1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 // The flag adds instruction count to solutions cost comparision.
133 static cl::opt<bool> InsnsCost(
134   "lsr-insns-cost", cl::Hidden, cl::init(false),
135   cl::desc("Add instruction count to a LSR cost model"));
136 
137 // Flag to choose how to narrow complex lsr solution
138 static cl::opt<bool> LSRExpNarrow(
139   "lsr-exp-narrow", cl::Hidden, cl::init(false),
140   cl::desc("Narrow LSR complex solution using"
141            " expectation of registers number"));
142 
143 // Flag to narrow search space by filtering non-optimal formulae with
144 // the same ScaledReg and Scale.
145 static cl::opt<bool> FilterSameScaledReg(
146     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
147     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
148              " with the same ScaledReg and Scale"));
149 
150 #ifndef NDEBUG
151 // Stress test IV chain generation.
152 static cl::opt<bool> StressIVChain(
153   "stress-ivchain", cl::Hidden, cl::init(false),
154   cl::desc("Stress test LSR IV chains"));
155 #else
156 static bool StressIVChain = false;
157 #endif
158 
159 namespace {
160 
161 struct MemAccessTy {
162   /// Used in situations where the accessed memory type is unknown.
163   static const unsigned UnknownAddressSpace = ~0u;
164 
165   Type *MemTy;
166   unsigned AddrSpace;
167 
168   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
169 
170   MemAccessTy(Type *Ty, unsigned AS) :
171     MemTy(Ty), AddrSpace(AS) {}
172 
173   bool operator==(MemAccessTy Other) const {
174     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
175   }
176 
177   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
178 
179   static MemAccessTy getUnknown(LLVMContext &Ctx,
180                                 unsigned AS = UnknownAddressSpace) {
181     return MemAccessTy(Type::getVoidTy(Ctx), AS);
182   }
183 };
184 
185 /// This class holds data which is used to order reuse candidates.
186 class RegSortData {
187 public:
188   /// This represents the set of LSRUse indices which reference
189   /// a particular register.
190   SmallBitVector UsedByIndices;
191 
192   void print(raw_ostream &OS) const;
193   void dump() const;
194 };
195 
196 } // end anonymous namespace
197 
198 void RegSortData::print(raw_ostream &OS) const {
199   OS << "[NumUses=" << UsedByIndices.count() << ']';
200 }
201 
202 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
203 LLVM_DUMP_METHOD void RegSortData::dump() const {
204   print(errs()); errs() << '\n';
205 }
206 #endif
207 
208 namespace {
209 
210 /// Map register candidates to information about how they are used.
211 class RegUseTracker {
212   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
213 
214   RegUsesTy RegUsesMap;
215   SmallVector<const SCEV *, 16> RegSequence;
216 
217 public:
218   void countRegister(const SCEV *Reg, size_t LUIdx);
219   void dropRegister(const SCEV *Reg, size_t LUIdx);
220   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
221 
222   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
223 
224   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
225 
226   void clear();
227 
228   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
229   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
230   iterator begin() { return RegSequence.begin(); }
231   iterator end()   { return RegSequence.end(); }
232   const_iterator begin() const { return RegSequence.begin(); }
233   const_iterator end() const   { return RegSequence.end(); }
234 };
235 
236 } // end anonymous namespace
237 
238 void
239 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
240   std::pair<RegUsesTy::iterator, bool> Pair =
241     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
242   RegSortData &RSD = Pair.first->second;
243   if (Pair.second)
244     RegSequence.push_back(Reg);
245   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
246   RSD.UsedByIndices.set(LUIdx);
247 }
248 
249 void
250 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
251   RegUsesTy::iterator It = RegUsesMap.find(Reg);
252   assert(It != RegUsesMap.end());
253   RegSortData &RSD = It->second;
254   assert(RSD.UsedByIndices.size() > LUIdx);
255   RSD.UsedByIndices.reset(LUIdx);
256 }
257 
258 void
259 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
260   assert(LUIdx <= LastLUIdx);
261 
262   // Update RegUses. The data structure is not optimized for this purpose;
263   // we must iterate through it and update each of the bit vectors.
264   for (auto &Pair : RegUsesMap) {
265     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
266     if (LUIdx < UsedByIndices.size())
267       UsedByIndices[LUIdx] =
268         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
269     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
270   }
271 }
272 
273 bool
274 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
275   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
276   if (I == RegUsesMap.end())
277     return false;
278   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
279   int i = UsedByIndices.find_first();
280   if (i == -1) return false;
281   if ((size_t)i != LUIdx) return true;
282   return UsedByIndices.find_next(i) != -1;
283 }
284 
285 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
286   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
287   assert(I != RegUsesMap.end() && "Unknown register!");
288   return I->second.UsedByIndices;
289 }
290 
291 void RegUseTracker::clear() {
292   RegUsesMap.clear();
293   RegSequence.clear();
294 }
295 
296 namespace {
297 
298 /// This class holds information that describes a formula for computing
299 /// satisfying a use. It may include broken-out immediates and scaled registers.
300 struct Formula {
301   /// Global base address used for complex addressing.
302   GlobalValue *BaseGV;
303 
304   /// Base offset for complex addressing.
305   int64_t BaseOffset;
306 
307   /// Whether any complex addressing has a base register.
308   bool HasBaseReg;
309 
310   /// The scale of any complex addressing.
311   int64_t Scale;
312 
313   /// The list of "base" registers for this use. When this is non-empty. The
314   /// canonical representation of a formula is
315   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
316   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
317   /// 3. The reg containing recurrent expr related with currect loop in the
318   /// formula should be put in the ScaledReg.
319   /// #1 enforces that the scaled register is always used when at least two
320   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
321   /// #2 enforces that 1 * reg is reg.
322   /// #3 ensures invariant regs with respect to current loop can be combined
323   /// together in LSR codegen.
324   /// This invariant can be temporarly broken while building a formula.
325   /// However, every formula inserted into the LSRInstance must be in canonical
326   /// form.
327   SmallVector<const SCEV *, 4> BaseRegs;
328 
329   /// The 'scaled' register for this use. This should be non-null when Scale is
330   /// not zero.
331   const SCEV *ScaledReg;
332 
333   /// An additional constant offset which added near the use. This requires a
334   /// temporary register, but the offset itself can live in an add immediate
335   /// field rather than a register.
336   int64_t UnfoldedOffset;
337 
338   Formula()
339       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
340         ScaledReg(nullptr), UnfoldedOffset(0) {}
341 
342   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
343 
344   bool isCanonical(const Loop &L) const;
345 
346   void canonicalize(const Loop &L);
347 
348   bool unscale();
349 
350   bool hasZeroEnd() const;
351 
352   size_t getNumRegs() const;
353   Type *getType() const;
354 
355   void deleteBaseReg(const SCEV *&S);
356 
357   bool referencesReg(const SCEV *S) const;
358   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
359                                   const RegUseTracker &RegUses) const;
360 
361   void print(raw_ostream &OS) const;
362   void dump() const;
363 };
364 
365 } // end anonymous namespace
366 
367 /// Recursion helper for initialMatch.
368 static void DoInitialMatch(const SCEV *S, Loop *L,
369                            SmallVectorImpl<const SCEV *> &Good,
370                            SmallVectorImpl<const SCEV *> &Bad,
371                            ScalarEvolution &SE) {
372   // Collect expressions which properly dominate the loop header.
373   if (SE.properlyDominates(S, L->getHeader())) {
374     Good.push_back(S);
375     return;
376   }
377 
378   // Look at add operands.
379   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
380     for (const SCEV *S : Add->operands())
381       DoInitialMatch(S, L, Good, Bad, SE);
382     return;
383   }
384 
385   // Look at addrec operands.
386   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
387     if (!AR->getStart()->isZero() && AR->isAffine()) {
388       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
389       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
390                                       AR->getStepRecurrence(SE),
391                                       // FIXME: AR->getNoWrapFlags()
392                                       AR->getLoop(), SCEV::FlagAnyWrap),
393                      L, Good, Bad, SE);
394       return;
395     }
396 
397   // Handle a multiplication by -1 (negation) if it didn't fold.
398   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
399     if (Mul->getOperand(0)->isAllOnesValue()) {
400       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
401       const SCEV *NewMul = SE.getMulExpr(Ops);
402 
403       SmallVector<const SCEV *, 4> MyGood;
404       SmallVector<const SCEV *, 4> MyBad;
405       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
406       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
407         SE.getEffectiveSCEVType(NewMul->getType())));
408       for (const SCEV *S : MyGood)
409         Good.push_back(SE.getMulExpr(NegOne, S));
410       for (const SCEV *S : MyBad)
411         Bad.push_back(SE.getMulExpr(NegOne, S));
412       return;
413     }
414 
415   // Ok, we can't do anything interesting. Just stuff the whole thing into a
416   // register and hope for the best.
417   Bad.push_back(S);
418 }
419 
420 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
421 /// all loop-invariant and loop-computable values in a single base register.
422 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
423   SmallVector<const SCEV *, 4> Good;
424   SmallVector<const SCEV *, 4> Bad;
425   DoInitialMatch(S, L, Good, Bad, SE);
426   if (!Good.empty()) {
427     const SCEV *Sum = SE.getAddExpr(Good);
428     if (!Sum->isZero())
429       BaseRegs.push_back(Sum);
430     HasBaseReg = true;
431   }
432   if (!Bad.empty()) {
433     const SCEV *Sum = SE.getAddExpr(Bad);
434     if (!Sum->isZero())
435       BaseRegs.push_back(Sum);
436     HasBaseReg = true;
437   }
438   canonicalize(*L);
439 }
440 
441 /// \brief Check whether or not this formula statisfies the canonical
442 /// representation.
443 /// \see Formula::BaseRegs.
444 bool Formula::isCanonical(const Loop &L) const {
445   if (!ScaledReg)
446     return BaseRegs.size() <= 1;
447 
448   if (Scale != 1)
449     return true;
450 
451   if (Scale == 1 && BaseRegs.empty())
452     return false;
453 
454   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
455   if (SAR && SAR->getLoop() == &L)
456     return true;
457 
458   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
459   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
460   // loop, we want to swap the reg in BaseRegs with ScaledReg.
461   auto I =
462       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
463         return isa<const SCEVAddRecExpr>(S) &&
464                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
465       });
466   return I == BaseRegs.end();
467 }
468 
469 /// \brief Helper method to morph a formula into its canonical representation.
470 /// \see Formula::BaseRegs.
471 /// Every formula having more than one base register, must use the ScaledReg
472 /// field. Otherwise, we would have to do special cases everywhere in LSR
473 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
474 /// On the other hand, 1*reg should be canonicalized into reg.
475 void Formula::canonicalize(const Loop &L) {
476   if (isCanonical(L))
477     return;
478   // So far we did not need this case. This is easy to implement but it is
479   // useless to maintain dead code. Beside it could hurt compile time.
480   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
481 
482   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
483   if (!ScaledReg) {
484     ScaledReg = BaseRegs.back();
485     BaseRegs.pop_back();
486     Scale = 1;
487   }
488 
489   // If ScaledReg is an invariant with respect to L, find the reg from
490   // BaseRegs containing the recurrent expr related with Loop L. Swap the
491   // reg with ScaledReg.
492   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
493   if (!SAR || SAR->getLoop() != &L) {
494     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
495                      [&](const SCEV *S) {
496                        return isa<const SCEVAddRecExpr>(S) &&
497                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
498                      });
499     if (I != BaseRegs.end())
500       std::swap(ScaledReg, *I);
501   }
502 }
503 
504 /// \brief Get rid of the scale in the formula.
505 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
506 /// \return true if it was possible to get rid of the scale, false otherwise.
507 /// \note After this operation the formula may not be in the canonical form.
508 bool Formula::unscale() {
509   if (Scale != 1)
510     return false;
511   Scale = 0;
512   BaseRegs.push_back(ScaledReg);
513   ScaledReg = nullptr;
514   return true;
515 }
516 
517 bool Formula::hasZeroEnd() const {
518   if (UnfoldedOffset || BaseOffset)
519     return false;
520   if (BaseRegs.size() != 1 || ScaledReg)
521     return false;
522   return true;
523 }
524 
525 /// Return the total number of register operands used by this formula. This does
526 /// not include register uses implied by non-constant addrec strides.
527 size_t Formula::getNumRegs() const {
528   return !!ScaledReg + BaseRegs.size();
529 }
530 
531 /// Return the type of this formula, if it has one, or null otherwise. This type
532 /// is meaningless except for the bit size.
533 Type *Formula::getType() const {
534   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
535          ScaledReg ? ScaledReg->getType() :
536          BaseGV ? BaseGV->getType() :
537          nullptr;
538 }
539 
540 /// Delete the given base reg from the BaseRegs list.
541 void Formula::deleteBaseReg(const SCEV *&S) {
542   if (&S != &BaseRegs.back())
543     std::swap(S, BaseRegs.back());
544   BaseRegs.pop_back();
545 }
546 
547 /// Test if this formula references the given register.
548 bool Formula::referencesReg(const SCEV *S) const {
549   return S == ScaledReg || is_contained(BaseRegs, S);
550 }
551 
552 /// Test whether this formula uses registers which are used by uses other than
553 /// the use with the given index.
554 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
555                                          const RegUseTracker &RegUses) const {
556   if (ScaledReg)
557     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
558       return true;
559   for (const SCEV *BaseReg : BaseRegs)
560     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
561       return true;
562   return false;
563 }
564 
565 void Formula::print(raw_ostream &OS) const {
566   bool First = true;
567   if (BaseGV) {
568     if (!First) OS << " + "; else First = false;
569     BaseGV->printAsOperand(OS, /*PrintType=*/false);
570   }
571   if (BaseOffset != 0) {
572     if (!First) OS << " + "; else First = false;
573     OS << BaseOffset;
574   }
575   for (const SCEV *BaseReg : BaseRegs) {
576     if (!First) OS << " + "; else First = false;
577     OS << "reg(" << *BaseReg << ')';
578   }
579   if (HasBaseReg && BaseRegs.empty()) {
580     if (!First) OS << " + "; else First = false;
581     OS << "**error: HasBaseReg**";
582   } else if (!HasBaseReg && !BaseRegs.empty()) {
583     if (!First) OS << " + "; else First = false;
584     OS << "**error: !HasBaseReg**";
585   }
586   if (Scale != 0) {
587     if (!First) OS << " + "; else First = false;
588     OS << Scale << "*reg(";
589     if (ScaledReg)
590       OS << *ScaledReg;
591     else
592       OS << "<unknown>";
593     OS << ')';
594   }
595   if (UnfoldedOffset != 0) {
596     if (!First) OS << " + ";
597     OS << "imm(" << UnfoldedOffset << ')';
598   }
599 }
600 
601 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
602 LLVM_DUMP_METHOD void Formula::dump() const {
603   print(errs()); errs() << '\n';
604 }
605 #endif
606 
607 /// Return true if the given addrec can be sign-extended without changing its
608 /// value.
609 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
610   Type *WideTy =
611     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
612   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
613 }
614 
615 /// Return true if the given add can be sign-extended without changing its
616 /// value.
617 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
618   Type *WideTy =
619     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
620   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
621 }
622 
623 /// Return true if the given mul can be sign-extended without changing its
624 /// value.
625 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
626   Type *WideTy =
627     IntegerType::get(SE.getContext(),
628                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
629   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
630 }
631 
632 /// Return an expression for LHS /s RHS, if it can be determined and if the
633 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
634 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
635 /// the multiplication may overflow, which is useful when the result will be
636 /// used in a context where the most significant bits are ignored.
637 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
638                                 ScalarEvolution &SE,
639                                 bool IgnoreSignificantBits = false) {
640   // Handle the trivial case, which works for any SCEV type.
641   if (LHS == RHS)
642     return SE.getConstant(LHS->getType(), 1);
643 
644   // Handle a few RHS special cases.
645   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
646   if (RC) {
647     const APInt &RA = RC->getAPInt();
648     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
649     // some folding.
650     if (RA.isAllOnesValue())
651       return SE.getMulExpr(LHS, RC);
652     // Handle x /s 1 as x.
653     if (RA == 1)
654       return LHS;
655   }
656 
657   // Check for a division of a constant by a constant.
658   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
659     if (!RC)
660       return nullptr;
661     const APInt &LA = C->getAPInt();
662     const APInt &RA = RC->getAPInt();
663     if (LA.srem(RA) != 0)
664       return nullptr;
665     return SE.getConstant(LA.sdiv(RA));
666   }
667 
668   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
669   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
670     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
671       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
672                                       IgnoreSignificantBits);
673       if (!Step) return nullptr;
674       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
675                                        IgnoreSignificantBits);
676       if (!Start) return nullptr;
677       // FlagNW is independent of the start value, step direction, and is
678       // preserved with smaller magnitude steps.
679       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
680       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
681     }
682     return nullptr;
683   }
684 
685   // Distribute the sdiv over add operands, if the add doesn't overflow.
686   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
687     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
688       SmallVector<const SCEV *, 8> Ops;
689       for (const SCEV *S : Add->operands()) {
690         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
691         if (!Op) return nullptr;
692         Ops.push_back(Op);
693       }
694       return SE.getAddExpr(Ops);
695     }
696     return nullptr;
697   }
698 
699   // Check for a multiply operand that we can pull RHS out of.
700   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
701     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
702       SmallVector<const SCEV *, 4> Ops;
703       bool Found = false;
704       for (const SCEV *S : Mul->operands()) {
705         if (!Found)
706           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
707                                            IgnoreSignificantBits)) {
708             S = Q;
709             Found = true;
710           }
711         Ops.push_back(S);
712       }
713       return Found ? SE.getMulExpr(Ops) : nullptr;
714     }
715     return nullptr;
716   }
717 
718   // Otherwise we don't know.
719   return nullptr;
720 }
721 
722 /// If S involves the addition of a constant integer value, return that integer
723 /// value, and mutate S to point to a new SCEV with that value excluded.
724 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
725   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
726     if (C->getAPInt().getMinSignedBits() <= 64) {
727       S = SE.getConstant(C->getType(), 0);
728       return C->getValue()->getSExtValue();
729     }
730   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
731     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
732     int64_t Result = ExtractImmediate(NewOps.front(), SE);
733     if (Result != 0)
734       S = SE.getAddExpr(NewOps);
735     return Result;
736   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
737     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
738     int64_t Result = ExtractImmediate(NewOps.front(), SE);
739     if (Result != 0)
740       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
741                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
742                            SCEV::FlagAnyWrap);
743     return Result;
744   }
745   return 0;
746 }
747 
748 /// If S involves the addition of a GlobalValue address, return that symbol, and
749 /// mutate S to point to a new SCEV with that value excluded.
750 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
751   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
752     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
753       S = SE.getConstant(GV->getType(), 0);
754       return GV;
755     }
756   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
757     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
758     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
759     if (Result)
760       S = SE.getAddExpr(NewOps);
761     return Result;
762   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
763     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
764     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
765     if (Result)
766       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
767                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
768                            SCEV::FlagAnyWrap);
769     return Result;
770   }
771   return nullptr;
772 }
773 
774 /// Returns true if the specified instruction is using the specified value as an
775 /// address.
776 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
777   bool isAddress = isa<LoadInst>(Inst);
778   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
779     if (SI->getPointerOperand() == OperandVal)
780       isAddress = true;
781   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
782     // Addressing modes can also be folded into prefetches and a variety
783     // of intrinsics.
784     switch (II->getIntrinsicID()) {
785       default: break;
786       case Intrinsic::memset:
787       case Intrinsic::prefetch:
788         if (II->getArgOperand(0) == OperandVal)
789           isAddress = true;
790         break;
791       case Intrinsic::memmove:
792       case Intrinsic::memcpy:
793         if (II->getArgOperand(0) == OperandVal ||
794             II->getArgOperand(1) == OperandVal)
795           isAddress = true;
796         break;
797     }
798   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
799     if (RMW->getPointerOperand() == OperandVal)
800       isAddress = true;
801   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
802     if (CmpX->getPointerOperand() == OperandVal)
803       isAddress = true;
804   }
805   return isAddress;
806 }
807 
808 /// Return the type of the memory being accessed.
809 static MemAccessTy getAccessType(const Instruction *Inst) {
810   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
811   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
812     AccessTy.MemTy = SI->getOperand(0)->getType();
813     AccessTy.AddrSpace = SI->getPointerAddressSpace();
814   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
815     AccessTy.AddrSpace = LI->getPointerAddressSpace();
816   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
817     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
818   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
819     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
820   }
821 
822   // All pointers have the same requirements, so canonicalize them to an
823   // arbitrary pointer type to minimize variation.
824   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
825     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
826                                       PTy->getAddressSpace());
827 
828   return AccessTy;
829 }
830 
831 /// Return true if this AddRec is already a phi in its loop.
832 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
833   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
834        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
835     if (SE.isSCEVable(PN->getType()) &&
836         (SE.getEffectiveSCEVType(PN->getType()) ==
837          SE.getEffectiveSCEVType(AR->getType())) &&
838         SE.getSCEV(PN) == AR)
839       return true;
840   }
841   return false;
842 }
843 
844 /// Check if expanding this expression is likely to incur significant cost. This
845 /// is tricky because SCEV doesn't track which expressions are actually computed
846 /// by the current IR.
847 ///
848 /// We currently allow expansion of IV increments that involve adds,
849 /// multiplication by constants, and AddRecs from existing phis.
850 ///
851 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
852 /// obvious multiple of the UDivExpr.
853 static bool isHighCostExpansion(const SCEV *S,
854                                 SmallPtrSetImpl<const SCEV*> &Processed,
855                                 ScalarEvolution &SE) {
856   // Zero/One operand expressions
857   switch (S->getSCEVType()) {
858   case scUnknown:
859   case scConstant:
860     return false;
861   case scTruncate:
862     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
863                                Processed, SE);
864   case scZeroExtend:
865     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
866                                Processed, SE);
867   case scSignExtend:
868     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
869                                Processed, SE);
870   }
871 
872   if (!Processed.insert(S).second)
873     return false;
874 
875   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
876     for (const SCEV *S : Add->operands()) {
877       if (isHighCostExpansion(S, Processed, SE))
878         return true;
879     }
880     return false;
881   }
882 
883   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
884     if (Mul->getNumOperands() == 2) {
885       // Multiplication by a constant is ok
886       if (isa<SCEVConstant>(Mul->getOperand(0)))
887         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
888 
889       // If we have the value of one operand, check if an existing
890       // multiplication already generates this expression.
891       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
892         Value *UVal = U->getValue();
893         for (User *UR : UVal->users()) {
894           // If U is a constant, it may be used by a ConstantExpr.
895           Instruction *UI = dyn_cast<Instruction>(UR);
896           if (UI && UI->getOpcode() == Instruction::Mul &&
897               SE.isSCEVable(UI->getType())) {
898             return SE.getSCEV(UI) == Mul;
899           }
900         }
901       }
902     }
903   }
904 
905   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
906     if (isExistingPhi(AR, SE))
907       return false;
908   }
909 
910   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
911   return true;
912 }
913 
914 /// If any of the instructions is the specified set are trivially dead, delete
915 /// them and see if this makes any of their operands subsequently dead.
916 static bool
917 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
918   bool Changed = false;
919 
920   while (!DeadInsts.empty()) {
921     Value *V = DeadInsts.pop_back_val();
922     Instruction *I = dyn_cast_or_null<Instruction>(V);
923 
924     if (!I || !isInstructionTriviallyDead(I))
925       continue;
926 
927     for (Use &O : I->operands())
928       if (Instruction *U = dyn_cast<Instruction>(O)) {
929         O = nullptr;
930         if (U->use_empty())
931           DeadInsts.emplace_back(U);
932       }
933 
934     I->eraseFromParent();
935     Changed = true;
936   }
937 
938   return Changed;
939 }
940 
941 namespace {
942 
943 class LSRUse;
944 
945 } // end anonymous namespace
946 
947 /// \brief Check if the addressing mode defined by \p F is completely
948 /// folded in \p LU at isel time.
949 /// This includes address-mode folding and special icmp tricks.
950 /// This function returns true if \p LU can accommodate what \p F
951 /// defines and up to 1 base + 1 scaled + offset.
952 /// In other words, if \p F has several base registers, this function may
953 /// still return true. Therefore, users still need to account for
954 /// additional base registers and/or unfolded offsets to derive an
955 /// accurate cost model.
956 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
957                                  const LSRUse &LU, const Formula &F);
958 // Get the cost of the scaling factor used in F for LU.
959 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
960                                      const LSRUse &LU, const Formula &F,
961                                      const Loop &L);
962 
963 namespace {
964 
965 /// This class is used to measure and compare candidate formulae.
966 class Cost {
967   TargetTransformInfo::LSRCost C;
968 
969 public:
970   Cost() {
971     C.Insns = 0;
972     C.NumRegs = 0;
973     C.AddRecCost = 0;
974     C.NumIVMuls = 0;
975     C.NumBaseAdds = 0;
976     C.ImmCost = 0;
977     C.SetupCost = 0;
978     C.ScaleCost = 0;
979   }
980 
981   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
982 
983   void Lose();
984 
985 #ifndef NDEBUG
986   // Once any of the metrics loses, they must all remain losers.
987   bool isValid() {
988     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
989              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
990       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
991            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
992   }
993 #endif
994 
995   bool isLoser() {
996     assert(isValid() && "invalid cost");
997     return C.NumRegs == ~0u;
998   }
999 
1000   void RateFormula(const TargetTransformInfo &TTI,
1001                    const Formula &F,
1002                    SmallPtrSetImpl<const SCEV *> &Regs,
1003                    const DenseSet<const SCEV *> &VisitedRegs,
1004                    const Loop *L,
1005                    ScalarEvolution &SE, DominatorTree &DT,
1006                    const LSRUse &LU,
1007                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1008 
1009   void print(raw_ostream &OS) const;
1010   void dump() const;
1011 
1012 private:
1013   void RateRegister(const SCEV *Reg,
1014                     SmallPtrSetImpl<const SCEV *> &Regs,
1015                     const Loop *L,
1016                     ScalarEvolution &SE, DominatorTree &DT);
1017   void RatePrimaryRegister(const SCEV *Reg,
1018                            SmallPtrSetImpl<const SCEV *> &Regs,
1019                            const Loop *L,
1020                            ScalarEvolution &SE, DominatorTree &DT,
1021                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1022 };
1023 
1024 /// An operand value in an instruction which is to be replaced with some
1025 /// equivalent, possibly strength-reduced, replacement.
1026 struct LSRFixup {
1027   /// The instruction which will be updated.
1028   Instruction *UserInst;
1029 
1030   /// The operand of the instruction which will be replaced. The operand may be
1031   /// used more than once; every instance will be replaced.
1032   Value *OperandValToReplace;
1033 
1034   /// If this user is to use the post-incremented value of an induction
1035   /// variable, this variable is non-null and holds the loop associated with the
1036   /// induction variable.
1037   PostIncLoopSet PostIncLoops;
1038 
1039   /// A constant offset to be added to the LSRUse expression.  This allows
1040   /// multiple fixups to share the same LSRUse with different offsets, for
1041   /// example in an unrolled loop.
1042   int64_t Offset;
1043 
1044   bool isUseFullyOutsideLoop(const Loop *L) const;
1045 
1046   LSRFixup();
1047 
1048   void print(raw_ostream &OS) const;
1049   void dump() const;
1050 };
1051 
1052 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1053 /// SmallVectors of const SCEV*.
1054 struct UniquifierDenseMapInfo {
1055   static SmallVector<const SCEV *, 4> getEmptyKey() {
1056     SmallVector<const SCEV *, 4>  V;
1057     V.push_back(reinterpret_cast<const SCEV *>(-1));
1058     return V;
1059   }
1060 
1061   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1062     SmallVector<const SCEV *, 4> V;
1063     V.push_back(reinterpret_cast<const SCEV *>(-2));
1064     return V;
1065   }
1066 
1067   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1068     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1069   }
1070 
1071   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1072                       const SmallVector<const SCEV *, 4> &RHS) {
1073     return LHS == RHS;
1074   }
1075 };
1076 
1077 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1078 /// as uses invented by LSR itself. It includes information about what kinds of
1079 /// things can be folded into the user, information about the user itself, and
1080 /// information about how the use may be satisfied.  TODO: Represent multiple
1081 /// users of the same expression in common?
1082 class LSRUse {
1083   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1084 
1085 public:
1086   /// An enum for a kind of use, indicating what types of scaled and immediate
1087   /// operands it might support.
1088   enum KindType {
1089     Basic,   ///< A normal use, with no folding.
1090     Special, ///< A special case of basic, allowing -1 scales.
1091     Address, ///< An address use; folding according to TargetLowering
1092     ICmpZero ///< An equality icmp with both operands folded into one.
1093     // TODO: Add a generic icmp too?
1094   };
1095 
1096   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1097 
1098   KindType Kind;
1099   MemAccessTy AccessTy;
1100 
1101   /// The list of operands which are to be replaced.
1102   SmallVector<LSRFixup, 8> Fixups;
1103 
1104   /// Keep track of the min and max offsets of the fixups.
1105   int64_t MinOffset;
1106   int64_t MaxOffset;
1107 
1108   /// This records whether all of the fixups using this LSRUse are outside of
1109   /// the loop, in which case some special-case heuristics may be used.
1110   bool AllFixupsOutsideLoop;
1111 
1112   /// RigidFormula is set to true to guarantee that this use will be associated
1113   /// with a single formula--the one that initially matched. Some SCEV
1114   /// expressions cannot be expanded. This allows LSR to consider the registers
1115   /// used by those expressions without the need to expand them later after
1116   /// changing the formula.
1117   bool RigidFormula;
1118 
1119   /// This records the widest use type for any fixup using this
1120   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1121   /// fixup widths to be equivalent, because the narrower one may be relying on
1122   /// the implicit truncation to truncate away bogus bits.
1123   Type *WidestFixupType;
1124 
1125   /// A list of ways to build a value that can satisfy this user.  After the
1126   /// list is populated, one of these is selected heuristically and used to
1127   /// formulate a replacement for OperandValToReplace in UserInst.
1128   SmallVector<Formula, 12> Formulae;
1129 
1130   /// The set of register candidates used by all formulae in this LSRUse.
1131   SmallPtrSet<const SCEV *, 4> Regs;
1132 
1133   LSRUse(KindType K, MemAccessTy AT)
1134       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1135         AllFixupsOutsideLoop(true), RigidFormula(false),
1136         WidestFixupType(nullptr) {}
1137 
1138   LSRFixup &getNewFixup() {
1139     Fixups.push_back(LSRFixup());
1140     return Fixups.back();
1141   }
1142 
1143   void pushFixup(LSRFixup &f) {
1144     Fixups.push_back(f);
1145     if (f.Offset > MaxOffset)
1146       MaxOffset = f.Offset;
1147     if (f.Offset < MinOffset)
1148       MinOffset = f.Offset;
1149   }
1150 
1151   bool HasFormulaWithSameRegs(const Formula &F) const;
1152   float getNotSelectedProbability(const SCEV *Reg) const;
1153   bool InsertFormula(const Formula &F, const Loop &L);
1154   void DeleteFormula(Formula &F);
1155   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1156 
1157   void print(raw_ostream &OS) const;
1158   void dump() const;
1159 };
1160 
1161 } // end anonymous namespace
1162 
1163 /// Tally up interesting quantities from the given register.
1164 void Cost::RateRegister(const SCEV *Reg,
1165                         SmallPtrSetImpl<const SCEV *> &Regs,
1166                         const Loop *L,
1167                         ScalarEvolution &SE, DominatorTree &DT) {
1168   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1169     // If this is an addrec for another loop, it should be an invariant
1170     // with respect to L since L is the innermost loop (at least
1171     // for now LSR only handles innermost loops).
1172     if (AR->getLoop() != L) {
1173       // If the AddRec exists, consider it's register free and leave it alone.
1174       if (isExistingPhi(AR, SE))
1175         return;
1176 
1177       // It is bad to allow LSR for current loop to add induction variables
1178       // for its sibling loops.
1179       if (!AR->getLoop()->contains(L)) {
1180         Lose();
1181         return;
1182       }
1183 
1184       // Otherwise, it will be an invariant with respect to Loop L.
1185       ++C.NumRegs;
1186       return;
1187     }
1188     C.AddRecCost += 1; /// TODO: This should be a function of the stride.
1189 
1190     // Add the step value register, if it needs one.
1191     // TODO: The non-affine case isn't precisely modeled here.
1192     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1193       if (!Regs.count(AR->getOperand(1))) {
1194         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1195         if (isLoser())
1196           return;
1197       }
1198     }
1199   }
1200   ++C.NumRegs;
1201 
1202   // Rough heuristic; favor registers which don't require extra setup
1203   // instructions in the preheader.
1204   if (!isa<SCEVUnknown>(Reg) &&
1205       !isa<SCEVConstant>(Reg) &&
1206       !(isa<SCEVAddRecExpr>(Reg) &&
1207         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1208          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1209     ++C.SetupCost;
1210 
1211   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1212                SE.hasComputableLoopEvolution(Reg, L);
1213 }
1214 
1215 /// Record this register in the set. If we haven't seen it before, rate
1216 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1217 /// one of those regs an instant loser.
1218 void Cost::RatePrimaryRegister(const SCEV *Reg,
1219                                SmallPtrSetImpl<const SCEV *> &Regs,
1220                                const Loop *L,
1221                                ScalarEvolution &SE, DominatorTree &DT,
1222                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1223   if (LoserRegs && LoserRegs->count(Reg)) {
1224     Lose();
1225     return;
1226   }
1227   if (Regs.insert(Reg).second) {
1228     RateRegister(Reg, Regs, L, SE, DT);
1229     if (LoserRegs && isLoser())
1230       LoserRegs->insert(Reg);
1231   }
1232 }
1233 
1234 void Cost::RateFormula(const TargetTransformInfo &TTI,
1235                        const Formula &F,
1236                        SmallPtrSetImpl<const SCEV *> &Regs,
1237                        const DenseSet<const SCEV *> &VisitedRegs,
1238                        const Loop *L,
1239                        ScalarEvolution &SE, DominatorTree &DT,
1240                        const LSRUse &LU,
1241                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1242   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1243   // Tally up the registers.
1244   unsigned PrevAddRecCost = C.AddRecCost;
1245   unsigned PrevNumRegs = C.NumRegs;
1246   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1247   if (const SCEV *ScaledReg = F.ScaledReg) {
1248     if (VisitedRegs.count(ScaledReg)) {
1249       Lose();
1250       return;
1251     }
1252     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1253     if (isLoser())
1254       return;
1255   }
1256   for (const SCEV *BaseReg : F.BaseRegs) {
1257     if (VisitedRegs.count(BaseReg)) {
1258       Lose();
1259       return;
1260     }
1261     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1262     if (isLoser())
1263       return;
1264   }
1265 
1266   // Determine how many (unfolded) adds we'll need inside the loop.
1267   size_t NumBaseParts = F.getNumRegs();
1268   if (NumBaseParts > 1)
1269     // Do not count the base and a possible second register if the target
1270     // allows to fold 2 registers.
1271     C.NumBaseAdds +=
1272         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1273   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1274 
1275   // Accumulate non-free scaling amounts.
1276   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1277 
1278   // Tally up the non-zero immediates.
1279   for (const LSRFixup &Fixup : LU.Fixups) {
1280     int64_t O = Fixup.Offset;
1281     int64_t Offset = (uint64_t)O + F.BaseOffset;
1282     if (F.BaseGV)
1283       C.ImmCost += 64; // Handle symbolic values conservatively.
1284                      // TODO: This should probably be the pointer size.
1285     else if (Offset != 0)
1286       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1287 
1288     // Check with target if this offset with this instruction is
1289     // specifically not supported.
1290     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1291         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1292       C.NumBaseAdds++;
1293   }
1294 
1295   // If we don't count instruction cost exit here.
1296   if (!InsnsCost) {
1297     assert(isValid() && "invalid cost");
1298     return;
1299   }
1300 
1301   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1302   // additional instruction (at least fill).
1303   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1304   if (C.NumRegs > TTIRegNum) {
1305     // Cost already exceeded TTIRegNum, then only newly added register can add
1306     // new instructions.
1307     if (PrevNumRegs > TTIRegNum)
1308       C.Insns += (C.NumRegs - PrevNumRegs);
1309     else
1310       C.Insns += (C.NumRegs - TTIRegNum);
1311   }
1312 
1313   // If ICmpZero formula ends with not 0, it could not be replaced by
1314   // just add or sub. We'll need to compare final result of AddRec.
1315   // That means we'll need an additional instruction.
1316   // For -10 + {0, +, 1}:
1317   // i = i + 1;
1318   // cmp i, 10
1319   //
1320   // For {-10, +, 1}:
1321   // i = i + 1;
1322   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd())
1323     C.Insns++;
1324   // Each new AddRec adds 1 instruction to calculation.
1325   C.Insns += (C.AddRecCost - PrevAddRecCost);
1326 
1327   // BaseAdds adds instructions for unfolded registers.
1328   if (LU.Kind != LSRUse::ICmpZero)
1329     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1330   assert(isValid() && "invalid cost");
1331 }
1332 
1333 /// Set this cost to a losing value.
1334 void Cost::Lose() {
1335   C.Insns = ~0u;
1336   C.NumRegs = ~0u;
1337   C.AddRecCost = ~0u;
1338   C.NumIVMuls = ~0u;
1339   C.NumBaseAdds = ~0u;
1340   C.ImmCost = ~0u;
1341   C.SetupCost = ~0u;
1342   C.ScaleCost = ~0u;
1343 }
1344 
1345 /// Choose the lower cost.
1346 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1347   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1348       C.Insns != Other.C.Insns)
1349     return C.Insns < Other.C.Insns;
1350   return TTI.isLSRCostLess(C, Other.C);
1351 }
1352 
1353 void Cost::print(raw_ostream &OS) const {
1354   if (InsnsCost)
1355     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1356   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1357   if (C.AddRecCost != 0)
1358     OS << ", with addrec cost " << C.AddRecCost;
1359   if (C.NumIVMuls != 0)
1360     OS << ", plus " << C.NumIVMuls << " IV mul"
1361        << (C.NumIVMuls == 1 ? "" : "s");
1362   if (C.NumBaseAdds != 0)
1363     OS << ", plus " << C.NumBaseAdds << " base add"
1364        << (C.NumBaseAdds == 1 ? "" : "s");
1365   if (C.ScaleCost != 0)
1366     OS << ", plus " << C.ScaleCost << " scale cost";
1367   if (C.ImmCost != 0)
1368     OS << ", plus " << C.ImmCost << " imm cost";
1369   if (C.SetupCost != 0)
1370     OS << ", plus " << C.SetupCost << " setup cost";
1371 }
1372 
1373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1374 LLVM_DUMP_METHOD void Cost::dump() const {
1375   print(errs()); errs() << '\n';
1376 }
1377 #endif
1378 
1379 LSRFixup::LSRFixup()
1380   : UserInst(nullptr), OperandValToReplace(nullptr),
1381     Offset(0) {}
1382 
1383 /// Test whether this fixup always uses its value outside of the given loop.
1384 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1385   // PHI nodes use their value in their incoming blocks.
1386   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1387     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1388       if (PN->getIncomingValue(i) == OperandValToReplace &&
1389           L->contains(PN->getIncomingBlock(i)))
1390         return false;
1391     return true;
1392   }
1393 
1394   return !L->contains(UserInst);
1395 }
1396 
1397 void LSRFixup::print(raw_ostream &OS) const {
1398   OS << "UserInst=";
1399   // Store is common and interesting enough to be worth special-casing.
1400   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1401     OS << "store ";
1402     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1403   } else if (UserInst->getType()->isVoidTy())
1404     OS << UserInst->getOpcodeName();
1405   else
1406     UserInst->printAsOperand(OS, /*PrintType=*/false);
1407 
1408   OS << ", OperandValToReplace=";
1409   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1410 
1411   for (const Loop *PIL : PostIncLoops) {
1412     OS << ", PostIncLoop=";
1413     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1414   }
1415 
1416   if (Offset != 0)
1417     OS << ", Offset=" << Offset;
1418 }
1419 
1420 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1421 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1422   print(errs()); errs() << '\n';
1423 }
1424 #endif
1425 
1426 /// Test whether this use as a formula which has the same registers as the given
1427 /// formula.
1428 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1429   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1430   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1431   // Unstable sort by host order ok, because this is only used for uniquifying.
1432   std::sort(Key.begin(), Key.end());
1433   return Uniquifier.count(Key);
1434 }
1435 
1436 /// The function returns a probability of selecting formula without Reg.
1437 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1438   unsigned FNum = 0;
1439   for (const Formula &F : Formulae)
1440     if (F.referencesReg(Reg))
1441       FNum++;
1442   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1443 }
1444 
1445 /// If the given formula has not yet been inserted, add it to the list, and
1446 /// return true. Return false otherwise.  The formula must be in canonical form.
1447 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1448   assert(F.isCanonical(L) && "Invalid canonical representation");
1449 
1450   if (!Formulae.empty() && RigidFormula)
1451     return false;
1452 
1453   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1454   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1455   // Unstable sort by host order ok, because this is only used for uniquifying.
1456   std::sort(Key.begin(), Key.end());
1457 
1458   if (!Uniquifier.insert(Key).second)
1459     return false;
1460 
1461   // Using a register to hold the value of 0 is not profitable.
1462   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1463          "Zero allocated in a scaled register!");
1464 #ifndef NDEBUG
1465   for (const SCEV *BaseReg : F.BaseRegs)
1466     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1467 #endif
1468 
1469   // Add the formula to the list.
1470   Formulae.push_back(F);
1471 
1472   // Record registers now being used by this use.
1473   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1474   if (F.ScaledReg)
1475     Regs.insert(F.ScaledReg);
1476 
1477   return true;
1478 }
1479 
1480 /// Remove the given formula from this use's list.
1481 void LSRUse::DeleteFormula(Formula &F) {
1482   if (&F != &Formulae.back())
1483     std::swap(F, Formulae.back());
1484   Formulae.pop_back();
1485 }
1486 
1487 /// Recompute the Regs field, and update RegUses.
1488 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1489   // Now that we've filtered out some formulae, recompute the Regs set.
1490   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1491   Regs.clear();
1492   for (const Formula &F : Formulae) {
1493     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1494     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1495   }
1496 
1497   // Update the RegTracker.
1498   for (const SCEV *S : OldRegs)
1499     if (!Regs.count(S))
1500       RegUses.dropRegister(S, LUIdx);
1501 }
1502 
1503 void LSRUse::print(raw_ostream &OS) const {
1504   OS << "LSR Use: Kind=";
1505   switch (Kind) {
1506   case Basic:    OS << "Basic"; break;
1507   case Special:  OS << "Special"; break;
1508   case ICmpZero: OS << "ICmpZero"; break;
1509   case Address:
1510     OS << "Address of ";
1511     if (AccessTy.MemTy->isPointerTy())
1512       OS << "pointer"; // the full pointer type could be really verbose
1513     else {
1514       OS << *AccessTy.MemTy;
1515     }
1516 
1517     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1518   }
1519 
1520   OS << ", Offsets={";
1521   bool NeedComma = false;
1522   for (const LSRFixup &Fixup : Fixups) {
1523     if (NeedComma) OS << ',';
1524     OS << Fixup.Offset;
1525     NeedComma = true;
1526   }
1527   OS << '}';
1528 
1529   if (AllFixupsOutsideLoop)
1530     OS << ", all-fixups-outside-loop";
1531 
1532   if (WidestFixupType)
1533     OS << ", widest fixup type: " << *WidestFixupType;
1534 }
1535 
1536 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1537 LLVM_DUMP_METHOD void LSRUse::dump() const {
1538   print(errs()); errs() << '\n';
1539 }
1540 #endif
1541 
1542 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1543                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1544                                  GlobalValue *BaseGV, int64_t BaseOffset,
1545                                  bool HasBaseReg, int64_t Scale,
1546                                  Instruction *Fixup = nullptr) {
1547   switch (Kind) {
1548   case LSRUse::Address:
1549     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1550                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1551 
1552   case LSRUse::ICmpZero:
1553     // There's not even a target hook for querying whether it would be legal to
1554     // fold a GV into an ICmp.
1555     if (BaseGV)
1556       return false;
1557 
1558     // ICmp only has two operands; don't allow more than two non-trivial parts.
1559     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1560       return false;
1561 
1562     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1563     // putting the scaled register in the other operand of the icmp.
1564     if (Scale != 0 && Scale != -1)
1565       return false;
1566 
1567     // If we have low-level target information, ask the target if it can fold an
1568     // integer immediate on an icmp.
1569     if (BaseOffset != 0) {
1570       // We have one of:
1571       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1572       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1573       // Offs is the ICmp immediate.
1574       if (Scale == 0)
1575         // The cast does the right thing with INT64_MIN.
1576         BaseOffset = -(uint64_t)BaseOffset;
1577       return TTI.isLegalICmpImmediate(BaseOffset);
1578     }
1579 
1580     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1581     return true;
1582 
1583   case LSRUse::Basic:
1584     // Only handle single-register values.
1585     return !BaseGV && Scale == 0 && BaseOffset == 0;
1586 
1587   case LSRUse::Special:
1588     // Special case Basic to handle -1 scales.
1589     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1590   }
1591 
1592   llvm_unreachable("Invalid LSRUse Kind!");
1593 }
1594 
1595 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1596                                  int64_t MinOffset, int64_t MaxOffset,
1597                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1598                                  GlobalValue *BaseGV, int64_t BaseOffset,
1599                                  bool HasBaseReg, int64_t Scale) {
1600   // Check for overflow.
1601   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1602       (MinOffset > 0))
1603     return false;
1604   MinOffset = (uint64_t)BaseOffset + MinOffset;
1605   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1606       (MaxOffset > 0))
1607     return false;
1608   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1609 
1610   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1611                               HasBaseReg, Scale) &&
1612          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1613                               HasBaseReg, Scale);
1614 }
1615 
1616 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1617                                  int64_t MinOffset, int64_t MaxOffset,
1618                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1619                                  const Formula &F, const Loop &L) {
1620   // For the purpose of isAMCompletelyFolded either having a canonical formula
1621   // or a scale not equal to zero is correct.
1622   // Problems may arise from non canonical formulae having a scale == 0.
1623   // Strictly speaking it would best to just rely on canonical formulae.
1624   // However, when we generate the scaled formulae, we first check that the
1625   // scaling factor is profitable before computing the actual ScaledReg for
1626   // compile time sake.
1627   assert((F.isCanonical(L) || F.Scale != 0));
1628   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1629                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1630 }
1631 
1632 /// Test whether we know how to expand the current formula.
1633 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1634                        int64_t MaxOffset, LSRUse::KindType Kind,
1635                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1636                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1637   // We know how to expand completely foldable formulae.
1638   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1639                               BaseOffset, HasBaseReg, Scale) ||
1640          // Or formulae that use a base register produced by a sum of base
1641          // registers.
1642          (Scale == 1 &&
1643           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1644                                BaseGV, BaseOffset, true, 0));
1645 }
1646 
1647 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1648                        int64_t MaxOffset, LSRUse::KindType Kind,
1649                        MemAccessTy AccessTy, const Formula &F) {
1650   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1651                     F.BaseOffset, F.HasBaseReg, F.Scale);
1652 }
1653 
1654 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1655                                  const LSRUse &LU, const Formula &F) {
1656   // Target may want to look at the user instructions.
1657   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1658     for (const LSRFixup &Fixup : LU.Fixups)
1659       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1660                                 F.BaseOffset, F.HasBaseReg, F.Scale,
1661                                 Fixup.UserInst))
1662         return false;
1663     return true;
1664   }
1665 
1666   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1667                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1668                               F.Scale);
1669 }
1670 
1671 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1672                                      const LSRUse &LU, const Formula &F,
1673                                      const Loop &L) {
1674   if (!F.Scale)
1675     return 0;
1676 
1677   // If the use is not completely folded in that instruction, we will have to
1678   // pay an extra cost only for scale != 1.
1679   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1680                             LU.AccessTy, F, L))
1681     return F.Scale != 1;
1682 
1683   switch (LU.Kind) {
1684   case LSRUse::Address: {
1685     // Check the scaling factor cost with both the min and max offsets.
1686     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1687         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1688         F.Scale, LU.AccessTy.AddrSpace);
1689     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1690         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1691         F.Scale, LU.AccessTy.AddrSpace);
1692 
1693     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1694            "Legal addressing mode has an illegal cost!");
1695     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1696   }
1697   case LSRUse::ICmpZero:
1698   case LSRUse::Basic:
1699   case LSRUse::Special:
1700     // The use is completely folded, i.e., everything is folded into the
1701     // instruction.
1702     return 0;
1703   }
1704 
1705   llvm_unreachable("Invalid LSRUse Kind!");
1706 }
1707 
1708 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1709                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1710                              GlobalValue *BaseGV, int64_t BaseOffset,
1711                              bool HasBaseReg) {
1712   // Fast-path: zero is always foldable.
1713   if (BaseOffset == 0 && !BaseGV) return true;
1714 
1715   // Conservatively, create an address with an immediate and a
1716   // base and a scale.
1717   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1718 
1719   // Canonicalize a scale of 1 to a base register if the formula doesn't
1720   // already have a base register.
1721   if (!HasBaseReg && Scale == 1) {
1722     Scale = 0;
1723     HasBaseReg = true;
1724   }
1725 
1726   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1727                               HasBaseReg, Scale);
1728 }
1729 
1730 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1731                              ScalarEvolution &SE, int64_t MinOffset,
1732                              int64_t MaxOffset, LSRUse::KindType Kind,
1733                              MemAccessTy AccessTy, const SCEV *S,
1734                              bool HasBaseReg) {
1735   // Fast-path: zero is always foldable.
1736   if (S->isZero()) return true;
1737 
1738   // Conservatively, create an address with an immediate and a
1739   // base and a scale.
1740   int64_t BaseOffset = ExtractImmediate(S, SE);
1741   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1742 
1743   // If there's anything else involved, it's not foldable.
1744   if (!S->isZero()) return false;
1745 
1746   // Fast-path: zero is always foldable.
1747   if (BaseOffset == 0 && !BaseGV) return true;
1748 
1749   // Conservatively, create an address with an immediate and a
1750   // base and a scale.
1751   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1752 
1753   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1754                               BaseOffset, HasBaseReg, Scale);
1755 }
1756 
1757 namespace {
1758 
1759 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1760 /// an expression that computes the IV it uses from the IV used by the previous
1761 /// link in the Chain.
1762 ///
1763 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1764 /// original IVOperand. The head of the chain's IVOperand is only valid during
1765 /// chain collection, before LSR replaces IV users. During chain generation,
1766 /// IncExpr can be used to find the new IVOperand that computes the same
1767 /// expression.
1768 struct IVInc {
1769   Instruction *UserInst;
1770   Value* IVOperand;
1771   const SCEV *IncExpr;
1772 
1773   IVInc(Instruction *U, Value *O, const SCEV *E):
1774     UserInst(U), IVOperand(O), IncExpr(E) {}
1775 };
1776 
1777 // The list of IV increments in program order.  We typically add the head of a
1778 // chain without finding subsequent links.
1779 struct IVChain {
1780   SmallVector<IVInc,1> Incs;
1781   const SCEV *ExprBase;
1782 
1783   IVChain() : ExprBase(nullptr) {}
1784 
1785   IVChain(const IVInc &Head, const SCEV *Base)
1786     : Incs(1, Head), ExprBase(Base) {}
1787 
1788   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1789 
1790   // Return the first increment in the chain.
1791   const_iterator begin() const {
1792     assert(!Incs.empty());
1793     return std::next(Incs.begin());
1794   }
1795   const_iterator end() const {
1796     return Incs.end();
1797   }
1798 
1799   // Returns true if this chain contains any increments.
1800   bool hasIncs() const { return Incs.size() >= 2; }
1801 
1802   // Add an IVInc to the end of this chain.
1803   void add(const IVInc &X) { Incs.push_back(X); }
1804 
1805   // Returns the last UserInst in the chain.
1806   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1807 
1808   // Returns true if IncExpr can be profitably added to this chain.
1809   bool isProfitableIncrement(const SCEV *OperExpr,
1810                              const SCEV *IncExpr,
1811                              ScalarEvolution&);
1812 };
1813 
1814 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1815 /// between FarUsers that definitely cross IV increments and NearUsers that may
1816 /// be used between IV increments.
1817 struct ChainUsers {
1818   SmallPtrSet<Instruction*, 4> FarUsers;
1819   SmallPtrSet<Instruction*, 4> NearUsers;
1820 };
1821 
1822 /// This class holds state for the main loop strength reduction logic.
1823 class LSRInstance {
1824   IVUsers &IU;
1825   ScalarEvolution &SE;
1826   DominatorTree &DT;
1827   LoopInfo &LI;
1828   const TargetTransformInfo &TTI;
1829   Loop *const L;
1830   bool Changed;
1831 
1832   /// This is the insert position that the current loop's induction variable
1833   /// increment should be placed. In simple loops, this is the latch block's
1834   /// terminator. But in more complicated cases, this is a position which will
1835   /// dominate all the in-loop post-increment users.
1836   Instruction *IVIncInsertPos;
1837 
1838   /// Interesting factors between use strides.
1839   ///
1840   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1841   /// default, a SmallDenseSet, because we need to use the full range of
1842   /// int64_ts, and there's currently no good way of doing that with
1843   /// SmallDenseSet.
1844   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1845 
1846   /// Interesting use types, to facilitate truncation reuse.
1847   SmallSetVector<Type *, 4> Types;
1848 
1849   /// The list of interesting uses.
1850   SmallVector<LSRUse, 16> Uses;
1851 
1852   /// Track which uses use which register candidates.
1853   RegUseTracker RegUses;
1854 
1855   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1856   // have more than a few IV increment chains in a loop. Missing a Chain falls
1857   // back to normal LSR behavior for those uses.
1858   static const unsigned MaxChains = 8;
1859 
1860   /// IV users can form a chain of IV increments.
1861   SmallVector<IVChain, MaxChains> IVChainVec;
1862 
1863   /// IV users that belong to profitable IVChains.
1864   SmallPtrSet<Use*, MaxChains> IVIncSet;
1865 
1866   void OptimizeShadowIV();
1867   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1868   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1869   void OptimizeLoopTermCond();
1870 
1871   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1872                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1873   void FinalizeChain(IVChain &Chain);
1874   void CollectChains();
1875   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1876                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1877 
1878   void CollectInterestingTypesAndFactors();
1879   void CollectFixupsAndInitialFormulae();
1880 
1881   // Support for sharing of LSRUses between LSRFixups.
1882   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1883   UseMapTy UseMap;
1884 
1885   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1886                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1887 
1888   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1889                                     MemAccessTy AccessTy);
1890 
1891   void DeleteUse(LSRUse &LU, size_t LUIdx);
1892 
1893   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1894 
1895   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1896   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1897   void CountRegisters(const Formula &F, size_t LUIdx);
1898   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1899 
1900   void CollectLoopInvariantFixupsAndFormulae();
1901 
1902   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1903                               unsigned Depth = 0);
1904 
1905   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1906                                   const Formula &Base, unsigned Depth,
1907                                   size_t Idx, bool IsScaledReg = false);
1908   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1909   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1910                                    const Formula &Base, size_t Idx,
1911                                    bool IsScaledReg = false);
1912   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1913   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1914                                    const Formula &Base,
1915                                    const SmallVectorImpl<int64_t> &Worklist,
1916                                    size_t Idx, bool IsScaledReg = false);
1917   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1918   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1919   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1920   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1921   void GenerateCrossUseConstantOffsets();
1922   void GenerateAllReuseFormulae();
1923 
1924   void FilterOutUndesirableDedicatedRegisters();
1925 
1926   size_t EstimateSearchSpaceComplexity() const;
1927   void NarrowSearchSpaceByDetectingSupersets();
1928   void NarrowSearchSpaceByCollapsingUnrolledCode();
1929   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1930   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1931   void NarrowSearchSpaceByDeletingCostlyFormulas();
1932   void NarrowSearchSpaceByPickingWinnerRegs();
1933   void NarrowSearchSpaceUsingHeuristics();
1934 
1935   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1936                     Cost &SolutionCost,
1937                     SmallVectorImpl<const Formula *> &Workspace,
1938                     const Cost &CurCost,
1939                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1940                     DenseSet<const SCEV *> &VisitedRegs) const;
1941   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1942 
1943   BasicBlock::iterator
1944     HoistInsertPosition(BasicBlock::iterator IP,
1945                         const SmallVectorImpl<Instruction *> &Inputs) const;
1946   BasicBlock::iterator
1947     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1948                                   const LSRFixup &LF,
1949                                   const LSRUse &LU,
1950                                   SCEVExpander &Rewriter) const;
1951 
1952   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1953                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1954                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1955   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1956                      const Formula &F, SCEVExpander &Rewriter,
1957                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1958   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1959                SCEVExpander &Rewriter,
1960                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1961   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1962 
1963 public:
1964   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1965               LoopInfo &LI, const TargetTransformInfo &TTI);
1966 
1967   bool getChanged() const { return Changed; }
1968 
1969   void print_factors_and_types(raw_ostream &OS) const;
1970   void print_fixups(raw_ostream &OS) const;
1971   void print_uses(raw_ostream &OS) const;
1972   void print(raw_ostream &OS) const;
1973   void dump() const;
1974 };
1975 
1976 } // end anonymous namespace
1977 
1978 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1979 /// the cast operation.
1980 void LSRInstance::OptimizeShadowIV() {
1981   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1982   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1983     return;
1984 
1985   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1986        UI != E; /* empty */) {
1987     IVUsers::const_iterator CandidateUI = UI;
1988     ++UI;
1989     Instruction *ShadowUse = CandidateUI->getUser();
1990     Type *DestTy = nullptr;
1991     bool IsSigned = false;
1992 
1993     /* If shadow use is a int->float cast then insert a second IV
1994        to eliminate this cast.
1995 
1996          for (unsigned i = 0; i < n; ++i)
1997            foo((double)i);
1998 
1999        is transformed into
2000 
2001          double d = 0.0;
2002          for (unsigned i = 0; i < n; ++i, ++d)
2003            foo(d);
2004     */
2005     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2006       IsSigned = false;
2007       DestTy = UCast->getDestTy();
2008     }
2009     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2010       IsSigned = true;
2011       DestTy = SCast->getDestTy();
2012     }
2013     if (!DestTy) continue;
2014 
2015     // If target does not support DestTy natively then do not apply
2016     // this transformation.
2017     if (!TTI.isTypeLegal(DestTy)) continue;
2018 
2019     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2020     if (!PH) continue;
2021     if (PH->getNumIncomingValues() != 2) continue;
2022 
2023     Type *SrcTy = PH->getType();
2024     int Mantissa = DestTy->getFPMantissaWidth();
2025     if (Mantissa == -1) continue;
2026     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2027       continue;
2028 
2029     unsigned Entry, Latch;
2030     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2031       Entry = 0;
2032       Latch = 1;
2033     } else {
2034       Entry = 1;
2035       Latch = 0;
2036     }
2037 
2038     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2039     if (!Init) continue;
2040     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2041                                         (double)Init->getSExtValue() :
2042                                         (double)Init->getZExtValue());
2043 
2044     BinaryOperator *Incr =
2045       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2046     if (!Incr) continue;
2047     if (Incr->getOpcode() != Instruction::Add
2048         && Incr->getOpcode() != Instruction::Sub)
2049       continue;
2050 
2051     /* Initialize new IV, double d = 0.0 in above example. */
2052     ConstantInt *C = nullptr;
2053     if (Incr->getOperand(0) == PH)
2054       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2055     else if (Incr->getOperand(1) == PH)
2056       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2057     else
2058       continue;
2059 
2060     if (!C) continue;
2061 
2062     // Ignore negative constants, as the code below doesn't handle them
2063     // correctly. TODO: Remove this restriction.
2064     if (!C->getValue().isStrictlyPositive()) continue;
2065 
2066     /* Add new PHINode. */
2067     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2068 
2069     /* create new increment. '++d' in above example. */
2070     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2071     BinaryOperator *NewIncr =
2072       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2073                                Instruction::FAdd : Instruction::FSub,
2074                              NewPH, CFP, "IV.S.next.", Incr);
2075 
2076     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2077     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2078 
2079     /* Remove cast operation */
2080     ShadowUse->replaceAllUsesWith(NewPH);
2081     ShadowUse->eraseFromParent();
2082     Changed = true;
2083     break;
2084   }
2085 }
2086 
2087 /// If Cond has an operand that is an expression of an IV, set the IV user and
2088 /// stride information and return true, otherwise return false.
2089 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2090   for (IVStrideUse &U : IU)
2091     if (U.getUser() == Cond) {
2092       // NOTE: we could handle setcc instructions with multiple uses here, but
2093       // InstCombine does it as well for simple uses, it's not clear that it
2094       // occurs enough in real life to handle.
2095       CondUse = &U;
2096       return true;
2097     }
2098   return false;
2099 }
2100 
2101 /// Rewrite the loop's terminating condition if it uses a max computation.
2102 ///
2103 /// This is a narrow solution to a specific, but acute, problem. For loops
2104 /// like this:
2105 ///
2106 ///   i = 0;
2107 ///   do {
2108 ///     p[i] = 0.0;
2109 ///   } while (++i < n);
2110 ///
2111 /// the trip count isn't just 'n', because 'n' might not be positive. And
2112 /// unfortunately this can come up even for loops where the user didn't use
2113 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2114 /// will commonly be lowered like this:
2115 //
2116 ///   if (n > 0) {
2117 ///     i = 0;
2118 ///     do {
2119 ///       p[i] = 0.0;
2120 ///     } while (++i < n);
2121 ///   }
2122 ///
2123 /// and then it's possible for subsequent optimization to obscure the if
2124 /// test in such a way that indvars can't find it.
2125 ///
2126 /// When indvars can't find the if test in loops like this, it creates a
2127 /// max expression, which allows it to give the loop a canonical
2128 /// induction variable:
2129 ///
2130 ///   i = 0;
2131 ///   max = n < 1 ? 1 : n;
2132 ///   do {
2133 ///     p[i] = 0.0;
2134 ///   } while (++i != max);
2135 ///
2136 /// Canonical induction variables are necessary because the loop passes
2137 /// are designed around them. The most obvious example of this is the
2138 /// LoopInfo analysis, which doesn't remember trip count values. It
2139 /// expects to be able to rediscover the trip count each time it is
2140 /// needed, and it does this using a simple analysis that only succeeds if
2141 /// the loop has a canonical induction variable.
2142 ///
2143 /// However, when it comes time to generate code, the maximum operation
2144 /// can be quite costly, especially if it's inside of an outer loop.
2145 ///
2146 /// This function solves this problem by detecting this type of loop and
2147 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2148 /// the instructions for the maximum computation.
2149 ///
2150 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2151   // Check that the loop matches the pattern we're looking for.
2152   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2153       Cond->getPredicate() != CmpInst::ICMP_NE)
2154     return Cond;
2155 
2156   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2157   if (!Sel || !Sel->hasOneUse()) return Cond;
2158 
2159   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2160   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2161     return Cond;
2162   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2163 
2164   // Add one to the backedge-taken count to get the trip count.
2165   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2166   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2167 
2168   // Check for a max calculation that matches the pattern. There's no check
2169   // for ICMP_ULE here because the comparison would be with zero, which
2170   // isn't interesting.
2171   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2172   const SCEVNAryExpr *Max = nullptr;
2173   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2174     Pred = ICmpInst::ICMP_SLE;
2175     Max = S;
2176   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2177     Pred = ICmpInst::ICMP_SLT;
2178     Max = S;
2179   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2180     Pred = ICmpInst::ICMP_ULT;
2181     Max = U;
2182   } else {
2183     // No match; bail.
2184     return Cond;
2185   }
2186 
2187   // To handle a max with more than two operands, this optimization would
2188   // require additional checking and setup.
2189   if (Max->getNumOperands() != 2)
2190     return Cond;
2191 
2192   const SCEV *MaxLHS = Max->getOperand(0);
2193   const SCEV *MaxRHS = Max->getOperand(1);
2194 
2195   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2196   // for a comparison with 1. For <= and >=, a comparison with zero.
2197   if (!MaxLHS ||
2198       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2199     return Cond;
2200 
2201   // Check the relevant induction variable for conformance to
2202   // the pattern.
2203   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2204   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2205   if (!AR || !AR->isAffine() ||
2206       AR->getStart() != One ||
2207       AR->getStepRecurrence(SE) != One)
2208     return Cond;
2209 
2210   assert(AR->getLoop() == L &&
2211          "Loop condition operand is an addrec in a different loop!");
2212 
2213   // Check the right operand of the select, and remember it, as it will
2214   // be used in the new comparison instruction.
2215   Value *NewRHS = nullptr;
2216   if (ICmpInst::isTrueWhenEqual(Pred)) {
2217     // Look for n+1, and grab n.
2218     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2219       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2220          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2221            NewRHS = BO->getOperand(0);
2222     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2223       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2224         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2225           NewRHS = BO->getOperand(0);
2226     if (!NewRHS)
2227       return Cond;
2228   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2229     NewRHS = Sel->getOperand(1);
2230   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2231     NewRHS = Sel->getOperand(2);
2232   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2233     NewRHS = SU->getValue();
2234   else
2235     // Max doesn't match expected pattern.
2236     return Cond;
2237 
2238   // Determine the new comparison opcode. It may be signed or unsigned,
2239   // and the original comparison may be either equality or inequality.
2240   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2241     Pred = CmpInst::getInversePredicate(Pred);
2242 
2243   // Ok, everything looks ok to change the condition into an SLT or SGE and
2244   // delete the max calculation.
2245   ICmpInst *NewCond =
2246     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2247 
2248   // Delete the max calculation instructions.
2249   Cond->replaceAllUsesWith(NewCond);
2250   CondUse->setUser(NewCond);
2251   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2252   Cond->eraseFromParent();
2253   Sel->eraseFromParent();
2254   if (Cmp->use_empty())
2255     Cmp->eraseFromParent();
2256   return NewCond;
2257 }
2258 
2259 /// Change loop terminating condition to use the postinc iv when possible.
2260 void
2261 LSRInstance::OptimizeLoopTermCond() {
2262   SmallPtrSet<Instruction *, 4> PostIncs;
2263 
2264   // We need a different set of heuristics for rotated and non-rotated loops.
2265   // If a loop is rotated then the latch is also the backedge, so inserting
2266   // post-inc expressions just before the latch is ideal. To reduce live ranges
2267   // it also makes sense to rewrite terminating conditions to use post-inc
2268   // expressions.
2269   //
2270   // If the loop is not rotated then the latch is not a backedge; the latch
2271   // check is done in the loop head. Adding post-inc expressions before the
2272   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2273   // in the loop body. In this case we do *not* want to use post-inc expressions
2274   // in the latch check, and we want to insert post-inc expressions before
2275   // the backedge.
2276   BasicBlock *LatchBlock = L->getLoopLatch();
2277   SmallVector<BasicBlock*, 8> ExitingBlocks;
2278   L->getExitingBlocks(ExitingBlocks);
2279   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2280         return LatchBlock != BB;
2281       })) {
2282     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2283     IVIncInsertPos = LatchBlock->getTerminator();
2284     return;
2285   }
2286 
2287   // Otherwise treat this as a rotated loop.
2288   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2289 
2290     // Get the terminating condition for the loop if possible.  If we
2291     // can, we want to change it to use a post-incremented version of its
2292     // induction variable, to allow coalescing the live ranges for the IV into
2293     // one register value.
2294 
2295     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2296     if (!TermBr)
2297       continue;
2298     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2299     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2300       continue;
2301 
2302     // Search IVUsesByStride to find Cond's IVUse if there is one.
2303     IVStrideUse *CondUse = nullptr;
2304     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2305     if (!FindIVUserForCond(Cond, CondUse))
2306       continue;
2307 
2308     // If the trip count is computed in terms of a max (due to ScalarEvolution
2309     // being unable to find a sufficient guard, for example), change the loop
2310     // comparison to use SLT or ULT instead of NE.
2311     // One consequence of doing this now is that it disrupts the count-down
2312     // optimization. That's not always a bad thing though, because in such
2313     // cases it may still be worthwhile to avoid a max.
2314     Cond = OptimizeMax(Cond, CondUse);
2315 
2316     // If this exiting block dominates the latch block, it may also use
2317     // the post-inc value if it won't be shared with other uses.
2318     // Check for dominance.
2319     if (!DT.dominates(ExitingBlock, LatchBlock))
2320       continue;
2321 
2322     // Conservatively avoid trying to use the post-inc value in non-latch
2323     // exits if there may be pre-inc users in intervening blocks.
2324     if (LatchBlock != ExitingBlock)
2325       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2326         // Test if the use is reachable from the exiting block. This dominator
2327         // query is a conservative approximation of reachability.
2328         if (&*UI != CondUse &&
2329             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2330           // Conservatively assume there may be reuse if the quotient of their
2331           // strides could be a legal scale.
2332           const SCEV *A = IU.getStride(*CondUse, L);
2333           const SCEV *B = IU.getStride(*UI, L);
2334           if (!A || !B) continue;
2335           if (SE.getTypeSizeInBits(A->getType()) !=
2336               SE.getTypeSizeInBits(B->getType())) {
2337             if (SE.getTypeSizeInBits(A->getType()) >
2338                 SE.getTypeSizeInBits(B->getType()))
2339               B = SE.getSignExtendExpr(B, A->getType());
2340             else
2341               A = SE.getSignExtendExpr(A, B->getType());
2342           }
2343           if (const SCEVConstant *D =
2344                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2345             const ConstantInt *C = D->getValue();
2346             // Stride of one or negative one can have reuse with non-addresses.
2347             if (C->isOne() || C->isMinusOne())
2348               goto decline_post_inc;
2349             // Avoid weird situations.
2350             if (C->getValue().getMinSignedBits() >= 64 ||
2351                 C->getValue().isMinSignedValue())
2352               goto decline_post_inc;
2353             // Check for possible scaled-address reuse.
2354             MemAccessTy AccessTy = getAccessType(UI->getUser());
2355             int64_t Scale = C->getSExtValue();
2356             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2357                                           /*BaseOffset=*/0,
2358                                           /*HasBaseReg=*/false, Scale,
2359                                           AccessTy.AddrSpace))
2360               goto decline_post_inc;
2361             Scale = -Scale;
2362             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2363                                           /*BaseOffset=*/0,
2364                                           /*HasBaseReg=*/false, Scale,
2365                                           AccessTy.AddrSpace))
2366               goto decline_post_inc;
2367           }
2368         }
2369 
2370     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2371                  << *Cond << '\n');
2372 
2373     // It's possible for the setcc instruction to be anywhere in the loop, and
2374     // possible for it to have multiple users.  If it is not immediately before
2375     // the exiting block branch, move it.
2376     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2377       if (Cond->hasOneUse()) {
2378         Cond->moveBefore(TermBr);
2379       } else {
2380         // Clone the terminating condition and insert into the loopend.
2381         ICmpInst *OldCond = Cond;
2382         Cond = cast<ICmpInst>(Cond->clone());
2383         Cond->setName(L->getHeader()->getName() + ".termcond");
2384         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2385 
2386         // Clone the IVUse, as the old use still exists!
2387         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2388         TermBr->replaceUsesOfWith(OldCond, Cond);
2389       }
2390     }
2391 
2392     // If we get to here, we know that we can transform the setcc instruction to
2393     // use the post-incremented version of the IV, allowing us to coalesce the
2394     // live ranges for the IV correctly.
2395     CondUse->transformToPostInc(L);
2396     Changed = true;
2397 
2398     PostIncs.insert(Cond);
2399   decline_post_inc:;
2400   }
2401 
2402   // Determine an insertion point for the loop induction variable increment. It
2403   // must dominate all the post-inc comparisons we just set up, and it must
2404   // dominate the loop latch edge.
2405   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2406   for (Instruction *Inst : PostIncs) {
2407     BasicBlock *BB =
2408       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2409                                     Inst->getParent());
2410     if (BB == Inst->getParent())
2411       IVIncInsertPos = Inst;
2412     else if (BB != IVIncInsertPos->getParent())
2413       IVIncInsertPos = BB->getTerminator();
2414   }
2415 }
2416 
2417 /// Determine if the given use can accommodate a fixup at the given offset and
2418 /// other details. If so, update the use and return true.
2419 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2420                                      bool HasBaseReg, LSRUse::KindType Kind,
2421                                      MemAccessTy AccessTy) {
2422   int64_t NewMinOffset = LU.MinOffset;
2423   int64_t NewMaxOffset = LU.MaxOffset;
2424   MemAccessTy NewAccessTy = AccessTy;
2425 
2426   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2427   // something conservative, however this can pessimize in the case that one of
2428   // the uses will have all its uses outside the loop, for example.
2429   if (LU.Kind != Kind)
2430     return false;
2431 
2432   // Check for a mismatched access type, and fall back conservatively as needed.
2433   // TODO: Be less conservative when the type is similar and can use the same
2434   // addressing modes.
2435   if (Kind == LSRUse::Address) {
2436     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2437       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2438                                             AccessTy.AddrSpace);
2439     }
2440   }
2441 
2442   // Conservatively assume HasBaseReg is true for now.
2443   if (NewOffset < LU.MinOffset) {
2444     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2445                           LU.MaxOffset - NewOffset, HasBaseReg))
2446       return false;
2447     NewMinOffset = NewOffset;
2448   } else if (NewOffset > LU.MaxOffset) {
2449     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2450                           NewOffset - LU.MinOffset, HasBaseReg))
2451       return false;
2452     NewMaxOffset = NewOffset;
2453   }
2454 
2455   // Update the use.
2456   LU.MinOffset = NewMinOffset;
2457   LU.MaxOffset = NewMaxOffset;
2458   LU.AccessTy = NewAccessTy;
2459   return true;
2460 }
2461 
2462 /// Return an LSRUse index and an offset value for a fixup which needs the given
2463 /// expression, with the given kind and optional access type.  Either reuse an
2464 /// existing use or create a new one, as needed.
2465 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2466                                                LSRUse::KindType Kind,
2467                                                MemAccessTy AccessTy) {
2468   const SCEV *Copy = Expr;
2469   int64_t Offset = ExtractImmediate(Expr, SE);
2470 
2471   // Basic uses can't accept any offset, for example.
2472   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2473                         Offset, /*HasBaseReg=*/ true)) {
2474     Expr = Copy;
2475     Offset = 0;
2476   }
2477 
2478   std::pair<UseMapTy::iterator, bool> P =
2479     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2480   if (!P.second) {
2481     // A use already existed with this base.
2482     size_t LUIdx = P.first->second;
2483     LSRUse &LU = Uses[LUIdx];
2484     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2485       // Reuse this use.
2486       return std::make_pair(LUIdx, Offset);
2487   }
2488 
2489   // Create a new use.
2490   size_t LUIdx = Uses.size();
2491   P.first->second = LUIdx;
2492   Uses.push_back(LSRUse(Kind, AccessTy));
2493   LSRUse &LU = Uses[LUIdx];
2494 
2495   LU.MinOffset = Offset;
2496   LU.MaxOffset = Offset;
2497   return std::make_pair(LUIdx, Offset);
2498 }
2499 
2500 /// Delete the given use from the Uses list.
2501 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2502   if (&LU != &Uses.back())
2503     std::swap(LU, Uses.back());
2504   Uses.pop_back();
2505 
2506   // Update RegUses.
2507   RegUses.swapAndDropUse(LUIdx, Uses.size());
2508 }
2509 
2510 /// Look for a use distinct from OrigLU which is has a formula that has the same
2511 /// registers as the given formula.
2512 LSRUse *
2513 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2514                                        const LSRUse &OrigLU) {
2515   // Search all uses for the formula. This could be more clever.
2516   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2517     LSRUse &LU = Uses[LUIdx];
2518     // Check whether this use is close enough to OrigLU, to see whether it's
2519     // worthwhile looking through its formulae.
2520     // Ignore ICmpZero uses because they may contain formulae generated by
2521     // GenerateICmpZeroScales, in which case adding fixup offsets may
2522     // be invalid.
2523     if (&LU != &OrigLU &&
2524         LU.Kind != LSRUse::ICmpZero &&
2525         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2526         LU.WidestFixupType == OrigLU.WidestFixupType &&
2527         LU.HasFormulaWithSameRegs(OrigF)) {
2528       // Scan through this use's formulae.
2529       for (const Formula &F : LU.Formulae) {
2530         // Check to see if this formula has the same registers and symbols
2531         // as OrigF.
2532         if (F.BaseRegs == OrigF.BaseRegs &&
2533             F.ScaledReg == OrigF.ScaledReg &&
2534             F.BaseGV == OrigF.BaseGV &&
2535             F.Scale == OrigF.Scale &&
2536             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2537           if (F.BaseOffset == 0)
2538             return &LU;
2539           // This is the formula where all the registers and symbols matched;
2540           // there aren't going to be any others. Since we declined it, we
2541           // can skip the rest of the formulae and proceed to the next LSRUse.
2542           break;
2543         }
2544       }
2545     }
2546   }
2547 
2548   // Nothing looked good.
2549   return nullptr;
2550 }
2551 
2552 void LSRInstance::CollectInterestingTypesAndFactors() {
2553   SmallSetVector<const SCEV *, 4> Strides;
2554 
2555   // Collect interesting types and strides.
2556   SmallVector<const SCEV *, 4> Worklist;
2557   for (const IVStrideUse &U : IU) {
2558     const SCEV *Expr = IU.getExpr(U);
2559 
2560     // Collect interesting types.
2561     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2562 
2563     // Add strides for mentioned loops.
2564     Worklist.push_back(Expr);
2565     do {
2566       const SCEV *S = Worklist.pop_back_val();
2567       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2568         if (AR->getLoop() == L)
2569           Strides.insert(AR->getStepRecurrence(SE));
2570         Worklist.push_back(AR->getStart());
2571       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2572         Worklist.append(Add->op_begin(), Add->op_end());
2573       }
2574     } while (!Worklist.empty());
2575   }
2576 
2577   // Compute interesting factors from the set of interesting strides.
2578   for (SmallSetVector<const SCEV *, 4>::const_iterator
2579        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2580     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2581          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2582       const SCEV *OldStride = *I;
2583       const SCEV *NewStride = *NewStrideIter;
2584 
2585       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2586           SE.getTypeSizeInBits(NewStride->getType())) {
2587         if (SE.getTypeSizeInBits(OldStride->getType()) >
2588             SE.getTypeSizeInBits(NewStride->getType()))
2589           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2590         else
2591           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2592       }
2593       if (const SCEVConstant *Factor =
2594             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2595                                                         SE, true))) {
2596         if (Factor->getAPInt().getMinSignedBits() <= 64)
2597           Factors.insert(Factor->getAPInt().getSExtValue());
2598       } else if (const SCEVConstant *Factor =
2599                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2600                                                                NewStride,
2601                                                                SE, true))) {
2602         if (Factor->getAPInt().getMinSignedBits() <= 64)
2603           Factors.insert(Factor->getAPInt().getSExtValue());
2604       }
2605     }
2606 
2607   // If all uses use the same type, don't bother looking for truncation-based
2608   // reuse.
2609   if (Types.size() == 1)
2610     Types.clear();
2611 
2612   DEBUG(print_factors_and_types(dbgs()));
2613 }
2614 
2615 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2616 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2617 /// IVStrideUses, we could partially skip this.
2618 static User::op_iterator
2619 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2620               Loop *L, ScalarEvolution &SE) {
2621   for(; OI != OE; ++OI) {
2622     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2623       if (!SE.isSCEVable(Oper->getType()))
2624         continue;
2625 
2626       if (const SCEVAddRecExpr *AR =
2627           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2628         if (AR->getLoop() == L)
2629           break;
2630       }
2631     }
2632   }
2633   return OI;
2634 }
2635 
2636 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2637 /// a convenient helper.
2638 static Value *getWideOperand(Value *Oper) {
2639   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2640     return Trunc->getOperand(0);
2641   return Oper;
2642 }
2643 
2644 /// Return true if we allow an IV chain to include both types.
2645 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2646   Type *LType = LVal->getType();
2647   Type *RType = RVal->getType();
2648   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2649                               // Different address spaces means (possibly)
2650                               // different types of the pointer implementation,
2651                               // e.g. i16 vs i32 so disallow that.
2652                               (LType->getPointerAddressSpace() ==
2653                                RType->getPointerAddressSpace()));
2654 }
2655 
2656 /// Return an approximation of this SCEV expression's "base", or NULL for any
2657 /// constant. Returning the expression itself is conservative. Returning a
2658 /// deeper subexpression is more precise and valid as long as it isn't less
2659 /// complex than another subexpression. For expressions involving multiple
2660 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2661 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2662 /// IVInc==b-a.
2663 ///
2664 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2665 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2666 static const SCEV *getExprBase(const SCEV *S) {
2667   switch (S->getSCEVType()) {
2668   default: // uncluding scUnknown.
2669     return S;
2670   case scConstant:
2671     return nullptr;
2672   case scTruncate:
2673     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2674   case scZeroExtend:
2675     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2676   case scSignExtend:
2677     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2678   case scAddExpr: {
2679     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2680     // there's nothing more complex.
2681     // FIXME: not sure if we want to recognize negation.
2682     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2683     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2684            E(Add->op_begin()); I != E; ++I) {
2685       const SCEV *SubExpr = *I;
2686       if (SubExpr->getSCEVType() == scAddExpr)
2687         return getExprBase(SubExpr);
2688 
2689       if (SubExpr->getSCEVType() != scMulExpr)
2690         return SubExpr;
2691     }
2692     return S; // all operands are scaled, be conservative.
2693   }
2694   case scAddRecExpr:
2695     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2696   }
2697 }
2698 
2699 /// Return true if the chain increment is profitable to expand into a loop
2700 /// invariant value, which may require its own register. A profitable chain
2701 /// increment will be an offset relative to the same base. We allow such offsets
2702 /// to potentially be used as chain increment as long as it's not obviously
2703 /// expensive to expand using real instructions.
2704 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2705                                     const SCEV *IncExpr,
2706                                     ScalarEvolution &SE) {
2707   // Aggressively form chains when -stress-ivchain.
2708   if (StressIVChain)
2709     return true;
2710 
2711   // Do not replace a constant offset from IV head with a nonconstant IV
2712   // increment.
2713   if (!isa<SCEVConstant>(IncExpr)) {
2714     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2715     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2716       return false;
2717   }
2718 
2719   SmallPtrSet<const SCEV*, 8> Processed;
2720   return !isHighCostExpansion(IncExpr, Processed, SE);
2721 }
2722 
2723 /// Return true if the number of registers needed for the chain is estimated to
2724 /// be less than the number required for the individual IV users. First prohibit
2725 /// any IV users that keep the IV live across increments (the Users set should
2726 /// be empty). Next count the number and type of increments in the chain.
2727 ///
2728 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2729 /// effectively use postinc addressing modes. Only consider it profitable it the
2730 /// increments can be computed in fewer registers when chained.
2731 ///
2732 /// TODO: Consider IVInc free if it's already used in another chains.
2733 static bool
2734 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2735                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2736   if (StressIVChain)
2737     return true;
2738 
2739   if (!Chain.hasIncs())
2740     return false;
2741 
2742   if (!Users.empty()) {
2743     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2744           for (Instruction *Inst : Users) {
2745             dbgs() << "  " << *Inst << "\n";
2746           });
2747     return false;
2748   }
2749   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2750 
2751   // The chain itself may require a register, so intialize cost to 1.
2752   int cost = 1;
2753 
2754   // A complete chain likely eliminates the need for keeping the original IV in
2755   // a register. LSR does not currently know how to form a complete chain unless
2756   // the header phi already exists.
2757   if (isa<PHINode>(Chain.tailUserInst())
2758       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2759     --cost;
2760   }
2761   const SCEV *LastIncExpr = nullptr;
2762   unsigned NumConstIncrements = 0;
2763   unsigned NumVarIncrements = 0;
2764   unsigned NumReusedIncrements = 0;
2765   for (const IVInc &Inc : Chain) {
2766     if (Inc.IncExpr->isZero())
2767       continue;
2768 
2769     // Incrementing by zero or some constant is neutral. We assume constants can
2770     // be folded into an addressing mode or an add's immediate operand.
2771     if (isa<SCEVConstant>(Inc.IncExpr)) {
2772       ++NumConstIncrements;
2773       continue;
2774     }
2775 
2776     if (Inc.IncExpr == LastIncExpr)
2777       ++NumReusedIncrements;
2778     else
2779       ++NumVarIncrements;
2780 
2781     LastIncExpr = Inc.IncExpr;
2782   }
2783   // An IV chain with a single increment is handled by LSR's postinc
2784   // uses. However, a chain with multiple increments requires keeping the IV's
2785   // value live longer than it needs to be if chained.
2786   if (NumConstIncrements > 1)
2787     --cost;
2788 
2789   // Materializing increment expressions in the preheader that didn't exist in
2790   // the original code may cost a register. For example, sign-extended array
2791   // indices can produce ridiculous increments like this:
2792   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2793   cost += NumVarIncrements;
2794 
2795   // Reusing variable increments likely saves a register to hold the multiple of
2796   // the stride.
2797   cost -= NumReusedIncrements;
2798 
2799   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2800                << "\n");
2801 
2802   return cost < 0;
2803 }
2804 
2805 /// Add this IV user to an existing chain or make it the head of a new chain.
2806 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2807                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2808   // When IVs are used as types of varying widths, they are generally converted
2809   // to a wider type with some uses remaining narrow under a (free) trunc.
2810   Value *const NextIV = getWideOperand(IVOper);
2811   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2812   const SCEV *const OperExprBase = getExprBase(OperExpr);
2813 
2814   // Visit all existing chains. Check if its IVOper can be computed as a
2815   // profitable loop invariant increment from the last link in the Chain.
2816   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2817   const SCEV *LastIncExpr = nullptr;
2818   for (; ChainIdx < NChains; ++ChainIdx) {
2819     IVChain &Chain = IVChainVec[ChainIdx];
2820 
2821     // Prune the solution space aggressively by checking that both IV operands
2822     // are expressions that operate on the same unscaled SCEVUnknown. This
2823     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2824     // first avoids creating extra SCEV expressions.
2825     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2826       continue;
2827 
2828     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2829     if (!isCompatibleIVType(PrevIV, NextIV))
2830       continue;
2831 
2832     // A phi node terminates a chain.
2833     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2834       continue;
2835 
2836     // The increment must be loop-invariant so it can be kept in a register.
2837     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2838     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2839     if (!SE.isLoopInvariant(IncExpr, L))
2840       continue;
2841 
2842     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2843       LastIncExpr = IncExpr;
2844       break;
2845     }
2846   }
2847   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2848   // bother for phi nodes, because they must be last in the chain.
2849   if (ChainIdx == NChains) {
2850     if (isa<PHINode>(UserInst))
2851       return;
2852     if (NChains >= MaxChains && !StressIVChain) {
2853       DEBUG(dbgs() << "IV Chain Limit\n");
2854       return;
2855     }
2856     LastIncExpr = OperExpr;
2857     // IVUsers may have skipped over sign/zero extensions. We don't currently
2858     // attempt to form chains involving extensions unless they can be hoisted
2859     // into this loop's AddRec.
2860     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2861       return;
2862     ++NChains;
2863     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2864                                  OperExprBase));
2865     ChainUsersVec.resize(NChains);
2866     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2867                  << ") IV=" << *LastIncExpr << "\n");
2868   } else {
2869     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2870                  << ") IV+" << *LastIncExpr << "\n");
2871     // Add this IV user to the end of the chain.
2872     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2873   }
2874   IVChain &Chain = IVChainVec[ChainIdx];
2875 
2876   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2877   // This chain's NearUsers become FarUsers.
2878   if (!LastIncExpr->isZero()) {
2879     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2880                                             NearUsers.end());
2881     NearUsers.clear();
2882   }
2883 
2884   // All other uses of IVOperand become near uses of the chain.
2885   // We currently ignore intermediate values within SCEV expressions, assuming
2886   // they will eventually be used be the current chain, or can be computed
2887   // from one of the chain increments. To be more precise we could
2888   // transitively follow its user and only add leaf IV users to the set.
2889   for (User *U : IVOper->users()) {
2890     Instruction *OtherUse = dyn_cast<Instruction>(U);
2891     if (!OtherUse)
2892       continue;
2893     // Uses in the chain will no longer be uses if the chain is formed.
2894     // Include the head of the chain in this iteration (not Chain.begin()).
2895     IVChain::const_iterator IncIter = Chain.Incs.begin();
2896     IVChain::const_iterator IncEnd = Chain.Incs.end();
2897     for( ; IncIter != IncEnd; ++IncIter) {
2898       if (IncIter->UserInst == OtherUse)
2899         break;
2900     }
2901     if (IncIter != IncEnd)
2902       continue;
2903 
2904     if (SE.isSCEVable(OtherUse->getType())
2905         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2906         && IU.isIVUserOrOperand(OtherUse)) {
2907       continue;
2908     }
2909     NearUsers.insert(OtherUse);
2910   }
2911 
2912   // Since this user is part of the chain, it's no longer considered a use
2913   // of the chain.
2914   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2915 }
2916 
2917 /// Populate the vector of Chains.
2918 ///
2919 /// This decreases ILP at the architecture level. Targets with ample registers,
2920 /// multiple memory ports, and no register renaming probably don't want
2921 /// this. However, such targets should probably disable LSR altogether.
2922 ///
2923 /// The job of LSR is to make a reasonable choice of induction variables across
2924 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2925 /// ILP *within the loop* if the target wants it.
2926 ///
2927 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2928 /// will not reorder memory operations, it will recognize this as a chain, but
2929 /// will generate redundant IV increments. Ideally this would be corrected later
2930 /// by a smart scheduler:
2931 ///        = A[i]
2932 ///        = A[i+x]
2933 /// A[i]   =
2934 /// A[i+x] =
2935 ///
2936 /// TODO: Walk the entire domtree within this loop, not just the path to the
2937 /// loop latch. This will discover chains on side paths, but requires
2938 /// maintaining multiple copies of the Chains state.
2939 void LSRInstance::CollectChains() {
2940   DEBUG(dbgs() << "Collecting IV Chains.\n");
2941   SmallVector<ChainUsers, 8> ChainUsersVec;
2942 
2943   SmallVector<BasicBlock *,8> LatchPath;
2944   BasicBlock *LoopHeader = L->getHeader();
2945   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2946        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2947     LatchPath.push_back(Rung->getBlock());
2948   }
2949   LatchPath.push_back(LoopHeader);
2950 
2951   // Walk the instruction stream from the loop header to the loop latch.
2952   for (BasicBlock *BB : reverse(LatchPath)) {
2953     for (Instruction &I : *BB) {
2954       // Skip instructions that weren't seen by IVUsers analysis.
2955       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2956         continue;
2957 
2958       // Ignore users that are part of a SCEV expression. This way we only
2959       // consider leaf IV Users. This effectively rediscovers a portion of
2960       // IVUsers analysis but in program order this time.
2961       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2962         continue;
2963 
2964       // Remove this instruction from any NearUsers set it may be in.
2965       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2966            ChainIdx < NChains; ++ChainIdx) {
2967         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2968       }
2969       // Search for operands that can be chained.
2970       SmallPtrSet<Instruction*, 4> UniqueOperands;
2971       User::op_iterator IVOpEnd = I.op_end();
2972       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2973       while (IVOpIter != IVOpEnd) {
2974         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2975         if (UniqueOperands.insert(IVOpInst).second)
2976           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2977         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2978       }
2979     } // Continue walking down the instructions.
2980   } // Continue walking down the domtree.
2981   // Visit phi backedges to determine if the chain can generate the IV postinc.
2982   for (BasicBlock::iterator I = L->getHeader()->begin();
2983        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2984     if (!SE.isSCEVable(PN->getType()))
2985       continue;
2986 
2987     Instruction *IncV =
2988       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2989     if (IncV)
2990       ChainInstruction(PN, IncV, ChainUsersVec);
2991   }
2992   // Remove any unprofitable chains.
2993   unsigned ChainIdx = 0;
2994   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2995        UsersIdx < NChains; ++UsersIdx) {
2996     if (!isProfitableChain(IVChainVec[UsersIdx],
2997                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2998       continue;
2999     // Preserve the chain at UsesIdx.
3000     if (ChainIdx != UsersIdx)
3001       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3002     FinalizeChain(IVChainVec[ChainIdx]);
3003     ++ChainIdx;
3004   }
3005   IVChainVec.resize(ChainIdx);
3006 }
3007 
3008 void LSRInstance::FinalizeChain(IVChain &Chain) {
3009   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3010   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3011 
3012   for (const IVInc &Inc : Chain) {
3013     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3014     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3015     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3016     IVIncSet.insert(UseI);
3017   }
3018 }
3019 
3020 /// Return true if the IVInc can be folded into an addressing mode.
3021 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3022                              Value *Operand, const TargetTransformInfo &TTI) {
3023   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3024   if (!IncConst || !isAddressUse(UserInst, Operand))
3025     return false;
3026 
3027   if (IncConst->getAPInt().getMinSignedBits() > 64)
3028     return false;
3029 
3030   MemAccessTy AccessTy = getAccessType(UserInst);
3031   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3032   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3033                         IncOffset, /*HaseBaseReg=*/false))
3034     return false;
3035 
3036   return true;
3037 }
3038 
3039 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3040 /// user's operand from the previous IV user's operand.
3041 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3042                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3043   // Find the new IVOperand for the head of the chain. It may have been replaced
3044   // by LSR.
3045   const IVInc &Head = Chain.Incs[0];
3046   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3047   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3048   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3049                                              IVOpEnd, L, SE);
3050   Value *IVSrc = nullptr;
3051   while (IVOpIter != IVOpEnd) {
3052     IVSrc = getWideOperand(*IVOpIter);
3053 
3054     // If this operand computes the expression that the chain needs, we may use
3055     // it. (Check this after setting IVSrc which is used below.)
3056     //
3057     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3058     // narrow for the chain, so we can no longer use it. We do allow using a
3059     // wider phi, assuming the LSR checked for free truncation. In that case we
3060     // should already have a truncate on this operand such that
3061     // getSCEV(IVSrc) == IncExpr.
3062     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3063         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3064       break;
3065     }
3066     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3067   }
3068   if (IVOpIter == IVOpEnd) {
3069     // Gracefully give up on this chain.
3070     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3071     return;
3072   }
3073 
3074   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3075   Type *IVTy = IVSrc->getType();
3076   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3077   const SCEV *LeftOverExpr = nullptr;
3078   for (const IVInc &Inc : Chain) {
3079     Instruction *InsertPt = Inc.UserInst;
3080     if (isa<PHINode>(InsertPt))
3081       InsertPt = L->getLoopLatch()->getTerminator();
3082 
3083     // IVOper will replace the current IV User's operand. IVSrc is the IV
3084     // value currently held in a register.
3085     Value *IVOper = IVSrc;
3086     if (!Inc.IncExpr->isZero()) {
3087       // IncExpr was the result of subtraction of two narrow values, so must
3088       // be signed.
3089       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3090       LeftOverExpr = LeftOverExpr ?
3091         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3092     }
3093     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3094       // Expand the IV increment.
3095       Rewriter.clearPostInc();
3096       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3097       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3098                                              SE.getUnknown(IncV));
3099       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3100 
3101       // If an IV increment can't be folded, use it as the next IV value.
3102       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3103         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3104         IVSrc = IVOper;
3105         LeftOverExpr = nullptr;
3106       }
3107     }
3108     Type *OperTy = Inc.IVOperand->getType();
3109     if (IVTy != OperTy) {
3110       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3111              "cannot extend a chained IV");
3112       IRBuilder<> Builder(InsertPt);
3113       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3114     }
3115     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3116     DeadInsts.emplace_back(Inc.IVOperand);
3117   }
3118   // If LSR created a new, wider phi, we may also replace its postinc. We only
3119   // do this if we also found a wide value for the head of the chain.
3120   if (isa<PHINode>(Chain.tailUserInst())) {
3121     for (BasicBlock::iterator I = L->getHeader()->begin();
3122          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
3123       if (!isCompatibleIVType(Phi, IVSrc))
3124         continue;
3125       Instruction *PostIncV = dyn_cast<Instruction>(
3126         Phi->getIncomingValueForBlock(L->getLoopLatch()));
3127       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3128         continue;
3129       Value *IVOper = IVSrc;
3130       Type *PostIncTy = PostIncV->getType();
3131       if (IVTy != PostIncTy) {
3132         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3133         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3134         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3135         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3136       }
3137       Phi->replaceUsesOfWith(PostIncV, IVOper);
3138       DeadInsts.emplace_back(PostIncV);
3139     }
3140   }
3141 }
3142 
3143 void LSRInstance::CollectFixupsAndInitialFormulae() {
3144   for (const IVStrideUse &U : IU) {
3145     Instruction *UserInst = U.getUser();
3146     // Skip IV users that are part of profitable IV Chains.
3147     User::op_iterator UseI =
3148         find(UserInst->operands(), U.getOperandValToReplace());
3149     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3150     if (IVIncSet.count(UseI)) {
3151       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3152       continue;
3153     }
3154 
3155     LSRUse::KindType Kind = LSRUse::Basic;
3156     MemAccessTy AccessTy;
3157     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3158       Kind = LSRUse::Address;
3159       AccessTy = getAccessType(UserInst);
3160     }
3161 
3162     const SCEV *S = IU.getExpr(U);
3163     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3164 
3165     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3166     // (N - i == 0), and this allows (N - i) to be the expression that we work
3167     // with rather than just N or i, so we can consider the register
3168     // requirements for both N and i at the same time. Limiting this code to
3169     // equality icmps is not a problem because all interesting loops use
3170     // equality icmps, thanks to IndVarSimplify.
3171     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3172       if (CI->isEquality()) {
3173         // Swap the operands if needed to put the OperandValToReplace on the
3174         // left, for consistency.
3175         Value *NV = CI->getOperand(1);
3176         if (NV == U.getOperandValToReplace()) {
3177           CI->setOperand(1, CI->getOperand(0));
3178           CI->setOperand(0, NV);
3179           NV = CI->getOperand(1);
3180           Changed = true;
3181         }
3182 
3183         // x == y  -->  x - y == 0
3184         const SCEV *N = SE.getSCEV(NV);
3185         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3186           // S is normalized, so normalize N before folding it into S
3187           // to keep the result normalized.
3188           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3189           Kind = LSRUse::ICmpZero;
3190           S = SE.getMinusSCEV(N, S);
3191         }
3192 
3193         // -1 and the negations of all interesting strides (except the negation
3194         // of -1) are now also interesting.
3195         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3196           if (Factors[i] != -1)
3197             Factors.insert(-(uint64_t)Factors[i]);
3198         Factors.insert(-1);
3199       }
3200 
3201     // Get or create an LSRUse.
3202     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3203     size_t LUIdx = P.first;
3204     int64_t Offset = P.second;
3205     LSRUse &LU = Uses[LUIdx];
3206 
3207     // Record the fixup.
3208     LSRFixup &LF = LU.getNewFixup();
3209     LF.UserInst = UserInst;
3210     LF.OperandValToReplace = U.getOperandValToReplace();
3211     LF.PostIncLoops = TmpPostIncLoops;
3212     LF.Offset = Offset;
3213     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3214 
3215     if (!LU.WidestFixupType ||
3216         SE.getTypeSizeInBits(LU.WidestFixupType) <
3217         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3218       LU.WidestFixupType = LF.OperandValToReplace->getType();
3219 
3220     // If this is the first use of this LSRUse, give it a formula.
3221     if (LU.Formulae.empty()) {
3222       InsertInitialFormula(S, LU, LUIdx);
3223       CountRegisters(LU.Formulae.back(), LUIdx);
3224     }
3225   }
3226 
3227   DEBUG(print_fixups(dbgs()));
3228 }
3229 
3230 /// Insert a formula for the given expression into the given use, separating out
3231 /// loop-variant portions from loop-invariant and loop-computable portions.
3232 void
3233 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3234   // Mark uses whose expressions cannot be expanded.
3235   if (!isSafeToExpand(S, SE))
3236     LU.RigidFormula = true;
3237 
3238   Formula F;
3239   F.initialMatch(S, L, SE);
3240   bool Inserted = InsertFormula(LU, LUIdx, F);
3241   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3242 }
3243 
3244 /// Insert a simple single-register formula for the given expression into the
3245 /// given use.
3246 void
3247 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3248                                        LSRUse &LU, size_t LUIdx) {
3249   Formula F;
3250   F.BaseRegs.push_back(S);
3251   F.HasBaseReg = true;
3252   bool Inserted = InsertFormula(LU, LUIdx, F);
3253   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3254 }
3255 
3256 /// Note which registers are used by the given formula, updating RegUses.
3257 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3258   if (F.ScaledReg)
3259     RegUses.countRegister(F.ScaledReg, LUIdx);
3260   for (const SCEV *BaseReg : F.BaseRegs)
3261     RegUses.countRegister(BaseReg, LUIdx);
3262 }
3263 
3264 /// If the given formula has not yet been inserted, add it to the list, and
3265 /// return true. Return false otherwise.
3266 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3267   // Do not insert formula that we will not be able to expand.
3268   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3269          "Formula is illegal");
3270 
3271   if (!LU.InsertFormula(F, *L))
3272     return false;
3273 
3274   CountRegisters(F, LUIdx);
3275   return true;
3276 }
3277 
3278 /// Check for other uses of loop-invariant values which we're tracking. These
3279 /// other uses will pin these values in registers, making them less profitable
3280 /// for elimination.
3281 /// TODO: This currently misses non-constant addrec step registers.
3282 /// TODO: Should this give more weight to users inside the loop?
3283 void
3284 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3285   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3286   SmallPtrSet<const SCEV *, 32> Visited;
3287 
3288   while (!Worklist.empty()) {
3289     const SCEV *S = Worklist.pop_back_val();
3290 
3291     // Don't process the same SCEV twice
3292     if (!Visited.insert(S).second)
3293       continue;
3294 
3295     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3296       Worklist.append(N->op_begin(), N->op_end());
3297     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3298       Worklist.push_back(C->getOperand());
3299     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3300       Worklist.push_back(D->getLHS());
3301       Worklist.push_back(D->getRHS());
3302     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3303       const Value *V = US->getValue();
3304       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3305         // Look for instructions defined outside the loop.
3306         if (L->contains(Inst)) continue;
3307       } else if (isa<UndefValue>(V))
3308         // Undef doesn't have a live range, so it doesn't matter.
3309         continue;
3310       for (const Use &U : V->uses()) {
3311         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3312         // Ignore non-instructions.
3313         if (!UserInst)
3314           continue;
3315         // Ignore instructions in other functions (as can happen with
3316         // Constants).
3317         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3318           continue;
3319         // Ignore instructions not dominated by the loop.
3320         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3321           UserInst->getParent() :
3322           cast<PHINode>(UserInst)->getIncomingBlock(
3323             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3324         if (!DT.dominates(L->getHeader(), UseBB))
3325           continue;
3326         // Don't bother if the instruction is in a BB which ends in an EHPad.
3327         if (UseBB->getTerminator()->isEHPad())
3328           continue;
3329         // Don't bother rewriting PHIs in catchswitch blocks.
3330         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3331           continue;
3332         // Ignore uses which are part of other SCEV expressions, to avoid
3333         // analyzing them multiple times.
3334         if (SE.isSCEVable(UserInst->getType())) {
3335           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3336           // If the user is a no-op, look through to its uses.
3337           if (!isa<SCEVUnknown>(UserS))
3338             continue;
3339           if (UserS == US) {
3340             Worklist.push_back(
3341               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3342             continue;
3343           }
3344         }
3345         // Ignore icmp instructions which are already being analyzed.
3346         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3347           unsigned OtherIdx = !U.getOperandNo();
3348           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3349           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3350             continue;
3351         }
3352 
3353         std::pair<size_t, int64_t> P = getUse(
3354             S, LSRUse::Basic, MemAccessTy());
3355         size_t LUIdx = P.first;
3356         int64_t Offset = P.second;
3357         LSRUse &LU = Uses[LUIdx];
3358         LSRFixup &LF = LU.getNewFixup();
3359         LF.UserInst = const_cast<Instruction *>(UserInst);
3360         LF.OperandValToReplace = U;
3361         LF.Offset = Offset;
3362         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3363         if (!LU.WidestFixupType ||
3364             SE.getTypeSizeInBits(LU.WidestFixupType) <
3365             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3366           LU.WidestFixupType = LF.OperandValToReplace->getType();
3367         InsertSupplementalFormula(US, LU, LUIdx);
3368         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3369         break;
3370       }
3371     }
3372   }
3373 }
3374 
3375 /// Split S into subexpressions which can be pulled out into separate
3376 /// registers. If C is non-null, multiply each subexpression by C.
3377 ///
3378 /// Return remainder expression after factoring the subexpressions captured by
3379 /// Ops. If Ops is complete, return NULL.
3380 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3381                                    SmallVectorImpl<const SCEV *> &Ops,
3382                                    const Loop *L,
3383                                    ScalarEvolution &SE,
3384                                    unsigned Depth = 0) {
3385   // Arbitrarily cap recursion to protect compile time.
3386   if (Depth >= 3)
3387     return S;
3388 
3389   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3390     // Break out add operands.
3391     for (const SCEV *S : Add->operands()) {
3392       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3393       if (Remainder)
3394         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3395     }
3396     return nullptr;
3397   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3398     // Split a non-zero base out of an addrec.
3399     if (AR->getStart()->isZero() || !AR->isAffine())
3400       return S;
3401 
3402     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3403                                             C, Ops, L, SE, Depth+1);
3404     // Split the non-zero AddRec unless it is part of a nested recurrence that
3405     // does not pertain to this loop.
3406     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3407       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3408       Remainder = nullptr;
3409     }
3410     if (Remainder != AR->getStart()) {
3411       if (!Remainder)
3412         Remainder = SE.getConstant(AR->getType(), 0);
3413       return SE.getAddRecExpr(Remainder,
3414                               AR->getStepRecurrence(SE),
3415                               AR->getLoop(),
3416                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3417                               SCEV::FlagAnyWrap);
3418     }
3419   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3420     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3421     if (Mul->getNumOperands() != 2)
3422       return S;
3423     if (const SCEVConstant *Op0 =
3424         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3425       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3426       const SCEV *Remainder =
3427         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3428       if (Remainder)
3429         Ops.push_back(SE.getMulExpr(C, Remainder));
3430       return nullptr;
3431     }
3432   }
3433   return S;
3434 }
3435 
3436 /// \brief Helper function for LSRInstance::GenerateReassociations.
3437 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3438                                              const Formula &Base,
3439                                              unsigned Depth, size_t Idx,
3440                                              bool IsScaledReg) {
3441   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3442   SmallVector<const SCEV *, 8> AddOps;
3443   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3444   if (Remainder)
3445     AddOps.push_back(Remainder);
3446 
3447   if (AddOps.size() == 1)
3448     return;
3449 
3450   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3451                                                      JE = AddOps.end();
3452        J != JE; ++J) {
3453 
3454     // Loop-variant "unknown" values are uninteresting; we won't be able to
3455     // do anything meaningful with them.
3456     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3457       continue;
3458 
3459     // Don't pull a constant into a register if the constant could be folded
3460     // into an immediate field.
3461     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3462                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3463       continue;
3464 
3465     // Collect all operands except *J.
3466     SmallVector<const SCEV *, 8> InnerAddOps(
3467         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3468     InnerAddOps.append(std::next(J),
3469                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3470 
3471     // Don't leave just a constant behind in a register if the constant could
3472     // be folded into an immediate field.
3473     if (InnerAddOps.size() == 1 &&
3474         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3475                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3476       continue;
3477 
3478     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3479     if (InnerSum->isZero())
3480       continue;
3481     Formula F = Base;
3482 
3483     // Add the remaining pieces of the add back into the new formula.
3484     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3485     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3486         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3487                                 InnerSumSC->getValue()->getZExtValue())) {
3488       F.UnfoldedOffset =
3489           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3490       if (IsScaledReg)
3491         F.ScaledReg = nullptr;
3492       else
3493         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3494     } else if (IsScaledReg)
3495       F.ScaledReg = InnerSum;
3496     else
3497       F.BaseRegs[Idx] = InnerSum;
3498 
3499     // Add J as its own register, or an unfolded immediate.
3500     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3501     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3502         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3503                                 SC->getValue()->getZExtValue()))
3504       F.UnfoldedOffset =
3505           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3506     else
3507       F.BaseRegs.push_back(*J);
3508     // We may have changed the number of register in base regs, adjust the
3509     // formula accordingly.
3510     F.canonicalize(*L);
3511 
3512     if (InsertFormula(LU, LUIdx, F))
3513       // If that formula hadn't been seen before, recurse to find more like
3514       // it.
3515       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3516   }
3517 }
3518 
3519 /// Split out subexpressions from adds and the bases of addrecs.
3520 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3521                                          Formula Base, unsigned Depth) {
3522   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3523   // Arbitrarily cap recursion to protect compile time.
3524   if (Depth >= 3)
3525     return;
3526 
3527   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3528     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3529 
3530   if (Base.Scale == 1)
3531     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3532                                /* Idx */ -1, /* IsScaledReg */ true);
3533 }
3534 
3535 ///  Generate a formula consisting of all of the loop-dominating registers added
3536 /// into a single register.
3537 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3538                                        Formula Base) {
3539   // This method is only interesting on a plurality of registers.
3540   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3541     return;
3542 
3543   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3544   // processing the formula.
3545   Base.unscale();
3546   Formula F = Base;
3547   F.BaseRegs.clear();
3548   SmallVector<const SCEV *, 4> Ops;
3549   for (const SCEV *BaseReg : Base.BaseRegs) {
3550     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3551         !SE.hasComputableLoopEvolution(BaseReg, L))
3552       Ops.push_back(BaseReg);
3553     else
3554       F.BaseRegs.push_back(BaseReg);
3555   }
3556   if (Ops.size() > 1) {
3557     const SCEV *Sum = SE.getAddExpr(Ops);
3558     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3559     // opportunity to fold something. For now, just ignore such cases
3560     // rather than proceed with zero in a register.
3561     if (!Sum->isZero()) {
3562       F.BaseRegs.push_back(Sum);
3563       F.canonicalize(*L);
3564       (void)InsertFormula(LU, LUIdx, F);
3565     }
3566   }
3567 }
3568 
3569 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3570 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3571                                               const Formula &Base, size_t Idx,
3572                                               bool IsScaledReg) {
3573   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3574   GlobalValue *GV = ExtractSymbol(G, SE);
3575   if (G->isZero() || !GV)
3576     return;
3577   Formula F = Base;
3578   F.BaseGV = GV;
3579   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3580     return;
3581   if (IsScaledReg)
3582     F.ScaledReg = G;
3583   else
3584     F.BaseRegs[Idx] = G;
3585   (void)InsertFormula(LU, LUIdx, F);
3586 }
3587 
3588 /// Generate reuse formulae using symbolic offsets.
3589 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3590                                           Formula Base) {
3591   // We can't add a symbolic offset if the address already contains one.
3592   if (Base.BaseGV) return;
3593 
3594   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3595     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3596   if (Base.Scale == 1)
3597     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3598                                 /* IsScaledReg */ true);
3599 }
3600 
3601 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3602 void LSRInstance::GenerateConstantOffsetsImpl(
3603     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3604     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3605   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3606   for (int64_t Offset : Worklist) {
3607     Formula F = Base;
3608     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3609     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3610                    LU.AccessTy, F)) {
3611       // Add the offset to the base register.
3612       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3613       // If it cancelled out, drop the base register, otherwise update it.
3614       if (NewG->isZero()) {
3615         if (IsScaledReg) {
3616           F.Scale = 0;
3617           F.ScaledReg = nullptr;
3618         } else
3619           F.deleteBaseReg(F.BaseRegs[Idx]);
3620         F.canonicalize(*L);
3621       } else if (IsScaledReg)
3622         F.ScaledReg = NewG;
3623       else
3624         F.BaseRegs[Idx] = NewG;
3625 
3626       (void)InsertFormula(LU, LUIdx, F);
3627     }
3628   }
3629 
3630   int64_t Imm = ExtractImmediate(G, SE);
3631   if (G->isZero() || Imm == 0)
3632     return;
3633   Formula F = Base;
3634   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3635   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3636     return;
3637   if (IsScaledReg)
3638     F.ScaledReg = G;
3639   else
3640     F.BaseRegs[Idx] = G;
3641   (void)InsertFormula(LU, LUIdx, F);
3642 }
3643 
3644 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3645 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3646                                           Formula Base) {
3647   // TODO: For now, just add the min and max offset, because it usually isn't
3648   // worthwhile looking at everything inbetween.
3649   SmallVector<int64_t, 2> Worklist;
3650   Worklist.push_back(LU.MinOffset);
3651   if (LU.MaxOffset != LU.MinOffset)
3652     Worklist.push_back(LU.MaxOffset);
3653 
3654   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3655     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3656   if (Base.Scale == 1)
3657     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3658                                 /* IsScaledReg */ true);
3659 }
3660 
3661 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3662 /// == y -> x*c == y*c.
3663 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3664                                          Formula Base) {
3665   if (LU.Kind != LSRUse::ICmpZero) return;
3666 
3667   // Determine the integer type for the base formula.
3668   Type *IntTy = Base.getType();
3669   if (!IntTy) return;
3670   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3671 
3672   // Don't do this if there is more than one offset.
3673   if (LU.MinOffset != LU.MaxOffset) return;
3674 
3675   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3676 
3677   // Check each interesting stride.
3678   for (int64_t Factor : Factors) {
3679     // Check that the multiplication doesn't overflow.
3680     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3681       continue;
3682     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3683     if (NewBaseOffset / Factor != Base.BaseOffset)
3684       continue;
3685     // If the offset will be truncated at this use, check that it is in bounds.
3686     if (!IntTy->isPointerTy() &&
3687         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3688       continue;
3689 
3690     // Check that multiplying with the use offset doesn't overflow.
3691     int64_t Offset = LU.MinOffset;
3692     if (Offset == INT64_MIN && Factor == -1)
3693       continue;
3694     Offset = (uint64_t)Offset * Factor;
3695     if (Offset / Factor != LU.MinOffset)
3696       continue;
3697     // If the offset will be truncated at this use, check that it is in bounds.
3698     if (!IntTy->isPointerTy() &&
3699         !ConstantInt::isValueValidForType(IntTy, Offset))
3700       continue;
3701 
3702     Formula F = Base;
3703     F.BaseOffset = NewBaseOffset;
3704 
3705     // Check that this scale is legal.
3706     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3707       continue;
3708 
3709     // Compensate for the use having MinOffset built into it.
3710     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3711 
3712     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3713 
3714     // Check that multiplying with each base register doesn't overflow.
3715     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3716       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3717       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3718         goto next;
3719     }
3720 
3721     // Check that multiplying with the scaled register doesn't overflow.
3722     if (F.ScaledReg) {
3723       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3724       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3725         continue;
3726     }
3727 
3728     // Check that multiplying with the unfolded offset doesn't overflow.
3729     if (F.UnfoldedOffset != 0) {
3730       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3731         continue;
3732       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3733       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3734         continue;
3735       // If the offset will be truncated, check that it is in bounds.
3736       if (!IntTy->isPointerTy() &&
3737           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3738         continue;
3739     }
3740 
3741     // If we make it here and it's legal, add it.
3742     (void)InsertFormula(LU, LUIdx, F);
3743   next:;
3744   }
3745 }
3746 
3747 /// Generate stride factor reuse formulae by making use of scaled-offset address
3748 /// modes, for example.
3749 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3750   // Determine the integer type for the base formula.
3751   Type *IntTy = Base.getType();
3752   if (!IntTy) return;
3753 
3754   // If this Formula already has a scaled register, we can't add another one.
3755   // Try to unscale the formula to generate a better scale.
3756   if (Base.Scale != 0 && !Base.unscale())
3757     return;
3758 
3759   assert(Base.Scale == 0 && "unscale did not did its job!");
3760 
3761   // Check each interesting stride.
3762   for (int64_t Factor : Factors) {
3763     Base.Scale = Factor;
3764     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3765     // Check whether this scale is going to be legal.
3766     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3767                     Base)) {
3768       // As a special-case, handle special out-of-loop Basic users specially.
3769       // TODO: Reconsider this special case.
3770       if (LU.Kind == LSRUse::Basic &&
3771           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3772                      LU.AccessTy, Base) &&
3773           LU.AllFixupsOutsideLoop)
3774         LU.Kind = LSRUse::Special;
3775       else
3776         continue;
3777     }
3778     // For an ICmpZero, negating a solitary base register won't lead to
3779     // new solutions.
3780     if (LU.Kind == LSRUse::ICmpZero &&
3781         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3782       continue;
3783     // For each addrec base reg, if its loop is current loop, apply the scale.
3784     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3785       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3786       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3787         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3788         if (FactorS->isZero())
3789           continue;
3790         // Divide out the factor, ignoring high bits, since we'll be
3791         // scaling the value back up in the end.
3792         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3793           // TODO: This could be optimized to avoid all the copying.
3794           Formula F = Base;
3795           F.ScaledReg = Quotient;
3796           F.deleteBaseReg(F.BaseRegs[i]);
3797           // The canonical representation of 1*reg is reg, which is already in
3798           // Base. In that case, do not try to insert the formula, it will be
3799           // rejected anyway.
3800           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3801                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3802             continue;
3803           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3804           // non canonical Formula with ScaledReg's loop not being L.
3805           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3806             F.canonicalize(*L);
3807           (void)InsertFormula(LU, LUIdx, F);
3808         }
3809       }
3810     }
3811   }
3812 }
3813 
3814 /// Generate reuse formulae from different IV types.
3815 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3816   // Don't bother truncating symbolic values.
3817   if (Base.BaseGV) return;
3818 
3819   // Determine the integer type for the base formula.
3820   Type *DstTy = Base.getType();
3821   if (!DstTy) return;
3822   DstTy = SE.getEffectiveSCEVType(DstTy);
3823 
3824   for (Type *SrcTy : Types) {
3825     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3826       Formula F = Base;
3827 
3828       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3829       for (const SCEV *&BaseReg : F.BaseRegs)
3830         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3831 
3832       // TODO: This assumes we've done basic processing on all uses and
3833       // have an idea what the register usage is.
3834       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3835         continue;
3836 
3837       F.canonicalize(*L);
3838       (void)InsertFormula(LU, LUIdx, F);
3839     }
3840   }
3841 }
3842 
3843 namespace {
3844 
3845 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3846 /// modifications so that the search phase doesn't have to worry about the data
3847 /// structures moving underneath it.
3848 struct WorkItem {
3849   size_t LUIdx;
3850   int64_t Imm;
3851   const SCEV *OrigReg;
3852 
3853   WorkItem(size_t LI, int64_t I, const SCEV *R)
3854     : LUIdx(LI), Imm(I), OrigReg(R) {}
3855 
3856   void print(raw_ostream &OS) const;
3857   void dump() const;
3858 };
3859 
3860 } // end anonymous namespace
3861 
3862 void WorkItem::print(raw_ostream &OS) const {
3863   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3864      << " , add offset " << Imm;
3865 }
3866 
3867 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3868 LLVM_DUMP_METHOD void WorkItem::dump() const {
3869   print(errs()); errs() << '\n';
3870 }
3871 #endif
3872 
3873 /// Look for registers which are a constant distance apart and try to form reuse
3874 /// opportunities between them.
3875 void LSRInstance::GenerateCrossUseConstantOffsets() {
3876   // Group the registers by their value without any added constant offset.
3877   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3878   DenseMap<const SCEV *, ImmMapTy> Map;
3879   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3880   SmallVector<const SCEV *, 8> Sequence;
3881   for (const SCEV *Use : RegUses) {
3882     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3883     int64_t Imm = ExtractImmediate(Reg, SE);
3884     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3885     if (Pair.second)
3886       Sequence.push_back(Reg);
3887     Pair.first->second.insert(std::make_pair(Imm, Use));
3888     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3889   }
3890 
3891   // Now examine each set of registers with the same base value. Build up
3892   // a list of work to do and do the work in a separate step so that we're
3893   // not adding formulae and register counts while we're searching.
3894   SmallVector<WorkItem, 32> WorkItems;
3895   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3896   for (const SCEV *Reg : Sequence) {
3897     const ImmMapTy &Imms = Map.find(Reg)->second;
3898 
3899     // It's not worthwhile looking for reuse if there's only one offset.
3900     if (Imms.size() == 1)
3901       continue;
3902 
3903     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3904           for (const auto &Entry : Imms)
3905             dbgs() << ' ' << Entry.first;
3906           dbgs() << '\n');
3907 
3908     // Examine each offset.
3909     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3910          J != JE; ++J) {
3911       const SCEV *OrigReg = J->second;
3912 
3913       int64_t JImm = J->first;
3914       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3915 
3916       if (!isa<SCEVConstant>(OrigReg) &&
3917           UsedByIndicesMap[Reg].count() == 1) {
3918         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3919         continue;
3920       }
3921 
3922       // Conservatively examine offsets between this orig reg a few selected
3923       // other orig regs.
3924       ImmMapTy::const_iterator OtherImms[] = {
3925         Imms.begin(), std::prev(Imms.end()),
3926         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3927                          2)
3928       };
3929       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3930         ImmMapTy::const_iterator M = OtherImms[i];
3931         if (M == J || M == JE) continue;
3932 
3933         // Compute the difference between the two.
3934         int64_t Imm = (uint64_t)JImm - M->first;
3935         for (unsigned LUIdx : UsedByIndices.set_bits())
3936           // Make a memo of this use, offset, and register tuple.
3937           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3938             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3939       }
3940     }
3941   }
3942 
3943   Map.clear();
3944   Sequence.clear();
3945   UsedByIndicesMap.clear();
3946   UniqueItems.clear();
3947 
3948   // Now iterate through the worklist and add new formulae.
3949   for (const WorkItem &WI : WorkItems) {
3950     size_t LUIdx = WI.LUIdx;
3951     LSRUse &LU = Uses[LUIdx];
3952     int64_t Imm = WI.Imm;
3953     const SCEV *OrigReg = WI.OrigReg;
3954 
3955     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3956     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3957     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3958 
3959     // TODO: Use a more targeted data structure.
3960     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3961       Formula F = LU.Formulae[L];
3962       // FIXME: The code for the scaled and unscaled registers looks
3963       // very similar but slightly different. Investigate if they
3964       // could be merged. That way, we would not have to unscale the
3965       // Formula.
3966       F.unscale();
3967       // Use the immediate in the scaled register.
3968       if (F.ScaledReg == OrigReg) {
3969         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3970         // Don't create 50 + reg(-50).
3971         if (F.referencesReg(SE.getSCEV(
3972                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3973           continue;
3974         Formula NewF = F;
3975         NewF.BaseOffset = Offset;
3976         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3977                         NewF))
3978           continue;
3979         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3980 
3981         // If the new scale is a constant in a register, and adding the constant
3982         // value to the immediate would produce a value closer to zero than the
3983         // immediate itself, then the formula isn't worthwhile.
3984         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3985           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3986               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3987                   .ule(std::abs(NewF.BaseOffset)))
3988             continue;
3989 
3990         // OK, looks good.
3991         NewF.canonicalize(*this->L);
3992         (void)InsertFormula(LU, LUIdx, NewF);
3993       } else {
3994         // Use the immediate in a base register.
3995         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3996           const SCEV *BaseReg = F.BaseRegs[N];
3997           if (BaseReg != OrigReg)
3998             continue;
3999           Formula NewF = F;
4000           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4001           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4002                           LU.Kind, LU.AccessTy, NewF)) {
4003             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4004               continue;
4005             NewF = F;
4006             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4007           }
4008           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4009 
4010           // If the new formula has a constant in a register, and adding the
4011           // constant value to the immediate would produce a value closer to
4012           // zero than the immediate itself, then the formula isn't worthwhile.
4013           for (const SCEV *NewReg : NewF.BaseRegs)
4014             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4015               if ((C->getAPInt() + NewF.BaseOffset)
4016                       .abs()
4017                       .slt(std::abs(NewF.BaseOffset)) &&
4018                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4019                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4020                 goto skip_formula;
4021 
4022           // Ok, looks good.
4023           NewF.canonicalize(*this->L);
4024           (void)InsertFormula(LU, LUIdx, NewF);
4025           break;
4026         skip_formula:;
4027         }
4028       }
4029     }
4030   }
4031 }
4032 
4033 /// Generate formulae for each use.
4034 void
4035 LSRInstance::GenerateAllReuseFormulae() {
4036   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4037   // queries are more precise.
4038   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4039     LSRUse &LU = Uses[LUIdx];
4040     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4041       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4042     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4043       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4044   }
4045   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4046     LSRUse &LU = Uses[LUIdx];
4047     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4048       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4049     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4050       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4051     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4052       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4053     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4054       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4055   }
4056   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4057     LSRUse &LU = Uses[LUIdx];
4058     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4059       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4060   }
4061 
4062   GenerateCrossUseConstantOffsets();
4063 
4064   DEBUG(dbgs() << "\n"
4065                   "After generating reuse formulae:\n";
4066         print_uses(dbgs()));
4067 }
4068 
4069 /// If there are multiple formulae with the same set of registers used
4070 /// by other uses, pick the best one and delete the others.
4071 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4072   DenseSet<const SCEV *> VisitedRegs;
4073   SmallPtrSet<const SCEV *, 16> Regs;
4074   SmallPtrSet<const SCEV *, 16> LoserRegs;
4075 #ifndef NDEBUG
4076   bool ChangedFormulae = false;
4077 #endif
4078 
4079   // Collect the best formula for each unique set of shared registers. This
4080   // is reset for each use.
4081   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
4082     BestFormulaeTy;
4083   BestFormulaeTy BestFormulae;
4084 
4085   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4086     LSRUse &LU = Uses[LUIdx];
4087     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4088 
4089     bool Any = false;
4090     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4091          FIdx != NumForms; ++FIdx) {
4092       Formula &F = LU.Formulae[FIdx];
4093 
4094       // Some formulas are instant losers. For example, they may depend on
4095       // nonexistent AddRecs from other loops. These need to be filtered
4096       // immediately, otherwise heuristics could choose them over others leading
4097       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4098       // avoids the need to recompute this information across formulae using the
4099       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4100       // the corresponding bad register from the Regs set.
4101       Cost CostF;
4102       Regs.clear();
4103       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4104       if (CostF.isLoser()) {
4105         // During initial formula generation, undesirable formulae are generated
4106         // by uses within other loops that have some non-trivial address mode or
4107         // use the postinc form of the IV. LSR needs to provide these formulae
4108         // as the basis of rediscovering the desired formula that uses an AddRec
4109         // corresponding to the existing phi. Once all formulae have been
4110         // generated, these initial losers may be pruned.
4111         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4112               dbgs() << "\n");
4113       }
4114       else {
4115         SmallVector<const SCEV *, 4> Key;
4116         for (const SCEV *Reg : F.BaseRegs) {
4117           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4118             Key.push_back(Reg);
4119         }
4120         if (F.ScaledReg &&
4121             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4122           Key.push_back(F.ScaledReg);
4123         // Unstable sort by host order ok, because this is only used for
4124         // uniquifying.
4125         std::sort(Key.begin(), Key.end());
4126 
4127         std::pair<BestFormulaeTy::const_iterator, bool> P =
4128           BestFormulae.insert(std::make_pair(Key, FIdx));
4129         if (P.second)
4130           continue;
4131 
4132         Formula &Best = LU.Formulae[P.first->second];
4133 
4134         Cost CostBest;
4135         Regs.clear();
4136         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4137         if (CostF.isLess(CostBest, TTI))
4138           std::swap(F, Best);
4139         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4140               dbgs() << "\n"
4141                         "    in favor of formula "; Best.print(dbgs());
4142               dbgs() << '\n');
4143       }
4144 #ifndef NDEBUG
4145       ChangedFormulae = true;
4146 #endif
4147       LU.DeleteFormula(F);
4148       --FIdx;
4149       --NumForms;
4150       Any = true;
4151     }
4152 
4153     // Now that we've filtered out some formulae, recompute the Regs set.
4154     if (Any)
4155       LU.RecomputeRegs(LUIdx, RegUses);
4156 
4157     // Reset this to prepare for the next use.
4158     BestFormulae.clear();
4159   }
4160 
4161   DEBUG(if (ChangedFormulae) {
4162           dbgs() << "\n"
4163                     "After filtering out undesirable candidates:\n";
4164           print_uses(dbgs());
4165         });
4166 }
4167 
4168 // This is a rough guess that seems to work fairly well.
4169 static const size_t ComplexityLimit = UINT16_MAX;
4170 
4171 /// Estimate the worst-case number of solutions the solver might have to
4172 /// consider. It almost never considers this many solutions because it prune the
4173 /// search space, but the pruning isn't always sufficient.
4174 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4175   size_t Power = 1;
4176   for (const LSRUse &LU : Uses) {
4177     size_t FSize = LU.Formulae.size();
4178     if (FSize >= ComplexityLimit) {
4179       Power = ComplexityLimit;
4180       break;
4181     }
4182     Power *= FSize;
4183     if (Power >= ComplexityLimit)
4184       break;
4185   }
4186   return Power;
4187 }
4188 
4189 /// When one formula uses a superset of the registers of another formula, it
4190 /// won't help reduce register pressure (though it may not necessarily hurt
4191 /// register pressure); remove it to simplify the system.
4192 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4193   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4194     DEBUG(dbgs() << "The search space is too complex.\n");
4195 
4196     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4197                     "which use a superset of registers used by other "
4198                     "formulae.\n");
4199 
4200     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4201       LSRUse &LU = Uses[LUIdx];
4202       bool Any = false;
4203       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4204         Formula &F = LU.Formulae[i];
4205         // Look for a formula with a constant or GV in a register. If the use
4206         // also has a formula with that same value in an immediate field,
4207         // delete the one that uses a register.
4208         for (SmallVectorImpl<const SCEV *>::const_iterator
4209              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4210           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4211             Formula NewF = F;
4212             NewF.BaseOffset += C->getValue()->getSExtValue();
4213             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4214                                 (I - F.BaseRegs.begin()));
4215             if (LU.HasFormulaWithSameRegs(NewF)) {
4216               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4217               LU.DeleteFormula(F);
4218               --i;
4219               --e;
4220               Any = true;
4221               break;
4222             }
4223           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4224             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4225               if (!F.BaseGV) {
4226                 Formula NewF = F;
4227                 NewF.BaseGV = GV;
4228                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4229                                     (I - F.BaseRegs.begin()));
4230                 if (LU.HasFormulaWithSameRegs(NewF)) {
4231                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4232                         dbgs() << '\n');
4233                   LU.DeleteFormula(F);
4234                   --i;
4235                   --e;
4236                   Any = true;
4237                   break;
4238                 }
4239               }
4240           }
4241         }
4242       }
4243       if (Any)
4244         LU.RecomputeRegs(LUIdx, RegUses);
4245     }
4246 
4247     DEBUG(dbgs() << "After pre-selection:\n";
4248           print_uses(dbgs()));
4249   }
4250 }
4251 
4252 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4253 /// allocate a single register for them.
4254 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4255   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4256     return;
4257 
4258   DEBUG(dbgs() << "The search space is too complex.\n"
4259                   "Narrowing the search space by assuming that uses separated "
4260                   "by a constant offset will use the same registers.\n");
4261 
4262   // This is especially useful for unrolled loops.
4263 
4264   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4265     LSRUse &LU = Uses[LUIdx];
4266     for (const Formula &F : LU.Formulae) {
4267       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4268         continue;
4269 
4270       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4271       if (!LUThatHas)
4272         continue;
4273 
4274       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4275                               LU.Kind, LU.AccessTy))
4276         continue;
4277 
4278       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4279 
4280       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4281 
4282       // Transfer the fixups of LU to LUThatHas.
4283       for (LSRFixup &Fixup : LU.Fixups) {
4284         Fixup.Offset += F.BaseOffset;
4285         LUThatHas->pushFixup(Fixup);
4286         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4287       }
4288 
4289       // Delete formulae from the new use which are no longer legal.
4290       bool Any = false;
4291       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4292         Formula &F = LUThatHas->Formulae[i];
4293         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4294                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4295           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4296                 dbgs() << '\n');
4297           LUThatHas->DeleteFormula(F);
4298           --i;
4299           --e;
4300           Any = true;
4301         }
4302       }
4303 
4304       if (Any)
4305         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4306 
4307       // Delete the old use.
4308       DeleteUse(LU, LUIdx);
4309       --LUIdx;
4310       --NumUses;
4311       break;
4312     }
4313   }
4314 
4315   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4316 }
4317 
4318 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4319 /// we've done more filtering, as it may be able to find more formulae to
4320 /// eliminate.
4321 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4322   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4323     DEBUG(dbgs() << "The search space is too complex.\n");
4324 
4325     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4326                     "undesirable dedicated registers.\n");
4327 
4328     FilterOutUndesirableDedicatedRegisters();
4329 
4330     DEBUG(dbgs() << "After pre-selection:\n";
4331           print_uses(dbgs()));
4332   }
4333 }
4334 
4335 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4336 /// Pick the best one and delete the others.
4337 /// This narrowing heuristic is to keep as many formulae with different
4338 /// Scale and ScaledReg pair as possible while narrowing the search space.
4339 /// The benefit is that it is more likely to find out a better solution
4340 /// from a formulae set with more Scale and ScaledReg variations than
4341 /// a formulae set with the same Scale and ScaledReg. The picking winner
4342 /// reg heurstic will often keep the formulae with the same Scale and
4343 /// ScaledReg and filter others, and we want to avoid that if possible.
4344 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4345   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4346     return;
4347 
4348   DEBUG(dbgs() << "The search space is too complex.\n"
4349                   "Narrowing the search space by choosing the best Formula "
4350                   "from the Formulae with the same Scale and ScaledReg.\n");
4351 
4352   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4353   typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy;
4354   BestFormulaeTy BestFormulae;
4355 #ifndef NDEBUG
4356   bool ChangedFormulae = false;
4357 #endif
4358   DenseSet<const SCEV *> VisitedRegs;
4359   SmallPtrSet<const SCEV *, 16> Regs;
4360 
4361   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4362     LSRUse &LU = Uses[LUIdx];
4363     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4364 
4365     // Return true if Formula FA is better than Formula FB.
4366     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4367       // First we will try to choose the Formula with fewer new registers.
4368       // For a register used by current Formula, the more the register is
4369       // shared among LSRUses, the less we increase the register number
4370       // counter of the formula.
4371       size_t FARegNum = 0;
4372       for (const SCEV *Reg : FA.BaseRegs) {
4373         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4374         FARegNum += (NumUses - UsedByIndices.count() + 1);
4375       }
4376       size_t FBRegNum = 0;
4377       for (const SCEV *Reg : FB.BaseRegs) {
4378         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4379         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4380       }
4381       if (FARegNum != FBRegNum)
4382         return FARegNum < FBRegNum;
4383 
4384       // If the new register numbers are the same, choose the Formula with
4385       // less Cost.
4386       Cost CostFA, CostFB;
4387       Regs.clear();
4388       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4389       Regs.clear();
4390       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4391       return CostFA.isLess(CostFB, TTI);
4392     };
4393 
4394     bool Any = false;
4395     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4396          ++FIdx) {
4397       Formula &F = LU.Formulae[FIdx];
4398       if (!F.ScaledReg)
4399         continue;
4400       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4401       if (P.second)
4402         continue;
4403 
4404       Formula &Best = LU.Formulae[P.first->second];
4405       if (IsBetterThan(F, Best))
4406         std::swap(F, Best);
4407       DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4408             dbgs() << "\n"
4409                       "    in favor of formula ";
4410             Best.print(dbgs()); dbgs() << '\n');
4411 #ifndef NDEBUG
4412       ChangedFormulae = true;
4413 #endif
4414       LU.DeleteFormula(F);
4415       --FIdx;
4416       --NumForms;
4417       Any = true;
4418     }
4419     if (Any)
4420       LU.RecomputeRegs(LUIdx, RegUses);
4421 
4422     // Reset this to prepare for the next use.
4423     BestFormulae.clear();
4424   }
4425 
4426   DEBUG(if (ChangedFormulae) {
4427     dbgs() << "\n"
4428               "After filtering out undesirable candidates:\n";
4429     print_uses(dbgs());
4430   });
4431 }
4432 
4433 /// The function delete formulas with high registers number expectation.
4434 /// Assuming we don't know the value of each formula (already delete
4435 /// all inefficient), generate probability of not selecting for each
4436 /// register.
4437 /// For example,
4438 /// Use1:
4439 ///  reg(a) + reg({0,+,1})
4440 ///  reg(a) + reg({-1,+,1}) + 1
4441 ///  reg({a,+,1})
4442 /// Use2:
4443 ///  reg(b) + reg({0,+,1})
4444 ///  reg(b) + reg({-1,+,1}) + 1
4445 ///  reg({b,+,1})
4446 /// Use3:
4447 ///  reg(c) + reg(b) + reg({0,+,1})
4448 ///  reg(c) + reg({b,+,1})
4449 ///
4450 /// Probability of not selecting
4451 ///                 Use1   Use2    Use3
4452 /// reg(a)         (1/3) *   1   *   1
4453 /// reg(b)           1   * (1/3) * (1/2)
4454 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4455 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4456 /// reg({a,+,1})   (2/3) *   1   *   1
4457 /// reg({b,+,1})     1   * (2/3) * (2/3)
4458 /// reg(c)           1   *   1   *   0
4459 ///
4460 /// Now count registers number mathematical expectation for each formula:
4461 /// Note that for each use we exclude probability if not selecting for the use.
4462 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4463 /// probabilty 1/3 of not selecting for Use1).
4464 /// Use1:
4465 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4466 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4467 ///  reg({a,+,1})                   1
4468 /// Use2:
4469 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4470 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4471 ///  reg({b,+,1})                   2/3
4472 /// Use3:
4473 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4474 ///  reg(c) + reg({b,+,1})          1 + 2/3
4475 
4476 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4477   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4478     return;
4479   // Ok, we have too many of formulae on our hands to conveniently handle.
4480   // Use a rough heuristic to thin out the list.
4481 
4482   // Set of Regs wich will be 100% used in final solution.
4483   // Used in each formula of a solution (in example above this is reg(c)).
4484   // We can skip them in calculations.
4485   SmallPtrSet<const SCEV *, 4> UniqRegs;
4486   DEBUG(dbgs() << "The search space is too complex.\n");
4487 
4488   // Map each register to probability of not selecting
4489   DenseMap <const SCEV *, float> RegNumMap;
4490   for (const SCEV *Reg : RegUses) {
4491     if (UniqRegs.count(Reg))
4492       continue;
4493     float PNotSel = 1;
4494     for (const LSRUse &LU : Uses) {
4495       if (!LU.Regs.count(Reg))
4496         continue;
4497       float P = LU.getNotSelectedProbability(Reg);
4498       if (P != 0.0)
4499         PNotSel *= P;
4500       else
4501         UniqRegs.insert(Reg);
4502     }
4503     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4504   }
4505 
4506   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4507 
4508   // Delete formulas where registers number expectation is high.
4509   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4510     LSRUse &LU = Uses[LUIdx];
4511     // If nothing to delete - continue.
4512     if (LU.Formulae.size() < 2)
4513       continue;
4514     // This is temporary solution to test performance. Float should be
4515     // replaced with round independent type (based on integers) to avoid
4516     // different results for different target builds.
4517     float FMinRegNum = LU.Formulae[0].getNumRegs();
4518     float FMinARegNum = LU.Formulae[0].getNumRegs();
4519     size_t MinIdx = 0;
4520     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4521       Formula &F = LU.Formulae[i];
4522       float FRegNum = 0;
4523       float FARegNum = 0;
4524       for (const SCEV *BaseReg : F.BaseRegs) {
4525         if (UniqRegs.count(BaseReg))
4526           continue;
4527         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4528         if (isa<SCEVAddRecExpr>(BaseReg))
4529           FARegNum +=
4530               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4531       }
4532       if (const SCEV *ScaledReg = F.ScaledReg) {
4533         if (!UniqRegs.count(ScaledReg)) {
4534           FRegNum +=
4535               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4536           if (isa<SCEVAddRecExpr>(ScaledReg))
4537             FARegNum +=
4538                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4539         }
4540       }
4541       if (FMinRegNum > FRegNum ||
4542           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4543         FMinRegNum = FRegNum;
4544         FMinARegNum = FARegNum;
4545         MinIdx = i;
4546       }
4547     }
4548     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4549           dbgs() << " with min reg num " << FMinRegNum << '\n');
4550     if (MinIdx != 0)
4551       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4552     while (LU.Formulae.size() != 1) {
4553       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4554             dbgs() << '\n');
4555       LU.Formulae.pop_back();
4556     }
4557     LU.RecomputeRegs(LUIdx, RegUses);
4558     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4559     Formula &F = LU.Formulae[0];
4560     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4561     // When we choose the formula, the regs become unique.
4562     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4563     if (F.ScaledReg)
4564       UniqRegs.insert(F.ScaledReg);
4565   }
4566   DEBUG(dbgs() << "After pre-selection:\n";
4567   print_uses(dbgs()));
4568 }
4569 
4570 
4571 /// Pick a register which seems likely to be profitable, and then in any use
4572 /// which has any reference to that register, delete all formulae which do not
4573 /// reference that register.
4574 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4575   // With all other options exhausted, loop until the system is simple
4576   // enough to handle.
4577   SmallPtrSet<const SCEV *, 4> Taken;
4578   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4579     // Ok, we have too many of formulae on our hands to conveniently handle.
4580     // Use a rough heuristic to thin out the list.
4581     DEBUG(dbgs() << "The search space is too complex.\n");
4582 
4583     // Pick the register which is used by the most LSRUses, which is likely
4584     // to be a good reuse register candidate.
4585     const SCEV *Best = nullptr;
4586     unsigned BestNum = 0;
4587     for (const SCEV *Reg : RegUses) {
4588       if (Taken.count(Reg))
4589         continue;
4590       if (!Best) {
4591         Best = Reg;
4592         BestNum = RegUses.getUsedByIndices(Reg).count();
4593       } else {
4594         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4595         if (Count > BestNum) {
4596           Best = Reg;
4597           BestNum = Count;
4598         }
4599       }
4600     }
4601 
4602     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4603                  << " will yield profitable reuse.\n");
4604     Taken.insert(Best);
4605 
4606     // In any use with formulae which references this register, delete formulae
4607     // which don't reference it.
4608     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4609       LSRUse &LU = Uses[LUIdx];
4610       if (!LU.Regs.count(Best)) continue;
4611 
4612       bool Any = false;
4613       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4614         Formula &F = LU.Formulae[i];
4615         if (!F.referencesReg(Best)) {
4616           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4617           LU.DeleteFormula(F);
4618           --e;
4619           --i;
4620           Any = true;
4621           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4622           continue;
4623         }
4624       }
4625 
4626       if (Any)
4627         LU.RecomputeRegs(LUIdx, RegUses);
4628     }
4629 
4630     DEBUG(dbgs() << "After pre-selection:\n";
4631           print_uses(dbgs()));
4632   }
4633 }
4634 
4635 /// If there are an extraordinary number of formulae to choose from, use some
4636 /// rough heuristics to prune down the number of formulae. This keeps the main
4637 /// solver from taking an extraordinary amount of time in some worst-case
4638 /// scenarios.
4639 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4640   NarrowSearchSpaceByDetectingSupersets();
4641   NarrowSearchSpaceByCollapsingUnrolledCode();
4642   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4643   if (FilterSameScaledReg)
4644     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4645   if (LSRExpNarrow)
4646     NarrowSearchSpaceByDeletingCostlyFormulas();
4647   else
4648     NarrowSearchSpaceByPickingWinnerRegs();
4649 }
4650 
4651 /// This is the recursive solver.
4652 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4653                                Cost &SolutionCost,
4654                                SmallVectorImpl<const Formula *> &Workspace,
4655                                const Cost &CurCost,
4656                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4657                                DenseSet<const SCEV *> &VisitedRegs) const {
4658   // Some ideas:
4659   //  - prune more:
4660   //    - use more aggressive filtering
4661   //    - sort the formula so that the most profitable solutions are found first
4662   //    - sort the uses too
4663   //  - search faster:
4664   //    - don't compute a cost, and then compare. compare while computing a cost
4665   //      and bail early.
4666   //    - track register sets with SmallBitVector
4667 
4668   const LSRUse &LU = Uses[Workspace.size()];
4669 
4670   // If this use references any register that's already a part of the
4671   // in-progress solution, consider it a requirement that a formula must
4672   // reference that register in order to be considered. This prunes out
4673   // unprofitable searching.
4674   SmallSetVector<const SCEV *, 4> ReqRegs;
4675   for (const SCEV *S : CurRegs)
4676     if (LU.Regs.count(S))
4677       ReqRegs.insert(S);
4678 
4679   SmallPtrSet<const SCEV *, 16> NewRegs;
4680   Cost NewCost;
4681   for (const Formula &F : LU.Formulae) {
4682     // Ignore formulae which may not be ideal in terms of register reuse of
4683     // ReqRegs.  The formula should use all required registers before
4684     // introducing new ones.
4685     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4686     for (const SCEV *Reg : ReqRegs) {
4687       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4688           is_contained(F.BaseRegs, Reg)) {
4689         --NumReqRegsToFind;
4690         if (NumReqRegsToFind == 0)
4691           break;
4692       }
4693     }
4694     if (NumReqRegsToFind != 0) {
4695       // If none of the formulae satisfied the required registers, then we could
4696       // clear ReqRegs and try again. Currently, we simply give up in this case.
4697       continue;
4698     }
4699 
4700     // Evaluate the cost of the current formula. If it's already worse than
4701     // the current best, prune the search at that point.
4702     NewCost = CurCost;
4703     NewRegs = CurRegs;
4704     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4705     if (NewCost.isLess(SolutionCost, TTI)) {
4706       Workspace.push_back(&F);
4707       if (Workspace.size() != Uses.size()) {
4708         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4709                      NewRegs, VisitedRegs);
4710         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4711           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4712       } else {
4713         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4714               dbgs() << ".\n Regs:";
4715               for (const SCEV *S : NewRegs)
4716                 dbgs() << ' ' << *S;
4717               dbgs() << '\n');
4718 
4719         SolutionCost = NewCost;
4720         Solution = Workspace;
4721       }
4722       Workspace.pop_back();
4723     }
4724   }
4725 }
4726 
4727 /// Choose one formula from each use. Return the results in the given Solution
4728 /// vector.
4729 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4730   SmallVector<const Formula *, 8> Workspace;
4731   Cost SolutionCost;
4732   SolutionCost.Lose();
4733   Cost CurCost;
4734   SmallPtrSet<const SCEV *, 16> CurRegs;
4735   DenseSet<const SCEV *> VisitedRegs;
4736   Workspace.reserve(Uses.size());
4737 
4738   // SolveRecurse does all the work.
4739   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4740                CurRegs, VisitedRegs);
4741   if (Solution.empty()) {
4742     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4743     return;
4744   }
4745 
4746   // Ok, we've now made all our decisions.
4747   DEBUG(dbgs() << "\n"
4748                   "The chosen solution requires "; SolutionCost.print(dbgs());
4749         dbgs() << ":\n";
4750         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4751           dbgs() << "  ";
4752           Uses[i].print(dbgs());
4753           dbgs() << "\n"
4754                     "    ";
4755           Solution[i]->print(dbgs());
4756           dbgs() << '\n';
4757         });
4758 
4759   assert(Solution.size() == Uses.size() && "Malformed solution!");
4760 }
4761 
4762 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4763 /// we can go while still being dominated by the input positions. This helps
4764 /// canonicalize the insert position, which encourages sharing.
4765 BasicBlock::iterator
4766 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4767                                  const SmallVectorImpl<Instruction *> &Inputs)
4768                                                                          const {
4769   Instruction *Tentative = &*IP;
4770   while (true) {
4771     bool AllDominate = true;
4772     Instruction *BetterPos = nullptr;
4773     // Don't bother attempting to insert before a catchswitch, their basic block
4774     // cannot have other non-PHI instructions.
4775     if (isa<CatchSwitchInst>(Tentative))
4776       return IP;
4777 
4778     for (Instruction *Inst : Inputs) {
4779       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4780         AllDominate = false;
4781         break;
4782       }
4783       // Attempt to find an insert position in the middle of the block,
4784       // instead of at the end, so that it can be used for other expansions.
4785       if (Tentative->getParent() == Inst->getParent() &&
4786           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4787         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4788     }
4789     if (!AllDominate)
4790       break;
4791     if (BetterPos)
4792       IP = BetterPos->getIterator();
4793     else
4794       IP = Tentative->getIterator();
4795 
4796     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4797     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4798 
4799     BasicBlock *IDom;
4800     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4801       if (!Rung) return IP;
4802       Rung = Rung->getIDom();
4803       if (!Rung) return IP;
4804       IDom = Rung->getBlock();
4805 
4806       // Don't climb into a loop though.
4807       const Loop *IDomLoop = LI.getLoopFor(IDom);
4808       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4809       if (IDomDepth <= IPLoopDepth &&
4810           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4811         break;
4812     }
4813 
4814     Tentative = IDom->getTerminator();
4815   }
4816 
4817   return IP;
4818 }
4819 
4820 /// Determine an input position which will be dominated by the operands and
4821 /// which will dominate the result.
4822 BasicBlock::iterator
4823 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4824                                            const LSRFixup &LF,
4825                                            const LSRUse &LU,
4826                                            SCEVExpander &Rewriter) const {
4827   // Collect some instructions which must be dominated by the
4828   // expanding replacement. These must be dominated by any operands that
4829   // will be required in the expansion.
4830   SmallVector<Instruction *, 4> Inputs;
4831   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4832     Inputs.push_back(I);
4833   if (LU.Kind == LSRUse::ICmpZero)
4834     if (Instruction *I =
4835           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4836       Inputs.push_back(I);
4837   if (LF.PostIncLoops.count(L)) {
4838     if (LF.isUseFullyOutsideLoop(L))
4839       Inputs.push_back(L->getLoopLatch()->getTerminator());
4840     else
4841       Inputs.push_back(IVIncInsertPos);
4842   }
4843   // The expansion must also be dominated by the increment positions of any
4844   // loops it for which it is using post-inc mode.
4845   for (const Loop *PIL : LF.PostIncLoops) {
4846     if (PIL == L) continue;
4847 
4848     // Be dominated by the loop exit.
4849     SmallVector<BasicBlock *, 4> ExitingBlocks;
4850     PIL->getExitingBlocks(ExitingBlocks);
4851     if (!ExitingBlocks.empty()) {
4852       BasicBlock *BB = ExitingBlocks[0];
4853       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4854         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4855       Inputs.push_back(BB->getTerminator());
4856     }
4857   }
4858 
4859   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4860          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4861          "Insertion point must be a normal instruction");
4862 
4863   // Then, climb up the immediate dominator tree as far as we can go while
4864   // still being dominated by the input positions.
4865   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4866 
4867   // Don't insert instructions before PHI nodes.
4868   while (isa<PHINode>(IP)) ++IP;
4869 
4870   // Ignore landingpad instructions.
4871   while (IP->isEHPad()) ++IP;
4872 
4873   // Ignore debug intrinsics.
4874   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4875 
4876   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4877   // IP consistent across expansions and allows the previously inserted
4878   // instructions to be reused by subsequent expansion.
4879   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4880     ++IP;
4881 
4882   return IP;
4883 }
4884 
4885 /// Emit instructions for the leading candidate expression for this LSRUse (this
4886 /// is called "expanding").
4887 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4888                            const Formula &F, BasicBlock::iterator IP,
4889                            SCEVExpander &Rewriter,
4890                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4891   if (LU.RigidFormula)
4892     return LF.OperandValToReplace;
4893 
4894   // Determine an input position which will be dominated by the operands and
4895   // which will dominate the result.
4896   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4897   Rewriter.setInsertPoint(&*IP);
4898 
4899   // Inform the Rewriter if we have a post-increment use, so that it can
4900   // perform an advantageous expansion.
4901   Rewriter.setPostInc(LF.PostIncLoops);
4902 
4903   // This is the type that the user actually needs.
4904   Type *OpTy = LF.OperandValToReplace->getType();
4905   // This will be the type that we'll initially expand to.
4906   Type *Ty = F.getType();
4907   if (!Ty)
4908     // No type known; just expand directly to the ultimate type.
4909     Ty = OpTy;
4910   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4911     // Expand directly to the ultimate type if it's the right size.
4912     Ty = OpTy;
4913   // This is the type to do integer arithmetic in.
4914   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4915 
4916   // Build up a list of operands to add together to form the full base.
4917   SmallVector<const SCEV *, 8> Ops;
4918 
4919   // Expand the BaseRegs portion.
4920   for (const SCEV *Reg : F.BaseRegs) {
4921     assert(!Reg->isZero() && "Zero allocated in a base register!");
4922 
4923     // If we're expanding for a post-inc user, make the post-inc adjustment.
4924     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4925     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4926   }
4927 
4928   // Expand the ScaledReg portion.
4929   Value *ICmpScaledV = nullptr;
4930   if (F.Scale != 0) {
4931     const SCEV *ScaledS = F.ScaledReg;
4932 
4933     // If we're expanding for a post-inc user, make the post-inc adjustment.
4934     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4935     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4936 
4937     if (LU.Kind == LSRUse::ICmpZero) {
4938       // Expand ScaleReg as if it was part of the base regs.
4939       if (F.Scale == 1)
4940         Ops.push_back(
4941             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4942       else {
4943         // An interesting way of "folding" with an icmp is to use a negated
4944         // scale, which we'll implement by inserting it into the other operand
4945         // of the icmp.
4946         assert(F.Scale == -1 &&
4947                "The only scale supported by ICmpZero uses is -1!");
4948         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4949       }
4950     } else {
4951       // Otherwise just expand the scaled register and an explicit scale,
4952       // which is expected to be matched as part of the address.
4953 
4954       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4955       // Unless the addressing mode will not be folded.
4956       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4957           isAMCompletelyFolded(TTI, LU, F)) {
4958         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4959         Ops.clear();
4960         Ops.push_back(SE.getUnknown(FullV));
4961       }
4962       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4963       if (F.Scale != 1)
4964         ScaledS =
4965             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4966       Ops.push_back(ScaledS);
4967     }
4968   }
4969 
4970   // Expand the GV portion.
4971   if (F.BaseGV) {
4972     // Flush the operand list to suppress SCEVExpander hoisting.
4973     if (!Ops.empty()) {
4974       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4975       Ops.clear();
4976       Ops.push_back(SE.getUnknown(FullV));
4977     }
4978     Ops.push_back(SE.getUnknown(F.BaseGV));
4979   }
4980 
4981   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4982   // unfolded offsets. LSR assumes they both live next to their uses.
4983   if (!Ops.empty()) {
4984     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4985     Ops.clear();
4986     Ops.push_back(SE.getUnknown(FullV));
4987   }
4988 
4989   // Expand the immediate portion.
4990   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4991   if (Offset != 0) {
4992     if (LU.Kind == LSRUse::ICmpZero) {
4993       // The other interesting way of "folding" with an ICmpZero is to use a
4994       // negated immediate.
4995       if (!ICmpScaledV)
4996         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4997       else {
4998         Ops.push_back(SE.getUnknown(ICmpScaledV));
4999         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5000       }
5001     } else {
5002       // Just add the immediate values. These again are expected to be matched
5003       // as part of the address.
5004       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5005     }
5006   }
5007 
5008   // Expand the unfolded offset portion.
5009   int64_t UnfoldedOffset = F.UnfoldedOffset;
5010   if (UnfoldedOffset != 0) {
5011     // Just add the immediate values.
5012     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5013                                                        UnfoldedOffset)));
5014   }
5015 
5016   // Emit instructions summing all the operands.
5017   const SCEV *FullS = Ops.empty() ?
5018                       SE.getConstant(IntTy, 0) :
5019                       SE.getAddExpr(Ops);
5020   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5021 
5022   // We're done expanding now, so reset the rewriter.
5023   Rewriter.clearPostInc();
5024 
5025   // An ICmpZero Formula represents an ICmp which we're handling as a
5026   // comparison against zero. Now that we've expanded an expression for that
5027   // form, update the ICmp's other operand.
5028   if (LU.Kind == LSRUse::ICmpZero) {
5029     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5030     DeadInsts.emplace_back(CI->getOperand(1));
5031     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5032                            "a scale at the same time!");
5033     if (F.Scale == -1) {
5034       if (ICmpScaledV->getType() != OpTy) {
5035         Instruction *Cast =
5036           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5037                                                    OpTy, false),
5038                            ICmpScaledV, OpTy, "tmp", CI);
5039         ICmpScaledV = Cast;
5040       }
5041       CI->setOperand(1, ICmpScaledV);
5042     } else {
5043       // A scale of 1 means that the scale has been expanded as part of the
5044       // base regs.
5045       assert((F.Scale == 0 || F.Scale == 1) &&
5046              "ICmp does not support folding a global value and "
5047              "a scale at the same time!");
5048       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5049                                            -(uint64_t)Offset);
5050       if (C->getType() != OpTy)
5051         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5052                                                           OpTy, false),
5053                                   C, OpTy);
5054 
5055       CI->setOperand(1, C);
5056     }
5057   }
5058 
5059   return FullV;
5060 }
5061 
5062 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5063 /// effectively happens in their predecessor blocks, so the expression may need
5064 /// to be expanded in multiple places.
5065 void LSRInstance::RewriteForPHI(
5066     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5067     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5068   DenseMap<BasicBlock *, Value *> Inserted;
5069   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5070     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5071       BasicBlock *BB = PN->getIncomingBlock(i);
5072 
5073       // If this is a critical edge, split the edge so that we do not insert
5074       // the code on all predecessor/successor paths.  We do this unless this
5075       // is the canonical backedge for this loop, which complicates post-inc
5076       // users.
5077       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5078           !isa<IndirectBrInst>(BB->getTerminator()) &&
5079           !isa<CatchSwitchInst>(BB->getTerminator())) {
5080         BasicBlock *Parent = PN->getParent();
5081         Loop *PNLoop = LI.getLoopFor(Parent);
5082         if (!PNLoop || Parent != PNLoop->getHeader()) {
5083           // Split the critical edge.
5084           BasicBlock *NewBB = nullptr;
5085           if (!Parent->isLandingPad()) {
5086             NewBB = SplitCriticalEdge(BB, Parent,
5087                                       CriticalEdgeSplittingOptions(&DT, &LI)
5088                                           .setMergeIdenticalEdges()
5089                                           .setDontDeleteUselessPHIs());
5090           } else {
5091             SmallVector<BasicBlock*, 2> NewBBs;
5092             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5093             NewBB = NewBBs[0];
5094           }
5095           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5096           // phi predecessors are identical. The simple thing to do is skip
5097           // splitting in this case rather than complicate the API.
5098           if (NewBB) {
5099             // If PN is outside of the loop and BB is in the loop, we want to
5100             // move the block to be immediately before the PHI block, not
5101             // immediately after BB.
5102             if (L->contains(BB) && !L->contains(PN))
5103               NewBB->moveBefore(PN->getParent());
5104 
5105             // Splitting the edge can reduce the number of PHI entries we have.
5106             e = PN->getNumIncomingValues();
5107             BB = NewBB;
5108             i = PN->getBasicBlockIndex(BB);
5109           }
5110         }
5111       }
5112 
5113       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5114         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5115       if (!Pair.second)
5116         PN->setIncomingValue(i, Pair.first->second);
5117       else {
5118         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5119                               Rewriter, DeadInsts);
5120 
5121         // If this is reuse-by-noop-cast, insert the noop cast.
5122         Type *OpTy = LF.OperandValToReplace->getType();
5123         if (FullV->getType() != OpTy)
5124           FullV =
5125             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5126                                                      OpTy, false),
5127                              FullV, LF.OperandValToReplace->getType(),
5128                              "tmp", BB->getTerminator());
5129 
5130         PN->setIncomingValue(i, FullV);
5131         Pair.first->second = FullV;
5132       }
5133     }
5134 }
5135 
5136 /// Emit instructions for the leading candidate expression for this LSRUse (this
5137 /// is called "expanding"), and update the UserInst to reference the newly
5138 /// expanded value.
5139 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5140                           const Formula &F, SCEVExpander &Rewriter,
5141                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5142   // First, find an insertion point that dominates UserInst. For PHI nodes,
5143   // find the nearest block which dominates all the relevant uses.
5144   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5145     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5146   } else {
5147     Value *FullV =
5148       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5149 
5150     // If this is reuse-by-noop-cast, insert the noop cast.
5151     Type *OpTy = LF.OperandValToReplace->getType();
5152     if (FullV->getType() != OpTy) {
5153       Instruction *Cast =
5154         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5155                          FullV, OpTy, "tmp", LF.UserInst);
5156       FullV = Cast;
5157     }
5158 
5159     // Update the user. ICmpZero is handled specially here (for now) because
5160     // Expand may have updated one of the operands of the icmp already, and
5161     // its new value may happen to be equal to LF.OperandValToReplace, in
5162     // which case doing replaceUsesOfWith leads to replacing both operands
5163     // with the same value. TODO: Reorganize this.
5164     if (LU.Kind == LSRUse::ICmpZero)
5165       LF.UserInst->setOperand(0, FullV);
5166     else
5167       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5168   }
5169 
5170   DeadInsts.emplace_back(LF.OperandValToReplace);
5171 }
5172 
5173 /// Rewrite all the fixup locations with new values, following the chosen
5174 /// solution.
5175 void LSRInstance::ImplementSolution(
5176     const SmallVectorImpl<const Formula *> &Solution) {
5177   // Keep track of instructions we may have made dead, so that
5178   // we can remove them after we are done working.
5179   SmallVector<WeakTrackingVH, 16> DeadInsts;
5180 
5181   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5182                         "lsr");
5183 #ifndef NDEBUG
5184   Rewriter.setDebugType(DEBUG_TYPE);
5185 #endif
5186   Rewriter.disableCanonicalMode();
5187   Rewriter.enableLSRMode();
5188   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5189 
5190   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5191   for (const IVChain &Chain : IVChainVec) {
5192     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5193       Rewriter.setChainedPhi(PN);
5194   }
5195 
5196   // Expand the new value definitions and update the users.
5197   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5198     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5199       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5200       Changed = true;
5201     }
5202 
5203   for (const IVChain &Chain : IVChainVec) {
5204     GenerateIVChain(Chain, Rewriter, DeadInsts);
5205     Changed = true;
5206   }
5207   // Clean up after ourselves. This must be done before deleting any
5208   // instructions.
5209   Rewriter.clear();
5210 
5211   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5212 }
5213 
5214 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5215                          DominatorTree &DT, LoopInfo &LI,
5216                          const TargetTransformInfo &TTI)
5217     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
5218       IVIncInsertPos(nullptr) {
5219   // If LoopSimplify form is not available, stay out of trouble.
5220   if (!L->isLoopSimplifyForm())
5221     return;
5222 
5223   // If there's no interesting work to be done, bail early.
5224   if (IU.empty()) return;
5225 
5226   // If there's too much analysis to be done, bail early. We won't be able to
5227   // model the problem anyway.
5228   unsigned NumUsers = 0;
5229   for (const IVStrideUse &U : IU) {
5230     if (++NumUsers > MaxIVUsers) {
5231       (void)U;
5232       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5233       return;
5234     }
5235     // Bail out if we have a PHI on an EHPad that gets a value from a
5236     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5237     // no good place to stick any instructions.
5238     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5239        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5240        if (isa<FuncletPadInst>(FirstNonPHI) ||
5241            isa<CatchSwitchInst>(FirstNonPHI))
5242          for (BasicBlock *PredBB : PN->blocks())
5243            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5244              return;
5245     }
5246   }
5247 
5248 #ifndef NDEBUG
5249   // All dominating loops must have preheaders, or SCEVExpander may not be able
5250   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5251   //
5252   // IVUsers analysis should only create users that are dominated by simple loop
5253   // headers. Since this loop should dominate all of its users, its user list
5254   // should be empty if this loop itself is not within a simple loop nest.
5255   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5256        Rung; Rung = Rung->getIDom()) {
5257     BasicBlock *BB = Rung->getBlock();
5258     const Loop *DomLoop = LI.getLoopFor(BB);
5259     if (DomLoop && DomLoop->getHeader() == BB) {
5260       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5261     }
5262   }
5263 #endif // DEBUG
5264 
5265   DEBUG(dbgs() << "\nLSR on loop ";
5266         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5267         dbgs() << ":\n");
5268 
5269   // First, perform some low-level loop optimizations.
5270   OptimizeShadowIV();
5271   OptimizeLoopTermCond();
5272 
5273   // If loop preparation eliminates all interesting IV users, bail.
5274   if (IU.empty()) return;
5275 
5276   // Skip nested loops until we can model them better with formulae.
5277   if (!L->empty()) {
5278     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5279     return;
5280   }
5281 
5282   // Start collecting data and preparing for the solver.
5283   CollectChains();
5284   CollectInterestingTypesAndFactors();
5285   CollectFixupsAndInitialFormulae();
5286   CollectLoopInvariantFixupsAndFormulae();
5287 
5288   assert(!Uses.empty() && "IVUsers reported at least one use");
5289   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5290         print_uses(dbgs()));
5291 
5292   // Now use the reuse data to generate a bunch of interesting ways
5293   // to formulate the values needed for the uses.
5294   GenerateAllReuseFormulae();
5295 
5296   FilterOutUndesirableDedicatedRegisters();
5297   NarrowSearchSpaceUsingHeuristics();
5298 
5299   SmallVector<const Formula *, 8> Solution;
5300   Solve(Solution);
5301 
5302   // Release memory that is no longer needed.
5303   Factors.clear();
5304   Types.clear();
5305   RegUses.clear();
5306 
5307   if (Solution.empty())
5308     return;
5309 
5310 #ifndef NDEBUG
5311   // Formulae should be legal.
5312   for (const LSRUse &LU : Uses) {
5313     for (const Formula &F : LU.Formulae)
5314       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5315                         F) && "Illegal formula generated!");
5316   };
5317 #endif
5318 
5319   // Now that we've decided what we want, make it so.
5320   ImplementSolution(Solution);
5321 }
5322 
5323 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5324   if (Factors.empty() && Types.empty()) return;
5325 
5326   OS << "LSR has identified the following interesting factors and types: ";
5327   bool First = true;
5328 
5329   for (int64_t Factor : Factors) {
5330     if (!First) OS << ", ";
5331     First = false;
5332     OS << '*' << Factor;
5333   }
5334 
5335   for (Type *Ty : Types) {
5336     if (!First) OS << ", ";
5337     First = false;
5338     OS << '(' << *Ty << ')';
5339   }
5340   OS << '\n';
5341 }
5342 
5343 void LSRInstance::print_fixups(raw_ostream &OS) const {
5344   OS << "LSR is examining the following fixup sites:\n";
5345   for (const LSRUse &LU : Uses)
5346     for (const LSRFixup &LF : LU.Fixups) {
5347       dbgs() << "  ";
5348       LF.print(OS);
5349       OS << '\n';
5350     }
5351 }
5352 
5353 void LSRInstance::print_uses(raw_ostream &OS) const {
5354   OS << "LSR is examining the following uses:\n";
5355   for (const LSRUse &LU : Uses) {
5356     dbgs() << "  ";
5357     LU.print(OS);
5358     OS << '\n';
5359     for (const Formula &F : LU.Formulae) {
5360       OS << "    ";
5361       F.print(OS);
5362       OS << '\n';
5363     }
5364   }
5365 }
5366 
5367 void LSRInstance::print(raw_ostream &OS) const {
5368   print_factors_and_types(OS);
5369   print_fixups(OS);
5370   print_uses(OS);
5371 }
5372 
5373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5374 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5375   print(errs()); errs() << '\n';
5376 }
5377 #endif
5378 
5379 namespace {
5380 
5381 class LoopStrengthReduce : public LoopPass {
5382 public:
5383   static char ID; // Pass ID, replacement for typeid
5384 
5385   LoopStrengthReduce();
5386 
5387 private:
5388   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5389   void getAnalysisUsage(AnalysisUsage &AU) const override;
5390 };
5391 
5392 } // end anonymous namespace
5393 
5394 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5395   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5396 }
5397 
5398 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5399   // We split critical edges, so we change the CFG.  However, we do update
5400   // many analyses if they are around.
5401   AU.addPreservedID(LoopSimplifyID);
5402 
5403   AU.addRequired<LoopInfoWrapperPass>();
5404   AU.addPreserved<LoopInfoWrapperPass>();
5405   AU.addRequiredID(LoopSimplifyID);
5406   AU.addRequired<DominatorTreeWrapperPass>();
5407   AU.addPreserved<DominatorTreeWrapperPass>();
5408   AU.addRequired<ScalarEvolutionWrapperPass>();
5409   AU.addPreserved<ScalarEvolutionWrapperPass>();
5410   // Requiring LoopSimplify a second time here prevents IVUsers from running
5411   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5412   AU.addRequiredID(LoopSimplifyID);
5413   AU.addRequired<IVUsersWrapperPass>();
5414   AU.addPreserved<IVUsersWrapperPass>();
5415   AU.addRequired<TargetTransformInfoWrapperPass>();
5416 }
5417 
5418 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5419                                DominatorTree &DT, LoopInfo &LI,
5420                                const TargetTransformInfo &TTI) {
5421   bool Changed = false;
5422 
5423   // Run the main LSR transformation.
5424   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5425 
5426   // Remove any extra phis created by processing inner loops.
5427   Changed |= DeleteDeadPHIs(L->getHeader());
5428   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5429     SmallVector<WeakTrackingVH, 16> DeadInsts;
5430     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5431     SCEVExpander Rewriter(SE, DL, "lsr");
5432 #ifndef NDEBUG
5433     Rewriter.setDebugType(DEBUG_TYPE);
5434 #endif
5435     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5436     if (numFolded) {
5437       Changed = true;
5438       DeleteTriviallyDeadInstructions(DeadInsts);
5439       DeleteDeadPHIs(L->getHeader());
5440     }
5441   }
5442   return Changed;
5443 }
5444 
5445 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5446   if (skipLoop(L))
5447     return false;
5448 
5449   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5450   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5451   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5452   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5453   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5454       *L->getHeader()->getParent());
5455   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5456 }
5457 
5458 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5459                                               LoopStandardAnalysisResults &AR,
5460                                               LPMUpdater &) {
5461   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5462                           AR.DT, AR.LI, AR.TTI))
5463     return PreservedAnalyses::all();
5464 
5465   return getLoopPassPreservedAnalyses();
5466 }
5467 
5468 char LoopStrengthReduce::ID = 0;
5469 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5470                       "Loop Strength Reduction", false, false)
5471 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5472 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5473 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5474 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5475 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5476 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5477 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5478                     "Loop Strength Reduction", false, false)
5479 
5480 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5481