1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/ValueHandle.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Target/TargetLowering.h" 76 #include <algorithm> 77 using namespace llvm; 78 79 namespace { 80 81 /// RegSortData - This class holds data which is used to order reuse candidates. 82 class RegSortData { 83 public: 84 /// UsedByIndices - This represents the set of LSRUse indices which reference 85 /// a particular register. 86 SmallBitVector UsedByIndices; 87 88 RegSortData() {} 89 90 void print(raw_ostream &OS) const; 91 void dump() const; 92 }; 93 94 } 95 96 void RegSortData::print(raw_ostream &OS) const { 97 OS << "[NumUses=" << UsedByIndices.count() << ']'; 98 } 99 100 void RegSortData::dump() const { 101 print(errs()); errs() << '\n'; 102 } 103 104 namespace { 105 106 /// RegUseTracker - Map register candidates to information about how they are 107 /// used. 108 class RegUseTracker { 109 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 110 111 RegUsesTy RegUsesMap; 112 SmallVector<const SCEV *, 16> RegSequence; 113 114 public: 115 void CountRegister(const SCEV *Reg, size_t LUIdx); 116 void DropRegister(const SCEV *Reg, size_t LUIdx); 117 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 118 119 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 120 121 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 122 123 void clear(); 124 125 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 126 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 127 iterator begin() { return RegSequence.begin(); } 128 iterator end() { return RegSequence.end(); } 129 const_iterator begin() const { return RegSequence.begin(); } 130 const_iterator end() const { return RegSequence.end(); } 131 }; 132 133 } 134 135 void 136 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 137 std::pair<RegUsesTy::iterator, bool> Pair = 138 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 139 RegSortData &RSD = Pair.first->second; 140 if (Pair.second) 141 RegSequence.push_back(Reg); 142 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 143 RSD.UsedByIndices.set(LUIdx); 144 } 145 146 void 147 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 148 RegUsesTy::iterator It = RegUsesMap.find(Reg); 149 assert(It != RegUsesMap.end()); 150 RegSortData &RSD = It->second; 151 assert(RSD.UsedByIndices.size() > LUIdx); 152 RSD.UsedByIndices.reset(LUIdx); 153 } 154 155 void 156 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 157 assert(LUIdx <= LastLUIdx); 158 159 // Update RegUses. The data structure is not optimized for this purpose; 160 // we must iterate through it and update each of the bit vectors. 161 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 162 I != E; ++I) { 163 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 164 if (LUIdx < UsedByIndices.size()) 165 UsedByIndices[LUIdx] = 166 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 167 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 168 } 169 } 170 171 bool 172 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 173 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 174 if (I == RegUsesMap.end()) 175 return false; 176 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 177 int i = UsedByIndices.find_first(); 178 if (i == -1) return false; 179 if ((size_t)i != LUIdx) return true; 180 return UsedByIndices.find_next(i) != -1; 181 } 182 183 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 184 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 185 assert(I != RegUsesMap.end() && "Unknown register!"); 186 return I->second.UsedByIndices; 187 } 188 189 void RegUseTracker::clear() { 190 RegUsesMap.clear(); 191 RegSequence.clear(); 192 } 193 194 namespace { 195 196 /// Formula - This class holds information that describes a formula for 197 /// computing satisfying a use. It may include broken-out immediates and scaled 198 /// registers. 199 struct Formula { 200 /// AM - This is used to represent complex addressing, as well as other kinds 201 /// of interesting uses. 202 TargetLowering::AddrMode AM; 203 204 /// BaseRegs - The list of "base" registers for this use. When this is 205 /// non-empty, AM.HasBaseReg should be set to true. 206 SmallVector<const SCEV *, 2> BaseRegs; 207 208 /// ScaledReg - The 'scaled' register for this use. This should be non-null 209 /// when AM.Scale is not zero. 210 const SCEV *ScaledReg; 211 212 Formula() : ScaledReg(0) {} 213 214 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 215 216 unsigned getNumRegs() const; 217 const Type *getType() const; 218 219 void DeleteBaseReg(const SCEV *&S); 220 221 bool referencesReg(const SCEV *S) const; 222 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 223 const RegUseTracker &RegUses) const; 224 225 void print(raw_ostream &OS) const; 226 void dump() const; 227 }; 228 229 } 230 231 /// DoInitialMatch - Recursion helper for InitialMatch. 232 static void DoInitialMatch(const SCEV *S, Loop *L, 233 SmallVectorImpl<const SCEV *> &Good, 234 SmallVectorImpl<const SCEV *> &Bad, 235 ScalarEvolution &SE) { 236 // Collect expressions which properly dominate the loop header. 237 if (SE.properlyDominates(S, L->getHeader())) { 238 Good.push_back(S); 239 return; 240 } 241 242 // Look at add operands. 243 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 244 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 245 I != E; ++I) 246 DoInitialMatch(*I, L, Good, Bad, SE); 247 return; 248 } 249 250 // Look at addrec operands. 251 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 252 if (!AR->getStart()->isZero()) { 253 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 254 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 255 AR->getStepRecurrence(SE), 256 // FIXME: AR->getNoWrapFlags() 257 AR->getLoop(), SCEV::FlagAnyWrap), 258 L, Good, Bad, SE); 259 return; 260 } 261 262 // Handle a multiplication by -1 (negation) if it didn't fold. 263 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 264 if (Mul->getOperand(0)->isAllOnesValue()) { 265 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 266 const SCEV *NewMul = SE.getMulExpr(Ops); 267 268 SmallVector<const SCEV *, 4> MyGood; 269 SmallVector<const SCEV *, 4> MyBad; 270 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 271 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 272 SE.getEffectiveSCEVType(NewMul->getType()))); 273 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 274 E = MyGood.end(); I != E; ++I) 275 Good.push_back(SE.getMulExpr(NegOne, *I)); 276 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 277 E = MyBad.end(); I != E; ++I) 278 Bad.push_back(SE.getMulExpr(NegOne, *I)); 279 return; 280 } 281 282 // Ok, we can't do anything interesting. Just stuff the whole thing into a 283 // register and hope for the best. 284 Bad.push_back(S); 285 } 286 287 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 288 /// attempting to keep all loop-invariant and loop-computable values in a 289 /// single base register. 290 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 291 SmallVector<const SCEV *, 4> Good; 292 SmallVector<const SCEV *, 4> Bad; 293 DoInitialMatch(S, L, Good, Bad, SE); 294 if (!Good.empty()) { 295 const SCEV *Sum = SE.getAddExpr(Good); 296 if (!Sum->isZero()) 297 BaseRegs.push_back(Sum); 298 AM.HasBaseReg = true; 299 } 300 if (!Bad.empty()) { 301 const SCEV *Sum = SE.getAddExpr(Bad); 302 if (!Sum->isZero()) 303 BaseRegs.push_back(Sum); 304 AM.HasBaseReg = true; 305 } 306 } 307 308 /// getNumRegs - Return the total number of register operands used by this 309 /// formula. This does not include register uses implied by non-constant 310 /// addrec strides. 311 unsigned Formula::getNumRegs() const { 312 return !!ScaledReg + BaseRegs.size(); 313 } 314 315 /// getType - Return the type of this formula, if it has one, or null 316 /// otherwise. This type is meaningless except for the bit size. 317 const Type *Formula::getType() const { 318 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 319 ScaledReg ? ScaledReg->getType() : 320 AM.BaseGV ? AM.BaseGV->getType() : 321 0; 322 } 323 324 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 325 void Formula::DeleteBaseReg(const SCEV *&S) { 326 if (&S != &BaseRegs.back()) 327 std::swap(S, BaseRegs.back()); 328 BaseRegs.pop_back(); 329 } 330 331 /// referencesReg - Test if this formula references the given register. 332 bool Formula::referencesReg(const SCEV *S) const { 333 return S == ScaledReg || 334 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 335 } 336 337 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 338 /// which are used by uses other than the use with the given index. 339 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 340 const RegUseTracker &RegUses) const { 341 if (ScaledReg) 342 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 343 return true; 344 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 345 E = BaseRegs.end(); I != E; ++I) 346 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 347 return true; 348 return false; 349 } 350 351 void Formula::print(raw_ostream &OS) const { 352 bool First = true; 353 if (AM.BaseGV) { 354 if (!First) OS << " + "; else First = false; 355 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 356 } 357 if (AM.BaseOffs != 0) { 358 if (!First) OS << " + "; else First = false; 359 OS << AM.BaseOffs; 360 } 361 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 362 E = BaseRegs.end(); I != E; ++I) { 363 if (!First) OS << " + "; else First = false; 364 OS << "reg(" << **I << ')'; 365 } 366 if (AM.HasBaseReg && BaseRegs.empty()) { 367 if (!First) OS << " + "; else First = false; 368 OS << "**error: HasBaseReg**"; 369 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 370 if (!First) OS << " + "; else First = false; 371 OS << "**error: !HasBaseReg**"; 372 } 373 if (AM.Scale != 0) { 374 if (!First) OS << " + "; else First = false; 375 OS << AM.Scale << "*reg("; 376 if (ScaledReg) 377 OS << *ScaledReg; 378 else 379 OS << "<unknown>"; 380 OS << ')'; 381 } 382 } 383 384 void Formula::dump() const { 385 print(errs()); errs() << '\n'; 386 } 387 388 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 389 /// without changing its value. 390 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 391 const Type *WideTy = 392 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 393 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 394 } 395 396 /// isAddSExtable - Return true if the given add can be sign-extended 397 /// without changing its value. 398 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 399 const Type *WideTy = 400 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 401 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 402 } 403 404 /// isMulSExtable - Return true if the given mul can be sign-extended 405 /// without changing its value. 406 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 407 const Type *WideTy = 408 IntegerType::get(SE.getContext(), 409 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 410 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 411 } 412 413 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 414 /// and if the remainder is known to be zero, or null otherwise. If 415 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 416 /// to Y, ignoring that the multiplication may overflow, which is useful when 417 /// the result will be used in a context where the most significant bits are 418 /// ignored. 419 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 420 ScalarEvolution &SE, 421 bool IgnoreSignificantBits = false) { 422 // Handle the trivial case, which works for any SCEV type. 423 if (LHS == RHS) 424 return SE.getConstant(LHS->getType(), 1); 425 426 // Handle a few RHS special cases. 427 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 428 if (RC) { 429 const APInt &RA = RC->getValue()->getValue(); 430 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 431 // some folding. 432 if (RA.isAllOnesValue()) 433 return SE.getMulExpr(LHS, RC); 434 // Handle x /s 1 as x. 435 if (RA == 1) 436 return LHS; 437 } 438 439 // Check for a division of a constant by a constant. 440 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 441 if (!RC) 442 return 0; 443 const APInt &LA = C->getValue()->getValue(); 444 const APInt &RA = RC->getValue()->getValue(); 445 if (LA.srem(RA) != 0) 446 return 0; 447 return SE.getConstant(LA.sdiv(RA)); 448 } 449 450 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 451 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 452 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 453 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 454 IgnoreSignificantBits); 455 if (!Step) return 0; 456 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 457 IgnoreSignificantBits); 458 if (!Start) return 0; 459 // FlagNW is independent of the start value, step direction, and is 460 // preserved with smaller magnitude steps. 461 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 462 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 463 } 464 return 0; 465 } 466 467 // Distribute the sdiv over add operands, if the add doesn't overflow. 468 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 469 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 470 SmallVector<const SCEV *, 8> Ops; 471 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 472 I != E; ++I) { 473 const SCEV *Op = getExactSDiv(*I, RHS, SE, 474 IgnoreSignificantBits); 475 if (!Op) return 0; 476 Ops.push_back(Op); 477 } 478 return SE.getAddExpr(Ops); 479 } 480 return 0; 481 } 482 483 // Check for a multiply operand that we can pull RHS out of. 484 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 485 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 486 SmallVector<const SCEV *, 4> Ops; 487 bool Found = false; 488 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 489 I != E; ++I) { 490 const SCEV *S = *I; 491 if (!Found) 492 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 493 IgnoreSignificantBits)) { 494 S = Q; 495 Found = true; 496 } 497 Ops.push_back(S); 498 } 499 return Found ? SE.getMulExpr(Ops) : 0; 500 } 501 return 0; 502 } 503 504 // Otherwise we don't know. 505 return 0; 506 } 507 508 /// ExtractImmediate - If S involves the addition of a constant integer value, 509 /// return that integer value, and mutate S to point to a new SCEV with that 510 /// value excluded. 511 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 512 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 513 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 514 S = SE.getConstant(C->getType(), 0); 515 return C->getValue()->getSExtValue(); 516 } 517 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 518 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 519 int64_t Result = ExtractImmediate(NewOps.front(), SE); 520 if (Result != 0) 521 S = SE.getAddExpr(NewOps); 522 return Result; 523 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 524 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 525 int64_t Result = ExtractImmediate(NewOps.front(), SE); 526 if (Result != 0) 527 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 528 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 529 SCEV::FlagAnyWrap); 530 return Result; 531 } 532 return 0; 533 } 534 535 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 536 /// return that symbol, and mutate S to point to a new SCEV with that 537 /// value excluded. 538 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 539 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 540 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 541 S = SE.getConstant(GV->getType(), 0); 542 return GV; 543 } 544 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 545 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 546 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 547 if (Result) 548 S = SE.getAddExpr(NewOps); 549 return Result; 550 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 551 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 552 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 553 if (Result) 554 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 555 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 556 SCEV::FlagAnyWrap); 557 return Result; 558 } 559 return 0; 560 } 561 562 /// isAddressUse - Returns true if the specified instruction is using the 563 /// specified value as an address. 564 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 565 bool isAddress = isa<LoadInst>(Inst); 566 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 567 if (SI->getOperand(1) == OperandVal) 568 isAddress = true; 569 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 570 // Addressing modes can also be folded into prefetches and a variety 571 // of intrinsics. 572 switch (II->getIntrinsicID()) { 573 default: break; 574 case Intrinsic::prefetch: 575 case Intrinsic::x86_sse_storeu_ps: 576 case Intrinsic::x86_sse2_storeu_pd: 577 case Intrinsic::x86_sse2_storeu_dq: 578 case Intrinsic::x86_sse2_storel_dq: 579 if (II->getArgOperand(0) == OperandVal) 580 isAddress = true; 581 break; 582 } 583 } 584 return isAddress; 585 } 586 587 /// getAccessType - Return the type of the memory being accessed. 588 static const Type *getAccessType(const Instruction *Inst) { 589 const Type *AccessTy = Inst->getType(); 590 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 591 AccessTy = SI->getOperand(0)->getType(); 592 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 593 // Addressing modes can also be folded into prefetches and a variety 594 // of intrinsics. 595 switch (II->getIntrinsicID()) { 596 default: break; 597 case Intrinsic::x86_sse_storeu_ps: 598 case Intrinsic::x86_sse2_storeu_pd: 599 case Intrinsic::x86_sse2_storeu_dq: 600 case Intrinsic::x86_sse2_storel_dq: 601 AccessTy = II->getArgOperand(0)->getType(); 602 break; 603 } 604 } 605 606 // All pointers have the same requirements, so canonicalize them to an 607 // arbitrary pointer type to minimize variation. 608 if (const PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 609 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 610 PTy->getAddressSpace()); 611 612 return AccessTy; 613 } 614 615 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 616 /// specified set are trivially dead, delete them and see if this makes any of 617 /// their operands subsequently dead. 618 static bool 619 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 620 bool Changed = false; 621 622 while (!DeadInsts.empty()) { 623 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 624 625 if (I == 0 || !isInstructionTriviallyDead(I)) 626 continue; 627 628 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 629 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 630 *OI = 0; 631 if (U->use_empty()) 632 DeadInsts.push_back(U); 633 } 634 635 I->eraseFromParent(); 636 Changed = true; 637 } 638 639 return Changed; 640 } 641 642 namespace { 643 644 /// Cost - This class is used to measure and compare candidate formulae. 645 class Cost { 646 /// TODO: Some of these could be merged. Also, a lexical ordering 647 /// isn't always optimal. 648 unsigned NumRegs; 649 unsigned AddRecCost; 650 unsigned NumIVMuls; 651 unsigned NumBaseAdds; 652 unsigned ImmCost; 653 unsigned SetupCost; 654 655 public: 656 Cost() 657 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 658 SetupCost(0) {} 659 660 bool operator<(const Cost &Other) const; 661 662 void Loose(); 663 664 void RateFormula(const Formula &F, 665 SmallPtrSet<const SCEV *, 16> &Regs, 666 const DenseSet<const SCEV *> &VisitedRegs, 667 const Loop *L, 668 const SmallVectorImpl<int64_t> &Offsets, 669 ScalarEvolution &SE, DominatorTree &DT); 670 671 void print(raw_ostream &OS) const; 672 void dump() const; 673 674 private: 675 void RateRegister(const SCEV *Reg, 676 SmallPtrSet<const SCEV *, 16> &Regs, 677 const Loop *L, 678 ScalarEvolution &SE, DominatorTree &DT); 679 void RatePrimaryRegister(const SCEV *Reg, 680 SmallPtrSet<const SCEV *, 16> &Regs, 681 const Loop *L, 682 ScalarEvolution &SE, DominatorTree &DT); 683 }; 684 685 } 686 687 /// RateRegister - Tally up interesting quantities from the given register. 688 void Cost::RateRegister(const SCEV *Reg, 689 SmallPtrSet<const SCEV *, 16> &Regs, 690 const Loop *L, 691 ScalarEvolution &SE, DominatorTree &DT) { 692 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 693 if (AR->getLoop() == L) 694 AddRecCost += 1; /// TODO: This should be a function of the stride. 695 696 // If this is an addrec for a loop that's already been visited by LSR, 697 // don't second-guess its addrec phi nodes. LSR isn't currently smart 698 // enough to reason about more than one loop at a time. Consider these 699 // registers free and leave them alone. 700 else if (L->contains(AR->getLoop()) || 701 (!AR->getLoop()->contains(L) && 702 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 703 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 704 PHINode *PN = dyn_cast<PHINode>(I); ++I) 705 if (SE.isSCEVable(PN->getType()) && 706 (SE.getEffectiveSCEVType(PN->getType()) == 707 SE.getEffectiveSCEVType(AR->getType())) && 708 SE.getSCEV(PN) == AR) 709 return; 710 711 // If this isn't one of the addrecs that the loop already has, it 712 // would require a costly new phi and add. TODO: This isn't 713 // precisely modeled right now. 714 ++NumBaseAdds; 715 if (!Regs.count(AR->getStart())) 716 RateRegister(AR->getStart(), Regs, L, SE, DT); 717 } 718 719 // Add the step value register, if it needs one. 720 // TODO: The non-affine case isn't precisely modeled here. 721 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) 722 if (!Regs.count(AR->getStart())) 723 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 724 } 725 ++NumRegs; 726 727 // Rough heuristic; favor registers which don't require extra setup 728 // instructions in the preheader. 729 if (!isa<SCEVUnknown>(Reg) && 730 !isa<SCEVConstant>(Reg) && 731 !(isa<SCEVAddRecExpr>(Reg) && 732 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 733 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 734 ++SetupCost; 735 736 NumIVMuls += isa<SCEVMulExpr>(Reg) && 737 SE.hasComputableLoopEvolution(Reg, L); 738 } 739 740 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 741 /// before, rate it. 742 void Cost::RatePrimaryRegister(const SCEV *Reg, 743 SmallPtrSet<const SCEV *, 16> &Regs, 744 const Loop *L, 745 ScalarEvolution &SE, DominatorTree &DT) { 746 if (Regs.insert(Reg)) 747 RateRegister(Reg, Regs, L, SE, DT); 748 } 749 750 void Cost::RateFormula(const Formula &F, 751 SmallPtrSet<const SCEV *, 16> &Regs, 752 const DenseSet<const SCEV *> &VisitedRegs, 753 const Loop *L, 754 const SmallVectorImpl<int64_t> &Offsets, 755 ScalarEvolution &SE, DominatorTree &DT) { 756 // Tally up the registers. 757 if (const SCEV *ScaledReg = F.ScaledReg) { 758 if (VisitedRegs.count(ScaledReg)) { 759 Loose(); 760 return; 761 } 762 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); 763 } 764 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 765 E = F.BaseRegs.end(); I != E; ++I) { 766 const SCEV *BaseReg = *I; 767 if (VisitedRegs.count(BaseReg)) { 768 Loose(); 769 return; 770 } 771 RatePrimaryRegister(BaseReg, Regs, L, SE, DT); 772 } 773 774 if (F.BaseRegs.size() > 1) 775 NumBaseAdds += F.BaseRegs.size() - 1; 776 777 // Tally up the non-zero immediates. 778 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 779 E = Offsets.end(); I != E; ++I) { 780 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 781 if (F.AM.BaseGV) 782 ImmCost += 64; // Handle symbolic values conservatively. 783 // TODO: This should probably be the pointer size. 784 else if (Offset != 0) 785 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 786 } 787 } 788 789 /// Loose - Set this cost to a losing value. 790 void Cost::Loose() { 791 NumRegs = ~0u; 792 AddRecCost = ~0u; 793 NumIVMuls = ~0u; 794 NumBaseAdds = ~0u; 795 ImmCost = ~0u; 796 SetupCost = ~0u; 797 } 798 799 /// operator< - Choose the lower cost. 800 bool Cost::operator<(const Cost &Other) const { 801 if (NumRegs != Other.NumRegs) 802 return NumRegs < Other.NumRegs; 803 if (AddRecCost != Other.AddRecCost) 804 return AddRecCost < Other.AddRecCost; 805 if (NumIVMuls != Other.NumIVMuls) 806 return NumIVMuls < Other.NumIVMuls; 807 if (NumBaseAdds != Other.NumBaseAdds) 808 return NumBaseAdds < Other.NumBaseAdds; 809 if (ImmCost != Other.ImmCost) 810 return ImmCost < Other.ImmCost; 811 if (SetupCost != Other.SetupCost) 812 return SetupCost < Other.SetupCost; 813 return false; 814 } 815 816 void Cost::print(raw_ostream &OS) const { 817 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 818 if (AddRecCost != 0) 819 OS << ", with addrec cost " << AddRecCost; 820 if (NumIVMuls != 0) 821 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 822 if (NumBaseAdds != 0) 823 OS << ", plus " << NumBaseAdds << " base add" 824 << (NumBaseAdds == 1 ? "" : "s"); 825 if (ImmCost != 0) 826 OS << ", plus " << ImmCost << " imm cost"; 827 if (SetupCost != 0) 828 OS << ", plus " << SetupCost << " setup cost"; 829 } 830 831 void Cost::dump() const { 832 print(errs()); errs() << '\n'; 833 } 834 835 namespace { 836 837 /// LSRFixup - An operand value in an instruction which is to be replaced 838 /// with some equivalent, possibly strength-reduced, replacement. 839 struct LSRFixup { 840 /// UserInst - The instruction which will be updated. 841 Instruction *UserInst; 842 843 /// OperandValToReplace - The operand of the instruction which will 844 /// be replaced. The operand may be used more than once; every instance 845 /// will be replaced. 846 Value *OperandValToReplace; 847 848 /// PostIncLoops - If this user is to use the post-incremented value of an 849 /// induction variable, this variable is non-null and holds the loop 850 /// associated with the induction variable. 851 PostIncLoopSet PostIncLoops; 852 853 /// LUIdx - The index of the LSRUse describing the expression which 854 /// this fixup needs, minus an offset (below). 855 size_t LUIdx; 856 857 /// Offset - A constant offset to be added to the LSRUse expression. 858 /// This allows multiple fixups to share the same LSRUse with different 859 /// offsets, for example in an unrolled loop. 860 int64_t Offset; 861 862 bool isUseFullyOutsideLoop(const Loop *L) const; 863 864 LSRFixup(); 865 866 void print(raw_ostream &OS) const; 867 void dump() const; 868 }; 869 870 } 871 872 LSRFixup::LSRFixup() 873 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 874 875 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 876 /// value outside of the given loop. 877 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 878 // PHI nodes use their value in their incoming blocks. 879 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 880 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 881 if (PN->getIncomingValue(i) == OperandValToReplace && 882 L->contains(PN->getIncomingBlock(i))) 883 return false; 884 return true; 885 } 886 887 return !L->contains(UserInst); 888 } 889 890 void LSRFixup::print(raw_ostream &OS) const { 891 OS << "UserInst="; 892 // Store is common and interesting enough to be worth special-casing. 893 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 894 OS << "store "; 895 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 896 } else if (UserInst->getType()->isVoidTy()) 897 OS << UserInst->getOpcodeName(); 898 else 899 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 900 901 OS << ", OperandValToReplace="; 902 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 903 904 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 905 E = PostIncLoops.end(); I != E; ++I) { 906 OS << ", PostIncLoop="; 907 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 908 } 909 910 if (LUIdx != ~size_t(0)) 911 OS << ", LUIdx=" << LUIdx; 912 913 if (Offset != 0) 914 OS << ", Offset=" << Offset; 915 } 916 917 void LSRFixup::dump() const { 918 print(errs()); errs() << '\n'; 919 } 920 921 namespace { 922 923 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 924 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 925 struct UniquifierDenseMapInfo { 926 static SmallVector<const SCEV *, 2> getEmptyKey() { 927 SmallVector<const SCEV *, 2> V; 928 V.push_back(reinterpret_cast<const SCEV *>(-1)); 929 return V; 930 } 931 932 static SmallVector<const SCEV *, 2> getTombstoneKey() { 933 SmallVector<const SCEV *, 2> V; 934 V.push_back(reinterpret_cast<const SCEV *>(-2)); 935 return V; 936 } 937 938 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 939 unsigned Result = 0; 940 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 941 E = V.end(); I != E; ++I) 942 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 943 return Result; 944 } 945 946 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 947 const SmallVector<const SCEV *, 2> &RHS) { 948 return LHS == RHS; 949 } 950 }; 951 952 /// LSRUse - This class holds the state that LSR keeps for each use in 953 /// IVUsers, as well as uses invented by LSR itself. It includes information 954 /// about what kinds of things can be folded into the user, information about 955 /// the user itself, and information about how the use may be satisfied. 956 /// TODO: Represent multiple users of the same expression in common? 957 class LSRUse { 958 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 959 960 public: 961 /// KindType - An enum for a kind of use, indicating what types of 962 /// scaled and immediate operands it might support. 963 enum KindType { 964 Basic, ///< A normal use, with no folding. 965 Special, ///< A special case of basic, allowing -1 scales. 966 Address, ///< An address use; folding according to TargetLowering 967 ICmpZero ///< An equality icmp with both operands folded into one. 968 // TODO: Add a generic icmp too? 969 }; 970 971 KindType Kind; 972 const Type *AccessTy; 973 974 SmallVector<int64_t, 8> Offsets; 975 int64_t MinOffset; 976 int64_t MaxOffset; 977 978 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 979 /// LSRUse are outside of the loop, in which case some special-case heuristics 980 /// may be used. 981 bool AllFixupsOutsideLoop; 982 983 /// WidestFixupType - This records the widest use type for any fixup using 984 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 985 /// max fixup widths to be equivalent, because the narrower one may be relying 986 /// on the implicit truncation to truncate away bogus bits. 987 const Type *WidestFixupType; 988 989 /// Formulae - A list of ways to build a value that can satisfy this user. 990 /// After the list is populated, one of these is selected heuristically and 991 /// used to formulate a replacement for OperandValToReplace in UserInst. 992 SmallVector<Formula, 12> Formulae; 993 994 /// Regs - The set of register candidates used by all formulae in this LSRUse. 995 SmallPtrSet<const SCEV *, 4> Regs; 996 997 LSRUse(KindType K, const Type *T) : Kind(K), AccessTy(T), 998 MinOffset(INT64_MAX), 999 MaxOffset(INT64_MIN), 1000 AllFixupsOutsideLoop(true), 1001 WidestFixupType(0) {} 1002 1003 bool HasFormulaWithSameRegs(const Formula &F) const; 1004 bool InsertFormula(const Formula &F); 1005 void DeleteFormula(Formula &F); 1006 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1007 1008 void print(raw_ostream &OS) const; 1009 void dump() const; 1010 }; 1011 1012 } 1013 1014 /// HasFormula - Test whether this use as a formula which has the same 1015 /// registers as the given formula. 1016 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1017 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1018 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1019 // Unstable sort by host order ok, because this is only used for uniquifying. 1020 std::sort(Key.begin(), Key.end()); 1021 return Uniquifier.count(Key); 1022 } 1023 1024 /// InsertFormula - If the given formula has not yet been inserted, add it to 1025 /// the list, and return true. Return false otherwise. 1026 bool LSRUse::InsertFormula(const Formula &F) { 1027 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1028 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1029 // Unstable sort by host order ok, because this is only used for uniquifying. 1030 std::sort(Key.begin(), Key.end()); 1031 1032 if (!Uniquifier.insert(Key).second) 1033 return false; 1034 1035 // Using a register to hold the value of 0 is not profitable. 1036 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1037 "Zero allocated in a scaled register!"); 1038 #ifndef NDEBUG 1039 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1040 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1041 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1042 #endif 1043 1044 // Add the formula to the list. 1045 Formulae.push_back(F); 1046 1047 // Record registers now being used by this use. 1048 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1049 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1050 1051 return true; 1052 } 1053 1054 /// DeleteFormula - Remove the given formula from this use's list. 1055 void LSRUse::DeleteFormula(Formula &F) { 1056 if (&F != &Formulae.back()) 1057 std::swap(F, Formulae.back()); 1058 Formulae.pop_back(); 1059 assert(!Formulae.empty() && "LSRUse has no formulae left!"); 1060 } 1061 1062 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1063 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1064 // Now that we've filtered out some formulae, recompute the Regs set. 1065 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1066 Regs.clear(); 1067 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1068 E = Formulae.end(); I != E; ++I) { 1069 const Formula &F = *I; 1070 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1071 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1072 } 1073 1074 // Update the RegTracker. 1075 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1076 E = OldRegs.end(); I != E; ++I) 1077 if (!Regs.count(*I)) 1078 RegUses.DropRegister(*I, LUIdx); 1079 } 1080 1081 void LSRUse::print(raw_ostream &OS) const { 1082 OS << "LSR Use: Kind="; 1083 switch (Kind) { 1084 case Basic: OS << "Basic"; break; 1085 case Special: OS << "Special"; break; 1086 case ICmpZero: OS << "ICmpZero"; break; 1087 case Address: 1088 OS << "Address of "; 1089 if (AccessTy->isPointerTy()) 1090 OS << "pointer"; // the full pointer type could be really verbose 1091 else 1092 OS << *AccessTy; 1093 } 1094 1095 OS << ", Offsets={"; 1096 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1097 E = Offsets.end(); I != E; ++I) { 1098 OS << *I; 1099 if (llvm::next(I) != E) 1100 OS << ','; 1101 } 1102 OS << '}'; 1103 1104 if (AllFixupsOutsideLoop) 1105 OS << ", all-fixups-outside-loop"; 1106 1107 if (WidestFixupType) 1108 OS << ", widest fixup type: " << *WidestFixupType; 1109 } 1110 1111 void LSRUse::dump() const { 1112 print(errs()); errs() << '\n'; 1113 } 1114 1115 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1116 /// be completely folded into the user instruction at isel time. This includes 1117 /// address-mode folding and special icmp tricks. 1118 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1119 LSRUse::KindType Kind, const Type *AccessTy, 1120 const TargetLowering *TLI) { 1121 switch (Kind) { 1122 case LSRUse::Address: 1123 // If we have low-level target information, ask the target if it can 1124 // completely fold this address. 1125 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1126 1127 // Otherwise, just guess that reg+reg addressing is legal. 1128 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1129 1130 case LSRUse::ICmpZero: 1131 // There's not even a target hook for querying whether it would be legal to 1132 // fold a GV into an ICmp. 1133 if (AM.BaseGV) 1134 return false; 1135 1136 // ICmp only has two operands; don't allow more than two non-trivial parts. 1137 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1138 return false; 1139 1140 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1141 // putting the scaled register in the other operand of the icmp. 1142 if (AM.Scale != 0 && AM.Scale != -1) 1143 return false; 1144 1145 // If we have low-level target information, ask the target if it can fold an 1146 // integer immediate on an icmp. 1147 if (AM.BaseOffs != 0) { 1148 if (TLI) return TLI->isLegalICmpImmediate(-AM.BaseOffs); 1149 return false; 1150 } 1151 1152 return true; 1153 1154 case LSRUse::Basic: 1155 // Only handle single-register values. 1156 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1157 1158 case LSRUse::Special: 1159 // Only handle -1 scales, or no scale. 1160 return AM.Scale == 0 || AM.Scale == -1; 1161 } 1162 1163 return false; 1164 } 1165 1166 static bool isLegalUse(TargetLowering::AddrMode AM, 1167 int64_t MinOffset, int64_t MaxOffset, 1168 LSRUse::KindType Kind, const Type *AccessTy, 1169 const TargetLowering *TLI) { 1170 // Check for overflow. 1171 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1172 (MinOffset > 0)) 1173 return false; 1174 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1175 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1176 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1177 // Check for overflow. 1178 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1179 (MaxOffset > 0)) 1180 return false; 1181 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1182 return isLegalUse(AM, Kind, AccessTy, TLI); 1183 } 1184 return false; 1185 } 1186 1187 static bool isAlwaysFoldable(int64_t BaseOffs, 1188 GlobalValue *BaseGV, 1189 bool HasBaseReg, 1190 LSRUse::KindType Kind, const Type *AccessTy, 1191 const TargetLowering *TLI) { 1192 // Fast-path: zero is always foldable. 1193 if (BaseOffs == 0 && !BaseGV) return true; 1194 1195 // Conservatively, create an address with an immediate and a 1196 // base and a scale. 1197 TargetLowering::AddrMode AM; 1198 AM.BaseOffs = BaseOffs; 1199 AM.BaseGV = BaseGV; 1200 AM.HasBaseReg = HasBaseReg; 1201 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1202 1203 // Canonicalize a scale of 1 to a base register if the formula doesn't 1204 // already have a base register. 1205 if (!AM.HasBaseReg && AM.Scale == 1) { 1206 AM.Scale = 0; 1207 AM.HasBaseReg = true; 1208 } 1209 1210 return isLegalUse(AM, Kind, AccessTy, TLI); 1211 } 1212 1213 static bool isAlwaysFoldable(const SCEV *S, 1214 int64_t MinOffset, int64_t MaxOffset, 1215 bool HasBaseReg, 1216 LSRUse::KindType Kind, const Type *AccessTy, 1217 const TargetLowering *TLI, 1218 ScalarEvolution &SE) { 1219 // Fast-path: zero is always foldable. 1220 if (S->isZero()) return true; 1221 1222 // Conservatively, create an address with an immediate and a 1223 // base and a scale. 1224 int64_t BaseOffs = ExtractImmediate(S, SE); 1225 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1226 1227 // If there's anything else involved, it's not foldable. 1228 if (!S->isZero()) return false; 1229 1230 // Fast-path: zero is always foldable. 1231 if (BaseOffs == 0 && !BaseGV) return true; 1232 1233 // Conservatively, create an address with an immediate and a 1234 // base and a scale. 1235 TargetLowering::AddrMode AM; 1236 AM.BaseOffs = BaseOffs; 1237 AM.BaseGV = BaseGV; 1238 AM.HasBaseReg = HasBaseReg; 1239 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1240 1241 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1242 } 1243 1244 namespace { 1245 1246 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1247 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1248 struct UseMapDenseMapInfo { 1249 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1250 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1251 } 1252 1253 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1254 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1255 } 1256 1257 static unsigned 1258 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1259 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1260 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1261 return Result; 1262 } 1263 1264 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1265 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1266 return LHS == RHS; 1267 } 1268 }; 1269 1270 /// LSRInstance - This class holds state for the main loop strength reduction 1271 /// logic. 1272 class LSRInstance { 1273 IVUsers &IU; 1274 ScalarEvolution &SE; 1275 DominatorTree &DT; 1276 LoopInfo &LI; 1277 const TargetLowering *const TLI; 1278 Loop *const L; 1279 bool Changed; 1280 1281 /// IVIncInsertPos - This is the insert position that the current loop's 1282 /// induction variable increment should be placed. In simple loops, this is 1283 /// the latch block's terminator. But in more complicated cases, this is a 1284 /// position which will dominate all the in-loop post-increment users. 1285 Instruction *IVIncInsertPos; 1286 1287 /// Factors - Interesting factors between use strides. 1288 SmallSetVector<int64_t, 8> Factors; 1289 1290 /// Types - Interesting use types, to facilitate truncation reuse. 1291 SmallSetVector<const Type *, 4> Types; 1292 1293 /// Fixups - The list of operands which are to be replaced. 1294 SmallVector<LSRFixup, 16> Fixups; 1295 1296 /// Uses - The list of interesting uses. 1297 SmallVector<LSRUse, 16> Uses; 1298 1299 /// RegUses - Track which uses use which register candidates. 1300 RegUseTracker RegUses; 1301 1302 void OptimizeShadowIV(); 1303 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1304 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1305 void OptimizeLoopTermCond(); 1306 1307 void CollectInterestingTypesAndFactors(); 1308 void CollectFixupsAndInitialFormulae(); 1309 1310 LSRFixup &getNewFixup() { 1311 Fixups.push_back(LSRFixup()); 1312 return Fixups.back(); 1313 } 1314 1315 // Support for sharing of LSRUses between LSRFixups. 1316 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1317 size_t, 1318 UseMapDenseMapInfo> UseMapTy; 1319 UseMapTy UseMap; 1320 1321 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1322 LSRUse::KindType Kind, const Type *AccessTy); 1323 1324 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1325 LSRUse::KindType Kind, 1326 const Type *AccessTy); 1327 1328 void DeleteUse(LSRUse &LU, size_t LUIdx); 1329 1330 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1331 1332 public: 1333 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1334 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1335 void CountRegisters(const Formula &F, size_t LUIdx); 1336 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1337 1338 void CollectLoopInvariantFixupsAndFormulae(); 1339 1340 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1341 unsigned Depth = 0); 1342 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1343 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1344 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1345 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1346 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1347 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1348 void GenerateCrossUseConstantOffsets(); 1349 void GenerateAllReuseFormulae(); 1350 1351 void FilterOutUndesirableDedicatedRegisters(); 1352 1353 size_t EstimateSearchSpaceComplexity() const; 1354 void NarrowSearchSpaceByDetectingSupersets(); 1355 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1356 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1357 void NarrowSearchSpaceByPickingWinnerRegs(); 1358 void NarrowSearchSpaceUsingHeuristics(); 1359 1360 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1361 Cost &SolutionCost, 1362 SmallVectorImpl<const Formula *> &Workspace, 1363 const Cost &CurCost, 1364 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1365 DenseSet<const SCEV *> &VisitedRegs) const; 1366 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1367 1368 BasicBlock::iterator 1369 HoistInsertPosition(BasicBlock::iterator IP, 1370 const SmallVectorImpl<Instruction *> &Inputs) const; 1371 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1372 const LSRFixup &LF, 1373 const LSRUse &LU) const; 1374 1375 Value *Expand(const LSRFixup &LF, 1376 const Formula &F, 1377 BasicBlock::iterator IP, 1378 SCEVExpander &Rewriter, 1379 SmallVectorImpl<WeakVH> &DeadInsts) const; 1380 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1381 const Formula &F, 1382 SCEVExpander &Rewriter, 1383 SmallVectorImpl<WeakVH> &DeadInsts, 1384 Pass *P) const; 1385 void Rewrite(const LSRFixup &LF, 1386 const Formula &F, 1387 SCEVExpander &Rewriter, 1388 SmallVectorImpl<WeakVH> &DeadInsts, 1389 Pass *P) const; 1390 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1391 Pass *P); 1392 1393 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1394 1395 bool getChanged() const { return Changed; } 1396 1397 void print_factors_and_types(raw_ostream &OS) const; 1398 void print_fixups(raw_ostream &OS) const; 1399 void print_uses(raw_ostream &OS) const; 1400 void print(raw_ostream &OS) const; 1401 void dump() const; 1402 }; 1403 1404 } 1405 1406 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1407 /// inside the loop then try to eliminate the cast operation. 1408 void LSRInstance::OptimizeShadowIV() { 1409 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1410 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1411 return; 1412 1413 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1414 UI != E; /* empty */) { 1415 IVUsers::const_iterator CandidateUI = UI; 1416 ++UI; 1417 Instruction *ShadowUse = CandidateUI->getUser(); 1418 const Type *DestTy = NULL; 1419 1420 /* If shadow use is a int->float cast then insert a second IV 1421 to eliminate this cast. 1422 1423 for (unsigned i = 0; i < n; ++i) 1424 foo((double)i); 1425 1426 is transformed into 1427 1428 double d = 0.0; 1429 for (unsigned i = 0; i < n; ++i, ++d) 1430 foo(d); 1431 */ 1432 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) 1433 DestTy = UCast->getDestTy(); 1434 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) 1435 DestTy = SCast->getDestTy(); 1436 if (!DestTy) continue; 1437 1438 if (TLI) { 1439 // If target does not support DestTy natively then do not apply 1440 // this transformation. 1441 EVT DVT = TLI->getValueType(DestTy); 1442 if (!TLI->isTypeLegal(DVT)) continue; 1443 } 1444 1445 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1446 if (!PH) continue; 1447 if (PH->getNumIncomingValues() != 2) continue; 1448 1449 const Type *SrcTy = PH->getType(); 1450 int Mantissa = DestTy->getFPMantissaWidth(); 1451 if (Mantissa == -1) continue; 1452 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1453 continue; 1454 1455 unsigned Entry, Latch; 1456 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1457 Entry = 0; 1458 Latch = 1; 1459 } else { 1460 Entry = 1; 1461 Latch = 0; 1462 } 1463 1464 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1465 if (!Init) continue; 1466 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); 1467 1468 BinaryOperator *Incr = 1469 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1470 if (!Incr) continue; 1471 if (Incr->getOpcode() != Instruction::Add 1472 && Incr->getOpcode() != Instruction::Sub) 1473 continue; 1474 1475 /* Initialize new IV, double d = 0.0 in above example. */ 1476 ConstantInt *C = NULL; 1477 if (Incr->getOperand(0) == PH) 1478 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1479 else if (Incr->getOperand(1) == PH) 1480 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1481 else 1482 continue; 1483 1484 if (!C) continue; 1485 1486 // Ignore negative constants, as the code below doesn't handle them 1487 // correctly. TODO: Remove this restriction. 1488 if (!C->getValue().isStrictlyPositive()) continue; 1489 1490 /* Add new PHINode. */ 1491 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1492 1493 /* create new increment. '++d' in above example. */ 1494 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1495 BinaryOperator *NewIncr = 1496 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1497 Instruction::FAdd : Instruction::FSub, 1498 NewPH, CFP, "IV.S.next.", Incr); 1499 1500 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1501 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1502 1503 /* Remove cast operation */ 1504 ShadowUse->replaceAllUsesWith(NewPH); 1505 ShadowUse->eraseFromParent(); 1506 Changed = true; 1507 break; 1508 } 1509 } 1510 1511 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1512 /// set the IV user and stride information and return true, otherwise return 1513 /// false. 1514 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1515 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1516 if (UI->getUser() == Cond) { 1517 // NOTE: we could handle setcc instructions with multiple uses here, but 1518 // InstCombine does it as well for simple uses, it's not clear that it 1519 // occurs enough in real life to handle. 1520 CondUse = UI; 1521 return true; 1522 } 1523 return false; 1524 } 1525 1526 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1527 /// a max computation. 1528 /// 1529 /// This is a narrow solution to a specific, but acute, problem. For loops 1530 /// like this: 1531 /// 1532 /// i = 0; 1533 /// do { 1534 /// p[i] = 0.0; 1535 /// } while (++i < n); 1536 /// 1537 /// the trip count isn't just 'n', because 'n' might not be positive. And 1538 /// unfortunately this can come up even for loops where the user didn't use 1539 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1540 /// will commonly be lowered like this: 1541 // 1542 /// if (n > 0) { 1543 /// i = 0; 1544 /// do { 1545 /// p[i] = 0.0; 1546 /// } while (++i < n); 1547 /// } 1548 /// 1549 /// and then it's possible for subsequent optimization to obscure the if 1550 /// test in such a way that indvars can't find it. 1551 /// 1552 /// When indvars can't find the if test in loops like this, it creates a 1553 /// max expression, which allows it to give the loop a canonical 1554 /// induction variable: 1555 /// 1556 /// i = 0; 1557 /// max = n < 1 ? 1 : n; 1558 /// do { 1559 /// p[i] = 0.0; 1560 /// } while (++i != max); 1561 /// 1562 /// Canonical induction variables are necessary because the loop passes 1563 /// are designed around them. The most obvious example of this is the 1564 /// LoopInfo analysis, which doesn't remember trip count values. It 1565 /// expects to be able to rediscover the trip count each time it is 1566 /// needed, and it does this using a simple analysis that only succeeds if 1567 /// the loop has a canonical induction variable. 1568 /// 1569 /// However, when it comes time to generate code, the maximum operation 1570 /// can be quite costly, especially if it's inside of an outer loop. 1571 /// 1572 /// This function solves this problem by detecting this type of loop and 1573 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1574 /// the instructions for the maximum computation. 1575 /// 1576 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1577 // Check that the loop matches the pattern we're looking for. 1578 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1579 Cond->getPredicate() != CmpInst::ICMP_NE) 1580 return Cond; 1581 1582 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1583 if (!Sel || !Sel->hasOneUse()) return Cond; 1584 1585 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1586 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1587 return Cond; 1588 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1589 1590 // Add one to the backedge-taken count to get the trip count. 1591 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1592 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1593 1594 // Check for a max calculation that matches the pattern. There's no check 1595 // for ICMP_ULE here because the comparison would be with zero, which 1596 // isn't interesting. 1597 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1598 const SCEVNAryExpr *Max = 0; 1599 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1600 Pred = ICmpInst::ICMP_SLE; 1601 Max = S; 1602 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1603 Pred = ICmpInst::ICMP_SLT; 1604 Max = S; 1605 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1606 Pred = ICmpInst::ICMP_ULT; 1607 Max = U; 1608 } else { 1609 // No match; bail. 1610 return Cond; 1611 } 1612 1613 // To handle a max with more than two operands, this optimization would 1614 // require additional checking and setup. 1615 if (Max->getNumOperands() != 2) 1616 return Cond; 1617 1618 const SCEV *MaxLHS = Max->getOperand(0); 1619 const SCEV *MaxRHS = Max->getOperand(1); 1620 1621 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1622 // for a comparison with 1. For <= and >=, a comparison with zero. 1623 if (!MaxLHS || 1624 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1625 return Cond; 1626 1627 // Check the relevant induction variable for conformance to 1628 // the pattern. 1629 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1630 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1631 if (!AR || !AR->isAffine() || 1632 AR->getStart() != One || 1633 AR->getStepRecurrence(SE) != One) 1634 return Cond; 1635 1636 assert(AR->getLoop() == L && 1637 "Loop condition operand is an addrec in a different loop!"); 1638 1639 // Check the right operand of the select, and remember it, as it will 1640 // be used in the new comparison instruction. 1641 Value *NewRHS = 0; 1642 if (ICmpInst::isTrueWhenEqual(Pred)) { 1643 // Look for n+1, and grab n. 1644 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1645 if (isa<ConstantInt>(BO->getOperand(1)) && 1646 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1647 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1648 NewRHS = BO->getOperand(0); 1649 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1650 if (isa<ConstantInt>(BO->getOperand(1)) && 1651 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1652 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1653 NewRHS = BO->getOperand(0); 1654 if (!NewRHS) 1655 return Cond; 1656 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1657 NewRHS = Sel->getOperand(1); 1658 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1659 NewRHS = Sel->getOperand(2); 1660 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1661 NewRHS = SU->getValue(); 1662 else 1663 // Max doesn't match expected pattern. 1664 return Cond; 1665 1666 // Determine the new comparison opcode. It may be signed or unsigned, 1667 // and the original comparison may be either equality or inequality. 1668 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1669 Pred = CmpInst::getInversePredicate(Pred); 1670 1671 // Ok, everything looks ok to change the condition into an SLT or SGE and 1672 // delete the max calculation. 1673 ICmpInst *NewCond = 1674 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1675 1676 // Delete the max calculation instructions. 1677 Cond->replaceAllUsesWith(NewCond); 1678 CondUse->setUser(NewCond); 1679 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1680 Cond->eraseFromParent(); 1681 Sel->eraseFromParent(); 1682 if (Cmp->use_empty()) 1683 Cmp->eraseFromParent(); 1684 return NewCond; 1685 } 1686 1687 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1688 /// postinc iv when possible. 1689 void 1690 LSRInstance::OptimizeLoopTermCond() { 1691 SmallPtrSet<Instruction *, 4> PostIncs; 1692 1693 BasicBlock *LatchBlock = L->getLoopLatch(); 1694 SmallVector<BasicBlock*, 8> ExitingBlocks; 1695 L->getExitingBlocks(ExitingBlocks); 1696 1697 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1698 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1699 1700 // Get the terminating condition for the loop if possible. If we 1701 // can, we want to change it to use a post-incremented version of its 1702 // induction variable, to allow coalescing the live ranges for the IV into 1703 // one register value. 1704 1705 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1706 if (!TermBr) 1707 continue; 1708 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1709 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1710 continue; 1711 1712 // Search IVUsesByStride to find Cond's IVUse if there is one. 1713 IVStrideUse *CondUse = 0; 1714 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1715 if (!FindIVUserForCond(Cond, CondUse)) 1716 continue; 1717 1718 // If the trip count is computed in terms of a max (due to ScalarEvolution 1719 // being unable to find a sufficient guard, for example), change the loop 1720 // comparison to use SLT or ULT instead of NE. 1721 // One consequence of doing this now is that it disrupts the count-down 1722 // optimization. That's not always a bad thing though, because in such 1723 // cases it may still be worthwhile to avoid a max. 1724 Cond = OptimizeMax(Cond, CondUse); 1725 1726 // If this exiting block dominates the latch block, it may also use 1727 // the post-inc value if it won't be shared with other uses. 1728 // Check for dominance. 1729 if (!DT.dominates(ExitingBlock, LatchBlock)) 1730 continue; 1731 1732 // Conservatively avoid trying to use the post-inc value in non-latch 1733 // exits if there may be pre-inc users in intervening blocks. 1734 if (LatchBlock != ExitingBlock) 1735 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1736 // Test if the use is reachable from the exiting block. This dominator 1737 // query is a conservative approximation of reachability. 1738 if (&*UI != CondUse && 1739 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1740 // Conservatively assume there may be reuse if the quotient of their 1741 // strides could be a legal scale. 1742 const SCEV *A = IU.getStride(*CondUse, L); 1743 const SCEV *B = IU.getStride(*UI, L); 1744 if (!A || !B) continue; 1745 if (SE.getTypeSizeInBits(A->getType()) != 1746 SE.getTypeSizeInBits(B->getType())) { 1747 if (SE.getTypeSizeInBits(A->getType()) > 1748 SE.getTypeSizeInBits(B->getType())) 1749 B = SE.getSignExtendExpr(B, A->getType()); 1750 else 1751 A = SE.getSignExtendExpr(A, B->getType()); 1752 } 1753 if (const SCEVConstant *D = 1754 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1755 const ConstantInt *C = D->getValue(); 1756 // Stride of one or negative one can have reuse with non-addresses. 1757 if (C->isOne() || C->isAllOnesValue()) 1758 goto decline_post_inc; 1759 // Avoid weird situations. 1760 if (C->getValue().getMinSignedBits() >= 64 || 1761 C->getValue().isMinSignedValue()) 1762 goto decline_post_inc; 1763 // Without TLI, assume that any stride might be valid, and so any 1764 // use might be shared. 1765 if (!TLI) 1766 goto decline_post_inc; 1767 // Check for possible scaled-address reuse. 1768 const Type *AccessTy = getAccessType(UI->getUser()); 1769 TargetLowering::AddrMode AM; 1770 AM.Scale = C->getSExtValue(); 1771 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1772 goto decline_post_inc; 1773 AM.Scale = -AM.Scale; 1774 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1775 goto decline_post_inc; 1776 } 1777 } 1778 1779 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1780 << *Cond << '\n'); 1781 1782 // It's possible for the setcc instruction to be anywhere in the loop, and 1783 // possible for it to have multiple users. If it is not immediately before 1784 // the exiting block branch, move it. 1785 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1786 if (Cond->hasOneUse()) { 1787 Cond->moveBefore(TermBr); 1788 } else { 1789 // Clone the terminating condition and insert into the loopend. 1790 ICmpInst *OldCond = Cond; 1791 Cond = cast<ICmpInst>(Cond->clone()); 1792 Cond->setName(L->getHeader()->getName() + ".termcond"); 1793 ExitingBlock->getInstList().insert(TermBr, Cond); 1794 1795 // Clone the IVUse, as the old use still exists! 1796 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1797 TermBr->replaceUsesOfWith(OldCond, Cond); 1798 } 1799 } 1800 1801 // If we get to here, we know that we can transform the setcc instruction to 1802 // use the post-incremented version of the IV, allowing us to coalesce the 1803 // live ranges for the IV correctly. 1804 CondUse->transformToPostInc(L); 1805 Changed = true; 1806 1807 PostIncs.insert(Cond); 1808 decline_post_inc:; 1809 } 1810 1811 // Determine an insertion point for the loop induction variable increment. It 1812 // must dominate all the post-inc comparisons we just set up, and it must 1813 // dominate the loop latch edge. 1814 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1815 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1816 E = PostIncs.end(); I != E; ++I) { 1817 BasicBlock *BB = 1818 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1819 (*I)->getParent()); 1820 if (BB == (*I)->getParent()) 1821 IVIncInsertPos = *I; 1822 else if (BB != IVIncInsertPos->getParent()) 1823 IVIncInsertPos = BB->getTerminator(); 1824 } 1825 } 1826 1827 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1828 /// at the given offset and other details. If so, update the use and 1829 /// return true. 1830 bool 1831 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1832 LSRUse::KindType Kind, const Type *AccessTy) { 1833 int64_t NewMinOffset = LU.MinOffset; 1834 int64_t NewMaxOffset = LU.MaxOffset; 1835 const Type *NewAccessTy = AccessTy; 1836 1837 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1838 // something conservative, however this can pessimize in the case that one of 1839 // the uses will have all its uses outside the loop, for example. 1840 if (LU.Kind != Kind) 1841 return false; 1842 // Conservatively assume HasBaseReg is true for now. 1843 if (NewOffset < LU.MinOffset) { 1844 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1845 Kind, AccessTy, TLI)) 1846 return false; 1847 NewMinOffset = NewOffset; 1848 } else if (NewOffset > LU.MaxOffset) { 1849 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1850 Kind, AccessTy, TLI)) 1851 return false; 1852 NewMaxOffset = NewOffset; 1853 } 1854 // Check for a mismatched access type, and fall back conservatively as needed. 1855 // TODO: Be less conservative when the type is similar and can use the same 1856 // addressing modes. 1857 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1858 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1859 1860 // Update the use. 1861 LU.MinOffset = NewMinOffset; 1862 LU.MaxOffset = NewMaxOffset; 1863 LU.AccessTy = NewAccessTy; 1864 if (NewOffset != LU.Offsets.back()) 1865 LU.Offsets.push_back(NewOffset); 1866 return true; 1867 } 1868 1869 /// getUse - Return an LSRUse index and an offset value for a fixup which 1870 /// needs the given expression, with the given kind and optional access type. 1871 /// Either reuse an existing use or create a new one, as needed. 1872 std::pair<size_t, int64_t> 1873 LSRInstance::getUse(const SCEV *&Expr, 1874 LSRUse::KindType Kind, const Type *AccessTy) { 1875 const SCEV *Copy = Expr; 1876 int64_t Offset = ExtractImmediate(Expr, SE); 1877 1878 // Basic uses can't accept any offset, for example. 1879 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1880 Expr = Copy; 1881 Offset = 0; 1882 } 1883 1884 std::pair<UseMapTy::iterator, bool> P = 1885 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1886 if (!P.second) { 1887 // A use already existed with this base. 1888 size_t LUIdx = P.first->second; 1889 LSRUse &LU = Uses[LUIdx]; 1890 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1891 // Reuse this use. 1892 return std::make_pair(LUIdx, Offset); 1893 } 1894 1895 // Create a new use. 1896 size_t LUIdx = Uses.size(); 1897 P.first->second = LUIdx; 1898 Uses.push_back(LSRUse(Kind, AccessTy)); 1899 LSRUse &LU = Uses[LUIdx]; 1900 1901 // We don't need to track redundant offsets, but we don't need to go out 1902 // of our way here to avoid them. 1903 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1904 LU.Offsets.push_back(Offset); 1905 1906 LU.MinOffset = Offset; 1907 LU.MaxOffset = Offset; 1908 return std::make_pair(LUIdx, Offset); 1909 } 1910 1911 /// DeleteUse - Delete the given use from the Uses list. 1912 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1913 if (&LU != &Uses.back()) 1914 std::swap(LU, Uses.back()); 1915 Uses.pop_back(); 1916 1917 // Update RegUses. 1918 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 1919 } 1920 1921 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 1922 /// a formula that has the same registers as the given formula. 1923 LSRUse * 1924 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 1925 const LSRUse &OrigLU) { 1926 // Search all uses for the formula. This could be more clever. 1927 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 1928 LSRUse &LU = Uses[LUIdx]; 1929 // Check whether this use is close enough to OrigLU, to see whether it's 1930 // worthwhile looking through its formulae. 1931 // Ignore ICmpZero uses because they may contain formulae generated by 1932 // GenerateICmpZeroScales, in which case adding fixup offsets may 1933 // be invalid. 1934 if (&LU != &OrigLU && 1935 LU.Kind != LSRUse::ICmpZero && 1936 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 1937 LU.WidestFixupType == OrigLU.WidestFixupType && 1938 LU.HasFormulaWithSameRegs(OrigF)) { 1939 // Scan through this use's formulae. 1940 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 1941 E = LU.Formulae.end(); I != E; ++I) { 1942 const Formula &F = *I; 1943 // Check to see if this formula has the same registers and symbols 1944 // as OrigF. 1945 if (F.BaseRegs == OrigF.BaseRegs && 1946 F.ScaledReg == OrigF.ScaledReg && 1947 F.AM.BaseGV == OrigF.AM.BaseGV && 1948 F.AM.Scale == OrigF.AM.Scale) { 1949 if (F.AM.BaseOffs == 0) 1950 return &LU; 1951 // This is the formula where all the registers and symbols matched; 1952 // there aren't going to be any others. Since we declined it, we 1953 // can skip the rest of the formulae and procede to the next LSRUse. 1954 break; 1955 } 1956 } 1957 } 1958 } 1959 1960 // Nothing looked good. 1961 return 0; 1962 } 1963 1964 void LSRInstance::CollectInterestingTypesAndFactors() { 1965 SmallSetVector<const SCEV *, 4> Strides; 1966 1967 // Collect interesting types and strides. 1968 SmallVector<const SCEV *, 4> Worklist; 1969 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 1970 const SCEV *Expr = IU.getExpr(*UI); 1971 1972 // Collect interesting types. 1973 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 1974 1975 // Add strides for mentioned loops. 1976 Worklist.push_back(Expr); 1977 do { 1978 const SCEV *S = Worklist.pop_back_val(); 1979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1980 Strides.insert(AR->getStepRecurrence(SE)); 1981 Worklist.push_back(AR->getStart()); 1982 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1983 Worklist.append(Add->op_begin(), Add->op_end()); 1984 } 1985 } while (!Worklist.empty()); 1986 } 1987 1988 // Compute interesting factors from the set of interesting strides. 1989 for (SmallSetVector<const SCEV *, 4>::const_iterator 1990 I = Strides.begin(), E = Strides.end(); I != E; ++I) 1991 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 1992 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 1993 const SCEV *OldStride = *I; 1994 const SCEV *NewStride = *NewStrideIter; 1995 1996 if (SE.getTypeSizeInBits(OldStride->getType()) != 1997 SE.getTypeSizeInBits(NewStride->getType())) { 1998 if (SE.getTypeSizeInBits(OldStride->getType()) > 1999 SE.getTypeSizeInBits(NewStride->getType())) 2000 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2001 else 2002 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2003 } 2004 if (const SCEVConstant *Factor = 2005 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2006 SE, true))) { 2007 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2008 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2009 } else if (const SCEVConstant *Factor = 2010 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2011 NewStride, 2012 SE, true))) { 2013 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2014 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2015 } 2016 } 2017 2018 // If all uses use the same type, don't bother looking for truncation-based 2019 // reuse. 2020 if (Types.size() == 1) 2021 Types.clear(); 2022 2023 DEBUG(print_factors_and_types(dbgs())); 2024 } 2025 2026 void LSRInstance::CollectFixupsAndInitialFormulae() { 2027 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2028 // Record the uses. 2029 LSRFixup &LF = getNewFixup(); 2030 LF.UserInst = UI->getUser(); 2031 LF.OperandValToReplace = UI->getOperandValToReplace(); 2032 LF.PostIncLoops = UI->getPostIncLoops(); 2033 2034 LSRUse::KindType Kind = LSRUse::Basic; 2035 const Type *AccessTy = 0; 2036 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2037 Kind = LSRUse::Address; 2038 AccessTy = getAccessType(LF.UserInst); 2039 } 2040 2041 const SCEV *S = IU.getExpr(*UI); 2042 2043 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2044 // (N - i == 0), and this allows (N - i) to be the expression that we work 2045 // with rather than just N or i, so we can consider the register 2046 // requirements for both N and i at the same time. Limiting this code to 2047 // equality icmps is not a problem because all interesting loops use 2048 // equality icmps, thanks to IndVarSimplify. 2049 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2050 if (CI->isEquality()) { 2051 // Swap the operands if needed to put the OperandValToReplace on the 2052 // left, for consistency. 2053 Value *NV = CI->getOperand(1); 2054 if (NV == LF.OperandValToReplace) { 2055 CI->setOperand(1, CI->getOperand(0)); 2056 CI->setOperand(0, NV); 2057 NV = CI->getOperand(1); 2058 Changed = true; 2059 } 2060 2061 // x == y --> x - y == 0 2062 const SCEV *N = SE.getSCEV(NV); 2063 if (SE.isLoopInvariant(N, L)) { 2064 Kind = LSRUse::ICmpZero; 2065 S = SE.getMinusSCEV(N, S); 2066 } 2067 2068 // -1 and the negations of all interesting strides (except the negation 2069 // of -1) are now also interesting. 2070 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2071 if (Factors[i] != -1) 2072 Factors.insert(-(uint64_t)Factors[i]); 2073 Factors.insert(-1); 2074 } 2075 2076 // Set up the initial formula for this use. 2077 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2078 LF.LUIdx = P.first; 2079 LF.Offset = P.second; 2080 LSRUse &LU = Uses[LF.LUIdx]; 2081 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2082 if (!LU.WidestFixupType || 2083 SE.getTypeSizeInBits(LU.WidestFixupType) < 2084 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2085 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2086 2087 // If this is the first use of this LSRUse, give it a formula. 2088 if (LU.Formulae.empty()) { 2089 InsertInitialFormula(S, LU, LF.LUIdx); 2090 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2091 } 2092 } 2093 2094 DEBUG(print_fixups(dbgs())); 2095 } 2096 2097 /// InsertInitialFormula - Insert a formula for the given expression into 2098 /// the given use, separating out loop-variant portions from loop-invariant 2099 /// and loop-computable portions. 2100 void 2101 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2102 Formula F; 2103 F.InitialMatch(S, L, SE); 2104 bool Inserted = InsertFormula(LU, LUIdx, F); 2105 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2106 } 2107 2108 /// InsertSupplementalFormula - Insert a simple single-register formula for 2109 /// the given expression into the given use. 2110 void 2111 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2112 LSRUse &LU, size_t LUIdx) { 2113 Formula F; 2114 F.BaseRegs.push_back(S); 2115 F.AM.HasBaseReg = true; 2116 bool Inserted = InsertFormula(LU, LUIdx, F); 2117 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2118 } 2119 2120 /// CountRegisters - Note which registers are used by the given formula, 2121 /// updating RegUses. 2122 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2123 if (F.ScaledReg) 2124 RegUses.CountRegister(F.ScaledReg, LUIdx); 2125 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2126 E = F.BaseRegs.end(); I != E; ++I) 2127 RegUses.CountRegister(*I, LUIdx); 2128 } 2129 2130 /// InsertFormula - If the given formula has not yet been inserted, add it to 2131 /// the list, and return true. Return false otherwise. 2132 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2133 if (!LU.InsertFormula(F)) 2134 return false; 2135 2136 CountRegisters(F, LUIdx); 2137 return true; 2138 } 2139 2140 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2141 /// loop-invariant values which we're tracking. These other uses will pin these 2142 /// values in registers, making them less profitable for elimination. 2143 /// TODO: This currently misses non-constant addrec step registers. 2144 /// TODO: Should this give more weight to users inside the loop? 2145 void 2146 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2147 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2148 SmallPtrSet<const SCEV *, 8> Inserted; 2149 2150 while (!Worklist.empty()) { 2151 const SCEV *S = Worklist.pop_back_val(); 2152 2153 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2154 Worklist.append(N->op_begin(), N->op_end()); 2155 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2156 Worklist.push_back(C->getOperand()); 2157 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2158 Worklist.push_back(D->getLHS()); 2159 Worklist.push_back(D->getRHS()); 2160 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2161 if (!Inserted.insert(U)) continue; 2162 const Value *V = U->getValue(); 2163 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2164 // Look for instructions defined outside the loop. 2165 if (L->contains(Inst)) continue; 2166 } else if (isa<UndefValue>(V)) 2167 // Undef doesn't have a live range, so it doesn't matter. 2168 continue; 2169 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2170 UI != UE; ++UI) { 2171 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2172 // Ignore non-instructions. 2173 if (!UserInst) 2174 continue; 2175 // Ignore instructions in other functions (as can happen with 2176 // Constants). 2177 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2178 continue; 2179 // Ignore instructions not dominated by the loop. 2180 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2181 UserInst->getParent() : 2182 cast<PHINode>(UserInst)->getIncomingBlock( 2183 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2184 if (!DT.dominates(L->getHeader(), UseBB)) 2185 continue; 2186 // Ignore uses which are part of other SCEV expressions, to avoid 2187 // analyzing them multiple times. 2188 if (SE.isSCEVable(UserInst->getType())) { 2189 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2190 // If the user is a no-op, look through to its uses. 2191 if (!isa<SCEVUnknown>(UserS)) 2192 continue; 2193 if (UserS == U) { 2194 Worklist.push_back( 2195 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2196 continue; 2197 } 2198 } 2199 // Ignore icmp instructions which are already being analyzed. 2200 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2201 unsigned OtherIdx = !UI.getOperandNo(); 2202 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2203 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2204 continue; 2205 } 2206 2207 LSRFixup &LF = getNewFixup(); 2208 LF.UserInst = const_cast<Instruction *>(UserInst); 2209 LF.OperandValToReplace = UI.getUse(); 2210 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2211 LF.LUIdx = P.first; 2212 LF.Offset = P.second; 2213 LSRUse &LU = Uses[LF.LUIdx]; 2214 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2215 if (!LU.WidestFixupType || 2216 SE.getTypeSizeInBits(LU.WidestFixupType) < 2217 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2218 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2219 InsertSupplementalFormula(U, LU, LF.LUIdx); 2220 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2221 break; 2222 } 2223 } 2224 } 2225 } 2226 2227 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2228 /// separate registers. If C is non-null, multiply each subexpression by C. 2229 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2230 SmallVectorImpl<const SCEV *> &Ops, 2231 const Loop *L, 2232 ScalarEvolution &SE) { 2233 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2234 // Break out add operands. 2235 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2236 I != E; ++I) 2237 CollectSubexprs(*I, C, Ops, L, SE); 2238 return; 2239 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2240 // Split a non-zero base out of an addrec. 2241 if (!AR->getStart()->isZero()) { 2242 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2243 AR->getStepRecurrence(SE), 2244 AR->getLoop(), 2245 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2246 SCEV::FlagAnyWrap), 2247 C, Ops, L, SE); 2248 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2249 return; 2250 } 2251 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2252 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2253 if (Mul->getNumOperands() == 2) 2254 if (const SCEVConstant *Op0 = 2255 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2256 CollectSubexprs(Mul->getOperand(1), 2257 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2258 Ops, L, SE); 2259 return; 2260 } 2261 } 2262 2263 // Otherwise use the value itself, optionally with a scale applied. 2264 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2265 } 2266 2267 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2268 /// addrecs. 2269 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2270 Formula Base, 2271 unsigned Depth) { 2272 // Arbitrarily cap recursion to protect compile time. 2273 if (Depth >= 3) return; 2274 2275 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2276 const SCEV *BaseReg = Base.BaseRegs[i]; 2277 2278 SmallVector<const SCEV *, 8> AddOps; 2279 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2280 2281 if (AddOps.size() == 1) continue; 2282 2283 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2284 JE = AddOps.end(); J != JE; ++J) { 2285 2286 // Loop-variant "unknown" values are uninteresting; we won't be able to 2287 // do anything meaningful with them. 2288 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2289 continue; 2290 2291 // Don't pull a constant into a register if the constant could be folded 2292 // into an immediate field. 2293 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2294 Base.getNumRegs() > 1, 2295 LU.Kind, LU.AccessTy, TLI, SE)) 2296 continue; 2297 2298 // Collect all operands except *J. 2299 SmallVector<const SCEV *, 8> InnerAddOps 2300 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2301 InnerAddOps.append 2302 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2303 2304 // Don't leave just a constant behind in a register if the constant could 2305 // be folded into an immediate field. 2306 if (InnerAddOps.size() == 1 && 2307 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2308 Base.getNumRegs() > 1, 2309 LU.Kind, LU.AccessTy, TLI, SE)) 2310 continue; 2311 2312 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2313 if (InnerSum->isZero()) 2314 continue; 2315 Formula F = Base; 2316 F.BaseRegs[i] = InnerSum; 2317 F.BaseRegs.push_back(*J); 2318 if (InsertFormula(LU, LUIdx, F)) 2319 // If that formula hadn't been seen before, recurse to find more like 2320 // it. 2321 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2322 } 2323 } 2324 } 2325 2326 /// GenerateCombinations - Generate a formula consisting of all of the 2327 /// loop-dominating registers added into a single register. 2328 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2329 Formula Base) { 2330 // This method is only interesting on a plurality of registers. 2331 if (Base.BaseRegs.size() <= 1) return; 2332 2333 Formula F = Base; 2334 F.BaseRegs.clear(); 2335 SmallVector<const SCEV *, 4> Ops; 2336 for (SmallVectorImpl<const SCEV *>::const_iterator 2337 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2338 const SCEV *BaseReg = *I; 2339 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2340 !SE.hasComputableLoopEvolution(BaseReg, L)) 2341 Ops.push_back(BaseReg); 2342 else 2343 F.BaseRegs.push_back(BaseReg); 2344 } 2345 if (Ops.size() > 1) { 2346 const SCEV *Sum = SE.getAddExpr(Ops); 2347 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2348 // opportunity to fold something. For now, just ignore such cases 2349 // rather than proceed with zero in a register. 2350 if (!Sum->isZero()) { 2351 F.BaseRegs.push_back(Sum); 2352 (void)InsertFormula(LU, LUIdx, F); 2353 } 2354 } 2355 } 2356 2357 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2358 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2359 Formula Base) { 2360 // We can't add a symbolic offset if the address already contains one. 2361 if (Base.AM.BaseGV) return; 2362 2363 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2364 const SCEV *G = Base.BaseRegs[i]; 2365 GlobalValue *GV = ExtractSymbol(G, SE); 2366 if (G->isZero() || !GV) 2367 continue; 2368 Formula F = Base; 2369 F.AM.BaseGV = GV; 2370 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2371 LU.Kind, LU.AccessTy, TLI)) 2372 continue; 2373 F.BaseRegs[i] = G; 2374 (void)InsertFormula(LU, LUIdx, F); 2375 } 2376 } 2377 2378 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2379 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2380 Formula Base) { 2381 // TODO: For now, just add the min and max offset, because it usually isn't 2382 // worthwhile looking at everything inbetween. 2383 SmallVector<int64_t, 2> Worklist; 2384 Worklist.push_back(LU.MinOffset); 2385 if (LU.MaxOffset != LU.MinOffset) 2386 Worklist.push_back(LU.MaxOffset); 2387 2388 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2389 const SCEV *G = Base.BaseRegs[i]; 2390 2391 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2392 E = Worklist.end(); I != E; ++I) { 2393 Formula F = Base; 2394 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2395 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2396 LU.Kind, LU.AccessTy, TLI)) { 2397 // Add the offset to the base register. 2398 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2399 // If it cancelled out, drop the base register, otherwise update it. 2400 if (NewG->isZero()) { 2401 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2402 F.BaseRegs.pop_back(); 2403 } else 2404 F.BaseRegs[i] = NewG; 2405 2406 (void)InsertFormula(LU, LUIdx, F); 2407 } 2408 } 2409 2410 int64_t Imm = ExtractImmediate(G, SE); 2411 if (G->isZero() || Imm == 0) 2412 continue; 2413 Formula F = Base; 2414 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2415 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2416 LU.Kind, LU.AccessTy, TLI)) 2417 continue; 2418 F.BaseRegs[i] = G; 2419 (void)InsertFormula(LU, LUIdx, F); 2420 } 2421 } 2422 2423 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2424 /// the comparison. For example, x == y -> x*c == y*c. 2425 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2426 Formula Base) { 2427 if (LU.Kind != LSRUse::ICmpZero) return; 2428 2429 // Determine the integer type for the base formula. 2430 const Type *IntTy = Base.getType(); 2431 if (!IntTy) return; 2432 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2433 2434 // Don't do this if there is more than one offset. 2435 if (LU.MinOffset != LU.MaxOffset) return; 2436 2437 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2438 2439 // Check each interesting stride. 2440 for (SmallSetVector<int64_t, 8>::const_iterator 2441 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2442 int64_t Factor = *I; 2443 2444 // Check that the multiplication doesn't overflow. 2445 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2446 continue; 2447 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2448 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2449 continue; 2450 2451 // Check that multiplying with the use offset doesn't overflow. 2452 int64_t Offset = LU.MinOffset; 2453 if (Offset == INT64_MIN && Factor == -1) 2454 continue; 2455 Offset = (uint64_t)Offset * Factor; 2456 if (Offset / Factor != LU.MinOffset) 2457 continue; 2458 2459 Formula F = Base; 2460 F.AM.BaseOffs = NewBaseOffs; 2461 2462 // Check that this scale is legal. 2463 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2464 continue; 2465 2466 // Compensate for the use having MinOffset built into it. 2467 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2468 2469 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2470 2471 // Check that multiplying with each base register doesn't overflow. 2472 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2473 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2474 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2475 goto next; 2476 } 2477 2478 // Check that multiplying with the scaled register doesn't overflow. 2479 if (F.ScaledReg) { 2480 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2481 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2482 continue; 2483 } 2484 2485 // If we make it here and it's legal, add it. 2486 (void)InsertFormula(LU, LUIdx, F); 2487 next:; 2488 } 2489 } 2490 2491 /// GenerateScales - Generate stride factor reuse formulae by making use of 2492 /// scaled-offset address modes, for example. 2493 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2494 // Determine the integer type for the base formula. 2495 const Type *IntTy = Base.getType(); 2496 if (!IntTy) return; 2497 2498 // If this Formula already has a scaled register, we can't add another one. 2499 if (Base.AM.Scale != 0) return; 2500 2501 // Check each interesting stride. 2502 for (SmallSetVector<int64_t, 8>::const_iterator 2503 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2504 int64_t Factor = *I; 2505 2506 Base.AM.Scale = Factor; 2507 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2508 // Check whether this scale is going to be legal. 2509 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2510 LU.Kind, LU.AccessTy, TLI)) { 2511 // As a special-case, handle special out-of-loop Basic users specially. 2512 // TODO: Reconsider this special case. 2513 if (LU.Kind == LSRUse::Basic && 2514 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2515 LSRUse::Special, LU.AccessTy, TLI) && 2516 LU.AllFixupsOutsideLoop) 2517 LU.Kind = LSRUse::Special; 2518 else 2519 continue; 2520 } 2521 // For an ICmpZero, negating a solitary base register won't lead to 2522 // new solutions. 2523 if (LU.Kind == LSRUse::ICmpZero && 2524 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2525 continue; 2526 // For each addrec base reg, apply the scale, if possible. 2527 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2528 if (const SCEVAddRecExpr *AR = 2529 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2530 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2531 if (FactorS->isZero()) 2532 continue; 2533 // Divide out the factor, ignoring high bits, since we'll be 2534 // scaling the value back up in the end. 2535 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2536 // TODO: This could be optimized to avoid all the copying. 2537 Formula F = Base; 2538 F.ScaledReg = Quotient; 2539 F.DeleteBaseReg(F.BaseRegs[i]); 2540 (void)InsertFormula(LU, LUIdx, F); 2541 } 2542 } 2543 } 2544 } 2545 2546 /// GenerateTruncates - Generate reuse formulae from different IV types. 2547 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2548 // This requires TargetLowering to tell us which truncates are free. 2549 if (!TLI) return; 2550 2551 // Don't bother truncating symbolic values. 2552 if (Base.AM.BaseGV) return; 2553 2554 // Determine the integer type for the base formula. 2555 const Type *DstTy = Base.getType(); 2556 if (!DstTy) return; 2557 DstTy = SE.getEffectiveSCEVType(DstTy); 2558 2559 for (SmallSetVector<const Type *, 4>::const_iterator 2560 I = Types.begin(), E = Types.end(); I != E; ++I) { 2561 const Type *SrcTy = *I; 2562 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2563 Formula F = Base; 2564 2565 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2566 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2567 JE = F.BaseRegs.end(); J != JE; ++J) 2568 *J = SE.getAnyExtendExpr(*J, SrcTy); 2569 2570 // TODO: This assumes we've done basic processing on all uses and 2571 // have an idea what the register usage is. 2572 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2573 continue; 2574 2575 (void)InsertFormula(LU, LUIdx, F); 2576 } 2577 } 2578 } 2579 2580 namespace { 2581 2582 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2583 /// defer modifications so that the search phase doesn't have to worry about 2584 /// the data structures moving underneath it. 2585 struct WorkItem { 2586 size_t LUIdx; 2587 int64_t Imm; 2588 const SCEV *OrigReg; 2589 2590 WorkItem(size_t LI, int64_t I, const SCEV *R) 2591 : LUIdx(LI), Imm(I), OrigReg(R) {} 2592 2593 void print(raw_ostream &OS) const; 2594 void dump() const; 2595 }; 2596 2597 } 2598 2599 void WorkItem::print(raw_ostream &OS) const { 2600 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2601 << " , add offset " << Imm; 2602 } 2603 2604 void WorkItem::dump() const { 2605 print(errs()); errs() << '\n'; 2606 } 2607 2608 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2609 /// distance apart and try to form reuse opportunities between them. 2610 void LSRInstance::GenerateCrossUseConstantOffsets() { 2611 // Group the registers by their value without any added constant offset. 2612 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2613 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2614 RegMapTy Map; 2615 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2616 SmallVector<const SCEV *, 8> Sequence; 2617 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2618 I != E; ++I) { 2619 const SCEV *Reg = *I; 2620 int64_t Imm = ExtractImmediate(Reg, SE); 2621 std::pair<RegMapTy::iterator, bool> Pair = 2622 Map.insert(std::make_pair(Reg, ImmMapTy())); 2623 if (Pair.second) 2624 Sequence.push_back(Reg); 2625 Pair.first->second.insert(std::make_pair(Imm, *I)); 2626 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2627 } 2628 2629 // Now examine each set of registers with the same base value. Build up 2630 // a list of work to do and do the work in a separate step so that we're 2631 // not adding formulae and register counts while we're searching. 2632 SmallVector<WorkItem, 32> WorkItems; 2633 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2634 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2635 E = Sequence.end(); I != E; ++I) { 2636 const SCEV *Reg = *I; 2637 const ImmMapTy &Imms = Map.find(Reg)->second; 2638 2639 // It's not worthwhile looking for reuse if there's only one offset. 2640 if (Imms.size() == 1) 2641 continue; 2642 2643 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2644 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2645 J != JE; ++J) 2646 dbgs() << ' ' << J->first; 2647 dbgs() << '\n'); 2648 2649 // Examine each offset. 2650 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2651 J != JE; ++J) { 2652 const SCEV *OrigReg = J->second; 2653 2654 int64_t JImm = J->first; 2655 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2656 2657 if (!isa<SCEVConstant>(OrigReg) && 2658 UsedByIndicesMap[Reg].count() == 1) { 2659 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2660 continue; 2661 } 2662 2663 // Conservatively examine offsets between this orig reg a few selected 2664 // other orig regs. 2665 ImmMapTy::const_iterator OtherImms[] = { 2666 Imms.begin(), prior(Imms.end()), 2667 Imms.upper_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2668 }; 2669 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2670 ImmMapTy::const_iterator M = OtherImms[i]; 2671 if (M == J || M == JE) continue; 2672 2673 // Compute the difference between the two. 2674 int64_t Imm = (uint64_t)JImm - M->first; 2675 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2676 LUIdx = UsedByIndices.find_next(LUIdx)) 2677 // Make a memo of this use, offset, and register tuple. 2678 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2679 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2680 } 2681 } 2682 } 2683 2684 Map.clear(); 2685 Sequence.clear(); 2686 UsedByIndicesMap.clear(); 2687 UniqueItems.clear(); 2688 2689 // Now iterate through the worklist and add new formulae. 2690 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2691 E = WorkItems.end(); I != E; ++I) { 2692 const WorkItem &WI = *I; 2693 size_t LUIdx = WI.LUIdx; 2694 LSRUse &LU = Uses[LUIdx]; 2695 int64_t Imm = WI.Imm; 2696 const SCEV *OrigReg = WI.OrigReg; 2697 2698 const Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2699 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2700 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2701 2702 // TODO: Use a more targeted data structure. 2703 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2704 const Formula &F = LU.Formulae[L]; 2705 // Use the immediate in the scaled register. 2706 if (F.ScaledReg == OrigReg) { 2707 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2708 Imm * (uint64_t)F.AM.Scale; 2709 // Don't create 50 + reg(-50). 2710 if (F.referencesReg(SE.getSCEV( 2711 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2712 continue; 2713 Formula NewF = F; 2714 NewF.AM.BaseOffs = Offs; 2715 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2716 LU.Kind, LU.AccessTy, TLI)) 2717 continue; 2718 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2719 2720 // If the new scale is a constant in a register, and adding the constant 2721 // value to the immediate would produce a value closer to zero than the 2722 // immediate itself, then the formula isn't worthwhile. 2723 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2724 if (C->getValue()->getValue().isNegative() != 2725 (NewF.AM.BaseOffs < 0) && 2726 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2727 .ule(abs64(NewF.AM.BaseOffs))) 2728 continue; 2729 2730 // OK, looks good. 2731 (void)InsertFormula(LU, LUIdx, NewF); 2732 } else { 2733 // Use the immediate in a base register. 2734 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2735 const SCEV *BaseReg = F.BaseRegs[N]; 2736 if (BaseReg != OrigReg) 2737 continue; 2738 Formula NewF = F; 2739 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2740 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2741 LU.Kind, LU.AccessTy, TLI)) 2742 continue; 2743 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2744 2745 // If the new formula has a constant in a register, and adding the 2746 // constant value to the immediate would produce a value closer to 2747 // zero than the immediate itself, then the formula isn't worthwhile. 2748 for (SmallVectorImpl<const SCEV *>::const_iterator 2749 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2750 J != JE; ++J) 2751 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2752 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2753 abs64(NewF.AM.BaseOffs)) && 2754 (C->getValue()->getValue() + 2755 NewF.AM.BaseOffs).countTrailingZeros() >= 2756 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2757 goto skip_formula; 2758 2759 // Ok, looks good. 2760 (void)InsertFormula(LU, LUIdx, NewF); 2761 break; 2762 skip_formula:; 2763 } 2764 } 2765 } 2766 } 2767 } 2768 2769 /// GenerateAllReuseFormulae - Generate formulae for each use. 2770 void 2771 LSRInstance::GenerateAllReuseFormulae() { 2772 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2773 // queries are more precise. 2774 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2775 LSRUse &LU = Uses[LUIdx]; 2776 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2777 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2778 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2779 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2780 } 2781 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2782 LSRUse &LU = Uses[LUIdx]; 2783 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2784 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2785 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2786 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2787 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2788 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2789 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2790 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2791 } 2792 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2793 LSRUse &LU = Uses[LUIdx]; 2794 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2795 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2796 } 2797 2798 GenerateCrossUseConstantOffsets(); 2799 2800 DEBUG(dbgs() << "\n" 2801 "After generating reuse formulae:\n"; 2802 print_uses(dbgs())); 2803 } 2804 2805 /// If there are multiple formulae with the same set of registers used 2806 /// by other uses, pick the best one and delete the others. 2807 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2808 DenseSet<const SCEV *> VisitedRegs; 2809 SmallPtrSet<const SCEV *, 16> Regs; 2810 #ifndef NDEBUG 2811 bool ChangedFormulae = false; 2812 #endif 2813 2814 // Collect the best formula for each unique set of shared registers. This 2815 // is reset for each use. 2816 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2817 BestFormulaeTy; 2818 BestFormulaeTy BestFormulae; 2819 2820 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2821 LSRUse &LU = Uses[LUIdx]; 2822 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2823 2824 bool Any = false; 2825 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2826 FIdx != NumForms; ++FIdx) { 2827 Formula &F = LU.Formulae[FIdx]; 2828 2829 SmallVector<const SCEV *, 2> Key; 2830 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2831 JE = F.BaseRegs.end(); J != JE; ++J) { 2832 const SCEV *Reg = *J; 2833 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2834 Key.push_back(Reg); 2835 } 2836 if (F.ScaledReg && 2837 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2838 Key.push_back(F.ScaledReg); 2839 // Unstable sort by host order ok, because this is only used for 2840 // uniquifying. 2841 std::sort(Key.begin(), Key.end()); 2842 2843 std::pair<BestFormulaeTy::const_iterator, bool> P = 2844 BestFormulae.insert(std::make_pair(Key, FIdx)); 2845 if (!P.second) { 2846 Formula &Best = LU.Formulae[P.first->second]; 2847 2848 Cost CostF; 2849 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2850 Regs.clear(); 2851 Cost CostBest; 2852 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2853 Regs.clear(); 2854 if (CostF < CostBest) 2855 std::swap(F, Best); 2856 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 2857 dbgs() << "\n" 2858 " in favor of formula "; Best.print(dbgs()); 2859 dbgs() << '\n'); 2860 #ifndef NDEBUG 2861 ChangedFormulae = true; 2862 #endif 2863 LU.DeleteFormula(F); 2864 --FIdx; 2865 --NumForms; 2866 Any = true; 2867 continue; 2868 } 2869 } 2870 2871 // Now that we've filtered out some formulae, recompute the Regs set. 2872 if (Any) 2873 LU.RecomputeRegs(LUIdx, RegUses); 2874 2875 // Reset this to prepare for the next use. 2876 BestFormulae.clear(); 2877 } 2878 2879 DEBUG(if (ChangedFormulae) { 2880 dbgs() << "\n" 2881 "After filtering out undesirable candidates:\n"; 2882 print_uses(dbgs()); 2883 }); 2884 } 2885 2886 // This is a rough guess that seems to work fairly well. 2887 static const size_t ComplexityLimit = UINT16_MAX; 2888 2889 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 2890 /// solutions the solver might have to consider. It almost never considers 2891 /// this many solutions because it prune the search space, but the pruning 2892 /// isn't always sufficient. 2893 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 2894 size_t Power = 1; 2895 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 2896 E = Uses.end(); I != E; ++I) { 2897 size_t FSize = I->Formulae.size(); 2898 if (FSize >= ComplexityLimit) { 2899 Power = ComplexityLimit; 2900 break; 2901 } 2902 Power *= FSize; 2903 if (Power >= ComplexityLimit) 2904 break; 2905 } 2906 return Power; 2907 } 2908 2909 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 2910 /// of the registers of another formula, it won't help reduce register 2911 /// pressure (though it may not necessarily hurt register pressure); remove 2912 /// it to simplify the system. 2913 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 2914 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 2915 DEBUG(dbgs() << "The search space is too complex.\n"); 2916 2917 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 2918 "which use a superset of registers used by other " 2919 "formulae.\n"); 2920 2921 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2922 LSRUse &LU = Uses[LUIdx]; 2923 bool Any = false; 2924 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 2925 Formula &F = LU.Formulae[i]; 2926 // Look for a formula with a constant or GV in a register. If the use 2927 // also has a formula with that same value in an immediate field, 2928 // delete the one that uses a register. 2929 for (SmallVectorImpl<const SCEV *>::const_iterator 2930 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 2931 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 2932 Formula NewF = F; 2933 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 2934 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 2935 (I - F.BaseRegs.begin())); 2936 if (LU.HasFormulaWithSameRegs(NewF)) { 2937 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 2938 LU.DeleteFormula(F); 2939 --i; 2940 --e; 2941 Any = true; 2942 break; 2943 } 2944 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 2945 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 2946 if (!F.AM.BaseGV) { 2947 Formula NewF = F; 2948 NewF.AM.BaseGV = GV; 2949 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 2950 (I - F.BaseRegs.begin())); 2951 if (LU.HasFormulaWithSameRegs(NewF)) { 2952 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 2953 dbgs() << '\n'); 2954 LU.DeleteFormula(F); 2955 --i; 2956 --e; 2957 Any = true; 2958 break; 2959 } 2960 } 2961 } 2962 } 2963 } 2964 if (Any) 2965 LU.RecomputeRegs(LUIdx, RegUses); 2966 } 2967 2968 DEBUG(dbgs() << "After pre-selection:\n"; 2969 print_uses(dbgs())); 2970 } 2971 } 2972 2973 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 2974 /// for expressions like A, A+1, A+2, etc., allocate a single register for 2975 /// them. 2976 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 2977 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 2978 DEBUG(dbgs() << "The search space is too complex.\n"); 2979 2980 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 2981 "separated by a constant offset will use the same " 2982 "registers.\n"); 2983 2984 // This is especially useful for unrolled loops. 2985 2986 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2987 LSRUse &LU = Uses[LUIdx]; 2988 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2989 E = LU.Formulae.end(); I != E; ++I) { 2990 const Formula &F = *I; 2991 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 2992 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 2993 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 2994 /*HasBaseReg=*/false, 2995 LU.Kind, LU.AccessTy)) { 2996 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 2997 dbgs() << '\n'); 2998 2999 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3000 3001 // Update the relocs to reference the new use. 3002 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3003 E = Fixups.end(); I != E; ++I) { 3004 LSRFixup &Fixup = *I; 3005 if (Fixup.LUIdx == LUIdx) { 3006 Fixup.LUIdx = LUThatHas - &Uses.front(); 3007 Fixup.Offset += F.AM.BaseOffs; 3008 // Add the new offset to LUThatHas' offset list. 3009 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3010 LUThatHas->Offsets.push_back(Fixup.Offset); 3011 if (Fixup.Offset > LUThatHas->MaxOffset) 3012 LUThatHas->MaxOffset = Fixup.Offset; 3013 if (Fixup.Offset < LUThatHas->MinOffset) 3014 LUThatHas->MinOffset = Fixup.Offset; 3015 } 3016 DEBUG(dbgs() << "New fixup has offset " 3017 << Fixup.Offset << '\n'); 3018 } 3019 if (Fixup.LUIdx == NumUses-1) 3020 Fixup.LUIdx = LUIdx; 3021 } 3022 3023 // Delete formulae from the new use which are no longer legal. 3024 bool Any = false; 3025 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3026 Formula &F = LUThatHas->Formulae[i]; 3027 if (!isLegalUse(F.AM, 3028 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3029 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3030 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3031 dbgs() << '\n'); 3032 LUThatHas->DeleteFormula(F); 3033 --i; 3034 --e; 3035 Any = true; 3036 } 3037 } 3038 if (Any) 3039 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3040 3041 // Delete the old use. 3042 DeleteUse(LU, LUIdx); 3043 --LUIdx; 3044 --NumUses; 3045 break; 3046 } 3047 } 3048 } 3049 } 3050 } 3051 3052 DEBUG(dbgs() << "After pre-selection:\n"; 3053 print_uses(dbgs())); 3054 } 3055 } 3056 3057 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3058 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3059 /// we've done more filtering, as it may be able to find more formulae to 3060 /// eliminate. 3061 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3062 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3063 DEBUG(dbgs() << "The search space is too complex.\n"); 3064 3065 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3066 "undesirable dedicated registers.\n"); 3067 3068 FilterOutUndesirableDedicatedRegisters(); 3069 3070 DEBUG(dbgs() << "After pre-selection:\n"; 3071 print_uses(dbgs())); 3072 } 3073 } 3074 3075 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3076 /// to be profitable, and then in any use which has any reference to that 3077 /// register, delete all formulae which do not reference that register. 3078 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3079 // With all other options exhausted, loop until the system is simple 3080 // enough to handle. 3081 SmallPtrSet<const SCEV *, 4> Taken; 3082 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3083 // Ok, we have too many of formulae on our hands to conveniently handle. 3084 // Use a rough heuristic to thin out the list. 3085 DEBUG(dbgs() << "The search space is too complex.\n"); 3086 3087 // Pick the register which is used by the most LSRUses, which is likely 3088 // to be a good reuse register candidate. 3089 const SCEV *Best = 0; 3090 unsigned BestNum = 0; 3091 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3092 I != E; ++I) { 3093 const SCEV *Reg = *I; 3094 if (Taken.count(Reg)) 3095 continue; 3096 if (!Best) 3097 Best = Reg; 3098 else { 3099 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3100 if (Count > BestNum) { 3101 Best = Reg; 3102 BestNum = Count; 3103 } 3104 } 3105 } 3106 3107 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3108 << " will yield profitable reuse.\n"); 3109 Taken.insert(Best); 3110 3111 // In any use with formulae which references this register, delete formulae 3112 // which don't reference it. 3113 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3114 LSRUse &LU = Uses[LUIdx]; 3115 if (!LU.Regs.count(Best)) continue; 3116 3117 bool Any = false; 3118 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3119 Formula &F = LU.Formulae[i]; 3120 if (!F.referencesReg(Best)) { 3121 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3122 LU.DeleteFormula(F); 3123 --e; 3124 --i; 3125 Any = true; 3126 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3127 continue; 3128 } 3129 } 3130 3131 if (Any) 3132 LU.RecomputeRegs(LUIdx, RegUses); 3133 } 3134 3135 DEBUG(dbgs() << "After pre-selection:\n"; 3136 print_uses(dbgs())); 3137 } 3138 } 3139 3140 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3141 /// formulae to choose from, use some rough heuristics to prune down the number 3142 /// of formulae. This keeps the main solver from taking an extraordinary amount 3143 /// of time in some worst-case scenarios. 3144 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3145 NarrowSearchSpaceByDetectingSupersets(); 3146 NarrowSearchSpaceByCollapsingUnrolledCode(); 3147 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3148 NarrowSearchSpaceByPickingWinnerRegs(); 3149 } 3150 3151 /// SolveRecurse - This is the recursive solver. 3152 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3153 Cost &SolutionCost, 3154 SmallVectorImpl<const Formula *> &Workspace, 3155 const Cost &CurCost, 3156 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3157 DenseSet<const SCEV *> &VisitedRegs) const { 3158 // Some ideas: 3159 // - prune more: 3160 // - use more aggressive filtering 3161 // - sort the formula so that the most profitable solutions are found first 3162 // - sort the uses too 3163 // - search faster: 3164 // - don't compute a cost, and then compare. compare while computing a cost 3165 // and bail early. 3166 // - track register sets with SmallBitVector 3167 3168 const LSRUse &LU = Uses[Workspace.size()]; 3169 3170 // If this use references any register that's already a part of the 3171 // in-progress solution, consider it a requirement that a formula must 3172 // reference that register in order to be considered. This prunes out 3173 // unprofitable searching. 3174 SmallSetVector<const SCEV *, 4> ReqRegs; 3175 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3176 E = CurRegs.end(); I != E; ++I) 3177 if (LU.Regs.count(*I)) 3178 ReqRegs.insert(*I); 3179 3180 bool AnySatisfiedReqRegs = false; 3181 SmallPtrSet<const SCEV *, 16> NewRegs; 3182 Cost NewCost; 3183 retry: 3184 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3185 E = LU.Formulae.end(); I != E; ++I) { 3186 const Formula &F = *I; 3187 3188 // Ignore formulae which do not use any of the required registers. 3189 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3190 JE = ReqRegs.end(); J != JE; ++J) { 3191 const SCEV *Reg = *J; 3192 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3193 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3194 F.BaseRegs.end()) 3195 goto skip; 3196 } 3197 AnySatisfiedReqRegs = true; 3198 3199 // Evaluate the cost of the current formula. If it's already worse than 3200 // the current best, prune the search at that point. 3201 NewCost = CurCost; 3202 NewRegs = CurRegs; 3203 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3204 if (NewCost < SolutionCost) { 3205 Workspace.push_back(&F); 3206 if (Workspace.size() != Uses.size()) { 3207 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3208 NewRegs, VisitedRegs); 3209 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3210 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3211 } else { 3212 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3213 dbgs() << ". Regs:"; 3214 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3215 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3216 dbgs() << ' ' << **I; 3217 dbgs() << '\n'); 3218 3219 SolutionCost = NewCost; 3220 Solution = Workspace; 3221 } 3222 Workspace.pop_back(); 3223 } 3224 skip:; 3225 } 3226 3227 // If none of the formulae had all of the required registers, relax the 3228 // constraint so that we don't exclude all formulae. 3229 if (!AnySatisfiedReqRegs) { 3230 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3231 ReqRegs.clear(); 3232 goto retry; 3233 } 3234 } 3235 3236 /// Solve - Choose one formula from each use. Return the results in the given 3237 /// Solution vector. 3238 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3239 SmallVector<const Formula *, 8> Workspace; 3240 Cost SolutionCost; 3241 SolutionCost.Loose(); 3242 Cost CurCost; 3243 SmallPtrSet<const SCEV *, 16> CurRegs; 3244 DenseSet<const SCEV *> VisitedRegs; 3245 Workspace.reserve(Uses.size()); 3246 3247 // SolveRecurse does all the work. 3248 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3249 CurRegs, VisitedRegs); 3250 3251 // Ok, we've now made all our decisions. 3252 DEBUG(dbgs() << "\n" 3253 "The chosen solution requires "; SolutionCost.print(dbgs()); 3254 dbgs() << ":\n"; 3255 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3256 dbgs() << " "; 3257 Uses[i].print(dbgs()); 3258 dbgs() << "\n" 3259 " "; 3260 Solution[i]->print(dbgs()); 3261 dbgs() << '\n'; 3262 }); 3263 3264 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3265 } 3266 3267 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3268 /// the dominator tree far as we can go while still being dominated by the 3269 /// input positions. This helps canonicalize the insert position, which 3270 /// encourages sharing. 3271 BasicBlock::iterator 3272 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3273 const SmallVectorImpl<Instruction *> &Inputs) 3274 const { 3275 for (;;) { 3276 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3277 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3278 3279 BasicBlock *IDom; 3280 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3281 if (!Rung) return IP; 3282 Rung = Rung->getIDom(); 3283 if (!Rung) return IP; 3284 IDom = Rung->getBlock(); 3285 3286 // Don't climb into a loop though. 3287 const Loop *IDomLoop = LI.getLoopFor(IDom); 3288 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3289 if (IDomDepth <= IPLoopDepth && 3290 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3291 break; 3292 } 3293 3294 bool AllDominate = true; 3295 Instruction *BetterPos = 0; 3296 Instruction *Tentative = IDom->getTerminator(); 3297 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3298 E = Inputs.end(); I != E; ++I) { 3299 Instruction *Inst = *I; 3300 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3301 AllDominate = false; 3302 break; 3303 } 3304 // Attempt to find an insert position in the middle of the block, 3305 // instead of at the end, so that it can be used for other expansions. 3306 if (IDom == Inst->getParent() && 3307 (!BetterPos || DT.dominates(BetterPos, Inst))) 3308 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3309 } 3310 if (!AllDominate) 3311 break; 3312 if (BetterPos) 3313 IP = BetterPos; 3314 else 3315 IP = Tentative; 3316 } 3317 3318 return IP; 3319 } 3320 3321 /// AdjustInsertPositionForExpand - Determine an input position which will be 3322 /// dominated by the operands and which will dominate the result. 3323 BasicBlock::iterator 3324 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3325 const LSRFixup &LF, 3326 const LSRUse &LU) const { 3327 // Collect some instructions which must be dominated by the 3328 // expanding replacement. These must be dominated by any operands that 3329 // will be required in the expansion. 3330 SmallVector<Instruction *, 4> Inputs; 3331 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3332 Inputs.push_back(I); 3333 if (LU.Kind == LSRUse::ICmpZero) 3334 if (Instruction *I = 3335 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3336 Inputs.push_back(I); 3337 if (LF.PostIncLoops.count(L)) { 3338 if (LF.isUseFullyOutsideLoop(L)) 3339 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3340 else 3341 Inputs.push_back(IVIncInsertPos); 3342 } 3343 // The expansion must also be dominated by the increment positions of any 3344 // loops it for which it is using post-inc mode. 3345 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3346 E = LF.PostIncLoops.end(); I != E; ++I) { 3347 const Loop *PIL = *I; 3348 if (PIL == L) continue; 3349 3350 // Be dominated by the loop exit. 3351 SmallVector<BasicBlock *, 4> ExitingBlocks; 3352 PIL->getExitingBlocks(ExitingBlocks); 3353 if (!ExitingBlocks.empty()) { 3354 BasicBlock *BB = ExitingBlocks[0]; 3355 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3356 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3357 Inputs.push_back(BB->getTerminator()); 3358 } 3359 } 3360 3361 // Then, climb up the immediate dominator tree as far as we can go while 3362 // still being dominated by the input positions. 3363 IP = HoistInsertPosition(IP, Inputs); 3364 3365 // Don't insert instructions before PHI nodes. 3366 while (isa<PHINode>(IP)) ++IP; 3367 3368 // Ignore debug intrinsics. 3369 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3370 3371 return IP; 3372 } 3373 3374 /// Expand - Emit instructions for the leading candidate expression for this 3375 /// LSRUse (this is called "expanding"). 3376 Value *LSRInstance::Expand(const LSRFixup &LF, 3377 const Formula &F, 3378 BasicBlock::iterator IP, 3379 SCEVExpander &Rewriter, 3380 SmallVectorImpl<WeakVH> &DeadInsts) const { 3381 const LSRUse &LU = Uses[LF.LUIdx]; 3382 3383 // Determine an input position which will be dominated by the operands and 3384 // which will dominate the result. 3385 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3386 3387 // Inform the Rewriter if we have a post-increment use, so that it can 3388 // perform an advantageous expansion. 3389 Rewriter.setPostInc(LF.PostIncLoops); 3390 3391 // This is the type that the user actually needs. 3392 const Type *OpTy = LF.OperandValToReplace->getType(); 3393 // This will be the type that we'll initially expand to. 3394 const Type *Ty = F.getType(); 3395 if (!Ty) 3396 // No type known; just expand directly to the ultimate type. 3397 Ty = OpTy; 3398 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3399 // Expand directly to the ultimate type if it's the right size. 3400 Ty = OpTy; 3401 // This is the type to do integer arithmetic in. 3402 const Type *IntTy = SE.getEffectiveSCEVType(Ty); 3403 3404 // Build up a list of operands to add together to form the full base. 3405 SmallVector<const SCEV *, 8> Ops; 3406 3407 // Expand the BaseRegs portion. 3408 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3409 E = F.BaseRegs.end(); I != E; ++I) { 3410 const SCEV *Reg = *I; 3411 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3412 3413 // If we're expanding for a post-inc user, make the post-inc adjustment. 3414 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3415 Reg = TransformForPostIncUse(Denormalize, Reg, 3416 LF.UserInst, LF.OperandValToReplace, 3417 Loops, SE, DT); 3418 3419 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3420 } 3421 3422 // Flush the operand list to suppress SCEVExpander hoisting. 3423 if (!Ops.empty()) { 3424 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3425 Ops.clear(); 3426 Ops.push_back(SE.getUnknown(FullV)); 3427 } 3428 3429 // Expand the ScaledReg portion. 3430 Value *ICmpScaledV = 0; 3431 if (F.AM.Scale != 0) { 3432 const SCEV *ScaledS = F.ScaledReg; 3433 3434 // If we're expanding for a post-inc user, make the post-inc adjustment. 3435 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3436 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3437 LF.UserInst, LF.OperandValToReplace, 3438 Loops, SE, DT); 3439 3440 if (LU.Kind == LSRUse::ICmpZero) { 3441 // An interesting way of "folding" with an icmp is to use a negated 3442 // scale, which we'll implement by inserting it into the other operand 3443 // of the icmp. 3444 assert(F.AM.Scale == -1 && 3445 "The only scale supported by ICmpZero uses is -1!"); 3446 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3447 } else { 3448 // Otherwise just expand the scaled register and an explicit scale, 3449 // which is expected to be matched as part of the address. 3450 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3451 ScaledS = SE.getMulExpr(ScaledS, 3452 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3453 Ops.push_back(ScaledS); 3454 3455 // Flush the operand list to suppress SCEVExpander hoisting. 3456 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3457 Ops.clear(); 3458 Ops.push_back(SE.getUnknown(FullV)); 3459 } 3460 } 3461 3462 // Expand the GV portion. 3463 if (F.AM.BaseGV) { 3464 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3465 3466 // Flush the operand list to suppress SCEVExpander hoisting. 3467 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3468 Ops.clear(); 3469 Ops.push_back(SE.getUnknown(FullV)); 3470 } 3471 3472 // Expand the immediate portion. 3473 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3474 if (Offset != 0) { 3475 if (LU.Kind == LSRUse::ICmpZero) { 3476 // The other interesting way of "folding" with an ICmpZero is to use a 3477 // negated immediate. 3478 if (!ICmpScaledV) 3479 ICmpScaledV = ConstantInt::get(IntTy, -Offset); 3480 else { 3481 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3482 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3483 } 3484 } else { 3485 // Just add the immediate values. These again are expected to be matched 3486 // as part of the address. 3487 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3488 } 3489 } 3490 3491 // Emit instructions summing all the operands. 3492 const SCEV *FullS = Ops.empty() ? 3493 SE.getConstant(IntTy, 0) : 3494 SE.getAddExpr(Ops); 3495 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3496 3497 // We're done expanding now, so reset the rewriter. 3498 Rewriter.clearPostInc(); 3499 3500 // An ICmpZero Formula represents an ICmp which we're handling as a 3501 // comparison against zero. Now that we've expanded an expression for that 3502 // form, update the ICmp's other operand. 3503 if (LU.Kind == LSRUse::ICmpZero) { 3504 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3505 DeadInsts.push_back(CI->getOperand(1)); 3506 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3507 "a scale at the same time!"); 3508 if (F.AM.Scale == -1) { 3509 if (ICmpScaledV->getType() != OpTy) { 3510 Instruction *Cast = 3511 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3512 OpTy, false), 3513 ICmpScaledV, OpTy, "tmp", CI); 3514 ICmpScaledV = Cast; 3515 } 3516 CI->setOperand(1, ICmpScaledV); 3517 } else { 3518 assert(F.AM.Scale == 0 && 3519 "ICmp does not support folding a global value and " 3520 "a scale at the same time!"); 3521 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3522 -(uint64_t)Offset); 3523 if (C->getType() != OpTy) 3524 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3525 OpTy, false), 3526 C, OpTy); 3527 3528 CI->setOperand(1, C); 3529 } 3530 } 3531 3532 return FullV; 3533 } 3534 3535 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3536 /// of their operands effectively happens in their predecessor blocks, so the 3537 /// expression may need to be expanded in multiple places. 3538 void LSRInstance::RewriteForPHI(PHINode *PN, 3539 const LSRFixup &LF, 3540 const Formula &F, 3541 SCEVExpander &Rewriter, 3542 SmallVectorImpl<WeakVH> &DeadInsts, 3543 Pass *P) const { 3544 DenseMap<BasicBlock *, Value *> Inserted; 3545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3546 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3547 BasicBlock *BB = PN->getIncomingBlock(i); 3548 3549 // If this is a critical edge, split the edge so that we do not insert 3550 // the code on all predecessor/successor paths. We do this unless this 3551 // is the canonical backedge for this loop, which complicates post-inc 3552 // users. 3553 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3554 !isa<IndirectBrInst>(BB->getTerminator())) { 3555 Loop *PNLoop = LI.getLoopFor(PN->getParent()); 3556 if (!PNLoop || PN->getParent() != PNLoop->getHeader()) { 3557 // Split the critical edge. 3558 BasicBlock *NewBB = SplitCriticalEdge(BB, PN->getParent(), P); 3559 3560 // If PN is outside of the loop and BB is in the loop, we want to 3561 // move the block to be immediately before the PHI block, not 3562 // immediately after BB. 3563 if (L->contains(BB) && !L->contains(PN)) 3564 NewBB->moveBefore(PN->getParent()); 3565 3566 // Splitting the edge can reduce the number of PHI entries we have. 3567 e = PN->getNumIncomingValues(); 3568 BB = NewBB; 3569 i = PN->getBasicBlockIndex(BB); 3570 } 3571 } 3572 3573 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3574 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3575 if (!Pair.second) 3576 PN->setIncomingValue(i, Pair.first->second); 3577 else { 3578 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3579 3580 // If this is reuse-by-noop-cast, insert the noop cast. 3581 const Type *OpTy = LF.OperandValToReplace->getType(); 3582 if (FullV->getType() != OpTy) 3583 FullV = 3584 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3585 OpTy, false), 3586 FullV, LF.OperandValToReplace->getType(), 3587 "tmp", BB->getTerminator()); 3588 3589 PN->setIncomingValue(i, FullV); 3590 Pair.first->second = FullV; 3591 } 3592 } 3593 } 3594 3595 /// Rewrite - Emit instructions for the leading candidate expression for this 3596 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3597 /// the newly expanded value. 3598 void LSRInstance::Rewrite(const LSRFixup &LF, 3599 const Formula &F, 3600 SCEVExpander &Rewriter, 3601 SmallVectorImpl<WeakVH> &DeadInsts, 3602 Pass *P) const { 3603 // First, find an insertion point that dominates UserInst. For PHI nodes, 3604 // find the nearest block which dominates all the relevant uses. 3605 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3606 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3607 } else { 3608 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3609 3610 // If this is reuse-by-noop-cast, insert the noop cast. 3611 const Type *OpTy = LF.OperandValToReplace->getType(); 3612 if (FullV->getType() != OpTy) { 3613 Instruction *Cast = 3614 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3615 FullV, OpTy, "tmp", LF.UserInst); 3616 FullV = Cast; 3617 } 3618 3619 // Update the user. ICmpZero is handled specially here (for now) because 3620 // Expand may have updated one of the operands of the icmp already, and 3621 // its new value may happen to be equal to LF.OperandValToReplace, in 3622 // which case doing replaceUsesOfWith leads to replacing both operands 3623 // with the same value. TODO: Reorganize this. 3624 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3625 LF.UserInst->setOperand(0, FullV); 3626 else 3627 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3628 } 3629 3630 DeadInsts.push_back(LF.OperandValToReplace); 3631 } 3632 3633 /// ImplementSolution - Rewrite all the fixup locations with new values, 3634 /// following the chosen solution. 3635 void 3636 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3637 Pass *P) { 3638 // Keep track of instructions we may have made dead, so that 3639 // we can remove them after we are done working. 3640 SmallVector<WeakVH, 16> DeadInsts; 3641 3642 SCEVExpander Rewriter(SE); 3643 Rewriter.disableCanonicalMode(); 3644 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3645 3646 // Expand the new value definitions and update the users. 3647 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3648 E = Fixups.end(); I != E; ++I) { 3649 const LSRFixup &Fixup = *I; 3650 3651 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3652 3653 Changed = true; 3654 } 3655 3656 // Clean up after ourselves. This must be done before deleting any 3657 // instructions. 3658 Rewriter.clear(); 3659 3660 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3661 } 3662 3663 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3664 : IU(P->getAnalysis<IVUsers>()), 3665 SE(P->getAnalysis<ScalarEvolution>()), 3666 DT(P->getAnalysis<DominatorTree>()), 3667 LI(P->getAnalysis<LoopInfo>()), 3668 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3669 3670 // If LoopSimplify form is not available, stay out of trouble. 3671 if (!L->isLoopSimplifyForm()) return; 3672 3673 // If there's no interesting work to be done, bail early. 3674 if (IU.empty()) return; 3675 3676 DEBUG(dbgs() << "\nLSR on loop "; 3677 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3678 dbgs() << ":\n"); 3679 3680 // First, perform some low-level loop optimizations. 3681 OptimizeShadowIV(); 3682 OptimizeLoopTermCond(); 3683 3684 // Start collecting data and preparing for the solver. 3685 CollectInterestingTypesAndFactors(); 3686 CollectFixupsAndInitialFormulae(); 3687 CollectLoopInvariantFixupsAndFormulae(); 3688 3689 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3690 print_uses(dbgs())); 3691 3692 // Now use the reuse data to generate a bunch of interesting ways 3693 // to formulate the values needed for the uses. 3694 GenerateAllReuseFormulae(); 3695 3696 FilterOutUndesirableDedicatedRegisters(); 3697 NarrowSearchSpaceUsingHeuristics(); 3698 3699 SmallVector<const Formula *, 8> Solution; 3700 Solve(Solution); 3701 3702 // Release memory that is no longer needed. 3703 Factors.clear(); 3704 Types.clear(); 3705 RegUses.clear(); 3706 3707 #ifndef NDEBUG 3708 // Formulae should be legal. 3709 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3710 E = Uses.end(); I != E; ++I) { 3711 const LSRUse &LU = *I; 3712 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3713 JE = LU.Formulae.end(); J != JE; ++J) 3714 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3715 LU.Kind, LU.AccessTy, TLI) && 3716 "Illegal formula generated!"); 3717 }; 3718 #endif 3719 3720 // Now that we've decided what we want, make it so. 3721 ImplementSolution(Solution, P); 3722 } 3723 3724 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3725 if (Factors.empty() && Types.empty()) return; 3726 3727 OS << "LSR has identified the following interesting factors and types: "; 3728 bool First = true; 3729 3730 for (SmallSetVector<int64_t, 8>::const_iterator 3731 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3732 if (!First) OS << ", "; 3733 First = false; 3734 OS << '*' << *I; 3735 } 3736 3737 for (SmallSetVector<const Type *, 4>::const_iterator 3738 I = Types.begin(), E = Types.end(); I != E; ++I) { 3739 if (!First) OS << ", "; 3740 First = false; 3741 OS << '(' << **I << ')'; 3742 } 3743 OS << '\n'; 3744 } 3745 3746 void LSRInstance::print_fixups(raw_ostream &OS) const { 3747 OS << "LSR is examining the following fixup sites:\n"; 3748 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3749 E = Fixups.end(); I != E; ++I) { 3750 dbgs() << " "; 3751 I->print(OS); 3752 OS << '\n'; 3753 } 3754 } 3755 3756 void LSRInstance::print_uses(raw_ostream &OS) const { 3757 OS << "LSR is examining the following uses:\n"; 3758 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3759 E = Uses.end(); I != E; ++I) { 3760 const LSRUse &LU = *I; 3761 dbgs() << " "; 3762 LU.print(OS); 3763 OS << '\n'; 3764 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3765 JE = LU.Formulae.end(); J != JE; ++J) { 3766 OS << " "; 3767 J->print(OS); 3768 OS << '\n'; 3769 } 3770 } 3771 } 3772 3773 void LSRInstance::print(raw_ostream &OS) const { 3774 print_factors_and_types(OS); 3775 print_fixups(OS); 3776 print_uses(OS); 3777 } 3778 3779 void LSRInstance::dump() const { 3780 print(errs()); errs() << '\n'; 3781 } 3782 3783 namespace { 3784 3785 class LoopStrengthReduce : public LoopPass { 3786 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3787 /// transformation profitability. 3788 const TargetLowering *const TLI; 3789 3790 public: 3791 static char ID; // Pass ID, replacement for typeid 3792 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3793 3794 private: 3795 bool runOnLoop(Loop *L, LPPassManager &LPM); 3796 void getAnalysisUsage(AnalysisUsage &AU) const; 3797 }; 3798 3799 } 3800 3801 char LoopStrengthReduce::ID = 0; 3802 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 3803 "Loop Strength Reduction", false, false) 3804 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 3805 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3806 INITIALIZE_PASS_DEPENDENCY(IVUsers) 3807 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 3808 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3809 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 3810 "Loop Strength Reduction", false, false) 3811 3812 3813 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 3814 return new LoopStrengthReduce(TLI); 3815 } 3816 3817 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 3818 : LoopPass(ID), TLI(tli) { 3819 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 3820 } 3821 3822 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 3823 // We split critical edges, so we change the CFG. However, we do update 3824 // many analyses if they are around. 3825 AU.addPreservedID(LoopSimplifyID); 3826 3827 AU.addRequired<LoopInfo>(); 3828 AU.addPreserved<LoopInfo>(); 3829 AU.addRequiredID(LoopSimplifyID); 3830 AU.addRequired<DominatorTree>(); 3831 AU.addPreserved<DominatorTree>(); 3832 AU.addRequired<ScalarEvolution>(); 3833 AU.addPreserved<ScalarEvolution>(); 3834 // Requiring LoopSimplify a second time here prevents IVUsers from running 3835 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 3836 AU.addRequiredID(LoopSimplifyID); 3837 AU.addRequired<IVUsers>(); 3838 AU.addPreserved<IVUsers>(); 3839 } 3840 3841 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 3842 bool Changed = false; 3843 3844 // Run the main LSR transformation. 3845 Changed |= LSRInstance(TLI, L, this).getChanged(); 3846 3847 // At this point, it is worth checking to see if any recurrence PHIs are also 3848 // dead, so that we can remove them as well. 3849 Changed |= DeleteDeadPHIs(L->getHeader()); 3850 3851 return Changed; 3852 } 3853