1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/BinaryFormat/Dwarf.h" 82 #include "llvm/Config/llvm-config.h" 83 #include "llvm/IR/BasicBlock.h" 84 #include "llvm/IR/Constant.h" 85 #include "llvm/IR/Constants.h" 86 #include "llvm/IR/DebugInfoMetadata.h" 87 #include "llvm/IR/DerivedTypes.h" 88 #include "llvm/IR/Dominators.h" 89 #include "llvm/IR/GlobalValue.h" 90 #include "llvm/IR/IRBuilder.h" 91 #include "llvm/IR/InstrTypes.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/Operator.h" 97 #include "llvm/IR/PassManager.h" 98 #include "llvm/IR/Type.h" 99 #include "llvm/IR/Use.h" 100 #include "llvm/IR/User.h" 101 #include "llvm/IR/Value.h" 102 #include "llvm/IR/ValueHandle.h" 103 #include "llvm/InitializePasses.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Transforms/Scalar.h" 113 #include "llvm/Transforms/Utils.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <iterator> 122 #include <limits> 123 #include <map> 124 #include <numeric> 125 #include <utility> 126 127 using namespace llvm; 128 129 #define DEBUG_TYPE "loop-reduce" 130 131 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 132 /// bail out. This threshold is far beyond the number of users that LSR can 133 /// conceivably solve, so it should not affect generated code, but catches the 134 /// worst cases before LSR burns too much compile time and stack space. 135 static const unsigned MaxIVUsers = 200; 136 137 /// Limit the size of expression that SCEV-based salvaging will attempt to 138 /// translate into a DIExpression. 139 /// Choose a maximum size such that debuginfo is not excessively increased and 140 /// the salvaging is not too expensive for the compiler. 141 static const unsigned MaxSCEVSalvageExpressionSize = 64; 142 143 // Temporary flag to cleanup congruent phis after LSR phi expansion. 144 // It's currently disabled until we can determine whether it's truly useful or 145 // not. The flag should be removed after the v3.0 release. 146 // This is now needed for ivchains. 147 static cl::opt<bool> EnablePhiElim( 148 "enable-lsr-phielim", cl::Hidden, cl::init(true), 149 cl::desc("Enable LSR phi elimination")); 150 151 // The flag adds instruction count to solutions cost comparision. 152 static cl::opt<bool> InsnsCost( 153 "lsr-insns-cost", cl::Hidden, cl::init(true), 154 cl::desc("Add instruction count to a LSR cost model")); 155 156 // Flag to choose how to narrow complex lsr solution 157 static cl::opt<bool> LSRExpNarrow( 158 "lsr-exp-narrow", cl::Hidden, cl::init(false), 159 cl::desc("Narrow LSR complex solution using" 160 " expectation of registers number")); 161 162 // Flag to narrow search space by filtering non-optimal formulae with 163 // the same ScaledReg and Scale. 164 static cl::opt<bool> FilterSameScaledReg( 165 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 166 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 167 " with the same ScaledReg and Scale")); 168 169 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 170 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 171 cl::desc("A flag that overrides the target's preferred addressing mode."), 172 cl::values(clEnumValN(TTI::AMK_None, 173 "none", 174 "Don't prefer any addressing mode"), 175 clEnumValN(TTI::AMK_PreIndexed, 176 "preindexed", 177 "Prefer pre-indexed addressing mode"), 178 clEnumValN(TTI::AMK_PostIndexed, 179 "postindexed", 180 "Prefer post-indexed addressing mode"))); 181 182 static cl::opt<unsigned> ComplexityLimit( 183 "lsr-complexity-limit", cl::Hidden, 184 cl::init(std::numeric_limits<uint16_t>::max()), 185 cl::desc("LSR search space complexity limit")); 186 187 static cl::opt<unsigned> SetupCostDepthLimit( 188 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 189 cl::desc("The limit on recursion depth for LSRs setup cost")); 190 191 #ifndef NDEBUG 192 // Stress test IV chain generation. 193 static cl::opt<bool> StressIVChain( 194 "stress-ivchain", cl::Hidden, cl::init(false), 195 cl::desc("Stress test LSR IV chains")); 196 #else 197 static bool StressIVChain = false; 198 #endif 199 200 namespace { 201 202 struct MemAccessTy { 203 /// Used in situations where the accessed memory type is unknown. 204 static const unsigned UnknownAddressSpace = 205 std::numeric_limits<unsigned>::max(); 206 207 Type *MemTy = nullptr; 208 unsigned AddrSpace = UnknownAddressSpace; 209 210 MemAccessTy() = default; 211 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 212 213 bool operator==(MemAccessTy Other) const { 214 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 215 } 216 217 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 218 219 static MemAccessTy getUnknown(LLVMContext &Ctx, 220 unsigned AS = UnknownAddressSpace) { 221 return MemAccessTy(Type::getVoidTy(Ctx), AS); 222 } 223 224 Type *getType() { return MemTy; } 225 }; 226 227 /// This class holds data which is used to order reuse candidates. 228 class RegSortData { 229 public: 230 /// This represents the set of LSRUse indices which reference 231 /// a particular register. 232 SmallBitVector UsedByIndices; 233 234 void print(raw_ostream &OS) const; 235 void dump() const; 236 }; 237 238 } // end anonymous namespace 239 240 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 241 void RegSortData::print(raw_ostream &OS) const { 242 OS << "[NumUses=" << UsedByIndices.count() << ']'; 243 } 244 245 LLVM_DUMP_METHOD void RegSortData::dump() const { 246 print(errs()); errs() << '\n'; 247 } 248 #endif 249 250 namespace { 251 252 /// Map register candidates to information about how they are used. 253 class RegUseTracker { 254 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 255 256 RegUsesTy RegUsesMap; 257 SmallVector<const SCEV *, 16> RegSequence; 258 259 public: 260 void countRegister(const SCEV *Reg, size_t LUIdx); 261 void dropRegister(const SCEV *Reg, size_t LUIdx); 262 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 263 264 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 265 266 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 267 268 void clear(); 269 270 using iterator = SmallVectorImpl<const SCEV *>::iterator; 271 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 272 273 iterator begin() { return RegSequence.begin(); } 274 iterator end() { return RegSequence.end(); } 275 const_iterator begin() const { return RegSequence.begin(); } 276 const_iterator end() const { return RegSequence.end(); } 277 }; 278 279 } // end anonymous namespace 280 281 void 282 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 283 std::pair<RegUsesTy::iterator, bool> Pair = 284 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 285 RegSortData &RSD = Pair.first->second; 286 if (Pair.second) 287 RegSequence.push_back(Reg); 288 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 289 RSD.UsedByIndices.set(LUIdx); 290 } 291 292 void 293 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 294 RegUsesTy::iterator It = RegUsesMap.find(Reg); 295 assert(It != RegUsesMap.end()); 296 RegSortData &RSD = It->second; 297 assert(RSD.UsedByIndices.size() > LUIdx); 298 RSD.UsedByIndices.reset(LUIdx); 299 } 300 301 void 302 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 303 assert(LUIdx <= LastLUIdx); 304 305 // Update RegUses. The data structure is not optimized for this purpose; 306 // we must iterate through it and update each of the bit vectors. 307 for (auto &Pair : RegUsesMap) { 308 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 309 if (LUIdx < UsedByIndices.size()) 310 UsedByIndices[LUIdx] = 311 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 312 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 313 } 314 } 315 316 bool 317 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 318 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 319 if (I == RegUsesMap.end()) 320 return false; 321 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 322 int i = UsedByIndices.find_first(); 323 if (i == -1) return false; 324 if ((size_t)i != LUIdx) return true; 325 return UsedByIndices.find_next(i) != -1; 326 } 327 328 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 329 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 330 assert(I != RegUsesMap.end() && "Unknown register!"); 331 return I->second.UsedByIndices; 332 } 333 334 void RegUseTracker::clear() { 335 RegUsesMap.clear(); 336 RegSequence.clear(); 337 } 338 339 namespace { 340 341 /// This class holds information that describes a formula for computing 342 /// satisfying a use. It may include broken-out immediates and scaled registers. 343 struct Formula { 344 /// Global base address used for complex addressing. 345 GlobalValue *BaseGV = nullptr; 346 347 /// Base offset for complex addressing. 348 int64_t BaseOffset = 0; 349 350 /// Whether any complex addressing has a base register. 351 bool HasBaseReg = false; 352 353 /// The scale of any complex addressing. 354 int64_t Scale = 0; 355 356 /// The list of "base" registers for this use. When this is non-empty. The 357 /// canonical representation of a formula is 358 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 359 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 360 /// 3. The reg containing recurrent expr related with currect loop in the 361 /// formula should be put in the ScaledReg. 362 /// #1 enforces that the scaled register is always used when at least two 363 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 364 /// #2 enforces that 1 * reg is reg. 365 /// #3 ensures invariant regs with respect to current loop can be combined 366 /// together in LSR codegen. 367 /// This invariant can be temporarily broken while building a formula. 368 /// However, every formula inserted into the LSRInstance must be in canonical 369 /// form. 370 SmallVector<const SCEV *, 4> BaseRegs; 371 372 /// The 'scaled' register for this use. This should be non-null when Scale is 373 /// not zero. 374 const SCEV *ScaledReg = nullptr; 375 376 /// An additional constant offset which added near the use. This requires a 377 /// temporary register, but the offset itself can live in an add immediate 378 /// field rather than a register. 379 int64_t UnfoldedOffset = 0; 380 381 Formula() = default; 382 383 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 384 385 bool isCanonical(const Loop &L) const; 386 387 void canonicalize(const Loop &L); 388 389 bool unscale(); 390 391 bool hasZeroEnd() const; 392 393 size_t getNumRegs() const; 394 Type *getType() const; 395 396 void deleteBaseReg(const SCEV *&S); 397 398 bool referencesReg(const SCEV *S) const; 399 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 400 const RegUseTracker &RegUses) const; 401 402 void print(raw_ostream &OS) const; 403 void dump() const; 404 }; 405 406 } // end anonymous namespace 407 408 /// Recursion helper for initialMatch. 409 static void DoInitialMatch(const SCEV *S, Loop *L, 410 SmallVectorImpl<const SCEV *> &Good, 411 SmallVectorImpl<const SCEV *> &Bad, 412 ScalarEvolution &SE) { 413 // Collect expressions which properly dominate the loop header. 414 if (SE.properlyDominates(S, L->getHeader())) { 415 Good.push_back(S); 416 return; 417 } 418 419 // Look at add operands. 420 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 421 for (const SCEV *S : Add->operands()) 422 DoInitialMatch(S, L, Good, Bad, SE); 423 return; 424 } 425 426 // Look at addrec operands. 427 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 428 if (!AR->getStart()->isZero() && AR->isAffine()) { 429 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 430 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 431 AR->getStepRecurrence(SE), 432 // FIXME: AR->getNoWrapFlags() 433 AR->getLoop(), SCEV::FlagAnyWrap), 434 L, Good, Bad, SE); 435 return; 436 } 437 438 // Handle a multiplication by -1 (negation) if it didn't fold. 439 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 440 if (Mul->getOperand(0)->isAllOnesValue()) { 441 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 442 const SCEV *NewMul = SE.getMulExpr(Ops); 443 444 SmallVector<const SCEV *, 4> MyGood; 445 SmallVector<const SCEV *, 4> MyBad; 446 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 447 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 448 SE.getEffectiveSCEVType(NewMul->getType()))); 449 for (const SCEV *S : MyGood) 450 Good.push_back(SE.getMulExpr(NegOne, S)); 451 for (const SCEV *S : MyBad) 452 Bad.push_back(SE.getMulExpr(NegOne, S)); 453 return; 454 } 455 456 // Ok, we can't do anything interesting. Just stuff the whole thing into a 457 // register and hope for the best. 458 Bad.push_back(S); 459 } 460 461 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 462 /// all loop-invariant and loop-computable values in a single base register. 463 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 464 SmallVector<const SCEV *, 4> Good; 465 SmallVector<const SCEV *, 4> Bad; 466 DoInitialMatch(S, L, Good, Bad, SE); 467 if (!Good.empty()) { 468 const SCEV *Sum = SE.getAddExpr(Good); 469 if (!Sum->isZero()) 470 BaseRegs.push_back(Sum); 471 HasBaseReg = true; 472 } 473 if (!Bad.empty()) { 474 const SCEV *Sum = SE.getAddExpr(Bad); 475 if (!Sum->isZero()) 476 BaseRegs.push_back(Sum); 477 HasBaseReg = true; 478 } 479 canonicalize(*L); 480 } 481 482 /// Check whether or not this formula satisfies the canonical 483 /// representation. 484 /// \see Formula::BaseRegs. 485 bool Formula::isCanonical(const Loop &L) const { 486 if (!ScaledReg) 487 return BaseRegs.size() <= 1; 488 489 if (Scale != 1) 490 return true; 491 492 if (Scale == 1 && BaseRegs.empty()) 493 return false; 494 495 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 496 if (SAR && SAR->getLoop() == &L) 497 return true; 498 499 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 500 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 501 // loop, we want to swap the reg in BaseRegs with ScaledReg. 502 auto I = find_if(BaseRegs, [&](const SCEV *S) { 503 return isa<const SCEVAddRecExpr>(S) && 504 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 505 }); 506 return I == BaseRegs.end(); 507 } 508 509 /// Helper method to morph a formula into its canonical representation. 510 /// \see Formula::BaseRegs. 511 /// Every formula having more than one base register, must use the ScaledReg 512 /// field. Otherwise, we would have to do special cases everywhere in LSR 513 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 514 /// On the other hand, 1*reg should be canonicalized into reg. 515 void Formula::canonicalize(const Loop &L) { 516 if (isCanonical(L)) 517 return; 518 519 if (BaseRegs.empty()) { 520 // No base reg? Use scale reg with scale = 1 as such. 521 assert(ScaledReg && "Expected 1*reg => reg"); 522 assert(Scale == 1 && "Expected 1*reg => reg"); 523 BaseRegs.push_back(ScaledReg); 524 Scale = 0; 525 ScaledReg = nullptr; 526 return; 527 } 528 529 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 530 if (!ScaledReg) { 531 ScaledReg = BaseRegs.pop_back_val(); 532 Scale = 1; 533 } 534 535 // If ScaledReg is an invariant with respect to L, find the reg from 536 // BaseRegs containing the recurrent expr related with Loop L. Swap the 537 // reg with ScaledReg. 538 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 539 if (!SAR || SAR->getLoop() != &L) { 540 auto I = find_if(BaseRegs, [&](const SCEV *S) { 541 return isa<const SCEVAddRecExpr>(S) && 542 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 543 }); 544 if (I != BaseRegs.end()) 545 std::swap(ScaledReg, *I); 546 } 547 assert(isCanonical(L) && "Failed to canonicalize?"); 548 } 549 550 /// Get rid of the scale in the formula. 551 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 552 /// \return true if it was possible to get rid of the scale, false otherwise. 553 /// \note After this operation the formula may not be in the canonical form. 554 bool Formula::unscale() { 555 if (Scale != 1) 556 return false; 557 Scale = 0; 558 BaseRegs.push_back(ScaledReg); 559 ScaledReg = nullptr; 560 return true; 561 } 562 563 bool Formula::hasZeroEnd() const { 564 if (UnfoldedOffset || BaseOffset) 565 return false; 566 if (BaseRegs.size() != 1 || ScaledReg) 567 return false; 568 return true; 569 } 570 571 /// Return the total number of register operands used by this formula. This does 572 /// not include register uses implied by non-constant addrec strides. 573 size_t Formula::getNumRegs() const { 574 return !!ScaledReg + BaseRegs.size(); 575 } 576 577 /// Return the type of this formula, if it has one, or null otherwise. This type 578 /// is meaningless except for the bit size. 579 Type *Formula::getType() const { 580 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 581 ScaledReg ? ScaledReg->getType() : 582 BaseGV ? BaseGV->getType() : 583 nullptr; 584 } 585 586 /// Delete the given base reg from the BaseRegs list. 587 void Formula::deleteBaseReg(const SCEV *&S) { 588 if (&S != &BaseRegs.back()) 589 std::swap(S, BaseRegs.back()); 590 BaseRegs.pop_back(); 591 } 592 593 /// Test if this formula references the given register. 594 bool Formula::referencesReg(const SCEV *S) const { 595 return S == ScaledReg || is_contained(BaseRegs, S); 596 } 597 598 /// Test whether this formula uses registers which are used by uses other than 599 /// the use with the given index. 600 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 601 const RegUseTracker &RegUses) const { 602 if (ScaledReg) 603 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 604 return true; 605 for (const SCEV *BaseReg : BaseRegs) 606 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 607 return true; 608 return false; 609 } 610 611 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 612 void Formula::print(raw_ostream &OS) const { 613 bool First = true; 614 if (BaseGV) { 615 if (!First) OS << " + "; else First = false; 616 BaseGV->printAsOperand(OS, /*PrintType=*/false); 617 } 618 if (BaseOffset != 0) { 619 if (!First) OS << " + "; else First = false; 620 OS << BaseOffset; 621 } 622 for (const SCEV *BaseReg : BaseRegs) { 623 if (!First) OS << " + "; else First = false; 624 OS << "reg(" << *BaseReg << ')'; 625 } 626 if (HasBaseReg && BaseRegs.empty()) { 627 if (!First) OS << " + "; else First = false; 628 OS << "**error: HasBaseReg**"; 629 } else if (!HasBaseReg && !BaseRegs.empty()) { 630 if (!First) OS << " + "; else First = false; 631 OS << "**error: !HasBaseReg**"; 632 } 633 if (Scale != 0) { 634 if (!First) OS << " + "; else First = false; 635 OS << Scale << "*reg("; 636 if (ScaledReg) 637 OS << *ScaledReg; 638 else 639 OS << "<unknown>"; 640 OS << ')'; 641 } 642 if (UnfoldedOffset != 0) { 643 if (!First) OS << " + "; 644 OS << "imm(" << UnfoldedOffset << ')'; 645 } 646 } 647 648 LLVM_DUMP_METHOD void Formula::dump() const { 649 print(errs()); errs() << '\n'; 650 } 651 #endif 652 653 /// Return true if the given addrec can be sign-extended without changing its 654 /// value. 655 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 656 Type *WideTy = 657 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 658 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 659 } 660 661 /// Return true if the given add can be sign-extended without changing its 662 /// value. 663 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 664 Type *WideTy = 665 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 666 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 667 } 668 669 /// Return true if the given mul can be sign-extended without changing its 670 /// value. 671 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 672 Type *WideTy = 673 IntegerType::get(SE.getContext(), 674 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 675 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 676 } 677 678 /// Return an expression for LHS /s RHS, if it can be determined and if the 679 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 680 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 681 /// the multiplication may overflow, which is useful when the result will be 682 /// used in a context where the most significant bits are ignored. 683 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 684 ScalarEvolution &SE, 685 bool IgnoreSignificantBits = false) { 686 // Handle the trivial case, which works for any SCEV type. 687 if (LHS == RHS) 688 return SE.getConstant(LHS->getType(), 1); 689 690 // Handle a few RHS special cases. 691 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 692 if (RC) { 693 const APInt &RA = RC->getAPInt(); 694 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 695 // some folding. 696 if (RA.isAllOnes()) { 697 if (LHS->getType()->isPointerTy()) 698 return nullptr; 699 return SE.getMulExpr(LHS, RC); 700 } 701 // Handle x /s 1 as x. 702 if (RA == 1) 703 return LHS; 704 } 705 706 // Check for a division of a constant by a constant. 707 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 708 if (!RC) 709 return nullptr; 710 const APInt &LA = C->getAPInt(); 711 const APInt &RA = RC->getAPInt(); 712 if (LA.srem(RA) != 0) 713 return nullptr; 714 return SE.getConstant(LA.sdiv(RA)); 715 } 716 717 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 718 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 719 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 720 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 721 IgnoreSignificantBits); 722 if (!Step) return nullptr; 723 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 724 IgnoreSignificantBits); 725 if (!Start) return nullptr; 726 // FlagNW is independent of the start value, step direction, and is 727 // preserved with smaller magnitude steps. 728 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 729 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 730 } 731 return nullptr; 732 } 733 734 // Distribute the sdiv over add operands, if the add doesn't overflow. 735 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 736 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 737 SmallVector<const SCEV *, 8> Ops; 738 for (const SCEV *S : Add->operands()) { 739 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 740 if (!Op) return nullptr; 741 Ops.push_back(Op); 742 } 743 return SE.getAddExpr(Ops); 744 } 745 return nullptr; 746 } 747 748 // Check for a multiply operand that we can pull RHS out of. 749 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 750 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 751 // Handle special case C1*X*Y /s C2*X*Y. 752 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 753 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 754 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 755 const SCEVConstant *RC = 756 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 757 if (LC && RC) { 758 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 759 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 760 if (LOps == ROps) 761 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 762 } 763 } 764 } 765 766 SmallVector<const SCEV *, 4> Ops; 767 bool Found = false; 768 for (const SCEV *S : Mul->operands()) { 769 if (!Found) 770 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 771 IgnoreSignificantBits)) { 772 S = Q; 773 Found = true; 774 } 775 Ops.push_back(S); 776 } 777 return Found ? SE.getMulExpr(Ops) : nullptr; 778 } 779 return nullptr; 780 } 781 782 // Otherwise we don't know. 783 return nullptr; 784 } 785 786 /// If S involves the addition of a constant integer value, return that integer 787 /// value, and mutate S to point to a new SCEV with that value excluded. 788 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 789 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 790 if (C->getAPInt().getMinSignedBits() <= 64) { 791 S = SE.getConstant(C->getType(), 0); 792 return C->getValue()->getSExtValue(); 793 } 794 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 795 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 796 int64_t Result = ExtractImmediate(NewOps.front(), SE); 797 if (Result != 0) 798 S = SE.getAddExpr(NewOps); 799 return Result; 800 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 801 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 802 int64_t Result = ExtractImmediate(NewOps.front(), SE); 803 if (Result != 0) 804 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 805 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 806 SCEV::FlagAnyWrap); 807 return Result; 808 } 809 return 0; 810 } 811 812 /// If S involves the addition of a GlobalValue address, return that symbol, and 813 /// mutate S to point to a new SCEV with that value excluded. 814 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 815 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 816 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 817 S = SE.getConstant(GV->getType(), 0); 818 return GV; 819 } 820 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 821 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 822 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 823 if (Result) 824 S = SE.getAddExpr(NewOps); 825 return Result; 826 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 827 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 828 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 829 if (Result) 830 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 831 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 832 SCEV::FlagAnyWrap); 833 return Result; 834 } 835 return nullptr; 836 } 837 838 /// Returns true if the specified instruction is using the specified value as an 839 /// address. 840 static bool isAddressUse(const TargetTransformInfo &TTI, 841 Instruction *Inst, Value *OperandVal) { 842 bool isAddress = isa<LoadInst>(Inst); 843 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 844 if (SI->getPointerOperand() == OperandVal) 845 isAddress = true; 846 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 847 // Addressing modes can also be folded into prefetches and a variety 848 // of intrinsics. 849 switch (II->getIntrinsicID()) { 850 case Intrinsic::memset: 851 case Intrinsic::prefetch: 852 case Intrinsic::masked_load: 853 if (II->getArgOperand(0) == OperandVal) 854 isAddress = true; 855 break; 856 case Intrinsic::masked_store: 857 if (II->getArgOperand(1) == OperandVal) 858 isAddress = true; 859 break; 860 case Intrinsic::memmove: 861 case Intrinsic::memcpy: 862 if (II->getArgOperand(0) == OperandVal || 863 II->getArgOperand(1) == OperandVal) 864 isAddress = true; 865 break; 866 default: { 867 MemIntrinsicInfo IntrInfo; 868 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 869 if (IntrInfo.PtrVal == OperandVal) 870 isAddress = true; 871 } 872 } 873 } 874 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 875 if (RMW->getPointerOperand() == OperandVal) 876 isAddress = true; 877 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 878 if (CmpX->getPointerOperand() == OperandVal) 879 isAddress = true; 880 } 881 return isAddress; 882 } 883 884 /// Return the type of the memory being accessed. 885 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 886 Instruction *Inst, Value *OperandVal) { 887 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 888 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 889 AccessTy.MemTy = SI->getOperand(0)->getType(); 890 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 891 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 892 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 893 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 894 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 895 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 896 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 897 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 898 switch (II->getIntrinsicID()) { 899 case Intrinsic::prefetch: 900 case Intrinsic::memset: 901 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 902 AccessTy.MemTy = OperandVal->getType(); 903 break; 904 case Intrinsic::memmove: 905 case Intrinsic::memcpy: 906 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 907 AccessTy.MemTy = OperandVal->getType(); 908 break; 909 case Intrinsic::masked_load: 910 AccessTy.AddrSpace = 911 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 912 break; 913 case Intrinsic::masked_store: 914 AccessTy.MemTy = II->getOperand(0)->getType(); 915 AccessTy.AddrSpace = 916 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 917 break; 918 default: { 919 MemIntrinsicInfo IntrInfo; 920 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 921 AccessTy.AddrSpace 922 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 923 } 924 925 break; 926 } 927 } 928 } 929 930 // All pointers have the same requirements, so canonicalize them to an 931 // arbitrary pointer type to minimize variation. 932 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 933 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 934 PTy->getAddressSpace()); 935 936 return AccessTy; 937 } 938 939 /// Return true if this AddRec is already a phi in its loop. 940 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 941 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 942 if (SE.isSCEVable(PN.getType()) && 943 (SE.getEffectiveSCEVType(PN.getType()) == 944 SE.getEffectiveSCEVType(AR->getType())) && 945 SE.getSCEV(&PN) == AR) 946 return true; 947 } 948 return false; 949 } 950 951 /// Check if expanding this expression is likely to incur significant cost. This 952 /// is tricky because SCEV doesn't track which expressions are actually computed 953 /// by the current IR. 954 /// 955 /// We currently allow expansion of IV increments that involve adds, 956 /// multiplication by constants, and AddRecs from existing phis. 957 /// 958 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 959 /// obvious multiple of the UDivExpr. 960 static bool isHighCostExpansion(const SCEV *S, 961 SmallPtrSetImpl<const SCEV*> &Processed, 962 ScalarEvolution &SE) { 963 // Zero/One operand expressions 964 switch (S->getSCEVType()) { 965 case scUnknown: 966 case scConstant: 967 return false; 968 case scTruncate: 969 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 970 Processed, SE); 971 case scZeroExtend: 972 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 973 Processed, SE); 974 case scSignExtend: 975 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 976 Processed, SE); 977 default: 978 break; 979 } 980 981 if (!Processed.insert(S).second) 982 return false; 983 984 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 985 for (const SCEV *S : Add->operands()) { 986 if (isHighCostExpansion(S, Processed, SE)) 987 return true; 988 } 989 return false; 990 } 991 992 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 993 if (Mul->getNumOperands() == 2) { 994 // Multiplication by a constant is ok 995 if (isa<SCEVConstant>(Mul->getOperand(0))) 996 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 997 998 // If we have the value of one operand, check if an existing 999 // multiplication already generates this expression. 1000 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1001 Value *UVal = U->getValue(); 1002 for (User *UR : UVal->users()) { 1003 // If U is a constant, it may be used by a ConstantExpr. 1004 Instruction *UI = dyn_cast<Instruction>(UR); 1005 if (UI && UI->getOpcode() == Instruction::Mul && 1006 SE.isSCEVable(UI->getType())) { 1007 return SE.getSCEV(UI) == Mul; 1008 } 1009 } 1010 } 1011 } 1012 } 1013 1014 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1015 if (isExistingPhi(AR, SE)) 1016 return false; 1017 } 1018 1019 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1020 return true; 1021 } 1022 1023 namespace { 1024 1025 class LSRUse; 1026 1027 } // end anonymous namespace 1028 1029 /// Check if the addressing mode defined by \p F is completely 1030 /// folded in \p LU at isel time. 1031 /// This includes address-mode folding and special icmp tricks. 1032 /// This function returns true if \p LU can accommodate what \p F 1033 /// defines and up to 1 base + 1 scaled + offset. 1034 /// In other words, if \p F has several base registers, this function may 1035 /// still return true. Therefore, users still need to account for 1036 /// additional base registers and/or unfolded offsets to derive an 1037 /// accurate cost model. 1038 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1039 const LSRUse &LU, const Formula &F); 1040 1041 // Get the cost of the scaling factor used in F for LU. 1042 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1043 const LSRUse &LU, const Formula &F, 1044 const Loop &L); 1045 1046 namespace { 1047 1048 /// This class is used to measure and compare candidate formulae. 1049 class Cost { 1050 const Loop *L = nullptr; 1051 ScalarEvolution *SE = nullptr; 1052 const TargetTransformInfo *TTI = nullptr; 1053 TargetTransformInfo::LSRCost C; 1054 TTI::AddressingModeKind AMK = TTI::AMK_None; 1055 1056 public: 1057 Cost() = delete; 1058 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1059 TTI::AddressingModeKind AMK) : 1060 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1061 C.Insns = 0; 1062 C.NumRegs = 0; 1063 C.AddRecCost = 0; 1064 C.NumIVMuls = 0; 1065 C.NumBaseAdds = 0; 1066 C.ImmCost = 0; 1067 C.SetupCost = 0; 1068 C.ScaleCost = 0; 1069 } 1070 1071 bool isLess(Cost &Other); 1072 1073 void Lose(); 1074 1075 #ifndef NDEBUG 1076 // Once any of the metrics loses, they must all remain losers. 1077 bool isValid() { 1078 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1079 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1080 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1081 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1082 } 1083 #endif 1084 1085 bool isLoser() { 1086 assert(isValid() && "invalid cost"); 1087 return C.NumRegs == ~0u; 1088 } 1089 1090 void RateFormula(const Formula &F, 1091 SmallPtrSetImpl<const SCEV *> &Regs, 1092 const DenseSet<const SCEV *> &VisitedRegs, 1093 const LSRUse &LU, 1094 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1095 1096 void print(raw_ostream &OS) const; 1097 void dump() const; 1098 1099 private: 1100 void RateRegister(const Formula &F, const SCEV *Reg, 1101 SmallPtrSetImpl<const SCEV *> &Regs); 1102 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1103 SmallPtrSetImpl<const SCEV *> &Regs, 1104 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1105 }; 1106 1107 /// An operand value in an instruction which is to be replaced with some 1108 /// equivalent, possibly strength-reduced, replacement. 1109 struct LSRFixup { 1110 /// The instruction which will be updated. 1111 Instruction *UserInst = nullptr; 1112 1113 /// The operand of the instruction which will be replaced. The operand may be 1114 /// used more than once; every instance will be replaced. 1115 Value *OperandValToReplace = nullptr; 1116 1117 /// If this user is to use the post-incremented value of an induction 1118 /// variable, this set is non-empty and holds the loops associated with the 1119 /// induction variable. 1120 PostIncLoopSet PostIncLoops; 1121 1122 /// A constant offset to be added to the LSRUse expression. This allows 1123 /// multiple fixups to share the same LSRUse with different offsets, for 1124 /// example in an unrolled loop. 1125 int64_t Offset = 0; 1126 1127 LSRFixup() = default; 1128 1129 bool isUseFullyOutsideLoop(const Loop *L) const; 1130 1131 void print(raw_ostream &OS) const; 1132 void dump() const; 1133 }; 1134 1135 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1136 /// SmallVectors of const SCEV*. 1137 struct UniquifierDenseMapInfo { 1138 static SmallVector<const SCEV *, 4> getEmptyKey() { 1139 SmallVector<const SCEV *, 4> V; 1140 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1141 return V; 1142 } 1143 1144 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1145 SmallVector<const SCEV *, 4> V; 1146 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1147 return V; 1148 } 1149 1150 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1151 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1152 } 1153 1154 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1155 const SmallVector<const SCEV *, 4> &RHS) { 1156 return LHS == RHS; 1157 } 1158 }; 1159 1160 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1161 /// as uses invented by LSR itself. It includes information about what kinds of 1162 /// things can be folded into the user, information about the user itself, and 1163 /// information about how the use may be satisfied. TODO: Represent multiple 1164 /// users of the same expression in common? 1165 class LSRUse { 1166 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1167 1168 public: 1169 /// An enum for a kind of use, indicating what types of scaled and immediate 1170 /// operands it might support. 1171 enum KindType { 1172 Basic, ///< A normal use, with no folding. 1173 Special, ///< A special case of basic, allowing -1 scales. 1174 Address, ///< An address use; folding according to TargetLowering 1175 ICmpZero ///< An equality icmp with both operands folded into one. 1176 // TODO: Add a generic icmp too? 1177 }; 1178 1179 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1180 1181 KindType Kind; 1182 MemAccessTy AccessTy; 1183 1184 /// The list of operands which are to be replaced. 1185 SmallVector<LSRFixup, 8> Fixups; 1186 1187 /// Keep track of the min and max offsets of the fixups. 1188 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1189 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1190 1191 /// This records whether all of the fixups using this LSRUse are outside of 1192 /// the loop, in which case some special-case heuristics may be used. 1193 bool AllFixupsOutsideLoop = true; 1194 1195 /// RigidFormula is set to true to guarantee that this use will be associated 1196 /// with a single formula--the one that initially matched. Some SCEV 1197 /// expressions cannot be expanded. This allows LSR to consider the registers 1198 /// used by those expressions without the need to expand them later after 1199 /// changing the formula. 1200 bool RigidFormula = false; 1201 1202 /// This records the widest use type for any fixup using this 1203 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1204 /// fixup widths to be equivalent, because the narrower one may be relying on 1205 /// the implicit truncation to truncate away bogus bits. 1206 Type *WidestFixupType = nullptr; 1207 1208 /// A list of ways to build a value that can satisfy this user. After the 1209 /// list is populated, one of these is selected heuristically and used to 1210 /// formulate a replacement for OperandValToReplace in UserInst. 1211 SmallVector<Formula, 12> Formulae; 1212 1213 /// The set of register candidates used by all formulae in this LSRUse. 1214 SmallPtrSet<const SCEV *, 4> Regs; 1215 1216 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1217 1218 LSRFixup &getNewFixup() { 1219 Fixups.push_back(LSRFixup()); 1220 return Fixups.back(); 1221 } 1222 1223 void pushFixup(LSRFixup &f) { 1224 Fixups.push_back(f); 1225 if (f.Offset > MaxOffset) 1226 MaxOffset = f.Offset; 1227 if (f.Offset < MinOffset) 1228 MinOffset = f.Offset; 1229 } 1230 1231 bool HasFormulaWithSameRegs(const Formula &F) const; 1232 float getNotSelectedProbability(const SCEV *Reg) const; 1233 bool InsertFormula(const Formula &F, const Loop &L); 1234 void DeleteFormula(Formula &F); 1235 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1236 1237 void print(raw_ostream &OS) const; 1238 void dump() const; 1239 }; 1240 1241 } // end anonymous namespace 1242 1243 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1244 LSRUse::KindType Kind, MemAccessTy AccessTy, 1245 GlobalValue *BaseGV, int64_t BaseOffset, 1246 bool HasBaseReg, int64_t Scale, 1247 Instruction *Fixup = nullptr); 1248 1249 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1250 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1251 return 1; 1252 if (Depth == 0) 1253 return 0; 1254 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1255 return getSetupCost(S->getStart(), Depth - 1); 1256 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1257 return getSetupCost(S->getOperand(), Depth - 1); 1258 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1259 return std::accumulate(S->op_begin(), S->op_end(), 0, 1260 [&](unsigned i, const SCEV *Reg) { 1261 return i + getSetupCost(Reg, Depth - 1); 1262 }); 1263 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1264 return getSetupCost(S->getLHS(), Depth - 1) + 1265 getSetupCost(S->getRHS(), Depth - 1); 1266 return 0; 1267 } 1268 1269 /// Tally up interesting quantities from the given register. 1270 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1271 SmallPtrSetImpl<const SCEV *> &Regs) { 1272 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1273 // If this is an addrec for another loop, it should be an invariant 1274 // with respect to L since L is the innermost loop (at least 1275 // for now LSR only handles innermost loops). 1276 if (AR->getLoop() != L) { 1277 // If the AddRec exists, consider it's register free and leave it alone. 1278 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1279 return; 1280 1281 // It is bad to allow LSR for current loop to add induction variables 1282 // for its sibling loops. 1283 if (!AR->getLoop()->contains(L)) { 1284 Lose(); 1285 return; 1286 } 1287 1288 // Otherwise, it will be an invariant with respect to Loop L. 1289 ++C.NumRegs; 1290 return; 1291 } 1292 1293 unsigned LoopCost = 1; 1294 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1295 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1296 1297 // If the step size matches the base offset, we could use pre-indexed 1298 // addressing. 1299 if (AMK == TTI::AMK_PreIndexed) { 1300 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1301 if (Step->getAPInt() == F.BaseOffset) 1302 LoopCost = 0; 1303 } else if (AMK == TTI::AMK_PostIndexed) { 1304 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1305 if (isa<SCEVConstant>(LoopStep)) { 1306 const SCEV *LoopStart = AR->getStart(); 1307 if (!isa<SCEVConstant>(LoopStart) && 1308 SE->isLoopInvariant(LoopStart, L)) 1309 LoopCost = 0; 1310 } 1311 } 1312 } 1313 C.AddRecCost += LoopCost; 1314 1315 // Add the step value register, if it needs one. 1316 // TODO: The non-affine case isn't precisely modeled here. 1317 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1318 if (!Regs.count(AR->getOperand(1))) { 1319 RateRegister(F, AR->getOperand(1), Regs); 1320 if (isLoser()) 1321 return; 1322 } 1323 } 1324 } 1325 ++C.NumRegs; 1326 1327 // Rough heuristic; favor registers which don't require extra setup 1328 // instructions in the preheader. 1329 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1330 // Ensure we don't, even with the recusion limit, produce invalid costs. 1331 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1332 1333 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1334 SE->hasComputableLoopEvolution(Reg, L); 1335 } 1336 1337 /// Record this register in the set. If we haven't seen it before, rate 1338 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1339 /// one of those regs an instant loser. 1340 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1341 SmallPtrSetImpl<const SCEV *> &Regs, 1342 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1343 if (LoserRegs && LoserRegs->count(Reg)) { 1344 Lose(); 1345 return; 1346 } 1347 if (Regs.insert(Reg).second) { 1348 RateRegister(F, Reg, Regs); 1349 if (LoserRegs && isLoser()) 1350 LoserRegs->insert(Reg); 1351 } 1352 } 1353 1354 void Cost::RateFormula(const Formula &F, 1355 SmallPtrSetImpl<const SCEV *> &Regs, 1356 const DenseSet<const SCEV *> &VisitedRegs, 1357 const LSRUse &LU, 1358 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1359 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1360 // Tally up the registers. 1361 unsigned PrevAddRecCost = C.AddRecCost; 1362 unsigned PrevNumRegs = C.NumRegs; 1363 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1364 if (const SCEV *ScaledReg = F.ScaledReg) { 1365 if (VisitedRegs.count(ScaledReg)) { 1366 Lose(); 1367 return; 1368 } 1369 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1370 if (isLoser()) 1371 return; 1372 } 1373 for (const SCEV *BaseReg : F.BaseRegs) { 1374 if (VisitedRegs.count(BaseReg)) { 1375 Lose(); 1376 return; 1377 } 1378 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1379 if (isLoser()) 1380 return; 1381 } 1382 1383 // Determine how many (unfolded) adds we'll need inside the loop. 1384 size_t NumBaseParts = F.getNumRegs(); 1385 if (NumBaseParts > 1) 1386 // Do not count the base and a possible second register if the target 1387 // allows to fold 2 registers. 1388 C.NumBaseAdds += 1389 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1390 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1391 1392 // Accumulate non-free scaling amounts. 1393 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1394 1395 // Tally up the non-zero immediates. 1396 for (const LSRFixup &Fixup : LU.Fixups) { 1397 int64_t O = Fixup.Offset; 1398 int64_t Offset = (uint64_t)O + F.BaseOffset; 1399 if (F.BaseGV) 1400 C.ImmCost += 64; // Handle symbolic values conservatively. 1401 // TODO: This should probably be the pointer size. 1402 else if (Offset != 0) 1403 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1404 1405 // Check with target if this offset with this instruction is 1406 // specifically not supported. 1407 if (LU.Kind == LSRUse::Address && Offset != 0 && 1408 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1409 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1410 C.NumBaseAdds++; 1411 } 1412 1413 // If we don't count instruction cost exit here. 1414 if (!InsnsCost) { 1415 assert(isValid() && "invalid cost"); 1416 return; 1417 } 1418 1419 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1420 // additional instruction (at least fill). 1421 // TODO: Need distinguish register class? 1422 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1423 TTI->getRegisterClassForType(false, F.getType())) - 1; 1424 if (C.NumRegs > TTIRegNum) { 1425 // Cost already exceeded TTIRegNum, then only newly added register can add 1426 // new instructions. 1427 if (PrevNumRegs > TTIRegNum) 1428 C.Insns += (C.NumRegs - PrevNumRegs); 1429 else 1430 C.Insns += (C.NumRegs - TTIRegNum); 1431 } 1432 1433 // If ICmpZero formula ends with not 0, it could not be replaced by 1434 // just add or sub. We'll need to compare final result of AddRec. 1435 // That means we'll need an additional instruction. But if the target can 1436 // macro-fuse a compare with a branch, don't count this extra instruction. 1437 // For -10 + {0, +, 1}: 1438 // i = i + 1; 1439 // cmp i, 10 1440 // 1441 // For {-10, +, 1}: 1442 // i = i + 1; 1443 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1444 !TTI->canMacroFuseCmp()) 1445 C.Insns++; 1446 // Each new AddRec adds 1 instruction to calculation. 1447 C.Insns += (C.AddRecCost - PrevAddRecCost); 1448 1449 // BaseAdds adds instructions for unfolded registers. 1450 if (LU.Kind != LSRUse::ICmpZero) 1451 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1452 assert(isValid() && "invalid cost"); 1453 } 1454 1455 /// Set this cost to a losing value. 1456 void Cost::Lose() { 1457 C.Insns = std::numeric_limits<unsigned>::max(); 1458 C.NumRegs = std::numeric_limits<unsigned>::max(); 1459 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1460 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1461 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1462 C.ImmCost = std::numeric_limits<unsigned>::max(); 1463 C.SetupCost = std::numeric_limits<unsigned>::max(); 1464 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1465 } 1466 1467 /// Choose the lower cost. 1468 bool Cost::isLess(Cost &Other) { 1469 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1470 C.Insns != Other.C.Insns) 1471 return C.Insns < Other.C.Insns; 1472 return TTI->isLSRCostLess(C, Other.C); 1473 } 1474 1475 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1476 void Cost::print(raw_ostream &OS) const { 1477 if (InsnsCost) 1478 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1479 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1480 if (C.AddRecCost != 0) 1481 OS << ", with addrec cost " << C.AddRecCost; 1482 if (C.NumIVMuls != 0) 1483 OS << ", plus " << C.NumIVMuls << " IV mul" 1484 << (C.NumIVMuls == 1 ? "" : "s"); 1485 if (C.NumBaseAdds != 0) 1486 OS << ", plus " << C.NumBaseAdds << " base add" 1487 << (C.NumBaseAdds == 1 ? "" : "s"); 1488 if (C.ScaleCost != 0) 1489 OS << ", plus " << C.ScaleCost << " scale cost"; 1490 if (C.ImmCost != 0) 1491 OS << ", plus " << C.ImmCost << " imm cost"; 1492 if (C.SetupCost != 0) 1493 OS << ", plus " << C.SetupCost << " setup cost"; 1494 } 1495 1496 LLVM_DUMP_METHOD void Cost::dump() const { 1497 print(errs()); errs() << '\n'; 1498 } 1499 #endif 1500 1501 /// Test whether this fixup always uses its value outside of the given loop. 1502 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1503 // PHI nodes use their value in their incoming blocks. 1504 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1505 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1506 if (PN->getIncomingValue(i) == OperandValToReplace && 1507 L->contains(PN->getIncomingBlock(i))) 1508 return false; 1509 return true; 1510 } 1511 1512 return !L->contains(UserInst); 1513 } 1514 1515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1516 void LSRFixup::print(raw_ostream &OS) const { 1517 OS << "UserInst="; 1518 // Store is common and interesting enough to be worth special-casing. 1519 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1520 OS << "store "; 1521 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1522 } else if (UserInst->getType()->isVoidTy()) 1523 OS << UserInst->getOpcodeName(); 1524 else 1525 UserInst->printAsOperand(OS, /*PrintType=*/false); 1526 1527 OS << ", OperandValToReplace="; 1528 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1529 1530 for (const Loop *PIL : PostIncLoops) { 1531 OS << ", PostIncLoop="; 1532 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1533 } 1534 1535 if (Offset != 0) 1536 OS << ", Offset=" << Offset; 1537 } 1538 1539 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1540 print(errs()); errs() << '\n'; 1541 } 1542 #endif 1543 1544 /// Test whether this use as a formula which has the same registers as the given 1545 /// formula. 1546 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1547 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1548 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1549 // Unstable sort by host order ok, because this is only used for uniquifying. 1550 llvm::sort(Key); 1551 return Uniquifier.count(Key); 1552 } 1553 1554 /// The function returns a probability of selecting formula without Reg. 1555 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1556 unsigned FNum = 0; 1557 for (const Formula &F : Formulae) 1558 if (F.referencesReg(Reg)) 1559 FNum++; 1560 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1561 } 1562 1563 /// If the given formula has not yet been inserted, add it to the list, and 1564 /// return true. Return false otherwise. The formula must be in canonical form. 1565 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1566 assert(F.isCanonical(L) && "Invalid canonical representation"); 1567 1568 if (!Formulae.empty() && RigidFormula) 1569 return false; 1570 1571 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1572 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1573 // Unstable sort by host order ok, because this is only used for uniquifying. 1574 llvm::sort(Key); 1575 1576 if (!Uniquifier.insert(Key).second) 1577 return false; 1578 1579 // Using a register to hold the value of 0 is not profitable. 1580 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1581 "Zero allocated in a scaled register!"); 1582 #ifndef NDEBUG 1583 for (const SCEV *BaseReg : F.BaseRegs) 1584 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1585 #endif 1586 1587 // Add the formula to the list. 1588 Formulae.push_back(F); 1589 1590 // Record registers now being used by this use. 1591 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1592 if (F.ScaledReg) 1593 Regs.insert(F.ScaledReg); 1594 1595 return true; 1596 } 1597 1598 /// Remove the given formula from this use's list. 1599 void LSRUse::DeleteFormula(Formula &F) { 1600 if (&F != &Formulae.back()) 1601 std::swap(F, Formulae.back()); 1602 Formulae.pop_back(); 1603 } 1604 1605 /// Recompute the Regs field, and update RegUses. 1606 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1607 // Now that we've filtered out some formulae, recompute the Regs set. 1608 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1609 Regs.clear(); 1610 for (const Formula &F : Formulae) { 1611 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1612 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1613 } 1614 1615 // Update the RegTracker. 1616 for (const SCEV *S : OldRegs) 1617 if (!Regs.count(S)) 1618 RegUses.dropRegister(S, LUIdx); 1619 } 1620 1621 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1622 void LSRUse::print(raw_ostream &OS) const { 1623 OS << "LSR Use: Kind="; 1624 switch (Kind) { 1625 case Basic: OS << "Basic"; break; 1626 case Special: OS << "Special"; break; 1627 case ICmpZero: OS << "ICmpZero"; break; 1628 case Address: 1629 OS << "Address of "; 1630 if (AccessTy.MemTy->isPointerTy()) 1631 OS << "pointer"; // the full pointer type could be really verbose 1632 else { 1633 OS << *AccessTy.MemTy; 1634 } 1635 1636 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1637 } 1638 1639 OS << ", Offsets={"; 1640 bool NeedComma = false; 1641 for (const LSRFixup &Fixup : Fixups) { 1642 if (NeedComma) OS << ','; 1643 OS << Fixup.Offset; 1644 NeedComma = true; 1645 } 1646 OS << '}'; 1647 1648 if (AllFixupsOutsideLoop) 1649 OS << ", all-fixups-outside-loop"; 1650 1651 if (WidestFixupType) 1652 OS << ", widest fixup type: " << *WidestFixupType; 1653 } 1654 1655 LLVM_DUMP_METHOD void LSRUse::dump() const { 1656 print(errs()); errs() << '\n'; 1657 } 1658 #endif 1659 1660 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1661 LSRUse::KindType Kind, MemAccessTy AccessTy, 1662 GlobalValue *BaseGV, int64_t BaseOffset, 1663 bool HasBaseReg, int64_t Scale, 1664 Instruction *Fixup/*= nullptr*/) { 1665 switch (Kind) { 1666 case LSRUse::Address: 1667 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1668 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1669 1670 case LSRUse::ICmpZero: 1671 // There's not even a target hook for querying whether it would be legal to 1672 // fold a GV into an ICmp. 1673 if (BaseGV) 1674 return false; 1675 1676 // ICmp only has two operands; don't allow more than two non-trivial parts. 1677 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1678 return false; 1679 1680 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1681 // putting the scaled register in the other operand of the icmp. 1682 if (Scale != 0 && Scale != -1) 1683 return false; 1684 1685 // If we have low-level target information, ask the target if it can fold an 1686 // integer immediate on an icmp. 1687 if (BaseOffset != 0) { 1688 // We have one of: 1689 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1690 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1691 // Offs is the ICmp immediate. 1692 if (Scale == 0) 1693 // The cast does the right thing with 1694 // std::numeric_limits<int64_t>::min(). 1695 BaseOffset = -(uint64_t)BaseOffset; 1696 return TTI.isLegalICmpImmediate(BaseOffset); 1697 } 1698 1699 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1700 return true; 1701 1702 case LSRUse::Basic: 1703 // Only handle single-register values. 1704 return !BaseGV && Scale == 0 && BaseOffset == 0; 1705 1706 case LSRUse::Special: 1707 // Special case Basic to handle -1 scales. 1708 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1709 } 1710 1711 llvm_unreachable("Invalid LSRUse Kind!"); 1712 } 1713 1714 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1715 int64_t MinOffset, int64_t MaxOffset, 1716 LSRUse::KindType Kind, MemAccessTy AccessTy, 1717 GlobalValue *BaseGV, int64_t BaseOffset, 1718 bool HasBaseReg, int64_t Scale) { 1719 // Check for overflow. 1720 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1721 (MinOffset > 0)) 1722 return false; 1723 MinOffset = (uint64_t)BaseOffset + MinOffset; 1724 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1725 (MaxOffset > 0)) 1726 return false; 1727 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1728 1729 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1730 HasBaseReg, Scale) && 1731 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1732 HasBaseReg, Scale); 1733 } 1734 1735 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1736 int64_t MinOffset, int64_t MaxOffset, 1737 LSRUse::KindType Kind, MemAccessTy AccessTy, 1738 const Formula &F, const Loop &L) { 1739 // For the purpose of isAMCompletelyFolded either having a canonical formula 1740 // or a scale not equal to zero is correct. 1741 // Problems may arise from non canonical formulae having a scale == 0. 1742 // Strictly speaking it would best to just rely on canonical formulae. 1743 // However, when we generate the scaled formulae, we first check that the 1744 // scaling factor is profitable before computing the actual ScaledReg for 1745 // compile time sake. 1746 assert((F.isCanonical(L) || F.Scale != 0)); 1747 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1748 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1749 } 1750 1751 /// Test whether we know how to expand the current formula. 1752 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1753 int64_t MaxOffset, LSRUse::KindType Kind, 1754 MemAccessTy AccessTy, GlobalValue *BaseGV, 1755 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1756 // We know how to expand completely foldable formulae. 1757 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1758 BaseOffset, HasBaseReg, Scale) || 1759 // Or formulae that use a base register produced by a sum of base 1760 // registers. 1761 (Scale == 1 && 1762 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1763 BaseGV, BaseOffset, true, 0)); 1764 } 1765 1766 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1767 int64_t MaxOffset, LSRUse::KindType Kind, 1768 MemAccessTy AccessTy, const Formula &F) { 1769 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1770 F.BaseOffset, F.HasBaseReg, F.Scale); 1771 } 1772 1773 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1774 const LSRUse &LU, const Formula &F) { 1775 // Target may want to look at the user instructions. 1776 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1777 for (const LSRFixup &Fixup : LU.Fixups) 1778 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1779 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1780 F.Scale, Fixup.UserInst)) 1781 return false; 1782 return true; 1783 } 1784 1785 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1786 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1787 F.Scale); 1788 } 1789 1790 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1791 const LSRUse &LU, const Formula &F, 1792 const Loop &L) { 1793 if (!F.Scale) 1794 return 0; 1795 1796 // If the use is not completely folded in that instruction, we will have to 1797 // pay an extra cost only for scale != 1. 1798 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1799 LU.AccessTy, F, L)) 1800 return F.Scale != 1; 1801 1802 switch (LU.Kind) { 1803 case LSRUse::Address: { 1804 // Check the scaling factor cost with both the min and max offsets. 1805 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1806 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1807 F.Scale, LU.AccessTy.AddrSpace); 1808 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1809 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1810 F.Scale, LU.AccessTy.AddrSpace); 1811 1812 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1813 "Legal addressing mode has an illegal cost!"); 1814 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1815 } 1816 case LSRUse::ICmpZero: 1817 case LSRUse::Basic: 1818 case LSRUse::Special: 1819 // The use is completely folded, i.e., everything is folded into the 1820 // instruction. 1821 return 0; 1822 } 1823 1824 llvm_unreachable("Invalid LSRUse Kind!"); 1825 } 1826 1827 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1828 LSRUse::KindType Kind, MemAccessTy AccessTy, 1829 GlobalValue *BaseGV, int64_t BaseOffset, 1830 bool HasBaseReg) { 1831 // Fast-path: zero is always foldable. 1832 if (BaseOffset == 0 && !BaseGV) return true; 1833 1834 // Conservatively, create an address with an immediate and a 1835 // base and a scale. 1836 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1837 1838 // Canonicalize a scale of 1 to a base register if the formula doesn't 1839 // already have a base register. 1840 if (!HasBaseReg && Scale == 1) { 1841 Scale = 0; 1842 HasBaseReg = true; 1843 } 1844 1845 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1846 HasBaseReg, Scale); 1847 } 1848 1849 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1850 ScalarEvolution &SE, int64_t MinOffset, 1851 int64_t MaxOffset, LSRUse::KindType Kind, 1852 MemAccessTy AccessTy, const SCEV *S, 1853 bool HasBaseReg) { 1854 // Fast-path: zero is always foldable. 1855 if (S->isZero()) return true; 1856 1857 // Conservatively, create an address with an immediate and a 1858 // base and a scale. 1859 int64_t BaseOffset = ExtractImmediate(S, SE); 1860 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1861 1862 // If there's anything else involved, it's not foldable. 1863 if (!S->isZero()) return false; 1864 1865 // Fast-path: zero is always foldable. 1866 if (BaseOffset == 0 && !BaseGV) return true; 1867 1868 // Conservatively, create an address with an immediate and a 1869 // base and a scale. 1870 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1871 1872 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1873 BaseOffset, HasBaseReg, Scale); 1874 } 1875 1876 namespace { 1877 1878 /// An individual increment in a Chain of IV increments. Relate an IV user to 1879 /// an expression that computes the IV it uses from the IV used by the previous 1880 /// link in the Chain. 1881 /// 1882 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1883 /// original IVOperand. The head of the chain's IVOperand is only valid during 1884 /// chain collection, before LSR replaces IV users. During chain generation, 1885 /// IncExpr can be used to find the new IVOperand that computes the same 1886 /// expression. 1887 struct IVInc { 1888 Instruction *UserInst; 1889 Value* IVOperand; 1890 const SCEV *IncExpr; 1891 1892 IVInc(Instruction *U, Value *O, const SCEV *E) 1893 : UserInst(U), IVOperand(O), IncExpr(E) {} 1894 }; 1895 1896 // The list of IV increments in program order. We typically add the head of a 1897 // chain without finding subsequent links. 1898 struct IVChain { 1899 SmallVector<IVInc, 1> Incs; 1900 const SCEV *ExprBase = nullptr; 1901 1902 IVChain() = default; 1903 IVChain(const IVInc &Head, const SCEV *Base) 1904 : Incs(1, Head), ExprBase(Base) {} 1905 1906 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1907 1908 // Return the first increment in the chain. 1909 const_iterator begin() const { 1910 assert(!Incs.empty()); 1911 return std::next(Incs.begin()); 1912 } 1913 const_iterator end() const { 1914 return Incs.end(); 1915 } 1916 1917 // Returns true if this chain contains any increments. 1918 bool hasIncs() const { return Incs.size() >= 2; } 1919 1920 // Add an IVInc to the end of this chain. 1921 void add(const IVInc &X) { Incs.push_back(X); } 1922 1923 // Returns the last UserInst in the chain. 1924 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1925 1926 // Returns true if IncExpr can be profitably added to this chain. 1927 bool isProfitableIncrement(const SCEV *OperExpr, 1928 const SCEV *IncExpr, 1929 ScalarEvolution&); 1930 }; 1931 1932 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1933 /// between FarUsers that definitely cross IV increments and NearUsers that may 1934 /// be used between IV increments. 1935 struct ChainUsers { 1936 SmallPtrSet<Instruction*, 4> FarUsers; 1937 SmallPtrSet<Instruction*, 4> NearUsers; 1938 }; 1939 1940 /// This class holds state for the main loop strength reduction logic. 1941 class LSRInstance { 1942 IVUsers &IU; 1943 ScalarEvolution &SE; 1944 DominatorTree &DT; 1945 LoopInfo &LI; 1946 AssumptionCache &AC; 1947 TargetLibraryInfo &TLI; 1948 const TargetTransformInfo &TTI; 1949 Loop *const L; 1950 MemorySSAUpdater *MSSAU; 1951 TTI::AddressingModeKind AMK; 1952 bool Changed = false; 1953 1954 /// This is the insert position that the current loop's induction variable 1955 /// increment should be placed. In simple loops, this is the latch block's 1956 /// terminator. But in more complicated cases, this is a position which will 1957 /// dominate all the in-loop post-increment users. 1958 Instruction *IVIncInsertPos = nullptr; 1959 1960 /// Interesting factors between use strides. 1961 /// 1962 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1963 /// default, a SmallDenseSet, because we need to use the full range of 1964 /// int64_ts, and there's currently no good way of doing that with 1965 /// SmallDenseSet. 1966 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1967 1968 /// Interesting use types, to facilitate truncation reuse. 1969 SmallSetVector<Type *, 4> Types; 1970 1971 /// The list of interesting uses. 1972 mutable SmallVector<LSRUse, 16> Uses; 1973 1974 /// Track which uses use which register candidates. 1975 RegUseTracker RegUses; 1976 1977 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1978 // have more than a few IV increment chains in a loop. Missing a Chain falls 1979 // back to normal LSR behavior for those uses. 1980 static const unsigned MaxChains = 8; 1981 1982 /// IV users can form a chain of IV increments. 1983 SmallVector<IVChain, MaxChains> IVChainVec; 1984 1985 /// IV users that belong to profitable IVChains. 1986 SmallPtrSet<Use*, MaxChains> IVIncSet; 1987 1988 /// Induction variables that were generated and inserted by the SCEV Expander. 1989 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 1990 1991 void OptimizeShadowIV(); 1992 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1993 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1994 void OptimizeLoopTermCond(); 1995 1996 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1997 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1998 void FinalizeChain(IVChain &Chain); 1999 void CollectChains(); 2000 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2001 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2002 2003 void CollectInterestingTypesAndFactors(); 2004 void CollectFixupsAndInitialFormulae(); 2005 2006 // Support for sharing of LSRUses between LSRFixups. 2007 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2008 UseMapTy UseMap; 2009 2010 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2011 LSRUse::KindType Kind, MemAccessTy AccessTy); 2012 2013 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2014 MemAccessTy AccessTy); 2015 2016 void DeleteUse(LSRUse &LU, size_t LUIdx); 2017 2018 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2019 2020 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2021 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2022 void CountRegisters(const Formula &F, size_t LUIdx); 2023 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2024 2025 void CollectLoopInvariantFixupsAndFormulae(); 2026 2027 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2028 unsigned Depth = 0); 2029 2030 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2031 const Formula &Base, unsigned Depth, 2032 size_t Idx, bool IsScaledReg = false); 2033 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2034 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2035 const Formula &Base, size_t Idx, 2036 bool IsScaledReg = false); 2037 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2038 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2039 const Formula &Base, 2040 const SmallVectorImpl<int64_t> &Worklist, 2041 size_t Idx, bool IsScaledReg = false); 2042 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2043 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2044 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2045 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2046 void GenerateCrossUseConstantOffsets(); 2047 void GenerateAllReuseFormulae(); 2048 2049 void FilterOutUndesirableDedicatedRegisters(); 2050 2051 size_t EstimateSearchSpaceComplexity() const; 2052 void NarrowSearchSpaceByDetectingSupersets(); 2053 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2054 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2055 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2056 void NarrowSearchSpaceByFilterPostInc(); 2057 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2058 void NarrowSearchSpaceByPickingWinnerRegs(); 2059 void NarrowSearchSpaceUsingHeuristics(); 2060 2061 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2062 Cost &SolutionCost, 2063 SmallVectorImpl<const Formula *> &Workspace, 2064 const Cost &CurCost, 2065 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2066 DenseSet<const SCEV *> &VisitedRegs) const; 2067 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2068 2069 BasicBlock::iterator 2070 HoistInsertPosition(BasicBlock::iterator IP, 2071 const SmallVectorImpl<Instruction *> &Inputs) const; 2072 BasicBlock::iterator 2073 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2074 const LSRFixup &LF, 2075 const LSRUse &LU, 2076 SCEVExpander &Rewriter) const; 2077 2078 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2079 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2080 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2081 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2082 const Formula &F, SCEVExpander &Rewriter, 2083 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2084 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2085 SCEVExpander &Rewriter, 2086 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2087 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2088 2089 public: 2090 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2091 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2092 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2093 2094 bool getChanged() const { return Changed; } 2095 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2096 return ScalarEvolutionIVs; 2097 } 2098 2099 void print_factors_and_types(raw_ostream &OS) const; 2100 void print_fixups(raw_ostream &OS) const; 2101 void print_uses(raw_ostream &OS) const; 2102 void print(raw_ostream &OS) const; 2103 void dump() const; 2104 }; 2105 2106 } // end anonymous namespace 2107 2108 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2109 /// the cast operation. 2110 void LSRInstance::OptimizeShadowIV() { 2111 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2112 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2113 return; 2114 2115 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2116 UI != E; /* empty */) { 2117 IVUsers::const_iterator CandidateUI = UI; 2118 ++UI; 2119 Instruction *ShadowUse = CandidateUI->getUser(); 2120 Type *DestTy = nullptr; 2121 bool IsSigned = false; 2122 2123 /* If shadow use is a int->float cast then insert a second IV 2124 to eliminate this cast. 2125 2126 for (unsigned i = 0; i < n; ++i) 2127 foo((double)i); 2128 2129 is transformed into 2130 2131 double d = 0.0; 2132 for (unsigned i = 0; i < n; ++i, ++d) 2133 foo(d); 2134 */ 2135 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2136 IsSigned = false; 2137 DestTy = UCast->getDestTy(); 2138 } 2139 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2140 IsSigned = true; 2141 DestTy = SCast->getDestTy(); 2142 } 2143 if (!DestTy) continue; 2144 2145 // If target does not support DestTy natively then do not apply 2146 // this transformation. 2147 if (!TTI.isTypeLegal(DestTy)) continue; 2148 2149 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2150 if (!PH) continue; 2151 if (PH->getNumIncomingValues() != 2) continue; 2152 2153 // If the calculation in integers overflows, the result in FP type will 2154 // differ. So we only can do this transformation if we are guaranteed to not 2155 // deal with overflowing values 2156 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2157 if (!AR) continue; 2158 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2159 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2160 2161 Type *SrcTy = PH->getType(); 2162 int Mantissa = DestTy->getFPMantissaWidth(); 2163 if (Mantissa == -1) continue; 2164 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2165 continue; 2166 2167 unsigned Entry, Latch; 2168 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2169 Entry = 0; 2170 Latch = 1; 2171 } else { 2172 Entry = 1; 2173 Latch = 0; 2174 } 2175 2176 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2177 if (!Init) continue; 2178 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2179 (double)Init->getSExtValue() : 2180 (double)Init->getZExtValue()); 2181 2182 BinaryOperator *Incr = 2183 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2184 if (!Incr) continue; 2185 if (Incr->getOpcode() != Instruction::Add 2186 && Incr->getOpcode() != Instruction::Sub) 2187 continue; 2188 2189 /* Initialize new IV, double d = 0.0 in above example. */ 2190 ConstantInt *C = nullptr; 2191 if (Incr->getOperand(0) == PH) 2192 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2193 else if (Incr->getOperand(1) == PH) 2194 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2195 else 2196 continue; 2197 2198 if (!C) continue; 2199 2200 // Ignore negative constants, as the code below doesn't handle them 2201 // correctly. TODO: Remove this restriction. 2202 if (!C->getValue().isStrictlyPositive()) continue; 2203 2204 /* Add new PHINode. */ 2205 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2206 2207 /* create new increment. '++d' in above example. */ 2208 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2209 BinaryOperator *NewIncr = 2210 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2211 Instruction::FAdd : Instruction::FSub, 2212 NewPH, CFP, "IV.S.next.", Incr); 2213 2214 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2215 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2216 2217 /* Remove cast operation */ 2218 ShadowUse->replaceAllUsesWith(NewPH); 2219 ShadowUse->eraseFromParent(); 2220 Changed = true; 2221 break; 2222 } 2223 } 2224 2225 /// If Cond has an operand that is an expression of an IV, set the IV user and 2226 /// stride information and return true, otherwise return false. 2227 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2228 for (IVStrideUse &U : IU) 2229 if (U.getUser() == Cond) { 2230 // NOTE: we could handle setcc instructions with multiple uses here, but 2231 // InstCombine does it as well for simple uses, it's not clear that it 2232 // occurs enough in real life to handle. 2233 CondUse = &U; 2234 return true; 2235 } 2236 return false; 2237 } 2238 2239 /// Rewrite the loop's terminating condition if it uses a max computation. 2240 /// 2241 /// This is a narrow solution to a specific, but acute, problem. For loops 2242 /// like this: 2243 /// 2244 /// i = 0; 2245 /// do { 2246 /// p[i] = 0.0; 2247 /// } while (++i < n); 2248 /// 2249 /// the trip count isn't just 'n', because 'n' might not be positive. And 2250 /// unfortunately this can come up even for loops where the user didn't use 2251 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2252 /// will commonly be lowered like this: 2253 /// 2254 /// if (n > 0) { 2255 /// i = 0; 2256 /// do { 2257 /// p[i] = 0.0; 2258 /// } while (++i < n); 2259 /// } 2260 /// 2261 /// and then it's possible for subsequent optimization to obscure the if 2262 /// test in such a way that indvars can't find it. 2263 /// 2264 /// When indvars can't find the if test in loops like this, it creates a 2265 /// max expression, which allows it to give the loop a canonical 2266 /// induction variable: 2267 /// 2268 /// i = 0; 2269 /// max = n < 1 ? 1 : n; 2270 /// do { 2271 /// p[i] = 0.0; 2272 /// } while (++i != max); 2273 /// 2274 /// Canonical induction variables are necessary because the loop passes 2275 /// are designed around them. The most obvious example of this is the 2276 /// LoopInfo analysis, which doesn't remember trip count values. It 2277 /// expects to be able to rediscover the trip count each time it is 2278 /// needed, and it does this using a simple analysis that only succeeds if 2279 /// the loop has a canonical induction variable. 2280 /// 2281 /// However, when it comes time to generate code, the maximum operation 2282 /// can be quite costly, especially if it's inside of an outer loop. 2283 /// 2284 /// This function solves this problem by detecting this type of loop and 2285 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2286 /// the instructions for the maximum computation. 2287 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2288 // Check that the loop matches the pattern we're looking for. 2289 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2290 Cond->getPredicate() != CmpInst::ICMP_NE) 2291 return Cond; 2292 2293 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2294 if (!Sel || !Sel->hasOneUse()) return Cond; 2295 2296 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2297 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2298 return Cond; 2299 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2300 2301 // Add one to the backedge-taken count to get the trip count. 2302 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2303 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2304 2305 // Check for a max calculation that matches the pattern. There's no check 2306 // for ICMP_ULE here because the comparison would be with zero, which 2307 // isn't interesting. 2308 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2309 const SCEVNAryExpr *Max = nullptr; 2310 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2311 Pred = ICmpInst::ICMP_SLE; 2312 Max = S; 2313 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2314 Pred = ICmpInst::ICMP_SLT; 2315 Max = S; 2316 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2317 Pred = ICmpInst::ICMP_ULT; 2318 Max = U; 2319 } else { 2320 // No match; bail. 2321 return Cond; 2322 } 2323 2324 // To handle a max with more than two operands, this optimization would 2325 // require additional checking and setup. 2326 if (Max->getNumOperands() != 2) 2327 return Cond; 2328 2329 const SCEV *MaxLHS = Max->getOperand(0); 2330 const SCEV *MaxRHS = Max->getOperand(1); 2331 2332 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2333 // for a comparison with 1. For <= and >=, a comparison with zero. 2334 if (!MaxLHS || 2335 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2336 return Cond; 2337 2338 // Check the relevant induction variable for conformance to 2339 // the pattern. 2340 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2341 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2342 if (!AR || !AR->isAffine() || 2343 AR->getStart() != One || 2344 AR->getStepRecurrence(SE) != One) 2345 return Cond; 2346 2347 assert(AR->getLoop() == L && 2348 "Loop condition operand is an addrec in a different loop!"); 2349 2350 // Check the right operand of the select, and remember it, as it will 2351 // be used in the new comparison instruction. 2352 Value *NewRHS = nullptr; 2353 if (ICmpInst::isTrueWhenEqual(Pred)) { 2354 // Look for n+1, and grab n. 2355 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2356 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2357 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2358 NewRHS = BO->getOperand(0); 2359 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2360 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2361 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2362 NewRHS = BO->getOperand(0); 2363 if (!NewRHS) 2364 return Cond; 2365 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2366 NewRHS = Sel->getOperand(1); 2367 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2368 NewRHS = Sel->getOperand(2); 2369 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2370 NewRHS = SU->getValue(); 2371 else 2372 // Max doesn't match expected pattern. 2373 return Cond; 2374 2375 // Determine the new comparison opcode. It may be signed or unsigned, 2376 // and the original comparison may be either equality or inequality. 2377 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2378 Pred = CmpInst::getInversePredicate(Pred); 2379 2380 // Ok, everything looks ok to change the condition into an SLT or SGE and 2381 // delete the max calculation. 2382 ICmpInst *NewCond = 2383 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2384 2385 // Delete the max calculation instructions. 2386 NewCond->setDebugLoc(Cond->getDebugLoc()); 2387 Cond->replaceAllUsesWith(NewCond); 2388 CondUse->setUser(NewCond); 2389 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2390 Cond->eraseFromParent(); 2391 Sel->eraseFromParent(); 2392 if (Cmp->use_empty()) 2393 Cmp->eraseFromParent(); 2394 return NewCond; 2395 } 2396 2397 /// Change loop terminating condition to use the postinc iv when possible. 2398 void 2399 LSRInstance::OptimizeLoopTermCond() { 2400 SmallPtrSet<Instruction *, 4> PostIncs; 2401 2402 // We need a different set of heuristics for rotated and non-rotated loops. 2403 // If a loop is rotated then the latch is also the backedge, so inserting 2404 // post-inc expressions just before the latch is ideal. To reduce live ranges 2405 // it also makes sense to rewrite terminating conditions to use post-inc 2406 // expressions. 2407 // 2408 // If the loop is not rotated then the latch is not a backedge; the latch 2409 // check is done in the loop head. Adding post-inc expressions before the 2410 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2411 // in the loop body. In this case we do *not* want to use post-inc expressions 2412 // in the latch check, and we want to insert post-inc expressions before 2413 // the backedge. 2414 BasicBlock *LatchBlock = L->getLoopLatch(); 2415 SmallVector<BasicBlock*, 8> ExitingBlocks; 2416 L->getExitingBlocks(ExitingBlocks); 2417 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2418 return LatchBlock != BB; 2419 })) { 2420 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2421 IVIncInsertPos = LatchBlock->getTerminator(); 2422 return; 2423 } 2424 2425 // Otherwise treat this as a rotated loop. 2426 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2427 // Get the terminating condition for the loop if possible. If we 2428 // can, we want to change it to use a post-incremented version of its 2429 // induction variable, to allow coalescing the live ranges for the IV into 2430 // one register value. 2431 2432 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2433 if (!TermBr) 2434 continue; 2435 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2436 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2437 continue; 2438 2439 // Search IVUsesByStride to find Cond's IVUse if there is one. 2440 IVStrideUse *CondUse = nullptr; 2441 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2442 if (!FindIVUserForCond(Cond, CondUse)) 2443 continue; 2444 2445 // If the trip count is computed in terms of a max (due to ScalarEvolution 2446 // being unable to find a sufficient guard, for example), change the loop 2447 // comparison to use SLT or ULT instead of NE. 2448 // One consequence of doing this now is that it disrupts the count-down 2449 // optimization. That's not always a bad thing though, because in such 2450 // cases it may still be worthwhile to avoid a max. 2451 Cond = OptimizeMax(Cond, CondUse); 2452 2453 // If this exiting block dominates the latch block, it may also use 2454 // the post-inc value if it won't be shared with other uses. 2455 // Check for dominance. 2456 if (!DT.dominates(ExitingBlock, LatchBlock)) 2457 continue; 2458 2459 // Conservatively avoid trying to use the post-inc value in non-latch 2460 // exits if there may be pre-inc users in intervening blocks. 2461 if (LatchBlock != ExitingBlock) 2462 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2463 // Test if the use is reachable from the exiting block. This dominator 2464 // query is a conservative approximation of reachability. 2465 if (&*UI != CondUse && 2466 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2467 // Conservatively assume there may be reuse if the quotient of their 2468 // strides could be a legal scale. 2469 const SCEV *A = IU.getStride(*CondUse, L); 2470 const SCEV *B = IU.getStride(*UI, L); 2471 if (!A || !B) continue; 2472 if (SE.getTypeSizeInBits(A->getType()) != 2473 SE.getTypeSizeInBits(B->getType())) { 2474 if (SE.getTypeSizeInBits(A->getType()) > 2475 SE.getTypeSizeInBits(B->getType())) 2476 B = SE.getSignExtendExpr(B, A->getType()); 2477 else 2478 A = SE.getSignExtendExpr(A, B->getType()); 2479 } 2480 if (const SCEVConstant *D = 2481 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2482 const ConstantInt *C = D->getValue(); 2483 // Stride of one or negative one can have reuse with non-addresses. 2484 if (C->isOne() || C->isMinusOne()) 2485 goto decline_post_inc; 2486 // Avoid weird situations. 2487 if (C->getValue().getMinSignedBits() >= 64 || 2488 C->getValue().isMinSignedValue()) 2489 goto decline_post_inc; 2490 // Check for possible scaled-address reuse. 2491 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2492 MemAccessTy AccessTy = getAccessType( 2493 TTI, UI->getUser(), UI->getOperandValToReplace()); 2494 int64_t Scale = C->getSExtValue(); 2495 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2496 /*BaseOffset=*/0, 2497 /*HasBaseReg=*/false, Scale, 2498 AccessTy.AddrSpace)) 2499 goto decline_post_inc; 2500 Scale = -Scale; 2501 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2502 /*BaseOffset=*/0, 2503 /*HasBaseReg=*/false, Scale, 2504 AccessTy.AddrSpace)) 2505 goto decline_post_inc; 2506 } 2507 } 2508 } 2509 2510 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2511 << *Cond << '\n'); 2512 2513 // It's possible for the setcc instruction to be anywhere in the loop, and 2514 // possible for it to have multiple users. If it is not immediately before 2515 // the exiting block branch, move it. 2516 if (Cond->getNextNonDebugInstruction() != TermBr) { 2517 if (Cond->hasOneUse()) { 2518 Cond->moveBefore(TermBr); 2519 } else { 2520 // Clone the terminating condition and insert into the loopend. 2521 ICmpInst *OldCond = Cond; 2522 Cond = cast<ICmpInst>(Cond->clone()); 2523 Cond->setName(L->getHeader()->getName() + ".termcond"); 2524 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2525 2526 // Clone the IVUse, as the old use still exists! 2527 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2528 TermBr->replaceUsesOfWith(OldCond, Cond); 2529 } 2530 } 2531 2532 // If we get to here, we know that we can transform the setcc instruction to 2533 // use the post-incremented version of the IV, allowing us to coalesce the 2534 // live ranges for the IV correctly. 2535 CondUse->transformToPostInc(L); 2536 Changed = true; 2537 2538 PostIncs.insert(Cond); 2539 decline_post_inc:; 2540 } 2541 2542 // Determine an insertion point for the loop induction variable increment. It 2543 // must dominate all the post-inc comparisons we just set up, and it must 2544 // dominate the loop latch edge. 2545 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2546 for (Instruction *Inst : PostIncs) { 2547 BasicBlock *BB = 2548 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2549 Inst->getParent()); 2550 if (BB == Inst->getParent()) 2551 IVIncInsertPos = Inst; 2552 else if (BB != IVIncInsertPos->getParent()) 2553 IVIncInsertPos = BB->getTerminator(); 2554 } 2555 } 2556 2557 /// Determine if the given use can accommodate a fixup at the given offset and 2558 /// other details. If so, update the use and return true. 2559 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2560 bool HasBaseReg, LSRUse::KindType Kind, 2561 MemAccessTy AccessTy) { 2562 int64_t NewMinOffset = LU.MinOffset; 2563 int64_t NewMaxOffset = LU.MaxOffset; 2564 MemAccessTy NewAccessTy = AccessTy; 2565 2566 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2567 // something conservative, however this can pessimize in the case that one of 2568 // the uses will have all its uses outside the loop, for example. 2569 if (LU.Kind != Kind) 2570 return false; 2571 2572 // Check for a mismatched access type, and fall back conservatively as needed. 2573 // TODO: Be less conservative when the type is similar and can use the same 2574 // addressing modes. 2575 if (Kind == LSRUse::Address) { 2576 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2577 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2578 AccessTy.AddrSpace); 2579 } 2580 } 2581 2582 // Conservatively assume HasBaseReg is true for now. 2583 if (NewOffset < LU.MinOffset) { 2584 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2585 LU.MaxOffset - NewOffset, HasBaseReg)) 2586 return false; 2587 NewMinOffset = NewOffset; 2588 } else if (NewOffset > LU.MaxOffset) { 2589 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2590 NewOffset - LU.MinOffset, HasBaseReg)) 2591 return false; 2592 NewMaxOffset = NewOffset; 2593 } 2594 2595 // Update the use. 2596 LU.MinOffset = NewMinOffset; 2597 LU.MaxOffset = NewMaxOffset; 2598 LU.AccessTy = NewAccessTy; 2599 return true; 2600 } 2601 2602 /// Return an LSRUse index and an offset value for a fixup which needs the given 2603 /// expression, with the given kind and optional access type. Either reuse an 2604 /// existing use or create a new one, as needed. 2605 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2606 LSRUse::KindType Kind, 2607 MemAccessTy AccessTy) { 2608 const SCEV *Copy = Expr; 2609 int64_t Offset = ExtractImmediate(Expr, SE); 2610 2611 // Basic uses can't accept any offset, for example. 2612 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2613 Offset, /*HasBaseReg=*/ true)) { 2614 Expr = Copy; 2615 Offset = 0; 2616 } 2617 2618 std::pair<UseMapTy::iterator, bool> P = 2619 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2620 if (!P.second) { 2621 // A use already existed with this base. 2622 size_t LUIdx = P.first->second; 2623 LSRUse &LU = Uses[LUIdx]; 2624 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2625 // Reuse this use. 2626 return std::make_pair(LUIdx, Offset); 2627 } 2628 2629 // Create a new use. 2630 size_t LUIdx = Uses.size(); 2631 P.first->second = LUIdx; 2632 Uses.push_back(LSRUse(Kind, AccessTy)); 2633 LSRUse &LU = Uses[LUIdx]; 2634 2635 LU.MinOffset = Offset; 2636 LU.MaxOffset = Offset; 2637 return std::make_pair(LUIdx, Offset); 2638 } 2639 2640 /// Delete the given use from the Uses list. 2641 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2642 if (&LU != &Uses.back()) 2643 std::swap(LU, Uses.back()); 2644 Uses.pop_back(); 2645 2646 // Update RegUses. 2647 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2648 } 2649 2650 /// Look for a use distinct from OrigLU which is has a formula that has the same 2651 /// registers as the given formula. 2652 LSRUse * 2653 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2654 const LSRUse &OrigLU) { 2655 // Search all uses for the formula. This could be more clever. 2656 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2657 LSRUse &LU = Uses[LUIdx]; 2658 // Check whether this use is close enough to OrigLU, to see whether it's 2659 // worthwhile looking through its formulae. 2660 // Ignore ICmpZero uses because they may contain formulae generated by 2661 // GenerateICmpZeroScales, in which case adding fixup offsets may 2662 // be invalid. 2663 if (&LU != &OrigLU && 2664 LU.Kind != LSRUse::ICmpZero && 2665 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2666 LU.WidestFixupType == OrigLU.WidestFixupType && 2667 LU.HasFormulaWithSameRegs(OrigF)) { 2668 // Scan through this use's formulae. 2669 for (const Formula &F : LU.Formulae) { 2670 // Check to see if this formula has the same registers and symbols 2671 // as OrigF. 2672 if (F.BaseRegs == OrigF.BaseRegs && 2673 F.ScaledReg == OrigF.ScaledReg && 2674 F.BaseGV == OrigF.BaseGV && 2675 F.Scale == OrigF.Scale && 2676 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2677 if (F.BaseOffset == 0) 2678 return &LU; 2679 // This is the formula where all the registers and symbols matched; 2680 // there aren't going to be any others. Since we declined it, we 2681 // can skip the rest of the formulae and proceed to the next LSRUse. 2682 break; 2683 } 2684 } 2685 } 2686 } 2687 2688 // Nothing looked good. 2689 return nullptr; 2690 } 2691 2692 void LSRInstance::CollectInterestingTypesAndFactors() { 2693 SmallSetVector<const SCEV *, 4> Strides; 2694 2695 // Collect interesting types and strides. 2696 SmallVector<const SCEV *, 4> Worklist; 2697 for (const IVStrideUse &U : IU) { 2698 const SCEV *Expr = IU.getExpr(U); 2699 2700 // Collect interesting types. 2701 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2702 2703 // Add strides for mentioned loops. 2704 Worklist.push_back(Expr); 2705 do { 2706 const SCEV *S = Worklist.pop_back_val(); 2707 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2708 if (AR->getLoop() == L) 2709 Strides.insert(AR->getStepRecurrence(SE)); 2710 Worklist.push_back(AR->getStart()); 2711 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2712 Worklist.append(Add->op_begin(), Add->op_end()); 2713 } 2714 } while (!Worklist.empty()); 2715 } 2716 2717 // Compute interesting factors from the set of interesting strides. 2718 for (SmallSetVector<const SCEV *, 4>::const_iterator 2719 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2720 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2721 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2722 const SCEV *OldStride = *I; 2723 const SCEV *NewStride = *NewStrideIter; 2724 2725 if (SE.getTypeSizeInBits(OldStride->getType()) != 2726 SE.getTypeSizeInBits(NewStride->getType())) { 2727 if (SE.getTypeSizeInBits(OldStride->getType()) > 2728 SE.getTypeSizeInBits(NewStride->getType())) 2729 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2730 else 2731 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2732 } 2733 if (const SCEVConstant *Factor = 2734 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2735 SE, true))) { 2736 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2737 Factors.insert(Factor->getAPInt().getSExtValue()); 2738 } else if (const SCEVConstant *Factor = 2739 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2740 NewStride, 2741 SE, true))) { 2742 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2743 Factors.insert(Factor->getAPInt().getSExtValue()); 2744 } 2745 } 2746 2747 // If all uses use the same type, don't bother looking for truncation-based 2748 // reuse. 2749 if (Types.size() == 1) 2750 Types.clear(); 2751 2752 LLVM_DEBUG(print_factors_and_types(dbgs())); 2753 } 2754 2755 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2756 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2757 /// IVStrideUses, we could partially skip this. 2758 static User::op_iterator 2759 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2760 Loop *L, ScalarEvolution &SE) { 2761 for(; OI != OE; ++OI) { 2762 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2763 if (!SE.isSCEVable(Oper->getType())) 2764 continue; 2765 2766 if (const SCEVAddRecExpr *AR = 2767 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2768 if (AR->getLoop() == L) 2769 break; 2770 } 2771 } 2772 } 2773 return OI; 2774 } 2775 2776 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2777 /// a convenient helper. 2778 static Value *getWideOperand(Value *Oper) { 2779 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2780 return Trunc->getOperand(0); 2781 return Oper; 2782 } 2783 2784 /// Return true if we allow an IV chain to include both types. 2785 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2786 Type *LType = LVal->getType(); 2787 Type *RType = RVal->getType(); 2788 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2789 // Different address spaces means (possibly) 2790 // different types of the pointer implementation, 2791 // e.g. i16 vs i32 so disallow that. 2792 (LType->getPointerAddressSpace() == 2793 RType->getPointerAddressSpace())); 2794 } 2795 2796 /// Return an approximation of this SCEV expression's "base", or NULL for any 2797 /// constant. Returning the expression itself is conservative. Returning a 2798 /// deeper subexpression is more precise and valid as long as it isn't less 2799 /// complex than another subexpression. For expressions involving multiple 2800 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2801 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2802 /// IVInc==b-a. 2803 /// 2804 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2805 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2806 static const SCEV *getExprBase(const SCEV *S) { 2807 switch (S->getSCEVType()) { 2808 default: // uncluding scUnknown. 2809 return S; 2810 case scConstant: 2811 return nullptr; 2812 case scTruncate: 2813 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2814 case scZeroExtend: 2815 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2816 case scSignExtend: 2817 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2818 case scAddExpr: { 2819 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2820 // there's nothing more complex. 2821 // FIXME: not sure if we want to recognize negation. 2822 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2823 for (const SCEV *SubExpr : reverse(Add->operands())) { 2824 if (SubExpr->getSCEVType() == scAddExpr) 2825 return getExprBase(SubExpr); 2826 2827 if (SubExpr->getSCEVType() != scMulExpr) 2828 return SubExpr; 2829 } 2830 return S; // all operands are scaled, be conservative. 2831 } 2832 case scAddRecExpr: 2833 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2834 } 2835 llvm_unreachable("Unknown SCEV kind!"); 2836 } 2837 2838 /// Return true if the chain increment is profitable to expand into a loop 2839 /// invariant value, which may require its own register. A profitable chain 2840 /// increment will be an offset relative to the same base. We allow such offsets 2841 /// to potentially be used as chain increment as long as it's not obviously 2842 /// expensive to expand using real instructions. 2843 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2844 const SCEV *IncExpr, 2845 ScalarEvolution &SE) { 2846 // Aggressively form chains when -stress-ivchain. 2847 if (StressIVChain) 2848 return true; 2849 2850 // Do not replace a constant offset from IV head with a nonconstant IV 2851 // increment. 2852 if (!isa<SCEVConstant>(IncExpr)) { 2853 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2854 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2855 return false; 2856 } 2857 2858 SmallPtrSet<const SCEV*, 8> Processed; 2859 return !isHighCostExpansion(IncExpr, Processed, SE); 2860 } 2861 2862 /// Return true if the number of registers needed for the chain is estimated to 2863 /// be less than the number required for the individual IV users. First prohibit 2864 /// any IV users that keep the IV live across increments (the Users set should 2865 /// be empty). Next count the number and type of increments in the chain. 2866 /// 2867 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2868 /// effectively use postinc addressing modes. Only consider it profitable it the 2869 /// increments can be computed in fewer registers when chained. 2870 /// 2871 /// TODO: Consider IVInc free if it's already used in another chains. 2872 static bool isProfitableChain(IVChain &Chain, 2873 SmallPtrSetImpl<Instruction *> &Users, 2874 ScalarEvolution &SE, 2875 const TargetTransformInfo &TTI) { 2876 if (StressIVChain) 2877 return true; 2878 2879 if (!Chain.hasIncs()) 2880 return false; 2881 2882 if (!Users.empty()) { 2883 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2884 for (Instruction *Inst 2885 : Users) { dbgs() << " " << *Inst << "\n"; }); 2886 return false; 2887 } 2888 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2889 2890 // The chain itself may require a register, so intialize cost to 1. 2891 int cost = 1; 2892 2893 // A complete chain likely eliminates the need for keeping the original IV in 2894 // a register. LSR does not currently know how to form a complete chain unless 2895 // the header phi already exists. 2896 if (isa<PHINode>(Chain.tailUserInst()) 2897 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2898 --cost; 2899 } 2900 const SCEV *LastIncExpr = nullptr; 2901 unsigned NumConstIncrements = 0; 2902 unsigned NumVarIncrements = 0; 2903 unsigned NumReusedIncrements = 0; 2904 2905 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2906 return true; 2907 2908 for (const IVInc &Inc : Chain) { 2909 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2910 return true; 2911 if (Inc.IncExpr->isZero()) 2912 continue; 2913 2914 // Incrementing by zero or some constant is neutral. We assume constants can 2915 // be folded into an addressing mode or an add's immediate operand. 2916 if (isa<SCEVConstant>(Inc.IncExpr)) { 2917 ++NumConstIncrements; 2918 continue; 2919 } 2920 2921 if (Inc.IncExpr == LastIncExpr) 2922 ++NumReusedIncrements; 2923 else 2924 ++NumVarIncrements; 2925 2926 LastIncExpr = Inc.IncExpr; 2927 } 2928 // An IV chain with a single increment is handled by LSR's postinc 2929 // uses. However, a chain with multiple increments requires keeping the IV's 2930 // value live longer than it needs to be if chained. 2931 if (NumConstIncrements > 1) 2932 --cost; 2933 2934 // Materializing increment expressions in the preheader that didn't exist in 2935 // the original code may cost a register. For example, sign-extended array 2936 // indices can produce ridiculous increments like this: 2937 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2938 cost += NumVarIncrements; 2939 2940 // Reusing variable increments likely saves a register to hold the multiple of 2941 // the stride. 2942 cost -= NumReusedIncrements; 2943 2944 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2945 << "\n"); 2946 2947 return cost < 0; 2948 } 2949 2950 /// Add this IV user to an existing chain or make it the head of a new chain. 2951 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2952 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2953 // When IVs are used as types of varying widths, they are generally converted 2954 // to a wider type with some uses remaining narrow under a (free) trunc. 2955 Value *const NextIV = getWideOperand(IVOper); 2956 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2957 const SCEV *const OperExprBase = getExprBase(OperExpr); 2958 2959 // Visit all existing chains. Check if its IVOper can be computed as a 2960 // profitable loop invariant increment from the last link in the Chain. 2961 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2962 const SCEV *LastIncExpr = nullptr; 2963 for (; ChainIdx < NChains; ++ChainIdx) { 2964 IVChain &Chain = IVChainVec[ChainIdx]; 2965 2966 // Prune the solution space aggressively by checking that both IV operands 2967 // are expressions that operate on the same unscaled SCEVUnknown. This 2968 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2969 // first avoids creating extra SCEV expressions. 2970 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2971 continue; 2972 2973 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2974 if (!isCompatibleIVType(PrevIV, NextIV)) 2975 continue; 2976 2977 // A phi node terminates a chain. 2978 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2979 continue; 2980 2981 // The increment must be loop-invariant so it can be kept in a register. 2982 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2983 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2984 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2985 continue; 2986 2987 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2988 LastIncExpr = IncExpr; 2989 break; 2990 } 2991 } 2992 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2993 // bother for phi nodes, because they must be last in the chain. 2994 if (ChainIdx == NChains) { 2995 if (isa<PHINode>(UserInst)) 2996 return; 2997 if (NChains >= MaxChains && !StressIVChain) { 2998 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2999 return; 3000 } 3001 LastIncExpr = OperExpr; 3002 // IVUsers may have skipped over sign/zero extensions. We don't currently 3003 // attempt to form chains involving extensions unless they can be hoisted 3004 // into this loop's AddRec. 3005 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3006 return; 3007 ++NChains; 3008 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3009 OperExprBase)); 3010 ChainUsersVec.resize(NChains); 3011 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3012 << ") IV=" << *LastIncExpr << "\n"); 3013 } else { 3014 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3015 << ") IV+" << *LastIncExpr << "\n"); 3016 // Add this IV user to the end of the chain. 3017 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3018 } 3019 IVChain &Chain = IVChainVec[ChainIdx]; 3020 3021 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3022 // This chain's NearUsers become FarUsers. 3023 if (!LastIncExpr->isZero()) { 3024 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3025 NearUsers.end()); 3026 NearUsers.clear(); 3027 } 3028 3029 // All other uses of IVOperand become near uses of the chain. 3030 // We currently ignore intermediate values within SCEV expressions, assuming 3031 // they will eventually be used be the current chain, or can be computed 3032 // from one of the chain increments. To be more precise we could 3033 // transitively follow its user and only add leaf IV users to the set. 3034 for (User *U : IVOper->users()) { 3035 Instruction *OtherUse = dyn_cast<Instruction>(U); 3036 if (!OtherUse) 3037 continue; 3038 // Uses in the chain will no longer be uses if the chain is formed. 3039 // Include the head of the chain in this iteration (not Chain.begin()). 3040 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3041 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3042 for( ; IncIter != IncEnd; ++IncIter) { 3043 if (IncIter->UserInst == OtherUse) 3044 break; 3045 } 3046 if (IncIter != IncEnd) 3047 continue; 3048 3049 if (SE.isSCEVable(OtherUse->getType()) 3050 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3051 && IU.isIVUserOrOperand(OtherUse)) { 3052 continue; 3053 } 3054 NearUsers.insert(OtherUse); 3055 } 3056 3057 // Since this user is part of the chain, it's no longer considered a use 3058 // of the chain. 3059 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3060 } 3061 3062 /// Populate the vector of Chains. 3063 /// 3064 /// This decreases ILP at the architecture level. Targets with ample registers, 3065 /// multiple memory ports, and no register renaming probably don't want 3066 /// this. However, such targets should probably disable LSR altogether. 3067 /// 3068 /// The job of LSR is to make a reasonable choice of induction variables across 3069 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3070 /// ILP *within the loop* if the target wants it. 3071 /// 3072 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3073 /// will not reorder memory operations, it will recognize this as a chain, but 3074 /// will generate redundant IV increments. Ideally this would be corrected later 3075 /// by a smart scheduler: 3076 /// = A[i] 3077 /// = A[i+x] 3078 /// A[i] = 3079 /// A[i+x] = 3080 /// 3081 /// TODO: Walk the entire domtree within this loop, not just the path to the 3082 /// loop latch. This will discover chains on side paths, but requires 3083 /// maintaining multiple copies of the Chains state. 3084 void LSRInstance::CollectChains() { 3085 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3086 SmallVector<ChainUsers, 8> ChainUsersVec; 3087 3088 SmallVector<BasicBlock *,8> LatchPath; 3089 BasicBlock *LoopHeader = L->getHeader(); 3090 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3091 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3092 LatchPath.push_back(Rung->getBlock()); 3093 } 3094 LatchPath.push_back(LoopHeader); 3095 3096 // Walk the instruction stream from the loop header to the loop latch. 3097 for (BasicBlock *BB : reverse(LatchPath)) { 3098 for (Instruction &I : *BB) { 3099 // Skip instructions that weren't seen by IVUsers analysis. 3100 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3101 continue; 3102 3103 // Ignore users that are part of a SCEV expression. This way we only 3104 // consider leaf IV Users. This effectively rediscovers a portion of 3105 // IVUsers analysis but in program order this time. 3106 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3107 continue; 3108 3109 // Remove this instruction from any NearUsers set it may be in. 3110 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3111 ChainIdx < NChains; ++ChainIdx) { 3112 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3113 } 3114 // Search for operands that can be chained. 3115 SmallPtrSet<Instruction*, 4> UniqueOperands; 3116 User::op_iterator IVOpEnd = I.op_end(); 3117 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3118 while (IVOpIter != IVOpEnd) { 3119 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3120 if (UniqueOperands.insert(IVOpInst).second) 3121 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3122 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3123 } 3124 } // Continue walking down the instructions. 3125 } // Continue walking down the domtree. 3126 // Visit phi backedges to determine if the chain can generate the IV postinc. 3127 for (PHINode &PN : L->getHeader()->phis()) { 3128 if (!SE.isSCEVable(PN.getType())) 3129 continue; 3130 3131 Instruction *IncV = 3132 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3133 if (IncV) 3134 ChainInstruction(&PN, IncV, ChainUsersVec); 3135 } 3136 // Remove any unprofitable chains. 3137 unsigned ChainIdx = 0; 3138 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3139 UsersIdx < NChains; ++UsersIdx) { 3140 if (!isProfitableChain(IVChainVec[UsersIdx], 3141 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3142 continue; 3143 // Preserve the chain at UsesIdx. 3144 if (ChainIdx != UsersIdx) 3145 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3146 FinalizeChain(IVChainVec[ChainIdx]); 3147 ++ChainIdx; 3148 } 3149 IVChainVec.resize(ChainIdx); 3150 } 3151 3152 void LSRInstance::FinalizeChain(IVChain &Chain) { 3153 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3154 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3155 3156 for (const IVInc &Inc : Chain) { 3157 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3158 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3159 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3160 IVIncSet.insert(UseI); 3161 } 3162 } 3163 3164 /// Return true if the IVInc can be folded into an addressing mode. 3165 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3166 Value *Operand, const TargetTransformInfo &TTI) { 3167 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3168 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3169 return false; 3170 3171 if (IncConst->getAPInt().getMinSignedBits() > 64) 3172 return false; 3173 3174 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3175 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3176 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3177 IncOffset, /*HasBaseReg=*/false)) 3178 return false; 3179 3180 return true; 3181 } 3182 3183 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3184 /// user's operand from the previous IV user's operand. 3185 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3186 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3187 // Find the new IVOperand for the head of the chain. It may have been replaced 3188 // by LSR. 3189 const IVInc &Head = Chain.Incs[0]; 3190 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3191 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3192 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3193 IVOpEnd, L, SE); 3194 Value *IVSrc = nullptr; 3195 while (IVOpIter != IVOpEnd) { 3196 IVSrc = getWideOperand(*IVOpIter); 3197 3198 // If this operand computes the expression that the chain needs, we may use 3199 // it. (Check this after setting IVSrc which is used below.) 3200 // 3201 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3202 // narrow for the chain, so we can no longer use it. We do allow using a 3203 // wider phi, assuming the LSR checked for free truncation. In that case we 3204 // should already have a truncate on this operand such that 3205 // getSCEV(IVSrc) == IncExpr. 3206 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3207 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3208 break; 3209 } 3210 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3211 } 3212 if (IVOpIter == IVOpEnd) { 3213 // Gracefully give up on this chain. 3214 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3215 return; 3216 } 3217 assert(IVSrc && "Failed to find IV chain source"); 3218 3219 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3220 Type *IVTy = IVSrc->getType(); 3221 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3222 const SCEV *LeftOverExpr = nullptr; 3223 for (const IVInc &Inc : Chain) { 3224 Instruction *InsertPt = Inc.UserInst; 3225 if (isa<PHINode>(InsertPt)) 3226 InsertPt = L->getLoopLatch()->getTerminator(); 3227 3228 // IVOper will replace the current IV User's operand. IVSrc is the IV 3229 // value currently held in a register. 3230 Value *IVOper = IVSrc; 3231 if (!Inc.IncExpr->isZero()) { 3232 // IncExpr was the result of subtraction of two narrow values, so must 3233 // be signed. 3234 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3235 LeftOverExpr = LeftOverExpr ? 3236 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3237 } 3238 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3239 // Expand the IV increment. 3240 Rewriter.clearPostInc(); 3241 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3242 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3243 SE.getUnknown(IncV)); 3244 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3245 3246 // If an IV increment can't be folded, use it as the next IV value. 3247 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3248 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3249 IVSrc = IVOper; 3250 LeftOverExpr = nullptr; 3251 } 3252 } 3253 Type *OperTy = Inc.IVOperand->getType(); 3254 if (IVTy != OperTy) { 3255 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3256 "cannot extend a chained IV"); 3257 IRBuilder<> Builder(InsertPt); 3258 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3259 } 3260 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3261 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3262 DeadInsts.emplace_back(OperandIsInstr); 3263 } 3264 // If LSR created a new, wider phi, we may also replace its postinc. We only 3265 // do this if we also found a wide value for the head of the chain. 3266 if (isa<PHINode>(Chain.tailUserInst())) { 3267 for (PHINode &Phi : L->getHeader()->phis()) { 3268 if (!isCompatibleIVType(&Phi, IVSrc)) 3269 continue; 3270 Instruction *PostIncV = dyn_cast<Instruction>( 3271 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3272 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3273 continue; 3274 Value *IVOper = IVSrc; 3275 Type *PostIncTy = PostIncV->getType(); 3276 if (IVTy != PostIncTy) { 3277 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3278 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3279 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3280 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3281 } 3282 Phi.replaceUsesOfWith(PostIncV, IVOper); 3283 DeadInsts.emplace_back(PostIncV); 3284 } 3285 } 3286 } 3287 3288 void LSRInstance::CollectFixupsAndInitialFormulae() { 3289 BranchInst *ExitBranch = nullptr; 3290 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3291 3292 for (const IVStrideUse &U : IU) { 3293 Instruction *UserInst = U.getUser(); 3294 // Skip IV users that are part of profitable IV Chains. 3295 User::op_iterator UseI = 3296 find(UserInst->operands(), U.getOperandValToReplace()); 3297 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3298 if (IVIncSet.count(UseI)) { 3299 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3300 continue; 3301 } 3302 3303 LSRUse::KindType Kind = LSRUse::Basic; 3304 MemAccessTy AccessTy; 3305 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3306 Kind = LSRUse::Address; 3307 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3308 } 3309 3310 const SCEV *S = IU.getExpr(U); 3311 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3312 3313 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3314 // (N - i == 0), and this allows (N - i) to be the expression that we work 3315 // with rather than just N or i, so we can consider the register 3316 // requirements for both N and i at the same time. Limiting this code to 3317 // equality icmps is not a problem because all interesting loops use 3318 // equality icmps, thanks to IndVarSimplify. 3319 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3320 // If CI can be saved in some target, like replaced inside hardware loop 3321 // in PowerPC, no need to generate initial formulae for it. 3322 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3323 continue; 3324 if (CI->isEquality()) { 3325 // Swap the operands if needed to put the OperandValToReplace on the 3326 // left, for consistency. 3327 Value *NV = CI->getOperand(1); 3328 if (NV == U.getOperandValToReplace()) { 3329 CI->setOperand(1, CI->getOperand(0)); 3330 CI->setOperand(0, NV); 3331 NV = CI->getOperand(1); 3332 Changed = true; 3333 } 3334 3335 // x == y --> x - y == 0 3336 const SCEV *N = SE.getSCEV(NV); 3337 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3338 (!NV->getType()->isPointerTy() || 3339 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3340 // S is normalized, so normalize N before folding it into S 3341 // to keep the result normalized. 3342 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3343 Kind = LSRUse::ICmpZero; 3344 S = SE.getMinusSCEV(N, S); 3345 } 3346 3347 // -1 and the negations of all interesting strides (except the negation 3348 // of -1) are now also interesting. 3349 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3350 if (Factors[i] != -1) 3351 Factors.insert(-(uint64_t)Factors[i]); 3352 Factors.insert(-1); 3353 } 3354 } 3355 3356 // Get or create an LSRUse. 3357 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3358 size_t LUIdx = P.first; 3359 int64_t Offset = P.second; 3360 LSRUse &LU = Uses[LUIdx]; 3361 3362 // Record the fixup. 3363 LSRFixup &LF = LU.getNewFixup(); 3364 LF.UserInst = UserInst; 3365 LF.OperandValToReplace = U.getOperandValToReplace(); 3366 LF.PostIncLoops = TmpPostIncLoops; 3367 LF.Offset = Offset; 3368 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3369 3370 if (!LU.WidestFixupType || 3371 SE.getTypeSizeInBits(LU.WidestFixupType) < 3372 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3373 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3374 3375 // If this is the first use of this LSRUse, give it a formula. 3376 if (LU.Formulae.empty()) { 3377 InsertInitialFormula(S, LU, LUIdx); 3378 CountRegisters(LU.Formulae.back(), LUIdx); 3379 } 3380 } 3381 3382 LLVM_DEBUG(print_fixups(dbgs())); 3383 } 3384 3385 /// Insert a formula for the given expression into the given use, separating out 3386 /// loop-variant portions from loop-invariant and loop-computable portions. 3387 void 3388 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3389 // Mark uses whose expressions cannot be expanded. 3390 if (!isSafeToExpand(S, SE, /*CanonicalMode*/ false)) 3391 LU.RigidFormula = true; 3392 3393 Formula F; 3394 F.initialMatch(S, L, SE); 3395 bool Inserted = InsertFormula(LU, LUIdx, F); 3396 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3397 } 3398 3399 /// Insert a simple single-register formula for the given expression into the 3400 /// given use. 3401 void 3402 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3403 LSRUse &LU, size_t LUIdx) { 3404 Formula F; 3405 F.BaseRegs.push_back(S); 3406 F.HasBaseReg = true; 3407 bool Inserted = InsertFormula(LU, LUIdx, F); 3408 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3409 } 3410 3411 /// Note which registers are used by the given formula, updating RegUses. 3412 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3413 if (F.ScaledReg) 3414 RegUses.countRegister(F.ScaledReg, LUIdx); 3415 for (const SCEV *BaseReg : F.BaseRegs) 3416 RegUses.countRegister(BaseReg, LUIdx); 3417 } 3418 3419 /// If the given formula has not yet been inserted, add it to the list, and 3420 /// return true. Return false otherwise. 3421 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3422 // Do not insert formula that we will not be able to expand. 3423 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3424 "Formula is illegal"); 3425 3426 if (!LU.InsertFormula(F, *L)) 3427 return false; 3428 3429 CountRegisters(F, LUIdx); 3430 return true; 3431 } 3432 3433 /// Check for other uses of loop-invariant values which we're tracking. These 3434 /// other uses will pin these values in registers, making them less profitable 3435 /// for elimination. 3436 /// TODO: This currently misses non-constant addrec step registers. 3437 /// TODO: Should this give more weight to users inside the loop? 3438 void 3439 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3440 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3441 SmallPtrSet<const SCEV *, 32> Visited; 3442 3443 while (!Worklist.empty()) { 3444 const SCEV *S = Worklist.pop_back_val(); 3445 3446 // Don't process the same SCEV twice 3447 if (!Visited.insert(S).second) 3448 continue; 3449 3450 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3451 Worklist.append(N->op_begin(), N->op_end()); 3452 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3453 Worklist.push_back(C->getOperand()); 3454 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3455 Worklist.push_back(D->getLHS()); 3456 Worklist.push_back(D->getRHS()); 3457 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3458 const Value *V = US->getValue(); 3459 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3460 // Look for instructions defined outside the loop. 3461 if (L->contains(Inst)) continue; 3462 } else if (isa<UndefValue>(V)) 3463 // Undef doesn't have a live range, so it doesn't matter. 3464 continue; 3465 for (const Use &U : V->uses()) { 3466 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3467 // Ignore non-instructions. 3468 if (!UserInst) 3469 continue; 3470 // Don't bother if the instruction is an EHPad. 3471 if (UserInst->isEHPad()) 3472 continue; 3473 // Ignore instructions in other functions (as can happen with 3474 // Constants). 3475 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3476 continue; 3477 // Ignore instructions not dominated by the loop. 3478 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3479 UserInst->getParent() : 3480 cast<PHINode>(UserInst)->getIncomingBlock( 3481 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3482 if (!DT.dominates(L->getHeader(), UseBB)) 3483 continue; 3484 // Don't bother if the instruction is in a BB which ends in an EHPad. 3485 if (UseBB->getTerminator()->isEHPad()) 3486 continue; 3487 3488 // Ignore cases in which the currently-examined value could come from 3489 // a basic block terminated with an EHPad. This checks all incoming 3490 // blocks of the phi node since it is possible that the same incoming 3491 // value comes from multiple basic blocks, only some of which may end 3492 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3493 // pass would try to insert instructions into an EHPad, hitting an 3494 // assertion. 3495 if (isa<PHINode>(UserInst)) { 3496 const auto *PhiNode = cast<PHINode>(UserInst); 3497 bool HasIncompatibleEHPTerminatedBlock = false; 3498 llvm::Value *ExpectedValue = U; 3499 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3500 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3501 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3502 HasIncompatibleEHPTerminatedBlock = true; 3503 break; 3504 } 3505 } 3506 } 3507 if (HasIncompatibleEHPTerminatedBlock) { 3508 continue; 3509 } 3510 } 3511 3512 // Don't bother rewriting PHIs in catchswitch blocks. 3513 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3514 continue; 3515 // Ignore uses which are part of other SCEV expressions, to avoid 3516 // analyzing them multiple times. 3517 if (SE.isSCEVable(UserInst->getType())) { 3518 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3519 // If the user is a no-op, look through to its uses. 3520 if (!isa<SCEVUnknown>(UserS)) 3521 continue; 3522 if (UserS == US) { 3523 Worklist.push_back( 3524 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3525 continue; 3526 } 3527 } 3528 // Ignore icmp instructions which are already being analyzed. 3529 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3530 unsigned OtherIdx = !U.getOperandNo(); 3531 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3532 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3533 continue; 3534 } 3535 3536 std::pair<size_t, int64_t> P = getUse( 3537 S, LSRUse::Basic, MemAccessTy()); 3538 size_t LUIdx = P.first; 3539 int64_t Offset = P.second; 3540 LSRUse &LU = Uses[LUIdx]; 3541 LSRFixup &LF = LU.getNewFixup(); 3542 LF.UserInst = const_cast<Instruction *>(UserInst); 3543 LF.OperandValToReplace = U; 3544 LF.Offset = Offset; 3545 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3546 if (!LU.WidestFixupType || 3547 SE.getTypeSizeInBits(LU.WidestFixupType) < 3548 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3549 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3550 InsertSupplementalFormula(US, LU, LUIdx); 3551 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3552 break; 3553 } 3554 } 3555 } 3556 } 3557 3558 /// Split S into subexpressions which can be pulled out into separate 3559 /// registers. If C is non-null, multiply each subexpression by C. 3560 /// 3561 /// Return remainder expression after factoring the subexpressions captured by 3562 /// Ops. If Ops is complete, return NULL. 3563 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3564 SmallVectorImpl<const SCEV *> &Ops, 3565 const Loop *L, 3566 ScalarEvolution &SE, 3567 unsigned Depth = 0) { 3568 // Arbitrarily cap recursion to protect compile time. 3569 if (Depth >= 3) 3570 return S; 3571 3572 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3573 // Break out add operands. 3574 for (const SCEV *S : Add->operands()) { 3575 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3576 if (Remainder) 3577 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3578 } 3579 return nullptr; 3580 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3581 // Split a non-zero base out of an addrec. 3582 if (AR->getStart()->isZero() || !AR->isAffine()) 3583 return S; 3584 3585 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3586 C, Ops, L, SE, Depth+1); 3587 // Split the non-zero AddRec unless it is part of a nested recurrence that 3588 // does not pertain to this loop. 3589 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3590 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3591 Remainder = nullptr; 3592 } 3593 if (Remainder != AR->getStart()) { 3594 if (!Remainder) 3595 Remainder = SE.getConstant(AR->getType(), 0); 3596 return SE.getAddRecExpr(Remainder, 3597 AR->getStepRecurrence(SE), 3598 AR->getLoop(), 3599 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3600 SCEV::FlagAnyWrap); 3601 } 3602 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3603 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3604 if (Mul->getNumOperands() != 2) 3605 return S; 3606 if (const SCEVConstant *Op0 = 3607 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3608 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3609 const SCEV *Remainder = 3610 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3611 if (Remainder) 3612 Ops.push_back(SE.getMulExpr(C, Remainder)); 3613 return nullptr; 3614 } 3615 } 3616 return S; 3617 } 3618 3619 /// Return true if the SCEV represents a value that may end up as a 3620 /// post-increment operation. 3621 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3622 LSRUse &LU, const SCEV *S, const Loop *L, 3623 ScalarEvolution &SE) { 3624 if (LU.Kind != LSRUse::Address || 3625 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3626 return false; 3627 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3628 if (!AR) 3629 return false; 3630 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3631 if (!isa<SCEVConstant>(LoopStep)) 3632 return false; 3633 // Check if a post-indexed load/store can be used. 3634 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3635 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3636 const SCEV *LoopStart = AR->getStart(); 3637 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3638 return true; 3639 } 3640 return false; 3641 } 3642 3643 /// Helper function for LSRInstance::GenerateReassociations. 3644 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3645 const Formula &Base, 3646 unsigned Depth, size_t Idx, 3647 bool IsScaledReg) { 3648 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3649 // Don't generate reassociations for the base register of a value that 3650 // may generate a post-increment operator. The reason is that the 3651 // reassociations cause extra base+register formula to be created, 3652 // and possibly chosen, but the post-increment is more efficient. 3653 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3654 return; 3655 SmallVector<const SCEV *, 8> AddOps; 3656 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3657 if (Remainder) 3658 AddOps.push_back(Remainder); 3659 3660 if (AddOps.size() == 1) 3661 return; 3662 3663 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3664 JE = AddOps.end(); 3665 J != JE; ++J) { 3666 // Loop-variant "unknown" values are uninteresting; we won't be able to 3667 // do anything meaningful with them. 3668 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3669 continue; 3670 3671 // Don't pull a constant into a register if the constant could be folded 3672 // into an immediate field. 3673 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3674 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3675 continue; 3676 3677 // Collect all operands except *J. 3678 SmallVector<const SCEV *, 8> InnerAddOps( 3679 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3680 InnerAddOps.append(std::next(J), 3681 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3682 3683 // Don't leave just a constant behind in a register if the constant could 3684 // be folded into an immediate field. 3685 if (InnerAddOps.size() == 1 && 3686 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3687 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3688 continue; 3689 3690 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3691 if (InnerSum->isZero()) 3692 continue; 3693 Formula F = Base; 3694 3695 // Add the remaining pieces of the add back into the new formula. 3696 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3697 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3698 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3699 InnerSumSC->getValue()->getZExtValue())) { 3700 F.UnfoldedOffset = 3701 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3702 if (IsScaledReg) 3703 F.ScaledReg = nullptr; 3704 else 3705 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3706 } else if (IsScaledReg) 3707 F.ScaledReg = InnerSum; 3708 else 3709 F.BaseRegs[Idx] = InnerSum; 3710 3711 // Add J as its own register, or an unfolded immediate. 3712 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3713 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3714 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3715 SC->getValue()->getZExtValue())) 3716 F.UnfoldedOffset = 3717 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3718 else 3719 F.BaseRegs.push_back(*J); 3720 // We may have changed the number of register in base regs, adjust the 3721 // formula accordingly. 3722 F.canonicalize(*L); 3723 3724 if (InsertFormula(LU, LUIdx, F)) 3725 // If that formula hadn't been seen before, recurse to find more like 3726 // it. 3727 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3728 // Because just Depth is not enough to bound compile time. 3729 // This means that every time AddOps.size() is greater 16^x we will add 3730 // x to Depth. 3731 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3732 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3733 } 3734 } 3735 3736 /// Split out subexpressions from adds and the bases of addrecs. 3737 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3738 Formula Base, unsigned Depth) { 3739 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3740 // Arbitrarily cap recursion to protect compile time. 3741 if (Depth >= 3) 3742 return; 3743 3744 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3745 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3746 3747 if (Base.Scale == 1) 3748 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3749 /* Idx */ -1, /* IsScaledReg */ true); 3750 } 3751 3752 /// Generate a formula consisting of all of the loop-dominating registers added 3753 /// into a single register. 3754 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3755 Formula Base) { 3756 // This method is only interesting on a plurality of registers. 3757 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3758 (Base.UnfoldedOffset != 0) <= 1) 3759 return; 3760 3761 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3762 // processing the formula. 3763 Base.unscale(); 3764 SmallVector<const SCEV *, 4> Ops; 3765 Formula NewBase = Base; 3766 NewBase.BaseRegs.clear(); 3767 Type *CombinedIntegerType = nullptr; 3768 for (const SCEV *BaseReg : Base.BaseRegs) { 3769 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3770 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3771 if (!CombinedIntegerType) 3772 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3773 Ops.push_back(BaseReg); 3774 } 3775 else 3776 NewBase.BaseRegs.push_back(BaseReg); 3777 } 3778 3779 // If no register is relevant, we're done. 3780 if (Ops.size() == 0) 3781 return; 3782 3783 // Utility function for generating the required variants of the combined 3784 // registers. 3785 auto GenerateFormula = [&](const SCEV *Sum) { 3786 Formula F = NewBase; 3787 3788 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3789 // opportunity to fold something. For now, just ignore such cases 3790 // rather than proceed with zero in a register. 3791 if (Sum->isZero()) 3792 return; 3793 3794 F.BaseRegs.push_back(Sum); 3795 F.canonicalize(*L); 3796 (void)InsertFormula(LU, LUIdx, F); 3797 }; 3798 3799 // If we collected at least two registers, generate a formula combining them. 3800 if (Ops.size() > 1) { 3801 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3802 GenerateFormula(SE.getAddExpr(OpsCopy)); 3803 } 3804 3805 // If we have an unfolded offset, generate a formula combining it with the 3806 // registers collected. 3807 if (NewBase.UnfoldedOffset) { 3808 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3809 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3810 true)); 3811 NewBase.UnfoldedOffset = 0; 3812 GenerateFormula(SE.getAddExpr(Ops)); 3813 } 3814 } 3815 3816 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3817 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3818 const Formula &Base, size_t Idx, 3819 bool IsScaledReg) { 3820 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3821 GlobalValue *GV = ExtractSymbol(G, SE); 3822 if (G->isZero() || !GV) 3823 return; 3824 Formula F = Base; 3825 F.BaseGV = GV; 3826 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3827 return; 3828 if (IsScaledReg) 3829 F.ScaledReg = G; 3830 else 3831 F.BaseRegs[Idx] = G; 3832 (void)InsertFormula(LU, LUIdx, F); 3833 } 3834 3835 /// Generate reuse formulae using symbolic offsets. 3836 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3837 Formula Base) { 3838 // We can't add a symbolic offset if the address already contains one. 3839 if (Base.BaseGV) return; 3840 3841 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3842 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3843 if (Base.Scale == 1) 3844 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3845 /* IsScaledReg */ true); 3846 } 3847 3848 /// Helper function for LSRInstance::GenerateConstantOffsets. 3849 void LSRInstance::GenerateConstantOffsetsImpl( 3850 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3851 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3852 3853 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3854 Formula F = Base; 3855 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3856 3857 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3858 // Add the offset to the base register. 3859 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3860 // If it cancelled out, drop the base register, otherwise update it. 3861 if (NewG->isZero()) { 3862 if (IsScaledReg) { 3863 F.Scale = 0; 3864 F.ScaledReg = nullptr; 3865 } else 3866 F.deleteBaseReg(F.BaseRegs[Idx]); 3867 F.canonicalize(*L); 3868 } else if (IsScaledReg) 3869 F.ScaledReg = NewG; 3870 else 3871 F.BaseRegs[Idx] = NewG; 3872 3873 (void)InsertFormula(LU, LUIdx, F); 3874 } 3875 }; 3876 3877 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3878 3879 // With constant offsets and constant steps, we can generate pre-inc 3880 // accesses by having the offset equal the step. So, for access #0 with a 3881 // step of 8, we generate a G - 8 base which would require the first access 3882 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3883 // for itself and hopefully becomes the base for other accesses. This means 3884 // means that a single pre-indexed access can be generated to become the new 3885 // base pointer for each iteration of the loop, resulting in no extra add/sub 3886 // instructions for pointer updating. 3887 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3888 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3889 if (auto *StepRec = 3890 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3891 const APInt &StepInt = StepRec->getAPInt(); 3892 int64_t Step = StepInt.isNegative() ? 3893 StepInt.getSExtValue() : StepInt.getZExtValue(); 3894 3895 for (int64_t Offset : Worklist) { 3896 Offset -= Step; 3897 GenerateOffset(G, Offset); 3898 } 3899 } 3900 } 3901 } 3902 for (int64_t Offset : Worklist) 3903 GenerateOffset(G, Offset); 3904 3905 int64_t Imm = ExtractImmediate(G, SE); 3906 if (G->isZero() || Imm == 0) 3907 return; 3908 Formula F = Base; 3909 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3910 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3911 return; 3912 if (IsScaledReg) { 3913 F.ScaledReg = G; 3914 } else { 3915 F.BaseRegs[Idx] = G; 3916 // We may generate non canonical Formula if G is a recurrent expr reg 3917 // related with current loop while F.ScaledReg is not. 3918 F.canonicalize(*L); 3919 } 3920 (void)InsertFormula(LU, LUIdx, F); 3921 } 3922 3923 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3924 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3925 Formula Base) { 3926 // TODO: For now, just add the min and max offset, because it usually isn't 3927 // worthwhile looking at everything inbetween. 3928 SmallVector<int64_t, 2> Worklist; 3929 Worklist.push_back(LU.MinOffset); 3930 if (LU.MaxOffset != LU.MinOffset) 3931 Worklist.push_back(LU.MaxOffset); 3932 3933 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3934 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3935 if (Base.Scale == 1) 3936 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3937 /* IsScaledReg */ true); 3938 } 3939 3940 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3941 /// == y -> x*c == y*c. 3942 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3943 Formula Base) { 3944 if (LU.Kind != LSRUse::ICmpZero) return; 3945 3946 // Determine the integer type for the base formula. 3947 Type *IntTy = Base.getType(); 3948 if (!IntTy) return; 3949 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3950 3951 // Don't do this if there is more than one offset. 3952 if (LU.MinOffset != LU.MaxOffset) return; 3953 3954 // Check if transformation is valid. It is illegal to multiply pointer. 3955 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3956 return; 3957 for (const SCEV *BaseReg : Base.BaseRegs) 3958 if (BaseReg->getType()->isPointerTy()) 3959 return; 3960 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3961 3962 // Check each interesting stride. 3963 for (int64_t Factor : Factors) { 3964 // Check that Factor can be represented by IntTy 3965 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 3966 continue; 3967 // Check that the multiplication doesn't overflow. 3968 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3969 continue; 3970 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3971 assert(Factor != 0 && "Zero factor not expected!"); 3972 if (NewBaseOffset / Factor != Base.BaseOffset) 3973 continue; 3974 // If the offset will be truncated at this use, check that it is in bounds. 3975 if (!IntTy->isPointerTy() && 3976 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3977 continue; 3978 3979 // Check that multiplying with the use offset doesn't overflow. 3980 int64_t Offset = LU.MinOffset; 3981 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3982 continue; 3983 Offset = (uint64_t)Offset * Factor; 3984 if (Offset / Factor != LU.MinOffset) 3985 continue; 3986 // If the offset will be truncated at this use, check that it is in bounds. 3987 if (!IntTy->isPointerTy() && 3988 !ConstantInt::isValueValidForType(IntTy, Offset)) 3989 continue; 3990 3991 Formula F = Base; 3992 F.BaseOffset = NewBaseOffset; 3993 3994 // Check that this scale is legal. 3995 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3996 continue; 3997 3998 // Compensate for the use having MinOffset built into it. 3999 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 4000 4001 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4002 4003 // Check that multiplying with each base register doesn't overflow. 4004 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4005 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4006 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4007 goto next; 4008 } 4009 4010 // Check that multiplying with the scaled register doesn't overflow. 4011 if (F.ScaledReg) { 4012 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4013 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4014 continue; 4015 } 4016 4017 // Check that multiplying with the unfolded offset doesn't overflow. 4018 if (F.UnfoldedOffset != 0) { 4019 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 4020 Factor == -1) 4021 continue; 4022 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 4023 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 4024 continue; 4025 // If the offset will be truncated, check that it is in bounds. 4026 if (!IntTy->isPointerTy() && 4027 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 4028 continue; 4029 } 4030 4031 // If we make it here and it's legal, add it. 4032 (void)InsertFormula(LU, LUIdx, F); 4033 next:; 4034 } 4035 } 4036 4037 /// Generate stride factor reuse formulae by making use of scaled-offset address 4038 /// modes, for example. 4039 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4040 // Determine the integer type for the base formula. 4041 Type *IntTy = Base.getType(); 4042 if (!IntTy) return; 4043 4044 // If this Formula already has a scaled register, we can't add another one. 4045 // Try to unscale the formula to generate a better scale. 4046 if (Base.Scale != 0 && !Base.unscale()) 4047 return; 4048 4049 assert(Base.Scale == 0 && "unscale did not did its job!"); 4050 4051 // Check each interesting stride. 4052 for (int64_t Factor : Factors) { 4053 Base.Scale = Factor; 4054 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4055 // Check whether this scale is going to be legal. 4056 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4057 Base)) { 4058 // As a special-case, handle special out-of-loop Basic users specially. 4059 // TODO: Reconsider this special case. 4060 if (LU.Kind == LSRUse::Basic && 4061 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4062 LU.AccessTy, Base) && 4063 LU.AllFixupsOutsideLoop) 4064 LU.Kind = LSRUse::Special; 4065 else 4066 continue; 4067 } 4068 // For an ICmpZero, negating a solitary base register won't lead to 4069 // new solutions. 4070 if (LU.Kind == LSRUse::ICmpZero && 4071 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4072 continue; 4073 // For each addrec base reg, if its loop is current loop, apply the scale. 4074 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4075 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4076 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4077 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4078 if (FactorS->isZero()) 4079 continue; 4080 // Divide out the factor, ignoring high bits, since we'll be 4081 // scaling the value back up in the end. 4082 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4083 // TODO: This could be optimized to avoid all the copying. 4084 Formula F = Base; 4085 F.ScaledReg = Quotient; 4086 F.deleteBaseReg(F.BaseRegs[i]); 4087 // The canonical representation of 1*reg is reg, which is already in 4088 // Base. In that case, do not try to insert the formula, it will be 4089 // rejected anyway. 4090 if (F.Scale == 1 && (F.BaseRegs.empty() || 4091 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4092 continue; 4093 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4094 // non canonical Formula with ScaledReg's loop not being L. 4095 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4096 F.canonicalize(*L); 4097 (void)InsertFormula(LU, LUIdx, F); 4098 } 4099 } 4100 } 4101 } 4102 } 4103 4104 /// Generate reuse formulae from different IV types. 4105 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4106 // Don't bother truncating symbolic values. 4107 if (Base.BaseGV) return; 4108 4109 // Determine the integer type for the base formula. 4110 Type *DstTy = Base.getType(); 4111 if (!DstTy) return; 4112 if (DstTy->isPointerTy()) 4113 return; 4114 4115 // It is invalid to extend a pointer type so exit early if ScaledReg or 4116 // any of the BaseRegs are pointers. 4117 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4118 return; 4119 if (any_of(Base.BaseRegs, 4120 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4121 return; 4122 4123 for (Type *SrcTy : Types) { 4124 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4125 Formula F = Base; 4126 4127 // Sometimes SCEV is able to prove zero during ext transform. It may 4128 // happen if SCEV did not do all possible transforms while creating the 4129 // initial node (maybe due to depth limitations), but it can do them while 4130 // taking ext. 4131 if (F.ScaledReg) { 4132 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4133 if (NewScaledReg->isZero()) 4134 continue; 4135 F.ScaledReg = NewScaledReg; 4136 } 4137 bool HasZeroBaseReg = false; 4138 for (const SCEV *&BaseReg : F.BaseRegs) { 4139 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4140 if (NewBaseReg->isZero()) { 4141 HasZeroBaseReg = true; 4142 break; 4143 } 4144 BaseReg = NewBaseReg; 4145 } 4146 if (HasZeroBaseReg) 4147 continue; 4148 4149 // TODO: This assumes we've done basic processing on all uses and 4150 // have an idea what the register usage is. 4151 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4152 continue; 4153 4154 F.canonicalize(*L); 4155 (void)InsertFormula(LU, LUIdx, F); 4156 } 4157 } 4158 } 4159 4160 namespace { 4161 4162 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4163 /// modifications so that the search phase doesn't have to worry about the data 4164 /// structures moving underneath it. 4165 struct WorkItem { 4166 size_t LUIdx; 4167 int64_t Imm; 4168 const SCEV *OrigReg; 4169 4170 WorkItem(size_t LI, int64_t I, const SCEV *R) 4171 : LUIdx(LI), Imm(I), OrigReg(R) {} 4172 4173 void print(raw_ostream &OS) const; 4174 void dump() const; 4175 }; 4176 4177 } // end anonymous namespace 4178 4179 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4180 void WorkItem::print(raw_ostream &OS) const { 4181 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4182 << " , add offset " << Imm; 4183 } 4184 4185 LLVM_DUMP_METHOD void WorkItem::dump() const { 4186 print(errs()); errs() << '\n'; 4187 } 4188 #endif 4189 4190 /// Look for registers which are a constant distance apart and try to form reuse 4191 /// opportunities between them. 4192 void LSRInstance::GenerateCrossUseConstantOffsets() { 4193 // Group the registers by their value without any added constant offset. 4194 using ImmMapTy = std::map<int64_t, const SCEV *>; 4195 4196 DenseMap<const SCEV *, ImmMapTy> Map; 4197 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4198 SmallVector<const SCEV *, 8> Sequence; 4199 for (const SCEV *Use : RegUses) { 4200 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4201 int64_t Imm = ExtractImmediate(Reg, SE); 4202 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4203 if (Pair.second) 4204 Sequence.push_back(Reg); 4205 Pair.first->second.insert(std::make_pair(Imm, Use)); 4206 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4207 } 4208 4209 // Now examine each set of registers with the same base value. Build up 4210 // a list of work to do and do the work in a separate step so that we're 4211 // not adding formulae and register counts while we're searching. 4212 SmallVector<WorkItem, 32> WorkItems; 4213 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4214 for (const SCEV *Reg : Sequence) { 4215 const ImmMapTy &Imms = Map.find(Reg)->second; 4216 4217 // It's not worthwhile looking for reuse if there's only one offset. 4218 if (Imms.size() == 1) 4219 continue; 4220 4221 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4222 for (const auto &Entry 4223 : Imms) dbgs() 4224 << ' ' << Entry.first; 4225 dbgs() << '\n'); 4226 4227 // Examine each offset. 4228 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4229 J != JE; ++J) { 4230 const SCEV *OrigReg = J->second; 4231 4232 int64_t JImm = J->first; 4233 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4234 4235 if (!isa<SCEVConstant>(OrigReg) && 4236 UsedByIndicesMap[Reg].count() == 1) { 4237 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4238 << '\n'); 4239 continue; 4240 } 4241 4242 // Conservatively examine offsets between this orig reg a few selected 4243 // other orig regs. 4244 int64_t First = Imms.begin()->first; 4245 int64_t Last = std::prev(Imms.end())->first; 4246 // Compute (First + Last) / 2 without overflow using the fact that 4247 // First + Last = 2 * (First + Last) + (First ^ Last). 4248 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4249 // If the result is negative and First is odd and Last even (or vice versa), 4250 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4251 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4252 ImmMapTy::const_iterator OtherImms[] = { 4253 Imms.begin(), std::prev(Imms.end()), 4254 Imms.lower_bound(Avg)}; 4255 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4256 ImmMapTy::const_iterator M = OtherImms[i]; 4257 if (M == J || M == JE) continue; 4258 4259 // Compute the difference between the two. 4260 int64_t Imm = (uint64_t)JImm - M->first; 4261 for (unsigned LUIdx : UsedByIndices.set_bits()) 4262 // Make a memo of this use, offset, and register tuple. 4263 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4264 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4265 } 4266 } 4267 } 4268 4269 Map.clear(); 4270 Sequence.clear(); 4271 UsedByIndicesMap.clear(); 4272 UniqueItems.clear(); 4273 4274 // Now iterate through the worklist and add new formulae. 4275 for (const WorkItem &WI : WorkItems) { 4276 size_t LUIdx = WI.LUIdx; 4277 LSRUse &LU = Uses[LUIdx]; 4278 int64_t Imm = WI.Imm; 4279 const SCEV *OrigReg = WI.OrigReg; 4280 4281 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4282 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4283 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4284 4285 // TODO: Use a more targeted data structure. 4286 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4287 Formula F = LU.Formulae[L]; 4288 // FIXME: The code for the scaled and unscaled registers looks 4289 // very similar but slightly different. Investigate if they 4290 // could be merged. That way, we would not have to unscale the 4291 // Formula. 4292 F.unscale(); 4293 // Use the immediate in the scaled register. 4294 if (F.ScaledReg == OrigReg) { 4295 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4296 // Don't create 50 + reg(-50). 4297 if (F.referencesReg(SE.getSCEV( 4298 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4299 continue; 4300 Formula NewF = F; 4301 NewF.BaseOffset = Offset; 4302 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4303 NewF)) 4304 continue; 4305 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4306 4307 // If the new scale is a constant in a register, and adding the constant 4308 // value to the immediate would produce a value closer to zero than the 4309 // immediate itself, then the formula isn't worthwhile. 4310 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4311 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4312 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4313 .ule(std::abs(NewF.BaseOffset))) 4314 continue; 4315 4316 // OK, looks good. 4317 NewF.canonicalize(*this->L); 4318 (void)InsertFormula(LU, LUIdx, NewF); 4319 } else { 4320 // Use the immediate in a base register. 4321 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4322 const SCEV *BaseReg = F.BaseRegs[N]; 4323 if (BaseReg != OrigReg) 4324 continue; 4325 Formula NewF = F; 4326 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4327 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4328 LU.Kind, LU.AccessTy, NewF)) { 4329 if (AMK == TTI::AMK_PostIndexed && 4330 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4331 continue; 4332 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4333 continue; 4334 NewF = F; 4335 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4336 } 4337 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4338 4339 // If the new formula has a constant in a register, and adding the 4340 // constant value to the immediate would produce a value closer to 4341 // zero than the immediate itself, then the formula isn't worthwhile. 4342 for (const SCEV *NewReg : NewF.BaseRegs) 4343 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4344 if ((C->getAPInt() + NewF.BaseOffset) 4345 .abs() 4346 .slt(std::abs(NewF.BaseOffset)) && 4347 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4348 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4349 goto skip_formula; 4350 4351 // Ok, looks good. 4352 NewF.canonicalize(*this->L); 4353 (void)InsertFormula(LU, LUIdx, NewF); 4354 break; 4355 skip_formula:; 4356 } 4357 } 4358 } 4359 } 4360 } 4361 4362 /// Generate formulae for each use. 4363 void 4364 LSRInstance::GenerateAllReuseFormulae() { 4365 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4366 // queries are more precise. 4367 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4368 LSRUse &LU = Uses[LUIdx]; 4369 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4370 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4371 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4372 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4373 } 4374 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4375 LSRUse &LU = Uses[LUIdx]; 4376 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4377 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4378 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4379 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4380 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4381 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4382 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4383 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4384 } 4385 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4386 LSRUse &LU = Uses[LUIdx]; 4387 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4388 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4389 } 4390 4391 GenerateCrossUseConstantOffsets(); 4392 4393 LLVM_DEBUG(dbgs() << "\n" 4394 "After generating reuse formulae:\n"; 4395 print_uses(dbgs())); 4396 } 4397 4398 /// If there are multiple formulae with the same set of registers used 4399 /// by other uses, pick the best one and delete the others. 4400 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4401 DenseSet<const SCEV *> VisitedRegs; 4402 SmallPtrSet<const SCEV *, 16> Regs; 4403 SmallPtrSet<const SCEV *, 16> LoserRegs; 4404 #ifndef NDEBUG 4405 bool ChangedFormulae = false; 4406 #endif 4407 4408 // Collect the best formula for each unique set of shared registers. This 4409 // is reset for each use. 4410 using BestFormulaeTy = 4411 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4412 4413 BestFormulaeTy BestFormulae; 4414 4415 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4416 LSRUse &LU = Uses[LUIdx]; 4417 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4418 dbgs() << '\n'); 4419 4420 bool Any = false; 4421 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4422 FIdx != NumForms; ++FIdx) { 4423 Formula &F = LU.Formulae[FIdx]; 4424 4425 // Some formulas are instant losers. For example, they may depend on 4426 // nonexistent AddRecs from other loops. These need to be filtered 4427 // immediately, otherwise heuristics could choose them over others leading 4428 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4429 // avoids the need to recompute this information across formulae using the 4430 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4431 // the corresponding bad register from the Regs set. 4432 Cost CostF(L, SE, TTI, AMK); 4433 Regs.clear(); 4434 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4435 if (CostF.isLoser()) { 4436 // During initial formula generation, undesirable formulae are generated 4437 // by uses within other loops that have some non-trivial address mode or 4438 // use the postinc form of the IV. LSR needs to provide these formulae 4439 // as the basis of rediscovering the desired formula that uses an AddRec 4440 // corresponding to the existing phi. Once all formulae have been 4441 // generated, these initial losers may be pruned. 4442 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4443 dbgs() << "\n"); 4444 } 4445 else { 4446 SmallVector<const SCEV *, 4> Key; 4447 for (const SCEV *Reg : F.BaseRegs) { 4448 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4449 Key.push_back(Reg); 4450 } 4451 if (F.ScaledReg && 4452 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4453 Key.push_back(F.ScaledReg); 4454 // Unstable sort by host order ok, because this is only used for 4455 // uniquifying. 4456 llvm::sort(Key); 4457 4458 std::pair<BestFormulaeTy::const_iterator, bool> P = 4459 BestFormulae.insert(std::make_pair(Key, FIdx)); 4460 if (P.second) 4461 continue; 4462 4463 Formula &Best = LU.Formulae[P.first->second]; 4464 4465 Cost CostBest(L, SE, TTI, AMK); 4466 Regs.clear(); 4467 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4468 if (CostF.isLess(CostBest)) 4469 std::swap(F, Best); 4470 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4471 dbgs() << "\n" 4472 " in favor of formula "; 4473 Best.print(dbgs()); dbgs() << '\n'); 4474 } 4475 #ifndef NDEBUG 4476 ChangedFormulae = true; 4477 #endif 4478 LU.DeleteFormula(F); 4479 --FIdx; 4480 --NumForms; 4481 Any = true; 4482 } 4483 4484 // Now that we've filtered out some formulae, recompute the Regs set. 4485 if (Any) 4486 LU.RecomputeRegs(LUIdx, RegUses); 4487 4488 // Reset this to prepare for the next use. 4489 BestFormulae.clear(); 4490 } 4491 4492 LLVM_DEBUG(if (ChangedFormulae) { 4493 dbgs() << "\n" 4494 "After filtering out undesirable candidates:\n"; 4495 print_uses(dbgs()); 4496 }); 4497 } 4498 4499 /// Estimate the worst-case number of solutions the solver might have to 4500 /// consider. It almost never considers this many solutions because it prune the 4501 /// search space, but the pruning isn't always sufficient. 4502 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4503 size_t Power = 1; 4504 for (const LSRUse &LU : Uses) { 4505 size_t FSize = LU.Formulae.size(); 4506 if (FSize >= ComplexityLimit) { 4507 Power = ComplexityLimit; 4508 break; 4509 } 4510 Power *= FSize; 4511 if (Power >= ComplexityLimit) 4512 break; 4513 } 4514 return Power; 4515 } 4516 4517 /// When one formula uses a superset of the registers of another formula, it 4518 /// won't help reduce register pressure (though it may not necessarily hurt 4519 /// register pressure); remove it to simplify the system. 4520 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4521 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4522 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4523 4524 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4525 "which use a superset of registers used by other " 4526 "formulae.\n"); 4527 4528 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4529 LSRUse &LU = Uses[LUIdx]; 4530 bool Any = false; 4531 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4532 Formula &F = LU.Formulae[i]; 4533 // Look for a formula with a constant or GV in a register. If the use 4534 // also has a formula with that same value in an immediate field, 4535 // delete the one that uses a register. 4536 for (SmallVectorImpl<const SCEV *>::const_iterator 4537 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4538 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4539 Formula NewF = F; 4540 //FIXME: Formulas should store bitwidth to do wrapping properly. 4541 // See PR41034. 4542 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4543 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4544 (I - F.BaseRegs.begin())); 4545 if (LU.HasFormulaWithSameRegs(NewF)) { 4546 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4547 dbgs() << '\n'); 4548 LU.DeleteFormula(F); 4549 --i; 4550 --e; 4551 Any = true; 4552 break; 4553 } 4554 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4555 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4556 if (!F.BaseGV) { 4557 Formula NewF = F; 4558 NewF.BaseGV = GV; 4559 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4560 (I - F.BaseRegs.begin())); 4561 if (LU.HasFormulaWithSameRegs(NewF)) { 4562 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4563 dbgs() << '\n'); 4564 LU.DeleteFormula(F); 4565 --i; 4566 --e; 4567 Any = true; 4568 break; 4569 } 4570 } 4571 } 4572 } 4573 } 4574 if (Any) 4575 LU.RecomputeRegs(LUIdx, RegUses); 4576 } 4577 4578 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4579 } 4580 } 4581 4582 /// When there are many registers for expressions like A, A+1, A+2, etc., 4583 /// allocate a single register for them. 4584 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4585 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4586 return; 4587 4588 LLVM_DEBUG( 4589 dbgs() << "The search space is too complex.\n" 4590 "Narrowing the search space by assuming that uses separated " 4591 "by a constant offset will use the same registers.\n"); 4592 4593 // This is especially useful for unrolled loops. 4594 4595 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4596 LSRUse &LU = Uses[LUIdx]; 4597 for (const Formula &F : LU.Formulae) { 4598 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4599 continue; 4600 4601 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4602 if (!LUThatHas) 4603 continue; 4604 4605 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4606 LU.Kind, LU.AccessTy)) 4607 continue; 4608 4609 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4610 4611 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4612 4613 // Transfer the fixups of LU to LUThatHas. 4614 for (LSRFixup &Fixup : LU.Fixups) { 4615 Fixup.Offset += F.BaseOffset; 4616 LUThatHas->pushFixup(Fixup); 4617 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4618 } 4619 4620 // Delete formulae from the new use which are no longer legal. 4621 bool Any = false; 4622 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4623 Formula &F = LUThatHas->Formulae[i]; 4624 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4625 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4626 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4627 LUThatHas->DeleteFormula(F); 4628 --i; 4629 --e; 4630 Any = true; 4631 } 4632 } 4633 4634 if (Any) 4635 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4636 4637 // Delete the old use. 4638 DeleteUse(LU, LUIdx); 4639 --LUIdx; 4640 --NumUses; 4641 break; 4642 } 4643 } 4644 4645 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4646 } 4647 4648 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4649 /// we've done more filtering, as it may be able to find more formulae to 4650 /// eliminate. 4651 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4652 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4653 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4654 4655 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4656 "undesirable dedicated registers.\n"); 4657 4658 FilterOutUndesirableDedicatedRegisters(); 4659 4660 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4661 } 4662 } 4663 4664 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4665 /// Pick the best one and delete the others. 4666 /// This narrowing heuristic is to keep as many formulae with different 4667 /// Scale and ScaledReg pair as possible while narrowing the search space. 4668 /// The benefit is that it is more likely to find out a better solution 4669 /// from a formulae set with more Scale and ScaledReg variations than 4670 /// a formulae set with the same Scale and ScaledReg. The picking winner 4671 /// reg heuristic will often keep the formulae with the same Scale and 4672 /// ScaledReg and filter others, and we want to avoid that if possible. 4673 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4674 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4675 return; 4676 4677 LLVM_DEBUG( 4678 dbgs() << "The search space is too complex.\n" 4679 "Narrowing the search space by choosing the best Formula " 4680 "from the Formulae with the same Scale and ScaledReg.\n"); 4681 4682 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4683 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4684 4685 BestFormulaeTy BestFormulae; 4686 #ifndef NDEBUG 4687 bool ChangedFormulae = false; 4688 #endif 4689 DenseSet<const SCEV *> VisitedRegs; 4690 SmallPtrSet<const SCEV *, 16> Regs; 4691 4692 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4693 LSRUse &LU = Uses[LUIdx]; 4694 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4695 dbgs() << '\n'); 4696 4697 // Return true if Formula FA is better than Formula FB. 4698 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4699 // First we will try to choose the Formula with fewer new registers. 4700 // For a register used by current Formula, the more the register is 4701 // shared among LSRUses, the less we increase the register number 4702 // counter of the formula. 4703 size_t FARegNum = 0; 4704 for (const SCEV *Reg : FA.BaseRegs) { 4705 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4706 FARegNum += (NumUses - UsedByIndices.count() + 1); 4707 } 4708 size_t FBRegNum = 0; 4709 for (const SCEV *Reg : FB.BaseRegs) { 4710 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4711 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4712 } 4713 if (FARegNum != FBRegNum) 4714 return FARegNum < FBRegNum; 4715 4716 // If the new register numbers are the same, choose the Formula with 4717 // less Cost. 4718 Cost CostFA(L, SE, TTI, AMK); 4719 Cost CostFB(L, SE, TTI, AMK); 4720 Regs.clear(); 4721 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4722 Regs.clear(); 4723 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4724 return CostFA.isLess(CostFB); 4725 }; 4726 4727 bool Any = false; 4728 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4729 ++FIdx) { 4730 Formula &F = LU.Formulae[FIdx]; 4731 if (!F.ScaledReg) 4732 continue; 4733 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4734 if (P.second) 4735 continue; 4736 4737 Formula &Best = LU.Formulae[P.first->second]; 4738 if (IsBetterThan(F, Best)) 4739 std::swap(F, Best); 4740 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4741 dbgs() << "\n" 4742 " in favor of formula "; 4743 Best.print(dbgs()); dbgs() << '\n'); 4744 #ifndef NDEBUG 4745 ChangedFormulae = true; 4746 #endif 4747 LU.DeleteFormula(F); 4748 --FIdx; 4749 --NumForms; 4750 Any = true; 4751 } 4752 if (Any) 4753 LU.RecomputeRegs(LUIdx, RegUses); 4754 4755 // Reset this to prepare for the next use. 4756 BestFormulae.clear(); 4757 } 4758 4759 LLVM_DEBUG(if (ChangedFormulae) { 4760 dbgs() << "\n" 4761 "After filtering out undesirable candidates:\n"; 4762 print_uses(dbgs()); 4763 }); 4764 } 4765 4766 /// If we are over the complexity limit, filter out any post-inc prefering 4767 /// variables to only post-inc values. 4768 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4769 if (AMK != TTI::AMK_PostIndexed) 4770 return; 4771 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4772 return; 4773 4774 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4775 "Narrowing the search space by choosing the lowest " 4776 "register Formula for PostInc Uses.\n"); 4777 4778 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4779 LSRUse &LU = Uses[LUIdx]; 4780 4781 if (LU.Kind != LSRUse::Address) 4782 continue; 4783 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4784 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4785 continue; 4786 4787 size_t MinRegs = std::numeric_limits<size_t>::max(); 4788 for (const Formula &F : LU.Formulae) 4789 MinRegs = std::min(F.getNumRegs(), MinRegs); 4790 4791 bool Any = false; 4792 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4793 ++FIdx) { 4794 Formula &F = LU.Formulae[FIdx]; 4795 if (F.getNumRegs() > MinRegs) { 4796 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4797 dbgs() << "\n"); 4798 LU.DeleteFormula(F); 4799 --FIdx; 4800 --NumForms; 4801 Any = true; 4802 } 4803 } 4804 if (Any) 4805 LU.RecomputeRegs(LUIdx, RegUses); 4806 4807 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4808 break; 4809 } 4810 4811 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4812 } 4813 4814 /// The function delete formulas with high registers number expectation. 4815 /// Assuming we don't know the value of each formula (already delete 4816 /// all inefficient), generate probability of not selecting for each 4817 /// register. 4818 /// For example, 4819 /// Use1: 4820 /// reg(a) + reg({0,+,1}) 4821 /// reg(a) + reg({-1,+,1}) + 1 4822 /// reg({a,+,1}) 4823 /// Use2: 4824 /// reg(b) + reg({0,+,1}) 4825 /// reg(b) + reg({-1,+,1}) + 1 4826 /// reg({b,+,1}) 4827 /// Use3: 4828 /// reg(c) + reg(b) + reg({0,+,1}) 4829 /// reg(c) + reg({b,+,1}) 4830 /// 4831 /// Probability of not selecting 4832 /// Use1 Use2 Use3 4833 /// reg(a) (1/3) * 1 * 1 4834 /// reg(b) 1 * (1/3) * (1/2) 4835 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4836 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4837 /// reg({a,+,1}) (2/3) * 1 * 1 4838 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4839 /// reg(c) 1 * 1 * 0 4840 /// 4841 /// Now count registers number mathematical expectation for each formula: 4842 /// Note that for each use we exclude probability if not selecting for the use. 4843 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4844 /// probabilty 1/3 of not selecting for Use1). 4845 /// Use1: 4846 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4847 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4848 /// reg({a,+,1}) 1 4849 /// Use2: 4850 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4851 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4852 /// reg({b,+,1}) 2/3 4853 /// Use3: 4854 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4855 /// reg(c) + reg({b,+,1}) 1 + 2/3 4856 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4857 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4858 return; 4859 // Ok, we have too many of formulae on our hands to conveniently handle. 4860 // Use a rough heuristic to thin out the list. 4861 4862 // Set of Regs wich will be 100% used in final solution. 4863 // Used in each formula of a solution (in example above this is reg(c)). 4864 // We can skip them in calculations. 4865 SmallPtrSet<const SCEV *, 4> UniqRegs; 4866 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4867 4868 // Map each register to probability of not selecting 4869 DenseMap <const SCEV *, float> RegNumMap; 4870 for (const SCEV *Reg : RegUses) { 4871 if (UniqRegs.count(Reg)) 4872 continue; 4873 float PNotSel = 1; 4874 for (const LSRUse &LU : Uses) { 4875 if (!LU.Regs.count(Reg)) 4876 continue; 4877 float P = LU.getNotSelectedProbability(Reg); 4878 if (P != 0.0) 4879 PNotSel *= P; 4880 else 4881 UniqRegs.insert(Reg); 4882 } 4883 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4884 } 4885 4886 LLVM_DEBUG( 4887 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4888 4889 // Delete formulas where registers number expectation is high. 4890 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4891 LSRUse &LU = Uses[LUIdx]; 4892 // If nothing to delete - continue. 4893 if (LU.Formulae.size() < 2) 4894 continue; 4895 // This is temporary solution to test performance. Float should be 4896 // replaced with round independent type (based on integers) to avoid 4897 // different results for different target builds. 4898 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4899 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4900 size_t MinIdx = 0; 4901 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4902 Formula &F = LU.Formulae[i]; 4903 float FRegNum = 0; 4904 float FARegNum = 0; 4905 for (const SCEV *BaseReg : F.BaseRegs) { 4906 if (UniqRegs.count(BaseReg)) 4907 continue; 4908 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4909 if (isa<SCEVAddRecExpr>(BaseReg)) 4910 FARegNum += 4911 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4912 } 4913 if (const SCEV *ScaledReg = F.ScaledReg) { 4914 if (!UniqRegs.count(ScaledReg)) { 4915 FRegNum += 4916 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4917 if (isa<SCEVAddRecExpr>(ScaledReg)) 4918 FARegNum += 4919 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4920 } 4921 } 4922 if (FMinRegNum > FRegNum || 4923 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4924 FMinRegNum = FRegNum; 4925 FMinARegNum = FARegNum; 4926 MinIdx = i; 4927 } 4928 } 4929 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4930 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4931 if (MinIdx != 0) 4932 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4933 while (LU.Formulae.size() != 1) { 4934 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4935 dbgs() << '\n'); 4936 LU.Formulae.pop_back(); 4937 } 4938 LU.RecomputeRegs(LUIdx, RegUses); 4939 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4940 Formula &F = LU.Formulae[0]; 4941 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4942 // When we choose the formula, the regs become unique. 4943 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4944 if (F.ScaledReg) 4945 UniqRegs.insert(F.ScaledReg); 4946 } 4947 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4948 } 4949 4950 /// Pick a register which seems likely to be profitable, and then in any use 4951 /// which has any reference to that register, delete all formulae which do not 4952 /// reference that register. 4953 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4954 // With all other options exhausted, loop until the system is simple 4955 // enough to handle. 4956 SmallPtrSet<const SCEV *, 4> Taken; 4957 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4958 // Ok, we have too many of formulae on our hands to conveniently handle. 4959 // Use a rough heuristic to thin out the list. 4960 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4961 4962 // Pick the register which is used by the most LSRUses, which is likely 4963 // to be a good reuse register candidate. 4964 const SCEV *Best = nullptr; 4965 unsigned BestNum = 0; 4966 for (const SCEV *Reg : RegUses) { 4967 if (Taken.count(Reg)) 4968 continue; 4969 if (!Best) { 4970 Best = Reg; 4971 BestNum = RegUses.getUsedByIndices(Reg).count(); 4972 } else { 4973 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4974 if (Count > BestNum) { 4975 Best = Reg; 4976 BestNum = Count; 4977 } 4978 } 4979 } 4980 assert(Best && "Failed to find best LSRUse candidate"); 4981 4982 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4983 << " will yield profitable reuse.\n"); 4984 Taken.insert(Best); 4985 4986 // In any use with formulae which references this register, delete formulae 4987 // which don't reference it. 4988 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4989 LSRUse &LU = Uses[LUIdx]; 4990 if (!LU.Regs.count(Best)) continue; 4991 4992 bool Any = false; 4993 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4994 Formula &F = LU.Formulae[i]; 4995 if (!F.referencesReg(Best)) { 4996 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4997 LU.DeleteFormula(F); 4998 --e; 4999 --i; 5000 Any = true; 5001 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5002 continue; 5003 } 5004 } 5005 5006 if (Any) 5007 LU.RecomputeRegs(LUIdx, RegUses); 5008 } 5009 5010 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5011 } 5012 } 5013 5014 /// If there are an extraordinary number of formulae to choose from, use some 5015 /// rough heuristics to prune down the number of formulae. This keeps the main 5016 /// solver from taking an extraordinary amount of time in some worst-case 5017 /// scenarios. 5018 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5019 NarrowSearchSpaceByDetectingSupersets(); 5020 NarrowSearchSpaceByCollapsingUnrolledCode(); 5021 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5022 if (FilterSameScaledReg) 5023 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5024 NarrowSearchSpaceByFilterPostInc(); 5025 if (LSRExpNarrow) 5026 NarrowSearchSpaceByDeletingCostlyFormulas(); 5027 else 5028 NarrowSearchSpaceByPickingWinnerRegs(); 5029 } 5030 5031 /// This is the recursive solver. 5032 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5033 Cost &SolutionCost, 5034 SmallVectorImpl<const Formula *> &Workspace, 5035 const Cost &CurCost, 5036 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5037 DenseSet<const SCEV *> &VisitedRegs) const { 5038 // Some ideas: 5039 // - prune more: 5040 // - use more aggressive filtering 5041 // - sort the formula so that the most profitable solutions are found first 5042 // - sort the uses too 5043 // - search faster: 5044 // - don't compute a cost, and then compare. compare while computing a cost 5045 // and bail early. 5046 // - track register sets with SmallBitVector 5047 5048 const LSRUse &LU = Uses[Workspace.size()]; 5049 5050 // If this use references any register that's already a part of the 5051 // in-progress solution, consider it a requirement that a formula must 5052 // reference that register in order to be considered. This prunes out 5053 // unprofitable searching. 5054 SmallSetVector<const SCEV *, 4> ReqRegs; 5055 for (const SCEV *S : CurRegs) 5056 if (LU.Regs.count(S)) 5057 ReqRegs.insert(S); 5058 5059 SmallPtrSet<const SCEV *, 16> NewRegs; 5060 Cost NewCost(L, SE, TTI, AMK); 5061 for (const Formula &F : LU.Formulae) { 5062 // Ignore formulae which may not be ideal in terms of register reuse of 5063 // ReqRegs. The formula should use all required registers before 5064 // introducing new ones. 5065 // This can sometimes (notably when trying to favour postinc) lead to 5066 // sub-optimial decisions. There it is best left to the cost modelling to 5067 // get correct. 5068 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5069 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5070 for (const SCEV *Reg : ReqRegs) { 5071 if ((F.ScaledReg && F.ScaledReg == Reg) || 5072 is_contained(F.BaseRegs, Reg)) { 5073 --NumReqRegsToFind; 5074 if (NumReqRegsToFind == 0) 5075 break; 5076 } 5077 } 5078 if (NumReqRegsToFind != 0) { 5079 // If none of the formulae satisfied the required registers, then we could 5080 // clear ReqRegs and try again. Currently, we simply give up in this case. 5081 continue; 5082 } 5083 } 5084 5085 // Evaluate the cost of the current formula. If it's already worse than 5086 // the current best, prune the search at that point. 5087 NewCost = CurCost; 5088 NewRegs = CurRegs; 5089 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5090 if (NewCost.isLess(SolutionCost)) { 5091 Workspace.push_back(&F); 5092 if (Workspace.size() != Uses.size()) { 5093 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5094 NewRegs, VisitedRegs); 5095 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5096 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5097 } else { 5098 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5099 dbgs() << ".\nRegs:\n"; 5100 for (const SCEV *S : NewRegs) dbgs() 5101 << "- " << *S << "\n"; 5102 dbgs() << '\n'); 5103 5104 SolutionCost = NewCost; 5105 Solution = Workspace; 5106 } 5107 Workspace.pop_back(); 5108 } 5109 } 5110 } 5111 5112 /// Choose one formula from each use. Return the results in the given Solution 5113 /// vector. 5114 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5115 SmallVector<const Formula *, 8> Workspace; 5116 Cost SolutionCost(L, SE, TTI, AMK); 5117 SolutionCost.Lose(); 5118 Cost CurCost(L, SE, TTI, AMK); 5119 SmallPtrSet<const SCEV *, 16> CurRegs; 5120 DenseSet<const SCEV *> VisitedRegs; 5121 Workspace.reserve(Uses.size()); 5122 5123 // SolveRecurse does all the work. 5124 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5125 CurRegs, VisitedRegs); 5126 if (Solution.empty()) { 5127 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5128 return; 5129 } 5130 5131 // Ok, we've now made all our decisions. 5132 LLVM_DEBUG(dbgs() << "\n" 5133 "The chosen solution requires "; 5134 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5135 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5136 dbgs() << " "; 5137 Uses[i].print(dbgs()); 5138 dbgs() << "\n" 5139 " "; 5140 Solution[i]->print(dbgs()); 5141 dbgs() << '\n'; 5142 }); 5143 5144 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5145 } 5146 5147 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5148 /// we can go while still being dominated by the input positions. This helps 5149 /// canonicalize the insert position, which encourages sharing. 5150 BasicBlock::iterator 5151 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5152 const SmallVectorImpl<Instruction *> &Inputs) 5153 const { 5154 Instruction *Tentative = &*IP; 5155 while (true) { 5156 bool AllDominate = true; 5157 Instruction *BetterPos = nullptr; 5158 // Don't bother attempting to insert before a catchswitch, their basic block 5159 // cannot have other non-PHI instructions. 5160 if (isa<CatchSwitchInst>(Tentative)) 5161 return IP; 5162 5163 for (Instruction *Inst : Inputs) { 5164 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5165 AllDominate = false; 5166 break; 5167 } 5168 // Attempt to find an insert position in the middle of the block, 5169 // instead of at the end, so that it can be used for other expansions. 5170 if (Tentative->getParent() == Inst->getParent() && 5171 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5172 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5173 } 5174 if (!AllDominate) 5175 break; 5176 if (BetterPos) 5177 IP = BetterPos->getIterator(); 5178 else 5179 IP = Tentative->getIterator(); 5180 5181 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5182 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5183 5184 BasicBlock *IDom; 5185 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5186 if (!Rung) return IP; 5187 Rung = Rung->getIDom(); 5188 if (!Rung) return IP; 5189 IDom = Rung->getBlock(); 5190 5191 // Don't climb into a loop though. 5192 const Loop *IDomLoop = LI.getLoopFor(IDom); 5193 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5194 if (IDomDepth <= IPLoopDepth && 5195 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5196 break; 5197 } 5198 5199 Tentative = IDom->getTerminator(); 5200 } 5201 5202 return IP; 5203 } 5204 5205 /// Determine an input position which will be dominated by the operands and 5206 /// which will dominate the result. 5207 BasicBlock::iterator 5208 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5209 const LSRFixup &LF, 5210 const LSRUse &LU, 5211 SCEVExpander &Rewriter) const { 5212 // Collect some instructions which must be dominated by the 5213 // expanding replacement. These must be dominated by any operands that 5214 // will be required in the expansion. 5215 SmallVector<Instruction *, 4> Inputs; 5216 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5217 Inputs.push_back(I); 5218 if (LU.Kind == LSRUse::ICmpZero) 5219 if (Instruction *I = 5220 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5221 Inputs.push_back(I); 5222 if (LF.PostIncLoops.count(L)) { 5223 if (LF.isUseFullyOutsideLoop(L)) 5224 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5225 else 5226 Inputs.push_back(IVIncInsertPos); 5227 } 5228 // The expansion must also be dominated by the increment positions of any 5229 // loops it for which it is using post-inc mode. 5230 for (const Loop *PIL : LF.PostIncLoops) { 5231 if (PIL == L) continue; 5232 5233 // Be dominated by the loop exit. 5234 SmallVector<BasicBlock *, 4> ExitingBlocks; 5235 PIL->getExitingBlocks(ExitingBlocks); 5236 if (!ExitingBlocks.empty()) { 5237 BasicBlock *BB = ExitingBlocks[0]; 5238 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5239 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5240 Inputs.push_back(BB->getTerminator()); 5241 } 5242 } 5243 5244 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5245 && !isa<DbgInfoIntrinsic>(LowestIP) && 5246 "Insertion point must be a normal instruction"); 5247 5248 // Then, climb up the immediate dominator tree as far as we can go while 5249 // still being dominated by the input positions. 5250 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5251 5252 // Don't insert instructions before PHI nodes. 5253 while (isa<PHINode>(IP)) ++IP; 5254 5255 // Ignore landingpad instructions. 5256 while (IP->isEHPad()) ++IP; 5257 5258 // Ignore debug intrinsics. 5259 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5260 5261 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5262 // IP consistent across expansions and allows the previously inserted 5263 // instructions to be reused by subsequent expansion. 5264 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5265 ++IP; 5266 5267 return IP; 5268 } 5269 5270 /// Emit instructions for the leading candidate expression for this LSRUse (this 5271 /// is called "expanding"). 5272 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5273 const Formula &F, BasicBlock::iterator IP, 5274 SCEVExpander &Rewriter, 5275 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5276 if (LU.RigidFormula) 5277 return LF.OperandValToReplace; 5278 5279 // Determine an input position which will be dominated by the operands and 5280 // which will dominate the result. 5281 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5282 Rewriter.setInsertPoint(&*IP); 5283 5284 // Inform the Rewriter if we have a post-increment use, so that it can 5285 // perform an advantageous expansion. 5286 Rewriter.setPostInc(LF.PostIncLoops); 5287 5288 // This is the type that the user actually needs. 5289 Type *OpTy = LF.OperandValToReplace->getType(); 5290 // This will be the type that we'll initially expand to. 5291 Type *Ty = F.getType(); 5292 if (!Ty) 5293 // No type known; just expand directly to the ultimate type. 5294 Ty = OpTy; 5295 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5296 // Expand directly to the ultimate type if it's the right size. 5297 Ty = OpTy; 5298 // This is the type to do integer arithmetic in. 5299 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5300 5301 // Build up a list of operands to add together to form the full base. 5302 SmallVector<const SCEV *, 8> Ops; 5303 5304 // Expand the BaseRegs portion. 5305 for (const SCEV *Reg : F.BaseRegs) { 5306 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5307 5308 // If we're expanding for a post-inc user, make the post-inc adjustment. 5309 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5310 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5311 } 5312 5313 // Expand the ScaledReg portion. 5314 Value *ICmpScaledV = nullptr; 5315 if (F.Scale != 0) { 5316 const SCEV *ScaledS = F.ScaledReg; 5317 5318 // If we're expanding for a post-inc user, make the post-inc adjustment. 5319 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5320 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5321 5322 if (LU.Kind == LSRUse::ICmpZero) { 5323 // Expand ScaleReg as if it was part of the base regs. 5324 if (F.Scale == 1) 5325 Ops.push_back( 5326 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5327 else { 5328 // An interesting way of "folding" with an icmp is to use a negated 5329 // scale, which we'll implement by inserting it into the other operand 5330 // of the icmp. 5331 assert(F.Scale == -1 && 5332 "The only scale supported by ICmpZero uses is -1!"); 5333 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5334 } 5335 } else { 5336 // Otherwise just expand the scaled register and an explicit scale, 5337 // which is expected to be matched as part of the address. 5338 5339 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5340 // Unless the addressing mode will not be folded. 5341 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5342 isAMCompletelyFolded(TTI, LU, F)) { 5343 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5344 Ops.clear(); 5345 Ops.push_back(SE.getUnknown(FullV)); 5346 } 5347 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5348 if (F.Scale != 1) 5349 ScaledS = 5350 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5351 Ops.push_back(ScaledS); 5352 } 5353 } 5354 5355 // Expand the GV portion. 5356 if (F.BaseGV) { 5357 // Flush the operand list to suppress SCEVExpander hoisting. 5358 if (!Ops.empty()) { 5359 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5360 Ops.clear(); 5361 Ops.push_back(SE.getUnknown(FullV)); 5362 } 5363 Ops.push_back(SE.getUnknown(F.BaseGV)); 5364 } 5365 5366 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5367 // unfolded offsets. LSR assumes they both live next to their uses. 5368 if (!Ops.empty()) { 5369 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5370 Ops.clear(); 5371 Ops.push_back(SE.getUnknown(FullV)); 5372 } 5373 5374 // Expand the immediate portion. 5375 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5376 if (Offset != 0) { 5377 if (LU.Kind == LSRUse::ICmpZero) { 5378 // The other interesting way of "folding" with an ICmpZero is to use a 5379 // negated immediate. 5380 if (!ICmpScaledV) 5381 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5382 else { 5383 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5384 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5385 } 5386 } else { 5387 // Just add the immediate values. These again are expected to be matched 5388 // as part of the address. 5389 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5390 } 5391 } 5392 5393 // Expand the unfolded offset portion. 5394 int64_t UnfoldedOffset = F.UnfoldedOffset; 5395 if (UnfoldedOffset != 0) { 5396 // Just add the immediate values. 5397 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5398 UnfoldedOffset))); 5399 } 5400 5401 // Emit instructions summing all the operands. 5402 const SCEV *FullS = Ops.empty() ? 5403 SE.getConstant(IntTy, 0) : 5404 SE.getAddExpr(Ops); 5405 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5406 5407 // We're done expanding now, so reset the rewriter. 5408 Rewriter.clearPostInc(); 5409 5410 // An ICmpZero Formula represents an ICmp which we're handling as a 5411 // comparison against zero. Now that we've expanded an expression for that 5412 // form, update the ICmp's other operand. 5413 if (LU.Kind == LSRUse::ICmpZero) { 5414 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5415 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5416 DeadInsts.emplace_back(OperandIsInstr); 5417 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5418 "a scale at the same time!"); 5419 if (F.Scale == -1) { 5420 if (ICmpScaledV->getType() != OpTy) { 5421 Instruction *Cast = 5422 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5423 OpTy, false), 5424 ICmpScaledV, OpTy, "tmp", CI); 5425 ICmpScaledV = Cast; 5426 } 5427 CI->setOperand(1, ICmpScaledV); 5428 } else { 5429 // A scale of 1 means that the scale has been expanded as part of the 5430 // base regs. 5431 assert((F.Scale == 0 || F.Scale == 1) && 5432 "ICmp does not support folding a global value and " 5433 "a scale at the same time!"); 5434 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5435 -(uint64_t)Offset); 5436 if (C->getType() != OpTy) 5437 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5438 OpTy, false), 5439 C, OpTy); 5440 5441 CI->setOperand(1, C); 5442 } 5443 } 5444 5445 return FullV; 5446 } 5447 5448 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5449 /// effectively happens in their predecessor blocks, so the expression may need 5450 /// to be expanded in multiple places. 5451 void LSRInstance::RewriteForPHI( 5452 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5453 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5454 DenseMap<BasicBlock *, Value *> Inserted; 5455 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5456 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5457 bool needUpdateFixups = false; 5458 BasicBlock *BB = PN->getIncomingBlock(i); 5459 5460 // If this is a critical edge, split the edge so that we do not insert 5461 // the code on all predecessor/successor paths. We do this unless this 5462 // is the canonical backedge for this loop, which complicates post-inc 5463 // users. 5464 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5465 !isa<IndirectBrInst>(BB->getTerminator()) && 5466 !isa<CatchSwitchInst>(BB->getTerminator())) { 5467 BasicBlock *Parent = PN->getParent(); 5468 Loop *PNLoop = LI.getLoopFor(Parent); 5469 if (!PNLoop || Parent != PNLoop->getHeader()) { 5470 // Split the critical edge. 5471 BasicBlock *NewBB = nullptr; 5472 if (!Parent->isLandingPad()) { 5473 NewBB = 5474 SplitCriticalEdge(BB, Parent, 5475 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5476 .setMergeIdenticalEdges() 5477 .setKeepOneInputPHIs()); 5478 } else { 5479 SmallVector<BasicBlock*, 2> NewBBs; 5480 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5481 NewBB = NewBBs[0]; 5482 } 5483 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5484 // phi predecessors are identical. The simple thing to do is skip 5485 // splitting in this case rather than complicate the API. 5486 if (NewBB) { 5487 // If PN is outside of the loop and BB is in the loop, we want to 5488 // move the block to be immediately before the PHI block, not 5489 // immediately after BB. 5490 if (L->contains(BB) && !L->contains(PN)) 5491 NewBB->moveBefore(PN->getParent()); 5492 5493 // Splitting the edge can reduce the number of PHI entries we have. 5494 e = PN->getNumIncomingValues(); 5495 BB = NewBB; 5496 i = PN->getBasicBlockIndex(BB); 5497 5498 needUpdateFixups = true; 5499 } 5500 } 5501 } 5502 5503 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5504 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5505 if (!Pair.second) 5506 PN->setIncomingValue(i, Pair.first->second); 5507 else { 5508 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5509 Rewriter, DeadInsts); 5510 5511 // If this is reuse-by-noop-cast, insert the noop cast. 5512 Type *OpTy = LF.OperandValToReplace->getType(); 5513 if (FullV->getType() != OpTy) 5514 FullV = 5515 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5516 OpTy, false), 5517 FullV, LF.OperandValToReplace->getType(), 5518 "tmp", BB->getTerminator()); 5519 5520 PN->setIncomingValue(i, FullV); 5521 Pair.first->second = FullV; 5522 } 5523 5524 // If LSR splits critical edge and phi node has other pending 5525 // fixup operands, we need to update those pending fixups. Otherwise 5526 // formulae will not be implemented completely and some instructions 5527 // will not be eliminated. 5528 if (needUpdateFixups) { 5529 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5530 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5531 // If fixup is supposed to rewrite some operand in the phi 5532 // that was just updated, it may be already moved to 5533 // another phi node. Such fixup requires update. 5534 if (Fixup.UserInst == PN) { 5535 // Check if the operand we try to replace still exists in the 5536 // original phi. 5537 bool foundInOriginalPHI = false; 5538 for (const auto &val : PN->incoming_values()) 5539 if (val == Fixup.OperandValToReplace) { 5540 foundInOriginalPHI = true; 5541 break; 5542 } 5543 5544 // If fixup operand found in original PHI - nothing to do. 5545 if (foundInOriginalPHI) 5546 continue; 5547 5548 // Otherwise it might be moved to another PHI and requires update. 5549 // If fixup operand not found in any of the incoming blocks that 5550 // means we have already rewritten it - nothing to do. 5551 for (const auto &Block : PN->blocks()) 5552 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5553 ++I) { 5554 PHINode *NewPN = cast<PHINode>(I); 5555 for (const auto &val : NewPN->incoming_values()) 5556 if (val == Fixup.OperandValToReplace) 5557 Fixup.UserInst = NewPN; 5558 } 5559 } 5560 } 5561 } 5562 } 5563 5564 /// Emit instructions for the leading candidate expression for this LSRUse (this 5565 /// is called "expanding"), and update the UserInst to reference the newly 5566 /// expanded value. 5567 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5568 const Formula &F, SCEVExpander &Rewriter, 5569 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5570 // First, find an insertion point that dominates UserInst. For PHI nodes, 5571 // find the nearest block which dominates all the relevant uses. 5572 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5573 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5574 } else { 5575 Value *FullV = 5576 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5577 5578 // If this is reuse-by-noop-cast, insert the noop cast. 5579 Type *OpTy = LF.OperandValToReplace->getType(); 5580 if (FullV->getType() != OpTy) { 5581 Instruction *Cast = 5582 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5583 FullV, OpTy, "tmp", LF.UserInst); 5584 FullV = Cast; 5585 } 5586 5587 // Update the user. ICmpZero is handled specially here (for now) because 5588 // Expand may have updated one of the operands of the icmp already, and 5589 // its new value may happen to be equal to LF.OperandValToReplace, in 5590 // which case doing replaceUsesOfWith leads to replacing both operands 5591 // with the same value. TODO: Reorganize this. 5592 if (LU.Kind == LSRUse::ICmpZero) 5593 LF.UserInst->setOperand(0, FullV); 5594 else 5595 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5596 } 5597 5598 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5599 DeadInsts.emplace_back(OperandIsInstr); 5600 } 5601 5602 /// Rewrite all the fixup locations with new values, following the chosen 5603 /// solution. 5604 void LSRInstance::ImplementSolution( 5605 const SmallVectorImpl<const Formula *> &Solution) { 5606 // Keep track of instructions we may have made dead, so that 5607 // we can remove them after we are done working. 5608 SmallVector<WeakTrackingVH, 16> DeadInsts; 5609 5610 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5611 false); 5612 #ifndef NDEBUG 5613 Rewriter.setDebugType(DEBUG_TYPE); 5614 #endif 5615 Rewriter.disableCanonicalMode(); 5616 Rewriter.enableLSRMode(); 5617 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5618 5619 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5620 for (const IVChain &Chain : IVChainVec) { 5621 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5622 Rewriter.setChainedPhi(PN); 5623 } 5624 5625 // Expand the new value definitions and update the users. 5626 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5627 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5628 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5629 Changed = true; 5630 } 5631 5632 for (const IVChain &Chain : IVChainVec) { 5633 GenerateIVChain(Chain, Rewriter, DeadInsts); 5634 Changed = true; 5635 } 5636 5637 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 5638 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 5639 ScalarEvolutionIVs.push_back(IV); 5640 5641 // Clean up after ourselves. This must be done before deleting any 5642 // instructions. 5643 Rewriter.clear(); 5644 5645 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5646 &TLI, MSSAU); 5647 5648 // In our cost analysis above, we assume that each addrec consumes exactly 5649 // one register, and arrange to have increments inserted just before the 5650 // latch to maximimize the chance this is true. However, if we reused 5651 // existing IVs, we now need to move the increments to match our 5652 // expectations. Otherwise, our cost modeling results in us having a 5653 // chosen a non-optimal result for the actual schedule. (And yes, this 5654 // scheduling decision does impact later codegen.) 5655 for (PHINode &PN : L->getHeader()->phis()) { 5656 BinaryOperator *BO = nullptr; 5657 Value *Start = nullptr, *Step = nullptr; 5658 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5659 continue; 5660 5661 switch (BO->getOpcode()) { 5662 case Instruction::Sub: 5663 if (BO->getOperand(0) != &PN) 5664 // sub is non-commutative - match handling elsewhere in LSR 5665 continue; 5666 break; 5667 case Instruction::Add: 5668 break; 5669 default: 5670 continue; 5671 }; 5672 5673 if (!isa<Constant>(Step)) 5674 // If not a constant step, might increase register pressure 5675 // (We assume constants have been canonicalized to RHS) 5676 continue; 5677 5678 if (BO->getParent() == IVIncInsertPos->getParent()) 5679 // Only bother moving across blocks. Isel can handle block local case. 5680 continue; 5681 5682 // Can we legally schedule inc at the desired point? 5683 if (!llvm::all_of(BO->uses(), 5684 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5685 continue; 5686 BO->moveBefore(IVIncInsertPos); 5687 Changed = true; 5688 } 5689 5690 5691 } 5692 5693 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5694 DominatorTree &DT, LoopInfo &LI, 5695 const TargetTransformInfo &TTI, AssumptionCache &AC, 5696 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5697 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5698 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5699 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5700 // If LoopSimplify form is not available, stay out of trouble. 5701 if (!L->isLoopSimplifyForm()) 5702 return; 5703 5704 // If there's no interesting work to be done, bail early. 5705 if (IU.empty()) return; 5706 5707 // If there's too much analysis to be done, bail early. We won't be able to 5708 // model the problem anyway. 5709 unsigned NumUsers = 0; 5710 for (const IVStrideUse &U : IU) { 5711 if (++NumUsers > MaxIVUsers) { 5712 (void)U; 5713 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5714 << "\n"); 5715 return; 5716 } 5717 // Bail out if we have a PHI on an EHPad that gets a value from a 5718 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5719 // no good place to stick any instructions. 5720 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5721 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5722 if (isa<FuncletPadInst>(FirstNonPHI) || 5723 isa<CatchSwitchInst>(FirstNonPHI)) 5724 for (BasicBlock *PredBB : PN->blocks()) 5725 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5726 return; 5727 } 5728 } 5729 5730 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5731 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5732 dbgs() << ":\n"); 5733 5734 // First, perform some low-level loop optimizations. 5735 OptimizeShadowIV(); 5736 OptimizeLoopTermCond(); 5737 5738 // If loop preparation eliminates all interesting IV users, bail. 5739 if (IU.empty()) return; 5740 5741 // Skip nested loops until we can model them better with formulae. 5742 if (!L->isInnermost()) { 5743 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5744 return; 5745 } 5746 5747 // Start collecting data and preparing for the solver. 5748 // If number of registers is not the major cost, we cannot benefit from the 5749 // current profitable chain optimization which is based on number of 5750 // registers. 5751 // FIXME: add profitable chain optimization for other kinds major cost, for 5752 // example number of instructions. 5753 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5754 CollectChains(); 5755 CollectInterestingTypesAndFactors(); 5756 CollectFixupsAndInitialFormulae(); 5757 CollectLoopInvariantFixupsAndFormulae(); 5758 5759 if (Uses.empty()) 5760 return; 5761 5762 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5763 print_uses(dbgs())); 5764 5765 // Now use the reuse data to generate a bunch of interesting ways 5766 // to formulate the values needed for the uses. 5767 GenerateAllReuseFormulae(); 5768 5769 FilterOutUndesirableDedicatedRegisters(); 5770 NarrowSearchSpaceUsingHeuristics(); 5771 5772 SmallVector<const Formula *, 8> Solution; 5773 Solve(Solution); 5774 5775 // Release memory that is no longer needed. 5776 Factors.clear(); 5777 Types.clear(); 5778 RegUses.clear(); 5779 5780 if (Solution.empty()) 5781 return; 5782 5783 #ifndef NDEBUG 5784 // Formulae should be legal. 5785 for (const LSRUse &LU : Uses) { 5786 for (const Formula &F : LU.Formulae) 5787 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5788 F) && "Illegal formula generated!"); 5789 }; 5790 #endif 5791 5792 // Now that we've decided what we want, make it so. 5793 ImplementSolution(Solution); 5794 } 5795 5796 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5797 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5798 if (Factors.empty() && Types.empty()) return; 5799 5800 OS << "LSR has identified the following interesting factors and types: "; 5801 bool First = true; 5802 5803 for (int64_t Factor : Factors) { 5804 if (!First) OS << ", "; 5805 First = false; 5806 OS << '*' << Factor; 5807 } 5808 5809 for (Type *Ty : Types) { 5810 if (!First) OS << ", "; 5811 First = false; 5812 OS << '(' << *Ty << ')'; 5813 } 5814 OS << '\n'; 5815 } 5816 5817 void LSRInstance::print_fixups(raw_ostream &OS) const { 5818 OS << "LSR is examining the following fixup sites:\n"; 5819 for (const LSRUse &LU : Uses) 5820 for (const LSRFixup &LF : LU.Fixups) { 5821 dbgs() << " "; 5822 LF.print(OS); 5823 OS << '\n'; 5824 } 5825 } 5826 5827 void LSRInstance::print_uses(raw_ostream &OS) const { 5828 OS << "LSR is examining the following uses:\n"; 5829 for (const LSRUse &LU : Uses) { 5830 dbgs() << " "; 5831 LU.print(OS); 5832 OS << '\n'; 5833 for (const Formula &F : LU.Formulae) { 5834 OS << " "; 5835 F.print(OS); 5836 OS << '\n'; 5837 } 5838 } 5839 } 5840 5841 void LSRInstance::print(raw_ostream &OS) const { 5842 print_factors_and_types(OS); 5843 print_fixups(OS); 5844 print_uses(OS); 5845 } 5846 5847 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5848 print(errs()); errs() << '\n'; 5849 } 5850 #endif 5851 5852 namespace { 5853 5854 class LoopStrengthReduce : public LoopPass { 5855 public: 5856 static char ID; // Pass ID, replacement for typeid 5857 5858 LoopStrengthReduce(); 5859 5860 private: 5861 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5862 void getAnalysisUsage(AnalysisUsage &AU) const override; 5863 }; 5864 5865 } // end anonymous namespace 5866 5867 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5868 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5869 } 5870 5871 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5872 // We split critical edges, so we change the CFG. However, we do update 5873 // many analyses if they are around. 5874 AU.addPreservedID(LoopSimplifyID); 5875 5876 AU.addRequired<LoopInfoWrapperPass>(); 5877 AU.addPreserved<LoopInfoWrapperPass>(); 5878 AU.addRequiredID(LoopSimplifyID); 5879 AU.addRequired<DominatorTreeWrapperPass>(); 5880 AU.addPreserved<DominatorTreeWrapperPass>(); 5881 AU.addRequired<ScalarEvolutionWrapperPass>(); 5882 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5883 AU.addRequired<AssumptionCacheTracker>(); 5884 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5885 // Requiring LoopSimplify a second time here prevents IVUsers from running 5886 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5887 AU.addRequiredID(LoopSimplifyID); 5888 AU.addRequired<IVUsersWrapperPass>(); 5889 AU.addPreserved<IVUsersWrapperPass>(); 5890 AU.addRequired<TargetTransformInfoWrapperPass>(); 5891 AU.addPreserved<MemorySSAWrapperPass>(); 5892 } 5893 5894 namespace { 5895 struct SCEVDbgValueBuilder { 5896 SCEVDbgValueBuilder() = default; 5897 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { 5898 Values = Base.Values; 5899 Expr = Base.Expr; 5900 } 5901 5902 /// The DIExpression as we translate the SCEV. 5903 SmallVector<uint64_t, 6> Expr; 5904 /// The location ops of the DIExpression. 5905 SmallVector<llvm::ValueAsMetadata *, 2> Values; 5906 5907 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 5908 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 5909 5910 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 5911 /// in the set of values referenced by the expression. 5912 void pushValue(llvm::Value *V) { 5913 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 5914 auto *It = 5915 std::find(Values.begin(), Values.end(), llvm::ValueAsMetadata::get(V)); 5916 unsigned ArgIndex = 0; 5917 if (It != Values.end()) { 5918 ArgIndex = std::distance(Values.begin(), It); 5919 } else { 5920 ArgIndex = Values.size(); 5921 Values.push_back(llvm::ValueAsMetadata::get(V)); 5922 } 5923 Expr.push_back(ArgIndex); 5924 } 5925 5926 void pushValue(const SCEVUnknown *U) { 5927 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 5928 pushValue(V); 5929 } 5930 5931 bool pushConst(const SCEVConstant *C) { 5932 if (C->getAPInt().getMinSignedBits() > 64) 5933 return false; 5934 Expr.push_back(llvm::dwarf::DW_OP_consts); 5935 Expr.push_back(C->getAPInt().getSExtValue()); 5936 return true; 5937 } 5938 5939 /// Several SCEV types are sequences of the same arithmetic operator applied 5940 /// to constants and values that may be extended or truncated. 5941 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 5942 uint64_t DwarfOp) { 5943 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 5944 "Expected arithmetic SCEV type"); 5945 bool Success = true; 5946 unsigned EmitOperator = 0; 5947 for (auto &Op : CommExpr->operands()) { 5948 Success &= pushSCEV(Op); 5949 5950 if (EmitOperator >= 1) 5951 pushOperator(DwarfOp); 5952 ++EmitOperator; 5953 } 5954 return Success; 5955 } 5956 5957 // TODO: Identify and omit noop casts. 5958 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 5959 const llvm::SCEV *Inner = C->getOperand(0); 5960 const llvm::Type *Type = C->getType(); 5961 uint64_t ToWidth = Type->getIntegerBitWidth(); 5962 bool Success = pushSCEV(Inner); 5963 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 5964 IsSigned ? llvm::dwarf::DW_ATE_signed 5965 : llvm::dwarf::DW_ATE_unsigned}; 5966 for (const auto &Op : CastOps) 5967 pushOperator(Op); 5968 return Success; 5969 } 5970 5971 // TODO: MinMax - although these haven't been encountered in the test suite. 5972 bool pushSCEV(const llvm::SCEV *S) { 5973 bool Success = true; 5974 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 5975 Success &= pushConst(StartInt); 5976 5977 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5978 if (!U->getValue()) 5979 return false; 5980 pushValue(U->getValue()); 5981 5982 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 5983 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 5984 5985 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5986 Success &= pushSCEV(UDiv->getLHS()); 5987 Success &= pushSCEV(UDiv->getRHS()); 5988 pushOperator(llvm::dwarf::DW_OP_div); 5989 5990 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 5991 // Assert if a new and unknown SCEVCastEXpr type is encountered. 5992 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 5993 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 5994 "Unexpected cast type in SCEV."); 5995 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 5996 5997 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 5998 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 5999 6000 } else if (isa<SCEVAddRecExpr>(S)) { 6001 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6002 // unsupported. 6003 return false; 6004 6005 } else { 6006 return false; 6007 } 6008 return Success; 6009 } 6010 6011 void setFinalExpression(llvm::DbgValueInst &DI, const DIExpression *OldExpr) { 6012 // Re-state assumption that this dbg.value is not variadic. Any remaining 6013 // opcodes in its expression operate on a single value already on the 6014 // expression stack. Prepend our operations, which will re-compute and 6015 // place that value on the expression stack. 6016 assert(!DI.hasArgList()); 6017 auto *NewExpr = 6018 DIExpression::prependOpcodes(OldExpr, Expr, /*StackValue*/ true); 6019 DI.setExpression(NewExpr); 6020 6021 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(Values); 6022 DI.setRawLocation(llvm::DIArgList::get(DI.getContext(), ValArrayRef)); 6023 } 6024 6025 /// If a DVI can be emitted without a DIArgList, omit DW_OP_llvm_arg and the 6026 /// location op index 0. 6027 void setShortFinalExpression(llvm::DbgValueInst &DI, 6028 const DIExpression *OldExpr) { 6029 assert((Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && Expr[1] == 0) && 6030 "Expected DW_OP_llvm_arg and 0."); 6031 DI.replaceVariableLocationOp( 6032 0u, llvm::MetadataAsValue::get(DI.getContext(), Values[0])); 6033 6034 // See setFinalExpression: prepend our opcodes on the start of any old 6035 // expression opcodes. 6036 assert(!DI.hasArgList()); 6037 llvm::SmallVector<uint64_t, 6> FinalExpr(llvm::drop_begin(Expr, 2)); 6038 auto *NewExpr = 6039 DIExpression::prependOpcodes(OldExpr, FinalExpr, /*StackValue*/ true); 6040 DI.setExpression(NewExpr); 6041 } 6042 6043 /// Once the IV and variable SCEV translation is complete, write it to the 6044 /// source DVI. 6045 void applyExprToDbgValue(llvm::DbgValueInst &DI, 6046 const DIExpression *OldExpr) { 6047 assert(!Expr.empty() && "Unexpected empty expression."); 6048 // Emit a simpler form if only a single location is referenced. 6049 if (Values.size() == 1 && Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && 6050 Expr[1] == 0) { 6051 setShortFinalExpression(DI, OldExpr); 6052 } else { 6053 setFinalExpression(DI, OldExpr); 6054 } 6055 } 6056 6057 /// Return true if the combination of arithmetic operator and underlying 6058 /// SCEV constant value is an identity function. 6059 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6060 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6061 if (C->getAPInt().getMinSignedBits() > 64) 6062 return false; 6063 int64_t I = C->getAPInt().getSExtValue(); 6064 switch (Op) { 6065 case llvm::dwarf::DW_OP_plus: 6066 case llvm::dwarf::DW_OP_minus: 6067 return I == 0; 6068 case llvm::dwarf::DW_OP_mul: 6069 case llvm::dwarf::DW_OP_div: 6070 return I == 1; 6071 } 6072 } 6073 return false; 6074 } 6075 6076 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6077 /// builder's expression stack. The stack should already contain an 6078 /// expression for the iteration count, so that it can be multiplied by 6079 /// the stride and added to the start. 6080 /// Components of the expression are omitted if they are an identity function. 6081 /// Chain (non-affine) SCEVs are not supported. 6082 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6083 assert(SAR.isAffine() && "Expected affine SCEV"); 6084 // TODO: Is this check needed? 6085 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6086 return false; 6087 6088 const SCEV *Start = SAR.getStart(); 6089 const SCEV *Stride = SAR.getStepRecurrence(SE); 6090 6091 // Skip pushing arithmetic noops. 6092 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6093 if (!pushSCEV(Stride)) 6094 return false; 6095 pushOperator(llvm::dwarf::DW_OP_mul); 6096 } 6097 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6098 if (!pushSCEV(Start)) 6099 return false; 6100 pushOperator(llvm::dwarf::DW_OP_plus); 6101 } 6102 return true; 6103 } 6104 6105 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6106 /// builder's expression stack. The stack should already contain an 6107 /// expression for the iteration count, so that it can be multiplied by 6108 /// the stride and added to the start. 6109 /// Components of the expression are omitted if they are an identity function. 6110 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6111 ScalarEvolution &SE) { 6112 assert(SAR.isAffine() && "Expected affine SCEV"); 6113 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6114 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6115 << SAR << '\n'); 6116 return false; 6117 } 6118 const SCEV *Start = SAR.getStart(); 6119 const SCEV *Stride = SAR.getStepRecurrence(SE); 6120 6121 // Skip pushing arithmetic noops. 6122 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6123 if (!pushSCEV(Start)) 6124 return false; 6125 pushOperator(llvm::dwarf::DW_OP_minus); 6126 } 6127 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6128 if (!pushSCEV(Stride)) 6129 return false; 6130 pushOperator(llvm::dwarf::DW_OP_div); 6131 } 6132 return true; 6133 } 6134 }; 6135 6136 struct DVIRecoveryRec { 6137 DbgValueInst *DVI; 6138 DIExpression *Expr; 6139 Metadata *LocationOp; 6140 const llvm::SCEV *SCEV; 6141 }; 6142 } // namespace 6143 6144 static void RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI, 6145 const SCEVDbgValueBuilder &IterationCount, 6146 ScalarEvolution &SE) { 6147 // LSR may add locations to previously single location-op DVIs which 6148 // are currently not supported. 6149 if (CachedDVI.DVI->getNumVariableLocationOps() != 1) 6150 return; 6151 6152 // SCEVs for SSA values are most frquently of the form 6153 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6154 // This is because %a is a PHI node that is not the IV. However, these 6155 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6156 // so its not expected this point will be reached. 6157 if (!isa<SCEVAddRecExpr>(CachedDVI.SCEV)) 6158 return; 6159 6160 LLVM_DEBUG(dbgs() << "scev-salvage: Value to salvage SCEV: " 6161 << *CachedDVI.SCEV << '\n'); 6162 6163 const auto *Rec = cast<SCEVAddRecExpr>(CachedDVI.SCEV); 6164 if (!Rec->isAffine()) 6165 return; 6166 6167 if (CachedDVI.SCEV->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6168 return; 6169 6170 // Initialise a new builder with the iteration count expression. In 6171 // combination with the value's SCEV this enables recovery. 6172 SCEVDbgValueBuilder RecoverValue(IterationCount); 6173 if (!RecoverValue.SCEVToValueExpr(*Rec, SE)) 6174 return; 6175 6176 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *CachedDVI.DVI << '\n'); 6177 RecoverValue.applyExprToDbgValue(*CachedDVI.DVI, CachedDVI.Expr); 6178 LLVM_DEBUG(dbgs() << "scev-salvage: to: " << *CachedDVI.DVI << '\n'); 6179 } 6180 6181 static void RewriteDVIUsingOffset(DVIRecoveryRec &DVIRec, llvm::PHINode &IV, 6182 int64_t Offset) { 6183 assert(!DVIRec.DVI->hasArgList() && "Expected single location-op dbg.value."); 6184 DbgValueInst *DVI = DVIRec.DVI; 6185 SmallVector<uint64_t, 8> Ops; 6186 DIExpression::appendOffset(Ops, Offset); 6187 DIExpression *Expr = DIExpression::prependOpcodes(DVIRec.Expr, Ops, true); 6188 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *DVIRec.DVI << '\n'); 6189 DVI->setExpression(Expr); 6190 llvm::Value *ValIV = dyn_cast<llvm::Value>(&IV); 6191 DVI->replaceVariableLocationOp( 6192 0u, llvm::MetadataAsValue::get(DVI->getContext(), 6193 llvm::ValueAsMetadata::get(ValIV))); 6194 LLVM_DEBUG(dbgs() << "scev-salvage: updated with offset to IV: " 6195 << *DVIRec.DVI << '\n'); 6196 } 6197 6198 static void 6199 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE, 6200 llvm::PHINode *LSRInductionVar, 6201 SmallVector<DVIRecoveryRec, 2> &DVIToUpdate) { 6202 if (DVIToUpdate.empty()) 6203 return; 6204 6205 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6206 assert(SCEVInductionVar && 6207 "Anticipated a SCEV for the post-LSR induction variable"); 6208 6209 if (const SCEVAddRecExpr *IVAddRec = 6210 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6211 if (!IVAddRec->isAffine()) 6212 return; 6213 6214 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6215 return; 6216 6217 // The iteration count is required to recover location values. 6218 SCEVDbgValueBuilder IterCountExpr; 6219 IterCountExpr.pushValue(LSRInductionVar); 6220 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6221 return; 6222 6223 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6224 << '\n'); 6225 6226 // Needn't salvage if the location op hasn't been undef'd by LSR. 6227 for (auto &DVIRec : DVIToUpdate) { 6228 if (!DVIRec.DVI->isUndef()) 6229 continue; 6230 6231 // Some DVIs that were single location-op when cached are now multi-op, 6232 // due to LSR optimisations. However, multi-op salvaging is not yet 6233 // supported by SCEV salvaging. But, we can attempt a salvage by restoring 6234 // the pre-LSR single-op expression. 6235 if (DVIRec.DVI->hasArgList()) { 6236 if (!DVIRec.DVI->getVariableLocationOp(0)) 6237 continue; 6238 llvm::Type *Ty = DVIRec.DVI->getVariableLocationOp(0)->getType(); 6239 DVIRec.DVI->setRawLocation( 6240 llvm::ValueAsMetadata::get(UndefValue::get(Ty))); 6241 DVIRec.DVI->setExpression(DVIRec.Expr); 6242 } 6243 6244 LLVM_DEBUG(dbgs() << "scev-salvage: value to recover SCEV: " 6245 << *DVIRec.SCEV << '\n'); 6246 6247 // Create a simple expression if the IV and value to salvage SCEVs 6248 // start values differ by only a constant value. 6249 if (Optional<APInt> Offset = 6250 SE.computeConstantDifference(DVIRec.SCEV, SCEVInductionVar)) { 6251 if (Offset.getValue().getMinSignedBits() <= 64) 6252 RewriteDVIUsingOffset(DVIRec, *LSRInductionVar, 6253 Offset.getValue().getSExtValue()); 6254 } else { 6255 RewriteDVIUsingIterCount(DVIRec, IterCountExpr, SE); 6256 } 6257 } 6258 } 6259 } 6260 6261 /// Identify and cache salvageable DVI locations and expressions along with the 6262 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6263 /// cacheing and salvaging. 6264 static void 6265 DbgGatherSalvagableDVI(Loop *L, ScalarEvolution &SE, 6266 SmallVector<DVIRecoveryRec, 2> &SalvageableDVISCEVs, 6267 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6268 for (auto &B : L->getBlocks()) { 6269 for (auto &I : *B) { 6270 auto DVI = dyn_cast<DbgValueInst>(&I); 6271 if (!DVI) 6272 continue; 6273 6274 if (DVI->isUndef()) 6275 continue; 6276 6277 if (DVI->hasArgList()) 6278 continue; 6279 6280 if (!DVI->getVariableLocationOp(0) || 6281 !SE.isSCEVable(DVI->getVariableLocationOp(0)->getType())) 6282 continue; 6283 6284 // SCEVUnknown wraps an llvm::Value, it does not have a start and stride. 6285 // Therefore no translation to DIExpression is performed. 6286 const SCEV *S = SE.getSCEV(DVI->getVariableLocationOp(0)); 6287 if (isa<SCEVUnknown>(S)) 6288 continue; 6289 6290 // Avoid wasting resources generating an expression containing undef. 6291 if (SE.containsUndefs(S)) 6292 continue; 6293 6294 SalvageableDVISCEVs.push_back( 6295 {DVI, DVI->getExpression(), DVI->getRawLocation(), 6296 SE.getSCEV(DVI->getVariableLocationOp(0))}); 6297 DVIHandles.insert(DVI); 6298 } 6299 } 6300 } 6301 6302 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 6303 /// any PHi from the loop header is usable, but may have less chance of 6304 /// surviving subsequent transforms. 6305 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 6306 const LSRInstance &LSR) { 6307 6308 auto IsSuitableIV = [&](PHINode *P) { 6309 if (!SE.isSCEVable(P->getType())) 6310 return false; 6311 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 6312 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 6313 return false; 6314 }; 6315 6316 // For now, just pick the first IV that was generated and inserted by 6317 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 6318 // by subsequent transforms. 6319 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 6320 if (!IV) 6321 continue; 6322 6323 // There should only be PHI node IVs. 6324 PHINode *P = cast<PHINode>(&*IV); 6325 6326 if (IsSuitableIV(P)) 6327 return P; 6328 } 6329 6330 for (PHINode &P : L.getHeader()->phis()) { 6331 if (IsSuitableIV(&P)) 6332 return &P; 6333 } 6334 return nullptr; 6335 } 6336 6337 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6338 DominatorTree &DT, LoopInfo &LI, 6339 const TargetTransformInfo &TTI, 6340 AssumptionCache &AC, TargetLibraryInfo &TLI, 6341 MemorySSA *MSSA) { 6342 6343 // Debug preservation - before we start removing anything identify which DVI 6344 // meet the salvageable criteria and store their DIExpression and SCEVs. 6345 SmallVector<DVIRecoveryRec, 2> SalvageableDVI; 6346 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 6347 DbgGatherSalvagableDVI(L, SE, SalvageableDVI, DVIHandles); 6348 6349 bool Changed = false; 6350 std::unique_ptr<MemorySSAUpdater> MSSAU; 6351 if (MSSA) 6352 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 6353 6354 // Run the main LSR transformation. 6355 const LSRInstance &Reducer = 6356 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 6357 Changed |= Reducer.getChanged(); 6358 6359 // Remove any extra phis created by processing inner loops. 6360 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6361 if (EnablePhiElim && L->isLoopSimplifyForm()) { 6362 SmallVector<WeakTrackingVH, 16> DeadInsts; 6363 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6364 SCEVExpander Rewriter(SE, DL, "lsr", false); 6365 #ifndef NDEBUG 6366 Rewriter.setDebugType(DEBUG_TYPE); 6367 #endif 6368 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 6369 if (numFolded) { 6370 Changed = true; 6371 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6372 MSSAU.get()); 6373 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6374 } 6375 } 6376 6377 if (SalvageableDVI.empty()) 6378 return Changed; 6379 6380 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 6381 // expressions composed using the derived iteration count. 6382 // TODO: Allow for multiple IV references for nested AddRecSCEVs 6383 for (auto &L : LI) { 6384 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 6385 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVI); 6386 else { 6387 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 6388 "could not be identified.\n"); 6389 } 6390 } 6391 6392 DVIHandles.clear(); 6393 return Changed; 6394 } 6395 6396 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 6397 if (skipLoop(L)) 6398 return false; 6399 6400 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 6401 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6402 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6403 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6404 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 6405 *L->getHeader()->getParent()); 6406 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 6407 *L->getHeader()->getParent()); 6408 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 6409 *L->getHeader()->getParent()); 6410 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 6411 MemorySSA *MSSA = nullptr; 6412 if (MSSAAnalysis) 6413 MSSA = &MSSAAnalysis->getMSSA(); 6414 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6415 } 6416 6417 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6418 LoopStandardAnalysisResults &AR, 6419 LPMUpdater &) { 6420 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6421 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6422 return PreservedAnalyses::all(); 6423 6424 auto PA = getLoopPassPreservedAnalyses(); 6425 if (AR.MSSA) 6426 PA.preserve<MemorySSAAnalysis>(); 6427 return PA; 6428 } 6429 6430 char LoopStrengthReduce::ID = 0; 6431 6432 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6433 "Loop Strength Reduction", false, false) 6434 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6435 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6436 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6437 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6438 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6439 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6440 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6441 "Loop Strength Reduction", false, false) 6442 6443 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6444