1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 // The flag adds instruction count to solutions cost comparision. 133 static cl::opt<bool> InsnsCost( 134 "lsr-insns-cost", cl::Hidden, cl::init(false), 135 cl::desc("Add instruction count to a LSR cost model")); 136 137 // Flag to choose how to narrow complex lsr solution 138 static cl::opt<bool> LSRExpNarrow( 139 "lsr-exp-narrow", cl::Hidden, cl::init(false), 140 cl::desc("Narrow LSR complex solution using" 141 " expectation of registers number")); 142 143 // Flag to narrow search space by filtering non-optimal formulae with 144 // the same ScaledReg and Scale. 145 static cl::opt<bool> FilterSameScaledReg( 146 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 147 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 148 " with the same ScaledReg and Scale")); 149 150 #ifndef NDEBUG 151 // Stress test IV chain generation. 152 static cl::opt<bool> StressIVChain( 153 "stress-ivchain", cl::Hidden, cl::init(false), 154 cl::desc("Stress test LSR IV chains")); 155 #else 156 static bool StressIVChain = false; 157 #endif 158 159 namespace { 160 161 struct MemAccessTy { 162 /// Used in situations where the accessed memory type is unknown. 163 static const unsigned UnknownAddressSpace = ~0u; 164 165 Type *MemTy; 166 unsigned AddrSpace; 167 168 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 169 170 MemAccessTy(Type *Ty, unsigned AS) : 171 MemTy(Ty), AddrSpace(AS) {} 172 173 bool operator==(MemAccessTy Other) const { 174 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 175 } 176 177 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 178 179 static MemAccessTy getUnknown(LLVMContext &Ctx, 180 unsigned AS = UnknownAddressSpace) { 181 return MemAccessTy(Type::getVoidTy(Ctx), AS); 182 } 183 }; 184 185 /// This class holds data which is used to order reuse candidates. 186 class RegSortData { 187 public: 188 /// This represents the set of LSRUse indices which reference 189 /// a particular register. 190 SmallBitVector UsedByIndices; 191 192 void print(raw_ostream &OS) const; 193 void dump() const; 194 }; 195 196 } // end anonymous namespace 197 198 void RegSortData::print(raw_ostream &OS) const { 199 OS << "[NumUses=" << UsedByIndices.count() << ']'; 200 } 201 202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 203 LLVM_DUMP_METHOD void RegSortData::dump() const { 204 print(errs()); errs() << '\n'; 205 } 206 #endif 207 208 namespace { 209 210 /// Map register candidates to information about how they are used. 211 class RegUseTracker { 212 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 213 214 RegUsesTy RegUsesMap; 215 SmallVector<const SCEV *, 16> RegSequence; 216 217 public: 218 void countRegister(const SCEV *Reg, size_t LUIdx); 219 void dropRegister(const SCEV *Reg, size_t LUIdx); 220 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 221 222 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 223 224 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 225 226 void clear(); 227 228 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 229 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 230 iterator begin() { return RegSequence.begin(); } 231 iterator end() { return RegSequence.end(); } 232 const_iterator begin() const { return RegSequence.begin(); } 233 const_iterator end() const { return RegSequence.end(); } 234 }; 235 236 } // end anonymous namespace 237 238 void 239 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 240 std::pair<RegUsesTy::iterator, bool> Pair = 241 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 242 RegSortData &RSD = Pair.first->second; 243 if (Pair.second) 244 RegSequence.push_back(Reg); 245 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 246 RSD.UsedByIndices.set(LUIdx); 247 } 248 249 void 250 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 251 RegUsesTy::iterator It = RegUsesMap.find(Reg); 252 assert(It != RegUsesMap.end()); 253 RegSortData &RSD = It->second; 254 assert(RSD.UsedByIndices.size() > LUIdx); 255 RSD.UsedByIndices.reset(LUIdx); 256 } 257 258 void 259 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 260 assert(LUIdx <= LastLUIdx); 261 262 // Update RegUses. The data structure is not optimized for this purpose; 263 // we must iterate through it and update each of the bit vectors. 264 for (auto &Pair : RegUsesMap) { 265 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 266 if (LUIdx < UsedByIndices.size()) 267 UsedByIndices[LUIdx] = 268 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 269 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 270 } 271 } 272 273 bool 274 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 275 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 276 if (I == RegUsesMap.end()) 277 return false; 278 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 279 int i = UsedByIndices.find_first(); 280 if (i == -1) return false; 281 if ((size_t)i != LUIdx) return true; 282 return UsedByIndices.find_next(i) != -1; 283 } 284 285 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 286 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 287 assert(I != RegUsesMap.end() && "Unknown register!"); 288 return I->second.UsedByIndices; 289 } 290 291 void RegUseTracker::clear() { 292 RegUsesMap.clear(); 293 RegSequence.clear(); 294 } 295 296 namespace { 297 298 /// This class holds information that describes a formula for computing 299 /// satisfying a use. It may include broken-out immediates and scaled registers. 300 struct Formula { 301 /// Global base address used for complex addressing. 302 GlobalValue *BaseGV; 303 304 /// Base offset for complex addressing. 305 int64_t BaseOffset; 306 307 /// Whether any complex addressing has a base register. 308 bool HasBaseReg; 309 310 /// The scale of any complex addressing. 311 int64_t Scale; 312 313 /// The list of "base" registers for this use. When this is non-empty. The 314 /// canonical representation of a formula is 315 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 316 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 317 /// 3. The reg containing recurrent expr related with currect loop in the 318 /// formula should be put in the ScaledReg. 319 /// #1 enforces that the scaled register is always used when at least two 320 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 321 /// #2 enforces that 1 * reg is reg. 322 /// #3 ensures invariant regs with respect to current loop can be combined 323 /// together in LSR codegen. 324 /// This invariant can be temporarly broken while building a formula. 325 /// However, every formula inserted into the LSRInstance must be in canonical 326 /// form. 327 SmallVector<const SCEV *, 4> BaseRegs; 328 329 /// The 'scaled' register for this use. This should be non-null when Scale is 330 /// not zero. 331 const SCEV *ScaledReg; 332 333 /// An additional constant offset which added near the use. This requires a 334 /// temporary register, but the offset itself can live in an add immediate 335 /// field rather than a register. 336 int64_t UnfoldedOffset; 337 338 Formula() 339 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 340 ScaledReg(nullptr), UnfoldedOffset(0) {} 341 342 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 343 344 bool isCanonical(const Loop &L) const; 345 346 void canonicalize(const Loop &L); 347 348 bool unscale(); 349 350 bool hasZeroEnd() const; 351 352 size_t getNumRegs() const; 353 Type *getType() const; 354 355 void deleteBaseReg(const SCEV *&S); 356 357 bool referencesReg(const SCEV *S) const; 358 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 359 const RegUseTracker &RegUses) const; 360 361 void print(raw_ostream &OS) const; 362 void dump() const; 363 }; 364 365 } // end anonymous namespace 366 367 /// Recursion helper for initialMatch. 368 static void DoInitialMatch(const SCEV *S, Loop *L, 369 SmallVectorImpl<const SCEV *> &Good, 370 SmallVectorImpl<const SCEV *> &Bad, 371 ScalarEvolution &SE) { 372 // Collect expressions which properly dominate the loop header. 373 if (SE.properlyDominates(S, L->getHeader())) { 374 Good.push_back(S); 375 return; 376 } 377 378 // Look at add operands. 379 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 380 for (const SCEV *S : Add->operands()) 381 DoInitialMatch(S, L, Good, Bad, SE); 382 return; 383 } 384 385 // Look at addrec operands. 386 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 387 if (!AR->getStart()->isZero() && AR->isAffine()) { 388 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 389 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 390 AR->getStepRecurrence(SE), 391 // FIXME: AR->getNoWrapFlags() 392 AR->getLoop(), SCEV::FlagAnyWrap), 393 L, Good, Bad, SE); 394 return; 395 } 396 397 // Handle a multiplication by -1 (negation) if it didn't fold. 398 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 399 if (Mul->getOperand(0)->isAllOnesValue()) { 400 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 401 const SCEV *NewMul = SE.getMulExpr(Ops); 402 403 SmallVector<const SCEV *, 4> MyGood; 404 SmallVector<const SCEV *, 4> MyBad; 405 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 406 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 407 SE.getEffectiveSCEVType(NewMul->getType()))); 408 for (const SCEV *S : MyGood) 409 Good.push_back(SE.getMulExpr(NegOne, S)); 410 for (const SCEV *S : MyBad) 411 Bad.push_back(SE.getMulExpr(NegOne, S)); 412 return; 413 } 414 415 // Ok, we can't do anything interesting. Just stuff the whole thing into a 416 // register and hope for the best. 417 Bad.push_back(S); 418 } 419 420 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 421 /// all loop-invariant and loop-computable values in a single base register. 422 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 423 SmallVector<const SCEV *, 4> Good; 424 SmallVector<const SCEV *, 4> Bad; 425 DoInitialMatch(S, L, Good, Bad, SE); 426 if (!Good.empty()) { 427 const SCEV *Sum = SE.getAddExpr(Good); 428 if (!Sum->isZero()) 429 BaseRegs.push_back(Sum); 430 HasBaseReg = true; 431 } 432 if (!Bad.empty()) { 433 const SCEV *Sum = SE.getAddExpr(Bad); 434 if (!Sum->isZero()) 435 BaseRegs.push_back(Sum); 436 HasBaseReg = true; 437 } 438 canonicalize(*L); 439 } 440 441 /// \brief Check whether or not this formula statisfies the canonical 442 /// representation. 443 /// \see Formula::BaseRegs. 444 bool Formula::isCanonical(const Loop &L) const { 445 if (!ScaledReg) 446 return BaseRegs.size() <= 1; 447 448 if (Scale != 1) 449 return true; 450 451 if (Scale == 1 && BaseRegs.empty()) 452 return false; 453 454 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 455 if (SAR && SAR->getLoop() == &L) 456 return true; 457 458 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 459 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 460 // loop, we want to swap the reg in BaseRegs with ScaledReg. 461 auto I = 462 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 463 return isa<const SCEVAddRecExpr>(S) && 464 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 465 }); 466 return I == BaseRegs.end(); 467 } 468 469 /// \brief Helper method to morph a formula into its canonical representation. 470 /// \see Formula::BaseRegs. 471 /// Every formula having more than one base register, must use the ScaledReg 472 /// field. Otherwise, we would have to do special cases everywhere in LSR 473 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 474 /// On the other hand, 1*reg should be canonicalized into reg. 475 void Formula::canonicalize(const Loop &L) { 476 if (isCanonical(L)) 477 return; 478 // So far we did not need this case. This is easy to implement but it is 479 // useless to maintain dead code. Beside it could hurt compile time. 480 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 481 482 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 483 if (!ScaledReg) { 484 ScaledReg = BaseRegs.back(); 485 BaseRegs.pop_back(); 486 Scale = 1; 487 } 488 489 // If ScaledReg is an invariant with respect to L, find the reg from 490 // BaseRegs containing the recurrent expr related with Loop L. Swap the 491 // reg with ScaledReg. 492 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 493 if (!SAR || SAR->getLoop() != &L) { 494 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 495 [&](const SCEV *S) { 496 return isa<const SCEVAddRecExpr>(S) && 497 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 498 }); 499 if (I != BaseRegs.end()) 500 std::swap(ScaledReg, *I); 501 } 502 } 503 504 /// \brief Get rid of the scale in the formula. 505 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 506 /// \return true if it was possible to get rid of the scale, false otherwise. 507 /// \note After this operation the formula may not be in the canonical form. 508 bool Formula::unscale() { 509 if (Scale != 1) 510 return false; 511 Scale = 0; 512 BaseRegs.push_back(ScaledReg); 513 ScaledReg = nullptr; 514 return true; 515 } 516 517 bool Formula::hasZeroEnd() const { 518 if (UnfoldedOffset || BaseOffset) 519 return false; 520 if (BaseRegs.size() != 1 || ScaledReg) 521 return false; 522 return true; 523 } 524 525 /// Return the total number of register operands used by this formula. This does 526 /// not include register uses implied by non-constant addrec strides. 527 size_t Formula::getNumRegs() const { 528 return !!ScaledReg + BaseRegs.size(); 529 } 530 531 /// Return the type of this formula, if it has one, or null otherwise. This type 532 /// is meaningless except for the bit size. 533 Type *Formula::getType() const { 534 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 535 ScaledReg ? ScaledReg->getType() : 536 BaseGV ? BaseGV->getType() : 537 nullptr; 538 } 539 540 /// Delete the given base reg from the BaseRegs list. 541 void Formula::deleteBaseReg(const SCEV *&S) { 542 if (&S != &BaseRegs.back()) 543 std::swap(S, BaseRegs.back()); 544 BaseRegs.pop_back(); 545 } 546 547 /// Test if this formula references the given register. 548 bool Formula::referencesReg(const SCEV *S) const { 549 return S == ScaledReg || is_contained(BaseRegs, S); 550 } 551 552 /// Test whether this formula uses registers which are used by uses other than 553 /// the use with the given index. 554 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 555 const RegUseTracker &RegUses) const { 556 if (ScaledReg) 557 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 558 return true; 559 for (const SCEV *BaseReg : BaseRegs) 560 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 561 return true; 562 return false; 563 } 564 565 void Formula::print(raw_ostream &OS) const { 566 bool First = true; 567 if (BaseGV) { 568 if (!First) OS << " + "; else First = false; 569 BaseGV->printAsOperand(OS, /*PrintType=*/false); 570 } 571 if (BaseOffset != 0) { 572 if (!First) OS << " + "; else First = false; 573 OS << BaseOffset; 574 } 575 for (const SCEV *BaseReg : BaseRegs) { 576 if (!First) OS << " + "; else First = false; 577 OS << "reg(" << *BaseReg << ')'; 578 } 579 if (HasBaseReg && BaseRegs.empty()) { 580 if (!First) OS << " + "; else First = false; 581 OS << "**error: HasBaseReg**"; 582 } else if (!HasBaseReg && !BaseRegs.empty()) { 583 if (!First) OS << " + "; else First = false; 584 OS << "**error: !HasBaseReg**"; 585 } 586 if (Scale != 0) { 587 if (!First) OS << " + "; else First = false; 588 OS << Scale << "*reg("; 589 if (ScaledReg) 590 OS << *ScaledReg; 591 else 592 OS << "<unknown>"; 593 OS << ')'; 594 } 595 if (UnfoldedOffset != 0) { 596 if (!First) OS << " + "; 597 OS << "imm(" << UnfoldedOffset << ')'; 598 } 599 } 600 601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 602 LLVM_DUMP_METHOD void Formula::dump() const { 603 print(errs()); errs() << '\n'; 604 } 605 #endif 606 607 /// Return true if the given addrec can be sign-extended without changing its 608 /// value. 609 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 610 Type *WideTy = 611 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 612 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 613 } 614 615 /// Return true if the given add can be sign-extended without changing its 616 /// value. 617 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 618 Type *WideTy = 619 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 620 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 621 } 622 623 /// Return true if the given mul can be sign-extended without changing its 624 /// value. 625 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 626 Type *WideTy = 627 IntegerType::get(SE.getContext(), 628 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 629 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 630 } 631 632 /// Return an expression for LHS /s RHS, if it can be determined and if the 633 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 634 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 635 /// the multiplication may overflow, which is useful when the result will be 636 /// used in a context where the most significant bits are ignored. 637 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 638 ScalarEvolution &SE, 639 bool IgnoreSignificantBits = false) { 640 // Handle the trivial case, which works for any SCEV type. 641 if (LHS == RHS) 642 return SE.getConstant(LHS->getType(), 1); 643 644 // Handle a few RHS special cases. 645 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 646 if (RC) { 647 const APInt &RA = RC->getAPInt(); 648 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 649 // some folding. 650 if (RA.isAllOnesValue()) 651 return SE.getMulExpr(LHS, RC); 652 // Handle x /s 1 as x. 653 if (RA == 1) 654 return LHS; 655 } 656 657 // Check for a division of a constant by a constant. 658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 659 if (!RC) 660 return nullptr; 661 const APInt &LA = C->getAPInt(); 662 const APInt &RA = RC->getAPInt(); 663 if (LA.srem(RA) != 0) 664 return nullptr; 665 return SE.getConstant(LA.sdiv(RA)); 666 } 667 668 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 669 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 670 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 671 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 672 IgnoreSignificantBits); 673 if (!Step) return nullptr; 674 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 675 IgnoreSignificantBits); 676 if (!Start) return nullptr; 677 // FlagNW is independent of the start value, step direction, and is 678 // preserved with smaller magnitude steps. 679 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 680 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 681 } 682 return nullptr; 683 } 684 685 // Distribute the sdiv over add operands, if the add doesn't overflow. 686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 687 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 688 SmallVector<const SCEV *, 8> Ops; 689 for (const SCEV *S : Add->operands()) { 690 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 691 if (!Op) return nullptr; 692 Ops.push_back(Op); 693 } 694 return SE.getAddExpr(Ops); 695 } 696 return nullptr; 697 } 698 699 // Check for a multiply operand that we can pull RHS out of. 700 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 701 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 702 SmallVector<const SCEV *, 4> Ops; 703 bool Found = false; 704 for (const SCEV *S : Mul->operands()) { 705 if (!Found) 706 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 707 IgnoreSignificantBits)) { 708 S = Q; 709 Found = true; 710 } 711 Ops.push_back(S); 712 } 713 return Found ? SE.getMulExpr(Ops) : nullptr; 714 } 715 return nullptr; 716 } 717 718 // Otherwise we don't know. 719 return nullptr; 720 } 721 722 /// If S involves the addition of a constant integer value, return that integer 723 /// value, and mutate S to point to a new SCEV with that value excluded. 724 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 725 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 726 if (C->getAPInt().getMinSignedBits() <= 64) { 727 S = SE.getConstant(C->getType(), 0); 728 return C->getValue()->getSExtValue(); 729 } 730 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 731 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 732 int64_t Result = ExtractImmediate(NewOps.front(), SE); 733 if (Result != 0) 734 S = SE.getAddExpr(NewOps); 735 return Result; 736 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 737 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 738 int64_t Result = ExtractImmediate(NewOps.front(), SE); 739 if (Result != 0) 740 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 741 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 742 SCEV::FlagAnyWrap); 743 return Result; 744 } 745 return 0; 746 } 747 748 /// If S involves the addition of a GlobalValue address, return that symbol, and 749 /// mutate S to point to a new SCEV with that value excluded. 750 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 751 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 752 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 753 S = SE.getConstant(GV->getType(), 0); 754 return GV; 755 } 756 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 757 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 758 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 759 if (Result) 760 S = SE.getAddExpr(NewOps); 761 return Result; 762 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 763 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 764 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 765 if (Result) 766 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 767 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 768 SCEV::FlagAnyWrap); 769 return Result; 770 } 771 return nullptr; 772 } 773 774 /// Returns true if the specified instruction is using the specified value as an 775 /// address. 776 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 777 bool isAddress = isa<LoadInst>(Inst); 778 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 779 if (SI->getPointerOperand() == OperandVal) 780 isAddress = true; 781 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 782 // Addressing modes can also be folded into prefetches and a variety 783 // of intrinsics. 784 switch (II->getIntrinsicID()) { 785 default: break; 786 case Intrinsic::memset: 787 case Intrinsic::prefetch: 788 if (II->getArgOperand(0) == OperandVal) 789 isAddress = true; 790 break; 791 case Intrinsic::memmove: 792 case Intrinsic::memcpy: 793 if (II->getArgOperand(0) == OperandVal || 794 II->getArgOperand(1) == OperandVal) 795 isAddress = true; 796 break; 797 } 798 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 799 if (RMW->getPointerOperand() == OperandVal) 800 isAddress = true; 801 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 802 if (CmpX->getPointerOperand() == OperandVal) 803 isAddress = true; 804 } 805 return isAddress; 806 } 807 808 /// Return the type of the memory being accessed. 809 static MemAccessTy getAccessType(const Instruction *Inst) { 810 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 811 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 812 AccessTy.MemTy = SI->getOperand(0)->getType(); 813 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 814 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 815 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 816 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 817 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 818 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 819 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 820 } 821 822 // All pointers have the same requirements, so canonicalize them to an 823 // arbitrary pointer type to minimize variation. 824 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 825 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 826 PTy->getAddressSpace()); 827 828 return AccessTy; 829 } 830 831 /// Return true if this AddRec is already a phi in its loop. 832 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 833 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 834 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 835 if (SE.isSCEVable(PN->getType()) && 836 (SE.getEffectiveSCEVType(PN->getType()) == 837 SE.getEffectiveSCEVType(AR->getType())) && 838 SE.getSCEV(PN) == AR) 839 return true; 840 } 841 return false; 842 } 843 844 /// Check if expanding this expression is likely to incur significant cost. This 845 /// is tricky because SCEV doesn't track which expressions are actually computed 846 /// by the current IR. 847 /// 848 /// We currently allow expansion of IV increments that involve adds, 849 /// multiplication by constants, and AddRecs from existing phis. 850 /// 851 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 852 /// obvious multiple of the UDivExpr. 853 static bool isHighCostExpansion(const SCEV *S, 854 SmallPtrSetImpl<const SCEV*> &Processed, 855 ScalarEvolution &SE) { 856 // Zero/One operand expressions 857 switch (S->getSCEVType()) { 858 case scUnknown: 859 case scConstant: 860 return false; 861 case scTruncate: 862 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 863 Processed, SE); 864 case scZeroExtend: 865 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 866 Processed, SE); 867 case scSignExtend: 868 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 869 Processed, SE); 870 } 871 872 if (!Processed.insert(S).second) 873 return false; 874 875 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 876 for (const SCEV *S : Add->operands()) { 877 if (isHighCostExpansion(S, Processed, SE)) 878 return true; 879 } 880 return false; 881 } 882 883 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 884 if (Mul->getNumOperands() == 2) { 885 // Multiplication by a constant is ok 886 if (isa<SCEVConstant>(Mul->getOperand(0))) 887 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 888 889 // If we have the value of one operand, check if an existing 890 // multiplication already generates this expression. 891 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 892 Value *UVal = U->getValue(); 893 for (User *UR : UVal->users()) { 894 // If U is a constant, it may be used by a ConstantExpr. 895 Instruction *UI = dyn_cast<Instruction>(UR); 896 if (UI && UI->getOpcode() == Instruction::Mul && 897 SE.isSCEVable(UI->getType())) { 898 return SE.getSCEV(UI) == Mul; 899 } 900 } 901 } 902 } 903 } 904 905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 906 if (isExistingPhi(AR, SE)) 907 return false; 908 } 909 910 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 911 return true; 912 } 913 914 /// If any of the instructions is the specified set are trivially dead, delete 915 /// them and see if this makes any of their operands subsequently dead. 916 static bool 917 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 918 bool Changed = false; 919 920 while (!DeadInsts.empty()) { 921 Value *V = DeadInsts.pop_back_val(); 922 Instruction *I = dyn_cast_or_null<Instruction>(V); 923 924 if (!I || !isInstructionTriviallyDead(I)) 925 continue; 926 927 for (Use &O : I->operands()) 928 if (Instruction *U = dyn_cast<Instruction>(O)) { 929 O = nullptr; 930 if (U->use_empty()) 931 DeadInsts.emplace_back(U); 932 } 933 934 I->eraseFromParent(); 935 Changed = true; 936 } 937 938 return Changed; 939 } 940 941 namespace { 942 943 class LSRUse; 944 945 } // end anonymous namespace 946 947 /// \brief Check if the addressing mode defined by \p F is completely 948 /// folded in \p LU at isel time. 949 /// This includes address-mode folding and special icmp tricks. 950 /// This function returns true if \p LU can accommodate what \p F 951 /// defines and up to 1 base + 1 scaled + offset. 952 /// In other words, if \p F has several base registers, this function may 953 /// still return true. Therefore, users still need to account for 954 /// additional base registers and/or unfolded offsets to derive an 955 /// accurate cost model. 956 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 957 const LSRUse &LU, const Formula &F); 958 // Get the cost of the scaling factor used in F for LU. 959 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 960 const LSRUse &LU, const Formula &F, 961 const Loop &L); 962 963 namespace { 964 965 /// This class is used to measure and compare candidate formulae. 966 class Cost { 967 TargetTransformInfo::LSRCost C; 968 969 public: 970 Cost() { 971 C.Insns = 0; 972 C.NumRegs = 0; 973 C.AddRecCost = 0; 974 C.NumIVMuls = 0; 975 C.NumBaseAdds = 0; 976 C.ImmCost = 0; 977 C.SetupCost = 0; 978 C.ScaleCost = 0; 979 } 980 981 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 982 983 void Lose(); 984 985 #ifndef NDEBUG 986 // Once any of the metrics loses, they must all remain losers. 987 bool isValid() { 988 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 989 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 990 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 991 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 992 } 993 #endif 994 995 bool isLoser() { 996 assert(isValid() && "invalid cost"); 997 return C.NumRegs == ~0u; 998 } 999 1000 void RateFormula(const TargetTransformInfo &TTI, 1001 const Formula &F, 1002 SmallPtrSetImpl<const SCEV *> &Regs, 1003 const DenseSet<const SCEV *> &VisitedRegs, 1004 const Loop *L, 1005 ScalarEvolution &SE, DominatorTree &DT, 1006 const LSRUse &LU, 1007 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1008 1009 void print(raw_ostream &OS) const; 1010 void dump() const; 1011 1012 private: 1013 void RateRegister(const SCEV *Reg, 1014 SmallPtrSetImpl<const SCEV *> &Regs, 1015 const Loop *L, 1016 ScalarEvolution &SE, DominatorTree &DT); 1017 void RatePrimaryRegister(const SCEV *Reg, 1018 SmallPtrSetImpl<const SCEV *> &Regs, 1019 const Loop *L, 1020 ScalarEvolution &SE, DominatorTree &DT, 1021 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1022 }; 1023 1024 /// An operand value in an instruction which is to be replaced with some 1025 /// equivalent, possibly strength-reduced, replacement. 1026 struct LSRFixup { 1027 /// The instruction which will be updated. 1028 Instruction *UserInst; 1029 1030 /// The operand of the instruction which will be replaced. The operand may be 1031 /// used more than once; every instance will be replaced. 1032 Value *OperandValToReplace; 1033 1034 /// If this user is to use the post-incremented value of an induction 1035 /// variable, this variable is non-null and holds the loop associated with the 1036 /// induction variable. 1037 PostIncLoopSet PostIncLoops; 1038 1039 /// A constant offset to be added to the LSRUse expression. This allows 1040 /// multiple fixups to share the same LSRUse with different offsets, for 1041 /// example in an unrolled loop. 1042 int64_t Offset; 1043 1044 bool isUseFullyOutsideLoop(const Loop *L) const; 1045 1046 LSRFixup(); 1047 1048 void print(raw_ostream &OS) const; 1049 void dump() const; 1050 }; 1051 1052 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1053 /// SmallVectors of const SCEV*. 1054 struct UniquifierDenseMapInfo { 1055 static SmallVector<const SCEV *, 4> getEmptyKey() { 1056 SmallVector<const SCEV *, 4> V; 1057 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1058 return V; 1059 } 1060 1061 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1062 SmallVector<const SCEV *, 4> V; 1063 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1064 return V; 1065 } 1066 1067 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1068 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1069 } 1070 1071 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1072 const SmallVector<const SCEV *, 4> &RHS) { 1073 return LHS == RHS; 1074 } 1075 }; 1076 1077 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1078 /// as uses invented by LSR itself. It includes information about what kinds of 1079 /// things can be folded into the user, information about the user itself, and 1080 /// information about how the use may be satisfied. TODO: Represent multiple 1081 /// users of the same expression in common? 1082 class LSRUse { 1083 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1084 1085 public: 1086 /// An enum for a kind of use, indicating what types of scaled and immediate 1087 /// operands it might support. 1088 enum KindType { 1089 Basic, ///< A normal use, with no folding. 1090 Special, ///< A special case of basic, allowing -1 scales. 1091 Address, ///< An address use; folding according to TargetLowering 1092 ICmpZero ///< An equality icmp with both operands folded into one. 1093 // TODO: Add a generic icmp too? 1094 }; 1095 1096 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1097 1098 KindType Kind; 1099 MemAccessTy AccessTy; 1100 1101 /// The list of operands which are to be replaced. 1102 SmallVector<LSRFixup, 8> Fixups; 1103 1104 /// Keep track of the min and max offsets of the fixups. 1105 int64_t MinOffset; 1106 int64_t MaxOffset; 1107 1108 /// This records whether all of the fixups using this LSRUse are outside of 1109 /// the loop, in which case some special-case heuristics may be used. 1110 bool AllFixupsOutsideLoop; 1111 1112 /// RigidFormula is set to true to guarantee that this use will be associated 1113 /// with a single formula--the one that initially matched. Some SCEV 1114 /// expressions cannot be expanded. This allows LSR to consider the registers 1115 /// used by those expressions without the need to expand them later after 1116 /// changing the formula. 1117 bool RigidFormula; 1118 1119 /// This records the widest use type for any fixup using this 1120 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1121 /// fixup widths to be equivalent, because the narrower one may be relying on 1122 /// the implicit truncation to truncate away bogus bits. 1123 Type *WidestFixupType; 1124 1125 /// A list of ways to build a value that can satisfy this user. After the 1126 /// list is populated, one of these is selected heuristically and used to 1127 /// formulate a replacement for OperandValToReplace in UserInst. 1128 SmallVector<Formula, 12> Formulae; 1129 1130 /// The set of register candidates used by all formulae in this LSRUse. 1131 SmallPtrSet<const SCEV *, 4> Regs; 1132 1133 LSRUse(KindType K, MemAccessTy AT) 1134 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1135 AllFixupsOutsideLoop(true), RigidFormula(false), 1136 WidestFixupType(nullptr) {} 1137 1138 LSRFixup &getNewFixup() { 1139 Fixups.push_back(LSRFixup()); 1140 return Fixups.back(); 1141 } 1142 1143 void pushFixup(LSRFixup &f) { 1144 Fixups.push_back(f); 1145 if (f.Offset > MaxOffset) 1146 MaxOffset = f.Offset; 1147 if (f.Offset < MinOffset) 1148 MinOffset = f.Offset; 1149 } 1150 1151 bool HasFormulaWithSameRegs(const Formula &F) const; 1152 float getNotSelectedProbability(const SCEV *Reg) const; 1153 bool InsertFormula(const Formula &F, const Loop &L); 1154 void DeleteFormula(Formula &F); 1155 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1156 1157 void print(raw_ostream &OS) const; 1158 void dump() const; 1159 }; 1160 1161 } // end anonymous namespace 1162 1163 /// Tally up interesting quantities from the given register. 1164 void Cost::RateRegister(const SCEV *Reg, 1165 SmallPtrSetImpl<const SCEV *> &Regs, 1166 const Loop *L, 1167 ScalarEvolution &SE, DominatorTree &DT) { 1168 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1169 // If this is an addrec for another loop, it should be an invariant 1170 // with respect to L since L is the innermost loop (at least 1171 // for now LSR only handles innermost loops). 1172 if (AR->getLoop() != L) { 1173 // If the AddRec exists, consider it's register free and leave it alone. 1174 if (isExistingPhi(AR, SE)) 1175 return; 1176 1177 // It is bad to allow LSR for current loop to add induction variables 1178 // for its sibling loops. 1179 if (!AR->getLoop()->contains(L)) { 1180 Lose(); 1181 return; 1182 } 1183 1184 // Otherwise, it will be an invariant with respect to Loop L. 1185 ++C.NumRegs; 1186 return; 1187 } 1188 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1189 1190 // Add the step value register, if it needs one. 1191 // TODO: The non-affine case isn't precisely modeled here. 1192 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1193 if (!Regs.count(AR->getOperand(1))) { 1194 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1195 if (isLoser()) 1196 return; 1197 } 1198 } 1199 } 1200 ++C.NumRegs; 1201 1202 // Rough heuristic; favor registers which don't require extra setup 1203 // instructions in the preheader. 1204 if (!isa<SCEVUnknown>(Reg) && 1205 !isa<SCEVConstant>(Reg) && 1206 !(isa<SCEVAddRecExpr>(Reg) && 1207 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1208 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1209 ++C.SetupCost; 1210 1211 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1212 SE.hasComputableLoopEvolution(Reg, L); 1213 } 1214 1215 /// Record this register in the set. If we haven't seen it before, rate 1216 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1217 /// one of those regs an instant loser. 1218 void Cost::RatePrimaryRegister(const SCEV *Reg, 1219 SmallPtrSetImpl<const SCEV *> &Regs, 1220 const Loop *L, 1221 ScalarEvolution &SE, DominatorTree &DT, 1222 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1223 if (LoserRegs && LoserRegs->count(Reg)) { 1224 Lose(); 1225 return; 1226 } 1227 if (Regs.insert(Reg).second) { 1228 RateRegister(Reg, Regs, L, SE, DT); 1229 if (LoserRegs && isLoser()) 1230 LoserRegs->insert(Reg); 1231 } 1232 } 1233 1234 void Cost::RateFormula(const TargetTransformInfo &TTI, 1235 const Formula &F, 1236 SmallPtrSetImpl<const SCEV *> &Regs, 1237 const DenseSet<const SCEV *> &VisitedRegs, 1238 const Loop *L, 1239 ScalarEvolution &SE, DominatorTree &DT, 1240 const LSRUse &LU, 1241 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1242 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1243 // Tally up the registers. 1244 unsigned PrevAddRecCost = C.AddRecCost; 1245 unsigned PrevNumRegs = C.NumRegs; 1246 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1247 if (const SCEV *ScaledReg = F.ScaledReg) { 1248 if (VisitedRegs.count(ScaledReg)) { 1249 Lose(); 1250 return; 1251 } 1252 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1253 if (isLoser()) 1254 return; 1255 } 1256 for (const SCEV *BaseReg : F.BaseRegs) { 1257 if (VisitedRegs.count(BaseReg)) { 1258 Lose(); 1259 return; 1260 } 1261 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1262 if (isLoser()) 1263 return; 1264 } 1265 1266 // Determine how many (unfolded) adds we'll need inside the loop. 1267 size_t NumBaseParts = F.getNumRegs(); 1268 if (NumBaseParts > 1) 1269 // Do not count the base and a possible second register if the target 1270 // allows to fold 2 registers. 1271 C.NumBaseAdds += 1272 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1273 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1274 1275 // Accumulate non-free scaling amounts. 1276 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1277 1278 // Tally up the non-zero immediates. 1279 for (const LSRFixup &Fixup : LU.Fixups) { 1280 int64_t O = Fixup.Offset; 1281 int64_t Offset = (uint64_t)O + F.BaseOffset; 1282 if (F.BaseGV) 1283 C.ImmCost += 64; // Handle symbolic values conservatively. 1284 // TODO: This should probably be the pointer size. 1285 else if (Offset != 0) 1286 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1287 1288 // Check with target if this offset with this instruction is 1289 // specifically not supported. 1290 if (LU.Kind == LSRUse::Address && Offset != 0 && 1291 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1292 C.NumBaseAdds++; 1293 } 1294 1295 // If we don't count instruction cost exit here. 1296 if (!InsnsCost) { 1297 assert(isValid() && "invalid cost"); 1298 return; 1299 } 1300 1301 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1302 // additional instruction (at least fill). 1303 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1304 if (C.NumRegs > TTIRegNum) { 1305 // Cost already exceeded TTIRegNum, then only newly added register can add 1306 // new instructions. 1307 if (PrevNumRegs > TTIRegNum) 1308 C.Insns += (C.NumRegs - PrevNumRegs); 1309 else 1310 C.Insns += (C.NumRegs - TTIRegNum); 1311 } 1312 1313 // If ICmpZero formula ends with not 0, it could not be replaced by 1314 // just add or sub. We'll need to compare final result of AddRec. 1315 // That means we'll need an additional instruction. 1316 // For -10 + {0, +, 1}: 1317 // i = i + 1; 1318 // cmp i, 10 1319 // 1320 // For {-10, +, 1}: 1321 // i = i + 1; 1322 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1323 C.Insns++; 1324 // Each new AddRec adds 1 instruction to calculation. 1325 C.Insns += (C.AddRecCost - PrevAddRecCost); 1326 1327 // BaseAdds adds instructions for unfolded registers. 1328 if (LU.Kind != LSRUse::ICmpZero) 1329 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1330 assert(isValid() && "invalid cost"); 1331 } 1332 1333 /// Set this cost to a losing value. 1334 void Cost::Lose() { 1335 C.Insns = ~0u; 1336 C.NumRegs = ~0u; 1337 C.AddRecCost = ~0u; 1338 C.NumIVMuls = ~0u; 1339 C.NumBaseAdds = ~0u; 1340 C.ImmCost = ~0u; 1341 C.SetupCost = ~0u; 1342 C.ScaleCost = ~0u; 1343 } 1344 1345 /// Choose the lower cost. 1346 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1347 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1348 C.Insns != Other.C.Insns) 1349 return C.Insns < Other.C.Insns; 1350 return TTI.isLSRCostLess(C, Other.C); 1351 } 1352 1353 void Cost::print(raw_ostream &OS) const { 1354 if (InsnsCost) 1355 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1356 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1357 if (C.AddRecCost != 0) 1358 OS << ", with addrec cost " << C.AddRecCost; 1359 if (C.NumIVMuls != 0) 1360 OS << ", plus " << C.NumIVMuls << " IV mul" 1361 << (C.NumIVMuls == 1 ? "" : "s"); 1362 if (C.NumBaseAdds != 0) 1363 OS << ", plus " << C.NumBaseAdds << " base add" 1364 << (C.NumBaseAdds == 1 ? "" : "s"); 1365 if (C.ScaleCost != 0) 1366 OS << ", plus " << C.ScaleCost << " scale cost"; 1367 if (C.ImmCost != 0) 1368 OS << ", plus " << C.ImmCost << " imm cost"; 1369 if (C.SetupCost != 0) 1370 OS << ", plus " << C.SetupCost << " setup cost"; 1371 } 1372 1373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1374 LLVM_DUMP_METHOD void Cost::dump() const { 1375 print(errs()); errs() << '\n'; 1376 } 1377 #endif 1378 1379 LSRFixup::LSRFixup() 1380 : UserInst(nullptr), OperandValToReplace(nullptr), 1381 Offset(0) {} 1382 1383 /// Test whether this fixup always uses its value outside of the given loop. 1384 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1385 // PHI nodes use their value in their incoming blocks. 1386 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1387 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1388 if (PN->getIncomingValue(i) == OperandValToReplace && 1389 L->contains(PN->getIncomingBlock(i))) 1390 return false; 1391 return true; 1392 } 1393 1394 return !L->contains(UserInst); 1395 } 1396 1397 void LSRFixup::print(raw_ostream &OS) const { 1398 OS << "UserInst="; 1399 // Store is common and interesting enough to be worth special-casing. 1400 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1401 OS << "store "; 1402 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1403 } else if (UserInst->getType()->isVoidTy()) 1404 OS << UserInst->getOpcodeName(); 1405 else 1406 UserInst->printAsOperand(OS, /*PrintType=*/false); 1407 1408 OS << ", OperandValToReplace="; 1409 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1410 1411 for (const Loop *PIL : PostIncLoops) { 1412 OS << ", PostIncLoop="; 1413 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1414 } 1415 1416 if (Offset != 0) 1417 OS << ", Offset=" << Offset; 1418 } 1419 1420 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1421 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1422 print(errs()); errs() << '\n'; 1423 } 1424 #endif 1425 1426 /// Test whether this use as a formula which has the same registers as the given 1427 /// formula. 1428 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1429 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1430 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1431 // Unstable sort by host order ok, because this is only used for uniquifying. 1432 std::sort(Key.begin(), Key.end()); 1433 return Uniquifier.count(Key); 1434 } 1435 1436 /// The function returns a probability of selecting formula without Reg. 1437 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1438 unsigned FNum = 0; 1439 for (const Formula &F : Formulae) 1440 if (F.referencesReg(Reg)) 1441 FNum++; 1442 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1443 } 1444 1445 /// If the given formula has not yet been inserted, add it to the list, and 1446 /// return true. Return false otherwise. The formula must be in canonical form. 1447 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1448 assert(F.isCanonical(L) && "Invalid canonical representation"); 1449 1450 if (!Formulae.empty() && RigidFormula) 1451 return false; 1452 1453 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1454 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1455 // Unstable sort by host order ok, because this is only used for uniquifying. 1456 std::sort(Key.begin(), Key.end()); 1457 1458 if (!Uniquifier.insert(Key).second) 1459 return false; 1460 1461 // Using a register to hold the value of 0 is not profitable. 1462 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1463 "Zero allocated in a scaled register!"); 1464 #ifndef NDEBUG 1465 for (const SCEV *BaseReg : F.BaseRegs) 1466 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1467 #endif 1468 1469 // Add the formula to the list. 1470 Formulae.push_back(F); 1471 1472 // Record registers now being used by this use. 1473 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1474 if (F.ScaledReg) 1475 Regs.insert(F.ScaledReg); 1476 1477 return true; 1478 } 1479 1480 /// Remove the given formula from this use's list. 1481 void LSRUse::DeleteFormula(Formula &F) { 1482 if (&F != &Formulae.back()) 1483 std::swap(F, Formulae.back()); 1484 Formulae.pop_back(); 1485 } 1486 1487 /// Recompute the Regs field, and update RegUses. 1488 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1489 // Now that we've filtered out some formulae, recompute the Regs set. 1490 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1491 Regs.clear(); 1492 for (const Formula &F : Formulae) { 1493 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1494 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1495 } 1496 1497 // Update the RegTracker. 1498 for (const SCEV *S : OldRegs) 1499 if (!Regs.count(S)) 1500 RegUses.dropRegister(S, LUIdx); 1501 } 1502 1503 void LSRUse::print(raw_ostream &OS) const { 1504 OS << "LSR Use: Kind="; 1505 switch (Kind) { 1506 case Basic: OS << "Basic"; break; 1507 case Special: OS << "Special"; break; 1508 case ICmpZero: OS << "ICmpZero"; break; 1509 case Address: 1510 OS << "Address of "; 1511 if (AccessTy.MemTy->isPointerTy()) 1512 OS << "pointer"; // the full pointer type could be really verbose 1513 else { 1514 OS << *AccessTy.MemTy; 1515 } 1516 1517 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1518 } 1519 1520 OS << ", Offsets={"; 1521 bool NeedComma = false; 1522 for (const LSRFixup &Fixup : Fixups) { 1523 if (NeedComma) OS << ','; 1524 OS << Fixup.Offset; 1525 NeedComma = true; 1526 } 1527 OS << '}'; 1528 1529 if (AllFixupsOutsideLoop) 1530 OS << ", all-fixups-outside-loop"; 1531 1532 if (WidestFixupType) 1533 OS << ", widest fixup type: " << *WidestFixupType; 1534 } 1535 1536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1537 LLVM_DUMP_METHOD void LSRUse::dump() const { 1538 print(errs()); errs() << '\n'; 1539 } 1540 #endif 1541 1542 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1543 LSRUse::KindType Kind, MemAccessTy AccessTy, 1544 GlobalValue *BaseGV, int64_t BaseOffset, 1545 bool HasBaseReg, int64_t Scale, 1546 Instruction *Fixup = nullptr) { 1547 switch (Kind) { 1548 case LSRUse::Address: 1549 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1550 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1551 1552 case LSRUse::ICmpZero: 1553 // There's not even a target hook for querying whether it would be legal to 1554 // fold a GV into an ICmp. 1555 if (BaseGV) 1556 return false; 1557 1558 // ICmp only has two operands; don't allow more than two non-trivial parts. 1559 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1560 return false; 1561 1562 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1563 // putting the scaled register in the other operand of the icmp. 1564 if (Scale != 0 && Scale != -1) 1565 return false; 1566 1567 // If we have low-level target information, ask the target if it can fold an 1568 // integer immediate on an icmp. 1569 if (BaseOffset != 0) { 1570 // We have one of: 1571 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1572 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1573 // Offs is the ICmp immediate. 1574 if (Scale == 0) 1575 // The cast does the right thing with INT64_MIN. 1576 BaseOffset = -(uint64_t)BaseOffset; 1577 return TTI.isLegalICmpImmediate(BaseOffset); 1578 } 1579 1580 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1581 return true; 1582 1583 case LSRUse::Basic: 1584 // Only handle single-register values. 1585 return !BaseGV && Scale == 0 && BaseOffset == 0; 1586 1587 case LSRUse::Special: 1588 // Special case Basic to handle -1 scales. 1589 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1590 } 1591 1592 llvm_unreachable("Invalid LSRUse Kind!"); 1593 } 1594 1595 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1596 int64_t MinOffset, int64_t MaxOffset, 1597 LSRUse::KindType Kind, MemAccessTy AccessTy, 1598 GlobalValue *BaseGV, int64_t BaseOffset, 1599 bool HasBaseReg, int64_t Scale) { 1600 // Check for overflow. 1601 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1602 (MinOffset > 0)) 1603 return false; 1604 MinOffset = (uint64_t)BaseOffset + MinOffset; 1605 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1606 (MaxOffset > 0)) 1607 return false; 1608 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1609 1610 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1611 HasBaseReg, Scale) && 1612 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1613 HasBaseReg, Scale); 1614 } 1615 1616 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1617 int64_t MinOffset, int64_t MaxOffset, 1618 LSRUse::KindType Kind, MemAccessTy AccessTy, 1619 const Formula &F, const Loop &L) { 1620 // For the purpose of isAMCompletelyFolded either having a canonical formula 1621 // or a scale not equal to zero is correct. 1622 // Problems may arise from non canonical formulae having a scale == 0. 1623 // Strictly speaking it would best to just rely on canonical formulae. 1624 // However, when we generate the scaled formulae, we first check that the 1625 // scaling factor is profitable before computing the actual ScaledReg for 1626 // compile time sake. 1627 assert((F.isCanonical(L) || F.Scale != 0)); 1628 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1629 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1630 } 1631 1632 /// Test whether we know how to expand the current formula. 1633 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1634 int64_t MaxOffset, LSRUse::KindType Kind, 1635 MemAccessTy AccessTy, GlobalValue *BaseGV, 1636 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1637 // We know how to expand completely foldable formulae. 1638 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1639 BaseOffset, HasBaseReg, Scale) || 1640 // Or formulae that use a base register produced by a sum of base 1641 // registers. 1642 (Scale == 1 && 1643 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1644 BaseGV, BaseOffset, true, 0)); 1645 } 1646 1647 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1648 int64_t MaxOffset, LSRUse::KindType Kind, 1649 MemAccessTy AccessTy, const Formula &F) { 1650 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1651 F.BaseOffset, F.HasBaseReg, F.Scale); 1652 } 1653 1654 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1655 const LSRUse &LU, const Formula &F) { 1656 // Target may want to look at the user instructions. 1657 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1658 for (const LSRFixup &Fixup : LU.Fixups) 1659 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1660 F.BaseOffset, F.HasBaseReg, F.Scale, 1661 Fixup.UserInst)) 1662 return false; 1663 return true; 1664 } 1665 1666 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1667 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1668 F.Scale); 1669 } 1670 1671 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1672 const LSRUse &LU, const Formula &F, 1673 const Loop &L) { 1674 if (!F.Scale) 1675 return 0; 1676 1677 // If the use is not completely folded in that instruction, we will have to 1678 // pay an extra cost only for scale != 1. 1679 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1680 LU.AccessTy, F, L)) 1681 return F.Scale != 1; 1682 1683 switch (LU.Kind) { 1684 case LSRUse::Address: { 1685 // Check the scaling factor cost with both the min and max offsets. 1686 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1687 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1688 F.Scale, LU.AccessTy.AddrSpace); 1689 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1690 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1691 F.Scale, LU.AccessTy.AddrSpace); 1692 1693 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1694 "Legal addressing mode has an illegal cost!"); 1695 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1696 } 1697 case LSRUse::ICmpZero: 1698 case LSRUse::Basic: 1699 case LSRUse::Special: 1700 // The use is completely folded, i.e., everything is folded into the 1701 // instruction. 1702 return 0; 1703 } 1704 1705 llvm_unreachable("Invalid LSRUse Kind!"); 1706 } 1707 1708 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1709 LSRUse::KindType Kind, MemAccessTy AccessTy, 1710 GlobalValue *BaseGV, int64_t BaseOffset, 1711 bool HasBaseReg) { 1712 // Fast-path: zero is always foldable. 1713 if (BaseOffset == 0 && !BaseGV) return true; 1714 1715 // Conservatively, create an address with an immediate and a 1716 // base and a scale. 1717 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1718 1719 // Canonicalize a scale of 1 to a base register if the formula doesn't 1720 // already have a base register. 1721 if (!HasBaseReg && Scale == 1) { 1722 Scale = 0; 1723 HasBaseReg = true; 1724 } 1725 1726 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1727 HasBaseReg, Scale); 1728 } 1729 1730 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1731 ScalarEvolution &SE, int64_t MinOffset, 1732 int64_t MaxOffset, LSRUse::KindType Kind, 1733 MemAccessTy AccessTy, const SCEV *S, 1734 bool HasBaseReg) { 1735 // Fast-path: zero is always foldable. 1736 if (S->isZero()) return true; 1737 1738 // Conservatively, create an address with an immediate and a 1739 // base and a scale. 1740 int64_t BaseOffset = ExtractImmediate(S, SE); 1741 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1742 1743 // If there's anything else involved, it's not foldable. 1744 if (!S->isZero()) return false; 1745 1746 // Fast-path: zero is always foldable. 1747 if (BaseOffset == 0 && !BaseGV) return true; 1748 1749 // Conservatively, create an address with an immediate and a 1750 // base and a scale. 1751 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1752 1753 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1754 BaseOffset, HasBaseReg, Scale); 1755 } 1756 1757 namespace { 1758 1759 /// An individual increment in a Chain of IV increments. Relate an IV user to 1760 /// an expression that computes the IV it uses from the IV used by the previous 1761 /// link in the Chain. 1762 /// 1763 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1764 /// original IVOperand. The head of the chain's IVOperand is only valid during 1765 /// chain collection, before LSR replaces IV users. During chain generation, 1766 /// IncExpr can be used to find the new IVOperand that computes the same 1767 /// expression. 1768 struct IVInc { 1769 Instruction *UserInst; 1770 Value* IVOperand; 1771 const SCEV *IncExpr; 1772 1773 IVInc(Instruction *U, Value *O, const SCEV *E): 1774 UserInst(U), IVOperand(O), IncExpr(E) {} 1775 }; 1776 1777 // The list of IV increments in program order. We typically add the head of a 1778 // chain without finding subsequent links. 1779 struct IVChain { 1780 SmallVector<IVInc,1> Incs; 1781 const SCEV *ExprBase; 1782 1783 IVChain() : ExprBase(nullptr) {} 1784 1785 IVChain(const IVInc &Head, const SCEV *Base) 1786 : Incs(1, Head), ExprBase(Base) {} 1787 1788 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1789 1790 // Return the first increment in the chain. 1791 const_iterator begin() const { 1792 assert(!Incs.empty()); 1793 return std::next(Incs.begin()); 1794 } 1795 const_iterator end() const { 1796 return Incs.end(); 1797 } 1798 1799 // Returns true if this chain contains any increments. 1800 bool hasIncs() const { return Incs.size() >= 2; } 1801 1802 // Add an IVInc to the end of this chain. 1803 void add(const IVInc &X) { Incs.push_back(X); } 1804 1805 // Returns the last UserInst in the chain. 1806 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1807 1808 // Returns true if IncExpr can be profitably added to this chain. 1809 bool isProfitableIncrement(const SCEV *OperExpr, 1810 const SCEV *IncExpr, 1811 ScalarEvolution&); 1812 }; 1813 1814 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1815 /// between FarUsers that definitely cross IV increments and NearUsers that may 1816 /// be used between IV increments. 1817 struct ChainUsers { 1818 SmallPtrSet<Instruction*, 4> FarUsers; 1819 SmallPtrSet<Instruction*, 4> NearUsers; 1820 }; 1821 1822 /// This class holds state for the main loop strength reduction logic. 1823 class LSRInstance { 1824 IVUsers &IU; 1825 ScalarEvolution &SE; 1826 DominatorTree &DT; 1827 LoopInfo &LI; 1828 const TargetTransformInfo &TTI; 1829 Loop *const L; 1830 bool Changed; 1831 1832 /// This is the insert position that the current loop's induction variable 1833 /// increment should be placed. In simple loops, this is the latch block's 1834 /// terminator. But in more complicated cases, this is a position which will 1835 /// dominate all the in-loop post-increment users. 1836 Instruction *IVIncInsertPos; 1837 1838 /// Interesting factors between use strides. 1839 /// 1840 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1841 /// default, a SmallDenseSet, because we need to use the full range of 1842 /// int64_ts, and there's currently no good way of doing that with 1843 /// SmallDenseSet. 1844 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1845 1846 /// Interesting use types, to facilitate truncation reuse. 1847 SmallSetVector<Type *, 4> Types; 1848 1849 /// The list of interesting uses. 1850 SmallVector<LSRUse, 16> Uses; 1851 1852 /// Track which uses use which register candidates. 1853 RegUseTracker RegUses; 1854 1855 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1856 // have more than a few IV increment chains in a loop. Missing a Chain falls 1857 // back to normal LSR behavior for those uses. 1858 static const unsigned MaxChains = 8; 1859 1860 /// IV users can form a chain of IV increments. 1861 SmallVector<IVChain, MaxChains> IVChainVec; 1862 1863 /// IV users that belong to profitable IVChains. 1864 SmallPtrSet<Use*, MaxChains> IVIncSet; 1865 1866 void OptimizeShadowIV(); 1867 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1868 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1869 void OptimizeLoopTermCond(); 1870 1871 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1872 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1873 void FinalizeChain(IVChain &Chain); 1874 void CollectChains(); 1875 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1876 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1877 1878 void CollectInterestingTypesAndFactors(); 1879 void CollectFixupsAndInitialFormulae(); 1880 1881 // Support for sharing of LSRUses between LSRFixups. 1882 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1883 UseMapTy UseMap; 1884 1885 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1886 LSRUse::KindType Kind, MemAccessTy AccessTy); 1887 1888 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1889 MemAccessTy AccessTy); 1890 1891 void DeleteUse(LSRUse &LU, size_t LUIdx); 1892 1893 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1894 1895 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1896 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1897 void CountRegisters(const Formula &F, size_t LUIdx); 1898 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1899 1900 void CollectLoopInvariantFixupsAndFormulae(); 1901 1902 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1903 unsigned Depth = 0); 1904 1905 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1906 const Formula &Base, unsigned Depth, 1907 size_t Idx, bool IsScaledReg = false); 1908 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1909 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1910 const Formula &Base, size_t Idx, 1911 bool IsScaledReg = false); 1912 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1913 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1914 const Formula &Base, 1915 const SmallVectorImpl<int64_t> &Worklist, 1916 size_t Idx, bool IsScaledReg = false); 1917 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1918 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1919 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1920 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1921 void GenerateCrossUseConstantOffsets(); 1922 void GenerateAllReuseFormulae(); 1923 1924 void FilterOutUndesirableDedicatedRegisters(); 1925 1926 size_t EstimateSearchSpaceComplexity() const; 1927 void NarrowSearchSpaceByDetectingSupersets(); 1928 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1929 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1930 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1931 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1932 void NarrowSearchSpaceByPickingWinnerRegs(); 1933 void NarrowSearchSpaceUsingHeuristics(); 1934 1935 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1936 Cost &SolutionCost, 1937 SmallVectorImpl<const Formula *> &Workspace, 1938 const Cost &CurCost, 1939 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1940 DenseSet<const SCEV *> &VisitedRegs) const; 1941 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1942 1943 BasicBlock::iterator 1944 HoistInsertPosition(BasicBlock::iterator IP, 1945 const SmallVectorImpl<Instruction *> &Inputs) const; 1946 BasicBlock::iterator 1947 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1948 const LSRFixup &LF, 1949 const LSRUse &LU, 1950 SCEVExpander &Rewriter) const; 1951 1952 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1953 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1954 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1955 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1956 const Formula &F, SCEVExpander &Rewriter, 1957 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1958 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1959 SCEVExpander &Rewriter, 1960 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1961 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1962 1963 public: 1964 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1965 LoopInfo &LI, const TargetTransformInfo &TTI); 1966 1967 bool getChanged() const { return Changed; } 1968 1969 void print_factors_and_types(raw_ostream &OS) const; 1970 void print_fixups(raw_ostream &OS) const; 1971 void print_uses(raw_ostream &OS) const; 1972 void print(raw_ostream &OS) const; 1973 void dump() const; 1974 }; 1975 1976 } // end anonymous namespace 1977 1978 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1979 /// the cast operation. 1980 void LSRInstance::OptimizeShadowIV() { 1981 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1982 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1983 return; 1984 1985 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1986 UI != E; /* empty */) { 1987 IVUsers::const_iterator CandidateUI = UI; 1988 ++UI; 1989 Instruction *ShadowUse = CandidateUI->getUser(); 1990 Type *DestTy = nullptr; 1991 bool IsSigned = false; 1992 1993 /* If shadow use is a int->float cast then insert a second IV 1994 to eliminate this cast. 1995 1996 for (unsigned i = 0; i < n; ++i) 1997 foo((double)i); 1998 1999 is transformed into 2000 2001 double d = 0.0; 2002 for (unsigned i = 0; i < n; ++i, ++d) 2003 foo(d); 2004 */ 2005 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2006 IsSigned = false; 2007 DestTy = UCast->getDestTy(); 2008 } 2009 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2010 IsSigned = true; 2011 DestTy = SCast->getDestTy(); 2012 } 2013 if (!DestTy) continue; 2014 2015 // If target does not support DestTy natively then do not apply 2016 // this transformation. 2017 if (!TTI.isTypeLegal(DestTy)) continue; 2018 2019 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2020 if (!PH) continue; 2021 if (PH->getNumIncomingValues() != 2) continue; 2022 2023 Type *SrcTy = PH->getType(); 2024 int Mantissa = DestTy->getFPMantissaWidth(); 2025 if (Mantissa == -1) continue; 2026 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2027 continue; 2028 2029 unsigned Entry, Latch; 2030 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2031 Entry = 0; 2032 Latch = 1; 2033 } else { 2034 Entry = 1; 2035 Latch = 0; 2036 } 2037 2038 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2039 if (!Init) continue; 2040 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2041 (double)Init->getSExtValue() : 2042 (double)Init->getZExtValue()); 2043 2044 BinaryOperator *Incr = 2045 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2046 if (!Incr) continue; 2047 if (Incr->getOpcode() != Instruction::Add 2048 && Incr->getOpcode() != Instruction::Sub) 2049 continue; 2050 2051 /* Initialize new IV, double d = 0.0 in above example. */ 2052 ConstantInt *C = nullptr; 2053 if (Incr->getOperand(0) == PH) 2054 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2055 else if (Incr->getOperand(1) == PH) 2056 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2057 else 2058 continue; 2059 2060 if (!C) continue; 2061 2062 // Ignore negative constants, as the code below doesn't handle them 2063 // correctly. TODO: Remove this restriction. 2064 if (!C->getValue().isStrictlyPositive()) continue; 2065 2066 /* Add new PHINode. */ 2067 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2068 2069 /* create new increment. '++d' in above example. */ 2070 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2071 BinaryOperator *NewIncr = 2072 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2073 Instruction::FAdd : Instruction::FSub, 2074 NewPH, CFP, "IV.S.next.", Incr); 2075 2076 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2077 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2078 2079 /* Remove cast operation */ 2080 ShadowUse->replaceAllUsesWith(NewPH); 2081 ShadowUse->eraseFromParent(); 2082 Changed = true; 2083 break; 2084 } 2085 } 2086 2087 /// If Cond has an operand that is an expression of an IV, set the IV user and 2088 /// stride information and return true, otherwise return false. 2089 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2090 for (IVStrideUse &U : IU) 2091 if (U.getUser() == Cond) { 2092 // NOTE: we could handle setcc instructions with multiple uses here, but 2093 // InstCombine does it as well for simple uses, it's not clear that it 2094 // occurs enough in real life to handle. 2095 CondUse = &U; 2096 return true; 2097 } 2098 return false; 2099 } 2100 2101 /// Rewrite the loop's terminating condition if it uses a max computation. 2102 /// 2103 /// This is a narrow solution to a specific, but acute, problem. For loops 2104 /// like this: 2105 /// 2106 /// i = 0; 2107 /// do { 2108 /// p[i] = 0.0; 2109 /// } while (++i < n); 2110 /// 2111 /// the trip count isn't just 'n', because 'n' might not be positive. And 2112 /// unfortunately this can come up even for loops where the user didn't use 2113 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2114 /// will commonly be lowered like this: 2115 // 2116 /// if (n > 0) { 2117 /// i = 0; 2118 /// do { 2119 /// p[i] = 0.0; 2120 /// } while (++i < n); 2121 /// } 2122 /// 2123 /// and then it's possible for subsequent optimization to obscure the if 2124 /// test in such a way that indvars can't find it. 2125 /// 2126 /// When indvars can't find the if test in loops like this, it creates a 2127 /// max expression, which allows it to give the loop a canonical 2128 /// induction variable: 2129 /// 2130 /// i = 0; 2131 /// max = n < 1 ? 1 : n; 2132 /// do { 2133 /// p[i] = 0.0; 2134 /// } while (++i != max); 2135 /// 2136 /// Canonical induction variables are necessary because the loop passes 2137 /// are designed around them. The most obvious example of this is the 2138 /// LoopInfo analysis, which doesn't remember trip count values. It 2139 /// expects to be able to rediscover the trip count each time it is 2140 /// needed, and it does this using a simple analysis that only succeeds if 2141 /// the loop has a canonical induction variable. 2142 /// 2143 /// However, when it comes time to generate code, the maximum operation 2144 /// can be quite costly, especially if it's inside of an outer loop. 2145 /// 2146 /// This function solves this problem by detecting this type of loop and 2147 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2148 /// the instructions for the maximum computation. 2149 /// 2150 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2151 // Check that the loop matches the pattern we're looking for. 2152 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2153 Cond->getPredicate() != CmpInst::ICMP_NE) 2154 return Cond; 2155 2156 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2157 if (!Sel || !Sel->hasOneUse()) return Cond; 2158 2159 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2160 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2161 return Cond; 2162 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2163 2164 // Add one to the backedge-taken count to get the trip count. 2165 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2166 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2167 2168 // Check for a max calculation that matches the pattern. There's no check 2169 // for ICMP_ULE here because the comparison would be with zero, which 2170 // isn't interesting. 2171 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2172 const SCEVNAryExpr *Max = nullptr; 2173 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2174 Pred = ICmpInst::ICMP_SLE; 2175 Max = S; 2176 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2177 Pred = ICmpInst::ICMP_SLT; 2178 Max = S; 2179 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2180 Pred = ICmpInst::ICMP_ULT; 2181 Max = U; 2182 } else { 2183 // No match; bail. 2184 return Cond; 2185 } 2186 2187 // To handle a max with more than two operands, this optimization would 2188 // require additional checking and setup. 2189 if (Max->getNumOperands() != 2) 2190 return Cond; 2191 2192 const SCEV *MaxLHS = Max->getOperand(0); 2193 const SCEV *MaxRHS = Max->getOperand(1); 2194 2195 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2196 // for a comparison with 1. For <= and >=, a comparison with zero. 2197 if (!MaxLHS || 2198 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2199 return Cond; 2200 2201 // Check the relevant induction variable for conformance to 2202 // the pattern. 2203 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2204 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2205 if (!AR || !AR->isAffine() || 2206 AR->getStart() != One || 2207 AR->getStepRecurrence(SE) != One) 2208 return Cond; 2209 2210 assert(AR->getLoop() == L && 2211 "Loop condition operand is an addrec in a different loop!"); 2212 2213 // Check the right operand of the select, and remember it, as it will 2214 // be used in the new comparison instruction. 2215 Value *NewRHS = nullptr; 2216 if (ICmpInst::isTrueWhenEqual(Pred)) { 2217 // Look for n+1, and grab n. 2218 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2219 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2220 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2221 NewRHS = BO->getOperand(0); 2222 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2223 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2224 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2225 NewRHS = BO->getOperand(0); 2226 if (!NewRHS) 2227 return Cond; 2228 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2229 NewRHS = Sel->getOperand(1); 2230 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2231 NewRHS = Sel->getOperand(2); 2232 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2233 NewRHS = SU->getValue(); 2234 else 2235 // Max doesn't match expected pattern. 2236 return Cond; 2237 2238 // Determine the new comparison opcode. It may be signed or unsigned, 2239 // and the original comparison may be either equality or inequality. 2240 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2241 Pred = CmpInst::getInversePredicate(Pred); 2242 2243 // Ok, everything looks ok to change the condition into an SLT or SGE and 2244 // delete the max calculation. 2245 ICmpInst *NewCond = 2246 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2247 2248 // Delete the max calculation instructions. 2249 Cond->replaceAllUsesWith(NewCond); 2250 CondUse->setUser(NewCond); 2251 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2252 Cond->eraseFromParent(); 2253 Sel->eraseFromParent(); 2254 if (Cmp->use_empty()) 2255 Cmp->eraseFromParent(); 2256 return NewCond; 2257 } 2258 2259 /// Change loop terminating condition to use the postinc iv when possible. 2260 void 2261 LSRInstance::OptimizeLoopTermCond() { 2262 SmallPtrSet<Instruction *, 4> PostIncs; 2263 2264 // We need a different set of heuristics for rotated and non-rotated loops. 2265 // If a loop is rotated then the latch is also the backedge, so inserting 2266 // post-inc expressions just before the latch is ideal. To reduce live ranges 2267 // it also makes sense to rewrite terminating conditions to use post-inc 2268 // expressions. 2269 // 2270 // If the loop is not rotated then the latch is not a backedge; the latch 2271 // check is done in the loop head. Adding post-inc expressions before the 2272 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2273 // in the loop body. In this case we do *not* want to use post-inc expressions 2274 // in the latch check, and we want to insert post-inc expressions before 2275 // the backedge. 2276 BasicBlock *LatchBlock = L->getLoopLatch(); 2277 SmallVector<BasicBlock*, 8> ExitingBlocks; 2278 L->getExitingBlocks(ExitingBlocks); 2279 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2280 return LatchBlock != BB; 2281 })) { 2282 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2283 IVIncInsertPos = LatchBlock->getTerminator(); 2284 return; 2285 } 2286 2287 // Otherwise treat this as a rotated loop. 2288 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2289 2290 // Get the terminating condition for the loop if possible. If we 2291 // can, we want to change it to use a post-incremented version of its 2292 // induction variable, to allow coalescing the live ranges for the IV into 2293 // one register value. 2294 2295 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2296 if (!TermBr) 2297 continue; 2298 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2299 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2300 continue; 2301 2302 // Search IVUsesByStride to find Cond's IVUse if there is one. 2303 IVStrideUse *CondUse = nullptr; 2304 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2305 if (!FindIVUserForCond(Cond, CondUse)) 2306 continue; 2307 2308 // If the trip count is computed in terms of a max (due to ScalarEvolution 2309 // being unable to find a sufficient guard, for example), change the loop 2310 // comparison to use SLT or ULT instead of NE. 2311 // One consequence of doing this now is that it disrupts the count-down 2312 // optimization. That's not always a bad thing though, because in such 2313 // cases it may still be worthwhile to avoid a max. 2314 Cond = OptimizeMax(Cond, CondUse); 2315 2316 // If this exiting block dominates the latch block, it may also use 2317 // the post-inc value if it won't be shared with other uses. 2318 // Check for dominance. 2319 if (!DT.dominates(ExitingBlock, LatchBlock)) 2320 continue; 2321 2322 // Conservatively avoid trying to use the post-inc value in non-latch 2323 // exits if there may be pre-inc users in intervening blocks. 2324 if (LatchBlock != ExitingBlock) 2325 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2326 // Test if the use is reachable from the exiting block. This dominator 2327 // query is a conservative approximation of reachability. 2328 if (&*UI != CondUse && 2329 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2330 // Conservatively assume there may be reuse if the quotient of their 2331 // strides could be a legal scale. 2332 const SCEV *A = IU.getStride(*CondUse, L); 2333 const SCEV *B = IU.getStride(*UI, L); 2334 if (!A || !B) continue; 2335 if (SE.getTypeSizeInBits(A->getType()) != 2336 SE.getTypeSizeInBits(B->getType())) { 2337 if (SE.getTypeSizeInBits(A->getType()) > 2338 SE.getTypeSizeInBits(B->getType())) 2339 B = SE.getSignExtendExpr(B, A->getType()); 2340 else 2341 A = SE.getSignExtendExpr(A, B->getType()); 2342 } 2343 if (const SCEVConstant *D = 2344 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2345 const ConstantInt *C = D->getValue(); 2346 // Stride of one or negative one can have reuse with non-addresses. 2347 if (C->isOne() || C->isMinusOne()) 2348 goto decline_post_inc; 2349 // Avoid weird situations. 2350 if (C->getValue().getMinSignedBits() >= 64 || 2351 C->getValue().isMinSignedValue()) 2352 goto decline_post_inc; 2353 // Check for possible scaled-address reuse. 2354 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2355 int64_t Scale = C->getSExtValue(); 2356 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2357 /*BaseOffset=*/0, 2358 /*HasBaseReg=*/false, Scale, 2359 AccessTy.AddrSpace)) 2360 goto decline_post_inc; 2361 Scale = -Scale; 2362 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2363 /*BaseOffset=*/0, 2364 /*HasBaseReg=*/false, Scale, 2365 AccessTy.AddrSpace)) 2366 goto decline_post_inc; 2367 } 2368 } 2369 2370 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2371 << *Cond << '\n'); 2372 2373 // It's possible for the setcc instruction to be anywhere in the loop, and 2374 // possible for it to have multiple users. If it is not immediately before 2375 // the exiting block branch, move it. 2376 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2377 if (Cond->hasOneUse()) { 2378 Cond->moveBefore(TermBr); 2379 } else { 2380 // Clone the terminating condition and insert into the loopend. 2381 ICmpInst *OldCond = Cond; 2382 Cond = cast<ICmpInst>(Cond->clone()); 2383 Cond->setName(L->getHeader()->getName() + ".termcond"); 2384 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2385 2386 // Clone the IVUse, as the old use still exists! 2387 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2388 TermBr->replaceUsesOfWith(OldCond, Cond); 2389 } 2390 } 2391 2392 // If we get to here, we know that we can transform the setcc instruction to 2393 // use the post-incremented version of the IV, allowing us to coalesce the 2394 // live ranges for the IV correctly. 2395 CondUse->transformToPostInc(L); 2396 Changed = true; 2397 2398 PostIncs.insert(Cond); 2399 decline_post_inc:; 2400 } 2401 2402 // Determine an insertion point for the loop induction variable increment. It 2403 // must dominate all the post-inc comparisons we just set up, and it must 2404 // dominate the loop latch edge. 2405 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2406 for (Instruction *Inst : PostIncs) { 2407 BasicBlock *BB = 2408 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2409 Inst->getParent()); 2410 if (BB == Inst->getParent()) 2411 IVIncInsertPos = Inst; 2412 else if (BB != IVIncInsertPos->getParent()) 2413 IVIncInsertPos = BB->getTerminator(); 2414 } 2415 } 2416 2417 /// Determine if the given use can accommodate a fixup at the given offset and 2418 /// other details. If so, update the use and return true. 2419 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2420 bool HasBaseReg, LSRUse::KindType Kind, 2421 MemAccessTy AccessTy) { 2422 int64_t NewMinOffset = LU.MinOffset; 2423 int64_t NewMaxOffset = LU.MaxOffset; 2424 MemAccessTy NewAccessTy = AccessTy; 2425 2426 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2427 // something conservative, however this can pessimize in the case that one of 2428 // the uses will have all its uses outside the loop, for example. 2429 if (LU.Kind != Kind) 2430 return false; 2431 2432 // Check for a mismatched access type, and fall back conservatively as needed. 2433 // TODO: Be less conservative when the type is similar and can use the same 2434 // addressing modes. 2435 if (Kind == LSRUse::Address) { 2436 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2437 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2438 AccessTy.AddrSpace); 2439 } 2440 } 2441 2442 // Conservatively assume HasBaseReg is true for now. 2443 if (NewOffset < LU.MinOffset) { 2444 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2445 LU.MaxOffset - NewOffset, HasBaseReg)) 2446 return false; 2447 NewMinOffset = NewOffset; 2448 } else if (NewOffset > LU.MaxOffset) { 2449 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2450 NewOffset - LU.MinOffset, HasBaseReg)) 2451 return false; 2452 NewMaxOffset = NewOffset; 2453 } 2454 2455 // Update the use. 2456 LU.MinOffset = NewMinOffset; 2457 LU.MaxOffset = NewMaxOffset; 2458 LU.AccessTy = NewAccessTy; 2459 return true; 2460 } 2461 2462 /// Return an LSRUse index and an offset value for a fixup which needs the given 2463 /// expression, with the given kind and optional access type. Either reuse an 2464 /// existing use or create a new one, as needed. 2465 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2466 LSRUse::KindType Kind, 2467 MemAccessTy AccessTy) { 2468 const SCEV *Copy = Expr; 2469 int64_t Offset = ExtractImmediate(Expr, SE); 2470 2471 // Basic uses can't accept any offset, for example. 2472 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2473 Offset, /*HasBaseReg=*/ true)) { 2474 Expr = Copy; 2475 Offset = 0; 2476 } 2477 2478 std::pair<UseMapTy::iterator, bool> P = 2479 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2480 if (!P.second) { 2481 // A use already existed with this base. 2482 size_t LUIdx = P.first->second; 2483 LSRUse &LU = Uses[LUIdx]; 2484 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2485 // Reuse this use. 2486 return std::make_pair(LUIdx, Offset); 2487 } 2488 2489 // Create a new use. 2490 size_t LUIdx = Uses.size(); 2491 P.first->second = LUIdx; 2492 Uses.push_back(LSRUse(Kind, AccessTy)); 2493 LSRUse &LU = Uses[LUIdx]; 2494 2495 LU.MinOffset = Offset; 2496 LU.MaxOffset = Offset; 2497 return std::make_pair(LUIdx, Offset); 2498 } 2499 2500 /// Delete the given use from the Uses list. 2501 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2502 if (&LU != &Uses.back()) 2503 std::swap(LU, Uses.back()); 2504 Uses.pop_back(); 2505 2506 // Update RegUses. 2507 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2508 } 2509 2510 /// Look for a use distinct from OrigLU which is has a formula that has the same 2511 /// registers as the given formula. 2512 LSRUse * 2513 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2514 const LSRUse &OrigLU) { 2515 // Search all uses for the formula. This could be more clever. 2516 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2517 LSRUse &LU = Uses[LUIdx]; 2518 // Check whether this use is close enough to OrigLU, to see whether it's 2519 // worthwhile looking through its formulae. 2520 // Ignore ICmpZero uses because they may contain formulae generated by 2521 // GenerateICmpZeroScales, in which case adding fixup offsets may 2522 // be invalid. 2523 if (&LU != &OrigLU && 2524 LU.Kind != LSRUse::ICmpZero && 2525 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2526 LU.WidestFixupType == OrigLU.WidestFixupType && 2527 LU.HasFormulaWithSameRegs(OrigF)) { 2528 // Scan through this use's formulae. 2529 for (const Formula &F : LU.Formulae) { 2530 // Check to see if this formula has the same registers and symbols 2531 // as OrigF. 2532 if (F.BaseRegs == OrigF.BaseRegs && 2533 F.ScaledReg == OrigF.ScaledReg && 2534 F.BaseGV == OrigF.BaseGV && 2535 F.Scale == OrigF.Scale && 2536 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2537 if (F.BaseOffset == 0) 2538 return &LU; 2539 // This is the formula where all the registers and symbols matched; 2540 // there aren't going to be any others. Since we declined it, we 2541 // can skip the rest of the formulae and proceed to the next LSRUse. 2542 break; 2543 } 2544 } 2545 } 2546 } 2547 2548 // Nothing looked good. 2549 return nullptr; 2550 } 2551 2552 void LSRInstance::CollectInterestingTypesAndFactors() { 2553 SmallSetVector<const SCEV *, 4> Strides; 2554 2555 // Collect interesting types and strides. 2556 SmallVector<const SCEV *, 4> Worklist; 2557 for (const IVStrideUse &U : IU) { 2558 const SCEV *Expr = IU.getExpr(U); 2559 2560 // Collect interesting types. 2561 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2562 2563 // Add strides for mentioned loops. 2564 Worklist.push_back(Expr); 2565 do { 2566 const SCEV *S = Worklist.pop_back_val(); 2567 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2568 if (AR->getLoop() == L) 2569 Strides.insert(AR->getStepRecurrence(SE)); 2570 Worklist.push_back(AR->getStart()); 2571 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2572 Worklist.append(Add->op_begin(), Add->op_end()); 2573 } 2574 } while (!Worklist.empty()); 2575 } 2576 2577 // Compute interesting factors from the set of interesting strides. 2578 for (SmallSetVector<const SCEV *, 4>::const_iterator 2579 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2580 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2581 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2582 const SCEV *OldStride = *I; 2583 const SCEV *NewStride = *NewStrideIter; 2584 2585 if (SE.getTypeSizeInBits(OldStride->getType()) != 2586 SE.getTypeSizeInBits(NewStride->getType())) { 2587 if (SE.getTypeSizeInBits(OldStride->getType()) > 2588 SE.getTypeSizeInBits(NewStride->getType())) 2589 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2590 else 2591 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2592 } 2593 if (const SCEVConstant *Factor = 2594 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2595 SE, true))) { 2596 if (Factor->getAPInt().getMinSignedBits() <= 64) 2597 Factors.insert(Factor->getAPInt().getSExtValue()); 2598 } else if (const SCEVConstant *Factor = 2599 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2600 NewStride, 2601 SE, true))) { 2602 if (Factor->getAPInt().getMinSignedBits() <= 64) 2603 Factors.insert(Factor->getAPInt().getSExtValue()); 2604 } 2605 } 2606 2607 // If all uses use the same type, don't bother looking for truncation-based 2608 // reuse. 2609 if (Types.size() == 1) 2610 Types.clear(); 2611 2612 DEBUG(print_factors_and_types(dbgs())); 2613 } 2614 2615 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2616 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2617 /// IVStrideUses, we could partially skip this. 2618 static User::op_iterator 2619 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2620 Loop *L, ScalarEvolution &SE) { 2621 for(; OI != OE; ++OI) { 2622 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2623 if (!SE.isSCEVable(Oper->getType())) 2624 continue; 2625 2626 if (const SCEVAddRecExpr *AR = 2627 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2628 if (AR->getLoop() == L) 2629 break; 2630 } 2631 } 2632 } 2633 return OI; 2634 } 2635 2636 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2637 /// a convenient helper. 2638 static Value *getWideOperand(Value *Oper) { 2639 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2640 return Trunc->getOperand(0); 2641 return Oper; 2642 } 2643 2644 /// Return true if we allow an IV chain to include both types. 2645 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2646 Type *LType = LVal->getType(); 2647 Type *RType = RVal->getType(); 2648 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2649 // Different address spaces means (possibly) 2650 // different types of the pointer implementation, 2651 // e.g. i16 vs i32 so disallow that. 2652 (LType->getPointerAddressSpace() == 2653 RType->getPointerAddressSpace())); 2654 } 2655 2656 /// Return an approximation of this SCEV expression's "base", or NULL for any 2657 /// constant. Returning the expression itself is conservative. Returning a 2658 /// deeper subexpression is more precise and valid as long as it isn't less 2659 /// complex than another subexpression. For expressions involving multiple 2660 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2661 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2662 /// IVInc==b-a. 2663 /// 2664 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2665 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2666 static const SCEV *getExprBase(const SCEV *S) { 2667 switch (S->getSCEVType()) { 2668 default: // uncluding scUnknown. 2669 return S; 2670 case scConstant: 2671 return nullptr; 2672 case scTruncate: 2673 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2674 case scZeroExtend: 2675 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2676 case scSignExtend: 2677 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2678 case scAddExpr: { 2679 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2680 // there's nothing more complex. 2681 // FIXME: not sure if we want to recognize negation. 2682 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2683 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2684 E(Add->op_begin()); I != E; ++I) { 2685 const SCEV *SubExpr = *I; 2686 if (SubExpr->getSCEVType() == scAddExpr) 2687 return getExprBase(SubExpr); 2688 2689 if (SubExpr->getSCEVType() != scMulExpr) 2690 return SubExpr; 2691 } 2692 return S; // all operands are scaled, be conservative. 2693 } 2694 case scAddRecExpr: 2695 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2696 } 2697 } 2698 2699 /// Return true if the chain increment is profitable to expand into a loop 2700 /// invariant value, which may require its own register. A profitable chain 2701 /// increment will be an offset relative to the same base. We allow such offsets 2702 /// to potentially be used as chain increment as long as it's not obviously 2703 /// expensive to expand using real instructions. 2704 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2705 const SCEV *IncExpr, 2706 ScalarEvolution &SE) { 2707 // Aggressively form chains when -stress-ivchain. 2708 if (StressIVChain) 2709 return true; 2710 2711 // Do not replace a constant offset from IV head with a nonconstant IV 2712 // increment. 2713 if (!isa<SCEVConstant>(IncExpr)) { 2714 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2715 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2716 return false; 2717 } 2718 2719 SmallPtrSet<const SCEV*, 8> Processed; 2720 return !isHighCostExpansion(IncExpr, Processed, SE); 2721 } 2722 2723 /// Return true if the number of registers needed for the chain is estimated to 2724 /// be less than the number required for the individual IV users. First prohibit 2725 /// any IV users that keep the IV live across increments (the Users set should 2726 /// be empty). Next count the number and type of increments in the chain. 2727 /// 2728 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2729 /// effectively use postinc addressing modes. Only consider it profitable it the 2730 /// increments can be computed in fewer registers when chained. 2731 /// 2732 /// TODO: Consider IVInc free if it's already used in another chains. 2733 static bool 2734 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2735 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2736 if (StressIVChain) 2737 return true; 2738 2739 if (!Chain.hasIncs()) 2740 return false; 2741 2742 if (!Users.empty()) { 2743 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2744 for (Instruction *Inst : Users) { 2745 dbgs() << " " << *Inst << "\n"; 2746 }); 2747 return false; 2748 } 2749 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2750 2751 // The chain itself may require a register, so intialize cost to 1. 2752 int cost = 1; 2753 2754 // A complete chain likely eliminates the need for keeping the original IV in 2755 // a register. LSR does not currently know how to form a complete chain unless 2756 // the header phi already exists. 2757 if (isa<PHINode>(Chain.tailUserInst()) 2758 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2759 --cost; 2760 } 2761 const SCEV *LastIncExpr = nullptr; 2762 unsigned NumConstIncrements = 0; 2763 unsigned NumVarIncrements = 0; 2764 unsigned NumReusedIncrements = 0; 2765 for (const IVInc &Inc : Chain) { 2766 if (Inc.IncExpr->isZero()) 2767 continue; 2768 2769 // Incrementing by zero or some constant is neutral. We assume constants can 2770 // be folded into an addressing mode or an add's immediate operand. 2771 if (isa<SCEVConstant>(Inc.IncExpr)) { 2772 ++NumConstIncrements; 2773 continue; 2774 } 2775 2776 if (Inc.IncExpr == LastIncExpr) 2777 ++NumReusedIncrements; 2778 else 2779 ++NumVarIncrements; 2780 2781 LastIncExpr = Inc.IncExpr; 2782 } 2783 // An IV chain with a single increment is handled by LSR's postinc 2784 // uses. However, a chain with multiple increments requires keeping the IV's 2785 // value live longer than it needs to be if chained. 2786 if (NumConstIncrements > 1) 2787 --cost; 2788 2789 // Materializing increment expressions in the preheader that didn't exist in 2790 // the original code may cost a register. For example, sign-extended array 2791 // indices can produce ridiculous increments like this: 2792 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2793 cost += NumVarIncrements; 2794 2795 // Reusing variable increments likely saves a register to hold the multiple of 2796 // the stride. 2797 cost -= NumReusedIncrements; 2798 2799 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2800 << "\n"); 2801 2802 return cost < 0; 2803 } 2804 2805 /// Add this IV user to an existing chain or make it the head of a new chain. 2806 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2807 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2808 // When IVs are used as types of varying widths, they are generally converted 2809 // to a wider type with some uses remaining narrow under a (free) trunc. 2810 Value *const NextIV = getWideOperand(IVOper); 2811 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2812 const SCEV *const OperExprBase = getExprBase(OperExpr); 2813 2814 // Visit all existing chains. Check if its IVOper can be computed as a 2815 // profitable loop invariant increment from the last link in the Chain. 2816 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2817 const SCEV *LastIncExpr = nullptr; 2818 for (; ChainIdx < NChains; ++ChainIdx) { 2819 IVChain &Chain = IVChainVec[ChainIdx]; 2820 2821 // Prune the solution space aggressively by checking that both IV operands 2822 // are expressions that operate on the same unscaled SCEVUnknown. This 2823 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2824 // first avoids creating extra SCEV expressions. 2825 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2826 continue; 2827 2828 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2829 if (!isCompatibleIVType(PrevIV, NextIV)) 2830 continue; 2831 2832 // A phi node terminates a chain. 2833 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2834 continue; 2835 2836 // The increment must be loop-invariant so it can be kept in a register. 2837 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2838 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2839 if (!SE.isLoopInvariant(IncExpr, L)) 2840 continue; 2841 2842 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2843 LastIncExpr = IncExpr; 2844 break; 2845 } 2846 } 2847 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2848 // bother for phi nodes, because they must be last in the chain. 2849 if (ChainIdx == NChains) { 2850 if (isa<PHINode>(UserInst)) 2851 return; 2852 if (NChains >= MaxChains && !StressIVChain) { 2853 DEBUG(dbgs() << "IV Chain Limit\n"); 2854 return; 2855 } 2856 LastIncExpr = OperExpr; 2857 // IVUsers may have skipped over sign/zero extensions. We don't currently 2858 // attempt to form chains involving extensions unless they can be hoisted 2859 // into this loop's AddRec. 2860 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2861 return; 2862 ++NChains; 2863 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2864 OperExprBase)); 2865 ChainUsersVec.resize(NChains); 2866 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2867 << ") IV=" << *LastIncExpr << "\n"); 2868 } else { 2869 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2870 << ") IV+" << *LastIncExpr << "\n"); 2871 // Add this IV user to the end of the chain. 2872 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2873 } 2874 IVChain &Chain = IVChainVec[ChainIdx]; 2875 2876 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2877 // This chain's NearUsers become FarUsers. 2878 if (!LastIncExpr->isZero()) { 2879 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2880 NearUsers.end()); 2881 NearUsers.clear(); 2882 } 2883 2884 // All other uses of IVOperand become near uses of the chain. 2885 // We currently ignore intermediate values within SCEV expressions, assuming 2886 // they will eventually be used be the current chain, or can be computed 2887 // from one of the chain increments. To be more precise we could 2888 // transitively follow its user and only add leaf IV users to the set. 2889 for (User *U : IVOper->users()) { 2890 Instruction *OtherUse = dyn_cast<Instruction>(U); 2891 if (!OtherUse) 2892 continue; 2893 // Uses in the chain will no longer be uses if the chain is formed. 2894 // Include the head of the chain in this iteration (not Chain.begin()). 2895 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2896 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2897 for( ; IncIter != IncEnd; ++IncIter) { 2898 if (IncIter->UserInst == OtherUse) 2899 break; 2900 } 2901 if (IncIter != IncEnd) 2902 continue; 2903 2904 if (SE.isSCEVable(OtherUse->getType()) 2905 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2906 && IU.isIVUserOrOperand(OtherUse)) { 2907 continue; 2908 } 2909 NearUsers.insert(OtherUse); 2910 } 2911 2912 // Since this user is part of the chain, it's no longer considered a use 2913 // of the chain. 2914 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2915 } 2916 2917 /// Populate the vector of Chains. 2918 /// 2919 /// This decreases ILP at the architecture level. Targets with ample registers, 2920 /// multiple memory ports, and no register renaming probably don't want 2921 /// this. However, such targets should probably disable LSR altogether. 2922 /// 2923 /// The job of LSR is to make a reasonable choice of induction variables across 2924 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2925 /// ILP *within the loop* if the target wants it. 2926 /// 2927 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2928 /// will not reorder memory operations, it will recognize this as a chain, but 2929 /// will generate redundant IV increments. Ideally this would be corrected later 2930 /// by a smart scheduler: 2931 /// = A[i] 2932 /// = A[i+x] 2933 /// A[i] = 2934 /// A[i+x] = 2935 /// 2936 /// TODO: Walk the entire domtree within this loop, not just the path to the 2937 /// loop latch. This will discover chains on side paths, but requires 2938 /// maintaining multiple copies of the Chains state. 2939 void LSRInstance::CollectChains() { 2940 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2941 SmallVector<ChainUsers, 8> ChainUsersVec; 2942 2943 SmallVector<BasicBlock *,8> LatchPath; 2944 BasicBlock *LoopHeader = L->getHeader(); 2945 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2946 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2947 LatchPath.push_back(Rung->getBlock()); 2948 } 2949 LatchPath.push_back(LoopHeader); 2950 2951 // Walk the instruction stream from the loop header to the loop latch. 2952 for (BasicBlock *BB : reverse(LatchPath)) { 2953 for (Instruction &I : *BB) { 2954 // Skip instructions that weren't seen by IVUsers analysis. 2955 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2956 continue; 2957 2958 // Ignore users that are part of a SCEV expression. This way we only 2959 // consider leaf IV Users. This effectively rediscovers a portion of 2960 // IVUsers analysis but in program order this time. 2961 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2962 continue; 2963 2964 // Remove this instruction from any NearUsers set it may be in. 2965 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2966 ChainIdx < NChains; ++ChainIdx) { 2967 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2968 } 2969 // Search for operands that can be chained. 2970 SmallPtrSet<Instruction*, 4> UniqueOperands; 2971 User::op_iterator IVOpEnd = I.op_end(); 2972 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2973 while (IVOpIter != IVOpEnd) { 2974 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2975 if (UniqueOperands.insert(IVOpInst).second) 2976 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2977 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2978 } 2979 } // Continue walking down the instructions. 2980 } // Continue walking down the domtree. 2981 // Visit phi backedges to determine if the chain can generate the IV postinc. 2982 for (BasicBlock::iterator I = L->getHeader()->begin(); 2983 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2984 if (!SE.isSCEVable(PN->getType())) 2985 continue; 2986 2987 Instruction *IncV = 2988 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2989 if (IncV) 2990 ChainInstruction(PN, IncV, ChainUsersVec); 2991 } 2992 // Remove any unprofitable chains. 2993 unsigned ChainIdx = 0; 2994 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2995 UsersIdx < NChains; ++UsersIdx) { 2996 if (!isProfitableChain(IVChainVec[UsersIdx], 2997 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2998 continue; 2999 // Preserve the chain at UsesIdx. 3000 if (ChainIdx != UsersIdx) 3001 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3002 FinalizeChain(IVChainVec[ChainIdx]); 3003 ++ChainIdx; 3004 } 3005 IVChainVec.resize(ChainIdx); 3006 } 3007 3008 void LSRInstance::FinalizeChain(IVChain &Chain) { 3009 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3010 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3011 3012 for (const IVInc &Inc : Chain) { 3013 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3014 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3015 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3016 IVIncSet.insert(UseI); 3017 } 3018 } 3019 3020 /// Return true if the IVInc can be folded into an addressing mode. 3021 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3022 Value *Operand, const TargetTransformInfo &TTI) { 3023 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3024 if (!IncConst || !isAddressUse(UserInst, Operand)) 3025 return false; 3026 3027 if (IncConst->getAPInt().getMinSignedBits() > 64) 3028 return false; 3029 3030 MemAccessTy AccessTy = getAccessType(UserInst); 3031 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3032 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3033 IncOffset, /*HaseBaseReg=*/false)) 3034 return false; 3035 3036 return true; 3037 } 3038 3039 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3040 /// user's operand from the previous IV user's operand. 3041 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3042 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3043 // Find the new IVOperand for the head of the chain. It may have been replaced 3044 // by LSR. 3045 const IVInc &Head = Chain.Incs[0]; 3046 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3047 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3048 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3049 IVOpEnd, L, SE); 3050 Value *IVSrc = nullptr; 3051 while (IVOpIter != IVOpEnd) { 3052 IVSrc = getWideOperand(*IVOpIter); 3053 3054 // If this operand computes the expression that the chain needs, we may use 3055 // it. (Check this after setting IVSrc which is used below.) 3056 // 3057 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3058 // narrow for the chain, so we can no longer use it. We do allow using a 3059 // wider phi, assuming the LSR checked for free truncation. In that case we 3060 // should already have a truncate on this operand such that 3061 // getSCEV(IVSrc) == IncExpr. 3062 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3063 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3064 break; 3065 } 3066 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3067 } 3068 if (IVOpIter == IVOpEnd) { 3069 // Gracefully give up on this chain. 3070 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3071 return; 3072 } 3073 3074 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3075 Type *IVTy = IVSrc->getType(); 3076 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3077 const SCEV *LeftOverExpr = nullptr; 3078 for (const IVInc &Inc : Chain) { 3079 Instruction *InsertPt = Inc.UserInst; 3080 if (isa<PHINode>(InsertPt)) 3081 InsertPt = L->getLoopLatch()->getTerminator(); 3082 3083 // IVOper will replace the current IV User's operand. IVSrc is the IV 3084 // value currently held in a register. 3085 Value *IVOper = IVSrc; 3086 if (!Inc.IncExpr->isZero()) { 3087 // IncExpr was the result of subtraction of two narrow values, so must 3088 // be signed. 3089 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3090 LeftOverExpr = LeftOverExpr ? 3091 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3092 } 3093 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3094 // Expand the IV increment. 3095 Rewriter.clearPostInc(); 3096 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3097 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3098 SE.getUnknown(IncV)); 3099 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3100 3101 // If an IV increment can't be folded, use it as the next IV value. 3102 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3103 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3104 IVSrc = IVOper; 3105 LeftOverExpr = nullptr; 3106 } 3107 } 3108 Type *OperTy = Inc.IVOperand->getType(); 3109 if (IVTy != OperTy) { 3110 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3111 "cannot extend a chained IV"); 3112 IRBuilder<> Builder(InsertPt); 3113 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3114 } 3115 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3116 DeadInsts.emplace_back(Inc.IVOperand); 3117 } 3118 // If LSR created a new, wider phi, we may also replace its postinc. We only 3119 // do this if we also found a wide value for the head of the chain. 3120 if (isa<PHINode>(Chain.tailUserInst())) { 3121 for (BasicBlock::iterator I = L->getHeader()->begin(); 3122 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3123 if (!isCompatibleIVType(Phi, IVSrc)) 3124 continue; 3125 Instruction *PostIncV = dyn_cast<Instruction>( 3126 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3127 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3128 continue; 3129 Value *IVOper = IVSrc; 3130 Type *PostIncTy = PostIncV->getType(); 3131 if (IVTy != PostIncTy) { 3132 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3133 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3134 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3135 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3136 } 3137 Phi->replaceUsesOfWith(PostIncV, IVOper); 3138 DeadInsts.emplace_back(PostIncV); 3139 } 3140 } 3141 } 3142 3143 void LSRInstance::CollectFixupsAndInitialFormulae() { 3144 for (const IVStrideUse &U : IU) { 3145 Instruction *UserInst = U.getUser(); 3146 // Skip IV users that are part of profitable IV Chains. 3147 User::op_iterator UseI = 3148 find(UserInst->operands(), U.getOperandValToReplace()); 3149 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3150 if (IVIncSet.count(UseI)) { 3151 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3152 continue; 3153 } 3154 3155 LSRUse::KindType Kind = LSRUse::Basic; 3156 MemAccessTy AccessTy; 3157 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3158 Kind = LSRUse::Address; 3159 AccessTy = getAccessType(UserInst); 3160 } 3161 3162 const SCEV *S = IU.getExpr(U); 3163 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3164 3165 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3166 // (N - i == 0), and this allows (N - i) to be the expression that we work 3167 // with rather than just N or i, so we can consider the register 3168 // requirements for both N and i at the same time. Limiting this code to 3169 // equality icmps is not a problem because all interesting loops use 3170 // equality icmps, thanks to IndVarSimplify. 3171 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3172 if (CI->isEquality()) { 3173 // Swap the operands if needed to put the OperandValToReplace on the 3174 // left, for consistency. 3175 Value *NV = CI->getOperand(1); 3176 if (NV == U.getOperandValToReplace()) { 3177 CI->setOperand(1, CI->getOperand(0)); 3178 CI->setOperand(0, NV); 3179 NV = CI->getOperand(1); 3180 Changed = true; 3181 } 3182 3183 // x == y --> x - y == 0 3184 const SCEV *N = SE.getSCEV(NV); 3185 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3186 // S is normalized, so normalize N before folding it into S 3187 // to keep the result normalized. 3188 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3189 Kind = LSRUse::ICmpZero; 3190 S = SE.getMinusSCEV(N, S); 3191 } 3192 3193 // -1 and the negations of all interesting strides (except the negation 3194 // of -1) are now also interesting. 3195 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3196 if (Factors[i] != -1) 3197 Factors.insert(-(uint64_t)Factors[i]); 3198 Factors.insert(-1); 3199 } 3200 3201 // Get or create an LSRUse. 3202 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3203 size_t LUIdx = P.first; 3204 int64_t Offset = P.second; 3205 LSRUse &LU = Uses[LUIdx]; 3206 3207 // Record the fixup. 3208 LSRFixup &LF = LU.getNewFixup(); 3209 LF.UserInst = UserInst; 3210 LF.OperandValToReplace = U.getOperandValToReplace(); 3211 LF.PostIncLoops = TmpPostIncLoops; 3212 LF.Offset = Offset; 3213 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3214 3215 if (!LU.WidestFixupType || 3216 SE.getTypeSizeInBits(LU.WidestFixupType) < 3217 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3218 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3219 3220 // If this is the first use of this LSRUse, give it a formula. 3221 if (LU.Formulae.empty()) { 3222 InsertInitialFormula(S, LU, LUIdx); 3223 CountRegisters(LU.Formulae.back(), LUIdx); 3224 } 3225 } 3226 3227 DEBUG(print_fixups(dbgs())); 3228 } 3229 3230 /// Insert a formula for the given expression into the given use, separating out 3231 /// loop-variant portions from loop-invariant and loop-computable portions. 3232 void 3233 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3234 // Mark uses whose expressions cannot be expanded. 3235 if (!isSafeToExpand(S, SE)) 3236 LU.RigidFormula = true; 3237 3238 Formula F; 3239 F.initialMatch(S, L, SE); 3240 bool Inserted = InsertFormula(LU, LUIdx, F); 3241 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3242 } 3243 3244 /// Insert a simple single-register formula for the given expression into the 3245 /// given use. 3246 void 3247 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3248 LSRUse &LU, size_t LUIdx) { 3249 Formula F; 3250 F.BaseRegs.push_back(S); 3251 F.HasBaseReg = true; 3252 bool Inserted = InsertFormula(LU, LUIdx, F); 3253 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3254 } 3255 3256 /// Note which registers are used by the given formula, updating RegUses. 3257 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3258 if (F.ScaledReg) 3259 RegUses.countRegister(F.ScaledReg, LUIdx); 3260 for (const SCEV *BaseReg : F.BaseRegs) 3261 RegUses.countRegister(BaseReg, LUIdx); 3262 } 3263 3264 /// If the given formula has not yet been inserted, add it to the list, and 3265 /// return true. Return false otherwise. 3266 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3267 // Do not insert formula that we will not be able to expand. 3268 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3269 "Formula is illegal"); 3270 3271 if (!LU.InsertFormula(F, *L)) 3272 return false; 3273 3274 CountRegisters(F, LUIdx); 3275 return true; 3276 } 3277 3278 /// Check for other uses of loop-invariant values which we're tracking. These 3279 /// other uses will pin these values in registers, making them less profitable 3280 /// for elimination. 3281 /// TODO: This currently misses non-constant addrec step registers. 3282 /// TODO: Should this give more weight to users inside the loop? 3283 void 3284 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3285 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3286 SmallPtrSet<const SCEV *, 32> Visited; 3287 3288 while (!Worklist.empty()) { 3289 const SCEV *S = Worklist.pop_back_val(); 3290 3291 // Don't process the same SCEV twice 3292 if (!Visited.insert(S).second) 3293 continue; 3294 3295 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3296 Worklist.append(N->op_begin(), N->op_end()); 3297 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3298 Worklist.push_back(C->getOperand()); 3299 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3300 Worklist.push_back(D->getLHS()); 3301 Worklist.push_back(D->getRHS()); 3302 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3303 const Value *V = US->getValue(); 3304 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3305 // Look for instructions defined outside the loop. 3306 if (L->contains(Inst)) continue; 3307 } else if (isa<UndefValue>(V)) 3308 // Undef doesn't have a live range, so it doesn't matter. 3309 continue; 3310 for (const Use &U : V->uses()) { 3311 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3312 // Ignore non-instructions. 3313 if (!UserInst) 3314 continue; 3315 // Ignore instructions in other functions (as can happen with 3316 // Constants). 3317 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3318 continue; 3319 // Ignore instructions not dominated by the loop. 3320 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3321 UserInst->getParent() : 3322 cast<PHINode>(UserInst)->getIncomingBlock( 3323 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3324 if (!DT.dominates(L->getHeader(), UseBB)) 3325 continue; 3326 // Don't bother if the instruction is in a BB which ends in an EHPad. 3327 if (UseBB->getTerminator()->isEHPad()) 3328 continue; 3329 // Don't bother rewriting PHIs in catchswitch blocks. 3330 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3331 continue; 3332 // Ignore uses which are part of other SCEV expressions, to avoid 3333 // analyzing them multiple times. 3334 if (SE.isSCEVable(UserInst->getType())) { 3335 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3336 // If the user is a no-op, look through to its uses. 3337 if (!isa<SCEVUnknown>(UserS)) 3338 continue; 3339 if (UserS == US) { 3340 Worklist.push_back( 3341 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3342 continue; 3343 } 3344 } 3345 // Ignore icmp instructions which are already being analyzed. 3346 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3347 unsigned OtherIdx = !U.getOperandNo(); 3348 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3349 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3350 continue; 3351 } 3352 3353 std::pair<size_t, int64_t> P = getUse( 3354 S, LSRUse::Basic, MemAccessTy()); 3355 size_t LUIdx = P.first; 3356 int64_t Offset = P.second; 3357 LSRUse &LU = Uses[LUIdx]; 3358 LSRFixup &LF = LU.getNewFixup(); 3359 LF.UserInst = const_cast<Instruction *>(UserInst); 3360 LF.OperandValToReplace = U; 3361 LF.Offset = Offset; 3362 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3363 if (!LU.WidestFixupType || 3364 SE.getTypeSizeInBits(LU.WidestFixupType) < 3365 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3366 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3367 InsertSupplementalFormula(US, LU, LUIdx); 3368 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3369 break; 3370 } 3371 } 3372 } 3373 } 3374 3375 /// Split S into subexpressions which can be pulled out into separate 3376 /// registers. If C is non-null, multiply each subexpression by C. 3377 /// 3378 /// Return remainder expression after factoring the subexpressions captured by 3379 /// Ops. If Ops is complete, return NULL. 3380 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3381 SmallVectorImpl<const SCEV *> &Ops, 3382 const Loop *L, 3383 ScalarEvolution &SE, 3384 unsigned Depth = 0) { 3385 // Arbitrarily cap recursion to protect compile time. 3386 if (Depth >= 3) 3387 return S; 3388 3389 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3390 // Break out add operands. 3391 for (const SCEV *S : Add->operands()) { 3392 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3393 if (Remainder) 3394 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3395 } 3396 return nullptr; 3397 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3398 // Split a non-zero base out of an addrec. 3399 if (AR->getStart()->isZero() || !AR->isAffine()) 3400 return S; 3401 3402 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3403 C, Ops, L, SE, Depth+1); 3404 // Split the non-zero AddRec unless it is part of a nested recurrence that 3405 // does not pertain to this loop. 3406 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3407 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3408 Remainder = nullptr; 3409 } 3410 if (Remainder != AR->getStart()) { 3411 if (!Remainder) 3412 Remainder = SE.getConstant(AR->getType(), 0); 3413 return SE.getAddRecExpr(Remainder, 3414 AR->getStepRecurrence(SE), 3415 AR->getLoop(), 3416 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3417 SCEV::FlagAnyWrap); 3418 } 3419 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3420 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3421 if (Mul->getNumOperands() != 2) 3422 return S; 3423 if (const SCEVConstant *Op0 = 3424 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3425 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3426 const SCEV *Remainder = 3427 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3428 if (Remainder) 3429 Ops.push_back(SE.getMulExpr(C, Remainder)); 3430 return nullptr; 3431 } 3432 } 3433 return S; 3434 } 3435 3436 /// \brief Helper function for LSRInstance::GenerateReassociations. 3437 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3438 const Formula &Base, 3439 unsigned Depth, size_t Idx, 3440 bool IsScaledReg) { 3441 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3442 SmallVector<const SCEV *, 8> AddOps; 3443 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3444 if (Remainder) 3445 AddOps.push_back(Remainder); 3446 3447 if (AddOps.size() == 1) 3448 return; 3449 3450 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3451 JE = AddOps.end(); 3452 J != JE; ++J) { 3453 3454 // Loop-variant "unknown" values are uninteresting; we won't be able to 3455 // do anything meaningful with them. 3456 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3457 continue; 3458 3459 // Don't pull a constant into a register if the constant could be folded 3460 // into an immediate field. 3461 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3462 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3463 continue; 3464 3465 // Collect all operands except *J. 3466 SmallVector<const SCEV *, 8> InnerAddOps( 3467 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3468 InnerAddOps.append(std::next(J), 3469 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3470 3471 // Don't leave just a constant behind in a register if the constant could 3472 // be folded into an immediate field. 3473 if (InnerAddOps.size() == 1 && 3474 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3475 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3476 continue; 3477 3478 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3479 if (InnerSum->isZero()) 3480 continue; 3481 Formula F = Base; 3482 3483 // Add the remaining pieces of the add back into the new formula. 3484 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3485 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3486 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3487 InnerSumSC->getValue()->getZExtValue())) { 3488 F.UnfoldedOffset = 3489 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3490 if (IsScaledReg) 3491 F.ScaledReg = nullptr; 3492 else 3493 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3494 } else if (IsScaledReg) 3495 F.ScaledReg = InnerSum; 3496 else 3497 F.BaseRegs[Idx] = InnerSum; 3498 3499 // Add J as its own register, or an unfolded immediate. 3500 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3501 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3502 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3503 SC->getValue()->getZExtValue())) 3504 F.UnfoldedOffset = 3505 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3506 else 3507 F.BaseRegs.push_back(*J); 3508 // We may have changed the number of register in base regs, adjust the 3509 // formula accordingly. 3510 F.canonicalize(*L); 3511 3512 if (InsertFormula(LU, LUIdx, F)) 3513 // If that formula hadn't been seen before, recurse to find more like 3514 // it. 3515 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3516 } 3517 } 3518 3519 /// Split out subexpressions from adds and the bases of addrecs. 3520 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3521 Formula Base, unsigned Depth) { 3522 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3523 // Arbitrarily cap recursion to protect compile time. 3524 if (Depth >= 3) 3525 return; 3526 3527 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3528 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3529 3530 if (Base.Scale == 1) 3531 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3532 /* Idx */ -1, /* IsScaledReg */ true); 3533 } 3534 3535 /// Generate a formula consisting of all of the loop-dominating registers added 3536 /// into a single register. 3537 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3538 Formula Base) { 3539 // This method is only interesting on a plurality of registers. 3540 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3541 return; 3542 3543 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3544 // processing the formula. 3545 Base.unscale(); 3546 Formula F = Base; 3547 F.BaseRegs.clear(); 3548 SmallVector<const SCEV *, 4> Ops; 3549 for (const SCEV *BaseReg : Base.BaseRegs) { 3550 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3551 !SE.hasComputableLoopEvolution(BaseReg, L)) 3552 Ops.push_back(BaseReg); 3553 else 3554 F.BaseRegs.push_back(BaseReg); 3555 } 3556 if (Ops.size() > 1) { 3557 const SCEV *Sum = SE.getAddExpr(Ops); 3558 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3559 // opportunity to fold something. For now, just ignore such cases 3560 // rather than proceed with zero in a register. 3561 if (!Sum->isZero()) { 3562 F.BaseRegs.push_back(Sum); 3563 F.canonicalize(*L); 3564 (void)InsertFormula(LU, LUIdx, F); 3565 } 3566 } 3567 } 3568 3569 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3570 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3571 const Formula &Base, size_t Idx, 3572 bool IsScaledReg) { 3573 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3574 GlobalValue *GV = ExtractSymbol(G, SE); 3575 if (G->isZero() || !GV) 3576 return; 3577 Formula F = Base; 3578 F.BaseGV = GV; 3579 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3580 return; 3581 if (IsScaledReg) 3582 F.ScaledReg = G; 3583 else 3584 F.BaseRegs[Idx] = G; 3585 (void)InsertFormula(LU, LUIdx, F); 3586 } 3587 3588 /// Generate reuse formulae using symbolic offsets. 3589 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3590 Formula Base) { 3591 // We can't add a symbolic offset if the address already contains one. 3592 if (Base.BaseGV) return; 3593 3594 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3595 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3596 if (Base.Scale == 1) 3597 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3598 /* IsScaledReg */ true); 3599 } 3600 3601 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3602 void LSRInstance::GenerateConstantOffsetsImpl( 3603 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3604 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3605 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3606 for (int64_t Offset : Worklist) { 3607 Formula F = Base; 3608 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3609 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3610 LU.AccessTy, F)) { 3611 // Add the offset to the base register. 3612 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3613 // If it cancelled out, drop the base register, otherwise update it. 3614 if (NewG->isZero()) { 3615 if (IsScaledReg) { 3616 F.Scale = 0; 3617 F.ScaledReg = nullptr; 3618 } else 3619 F.deleteBaseReg(F.BaseRegs[Idx]); 3620 F.canonicalize(*L); 3621 } else if (IsScaledReg) 3622 F.ScaledReg = NewG; 3623 else 3624 F.BaseRegs[Idx] = NewG; 3625 3626 (void)InsertFormula(LU, LUIdx, F); 3627 } 3628 } 3629 3630 int64_t Imm = ExtractImmediate(G, SE); 3631 if (G->isZero() || Imm == 0) 3632 return; 3633 Formula F = Base; 3634 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3635 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3636 return; 3637 if (IsScaledReg) 3638 F.ScaledReg = G; 3639 else 3640 F.BaseRegs[Idx] = G; 3641 (void)InsertFormula(LU, LUIdx, F); 3642 } 3643 3644 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3645 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3646 Formula Base) { 3647 // TODO: For now, just add the min and max offset, because it usually isn't 3648 // worthwhile looking at everything inbetween. 3649 SmallVector<int64_t, 2> Worklist; 3650 Worklist.push_back(LU.MinOffset); 3651 if (LU.MaxOffset != LU.MinOffset) 3652 Worklist.push_back(LU.MaxOffset); 3653 3654 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3655 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3656 if (Base.Scale == 1) 3657 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3658 /* IsScaledReg */ true); 3659 } 3660 3661 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3662 /// == y -> x*c == y*c. 3663 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3664 Formula Base) { 3665 if (LU.Kind != LSRUse::ICmpZero) return; 3666 3667 // Determine the integer type for the base formula. 3668 Type *IntTy = Base.getType(); 3669 if (!IntTy) return; 3670 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3671 3672 // Don't do this if there is more than one offset. 3673 if (LU.MinOffset != LU.MaxOffset) return; 3674 3675 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3676 3677 // Check each interesting stride. 3678 for (int64_t Factor : Factors) { 3679 // Check that the multiplication doesn't overflow. 3680 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3681 continue; 3682 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3683 if (NewBaseOffset / Factor != Base.BaseOffset) 3684 continue; 3685 // If the offset will be truncated at this use, check that it is in bounds. 3686 if (!IntTy->isPointerTy() && 3687 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3688 continue; 3689 3690 // Check that multiplying with the use offset doesn't overflow. 3691 int64_t Offset = LU.MinOffset; 3692 if (Offset == INT64_MIN && Factor == -1) 3693 continue; 3694 Offset = (uint64_t)Offset * Factor; 3695 if (Offset / Factor != LU.MinOffset) 3696 continue; 3697 // If the offset will be truncated at this use, check that it is in bounds. 3698 if (!IntTy->isPointerTy() && 3699 !ConstantInt::isValueValidForType(IntTy, Offset)) 3700 continue; 3701 3702 Formula F = Base; 3703 F.BaseOffset = NewBaseOffset; 3704 3705 // Check that this scale is legal. 3706 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3707 continue; 3708 3709 // Compensate for the use having MinOffset built into it. 3710 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3711 3712 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3713 3714 // Check that multiplying with each base register doesn't overflow. 3715 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3716 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3717 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3718 goto next; 3719 } 3720 3721 // Check that multiplying with the scaled register doesn't overflow. 3722 if (F.ScaledReg) { 3723 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3724 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3725 continue; 3726 } 3727 3728 // Check that multiplying with the unfolded offset doesn't overflow. 3729 if (F.UnfoldedOffset != 0) { 3730 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3731 continue; 3732 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3733 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3734 continue; 3735 // If the offset will be truncated, check that it is in bounds. 3736 if (!IntTy->isPointerTy() && 3737 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3738 continue; 3739 } 3740 3741 // If we make it here and it's legal, add it. 3742 (void)InsertFormula(LU, LUIdx, F); 3743 next:; 3744 } 3745 } 3746 3747 /// Generate stride factor reuse formulae by making use of scaled-offset address 3748 /// modes, for example. 3749 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3750 // Determine the integer type for the base formula. 3751 Type *IntTy = Base.getType(); 3752 if (!IntTy) return; 3753 3754 // If this Formula already has a scaled register, we can't add another one. 3755 // Try to unscale the formula to generate a better scale. 3756 if (Base.Scale != 0 && !Base.unscale()) 3757 return; 3758 3759 assert(Base.Scale == 0 && "unscale did not did its job!"); 3760 3761 // Check each interesting stride. 3762 for (int64_t Factor : Factors) { 3763 Base.Scale = Factor; 3764 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3765 // Check whether this scale is going to be legal. 3766 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3767 Base)) { 3768 // As a special-case, handle special out-of-loop Basic users specially. 3769 // TODO: Reconsider this special case. 3770 if (LU.Kind == LSRUse::Basic && 3771 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3772 LU.AccessTy, Base) && 3773 LU.AllFixupsOutsideLoop) 3774 LU.Kind = LSRUse::Special; 3775 else 3776 continue; 3777 } 3778 // For an ICmpZero, negating a solitary base register won't lead to 3779 // new solutions. 3780 if (LU.Kind == LSRUse::ICmpZero && 3781 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3782 continue; 3783 // For each addrec base reg, if its loop is current loop, apply the scale. 3784 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3785 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3786 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3787 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3788 if (FactorS->isZero()) 3789 continue; 3790 // Divide out the factor, ignoring high bits, since we'll be 3791 // scaling the value back up in the end. 3792 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3793 // TODO: This could be optimized to avoid all the copying. 3794 Formula F = Base; 3795 F.ScaledReg = Quotient; 3796 F.deleteBaseReg(F.BaseRegs[i]); 3797 // The canonical representation of 1*reg is reg, which is already in 3798 // Base. In that case, do not try to insert the formula, it will be 3799 // rejected anyway. 3800 if (F.Scale == 1 && (F.BaseRegs.empty() || 3801 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3802 continue; 3803 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3804 // non canonical Formula with ScaledReg's loop not being L. 3805 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3806 F.canonicalize(*L); 3807 (void)InsertFormula(LU, LUIdx, F); 3808 } 3809 } 3810 } 3811 } 3812 } 3813 3814 /// Generate reuse formulae from different IV types. 3815 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3816 // Don't bother truncating symbolic values. 3817 if (Base.BaseGV) return; 3818 3819 // Determine the integer type for the base formula. 3820 Type *DstTy = Base.getType(); 3821 if (!DstTy) return; 3822 DstTy = SE.getEffectiveSCEVType(DstTy); 3823 3824 for (Type *SrcTy : Types) { 3825 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3826 Formula F = Base; 3827 3828 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3829 for (const SCEV *&BaseReg : F.BaseRegs) 3830 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3831 3832 // TODO: This assumes we've done basic processing on all uses and 3833 // have an idea what the register usage is. 3834 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3835 continue; 3836 3837 F.canonicalize(*L); 3838 (void)InsertFormula(LU, LUIdx, F); 3839 } 3840 } 3841 } 3842 3843 namespace { 3844 3845 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3846 /// modifications so that the search phase doesn't have to worry about the data 3847 /// structures moving underneath it. 3848 struct WorkItem { 3849 size_t LUIdx; 3850 int64_t Imm; 3851 const SCEV *OrigReg; 3852 3853 WorkItem(size_t LI, int64_t I, const SCEV *R) 3854 : LUIdx(LI), Imm(I), OrigReg(R) {} 3855 3856 void print(raw_ostream &OS) const; 3857 void dump() const; 3858 }; 3859 3860 } // end anonymous namespace 3861 3862 void WorkItem::print(raw_ostream &OS) const { 3863 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3864 << " , add offset " << Imm; 3865 } 3866 3867 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3868 LLVM_DUMP_METHOD void WorkItem::dump() const { 3869 print(errs()); errs() << '\n'; 3870 } 3871 #endif 3872 3873 /// Look for registers which are a constant distance apart and try to form reuse 3874 /// opportunities between them. 3875 void LSRInstance::GenerateCrossUseConstantOffsets() { 3876 // Group the registers by their value without any added constant offset. 3877 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3878 DenseMap<const SCEV *, ImmMapTy> Map; 3879 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3880 SmallVector<const SCEV *, 8> Sequence; 3881 for (const SCEV *Use : RegUses) { 3882 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3883 int64_t Imm = ExtractImmediate(Reg, SE); 3884 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3885 if (Pair.second) 3886 Sequence.push_back(Reg); 3887 Pair.first->second.insert(std::make_pair(Imm, Use)); 3888 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3889 } 3890 3891 // Now examine each set of registers with the same base value. Build up 3892 // a list of work to do and do the work in a separate step so that we're 3893 // not adding formulae and register counts while we're searching. 3894 SmallVector<WorkItem, 32> WorkItems; 3895 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3896 for (const SCEV *Reg : Sequence) { 3897 const ImmMapTy &Imms = Map.find(Reg)->second; 3898 3899 // It's not worthwhile looking for reuse if there's only one offset. 3900 if (Imms.size() == 1) 3901 continue; 3902 3903 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3904 for (const auto &Entry : Imms) 3905 dbgs() << ' ' << Entry.first; 3906 dbgs() << '\n'); 3907 3908 // Examine each offset. 3909 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3910 J != JE; ++J) { 3911 const SCEV *OrigReg = J->second; 3912 3913 int64_t JImm = J->first; 3914 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3915 3916 if (!isa<SCEVConstant>(OrigReg) && 3917 UsedByIndicesMap[Reg].count() == 1) { 3918 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3919 continue; 3920 } 3921 3922 // Conservatively examine offsets between this orig reg a few selected 3923 // other orig regs. 3924 ImmMapTy::const_iterator OtherImms[] = { 3925 Imms.begin(), std::prev(Imms.end()), 3926 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3927 2) 3928 }; 3929 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3930 ImmMapTy::const_iterator M = OtherImms[i]; 3931 if (M == J || M == JE) continue; 3932 3933 // Compute the difference between the two. 3934 int64_t Imm = (uint64_t)JImm - M->first; 3935 for (unsigned LUIdx : UsedByIndices.set_bits()) 3936 // Make a memo of this use, offset, and register tuple. 3937 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3938 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3939 } 3940 } 3941 } 3942 3943 Map.clear(); 3944 Sequence.clear(); 3945 UsedByIndicesMap.clear(); 3946 UniqueItems.clear(); 3947 3948 // Now iterate through the worklist and add new formulae. 3949 for (const WorkItem &WI : WorkItems) { 3950 size_t LUIdx = WI.LUIdx; 3951 LSRUse &LU = Uses[LUIdx]; 3952 int64_t Imm = WI.Imm; 3953 const SCEV *OrigReg = WI.OrigReg; 3954 3955 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3956 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3957 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3958 3959 // TODO: Use a more targeted data structure. 3960 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3961 Formula F = LU.Formulae[L]; 3962 // FIXME: The code for the scaled and unscaled registers looks 3963 // very similar but slightly different. Investigate if they 3964 // could be merged. That way, we would not have to unscale the 3965 // Formula. 3966 F.unscale(); 3967 // Use the immediate in the scaled register. 3968 if (F.ScaledReg == OrigReg) { 3969 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3970 // Don't create 50 + reg(-50). 3971 if (F.referencesReg(SE.getSCEV( 3972 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3973 continue; 3974 Formula NewF = F; 3975 NewF.BaseOffset = Offset; 3976 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3977 NewF)) 3978 continue; 3979 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3980 3981 // If the new scale is a constant in a register, and adding the constant 3982 // value to the immediate would produce a value closer to zero than the 3983 // immediate itself, then the formula isn't worthwhile. 3984 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3985 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3986 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3987 .ule(std::abs(NewF.BaseOffset))) 3988 continue; 3989 3990 // OK, looks good. 3991 NewF.canonicalize(*this->L); 3992 (void)InsertFormula(LU, LUIdx, NewF); 3993 } else { 3994 // Use the immediate in a base register. 3995 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3996 const SCEV *BaseReg = F.BaseRegs[N]; 3997 if (BaseReg != OrigReg) 3998 continue; 3999 Formula NewF = F; 4000 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4001 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4002 LU.Kind, LU.AccessTy, NewF)) { 4003 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4004 continue; 4005 NewF = F; 4006 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4007 } 4008 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4009 4010 // If the new formula has a constant in a register, and adding the 4011 // constant value to the immediate would produce a value closer to 4012 // zero than the immediate itself, then the formula isn't worthwhile. 4013 for (const SCEV *NewReg : NewF.BaseRegs) 4014 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4015 if ((C->getAPInt() + NewF.BaseOffset) 4016 .abs() 4017 .slt(std::abs(NewF.BaseOffset)) && 4018 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4019 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4020 goto skip_formula; 4021 4022 // Ok, looks good. 4023 NewF.canonicalize(*this->L); 4024 (void)InsertFormula(LU, LUIdx, NewF); 4025 break; 4026 skip_formula:; 4027 } 4028 } 4029 } 4030 } 4031 } 4032 4033 /// Generate formulae for each use. 4034 void 4035 LSRInstance::GenerateAllReuseFormulae() { 4036 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4037 // queries are more precise. 4038 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4039 LSRUse &LU = Uses[LUIdx]; 4040 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4041 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4042 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4043 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4044 } 4045 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4046 LSRUse &LU = Uses[LUIdx]; 4047 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4048 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4049 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4050 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4051 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4052 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4053 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4054 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4055 } 4056 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4057 LSRUse &LU = Uses[LUIdx]; 4058 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4059 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4060 } 4061 4062 GenerateCrossUseConstantOffsets(); 4063 4064 DEBUG(dbgs() << "\n" 4065 "After generating reuse formulae:\n"; 4066 print_uses(dbgs())); 4067 } 4068 4069 /// If there are multiple formulae with the same set of registers used 4070 /// by other uses, pick the best one and delete the others. 4071 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4072 DenseSet<const SCEV *> VisitedRegs; 4073 SmallPtrSet<const SCEV *, 16> Regs; 4074 SmallPtrSet<const SCEV *, 16> LoserRegs; 4075 #ifndef NDEBUG 4076 bool ChangedFormulae = false; 4077 #endif 4078 4079 // Collect the best formula for each unique set of shared registers. This 4080 // is reset for each use. 4081 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 4082 BestFormulaeTy; 4083 BestFormulaeTy BestFormulae; 4084 4085 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4086 LSRUse &LU = Uses[LUIdx]; 4087 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4088 4089 bool Any = false; 4090 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4091 FIdx != NumForms; ++FIdx) { 4092 Formula &F = LU.Formulae[FIdx]; 4093 4094 // Some formulas are instant losers. For example, they may depend on 4095 // nonexistent AddRecs from other loops. These need to be filtered 4096 // immediately, otherwise heuristics could choose them over others leading 4097 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4098 // avoids the need to recompute this information across formulae using the 4099 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4100 // the corresponding bad register from the Regs set. 4101 Cost CostF; 4102 Regs.clear(); 4103 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4104 if (CostF.isLoser()) { 4105 // During initial formula generation, undesirable formulae are generated 4106 // by uses within other loops that have some non-trivial address mode or 4107 // use the postinc form of the IV. LSR needs to provide these formulae 4108 // as the basis of rediscovering the desired formula that uses an AddRec 4109 // corresponding to the existing phi. Once all formulae have been 4110 // generated, these initial losers may be pruned. 4111 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4112 dbgs() << "\n"); 4113 } 4114 else { 4115 SmallVector<const SCEV *, 4> Key; 4116 for (const SCEV *Reg : F.BaseRegs) { 4117 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4118 Key.push_back(Reg); 4119 } 4120 if (F.ScaledReg && 4121 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4122 Key.push_back(F.ScaledReg); 4123 // Unstable sort by host order ok, because this is only used for 4124 // uniquifying. 4125 std::sort(Key.begin(), Key.end()); 4126 4127 std::pair<BestFormulaeTy::const_iterator, bool> P = 4128 BestFormulae.insert(std::make_pair(Key, FIdx)); 4129 if (P.second) 4130 continue; 4131 4132 Formula &Best = LU.Formulae[P.first->second]; 4133 4134 Cost CostBest; 4135 Regs.clear(); 4136 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4137 if (CostF.isLess(CostBest, TTI)) 4138 std::swap(F, Best); 4139 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4140 dbgs() << "\n" 4141 " in favor of formula "; Best.print(dbgs()); 4142 dbgs() << '\n'); 4143 } 4144 #ifndef NDEBUG 4145 ChangedFormulae = true; 4146 #endif 4147 LU.DeleteFormula(F); 4148 --FIdx; 4149 --NumForms; 4150 Any = true; 4151 } 4152 4153 // Now that we've filtered out some formulae, recompute the Regs set. 4154 if (Any) 4155 LU.RecomputeRegs(LUIdx, RegUses); 4156 4157 // Reset this to prepare for the next use. 4158 BestFormulae.clear(); 4159 } 4160 4161 DEBUG(if (ChangedFormulae) { 4162 dbgs() << "\n" 4163 "After filtering out undesirable candidates:\n"; 4164 print_uses(dbgs()); 4165 }); 4166 } 4167 4168 // This is a rough guess that seems to work fairly well. 4169 static const size_t ComplexityLimit = UINT16_MAX; 4170 4171 /// Estimate the worst-case number of solutions the solver might have to 4172 /// consider. It almost never considers this many solutions because it prune the 4173 /// search space, but the pruning isn't always sufficient. 4174 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4175 size_t Power = 1; 4176 for (const LSRUse &LU : Uses) { 4177 size_t FSize = LU.Formulae.size(); 4178 if (FSize >= ComplexityLimit) { 4179 Power = ComplexityLimit; 4180 break; 4181 } 4182 Power *= FSize; 4183 if (Power >= ComplexityLimit) 4184 break; 4185 } 4186 return Power; 4187 } 4188 4189 /// When one formula uses a superset of the registers of another formula, it 4190 /// won't help reduce register pressure (though it may not necessarily hurt 4191 /// register pressure); remove it to simplify the system. 4192 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4193 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4194 DEBUG(dbgs() << "The search space is too complex.\n"); 4195 4196 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4197 "which use a superset of registers used by other " 4198 "formulae.\n"); 4199 4200 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4201 LSRUse &LU = Uses[LUIdx]; 4202 bool Any = false; 4203 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4204 Formula &F = LU.Formulae[i]; 4205 // Look for a formula with a constant or GV in a register. If the use 4206 // also has a formula with that same value in an immediate field, 4207 // delete the one that uses a register. 4208 for (SmallVectorImpl<const SCEV *>::const_iterator 4209 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4210 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4211 Formula NewF = F; 4212 NewF.BaseOffset += C->getValue()->getSExtValue(); 4213 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4214 (I - F.BaseRegs.begin())); 4215 if (LU.HasFormulaWithSameRegs(NewF)) { 4216 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4217 LU.DeleteFormula(F); 4218 --i; 4219 --e; 4220 Any = true; 4221 break; 4222 } 4223 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4224 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4225 if (!F.BaseGV) { 4226 Formula NewF = F; 4227 NewF.BaseGV = GV; 4228 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4229 (I - F.BaseRegs.begin())); 4230 if (LU.HasFormulaWithSameRegs(NewF)) { 4231 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4232 dbgs() << '\n'); 4233 LU.DeleteFormula(F); 4234 --i; 4235 --e; 4236 Any = true; 4237 break; 4238 } 4239 } 4240 } 4241 } 4242 } 4243 if (Any) 4244 LU.RecomputeRegs(LUIdx, RegUses); 4245 } 4246 4247 DEBUG(dbgs() << "After pre-selection:\n"; 4248 print_uses(dbgs())); 4249 } 4250 } 4251 4252 /// When there are many registers for expressions like A, A+1, A+2, etc., 4253 /// allocate a single register for them. 4254 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4255 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4256 return; 4257 4258 DEBUG(dbgs() << "The search space is too complex.\n" 4259 "Narrowing the search space by assuming that uses separated " 4260 "by a constant offset will use the same registers.\n"); 4261 4262 // This is especially useful for unrolled loops. 4263 4264 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4265 LSRUse &LU = Uses[LUIdx]; 4266 for (const Formula &F : LU.Formulae) { 4267 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4268 continue; 4269 4270 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4271 if (!LUThatHas) 4272 continue; 4273 4274 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4275 LU.Kind, LU.AccessTy)) 4276 continue; 4277 4278 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4279 4280 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4281 4282 // Transfer the fixups of LU to LUThatHas. 4283 for (LSRFixup &Fixup : LU.Fixups) { 4284 Fixup.Offset += F.BaseOffset; 4285 LUThatHas->pushFixup(Fixup); 4286 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4287 } 4288 4289 // Delete formulae from the new use which are no longer legal. 4290 bool Any = false; 4291 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4292 Formula &F = LUThatHas->Formulae[i]; 4293 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4294 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4295 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4296 dbgs() << '\n'); 4297 LUThatHas->DeleteFormula(F); 4298 --i; 4299 --e; 4300 Any = true; 4301 } 4302 } 4303 4304 if (Any) 4305 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4306 4307 // Delete the old use. 4308 DeleteUse(LU, LUIdx); 4309 --LUIdx; 4310 --NumUses; 4311 break; 4312 } 4313 } 4314 4315 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4316 } 4317 4318 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4319 /// we've done more filtering, as it may be able to find more formulae to 4320 /// eliminate. 4321 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4322 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4323 DEBUG(dbgs() << "The search space is too complex.\n"); 4324 4325 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4326 "undesirable dedicated registers.\n"); 4327 4328 FilterOutUndesirableDedicatedRegisters(); 4329 4330 DEBUG(dbgs() << "After pre-selection:\n"; 4331 print_uses(dbgs())); 4332 } 4333 } 4334 4335 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4336 /// Pick the best one and delete the others. 4337 /// This narrowing heuristic is to keep as many formulae with different 4338 /// Scale and ScaledReg pair as possible while narrowing the search space. 4339 /// The benefit is that it is more likely to find out a better solution 4340 /// from a formulae set with more Scale and ScaledReg variations than 4341 /// a formulae set with the same Scale and ScaledReg. The picking winner 4342 /// reg heurstic will often keep the formulae with the same Scale and 4343 /// ScaledReg and filter others, and we want to avoid that if possible. 4344 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4345 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4346 return; 4347 4348 DEBUG(dbgs() << "The search space is too complex.\n" 4349 "Narrowing the search space by choosing the best Formula " 4350 "from the Formulae with the same Scale and ScaledReg.\n"); 4351 4352 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4353 typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy; 4354 BestFormulaeTy BestFormulae; 4355 #ifndef NDEBUG 4356 bool ChangedFormulae = false; 4357 #endif 4358 DenseSet<const SCEV *> VisitedRegs; 4359 SmallPtrSet<const SCEV *, 16> Regs; 4360 4361 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4362 LSRUse &LU = Uses[LUIdx]; 4363 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4364 4365 // Return true if Formula FA is better than Formula FB. 4366 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4367 // First we will try to choose the Formula with fewer new registers. 4368 // For a register used by current Formula, the more the register is 4369 // shared among LSRUses, the less we increase the register number 4370 // counter of the formula. 4371 size_t FARegNum = 0; 4372 for (const SCEV *Reg : FA.BaseRegs) { 4373 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4374 FARegNum += (NumUses - UsedByIndices.count() + 1); 4375 } 4376 size_t FBRegNum = 0; 4377 for (const SCEV *Reg : FB.BaseRegs) { 4378 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4379 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4380 } 4381 if (FARegNum != FBRegNum) 4382 return FARegNum < FBRegNum; 4383 4384 // If the new register numbers are the same, choose the Formula with 4385 // less Cost. 4386 Cost CostFA, CostFB; 4387 Regs.clear(); 4388 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4389 Regs.clear(); 4390 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4391 return CostFA.isLess(CostFB, TTI); 4392 }; 4393 4394 bool Any = false; 4395 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4396 ++FIdx) { 4397 Formula &F = LU.Formulae[FIdx]; 4398 if (!F.ScaledReg) 4399 continue; 4400 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4401 if (P.second) 4402 continue; 4403 4404 Formula &Best = LU.Formulae[P.first->second]; 4405 if (IsBetterThan(F, Best)) 4406 std::swap(F, Best); 4407 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4408 dbgs() << "\n" 4409 " in favor of formula "; 4410 Best.print(dbgs()); dbgs() << '\n'); 4411 #ifndef NDEBUG 4412 ChangedFormulae = true; 4413 #endif 4414 LU.DeleteFormula(F); 4415 --FIdx; 4416 --NumForms; 4417 Any = true; 4418 } 4419 if (Any) 4420 LU.RecomputeRegs(LUIdx, RegUses); 4421 4422 // Reset this to prepare for the next use. 4423 BestFormulae.clear(); 4424 } 4425 4426 DEBUG(if (ChangedFormulae) { 4427 dbgs() << "\n" 4428 "After filtering out undesirable candidates:\n"; 4429 print_uses(dbgs()); 4430 }); 4431 } 4432 4433 /// The function delete formulas with high registers number expectation. 4434 /// Assuming we don't know the value of each formula (already delete 4435 /// all inefficient), generate probability of not selecting for each 4436 /// register. 4437 /// For example, 4438 /// Use1: 4439 /// reg(a) + reg({0,+,1}) 4440 /// reg(a) + reg({-1,+,1}) + 1 4441 /// reg({a,+,1}) 4442 /// Use2: 4443 /// reg(b) + reg({0,+,1}) 4444 /// reg(b) + reg({-1,+,1}) + 1 4445 /// reg({b,+,1}) 4446 /// Use3: 4447 /// reg(c) + reg(b) + reg({0,+,1}) 4448 /// reg(c) + reg({b,+,1}) 4449 /// 4450 /// Probability of not selecting 4451 /// Use1 Use2 Use3 4452 /// reg(a) (1/3) * 1 * 1 4453 /// reg(b) 1 * (1/3) * (1/2) 4454 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4455 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4456 /// reg({a,+,1}) (2/3) * 1 * 1 4457 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4458 /// reg(c) 1 * 1 * 0 4459 /// 4460 /// Now count registers number mathematical expectation for each formula: 4461 /// Note that for each use we exclude probability if not selecting for the use. 4462 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4463 /// probabilty 1/3 of not selecting for Use1). 4464 /// Use1: 4465 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4466 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4467 /// reg({a,+,1}) 1 4468 /// Use2: 4469 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4470 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4471 /// reg({b,+,1}) 2/3 4472 /// Use3: 4473 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4474 /// reg(c) + reg({b,+,1}) 1 + 2/3 4475 4476 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4477 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4478 return; 4479 // Ok, we have too many of formulae on our hands to conveniently handle. 4480 // Use a rough heuristic to thin out the list. 4481 4482 // Set of Regs wich will be 100% used in final solution. 4483 // Used in each formula of a solution (in example above this is reg(c)). 4484 // We can skip them in calculations. 4485 SmallPtrSet<const SCEV *, 4> UniqRegs; 4486 DEBUG(dbgs() << "The search space is too complex.\n"); 4487 4488 // Map each register to probability of not selecting 4489 DenseMap <const SCEV *, float> RegNumMap; 4490 for (const SCEV *Reg : RegUses) { 4491 if (UniqRegs.count(Reg)) 4492 continue; 4493 float PNotSel = 1; 4494 for (const LSRUse &LU : Uses) { 4495 if (!LU.Regs.count(Reg)) 4496 continue; 4497 float P = LU.getNotSelectedProbability(Reg); 4498 if (P != 0.0) 4499 PNotSel *= P; 4500 else 4501 UniqRegs.insert(Reg); 4502 } 4503 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4504 } 4505 4506 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4507 4508 // Delete formulas where registers number expectation is high. 4509 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4510 LSRUse &LU = Uses[LUIdx]; 4511 // If nothing to delete - continue. 4512 if (LU.Formulae.size() < 2) 4513 continue; 4514 // This is temporary solution to test performance. Float should be 4515 // replaced with round independent type (based on integers) to avoid 4516 // different results for different target builds. 4517 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4518 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4519 size_t MinIdx = 0; 4520 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4521 Formula &F = LU.Formulae[i]; 4522 float FRegNum = 0; 4523 float FARegNum = 0; 4524 for (const SCEV *BaseReg : F.BaseRegs) { 4525 if (UniqRegs.count(BaseReg)) 4526 continue; 4527 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4528 if (isa<SCEVAddRecExpr>(BaseReg)) 4529 FARegNum += 4530 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4531 } 4532 if (const SCEV *ScaledReg = F.ScaledReg) { 4533 if (!UniqRegs.count(ScaledReg)) { 4534 FRegNum += 4535 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4536 if (isa<SCEVAddRecExpr>(ScaledReg)) 4537 FARegNum += 4538 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4539 } 4540 } 4541 if (FMinRegNum > FRegNum || 4542 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4543 FMinRegNum = FRegNum; 4544 FMinARegNum = FARegNum; 4545 MinIdx = i; 4546 } 4547 } 4548 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4549 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4550 if (MinIdx != 0) 4551 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4552 while (LU.Formulae.size() != 1) { 4553 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4554 dbgs() << '\n'); 4555 LU.Formulae.pop_back(); 4556 } 4557 LU.RecomputeRegs(LUIdx, RegUses); 4558 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4559 Formula &F = LU.Formulae[0]; 4560 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4561 // When we choose the formula, the regs become unique. 4562 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4563 if (F.ScaledReg) 4564 UniqRegs.insert(F.ScaledReg); 4565 } 4566 DEBUG(dbgs() << "After pre-selection:\n"; 4567 print_uses(dbgs())); 4568 } 4569 4570 4571 /// Pick a register which seems likely to be profitable, and then in any use 4572 /// which has any reference to that register, delete all formulae which do not 4573 /// reference that register. 4574 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4575 // With all other options exhausted, loop until the system is simple 4576 // enough to handle. 4577 SmallPtrSet<const SCEV *, 4> Taken; 4578 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4579 // Ok, we have too many of formulae on our hands to conveniently handle. 4580 // Use a rough heuristic to thin out the list. 4581 DEBUG(dbgs() << "The search space is too complex.\n"); 4582 4583 // Pick the register which is used by the most LSRUses, which is likely 4584 // to be a good reuse register candidate. 4585 const SCEV *Best = nullptr; 4586 unsigned BestNum = 0; 4587 for (const SCEV *Reg : RegUses) { 4588 if (Taken.count(Reg)) 4589 continue; 4590 if (!Best) { 4591 Best = Reg; 4592 BestNum = RegUses.getUsedByIndices(Reg).count(); 4593 } else { 4594 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4595 if (Count > BestNum) { 4596 Best = Reg; 4597 BestNum = Count; 4598 } 4599 } 4600 } 4601 4602 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4603 << " will yield profitable reuse.\n"); 4604 Taken.insert(Best); 4605 4606 // In any use with formulae which references this register, delete formulae 4607 // which don't reference it. 4608 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4609 LSRUse &LU = Uses[LUIdx]; 4610 if (!LU.Regs.count(Best)) continue; 4611 4612 bool Any = false; 4613 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4614 Formula &F = LU.Formulae[i]; 4615 if (!F.referencesReg(Best)) { 4616 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4617 LU.DeleteFormula(F); 4618 --e; 4619 --i; 4620 Any = true; 4621 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4622 continue; 4623 } 4624 } 4625 4626 if (Any) 4627 LU.RecomputeRegs(LUIdx, RegUses); 4628 } 4629 4630 DEBUG(dbgs() << "After pre-selection:\n"; 4631 print_uses(dbgs())); 4632 } 4633 } 4634 4635 /// If there are an extraordinary number of formulae to choose from, use some 4636 /// rough heuristics to prune down the number of formulae. This keeps the main 4637 /// solver from taking an extraordinary amount of time in some worst-case 4638 /// scenarios. 4639 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4640 NarrowSearchSpaceByDetectingSupersets(); 4641 NarrowSearchSpaceByCollapsingUnrolledCode(); 4642 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4643 if (FilterSameScaledReg) 4644 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4645 if (LSRExpNarrow) 4646 NarrowSearchSpaceByDeletingCostlyFormulas(); 4647 else 4648 NarrowSearchSpaceByPickingWinnerRegs(); 4649 } 4650 4651 /// This is the recursive solver. 4652 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4653 Cost &SolutionCost, 4654 SmallVectorImpl<const Formula *> &Workspace, 4655 const Cost &CurCost, 4656 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4657 DenseSet<const SCEV *> &VisitedRegs) const { 4658 // Some ideas: 4659 // - prune more: 4660 // - use more aggressive filtering 4661 // - sort the formula so that the most profitable solutions are found first 4662 // - sort the uses too 4663 // - search faster: 4664 // - don't compute a cost, and then compare. compare while computing a cost 4665 // and bail early. 4666 // - track register sets with SmallBitVector 4667 4668 const LSRUse &LU = Uses[Workspace.size()]; 4669 4670 // If this use references any register that's already a part of the 4671 // in-progress solution, consider it a requirement that a formula must 4672 // reference that register in order to be considered. This prunes out 4673 // unprofitable searching. 4674 SmallSetVector<const SCEV *, 4> ReqRegs; 4675 for (const SCEV *S : CurRegs) 4676 if (LU.Regs.count(S)) 4677 ReqRegs.insert(S); 4678 4679 SmallPtrSet<const SCEV *, 16> NewRegs; 4680 Cost NewCost; 4681 for (const Formula &F : LU.Formulae) { 4682 // Ignore formulae which may not be ideal in terms of register reuse of 4683 // ReqRegs. The formula should use all required registers before 4684 // introducing new ones. 4685 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4686 for (const SCEV *Reg : ReqRegs) { 4687 if ((F.ScaledReg && F.ScaledReg == Reg) || 4688 is_contained(F.BaseRegs, Reg)) { 4689 --NumReqRegsToFind; 4690 if (NumReqRegsToFind == 0) 4691 break; 4692 } 4693 } 4694 if (NumReqRegsToFind != 0) { 4695 // If none of the formulae satisfied the required registers, then we could 4696 // clear ReqRegs and try again. Currently, we simply give up in this case. 4697 continue; 4698 } 4699 4700 // Evaluate the cost of the current formula. If it's already worse than 4701 // the current best, prune the search at that point. 4702 NewCost = CurCost; 4703 NewRegs = CurRegs; 4704 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4705 if (NewCost.isLess(SolutionCost, TTI)) { 4706 Workspace.push_back(&F); 4707 if (Workspace.size() != Uses.size()) { 4708 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4709 NewRegs, VisitedRegs); 4710 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4711 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4712 } else { 4713 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4714 dbgs() << ".\n Regs:"; 4715 for (const SCEV *S : NewRegs) 4716 dbgs() << ' ' << *S; 4717 dbgs() << '\n'); 4718 4719 SolutionCost = NewCost; 4720 Solution = Workspace; 4721 } 4722 Workspace.pop_back(); 4723 } 4724 } 4725 } 4726 4727 /// Choose one formula from each use. Return the results in the given Solution 4728 /// vector. 4729 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4730 SmallVector<const Formula *, 8> Workspace; 4731 Cost SolutionCost; 4732 SolutionCost.Lose(); 4733 Cost CurCost; 4734 SmallPtrSet<const SCEV *, 16> CurRegs; 4735 DenseSet<const SCEV *> VisitedRegs; 4736 Workspace.reserve(Uses.size()); 4737 4738 // SolveRecurse does all the work. 4739 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4740 CurRegs, VisitedRegs); 4741 if (Solution.empty()) { 4742 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4743 return; 4744 } 4745 4746 // Ok, we've now made all our decisions. 4747 DEBUG(dbgs() << "\n" 4748 "The chosen solution requires "; SolutionCost.print(dbgs()); 4749 dbgs() << ":\n"; 4750 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4751 dbgs() << " "; 4752 Uses[i].print(dbgs()); 4753 dbgs() << "\n" 4754 " "; 4755 Solution[i]->print(dbgs()); 4756 dbgs() << '\n'; 4757 }); 4758 4759 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4760 } 4761 4762 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4763 /// we can go while still being dominated by the input positions. This helps 4764 /// canonicalize the insert position, which encourages sharing. 4765 BasicBlock::iterator 4766 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4767 const SmallVectorImpl<Instruction *> &Inputs) 4768 const { 4769 Instruction *Tentative = &*IP; 4770 while (true) { 4771 bool AllDominate = true; 4772 Instruction *BetterPos = nullptr; 4773 // Don't bother attempting to insert before a catchswitch, their basic block 4774 // cannot have other non-PHI instructions. 4775 if (isa<CatchSwitchInst>(Tentative)) 4776 return IP; 4777 4778 for (Instruction *Inst : Inputs) { 4779 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4780 AllDominate = false; 4781 break; 4782 } 4783 // Attempt to find an insert position in the middle of the block, 4784 // instead of at the end, so that it can be used for other expansions. 4785 if (Tentative->getParent() == Inst->getParent() && 4786 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4787 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4788 } 4789 if (!AllDominate) 4790 break; 4791 if (BetterPos) 4792 IP = BetterPos->getIterator(); 4793 else 4794 IP = Tentative->getIterator(); 4795 4796 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4797 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4798 4799 BasicBlock *IDom; 4800 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4801 if (!Rung) return IP; 4802 Rung = Rung->getIDom(); 4803 if (!Rung) return IP; 4804 IDom = Rung->getBlock(); 4805 4806 // Don't climb into a loop though. 4807 const Loop *IDomLoop = LI.getLoopFor(IDom); 4808 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4809 if (IDomDepth <= IPLoopDepth && 4810 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4811 break; 4812 } 4813 4814 Tentative = IDom->getTerminator(); 4815 } 4816 4817 return IP; 4818 } 4819 4820 /// Determine an input position which will be dominated by the operands and 4821 /// which will dominate the result. 4822 BasicBlock::iterator 4823 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4824 const LSRFixup &LF, 4825 const LSRUse &LU, 4826 SCEVExpander &Rewriter) const { 4827 // Collect some instructions which must be dominated by the 4828 // expanding replacement. These must be dominated by any operands that 4829 // will be required in the expansion. 4830 SmallVector<Instruction *, 4> Inputs; 4831 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4832 Inputs.push_back(I); 4833 if (LU.Kind == LSRUse::ICmpZero) 4834 if (Instruction *I = 4835 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4836 Inputs.push_back(I); 4837 if (LF.PostIncLoops.count(L)) { 4838 if (LF.isUseFullyOutsideLoop(L)) 4839 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4840 else 4841 Inputs.push_back(IVIncInsertPos); 4842 } 4843 // The expansion must also be dominated by the increment positions of any 4844 // loops it for which it is using post-inc mode. 4845 for (const Loop *PIL : LF.PostIncLoops) { 4846 if (PIL == L) continue; 4847 4848 // Be dominated by the loop exit. 4849 SmallVector<BasicBlock *, 4> ExitingBlocks; 4850 PIL->getExitingBlocks(ExitingBlocks); 4851 if (!ExitingBlocks.empty()) { 4852 BasicBlock *BB = ExitingBlocks[0]; 4853 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4854 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4855 Inputs.push_back(BB->getTerminator()); 4856 } 4857 } 4858 4859 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4860 && !isa<DbgInfoIntrinsic>(LowestIP) && 4861 "Insertion point must be a normal instruction"); 4862 4863 // Then, climb up the immediate dominator tree as far as we can go while 4864 // still being dominated by the input positions. 4865 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4866 4867 // Don't insert instructions before PHI nodes. 4868 while (isa<PHINode>(IP)) ++IP; 4869 4870 // Ignore landingpad instructions. 4871 while (IP->isEHPad()) ++IP; 4872 4873 // Ignore debug intrinsics. 4874 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4875 4876 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4877 // IP consistent across expansions and allows the previously inserted 4878 // instructions to be reused by subsequent expansion. 4879 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4880 ++IP; 4881 4882 return IP; 4883 } 4884 4885 /// Emit instructions for the leading candidate expression for this LSRUse (this 4886 /// is called "expanding"). 4887 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4888 const Formula &F, BasicBlock::iterator IP, 4889 SCEVExpander &Rewriter, 4890 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4891 if (LU.RigidFormula) 4892 return LF.OperandValToReplace; 4893 4894 // Determine an input position which will be dominated by the operands and 4895 // which will dominate the result. 4896 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4897 Rewriter.setInsertPoint(&*IP); 4898 4899 // Inform the Rewriter if we have a post-increment use, so that it can 4900 // perform an advantageous expansion. 4901 Rewriter.setPostInc(LF.PostIncLoops); 4902 4903 // This is the type that the user actually needs. 4904 Type *OpTy = LF.OperandValToReplace->getType(); 4905 // This will be the type that we'll initially expand to. 4906 Type *Ty = F.getType(); 4907 if (!Ty) 4908 // No type known; just expand directly to the ultimate type. 4909 Ty = OpTy; 4910 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4911 // Expand directly to the ultimate type if it's the right size. 4912 Ty = OpTy; 4913 // This is the type to do integer arithmetic in. 4914 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4915 4916 // Build up a list of operands to add together to form the full base. 4917 SmallVector<const SCEV *, 8> Ops; 4918 4919 // Expand the BaseRegs portion. 4920 for (const SCEV *Reg : F.BaseRegs) { 4921 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4922 4923 // If we're expanding for a post-inc user, make the post-inc adjustment. 4924 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4925 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4926 } 4927 4928 // Expand the ScaledReg portion. 4929 Value *ICmpScaledV = nullptr; 4930 if (F.Scale != 0) { 4931 const SCEV *ScaledS = F.ScaledReg; 4932 4933 // If we're expanding for a post-inc user, make the post-inc adjustment. 4934 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4935 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4936 4937 if (LU.Kind == LSRUse::ICmpZero) { 4938 // Expand ScaleReg as if it was part of the base regs. 4939 if (F.Scale == 1) 4940 Ops.push_back( 4941 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4942 else { 4943 // An interesting way of "folding" with an icmp is to use a negated 4944 // scale, which we'll implement by inserting it into the other operand 4945 // of the icmp. 4946 assert(F.Scale == -1 && 4947 "The only scale supported by ICmpZero uses is -1!"); 4948 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4949 } 4950 } else { 4951 // Otherwise just expand the scaled register and an explicit scale, 4952 // which is expected to be matched as part of the address. 4953 4954 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4955 // Unless the addressing mode will not be folded. 4956 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4957 isAMCompletelyFolded(TTI, LU, F)) { 4958 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4959 Ops.clear(); 4960 Ops.push_back(SE.getUnknown(FullV)); 4961 } 4962 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4963 if (F.Scale != 1) 4964 ScaledS = 4965 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4966 Ops.push_back(ScaledS); 4967 } 4968 } 4969 4970 // Expand the GV portion. 4971 if (F.BaseGV) { 4972 // Flush the operand list to suppress SCEVExpander hoisting. 4973 if (!Ops.empty()) { 4974 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4975 Ops.clear(); 4976 Ops.push_back(SE.getUnknown(FullV)); 4977 } 4978 Ops.push_back(SE.getUnknown(F.BaseGV)); 4979 } 4980 4981 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4982 // unfolded offsets. LSR assumes they both live next to their uses. 4983 if (!Ops.empty()) { 4984 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4985 Ops.clear(); 4986 Ops.push_back(SE.getUnknown(FullV)); 4987 } 4988 4989 // Expand the immediate portion. 4990 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4991 if (Offset != 0) { 4992 if (LU.Kind == LSRUse::ICmpZero) { 4993 // The other interesting way of "folding" with an ICmpZero is to use a 4994 // negated immediate. 4995 if (!ICmpScaledV) 4996 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4997 else { 4998 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4999 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5000 } 5001 } else { 5002 // Just add the immediate values. These again are expected to be matched 5003 // as part of the address. 5004 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5005 } 5006 } 5007 5008 // Expand the unfolded offset portion. 5009 int64_t UnfoldedOffset = F.UnfoldedOffset; 5010 if (UnfoldedOffset != 0) { 5011 // Just add the immediate values. 5012 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5013 UnfoldedOffset))); 5014 } 5015 5016 // Emit instructions summing all the operands. 5017 const SCEV *FullS = Ops.empty() ? 5018 SE.getConstant(IntTy, 0) : 5019 SE.getAddExpr(Ops); 5020 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5021 5022 // We're done expanding now, so reset the rewriter. 5023 Rewriter.clearPostInc(); 5024 5025 // An ICmpZero Formula represents an ICmp which we're handling as a 5026 // comparison against zero. Now that we've expanded an expression for that 5027 // form, update the ICmp's other operand. 5028 if (LU.Kind == LSRUse::ICmpZero) { 5029 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5030 DeadInsts.emplace_back(CI->getOperand(1)); 5031 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5032 "a scale at the same time!"); 5033 if (F.Scale == -1) { 5034 if (ICmpScaledV->getType() != OpTy) { 5035 Instruction *Cast = 5036 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5037 OpTy, false), 5038 ICmpScaledV, OpTy, "tmp", CI); 5039 ICmpScaledV = Cast; 5040 } 5041 CI->setOperand(1, ICmpScaledV); 5042 } else { 5043 // A scale of 1 means that the scale has been expanded as part of the 5044 // base regs. 5045 assert((F.Scale == 0 || F.Scale == 1) && 5046 "ICmp does not support folding a global value and " 5047 "a scale at the same time!"); 5048 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5049 -(uint64_t)Offset); 5050 if (C->getType() != OpTy) 5051 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5052 OpTy, false), 5053 C, OpTy); 5054 5055 CI->setOperand(1, C); 5056 } 5057 } 5058 5059 return FullV; 5060 } 5061 5062 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5063 /// effectively happens in their predecessor blocks, so the expression may need 5064 /// to be expanded in multiple places. 5065 void LSRInstance::RewriteForPHI( 5066 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5067 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5068 DenseMap<BasicBlock *, Value *> Inserted; 5069 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5070 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5071 BasicBlock *BB = PN->getIncomingBlock(i); 5072 5073 // If this is a critical edge, split the edge so that we do not insert 5074 // the code on all predecessor/successor paths. We do this unless this 5075 // is the canonical backedge for this loop, which complicates post-inc 5076 // users. 5077 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5078 !isa<IndirectBrInst>(BB->getTerminator()) && 5079 !isa<CatchSwitchInst>(BB->getTerminator())) { 5080 BasicBlock *Parent = PN->getParent(); 5081 Loop *PNLoop = LI.getLoopFor(Parent); 5082 if (!PNLoop || Parent != PNLoop->getHeader()) { 5083 // Split the critical edge. 5084 BasicBlock *NewBB = nullptr; 5085 if (!Parent->isLandingPad()) { 5086 NewBB = SplitCriticalEdge(BB, Parent, 5087 CriticalEdgeSplittingOptions(&DT, &LI) 5088 .setMergeIdenticalEdges() 5089 .setDontDeleteUselessPHIs()); 5090 } else { 5091 SmallVector<BasicBlock*, 2> NewBBs; 5092 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5093 NewBB = NewBBs[0]; 5094 } 5095 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5096 // phi predecessors are identical. The simple thing to do is skip 5097 // splitting in this case rather than complicate the API. 5098 if (NewBB) { 5099 // If PN is outside of the loop and BB is in the loop, we want to 5100 // move the block to be immediately before the PHI block, not 5101 // immediately after BB. 5102 if (L->contains(BB) && !L->contains(PN)) 5103 NewBB->moveBefore(PN->getParent()); 5104 5105 // Splitting the edge can reduce the number of PHI entries we have. 5106 e = PN->getNumIncomingValues(); 5107 BB = NewBB; 5108 i = PN->getBasicBlockIndex(BB); 5109 } 5110 } 5111 } 5112 5113 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5114 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5115 if (!Pair.second) 5116 PN->setIncomingValue(i, Pair.first->second); 5117 else { 5118 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5119 Rewriter, DeadInsts); 5120 5121 // If this is reuse-by-noop-cast, insert the noop cast. 5122 Type *OpTy = LF.OperandValToReplace->getType(); 5123 if (FullV->getType() != OpTy) 5124 FullV = 5125 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5126 OpTy, false), 5127 FullV, LF.OperandValToReplace->getType(), 5128 "tmp", BB->getTerminator()); 5129 5130 PN->setIncomingValue(i, FullV); 5131 Pair.first->second = FullV; 5132 } 5133 } 5134 } 5135 5136 /// Emit instructions for the leading candidate expression for this LSRUse (this 5137 /// is called "expanding"), and update the UserInst to reference the newly 5138 /// expanded value. 5139 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5140 const Formula &F, SCEVExpander &Rewriter, 5141 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5142 // First, find an insertion point that dominates UserInst. For PHI nodes, 5143 // find the nearest block which dominates all the relevant uses. 5144 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5145 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5146 } else { 5147 Value *FullV = 5148 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5149 5150 // If this is reuse-by-noop-cast, insert the noop cast. 5151 Type *OpTy = LF.OperandValToReplace->getType(); 5152 if (FullV->getType() != OpTy) { 5153 Instruction *Cast = 5154 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5155 FullV, OpTy, "tmp", LF.UserInst); 5156 FullV = Cast; 5157 } 5158 5159 // Update the user. ICmpZero is handled specially here (for now) because 5160 // Expand may have updated one of the operands of the icmp already, and 5161 // its new value may happen to be equal to LF.OperandValToReplace, in 5162 // which case doing replaceUsesOfWith leads to replacing both operands 5163 // with the same value. TODO: Reorganize this. 5164 if (LU.Kind == LSRUse::ICmpZero) 5165 LF.UserInst->setOperand(0, FullV); 5166 else 5167 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5168 } 5169 5170 DeadInsts.emplace_back(LF.OperandValToReplace); 5171 } 5172 5173 /// Rewrite all the fixup locations with new values, following the chosen 5174 /// solution. 5175 void LSRInstance::ImplementSolution( 5176 const SmallVectorImpl<const Formula *> &Solution) { 5177 // Keep track of instructions we may have made dead, so that 5178 // we can remove them after we are done working. 5179 SmallVector<WeakTrackingVH, 16> DeadInsts; 5180 5181 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5182 "lsr"); 5183 #ifndef NDEBUG 5184 Rewriter.setDebugType(DEBUG_TYPE); 5185 #endif 5186 Rewriter.disableCanonicalMode(); 5187 Rewriter.enableLSRMode(); 5188 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5189 5190 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5191 for (const IVChain &Chain : IVChainVec) { 5192 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5193 Rewriter.setChainedPhi(PN); 5194 } 5195 5196 // Expand the new value definitions and update the users. 5197 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5198 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5199 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5200 Changed = true; 5201 } 5202 5203 for (const IVChain &Chain : IVChainVec) { 5204 GenerateIVChain(Chain, Rewriter, DeadInsts); 5205 Changed = true; 5206 } 5207 // Clean up after ourselves. This must be done before deleting any 5208 // instructions. 5209 Rewriter.clear(); 5210 5211 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5212 } 5213 5214 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5215 DominatorTree &DT, LoopInfo &LI, 5216 const TargetTransformInfo &TTI) 5217 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 5218 IVIncInsertPos(nullptr) { 5219 // If LoopSimplify form is not available, stay out of trouble. 5220 if (!L->isLoopSimplifyForm()) 5221 return; 5222 5223 // If there's no interesting work to be done, bail early. 5224 if (IU.empty()) return; 5225 5226 // If there's too much analysis to be done, bail early. We won't be able to 5227 // model the problem anyway. 5228 unsigned NumUsers = 0; 5229 for (const IVStrideUse &U : IU) { 5230 if (++NumUsers > MaxIVUsers) { 5231 (void)U; 5232 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5233 return; 5234 } 5235 // Bail out if we have a PHI on an EHPad that gets a value from a 5236 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5237 // no good place to stick any instructions. 5238 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5239 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5240 if (isa<FuncletPadInst>(FirstNonPHI) || 5241 isa<CatchSwitchInst>(FirstNonPHI)) 5242 for (BasicBlock *PredBB : PN->blocks()) 5243 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5244 return; 5245 } 5246 } 5247 5248 #ifndef NDEBUG 5249 // All dominating loops must have preheaders, or SCEVExpander may not be able 5250 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5251 // 5252 // IVUsers analysis should only create users that are dominated by simple loop 5253 // headers. Since this loop should dominate all of its users, its user list 5254 // should be empty if this loop itself is not within a simple loop nest. 5255 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5256 Rung; Rung = Rung->getIDom()) { 5257 BasicBlock *BB = Rung->getBlock(); 5258 const Loop *DomLoop = LI.getLoopFor(BB); 5259 if (DomLoop && DomLoop->getHeader() == BB) { 5260 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5261 } 5262 } 5263 #endif // DEBUG 5264 5265 DEBUG(dbgs() << "\nLSR on loop "; 5266 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5267 dbgs() << ":\n"); 5268 5269 // First, perform some low-level loop optimizations. 5270 OptimizeShadowIV(); 5271 OptimizeLoopTermCond(); 5272 5273 // If loop preparation eliminates all interesting IV users, bail. 5274 if (IU.empty()) return; 5275 5276 // Skip nested loops until we can model them better with formulae. 5277 if (!L->empty()) { 5278 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5279 return; 5280 } 5281 5282 // Start collecting data and preparing for the solver. 5283 CollectChains(); 5284 CollectInterestingTypesAndFactors(); 5285 CollectFixupsAndInitialFormulae(); 5286 CollectLoopInvariantFixupsAndFormulae(); 5287 5288 assert(!Uses.empty() && "IVUsers reported at least one use"); 5289 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5290 print_uses(dbgs())); 5291 5292 // Now use the reuse data to generate a bunch of interesting ways 5293 // to formulate the values needed for the uses. 5294 GenerateAllReuseFormulae(); 5295 5296 FilterOutUndesirableDedicatedRegisters(); 5297 NarrowSearchSpaceUsingHeuristics(); 5298 5299 SmallVector<const Formula *, 8> Solution; 5300 Solve(Solution); 5301 5302 // Release memory that is no longer needed. 5303 Factors.clear(); 5304 Types.clear(); 5305 RegUses.clear(); 5306 5307 if (Solution.empty()) 5308 return; 5309 5310 #ifndef NDEBUG 5311 // Formulae should be legal. 5312 for (const LSRUse &LU : Uses) { 5313 for (const Formula &F : LU.Formulae) 5314 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5315 F) && "Illegal formula generated!"); 5316 }; 5317 #endif 5318 5319 // Now that we've decided what we want, make it so. 5320 ImplementSolution(Solution); 5321 } 5322 5323 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5324 if (Factors.empty() && Types.empty()) return; 5325 5326 OS << "LSR has identified the following interesting factors and types: "; 5327 bool First = true; 5328 5329 for (int64_t Factor : Factors) { 5330 if (!First) OS << ", "; 5331 First = false; 5332 OS << '*' << Factor; 5333 } 5334 5335 for (Type *Ty : Types) { 5336 if (!First) OS << ", "; 5337 First = false; 5338 OS << '(' << *Ty << ')'; 5339 } 5340 OS << '\n'; 5341 } 5342 5343 void LSRInstance::print_fixups(raw_ostream &OS) const { 5344 OS << "LSR is examining the following fixup sites:\n"; 5345 for (const LSRUse &LU : Uses) 5346 for (const LSRFixup &LF : LU.Fixups) { 5347 dbgs() << " "; 5348 LF.print(OS); 5349 OS << '\n'; 5350 } 5351 } 5352 5353 void LSRInstance::print_uses(raw_ostream &OS) const { 5354 OS << "LSR is examining the following uses:\n"; 5355 for (const LSRUse &LU : Uses) { 5356 dbgs() << " "; 5357 LU.print(OS); 5358 OS << '\n'; 5359 for (const Formula &F : LU.Formulae) { 5360 OS << " "; 5361 F.print(OS); 5362 OS << '\n'; 5363 } 5364 } 5365 } 5366 5367 void LSRInstance::print(raw_ostream &OS) const { 5368 print_factors_and_types(OS); 5369 print_fixups(OS); 5370 print_uses(OS); 5371 } 5372 5373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5374 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5375 print(errs()); errs() << '\n'; 5376 } 5377 #endif 5378 5379 namespace { 5380 5381 class LoopStrengthReduce : public LoopPass { 5382 public: 5383 static char ID; // Pass ID, replacement for typeid 5384 5385 LoopStrengthReduce(); 5386 5387 private: 5388 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5389 void getAnalysisUsage(AnalysisUsage &AU) const override; 5390 }; 5391 5392 } // end anonymous namespace 5393 5394 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5395 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5396 } 5397 5398 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5399 // We split critical edges, so we change the CFG. However, we do update 5400 // many analyses if they are around. 5401 AU.addPreservedID(LoopSimplifyID); 5402 5403 AU.addRequired<LoopInfoWrapperPass>(); 5404 AU.addPreserved<LoopInfoWrapperPass>(); 5405 AU.addRequiredID(LoopSimplifyID); 5406 AU.addRequired<DominatorTreeWrapperPass>(); 5407 AU.addPreserved<DominatorTreeWrapperPass>(); 5408 AU.addRequired<ScalarEvolutionWrapperPass>(); 5409 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5410 // Requiring LoopSimplify a second time here prevents IVUsers from running 5411 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5412 AU.addRequiredID(LoopSimplifyID); 5413 AU.addRequired<IVUsersWrapperPass>(); 5414 AU.addPreserved<IVUsersWrapperPass>(); 5415 AU.addRequired<TargetTransformInfoWrapperPass>(); 5416 } 5417 5418 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5419 DominatorTree &DT, LoopInfo &LI, 5420 const TargetTransformInfo &TTI) { 5421 bool Changed = false; 5422 5423 // Run the main LSR transformation. 5424 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5425 5426 // Remove any extra phis created by processing inner loops. 5427 Changed |= DeleteDeadPHIs(L->getHeader()); 5428 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5429 SmallVector<WeakTrackingVH, 16> DeadInsts; 5430 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5431 SCEVExpander Rewriter(SE, DL, "lsr"); 5432 #ifndef NDEBUG 5433 Rewriter.setDebugType(DEBUG_TYPE); 5434 #endif 5435 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5436 if (numFolded) { 5437 Changed = true; 5438 DeleteTriviallyDeadInstructions(DeadInsts); 5439 DeleteDeadPHIs(L->getHeader()); 5440 } 5441 } 5442 return Changed; 5443 } 5444 5445 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5446 if (skipLoop(L)) 5447 return false; 5448 5449 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5450 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5451 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5452 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5453 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5454 *L->getHeader()->getParent()); 5455 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5456 } 5457 5458 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5459 LoopStandardAnalysisResults &AR, 5460 LPMUpdater &) { 5461 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5462 AR.DT, AR.LI, AR.TTI)) 5463 return PreservedAnalyses::all(); 5464 5465 return getLoopPassPreservedAnalyses(); 5466 } 5467 5468 char LoopStrengthReduce::ID = 0; 5469 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5470 "Loop Strength Reduction", false, false) 5471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5472 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5473 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5474 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5475 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5476 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5477 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5478 "Loop Strength Reduction", false, false) 5479 5480 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5481