1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/BinaryFormat/Dwarf.h" 82 #include "llvm/Config/llvm-config.h" 83 #include "llvm/IR/BasicBlock.h" 84 #include "llvm/IR/Constant.h" 85 #include "llvm/IR/Constants.h" 86 #include "llvm/IR/DebugInfoMetadata.h" 87 #include "llvm/IR/DerivedTypes.h" 88 #include "llvm/IR/Dominators.h" 89 #include "llvm/IR/GlobalValue.h" 90 #include "llvm/IR/IRBuilder.h" 91 #include "llvm/IR/InstrTypes.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/Intrinsics.h" 96 #include "llvm/IR/Module.h" 97 #include "llvm/IR/OperandTraits.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/PassManager.h" 100 #include "llvm/IR/Type.h" 101 #include "llvm/IR/Use.h" 102 #include "llvm/IR/User.h" 103 #include "llvm/IR/Value.h" 104 #include "llvm/IR/ValueHandle.h" 105 #include "llvm/InitializePasses.h" 106 #include "llvm/Pass.h" 107 #include "llvm/Support/Casting.h" 108 #include "llvm/Support/CommandLine.h" 109 #include "llvm/Support/Compiler.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/Support/MathExtras.h" 113 #include "llvm/Support/raw_ostream.h" 114 #include "llvm/Transforms/Scalar.h" 115 #include "llvm/Transforms/Utils.h" 116 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 117 #include "llvm/Transforms/Utils/Local.h" 118 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cstddef> 122 #include <cstdint> 123 #include <cstdlib> 124 #include <iterator> 125 #include <limits> 126 #include <map> 127 #include <numeric> 128 #include <utility> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "loop-reduce" 133 134 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 135 /// bail out. This threshold is far beyond the number of users that LSR can 136 /// conceivably solve, so it should not affect generated code, but catches the 137 /// worst cases before LSR burns too much compile time and stack space. 138 static const unsigned MaxIVUsers = 200; 139 140 /// Limit the size of expression that SCEV-based salvaging will attempt to 141 /// translate into a DIExpression. 142 /// Choose a maximum size such that debuginfo is not excessively increased and 143 /// the salvaging is not too expensive for the compiler. 144 static const unsigned MaxSCEVSalvageExpressionSize = 64; 145 146 // Temporary flag to cleanup congruent phis after LSR phi expansion. 147 // It's currently disabled until we can determine whether it's truly useful or 148 // not. The flag should be removed after the v3.0 release. 149 // This is now needed for ivchains. 150 static cl::opt<bool> EnablePhiElim( 151 "enable-lsr-phielim", cl::Hidden, cl::init(true), 152 cl::desc("Enable LSR phi elimination")); 153 154 // The flag adds instruction count to solutions cost comparision. 155 static cl::opt<bool> InsnsCost( 156 "lsr-insns-cost", cl::Hidden, cl::init(true), 157 cl::desc("Add instruction count to a LSR cost model")); 158 159 // Flag to choose how to narrow complex lsr solution 160 static cl::opt<bool> LSRExpNarrow( 161 "lsr-exp-narrow", cl::Hidden, cl::init(false), 162 cl::desc("Narrow LSR complex solution using" 163 " expectation of registers number")); 164 165 // Flag to narrow search space by filtering non-optimal formulae with 166 // the same ScaledReg and Scale. 167 static cl::opt<bool> FilterSameScaledReg( 168 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 169 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 170 " with the same ScaledReg and Scale")); 171 172 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 173 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 174 cl::desc("A flag that overrides the target's preferred addressing mode."), 175 cl::values(clEnumValN(TTI::AMK_None, 176 "none", 177 "Don't prefer any addressing mode"), 178 clEnumValN(TTI::AMK_PreIndexed, 179 "preindexed", 180 "Prefer pre-indexed addressing mode"), 181 clEnumValN(TTI::AMK_PostIndexed, 182 "postindexed", 183 "Prefer post-indexed addressing mode"))); 184 185 static cl::opt<unsigned> ComplexityLimit( 186 "lsr-complexity-limit", cl::Hidden, 187 cl::init(std::numeric_limits<uint16_t>::max()), 188 cl::desc("LSR search space complexity limit")); 189 190 static cl::opt<unsigned> SetupCostDepthLimit( 191 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 192 cl::desc("The limit on recursion depth for LSRs setup cost")); 193 194 #ifndef NDEBUG 195 // Stress test IV chain generation. 196 static cl::opt<bool> StressIVChain( 197 "stress-ivchain", cl::Hidden, cl::init(false), 198 cl::desc("Stress test LSR IV chains")); 199 #else 200 static bool StressIVChain = false; 201 #endif 202 203 namespace { 204 205 struct MemAccessTy { 206 /// Used in situations where the accessed memory type is unknown. 207 static const unsigned UnknownAddressSpace = 208 std::numeric_limits<unsigned>::max(); 209 210 Type *MemTy = nullptr; 211 unsigned AddrSpace = UnknownAddressSpace; 212 213 MemAccessTy() = default; 214 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 215 216 bool operator==(MemAccessTy Other) const { 217 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 218 } 219 220 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 221 222 static MemAccessTy getUnknown(LLVMContext &Ctx, 223 unsigned AS = UnknownAddressSpace) { 224 return MemAccessTy(Type::getVoidTy(Ctx), AS); 225 } 226 227 Type *getType() { return MemTy; } 228 }; 229 230 /// This class holds data which is used to order reuse candidates. 231 class RegSortData { 232 public: 233 /// This represents the set of LSRUse indices which reference 234 /// a particular register. 235 SmallBitVector UsedByIndices; 236 237 void print(raw_ostream &OS) const; 238 void dump() const; 239 }; 240 241 } // end anonymous namespace 242 243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 244 void RegSortData::print(raw_ostream &OS) const { 245 OS << "[NumUses=" << UsedByIndices.count() << ']'; 246 } 247 248 LLVM_DUMP_METHOD void RegSortData::dump() const { 249 print(errs()); errs() << '\n'; 250 } 251 #endif 252 253 namespace { 254 255 /// Map register candidates to information about how they are used. 256 class RegUseTracker { 257 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 258 259 RegUsesTy RegUsesMap; 260 SmallVector<const SCEV *, 16> RegSequence; 261 262 public: 263 void countRegister(const SCEV *Reg, size_t LUIdx); 264 void dropRegister(const SCEV *Reg, size_t LUIdx); 265 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 266 267 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 268 269 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 270 271 void clear(); 272 273 using iterator = SmallVectorImpl<const SCEV *>::iterator; 274 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 275 276 iterator begin() { return RegSequence.begin(); } 277 iterator end() { return RegSequence.end(); } 278 const_iterator begin() const { return RegSequence.begin(); } 279 const_iterator end() const { return RegSequence.end(); } 280 }; 281 282 } // end anonymous namespace 283 284 void 285 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 286 std::pair<RegUsesTy::iterator, bool> Pair = 287 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 288 RegSortData &RSD = Pair.first->second; 289 if (Pair.second) 290 RegSequence.push_back(Reg); 291 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 292 RSD.UsedByIndices.set(LUIdx); 293 } 294 295 void 296 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 297 RegUsesTy::iterator It = RegUsesMap.find(Reg); 298 assert(It != RegUsesMap.end()); 299 RegSortData &RSD = It->second; 300 assert(RSD.UsedByIndices.size() > LUIdx); 301 RSD.UsedByIndices.reset(LUIdx); 302 } 303 304 void 305 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 306 assert(LUIdx <= LastLUIdx); 307 308 // Update RegUses. The data structure is not optimized for this purpose; 309 // we must iterate through it and update each of the bit vectors. 310 for (auto &Pair : RegUsesMap) { 311 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 312 if (LUIdx < UsedByIndices.size()) 313 UsedByIndices[LUIdx] = 314 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 315 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 316 } 317 } 318 319 bool 320 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 321 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 322 if (I == RegUsesMap.end()) 323 return false; 324 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 325 int i = UsedByIndices.find_first(); 326 if (i == -1) return false; 327 if ((size_t)i != LUIdx) return true; 328 return UsedByIndices.find_next(i) != -1; 329 } 330 331 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 332 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 333 assert(I != RegUsesMap.end() && "Unknown register!"); 334 return I->second.UsedByIndices; 335 } 336 337 void RegUseTracker::clear() { 338 RegUsesMap.clear(); 339 RegSequence.clear(); 340 } 341 342 namespace { 343 344 /// This class holds information that describes a formula for computing 345 /// satisfying a use. It may include broken-out immediates and scaled registers. 346 struct Formula { 347 /// Global base address used for complex addressing. 348 GlobalValue *BaseGV = nullptr; 349 350 /// Base offset for complex addressing. 351 int64_t BaseOffset = 0; 352 353 /// Whether any complex addressing has a base register. 354 bool HasBaseReg = false; 355 356 /// The scale of any complex addressing. 357 int64_t Scale = 0; 358 359 /// The list of "base" registers for this use. When this is non-empty. The 360 /// canonical representation of a formula is 361 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 362 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 363 /// 3. The reg containing recurrent expr related with currect loop in the 364 /// formula should be put in the ScaledReg. 365 /// #1 enforces that the scaled register is always used when at least two 366 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 367 /// #2 enforces that 1 * reg is reg. 368 /// #3 ensures invariant regs with respect to current loop can be combined 369 /// together in LSR codegen. 370 /// This invariant can be temporarily broken while building a formula. 371 /// However, every formula inserted into the LSRInstance must be in canonical 372 /// form. 373 SmallVector<const SCEV *, 4> BaseRegs; 374 375 /// The 'scaled' register for this use. This should be non-null when Scale is 376 /// not zero. 377 const SCEV *ScaledReg = nullptr; 378 379 /// An additional constant offset which added near the use. This requires a 380 /// temporary register, but the offset itself can live in an add immediate 381 /// field rather than a register. 382 int64_t UnfoldedOffset = 0; 383 384 Formula() = default; 385 386 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 387 388 bool isCanonical(const Loop &L) const; 389 390 void canonicalize(const Loop &L); 391 392 bool unscale(); 393 394 bool hasZeroEnd() const; 395 396 size_t getNumRegs() const; 397 Type *getType() const; 398 399 void deleteBaseReg(const SCEV *&S); 400 401 bool referencesReg(const SCEV *S) const; 402 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 403 const RegUseTracker &RegUses) const; 404 405 void print(raw_ostream &OS) const; 406 void dump() const; 407 }; 408 409 } // end anonymous namespace 410 411 /// Recursion helper for initialMatch. 412 static void DoInitialMatch(const SCEV *S, Loop *L, 413 SmallVectorImpl<const SCEV *> &Good, 414 SmallVectorImpl<const SCEV *> &Bad, 415 ScalarEvolution &SE) { 416 // Collect expressions which properly dominate the loop header. 417 if (SE.properlyDominates(S, L->getHeader())) { 418 Good.push_back(S); 419 return; 420 } 421 422 // Look at add operands. 423 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 424 for (const SCEV *S : Add->operands()) 425 DoInitialMatch(S, L, Good, Bad, SE); 426 return; 427 } 428 429 // Look at addrec operands. 430 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 431 if (!AR->getStart()->isZero() && AR->isAffine()) { 432 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 433 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 434 AR->getStepRecurrence(SE), 435 // FIXME: AR->getNoWrapFlags() 436 AR->getLoop(), SCEV::FlagAnyWrap), 437 L, Good, Bad, SE); 438 return; 439 } 440 441 // Handle a multiplication by -1 (negation) if it didn't fold. 442 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 443 if (Mul->getOperand(0)->isAllOnesValue()) { 444 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 445 const SCEV *NewMul = SE.getMulExpr(Ops); 446 447 SmallVector<const SCEV *, 4> MyGood; 448 SmallVector<const SCEV *, 4> MyBad; 449 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 450 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 451 SE.getEffectiveSCEVType(NewMul->getType()))); 452 for (const SCEV *S : MyGood) 453 Good.push_back(SE.getMulExpr(NegOne, S)); 454 for (const SCEV *S : MyBad) 455 Bad.push_back(SE.getMulExpr(NegOne, S)); 456 return; 457 } 458 459 // Ok, we can't do anything interesting. Just stuff the whole thing into a 460 // register and hope for the best. 461 Bad.push_back(S); 462 } 463 464 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 465 /// all loop-invariant and loop-computable values in a single base register. 466 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 467 SmallVector<const SCEV *, 4> Good; 468 SmallVector<const SCEV *, 4> Bad; 469 DoInitialMatch(S, L, Good, Bad, SE); 470 if (!Good.empty()) { 471 const SCEV *Sum = SE.getAddExpr(Good); 472 if (!Sum->isZero()) 473 BaseRegs.push_back(Sum); 474 HasBaseReg = true; 475 } 476 if (!Bad.empty()) { 477 const SCEV *Sum = SE.getAddExpr(Bad); 478 if (!Sum->isZero()) 479 BaseRegs.push_back(Sum); 480 HasBaseReg = true; 481 } 482 canonicalize(*L); 483 } 484 485 /// Check whether or not this formula satisfies the canonical 486 /// representation. 487 /// \see Formula::BaseRegs. 488 bool Formula::isCanonical(const Loop &L) const { 489 if (!ScaledReg) 490 return BaseRegs.size() <= 1; 491 492 if (Scale != 1) 493 return true; 494 495 if (Scale == 1 && BaseRegs.empty()) 496 return false; 497 498 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 499 if (SAR && SAR->getLoop() == &L) 500 return true; 501 502 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 503 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 504 // loop, we want to swap the reg in BaseRegs with ScaledReg. 505 auto I = find_if(BaseRegs, [&](const SCEV *S) { 506 return isa<const SCEVAddRecExpr>(S) && 507 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 508 }); 509 return I == BaseRegs.end(); 510 } 511 512 /// Helper method to morph a formula into its canonical representation. 513 /// \see Formula::BaseRegs. 514 /// Every formula having more than one base register, must use the ScaledReg 515 /// field. Otherwise, we would have to do special cases everywhere in LSR 516 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 517 /// On the other hand, 1*reg should be canonicalized into reg. 518 void Formula::canonicalize(const Loop &L) { 519 if (isCanonical(L)) 520 return; 521 522 if (BaseRegs.empty()) { 523 // No base reg? Use scale reg with scale = 1 as such. 524 assert(ScaledReg && "Expected 1*reg => reg"); 525 assert(Scale == 1 && "Expected 1*reg => reg"); 526 BaseRegs.push_back(ScaledReg); 527 Scale = 0; 528 ScaledReg = nullptr; 529 return; 530 } 531 532 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 533 if (!ScaledReg) { 534 ScaledReg = BaseRegs.pop_back_val(); 535 Scale = 1; 536 } 537 538 // If ScaledReg is an invariant with respect to L, find the reg from 539 // BaseRegs containing the recurrent expr related with Loop L. Swap the 540 // reg with ScaledReg. 541 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 542 if (!SAR || SAR->getLoop() != &L) { 543 auto I = find_if(BaseRegs, [&](const SCEV *S) { 544 return isa<const SCEVAddRecExpr>(S) && 545 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 546 }); 547 if (I != BaseRegs.end()) 548 std::swap(ScaledReg, *I); 549 } 550 assert(isCanonical(L) && "Failed to canonicalize?"); 551 } 552 553 /// Get rid of the scale in the formula. 554 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 555 /// \return true if it was possible to get rid of the scale, false otherwise. 556 /// \note After this operation the formula may not be in the canonical form. 557 bool Formula::unscale() { 558 if (Scale != 1) 559 return false; 560 Scale = 0; 561 BaseRegs.push_back(ScaledReg); 562 ScaledReg = nullptr; 563 return true; 564 } 565 566 bool Formula::hasZeroEnd() const { 567 if (UnfoldedOffset || BaseOffset) 568 return false; 569 if (BaseRegs.size() != 1 || ScaledReg) 570 return false; 571 return true; 572 } 573 574 /// Return the total number of register operands used by this formula. This does 575 /// not include register uses implied by non-constant addrec strides. 576 size_t Formula::getNumRegs() const { 577 return !!ScaledReg + BaseRegs.size(); 578 } 579 580 /// Return the type of this formula, if it has one, or null otherwise. This type 581 /// is meaningless except for the bit size. 582 Type *Formula::getType() const { 583 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 584 ScaledReg ? ScaledReg->getType() : 585 BaseGV ? BaseGV->getType() : 586 nullptr; 587 } 588 589 /// Delete the given base reg from the BaseRegs list. 590 void Formula::deleteBaseReg(const SCEV *&S) { 591 if (&S != &BaseRegs.back()) 592 std::swap(S, BaseRegs.back()); 593 BaseRegs.pop_back(); 594 } 595 596 /// Test if this formula references the given register. 597 bool Formula::referencesReg(const SCEV *S) const { 598 return S == ScaledReg || is_contained(BaseRegs, S); 599 } 600 601 /// Test whether this formula uses registers which are used by uses other than 602 /// the use with the given index. 603 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 604 const RegUseTracker &RegUses) const { 605 if (ScaledReg) 606 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 607 return true; 608 for (const SCEV *BaseReg : BaseRegs) 609 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 610 return true; 611 return false; 612 } 613 614 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 615 void Formula::print(raw_ostream &OS) const { 616 bool First = true; 617 if (BaseGV) { 618 if (!First) OS << " + "; else First = false; 619 BaseGV->printAsOperand(OS, /*PrintType=*/false); 620 } 621 if (BaseOffset != 0) { 622 if (!First) OS << " + "; else First = false; 623 OS << BaseOffset; 624 } 625 for (const SCEV *BaseReg : BaseRegs) { 626 if (!First) OS << " + "; else First = false; 627 OS << "reg(" << *BaseReg << ')'; 628 } 629 if (HasBaseReg && BaseRegs.empty()) { 630 if (!First) OS << " + "; else First = false; 631 OS << "**error: HasBaseReg**"; 632 } else if (!HasBaseReg && !BaseRegs.empty()) { 633 if (!First) OS << " + "; else First = false; 634 OS << "**error: !HasBaseReg**"; 635 } 636 if (Scale != 0) { 637 if (!First) OS << " + "; else First = false; 638 OS << Scale << "*reg("; 639 if (ScaledReg) 640 OS << *ScaledReg; 641 else 642 OS << "<unknown>"; 643 OS << ')'; 644 } 645 if (UnfoldedOffset != 0) { 646 if (!First) OS << " + "; 647 OS << "imm(" << UnfoldedOffset << ')'; 648 } 649 } 650 651 LLVM_DUMP_METHOD void Formula::dump() const { 652 print(errs()); errs() << '\n'; 653 } 654 #endif 655 656 /// Return true if the given addrec can be sign-extended without changing its 657 /// value. 658 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 659 Type *WideTy = 660 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 661 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 662 } 663 664 /// Return true if the given add can be sign-extended without changing its 665 /// value. 666 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 667 Type *WideTy = 668 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 669 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 670 } 671 672 /// Return true if the given mul can be sign-extended without changing its 673 /// value. 674 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 675 Type *WideTy = 676 IntegerType::get(SE.getContext(), 677 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 678 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 679 } 680 681 /// Return an expression for LHS /s RHS, if it can be determined and if the 682 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 683 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 684 /// the multiplication may overflow, which is useful when the result will be 685 /// used in a context where the most significant bits are ignored. 686 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 687 ScalarEvolution &SE, 688 bool IgnoreSignificantBits = false) { 689 // Handle the trivial case, which works for any SCEV type. 690 if (LHS == RHS) 691 return SE.getConstant(LHS->getType(), 1); 692 693 // Handle a few RHS special cases. 694 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 695 if (RC) { 696 const APInt &RA = RC->getAPInt(); 697 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 698 // some folding. 699 if (RA.isAllOnes()) { 700 if (LHS->getType()->isPointerTy()) 701 return nullptr; 702 return SE.getMulExpr(LHS, RC); 703 } 704 // Handle x /s 1 as x. 705 if (RA == 1) 706 return LHS; 707 } 708 709 // Check for a division of a constant by a constant. 710 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 711 if (!RC) 712 return nullptr; 713 const APInt &LA = C->getAPInt(); 714 const APInt &RA = RC->getAPInt(); 715 if (LA.srem(RA) != 0) 716 return nullptr; 717 return SE.getConstant(LA.sdiv(RA)); 718 } 719 720 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 721 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 722 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 723 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 724 IgnoreSignificantBits); 725 if (!Step) return nullptr; 726 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 727 IgnoreSignificantBits); 728 if (!Start) return nullptr; 729 // FlagNW is independent of the start value, step direction, and is 730 // preserved with smaller magnitude steps. 731 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 732 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 733 } 734 return nullptr; 735 } 736 737 // Distribute the sdiv over add operands, if the add doesn't overflow. 738 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 739 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 740 SmallVector<const SCEV *, 8> Ops; 741 for (const SCEV *S : Add->operands()) { 742 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 743 if (!Op) return nullptr; 744 Ops.push_back(Op); 745 } 746 return SE.getAddExpr(Ops); 747 } 748 return nullptr; 749 } 750 751 // Check for a multiply operand that we can pull RHS out of. 752 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 753 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 754 // Handle special case C1*X*Y /s C2*X*Y. 755 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 756 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 757 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 758 const SCEVConstant *RC = 759 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 760 if (LC && RC) { 761 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 762 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 763 if (LOps == ROps) 764 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 765 } 766 } 767 } 768 769 SmallVector<const SCEV *, 4> Ops; 770 bool Found = false; 771 for (const SCEV *S : Mul->operands()) { 772 if (!Found) 773 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 774 IgnoreSignificantBits)) { 775 S = Q; 776 Found = true; 777 } 778 Ops.push_back(S); 779 } 780 return Found ? SE.getMulExpr(Ops) : nullptr; 781 } 782 return nullptr; 783 } 784 785 // Otherwise we don't know. 786 return nullptr; 787 } 788 789 /// If S involves the addition of a constant integer value, return that integer 790 /// value, and mutate S to point to a new SCEV with that value excluded. 791 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 792 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 793 if (C->getAPInt().getMinSignedBits() <= 64) { 794 S = SE.getConstant(C->getType(), 0); 795 return C->getValue()->getSExtValue(); 796 } 797 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 798 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 799 int64_t Result = ExtractImmediate(NewOps.front(), SE); 800 if (Result != 0) 801 S = SE.getAddExpr(NewOps); 802 return Result; 803 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 804 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 805 int64_t Result = ExtractImmediate(NewOps.front(), SE); 806 if (Result != 0) 807 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 808 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 809 SCEV::FlagAnyWrap); 810 return Result; 811 } 812 return 0; 813 } 814 815 /// If S involves the addition of a GlobalValue address, return that symbol, and 816 /// mutate S to point to a new SCEV with that value excluded. 817 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 818 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 819 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 820 S = SE.getConstant(GV->getType(), 0); 821 return GV; 822 } 823 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 824 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 825 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 826 if (Result) 827 S = SE.getAddExpr(NewOps); 828 return Result; 829 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 830 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 831 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 832 if (Result) 833 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 834 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 835 SCEV::FlagAnyWrap); 836 return Result; 837 } 838 return nullptr; 839 } 840 841 /// Returns true if the specified instruction is using the specified value as an 842 /// address. 843 static bool isAddressUse(const TargetTransformInfo &TTI, 844 Instruction *Inst, Value *OperandVal) { 845 bool isAddress = isa<LoadInst>(Inst); 846 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 847 if (SI->getPointerOperand() == OperandVal) 848 isAddress = true; 849 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 850 // Addressing modes can also be folded into prefetches and a variety 851 // of intrinsics. 852 switch (II->getIntrinsicID()) { 853 case Intrinsic::memset: 854 case Intrinsic::prefetch: 855 case Intrinsic::masked_load: 856 if (II->getArgOperand(0) == OperandVal) 857 isAddress = true; 858 break; 859 case Intrinsic::masked_store: 860 if (II->getArgOperand(1) == OperandVal) 861 isAddress = true; 862 break; 863 case Intrinsic::memmove: 864 case Intrinsic::memcpy: 865 if (II->getArgOperand(0) == OperandVal || 866 II->getArgOperand(1) == OperandVal) 867 isAddress = true; 868 break; 869 default: { 870 MemIntrinsicInfo IntrInfo; 871 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 872 if (IntrInfo.PtrVal == OperandVal) 873 isAddress = true; 874 } 875 } 876 } 877 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 878 if (RMW->getPointerOperand() == OperandVal) 879 isAddress = true; 880 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 881 if (CmpX->getPointerOperand() == OperandVal) 882 isAddress = true; 883 } 884 return isAddress; 885 } 886 887 /// Return the type of the memory being accessed. 888 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 889 Instruction *Inst, Value *OperandVal) { 890 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 891 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 892 AccessTy.MemTy = SI->getOperand(0)->getType(); 893 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 894 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 895 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 896 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 897 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 898 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 899 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 900 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 901 switch (II->getIntrinsicID()) { 902 case Intrinsic::prefetch: 903 case Intrinsic::memset: 904 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 905 AccessTy.MemTy = OperandVal->getType(); 906 break; 907 case Intrinsic::memmove: 908 case Intrinsic::memcpy: 909 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 910 AccessTy.MemTy = OperandVal->getType(); 911 break; 912 case Intrinsic::masked_load: 913 AccessTy.AddrSpace = 914 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 915 break; 916 case Intrinsic::masked_store: 917 AccessTy.MemTy = II->getOperand(0)->getType(); 918 AccessTy.AddrSpace = 919 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 920 break; 921 default: { 922 MemIntrinsicInfo IntrInfo; 923 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 924 AccessTy.AddrSpace 925 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 926 } 927 928 break; 929 } 930 } 931 } 932 933 // All pointers have the same requirements, so canonicalize them to an 934 // arbitrary pointer type to minimize variation. 935 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 936 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 937 PTy->getAddressSpace()); 938 939 return AccessTy; 940 } 941 942 /// Return true if this AddRec is already a phi in its loop. 943 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 944 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 945 if (SE.isSCEVable(PN.getType()) && 946 (SE.getEffectiveSCEVType(PN.getType()) == 947 SE.getEffectiveSCEVType(AR->getType())) && 948 SE.getSCEV(&PN) == AR) 949 return true; 950 } 951 return false; 952 } 953 954 /// Check if expanding this expression is likely to incur significant cost. This 955 /// is tricky because SCEV doesn't track which expressions are actually computed 956 /// by the current IR. 957 /// 958 /// We currently allow expansion of IV increments that involve adds, 959 /// multiplication by constants, and AddRecs from existing phis. 960 /// 961 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 962 /// obvious multiple of the UDivExpr. 963 static bool isHighCostExpansion(const SCEV *S, 964 SmallPtrSetImpl<const SCEV*> &Processed, 965 ScalarEvolution &SE) { 966 // Zero/One operand expressions 967 switch (S->getSCEVType()) { 968 case scUnknown: 969 case scConstant: 970 return false; 971 case scTruncate: 972 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 973 Processed, SE); 974 case scZeroExtend: 975 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 976 Processed, SE); 977 case scSignExtend: 978 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 979 Processed, SE); 980 default: 981 break; 982 } 983 984 if (!Processed.insert(S).second) 985 return false; 986 987 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 988 for (const SCEV *S : Add->operands()) { 989 if (isHighCostExpansion(S, Processed, SE)) 990 return true; 991 } 992 return false; 993 } 994 995 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 996 if (Mul->getNumOperands() == 2) { 997 // Multiplication by a constant is ok 998 if (isa<SCEVConstant>(Mul->getOperand(0))) 999 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1000 1001 // If we have the value of one operand, check if an existing 1002 // multiplication already generates this expression. 1003 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1004 Value *UVal = U->getValue(); 1005 for (User *UR : UVal->users()) { 1006 // If U is a constant, it may be used by a ConstantExpr. 1007 Instruction *UI = dyn_cast<Instruction>(UR); 1008 if (UI && UI->getOpcode() == Instruction::Mul && 1009 SE.isSCEVable(UI->getType())) { 1010 return SE.getSCEV(UI) == Mul; 1011 } 1012 } 1013 } 1014 } 1015 } 1016 1017 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1018 if (isExistingPhi(AR, SE)) 1019 return false; 1020 } 1021 1022 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1023 return true; 1024 } 1025 1026 namespace { 1027 1028 class LSRUse; 1029 1030 } // end anonymous namespace 1031 1032 /// Check if the addressing mode defined by \p F is completely 1033 /// folded in \p LU at isel time. 1034 /// This includes address-mode folding and special icmp tricks. 1035 /// This function returns true if \p LU can accommodate what \p F 1036 /// defines and up to 1 base + 1 scaled + offset. 1037 /// In other words, if \p F has several base registers, this function may 1038 /// still return true. Therefore, users still need to account for 1039 /// additional base registers and/or unfolded offsets to derive an 1040 /// accurate cost model. 1041 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1042 const LSRUse &LU, const Formula &F); 1043 1044 // Get the cost of the scaling factor used in F for LU. 1045 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1046 const LSRUse &LU, const Formula &F, 1047 const Loop &L); 1048 1049 namespace { 1050 1051 /// This class is used to measure and compare candidate formulae. 1052 class Cost { 1053 const Loop *L = nullptr; 1054 ScalarEvolution *SE = nullptr; 1055 const TargetTransformInfo *TTI = nullptr; 1056 TargetTransformInfo::LSRCost C; 1057 TTI::AddressingModeKind AMK = TTI::AMK_None; 1058 1059 public: 1060 Cost() = delete; 1061 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1062 TTI::AddressingModeKind AMK) : 1063 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1064 C.Insns = 0; 1065 C.NumRegs = 0; 1066 C.AddRecCost = 0; 1067 C.NumIVMuls = 0; 1068 C.NumBaseAdds = 0; 1069 C.ImmCost = 0; 1070 C.SetupCost = 0; 1071 C.ScaleCost = 0; 1072 } 1073 1074 bool isLess(Cost &Other); 1075 1076 void Lose(); 1077 1078 #ifndef NDEBUG 1079 // Once any of the metrics loses, they must all remain losers. 1080 bool isValid() { 1081 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1082 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1083 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1084 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1085 } 1086 #endif 1087 1088 bool isLoser() { 1089 assert(isValid() && "invalid cost"); 1090 return C.NumRegs == ~0u; 1091 } 1092 1093 void RateFormula(const Formula &F, 1094 SmallPtrSetImpl<const SCEV *> &Regs, 1095 const DenseSet<const SCEV *> &VisitedRegs, 1096 const LSRUse &LU, 1097 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1098 1099 void print(raw_ostream &OS) const; 1100 void dump() const; 1101 1102 private: 1103 void RateRegister(const Formula &F, const SCEV *Reg, 1104 SmallPtrSetImpl<const SCEV *> &Regs); 1105 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1106 SmallPtrSetImpl<const SCEV *> &Regs, 1107 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1108 }; 1109 1110 /// An operand value in an instruction which is to be replaced with some 1111 /// equivalent, possibly strength-reduced, replacement. 1112 struct LSRFixup { 1113 /// The instruction which will be updated. 1114 Instruction *UserInst = nullptr; 1115 1116 /// The operand of the instruction which will be replaced. The operand may be 1117 /// used more than once; every instance will be replaced. 1118 Value *OperandValToReplace = nullptr; 1119 1120 /// If this user is to use the post-incremented value of an induction 1121 /// variable, this set is non-empty and holds the loops associated with the 1122 /// induction variable. 1123 PostIncLoopSet PostIncLoops; 1124 1125 /// A constant offset to be added to the LSRUse expression. This allows 1126 /// multiple fixups to share the same LSRUse with different offsets, for 1127 /// example in an unrolled loop. 1128 int64_t Offset = 0; 1129 1130 LSRFixup() = default; 1131 1132 bool isUseFullyOutsideLoop(const Loop *L) const; 1133 1134 void print(raw_ostream &OS) const; 1135 void dump() const; 1136 }; 1137 1138 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1139 /// SmallVectors of const SCEV*. 1140 struct UniquifierDenseMapInfo { 1141 static SmallVector<const SCEV *, 4> getEmptyKey() { 1142 SmallVector<const SCEV *, 4> V; 1143 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1144 return V; 1145 } 1146 1147 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1148 SmallVector<const SCEV *, 4> V; 1149 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1150 return V; 1151 } 1152 1153 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1154 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1155 } 1156 1157 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1158 const SmallVector<const SCEV *, 4> &RHS) { 1159 return LHS == RHS; 1160 } 1161 }; 1162 1163 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1164 /// as uses invented by LSR itself. It includes information about what kinds of 1165 /// things can be folded into the user, information about the user itself, and 1166 /// information about how the use may be satisfied. TODO: Represent multiple 1167 /// users of the same expression in common? 1168 class LSRUse { 1169 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1170 1171 public: 1172 /// An enum for a kind of use, indicating what types of scaled and immediate 1173 /// operands it might support. 1174 enum KindType { 1175 Basic, ///< A normal use, with no folding. 1176 Special, ///< A special case of basic, allowing -1 scales. 1177 Address, ///< An address use; folding according to TargetLowering 1178 ICmpZero ///< An equality icmp with both operands folded into one. 1179 // TODO: Add a generic icmp too? 1180 }; 1181 1182 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1183 1184 KindType Kind; 1185 MemAccessTy AccessTy; 1186 1187 /// The list of operands which are to be replaced. 1188 SmallVector<LSRFixup, 8> Fixups; 1189 1190 /// Keep track of the min and max offsets of the fixups. 1191 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1192 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1193 1194 /// This records whether all of the fixups using this LSRUse are outside of 1195 /// the loop, in which case some special-case heuristics may be used. 1196 bool AllFixupsOutsideLoop = true; 1197 1198 /// RigidFormula is set to true to guarantee that this use will be associated 1199 /// with a single formula--the one that initially matched. Some SCEV 1200 /// expressions cannot be expanded. This allows LSR to consider the registers 1201 /// used by those expressions without the need to expand them later after 1202 /// changing the formula. 1203 bool RigidFormula = false; 1204 1205 /// This records the widest use type for any fixup using this 1206 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1207 /// fixup widths to be equivalent, because the narrower one may be relying on 1208 /// the implicit truncation to truncate away bogus bits. 1209 Type *WidestFixupType = nullptr; 1210 1211 /// A list of ways to build a value that can satisfy this user. After the 1212 /// list is populated, one of these is selected heuristically and used to 1213 /// formulate a replacement for OperandValToReplace in UserInst. 1214 SmallVector<Formula, 12> Formulae; 1215 1216 /// The set of register candidates used by all formulae in this LSRUse. 1217 SmallPtrSet<const SCEV *, 4> Regs; 1218 1219 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1220 1221 LSRFixup &getNewFixup() { 1222 Fixups.push_back(LSRFixup()); 1223 return Fixups.back(); 1224 } 1225 1226 void pushFixup(LSRFixup &f) { 1227 Fixups.push_back(f); 1228 if (f.Offset > MaxOffset) 1229 MaxOffset = f.Offset; 1230 if (f.Offset < MinOffset) 1231 MinOffset = f.Offset; 1232 } 1233 1234 bool HasFormulaWithSameRegs(const Formula &F) const; 1235 float getNotSelectedProbability(const SCEV *Reg) const; 1236 bool InsertFormula(const Formula &F, const Loop &L); 1237 void DeleteFormula(Formula &F); 1238 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1239 1240 void print(raw_ostream &OS) const; 1241 void dump() const; 1242 }; 1243 1244 } // end anonymous namespace 1245 1246 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1247 LSRUse::KindType Kind, MemAccessTy AccessTy, 1248 GlobalValue *BaseGV, int64_t BaseOffset, 1249 bool HasBaseReg, int64_t Scale, 1250 Instruction *Fixup = nullptr); 1251 1252 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1253 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1254 return 1; 1255 if (Depth == 0) 1256 return 0; 1257 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1258 return getSetupCost(S->getStart(), Depth - 1); 1259 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1260 return getSetupCost(S->getOperand(), Depth - 1); 1261 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1262 return std::accumulate(S->op_begin(), S->op_end(), 0, 1263 [&](unsigned i, const SCEV *Reg) { 1264 return i + getSetupCost(Reg, Depth - 1); 1265 }); 1266 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1267 return getSetupCost(S->getLHS(), Depth - 1) + 1268 getSetupCost(S->getRHS(), Depth - 1); 1269 return 0; 1270 } 1271 1272 /// Tally up interesting quantities from the given register. 1273 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1274 SmallPtrSetImpl<const SCEV *> &Regs) { 1275 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1276 // If this is an addrec for another loop, it should be an invariant 1277 // with respect to L since L is the innermost loop (at least 1278 // for now LSR only handles innermost loops). 1279 if (AR->getLoop() != L) { 1280 // If the AddRec exists, consider it's register free and leave it alone. 1281 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1282 return; 1283 1284 // It is bad to allow LSR for current loop to add induction variables 1285 // for its sibling loops. 1286 if (!AR->getLoop()->contains(L)) { 1287 Lose(); 1288 return; 1289 } 1290 1291 // Otherwise, it will be an invariant with respect to Loop L. 1292 ++C.NumRegs; 1293 return; 1294 } 1295 1296 unsigned LoopCost = 1; 1297 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1298 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1299 1300 // If the step size matches the base offset, we could use pre-indexed 1301 // addressing. 1302 if (AMK == TTI::AMK_PreIndexed) { 1303 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1304 if (Step->getAPInt() == F.BaseOffset) 1305 LoopCost = 0; 1306 } else if (AMK == TTI::AMK_PostIndexed) { 1307 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1308 if (isa<SCEVConstant>(LoopStep)) { 1309 const SCEV *LoopStart = AR->getStart(); 1310 if (!isa<SCEVConstant>(LoopStart) && 1311 SE->isLoopInvariant(LoopStart, L)) 1312 LoopCost = 0; 1313 } 1314 } 1315 } 1316 C.AddRecCost += LoopCost; 1317 1318 // Add the step value register, if it needs one. 1319 // TODO: The non-affine case isn't precisely modeled here. 1320 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1321 if (!Regs.count(AR->getOperand(1))) { 1322 RateRegister(F, AR->getOperand(1), Regs); 1323 if (isLoser()) 1324 return; 1325 } 1326 } 1327 } 1328 ++C.NumRegs; 1329 1330 // Rough heuristic; favor registers which don't require extra setup 1331 // instructions in the preheader. 1332 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1333 // Ensure we don't, even with the recusion limit, produce invalid costs. 1334 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1335 1336 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1337 SE->hasComputableLoopEvolution(Reg, L); 1338 } 1339 1340 /// Record this register in the set. If we haven't seen it before, rate 1341 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1342 /// one of those regs an instant loser. 1343 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1344 SmallPtrSetImpl<const SCEV *> &Regs, 1345 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1346 if (LoserRegs && LoserRegs->count(Reg)) { 1347 Lose(); 1348 return; 1349 } 1350 if (Regs.insert(Reg).second) { 1351 RateRegister(F, Reg, Regs); 1352 if (LoserRegs && isLoser()) 1353 LoserRegs->insert(Reg); 1354 } 1355 } 1356 1357 void Cost::RateFormula(const Formula &F, 1358 SmallPtrSetImpl<const SCEV *> &Regs, 1359 const DenseSet<const SCEV *> &VisitedRegs, 1360 const LSRUse &LU, 1361 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1362 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1363 // Tally up the registers. 1364 unsigned PrevAddRecCost = C.AddRecCost; 1365 unsigned PrevNumRegs = C.NumRegs; 1366 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1367 if (const SCEV *ScaledReg = F.ScaledReg) { 1368 if (VisitedRegs.count(ScaledReg)) { 1369 Lose(); 1370 return; 1371 } 1372 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1373 if (isLoser()) 1374 return; 1375 } 1376 for (const SCEV *BaseReg : F.BaseRegs) { 1377 if (VisitedRegs.count(BaseReg)) { 1378 Lose(); 1379 return; 1380 } 1381 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1382 if (isLoser()) 1383 return; 1384 } 1385 1386 // Determine how many (unfolded) adds we'll need inside the loop. 1387 size_t NumBaseParts = F.getNumRegs(); 1388 if (NumBaseParts > 1) 1389 // Do not count the base and a possible second register if the target 1390 // allows to fold 2 registers. 1391 C.NumBaseAdds += 1392 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1393 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1394 1395 // Accumulate non-free scaling amounts. 1396 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1397 1398 // Tally up the non-zero immediates. 1399 for (const LSRFixup &Fixup : LU.Fixups) { 1400 int64_t O = Fixup.Offset; 1401 int64_t Offset = (uint64_t)O + F.BaseOffset; 1402 if (F.BaseGV) 1403 C.ImmCost += 64; // Handle symbolic values conservatively. 1404 // TODO: This should probably be the pointer size. 1405 else if (Offset != 0) 1406 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1407 1408 // Check with target if this offset with this instruction is 1409 // specifically not supported. 1410 if (LU.Kind == LSRUse::Address && Offset != 0 && 1411 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1412 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1413 C.NumBaseAdds++; 1414 } 1415 1416 // If we don't count instruction cost exit here. 1417 if (!InsnsCost) { 1418 assert(isValid() && "invalid cost"); 1419 return; 1420 } 1421 1422 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1423 // additional instruction (at least fill). 1424 // TODO: Need distinguish register class? 1425 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1426 TTI->getRegisterClassForType(false, F.getType())) - 1; 1427 if (C.NumRegs > TTIRegNum) { 1428 // Cost already exceeded TTIRegNum, then only newly added register can add 1429 // new instructions. 1430 if (PrevNumRegs > TTIRegNum) 1431 C.Insns += (C.NumRegs - PrevNumRegs); 1432 else 1433 C.Insns += (C.NumRegs - TTIRegNum); 1434 } 1435 1436 // If ICmpZero formula ends with not 0, it could not be replaced by 1437 // just add or sub. We'll need to compare final result of AddRec. 1438 // That means we'll need an additional instruction. But if the target can 1439 // macro-fuse a compare with a branch, don't count this extra instruction. 1440 // For -10 + {0, +, 1}: 1441 // i = i + 1; 1442 // cmp i, 10 1443 // 1444 // For {-10, +, 1}: 1445 // i = i + 1; 1446 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1447 !TTI->canMacroFuseCmp()) 1448 C.Insns++; 1449 // Each new AddRec adds 1 instruction to calculation. 1450 C.Insns += (C.AddRecCost - PrevAddRecCost); 1451 1452 // BaseAdds adds instructions for unfolded registers. 1453 if (LU.Kind != LSRUse::ICmpZero) 1454 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1455 assert(isValid() && "invalid cost"); 1456 } 1457 1458 /// Set this cost to a losing value. 1459 void Cost::Lose() { 1460 C.Insns = std::numeric_limits<unsigned>::max(); 1461 C.NumRegs = std::numeric_limits<unsigned>::max(); 1462 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1463 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1464 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1465 C.ImmCost = std::numeric_limits<unsigned>::max(); 1466 C.SetupCost = std::numeric_limits<unsigned>::max(); 1467 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1468 } 1469 1470 /// Choose the lower cost. 1471 bool Cost::isLess(Cost &Other) { 1472 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1473 C.Insns != Other.C.Insns) 1474 return C.Insns < Other.C.Insns; 1475 return TTI->isLSRCostLess(C, Other.C); 1476 } 1477 1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1479 void Cost::print(raw_ostream &OS) const { 1480 if (InsnsCost) 1481 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1482 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1483 if (C.AddRecCost != 0) 1484 OS << ", with addrec cost " << C.AddRecCost; 1485 if (C.NumIVMuls != 0) 1486 OS << ", plus " << C.NumIVMuls << " IV mul" 1487 << (C.NumIVMuls == 1 ? "" : "s"); 1488 if (C.NumBaseAdds != 0) 1489 OS << ", plus " << C.NumBaseAdds << " base add" 1490 << (C.NumBaseAdds == 1 ? "" : "s"); 1491 if (C.ScaleCost != 0) 1492 OS << ", plus " << C.ScaleCost << " scale cost"; 1493 if (C.ImmCost != 0) 1494 OS << ", plus " << C.ImmCost << " imm cost"; 1495 if (C.SetupCost != 0) 1496 OS << ", plus " << C.SetupCost << " setup cost"; 1497 } 1498 1499 LLVM_DUMP_METHOD void Cost::dump() const { 1500 print(errs()); errs() << '\n'; 1501 } 1502 #endif 1503 1504 /// Test whether this fixup always uses its value outside of the given loop. 1505 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1506 // PHI nodes use their value in their incoming blocks. 1507 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1508 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1509 if (PN->getIncomingValue(i) == OperandValToReplace && 1510 L->contains(PN->getIncomingBlock(i))) 1511 return false; 1512 return true; 1513 } 1514 1515 return !L->contains(UserInst); 1516 } 1517 1518 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1519 void LSRFixup::print(raw_ostream &OS) const { 1520 OS << "UserInst="; 1521 // Store is common and interesting enough to be worth special-casing. 1522 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1523 OS << "store "; 1524 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1525 } else if (UserInst->getType()->isVoidTy()) 1526 OS << UserInst->getOpcodeName(); 1527 else 1528 UserInst->printAsOperand(OS, /*PrintType=*/false); 1529 1530 OS << ", OperandValToReplace="; 1531 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1532 1533 for (const Loop *PIL : PostIncLoops) { 1534 OS << ", PostIncLoop="; 1535 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1536 } 1537 1538 if (Offset != 0) 1539 OS << ", Offset=" << Offset; 1540 } 1541 1542 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1543 print(errs()); errs() << '\n'; 1544 } 1545 #endif 1546 1547 /// Test whether this use as a formula which has the same registers as the given 1548 /// formula. 1549 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1550 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1551 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1552 // Unstable sort by host order ok, because this is only used for uniquifying. 1553 llvm::sort(Key); 1554 return Uniquifier.count(Key); 1555 } 1556 1557 /// The function returns a probability of selecting formula without Reg. 1558 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1559 unsigned FNum = 0; 1560 for (const Formula &F : Formulae) 1561 if (F.referencesReg(Reg)) 1562 FNum++; 1563 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1564 } 1565 1566 /// If the given formula has not yet been inserted, add it to the list, and 1567 /// return true. Return false otherwise. The formula must be in canonical form. 1568 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1569 assert(F.isCanonical(L) && "Invalid canonical representation"); 1570 1571 if (!Formulae.empty() && RigidFormula) 1572 return false; 1573 1574 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1575 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1576 // Unstable sort by host order ok, because this is only used for uniquifying. 1577 llvm::sort(Key); 1578 1579 if (!Uniquifier.insert(Key).second) 1580 return false; 1581 1582 // Using a register to hold the value of 0 is not profitable. 1583 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1584 "Zero allocated in a scaled register!"); 1585 #ifndef NDEBUG 1586 for (const SCEV *BaseReg : F.BaseRegs) 1587 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1588 #endif 1589 1590 // Add the formula to the list. 1591 Formulae.push_back(F); 1592 1593 // Record registers now being used by this use. 1594 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1595 if (F.ScaledReg) 1596 Regs.insert(F.ScaledReg); 1597 1598 return true; 1599 } 1600 1601 /// Remove the given formula from this use's list. 1602 void LSRUse::DeleteFormula(Formula &F) { 1603 if (&F != &Formulae.back()) 1604 std::swap(F, Formulae.back()); 1605 Formulae.pop_back(); 1606 } 1607 1608 /// Recompute the Regs field, and update RegUses. 1609 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1610 // Now that we've filtered out some formulae, recompute the Regs set. 1611 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1612 Regs.clear(); 1613 for (const Formula &F : Formulae) { 1614 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1615 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1616 } 1617 1618 // Update the RegTracker. 1619 for (const SCEV *S : OldRegs) 1620 if (!Regs.count(S)) 1621 RegUses.dropRegister(S, LUIdx); 1622 } 1623 1624 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1625 void LSRUse::print(raw_ostream &OS) const { 1626 OS << "LSR Use: Kind="; 1627 switch (Kind) { 1628 case Basic: OS << "Basic"; break; 1629 case Special: OS << "Special"; break; 1630 case ICmpZero: OS << "ICmpZero"; break; 1631 case Address: 1632 OS << "Address of "; 1633 if (AccessTy.MemTy->isPointerTy()) 1634 OS << "pointer"; // the full pointer type could be really verbose 1635 else { 1636 OS << *AccessTy.MemTy; 1637 } 1638 1639 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1640 } 1641 1642 OS << ", Offsets={"; 1643 bool NeedComma = false; 1644 for (const LSRFixup &Fixup : Fixups) { 1645 if (NeedComma) OS << ','; 1646 OS << Fixup.Offset; 1647 NeedComma = true; 1648 } 1649 OS << '}'; 1650 1651 if (AllFixupsOutsideLoop) 1652 OS << ", all-fixups-outside-loop"; 1653 1654 if (WidestFixupType) 1655 OS << ", widest fixup type: " << *WidestFixupType; 1656 } 1657 1658 LLVM_DUMP_METHOD void LSRUse::dump() const { 1659 print(errs()); errs() << '\n'; 1660 } 1661 #endif 1662 1663 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1664 LSRUse::KindType Kind, MemAccessTy AccessTy, 1665 GlobalValue *BaseGV, int64_t BaseOffset, 1666 bool HasBaseReg, int64_t Scale, 1667 Instruction *Fixup/*= nullptr*/) { 1668 switch (Kind) { 1669 case LSRUse::Address: 1670 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1671 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1672 1673 case LSRUse::ICmpZero: 1674 // There's not even a target hook for querying whether it would be legal to 1675 // fold a GV into an ICmp. 1676 if (BaseGV) 1677 return false; 1678 1679 // ICmp only has two operands; don't allow more than two non-trivial parts. 1680 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1681 return false; 1682 1683 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1684 // putting the scaled register in the other operand of the icmp. 1685 if (Scale != 0 && Scale != -1) 1686 return false; 1687 1688 // If we have low-level target information, ask the target if it can fold an 1689 // integer immediate on an icmp. 1690 if (BaseOffset != 0) { 1691 // We have one of: 1692 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1693 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1694 // Offs is the ICmp immediate. 1695 if (Scale == 0) 1696 // The cast does the right thing with 1697 // std::numeric_limits<int64_t>::min(). 1698 BaseOffset = -(uint64_t)BaseOffset; 1699 return TTI.isLegalICmpImmediate(BaseOffset); 1700 } 1701 1702 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1703 return true; 1704 1705 case LSRUse::Basic: 1706 // Only handle single-register values. 1707 return !BaseGV && Scale == 0 && BaseOffset == 0; 1708 1709 case LSRUse::Special: 1710 // Special case Basic to handle -1 scales. 1711 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1712 } 1713 1714 llvm_unreachable("Invalid LSRUse Kind!"); 1715 } 1716 1717 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1718 int64_t MinOffset, int64_t MaxOffset, 1719 LSRUse::KindType Kind, MemAccessTy AccessTy, 1720 GlobalValue *BaseGV, int64_t BaseOffset, 1721 bool HasBaseReg, int64_t Scale) { 1722 // Check for overflow. 1723 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1724 (MinOffset > 0)) 1725 return false; 1726 MinOffset = (uint64_t)BaseOffset + MinOffset; 1727 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1728 (MaxOffset > 0)) 1729 return false; 1730 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1731 1732 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1733 HasBaseReg, Scale) && 1734 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1735 HasBaseReg, Scale); 1736 } 1737 1738 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1739 int64_t MinOffset, int64_t MaxOffset, 1740 LSRUse::KindType Kind, MemAccessTy AccessTy, 1741 const Formula &F, const Loop &L) { 1742 // For the purpose of isAMCompletelyFolded either having a canonical formula 1743 // or a scale not equal to zero is correct. 1744 // Problems may arise from non canonical formulae having a scale == 0. 1745 // Strictly speaking it would best to just rely on canonical formulae. 1746 // However, when we generate the scaled formulae, we first check that the 1747 // scaling factor is profitable before computing the actual ScaledReg for 1748 // compile time sake. 1749 assert((F.isCanonical(L) || F.Scale != 0)); 1750 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1751 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1752 } 1753 1754 /// Test whether we know how to expand the current formula. 1755 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1756 int64_t MaxOffset, LSRUse::KindType Kind, 1757 MemAccessTy AccessTy, GlobalValue *BaseGV, 1758 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1759 // We know how to expand completely foldable formulae. 1760 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1761 BaseOffset, HasBaseReg, Scale) || 1762 // Or formulae that use a base register produced by a sum of base 1763 // registers. 1764 (Scale == 1 && 1765 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1766 BaseGV, BaseOffset, true, 0)); 1767 } 1768 1769 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1770 int64_t MaxOffset, LSRUse::KindType Kind, 1771 MemAccessTy AccessTy, const Formula &F) { 1772 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1773 F.BaseOffset, F.HasBaseReg, F.Scale); 1774 } 1775 1776 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1777 const LSRUse &LU, const Formula &F) { 1778 // Target may want to look at the user instructions. 1779 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1780 for (const LSRFixup &Fixup : LU.Fixups) 1781 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1782 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1783 F.Scale, Fixup.UserInst)) 1784 return false; 1785 return true; 1786 } 1787 1788 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1789 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1790 F.Scale); 1791 } 1792 1793 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1794 const LSRUse &LU, const Formula &F, 1795 const Loop &L) { 1796 if (!F.Scale) 1797 return 0; 1798 1799 // If the use is not completely folded in that instruction, we will have to 1800 // pay an extra cost only for scale != 1. 1801 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1802 LU.AccessTy, F, L)) 1803 return F.Scale != 1; 1804 1805 switch (LU.Kind) { 1806 case LSRUse::Address: { 1807 // Check the scaling factor cost with both the min and max offsets. 1808 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1809 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1810 F.Scale, LU.AccessTy.AddrSpace); 1811 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1812 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1813 F.Scale, LU.AccessTy.AddrSpace); 1814 1815 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1816 "Legal addressing mode has an illegal cost!"); 1817 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1818 } 1819 case LSRUse::ICmpZero: 1820 case LSRUse::Basic: 1821 case LSRUse::Special: 1822 // The use is completely folded, i.e., everything is folded into the 1823 // instruction. 1824 return 0; 1825 } 1826 1827 llvm_unreachable("Invalid LSRUse Kind!"); 1828 } 1829 1830 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1831 LSRUse::KindType Kind, MemAccessTy AccessTy, 1832 GlobalValue *BaseGV, int64_t BaseOffset, 1833 bool HasBaseReg) { 1834 // Fast-path: zero is always foldable. 1835 if (BaseOffset == 0 && !BaseGV) return true; 1836 1837 // Conservatively, create an address with an immediate and a 1838 // base and a scale. 1839 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1840 1841 // Canonicalize a scale of 1 to a base register if the formula doesn't 1842 // already have a base register. 1843 if (!HasBaseReg && Scale == 1) { 1844 Scale = 0; 1845 HasBaseReg = true; 1846 } 1847 1848 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1849 HasBaseReg, Scale); 1850 } 1851 1852 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1853 ScalarEvolution &SE, int64_t MinOffset, 1854 int64_t MaxOffset, LSRUse::KindType Kind, 1855 MemAccessTy AccessTy, const SCEV *S, 1856 bool HasBaseReg) { 1857 // Fast-path: zero is always foldable. 1858 if (S->isZero()) return true; 1859 1860 // Conservatively, create an address with an immediate and a 1861 // base and a scale. 1862 int64_t BaseOffset = ExtractImmediate(S, SE); 1863 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1864 1865 // If there's anything else involved, it's not foldable. 1866 if (!S->isZero()) return false; 1867 1868 // Fast-path: zero is always foldable. 1869 if (BaseOffset == 0 && !BaseGV) return true; 1870 1871 // Conservatively, create an address with an immediate and a 1872 // base and a scale. 1873 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1874 1875 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1876 BaseOffset, HasBaseReg, Scale); 1877 } 1878 1879 namespace { 1880 1881 /// An individual increment in a Chain of IV increments. Relate an IV user to 1882 /// an expression that computes the IV it uses from the IV used by the previous 1883 /// link in the Chain. 1884 /// 1885 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1886 /// original IVOperand. The head of the chain's IVOperand is only valid during 1887 /// chain collection, before LSR replaces IV users. During chain generation, 1888 /// IncExpr can be used to find the new IVOperand that computes the same 1889 /// expression. 1890 struct IVInc { 1891 Instruction *UserInst; 1892 Value* IVOperand; 1893 const SCEV *IncExpr; 1894 1895 IVInc(Instruction *U, Value *O, const SCEV *E) 1896 : UserInst(U), IVOperand(O), IncExpr(E) {} 1897 }; 1898 1899 // The list of IV increments in program order. We typically add the head of a 1900 // chain without finding subsequent links. 1901 struct IVChain { 1902 SmallVector<IVInc, 1> Incs; 1903 const SCEV *ExprBase = nullptr; 1904 1905 IVChain() = default; 1906 IVChain(const IVInc &Head, const SCEV *Base) 1907 : Incs(1, Head), ExprBase(Base) {} 1908 1909 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1910 1911 // Return the first increment in the chain. 1912 const_iterator begin() const { 1913 assert(!Incs.empty()); 1914 return std::next(Incs.begin()); 1915 } 1916 const_iterator end() const { 1917 return Incs.end(); 1918 } 1919 1920 // Returns true if this chain contains any increments. 1921 bool hasIncs() const { return Incs.size() >= 2; } 1922 1923 // Add an IVInc to the end of this chain. 1924 void add(const IVInc &X) { Incs.push_back(X); } 1925 1926 // Returns the last UserInst in the chain. 1927 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1928 1929 // Returns true if IncExpr can be profitably added to this chain. 1930 bool isProfitableIncrement(const SCEV *OperExpr, 1931 const SCEV *IncExpr, 1932 ScalarEvolution&); 1933 }; 1934 1935 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1936 /// between FarUsers that definitely cross IV increments and NearUsers that may 1937 /// be used between IV increments. 1938 struct ChainUsers { 1939 SmallPtrSet<Instruction*, 4> FarUsers; 1940 SmallPtrSet<Instruction*, 4> NearUsers; 1941 }; 1942 1943 /// This class holds state for the main loop strength reduction logic. 1944 class LSRInstance { 1945 IVUsers &IU; 1946 ScalarEvolution &SE; 1947 DominatorTree &DT; 1948 LoopInfo &LI; 1949 AssumptionCache &AC; 1950 TargetLibraryInfo &TLI; 1951 const TargetTransformInfo &TTI; 1952 Loop *const L; 1953 MemorySSAUpdater *MSSAU; 1954 TTI::AddressingModeKind AMK; 1955 bool Changed = false; 1956 1957 /// This is the insert position that the current loop's induction variable 1958 /// increment should be placed. In simple loops, this is the latch block's 1959 /// terminator. But in more complicated cases, this is a position which will 1960 /// dominate all the in-loop post-increment users. 1961 Instruction *IVIncInsertPos = nullptr; 1962 1963 /// Interesting factors between use strides. 1964 /// 1965 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1966 /// default, a SmallDenseSet, because we need to use the full range of 1967 /// int64_ts, and there's currently no good way of doing that with 1968 /// SmallDenseSet. 1969 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1970 1971 /// Interesting use types, to facilitate truncation reuse. 1972 SmallSetVector<Type *, 4> Types; 1973 1974 /// The list of interesting uses. 1975 mutable SmallVector<LSRUse, 16> Uses; 1976 1977 /// Track which uses use which register candidates. 1978 RegUseTracker RegUses; 1979 1980 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1981 // have more than a few IV increment chains in a loop. Missing a Chain falls 1982 // back to normal LSR behavior for those uses. 1983 static const unsigned MaxChains = 8; 1984 1985 /// IV users can form a chain of IV increments. 1986 SmallVector<IVChain, MaxChains> IVChainVec; 1987 1988 /// IV users that belong to profitable IVChains. 1989 SmallPtrSet<Use*, MaxChains> IVIncSet; 1990 1991 /// Induction variables that were generated and inserted by the SCEV Expander. 1992 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 1993 1994 void OptimizeShadowIV(); 1995 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1996 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1997 void OptimizeLoopTermCond(); 1998 1999 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2000 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2001 void FinalizeChain(IVChain &Chain); 2002 void CollectChains(); 2003 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2004 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2005 2006 void CollectInterestingTypesAndFactors(); 2007 void CollectFixupsAndInitialFormulae(); 2008 2009 // Support for sharing of LSRUses between LSRFixups. 2010 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2011 UseMapTy UseMap; 2012 2013 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2014 LSRUse::KindType Kind, MemAccessTy AccessTy); 2015 2016 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2017 MemAccessTy AccessTy); 2018 2019 void DeleteUse(LSRUse &LU, size_t LUIdx); 2020 2021 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2022 2023 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2024 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2025 void CountRegisters(const Formula &F, size_t LUIdx); 2026 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2027 2028 void CollectLoopInvariantFixupsAndFormulae(); 2029 2030 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2031 unsigned Depth = 0); 2032 2033 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2034 const Formula &Base, unsigned Depth, 2035 size_t Idx, bool IsScaledReg = false); 2036 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2037 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2038 const Formula &Base, size_t Idx, 2039 bool IsScaledReg = false); 2040 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2041 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2042 const Formula &Base, 2043 const SmallVectorImpl<int64_t> &Worklist, 2044 size_t Idx, bool IsScaledReg = false); 2045 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2046 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2047 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2048 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2049 void GenerateCrossUseConstantOffsets(); 2050 void GenerateAllReuseFormulae(); 2051 2052 void FilterOutUndesirableDedicatedRegisters(); 2053 2054 size_t EstimateSearchSpaceComplexity() const; 2055 void NarrowSearchSpaceByDetectingSupersets(); 2056 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2057 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2058 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2059 void NarrowSearchSpaceByFilterPostInc(); 2060 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2061 void NarrowSearchSpaceByPickingWinnerRegs(); 2062 void NarrowSearchSpaceUsingHeuristics(); 2063 2064 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2065 Cost &SolutionCost, 2066 SmallVectorImpl<const Formula *> &Workspace, 2067 const Cost &CurCost, 2068 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2069 DenseSet<const SCEV *> &VisitedRegs) const; 2070 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2071 2072 BasicBlock::iterator 2073 HoistInsertPosition(BasicBlock::iterator IP, 2074 const SmallVectorImpl<Instruction *> &Inputs) const; 2075 BasicBlock::iterator 2076 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2077 const LSRFixup &LF, 2078 const LSRUse &LU, 2079 SCEVExpander &Rewriter) const; 2080 2081 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2082 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2083 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2084 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2085 const Formula &F, SCEVExpander &Rewriter, 2086 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2087 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2088 SCEVExpander &Rewriter, 2089 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2090 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2091 2092 public: 2093 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2094 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2095 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2096 2097 bool getChanged() const { return Changed; } 2098 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2099 return ScalarEvolutionIVs; 2100 } 2101 2102 void print_factors_and_types(raw_ostream &OS) const; 2103 void print_fixups(raw_ostream &OS) const; 2104 void print_uses(raw_ostream &OS) const; 2105 void print(raw_ostream &OS) const; 2106 void dump() const; 2107 }; 2108 2109 } // end anonymous namespace 2110 2111 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2112 /// the cast operation. 2113 void LSRInstance::OptimizeShadowIV() { 2114 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2115 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2116 return; 2117 2118 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2119 UI != E; /* empty */) { 2120 IVUsers::const_iterator CandidateUI = UI; 2121 ++UI; 2122 Instruction *ShadowUse = CandidateUI->getUser(); 2123 Type *DestTy = nullptr; 2124 bool IsSigned = false; 2125 2126 /* If shadow use is a int->float cast then insert a second IV 2127 to eliminate this cast. 2128 2129 for (unsigned i = 0; i < n; ++i) 2130 foo((double)i); 2131 2132 is transformed into 2133 2134 double d = 0.0; 2135 for (unsigned i = 0; i < n; ++i, ++d) 2136 foo(d); 2137 */ 2138 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2139 IsSigned = false; 2140 DestTy = UCast->getDestTy(); 2141 } 2142 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2143 IsSigned = true; 2144 DestTy = SCast->getDestTy(); 2145 } 2146 if (!DestTy) continue; 2147 2148 // If target does not support DestTy natively then do not apply 2149 // this transformation. 2150 if (!TTI.isTypeLegal(DestTy)) continue; 2151 2152 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2153 if (!PH) continue; 2154 if (PH->getNumIncomingValues() != 2) continue; 2155 2156 // If the calculation in integers overflows, the result in FP type will 2157 // differ. So we only can do this transformation if we are guaranteed to not 2158 // deal with overflowing values 2159 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2160 if (!AR) continue; 2161 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2162 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2163 2164 Type *SrcTy = PH->getType(); 2165 int Mantissa = DestTy->getFPMantissaWidth(); 2166 if (Mantissa == -1) continue; 2167 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2168 continue; 2169 2170 unsigned Entry, Latch; 2171 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2172 Entry = 0; 2173 Latch = 1; 2174 } else { 2175 Entry = 1; 2176 Latch = 0; 2177 } 2178 2179 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2180 if (!Init) continue; 2181 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2182 (double)Init->getSExtValue() : 2183 (double)Init->getZExtValue()); 2184 2185 BinaryOperator *Incr = 2186 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2187 if (!Incr) continue; 2188 if (Incr->getOpcode() != Instruction::Add 2189 && Incr->getOpcode() != Instruction::Sub) 2190 continue; 2191 2192 /* Initialize new IV, double d = 0.0 in above example. */ 2193 ConstantInt *C = nullptr; 2194 if (Incr->getOperand(0) == PH) 2195 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2196 else if (Incr->getOperand(1) == PH) 2197 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2198 else 2199 continue; 2200 2201 if (!C) continue; 2202 2203 // Ignore negative constants, as the code below doesn't handle them 2204 // correctly. TODO: Remove this restriction. 2205 if (!C->getValue().isStrictlyPositive()) continue; 2206 2207 /* Add new PHINode. */ 2208 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2209 2210 /* create new increment. '++d' in above example. */ 2211 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2212 BinaryOperator *NewIncr = 2213 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2214 Instruction::FAdd : Instruction::FSub, 2215 NewPH, CFP, "IV.S.next.", Incr); 2216 2217 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2218 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2219 2220 /* Remove cast operation */ 2221 ShadowUse->replaceAllUsesWith(NewPH); 2222 ShadowUse->eraseFromParent(); 2223 Changed = true; 2224 break; 2225 } 2226 } 2227 2228 /// If Cond has an operand that is an expression of an IV, set the IV user and 2229 /// stride information and return true, otherwise return false. 2230 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2231 for (IVStrideUse &U : IU) 2232 if (U.getUser() == Cond) { 2233 // NOTE: we could handle setcc instructions with multiple uses here, but 2234 // InstCombine does it as well for simple uses, it's not clear that it 2235 // occurs enough in real life to handle. 2236 CondUse = &U; 2237 return true; 2238 } 2239 return false; 2240 } 2241 2242 /// Rewrite the loop's terminating condition if it uses a max computation. 2243 /// 2244 /// This is a narrow solution to a specific, but acute, problem. For loops 2245 /// like this: 2246 /// 2247 /// i = 0; 2248 /// do { 2249 /// p[i] = 0.0; 2250 /// } while (++i < n); 2251 /// 2252 /// the trip count isn't just 'n', because 'n' might not be positive. And 2253 /// unfortunately this can come up even for loops where the user didn't use 2254 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2255 /// will commonly be lowered like this: 2256 /// 2257 /// if (n > 0) { 2258 /// i = 0; 2259 /// do { 2260 /// p[i] = 0.0; 2261 /// } while (++i < n); 2262 /// } 2263 /// 2264 /// and then it's possible for subsequent optimization to obscure the if 2265 /// test in such a way that indvars can't find it. 2266 /// 2267 /// When indvars can't find the if test in loops like this, it creates a 2268 /// max expression, which allows it to give the loop a canonical 2269 /// induction variable: 2270 /// 2271 /// i = 0; 2272 /// max = n < 1 ? 1 : n; 2273 /// do { 2274 /// p[i] = 0.0; 2275 /// } while (++i != max); 2276 /// 2277 /// Canonical induction variables are necessary because the loop passes 2278 /// are designed around them. The most obvious example of this is the 2279 /// LoopInfo analysis, which doesn't remember trip count values. It 2280 /// expects to be able to rediscover the trip count each time it is 2281 /// needed, and it does this using a simple analysis that only succeeds if 2282 /// the loop has a canonical induction variable. 2283 /// 2284 /// However, when it comes time to generate code, the maximum operation 2285 /// can be quite costly, especially if it's inside of an outer loop. 2286 /// 2287 /// This function solves this problem by detecting this type of loop and 2288 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2289 /// the instructions for the maximum computation. 2290 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2291 // Check that the loop matches the pattern we're looking for. 2292 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2293 Cond->getPredicate() != CmpInst::ICMP_NE) 2294 return Cond; 2295 2296 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2297 if (!Sel || !Sel->hasOneUse()) return Cond; 2298 2299 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2300 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2301 return Cond; 2302 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2303 2304 // Add one to the backedge-taken count to get the trip count. 2305 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2306 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2307 2308 // Check for a max calculation that matches the pattern. There's no check 2309 // for ICMP_ULE here because the comparison would be with zero, which 2310 // isn't interesting. 2311 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2312 const SCEVNAryExpr *Max = nullptr; 2313 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2314 Pred = ICmpInst::ICMP_SLE; 2315 Max = S; 2316 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2317 Pred = ICmpInst::ICMP_SLT; 2318 Max = S; 2319 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2320 Pred = ICmpInst::ICMP_ULT; 2321 Max = U; 2322 } else { 2323 // No match; bail. 2324 return Cond; 2325 } 2326 2327 // To handle a max with more than two operands, this optimization would 2328 // require additional checking and setup. 2329 if (Max->getNumOperands() != 2) 2330 return Cond; 2331 2332 const SCEV *MaxLHS = Max->getOperand(0); 2333 const SCEV *MaxRHS = Max->getOperand(1); 2334 2335 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2336 // for a comparison with 1. For <= and >=, a comparison with zero. 2337 if (!MaxLHS || 2338 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2339 return Cond; 2340 2341 // Check the relevant induction variable for conformance to 2342 // the pattern. 2343 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2344 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2345 if (!AR || !AR->isAffine() || 2346 AR->getStart() != One || 2347 AR->getStepRecurrence(SE) != One) 2348 return Cond; 2349 2350 assert(AR->getLoop() == L && 2351 "Loop condition operand is an addrec in a different loop!"); 2352 2353 // Check the right operand of the select, and remember it, as it will 2354 // be used in the new comparison instruction. 2355 Value *NewRHS = nullptr; 2356 if (ICmpInst::isTrueWhenEqual(Pred)) { 2357 // Look for n+1, and grab n. 2358 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2359 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2360 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2361 NewRHS = BO->getOperand(0); 2362 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2363 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2364 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2365 NewRHS = BO->getOperand(0); 2366 if (!NewRHS) 2367 return Cond; 2368 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2369 NewRHS = Sel->getOperand(1); 2370 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2371 NewRHS = Sel->getOperand(2); 2372 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2373 NewRHS = SU->getValue(); 2374 else 2375 // Max doesn't match expected pattern. 2376 return Cond; 2377 2378 // Determine the new comparison opcode. It may be signed or unsigned, 2379 // and the original comparison may be either equality or inequality. 2380 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2381 Pred = CmpInst::getInversePredicate(Pred); 2382 2383 // Ok, everything looks ok to change the condition into an SLT or SGE and 2384 // delete the max calculation. 2385 ICmpInst *NewCond = 2386 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2387 2388 // Delete the max calculation instructions. 2389 NewCond->setDebugLoc(Cond->getDebugLoc()); 2390 Cond->replaceAllUsesWith(NewCond); 2391 CondUse->setUser(NewCond); 2392 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2393 Cond->eraseFromParent(); 2394 Sel->eraseFromParent(); 2395 if (Cmp->use_empty()) 2396 Cmp->eraseFromParent(); 2397 return NewCond; 2398 } 2399 2400 /// Change loop terminating condition to use the postinc iv when possible. 2401 void 2402 LSRInstance::OptimizeLoopTermCond() { 2403 SmallPtrSet<Instruction *, 4> PostIncs; 2404 2405 // We need a different set of heuristics for rotated and non-rotated loops. 2406 // If a loop is rotated then the latch is also the backedge, so inserting 2407 // post-inc expressions just before the latch is ideal. To reduce live ranges 2408 // it also makes sense to rewrite terminating conditions to use post-inc 2409 // expressions. 2410 // 2411 // If the loop is not rotated then the latch is not a backedge; the latch 2412 // check is done in the loop head. Adding post-inc expressions before the 2413 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2414 // in the loop body. In this case we do *not* want to use post-inc expressions 2415 // in the latch check, and we want to insert post-inc expressions before 2416 // the backedge. 2417 BasicBlock *LatchBlock = L->getLoopLatch(); 2418 SmallVector<BasicBlock*, 8> ExitingBlocks; 2419 L->getExitingBlocks(ExitingBlocks); 2420 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2421 return LatchBlock != BB; 2422 })) { 2423 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2424 IVIncInsertPos = LatchBlock->getTerminator(); 2425 return; 2426 } 2427 2428 // Otherwise treat this as a rotated loop. 2429 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2430 // Get the terminating condition for the loop if possible. If we 2431 // can, we want to change it to use a post-incremented version of its 2432 // induction variable, to allow coalescing the live ranges for the IV into 2433 // one register value. 2434 2435 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2436 if (!TermBr) 2437 continue; 2438 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2439 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2440 continue; 2441 2442 // Search IVUsesByStride to find Cond's IVUse if there is one. 2443 IVStrideUse *CondUse = nullptr; 2444 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2445 if (!FindIVUserForCond(Cond, CondUse)) 2446 continue; 2447 2448 // If the trip count is computed in terms of a max (due to ScalarEvolution 2449 // being unable to find a sufficient guard, for example), change the loop 2450 // comparison to use SLT or ULT instead of NE. 2451 // One consequence of doing this now is that it disrupts the count-down 2452 // optimization. That's not always a bad thing though, because in such 2453 // cases it may still be worthwhile to avoid a max. 2454 Cond = OptimizeMax(Cond, CondUse); 2455 2456 // If this exiting block dominates the latch block, it may also use 2457 // the post-inc value if it won't be shared with other uses. 2458 // Check for dominance. 2459 if (!DT.dominates(ExitingBlock, LatchBlock)) 2460 continue; 2461 2462 // Conservatively avoid trying to use the post-inc value in non-latch 2463 // exits if there may be pre-inc users in intervening blocks. 2464 if (LatchBlock != ExitingBlock) 2465 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2466 // Test if the use is reachable from the exiting block. This dominator 2467 // query is a conservative approximation of reachability. 2468 if (&*UI != CondUse && 2469 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2470 // Conservatively assume there may be reuse if the quotient of their 2471 // strides could be a legal scale. 2472 const SCEV *A = IU.getStride(*CondUse, L); 2473 const SCEV *B = IU.getStride(*UI, L); 2474 if (!A || !B) continue; 2475 if (SE.getTypeSizeInBits(A->getType()) != 2476 SE.getTypeSizeInBits(B->getType())) { 2477 if (SE.getTypeSizeInBits(A->getType()) > 2478 SE.getTypeSizeInBits(B->getType())) 2479 B = SE.getSignExtendExpr(B, A->getType()); 2480 else 2481 A = SE.getSignExtendExpr(A, B->getType()); 2482 } 2483 if (const SCEVConstant *D = 2484 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2485 const ConstantInt *C = D->getValue(); 2486 // Stride of one or negative one can have reuse with non-addresses. 2487 if (C->isOne() || C->isMinusOne()) 2488 goto decline_post_inc; 2489 // Avoid weird situations. 2490 if (C->getValue().getMinSignedBits() >= 64 || 2491 C->getValue().isMinSignedValue()) 2492 goto decline_post_inc; 2493 // Check for possible scaled-address reuse. 2494 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2495 MemAccessTy AccessTy = getAccessType( 2496 TTI, UI->getUser(), UI->getOperandValToReplace()); 2497 int64_t Scale = C->getSExtValue(); 2498 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2499 /*BaseOffset=*/0, 2500 /*HasBaseReg=*/false, Scale, 2501 AccessTy.AddrSpace)) 2502 goto decline_post_inc; 2503 Scale = -Scale; 2504 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2505 /*BaseOffset=*/0, 2506 /*HasBaseReg=*/false, Scale, 2507 AccessTy.AddrSpace)) 2508 goto decline_post_inc; 2509 } 2510 } 2511 } 2512 2513 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2514 << *Cond << '\n'); 2515 2516 // It's possible for the setcc instruction to be anywhere in the loop, and 2517 // possible for it to have multiple users. If it is not immediately before 2518 // the exiting block branch, move it. 2519 if (Cond->getNextNonDebugInstruction() != TermBr) { 2520 if (Cond->hasOneUse()) { 2521 Cond->moveBefore(TermBr); 2522 } else { 2523 // Clone the terminating condition and insert into the loopend. 2524 ICmpInst *OldCond = Cond; 2525 Cond = cast<ICmpInst>(Cond->clone()); 2526 Cond->setName(L->getHeader()->getName() + ".termcond"); 2527 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2528 2529 // Clone the IVUse, as the old use still exists! 2530 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2531 TermBr->replaceUsesOfWith(OldCond, Cond); 2532 } 2533 } 2534 2535 // If we get to here, we know that we can transform the setcc instruction to 2536 // use the post-incremented version of the IV, allowing us to coalesce the 2537 // live ranges for the IV correctly. 2538 CondUse->transformToPostInc(L); 2539 Changed = true; 2540 2541 PostIncs.insert(Cond); 2542 decline_post_inc:; 2543 } 2544 2545 // Determine an insertion point for the loop induction variable increment. It 2546 // must dominate all the post-inc comparisons we just set up, and it must 2547 // dominate the loop latch edge. 2548 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2549 for (Instruction *Inst : PostIncs) { 2550 BasicBlock *BB = 2551 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2552 Inst->getParent()); 2553 if (BB == Inst->getParent()) 2554 IVIncInsertPos = Inst; 2555 else if (BB != IVIncInsertPos->getParent()) 2556 IVIncInsertPos = BB->getTerminator(); 2557 } 2558 } 2559 2560 /// Determine if the given use can accommodate a fixup at the given offset and 2561 /// other details. If so, update the use and return true. 2562 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2563 bool HasBaseReg, LSRUse::KindType Kind, 2564 MemAccessTy AccessTy) { 2565 int64_t NewMinOffset = LU.MinOffset; 2566 int64_t NewMaxOffset = LU.MaxOffset; 2567 MemAccessTy NewAccessTy = AccessTy; 2568 2569 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2570 // something conservative, however this can pessimize in the case that one of 2571 // the uses will have all its uses outside the loop, for example. 2572 if (LU.Kind != Kind) 2573 return false; 2574 2575 // Check for a mismatched access type, and fall back conservatively as needed. 2576 // TODO: Be less conservative when the type is similar and can use the same 2577 // addressing modes. 2578 if (Kind == LSRUse::Address) { 2579 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2580 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2581 AccessTy.AddrSpace); 2582 } 2583 } 2584 2585 // Conservatively assume HasBaseReg is true for now. 2586 if (NewOffset < LU.MinOffset) { 2587 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2588 LU.MaxOffset - NewOffset, HasBaseReg)) 2589 return false; 2590 NewMinOffset = NewOffset; 2591 } else if (NewOffset > LU.MaxOffset) { 2592 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2593 NewOffset - LU.MinOffset, HasBaseReg)) 2594 return false; 2595 NewMaxOffset = NewOffset; 2596 } 2597 2598 // Update the use. 2599 LU.MinOffset = NewMinOffset; 2600 LU.MaxOffset = NewMaxOffset; 2601 LU.AccessTy = NewAccessTy; 2602 return true; 2603 } 2604 2605 /// Return an LSRUse index and an offset value for a fixup which needs the given 2606 /// expression, with the given kind and optional access type. Either reuse an 2607 /// existing use or create a new one, as needed. 2608 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2609 LSRUse::KindType Kind, 2610 MemAccessTy AccessTy) { 2611 const SCEV *Copy = Expr; 2612 int64_t Offset = ExtractImmediate(Expr, SE); 2613 2614 // Basic uses can't accept any offset, for example. 2615 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2616 Offset, /*HasBaseReg=*/ true)) { 2617 Expr = Copy; 2618 Offset = 0; 2619 } 2620 2621 std::pair<UseMapTy::iterator, bool> P = 2622 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2623 if (!P.second) { 2624 // A use already existed with this base. 2625 size_t LUIdx = P.first->second; 2626 LSRUse &LU = Uses[LUIdx]; 2627 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2628 // Reuse this use. 2629 return std::make_pair(LUIdx, Offset); 2630 } 2631 2632 // Create a new use. 2633 size_t LUIdx = Uses.size(); 2634 P.first->second = LUIdx; 2635 Uses.push_back(LSRUse(Kind, AccessTy)); 2636 LSRUse &LU = Uses[LUIdx]; 2637 2638 LU.MinOffset = Offset; 2639 LU.MaxOffset = Offset; 2640 return std::make_pair(LUIdx, Offset); 2641 } 2642 2643 /// Delete the given use from the Uses list. 2644 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2645 if (&LU != &Uses.back()) 2646 std::swap(LU, Uses.back()); 2647 Uses.pop_back(); 2648 2649 // Update RegUses. 2650 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2651 } 2652 2653 /// Look for a use distinct from OrigLU which is has a formula that has the same 2654 /// registers as the given formula. 2655 LSRUse * 2656 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2657 const LSRUse &OrigLU) { 2658 // Search all uses for the formula. This could be more clever. 2659 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2660 LSRUse &LU = Uses[LUIdx]; 2661 // Check whether this use is close enough to OrigLU, to see whether it's 2662 // worthwhile looking through its formulae. 2663 // Ignore ICmpZero uses because they may contain formulae generated by 2664 // GenerateICmpZeroScales, in which case adding fixup offsets may 2665 // be invalid. 2666 if (&LU != &OrigLU && 2667 LU.Kind != LSRUse::ICmpZero && 2668 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2669 LU.WidestFixupType == OrigLU.WidestFixupType && 2670 LU.HasFormulaWithSameRegs(OrigF)) { 2671 // Scan through this use's formulae. 2672 for (const Formula &F : LU.Formulae) { 2673 // Check to see if this formula has the same registers and symbols 2674 // as OrigF. 2675 if (F.BaseRegs == OrigF.BaseRegs && 2676 F.ScaledReg == OrigF.ScaledReg && 2677 F.BaseGV == OrigF.BaseGV && 2678 F.Scale == OrigF.Scale && 2679 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2680 if (F.BaseOffset == 0) 2681 return &LU; 2682 // This is the formula where all the registers and symbols matched; 2683 // there aren't going to be any others. Since we declined it, we 2684 // can skip the rest of the formulae and proceed to the next LSRUse. 2685 break; 2686 } 2687 } 2688 } 2689 } 2690 2691 // Nothing looked good. 2692 return nullptr; 2693 } 2694 2695 void LSRInstance::CollectInterestingTypesAndFactors() { 2696 SmallSetVector<const SCEV *, 4> Strides; 2697 2698 // Collect interesting types and strides. 2699 SmallVector<const SCEV *, 4> Worklist; 2700 for (const IVStrideUse &U : IU) { 2701 const SCEV *Expr = IU.getExpr(U); 2702 2703 // Collect interesting types. 2704 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2705 2706 // Add strides for mentioned loops. 2707 Worklist.push_back(Expr); 2708 do { 2709 const SCEV *S = Worklist.pop_back_val(); 2710 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2711 if (AR->getLoop() == L) 2712 Strides.insert(AR->getStepRecurrence(SE)); 2713 Worklist.push_back(AR->getStart()); 2714 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2715 Worklist.append(Add->op_begin(), Add->op_end()); 2716 } 2717 } while (!Worklist.empty()); 2718 } 2719 2720 // Compute interesting factors from the set of interesting strides. 2721 for (SmallSetVector<const SCEV *, 4>::const_iterator 2722 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2723 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2724 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2725 const SCEV *OldStride = *I; 2726 const SCEV *NewStride = *NewStrideIter; 2727 2728 if (SE.getTypeSizeInBits(OldStride->getType()) != 2729 SE.getTypeSizeInBits(NewStride->getType())) { 2730 if (SE.getTypeSizeInBits(OldStride->getType()) > 2731 SE.getTypeSizeInBits(NewStride->getType())) 2732 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2733 else 2734 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2735 } 2736 if (const SCEVConstant *Factor = 2737 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2738 SE, true))) { 2739 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2740 Factors.insert(Factor->getAPInt().getSExtValue()); 2741 } else if (const SCEVConstant *Factor = 2742 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2743 NewStride, 2744 SE, true))) { 2745 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2746 Factors.insert(Factor->getAPInt().getSExtValue()); 2747 } 2748 } 2749 2750 // If all uses use the same type, don't bother looking for truncation-based 2751 // reuse. 2752 if (Types.size() == 1) 2753 Types.clear(); 2754 2755 LLVM_DEBUG(print_factors_and_types(dbgs())); 2756 } 2757 2758 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2759 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2760 /// IVStrideUses, we could partially skip this. 2761 static User::op_iterator 2762 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2763 Loop *L, ScalarEvolution &SE) { 2764 for(; OI != OE; ++OI) { 2765 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2766 if (!SE.isSCEVable(Oper->getType())) 2767 continue; 2768 2769 if (const SCEVAddRecExpr *AR = 2770 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2771 if (AR->getLoop() == L) 2772 break; 2773 } 2774 } 2775 } 2776 return OI; 2777 } 2778 2779 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2780 /// a convenient helper. 2781 static Value *getWideOperand(Value *Oper) { 2782 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2783 return Trunc->getOperand(0); 2784 return Oper; 2785 } 2786 2787 /// Return true if we allow an IV chain to include both types. 2788 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2789 Type *LType = LVal->getType(); 2790 Type *RType = RVal->getType(); 2791 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2792 // Different address spaces means (possibly) 2793 // different types of the pointer implementation, 2794 // e.g. i16 vs i32 so disallow that. 2795 (LType->getPointerAddressSpace() == 2796 RType->getPointerAddressSpace())); 2797 } 2798 2799 /// Return an approximation of this SCEV expression's "base", or NULL for any 2800 /// constant. Returning the expression itself is conservative. Returning a 2801 /// deeper subexpression is more precise and valid as long as it isn't less 2802 /// complex than another subexpression. For expressions involving multiple 2803 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2804 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2805 /// IVInc==b-a. 2806 /// 2807 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2808 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2809 static const SCEV *getExprBase(const SCEV *S) { 2810 switch (S->getSCEVType()) { 2811 default: // uncluding scUnknown. 2812 return S; 2813 case scConstant: 2814 return nullptr; 2815 case scTruncate: 2816 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2817 case scZeroExtend: 2818 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2819 case scSignExtend: 2820 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2821 case scAddExpr: { 2822 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2823 // there's nothing more complex. 2824 // FIXME: not sure if we want to recognize negation. 2825 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2826 for (const SCEV *SubExpr : reverse(Add->operands())) { 2827 if (SubExpr->getSCEVType() == scAddExpr) 2828 return getExprBase(SubExpr); 2829 2830 if (SubExpr->getSCEVType() != scMulExpr) 2831 return SubExpr; 2832 } 2833 return S; // all operands are scaled, be conservative. 2834 } 2835 case scAddRecExpr: 2836 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2837 } 2838 llvm_unreachable("Unknown SCEV kind!"); 2839 } 2840 2841 /// Return true if the chain increment is profitable to expand into a loop 2842 /// invariant value, which may require its own register. A profitable chain 2843 /// increment will be an offset relative to the same base. We allow such offsets 2844 /// to potentially be used as chain increment as long as it's not obviously 2845 /// expensive to expand using real instructions. 2846 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2847 const SCEV *IncExpr, 2848 ScalarEvolution &SE) { 2849 // Aggressively form chains when -stress-ivchain. 2850 if (StressIVChain) 2851 return true; 2852 2853 // Do not replace a constant offset from IV head with a nonconstant IV 2854 // increment. 2855 if (!isa<SCEVConstant>(IncExpr)) { 2856 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2857 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2858 return false; 2859 } 2860 2861 SmallPtrSet<const SCEV*, 8> Processed; 2862 return !isHighCostExpansion(IncExpr, Processed, SE); 2863 } 2864 2865 /// Return true if the number of registers needed for the chain is estimated to 2866 /// be less than the number required for the individual IV users. First prohibit 2867 /// any IV users that keep the IV live across increments (the Users set should 2868 /// be empty). Next count the number and type of increments in the chain. 2869 /// 2870 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2871 /// effectively use postinc addressing modes. Only consider it profitable it the 2872 /// increments can be computed in fewer registers when chained. 2873 /// 2874 /// TODO: Consider IVInc free if it's already used in another chains. 2875 static bool isProfitableChain(IVChain &Chain, 2876 SmallPtrSetImpl<Instruction *> &Users, 2877 ScalarEvolution &SE, 2878 const TargetTransformInfo &TTI) { 2879 if (StressIVChain) 2880 return true; 2881 2882 if (!Chain.hasIncs()) 2883 return false; 2884 2885 if (!Users.empty()) { 2886 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2887 for (Instruction *Inst 2888 : Users) { dbgs() << " " << *Inst << "\n"; }); 2889 return false; 2890 } 2891 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2892 2893 // The chain itself may require a register, so intialize cost to 1. 2894 int cost = 1; 2895 2896 // A complete chain likely eliminates the need for keeping the original IV in 2897 // a register. LSR does not currently know how to form a complete chain unless 2898 // the header phi already exists. 2899 if (isa<PHINode>(Chain.tailUserInst()) 2900 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2901 --cost; 2902 } 2903 const SCEV *LastIncExpr = nullptr; 2904 unsigned NumConstIncrements = 0; 2905 unsigned NumVarIncrements = 0; 2906 unsigned NumReusedIncrements = 0; 2907 2908 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2909 return true; 2910 2911 for (const IVInc &Inc : Chain) { 2912 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2913 return true; 2914 if (Inc.IncExpr->isZero()) 2915 continue; 2916 2917 // Incrementing by zero or some constant is neutral. We assume constants can 2918 // be folded into an addressing mode or an add's immediate operand. 2919 if (isa<SCEVConstant>(Inc.IncExpr)) { 2920 ++NumConstIncrements; 2921 continue; 2922 } 2923 2924 if (Inc.IncExpr == LastIncExpr) 2925 ++NumReusedIncrements; 2926 else 2927 ++NumVarIncrements; 2928 2929 LastIncExpr = Inc.IncExpr; 2930 } 2931 // An IV chain with a single increment is handled by LSR's postinc 2932 // uses. However, a chain with multiple increments requires keeping the IV's 2933 // value live longer than it needs to be if chained. 2934 if (NumConstIncrements > 1) 2935 --cost; 2936 2937 // Materializing increment expressions in the preheader that didn't exist in 2938 // the original code may cost a register. For example, sign-extended array 2939 // indices can produce ridiculous increments like this: 2940 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2941 cost += NumVarIncrements; 2942 2943 // Reusing variable increments likely saves a register to hold the multiple of 2944 // the stride. 2945 cost -= NumReusedIncrements; 2946 2947 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2948 << "\n"); 2949 2950 return cost < 0; 2951 } 2952 2953 /// Add this IV user to an existing chain or make it the head of a new chain. 2954 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2955 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2956 // When IVs are used as types of varying widths, they are generally converted 2957 // to a wider type with some uses remaining narrow under a (free) trunc. 2958 Value *const NextIV = getWideOperand(IVOper); 2959 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2960 const SCEV *const OperExprBase = getExprBase(OperExpr); 2961 2962 // Visit all existing chains. Check if its IVOper can be computed as a 2963 // profitable loop invariant increment from the last link in the Chain. 2964 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2965 const SCEV *LastIncExpr = nullptr; 2966 for (; ChainIdx < NChains; ++ChainIdx) { 2967 IVChain &Chain = IVChainVec[ChainIdx]; 2968 2969 // Prune the solution space aggressively by checking that both IV operands 2970 // are expressions that operate on the same unscaled SCEVUnknown. This 2971 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2972 // first avoids creating extra SCEV expressions. 2973 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2974 continue; 2975 2976 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2977 if (!isCompatibleIVType(PrevIV, NextIV)) 2978 continue; 2979 2980 // A phi node terminates a chain. 2981 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2982 continue; 2983 2984 // The increment must be loop-invariant so it can be kept in a register. 2985 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2986 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2987 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2988 continue; 2989 2990 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2991 LastIncExpr = IncExpr; 2992 break; 2993 } 2994 } 2995 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2996 // bother for phi nodes, because they must be last in the chain. 2997 if (ChainIdx == NChains) { 2998 if (isa<PHINode>(UserInst)) 2999 return; 3000 if (NChains >= MaxChains && !StressIVChain) { 3001 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3002 return; 3003 } 3004 LastIncExpr = OperExpr; 3005 // IVUsers may have skipped over sign/zero extensions. We don't currently 3006 // attempt to form chains involving extensions unless they can be hoisted 3007 // into this loop's AddRec. 3008 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3009 return; 3010 ++NChains; 3011 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3012 OperExprBase)); 3013 ChainUsersVec.resize(NChains); 3014 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3015 << ") IV=" << *LastIncExpr << "\n"); 3016 } else { 3017 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3018 << ") IV+" << *LastIncExpr << "\n"); 3019 // Add this IV user to the end of the chain. 3020 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3021 } 3022 IVChain &Chain = IVChainVec[ChainIdx]; 3023 3024 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3025 // This chain's NearUsers become FarUsers. 3026 if (!LastIncExpr->isZero()) { 3027 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3028 NearUsers.end()); 3029 NearUsers.clear(); 3030 } 3031 3032 // All other uses of IVOperand become near uses of the chain. 3033 // We currently ignore intermediate values within SCEV expressions, assuming 3034 // they will eventually be used be the current chain, or can be computed 3035 // from one of the chain increments. To be more precise we could 3036 // transitively follow its user and only add leaf IV users to the set. 3037 for (User *U : IVOper->users()) { 3038 Instruction *OtherUse = dyn_cast<Instruction>(U); 3039 if (!OtherUse) 3040 continue; 3041 // Uses in the chain will no longer be uses if the chain is formed. 3042 // Include the head of the chain in this iteration (not Chain.begin()). 3043 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3044 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3045 for( ; IncIter != IncEnd; ++IncIter) { 3046 if (IncIter->UserInst == OtherUse) 3047 break; 3048 } 3049 if (IncIter != IncEnd) 3050 continue; 3051 3052 if (SE.isSCEVable(OtherUse->getType()) 3053 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3054 && IU.isIVUserOrOperand(OtherUse)) { 3055 continue; 3056 } 3057 NearUsers.insert(OtherUse); 3058 } 3059 3060 // Since this user is part of the chain, it's no longer considered a use 3061 // of the chain. 3062 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3063 } 3064 3065 /// Populate the vector of Chains. 3066 /// 3067 /// This decreases ILP at the architecture level. Targets with ample registers, 3068 /// multiple memory ports, and no register renaming probably don't want 3069 /// this. However, such targets should probably disable LSR altogether. 3070 /// 3071 /// The job of LSR is to make a reasonable choice of induction variables across 3072 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3073 /// ILP *within the loop* if the target wants it. 3074 /// 3075 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3076 /// will not reorder memory operations, it will recognize this as a chain, but 3077 /// will generate redundant IV increments. Ideally this would be corrected later 3078 /// by a smart scheduler: 3079 /// = A[i] 3080 /// = A[i+x] 3081 /// A[i] = 3082 /// A[i+x] = 3083 /// 3084 /// TODO: Walk the entire domtree within this loop, not just the path to the 3085 /// loop latch. This will discover chains on side paths, but requires 3086 /// maintaining multiple copies of the Chains state. 3087 void LSRInstance::CollectChains() { 3088 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3089 SmallVector<ChainUsers, 8> ChainUsersVec; 3090 3091 SmallVector<BasicBlock *,8> LatchPath; 3092 BasicBlock *LoopHeader = L->getHeader(); 3093 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3094 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3095 LatchPath.push_back(Rung->getBlock()); 3096 } 3097 LatchPath.push_back(LoopHeader); 3098 3099 // Walk the instruction stream from the loop header to the loop latch. 3100 for (BasicBlock *BB : reverse(LatchPath)) { 3101 for (Instruction &I : *BB) { 3102 // Skip instructions that weren't seen by IVUsers analysis. 3103 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3104 continue; 3105 3106 // Ignore users that are part of a SCEV expression. This way we only 3107 // consider leaf IV Users. This effectively rediscovers a portion of 3108 // IVUsers analysis but in program order this time. 3109 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3110 continue; 3111 3112 // Remove this instruction from any NearUsers set it may be in. 3113 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3114 ChainIdx < NChains; ++ChainIdx) { 3115 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3116 } 3117 // Search for operands that can be chained. 3118 SmallPtrSet<Instruction*, 4> UniqueOperands; 3119 User::op_iterator IVOpEnd = I.op_end(); 3120 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3121 while (IVOpIter != IVOpEnd) { 3122 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3123 if (UniqueOperands.insert(IVOpInst).second) 3124 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3125 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3126 } 3127 } // Continue walking down the instructions. 3128 } // Continue walking down the domtree. 3129 // Visit phi backedges to determine if the chain can generate the IV postinc. 3130 for (PHINode &PN : L->getHeader()->phis()) { 3131 if (!SE.isSCEVable(PN.getType())) 3132 continue; 3133 3134 Instruction *IncV = 3135 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3136 if (IncV) 3137 ChainInstruction(&PN, IncV, ChainUsersVec); 3138 } 3139 // Remove any unprofitable chains. 3140 unsigned ChainIdx = 0; 3141 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3142 UsersIdx < NChains; ++UsersIdx) { 3143 if (!isProfitableChain(IVChainVec[UsersIdx], 3144 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3145 continue; 3146 // Preserve the chain at UsesIdx. 3147 if (ChainIdx != UsersIdx) 3148 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3149 FinalizeChain(IVChainVec[ChainIdx]); 3150 ++ChainIdx; 3151 } 3152 IVChainVec.resize(ChainIdx); 3153 } 3154 3155 void LSRInstance::FinalizeChain(IVChain &Chain) { 3156 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3157 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3158 3159 for (const IVInc &Inc : Chain) { 3160 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3161 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3162 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3163 IVIncSet.insert(UseI); 3164 } 3165 } 3166 3167 /// Return true if the IVInc can be folded into an addressing mode. 3168 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3169 Value *Operand, const TargetTransformInfo &TTI) { 3170 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3171 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3172 return false; 3173 3174 if (IncConst->getAPInt().getMinSignedBits() > 64) 3175 return false; 3176 3177 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3178 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3179 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3180 IncOffset, /*HasBaseReg=*/false)) 3181 return false; 3182 3183 return true; 3184 } 3185 3186 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3187 /// user's operand from the previous IV user's operand. 3188 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3189 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3190 // Find the new IVOperand for the head of the chain. It may have been replaced 3191 // by LSR. 3192 const IVInc &Head = Chain.Incs[0]; 3193 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3194 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3195 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3196 IVOpEnd, L, SE); 3197 Value *IVSrc = nullptr; 3198 while (IVOpIter != IVOpEnd) { 3199 IVSrc = getWideOperand(*IVOpIter); 3200 3201 // If this operand computes the expression that the chain needs, we may use 3202 // it. (Check this after setting IVSrc which is used below.) 3203 // 3204 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3205 // narrow for the chain, so we can no longer use it. We do allow using a 3206 // wider phi, assuming the LSR checked for free truncation. In that case we 3207 // should already have a truncate on this operand such that 3208 // getSCEV(IVSrc) == IncExpr. 3209 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3210 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3211 break; 3212 } 3213 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3214 } 3215 if (IVOpIter == IVOpEnd) { 3216 // Gracefully give up on this chain. 3217 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3218 return; 3219 } 3220 assert(IVSrc && "Failed to find IV chain source"); 3221 3222 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3223 Type *IVTy = IVSrc->getType(); 3224 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3225 const SCEV *LeftOverExpr = nullptr; 3226 for (const IVInc &Inc : Chain) { 3227 Instruction *InsertPt = Inc.UserInst; 3228 if (isa<PHINode>(InsertPt)) 3229 InsertPt = L->getLoopLatch()->getTerminator(); 3230 3231 // IVOper will replace the current IV User's operand. IVSrc is the IV 3232 // value currently held in a register. 3233 Value *IVOper = IVSrc; 3234 if (!Inc.IncExpr->isZero()) { 3235 // IncExpr was the result of subtraction of two narrow values, so must 3236 // be signed. 3237 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3238 LeftOverExpr = LeftOverExpr ? 3239 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3240 } 3241 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3242 // Expand the IV increment. 3243 Rewriter.clearPostInc(); 3244 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3245 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3246 SE.getUnknown(IncV)); 3247 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3248 3249 // If an IV increment can't be folded, use it as the next IV value. 3250 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3251 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3252 IVSrc = IVOper; 3253 LeftOverExpr = nullptr; 3254 } 3255 } 3256 Type *OperTy = Inc.IVOperand->getType(); 3257 if (IVTy != OperTy) { 3258 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3259 "cannot extend a chained IV"); 3260 IRBuilder<> Builder(InsertPt); 3261 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3262 } 3263 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3264 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3265 DeadInsts.emplace_back(OperandIsInstr); 3266 } 3267 // If LSR created a new, wider phi, we may also replace its postinc. We only 3268 // do this if we also found a wide value for the head of the chain. 3269 if (isa<PHINode>(Chain.tailUserInst())) { 3270 for (PHINode &Phi : L->getHeader()->phis()) { 3271 if (!isCompatibleIVType(&Phi, IVSrc)) 3272 continue; 3273 Instruction *PostIncV = dyn_cast<Instruction>( 3274 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3275 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3276 continue; 3277 Value *IVOper = IVSrc; 3278 Type *PostIncTy = PostIncV->getType(); 3279 if (IVTy != PostIncTy) { 3280 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3281 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3282 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3283 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3284 } 3285 Phi.replaceUsesOfWith(PostIncV, IVOper); 3286 DeadInsts.emplace_back(PostIncV); 3287 } 3288 } 3289 } 3290 3291 void LSRInstance::CollectFixupsAndInitialFormulae() { 3292 BranchInst *ExitBranch = nullptr; 3293 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3294 3295 for (const IVStrideUse &U : IU) { 3296 Instruction *UserInst = U.getUser(); 3297 // Skip IV users that are part of profitable IV Chains. 3298 User::op_iterator UseI = 3299 find(UserInst->operands(), U.getOperandValToReplace()); 3300 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3301 if (IVIncSet.count(UseI)) { 3302 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3303 continue; 3304 } 3305 3306 LSRUse::KindType Kind = LSRUse::Basic; 3307 MemAccessTy AccessTy; 3308 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3309 Kind = LSRUse::Address; 3310 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3311 } 3312 3313 const SCEV *S = IU.getExpr(U); 3314 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3315 3316 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3317 // (N - i == 0), and this allows (N - i) to be the expression that we work 3318 // with rather than just N or i, so we can consider the register 3319 // requirements for both N and i at the same time. Limiting this code to 3320 // equality icmps is not a problem because all interesting loops use 3321 // equality icmps, thanks to IndVarSimplify. 3322 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3323 // If CI can be saved in some target, like replaced inside hardware loop 3324 // in PowerPC, no need to generate initial formulae for it. 3325 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3326 continue; 3327 if (CI->isEquality()) { 3328 // Swap the operands if needed to put the OperandValToReplace on the 3329 // left, for consistency. 3330 Value *NV = CI->getOperand(1); 3331 if (NV == U.getOperandValToReplace()) { 3332 CI->setOperand(1, CI->getOperand(0)); 3333 CI->setOperand(0, NV); 3334 NV = CI->getOperand(1); 3335 Changed = true; 3336 } 3337 3338 // x == y --> x - y == 0 3339 const SCEV *N = SE.getSCEV(NV); 3340 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3341 (!NV->getType()->isPointerTy() || 3342 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3343 // S is normalized, so normalize N before folding it into S 3344 // to keep the result normalized. 3345 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3346 Kind = LSRUse::ICmpZero; 3347 S = SE.getMinusSCEV(N, S); 3348 } 3349 3350 // -1 and the negations of all interesting strides (except the negation 3351 // of -1) are now also interesting. 3352 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3353 if (Factors[i] != -1) 3354 Factors.insert(-(uint64_t)Factors[i]); 3355 Factors.insert(-1); 3356 } 3357 } 3358 3359 // Get or create an LSRUse. 3360 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3361 size_t LUIdx = P.first; 3362 int64_t Offset = P.second; 3363 LSRUse &LU = Uses[LUIdx]; 3364 3365 // Record the fixup. 3366 LSRFixup &LF = LU.getNewFixup(); 3367 LF.UserInst = UserInst; 3368 LF.OperandValToReplace = U.getOperandValToReplace(); 3369 LF.PostIncLoops = TmpPostIncLoops; 3370 LF.Offset = Offset; 3371 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3372 3373 if (!LU.WidestFixupType || 3374 SE.getTypeSizeInBits(LU.WidestFixupType) < 3375 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3376 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3377 3378 // If this is the first use of this LSRUse, give it a formula. 3379 if (LU.Formulae.empty()) { 3380 InsertInitialFormula(S, LU, LUIdx); 3381 CountRegisters(LU.Formulae.back(), LUIdx); 3382 } 3383 } 3384 3385 LLVM_DEBUG(print_fixups(dbgs())); 3386 } 3387 3388 /// Insert a formula for the given expression into the given use, separating out 3389 /// loop-variant portions from loop-invariant and loop-computable portions. 3390 void 3391 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3392 // Mark uses whose expressions cannot be expanded. 3393 if (!isSafeToExpand(S, SE, /*CanonicalMode*/ false)) 3394 LU.RigidFormula = true; 3395 3396 Formula F; 3397 F.initialMatch(S, L, SE); 3398 bool Inserted = InsertFormula(LU, LUIdx, F); 3399 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3400 } 3401 3402 /// Insert a simple single-register formula for the given expression into the 3403 /// given use. 3404 void 3405 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3406 LSRUse &LU, size_t LUIdx) { 3407 Formula F; 3408 F.BaseRegs.push_back(S); 3409 F.HasBaseReg = true; 3410 bool Inserted = InsertFormula(LU, LUIdx, F); 3411 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3412 } 3413 3414 /// Note which registers are used by the given formula, updating RegUses. 3415 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3416 if (F.ScaledReg) 3417 RegUses.countRegister(F.ScaledReg, LUIdx); 3418 for (const SCEV *BaseReg : F.BaseRegs) 3419 RegUses.countRegister(BaseReg, LUIdx); 3420 } 3421 3422 /// If the given formula has not yet been inserted, add it to the list, and 3423 /// return true. Return false otherwise. 3424 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3425 // Do not insert formula that we will not be able to expand. 3426 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3427 "Formula is illegal"); 3428 3429 if (!LU.InsertFormula(F, *L)) 3430 return false; 3431 3432 CountRegisters(F, LUIdx); 3433 return true; 3434 } 3435 3436 /// Check for other uses of loop-invariant values which we're tracking. These 3437 /// other uses will pin these values in registers, making them less profitable 3438 /// for elimination. 3439 /// TODO: This currently misses non-constant addrec step registers. 3440 /// TODO: Should this give more weight to users inside the loop? 3441 void 3442 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3443 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3444 SmallPtrSet<const SCEV *, 32> Visited; 3445 3446 while (!Worklist.empty()) { 3447 const SCEV *S = Worklist.pop_back_val(); 3448 3449 // Don't process the same SCEV twice 3450 if (!Visited.insert(S).second) 3451 continue; 3452 3453 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3454 Worklist.append(N->op_begin(), N->op_end()); 3455 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3456 Worklist.push_back(C->getOperand()); 3457 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3458 Worklist.push_back(D->getLHS()); 3459 Worklist.push_back(D->getRHS()); 3460 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3461 const Value *V = US->getValue(); 3462 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3463 // Look for instructions defined outside the loop. 3464 if (L->contains(Inst)) continue; 3465 } else if (isa<UndefValue>(V)) 3466 // Undef doesn't have a live range, so it doesn't matter. 3467 continue; 3468 for (const Use &U : V->uses()) { 3469 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3470 // Ignore non-instructions. 3471 if (!UserInst) 3472 continue; 3473 // Don't bother if the instruction is an EHPad. 3474 if (UserInst->isEHPad()) 3475 continue; 3476 // Ignore instructions in other functions (as can happen with 3477 // Constants). 3478 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3479 continue; 3480 // Ignore instructions not dominated by the loop. 3481 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3482 UserInst->getParent() : 3483 cast<PHINode>(UserInst)->getIncomingBlock( 3484 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3485 if (!DT.dominates(L->getHeader(), UseBB)) 3486 continue; 3487 // Don't bother if the instruction is in a BB which ends in an EHPad. 3488 if (UseBB->getTerminator()->isEHPad()) 3489 continue; 3490 3491 // Ignore cases in which the currently-examined value could come from 3492 // a basic block terminated with an EHPad. This checks all incoming 3493 // blocks of the phi node since it is possible that the same incoming 3494 // value comes from multiple basic blocks, only some of which may end 3495 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3496 // pass would try to insert instructions into an EHPad, hitting an 3497 // assertion. 3498 if (isa<PHINode>(UserInst)) { 3499 const auto *PhiNode = cast<PHINode>(UserInst); 3500 bool HasIncompatibleEHPTerminatedBlock = false; 3501 llvm::Value *ExpectedValue = U; 3502 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3503 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3504 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3505 HasIncompatibleEHPTerminatedBlock = true; 3506 break; 3507 } 3508 } 3509 } 3510 if (HasIncompatibleEHPTerminatedBlock) { 3511 continue; 3512 } 3513 } 3514 3515 // Don't bother rewriting PHIs in catchswitch blocks. 3516 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3517 continue; 3518 // Ignore uses which are part of other SCEV expressions, to avoid 3519 // analyzing them multiple times. 3520 if (SE.isSCEVable(UserInst->getType())) { 3521 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3522 // If the user is a no-op, look through to its uses. 3523 if (!isa<SCEVUnknown>(UserS)) 3524 continue; 3525 if (UserS == US) { 3526 Worklist.push_back( 3527 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3528 continue; 3529 } 3530 } 3531 // Ignore icmp instructions which are already being analyzed. 3532 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3533 unsigned OtherIdx = !U.getOperandNo(); 3534 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3535 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3536 continue; 3537 } 3538 3539 std::pair<size_t, int64_t> P = getUse( 3540 S, LSRUse::Basic, MemAccessTy()); 3541 size_t LUIdx = P.first; 3542 int64_t Offset = P.second; 3543 LSRUse &LU = Uses[LUIdx]; 3544 LSRFixup &LF = LU.getNewFixup(); 3545 LF.UserInst = const_cast<Instruction *>(UserInst); 3546 LF.OperandValToReplace = U; 3547 LF.Offset = Offset; 3548 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3549 if (!LU.WidestFixupType || 3550 SE.getTypeSizeInBits(LU.WidestFixupType) < 3551 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3552 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3553 InsertSupplementalFormula(US, LU, LUIdx); 3554 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3555 break; 3556 } 3557 } 3558 } 3559 } 3560 3561 /// Split S into subexpressions which can be pulled out into separate 3562 /// registers. If C is non-null, multiply each subexpression by C. 3563 /// 3564 /// Return remainder expression after factoring the subexpressions captured by 3565 /// Ops. If Ops is complete, return NULL. 3566 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3567 SmallVectorImpl<const SCEV *> &Ops, 3568 const Loop *L, 3569 ScalarEvolution &SE, 3570 unsigned Depth = 0) { 3571 // Arbitrarily cap recursion to protect compile time. 3572 if (Depth >= 3) 3573 return S; 3574 3575 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3576 // Break out add operands. 3577 for (const SCEV *S : Add->operands()) { 3578 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3579 if (Remainder) 3580 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3581 } 3582 return nullptr; 3583 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3584 // Split a non-zero base out of an addrec. 3585 if (AR->getStart()->isZero() || !AR->isAffine()) 3586 return S; 3587 3588 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3589 C, Ops, L, SE, Depth+1); 3590 // Split the non-zero AddRec unless it is part of a nested recurrence that 3591 // does not pertain to this loop. 3592 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3593 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3594 Remainder = nullptr; 3595 } 3596 if (Remainder != AR->getStart()) { 3597 if (!Remainder) 3598 Remainder = SE.getConstant(AR->getType(), 0); 3599 return SE.getAddRecExpr(Remainder, 3600 AR->getStepRecurrence(SE), 3601 AR->getLoop(), 3602 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3603 SCEV::FlagAnyWrap); 3604 } 3605 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3606 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3607 if (Mul->getNumOperands() != 2) 3608 return S; 3609 if (const SCEVConstant *Op0 = 3610 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3611 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3612 const SCEV *Remainder = 3613 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3614 if (Remainder) 3615 Ops.push_back(SE.getMulExpr(C, Remainder)); 3616 return nullptr; 3617 } 3618 } 3619 return S; 3620 } 3621 3622 /// Return true if the SCEV represents a value that may end up as a 3623 /// post-increment operation. 3624 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3625 LSRUse &LU, const SCEV *S, const Loop *L, 3626 ScalarEvolution &SE) { 3627 if (LU.Kind != LSRUse::Address || 3628 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3629 return false; 3630 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3631 if (!AR) 3632 return false; 3633 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3634 if (!isa<SCEVConstant>(LoopStep)) 3635 return false; 3636 // Check if a post-indexed load/store can be used. 3637 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3638 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3639 const SCEV *LoopStart = AR->getStart(); 3640 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3641 return true; 3642 } 3643 return false; 3644 } 3645 3646 /// Helper function for LSRInstance::GenerateReassociations. 3647 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3648 const Formula &Base, 3649 unsigned Depth, size_t Idx, 3650 bool IsScaledReg) { 3651 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3652 // Don't generate reassociations for the base register of a value that 3653 // may generate a post-increment operator. The reason is that the 3654 // reassociations cause extra base+register formula to be created, 3655 // and possibly chosen, but the post-increment is more efficient. 3656 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3657 return; 3658 SmallVector<const SCEV *, 8> AddOps; 3659 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3660 if (Remainder) 3661 AddOps.push_back(Remainder); 3662 3663 if (AddOps.size() == 1) 3664 return; 3665 3666 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3667 JE = AddOps.end(); 3668 J != JE; ++J) { 3669 // Loop-variant "unknown" values are uninteresting; we won't be able to 3670 // do anything meaningful with them. 3671 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3672 continue; 3673 3674 // Don't pull a constant into a register if the constant could be folded 3675 // into an immediate field. 3676 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3677 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3678 continue; 3679 3680 // Collect all operands except *J. 3681 SmallVector<const SCEV *, 8> InnerAddOps( 3682 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3683 InnerAddOps.append(std::next(J), 3684 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3685 3686 // Don't leave just a constant behind in a register if the constant could 3687 // be folded into an immediate field. 3688 if (InnerAddOps.size() == 1 && 3689 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3690 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3691 continue; 3692 3693 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3694 if (InnerSum->isZero()) 3695 continue; 3696 Formula F = Base; 3697 3698 // Add the remaining pieces of the add back into the new formula. 3699 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3700 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3701 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3702 InnerSumSC->getValue()->getZExtValue())) { 3703 F.UnfoldedOffset = 3704 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3705 if (IsScaledReg) 3706 F.ScaledReg = nullptr; 3707 else 3708 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3709 } else if (IsScaledReg) 3710 F.ScaledReg = InnerSum; 3711 else 3712 F.BaseRegs[Idx] = InnerSum; 3713 3714 // Add J as its own register, or an unfolded immediate. 3715 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3716 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3717 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3718 SC->getValue()->getZExtValue())) 3719 F.UnfoldedOffset = 3720 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3721 else 3722 F.BaseRegs.push_back(*J); 3723 // We may have changed the number of register in base regs, adjust the 3724 // formula accordingly. 3725 F.canonicalize(*L); 3726 3727 if (InsertFormula(LU, LUIdx, F)) 3728 // If that formula hadn't been seen before, recurse to find more like 3729 // it. 3730 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3731 // Because just Depth is not enough to bound compile time. 3732 // This means that every time AddOps.size() is greater 16^x we will add 3733 // x to Depth. 3734 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3735 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3736 } 3737 } 3738 3739 /// Split out subexpressions from adds and the bases of addrecs. 3740 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3741 Formula Base, unsigned Depth) { 3742 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3743 // Arbitrarily cap recursion to protect compile time. 3744 if (Depth >= 3) 3745 return; 3746 3747 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3748 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3749 3750 if (Base.Scale == 1) 3751 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3752 /* Idx */ -1, /* IsScaledReg */ true); 3753 } 3754 3755 /// Generate a formula consisting of all of the loop-dominating registers added 3756 /// into a single register. 3757 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3758 Formula Base) { 3759 // This method is only interesting on a plurality of registers. 3760 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3761 (Base.UnfoldedOffset != 0) <= 1) 3762 return; 3763 3764 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3765 // processing the formula. 3766 Base.unscale(); 3767 SmallVector<const SCEV *, 4> Ops; 3768 Formula NewBase = Base; 3769 NewBase.BaseRegs.clear(); 3770 Type *CombinedIntegerType = nullptr; 3771 for (const SCEV *BaseReg : Base.BaseRegs) { 3772 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3773 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3774 if (!CombinedIntegerType) 3775 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3776 Ops.push_back(BaseReg); 3777 } 3778 else 3779 NewBase.BaseRegs.push_back(BaseReg); 3780 } 3781 3782 // If no register is relevant, we're done. 3783 if (Ops.size() == 0) 3784 return; 3785 3786 // Utility function for generating the required variants of the combined 3787 // registers. 3788 auto GenerateFormula = [&](const SCEV *Sum) { 3789 Formula F = NewBase; 3790 3791 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3792 // opportunity to fold something. For now, just ignore such cases 3793 // rather than proceed with zero in a register. 3794 if (Sum->isZero()) 3795 return; 3796 3797 F.BaseRegs.push_back(Sum); 3798 F.canonicalize(*L); 3799 (void)InsertFormula(LU, LUIdx, F); 3800 }; 3801 3802 // If we collected at least two registers, generate a formula combining them. 3803 if (Ops.size() > 1) { 3804 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3805 GenerateFormula(SE.getAddExpr(OpsCopy)); 3806 } 3807 3808 // If we have an unfolded offset, generate a formula combining it with the 3809 // registers collected. 3810 if (NewBase.UnfoldedOffset) { 3811 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3812 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3813 true)); 3814 NewBase.UnfoldedOffset = 0; 3815 GenerateFormula(SE.getAddExpr(Ops)); 3816 } 3817 } 3818 3819 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3820 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3821 const Formula &Base, size_t Idx, 3822 bool IsScaledReg) { 3823 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3824 GlobalValue *GV = ExtractSymbol(G, SE); 3825 if (G->isZero() || !GV) 3826 return; 3827 Formula F = Base; 3828 F.BaseGV = GV; 3829 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3830 return; 3831 if (IsScaledReg) 3832 F.ScaledReg = G; 3833 else 3834 F.BaseRegs[Idx] = G; 3835 (void)InsertFormula(LU, LUIdx, F); 3836 } 3837 3838 /// Generate reuse formulae using symbolic offsets. 3839 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3840 Formula Base) { 3841 // We can't add a symbolic offset if the address already contains one. 3842 if (Base.BaseGV) return; 3843 3844 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3845 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3846 if (Base.Scale == 1) 3847 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3848 /* IsScaledReg */ true); 3849 } 3850 3851 /// Helper function for LSRInstance::GenerateConstantOffsets. 3852 void LSRInstance::GenerateConstantOffsetsImpl( 3853 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3854 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3855 3856 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3857 Formula F = Base; 3858 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3859 3860 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3861 // Add the offset to the base register. 3862 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3863 // If it cancelled out, drop the base register, otherwise update it. 3864 if (NewG->isZero()) { 3865 if (IsScaledReg) { 3866 F.Scale = 0; 3867 F.ScaledReg = nullptr; 3868 } else 3869 F.deleteBaseReg(F.BaseRegs[Idx]); 3870 F.canonicalize(*L); 3871 } else if (IsScaledReg) 3872 F.ScaledReg = NewG; 3873 else 3874 F.BaseRegs[Idx] = NewG; 3875 3876 (void)InsertFormula(LU, LUIdx, F); 3877 } 3878 }; 3879 3880 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3881 3882 // With constant offsets and constant steps, we can generate pre-inc 3883 // accesses by having the offset equal the step. So, for access #0 with a 3884 // step of 8, we generate a G - 8 base which would require the first access 3885 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3886 // for itself and hopefully becomes the base for other accesses. This means 3887 // means that a single pre-indexed access can be generated to become the new 3888 // base pointer for each iteration of the loop, resulting in no extra add/sub 3889 // instructions for pointer updating. 3890 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3891 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3892 if (auto *StepRec = 3893 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3894 const APInt &StepInt = StepRec->getAPInt(); 3895 int64_t Step = StepInt.isNegative() ? 3896 StepInt.getSExtValue() : StepInt.getZExtValue(); 3897 3898 for (int64_t Offset : Worklist) { 3899 Offset -= Step; 3900 GenerateOffset(G, Offset); 3901 } 3902 } 3903 } 3904 } 3905 for (int64_t Offset : Worklist) 3906 GenerateOffset(G, Offset); 3907 3908 int64_t Imm = ExtractImmediate(G, SE); 3909 if (G->isZero() || Imm == 0) 3910 return; 3911 Formula F = Base; 3912 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3913 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3914 return; 3915 if (IsScaledReg) { 3916 F.ScaledReg = G; 3917 } else { 3918 F.BaseRegs[Idx] = G; 3919 // We may generate non canonical Formula if G is a recurrent expr reg 3920 // related with current loop while F.ScaledReg is not. 3921 F.canonicalize(*L); 3922 } 3923 (void)InsertFormula(LU, LUIdx, F); 3924 } 3925 3926 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3927 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3928 Formula Base) { 3929 // TODO: For now, just add the min and max offset, because it usually isn't 3930 // worthwhile looking at everything inbetween. 3931 SmallVector<int64_t, 2> Worklist; 3932 Worklist.push_back(LU.MinOffset); 3933 if (LU.MaxOffset != LU.MinOffset) 3934 Worklist.push_back(LU.MaxOffset); 3935 3936 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3937 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3938 if (Base.Scale == 1) 3939 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3940 /* IsScaledReg */ true); 3941 } 3942 3943 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3944 /// == y -> x*c == y*c. 3945 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3946 Formula Base) { 3947 if (LU.Kind != LSRUse::ICmpZero) return; 3948 3949 // Determine the integer type for the base formula. 3950 Type *IntTy = Base.getType(); 3951 if (!IntTy) return; 3952 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3953 3954 // Don't do this if there is more than one offset. 3955 if (LU.MinOffset != LU.MaxOffset) return; 3956 3957 // Check if transformation is valid. It is illegal to multiply pointer. 3958 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3959 return; 3960 for (const SCEV *BaseReg : Base.BaseRegs) 3961 if (BaseReg->getType()->isPointerTy()) 3962 return; 3963 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3964 3965 // Check each interesting stride. 3966 for (int64_t Factor : Factors) { 3967 // Check that Factor can be represented by IntTy 3968 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 3969 continue; 3970 // Check that the multiplication doesn't overflow. 3971 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3972 continue; 3973 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3974 assert(Factor != 0 && "Zero factor not expected!"); 3975 if (NewBaseOffset / Factor != Base.BaseOffset) 3976 continue; 3977 // If the offset will be truncated at this use, check that it is in bounds. 3978 if (!IntTy->isPointerTy() && 3979 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3980 continue; 3981 3982 // Check that multiplying with the use offset doesn't overflow. 3983 int64_t Offset = LU.MinOffset; 3984 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3985 continue; 3986 Offset = (uint64_t)Offset * Factor; 3987 if (Offset / Factor != LU.MinOffset) 3988 continue; 3989 // If the offset will be truncated at this use, check that it is in bounds. 3990 if (!IntTy->isPointerTy() && 3991 !ConstantInt::isValueValidForType(IntTy, Offset)) 3992 continue; 3993 3994 Formula F = Base; 3995 F.BaseOffset = NewBaseOffset; 3996 3997 // Check that this scale is legal. 3998 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3999 continue; 4000 4001 // Compensate for the use having MinOffset built into it. 4002 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 4003 4004 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4005 4006 // Check that multiplying with each base register doesn't overflow. 4007 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4008 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4009 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4010 goto next; 4011 } 4012 4013 // Check that multiplying with the scaled register doesn't overflow. 4014 if (F.ScaledReg) { 4015 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4016 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4017 continue; 4018 } 4019 4020 // Check that multiplying with the unfolded offset doesn't overflow. 4021 if (F.UnfoldedOffset != 0) { 4022 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 4023 Factor == -1) 4024 continue; 4025 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 4026 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 4027 continue; 4028 // If the offset will be truncated, check that it is in bounds. 4029 if (!IntTy->isPointerTy() && 4030 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 4031 continue; 4032 } 4033 4034 // If we make it here and it's legal, add it. 4035 (void)InsertFormula(LU, LUIdx, F); 4036 next:; 4037 } 4038 } 4039 4040 /// Generate stride factor reuse formulae by making use of scaled-offset address 4041 /// modes, for example. 4042 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4043 // Determine the integer type for the base formula. 4044 Type *IntTy = Base.getType(); 4045 if (!IntTy) return; 4046 4047 // If this Formula already has a scaled register, we can't add another one. 4048 // Try to unscale the formula to generate a better scale. 4049 if (Base.Scale != 0 && !Base.unscale()) 4050 return; 4051 4052 assert(Base.Scale == 0 && "unscale did not did its job!"); 4053 4054 // Check each interesting stride. 4055 for (int64_t Factor : Factors) { 4056 Base.Scale = Factor; 4057 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4058 // Check whether this scale is going to be legal. 4059 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4060 Base)) { 4061 // As a special-case, handle special out-of-loop Basic users specially. 4062 // TODO: Reconsider this special case. 4063 if (LU.Kind == LSRUse::Basic && 4064 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4065 LU.AccessTy, Base) && 4066 LU.AllFixupsOutsideLoop) 4067 LU.Kind = LSRUse::Special; 4068 else 4069 continue; 4070 } 4071 // For an ICmpZero, negating a solitary base register won't lead to 4072 // new solutions. 4073 if (LU.Kind == LSRUse::ICmpZero && 4074 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4075 continue; 4076 // For each addrec base reg, if its loop is current loop, apply the scale. 4077 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4078 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4079 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4080 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4081 if (FactorS->isZero()) 4082 continue; 4083 // Divide out the factor, ignoring high bits, since we'll be 4084 // scaling the value back up in the end. 4085 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4086 // TODO: This could be optimized to avoid all the copying. 4087 Formula F = Base; 4088 F.ScaledReg = Quotient; 4089 F.deleteBaseReg(F.BaseRegs[i]); 4090 // The canonical representation of 1*reg is reg, which is already in 4091 // Base. In that case, do not try to insert the formula, it will be 4092 // rejected anyway. 4093 if (F.Scale == 1 && (F.BaseRegs.empty() || 4094 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4095 continue; 4096 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4097 // non canonical Formula with ScaledReg's loop not being L. 4098 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4099 F.canonicalize(*L); 4100 (void)InsertFormula(LU, LUIdx, F); 4101 } 4102 } 4103 } 4104 } 4105 } 4106 4107 /// Generate reuse formulae from different IV types. 4108 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4109 // Don't bother truncating symbolic values. 4110 if (Base.BaseGV) return; 4111 4112 // Determine the integer type for the base formula. 4113 Type *DstTy = Base.getType(); 4114 if (!DstTy) return; 4115 if (DstTy->isPointerTy()) 4116 return; 4117 4118 // It is invalid to extend a pointer type so exit early if ScaledReg or 4119 // any of the BaseRegs are pointers. 4120 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4121 return; 4122 if (any_of(Base.BaseRegs, 4123 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4124 return; 4125 4126 for (Type *SrcTy : Types) { 4127 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4128 Formula F = Base; 4129 4130 // Sometimes SCEV is able to prove zero during ext transform. It may 4131 // happen if SCEV did not do all possible transforms while creating the 4132 // initial node (maybe due to depth limitations), but it can do them while 4133 // taking ext. 4134 if (F.ScaledReg) { 4135 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4136 if (NewScaledReg->isZero()) 4137 continue; 4138 F.ScaledReg = NewScaledReg; 4139 } 4140 bool HasZeroBaseReg = false; 4141 for (const SCEV *&BaseReg : F.BaseRegs) { 4142 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4143 if (NewBaseReg->isZero()) { 4144 HasZeroBaseReg = true; 4145 break; 4146 } 4147 BaseReg = NewBaseReg; 4148 } 4149 if (HasZeroBaseReg) 4150 continue; 4151 4152 // TODO: This assumes we've done basic processing on all uses and 4153 // have an idea what the register usage is. 4154 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4155 continue; 4156 4157 F.canonicalize(*L); 4158 (void)InsertFormula(LU, LUIdx, F); 4159 } 4160 } 4161 } 4162 4163 namespace { 4164 4165 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4166 /// modifications so that the search phase doesn't have to worry about the data 4167 /// structures moving underneath it. 4168 struct WorkItem { 4169 size_t LUIdx; 4170 int64_t Imm; 4171 const SCEV *OrigReg; 4172 4173 WorkItem(size_t LI, int64_t I, const SCEV *R) 4174 : LUIdx(LI), Imm(I), OrigReg(R) {} 4175 4176 void print(raw_ostream &OS) const; 4177 void dump() const; 4178 }; 4179 4180 } // end anonymous namespace 4181 4182 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4183 void WorkItem::print(raw_ostream &OS) const { 4184 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4185 << " , add offset " << Imm; 4186 } 4187 4188 LLVM_DUMP_METHOD void WorkItem::dump() const { 4189 print(errs()); errs() << '\n'; 4190 } 4191 #endif 4192 4193 /// Look for registers which are a constant distance apart and try to form reuse 4194 /// opportunities between them. 4195 void LSRInstance::GenerateCrossUseConstantOffsets() { 4196 // Group the registers by their value without any added constant offset. 4197 using ImmMapTy = std::map<int64_t, const SCEV *>; 4198 4199 DenseMap<const SCEV *, ImmMapTy> Map; 4200 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4201 SmallVector<const SCEV *, 8> Sequence; 4202 for (const SCEV *Use : RegUses) { 4203 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4204 int64_t Imm = ExtractImmediate(Reg, SE); 4205 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4206 if (Pair.second) 4207 Sequence.push_back(Reg); 4208 Pair.first->second.insert(std::make_pair(Imm, Use)); 4209 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4210 } 4211 4212 // Now examine each set of registers with the same base value. Build up 4213 // a list of work to do and do the work in a separate step so that we're 4214 // not adding formulae and register counts while we're searching. 4215 SmallVector<WorkItem, 32> WorkItems; 4216 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4217 for (const SCEV *Reg : Sequence) { 4218 const ImmMapTy &Imms = Map.find(Reg)->second; 4219 4220 // It's not worthwhile looking for reuse if there's only one offset. 4221 if (Imms.size() == 1) 4222 continue; 4223 4224 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4225 for (const auto &Entry 4226 : Imms) dbgs() 4227 << ' ' << Entry.first; 4228 dbgs() << '\n'); 4229 4230 // Examine each offset. 4231 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4232 J != JE; ++J) { 4233 const SCEV *OrigReg = J->second; 4234 4235 int64_t JImm = J->first; 4236 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4237 4238 if (!isa<SCEVConstant>(OrigReg) && 4239 UsedByIndicesMap[Reg].count() == 1) { 4240 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4241 << '\n'); 4242 continue; 4243 } 4244 4245 // Conservatively examine offsets between this orig reg a few selected 4246 // other orig regs. 4247 int64_t First = Imms.begin()->first; 4248 int64_t Last = std::prev(Imms.end())->first; 4249 // Compute (First + Last) / 2 without overflow using the fact that 4250 // First + Last = 2 * (First + Last) + (First ^ Last). 4251 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4252 // If the result is negative and First is odd and Last even (or vice versa), 4253 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4254 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4255 ImmMapTy::const_iterator OtherImms[] = { 4256 Imms.begin(), std::prev(Imms.end()), 4257 Imms.lower_bound(Avg)}; 4258 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4259 ImmMapTy::const_iterator M = OtherImms[i]; 4260 if (M == J || M == JE) continue; 4261 4262 // Compute the difference between the two. 4263 int64_t Imm = (uint64_t)JImm - M->first; 4264 for (unsigned LUIdx : UsedByIndices.set_bits()) 4265 // Make a memo of this use, offset, and register tuple. 4266 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4267 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4268 } 4269 } 4270 } 4271 4272 Map.clear(); 4273 Sequence.clear(); 4274 UsedByIndicesMap.clear(); 4275 UniqueItems.clear(); 4276 4277 // Now iterate through the worklist and add new formulae. 4278 for (const WorkItem &WI : WorkItems) { 4279 size_t LUIdx = WI.LUIdx; 4280 LSRUse &LU = Uses[LUIdx]; 4281 int64_t Imm = WI.Imm; 4282 const SCEV *OrigReg = WI.OrigReg; 4283 4284 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4285 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4286 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4287 4288 // TODO: Use a more targeted data structure. 4289 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4290 Formula F = LU.Formulae[L]; 4291 // FIXME: The code for the scaled and unscaled registers looks 4292 // very similar but slightly different. Investigate if they 4293 // could be merged. That way, we would not have to unscale the 4294 // Formula. 4295 F.unscale(); 4296 // Use the immediate in the scaled register. 4297 if (F.ScaledReg == OrigReg) { 4298 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4299 // Don't create 50 + reg(-50). 4300 if (F.referencesReg(SE.getSCEV( 4301 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4302 continue; 4303 Formula NewF = F; 4304 NewF.BaseOffset = Offset; 4305 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4306 NewF)) 4307 continue; 4308 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4309 4310 // If the new scale is a constant in a register, and adding the constant 4311 // value to the immediate would produce a value closer to zero than the 4312 // immediate itself, then the formula isn't worthwhile. 4313 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4314 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4315 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4316 .ule(std::abs(NewF.BaseOffset))) 4317 continue; 4318 4319 // OK, looks good. 4320 NewF.canonicalize(*this->L); 4321 (void)InsertFormula(LU, LUIdx, NewF); 4322 } else { 4323 // Use the immediate in a base register. 4324 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4325 const SCEV *BaseReg = F.BaseRegs[N]; 4326 if (BaseReg != OrigReg) 4327 continue; 4328 Formula NewF = F; 4329 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4330 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4331 LU.Kind, LU.AccessTy, NewF)) { 4332 if (AMK == TTI::AMK_PostIndexed && 4333 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4334 continue; 4335 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4336 continue; 4337 NewF = F; 4338 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4339 } 4340 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4341 4342 // If the new formula has a constant in a register, and adding the 4343 // constant value to the immediate would produce a value closer to 4344 // zero than the immediate itself, then the formula isn't worthwhile. 4345 for (const SCEV *NewReg : NewF.BaseRegs) 4346 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4347 if ((C->getAPInt() + NewF.BaseOffset) 4348 .abs() 4349 .slt(std::abs(NewF.BaseOffset)) && 4350 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4351 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4352 goto skip_formula; 4353 4354 // Ok, looks good. 4355 NewF.canonicalize(*this->L); 4356 (void)InsertFormula(LU, LUIdx, NewF); 4357 break; 4358 skip_formula:; 4359 } 4360 } 4361 } 4362 } 4363 } 4364 4365 /// Generate formulae for each use. 4366 void 4367 LSRInstance::GenerateAllReuseFormulae() { 4368 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4369 // queries are more precise. 4370 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4371 LSRUse &LU = Uses[LUIdx]; 4372 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4373 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4374 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4375 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4376 } 4377 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4378 LSRUse &LU = Uses[LUIdx]; 4379 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4380 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4381 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4382 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4383 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4384 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4385 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4386 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4387 } 4388 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4389 LSRUse &LU = Uses[LUIdx]; 4390 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4391 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4392 } 4393 4394 GenerateCrossUseConstantOffsets(); 4395 4396 LLVM_DEBUG(dbgs() << "\n" 4397 "After generating reuse formulae:\n"; 4398 print_uses(dbgs())); 4399 } 4400 4401 /// If there are multiple formulae with the same set of registers used 4402 /// by other uses, pick the best one and delete the others. 4403 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4404 DenseSet<const SCEV *> VisitedRegs; 4405 SmallPtrSet<const SCEV *, 16> Regs; 4406 SmallPtrSet<const SCEV *, 16> LoserRegs; 4407 #ifndef NDEBUG 4408 bool ChangedFormulae = false; 4409 #endif 4410 4411 // Collect the best formula for each unique set of shared registers. This 4412 // is reset for each use. 4413 using BestFormulaeTy = 4414 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4415 4416 BestFormulaeTy BestFormulae; 4417 4418 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4419 LSRUse &LU = Uses[LUIdx]; 4420 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4421 dbgs() << '\n'); 4422 4423 bool Any = false; 4424 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4425 FIdx != NumForms; ++FIdx) { 4426 Formula &F = LU.Formulae[FIdx]; 4427 4428 // Some formulas are instant losers. For example, they may depend on 4429 // nonexistent AddRecs from other loops. These need to be filtered 4430 // immediately, otherwise heuristics could choose them over others leading 4431 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4432 // avoids the need to recompute this information across formulae using the 4433 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4434 // the corresponding bad register from the Regs set. 4435 Cost CostF(L, SE, TTI, AMK); 4436 Regs.clear(); 4437 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4438 if (CostF.isLoser()) { 4439 // During initial formula generation, undesirable formulae are generated 4440 // by uses within other loops that have some non-trivial address mode or 4441 // use the postinc form of the IV. LSR needs to provide these formulae 4442 // as the basis of rediscovering the desired formula that uses an AddRec 4443 // corresponding to the existing phi. Once all formulae have been 4444 // generated, these initial losers may be pruned. 4445 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4446 dbgs() << "\n"); 4447 } 4448 else { 4449 SmallVector<const SCEV *, 4> Key; 4450 for (const SCEV *Reg : F.BaseRegs) { 4451 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4452 Key.push_back(Reg); 4453 } 4454 if (F.ScaledReg && 4455 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4456 Key.push_back(F.ScaledReg); 4457 // Unstable sort by host order ok, because this is only used for 4458 // uniquifying. 4459 llvm::sort(Key); 4460 4461 std::pair<BestFormulaeTy::const_iterator, bool> P = 4462 BestFormulae.insert(std::make_pair(Key, FIdx)); 4463 if (P.second) 4464 continue; 4465 4466 Formula &Best = LU.Formulae[P.first->second]; 4467 4468 Cost CostBest(L, SE, TTI, AMK); 4469 Regs.clear(); 4470 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4471 if (CostF.isLess(CostBest)) 4472 std::swap(F, Best); 4473 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4474 dbgs() << "\n" 4475 " in favor of formula "; 4476 Best.print(dbgs()); dbgs() << '\n'); 4477 } 4478 #ifndef NDEBUG 4479 ChangedFormulae = true; 4480 #endif 4481 LU.DeleteFormula(F); 4482 --FIdx; 4483 --NumForms; 4484 Any = true; 4485 } 4486 4487 // Now that we've filtered out some formulae, recompute the Regs set. 4488 if (Any) 4489 LU.RecomputeRegs(LUIdx, RegUses); 4490 4491 // Reset this to prepare for the next use. 4492 BestFormulae.clear(); 4493 } 4494 4495 LLVM_DEBUG(if (ChangedFormulae) { 4496 dbgs() << "\n" 4497 "After filtering out undesirable candidates:\n"; 4498 print_uses(dbgs()); 4499 }); 4500 } 4501 4502 /// Estimate the worst-case number of solutions the solver might have to 4503 /// consider. It almost never considers this many solutions because it prune the 4504 /// search space, but the pruning isn't always sufficient. 4505 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4506 size_t Power = 1; 4507 for (const LSRUse &LU : Uses) { 4508 size_t FSize = LU.Formulae.size(); 4509 if (FSize >= ComplexityLimit) { 4510 Power = ComplexityLimit; 4511 break; 4512 } 4513 Power *= FSize; 4514 if (Power >= ComplexityLimit) 4515 break; 4516 } 4517 return Power; 4518 } 4519 4520 /// When one formula uses a superset of the registers of another formula, it 4521 /// won't help reduce register pressure (though it may not necessarily hurt 4522 /// register pressure); remove it to simplify the system. 4523 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4524 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4525 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4526 4527 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4528 "which use a superset of registers used by other " 4529 "formulae.\n"); 4530 4531 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4532 LSRUse &LU = Uses[LUIdx]; 4533 bool Any = false; 4534 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4535 Formula &F = LU.Formulae[i]; 4536 // Look for a formula with a constant or GV in a register. If the use 4537 // also has a formula with that same value in an immediate field, 4538 // delete the one that uses a register. 4539 for (SmallVectorImpl<const SCEV *>::const_iterator 4540 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4541 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4542 Formula NewF = F; 4543 //FIXME: Formulas should store bitwidth to do wrapping properly. 4544 // See PR41034. 4545 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4546 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4547 (I - F.BaseRegs.begin())); 4548 if (LU.HasFormulaWithSameRegs(NewF)) { 4549 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4550 dbgs() << '\n'); 4551 LU.DeleteFormula(F); 4552 --i; 4553 --e; 4554 Any = true; 4555 break; 4556 } 4557 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4558 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4559 if (!F.BaseGV) { 4560 Formula NewF = F; 4561 NewF.BaseGV = GV; 4562 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4563 (I - F.BaseRegs.begin())); 4564 if (LU.HasFormulaWithSameRegs(NewF)) { 4565 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4566 dbgs() << '\n'); 4567 LU.DeleteFormula(F); 4568 --i; 4569 --e; 4570 Any = true; 4571 break; 4572 } 4573 } 4574 } 4575 } 4576 } 4577 if (Any) 4578 LU.RecomputeRegs(LUIdx, RegUses); 4579 } 4580 4581 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4582 } 4583 } 4584 4585 /// When there are many registers for expressions like A, A+1, A+2, etc., 4586 /// allocate a single register for them. 4587 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4588 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4589 return; 4590 4591 LLVM_DEBUG( 4592 dbgs() << "The search space is too complex.\n" 4593 "Narrowing the search space by assuming that uses separated " 4594 "by a constant offset will use the same registers.\n"); 4595 4596 // This is especially useful for unrolled loops. 4597 4598 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4599 LSRUse &LU = Uses[LUIdx]; 4600 for (const Formula &F : LU.Formulae) { 4601 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4602 continue; 4603 4604 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4605 if (!LUThatHas) 4606 continue; 4607 4608 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4609 LU.Kind, LU.AccessTy)) 4610 continue; 4611 4612 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4613 4614 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4615 4616 // Transfer the fixups of LU to LUThatHas. 4617 for (LSRFixup &Fixup : LU.Fixups) { 4618 Fixup.Offset += F.BaseOffset; 4619 LUThatHas->pushFixup(Fixup); 4620 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4621 } 4622 4623 // Delete formulae from the new use which are no longer legal. 4624 bool Any = false; 4625 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4626 Formula &F = LUThatHas->Formulae[i]; 4627 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4628 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4629 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4630 LUThatHas->DeleteFormula(F); 4631 --i; 4632 --e; 4633 Any = true; 4634 } 4635 } 4636 4637 if (Any) 4638 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4639 4640 // Delete the old use. 4641 DeleteUse(LU, LUIdx); 4642 --LUIdx; 4643 --NumUses; 4644 break; 4645 } 4646 } 4647 4648 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4649 } 4650 4651 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4652 /// we've done more filtering, as it may be able to find more formulae to 4653 /// eliminate. 4654 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4655 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4656 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4657 4658 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4659 "undesirable dedicated registers.\n"); 4660 4661 FilterOutUndesirableDedicatedRegisters(); 4662 4663 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4664 } 4665 } 4666 4667 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4668 /// Pick the best one and delete the others. 4669 /// This narrowing heuristic is to keep as many formulae with different 4670 /// Scale and ScaledReg pair as possible while narrowing the search space. 4671 /// The benefit is that it is more likely to find out a better solution 4672 /// from a formulae set with more Scale and ScaledReg variations than 4673 /// a formulae set with the same Scale and ScaledReg. The picking winner 4674 /// reg heuristic will often keep the formulae with the same Scale and 4675 /// ScaledReg and filter others, and we want to avoid that if possible. 4676 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4677 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4678 return; 4679 4680 LLVM_DEBUG( 4681 dbgs() << "The search space is too complex.\n" 4682 "Narrowing the search space by choosing the best Formula " 4683 "from the Formulae with the same Scale and ScaledReg.\n"); 4684 4685 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4686 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4687 4688 BestFormulaeTy BestFormulae; 4689 #ifndef NDEBUG 4690 bool ChangedFormulae = false; 4691 #endif 4692 DenseSet<const SCEV *> VisitedRegs; 4693 SmallPtrSet<const SCEV *, 16> Regs; 4694 4695 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4696 LSRUse &LU = Uses[LUIdx]; 4697 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4698 dbgs() << '\n'); 4699 4700 // Return true if Formula FA is better than Formula FB. 4701 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4702 // First we will try to choose the Formula with fewer new registers. 4703 // For a register used by current Formula, the more the register is 4704 // shared among LSRUses, the less we increase the register number 4705 // counter of the formula. 4706 size_t FARegNum = 0; 4707 for (const SCEV *Reg : FA.BaseRegs) { 4708 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4709 FARegNum += (NumUses - UsedByIndices.count() + 1); 4710 } 4711 size_t FBRegNum = 0; 4712 for (const SCEV *Reg : FB.BaseRegs) { 4713 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4714 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4715 } 4716 if (FARegNum != FBRegNum) 4717 return FARegNum < FBRegNum; 4718 4719 // If the new register numbers are the same, choose the Formula with 4720 // less Cost. 4721 Cost CostFA(L, SE, TTI, AMK); 4722 Cost CostFB(L, SE, TTI, AMK); 4723 Regs.clear(); 4724 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4725 Regs.clear(); 4726 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4727 return CostFA.isLess(CostFB); 4728 }; 4729 4730 bool Any = false; 4731 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4732 ++FIdx) { 4733 Formula &F = LU.Formulae[FIdx]; 4734 if (!F.ScaledReg) 4735 continue; 4736 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4737 if (P.second) 4738 continue; 4739 4740 Formula &Best = LU.Formulae[P.first->second]; 4741 if (IsBetterThan(F, Best)) 4742 std::swap(F, Best); 4743 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4744 dbgs() << "\n" 4745 " in favor of formula "; 4746 Best.print(dbgs()); dbgs() << '\n'); 4747 #ifndef NDEBUG 4748 ChangedFormulae = true; 4749 #endif 4750 LU.DeleteFormula(F); 4751 --FIdx; 4752 --NumForms; 4753 Any = true; 4754 } 4755 if (Any) 4756 LU.RecomputeRegs(LUIdx, RegUses); 4757 4758 // Reset this to prepare for the next use. 4759 BestFormulae.clear(); 4760 } 4761 4762 LLVM_DEBUG(if (ChangedFormulae) { 4763 dbgs() << "\n" 4764 "After filtering out undesirable candidates:\n"; 4765 print_uses(dbgs()); 4766 }); 4767 } 4768 4769 /// If we are over the complexity limit, filter out any post-inc prefering 4770 /// variables to only post-inc values. 4771 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4772 if (AMK != TTI::AMK_PostIndexed) 4773 return; 4774 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4775 return; 4776 4777 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4778 "Narrowing the search space by choosing the lowest " 4779 "register Formula for PostInc Uses.\n"); 4780 4781 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4782 LSRUse &LU = Uses[LUIdx]; 4783 4784 if (LU.Kind != LSRUse::Address) 4785 continue; 4786 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4787 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4788 continue; 4789 4790 size_t MinRegs = std::numeric_limits<size_t>::max(); 4791 for (const Formula &F : LU.Formulae) 4792 MinRegs = std::min(F.getNumRegs(), MinRegs); 4793 4794 bool Any = false; 4795 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4796 ++FIdx) { 4797 Formula &F = LU.Formulae[FIdx]; 4798 if (F.getNumRegs() > MinRegs) { 4799 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4800 dbgs() << "\n"); 4801 LU.DeleteFormula(F); 4802 --FIdx; 4803 --NumForms; 4804 Any = true; 4805 } 4806 } 4807 if (Any) 4808 LU.RecomputeRegs(LUIdx, RegUses); 4809 4810 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4811 break; 4812 } 4813 4814 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4815 } 4816 4817 /// The function delete formulas with high registers number expectation. 4818 /// Assuming we don't know the value of each formula (already delete 4819 /// all inefficient), generate probability of not selecting for each 4820 /// register. 4821 /// For example, 4822 /// Use1: 4823 /// reg(a) + reg({0,+,1}) 4824 /// reg(a) + reg({-1,+,1}) + 1 4825 /// reg({a,+,1}) 4826 /// Use2: 4827 /// reg(b) + reg({0,+,1}) 4828 /// reg(b) + reg({-1,+,1}) + 1 4829 /// reg({b,+,1}) 4830 /// Use3: 4831 /// reg(c) + reg(b) + reg({0,+,1}) 4832 /// reg(c) + reg({b,+,1}) 4833 /// 4834 /// Probability of not selecting 4835 /// Use1 Use2 Use3 4836 /// reg(a) (1/3) * 1 * 1 4837 /// reg(b) 1 * (1/3) * (1/2) 4838 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4839 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4840 /// reg({a,+,1}) (2/3) * 1 * 1 4841 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4842 /// reg(c) 1 * 1 * 0 4843 /// 4844 /// Now count registers number mathematical expectation for each formula: 4845 /// Note that for each use we exclude probability if not selecting for the use. 4846 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4847 /// probabilty 1/3 of not selecting for Use1). 4848 /// Use1: 4849 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4850 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4851 /// reg({a,+,1}) 1 4852 /// Use2: 4853 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4854 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4855 /// reg({b,+,1}) 2/3 4856 /// Use3: 4857 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4858 /// reg(c) + reg({b,+,1}) 1 + 2/3 4859 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4860 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4861 return; 4862 // Ok, we have too many of formulae on our hands to conveniently handle. 4863 // Use a rough heuristic to thin out the list. 4864 4865 // Set of Regs wich will be 100% used in final solution. 4866 // Used in each formula of a solution (in example above this is reg(c)). 4867 // We can skip them in calculations. 4868 SmallPtrSet<const SCEV *, 4> UniqRegs; 4869 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4870 4871 // Map each register to probability of not selecting 4872 DenseMap <const SCEV *, float> RegNumMap; 4873 for (const SCEV *Reg : RegUses) { 4874 if (UniqRegs.count(Reg)) 4875 continue; 4876 float PNotSel = 1; 4877 for (const LSRUse &LU : Uses) { 4878 if (!LU.Regs.count(Reg)) 4879 continue; 4880 float P = LU.getNotSelectedProbability(Reg); 4881 if (P != 0.0) 4882 PNotSel *= P; 4883 else 4884 UniqRegs.insert(Reg); 4885 } 4886 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4887 } 4888 4889 LLVM_DEBUG( 4890 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4891 4892 // Delete formulas where registers number expectation is high. 4893 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4894 LSRUse &LU = Uses[LUIdx]; 4895 // If nothing to delete - continue. 4896 if (LU.Formulae.size() < 2) 4897 continue; 4898 // This is temporary solution to test performance. Float should be 4899 // replaced with round independent type (based on integers) to avoid 4900 // different results for different target builds. 4901 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4902 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4903 size_t MinIdx = 0; 4904 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4905 Formula &F = LU.Formulae[i]; 4906 float FRegNum = 0; 4907 float FARegNum = 0; 4908 for (const SCEV *BaseReg : F.BaseRegs) { 4909 if (UniqRegs.count(BaseReg)) 4910 continue; 4911 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4912 if (isa<SCEVAddRecExpr>(BaseReg)) 4913 FARegNum += 4914 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4915 } 4916 if (const SCEV *ScaledReg = F.ScaledReg) { 4917 if (!UniqRegs.count(ScaledReg)) { 4918 FRegNum += 4919 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4920 if (isa<SCEVAddRecExpr>(ScaledReg)) 4921 FARegNum += 4922 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4923 } 4924 } 4925 if (FMinRegNum > FRegNum || 4926 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4927 FMinRegNum = FRegNum; 4928 FMinARegNum = FARegNum; 4929 MinIdx = i; 4930 } 4931 } 4932 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4933 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4934 if (MinIdx != 0) 4935 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4936 while (LU.Formulae.size() != 1) { 4937 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4938 dbgs() << '\n'); 4939 LU.Formulae.pop_back(); 4940 } 4941 LU.RecomputeRegs(LUIdx, RegUses); 4942 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4943 Formula &F = LU.Formulae[0]; 4944 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4945 // When we choose the formula, the regs become unique. 4946 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4947 if (F.ScaledReg) 4948 UniqRegs.insert(F.ScaledReg); 4949 } 4950 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4951 } 4952 4953 /// Pick a register which seems likely to be profitable, and then in any use 4954 /// which has any reference to that register, delete all formulae which do not 4955 /// reference that register. 4956 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4957 // With all other options exhausted, loop until the system is simple 4958 // enough to handle. 4959 SmallPtrSet<const SCEV *, 4> Taken; 4960 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4961 // Ok, we have too many of formulae on our hands to conveniently handle. 4962 // Use a rough heuristic to thin out the list. 4963 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4964 4965 // Pick the register which is used by the most LSRUses, which is likely 4966 // to be a good reuse register candidate. 4967 const SCEV *Best = nullptr; 4968 unsigned BestNum = 0; 4969 for (const SCEV *Reg : RegUses) { 4970 if (Taken.count(Reg)) 4971 continue; 4972 if (!Best) { 4973 Best = Reg; 4974 BestNum = RegUses.getUsedByIndices(Reg).count(); 4975 } else { 4976 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4977 if (Count > BestNum) { 4978 Best = Reg; 4979 BestNum = Count; 4980 } 4981 } 4982 } 4983 assert(Best && "Failed to find best LSRUse candidate"); 4984 4985 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4986 << " will yield profitable reuse.\n"); 4987 Taken.insert(Best); 4988 4989 // In any use with formulae which references this register, delete formulae 4990 // which don't reference it. 4991 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4992 LSRUse &LU = Uses[LUIdx]; 4993 if (!LU.Regs.count(Best)) continue; 4994 4995 bool Any = false; 4996 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4997 Formula &F = LU.Formulae[i]; 4998 if (!F.referencesReg(Best)) { 4999 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5000 LU.DeleteFormula(F); 5001 --e; 5002 --i; 5003 Any = true; 5004 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5005 continue; 5006 } 5007 } 5008 5009 if (Any) 5010 LU.RecomputeRegs(LUIdx, RegUses); 5011 } 5012 5013 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5014 } 5015 } 5016 5017 /// If there are an extraordinary number of formulae to choose from, use some 5018 /// rough heuristics to prune down the number of formulae. This keeps the main 5019 /// solver from taking an extraordinary amount of time in some worst-case 5020 /// scenarios. 5021 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5022 NarrowSearchSpaceByDetectingSupersets(); 5023 NarrowSearchSpaceByCollapsingUnrolledCode(); 5024 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5025 if (FilterSameScaledReg) 5026 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5027 NarrowSearchSpaceByFilterPostInc(); 5028 if (LSRExpNarrow) 5029 NarrowSearchSpaceByDeletingCostlyFormulas(); 5030 else 5031 NarrowSearchSpaceByPickingWinnerRegs(); 5032 } 5033 5034 /// This is the recursive solver. 5035 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5036 Cost &SolutionCost, 5037 SmallVectorImpl<const Formula *> &Workspace, 5038 const Cost &CurCost, 5039 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5040 DenseSet<const SCEV *> &VisitedRegs) const { 5041 // Some ideas: 5042 // - prune more: 5043 // - use more aggressive filtering 5044 // - sort the formula so that the most profitable solutions are found first 5045 // - sort the uses too 5046 // - search faster: 5047 // - don't compute a cost, and then compare. compare while computing a cost 5048 // and bail early. 5049 // - track register sets with SmallBitVector 5050 5051 const LSRUse &LU = Uses[Workspace.size()]; 5052 5053 // If this use references any register that's already a part of the 5054 // in-progress solution, consider it a requirement that a formula must 5055 // reference that register in order to be considered. This prunes out 5056 // unprofitable searching. 5057 SmallSetVector<const SCEV *, 4> ReqRegs; 5058 for (const SCEV *S : CurRegs) 5059 if (LU.Regs.count(S)) 5060 ReqRegs.insert(S); 5061 5062 SmallPtrSet<const SCEV *, 16> NewRegs; 5063 Cost NewCost(L, SE, TTI, AMK); 5064 for (const Formula &F : LU.Formulae) { 5065 // Ignore formulae which may not be ideal in terms of register reuse of 5066 // ReqRegs. The formula should use all required registers before 5067 // introducing new ones. 5068 // This can sometimes (notably when trying to favour postinc) lead to 5069 // sub-optimial decisions. There it is best left to the cost modelling to 5070 // get correct. 5071 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5072 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5073 for (const SCEV *Reg : ReqRegs) { 5074 if ((F.ScaledReg && F.ScaledReg == Reg) || 5075 is_contained(F.BaseRegs, Reg)) { 5076 --NumReqRegsToFind; 5077 if (NumReqRegsToFind == 0) 5078 break; 5079 } 5080 } 5081 if (NumReqRegsToFind != 0) { 5082 // If none of the formulae satisfied the required registers, then we could 5083 // clear ReqRegs and try again. Currently, we simply give up in this case. 5084 continue; 5085 } 5086 } 5087 5088 // Evaluate the cost of the current formula. If it's already worse than 5089 // the current best, prune the search at that point. 5090 NewCost = CurCost; 5091 NewRegs = CurRegs; 5092 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5093 if (NewCost.isLess(SolutionCost)) { 5094 Workspace.push_back(&F); 5095 if (Workspace.size() != Uses.size()) { 5096 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5097 NewRegs, VisitedRegs); 5098 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5099 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5100 } else { 5101 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5102 dbgs() << ".\nRegs:\n"; 5103 for (const SCEV *S : NewRegs) dbgs() 5104 << "- " << *S << "\n"; 5105 dbgs() << '\n'); 5106 5107 SolutionCost = NewCost; 5108 Solution = Workspace; 5109 } 5110 Workspace.pop_back(); 5111 } 5112 } 5113 } 5114 5115 /// Choose one formula from each use. Return the results in the given Solution 5116 /// vector. 5117 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5118 SmallVector<const Formula *, 8> Workspace; 5119 Cost SolutionCost(L, SE, TTI, AMK); 5120 SolutionCost.Lose(); 5121 Cost CurCost(L, SE, TTI, AMK); 5122 SmallPtrSet<const SCEV *, 16> CurRegs; 5123 DenseSet<const SCEV *> VisitedRegs; 5124 Workspace.reserve(Uses.size()); 5125 5126 // SolveRecurse does all the work. 5127 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5128 CurRegs, VisitedRegs); 5129 if (Solution.empty()) { 5130 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5131 return; 5132 } 5133 5134 // Ok, we've now made all our decisions. 5135 LLVM_DEBUG(dbgs() << "\n" 5136 "The chosen solution requires "; 5137 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5138 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5139 dbgs() << " "; 5140 Uses[i].print(dbgs()); 5141 dbgs() << "\n" 5142 " "; 5143 Solution[i]->print(dbgs()); 5144 dbgs() << '\n'; 5145 }); 5146 5147 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5148 } 5149 5150 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5151 /// we can go while still being dominated by the input positions. This helps 5152 /// canonicalize the insert position, which encourages sharing. 5153 BasicBlock::iterator 5154 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5155 const SmallVectorImpl<Instruction *> &Inputs) 5156 const { 5157 Instruction *Tentative = &*IP; 5158 while (true) { 5159 bool AllDominate = true; 5160 Instruction *BetterPos = nullptr; 5161 // Don't bother attempting to insert before a catchswitch, their basic block 5162 // cannot have other non-PHI instructions. 5163 if (isa<CatchSwitchInst>(Tentative)) 5164 return IP; 5165 5166 for (Instruction *Inst : Inputs) { 5167 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5168 AllDominate = false; 5169 break; 5170 } 5171 // Attempt to find an insert position in the middle of the block, 5172 // instead of at the end, so that it can be used for other expansions. 5173 if (Tentative->getParent() == Inst->getParent() && 5174 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5175 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5176 } 5177 if (!AllDominate) 5178 break; 5179 if (BetterPos) 5180 IP = BetterPos->getIterator(); 5181 else 5182 IP = Tentative->getIterator(); 5183 5184 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5185 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5186 5187 BasicBlock *IDom; 5188 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5189 if (!Rung) return IP; 5190 Rung = Rung->getIDom(); 5191 if (!Rung) return IP; 5192 IDom = Rung->getBlock(); 5193 5194 // Don't climb into a loop though. 5195 const Loop *IDomLoop = LI.getLoopFor(IDom); 5196 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5197 if (IDomDepth <= IPLoopDepth && 5198 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5199 break; 5200 } 5201 5202 Tentative = IDom->getTerminator(); 5203 } 5204 5205 return IP; 5206 } 5207 5208 /// Determine an input position which will be dominated by the operands and 5209 /// which will dominate the result. 5210 BasicBlock::iterator 5211 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5212 const LSRFixup &LF, 5213 const LSRUse &LU, 5214 SCEVExpander &Rewriter) const { 5215 // Collect some instructions which must be dominated by the 5216 // expanding replacement. These must be dominated by any operands that 5217 // will be required in the expansion. 5218 SmallVector<Instruction *, 4> Inputs; 5219 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5220 Inputs.push_back(I); 5221 if (LU.Kind == LSRUse::ICmpZero) 5222 if (Instruction *I = 5223 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5224 Inputs.push_back(I); 5225 if (LF.PostIncLoops.count(L)) { 5226 if (LF.isUseFullyOutsideLoop(L)) 5227 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5228 else 5229 Inputs.push_back(IVIncInsertPos); 5230 } 5231 // The expansion must also be dominated by the increment positions of any 5232 // loops it for which it is using post-inc mode. 5233 for (const Loop *PIL : LF.PostIncLoops) { 5234 if (PIL == L) continue; 5235 5236 // Be dominated by the loop exit. 5237 SmallVector<BasicBlock *, 4> ExitingBlocks; 5238 PIL->getExitingBlocks(ExitingBlocks); 5239 if (!ExitingBlocks.empty()) { 5240 BasicBlock *BB = ExitingBlocks[0]; 5241 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5242 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5243 Inputs.push_back(BB->getTerminator()); 5244 } 5245 } 5246 5247 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5248 && !isa<DbgInfoIntrinsic>(LowestIP) && 5249 "Insertion point must be a normal instruction"); 5250 5251 // Then, climb up the immediate dominator tree as far as we can go while 5252 // still being dominated by the input positions. 5253 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5254 5255 // Don't insert instructions before PHI nodes. 5256 while (isa<PHINode>(IP)) ++IP; 5257 5258 // Ignore landingpad instructions. 5259 while (IP->isEHPad()) ++IP; 5260 5261 // Ignore debug intrinsics. 5262 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5263 5264 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5265 // IP consistent across expansions and allows the previously inserted 5266 // instructions to be reused by subsequent expansion. 5267 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5268 ++IP; 5269 5270 return IP; 5271 } 5272 5273 /// Emit instructions for the leading candidate expression for this LSRUse (this 5274 /// is called "expanding"). 5275 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5276 const Formula &F, BasicBlock::iterator IP, 5277 SCEVExpander &Rewriter, 5278 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5279 if (LU.RigidFormula) 5280 return LF.OperandValToReplace; 5281 5282 // Determine an input position which will be dominated by the operands and 5283 // which will dominate the result. 5284 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5285 Rewriter.setInsertPoint(&*IP); 5286 5287 // Inform the Rewriter if we have a post-increment use, so that it can 5288 // perform an advantageous expansion. 5289 Rewriter.setPostInc(LF.PostIncLoops); 5290 5291 // This is the type that the user actually needs. 5292 Type *OpTy = LF.OperandValToReplace->getType(); 5293 // This will be the type that we'll initially expand to. 5294 Type *Ty = F.getType(); 5295 if (!Ty) 5296 // No type known; just expand directly to the ultimate type. 5297 Ty = OpTy; 5298 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5299 // Expand directly to the ultimate type if it's the right size. 5300 Ty = OpTy; 5301 // This is the type to do integer arithmetic in. 5302 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5303 5304 // Build up a list of operands to add together to form the full base. 5305 SmallVector<const SCEV *, 8> Ops; 5306 5307 // Expand the BaseRegs portion. 5308 for (const SCEV *Reg : F.BaseRegs) { 5309 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5310 5311 // If we're expanding for a post-inc user, make the post-inc adjustment. 5312 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5313 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5314 } 5315 5316 // Expand the ScaledReg portion. 5317 Value *ICmpScaledV = nullptr; 5318 if (F.Scale != 0) { 5319 const SCEV *ScaledS = F.ScaledReg; 5320 5321 // If we're expanding for a post-inc user, make the post-inc adjustment. 5322 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5323 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5324 5325 if (LU.Kind == LSRUse::ICmpZero) { 5326 // Expand ScaleReg as if it was part of the base regs. 5327 if (F.Scale == 1) 5328 Ops.push_back( 5329 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5330 else { 5331 // An interesting way of "folding" with an icmp is to use a negated 5332 // scale, which we'll implement by inserting it into the other operand 5333 // of the icmp. 5334 assert(F.Scale == -1 && 5335 "The only scale supported by ICmpZero uses is -1!"); 5336 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5337 } 5338 } else { 5339 // Otherwise just expand the scaled register and an explicit scale, 5340 // which is expected to be matched as part of the address. 5341 5342 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5343 // Unless the addressing mode will not be folded. 5344 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5345 isAMCompletelyFolded(TTI, LU, F)) { 5346 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5347 Ops.clear(); 5348 Ops.push_back(SE.getUnknown(FullV)); 5349 } 5350 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5351 if (F.Scale != 1) 5352 ScaledS = 5353 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5354 Ops.push_back(ScaledS); 5355 } 5356 } 5357 5358 // Expand the GV portion. 5359 if (F.BaseGV) { 5360 // Flush the operand list to suppress SCEVExpander hoisting. 5361 if (!Ops.empty()) { 5362 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5363 Ops.clear(); 5364 Ops.push_back(SE.getUnknown(FullV)); 5365 } 5366 Ops.push_back(SE.getUnknown(F.BaseGV)); 5367 } 5368 5369 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5370 // unfolded offsets. LSR assumes they both live next to their uses. 5371 if (!Ops.empty()) { 5372 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5373 Ops.clear(); 5374 Ops.push_back(SE.getUnknown(FullV)); 5375 } 5376 5377 // Expand the immediate portion. 5378 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5379 if (Offset != 0) { 5380 if (LU.Kind == LSRUse::ICmpZero) { 5381 // The other interesting way of "folding" with an ICmpZero is to use a 5382 // negated immediate. 5383 if (!ICmpScaledV) 5384 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5385 else { 5386 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5387 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5388 } 5389 } else { 5390 // Just add the immediate values. These again are expected to be matched 5391 // as part of the address. 5392 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5393 } 5394 } 5395 5396 // Expand the unfolded offset portion. 5397 int64_t UnfoldedOffset = F.UnfoldedOffset; 5398 if (UnfoldedOffset != 0) { 5399 // Just add the immediate values. 5400 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5401 UnfoldedOffset))); 5402 } 5403 5404 // Emit instructions summing all the operands. 5405 const SCEV *FullS = Ops.empty() ? 5406 SE.getConstant(IntTy, 0) : 5407 SE.getAddExpr(Ops); 5408 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5409 5410 // We're done expanding now, so reset the rewriter. 5411 Rewriter.clearPostInc(); 5412 5413 // An ICmpZero Formula represents an ICmp which we're handling as a 5414 // comparison against zero. Now that we've expanded an expression for that 5415 // form, update the ICmp's other operand. 5416 if (LU.Kind == LSRUse::ICmpZero) { 5417 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5418 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5419 DeadInsts.emplace_back(OperandIsInstr); 5420 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5421 "a scale at the same time!"); 5422 if (F.Scale == -1) { 5423 if (ICmpScaledV->getType() != OpTy) { 5424 Instruction *Cast = 5425 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5426 OpTy, false), 5427 ICmpScaledV, OpTy, "tmp", CI); 5428 ICmpScaledV = Cast; 5429 } 5430 CI->setOperand(1, ICmpScaledV); 5431 } else { 5432 // A scale of 1 means that the scale has been expanded as part of the 5433 // base regs. 5434 assert((F.Scale == 0 || F.Scale == 1) && 5435 "ICmp does not support folding a global value and " 5436 "a scale at the same time!"); 5437 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5438 -(uint64_t)Offset); 5439 if (C->getType() != OpTy) 5440 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5441 OpTy, false), 5442 C, OpTy); 5443 5444 CI->setOperand(1, C); 5445 } 5446 } 5447 5448 return FullV; 5449 } 5450 5451 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5452 /// effectively happens in their predecessor blocks, so the expression may need 5453 /// to be expanded in multiple places. 5454 void LSRInstance::RewriteForPHI( 5455 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5456 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5457 DenseMap<BasicBlock *, Value *> Inserted; 5458 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5459 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5460 bool needUpdateFixups = false; 5461 BasicBlock *BB = PN->getIncomingBlock(i); 5462 5463 // If this is a critical edge, split the edge so that we do not insert 5464 // the code on all predecessor/successor paths. We do this unless this 5465 // is the canonical backedge for this loop, which complicates post-inc 5466 // users. 5467 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5468 !isa<IndirectBrInst>(BB->getTerminator()) && 5469 !isa<CatchSwitchInst>(BB->getTerminator())) { 5470 BasicBlock *Parent = PN->getParent(); 5471 Loop *PNLoop = LI.getLoopFor(Parent); 5472 if (!PNLoop || Parent != PNLoop->getHeader()) { 5473 // Split the critical edge. 5474 BasicBlock *NewBB = nullptr; 5475 if (!Parent->isLandingPad()) { 5476 NewBB = 5477 SplitCriticalEdge(BB, Parent, 5478 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5479 .setMergeIdenticalEdges() 5480 .setKeepOneInputPHIs()); 5481 } else { 5482 SmallVector<BasicBlock*, 2> NewBBs; 5483 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5484 NewBB = NewBBs[0]; 5485 } 5486 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5487 // phi predecessors are identical. The simple thing to do is skip 5488 // splitting in this case rather than complicate the API. 5489 if (NewBB) { 5490 // If PN is outside of the loop and BB is in the loop, we want to 5491 // move the block to be immediately before the PHI block, not 5492 // immediately after BB. 5493 if (L->contains(BB) && !L->contains(PN)) 5494 NewBB->moveBefore(PN->getParent()); 5495 5496 // Splitting the edge can reduce the number of PHI entries we have. 5497 e = PN->getNumIncomingValues(); 5498 BB = NewBB; 5499 i = PN->getBasicBlockIndex(BB); 5500 5501 needUpdateFixups = true; 5502 } 5503 } 5504 } 5505 5506 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5507 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5508 if (!Pair.second) 5509 PN->setIncomingValue(i, Pair.first->second); 5510 else { 5511 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5512 Rewriter, DeadInsts); 5513 5514 // If this is reuse-by-noop-cast, insert the noop cast. 5515 Type *OpTy = LF.OperandValToReplace->getType(); 5516 if (FullV->getType() != OpTy) 5517 FullV = 5518 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5519 OpTy, false), 5520 FullV, LF.OperandValToReplace->getType(), 5521 "tmp", BB->getTerminator()); 5522 5523 PN->setIncomingValue(i, FullV); 5524 Pair.first->second = FullV; 5525 } 5526 5527 // If LSR splits critical edge and phi node has other pending 5528 // fixup operands, we need to update those pending fixups. Otherwise 5529 // formulae will not be implemented completely and some instructions 5530 // will not be eliminated. 5531 if (needUpdateFixups) { 5532 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5533 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5534 // If fixup is supposed to rewrite some operand in the phi 5535 // that was just updated, it may be already moved to 5536 // another phi node. Such fixup requires update. 5537 if (Fixup.UserInst == PN) { 5538 // Check if the operand we try to replace still exists in the 5539 // original phi. 5540 bool foundInOriginalPHI = false; 5541 for (const auto &val : PN->incoming_values()) 5542 if (val == Fixup.OperandValToReplace) { 5543 foundInOriginalPHI = true; 5544 break; 5545 } 5546 5547 // If fixup operand found in original PHI - nothing to do. 5548 if (foundInOriginalPHI) 5549 continue; 5550 5551 // Otherwise it might be moved to another PHI and requires update. 5552 // If fixup operand not found in any of the incoming blocks that 5553 // means we have already rewritten it - nothing to do. 5554 for (const auto &Block : PN->blocks()) 5555 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5556 ++I) { 5557 PHINode *NewPN = cast<PHINode>(I); 5558 for (const auto &val : NewPN->incoming_values()) 5559 if (val == Fixup.OperandValToReplace) 5560 Fixup.UserInst = NewPN; 5561 } 5562 } 5563 } 5564 } 5565 } 5566 5567 /// Emit instructions for the leading candidate expression for this LSRUse (this 5568 /// is called "expanding"), and update the UserInst to reference the newly 5569 /// expanded value. 5570 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5571 const Formula &F, SCEVExpander &Rewriter, 5572 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5573 // First, find an insertion point that dominates UserInst. For PHI nodes, 5574 // find the nearest block which dominates all the relevant uses. 5575 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5576 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5577 } else { 5578 Value *FullV = 5579 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5580 5581 // If this is reuse-by-noop-cast, insert the noop cast. 5582 Type *OpTy = LF.OperandValToReplace->getType(); 5583 if (FullV->getType() != OpTy) { 5584 Instruction *Cast = 5585 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5586 FullV, OpTy, "tmp", LF.UserInst); 5587 FullV = Cast; 5588 } 5589 5590 // Update the user. ICmpZero is handled specially here (for now) because 5591 // Expand may have updated one of the operands of the icmp already, and 5592 // its new value may happen to be equal to LF.OperandValToReplace, in 5593 // which case doing replaceUsesOfWith leads to replacing both operands 5594 // with the same value. TODO: Reorganize this. 5595 if (LU.Kind == LSRUse::ICmpZero) 5596 LF.UserInst->setOperand(0, FullV); 5597 else 5598 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5599 } 5600 5601 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5602 DeadInsts.emplace_back(OperandIsInstr); 5603 } 5604 5605 /// Rewrite all the fixup locations with new values, following the chosen 5606 /// solution. 5607 void LSRInstance::ImplementSolution( 5608 const SmallVectorImpl<const Formula *> &Solution) { 5609 // Keep track of instructions we may have made dead, so that 5610 // we can remove them after we are done working. 5611 SmallVector<WeakTrackingVH, 16> DeadInsts; 5612 5613 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5614 false); 5615 #ifndef NDEBUG 5616 Rewriter.setDebugType(DEBUG_TYPE); 5617 #endif 5618 Rewriter.disableCanonicalMode(); 5619 Rewriter.enableLSRMode(); 5620 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5621 5622 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5623 for (const IVChain &Chain : IVChainVec) { 5624 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5625 Rewriter.setChainedPhi(PN); 5626 } 5627 5628 // Expand the new value definitions and update the users. 5629 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5630 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5631 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5632 Changed = true; 5633 } 5634 5635 for (const IVChain &Chain : IVChainVec) { 5636 GenerateIVChain(Chain, Rewriter, DeadInsts); 5637 Changed = true; 5638 } 5639 5640 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 5641 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 5642 ScalarEvolutionIVs.push_back(IV); 5643 5644 // Clean up after ourselves. This must be done before deleting any 5645 // instructions. 5646 Rewriter.clear(); 5647 5648 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5649 &TLI, MSSAU); 5650 5651 // In our cost analysis above, we assume that each addrec consumes exactly 5652 // one register, and arrange to have increments inserted just before the 5653 // latch to maximimize the chance this is true. However, if we reused 5654 // existing IVs, we now need to move the increments to match our 5655 // expectations. Otherwise, our cost modeling results in us having a 5656 // chosen a non-optimal result for the actual schedule. (And yes, this 5657 // scheduling decision does impact later codegen.) 5658 for (PHINode &PN : L->getHeader()->phis()) { 5659 BinaryOperator *BO = nullptr; 5660 Value *Start = nullptr, *Step = nullptr; 5661 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5662 continue; 5663 5664 switch (BO->getOpcode()) { 5665 case Instruction::Sub: 5666 if (BO->getOperand(0) != &PN) 5667 // sub is non-commutative - match handling elsewhere in LSR 5668 continue; 5669 break; 5670 case Instruction::Add: 5671 break; 5672 default: 5673 continue; 5674 }; 5675 5676 if (!isa<Constant>(Step)) 5677 // If not a constant step, might increase register pressure 5678 // (We assume constants have been canonicalized to RHS) 5679 continue; 5680 5681 if (BO->getParent() == IVIncInsertPos->getParent()) 5682 // Only bother moving across blocks. Isel can handle block local case. 5683 continue; 5684 5685 // Can we legally schedule inc at the desired point? 5686 if (!llvm::all_of(BO->uses(), 5687 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5688 continue; 5689 BO->moveBefore(IVIncInsertPos); 5690 Changed = true; 5691 } 5692 5693 5694 } 5695 5696 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5697 DominatorTree &DT, LoopInfo &LI, 5698 const TargetTransformInfo &TTI, AssumptionCache &AC, 5699 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5700 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5701 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5702 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5703 // If LoopSimplify form is not available, stay out of trouble. 5704 if (!L->isLoopSimplifyForm()) 5705 return; 5706 5707 // If there's no interesting work to be done, bail early. 5708 if (IU.empty()) return; 5709 5710 // If there's too much analysis to be done, bail early. We won't be able to 5711 // model the problem anyway. 5712 unsigned NumUsers = 0; 5713 for (const IVStrideUse &U : IU) { 5714 if (++NumUsers > MaxIVUsers) { 5715 (void)U; 5716 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5717 << "\n"); 5718 return; 5719 } 5720 // Bail out if we have a PHI on an EHPad that gets a value from a 5721 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5722 // no good place to stick any instructions. 5723 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5724 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5725 if (isa<FuncletPadInst>(FirstNonPHI) || 5726 isa<CatchSwitchInst>(FirstNonPHI)) 5727 for (BasicBlock *PredBB : PN->blocks()) 5728 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5729 return; 5730 } 5731 } 5732 5733 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5734 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5735 dbgs() << ":\n"); 5736 5737 // First, perform some low-level loop optimizations. 5738 OptimizeShadowIV(); 5739 OptimizeLoopTermCond(); 5740 5741 // If loop preparation eliminates all interesting IV users, bail. 5742 if (IU.empty()) return; 5743 5744 // Skip nested loops until we can model them better with formulae. 5745 if (!L->isInnermost()) { 5746 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5747 return; 5748 } 5749 5750 // Start collecting data and preparing for the solver. 5751 // If number of registers is not the major cost, we cannot benefit from the 5752 // current profitable chain optimization which is based on number of 5753 // registers. 5754 // FIXME: add profitable chain optimization for other kinds major cost, for 5755 // example number of instructions. 5756 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5757 CollectChains(); 5758 CollectInterestingTypesAndFactors(); 5759 CollectFixupsAndInitialFormulae(); 5760 CollectLoopInvariantFixupsAndFormulae(); 5761 5762 if (Uses.empty()) 5763 return; 5764 5765 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5766 print_uses(dbgs())); 5767 5768 // Now use the reuse data to generate a bunch of interesting ways 5769 // to formulate the values needed for the uses. 5770 GenerateAllReuseFormulae(); 5771 5772 FilterOutUndesirableDedicatedRegisters(); 5773 NarrowSearchSpaceUsingHeuristics(); 5774 5775 SmallVector<const Formula *, 8> Solution; 5776 Solve(Solution); 5777 5778 // Release memory that is no longer needed. 5779 Factors.clear(); 5780 Types.clear(); 5781 RegUses.clear(); 5782 5783 if (Solution.empty()) 5784 return; 5785 5786 #ifndef NDEBUG 5787 // Formulae should be legal. 5788 for (const LSRUse &LU : Uses) { 5789 for (const Formula &F : LU.Formulae) 5790 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5791 F) && "Illegal formula generated!"); 5792 }; 5793 #endif 5794 5795 // Now that we've decided what we want, make it so. 5796 ImplementSolution(Solution); 5797 } 5798 5799 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5800 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5801 if (Factors.empty() && Types.empty()) return; 5802 5803 OS << "LSR has identified the following interesting factors and types: "; 5804 bool First = true; 5805 5806 for (int64_t Factor : Factors) { 5807 if (!First) OS << ", "; 5808 First = false; 5809 OS << '*' << Factor; 5810 } 5811 5812 for (Type *Ty : Types) { 5813 if (!First) OS << ", "; 5814 First = false; 5815 OS << '(' << *Ty << ')'; 5816 } 5817 OS << '\n'; 5818 } 5819 5820 void LSRInstance::print_fixups(raw_ostream &OS) const { 5821 OS << "LSR is examining the following fixup sites:\n"; 5822 for (const LSRUse &LU : Uses) 5823 for (const LSRFixup &LF : LU.Fixups) { 5824 dbgs() << " "; 5825 LF.print(OS); 5826 OS << '\n'; 5827 } 5828 } 5829 5830 void LSRInstance::print_uses(raw_ostream &OS) const { 5831 OS << "LSR is examining the following uses:\n"; 5832 for (const LSRUse &LU : Uses) { 5833 dbgs() << " "; 5834 LU.print(OS); 5835 OS << '\n'; 5836 for (const Formula &F : LU.Formulae) { 5837 OS << " "; 5838 F.print(OS); 5839 OS << '\n'; 5840 } 5841 } 5842 } 5843 5844 void LSRInstance::print(raw_ostream &OS) const { 5845 print_factors_and_types(OS); 5846 print_fixups(OS); 5847 print_uses(OS); 5848 } 5849 5850 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5851 print(errs()); errs() << '\n'; 5852 } 5853 #endif 5854 5855 namespace { 5856 5857 class LoopStrengthReduce : public LoopPass { 5858 public: 5859 static char ID; // Pass ID, replacement for typeid 5860 5861 LoopStrengthReduce(); 5862 5863 private: 5864 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5865 void getAnalysisUsage(AnalysisUsage &AU) const override; 5866 }; 5867 5868 } // end anonymous namespace 5869 5870 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5871 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5872 } 5873 5874 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5875 // We split critical edges, so we change the CFG. However, we do update 5876 // many analyses if they are around. 5877 AU.addPreservedID(LoopSimplifyID); 5878 5879 AU.addRequired<LoopInfoWrapperPass>(); 5880 AU.addPreserved<LoopInfoWrapperPass>(); 5881 AU.addRequiredID(LoopSimplifyID); 5882 AU.addRequired<DominatorTreeWrapperPass>(); 5883 AU.addPreserved<DominatorTreeWrapperPass>(); 5884 AU.addRequired<ScalarEvolutionWrapperPass>(); 5885 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5886 AU.addRequired<AssumptionCacheTracker>(); 5887 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5888 // Requiring LoopSimplify a second time here prevents IVUsers from running 5889 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5890 AU.addRequiredID(LoopSimplifyID); 5891 AU.addRequired<IVUsersWrapperPass>(); 5892 AU.addPreserved<IVUsersWrapperPass>(); 5893 AU.addRequired<TargetTransformInfoWrapperPass>(); 5894 AU.addPreserved<MemorySSAWrapperPass>(); 5895 } 5896 5897 namespace { 5898 struct SCEVDbgValueBuilder { 5899 SCEVDbgValueBuilder() = default; 5900 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { 5901 Values = Base.Values; 5902 Expr = Base.Expr; 5903 } 5904 5905 /// The DIExpression as we translate the SCEV. 5906 SmallVector<uint64_t, 6> Expr; 5907 /// The location ops of the DIExpression. 5908 SmallVector<llvm::ValueAsMetadata *, 2> Values; 5909 5910 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 5911 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 5912 5913 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 5914 /// in the set of values referenced by the expression. 5915 void pushValue(llvm::Value *V) { 5916 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 5917 auto *It = 5918 std::find(Values.begin(), Values.end(), llvm::ValueAsMetadata::get(V)); 5919 unsigned ArgIndex = 0; 5920 if (It != Values.end()) { 5921 ArgIndex = std::distance(Values.begin(), It); 5922 } else { 5923 ArgIndex = Values.size(); 5924 Values.push_back(llvm::ValueAsMetadata::get(V)); 5925 } 5926 Expr.push_back(ArgIndex); 5927 } 5928 5929 void pushValue(const SCEVUnknown *U) { 5930 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 5931 pushValue(V); 5932 } 5933 5934 bool pushConst(const SCEVConstant *C) { 5935 if (C->getAPInt().getMinSignedBits() > 64) 5936 return false; 5937 Expr.push_back(llvm::dwarf::DW_OP_consts); 5938 Expr.push_back(C->getAPInt().getSExtValue()); 5939 return true; 5940 } 5941 5942 /// Several SCEV types are sequences of the same arithmetic operator applied 5943 /// to constants and values that may be extended or truncated. 5944 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 5945 uint64_t DwarfOp) { 5946 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 5947 "Expected arithmetic SCEV type"); 5948 bool Success = true; 5949 unsigned EmitOperator = 0; 5950 for (auto &Op : CommExpr->operands()) { 5951 Success &= pushSCEV(Op); 5952 5953 if (EmitOperator >= 1) 5954 pushOperator(DwarfOp); 5955 ++EmitOperator; 5956 } 5957 return Success; 5958 } 5959 5960 // TODO: Identify and omit noop casts. 5961 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 5962 const llvm::SCEV *Inner = C->getOperand(0); 5963 const llvm::Type *Type = C->getType(); 5964 uint64_t ToWidth = Type->getIntegerBitWidth(); 5965 bool Success = pushSCEV(Inner); 5966 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 5967 IsSigned ? llvm::dwarf::DW_ATE_signed 5968 : llvm::dwarf::DW_ATE_unsigned}; 5969 for (const auto &Op : CastOps) 5970 pushOperator(Op); 5971 return Success; 5972 } 5973 5974 // TODO: MinMax - although these haven't been encountered in the test suite. 5975 bool pushSCEV(const llvm::SCEV *S) { 5976 bool Success = true; 5977 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 5978 Success &= pushConst(StartInt); 5979 5980 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5981 if (!U->getValue()) 5982 return false; 5983 pushValue(U->getValue()); 5984 5985 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 5986 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 5987 5988 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5989 Success &= pushSCEV(UDiv->getLHS()); 5990 Success &= pushSCEV(UDiv->getRHS()); 5991 pushOperator(llvm::dwarf::DW_OP_div); 5992 5993 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 5994 // Assert if a new and unknown SCEVCastEXpr type is encountered. 5995 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 5996 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 5997 "Unexpected cast type in SCEV."); 5998 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 5999 6000 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6001 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6002 6003 } else if (isa<SCEVAddRecExpr>(S)) { 6004 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6005 // unsupported. 6006 return false; 6007 6008 } else { 6009 return false; 6010 } 6011 return Success; 6012 } 6013 6014 void setFinalExpression(llvm::DbgValueInst &DI, const DIExpression *OldExpr) { 6015 // Re-state assumption that this dbg.value is not variadic. Any remaining 6016 // opcodes in its expression operate on a single value already on the 6017 // expression stack. Prepend our operations, which will re-compute and 6018 // place that value on the expression stack. 6019 assert(!DI.hasArgList()); 6020 auto *NewExpr = 6021 DIExpression::prependOpcodes(OldExpr, Expr, /*StackValue*/ true); 6022 DI.setExpression(NewExpr); 6023 6024 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(Values); 6025 DI.setRawLocation(llvm::DIArgList::get(DI.getContext(), ValArrayRef)); 6026 } 6027 6028 /// If a DVI can be emitted without a DIArgList, omit DW_OP_llvm_arg and the 6029 /// location op index 0. 6030 void setShortFinalExpression(llvm::DbgValueInst &DI, 6031 const DIExpression *OldExpr) { 6032 assert((Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && Expr[1] == 0) && 6033 "Expected DW_OP_llvm_arg and 0."); 6034 DI.replaceVariableLocationOp( 6035 0u, llvm::MetadataAsValue::get(DI.getContext(), Values[0])); 6036 6037 // See setFinalExpression: prepend our opcodes on the start of any old 6038 // expression opcodes. 6039 assert(!DI.hasArgList()); 6040 llvm::SmallVector<uint64_t, 6> FinalExpr(llvm::drop_begin(Expr, 2)); 6041 auto *NewExpr = 6042 DIExpression::prependOpcodes(OldExpr, FinalExpr, /*StackValue*/ true); 6043 DI.setExpression(NewExpr); 6044 } 6045 6046 /// Once the IV and variable SCEV translation is complete, write it to the 6047 /// source DVI. 6048 void applyExprToDbgValue(llvm::DbgValueInst &DI, 6049 const DIExpression *OldExpr) { 6050 assert(!Expr.empty() && "Unexpected empty expression."); 6051 // Emit a simpler form if only a single location is referenced. 6052 if (Values.size() == 1 && Expr[0] == llvm::dwarf::DW_OP_LLVM_arg && 6053 Expr[1] == 0) { 6054 setShortFinalExpression(DI, OldExpr); 6055 } else { 6056 setFinalExpression(DI, OldExpr); 6057 } 6058 } 6059 6060 /// Return true if the combination of arithmetic operator and underlying 6061 /// SCEV constant value is an identity function. 6062 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6063 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6064 if (C->getAPInt().getMinSignedBits() > 64) 6065 return false; 6066 int64_t I = C->getAPInt().getSExtValue(); 6067 switch (Op) { 6068 case llvm::dwarf::DW_OP_plus: 6069 case llvm::dwarf::DW_OP_minus: 6070 return I == 0; 6071 case llvm::dwarf::DW_OP_mul: 6072 case llvm::dwarf::DW_OP_div: 6073 return I == 1; 6074 } 6075 } 6076 return false; 6077 } 6078 6079 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6080 /// builder's expression stack. The stack should already contain an 6081 /// expression for the iteration count, so that it can be multiplied by 6082 /// the stride and added to the start. 6083 /// Components of the expression are omitted if they are an identity function. 6084 /// Chain (non-affine) SCEVs are not supported. 6085 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6086 assert(SAR.isAffine() && "Expected affine SCEV"); 6087 // TODO: Is this check needed? 6088 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6089 return false; 6090 6091 const SCEV *Start = SAR.getStart(); 6092 const SCEV *Stride = SAR.getStepRecurrence(SE); 6093 6094 // Skip pushing arithmetic noops. 6095 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6096 if (!pushSCEV(Stride)) 6097 return false; 6098 pushOperator(llvm::dwarf::DW_OP_mul); 6099 } 6100 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6101 if (!pushSCEV(Start)) 6102 return false; 6103 pushOperator(llvm::dwarf::DW_OP_plus); 6104 } 6105 return true; 6106 } 6107 6108 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6109 /// builder's expression stack. The stack should already contain an 6110 /// expression for the iteration count, so that it can be multiplied by 6111 /// the stride and added to the start. 6112 /// Components of the expression are omitted if they are an identity function. 6113 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6114 ScalarEvolution &SE) { 6115 assert(SAR.isAffine() && "Expected affine SCEV"); 6116 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6117 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6118 << SAR << '\n'); 6119 return false; 6120 } 6121 const SCEV *Start = SAR.getStart(); 6122 const SCEV *Stride = SAR.getStepRecurrence(SE); 6123 6124 // Skip pushing arithmetic noops. 6125 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6126 if (!pushSCEV(Start)) 6127 return false; 6128 pushOperator(llvm::dwarf::DW_OP_minus); 6129 } 6130 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6131 if (!pushSCEV(Stride)) 6132 return false; 6133 pushOperator(llvm::dwarf::DW_OP_div); 6134 } 6135 return true; 6136 } 6137 }; 6138 6139 struct DVIRecoveryRec { 6140 DbgValueInst *DVI; 6141 DIExpression *Expr; 6142 Metadata *LocationOp; 6143 const llvm::SCEV *SCEV; 6144 }; 6145 } // namespace 6146 6147 static void RewriteDVIUsingIterCount(DVIRecoveryRec CachedDVI, 6148 const SCEVDbgValueBuilder &IterationCount, 6149 ScalarEvolution &SE) { 6150 // LSR may add locations to previously single location-op DVIs which 6151 // are currently not supported. 6152 if (CachedDVI.DVI->getNumVariableLocationOps() != 1) 6153 return; 6154 6155 // SCEVs for SSA values are most frquently of the form 6156 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6157 // This is because %a is a PHI node that is not the IV. However, these 6158 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6159 // so its not expected this point will be reached. 6160 if (!isa<SCEVAddRecExpr>(CachedDVI.SCEV)) 6161 return; 6162 6163 LLVM_DEBUG(dbgs() << "scev-salvage: Value to salvage SCEV: " 6164 << *CachedDVI.SCEV << '\n'); 6165 6166 const auto *Rec = cast<SCEVAddRecExpr>(CachedDVI.SCEV); 6167 if (!Rec->isAffine()) 6168 return; 6169 6170 if (CachedDVI.SCEV->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6171 return; 6172 6173 // Initialise a new builder with the iteration count expression. In 6174 // combination with the value's SCEV this enables recovery. 6175 SCEVDbgValueBuilder RecoverValue(IterationCount); 6176 if (!RecoverValue.SCEVToValueExpr(*Rec, SE)) 6177 return; 6178 6179 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *CachedDVI.DVI << '\n'); 6180 RecoverValue.applyExprToDbgValue(*CachedDVI.DVI, CachedDVI.Expr); 6181 LLVM_DEBUG(dbgs() << "scev-salvage: to: " << *CachedDVI.DVI << '\n'); 6182 } 6183 6184 static void RewriteDVIUsingOffset(DVIRecoveryRec &DVIRec, llvm::PHINode &IV, 6185 int64_t Offset) { 6186 assert(!DVIRec.DVI->hasArgList() && "Expected single location-op dbg.value."); 6187 DbgValueInst *DVI = DVIRec.DVI; 6188 SmallVector<uint64_t, 8> Ops; 6189 DIExpression::appendOffset(Ops, Offset); 6190 DIExpression *Expr = DIExpression::prependOpcodes(DVIRec.Expr, Ops, true); 6191 LLVM_DEBUG(dbgs() << "scev-salvage: Updating: " << *DVIRec.DVI << '\n'); 6192 DVI->setExpression(Expr); 6193 llvm::Value *ValIV = dyn_cast<llvm::Value>(&IV); 6194 DVI->replaceVariableLocationOp( 6195 0u, llvm::MetadataAsValue::get(DVI->getContext(), 6196 llvm::ValueAsMetadata::get(ValIV))); 6197 LLVM_DEBUG(dbgs() << "scev-salvage: updated with offset to IV: " 6198 << *DVIRec.DVI << '\n'); 6199 } 6200 6201 static void 6202 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE, 6203 llvm::PHINode *LSRInductionVar, 6204 SmallVector<DVIRecoveryRec, 2> &DVIToUpdate) { 6205 if (DVIToUpdate.empty()) 6206 return; 6207 6208 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6209 assert(SCEVInductionVar && 6210 "Anticipated a SCEV for the post-LSR induction variable"); 6211 6212 if (const SCEVAddRecExpr *IVAddRec = 6213 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6214 if (!IVAddRec->isAffine()) 6215 return; 6216 6217 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6218 return; 6219 6220 // The iteration count is required to recover location values. 6221 SCEVDbgValueBuilder IterCountExpr; 6222 IterCountExpr.pushValue(LSRInductionVar); 6223 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6224 return; 6225 6226 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6227 << '\n'); 6228 6229 // Needn't salvage if the location op hasn't been undef'd by LSR. 6230 for (auto &DVIRec : DVIToUpdate) { 6231 if (!DVIRec.DVI->isUndef()) 6232 continue; 6233 6234 // Some DVIs that were single location-op when cached are now multi-op, 6235 // due to LSR optimisations. However, multi-op salvaging is not yet 6236 // supported by SCEV salvaging. But, we can attempt a salvage by restoring 6237 // the pre-LSR single-op expression. 6238 if (DVIRec.DVI->hasArgList()) { 6239 if (!DVIRec.DVI->getVariableLocationOp(0)) 6240 continue; 6241 llvm::Type *Ty = DVIRec.DVI->getVariableLocationOp(0)->getType(); 6242 DVIRec.DVI->setRawLocation( 6243 llvm::ValueAsMetadata::get(UndefValue::get(Ty))); 6244 DVIRec.DVI->setExpression(DVIRec.Expr); 6245 } 6246 6247 LLVM_DEBUG(dbgs() << "scev-salvage: value to recover SCEV: " 6248 << *DVIRec.SCEV << '\n'); 6249 6250 // Create a simple expression if the IV and value to salvage SCEVs 6251 // start values differ by only a constant value. 6252 if (Optional<APInt> Offset = 6253 SE.computeConstantDifference(DVIRec.SCEV, SCEVInductionVar)) { 6254 if (Offset.getValue().getMinSignedBits() <= 64) 6255 RewriteDVIUsingOffset(DVIRec, *LSRInductionVar, 6256 Offset.getValue().getSExtValue()); 6257 } else { 6258 RewriteDVIUsingIterCount(DVIRec, IterCountExpr, SE); 6259 } 6260 } 6261 } 6262 } 6263 6264 /// Identify and cache salvageable DVI locations and expressions along with the 6265 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6266 /// cacheing and salvaging. 6267 static void 6268 DbgGatherSalvagableDVI(Loop *L, ScalarEvolution &SE, 6269 SmallVector<DVIRecoveryRec, 2> &SalvageableDVISCEVs, 6270 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6271 for (auto &B : L->getBlocks()) { 6272 for (auto &I : *B) { 6273 auto DVI = dyn_cast<DbgValueInst>(&I); 6274 if (!DVI) 6275 continue; 6276 6277 if (DVI->isUndef()) 6278 continue; 6279 6280 if (DVI->hasArgList()) 6281 continue; 6282 6283 if (!DVI->getVariableLocationOp(0) || 6284 !SE.isSCEVable(DVI->getVariableLocationOp(0)->getType())) 6285 continue; 6286 6287 // SCEVUnknown wraps an llvm::Value, it does not have a start and stride. 6288 // Therefore no translation to DIExpression is performed. 6289 const SCEV *S = SE.getSCEV(DVI->getVariableLocationOp(0)); 6290 if (isa<SCEVUnknown>(S)) 6291 continue; 6292 6293 // Avoid wasting resources generating an expression containing undef. 6294 if (SE.containsUndefs(S)) 6295 continue; 6296 6297 SalvageableDVISCEVs.push_back( 6298 {DVI, DVI->getExpression(), DVI->getRawLocation(), 6299 SE.getSCEV(DVI->getVariableLocationOp(0))}); 6300 DVIHandles.insert(DVI); 6301 } 6302 } 6303 } 6304 6305 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 6306 /// any PHi from the loop header is usable, but may have less chance of 6307 /// surviving subsequent transforms. 6308 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 6309 const LSRInstance &LSR) { 6310 6311 auto IsSuitableIV = [&](PHINode *P) { 6312 if (!SE.isSCEVable(P->getType())) 6313 return false; 6314 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 6315 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 6316 return false; 6317 }; 6318 6319 // For now, just pick the first IV that was generated and inserted by 6320 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 6321 // by subsequent transforms. 6322 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 6323 if (!IV) 6324 continue; 6325 6326 // There should only be PHI node IVs. 6327 PHINode *P = cast<PHINode>(&*IV); 6328 6329 if (IsSuitableIV(P)) 6330 return P; 6331 } 6332 6333 for (PHINode &P : L.getHeader()->phis()) { 6334 if (IsSuitableIV(&P)) 6335 return &P; 6336 } 6337 return nullptr; 6338 } 6339 6340 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6341 DominatorTree &DT, LoopInfo &LI, 6342 const TargetTransformInfo &TTI, 6343 AssumptionCache &AC, TargetLibraryInfo &TLI, 6344 MemorySSA *MSSA) { 6345 6346 // Debug preservation - before we start removing anything identify which DVI 6347 // meet the salvageable criteria and store their DIExpression and SCEVs. 6348 SmallVector<DVIRecoveryRec, 2> SalvageableDVI; 6349 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 6350 DbgGatherSalvagableDVI(L, SE, SalvageableDVI, DVIHandles); 6351 6352 bool Changed = false; 6353 std::unique_ptr<MemorySSAUpdater> MSSAU; 6354 if (MSSA) 6355 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 6356 6357 // Run the main LSR transformation. 6358 const LSRInstance &Reducer = 6359 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 6360 Changed |= Reducer.getChanged(); 6361 6362 // Remove any extra phis created by processing inner loops. 6363 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6364 if (EnablePhiElim && L->isLoopSimplifyForm()) { 6365 SmallVector<WeakTrackingVH, 16> DeadInsts; 6366 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6367 SCEVExpander Rewriter(SE, DL, "lsr", false); 6368 #ifndef NDEBUG 6369 Rewriter.setDebugType(DEBUG_TYPE); 6370 #endif 6371 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 6372 if (numFolded) { 6373 Changed = true; 6374 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6375 MSSAU.get()); 6376 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6377 } 6378 } 6379 6380 if (SalvageableDVI.empty()) 6381 return Changed; 6382 6383 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 6384 // expressions composed using the derived iteration count. 6385 // TODO: Allow for multiple IV references for nested AddRecSCEVs 6386 for (auto &L : LI) { 6387 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 6388 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVI); 6389 else { 6390 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 6391 "could not be identified.\n"); 6392 } 6393 } 6394 6395 DVIHandles.clear(); 6396 return Changed; 6397 } 6398 6399 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 6400 if (skipLoop(L)) 6401 return false; 6402 6403 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 6404 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6405 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6406 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6407 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 6408 *L->getHeader()->getParent()); 6409 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 6410 *L->getHeader()->getParent()); 6411 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 6412 *L->getHeader()->getParent()); 6413 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 6414 MemorySSA *MSSA = nullptr; 6415 if (MSSAAnalysis) 6416 MSSA = &MSSAAnalysis->getMSSA(); 6417 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6418 } 6419 6420 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6421 LoopStandardAnalysisResults &AR, 6422 LPMUpdater &) { 6423 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6424 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6425 return PreservedAnalyses::all(); 6426 6427 auto PA = getLoopPassPreservedAnalyses(); 6428 if (AR.MSSA) 6429 PA.preserve<MemorySSAAnalysis>(); 6430 return PA; 6431 } 6432 6433 char LoopStrengthReduce::ID = 0; 6434 6435 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6436 "Loop Strength Reduction", false, false) 6437 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6438 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6439 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6440 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6441 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6442 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6443 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6444 "Loop Strength Reduction", false, false) 6445 6446 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6447