUIdx);
4561       --LUIdx;
4562       --NumUses;
4563       break;
4564     }
4565   }
4566 
4567   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4568 }
4569 
4570 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4571 /// we've done more filtering, as it may be able to find more formulae to
4572 /// eliminate.
4573 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4574   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4575     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4576 
4577     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4578                          "undesirable dedicated registers.\n");
4579 
4580     FilterOutUndesirableDedicatedRegisters();
4581 
4582     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4583   }
4584 }
4585 
4586 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4587 /// Pick the best one and delete the others.
4588 /// This narrowing heuristic is to keep as many formulae with different
4589 /// Scale and ScaledReg pair as possible while narrowing the search space.
4590 /// The benefit is that it is more likely to find out a better solution
4591 /// from a formulae set with more Scale and ScaledReg variations than
4592 /// a formulae set with the same Scale and ScaledReg. The picking winner
4593 /// reg heuristic will often keep the formulae with the same Scale and
4594 /// ScaledReg and filter others, and we want to avoid that if possible.
4595 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4596   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4597     return;
4598 
4599   LLVM_DEBUG(
4600       dbgs() << "The search space is too complex.\n"
4601                 "Narrowing the search space by choosing the best Formula "
4602                 "from the Formulae with the same Scale and ScaledReg.\n");
4603 
4604   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4605   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4606 
4607   BestFormulaeTy BestFormulae;
4608 #ifndef NDEBUG
4609   bool ChangedFormulae = false;
4610 #endif
4611   DenseSet<const SCEV *> VisitedRegs;
4612   SmallPtrSet<const SCEV *, 16> Regs;
4613 
4614   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4615     LSRUse &LU = Uses[LUIdx];
4616     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4617                dbgs() << '\n');
4618 
4619     // Return true if Formula FA is better than Formula FB.
4620     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4621       // First we will try to choose the Formula with fewer new registers.
4622       // For a register used by current Formula, the more the register is
4623       // shared among LSRUses, the less we increase the register number
4624       // counter of the formula.
4625       size_t FARegNum = 0;
4626       for (const SCEV *Reg : FA.BaseRegs) {
4627         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4628         FARegNum += (NumUses - UsedByIndices.count() + 1);
4629       }
4630       size_t FBRegNum = 0;
4631       for (const SCEV *Reg : FB.BaseRegs) {
4632         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4633         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4634       }
4635       if (FARegNum != FBRegNum)
4636         return FARegNum < FBRegNum;
4637 
4638       // If the new register numbers are the same, choose the Formula with
4639       // less Cost.
4640       Cost CostFA(L, SE, TTI);
4641       Cost CostFB(L, SE, TTI);
4642       Regs.clear();
4643       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4644       Regs.clear();
4645       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4646       return CostFA.isLess(CostFB);
4647     };
4648 
4649     bool Any = false;
4650     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4651          ++FIdx) {
4652       Formula &F = LU.Formulae[FIdx];
4653       if (!F.ScaledReg)
4654         continue;
4655       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4656       if (P.second)
4657         continue;
4658 
4659       Formula &Best = LU.Formulae[P.first->second];
4660       if (IsBetterThan(F, Best))
4661         std::swap(F, Best);
4662       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4663                  dbgs() << "\n"
4664                            "    in favor of formula ";
4665                  Best.print(dbgs()); dbgs() << '\n');
4666 #ifndef NDEBUG
4667       ChangedFormulae = true;
4668 #endif
4669       LU.DeleteFormula(F);
4670       --FIdx;
4671       --NumForms;
4672       Any = true;
4673     }
4674     if (Any)
4675       LU.RecomputeRegs(LUIdx, RegUses);
4676 
4677     // Reset this to prepare for the next use.
4678     BestFormulae.clear();
4679   }
4680 
4681   LLVM_DEBUG(if (ChangedFormulae) {
4682     dbgs() << "\n"
4683               "After filtering out undesirable candidates:\n";
4684     print_uses(dbgs());
4685   });
4686 }
4687 
4688 /// If we are over the complexity limit, filter out any post-inc prefering
4689 /// variables to only post-inc values.
4690 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4691   if (!TTI.shouldFavorPostInc())
4692     return;
4693   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4694     return;
4695 
4696   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4697                        "Narrowing the search space by choosing the lowest "
4698                        "register Formula for PostInc Uses.\n");
4699 
4700   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4701     LSRUse &LU = Uses[LUIdx];
4702 
4703     if (LU.Kind != LSRUse::Address)
4704       continue;
4705     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4706         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4707       continue;
4708 
4709     size_t MinRegs = std::numeric_limits<size_t>::max();
4710     for (const Formula &F : LU.Formulae)
4711       MinRegs = std::min(F.getNumRegs(), MinRegs);
4712 
4713     bool Any = false;
4714     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4715          ++FIdx) {
4716       Formula &F = LU.Formulae[FIdx];
4717       if (F.getNumRegs() > MinRegs) {
4718         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4719                    dbgs() << "\n");
4720         LU.DeleteFormula(F);
4721         --FIdx;
4722         --NumForms;
4723         Any = true;
4724       }
4725     }
4726     if (Any)
4727       LU.RecomputeRegs(LUIdx, RegUses);
4728 
4729     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4730       break;
4731   }
4732 
4733   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4734 }
4735 
4736 /// The function delete formulas with high registers number expectation.
4737 /// Assuming we don't know the value of each formula (already delete
4738 /// all inefficient), generate probability of not selecting for each
4739 /// register.
4740 /// For example,
4741 /// Use1:
4742 ///  reg(a) + reg({0,+,1})
4743 ///  reg(a) + reg({-1,+,1}) + 1
4744 ///  reg({a,+,1})
4745 /// Use2:
4746 ///  reg(b) + reg({0,+,1})
4747 ///  reg(b) + reg({-1,+,1}) + 1
4748 ///  reg({b,+,1})
4749 /// Use3:
4750 ///  reg(c) + reg(b) + reg({0,+,1})
4751 ///  reg(c) + reg({b,+,1})
4752 ///
4753 /// Probability of not selecting
4754 ///                 Use1   Use2    Use3
4755 /// reg(a)         (1/3) *   1   *   1
4756 /// reg(b)           1   * (1/3) * (1/2)
4757 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4758 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4759 /// reg({a,+,1})   (2/3) *   1   *   1
4760 /// reg({b,+,1})     1   * (2/3) * (2/3)
4761 /// reg(c)           1   *   1   *   0
4762 ///
4763 /// Now count registers number mathematical expectation for each formula:
4764 /// Note that for each use we exclude probability if not selecting for the use.
4765 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4766 /// probabilty 1/3 of not selecting for Use1).
4767 /// Use1:
4768 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4769 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4770 ///  reg({a,+,1})                   1
4771 /// Use2:
4772 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4773 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4774 ///  reg({b,+,1})                   2/3
4775 /// Use3:
4776 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4777 ///  reg(c) + reg({b,+,1})          1 + 2/3
4778 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4779   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4780     return;
4781   // Ok, we have too many of formulae on our hands to conveniently handle.
4782   // Use a rough heuristic to thin out the list.
4783 
4784   // Set of Regs wich will be 100% used in final solution.
4785   // Used in each formula of a solution (in example above this is reg(c)).
4786   // We can skip them in calculations.
4787   SmallPtrSet<const SCEV *, 4> UniqRegs;
4788   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4789 
4790   // Map each register to probability of not selecting
4791   DenseMap <const SCEV *, float> RegNumMap;
4792   for (const SCEV *Reg : RegUses) {
4793     if (UniqRegs.count(Reg))
4794       continue;
4795     float PNotSel = 1;
4796     for (const LSRUse &LU : Uses) {
4797       if (!LU.Regs.count(Reg))
4798         continue;
4799       float P = LU.getNotSelectedProbability(Reg);
4800       if (P != 0.0)
4801         PNotSel *= P;
4802       else
4803         UniqRegs.insert(Reg);
4804     }
4805     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4806   }
4807 
4808   LLVM_DEBUG(
4809       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4810 
4811   // Delete formulas where registers number expectation is high.
4812   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4813     LSRUse &LU = Uses[LUIdx];
4814     // If nothing to delete - continue.
4815     if (LU.Formulae.size() < 2)
4816       continue;
4817     // This is temporary solution to test performance. Float should be
4818     // replaced with round independent type (based on integers) to avoid
4819     // different results for different target builds.
4820     float FMinRegNum = LU.Formulae[0].getNumRegs();
4821     float FMinARegNum = LU.Formulae[0].getNumRegs();
4822     size_t MinIdx = 0;
4823     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4824       Formula &F = LU.Formulae[i];
4825       float FRegNum = 0;
4826       float FARegNum = 0;
4827       for (const SCEV *BaseReg : F.BaseRegs) {
4828         if (UniqRegs.count(BaseReg))
4829           continue;
4830         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4831         if (isa<SCEVAddRecExpr>(BaseReg))
4832           FARegNum +=
4833               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4834       }
4835       if (const SCEV *ScaledReg = F.ScaledReg) {
4836         if (!UniqRegs.count(ScaledReg)) {
4837           FRegNum +=
4838               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4839           if (isa<SCEVAddRecExpr>(ScaledReg))
4840             FARegNum +=
4841                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4842         }
4843       }
4844       if (FMinRegNum > FRegNum ||
4845           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4846         FMinRegNum = FRegNum;
4847         FMinARegNum = FARegNum;
4848         MinIdx = i;
4849       }
4850     }
4851     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4852                dbgs() << " with min reg num " << FMinRegNum << '\n');
4853     if (MinIdx != 0)
4854       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4855     while (LU.Formulae.size() != 1) {
4856       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4857                  dbgs() << '\n');
4858       LU.Formulae.pop_back();
4859     }
4860     LU.RecomputeRegs(LUIdx, RegUses);
4861     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4862     Formula &F = LU.Formulae[0];
4863     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4864     // When we choose the formula, the regs become unique.
4865     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4866     if (F.ScaledReg)
4867       UniqRegs.insert(F.ScaledReg);
4868   }
4869   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4870 }
4871 
4872 /// Pick a register which seems likely to be profitable, and then in any use
4873 /// which has any reference to that register, delete all formulae which do not
4874 /// reference that register.
4875 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4876   // With all other options exhausted, loop until the system is simple
4877   // enough to handle.
4878   SmallPtrSet<const SCEV *, 4> Taken;
4879   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4880     // Ok, we have too many of formulae on our hands to conveniently handle.
4881     // Use a rough heuristic to thin out the list.
4882     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4883 
4884     // Pick the register which is used by the most LSRUses, which is likely
4885     // to be a good reuse register candidate.
4886     const SCEV *Best = nullptr;
4887     unsigned BestNum = 0;
4888     for (const SCEV *Reg : RegUses) {
4889       if (Taken.count(Reg))
4890         continue;
4891       if (!Best) {
4892         Best = Reg;
4893         BestNum = RegUses.getUsedByIndices(Reg).count();
4894       } else {
4895         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4896         if (Count > BestNum) {
4897           Best = Reg;
4898           BestNum = Count;
4899         }
4900       }
4901     }
4902     assert(Best && "Failed to find best LSRUse candidate");
4903 
4904     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4905                       << " will yield profitable reuse.\n");
4906     Taken.insert(Best);
4907 
4908     // In any use with formulae which references this register, delete formulae
4909     // which don't reference it.
4910     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4911       LSRUse &LU = Uses[LUIdx];
4912       if (!LU.Regs.count(Best)) continue;
4913 
4914       bool Any = false;
4915       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4916         Formula &F = LU.Formulae[i];
4917         if (!F.referencesReg(Best)) {
4918           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4919           LU.DeleteFormula(F);
4920           --e;
4921           --i;
4922           Any = true;
4923           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4924           continue;
4925         }
4926       }
4927 
4928       if (Any)
4929         LU.RecomputeRegs(LUIdx, RegUses);
4930     }
4931 
4932     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4933   }
4934 }
4935 
4936 /// If there are an extraordinary number of formulae to choose from, use some
4937 /// rough heuristics to prune down the number of formulae. This keeps the main
4938 /// solver from taking an extraordinary amount of time in some worst-case
4939 /// scenarios.
4940 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4941   NarrowSearchSpaceByDetectingSupersets();
4942   NarrowSearchSpaceByCollapsingUnrolledCode();
4943   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4944   if (FilterSameScaledReg)
4945     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4946   NarrowSearchSpaceByFilterPostInc();
4947   if (LSRExpNarrow)
4948     NarrowSearchSpaceByDeletingCostlyFormulas();
4949   else
4950     NarrowSearchSpaceByPickingWinnerRegs();
4951 }
4952 
4953 /// This is the recursive solver.
4954 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4955                                Cost &SolutionCost,
4956                                SmallVectorImpl<const Formula *> &Workspace,
4957                                const Cost &CurCost,
4958                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4959                                DenseSet<const SCEV *> &VisitedRegs) const {
4960   // Some ideas:
4961   //  - prune more:
4962   //    - use more aggressive filtering
4963   //    - sort the formula so that the most profitable solutions are found first
4964   //    - sort the uses too
4965   //  - search faster:
4966   //    - don't compute a cost, and then compare. compare while computing a cost
4967   //      and bail early.
4968   //    - track register sets with SmallBitVector
4969 
4970   const LSRUse &LU = Uses[Workspace.size()];
4971 
4972   // If this use references any register that's already a part of the
4973   // in-progress solution, consider it a requirement that a formula must
4974   // reference that register in order to be considered. This prunes out
4975   // unprofitable searching.
4976   SmallSetVector<const SCEV *, 4> ReqRegs;
4977   for (const SCEV *S : CurRegs)
4978     if (LU.Regs.count(S))
4979       ReqRegs.insert(S);
4980 
4981   SmallPtrSet<const SCEV *, 16> NewRegs;
4982   Cost NewCost(L, SE, TTI);
4983   for (const Formula &F : LU.Formulae) {
4984     // Ignore formulae which may not be ideal in terms of register reuse of
4985     // ReqRegs.  The formula should use all required registers before
4986     // introducing new ones.
4987     // This can sometimes (notably when trying to favour postinc) lead to
4988     // sub-optimial decisions. There it is best left to the cost modelling to
4989     // get correct.
4990     if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) {
4991       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4992       for (const SCEV *Reg : ReqRegs) {
4993         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4994             is_contained(F.BaseRegs, Reg)) {
4995           --NumReqRegsToFind;
4996           if (NumReqRegsToFind == 0)
4997             break;
4998         }
4999       }
5000       if (NumReqRegsToFind != 0) {
5001         // If none of the formulae satisfied the required registers, then we could
5002         // clear ReqRegs and try again. Currently, we simply give up in this case.
5003         continue;
5004       }
5005     }
5006 
5007     // Evaluate the cost of the current formula. If it's already worse than
5008     // the current best, prune the search at that point.
5009     NewCost = CurCost;
5010     NewRegs = CurRegs;
5011     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5012     if (NewCost.isLess(SolutionCost)) {
5013       Workspace.push_back(&F);
5014       if (Workspace.size() != Uses.size()) {
5015         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5016                      NewRegs, VisitedRegs);
5017         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5018           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5019       } else {
5020         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5021                    dbgs() << ".\nRegs:\n";
5022                    for (const SCEV *S : NewRegs) dbgs()
5023                       << "- " << *S << "\n";
5024                    dbgs() << '\n');
5025 
5026         SolutionCost = NewCost;
5027         Solution = Workspace;
5028       }
5029       Workspace.pop_back();
5030     }
5031   }
5032 }
5033 
5034 /// Choose one formula from each use. Return the results in the given Solution
5035 /// vector.
5036 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5037   SmallVector<const Formula *, 8> Workspace;
5038   Cost SolutionCost(L, SE, TTI);
5039   SolutionCost.Lose();
5040   Cost CurCost(L, SE, TTI);
5041   SmallPtrSet<const SCEV *, 16> CurRegs;
5042   DenseSet<const SCEV *> VisitedRegs;
5043   Workspace.reserve(Uses.size());
5044 
5045   // SolveRecurse does all the work.
5046   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5047                CurRegs, VisitedRegs);
5048   if (Solution.empty()) {
5049     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5050     return;
5051   }
5052 
5053   // Ok, we've now made all our decisions.
5054   LLVM_DEBUG(dbgs() << "\n"
5055                        "The chosen solution requires ";
5056              SolutionCost.print(dbgs()); dbgs() << ":\n";
5057              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5058                dbgs() << "  ";
5059                Uses[i].print(dbgs());
5060                dbgs() << "\n"
5061                          "    ";
5062                Solution[i]->print(dbgs());
5063                dbgs() << '\n';
5064              });
5065 
5066   assert(Solution.size() == Uses.size() && "Malformed solution!");
5067 }
5068 
5069 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5070 /// we can go while still being dominated by the input positions. This helps
5071 /// canonicalize the insert position, which encourages sharing.
5072 BasicBlock::iterator
5073 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5074                                  const SmallVectorImpl<Instruction *> &Inputs)
5075                                                                          const {
5076   Instruction *Tentative = &*IP;
5077   while (true) {
5078     bool AllDominate = true;
5079     Instruction *BetterPos = nullptr;
5080     // Don't bother attempting to insert before a catchswitch, their basic block
5081     // cannot have other non-PHI instructions.
5082     if (isa<CatchSwitchInst>(Tentative))
5083       return IP;
5084 
5085     for (Instruction *Inst : Inputs) {
5086       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5087         AllDominate = false;
5088         break;
5089       }
5090       // Attempt to find an insert position in the middle of the block,
5091       // instead of at the end, so that it can be used for other expansions.
5092       if (Tentative->getParent() == Inst->getParent() &&
5093           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5094         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5095     }
5096     if (!AllDominate)
5097       break;
5098     if (BetterPos)
5099       IP = BetterPos->getIterator();
5100     else
5101       IP = Tentative->getIterator();
5102 
5103     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5104     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5105 
5106     BasicBlock *IDom;
5107     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5108       if (!Rung) return IP;
5109       Rung = Rung->getIDom();
5110       if (!Rung) return IP;
5111       IDom = Rung->getBlock();
5112 
5113       // Don't climb into a loop though.
5114       const Loop *IDomLoop = LI.getLoopFor(IDom);
5115       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5116       if (IDomDepth <= IPLoopDepth &&
5117           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5118         break;
5119     }
5120 
5121     Tentative = IDom->getTerminator();
5122   }
5123 
5124   return IP;
5125 }
5126 
5127 /// Determine an input position which will be dominated by the operands and
5128 /// which will dominate the result.
5129 BasicBlock::iterator
5130 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5131                                            const LSRFixup &LF,
5132                                            const LSRUse &LU,
5133                                            SCEVExpander &Rewriter) const {
5134   // Collect some instructions which must be dominated by the
5135   // expanding replacement. These must be dominated by any operands that
5136   // will be required in the expansion.
5137   SmallVector<Instruction *, 4> Inputs;
5138   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5139     Inputs.push_back(I);
5140   if (LU.Kind == LSRUse::ICmpZero)
5141     if (Instruction *I =
5142           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5143       Inputs.push_back(I);
5144   if (LF.PostIncLoops.count(L)) {
5145     if (LF.isUseFullyOutsideLoop(L))
5146       Inputs.push_back(L->getLoopLatch()->getTerminator());
5147     else
5148       Inputs.push_back(IVIncInsertPos);
5149   }
5150   // The expansion must also be dominated by the increment positions of any
5151   // loops it for which it is using post-inc mode.
5152   for (const Loop *PIL : LF.PostIncLoops) {
5153     if (PIL == L) continue;
5154 
5155     // Be dominated by the loop exit.
5156     SmallVector<BasicBlock *, 4> ExitingBlocks;
5157     PIL->getExitingBlocks(ExitingBlocks);
5158     if (!ExitingBlocks.empty()) {
5159       BasicBlock *BB = ExitingBlocks[0];
5160       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5161         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5162       Inputs.push_back(BB->getTerminator());
5163     }
5164   }
5165 
5166   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5167          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5168          "Insertion point must be a normal instruction");
5169 
5170   // Then, climb up the immediate dominator tree as far as we can go while
5171   // still being dominated by the input positions.
5172   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5173 
5174   // Don't insert instructions before PHI nodes.
5175   while (isa<PHINode>(IP)) ++IP;
5176 
5177   // Ignore landingpad instructions.
5178   while (IP->isEHPad()) ++IP;
5179 
5180   // Ignore debug intrinsics.
5181   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5182 
5183   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5184   // IP consistent across expansions and allows the previously inserted
5185   // instructions to be reused by subsequent expansion.
5186   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5187     ++IP;
5188 
5189   return IP;
5190 }
5191 
5192 /// Emit instructions for the leading candidate expression for this LSRUse (this
5193 /// is called "expanding").
5194 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5195                            const Formula &F, BasicBlock::iterator IP,
5196                            SCEVExpander &Rewriter,
5197                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5198   if (LU.RigidFormula)
5199     return LF.OperandValToReplace;
5200 
5201   // Determine an input position which will be dominated by the operands and
5202   // which will dominate the result.
5203   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5204   Rewriter.setInsertPoint(&*IP);
5205 
5206   // Inform the Rewriter if we have a post-increment use, so that it can
5207   // perform an advantageous expansion.
5208   Rewriter.setPostInc(LF.PostIncLoops);
5209 
5210   // This is the type that the user actually needs.
5211   Type *OpTy = LF.OperandValToReplace->getType();
5212   // This will be the type that we'll initially expand to.
5213   Type *Ty = F.getType();
5214   if (!Ty)
5215     // No type known; just expand directly to the ultimate type.
5216     Ty = OpTy;
5217   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5218     // Expand directly to the ultimate type if it's the right size.
5219     Ty = OpTy;
5220   // This is the type to do integer arithmetic in.
5221   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5222 
5223   // Build up a list of operands to add together to form the full base.
5224   SmallVector<const SCEV *, 8> Ops;
5225 
5226   // Expand the BaseRegs portion.
5227   for (const SCEV *Reg : F.BaseRegs) {
5228     assert(!Reg->isZero() && "Zero allocated in a base register!");
5229 
5230     // If we're expanding for a post-inc user, make the post-inc adjustment.
5231     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5232     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5233   }
5234 
5235   // Expand the ScaledReg portion.
5236   Value *ICmpScaledV = nullptr;
5237   if (F.Scale != 0) {
5238     const SCEV *ScaledS = F.ScaledReg;
5239 
5240     // If we're expanding for a post-inc user, make the post-inc adjustment.
5241     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5242     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5243 
5244     if (LU.Kind == LSRUse::ICmpZero) {
5245       // Expand ScaleReg as if it was part of the base regs.
5246       if (F.Scale == 1)
5247         Ops.push_back(
5248             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5249       else {
5250         // An interesting way of "folding" with an icmp is to use a negated
5251         // scale, which we'll implement by inserting it into the other operand
5252         // of the icmp.
5253         assert(F.Scale == -1 &&
5254                "The only scale supported by ICmpZero uses is -1!");
5255         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5256       }
5257     } else {
5258       // Otherwise just expand the scaled register and an explicit scale,
5259       // which is expected to be matched as part of the address.
5260 
5261       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5262       // Unless the addressing mode will not be folded.
5263       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5264           isAMCompletelyFolded(TTI, LU, F)) {
5265         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5266         Ops.clear();
5267         Ops.push_back(SE.getUnknown(FullV));
5268       }
5269       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5270       if (F.Scale != 1)
5271         ScaledS =
5272             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5273       Ops.push_back(ScaledS);
5274     }
5275   }
5276 
5277   // Expand the GV portion.
5278   if (F.BaseGV) {
5279     // Flush the operand list to suppress SCEVExpander hoisting.
5280     if (!Ops.empty()) {
5281       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5282       Ops.clear();
5283       Ops.push_back(SE.getUnknown(FullV));
5284     }
5285     Ops.push_back(SE.getUnknown(F.BaseGV));
5286   }
5287 
5288   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5289   // unfolded offsets. LSR assumes they both live next to their uses.
5290   if (!Ops.empty()) {
5291     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5292     Ops.clear();
5293     Ops.push_back(SE.getUnknown(FullV));
5294   }
5295 
5296   // Expand the immediate portion.
5297   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5298   if (Offset != 0) {
5299     if (LU.Kind == LSRUse::ICmpZero) {
5300       // The other interesting way of "folding" with an ICmpZero is to use a
5301       // negated immediate.
5302       if (!ICmpScaledV)
5303         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5304       else {
5305         Ops.push_back(SE.getUnknown(ICmpScaledV));
5306         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5307       }
5308     } else {
5309       // Just add the immediate values. These again are expected to be matched
5310       // as part of the address.
5311       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5312     }
5313   }
5314 
5315   // Expand the unfolded offset portion.
5316   int64_t UnfoldedOffset = F.UnfoldedOffset;
5317   if (UnfoldedOffset != 0) {
5318     // Just add the immediate values.
5319     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5320                                                        UnfoldedOffset)));
5321   }
5322 
5323   // Emit instructions summing all the operands.
5324   const SCEV *FullS = Ops.empty() ?
5325                       SE.getConstant(IntTy, 0) :
5326                       SE.getAddExpr(Ops);
5327   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5328 
5329   // We're done expanding now, so reset the rewriter.
5330   Rewriter.clearPostInc();
5331 
5332   // An ICmpZero Formula represents an ICmp which we're handling as a
5333   // comparison against zero. Now that we've expanded an expression for that
5334   // form, update the ICmp's other operand.
5335   if (LU.Kind == LSRUse::ICmpZero) {
5336     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5337     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5338       DeadInsts.emplace_back(OperandIsInstr);
5339     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5340                            "a scale at the same time!");
5341     if (F.Scale == -1) {
5342       if (ICmpScaledV->getType() != OpTy) {
5343         Instruction *Cast =
5344           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5345                                                    OpTy, false),
5346                            ICmpScaledV, OpTy, "tmp", CI);
5347         ICmpScaledV = Cast;
5348       }
5349       CI->setOperand(1, ICmpScaledV);
5350     } else {
5351       // A scale of 1 means that the scale has been expanded as part of the
5352       // base regs.
5353       assert((F.Scale == 0 || F.Scale == 1) &&
5354              "ICmp does not support folding a global value and "
5355              "a scale at the same time!");
5356       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5357                                            -(uint64_t)Offset);
5358       if (C->getType() != OpTy)
5359         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5360                                                           OpTy, false),
5361                                   C, OpTy);
5362 
5363       CI->setOperand(1, C);
5364     }
5365   }
5366 
5367   return FullV;
5368 }
5369 
5370 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5371 /// effectively happens in their predecessor blocks, so the expression may need
5372 /// to be expanded in multiple places.
5373 void LSRInstance::RewriteForPHI(
5374     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5375     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5376   DenseMap<BasicBlock *, Value *> Inserted;
5377   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5378     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5379       bool needUpdateFixups = false;
5380       BasicBlock *BB = PN->getIncomingBlock(i);
5381 
5382       // If this is a critical edge, split the edge so that we do not insert
5383       // the code on all predecessor/successor paths.  We do this unless this
5384       // is the canonical backedge for this loop, which complicates post-inc
5385       // users.
5386       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5387           !isa<IndirectBrInst>(BB->getTerminator()) &&
5388           !isa<CatchSwitchInst>(BB->getTerminator())) {
5389         BasicBlock *Parent = PN->getParent();
5390         Loop *PNLoop = LI.getLoopFor(Parent);
5391         if (!PNLoop || Parent != PNLoop->getHeader()) {
5392           // Split the critical edge.
5393           BasicBlock *NewBB = nullptr;
5394           if (!Parent->isLandingPad()) {
5395             NewBB =
5396                 SplitCriticalEdge(BB, Parent,
5397                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5398                                       .setMergeIdenticalEdges()
5399                                       .setKeepOneInputPHIs());
5400           } else {
5401             SmallVector<BasicBlock*, 2> NewBBs;
5402             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5403             NewBB = NewBBs[0];
5404           }
5405           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5406           // phi predecessors are identical. The simple thing to do is skip
5407           // splitting in this case rather than complicate the API.
5408           if (NewBB) {
5409             // If PN is outside of the loop and BB is in the loop, we want to
5410             // move the block to be immediately before the PHI block, not
5411             // immediately after BB.
5412             if (L->contains(BB) && !L->contains(PN))
5413               NewBB->moveBefore(PN->getParent());
5414 
5415             // Splitting the edge can reduce the number of PHI entries we have.
5416             e = PN->getNumIncomingValues();
5417             BB = NewBB;
5418             i = PN->getBasicBlockIndex(BB);
5419 
5420             needUpdateFixups = true;
5421           }
5422         }
5423       }
5424 
5425       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5426         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5427       if (!Pair.second)
5428         PN->setIncomingValue(i, Pair.first->second);
5429       else {
5430         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5431                               Rewriter, DeadInsts);
5432 
5433         // If this is reuse-by-noop-cast, insert the noop cast.
5434         Type *OpTy = LF.OperandValToReplace->getType();
5435         if (FullV->getType() != OpTy)
5436           FullV =
5437             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5438                                                      OpTy, false),
5439                              FullV, LF.OperandValToReplace->getType(),
5440                              "tmp", BB->getTerminator());
5441 
5442         PN->setIncomingValue(i, FullV);
5443         Pair.first->second = FullV;
5444       }
5445 
5446       // If LSR splits critical edge and phi node has other pending
5447       // fixup operands, we need to update those pending fixups. Otherwise
5448       // formulae will not be implemented completely and some instructions
5449       // will not be eliminated.
5450       if (needUpdateFixups) {
5451         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5452           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5453             // If fixup is supposed to rewrite some operand in the phi
5454             // that was just updated, it may be already moved to
5455             // another phi node. Such fixup requires update.
5456             if (Fixup.UserInst == PN) {
5457               // Check if the operand we try to replace still exists in the
5458               // original phi.
5459               bool foundInOriginalPHI = false;
5460               for (const auto &val : PN->incoming_values())
5461                 if (val == Fixup.OperandValToReplace) {
5462                   foundInOriginalPHI = true;
5463                   break;
5464                 }
5465 
5466               // If fixup operand found in original PHI - nothing to do.
5467               if (foundInOriginalPHI)
5468                 continue;
5469 
5470               // Otherwise it might be moved to another PHI and requires update.
5471               // If fixup operand not found in any of the incoming blocks that
5472               // means we have already rewritten it - nothing to do.
5473               for (const auto &Block : PN->blocks())
5474                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5475                      ++I) {
5476                   PHINode *NewPN = cast<PHINode>(I);
5477                   for (const auto &val : NewPN->incoming_values())
5478                     if (val == Fixup.OperandValToReplace)
5479                       Fixup.UserInst = NewPN;
5480                 }
5481             }
5482       }
5483     }
5484 }
5485 
5486 /// Emit instructions for the leading candidate expression for this LSRUse (this
5487 /// is called "expanding"), and update the UserInst to reference the newly
5488 /// expanded value.
5489 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5490                           const Formula &F, SCEVExpander &Rewriter,
5491                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5492   // First, find an insertion point that dominates UserInst. For PHI nodes,
5493   // find the nearest block which dominates all the relevant uses.
5494   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5495     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5496   } else {
5497     Value *FullV =
5498       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5499 
5500     // If this is reuse-by-noop-cast, insert the noop cast.
5501     Type *OpTy = LF.OperandValToReplace->getType();
5502     if (FullV->getType() != OpTy) {
5503       Instruction *Cast =
5504         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5505                          FullV, OpTy, "tmp", LF.UserInst);
5506       FullV = Cast;
5507     }
5508 
5509     // Update the user. ICmpZero is handled specially here (for now) because
5510     // Expand may have updated one of the operands of the icmp already, and
5511     // its new value may happen to be equal to LF.OperandValToReplace, in
5512     // which case doing replaceUsesOfWith leads to replacing both operands
5513     // with the same value. TODO: Reorganize this.
5514     if (LU.Kind == LSRUse::ICmpZero)
5515       LF.UserInst->setOperand(0, FullV);
5516     else
5517       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5518   }
5519 
5520   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5521     DeadInsts.emplace_back(OperandIsInstr);
5522 }
5523 
5524 /// Rewrite all the fixup locations with new values, following the chosen
5525 /// solution.
5526 void LSRInstance::ImplementSolution(
5527     const SmallVectorImpl<const Formula *> &Solution) {
5528   // Keep track of instructions we may have made dead, so that
5529   // we can remove them after we are done working.
5530   SmallVector<WeakTrackingVH, 16> DeadInsts;
5531 
5532   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5533                         false);
5534 #ifndef NDEBUG
5535   Rewriter.setDebugType(DEBUG_TYPE);
5536 #endif
5537   Rewriter.disableCanonicalMode();
5538   Rewriter.enableLSRMode();
5539   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5540 
5541   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5542   for (const IVChain &Chain : IVChainVec) {
5543     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5544       Rewriter.setChainedPhi(PN);
5545   }
5546 
5547   // Expand the new value definitions and update the users.
5548   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5549     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5550       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5551       Changed = true;
5552     }
5553 
5554   for (const IVChain &Chain : IVChainVec) {
5555     GenerateIVChain(Chain, Rewriter, DeadInsts);
5556     Changed = true;
5557   }
5558   // Clean up after ourselves. This must be done before deleting any
5559   // instructions.
5560   Rewriter.clear();
5561 
5562   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5563                                                                   &TLI, MSSAU);
5564 }
5565 
5566 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5567                          DominatorTree &DT, LoopInfo &LI,
5568                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5569                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5570     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5571       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5572                                        TTI.shouldFavorBackedgeIndex(L)) {
5573   // If LoopSimplify form is not available, stay out of trouble.
5574   if (!L->isLoopSimplifyForm())
5575     return;
5576 
5577   // If there's no interesting work to be done, bail early.
5578   if (IU.empty()) return;
5579 
5580   // If there's too much analysis to be done, bail early. We won't be able to
5581   // model the problem anyway.
5582   unsigned NumUsers = 0;
5583   for (const IVStrideUse &U : IU) {
5584     if (++NumUsers > MaxIVUsers) {
5585       (void)U;
5586       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5587                         << "\n");
5588       return;
5589     }
5590     // Bail out if we have a PHI on an EHPad that gets a value from a
5591     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5592     // no good place to stick any instructions.
5593     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5594        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5595        if (isa<FuncletPadInst>(FirstNonPHI) ||
5596            isa<CatchSwitchInst>(FirstNonPHI))
5597          for (BasicBlock *PredBB : PN->blocks())
5598            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5599              return;
5600     }
5601   }
5602 
5603 #ifndef NDEBUG
5604   // All dominating loops must have preheaders, or SCEVExpander may not be able
5605   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5606   //
5607   // IVUsers analysis should only create users that are dominated by simple loop
5608   // headers. Since this loop should dominate all of its users, its user list
5609   // should be empty if this loop itself is not within a simple loop nest.
5610   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5611        Rung; Rung = Rung->getIDom()) {
5612     BasicBlock *BB = Rung->getBlock();
5613     const Loop *DomLoop = LI.getLoopFor(BB);
5614     if (DomLoop && DomLoop->getHeader() == BB) {
5615       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5616     }
5617   }
5618 #endif // DEBUG
5619 
5620   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5621              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5622              dbgs() << ":\n");
5623 
5624   // First, perform some low-level loop optimizations.
5625   OptimizeShadowIV();
5626   OptimizeLoopTermCond();
5627 
5628   // If loop preparation eliminates all interesting IV users, bail.
5629   if (IU.empty()) return;
5630 
5631   // Skip nested loops until we can model them better with formulae.
5632   if (!L->isInnermost()) {
5633     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5634     return;
5635   }
5636 
5637   // Start collecting data and preparing for the solver.
5638   CollectChains();
5639   CollectInterestingTypesAndFactors();
5640   CollectFixupsAndInitialFormulae();
5641   CollectLoopInvariantFixupsAndFormulae();
5642 
5643   if (Uses.empty())
5644     return;
5645 
5646   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5647              print_uses(dbgs()));
5648 
5649   // Now use the reuse data to generate a bunch of interesting ways
5650   // to formulate the values needed for the uses.
5651   GenerateAllReuseFormulae();
5652 
5653   FilterOutUndesirableDedicatedRegisters();
5654   NarrowSearchSpaceUsingHeuristics();
5655 
5656   SmallVector<const Formula *, 8> Solution;
5657   Solve(Solution);
5658 
5659   // Release memory that is no longer needed.
5660   Factors.clear();
5661   Types.clear();
5662   RegUses.clear();
5663 
5664   if (Solution.empty())
5665     return;
5666 
5667 #ifndef NDEBUG
5668   // Formulae should be legal.
5669   for (const LSRUse &LU : Uses) {
5670     for (const Formula &F : LU.Formulae)
5671       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5672                         F) && "Illegal formula generated!");
5673   };
5674 #endif
5675 
5676   // Now that we've decided what we want, make it so.
5677   ImplementSolution(Solution);
5678 }
5679 
5680 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5681 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5682   if (Factors.empty() && Types.empty()) return;
5683 
5684   OS << "LSR has identified the following interesting factors and types: ";
5685   bool First = true;
5686 
5687   for (int64_t Factor : Factors) {
5688     if (!First) OS << ", ";
5689     First = false;
5690     OS << '*' << Factor;
5691   }
5692 
5693   for (Type *Ty : Types) {
5694     if (!First) OS << ", ";
5695     First = false;
5696     OS << '(' << *Ty << ')';
5697   }
5698   OS << '\n';
5699 }
5700 
5701 void LSRInstance::print_fixups(raw_ostream &OS) const {
5702   OS << "LSR is examining the following fixup sites:\n";
5703   for (const LSRUse &LU : Uses)
5704     for (const LSRFixup &LF : LU.Fixups) {
5705       dbgs() << "  ";
5706       LF.print(OS);
5707       OS << '\n';
5708     }
5709 }
5710 
5711 void LSRInstance::print_uses(raw_ostream &OS) const {
5712   OS << "LSR is examining the following uses:\n";
5713   for (const LSRUse &LU : Uses) {
5714     dbgs() << "  ";
5715     LU.print(OS);
5716     OS << '\n';
5717     for (const Formula &F : LU.Formulae) {
5718       OS << "    ";
5719       F.print(OS);
5720       OS << '\n';
5721     }
5722   }
5723 }
5724 
5725 void LSRInstance::print(raw_ostream &OS) const {
5726   print_factors_and_types(OS);
5727   print_fixups(OS);
5728   print_uses(OS);
5729 }
5730 
5731 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5732   print(errs()); errs() << '\n';
5733 }
5734 #endif
5735 
5736 namespace {
5737 
5738 class LoopStrengthReduce : public LoopPass {
5739 public:
5740   static char ID; // Pass ID, replacement for typeid
5741 
5742   LoopStrengthReduce();
5743 
5744 private:
5745   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5746   void getAnalysisUsage(AnalysisUsage &AU) const override;
5747 };
5748 
5749 } // end anonymous namespace
5750 
5751 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5752   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5753 }
5754 
5755 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5756   // We split critical edges, so we change the CFG.  However, we do update
5757   // many analyses if they are around.
5758   AU.addPreservedID(LoopSimplifyID);
5759 
5760   AU.addRequired<LoopInfoWrapperPass>();
5761   AU.addPreserved<LoopInfoWrapperPass>();
5762   AU.addRequiredID(LoopSimplifyID);
5763   AU.addRequired<DominatorTreeWrapperPass>();
5764   AU.addPreserved<DominatorTreeWrapperPass>();
5765   AU.addRequired<ScalarEvolutionWrapperPass>();
5766   AU.addPreserved<ScalarEvolutionWrapperPass>();
5767   AU.addRequired<AssumptionCacheTracker>();
5768   AU.addRequired<TargetLibraryInfoWrapperPass>();
5769   // Requiring LoopSimplify a second time here prevents IVUsers from running
5770   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5771   AU.addRequiredID(LoopSimplifyID);
5772   AU.addRequired<IVUsersWrapperPass>();
5773   AU.addPreserved<IVUsersWrapperPass>();
5774   AU.addRequired<TargetTransformInfoWrapperPass>();
5775   AU.addPreserved<MemorySSAWrapperPass>();
5776 }
5777 
5778 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5779                                DominatorTree &DT, LoopInfo &LI,
5780                                const TargetTransformInfo &TTI,
5781                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5782                                MemorySSA *MSSA) {
5783 
5784   bool Changed = false;
5785   std::unique_ptr<MemorySSAUpdater> MSSAU;
5786   if (MSSA)
5787     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5788 
5789   // Run the main LSR transformation.
5790   Changed |=
5791       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5792 
5793   // Remove any extra phis created by processing inner loops.
5794   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5795   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5796     SmallVector<WeakTrackingVH, 16> DeadInsts;
5797     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5798     SCEVExpander Rewriter(SE, DL, "lsr", false);
5799 #ifndef NDEBUG
5800     Rewriter.setDebugType(DEBUG_TYPE);
5801 #endif
5802     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5803     if (numFolded) {
5804       Changed = true;
5805       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5806                                                            MSSAU.get());
5807       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5808     }
5809   }
5810   return Changed;
5811 }
5812 
5813 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5814   if (skipLoop(L))
5815     return false;
5816 
5817   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5818   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5819   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5820   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5821   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5822       *L->getHeader()->getParent());
5823   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5824       *L->getHeader()->getParent());
5825   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5826       *L->getHeader()->getParent());
5827   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5828   MemorySSA *MSSA = nullptr;
5829   if (MSSAAnalysis)
5830     MSSA = &MSSAAnalysis->getMSSA();
5831   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5832 }
5833 
5834 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5835                                               LoopStandardAnalysisResults &AR,
5836                                               LPMUpdater &) {
5837   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5838                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5839     return PreservedAnalyses::all();
5840 
5841   auto PA = getLoopPassPreservedAnalyses();
5842   if (AR.MSSA)
5843     PA.preserve<MemorySSAAnalysis>();
5844   return PA;
5845 }
5846 
5847 char LoopStrengthReduce::ID = 0;
5848 
5849 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5850                       "Loop Strength Reduction", false, false)
5851 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5852 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5853 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5854 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5855 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5856 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5857 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5858                     "Loop Strength Reduction", false, false)
5859 
5860 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5861