1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/Config/llvm-config.h" 82 #include "llvm/IR/BasicBlock.h" 83 #include "llvm/IR/Constant.h" 84 #include "llvm/IR/Constants.h" 85 #include "llvm/IR/DebugInfoMetadata.h" 86 #include "llvm/IR/DerivedTypes.h" 87 #include "llvm/IR/Dominators.h" 88 #include "llvm/IR/GlobalValue.h" 89 #include "llvm/IR/IRBuilder.h" 90 #include "llvm/IR/InstrTypes.h" 91 #include "llvm/IR/Instruction.h" 92 #include "llvm/IR/Instructions.h" 93 #include "llvm/IR/IntrinsicInst.h" 94 #include "llvm/IR/Intrinsics.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/OperandTraits.h" 97 #include "llvm/IR/Operator.h" 98 #include "llvm/IR/PassManager.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <cstdlib> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <utility> 128 129 using namespace llvm; 130 131 #define DEBUG_TYPE "loop-reduce" 132 133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 134 /// bail out. This threshold is far beyond the number of users that LSR can 135 /// conceivably solve, so it should not affect generated code, but catches the 136 /// worst cases before LSR burns too much compile time and stack space. 137 static const unsigned MaxIVUsers = 200; 138 139 // Temporary flag to cleanup congruent phis after LSR phi expansion. 140 // It's currently disabled until we can determine whether it's truly useful or 141 // not. The flag should be removed after the v3.0 release. 142 // This is now needed for ivchains. 143 static cl::opt<bool> EnablePhiElim( 144 "enable-lsr-phielim", cl::Hidden, cl::init(true), 145 cl::desc("Enable LSR phi elimination")); 146 147 // The flag adds instruction count to solutions cost comparision. 148 static cl::opt<bool> InsnsCost( 149 "lsr-insns-cost", cl::Hidden, cl::init(true), 150 cl::desc("Add instruction count to a LSR cost model")); 151 152 // Flag to choose how to narrow complex lsr solution 153 static cl::opt<bool> LSRExpNarrow( 154 "lsr-exp-narrow", cl::Hidden, cl::init(false), 155 cl::desc("Narrow LSR complex solution using" 156 " expectation of registers number")); 157 158 // Flag to narrow search space by filtering non-optimal formulae with 159 // the same ScaledReg and Scale. 160 static cl::opt<bool> FilterSameScaledReg( 161 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 162 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 163 " with the same ScaledReg and Scale")); 164 165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 166 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 167 cl::desc("A flag that overrides the target's preferred addressing mode."), 168 cl::values(clEnumValN(TTI::AMK_None, 169 "none", 170 "Don't prefer any addressing mode"), 171 clEnumValN(TTI::AMK_PreIndexed, 172 "preindexed", 173 "Prefer pre-indexed addressing mode"), 174 clEnumValN(TTI::AMK_PostIndexed, 175 "postindexed", 176 "Prefer post-indexed addressing mode"))); 177 178 static cl::opt<unsigned> ComplexityLimit( 179 "lsr-complexity-limit", cl::Hidden, 180 cl::init(std::numeric_limits<uint16_t>::max()), 181 cl::desc("LSR search space complexity limit")); 182 183 static cl::opt<unsigned> SetupCostDepthLimit( 184 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 185 cl::desc("The limit on recursion depth for LSRs setup cost")); 186 187 #ifndef NDEBUG 188 // Stress test IV chain generation. 189 static cl::opt<bool> StressIVChain( 190 "stress-ivchain", cl::Hidden, cl::init(false), 191 cl::desc("Stress test LSR IV chains")); 192 #else 193 static bool StressIVChain = false; 194 #endif 195 196 namespace { 197 198 struct MemAccessTy { 199 /// Used in situations where the accessed memory type is unknown. 200 static const unsigned UnknownAddressSpace = 201 std::numeric_limits<unsigned>::max(); 202 203 Type *MemTy = nullptr; 204 unsigned AddrSpace = UnknownAddressSpace; 205 206 MemAccessTy() = default; 207 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 208 209 bool operator==(MemAccessTy Other) const { 210 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 211 } 212 213 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 214 215 static MemAccessTy getUnknown(LLVMContext &Ctx, 216 unsigned AS = UnknownAddressSpace) { 217 return MemAccessTy(Type::getVoidTy(Ctx), AS); 218 } 219 220 Type *getType() { return MemTy; } 221 }; 222 223 /// This class holds data which is used to order reuse candidates. 224 class RegSortData { 225 public: 226 /// This represents the set of LSRUse indices which reference 227 /// a particular register. 228 SmallBitVector UsedByIndices; 229 230 void print(raw_ostream &OS) const; 231 void dump() const; 232 }; 233 234 } // end anonymous namespace 235 236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 237 void RegSortData::print(raw_ostream &OS) const { 238 OS << "[NumUses=" << UsedByIndices.count() << ']'; 239 } 240 241 LLVM_DUMP_METHOD void RegSortData::dump() const { 242 print(errs()); errs() << '\n'; 243 } 244 #endif 245 246 namespace { 247 248 /// Map register candidates to information about how they are used. 249 class RegUseTracker { 250 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 251 252 RegUsesTy RegUsesMap; 253 SmallVector<const SCEV *, 16> RegSequence; 254 255 public: 256 void countRegister(const SCEV *Reg, size_t LUIdx); 257 void dropRegister(const SCEV *Reg, size_t LUIdx); 258 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 259 260 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 261 262 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 263 264 void clear(); 265 266 using iterator = SmallVectorImpl<const SCEV *>::iterator; 267 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 268 269 iterator begin() { return RegSequence.begin(); } 270 iterator end() { return RegSequence.end(); } 271 const_iterator begin() const { return RegSequence.begin(); } 272 const_iterator end() const { return RegSequence.end(); } 273 }; 274 275 } // end anonymous namespace 276 277 void 278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 279 std::pair<RegUsesTy::iterator, bool> Pair = 280 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 281 RegSortData &RSD = Pair.first->second; 282 if (Pair.second) 283 RegSequence.push_back(Reg); 284 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 285 RSD.UsedByIndices.set(LUIdx); 286 } 287 288 void 289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 290 RegUsesTy::iterator It = RegUsesMap.find(Reg); 291 assert(It != RegUsesMap.end()); 292 RegSortData &RSD = It->second; 293 assert(RSD.UsedByIndices.size() > LUIdx); 294 RSD.UsedByIndices.reset(LUIdx); 295 } 296 297 void 298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 299 assert(LUIdx <= LastLUIdx); 300 301 // Update RegUses. The data structure is not optimized for this purpose; 302 // we must iterate through it and update each of the bit vectors. 303 for (auto &Pair : RegUsesMap) { 304 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 305 if (LUIdx < UsedByIndices.size()) 306 UsedByIndices[LUIdx] = 307 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 308 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 309 } 310 } 311 312 bool 313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 315 if (I == RegUsesMap.end()) 316 return false; 317 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 318 int i = UsedByIndices.find_first(); 319 if (i == -1) return false; 320 if ((size_t)i != LUIdx) return true; 321 return UsedByIndices.find_next(i) != -1; 322 } 323 324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 325 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 326 assert(I != RegUsesMap.end() && "Unknown register!"); 327 return I->second.UsedByIndices; 328 } 329 330 void RegUseTracker::clear() { 331 RegUsesMap.clear(); 332 RegSequence.clear(); 333 } 334 335 namespace { 336 337 /// This class holds information that describes a formula for computing 338 /// satisfying a use. It may include broken-out immediates and scaled registers. 339 struct Formula { 340 /// Global base address used for complex addressing. 341 GlobalValue *BaseGV = nullptr; 342 343 /// Base offset for complex addressing. 344 int64_t BaseOffset = 0; 345 346 /// Whether any complex addressing has a base register. 347 bool HasBaseReg = false; 348 349 /// The scale of any complex addressing. 350 int64_t Scale = 0; 351 352 /// The list of "base" registers for this use. When this is non-empty. The 353 /// canonical representation of a formula is 354 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 355 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 356 /// 3. The reg containing recurrent expr related with currect loop in the 357 /// formula should be put in the ScaledReg. 358 /// #1 enforces that the scaled register is always used when at least two 359 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 360 /// #2 enforces that 1 * reg is reg. 361 /// #3 ensures invariant regs with respect to current loop can be combined 362 /// together in LSR codegen. 363 /// This invariant can be temporarily broken while building a formula. 364 /// However, every formula inserted into the LSRInstance must be in canonical 365 /// form. 366 SmallVector<const SCEV *, 4> BaseRegs; 367 368 /// The 'scaled' register for this use. This should be non-null when Scale is 369 /// not zero. 370 const SCEV *ScaledReg = nullptr; 371 372 /// An additional constant offset which added near the use. This requires a 373 /// temporary register, but the offset itself can live in an add immediate 374 /// field rather than a register. 375 int64_t UnfoldedOffset = 0; 376 377 Formula() = default; 378 379 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 380 381 bool isCanonical(const Loop &L) const; 382 383 void canonicalize(const Loop &L); 384 385 bool unscale(); 386 387 bool hasZeroEnd() const; 388 389 size_t getNumRegs() const; 390 Type *getType() const; 391 392 void deleteBaseReg(const SCEV *&S); 393 394 bool referencesReg(const SCEV *S) const; 395 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 396 const RegUseTracker &RegUses) const; 397 398 void print(raw_ostream &OS) const; 399 void dump() const; 400 }; 401 402 } // end anonymous namespace 403 404 /// Recursion helper for initialMatch. 405 static void DoInitialMatch(const SCEV *S, Loop *L, 406 SmallVectorImpl<const SCEV *> &Good, 407 SmallVectorImpl<const SCEV *> &Bad, 408 ScalarEvolution &SE) { 409 // Collect expressions which properly dominate the loop header. 410 if (SE.properlyDominates(S, L->getHeader())) { 411 Good.push_back(S); 412 return; 413 } 414 415 // Look at add operands. 416 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 417 for (const SCEV *S : Add->operands()) 418 DoInitialMatch(S, L, Good, Bad, SE); 419 return; 420 } 421 422 // Look at addrec operands. 423 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 424 if (!AR->getStart()->isZero() && AR->isAffine()) { 425 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 426 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 427 AR->getStepRecurrence(SE), 428 // FIXME: AR->getNoWrapFlags() 429 AR->getLoop(), SCEV::FlagAnyWrap), 430 L, Good, Bad, SE); 431 return; 432 } 433 434 // Handle a multiplication by -1 (negation) if it didn't fold. 435 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 436 if (Mul->getOperand(0)->isAllOnesValue()) { 437 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 438 const SCEV *NewMul = SE.getMulExpr(Ops); 439 440 SmallVector<const SCEV *, 4> MyGood; 441 SmallVector<const SCEV *, 4> MyBad; 442 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 443 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 444 SE.getEffectiveSCEVType(NewMul->getType()))); 445 for (const SCEV *S : MyGood) 446 Good.push_back(SE.getMulExpr(NegOne, S)); 447 for (const SCEV *S : MyBad) 448 Bad.push_back(SE.getMulExpr(NegOne, S)); 449 return; 450 } 451 452 // Ok, we can't do anything interesting. Just stuff the whole thing into a 453 // register and hope for the best. 454 Bad.push_back(S); 455 } 456 457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 458 /// all loop-invariant and loop-computable values in a single base register. 459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 460 SmallVector<const SCEV *, 4> Good; 461 SmallVector<const SCEV *, 4> Bad; 462 DoInitialMatch(S, L, Good, Bad, SE); 463 if (!Good.empty()) { 464 const SCEV *Sum = SE.getAddExpr(Good); 465 if (!Sum->isZero()) 466 BaseRegs.push_back(Sum); 467 HasBaseReg = true; 468 } 469 if (!Bad.empty()) { 470 const SCEV *Sum = SE.getAddExpr(Bad); 471 if (!Sum->isZero()) 472 BaseRegs.push_back(Sum); 473 HasBaseReg = true; 474 } 475 canonicalize(*L); 476 } 477 478 /// Check whether or not this formula satisfies the canonical 479 /// representation. 480 /// \see Formula::BaseRegs. 481 bool Formula::isCanonical(const Loop &L) const { 482 if (!ScaledReg) 483 return BaseRegs.size() <= 1; 484 485 if (Scale != 1) 486 return true; 487 488 if (Scale == 1 && BaseRegs.empty()) 489 return false; 490 491 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 492 if (SAR && SAR->getLoop() == &L) 493 return true; 494 495 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 496 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 497 // loop, we want to swap the reg in BaseRegs with ScaledReg. 498 auto I = find_if(BaseRegs, [&](const SCEV *S) { 499 return isa<const SCEVAddRecExpr>(S) && 500 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 501 }); 502 return I == BaseRegs.end(); 503 } 504 505 /// Helper method to morph a formula into its canonical representation. 506 /// \see Formula::BaseRegs. 507 /// Every formula having more than one base register, must use the ScaledReg 508 /// field. Otherwise, we would have to do special cases everywhere in LSR 509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 510 /// On the other hand, 1*reg should be canonicalized into reg. 511 void Formula::canonicalize(const Loop &L) { 512 if (isCanonical(L)) 513 return; 514 // So far we did not need this case. This is easy to implement but it is 515 // useless to maintain dead code. Beside it could hurt compile time. 516 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 517 518 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 519 if (!ScaledReg) { 520 ScaledReg = BaseRegs.pop_back_val(); 521 Scale = 1; 522 } 523 524 // If ScaledReg is an invariant with respect to L, find the reg from 525 // BaseRegs containing the recurrent expr related with Loop L. Swap the 526 // reg with ScaledReg. 527 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 528 if (!SAR || SAR->getLoop() != &L) { 529 auto I = find_if(BaseRegs, [&](const SCEV *S) { 530 return isa<const SCEVAddRecExpr>(S) && 531 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 532 }); 533 if (I != BaseRegs.end()) 534 std::swap(ScaledReg, *I); 535 } 536 } 537 538 /// Get rid of the scale in the formula. 539 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 540 /// \return true if it was possible to get rid of the scale, false otherwise. 541 /// \note After this operation the formula may not be in the canonical form. 542 bool Formula::unscale() { 543 if (Scale != 1) 544 return false; 545 Scale = 0; 546 BaseRegs.push_back(ScaledReg); 547 ScaledReg = nullptr; 548 return true; 549 } 550 551 bool Formula::hasZeroEnd() const { 552 if (UnfoldedOffset || BaseOffset) 553 return false; 554 if (BaseRegs.size() != 1 || ScaledReg) 555 return false; 556 return true; 557 } 558 559 /// Return the total number of register operands used by this formula. This does 560 /// not include register uses implied by non-constant addrec strides. 561 size_t Formula::getNumRegs() const { 562 return !!ScaledReg + BaseRegs.size(); 563 } 564 565 /// Return the type of this formula, if it has one, or null otherwise. This type 566 /// is meaningless except for the bit size. 567 Type *Formula::getType() const { 568 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 569 ScaledReg ? ScaledReg->getType() : 570 BaseGV ? BaseGV->getType() : 571 nullptr; 572 } 573 574 /// Delete the given base reg from the BaseRegs list. 575 void Formula::deleteBaseReg(const SCEV *&S) { 576 if (&S != &BaseRegs.back()) 577 std::swap(S, BaseRegs.back()); 578 BaseRegs.pop_back(); 579 } 580 581 /// Test if this formula references the given register. 582 bool Formula::referencesReg(const SCEV *S) const { 583 return S == ScaledReg || is_contained(BaseRegs, S); 584 } 585 586 /// Test whether this formula uses registers which are used by uses other than 587 /// the use with the given index. 588 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 589 const RegUseTracker &RegUses) const { 590 if (ScaledReg) 591 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 592 return true; 593 for (const SCEV *BaseReg : BaseRegs) 594 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 595 return true; 596 return false; 597 } 598 599 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 600 void Formula::print(raw_ostream &OS) const { 601 bool First = true; 602 if (BaseGV) { 603 if (!First) OS << " + "; else First = false; 604 BaseGV->printAsOperand(OS, /*PrintType=*/false); 605 } 606 if (BaseOffset != 0) { 607 if (!First) OS << " + "; else First = false; 608 OS << BaseOffset; 609 } 610 for (const SCEV *BaseReg : BaseRegs) { 611 if (!First) OS << " + "; else First = false; 612 OS << "reg(" << *BaseReg << ')'; 613 } 614 if (HasBaseReg && BaseRegs.empty()) { 615 if (!First) OS << " + "; else First = false; 616 OS << "**error: HasBaseReg**"; 617 } else if (!HasBaseReg && !BaseRegs.empty()) { 618 if (!First) OS << " + "; else First = false; 619 OS << "**error: !HasBaseReg**"; 620 } 621 if (Scale != 0) { 622 if (!First) OS << " + "; else First = false; 623 OS << Scale << "*reg("; 624 if (ScaledReg) 625 OS << *ScaledReg; 626 else 627 OS << "<unknown>"; 628 OS << ')'; 629 } 630 if (UnfoldedOffset != 0) { 631 if (!First) OS << " + "; 632 OS << "imm(" << UnfoldedOffset << ')'; 633 } 634 } 635 636 LLVM_DUMP_METHOD void Formula::dump() const { 637 print(errs()); errs() << '\n'; 638 } 639 #endif 640 641 /// Return true if the given addrec can be sign-extended without changing its 642 /// value. 643 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 644 Type *WideTy = 645 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 646 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 647 } 648 649 /// Return true if the given add can be sign-extended without changing its 650 /// value. 651 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 652 Type *WideTy = 653 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 654 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 655 } 656 657 /// Return true if the given mul can be sign-extended without changing its 658 /// value. 659 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 660 Type *WideTy = 661 IntegerType::get(SE.getContext(), 662 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 663 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 664 } 665 666 /// Return an expression for LHS /s RHS, if it can be determined and if the 667 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 668 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 669 /// the multiplication may overflow, which is useful when the result will be 670 /// used in a context where the most significant bits are ignored. 671 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 672 ScalarEvolution &SE, 673 bool IgnoreSignificantBits = false) { 674 // Handle the trivial case, which works for any SCEV type. 675 if (LHS == RHS) 676 return SE.getConstant(LHS->getType(), 1); 677 678 // Handle a few RHS special cases. 679 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 680 if (RC) { 681 const APInt &RA = RC->getAPInt(); 682 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 683 // some folding. 684 if (RA.isAllOnesValue()) 685 return SE.getMulExpr(LHS, RC); 686 // Handle x /s 1 as x. 687 if (RA == 1) 688 return LHS; 689 } 690 691 // Check for a division of a constant by a constant. 692 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 693 if (!RC) 694 return nullptr; 695 const APInt &LA = C->getAPInt(); 696 const APInt &RA = RC->getAPInt(); 697 if (LA.srem(RA) != 0) 698 return nullptr; 699 return SE.getConstant(LA.sdiv(RA)); 700 } 701 702 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 703 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 704 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 705 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 706 IgnoreSignificantBits); 707 if (!Step) return nullptr; 708 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 709 IgnoreSignificantBits); 710 if (!Start) return nullptr; 711 // FlagNW is independent of the start value, step direction, and is 712 // preserved with smaller magnitude steps. 713 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 714 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 715 } 716 return nullptr; 717 } 718 719 // Distribute the sdiv over add operands, if the add doesn't overflow. 720 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 721 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 722 SmallVector<const SCEV *, 8> Ops; 723 for (const SCEV *S : Add->operands()) { 724 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 725 if (!Op) return nullptr; 726 Ops.push_back(Op); 727 } 728 return SE.getAddExpr(Ops); 729 } 730 return nullptr; 731 } 732 733 // Check for a multiply operand that we can pull RHS out of. 734 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 735 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 736 // Handle special case C1*X*Y /s C2*X*Y. 737 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 738 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 739 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 740 const SCEVConstant *RC = 741 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 742 if (LC && RC) { 743 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 744 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 745 if (LOps == ROps) 746 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 747 } 748 } 749 } 750 751 SmallVector<const SCEV *, 4> Ops; 752 bool Found = false; 753 for (const SCEV *S : Mul->operands()) { 754 if (!Found) 755 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 756 IgnoreSignificantBits)) { 757 S = Q; 758 Found = true; 759 } 760 Ops.push_back(S); 761 } 762 return Found ? SE.getMulExpr(Ops) : nullptr; 763 } 764 return nullptr; 765 } 766 767 // Otherwise we don't know. 768 return nullptr; 769 } 770 771 /// If S involves the addition of a constant integer value, return that integer 772 /// value, and mutate S to point to a new SCEV with that value excluded. 773 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 774 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 775 if (C->getAPInt().getMinSignedBits() <= 64) { 776 S = SE.getConstant(C->getType(), 0); 777 return C->getValue()->getSExtValue(); 778 } 779 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 780 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 781 int64_t Result = ExtractImmediate(NewOps.front(), SE); 782 if (Result != 0) 783 S = SE.getAddExpr(NewOps); 784 return Result; 785 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 786 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 787 int64_t Result = ExtractImmediate(NewOps.front(), SE); 788 if (Result != 0) 789 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 790 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 791 SCEV::FlagAnyWrap); 792 return Result; 793 } 794 return 0; 795 } 796 797 /// If S involves the addition of a GlobalValue address, return that symbol, and 798 /// mutate S to point to a new SCEV with that value excluded. 799 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 800 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 801 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 802 S = SE.getConstant(GV->getType(), 0); 803 return GV; 804 } 805 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 806 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 807 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 808 if (Result) 809 S = SE.getAddExpr(NewOps); 810 return Result; 811 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 812 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 813 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 814 if (Result) 815 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 816 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 817 SCEV::FlagAnyWrap); 818 return Result; 819 } 820 return nullptr; 821 } 822 823 /// Returns true if the specified instruction is using the specified value as an 824 /// address. 825 static bool isAddressUse(const TargetTransformInfo &TTI, 826 Instruction *Inst, Value *OperandVal) { 827 bool isAddress = isa<LoadInst>(Inst); 828 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 829 if (SI->getPointerOperand() == OperandVal) 830 isAddress = true; 831 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 832 // Addressing modes can also be folded into prefetches and a variety 833 // of intrinsics. 834 switch (II->getIntrinsicID()) { 835 case Intrinsic::memset: 836 case Intrinsic::prefetch: 837 case Intrinsic::masked_load: 838 if (II->getArgOperand(0) == OperandVal) 839 isAddress = true; 840 break; 841 case Intrinsic::masked_store: 842 if (II->getArgOperand(1) == OperandVal) 843 isAddress = true; 844 break; 845 case Intrinsic::memmove: 846 case Intrinsic::memcpy: 847 if (II->getArgOperand(0) == OperandVal || 848 II->getArgOperand(1) == OperandVal) 849 isAddress = true; 850 break; 851 default: { 852 MemIntrinsicInfo IntrInfo; 853 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 854 if (IntrInfo.PtrVal == OperandVal) 855 isAddress = true; 856 } 857 } 858 } 859 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 860 if (RMW->getPointerOperand() == OperandVal) 861 isAddress = true; 862 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 863 if (CmpX->getPointerOperand() == OperandVal) 864 isAddress = true; 865 } 866 return isAddress; 867 } 868 869 /// Return the type of the memory being accessed. 870 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 871 Instruction *Inst, Value *OperandVal) { 872 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 873 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 874 AccessTy.MemTy = SI->getOperand(0)->getType(); 875 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 876 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 877 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 878 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 879 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 880 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 881 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 882 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 883 switch (II->getIntrinsicID()) { 884 case Intrinsic::prefetch: 885 case Intrinsic::memset: 886 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 887 AccessTy.MemTy = OperandVal->getType(); 888 break; 889 case Intrinsic::memmove: 890 case Intrinsic::memcpy: 891 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 892 AccessTy.MemTy = OperandVal->getType(); 893 break; 894 case Intrinsic::masked_load: 895 AccessTy.AddrSpace = 896 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 897 break; 898 case Intrinsic::masked_store: 899 AccessTy.MemTy = II->getOperand(0)->getType(); 900 AccessTy.AddrSpace = 901 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 902 break; 903 default: { 904 MemIntrinsicInfo IntrInfo; 905 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 906 AccessTy.AddrSpace 907 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 908 } 909 910 break; 911 } 912 } 913 } 914 915 // All pointers have the same requirements, so canonicalize them to an 916 // arbitrary pointer type to minimize variation. 917 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 918 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 919 PTy->getAddressSpace()); 920 921 return AccessTy; 922 } 923 924 /// Return true if this AddRec is already a phi in its loop. 925 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 926 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 927 if (SE.isSCEVable(PN.getType()) && 928 (SE.getEffectiveSCEVType(PN.getType()) == 929 SE.getEffectiveSCEVType(AR->getType())) && 930 SE.getSCEV(&PN) == AR) 931 return true; 932 } 933 return false; 934 } 935 936 /// Check if expanding this expression is likely to incur significant cost. This 937 /// is tricky because SCEV doesn't track which expressions are actually computed 938 /// by the current IR. 939 /// 940 /// We currently allow expansion of IV increments that involve adds, 941 /// multiplication by constants, and AddRecs from existing phis. 942 /// 943 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 944 /// obvious multiple of the UDivExpr. 945 static bool isHighCostExpansion(const SCEV *S, 946 SmallPtrSetImpl<const SCEV*> &Processed, 947 ScalarEvolution &SE) { 948 // Zero/One operand expressions 949 switch (S->getSCEVType()) { 950 case scUnknown: 951 case scConstant: 952 return false; 953 case scTruncate: 954 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 955 Processed, SE); 956 case scZeroExtend: 957 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 958 Processed, SE); 959 case scSignExtend: 960 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 961 Processed, SE); 962 default: 963 break; 964 } 965 966 if (!Processed.insert(S).second) 967 return false; 968 969 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 970 for (const SCEV *S : Add->operands()) { 971 if (isHighCostExpansion(S, Processed, SE)) 972 return true; 973 } 974 return false; 975 } 976 977 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 978 if (Mul->getNumOperands() == 2) { 979 // Multiplication by a constant is ok 980 if (isa<SCEVConstant>(Mul->getOperand(0))) 981 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 982 983 // If we have the value of one operand, check if an existing 984 // multiplication already generates this expression. 985 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 986 Value *UVal = U->getValue(); 987 for (User *UR : UVal->users()) { 988 // If U is a constant, it may be used by a ConstantExpr. 989 Instruction *UI = dyn_cast<Instruction>(UR); 990 if (UI && UI->getOpcode() == Instruction::Mul && 991 SE.isSCEVable(UI->getType())) { 992 return SE.getSCEV(UI) == Mul; 993 } 994 } 995 } 996 } 997 } 998 999 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1000 if (isExistingPhi(AR, SE)) 1001 return false; 1002 } 1003 1004 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1005 return true; 1006 } 1007 1008 namespace { 1009 1010 class LSRUse; 1011 1012 } // end anonymous namespace 1013 1014 /// Check if the addressing mode defined by \p F is completely 1015 /// folded in \p LU at isel time. 1016 /// This includes address-mode folding and special icmp tricks. 1017 /// This function returns true if \p LU can accommodate what \p F 1018 /// defines and up to 1 base + 1 scaled + offset. 1019 /// In other words, if \p F has several base registers, this function may 1020 /// still return true. Therefore, users still need to account for 1021 /// additional base registers and/or unfolded offsets to derive an 1022 /// accurate cost model. 1023 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1024 const LSRUse &LU, const Formula &F); 1025 1026 // Get the cost of the scaling factor used in F for LU. 1027 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1028 const LSRUse &LU, const Formula &F, 1029 const Loop &L); 1030 1031 namespace { 1032 1033 /// This class is used to measure and compare candidate formulae. 1034 class Cost { 1035 const Loop *L = nullptr; 1036 ScalarEvolution *SE = nullptr; 1037 const TargetTransformInfo *TTI = nullptr; 1038 TargetTransformInfo::LSRCost C; 1039 TTI::AddressingModeKind AMK = TTI::AMK_None; 1040 1041 public: 1042 Cost() = delete; 1043 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1044 TTI::AddressingModeKind AMK) : 1045 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1046 C.Insns = 0; 1047 C.NumRegs = 0; 1048 C.AddRecCost = 0; 1049 C.NumIVMuls = 0; 1050 C.NumBaseAdds = 0; 1051 C.ImmCost = 0; 1052 C.SetupCost = 0; 1053 C.ScaleCost = 0; 1054 } 1055 1056 bool isLess(Cost &Other); 1057 1058 void Lose(); 1059 1060 #ifndef NDEBUG 1061 // Once any of the metrics loses, they must all remain losers. 1062 bool isValid() { 1063 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1064 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1065 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1066 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1067 } 1068 #endif 1069 1070 bool isLoser() { 1071 assert(isValid() && "invalid cost"); 1072 return C.NumRegs == ~0u; 1073 } 1074 1075 void RateFormula(const Formula &F, 1076 SmallPtrSetImpl<const SCEV *> &Regs, 1077 const DenseSet<const SCEV *> &VisitedRegs, 1078 const LSRUse &LU, 1079 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1080 1081 void print(raw_ostream &OS) const; 1082 void dump() const; 1083 1084 private: 1085 void RateRegister(const Formula &F, const SCEV *Reg, 1086 SmallPtrSetImpl<const SCEV *> &Regs); 1087 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1088 SmallPtrSetImpl<const SCEV *> &Regs, 1089 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1090 }; 1091 1092 /// An operand value in an instruction which is to be replaced with some 1093 /// equivalent, possibly strength-reduced, replacement. 1094 struct LSRFixup { 1095 /// The instruction which will be updated. 1096 Instruction *UserInst = nullptr; 1097 1098 /// The operand of the instruction which will be replaced. The operand may be 1099 /// used more than once; every instance will be replaced. 1100 Value *OperandValToReplace = nullptr; 1101 1102 /// If this user is to use the post-incremented value of an induction 1103 /// variable, this set is non-empty and holds the loops associated with the 1104 /// induction variable. 1105 PostIncLoopSet PostIncLoops; 1106 1107 /// A constant offset to be added to the LSRUse expression. This allows 1108 /// multiple fixups to share the same LSRUse with different offsets, for 1109 /// example in an unrolled loop. 1110 int64_t Offset = 0; 1111 1112 LSRFixup() = default; 1113 1114 bool isUseFullyOutsideLoop(const Loop *L) const; 1115 1116 void print(raw_ostream &OS) const; 1117 void dump() const; 1118 }; 1119 1120 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1121 /// SmallVectors of const SCEV*. 1122 struct UniquifierDenseMapInfo { 1123 static SmallVector<const SCEV *, 4> getEmptyKey() { 1124 SmallVector<const SCEV *, 4> V; 1125 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1126 return V; 1127 } 1128 1129 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1130 SmallVector<const SCEV *, 4> V; 1131 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1132 return V; 1133 } 1134 1135 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1136 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1137 } 1138 1139 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1140 const SmallVector<const SCEV *, 4> &RHS) { 1141 return LHS == RHS; 1142 } 1143 }; 1144 1145 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1146 /// as uses invented by LSR itself. It includes information about what kinds of 1147 /// things can be folded into the user, information about the user itself, and 1148 /// information about how the use may be satisfied. TODO: Represent multiple 1149 /// users of the same expression in common? 1150 class LSRUse { 1151 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1152 1153 public: 1154 /// An enum for a kind of use, indicating what types of scaled and immediate 1155 /// operands it might support. 1156 enum KindType { 1157 Basic, ///< A normal use, with no folding. 1158 Special, ///< A special case of basic, allowing -1 scales. 1159 Address, ///< An address use; folding according to TargetLowering 1160 ICmpZero ///< An equality icmp with both operands folded into one. 1161 // TODO: Add a generic icmp too? 1162 }; 1163 1164 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1165 1166 KindType Kind; 1167 MemAccessTy AccessTy; 1168 1169 /// The list of operands which are to be replaced. 1170 SmallVector<LSRFixup, 8> Fixups; 1171 1172 /// Keep track of the min and max offsets of the fixups. 1173 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1174 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1175 1176 /// This records whether all of the fixups using this LSRUse are outside of 1177 /// the loop, in which case some special-case heuristics may be used. 1178 bool AllFixupsOutsideLoop = true; 1179 1180 /// RigidFormula is set to true to guarantee that this use will be associated 1181 /// with a single formula--the one that initially matched. Some SCEV 1182 /// expressions cannot be expanded. This allows LSR to consider the registers 1183 /// used by those expressions without the need to expand them later after 1184 /// changing the formula. 1185 bool RigidFormula = false; 1186 1187 /// This records the widest use type for any fixup using this 1188 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1189 /// fixup widths to be equivalent, because the narrower one may be relying on 1190 /// the implicit truncation to truncate away bogus bits. 1191 Type *WidestFixupType = nullptr; 1192 1193 /// A list of ways to build a value that can satisfy this user. After the 1194 /// list is populated, one of these is selected heuristically and used to 1195 /// formulate a replacement for OperandValToReplace in UserInst. 1196 SmallVector<Formula, 12> Formulae; 1197 1198 /// The set of register candidates used by all formulae in this LSRUse. 1199 SmallPtrSet<const SCEV *, 4> Regs; 1200 1201 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1202 1203 LSRFixup &getNewFixup() { 1204 Fixups.push_back(LSRFixup()); 1205 return Fixups.back(); 1206 } 1207 1208 void pushFixup(LSRFixup &f) { 1209 Fixups.push_back(f); 1210 if (f.Offset > MaxOffset) 1211 MaxOffset = f.Offset; 1212 if (f.Offset < MinOffset) 1213 MinOffset = f.Offset; 1214 } 1215 1216 bool HasFormulaWithSameRegs(const Formula &F) const; 1217 float getNotSelectedProbability(const SCEV *Reg) const; 1218 bool InsertFormula(const Formula &F, const Loop &L); 1219 void DeleteFormula(Formula &F); 1220 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1221 1222 void print(raw_ostream &OS) const; 1223 void dump() const; 1224 }; 1225 1226 } // end anonymous namespace 1227 1228 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1229 LSRUse::KindType Kind, MemAccessTy AccessTy, 1230 GlobalValue *BaseGV, int64_t BaseOffset, 1231 bool HasBaseReg, int64_t Scale, 1232 Instruction *Fixup = nullptr); 1233 1234 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1235 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1236 return 1; 1237 if (Depth == 0) 1238 return 0; 1239 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1240 return getSetupCost(S->getStart(), Depth - 1); 1241 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1242 return getSetupCost(S->getOperand(), Depth - 1); 1243 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1244 return std::accumulate(S->op_begin(), S->op_end(), 0, 1245 [&](unsigned i, const SCEV *Reg) { 1246 return i + getSetupCost(Reg, Depth - 1); 1247 }); 1248 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1249 return getSetupCost(S->getLHS(), Depth - 1) + 1250 getSetupCost(S->getRHS(), Depth - 1); 1251 return 0; 1252 } 1253 1254 /// Tally up interesting quantities from the given register. 1255 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1256 SmallPtrSetImpl<const SCEV *> &Regs) { 1257 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1258 // If this is an addrec for another loop, it should be an invariant 1259 // with respect to L since L is the innermost loop (at least 1260 // for now LSR only handles innermost loops). 1261 if (AR->getLoop() != L) { 1262 // If the AddRec exists, consider it's register free and leave it alone. 1263 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1264 return; 1265 1266 // It is bad to allow LSR for current loop to add induction variables 1267 // for its sibling loops. 1268 if (!AR->getLoop()->contains(L)) { 1269 Lose(); 1270 return; 1271 } 1272 1273 // Otherwise, it will be an invariant with respect to Loop L. 1274 ++C.NumRegs; 1275 return; 1276 } 1277 1278 unsigned LoopCost = 1; 1279 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1280 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1281 1282 // If the step size matches the base offset, we could use pre-indexed 1283 // addressing. 1284 if (AMK == TTI::AMK_PreIndexed) { 1285 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1286 if (Step->getAPInt() == F.BaseOffset) 1287 LoopCost = 0; 1288 } else if (AMK == TTI::AMK_PostIndexed) { 1289 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1290 if (isa<SCEVConstant>(LoopStep)) { 1291 const SCEV *LoopStart = AR->getStart(); 1292 if (!isa<SCEVConstant>(LoopStart) && 1293 SE->isLoopInvariant(LoopStart, L)) 1294 LoopCost = 0; 1295 } 1296 } 1297 } 1298 C.AddRecCost += LoopCost; 1299 1300 // Add the step value register, if it needs one. 1301 // TODO: The non-affine case isn't precisely modeled here. 1302 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1303 if (!Regs.count(AR->getOperand(1))) { 1304 RateRegister(F, AR->getOperand(1), Regs); 1305 if (isLoser()) 1306 return; 1307 } 1308 } 1309 } 1310 ++C.NumRegs; 1311 1312 // Rough heuristic; favor registers which don't require extra setup 1313 // instructions in the preheader. 1314 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1315 // Ensure we don't, even with the recusion limit, produce invalid costs. 1316 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1317 1318 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1319 SE->hasComputableLoopEvolution(Reg, L); 1320 } 1321 1322 /// Record this register in the set. If we haven't seen it before, rate 1323 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1324 /// one of those regs an instant loser. 1325 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1326 SmallPtrSetImpl<const SCEV *> &Regs, 1327 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1328 if (LoserRegs && LoserRegs->count(Reg)) { 1329 Lose(); 1330 return; 1331 } 1332 if (Regs.insert(Reg).second) { 1333 RateRegister(F, Reg, Regs); 1334 if (LoserRegs && isLoser()) 1335 LoserRegs->insert(Reg); 1336 } 1337 } 1338 1339 void Cost::RateFormula(const Formula &F, 1340 SmallPtrSetImpl<const SCEV *> &Regs, 1341 const DenseSet<const SCEV *> &VisitedRegs, 1342 const LSRUse &LU, 1343 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1344 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1345 // Tally up the registers. 1346 unsigned PrevAddRecCost = C.AddRecCost; 1347 unsigned PrevNumRegs = C.NumRegs; 1348 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1349 if (const SCEV *ScaledReg = F.ScaledReg) { 1350 if (VisitedRegs.count(ScaledReg)) { 1351 Lose(); 1352 return; 1353 } 1354 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1355 if (isLoser()) 1356 return; 1357 } 1358 for (const SCEV *BaseReg : F.BaseRegs) { 1359 if (VisitedRegs.count(BaseReg)) { 1360 Lose(); 1361 return; 1362 } 1363 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1364 if (isLoser()) 1365 return; 1366 } 1367 1368 // Determine how many (unfolded) adds we'll need inside the loop. 1369 size_t NumBaseParts = F.getNumRegs(); 1370 if (NumBaseParts > 1) 1371 // Do not count the base and a possible second register if the target 1372 // allows to fold 2 registers. 1373 C.NumBaseAdds += 1374 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1375 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1376 1377 // Accumulate non-free scaling amounts. 1378 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1379 1380 // Tally up the non-zero immediates. 1381 for (const LSRFixup &Fixup : LU.Fixups) { 1382 int64_t O = Fixup.Offset; 1383 int64_t Offset = (uint64_t)O + F.BaseOffset; 1384 if (F.BaseGV) 1385 C.ImmCost += 64; // Handle symbolic values conservatively. 1386 // TODO: This should probably be the pointer size. 1387 else if (Offset != 0) 1388 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1389 1390 // Check with target if this offset with this instruction is 1391 // specifically not supported. 1392 if (LU.Kind == LSRUse::Address && Offset != 0 && 1393 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1394 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1395 C.NumBaseAdds++; 1396 } 1397 1398 // If we don't count instruction cost exit here. 1399 if (!InsnsCost) { 1400 assert(isValid() && "invalid cost"); 1401 return; 1402 } 1403 1404 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1405 // additional instruction (at least fill). 1406 // TODO: Need distinguish register class? 1407 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1408 TTI->getRegisterClassForType(false, F.getType())) - 1; 1409 if (C.NumRegs > TTIRegNum) { 1410 // Cost already exceeded TTIRegNum, then only newly added register can add 1411 // new instructions. 1412 if (PrevNumRegs > TTIRegNum) 1413 C.Insns += (C.NumRegs - PrevNumRegs); 1414 else 1415 C.Insns += (C.NumRegs - TTIRegNum); 1416 } 1417 1418 // If ICmpZero formula ends with not 0, it could not be replaced by 1419 // just add or sub. We'll need to compare final result of AddRec. 1420 // That means we'll need an additional instruction. But if the target can 1421 // macro-fuse a compare with a branch, don't count this extra instruction. 1422 // For -10 + {0, +, 1}: 1423 // i = i + 1; 1424 // cmp i, 10 1425 // 1426 // For {-10, +, 1}: 1427 // i = i + 1; 1428 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1429 !TTI->canMacroFuseCmp()) 1430 C.Insns++; 1431 // Each new AddRec adds 1 instruction to calculation. 1432 C.Insns += (C.AddRecCost - PrevAddRecCost); 1433 1434 // BaseAdds adds instructions for unfolded registers. 1435 if (LU.Kind != LSRUse::ICmpZero) 1436 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1437 assert(isValid() && "invalid cost"); 1438 } 1439 1440 /// Set this cost to a losing value. 1441 void Cost::Lose() { 1442 C.Insns = std::numeric_limits<unsigned>::max(); 1443 C.NumRegs = std::numeric_limits<unsigned>::max(); 1444 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1445 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1446 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1447 C.ImmCost = std::numeric_limits<unsigned>::max(); 1448 C.SetupCost = std::numeric_limits<unsigned>::max(); 1449 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1450 } 1451 1452 /// Choose the lower cost. 1453 bool Cost::isLess(Cost &Other) { 1454 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1455 C.Insns != Other.C.Insns) 1456 return C.Insns < Other.C.Insns; 1457 return TTI->isLSRCostLess(C, Other.C); 1458 } 1459 1460 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1461 void Cost::print(raw_ostream &OS) const { 1462 if (InsnsCost) 1463 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1464 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1465 if (C.AddRecCost != 0) 1466 OS << ", with addrec cost " << C.AddRecCost; 1467 if (C.NumIVMuls != 0) 1468 OS << ", plus " << C.NumIVMuls << " IV mul" 1469 << (C.NumIVMuls == 1 ? "" : "s"); 1470 if (C.NumBaseAdds != 0) 1471 OS << ", plus " << C.NumBaseAdds << " base add" 1472 << (C.NumBaseAdds == 1 ? "" : "s"); 1473 if (C.ScaleCost != 0) 1474 OS << ", plus " << C.ScaleCost << " scale cost"; 1475 if (C.ImmCost != 0) 1476 OS << ", plus " << C.ImmCost << " imm cost"; 1477 if (C.SetupCost != 0) 1478 OS << ", plus " << C.SetupCost << " setup cost"; 1479 } 1480 1481 LLVM_DUMP_METHOD void Cost::dump() const { 1482 print(errs()); errs() << '\n'; 1483 } 1484 #endif 1485 1486 /// Test whether this fixup always uses its value outside of the given loop. 1487 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1488 // PHI nodes use their value in their incoming blocks. 1489 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1490 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1491 if (PN->getIncomingValue(i) == OperandValToReplace && 1492 L->contains(PN->getIncomingBlock(i))) 1493 return false; 1494 return true; 1495 } 1496 1497 return !L->contains(UserInst); 1498 } 1499 1500 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1501 void LSRFixup::print(raw_ostream &OS) const { 1502 OS << "UserInst="; 1503 // Store is common and interesting enough to be worth special-casing. 1504 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1505 OS << "store "; 1506 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1507 } else if (UserInst->getType()->isVoidTy()) 1508 OS << UserInst->getOpcodeName(); 1509 else 1510 UserInst->printAsOperand(OS, /*PrintType=*/false); 1511 1512 OS << ", OperandValToReplace="; 1513 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1514 1515 for (const Loop *PIL : PostIncLoops) { 1516 OS << ", PostIncLoop="; 1517 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1518 } 1519 1520 if (Offset != 0) 1521 OS << ", Offset=" << Offset; 1522 } 1523 1524 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1525 print(errs()); errs() << '\n'; 1526 } 1527 #endif 1528 1529 /// Test whether this use as a formula which has the same registers as the given 1530 /// formula. 1531 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1532 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1533 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1534 // Unstable sort by host order ok, because this is only used for uniquifying. 1535 llvm::sort(Key); 1536 return Uniquifier.count(Key); 1537 } 1538 1539 /// The function returns a probability of selecting formula without Reg. 1540 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1541 unsigned FNum = 0; 1542 for (const Formula &F : Formulae) 1543 if (F.referencesReg(Reg)) 1544 FNum++; 1545 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1546 } 1547 1548 /// If the given formula has not yet been inserted, add it to the list, and 1549 /// return true. Return false otherwise. The formula must be in canonical form. 1550 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1551 assert(F.isCanonical(L) && "Invalid canonical representation"); 1552 1553 if (!Formulae.empty() && RigidFormula) 1554 return false; 1555 1556 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1557 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1558 // Unstable sort by host order ok, because this is only used for uniquifying. 1559 llvm::sort(Key); 1560 1561 if (!Uniquifier.insert(Key).second) 1562 return false; 1563 1564 // Using a register to hold the value of 0 is not profitable. 1565 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1566 "Zero allocated in a scaled register!"); 1567 #ifndef NDEBUG 1568 for (const SCEV *BaseReg : F.BaseRegs) 1569 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1570 #endif 1571 1572 // Add the formula to the list. 1573 Formulae.push_back(F); 1574 1575 // Record registers now being used by this use. 1576 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1577 if (F.ScaledReg) 1578 Regs.insert(F.ScaledReg); 1579 1580 return true; 1581 } 1582 1583 /// Remove the given formula from this use's list. 1584 void LSRUse::DeleteFormula(Formula &F) { 1585 if (&F != &Formulae.back()) 1586 std::swap(F, Formulae.back()); 1587 Formulae.pop_back(); 1588 } 1589 1590 /// Recompute the Regs field, and update RegUses. 1591 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1592 // Now that we've filtered out some formulae, recompute the Regs set. 1593 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1594 Regs.clear(); 1595 for (const Formula &F : Formulae) { 1596 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1597 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1598 } 1599 1600 // Update the RegTracker. 1601 for (const SCEV *S : OldRegs) 1602 if (!Regs.count(S)) 1603 RegUses.dropRegister(S, LUIdx); 1604 } 1605 1606 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1607 void LSRUse::print(raw_ostream &OS) const { 1608 OS << "LSR Use: Kind="; 1609 switch (Kind) { 1610 case Basic: OS << "Basic"; break; 1611 case Special: OS << "Special"; break; 1612 case ICmpZero: OS << "ICmpZero"; break; 1613 case Address: 1614 OS << "Address of "; 1615 if (AccessTy.MemTy->isPointerTy()) 1616 OS << "pointer"; // the full pointer type could be really verbose 1617 else { 1618 OS << *AccessTy.MemTy; 1619 } 1620 1621 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1622 } 1623 1624 OS << ", Offsets={"; 1625 bool NeedComma = false; 1626 for (const LSRFixup &Fixup : Fixups) { 1627 if (NeedComma) OS << ','; 1628 OS << Fixup.Offset; 1629 NeedComma = true; 1630 } 1631 OS << '}'; 1632 1633 if (AllFixupsOutsideLoop) 1634 OS << ", all-fixups-outside-loop"; 1635 1636 if (WidestFixupType) 1637 OS << ", widest fixup type: " << *WidestFixupType; 1638 } 1639 1640 LLVM_DUMP_METHOD void LSRUse::dump() const { 1641 print(errs()); errs() << '\n'; 1642 } 1643 #endif 1644 1645 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1646 LSRUse::KindType Kind, MemAccessTy AccessTy, 1647 GlobalValue *BaseGV, int64_t BaseOffset, 1648 bool HasBaseReg, int64_t Scale, 1649 Instruction *Fixup/*= nullptr*/) { 1650 switch (Kind) { 1651 case LSRUse::Address: 1652 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1653 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1654 1655 case LSRUse::ICmpZero: 1656 // There's not even a target hook for querying whether it would be legal to 1657 // fold a GV into an ICmp. 1658 if (BaseGV) 1659 return false; 1660 1661 // ICmp only has two operands; don't allow more than two non-trivial parts. 1662 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1663 return false; 1664 1665 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1666 // putting the scaled register in the other operand of the icmp. 1667 if (Scale != 0 && Scale != -1) 1668 return false; 1669 1670 // If we have low-level target information, ask the target if it can fold an 1671 // integer immediate on an icmp. 1672 if (BaseOffset != 0) { 1673 // We have one of: 1674 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1675 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1676 // Offs is the ICmp immediate. 1677 if (Scale == 0) 1678 // The cast does the right thing with 1679 // std::numeric_limits<int64_t>::min(). 1680 BaseOffset = -(uint64_t)BaseOffset; 1681 return TTI.isLegalICmpImmediate(BaseOffset); 1682 } 1683 1684 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1685 return true; 1686 1687 case LSRUse::Basic: 1688 // Only handle single-register values. 1689 return !BaseGV && Scale == 0 && BaseOffset == 0; 1690 1691 case LSRUse::Special: 1692 // Special case Basic to handle -1 scales. 1693 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1694 } 1695 1696 llvm_unreachable("Invalid LSRUse Kind!"); 1697 } 1698 1699 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1700 int64_t MinOffset, int64_t MaxOffset, 1701 LSRUse::KindType Kind, MemAccessTy AccessTy, 1702 GlobalValue *BaseGV, int64_t BaseOffset, 1703 bool HasBaseReg, int64_t Scale) { 1704 // Check for overflow. 1705 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1706 (MinOffset > 0)) 1707 return false; 1708 MinOffset = (uint64_t)BaseOffset + MinOffset; 1709 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1710 (MaxOffset > 0)) 1711 return false; 1712 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1713 1714 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1715 HasBaseReg, Scale) && 1716 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1717 HasBaseReg, Scale); 1718 } 1719 1720 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1721 int64_t MinOffset, int64_t MaxOffset, 1722 LSRUse::KindType Kind, MemAccessTy AccessTy, 1723 const Formula &F, const Loop &L) { 1724 // For the purpose of isAMCompletelyFolded either having a canonical formula 1725 // or a scale not equal to zero is correct. 1726 // Problems may arise from non canonical formulae having a scale == 0. 1727 // Strictly speaking it would best to just rely on canonical formulae. 1728 // However, when we generate the scaled formulae, we first check that the 1729 // scaling factor is profitable before computing the actual ScaledReg for 1730 // compile time sake. 1731 assert((F.isCanonical(L) || F.Scale != 0)); 1732 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1733 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1734 } 1735 1736 /// Test whether we know how to expand the current formula. 1737 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1738 int64_t MaxOffset, LSRUse::KindType Kind, 1739 MemAccessTy AccessTy, GlobalValue *BaseGV, 1740 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1741 // We know how to expand completely foldable formulae. 1742 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1743 BaseOffset, HasBaseReg, Scale) || 1744 // Or formulae that use a base register produced by a sum of base 1745 // registers. 1746 (Scale == 1 && 1747 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1748 BaseGV, BaseOffset, true, 0)); 1749 } 1750 1751 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1752 int64_t MaxOffset, LSRUse::KindType Kind, 1753 MemAccessTy AccessTy, const Formula &F) { 1754 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1755 F.BaseOffset, F.HasBaseReg, F.Scale); 1756 } 1757 1758 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1759 const LSRUse &LU, const Formula &F) { 1760 // Target may want to look at the user instructions. 1761 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1762 for (const LSRFixup &Fixup : LU.Fixups) 1763 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1764 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1765 F.Scale, Fixup.UserInst)) 1766 return false; 1767 return true; 1768 } 1769 1770 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1771 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1772 F.Scale); 1773 } 1774 1775 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1776 const LSRUse &LU, const Formula &F, 1777 const Loop &L) { 1778 if (!F.Scale) 1779 return 0; 1780 1781 // If the use is not completely folded in that instruction, we will have to 1782 // pay an extra cost only for scale != 1. 1783 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1784 LU.AccessTy, F, L)) 1785 return F.Scale != 1; 1786 1787 switch (LU.Kind) { 1788 case LSRUse::Address: { 1789 // Check the scaling factor cost with both the min and max offsets. 1790 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1791 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1792 F.Scale, LU.AccessTy.AddrSpace); 1793 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1794 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1795 F.Scale, LU.AccessTy.AddrSpace); 1796 1797 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1798 "Legal addressing mode has an illegal cost!"); 1799 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1800 } 1801 case LSRUse::ICmpZero: 1802 case LSRUse::Basic: 1803 case LSRUse::Special: 1804 // The use is completely folded, i.e., everything is folded into the 1805 // instruction. 1806 return 0; 1807 } 1808 1809 llvm_unreachable("Invalid LSRUse Kind!"); 1810 } 1811 1812 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1813 LSRUse::KindType Kind, MemAccessTy AccessTy, 1814 GlobalValue *BaseGV, int64_t BaseOffset, 1815 bool HasBaseReg) { 1816 // Fast-path: zero is always foldable. 1817 if (BaseOffset == 0 && !BaseGV) return true; 1818 1819 // Conservatively, create an address with an immediate and a 1820 // base and a scale. 1821 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1822 1823 // Canonicalize a scale of 1 to a base register if the formula doesn't 1824 // already have a base register. 1825 if (!HasBaseReg && Scale == 1) { 1826 Scale = 0; 1827 HasBaseReg = true; 1828 } 1829 1830 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1831 HasBaseReg, Scale); 1832 } 1833 1834 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1835 ScalarEvolution &SE, int64_t MinOffset, 1836 int64_t MaxOffset, LSRUse::KindType Kind, 1837 MemAccessTy AccessTy, const SCEV *S, 1838 bool HasBaseReg) { 1839 // Fast-path: zero is always foldable. 1840 if (S->isZero()) return true; 1841 1842 // Conservatively, create an address with an immediate and a 1843 // base and a scale. 1844 int64_t BaseOffset = ExtractImmediate(S, SE); 1845 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1846 1847 // If there's anything else involved, it's not foldable. 1848 if (!S->isZero()) return false; 1849 1850 // Fast-path: zero is always foldable. 1851 if (BaseOffset == 0 && !BaseGV) return true; 1852 1853 // Conservatively, create an address with an immediate and a 1854 // base and a scale. 1855 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1856 1857 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1858 BaseOffset, HasBaseReg, Scale); 1859 } 1860 1861 namespace { 1862 1863 /// An individual increment in a Chain of IV increments. Relate an IV user to 1864 /// an expression that computes the IV it uses from the IV used by the previous 1865 /// link in the Chain. 1866 /// 1867 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1868 /// original IVOperand. The head of the chain's IVOperand is only valid during 1869 /// chain collection, before LSR replaces IV users. During chain generation, 1870 /// IncExpr can be used to find the new IVOperand that computes the same 1871 /// expression. 1872 struct IVInc { 1873 Instruction *UserInst; 1874 Value* IVOperand; 1875 const SCEV *IncExpr; 1876 1877 IVInc(Instruction *U, Value *O, const SCEV *E) 1878 : UserInst(U), IVOperand(O), IncExpr(E) {} 1879 }; 1880 1881 // The list of IV increments in program order. We typically add the head of a 1882 // chain without finding subsequent links. 1883 struct IVChain { 1884 SmallVector<IVInc, 1> Incs; 1885 const SCEV *ExprBase = nullptr; 1886 1887 IVChain() = default; 1888 IVChain(const IVInc &Head, const SCEV *Base) 1889 : Incs(1, Head), ExprBase(Base) {} 1890 1891 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1892 1893 // Return the first increment in the chain. 1894 const_iterator begin() const { 1895 assert(!Incs.empty()); 1896 return std::next(Incs.begin()); 1897 } 1898 const_iterator end() const { 1899 return Incs.end(); 1900 } 1901 1902 // Returns true if this chain contains any increments. 1903 bool hasIncs() const { return Incs.size() >= 2; } 1904 1905 // Add an IVInc to the end of this chain. 1906 void add(const IVInc &X) { Incs.push_back(X); } 1907 1908 // Returns the last UserInst in the chain. 1909 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1910 1911 // Returns true if IncExpr can be profitably added to this chain. 1912 bool isProfitableIncrement(const SCEV *OperExpr, 1913 const SCEV *IncExpr, 1914 ScalarEvolution&); 1915 }; 1916 1917 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1918 /// between FarUsers that definitely cross IV increments and NearUsers that may 1919 /// be used between IV increments. 1920 struct ChainUsers { 1921 SmallPtrSet<Instruction*, 4> FarUsers; 1922 SmallPtrSet<Instruction*, 4> NearUsers; 1923 }; 1924 1925 /// This class holds state for the main loop strength reduction logic. 1926 class LSRInstance { 1927 IVUsers &IU; 1928 ScalarEvolution &SE; 1929 DominatorTree &DT; 1930 LoopInfo &LI; 1931 AssumptionCache &AC; 1932 TargetLibraryInfo &TLI; 1933 const TargetTransformInfo &TTI; 1934 Loop *const L; 1935 MemorySSAUpdater *MSSAU; 1936 TTI::AddressingModeKind AMK; 1937 bool Changed = false; 1938 1939 /// This is the insert position that the current loop's induction variable 1940 /// increment should be placed. In simple loops, this is the latch block's 1941 /// terminator. But in more complicated cases, this is a position which will 1942 /// dominate all the in-loop post-increment users. 1943 Instruction *IVIncInsertPos = nullptr; 1944 1945 /// Interesting factors between use strides. 1946 /// 1947 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1948 /// default, a SmallDenseSet, because we need to use the full range of 1949 /// int64_ts, and there's currently no good way of doing that with 1950 /// SmallDenseSet. 1951 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1952 1953 /// Interesting use types, to facilitate truncation reuse. 1954 SmallSetVector<Type *, 4> Types; 1955 1956 /// The list of interesting uses. 1957 mutable SmallVector<LSRUse, 16> Uses; 1958 1959 /// Track which uses use which register candidates. 1960 RegUseTracker RegUses; 1961 1962 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1963 // have more than a few IV increment chains in a loop. Missing a Chain falls 1964 // back to normal LSR behavior for those uses. 1965 static const unsigned MaxChains = 8; 1966 1967 /// IV users can form a chain of IV increments. 1968 SmallVector<IVChain, MaxChains> IVChainVec; 1969 1970 /// IV users that belong to profitable IVChains. 1971 SmallPtrSet<Use*, MaxChains> IVIncSet; 1972 1973 void OptimizeShadowIV(); 1974 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1975 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1976 void OptimizeLoopTermCond(); 1977 1978 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1979 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1980 void FinalizeChain(IVChain &Chain); 1981 void CollectChains(); 1982 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1983 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1984 1985 void CollectInterestingTypesAndFactors(); 1986 void CollectFixupsAndInitialFormulae(); 1987 1988 // Support for sharing of LSRUses between LSRFixups. 1989 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1990 UseMapTy UseMap; 1991 1992 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1993 LSRUse::KindType Kind, MemAccessTy AccessTy); 1994 1995 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1996 MemAccessTy AccessTy); 1997 1998 void DeleteUse(LSRUse &LU, size_t LUIdx); 1999 2000 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2001 2002 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2003 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2004 void CountRegisters(const Formula &F, size_t LUIdx); 2005 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2006 2007 void CollectLoopInvariantFixupsAndFormulae(); 2008 2009 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2010 unsigned Depth = 0); 2011 2012 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2013 const Formula &Base, unsigned Depth, 2014 size_t Idx, bool IsScaledReg = false); 2015 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2016 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2017 const Formula &Base, size_t Idx, 2018 bool IsScaledReg = false); 2019 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2020 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2021 const Formula &Base, 2022 const SmallVectorImpl<int64_t> &Worklist, 2023 size_t Idx, bool IsScaledReg = false); 2024 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2025 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2026 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2027 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2028 void GenerateCrossUseConstantOffsets(); 2029 void GenerateAllReuseFormulae(); 2030 2031 void FilterOutUndesirableDedicatedRegisters(); 2032 2033 size_t EstimateSearchSpaceComplexity() const; 2034 void NarrowSearchSpaceByDetectingSupersets(); 2035 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2036 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2037 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2038 void NarrowSearchSpaceByFilterPostInc(); 2039 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2040 void NarrowSearchSpaceByPickingWinnerRegs(); 2041 void NarrowSearchSpaceUsingHeuristics(); 2042 2043 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2044 Cost &SolutionCost, 2045 SmallVectorImpl<const Formula *> &Workspace, 2046 const Cost &CurCost, 2047 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2048 DenseSet<const SCEV *> &VisitedRegs) const; 2049 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2050 2051 BasicBlock::iterator 2052 HoistInsertPosition(BasicBlock::iterator IP, 2053 const SmallVectorImpl<Instruction *> &Inputs) const; 2054 BasicBlock::iterator 2055 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2056 const LSRFixup &LF, 2057 const LSRUse &LU, 2058 SCEVExpander &Rewriter) const; 2059 2060 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2061 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2062 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2063 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2064 const Formula &F, SCEVExpander &Rewriter, 2065 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2066 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2067 SCEVExpander &Rewriter, 2068 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2069 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2070 2071 public: 2072 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2073 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2074 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2075 2076 bool getChanged() const { return Changed; } 2077 2078 void print_factors_and_types(raw_ostream &OS) const; 2079 void print_fixups(raw_ostream &OS) const; 2080 void print_uses(raw_ostream &OS) const; 2081 void print(raw_ostream &OS) const; 2082 void dump() const; 2083 }; 2084 2085 } // end anonymous namespace 2086 2087 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2088 /// the cast operation. 2089 void LSRInstance::OptimizeShadowIV() { 2090 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2091 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2092 return; 2093 2094 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2095 UI != E; /* empty */) { 2096 IVUsers::const_iterator CandidateUI = UI; 2097 ++UI; 2098 Instruction *ShadowUse = CandidateUI->getUser(); 2099 Type *DestTy = nullptr; 2100 bool IsSigned = false; 2101 2102 /* If shadow use is a int->float cast then insert a second IV 2103 to eliminate this cast. 2104 2105 for (unsigned i = 0; i < n; ++i) 2106 foo((double)i); 2107 2108 is transformed into 2109 2110 double d = 0.0; 2111 for (unsigned i = 0; i < n; ++i, ++d) 2112 foo(d); 2113 */ 2114 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2115 IsSigned = false; 2116 DestTy = UCast->getDestTy(); 2117 } 2118 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2119 IsSigned = true; 2120 DestTy = SCast->getDestTy(); 2121 } 2122 if (!DestTy) continue; 2123 2124 // If target does not support DestTy natively then do not apply 2125 // this transformation. 2126 if (!TTI.isTypeLegal(DestTy)) continue; 2127 2128 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2129 if (!PH) continue; 2130 if (PH->getNumIncomingValues() != 2) continue; 2131 2132 // If the calculation in integers overflows, the result in FP type will 2133 // differ. So we only can do this transformation if we are guaranteed to not 2134 // deal with overflowing values 2135 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2136 if (!AR) continue; 2137 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2138 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2139 2140 Type *SrcTy = PH->getType(); 2141 int Mantissa = DestTy->getFPMantissaWidth(); 2142 if (Mantissa == -1) continue; 2143 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2144 continue; 2145 2146 unsigned Entry, Latch; 2147 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2148 Entry = 0; 2149 Latch = 1; 2150 } else { 2151 Entry = 1; 2152 Latch = 0; 2153 } 2154 2155 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2156 if (!Init) continue; 2157 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2158 (double)Init->getSExtValue() : 2159 (double)Init->getZExtValue()); 2160 2161 BinaryOperator *Incr = 2162 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2163 if (!Incr) continue; 2164 if (Incr->getOpcode() != Instruction::Add 2165 && Incr->getOpcode() != Instruction::Sub) 2166 continue; 2167 2168 /* Initialize new IV, double d = 0.0 in above example. */ 2169 ConstantInt *C = nullptr; 2170 if (Incr->getOperand(0) == PH) 2171 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2172 else if (Incr->getOperand(1) == PH) 2173 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2174 else 2175 continue; 2176 2177 if (!C) continue; 2178 2179 // Ignore negative constants, as the code below doesn't handle them 2180 // correctly. TODO: Remove this restriction. 2181 if (!C->getValue().isStrictlyPositive()) continue; 2182 2183 /* Add new PHINode. */ 2184 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2185 2186 /* create new increment. '++d' in above example. */ 2187 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2188 BinaryOperator *NewIncr = 2189 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2190 Instruction::FAdd : Instruction::FSub, 2191 NewPH, CFP, "IV.S.next.", Incr); 2192 2193 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2194 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2195 2196 /* Remove cast operation */ 2197 ShadowUse->replaceAllUsesWith(NewPH); 2198 ShadowUse->eraseFromParent(); 2199 Changed = true; 2200 break; 2201 } 2202 } 2203 2204 /// If Cond has an operand that is an expression of an IV, set the IV user and 2205 /// stride information and return true, otherwise return false. 2206 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2207 for (IVStrideUse &U : IU) 2208 if (U.getUser() == Cond) { 2209 // NOTE: we could handle setcc instructions with multiple uses here, but 2210 // InstCombine does it as well for simple uses, it's not clear that it 2211 // occurs enough in real life to handle. 2212 CondUse = &U; 2213 return true; 2214 } 2215 return false; 2216 } 2217 2218 /// Rewrite the loop's terminating condition if it uses a max computation. 2219 /// 2220 /// This is a narrow solution to a specific, but acute, problem. For loops 2221 /// like this: 2222 /// 2223 /// i = 0; 2224 /// do { 2225 /// p[i] = 0.0; 2226 /// } while (++i < n); 2227 /// 2228 /// the trip count isn't just 'n', because 'n' might not be positive. And 2229 /// unfortunately this can come up even for loops where the user didn't use 2230 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2231 /// will commonly be lowered like this: 2232 /// 2233 /// if (n > 0) { 2234 /// i = 0; 2235 /// do { 2236 /// p[i] = 0.0; 2237 /// } while (++i < n); 2238 /// } 2239 /// 2240 /// and then it's possible for subsequent optimization to obscure the if 2241 /// test in such a way that indvars can't find it. 2242 /// 2243 /// When indvars can't find the if test in loops like this, it creates a 2244 /// max expression, which allows it to give the loop a canonical 2245 /// induction variable: 2246 /// 2247 /// i = 0; 2248 /// max = n < 1 ? 1 : n; 2249 /// do { 2250 /// p[i] = 0.0; 2251 /// } while (++i != max); 2252 /// 2253 /// Canonical induction variables are necessary because the loop passes 2254 /// are designed around them. The most obvious example of this is the 2255 /// LoopInfo analysis, which doesn't remember trip count values. It 2256 /// expects to be able to rediscover the trip count each time it is 2257 /// needed, and it does this using a simple analysis that only succeeds if 2258 /// the loop has a canonical induction variable. 2259 /// 2260 /// However, when it comes time to generate code, the maximum operation 2261 /// can be quite costly, especially if it's inside of an outer loop. 2262 /// 2263 /// This function solves this problem by detecting this type of loop and 2264 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2265 /// the instructions for the maximum computation. 2266 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2267 // Check that the loop matches the pattern we're looking for. 2268 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2269 Cond->getPredicate() != CmpInst::ICMP_NE) 2270 return Cond; 2271 2272 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2273 if (!Sel || !Sel->hasOneUse()) return Cond; 2274 2275 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2276 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2277 return Cond; 2278 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2279 2280 // Add one to the backedge-taken count to get the trip count. 2281 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2282 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2283 2284 // Check for a max calculation that matches the pattern. There's no check 2285 // for ICMP_ULE here because the comparison would be with zero, which 2286 // isn't interesting. 2287 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2288 const SCEVNAryExpr *Max = nullptr; 2289 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2290 Pred = ICmpInst::ICMP_SLE; 2291 Max = S; 2292 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2293 Pred = ICmpInst::ICMP_SLT; 2294 Max = S; 2295 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2296 Pred = ICmpInst::ICMP_ULT; 2297 Max = U; 2298 } else { 2299 // No match; bail. 2300 return Cond; 2301 } 2302 2303 // To handle a max with more than two operands, this optimization would 2304 // require additional checking and setup. 2305 if (Max->getNumOperands() != 2) 2306 return Cond; 2307 2308 const SCEV *MaxLHS = Max->getOperand(0); 2309 const SCEV *MaxRHS = Max->getOperand(1); 2310 2311 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2312 // for a comparison with 1. For <= and >=, a comparison with zero. 2313 if (!MaxLHS || 2314 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2315 return Cond; 2316 2317 // Check the relevant induction variable for conformance to 2318 // the pattern. 2319 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2320 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2321 if (!AR || !AR->isAffine() || 2322 AR->getStart() != One || 2323 AR->getStepRecurrence(SE) != One) 2324 return Cond; 2325 2326 assert(AR->getLoop() == L && 2327 "Loop condition operand is an addrec in a different loop!"); 2328 2329 // Check the right operand of the select, and remember it, as it will 2330 // be used in the new comparison instruction. 2331 Value *NewRHS = nullptr; 2332 if (ICmpInst::isTrueWhenEqual(Pred)) { 2333 // Look for n+1, and grab n. 2334 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2335 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2336 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2337 NewRHS = BO->getOperand(0); 2338 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2339 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2340 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2341 NewRHS = BO->getOperand(0); 2342 if (!NewRHS) 2343 return Cond; 2344 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2345 NewRHS = Sel->getOperand(1); 2346 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2347 NewRHS = Sel->getOperand(2); 2348 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2349 NewRHS = SU->getValue(); 2350 else 2351 // Max doesn't match expected pattern. 2352 return Cond; 2353 2354 // Determine the new comparison opcode. It may be signed or unsigned, 2355 // and the original comparison may be either equality or inequality. 2356 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2357 Pred = CmpInst::getInversePredicate(Pred); 2358 2359 // Ok, everything looks ok to change the condition into an SLT or SGE and 2360 // delete the max calculation. 2361 ICmpInst *NewCond = 2362 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2363 2364 // Delete the max calculation instructions. 2365 NewCond->setDebugLoc(Cond->getDebugLoc()); 2366 Cond->replaceAllUsesWith(NewCond); 2367 CondUse->setUser(NewCond); 2368 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2369 Cond->eraseFromParent(); 2370 Sel->eraseFromParent(); 2371 if (Cmp->use_empty()) 2372 Cmp->eraseFromParent(); 2373 return NewCond; 2374 } 2375 2376 /// Change loop terminating condition to use the postinc iv when possible. 2377 void 2378 LSRInstance::OptimizeLoopTermCond() { 2379 SmallPtrSet<Instruction *, 4> PostIncs; 2380 2381 // We need a different set of heuristics for rotated and non-rotated loops. 2382 // If a loop is rotated then the latch is also the backedge, so inserting 2383 // post-inc expressions just before the latch is ideal. To reduce live ranges 2384 // it also makes sense to rewrite terminating conditions to use post-inc 2385 // expressions. 2386 // 2387 // If the loop is not rotated then the latch is not a backedge; the latch 2388 // check is done in the loop head. Adding post-inc expressions before the 2389 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2390 // in the loop body. In this case we do *not* want to use post-inc expressions 2391 // in the latch check, and we want to insert post-inc expressions before 2392 // the backedge. 2393 BasicBlock *LatchBlock = L->getLoopLatch(); 2394 SmallVector<BasicBlock*, 8> ExitingBlocks; 2395 L->getExitingBlocks(ExitingBlocks); 2396 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2397 return LatchBlock != BB; 2398 })) { 2399 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2400 IVIncInsertPos = LatchBlock->getTerminator(); 2401 return; 2402 } 2403 2404 // Otherwise treat this as a rotated loop. 2405 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2406 // Get the terminating condition for the loop if possible. If we 2407 // can, we want to change it to use a post-incremented version of its 2408 // induction variable, to allow coalescing the live ranges for the IV into 2409 // one register value. 2410 2411 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2412 if (!TermBr) 2413 continue; 2414 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2415 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2416 continue; 2417 2418 // Search IVUsesByStride to find Cond's IVUse if there is one. 2419 IVStrideUse *CondUse = nullptr; 2420 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2421 if (!FindIVUserForCond(Cond, CondUse)) 2422 continue; 2423 2424 // If the trip count is computed in terms of a max (due to ScalarEvolution 2425 // being unable to find a sufficient guard, for example), change the loop 2426 // comparison to use SLT or ULT instead of NE. 2427 // One consequence of doing this now is that it disrupts the count-down 2428 // optimization. That's not always a bad thing though, because in such 2429 // cases it may still be worthwhile to avoid a max. 2430 Cond = OptimizeMax(Cond, CondUse); 2431 2432 // If this exiting block dominates the latch block, it may also use 2433 // the post-inc value if it won't be shared with other uses. 2434 // Check for dominance. 2435 if (!DT.dominates(ExitingBlock, LatchBlock)) 2436 continue; 2437 2438 // Conservatively avoid trying to use the post-inc value in non-latch 2439 // exits if there may be pre-inc users in intervening blocks. 2440 if (LatchBlock != ExitingBlock) 2441 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2442 // Test if the use is reachable from the exiting block. This dominator 2443 // query is a conservative approximation of reachability. 2444 if (&*UI != CondUse && 2445 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2446 // Conservatively assume there may be reuse if the quotient of their 2447 // strides could be a legal scale. 2448 const SCEV *A = IU.getStride(*CondUse, L); 2449 const SCEV *B = IU.getStride(*UI, L); 2450 if (!A || !B) continue; 2451 if (SE.getTypeSizeInBits(A->getType()) != 2452 SE.getTypeSizeInBits(B->getType())) { 2453 if (SE.getTypeSizeInBits(A->getType()) > 2454 SE.getTypeSizeInBits(B->getType())) 2455 B = SE.getSignExtendExpr(B, A->getType()); 2456 else 2457 A = SE.getSignExtendExpr(A, B->getType()); 2458 } 2459 if (const SCEVConstant *D = 2460 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2461 const ConstantInt *C = D->getValue(); 2462 // Stride of one or negative one can have reuse with non-addresses. 2463 if (C->isOne() || C->isMinusOne()) 2464 goto decline_post_inc; 2465 // Avoid weird situations. 2466 if (C->getValue().getMinSignedBits() >= 64 || 2467 C->getValue().isMinSignedValue()) 2468 goto decline_post_inc; 2469 // Check for possible scaled-address reuse. 2470 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2471 MemAccessTy AccessTy = getAccessType( 2472 TTI, UI->getUser(), UI->getOperandValToReplace()); 2473 int64_t Scale = C->getSExtValue(); 2474 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2475 /*BaseOffset=*/0, 2476 /*HasBaseReg=*/false, Scale, 2477 AccessTy.AddrSpace)) 2478 goto decline_post_inc; 2479 Scale = -Scale; 2480 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2481 /*BaseOffset=*/0, 2482 /*HasBaseReg=*/false, Scale, 2483 AccessTy.AddrSpace)) 2484 goto decline_post_inc; 2485 } 2486 } 2487 } 2488 2489 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2490 << *Cond << '\n'); 2491 2492 // It's possible for the setcc instruction to be anywhere in the loop, and 2493 // possible for it to have multiple users. If it is not immediately before 2494 // the exiting block branch, move it. 2495 if (Cond->getNextNonDebugInstruction() != TermBr) { 2496 if (Cond->hasOneUse()) { 2497 Cond->moveBefore(TermBr); 2498 } else { 2499 // Clone the terminating condition and insert into the loopend. 2500 ICmpInst *OldCond = Cond; 2501 Cond = cast<ICmpInst>(Cond->clone()); 2502 Cond->setName(L->getHeader()->getName() + ".termcond"); 2503 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2504 2505 // Clone the IVUse, as the old use still exists! 2506 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2507 TermBr->replaceUsesOfWith(OldCond, Cond); 2508 } 2509 } 2510 2511 // If we get to here, we know that we can transform the setcc instruction to 2512 // use the post-incremented version of the IV, allowing us to coalesce the 2513 // live ranges for the IV correctly. 2514 CondUse->transformToPostInc(L); 2515 Changed = true; 2516 2517 PostIncs.insert(Cond); 2518 decline_post_inc:; 2519 } 2520 2521 // Determine an insertion point for the loop induction variable increment. It 2522 // must dominate all the post-inc comparisons we just set up, and it must 2523 // dominate the loop latch edge. 2524 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2525 for (Instruction *Inst : PostIncs) { 2526 BasicBlock *BB = 2527 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2528 Inst->getParent()); 2529 if (BB == Inst->getParent()) 2530 IVIncInsertPos = Inst; 2531 else if (BB != IVIncInsertPos->getParent()) 2532 IVIncInsertPos = BB->getTerminator(); 2533 } 2534 } 2535 2536 /// Determine if the given use can accommodate a fixup at the given offset and 2537 /// other details. If so, update the use and return true. 2538 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2539 bool HasBaseReg, LSRUse::KindType Kind, 2540 MemAccessTy AccessTy) { 2541 int64_t NewMinOffset = LU.MinOffset; 2542 int64_t NewMaxOffset = LU.MaxOffset; 2543 MemAccessTy NewAccessTy = AccessTy; 2544 2545 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2546 // something conservative, however this can pessimize in the case that one of 2547 // the uses will have all its uses outside the loop, for example. 2548 if (LU.Kind != Kind) 2549 return false; 2550 2551 // Check for a mismatched access type, and fall back conservatively as needed. 2552 // TODO: Be less conservative when the type is similar and can use the same 2553 // addressing modes. 2554 if (Kind == LSRUse::Address) { 2555 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2556 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2557 AccessTy.AddrSpace); 2558 } 2559 } 2560 2561 // Conservatively assume HasBaseReg is true for now. 2562 if (NewOffset < LU.MinOffset) { 2563 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2564 LU.MaxOffset - NewOffset, HasBaseReg)) 2565 return false; 2566 NewMinOffset = NewOffset; 2567 } else if (NewOffset > LU.MaxOffset) { 2568 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2569 NewOffset - LU.MinOffset, HasBaseReg)) 2570 return false; 2571 NewMaxOffset = NewOffset; 2572 } 2573 2574 // Update the use. 2575 LU.MinOffset = NewMinOffset; 2576 LU.MaxOffset = NewMaxOffset; 2577 LU.AccessTy = NewAccessTy; 2578 return true; 2579 } 2580 2581 /// Return an LSRUse index and an offset value for a fixup which needs the given 2582 /// expression, with the given kind and optional access type. Either reuse an 2583 /// existing use or create a new one, as needed. 2584 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2585 LSRUse::KindType Kind, 2586 MemAccessTy AccessTy) { 2587 const SCEV *Copy = Expr; 2588 int64_t Offset = ExtractImmediate(Expr, SE); 2589 2590 // Basic uses can't accept any offset, for example. 2591 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2592 Offset, /*HasBaseReg=*/ true)) { 2593 Expr = Copy; 2594 Offset = 0; 2595 } 2596 2597 std::pair<UseMapTy::iterator, bool> P = 2598 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2599 if (!P.second) { 2600 // A use already existed with this base. 2601 size_t LUIdx = P.first->second; 2602 LSRUse &LU = Uses[LUIdx]; 2603 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2604 // Reuse this use. 2605 return std::make_pair(LUIdx, Offset); 2606 } 2607 2608 // Create a new use. 2609 size_t LUIdx = Uses.size(); 2610 P.first->second = LUIdx; 2611 Uses.push_back(LSRUse(Kind, AccessTy)); 2612 LSRUse &LU = Uses[LUIdx]; 2613 2614 LU.MinOffset = Offset; 2615 LU.MaxOffset = Offset; 2616 return std::make_pair(LUIdx, Offset); 2617 } 2618 2619 /// Delete the given use from the Uses list. 2620 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2621 if (&LU != &Uses.back()) 2622 std::swap(LU, Uses.back()); 2623 Uses.pop_back(); 2624 2625 // Update RegUses. 2626 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2627 } 2628 2629 /// Look for a use distinct from OrigLU which is has a formula that has the same 2630 /// registers as the given formula. 2631 LSRUse * 2632 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2633 const LSRUse &OrigLU) { 2634 // Search all uses for the formula. This could be more clever. 2635 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2636 LSRUse &LU = Uses[LUIdx]; 2637 // Check whether this use is close enough to OrigLU, to see whether it's 2638 // worthwhile looking through its formulae. 2639 // Ignore ICmpZero uses because they may contain formulae generated by 2640 // GenerateICmpZeroScales, in which case adding fixup offsets may 2641 // be invalid. 2642 if (&LU != &OrigLU && 2643 LU.Kind != LSRUse::ICmpZero && 2644 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2645 LU.WidestFixupType == OrigLU.WidestFixupType && 2646 LU.HasFormulaWithSameRegs(OrigF)) { 2647 // Scan through this use's formulae. 2648 for (const Formula &F : LU.Formulae) { 2649 // Check to see if this formula has the same registers and symbols 2650 // as OrigF. 2651 if (F.BaseRegs == OrigF.BaseRegs && 2652 F.ScaledReg == OrigF.ScaledReg && 2653 F.BaseGV == OrigF.BaseGV && 2654 F.Scale == OrigF.Scale && 2655 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2656 if (F.BaseOffset == 0) 2657 return &LU; 2658 // This is the formula where all the registers and symbols matched; 2659 // there aren't going to be any others. Since we declined it, we 2660 // can skip the rest of the formulae and proceed to the next LSRUse. 2661 break; 2662 } 2663 } 2664 } 2665 } 2666 2667 // Nothing looked good. 2668 return nullptr; 2669 } 2670 2671 void LSRInstance::CollectInterestingTypesAndFactors() { 2672 SmallSetVector<const SCEV *, 4> Strides; 2673 2674 // Collect interesting types and strides. 2675 SmallVector<const SCEV *, 4> Worklist; 2676 for (const IVStrideUse &U : IU) { 2677 const SCEV *Expr = IU.getExpr(U); 2678 2679 // Collect interesting types. 2680 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2681 2682 // Add strides for mentioned loops. 2683 Worklist.push_back(Expr); 2684 do { 2685 const SCEV *S = Worklist.pop_back_val(); 2686 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2687 if (AR->getLoop() == L) 2688 Strides.insert(AR->getStepRecurrence(SE)); 2689 Worklist.push_back(AR->getStart()); 2690 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2691 Worklist.append(Add->op_begin(), Add->op_end()); 2692 } 2693 } while (!Worklist.empty()); 2694 } 2695 2696 // Compute interesting factors from the set of interesting strides. 2697 for (SmallSetVector<const SCEV *, 4>::const_iterator 2698 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2699 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2700 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2701 const SCEV *OldStride = *I; 2702 const SCEV *NewStride = *NewStrideIter; 2703 2704 if (SE.getTypeSizeInBits(OldStride->getType()) != 2705 SE.getTypeSizeInBits(NewStride->getType())) { 2706 if (SE.getTypeSizeInBits(OldStride->getType()) > 2707 SE.getTypeSizeInBits(NewStride->getType())) 2708 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2709 else 2710 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2711 } 2712 if (const SCEVConstant *Factor = 2713 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2714 SE, true))) { 2715 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2716 Factors.insert(Factor->getAPInt().getSExtValue()); 2717 } else if (const SCEVConstant *Factor = 2718 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2719 NewStride, 2720 SE, true))) { 2721 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2722 Factors.insert(Factor->getAPInt().getSExtValue()); 2723 } 2724 } 2725 2726 // If all uses use the same type, don't bother looking for truncation-based 2727 // reuse. 2728 if (Types.size() == 1) 2729 Types.clear(); 2730 2731 LLVM_DEBUG(print_factors_and_types(dbgs())); 2732 } 2733 2734 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2735 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2736 /// IVStrideUses, we could partially skip this. 2737 static User::op_iterator 2738 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2739 Loop *L, ScalarEvolution &SE) { 2740 for(; OI != OE; ++OI) { 2741 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2742 if (!SE.isSCEVable(Oper->getType())) 2743 continue; 2744 2745 if (const SCEVAddRecExpr *AR = 2746 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2747 if (AR->getLoop() == L) 2748 break; 2749 } 2750 } 2751 } 2752 return OI; 2753 } 2754 2755 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2756 /// a convenient helper. 2757 static Value *getWideOperand(Value *Oper) { 2758 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2759 return Trunc->getOperand(0); 2760 return Oper; 2761 } 2762 2763 /// Return true if we allow an IV chain to include both types. 2764 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2765 Type *LType = LVal->getType(); 2766 Type *RType = RVal->getType(); 2767 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2768 // Different address spaces means (possibly) 2769 // different types of the pointer implementation, 2770 // e.g. i16 vs i32 so disallow that. 2771 (LType->getPointerAddressSpace() == 2772 RType->getPointerAddressSpace())); 2773 } 2774 2775 /// Return an approximation of this SCEV expression's "base", or NULL for any 2776 /// constant. Returning the expression itself is conservative. Returning a 2777 /// deeper subexpression is more precise and valid as long as it isn't less 2778 /// complex than another subexpression. For expressions involving multiple 2779 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2780 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2781 /// IVInc==b-a. 2782 /// 2783 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2784 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2785 static const SCEV *getExprBase(const SCEV *S) { 2786 switch (S->getSCEVType()) { 2787 default: // uncluding scUnknown. 2788 return S; 2789 case scConstant: 2790 return nullptr; 2791 case scTruncate: 2792 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2793 case scZeroExtend: 2794 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2795 case scSignExtend: 2796 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2797 case scAddExpr: { 2798 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2799 // there's nothing more complex. 2800 // FIXME: not sure if we want to recognize negation. 2801 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2802 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2803 E(Add->op_begin()); I != E; ++I) { 2804 const SCEV *SubExpr = *I; 2805 if (SubExpr->getSCEVType() == scAddExpr) 2806 return getExprBase(SubExpr); 2807 2808 if (SubExpr->getSCEVType() != scMulExpr) 2809 return SubExpr; 2810 } 2811 return S; // all operands are scaled, be conservative. 2812 } 2813 case scAddRecExpr: 2814 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2815 } 2816 llvm_unreachable("Unknown SCEV kind!"); 2817 } 2818 2819 /// Return true if the chain increment is profitable to expand into a loop 2820 /// invariant value, which may require its own register. A profitable chain 2821 /// increment will be an offset relative to the same base. We allow such offsets 2822 /// to potentially be used as chain increment as long as it's not obviously 2823 /// expensive to expand using real instructions. 2824 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2825 const SCEV *IncExpr, 2826 ScalarEvolution &SE) { 2827 // Aggressively form chains when -stress-ivchain. 2828 if (StressIVChain) 2829 return true; 2830 2831 // Do not replace a constant offset from IV head with a nonconstant IV 2832 // increment. 2833 if (!isa<SCEVConstant>(IncExpr)) { 2834 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2835 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2836 return false; 2837 } 2838 2839 SmallPtrSet<const SCEV*, 8> Processed; 2840 return !isHighCostExpansion(IncExpr, Processed, SE); 2841 } 2842 2843 /// Return true if the number of registers needed for the chain is estimated to 2844 /// be less than the number required for the individual IV users. First prohibit 2845 /// any IV users that keep the IV live across increments (the Users set should 2846 /// be empty). Next count the number and type of increments in the chain. 2847 /// 2848 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2849 /// effectively use postinc addressing modes. Only consider it profitable it the 2850 /// increments can be computed in fewer registers when chained. 2851 /// 2852 /// TODO: Consider IVInc free if it's already used in another chains. 2853 static bool isProfitableChain(IVChain &Chain, 2854 SmallPtrSetImpl<Instruction *> &Users, 2855 ScalarEvolution &SE, 2856 const TargetTransformInfo &TTI) { 2857 if (StressIVChain) 2858 return true; 2859 2860 if (!Chain.hasIncs()) 2861 return false; 2862 2863 if (!Users.empty()) { 2864 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2865 for (Instruction *Inst 2866 : Users) { dbgs() << " " << *Inst << "\n"; }); 2867 return false; 2868 } 2869 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2870 2871 // The chain itself may require a register, so intialize cost to 1. 2872 int cost = 1; 2873 2874 // A complete chain likely eliminates the need for keeping the original IV in 2875 // a register. LSR does not currently know how to form a complete chain unless 2876 // the header phi already exists. 2877 if (isa<PHINode>(Chain.tailUserInst()) 2878 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2879 --cost; 2880 } 2881 const SCEV *LastIncExpr = nullptr; 2882 unsigned NumConstIncrements = 0; 2883 unsigned NumVarIncrements = 0; 2884 unsigned NumReusedIncrements = 0; 2885 2886 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2887 return true; 2888 2889 for (const IVInc &Inc : Chain) { 2890 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2891 return true; 2892 if (Inc.IncExpr->isZero()) 2893 continue; 2894 2895 // Incrementing by zero or some constant is neutral. We assume constants can 2896 // be folded into an addressing mode or an add's immediate operand. 2897 if (isa<SCEVConstant>(Inc.IncExpr)) { 2898 ++NumConstIncrements; 2899 continue; 2900 } 2901 2902 if (Inc.IncExpr == LastIncExpr) 2903 ++NumReusedIncrements; 2904 else 2905 ++NumVarIncrements; 2906 2907 LastIncExpr = Inc.IncExpr; 2908 } 2909 // An IV chain with a single increment is handled by LSR's postinc 2910 // uses. However, a chain with multiple increments requires keeping the IV's 2911 // value live longer than it needs to be if chained. 2912 if (NumConstIncrements > 1) 2913 --cost; 2914 2915 // Materializing increment expressions in the preheader that didn't exist in 2916 // the original code may cost a register. For example, sign-extended array 2917 // indices can produce ridiculous increments like this: 2918 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2919 cost += NumVarIncrements; 2920 2921 // Reusing variable increments likely saves a register to hold the multiple of 2922 // the stride. 2923 cost -= NumReusedIncrements; 2924 2925 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2926 << "\n"); 2927 2928 return cost < 0; 2929 } 2930 2931 /// Add this IV user to an existing chain or make it the head of a new chain. 2932 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2933 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2934 // When IVs are used as types of varying widths, they are generally converted 2935 // to a wider type with some uses remaining narrow under a (free) trunc. 2936 Value *const NextIV = getWideOperand(IVOper); 2937 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2938 const SCEV *const OperExprBase = getExprBase(OperExpr); 2939 2940 // Visit all existing chains. Check if its IVOper can be computed as a 2941 // profitable loop invariant increment from the last link in the Chain. 2942 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2943 const SCEV *LastIncExpr = nullptr; 2944 for (; ChainIdx < NChains; ++ChainIdx) { 2945 IVChain &Chain = IVChainVec[ChainIdx]; 2946 2947 // Prune the solution space aggressively by checking that both IV operands 2948 // are expressions that operate on the same unscaled SCEVUnknown. This 2949 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2950 // first avoids creating extra SCEV expressions. 2951 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2952 continue; 2953 2954 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2955 if (!isCompatibleIVType(PrevIV, NextIV)) 2956 continue; 2957 2958 // A phi node terminates a chain. 2959 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2960 continue; 2961 2962 // The increment must be loop-invariant so it can be kept in a register. 2963 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2964 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2965 if (!SE.isLoopInvariant(IncExpr, L)) 2966 continue; 2967 2968 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2969 LastIncExpr = IncExpr; 2970 break; 2971 } 2972 } 2973 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2974 // bother for phi nodes, because they must be last in the chain. 2975 if (ChainIdx == NChains) { 2976 if (isa<PHINode>(UserInst)) 2977 return; 2978 if (NChains >= MaxChains && !StressIVChain) { 2979 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2980 return; 2981 } 2982 LastIncExpr = OperExpr; 2983 // IVUsers may have skipped over sign/zero extensions. We don't currently 2984 // attempt to form chains involving extensions unless they can be hoisted 2985 // into this loop's AddRec. 2986 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2987 return; 2988 ++NChains; 2989 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2990 OperExprBase)); 2991 ChainUsersVec.resize(NChains); 2992 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2993 << ") IV=" << *LastIncExpr << "\n"); 2994 } else { 2995 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2996 << ") IV+" << *LastIncExpr << "\n"); 2997 // Add this IV user to the end of the chain. 2998 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2999 } 3000 IVChain &Chain = IVChainVec[ChainIdx]; 3001 3002 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3003 // This chain's NearUsers become FarUsers. 3004 if (!LastIncExpr->isZero()) { 3005 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3006 NearUsers.end()); 3007 NearUsers.clear(); 3008 } 3009 3010 // All other uses of IVOperand become near uses of the chain. 3011 // We currently ignore intermediate values within SCEV expressions, assuming 3012 // they will eventually be used be the current chain, or can be computed 3013 // from one of the chain increments. To be more precise we could 3014 // transitively follow its user and only add leaf IV users to the set. 3015 for (User *U : IVOper->users()) { 3016 Instruction *OtherUse = dyn_cast<Instruction>(U); 3017 if (!OtherUse) 3018 continue; 3019 // Uses in the chain will no longer be uses if the chain is formed. 3020 // Include the head of the chain in this iteration (not Chain.begin()). 3021 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3022 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3023 for( ; IncIter != IncEnd; ++IncIter) { 3024 if (IncIter->UserInst == OtherUse) 3025 break; 3026 } 3027 if (IncIter != IncEnd) 3028 continue; 3029 3030 if (SE.isSCEVable(OtherUse->getType()) 3031 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3032 && IU.isIVUserOrOperand(OtherUse)) { 3033 continue; 3034 } 3035 NearUsers.insert(OtherUse); 3036 } 3037 3038 // Since this user is part of the chain, it's no longer considered a use 3039 // of the chain. 3040 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3041 } 3042 3043 /// Populate the vector of Chains. 3044 /// 3045 /// This decreases ILP at the architecture level. Targets with ample registers, 3046 /// multiple memory ports, and no register renaming probably don't want 3047 /// this. However, such targets should probably disable LSR altogether. 3048 /// 3049 /// The job of LSR is to make a reasonable choice of induction variables across 3050 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3051 /// ILP *within the loop* if the target wants it. 3052 /// 3053 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3054 /// will not reorder memory operations, it will recognize this as a chain, but 3055 /// will generate redundant IV increments. Ideally this would be corrected later 3056 /// by a smart scheduler: 3057 /// = A[i] 3058 /// = A[i+x] 3059 /// A[i] = 3060 /// A[i+x] = 3061 /// 3062 /// TODO: Walk the entire domtree within this loop, not just the path to the 3063 /// loop latch. This will discover chains on side paths, but requires 3064 /// maintaining multiple copies of the Chains state. 3065 void LSRInstance::CollectChains() { 3066 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3067 SmallVector<ChainUsers, 8> ChainUsersVec; 3068 3069 SmallVector<BasicBlock *,8> LatchPath; 3070 BasicBlock *LoopHeader = L->getHeader(); 3071 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3072 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3073 LatchPath.push_back(Rung->getBlock()); 3074 } 3075 LatchPath.push_back(LoopHeader); 3076 3077 // Walk the instruction stream from the loop header to the loop latch. 3078 for (BasicBlock *BB : reverse(LatchPath)) { 3079 for (Instruction &I : *BB) { 3080 // Skip instructions that weren't seen by IVUsers analysis. 3081 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3082 continue; 3083 3084 // Ignore users that are part of a SCEV expression. This way we only 3085 // consider leaf IV Users. This effectively rediscovers a portion of 3086 // IVUsers analysis but in program order this time. 3087 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3088 continue; 3089 3090 // Remove this instruction from any NearUsers set it may be in. 3091 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3092 ChainIdx < NChains; ++ChainIdx) { 3093 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3094 } 3095 // Search for operands that can be chained. 3096 SmallPtrSet<Instruction*, 4> UniqueOperands; 3097 User::op_iterator IVOpEnd = I.op_end(); 3098 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3099 while (IVOpIter != IVOpEnd) { 3100 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3101 if (UniqueOperands.insert(IVOpInst).second) 3102 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3103 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3104 } 3105 } // Continue walking down the instructions. 3106 } // Continue walking down the domtree. 3107 // Visit phi backedges to determine if the chain can generate the IV postinc. 3108 for (PHINode &PN : L->getHeader()->phis()) { 3109 if (!SE.isSCEVable(PN.getType())) 3110 continue; 3111 3112 Instruction *IncV = 3113 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3114 if (IncV) 3115 ChainInstruction(&PN, IncV, ChainUsersVec); 3116 } 3117 // Remove any unprofitable chains. 3118 unsigned ChainIdx = 0; 3119 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3120 UsersIdx < NChains; ++UsersIdx) { 3121 if (!isProfitableChain(IVChainVec[UsersIdx], 3122 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3123 continue; 3124 // Preserve the chain at UsesIdx. 3125 if (ChainIdx != UsersIdx) 3126 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3127 FinalizeChain(IVChainVec[ChainIdx]); 3128 ++ChainIdx; 3129 } 3130 IVChainVec.resize(ChainIdx); 3131 } 3132 3133 void LSRInstance::FinalizeChain(IVChain &Chain) { 3134 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3135 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3136 3137 for (const IVInc &Inc : Chain) { 3138 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3139 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3140 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3141 IVIncSet.insert(UseI); 3142 } 3143 } 3144 3145 /// Return true if the IVInc can be folded into an addressing mode. 3146 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3147 Value *Operand, const TargetTransformInfo &TTI) { 3148 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3149 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3150 return false; 3151 3152 if (IncConst->getAPInt().getMinSignedBits() > 64) 3153 return false; 3154 3155 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3156 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3157 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3158 IncOffset, /*HasBaseReg=*/false)) 3159 return false; 3160 3161 return true; 3162 } 3163 3164 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3165 /// user's operand from the previous IV user's operand. 3166 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3167 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3168 // Find the new IVOperand for the head of the chain. It may have been replaced 3169 // by LSR. 3170 const IVInc &Head = Chain.Incs[0]; 3171 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3172 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3173 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3174 IVOpEnd, L, SE); 3175 Value *IVSrc = nullptr; 3176 while (IVOpIter != IVOpEnd) { 3177 IVSrc = getWideOperand(*IVOpIter); 3178 3179 // If this operand computes the expression that the chain needs, we may use 3180 // it. (Check this after setting IVSrc which is used below.) 3181 // 3182 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3183 // narrow for the chain, so we can no longer use it. We do allow using a 3184 // wider phi, assuming the LSR checked for free truncation. In that case we 3185 // should already have a truncate on this operand such that 3186 // getSCEV(IVSrc) == IncExpr. 3187 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3188 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3189 break; 3190 } 3191 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3192 } 3193 if (IVOpIter == IVOpEnd) { 3194 // Gracefully give up on this chain. 3195 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3196 return; 3197 } 3198 assert(IVSrc && "Failed to find IV chain source"); 3199 3200 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3201 Type *IVTy = IVSrc->getType(); 3202 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3203 const SCEV *LeftOverExpr = nullptr; 3204 for (const IVInc &Inc : Chain) { 3205 Instruction *InsertPt = Inc.UserInst; 3206 if (isa<PHINode>(InsertPt)) 3207 InsertPt = L->getLoopLatch()->getTerminator(); 3208 3209 // IVOper will replace the current IV User's operand. IVSrc is the IV 3210 // value currently held in a register. 3211 Value *IVOper = IVSrc; 3212 if (!Inc.IncExpr->isZero()) { 3213 // IncExpr was the result of subtraction of two narrow values, so must 3214 // be signed. 3215 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3216 LeftOverExpr = LeftOverExpr ? 3217 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3218 } 3219 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3220 // Expand the IV increment. 3221 Rewriter.clearPostInc(); 3222 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3223 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3224 SE.getUnknown(IncV)); 3225 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3226 3227 // If an IV increment can't be folded, use it as the next IV value. 3228 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3229 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3230 IVSrc = IVOper; 3231 LeftOverExpr = nullptr; 3232 } 3233 } 3234 Type *OperTy = Inc.IVOperand->getType(); 3235 if (IVTy != OperTy) { 3236 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3237 "cannot extend a chained IV"); 3238 IRBuilder<> Builder(InsertPt); 3239 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3240 } 3241 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3242 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3243 DeadInsts.emplace_back(OperandIsInstr); 3244 } 3245 // If LSR created a new, wider phi, we may also replace its postinc. We only 3246 // do this if we also found a wide value for the head of the chain. 3247 if (isa<PHINode>(Chain.tailUserInst())) { 3248 for (PHINode &Phi : L->getHeader()->phis()) { 3249 if (!isCompatibleIVType(&Phi, IVSrc)) 3250 continue; 3251 Instruction *PostIncV = dyn_cast<Instruction>( 3252 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3253 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3254 continue; 3255 Value *IVOper = IVSrc; 3256 Type *PostIncTy = PostIncV->getType(); 3257 if (IVTy != PostIncTy) { 3258 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3259 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3260 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3261 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3262 } 3263 Phi.replaceUsesOfWith(PostIncV, IVOper); 3264 DeadInsts.emplace_back(PostIncV); 3265 } 3266 } 3267 } 3268 3269 void LSRInstance::CollectFixupsAndInitialFormulae() { 3270 BranchInst *ExitBranch = nullptr; 3271 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3272 3273 for (const IVStrideUse &U : IU) { 3274 Instruction *UserInst = U.getUser(); 3275 // Skip IV users that are part of profitable IV Chains. 3276 User::op_iterator UseI = 3277 find(UserInst->operands(), U.getOperandValToReplace()); 3278 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3279 if (IVIncSet.count(UseI)) { 3280 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3281 continue; 3282 } 3283 3284 LSRUse::KindType Kind = LSRUse::Basic; 3285 MemAccessTy AccessTy; 3286 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3287 Kind = LSRUse::Address; 3288 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3289 } 3290 3291 const SCEV *S = IU.getExpr(U); 3292 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3293 3294 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3295 // (N - i == 0), and this allows (N - i) to be the expression that we work 3296 // with rather than just N or i, so we can consider the register 3297 // requirements for both N and i at the same time. Limiting this code to 3298 // equality icmps is not a problem because all interesting loops use 3299 // equality icmps, thanks to IndVarSimplify. 3300 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3301 // If CI can be saved in some target, like replaced inside hardware loop 3302 // in PowerPC, no need to generate initial formulae for it. 3303 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3304 continue; 3305 if (CI->isEquality()) { 3306 // Swap the operands if needed to put the OperandValToReplace on the 3307 // left, for consistency. 3308 Value *NV = CI->getOperand(1); 3309 if (NV == U.getOperandValToReplace()) { 3310 CI->setOperand(1, CI->getOperand(0)); 3311 CI->setOperand(0, NV); 3312 NV = CI->getOperand(1); 3313 Changed = true; 3314 } 3315 3316 // x == y --> x - y == 0 3317 const SCEV *N = SE.getSCEV(NV); 3318 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3319 // S is normalized, so normalize N before folding it into S 3320 // to keep the result normalized. 3321 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3322 Kind = LSRUse::ICmpZero; 3323 S = SE.getMinusSCEV(N, S); 3324 } 3325 3326 // -1 and the negations of all interesting strides (except the negation 3327 // of -1) are now also interesting. 3328 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3329 if (Factors[i] != -1) 3330 Factors.insert(-(uint64_t)Factors[i]); 3331 Factors.insert(-1); 3332 } 3333 } 3334 3335 // Get or create an LSRUse. 3336 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3337 size_t LUIdx = P.first; 3338 int64_t Offset = P.second; 3339 LSRUse &LU = Uses[LUIdx]; 3340 3341 // Record the fixup. 3342 LSRFixup &LF = LU.getNewFixup(); 3343 LF.UserInst = UserInst; 3344 LF.OperandValToReplace = U.getOperandValToReplace(); 3345 LF.PostIncLoops = TmpPostIncLoops; 3346 LF.Offset = Offset; 3347 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3348 3349 if (!LU.WidestFixupType || 3350 SE.getTypeSizeInBits(LU.WidestFixupType) < 3351 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3352 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3353 3354 // If this is the first use of this LSRUse, give it a formula. 3355 if (LU.Formulae.empty()) { 3356 InsertInitialFormula(S, LU, LUIdx); 3357 CountRegisters(LU.Formulae.back(), LUIdx); 3358 } 3359 } 3360 3361 LLVM_DEBUG(print_fixups(dbgs())); 3362 } 3363 3364 /// Insert a formula for the given expression into the given use, separating out 3365 /// loop-variant portions from loop-invariant and loop-computable portions. 3366 void 3367 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3368 // Mark uses whose expressions cannot be expanded. 3369 if (!isSafeToExpand(S, SE)) 3370 LU.RigidFormula = true; 3371 3372 Formula F; 3373 F.initialMatch(S, L, SE); 3374 bool Inserted = InsertFormula(LU, LUIdx, F); 3375 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3376 } 3377 3378 /// Insert a simple single-register formula for the given expression into the 3379 /// given use. 3380 void 3381 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3382 LSRUse &LU, size_t LUIdx) { 3383 Formula F; 3384 F.BaseRegs.push_back(S); 3385 F.HasBaseReg = true; 3386 bool Inserted = InsertFormula(LU, LUIdx, F); 3387 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3388 } 3389 3390 /// Note which registers are used by the given formula, updating RegUses. 3391 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3392 if (F.ScaledReg) 3393 RegUses.countRegister(F.ScaledReg, LUIdx); 3394 for (const SCEV *BaseReg : F.BaseRegs) 3395 RegUses.countRegister(BaseReg, LUIdx); 3396 } 3397 3398 /// If the given formula has not yet been inserted, add it to the list, and 3399 /// return true. Return false otherwise. 3400 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3401 // Do not insert formula that we will not be able to expand. 3402 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3403 "Formula is illegal"); 3404 3405 if (!LU.InsertFormula(F, *L)) 3406 return false; 3407 3408 CountRegisters(F, LUIdx); 3409 return true; 3410 } 3411 3412 /// Check for other uses of loop-invariant values which we're tracking. These 3413 /// other uses will pin these values in registers, making them less profitable 3414 /// for elimination. 3415 /// TODO: This currently misses non-constant addrec step registers. 3416 /// TODO: Should this give more weight to users inside the loop? 3417 void 3418 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3419 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3420 SmallPtrSet<const SCEV *, 32> Visited; 3421 3422 while (!Worklist.empty()) { 3423 const SCEV *S = Worklist.pop_back_val(); 3424 3425 // Don't process the same SCEV twice 3426 if (!Visited.insert(S).second) 3427 continue; 3428 3429 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3430 Worklist.append(N->op_begin(), N->op_end()); 3431 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3432 Worklist.push_back(C->getOperand()); 3433 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3434 Worklist.push_back(D->getLHS()); 3435 Worklist.push_back(D->getRHS()); 3436 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3437 const Value *V = US->getValue(); 3438 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3439 // Look for instructions defined outside the loop. 3440 if (L->contains(Inst)) continue; 3441 } else if (isa<UndefValue>(V)) 3442 // Undef doesn't have a live range, so it doesn't matter. 3443 continue; 3444 for (const Use &U : V->uses()) { 3445 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3446 // Ignore non-instructions. 3447 if (!UserInst) 3448 continue; 3449 // Don't bother if the instruction is an EHPad. 3450 if (UserInst->isEHPad()) 3451 continue; 3452 // Ignore instructions in other functions (as can happen with 3453 // Constants). 3454 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3455 continue; 3456 // Ignore instructions not dominated by the loop. 3457 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3458 UserInst->getParent() : 3459 cast<PHINode>(UserInst)->getIncomingBlock( 3460 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3461 if (!DT.dominates(L->getHeader(), UseBB)) 3462 continue; 3463 // Don't bother if the instruction is in a BB which ends in an EHPad. 3464 if (UseBB->getTerminator()->isEHPad()) 3465 continue; 3466 // Don't bother rewriting PHIs in catchswitch blocks. 3467 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3468 continue; 3469 // Ignore uses which are part of other SCEV expressions, to avoid 3470 // analyzing them multiple times. 3471 if (SE.isSCEVable(UserInst->getType())) { 3472 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3473 // If the user is a no-op, look through to its uses. 3474 if (!isa<SCEVUnknown>(UserS)) 3475 continue; 3476 if (UserS == US) { 3477 Worklist.push_back( 3478 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3479 continue; 3480 } 3481 } 3482 // Ignore icmp instructions which are already being analyzed. 3483 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3484 unsigned OtherIdx = !U.getOperandNo(); 3485 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3486 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3487 continue; 3488 } 3489 3490 std::pair<size_t, int64_t> P = getUse( 3491 S, LSRUse::Basic, MemAccessTy()); 3492 size_t LUIdx = P.first; 3493 int64_t Offset = P.second; 3494 LSRUse &LU = Uses[LUIdx]; 3495 LSRFixup &LF = LU.getNewFixup(); 3496 LF.UserInst = const_cast<Instruction *>(UserInst); 3497 LF.OperandValToReplace = U; 3498 LF.Offset = Offset; 3499 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3500 if (!LU.WidestFixupType || 3501 SE.getTypeSizeInBits(LU.WidestFixupType) < 3502 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3503 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3504 InsertSupplementalFormula(US, LU, LUIdx); 3505 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3506 break; 3507 } 3508 } 3509 } 3510 } 3511 3512 /// Split S into subexpressions which can be pulled out into separate 3513 /// registers. If C is non-null, multiply each subexpression by C. 3514 /// 3515 /// Return remainder expression after factoring the subexpressions captured by 3516 /// Ops. If Ops is complete, return NULL. 3517 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3518 SmallVectorImpl<const SCEV *> &Ops, 3519 const Loop *L, 3520 ScalarEvolution &SE, 3521 unsigned Depth = 0) { 3522 // Arbitrarily cap recursion to protect compile time. 3523 if (Depth >= 3) 3524 return S; 3525 3526 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3527 // Break out add operands. 3528 for (const SCEV *S : Add->operands()) { 3529 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3530 if (Remainder) 3531 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3532 } 3533 return nullptr; 3534 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3535 // Split a non-zero base out of an addrec. 3536 if (AR->getStart()->isZero() || !AR->isAffine()) 3537 return S; 3538 3539 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3540 C, Ops, L, SE, Depth+1); 3541 // Split the non-zero AddRec unless it is part of a nested recurrence that 3542 // does not pertain to this loop. 3543 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3544 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3545 Remainder = nullptr; 3546 } 3547 if (Remainder != AR->getStart()) { 3548 if (!Remainder) 3549 Remainder = SE.getConstant(AR->getType(), 0); 3550 return SE.getAddRecExpr(Remainder, 3551 AR->getStepRecurrence(SE), 3552 AR->getLoop(), 3553 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3554 SCEV::FlagAnyWrap); 3555 } 3556 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3557 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3558 if (Mul->getNumOperands() != 2) 3559 return S; 3560 if (const SCEVConstant *Op0 = 3561 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3562 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3563 const SCEV *Remainder = 3564 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3565 if (Remainder) 3566 Ops.push_back(SE.getMulExpr(C, Remainder)); 3567 return nullptr; 3568 } 3569 } 3570 return S; 3571 } 3572 3573 /// Return true if the SCEV represents a value that may end up as a 3574 /// post-increment operation. 3575 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3576 LSRUse &LU, const SCEV *S, const Loop *L, 3577 ScalarEvolution &SE) { 3578 if (LU.Kind != LSRUse::Address || 3579 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3580 return false; 3581 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3582 if (!AR) 3583 return false; 3584 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3585 if (!isa<SCEVConstant>(LoopStep)) 3586 return false; 3587 // Check if a post-indexed load/store can be used. 3588 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3589 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3590 const SCEV *LoopStart = AR->getStart(); 3591 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3592 return true; 3593 } 3594 return false; 3595 } 3596 3597 /// Helper function for LSRInstance::GenerateReassociations. 3598 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3599 const Formula &Base, 3600 unsigned Depth, size_t Idx, 3601 bool IsScaledReg) { 3602 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3603 // Don't generate reassociations for the base register of a value that 3604 // may generate a post-increment operator. The reason is that the 3605 // reassociations cause extra base+register formula to be created, 3606 // and possibly chosen, but the post-increment is more efficient. 3607 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3608 return; 3609 SmallVector<const SCEV *, 8> AddOps; 3610 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3611 if (Remainder) 3612 AddOps.push_back(Remainder); 3613 3614 if (AddOps.size() == 1) 3615 return; 3616 3617 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3618 JE = AddOps.end(); 3619 J != JE; ++J) { 3620 // Loop-variant "unknown" values are uninteresting; we won't be able to 3621 // do anything meaningful with them. 3622 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3623 continue; 3624 3625 // Don't pull a constant into a register if the constant could be folded 3626 // into an immediate field. 3627 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3628 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3629 continue; 3630 3631 // Collect all operands except *J. 3632 SmallVector<const SCEV *, 8> InnerAddOps( 3633 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3634 InnerAddOps.append(std::next(J), 3635 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3636 3637 // Don't leave just a constant behind in a register if the constant could 3638 // be folded into an immediate field. 3639 if (InnerAddOps.size() == 1 && 3640 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3641 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3642 continue; 3643 3644 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3645 if (InnerSum->isZero()) 3646 continue; 3647 Formula F = Base; 3648 3649 // Add the remaining pieces of the add back into the new formula. 3650 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3651 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3652 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3653 InnerSumSC->getValue()->getZExtValue())) { 3654 F.UnfoldedOffset = 3655 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3656 if (IsScaledReg) 3657 F.ScaledReg = nullptr; 3658 else 3659 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3660 } else if (IsScaledReg) 3661 F.ScaledReg = InnerSum; 3662 else 3663 F.BaseRegs[Idx] = InnerSum; 3664 3665 // Add J as its own register, or an unfolded immediate. 3666 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3667 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3668 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3669 SC->getValue()->getZExtValue())) 3670 F.UnfoldedOffset = 3671 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3672 else 3673 F.BaseRegs.push_back(*J); 3674 // We may have changed the number of register in base regs, adjust the 3675 // formula accordingly. 3676 F.canonicalize(*L); 3677 3678 if (InsertFormula(LU, LUIdx, F)) 3679 // If that formula hadn't been seen before, recurse to find more like 3680 // it. 3681 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3682 // Because just Depth is not enough to bound compile time. 3683 // This means that every time AddOps.size() is greater 16^x we will add 3684 // x to Depth. 3685 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3686 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3687 } 3688 } 3689 3690 /// Split out subexpressions from adds and the bases of addrecs. 3691 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3692 Formula Base, unsigned Depth) { 3693 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3694 // Arbitrarily cap recursion to protect compile time. 3695 if (Depth >= 3) 3696 return; 3697 3698 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3699 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3700 3701 if (Base.Scale == 1) 3702 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3703 /* Idx */ -1, /* IsScaledReg */ true); 3704 } 3705 3706 /// Generate a formula consisting of all of the loop-dominating registers added 3707 /// into a single register. 3708 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3709 Formula Base) { 3710 // This method is only interesting on a plurality of registers. 3711 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3712 (Base.UnfoldedOffset != 0) <= 1) 3713 return; 3714 3715 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3716 // processing the formula. 3717 Base.unscale(); 3718 SmallVector<const SCEV *, 4> Ops; 3719 Formula NewBase = Base; 3720 NewBase.BaseRegs.clear(); 3721 Type *CombinedIntegerType = nullptr; 3722 for (const SCEV *BaseReg : Base.BaseRegs) { 3723 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3724 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3725 if (!CombinedIntegerType) 3726 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3727 Ops.push_back(BaseReg); 3728 } 3729 else 3730 NewBase.BaseRegs.push_back(BaseReg); 3731 } 3732 3733 // If no register is relevant, we're done. 3734 if (Ops.size() == 0) 3735 return; 3736 3737 // Utility function for generating the required variants of the combined 3738 // registers. 3739 auto GenerateFormula = [&](const SCEV *Sum) { 3740 Formula F = NewBase; 3741 3742 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3743 // opportunity to fold something. For now, just ignore such cases 3744 // rather than proceed with zero in a register. 3745 if (Sum->isZero()) 3746 return; 3747 3748 F.BaseRegs.push_back(Sum); 3749 F.canonicalize(*L); 3750 (void)InsertFormula(LU, LUIdx, F); 3751 }; 3752 3753 // If we collected at least two registers, generate a formula combining them. 3754 if (Ops.size() > 1) { 3755 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3756 GenerateFormula(SE.getAddExpr(OpsCopy)); 3757 } 3758 3759 // If we have an unfolded offset, generate a formula combining it with the 3760 // registers collected. 3761 if (NewBase.UnfoldedOffset) { 3762 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3763 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3764 true)); 3765 NewBase.UnfoldedOffset = 0; 3766 GenerateFormula(SE.getAddExpr(Ops)); 3767 } 3768 } 3769 3770 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3771 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3772 const Formula &Base, size_t Idx, 3773 bool IsScaledReg) { 3774 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3775 GlobalValue *GV = ExtractSymbol(G, SE); 3776 if (G->isZero() || !GV) 3777 return; 3778 Formula F = Base; 3779 F.BaseGV = GV; 3780 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3781 return; 3782 if (IsScaledReg) 3783 F.ScaledReg = G; 3784 else 3785 F.BaseRegs[Idx] = G; 3786 (void)InsertFormula(LU, LUIdx, F); 3787 } 3788 3789 /// Generate reuse formulae using symbolic offsets. 3790 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3791 Formula Base) { 3792 // We can't add a symbolic offset if the address already contains one. 3793 if (Base.BaseGV) return; 3794 3795 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3796 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3797 if (Base.Scale == 1) 3798 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3799 /* IsScaledReg */ true); 3800 } 3801 3802 /// Helper function for LSRInstance::GenerateConstantOffsets. 3803 void LSRInstance::GenerateConstantOffsetsImpl( 3804 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3805 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3806 3807 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3808 Formula F = Base; 3809 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3810 3811 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3812 // Add the offset to the base register. 3813 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3814 // If it cancelled out, drop the base register, otherwise update it. 3815 if (NewG->isZero()) { 3816 if (IsScaledReg) { 3817 F.Scale = 0; 3818 F.ScaledReg = nullptr; 3819 } else 3820 F.deleteBaseReg(F.BaseRegs[Idx]); 3821 F.canonicalize(*L); 3822 } else if (IsScaledReg) 3823 F.ScaledReg = NewG; 3824 else 3825 F.BaseRegs[Idx] = NewG; 3826 3827 (void)InsertFormula(LU, LUIdx, F); 3828 } 3829 }; 3830 3831 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3832 3833 // With constant offsets and constant steps, we can generate pre-inc 3834 // accesses by having the offset equal the step. So, for access #0 with a 3835 // step of 8, we generate a G - 8 base which would require the first access 3836 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3837 // for itself and hopefully becomes the base for other accesses. This means 3838 // means that a single pre-indexed access can be generated to become the new 3839 // base pointer for each iteration of the loop, resulting in no extra add/sub 3840 // instructions for pointer updating. 3841 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3842 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3843 if (auto *StepRec = 3844 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3845 const APInt &StepInt = StepRec->getAPInt(); 3846 int64_t Step = StepInt.isNegative() ? 3847 StepInt.getSExtValue() : StepInt.getZExtValue(); 3848 3849 for (int64_t Offset : Worklist) { 3850 Offset -= Step; 3851 GenerateOffset(G, Offset); 3852 } 3853 } 3854 } 3855 } 3856 for (int64_t Offset : Worklist) 3857 GenerateOffset(G, Offset); 3858 3859 int64_t Imm = ExtractImmediate(G, SE); 3860 if (G->isZero() || Imm == 0) 3861 return; 3862 Formula F = Base; 3863 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3864 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3865 return; 3866 if (IsScaledReg) { 3867 F.ScaledReg = G; 3868 } else { 3869 F.BaseRegs[Idx] = G; 3870 // We may generate non canonical Formula if G is a recurrent expr reg 3871 // related with current loop while F.ScaledReg is not. 3872 F.canonicalize(*L); 3873 } 3874 (void)InsertFormula(LU, LUIdx, F); 3875 } 3876 3877 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3878 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3879 Formula Base) { 3880 // TODO: For now, just add the min and max offset, because it usually isn't 3881 // worthwhile looking at everything inbetween. 3882 SmallVector<int64_t, 2> Worklist; 3883 Worklist.push_back(LU.MinOffset); 3884 if (LU.MaxOffset != LU.MinOffset) 3885 Worklist.push_back(LU.MaxOffset); 3886 3887 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3888 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3889 if (Base.Scale == 1) 3890 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3891 /* IsScaledReg */ true); 3892 } 3893 3894 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3895 /// == y -> x*c == y*c. 3896 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3897 Formula Base) { 3898 if (LU.Kind != LSRUse::ICmpZero) return; 3899 3900 // Determine the integer type for the base formula. 3901 Type *IntTy = Base.getType(); 3902 if (!IntTy) return; 3903 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3904 3905 // Don't do this if there is more than one offset. 3906 if (LU.MinOffset != LU.MaxOffset) return; 3907 3908 // Check if transformation is valid. It is illegal to multiply pointer. 3909 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3910 return; 3911 for (const SCEV *BaseReg : Base.BaseRegs) 3912 if (BaseReg->getType()->isPointerTy()) 3913 return; 3914 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3915 3916 // Check each interesting stride. 3917 for (int64_t Factor : Factors) { 3918 // Check that the multiplication doesn't overflow. 3919 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3920 continue; 3921 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3922 assert(Factor != 0 && "Zero factor not expected!"); 3923 if (NewBaseOffset / Factor != Base.BaseOffset) 3924 continue; 3925 // If the offset will be truncated at this use, check that it is in bounds. 3926 if (!IntTy->isPointerTy() && 3927 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3928 continue; 3929 3930 // Check that multiplying with the use offset doesn't overflow. 3931 int64_t Offset = LU.MinOffset; 3932 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3933 continue; 3934 Offset = (uint64_t)Offset * Factor; 3935 if (Offset / Factor != LU.MinOffset) 3936 continue; 3937 // If the offset will be truncated at this use, check that it is in bounds. 3938 if (!IntTy->isPointerTy() && 3939 !ConstantInt::isValueValidForType(IntTy, Offset)) 3940 continue; 3941 3942 Formula F = Base; 3943 F.BaseOffset = NewBaseOffset; 3944 3945 // Check that this scale is legal. 3946 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3947 continue; 3948 3949 // Compensate for the use having MinOffset built into it. 3950 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3951 3952 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3953 3954 // Check that multiplying with each base register doesn't overflow. 3955 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3956 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3957 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3958 goto next; 3959 } 3960 3961 // Check that multiplying with the scaled register doesn't overflow. 3962 if (F.ScaledReg) { 3963 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3964 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3965 continue; 3966 } 3967 3968 // Check that multiplying with the unfolded offset doesn't overflow. 3969 if (F.UnfoldedOffset != 0) { 3970 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3971 Factor == -1) 3972 continue; 3973 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3974 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3975 continue; 3976 // If the offset will be truncated, check that it is in bounds. 3977 if (!IntTy->isPointerTy() && 3978 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3979 continue; 3980 } 3981 3982 // If we make it here and it's legal, add it. 3983 (void)InsertFormula(LU, LUIdx, F); 3984 next:; 3985 } 3986 } 3987 3988 /// Generate stride factor reuse formulae by making use of scaled-offset address 3989 /// modes, for example. 3990 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3991 // Determine the integer type for the base formula. 3992 Type *IntTy = Base.getType(); 3993 if (!IntTy) return; 3994 3995 // If this Formula already has a scaled register, we can't add another one. 3996 // Try to unscale the formula to generate a better scale. 3997 if (Base.Scale != 0 && !Base.unscale()) 3998 return; 3999 4000 assert(Base.Scale == 0 && "unscale did not did its job!"); 4001 4002 // Check each interesting stride. 4003 for (int64_t Factor : Factors) { 4004 Base.Scale = Factor; 4005 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4006 // Check whether this scale is going to be legal. 4007 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4008 Base)) { 4009 // As a special-case, handle special out-of-loop Basic users specially. 4010 // TODO: Reconsider this special case. 4011 if (LU.Kind == LSRUse::Basic && 4012 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4013 LU.AccessTy, Base) && 4014 LU.AllFixupsOutsideLoop) 4015 LU.Kind = LSRUse::Special; 4016 else 4017 continue; 4018 } 4019 // For an ICmpZero, negating a solitary base register won't lead to 4020 // new solutions. 4021 if (LU.Kind == LSRUse::ICmpZero && 4022 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4023 continue; 4024 // For each addrec base reg, if its loop is current loop, apply the scale. 4025 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4026 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4027 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4028 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4029 if (FactorS->isZero()) 4030 continue; 4031 // Divide out the factor, ignoring high bits, since we'll be 4032 // scaling the value back up in the end. 4033 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4034 // TODO: This could be optimized to avoid all the copying. 4035 Formula F = Base; 4036 F.ScaledReg = Quotient; 4037 F.deleteBaseReg(F.BaseRegs[i]); 4038 // The canonical representation of 1*reg is reg, which is already in 4039 // Base. In that case, do not try to insert the formula, it will be 4040 // rejected anyway. 4041 if (F.Scale == 1 && (F.BaseRegs.empty() || 4042 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4043 continue; 4044 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4045 // non canonical Formula with ScaledReg's loop not being L. 4046 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4047 F.canonicalize(*L); 4048 (void)InsertFormula(LU, LUIdx, F); 4049 } 4050 } 4051 } 4052 } 4053 } 4054 4055 /// Generate reuse formulae from different IV types. 4056 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4057 // Don't bother truncating symbolic values. 4058 if (Base.BaseGV) return; 4059 4060 // Determine the integer type for the base formula. 4061 Type *DstTy = Base.getType(); 4062 if (!DstTy) return; 4063 DstTy = SE.getEffectiveSCEVType(DstTy); 4064 4065 for (Type *SrcTy : Types) { 4066 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4067 Formula F = Base; 4068 4069 // Sometimes SCEV is able to prove zero during ext transform. It may 4070 // happen if SCEV did not do all possible transforms while creating the 4071 // initial node (maybe due to depth limitations), but it can do them while 4072 // taking ext. 4073 if (F.ScaledReg) { 4074 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4075 if (NewScaledReg->isZero()) 4076 continue; 4077 F.ScaledReg = NewScaledReg; 4078 } 4079 bool HasZeroBaseReg = false; 4080 for (const SCEV *&BaseReg : F.BaseRegs) { 4081 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4082 if (NewBaseReg->isZero()) { 4083 HasZeroBaseReg = true; 4084 break; 4085 } 4086 BaseReg = NewBaseReg; 4087 } 4088 if (HasZeroBaseReg) 4089 continue; 4090 4091 // TODO: This assumes we've done basic processing on all uses and 4092 // have an idea what the register usage is. 4093 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4094 continue; 4095 4096 F.canonicalize(*L); 4097 (void)InsertFormula(LU, LUIdx, F); 4098 } 4099 } 4100 } 4101 4102 namespace { 4103 4104 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4105 /// modifications so that the search phase doesn't have to worry about the data 4106 /// structures moving underneath it. 4107 struct WorkItem { 4108 size_t LUIdx; 4109 int64_t Imm; 4110 const SCEV *OrigReg; 4111 4112 WorkItem(size_t LI, int64_t I, const SCEV *R) 4113 : LUIdx(LI), Imm(I), OrigReg(R) {} 4114 4115 void print(raw_ostream &OS) const; 4116 void dump() const; 4117 }; 4118 4119 } // end anonymous namespace 4120 4121 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4122 void WorkItem::print(raw_ostream &OS) const { 4123 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4124 << " , add offset " << Imm; 4125 } 4126 4127 LLVM_DUMP_METHOD void WorkItem::dump() const { 4128 print(errs()); errs() << '\n'; 4129 } 4130 #endif 4131 4132 /// Look for registers which are a constant distance apart and try to form reuse 4133 /// opportunities between them. 4134 void LSRInstance::GenerateCrossUseConstantOffsets() { 4135 // Group the registers by their value without any added constant offset. 4136 using ImmMapTy = std::map<int64_t, const SCEV *>; 4137 4138 DenseMap<const SCEV *, ImmMapTy> Map; 4139 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4140 SmallVector<const SCEV *, 8> Sequence; 4141 for (const SCEV *Use : RegUses) { 4142 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4143 int64_t Imm = ExtractImmediate(Reg, SE); 4144 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4145 if (Pair.second) 4146 Sequence.push_back(Reg); 4147 Pair.first->second.insert(std::make_pair(Imm, Use)); 4148 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4149 } 4150 4151 // Now examine each set of registers with the same base value. Build up 4152 // a list of work to do and do the work in a separate step so that we're 4153 // not adding formulae and register counts while we're searching. 4154 SmallVector<WorkItem, 32> WorkItems; 4155 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4156 for (const SCEV *Reg : Sequence) { 4157 const ImmMapTy &Imms = Map.find(Reg)->second; 4158 4159 // It's not worthwhile looking for reuse if there's only one offset. 4160 if (Imms.size() == 1) 4161 continue; 4162 4163 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4164 for (const auto &Entry 4165 : Imms) dbgs() 4166 << ' ' << Entry.first; 4167 dbgs() << '\n'); 4168 4169 // Examine each offset. 4170 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4171 J != JE; ++J) { 4172 const SCEV *OrigReg = J->second; 4173 4174 int64_t JImm = J->first; 4175 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4176 4177 if (!isa<SCEVConstant>(OrigReg) && 4178 UsedByIndicesMap[Reg].count() == 1) { 4179 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4180 << '\n'); 4181 continue; 4182 } 4183 4184 // Conservatively examine offsets between this orig reg a few selected 4185 // other orig regs. 4186 int64_t First = Imms.begin()->first; 4187 int64_t Last = std::prev(Imms.end())->first; 4188 // Compute (First + Last) / 2 without overflow using the fact that 4189 // First + Last = 2 * (First + Last) + (First ^ Last). 4190 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4191 // If the result is negative and First is odd and Last even (or vice versa), 4192 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4193 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4194 ImmMapTy::const_iterator OtherImms[] = { 4195 Imms.begin(), std::prev(Imms.end()), 4196 Imms.lower_bound(Avg)}; 4197 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4198 ImmMapTy::const_iterator M = OtherImms[i]; 4199 if (M == J || M == JE) continue; 4200 4201 // Compute the difference between the two. 4202 int64_t Imm = (uint64_t)JImm - M->first; 4203 for (unsigned LUIdx : UsedByIndices.set_bits()) 4204 // Make a memo of this use, offset, and register tuple. 4205 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4206 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4207 } 4208 } 4209 } 4210 4211 Map.clear(); 4212 Sequence.clear(); 4213 UsedByIndicesMap.clear(); 4214 UniqueItems.clear(); 4215 4216 // Now iterate through the worklist and add new formulae. 4217 for (const WorkItem &WI : WorkItems) { 4218 size_t LUIdx = WI.LUIdx; 4219 LSRUse &LU = Uses[LUIdx]; 4220 int64_t Imm = WI.Imm; 4221 const SCEV *OrigReg = WI.OrigReg; 4222 4223 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4224 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4225 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4226 4227 // TODO: Use a more targeted data structure. 4228 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4229 Formula F = LU.Formulae[L]; 4230 // FIXME: The code for the scaled and unscaled registers looks 4231 // very similar but slightly different. Investigate if they 4232 // could be merged. That way, we would not have to unscale the 4233 // Formula. 4234 F.unscale(); 4235 // Use the immediate in the scaled register. 4236 if (F.ScaledReg == OrigReg) { 4237 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4238 // Don't create 50 + reg(-50). 4239 if (F.referencesReg(SE.getSCEV( 4240 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4241 continue; 4242 Formula NewF = F; 4243 NewF.BaseOffset = Offset; 4244 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4245 NewF)) 4246 continue; 4247 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4248 4249 // If the new scale is a constant in a register, and adding the constant 4250 // value to the immediate would produce a value closer to zero than the 4251 // immediate itself, then the formula isn't worthwhile. 4252 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4253 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4254 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4255 .ule(std::abs(NewF.BaseOffset))) 4256 continue; 4257 4258 // OK, looks good. 4259 NewF.canonicalize(*this->L); 4260 (void)InsertFormula(LU, LUIdx, NewF); 4261 } else { 4262 // Use the immediate in a base register. 4263 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4264 const SCEV *BaseReg = F.BaseRegs[N]; 4265 if (BaseReg != OrigReg) 4266 continue; 4267 Formula NewF = F; 4268 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4269 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4270 LU.Kind, LU.AccessTy, NewF)) { 4271 if (AMK == TTI::AMK_PostIndexed && 4272 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4273 continue; 4274 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4275 continue; 4276 NewF = F; 4277 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4278 } 4279 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4280 4281 // If the new formula has a constant in a register, and adding the 4282 // constant value to the immediate would produce a value closer to 4283 // zero than the immediate itself, then the formula isn't worthwhile. 4284 for (const SCEV *NewReg : NewF.BaseRegs) 4285 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4286 if ((C->getAPInt() + NewF.BaseOffset) 4287 .abs() 4288 .slt(std::abs(NewF.BaseOffset)) && 4289 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4290 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4291 goto skip_formula; 4292 4293 // Ok, looks good. 4294 NewF.canonicalize(*this->L); 4295 (void)InsertFormula(LU, LUIdx, NewF); 4296 break; 4297 skip_formula:; 4298 } 4299 } 4300 } 4301 } 4302 } 4303 4304 /// Generate formulae for each use. 4305 void 4306 LSRInstance::GenerateAllReuseFormulae() { 4307 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4308 // queries are more precise. 4309 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4310 LSRUse &LU = Uses[LUIdx]; 4311 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4312 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4313 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4314 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4315 } 4316 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4317 LSRUse &LU = Uses[LUIdx]; 4318 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4319 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4320 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4321 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4322 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4323 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4324 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4325 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4326 } 4327 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4328 LSRUse &LU = Uses[LUIdx]; 4329 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4330 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4331 } 4332 4333 GenerateCrossUseConstantOffsets(); 4334 4335 LLVM_DEBUG(dbgs() << "\n" 4336 "After generating reuse formulae:\n"; 4337 print_uses(dbgs())); 4338 } 4339 4340 /// If there are multiple formulae with the same set of registers used 4341 /// by other uses, pick the best one and delete the others. 4342 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4343 DenseSet<const SCEV *> VisitedRegs; 4344 SmallPtrSet<const SCEV *, 16> Regs; 4345 SmallPtrSet<const SCEV *, 16> LoserRegs; 4346 #ifndef NDEBUG 4347 bool ChangedFormulae = false; 4348 #endif 4349 4350 // Collect the best formula for each unique set of shared registers. This 4351 // is reset for each use. 4352 using BestFormulaeTy = 4353 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4354 4355 BestFormulaeTy BestFormulae; 4356 4357 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4358 LSRUse &LU = Uses[LUIdx]; 4359 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4360 dbgs() << '\n'); 4361 4362 bool Any = false; 4363 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4364 FIdx != NumForms; ++FIdx) { 4365 Formula &F = LU.Formulae[FIdx]; 4366 4367 // Some formulas are instant losers. For example, they may depend on 4368 // nonexistent AddRecs from other loops. These need to be filtered 4369 // immediately, otherwise heuristics could choose them over others leading 4370 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4371 // avoids the need to recompute this information across formulae using the 4372 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4373 // the corresponding bad register from the Regs set. 4374 Cost CostF(L, SE, TTI, AMK); 4375 Regs.clear(); 4376 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4377 if (CostF.isLoser()) { 4378 // During initial formula generation, undesirable formulae are generated 4379 // by uses within other loops that have some non-trivial address mode or 4380 // use the postinc form of the IV. LSR needs to provide these formulae 4381 // as the basis of rediscovering the desired formula that uses an AddRec 4382 // corresponding to the existing phi. Once all formulae have been 4383 // generated, these initial losers may be pruned. 4384 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4385 dbgs() << "\n"); 4386 } 4387 else { 4388 SmallVector<const SCEV *, 4> Key; 4389 for (const SCEV *Reg : F.BaseRegs) { 4390 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4391 Key.push_back(Reg); 4392 } 4393 if (F.ScaledReg && 4394 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4395 Key.push_back(F.ScaledReg); 4396 // Unstable sort by host order ok, because this is only used for 4397 // uniquifying. 4398 llvm::sort(Key); 4399 4400 std::pair<BestFormulaeTy::const_iterator, bool> P = 4401 BestFormulae.insert(std::make_pair(Key, FIdx)); 4402 if (P.second) 4403 continue; 4404 4405 Formula &Best = LU.Formulae[P.first->second]; 4406 4407 Cost CostBest(L, SE, TTI, AMK); 4408 Regs.clear(); 4409 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4410 if (CostF.isLess(CostBest)) 4411 std::swap(F, Best); 4412 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4413 dbgs() << "\n" 4414 " in favor of formula "; 4415 Best.print(dbgs()); dbgs() << '\n'); 4416 } 4417 #ifndef NDEBUG 4418 ChangedFormulae = true; 4419 #endif 4420 LU.DeleteFormula(F); 4421 --FIdx; 4422 --NumForms; 4423 Any = true; 4424 } 4425 4426 // Now that we've filtered out some formulae, recompute the Regs set. 4427 if (Any) 4428 LU.RecomputeRegs(LUIdx, RegUses); 4429 4430 // Reset this to prepare for the next use. 4431 BestFormulae.clear(); 4432 } 4433 4434 LLVM_DEBUG(if (ChangedFormulae) { 4435 dbgs() << "\n" 4436 "After filtering out undesirable candidates:\n"; 4437 print_uses(dbgs()); 4438 }); 4439 } 4440 4441 /// Estimate the worst-case number of solutions the solver might have to 4442 /// consider. It almost never considers this many solutions because it prune the 4443 /// search space, but the pruning isn't always sufficient. 4444 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4445 size_t Power = 1; 4446 for (const LSRUse &LU : Uses) { 4447 size_t FSize = LU.Formulae.size(); 4448 if (FSize >= ComplexityLimit) { 4449 Power = ComplexityLimit; 4450 break; 4451 } 4452 Power *= FSize; 4453 if (Power >= ComplexityLimit) 4454 break; 4455 } 4456 return Power; 4457 } 4458 4459 /// When one formula uses a superset of the registers of another formula, it 4460 /// won't help reduce register pressure (though it may not necessarily hurt 4461 /// register pressure); remove it to simplify the system. 4462 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4463 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4464 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4465 4466 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4467 "which use a superset of registers used by other " 4468 "formulae.\n"); 4469 4470 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4471 LSRUse &LU = Uses[LUIdx]; 4472 bool Any = false; 4473 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4474 Formula &F = LU.Formulae[i]; 4475 // Look for a formula with a constant or GV in a register. If the use 4476 // also has a formula with that same value in an immediate field, 4477 // delete the one that uses a register. 4478 for (SmallVectorImpl<const SCEV *>::const_iterator 4479 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4480 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4481 Formula NewF = F; 4482 //FIXME: Formulas should store bitwidth to do wrapping properly. 4483 // See PR41034. 4484 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4485 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4486 (I - F.BaseRegs.begin())); 4487 if (LU.HasFormulaWithSameRegs(NewF)) { 4488 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4489 dbgs() << '\n'); 4490 LU.DeleteFormula(F); 4491 --i; 4492 --e; 4493 Any = true; 4494 break; 4495 } 4496 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4497 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4498 if (!F.BaseGV) { 4499 Formula NewF = F; 4500 NewF.BaseGV = GV; 4501 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4502 (I - F.BaseRegs.begin())); 4503 if (LU.HasFormulaWithSameRegs(NewF)) { 4504 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4505 dbgs() << '\n'); 4506 LU.DeleteFormula(F); 4507 --i; 4508 --e; 4509 Any = true; 4510 break; 4511 } 4512 } 4513 } 4514 } 4515 } 4516 if (Any) 4517 LU.RecomputeRegs(LUIdx, RegUses); 4518 } 4519 4520 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4521 } 4522 } 4523 4524 /// When there are many registers for expressions like A, A+1, A+2, etc., 4525 /// allocate a single register for them. 4526 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4527 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4528 return; 4529 4530 LLVM_DEBUG( 4531 dbgs() << "The search space is too complex.\n" 4532 "Narrowing the search space by assuming that uses separated " 4533 "by a constant offset will use the same registers.\n"); 4534 4535 // This is especially useful for unrolled loops. 4536 4537 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4538 LSRUse &LU = Uses[LUIdx]; 4539 for (const Formula &F : LU.Formulae) { 4540 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4541 continue; 4542 4543 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4544 if (!LUThatHas) 4545 continue; 4546 4547 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4548 LU.Kind, LU.AccessTy)) 4549 continue; 4550 4551 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4552 4553 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4554 4555 // Transfer the fixups of LU to LUThatHas. 4556 for (LSRFixup &Fixup : LU.Fixups) { 4557 Fixup.Offset += F.BaseOffset; 4558 LUThatHas->pushFixup(Fixup); 4559 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4560 } 4561 4562 // Delete formulae from the new use which are no longer legal. 4563 bool Any = false; 4564 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4565 Formula &F = LUThatHas->Formulae[i]; 4566 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4567 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4568 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4569 LUThatHas->DeleteFormula(F); 4570 --i; 4571 --e; 4572 Any = true; 4573 } 4574 } 4575 4576 if (Any) 4577 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4578 4579 // Delete the old use. 4580 DeleteUse(LU, LUIdx); 4581 --LUIdx; 4582 --NumUses; 4583 break; 4584 } 4585 } 4586 4587 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4588 } 4589 4590 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4591 /// we've done more filtering, as it may be able to find more formulae to 4592 /// eliminate. 4593 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4594 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4595 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4596 4597 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4598 "undesirable dedicated registers.\n"); 4599 4600 FilterOutUndesirableDedicatedRegisters(); 4601 4602 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4603 } 4604 } 4605 4606 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4607 /// Pick the best one and delete the others. 4608 /// This narrowing heuristic is to keep as many formulae with different 4609 /// Scale and ScaledReg pair as possible while narrowing the search space. 4610 /// The benefit is that it is more likely to find out a better solution 4611 /// from a formulae set with more Scale and ScaledReg variations than 4612 /// a formulae set with the same Scale and ScaledReg. The picking winner 4613 /// reg heuristic will often keep the formulae with the same Scale and 4614 /// ScaledReg and filter others, and we want to avoid that if possible. 4615 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4616 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4617 return; 4618 4619 LLVM_DEBUG( 4620 dbgs() << "The search space is too complex.\n" 4621 "Narrowing the search space by choosing the best Formula " 4622 "from the Formulae with the same Scale and ScaledReg.\n"); 4623 4624 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4625 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4626 4627 BestFormulaeTy BestFormulae; 4628 #ifndef NDEBUG 4629 bool ChangedFormulae = false; 4630 #endif 4631 DenseSet<const SCEV *> VisitedRegs; 4632 SmallPtrSet<const SCEV *, 16> Regs; 4633 4634 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4635 LSRUse &LU = Uses[LUIdx]; 4636 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4637 dbgs() << '\n'); 4638 4639 // Return true if Formula FA is better than Formula FB. 4640 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4641 // First we will try to choose the Formula with fewer new registers. 4642 // For a register used by current Formula, the more the register is 4643 // shared among LSRUses, the less we increase the register number 4644 // counter of the formula. 4645 size_t FARegNum = 0; 4646 for (const SCEV *Reg : FA.BaseRegs) { 4647 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4648 FARegNum += (NumUses - UsedByIndices.count() + 1); 4649 } 4650 size_t FBRegNum = 0; 4651 for (const SCEV *Reg : FB.BaseRegs) { 4652 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4653 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4654 } 4655 if (FARegNum != FBRegNum) 4656 return FARegNum < FBRegNum; 4657 4658 // If the new register numbers are the same, choose the Formula with 4659 // less Cost. 4660 Cost CostFA(L, SE, TTI, AMK); 4661 Cost CostFB(L, SE, TTI, AMK); 4662 Regs.clear(); 4663 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4664 Regs.clear(); 4665 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4666 return CostFA.isLess(CostFB); 4667 }; 4668 4669 bool Any = false; 4670 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4671 ++FIdx) { 4672 Formula &F = LU.Formulae[FIdx]; 4673 if (!F.ScaledReg) 4674 continue; 4675 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4676 if (P.second) 4677 continue; 4678 4679 Formula &Best = LU.Formulae[P.first->second]; 4680 if (IsBetterThan(F, Best)) 4681 std::swap(F, Best); 4682 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4683 dbgs() << "\n" 4684 " in favor of formula "; 4685 Best.print(dbgs()); dbgs() << '\n'); 4686 #ifndef NDEBUG 4687 ChangedFormulae = true; 4688 #endif 4689 LU.DeleteFormula(F); 4690 --FIdx; 4691 --NumForms; 4692 Any = true; 4693 } 4694 if (Any) 4695 LU.RecomputeRegs(LUIdx, RegUses); 4696 4697 // Reset this to prepare for the next use. 4698 BestFormulae.clear(); 4699 } 4700 4701 LLVM_DEBUG(if (ChangedFormulae) { 4702 dbgs() << "\n" 4703 "After filtering out undesirable candidates:\n"; 4704 print_uses(dbgs()); 4705 }); 4706 } 4707 4708 /// If we are over the complexity limit, filter out any post-inc prefering 4709 /// variables to only post-inc values. 4710 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4711 if (AMK != TTI::AMK_PostIndexed) 4712 return; 4713 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4714 return; 4715 4716 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4717 "Narrowing the search space by choosing the lowest " 4718 "register Formula for PostInc Uses.\n"); 4719 4720 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4721 LSRUse &LU = Uses[LUIdx]; 4722 4723 if (LU.Kind != LSRUse::Address) 4724 continue; 4725 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4726 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4727 continue; 4728 4729 size_t MinRegs = std::numeric_limits<size_t>::max(); 4730 for (const Formula &F : LU.Formulae) 4731 MinRegs = std::min(F.getNumRegs(), MinRegs); 4732 4733 bool Any = false; 4734 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4735 ++FIdx) { 4736 Formula &F = LU.Formulae[FIdx]; 4737 if (F.getNumRegs() > MinRegs) { 4738 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4739 dbgs() << "\n"); 4740 LU.DeleteFormula(F); 4741 --FIdx; 4742 --NumForms; 4743 Any = true; 4744 } 4745 } 4746 if (Any) 4747 LU.RecomputeRegs(LUIdx, RegUses); 4748 4749 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4750 break; 4751 } 4752 4753 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4754 } 4755 4756 /// The function delete formulas with high registers number expectation. 4757 /// Assuming we don't know the value of each formula (already delete 4758 /// all inefficient), generate probability of not selecting for each 4759 /// register. 4760 /// For example, 4761 /// Use1: 4762 /// reg(a) + reg({0,+,1}) 4763 /// reg(a) + reg({-1,+,1}) + 1 4764 /// reg({a,+,1}) 4765 /// Use2: 4766 /// reg(b) + reg({0,+,1}) 4767 /// reg(b) + reg({-1,+,1}) + 1 4768 /// reg({b,+,1}) 4769 /// Use3: 4770 /// reg(c) + reg(b) + reg({0,+,1}) 4771 /// reg(c) + reg({b,+,1}) 4772 /// 4773 /// Probability of not selecting 4774 /// Use1 Use2 Use3 4775 /// reg(a) (1/3) * 1 * 1 4776 /// reg(b) 1 * (1/3) * (1/2) 4777 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4778 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4779 /// reg({a,+,1}) (2/3) * 1 * 1 4780 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4781 /// reg(c) 1 * 1 * 0 4782 /// 4783 /// Now count registers number mathematical expectation for each formula: 4784 /// Note that for each use we exclude probability if not selecting for the use. 4785 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4786 /// probabilty 1/3 of not selecting for Use1). 4787 /// Use1: 4788 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4789 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4790 /// reg({a,+,1}) 1 4791 /// Use2: 4792 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4793 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4794 /// reg({b,+,1}) 2/3 4795 /// Use3: 4796 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4797 /// reg(c) + reg({b,+,1}) 1 + 2/3 4798 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4799 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4800 return; 4801 // Ok, we have too many of formulae on our hands to conveniently handle. 4802 // Use a rough heuristic to thin out the list. 4803 4804 // Set of Regs wich will be 100% used in final solution. 4805 // Used in each formula of a solution (in example above this is reg(c)). 4806 // We can skip them in calculations. 4807 SmallPtrSet<const SCEV *, 4> UniqRegs; 4808 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4809 4810 // Map each register to probability of not selecting 4811 DenseMap <const SCEV *, float> RegNumMap; 4812 for (const SCEV *Reg : RegUses) { 4813 if (UniqRegs.count(Reg)) 4814 continue; 4815 float PNotSel = 1; 4816 for (const LSRUse &LU : Uses) { 4817 if (!LU.Regs.count(Reg)) 4818 continue; 4819 float P = LU.getNotSelectedProbability(Reg); 4820 if (P != 0.0) 4821 PNotSel *= P; 4822 else 4823 UniqRegs.insert(Reg); 4824 } 4825 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4826 } 4827 4828 LLVM_DEBUG( 4829 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4830 4831 // Delete formulas where registers number expectation is high. 4832 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4833 LSRUse &LU = Uses[LUIdx]; 4834 // If nothing to delete - continue. 4835 if (LU.Formulae.size() < 2) 4836 continue; 4837 // This is temporary solution to test performance. Float should be 4838 // replaced with round independent type (based on integers) to avoid 4839 // different results for different target builds. 4840 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4841 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4842 size_t MinIdx = 0; 4843 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4844 Formula &F = LU.Formulae[i]; 4845 float FRegNum = 0; 4846 float FARegNum = 0; 4847 for (const SCEV *BaseReg : F.BaseRegs) { 4848 if (UniqRegs.count(BaseReg)) 4849 continue; 4850 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4851 if (isa<SCEVAddRecExpr>(BaseReg)) 4852 FARegNum += 4853 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4854 } 4855 if (const SCEV *ScaledReg = F.ScaledReg) { 4856 if (!UniqRegs.count(ScaledReg)) { 4857 FRegNum += 4858 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4859 if (isa<SCEVAddRecExpr>(ScaledReg)) 4860 FARegNum += 4861 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4862 } 4863 } 4864 if (FMinRegNum > FRegNum || 4865 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4866 FMinRegNum = FRegNum; 4867 FMinARegNum = FARegNum; 4868 MinIdx = i; 4869 } 4870 } 4871 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4872 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4873 if (MinIdx != 0) 4874 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4875 while (LU.Formulae.size() != 1) { 4876 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4877 dbgs() << '\n'); 4878 LU.Formulae.pop_back(); 4879 } 4880 LU.RecomputeRegs(LUIdx, RegUses); 4881 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4882 Formula &F = LU.Formulae[0]; 4883 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4884 // When we choose the formula, the regs become unique. 4885 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4886 if (F.ScaledReg) 4887 UniqRegs.insert(F.ScaledReg); 4888 } 4889 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4890 } 4891 4892 /// Pick a register which seems likely to be profitable, and then in any use 4893 /// which has any reference to that register, delete all formulae which do not 4894 /// reference that register. 4895 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4896 // With all other options exhausted, loop until the system is simple 4897 // enough to handle. 4898 SmallPtrSet<const SCEV *, 4> Taken; 4899 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4900 // Ok, we have too many of formulae on our hands to conveniently handle. 4901 // Use a rough heuristic to thin out the list. 4902 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4903 4904 // Pick the register which is used by the most LSRUses, which is likely 4905 // to be a good reuse register candidate. 4906 const SCEV *Best = nullptr; 4907 unsigned BestNum = 0; 4908 for (const SCEV *Reg : RegUses) { 4909 if (Taken.count(Reg)) 4910 continue; 4911 if (!Best) { 4912 Best = Reg; 4913 BestNum = RegUses.getUsedByIndices(Reg).count(); 4914 } else { 4915 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4916 if (Count > BestNum) { 4917 Best = Reg; 4918 BestNum = Count; 4919 } 4920 } 4921 } 4922 assert(Best && "Failed to find best LSRUse candidate"); 4923 4924 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4925 << " will yield profitable reuse.\n"); 4926 Taken.insert(Best); 4927 4928 // In any use with formulae which references this register, delete formulae 4929 // which don't reference it. 4930 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4931 LSRUse &LU = Uses[LUIdx]; 4932 if (!LU.Regs.count(Best)) continue; 4933 4934 bool Any = false; 4935 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4936 Formula &F = LU.Formulae[i]; 4937 if (!F.referencesReg(Best)) { 4938 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4939 LU.DeleteFormula(F); 4940 --e; 4941 --i; 4942 Any = true; 4943 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4944 continue; 4945 } 4946 } 4947 4948 if (Any) 4949 LU.RecomputeRegs(LUIdx, RegUses); 4950 } 4951 4952 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4953 } 4954 } 4955 4956 /// If there are an extraordinary number of formulae to choose from, use some 4957 /// rough heuristics to prune down the number of formulae. This keeps the main 4958 /// solver from taking an extraordinary amount of time in some worst-case 4959 /// scenarios. 4960 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4961 NarrowSearchSpaceByDetectingSupersets(); 4962 NarrowSearchSpaceByCollapsingUnrolledCode(); 4963 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4964 if (FilterSameScaledReg) 4965 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4966 NarrowSearchSpaceByFilterPostInc(); 4967 if (LSRExpNarrow) 4968 NarrowSearchSpaceByDeletingCostlyFormulas(); 4969 else 4970 NarrowSearchSpaceByPickingWinnerRegs(); 4971 } 4972 4973 /// This is the recursive solver. 4974 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4975 Cost &SolutionCost, 4976 SmallVectorImpl<const Formula *> &Workspace, 4977 const Cost &CurCost, 4978 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4979 DenseSet<const SCEV *> &VisitedRegs) const { 4980 // Some ideas: 4981 // - prune more: 4982 // - use more aggressive filtering 4983 // - sort the formula so that the most profitable solutions are found first 4984 // - sort the uses too 4985 // - search faster: 4986 // - don't compute a cost, and then compare. compare while computing a cost 4987 // and bail early. 4988 // - track register sets with SmallBitVector 4989 4990 const LSRUse &LU = Uses[Workspace.size()]; 4991 4992 // If this use references any register that's already a part of the 4993 // in-progress solution, consider it a requirement that a formula must 4994 // reference that register in order to be considered. This prunes out 4995 // unprofitable searching. 4996 SmallSetVector<const SCEV *, 4> ReqRegs; 4997 for (const SCEV *S : CurRegs) 4998 if (LU.Regs.count(S)) 4999 ReqRegs.insert(S); 5000 5001 SmallPtrSet<const SCEV *, 16> NewRegs; 5002 Cost NewCost(L, SE, TTI, AMK); 5003 for (const Formula &F : LU.Formulae) { 5004 // Ignore formulae which may not be ideal in terms of register reuse of 5005 // ReqRegs. The formula should use all required registers before 5006 // introducing new ones. 5007 // This can sometimes (notably when trying to favour postinc) lead to 5008 // sub-optimial decisions. There it is best left to the cost modelling to 5009 // get correct. 5010 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5011 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5012 for (const SCEV *Reg : ReqRegs) { 5013 if ((F.ScaledReg && F.ScaledReg == Reg) || 5014 is_contained(F.BaseRegs, Reg)) { 5015 --NumReqRegsToFind; 5016 if (NumReqRegsToFind == 0) 5017 break; 5018 } 5019 } 5020 if (NumReqRegsToFind != 0) { 5021 // If none of the formulae satisfied the required registers, then we could 5022 // clear ReqRegs and try again. Currently, we simply give up in this case. 5023 continue; 5024 } 5025 } 5026 5027 // Evaluate the cost of the current formula. If it's already worse than 5028 // the current best, prune the search at that point. 5029 NewCost = CurCost; 5030 NewRegs = CurRegs; 5031 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5032 if (NewCost.isLess(SolutionCost)) { 5033 Workspace.push_back(&F); 5034 if (Workspace.size() != Uses.size()) { 5035 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5036 NewRegs, VisitedRegs); 5037 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5038 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5039 } else { 5040 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5041 dbgs() << ".\nRegs:\n"; 5042 for (const SCEV *S : NewRegs) dbgs() 5043 << "- " << *S << "\n"; 5044 dbgs() << '\n'); 5045 5046 SolutionCost = NewCost; 5047 Solution = Workspace; 5048 } 5049 Workspace.pop_back(); 5050 } 5051 } 5052 } 5053 5054 /// Choose one formula from each use. Return the results in the given Solution 5055 /// vector. 5056 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5057 SmallVector<const Formula *, 8> Workspace; 5058 Cost SolutionCost(L, SE, TTI, AMK); 5059 SolutionCost.Lose(); 5060 Cost CurCost(L, SE, TTI, AMK); 5061 SmallPtrSet<const SCEV *, 16> CurRegs; 5062 DenseSet<const SCEV *> VisitedRegs; 5063 Workspace.reserve(Uses.size()); 5064 5065 // SolveRecurse does all the work. 5066 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5067 CurRegs, VisitedRegs); 5068 if (Solution.empty()) { 5069 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5070 return; 5071 } 5072 5073 // Ok, we've now made all our decisions. 5074 LLVM_DEBUG(dbgs() << "\n" 5075 "The chosen solution requires "; 5076 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5077 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5078 dbgs() << " "; 5079 Uses[i].print(dbgs()); 5080 dbgs() << "\n" 5081 " "; 5082 Solution[i]->print(dbgs()); 5083 dbgs() << '\n'; 5084 }); 5085 5086 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5087 } 5088 5089 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5090 /// we can go while still being dominated by the input positions. This helps 5091 /// canonicalize the insert position, which encourages sharing. 5092 BasicBlock::iterator 5093 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5094 const SmallVectorImpl<Instruction *> &Inputs) 5095 const { 5096 Instruction *Tentative = &*IP; 5097 while (true) { 5098 bool AllDominate = true; 5099 Instruction *BetterPos = nullptr; 5100 // Don't bother attempting to insert before a catchswitch, their basic block 5101 // cannot have other non-PHI instructions. 5102 if (isa<CatchSwitchInst>(Tentative)) 5103 return IP; 5104 5105 for (Instruction *Inst : Inputs) { 5106 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5107 AllDominate = false; 5108 break; 5109 } 5110 // Attempt to find an insert position in the middle of the block, 5111 // instead of at the end, so that it can be used for other expansions. 5112 if (Tentative->getParent() == Inst->getParent() && 5113 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5114 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5115 } 5116 if (!AllDominate) 5117 break; 5118 if (BetterPos) 5119 IP = BetterPos->getIterator(); 5120 else 5121 IP = Tentative->getIterator(); 5122 5123 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5124 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5125 5126 BasicBlock *IDom; 5127 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5128 if (!Rung) return IP; 5129 Rung = Rung->getIDom(); 5130 if (!Rung) return IP; 5131 IDom = Rung->getBlock(); 5132 5133 // Don't climb into a loop though. 5134 const Loop *IDomLoop = LI.getLoopFor(IDom); 5135 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5136 if (IDomDepth <= IPLoopDepth && 5137 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5138 break; 5139 } 5140 5141 Tentative = IDom->getTerminator(); 5142 } 5143 5144 return IP; 5145 } 5146 5147 /// Determine an input position which will be dominated by the operands and 5148 /// which will dominate the result. 5149 BasicBlock::iterator 5150 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5151 const LSRFixup &LF, 5152 const LSRUse &LU, 5153 SCEVExpander &Rewriter) const { 5154 // Collect some instructions which must be dominated by the 5155 // expanding replacement. These must be dominated by any operands that 5156 // will be required in the expansion. 5157 SmallVector<Instruction *, 4> Inputs; 5158 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5159 Inputs.push_back(I); 5160 if (LU.Kind == LSRUse::ICmpZero) 5161 if (Instruction *I = 5162 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5163 Inputs.push_back(I); 5164 if (LF.PostIncLoops.count(L)) { 5165 if (LF.isUseFullyOutsideLoop(L)) 5166 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5167 else 5168 Inputs.push_back(IVIncInsertPos); 5169 } 5170 // The expansion must also be dominated by the increment positions of any 5171 // loops it for which it is using post-inc mode. 5172 for (const Loop *PIL : LF.PostIncLoops) { 5173 if (PIL == L) continue; 5174 5175 // Be dominated by the loop exit. 5176 SmallVector<BasicBlock *, 4> ExitingBlocks; 5177 PIL->getExitingBlocks(ExitingBlocks); 5178 if (!ExitingBlocks.empty()) { 5179 BasicBlock *BB = ExitingBlocks[0]; 5180 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5181 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5182 Inputs.push_back(BB->getTerminator()); 5183 } 5184 } 5185 5186 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5187 && !isa<DbgInfoIntrinsic>(LowestIP) && 5188 "Insertion point must be a normal instruction"); 5189 5190 // Then, climb up the immediate dominator tree as far as we can go while 5191 // still being dominated by the input positions. 5192 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5193 5194 // Don't insert instructions before PHI nodes. 5195 while (isa<PHINode>(IP)) ++IP; 5196 5197 // Ignore landingpad instructions. 5198 while (IP->isEHPad()) ++IP; 5199 5200 // Ignore debug intrinsics. 5201 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5202 5203 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5204 // IP consistent across expansions and allows the previously inserted 5205 // instructions to be reused by subsequent expansion. 5206 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5207 ++IP; 5208 5209 return IP; 5210 } 5211 5212 /// Emit instructions for the leading candidate expression for this LSRUse (this 5213 /// is called "expanding"). 5214 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5215 const Formula &F, BasicBlock::iterator IP, 5216 SCEVExpander &Rewriter, 5217 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5218 if (LU.RigidFormula) 5219 return LF.OperandValToReplace; 5220 5221 // Determine an input position which will be dominated by the operands and 5222 // which will dominate the result. 5223 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5224 Rewriter.setInsertPoint(&*IP); 5225 5226 // Inform the Rewriter if we have a post-increment use, so that it can 5227 // perform an advantageous expansion. 5228 Rewriter.setPostInc(LF.PostIncLoops); 5229 5230 // This is the type that the user actually needs. 5231 Type *OpTy = LF.OperandValToReplace->getType(); 5232 // This will be the type that we'll initially expand to. 5233 Type *Ty = F.getType(); 5234 if (!Ty) 5235 // No type known; just expand directly to the ultimate type. 5236 Ty = OpTy; 5237 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5238 // Expand directly to the ultimate type if it's the right size. 5239 Ty = OpTy; 5240 // This is the type to do integer arithmetic in. 5241 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5242 5243 // Build up a list of operands to add together to form the full base. 5244 SmallVector<const SCEV *, 8> Ops; 5245 5246 // Expand the BaseRegs portion. 5247 for (const SCEV *Reg : F.BaseRegs) { 5248 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5249 5250 // If we're expanding for a post-inc user, make the post-inc adjustment. 5251 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5252 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5253 } 5254 5255 // Expand the ScaledReg portion. 5256 Value *ICmpScaledV = nullptr; 5257 if (F.Scale != 0) { 5258 const SCEV *ScaledS = F.ScaledReg; 5259 5260 // If we're expanding for a post-inc user, make the post-inc adjustment. 5261 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5262 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5263 5264 if (LU.Kind == LSRUse::ICmpZero) { 5265 // Expand ScaleReg as if it was part of the base regs. 5266 if (F.Scale == 1) 5267 Ops.push_back( 5268 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5269 else { 5270 // An interesting way of "folding" with an icmp is to use a negated 5271 // scale, which we'll implement by inserting it into the other operand 5272 // of the icmp. 5273 assert(F.Scale == -1 && 5274 "The only scale supported by ICmpZero uses is -1!"); 5275 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5276 } 5277 } else { 5278 // Otherwise just expand the scaled register and an explicit scale, 5279 // which is expected to be matched as part of the address. 5280 5281 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5282 // Unless the addressing mode will not be folded. 5283 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5284 isAMCompletelyFolded(TTI, LU, F)) { 5285 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5286 Ops.clear(); 5287 Ops.push_back(SE.getUnknown(FullV)); 5288 } 5289 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5290 if (F.Scale != 1) 5291 ScaledS = 5292 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5293 Ops.push_back(ScaledS); 5294 } 5295 } 5296 5297 // Expand the GV portion. 5298 if (F.BaseGV) { 5299 // Flush the operand list to suppress SCEVExpander hoisting. 5300 if (!Ops.empty()) { 5301 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5302 Ops.clear(); 5303 Ops.push_back(SE.getUnknown(FullV)); 5304 } 5305 Ops.push_back(SE.getUnknown(F.BaseGV)); 5306 } 5307 5308 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5309 // unfolded offsets. LSR assumes they both live next to their uses. 5310 if (!Ops.empty()) { 5311 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5312 Ops.clear(); 5313 Ops.push_back(SE.getUnknown(FullV)); 5314 } 5315 5316 // Expand the immediate portion. 5317 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5318 if (Offset != 0) { 5319 if (LU.Kind == LSRUse::ICmpZero) { 5320 // The other interesting way of "folding" with an ICmpZero is to use a 5321 // negated immediate. 5322 if (!ICmpScaledV) 5323 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5324 else { 5325 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5326 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5327 } 5328 } else { 5329 // Just add the immediate values. These again are expected to be matched 5330 // as part of the address. 5331 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5332 } 5333 } 5334 5335 // Expand the unfolded offset portion. 5336 int64_t UnfoldedOffset = F.UnfoldedOffset; 5337 if (UnfoldedOffset != 0) { 5338 // Just add the immediate values. 5339 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5340 UnfoldedOffset))); 5341 } 5342 5343 // Emit instructions summing all the operands. 5344 const SCEV *FullS = Ops.empty() ? 5345 SE.getConstant(IntTy, 0) : 5346 SE.getAddExpr(Ops); 5347 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5348 5349 // We're done expanding now, so reset the rewriter. 5350 Rewriter.clearPostInc(); 5351 5352 // An ICmpZero Formula represents an ICmp which we're handling as a 5353 // comparison against zero. Now that we've expanded an expression for that 5354 // form, update the ICmp's other operand. 5355 if (LU.Kind == LSRUse::ICmpZero) { 5356 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5357 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5358 DeadInsts.emplace_back(OperandIsInstr); 5359 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5360 "a scale at the same time!"); 5361 if (F.Scale == -1) { 5362 if (ICmpScaledV->getType() != OpTy) { 5363 Instruction *Cast = 5364 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5365 OpTy, false), 5366 ICmpScaledV, OpTy, "tmp", CI); 5367 ICmpScaledV = Cast; 5368 } 5369 CI->setOperand(1, ICmpScaledV); 5370 } else { 5371 // A scale of 1 means that the scale has been expanded as part of the 5372 // base regs. 5373 assert((F.Scale == 0 || F.Scale == 1) && 5374 "ICmp does not support folding a global value and " 5375 "a scale at the same time!"); 5376 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5377 -(uint64_t)Offset); 5378 if (C->getType() != OpTy) 5379 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5380 OpTy, false), 5381 C, OpTy); 5382 5383 CI->setOperand(1, C); 5384 } 5385 } 5386 5387 return FullV; 5388 } 5389 5390 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5391 /// effectively happens in their predecessor blocks, so the expression may need 5392 /// to be expanded in multiple places. 5393 void LSRInstance::RewriteForPHI( 5394 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5395 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5396 DenseMap<BasicBlock *, Value *> Inserted; 5397 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5398 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5399 bool needUpdateFixups = false; 5400 BasicBlock *BB = PN->getIncomingBlock(i); 5401 5402 // If this is a critical edge, split the edge so that we do not insert 5403 // the code on all predecessor/successor paths. We do this unless this 5404 // is the canonical backedge for this loop, which complicates post-inc 5405 // users. 5406 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5407 !isa<IndirectBrInst>(BB->getTerminator()) && 5408 !isa<CatchSwitchInst>(BB->getTerminator())) { 5409 BasicBlock *Parent = PN->getParent(); 5410 Loop *PNLoop = LI.getLoopFor(Parent); 5411 if (!PNLoop || Parent != PNLoop->getHeader()) { 5412 // Split the critical edge. 5413 BasicBlock *NewBB = nullptr; 5414 if (!Parent->isLandingPad()) { 5415 NewBB = 5416 SplitCriticalEdge(BB, Parent, 5417 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5418 .setMergeIdenticalEdges() 5419 .setKeepOneInputPHIs()); 5420 } else { 5421 SmallVector<BasicBlock*, 2> NewBBs; 5422 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5423 NewBB = NewBBs[0]; 5424 } 5425 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5426 // phi predecessors are identical. The simple thing to do is skip 5427 // splitting in this case rather than complicate the API. 5428 if (NewBB) { 5429 // If PN is outside of the loop and BB is in the loop, we want to 5430 // move the block to be immediately before the PHI block, not 5431 // immediately after BB. 5432 if (L->contains(BB) && !L->contains(PN)) 5433 NewBB->moveBefore(PN->getParent()); 5434 5435 // Splitting the edge can reduce the number of PHI entries we have. 5436 e = PN->getNumIncomingValues(); 5437 BB = NewBB; 5438 i = PN->getBasicBlockIndex(BB); 5439 5440 needUpdateFixups = true; 5441 } 5442 } 5443 } 5444 5445 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5446 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5447 if (!Pair.second) 5448 PN->setIncomingValue(i, Pair.first->second); 5449 else { 5450 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5451 Rewriter, DeadInsts); 5452 5453 // If this is reuse-by-noop-cast, insert the noop cast. 5454 Type *OpTy = LF.OperandValToReplace->getType(); 5455 if (FullV->getType() != OpTy) 5456 FullV = 5457 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5458 OpTy, false), 5459 FullV, LF.OperandValToReplace->getType(), 5460 "tmp", BB->getTerminator()); 5461 5462 PN->setIncomingValue(i, FullV); 5463 Pair.first->second = FullV; 5464 } 5465 5466 // If LSR splits critical edge and phi node has other pending 5467 // fixup operands, we need to update those pending fixups. Otherwise 5468 // formulae will not be implemented completely and some instructions 5469 // will not be eliminated. 5470 if (needUpdateFixups) { 5471 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5472 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5473 // If fixup is supposed to rewrite some operand in the phi 5474 // that was just updated, it may be already moved to 5475 // another phi node. Such fixup requires update. 5476 if (Fixup.UserInst == PN) { 5477 // Check if the operand we try to replace still exists in the 5478 // original phi. 5479 bool foundInOriginalPHI = false; 5480 for (const auto &val : PN->incoming_values()) 5481 if (val == Fixup.OperandValToReplace) { 5482 foundInOriginalPHI = true; 5483 break; 5484 } 5485 5486 // If fixup operand found in original PHI - nothing to do. 5487 if (foundInOriginalPHI) 5488 continue; 5489 5490 // Otherwise it might be moved to another PHI and requires update. 5491 // If fixup operand not found in any of the incoming blocks that 5492 // means we have already rewritten it - nothing to do. 5493 for (const auto &Block : PN->blocks()) 5494 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5495 ++I) { 5496 PHINode *NewPN = cast<PHINode>(I); 5497 for (const auto &val : NewPN->incoming_values()) 5498 if (val == Fixup.OperandValToReplace) 5499 Fixup.UserInst = NewPN; 5500 } 5501 } 5502 } 5503 } 5504 } 5505 5506 /// Emit instructions for the leading candidate expression for this LSRUse (this 5507 /// is called "expanding"), and update the UserInst to reference the newly 5508 /// expanded value. 5509 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5510 const Formula &F, SCEVExpander &Rewriter, 5511 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5512 // First, find an insertion point that dominates UserInst. For PHI nodes, 5513 // find the nearest block which dominates all the relevant uses. 5514 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5515 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5516 } else { 5517 Value *FullV = 5518 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5519 5520 // If this is reuse-by-noop-cast, insert the noop cast. 5521 Type *OpTy = LF.OperandValToReplace->getType(); 5522 if (FullV->getType() != OpTy) { 5523 Instruction *Cast = 5524 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5525 FullV, OpTy, "tmp", LF.UserInst); 5526 FullV = Cast; 5527 } 5528 5529 // Update the user. ICmpZero is handled specially here (for now) because 5530 // Expand may have updated one of the operands of the icmp already, and 5531 // its new value may happen to be equal to LF.OperandValToReplace, in 5532 // which case doing replaceUsesOfWith leads to replacing both operands 5533 // with the same value. TODO: Reorganize this. 5534 if (LU.Kind == LSRUse::ICmpZero) 5535 LF.UserInst->setOperand(0, FullV); 5536 else 5537 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5538 } 5539 5540 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5541 DeadInsts.emplace_back(OperandIsInstr); 5542 } 5543 5544 /// Rewrite all the fixup locations with new values, following the chosen 5545 /// solution. 5546 void LSRInstance::ImplementSolution( 5547 const SmallVectorImpl<const Formula *> &Solution) { 5548 // Keep track of instructions we may have made dead, so that 5549 // we can remove them after we are done working. 5550 SmallVector<WeakTrackingVH, 16> DeadInsts; 5551 5552 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5553 false); 5554 #ifndef NDEBUG 5555 Rewriter.setDebugType(DEBUG_TYPE); 5556 #endif 5557 Rewriter.disableCanonicalMode(); 5558 Rewriter.enableLSRMode(); 5559 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5560 5561 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5562 for (const IVChain &Chain : IVChainVec) { 5563 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5564 Rewriter.setChainedPhi(PN); 5565 } 5566 5567 // Expand the new value definitions and update the users. 5568 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5569 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5570 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5571 Changed = true; 5572 } 5573 5574 for (const IVChain &Chain : IVChainVec) { 5575 GenerateIVChain(Chain, Rewriter, DeadInsts); 5576 Changed = true; 5577 } 5578 // Clean up after ourselves. This must be done before deleting any 5579 // instructions. 5580 Rewriter.clear(); 5581 5582 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5583 &TLI, MSSAU); 5584 5585 // In our cost analysis above, we assume that each addrec consumes exactly 5586 // one register, and arrange to have increments inserted just before the 5587 // latch to maximimize the chance this is true. However, if we reused 5588 // existing IVs, we now need to move the increments to match our 5589 // expectations. Otherwise, our cost modeling results in us having a 5590 // chosen a non-optimal result for the actual schedule. (And yes, this 5591 // scheduling decision does impact later codegen.) 5592 for (PHINode &PN : L->getHeader()->phis()) { 5593 BinaryOperator *BO = nullptr; 5594 Value *Start = nullptr, *Step = nullptr; 5595 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5596 continue; 5597 5598 switch (BO->getOpcode()) { 5599 case Instruction::Sub: 5600 if (BO->getOperand(0) != &PN) 5601 // sub is non-commutative - match handling elsewhere in LSR 5602 continue; 5603 break; 5604 case Instruction::Add: 5605 break; 5606 default: 5607 continue; 5608 }; 5609 5610 if (!isa<Constant>(Step)) 5611 // If not a constant step, might increase register pressure 5612 // (We assume constants have been canonicalized to RHS) 5613 continue; 5614 5615 if (BO->getParent() == IVIncInsertPos->getParent()) 5616 // Only bother moving across blocks. Isel can handle block local case. 5617 continue; 5618 5619 // Can we legally schedule inc at the desired point? 5620 if (!llvm::all_of(BO->uses(), 5621 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5622 continue; 5623 BO->moveBefore(IVIncInsertPos); 5624 Changed = true; 5625 } 5626 5627 5628 } 5629 5630 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5631 DominatorTree &DT, LoopInfo &LI, 5632 const TargetTransformInfo &TTI, AssumptionCache &AC, 5633 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5634 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5635 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5636 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5637 // If LoopSimplify form is not available, stay out of trouble. 5638 if (!L->isLoopSimplifyForm()) 5639 return; 5640 5641 // If there's no interesting work to be done, bail early. 5642 if (IU.empty()) return; 5643 5644 // If there's too much analysis to be done, bail early. We won't be able to 5645 // model the problem anyway. 5646 unsigned NumUsers = 0; 5647 for (const IVStrideUse &U : IU) { 5648 if (++NumUsers > MaxIVUsers) { 5649 (void)U; 5650 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5651 << "\n"); 5652 return; 5653 } 5654 // Bail out if we have a PHI on an EHPad that gets a value from a 5655 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5656 // no good place to stick any instructions. 5657 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5658 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5659 if (isa<FuncletPadInst>(FirstNonPHI) || 5660 isa<CatchSwitchInst>(FirstNonPHI)) 5661 for (BasicBlock *PredBB : PN->blocks()) 5662 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5663 return; 5664 } 5665 } 5666 5667 #ifndef NDEBUG 5668 // All dominating loops must have preheaders, or SCEVExpander may not be able 5669 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5670 // 5671 // IVUsers analysis should only create users that are dominated by simple loop 5672 // headers. Since this loop should dominate all of its users, its user list 5673 // should be empty if this loop itself is not within a simple loop nest. 5674 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5675 Rung; Rung = Rung->getIDom()) { 5676 BasicBlock *BB = Rung->getBlock(); 5677 const Loop *DomLoop = LI.getLoopFor(BB); 5678 if (DomLoop && DomLoop->getHeader() == BB) { 5679 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5680 } 5681 } 5682 #endif // DEBUG 5683 5684 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5685 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5686 dbgs() << ":\n"); 5687 5688 // First, perform some low-level loop optimizations. 5689 OptimizeShadowIV(); 5690 OptimizeLoopTermCond(); 5691 5692 // If loop preparation eliminates all interesting IV users, bail. 5693 if (IU.empty()) return; 5694 5695 // Skip nested loops until we can model them better with formulae. 5696 if (!L->isInnermost()) { 5697 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5698 return; 5699 } 5700 5701 // Start collecting data and preparing for the solver. 5702 // If number of registers is not the major cost, we cannot benefit from the 5703 // current profitable chain optimization which is based on number of 5704 // registers. 5705 // FIXME: add profitable chain optimization for other kinds major cost, for 5706 // example number of instructions. 5707 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5708 CollectChains(); 5709 CollectInterestingTypesAndFactors(); 5710 CollectFixupsAndInitialFormulae(); 5711 CollectLoopInvariantFixupsAndFormulae(); 5712 5713 if (Uses.empty()) 5714 return; 5715 5716 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5717 print_uses(dbgs())); 5718 5719 // Now use the reuse data to generate a bunch of interesting ways 5720 // to formulate the values needed for the uses. 5721 GenerateAllReuseFormulae(); 5722 5723 FilterOutUndesirableDedicatedRegisters(); 5724 NarrowSearchSpaceUsingHeuristics(); 5725 5726 SmallVector<const Formula *, 8> Solution; 5727 Solve(Solution); 5728 5729 // Release memory that is no longer needed. 5730 Factors.clear(); 5731 Types.clear(); 5732 RegUses.clear(); 5733 5734 if (Solution.empty()) 5735 return; 5736 5737 #ifndef NDEBUG 5738 // Formulae should be legal. 5739 for (const LSRUse &LU : Uses) { 5740 for (const Formula &F : LU.Formulae) 5741 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5742 F) && "Illegal formula generated!"); 5743 }; 5744 #endif 5745 5746 // Now that we've decided what we want, make it so. 5747 ImplementSolution(Solution); 5748 } 5749 5750 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5751 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5752 if (Factors.empty() && Types.empty()) return; 5753 5754 OS << "LSR has identified the following interesting factors and types: "; 5755 bool First = true; 5756 5757 for (int64_t Factor : Factors) { 5758 if (!First) OS << ", "; 5759 First = false; 5760 OS << '*' << Factor; 5761 } 5762 5763 for (Type *Ty : Types) { 5764 if (!First) OS << ", "; 5765 First = false; 5766 OS << '(' << *Ty << ')'; 5767 } 5768 OS << '\n'; 5769 } 5770 5771 void LSRInstance::print_fixups(raw_ostream &OS) const { 5772 OS << "LSR is examining the following fixup sites:\n"; 5773 for (const LSRUse &LU : Uses) 5774 for (const LSRFixup &LF : LU.Fixups) { 5775 dbgs() << " "; 5776 LF.print(OS); 5777 OS << '\n'; 5778 } 5779 } 5780 5781 void LSRInstance::print_uses(raw_ostream &OS) const { 5782 OS << "LSR is examining the following uses:\n"; 5783 for (const LSRUse &LU : Uses) { 5784 dbgs() << " "; 5785 LU.print(OS); 5786 OS << '\n'; 5787 for (const Formula &F : LU.Formulae) { 5788 OS << " "; 5789 F.print(OS); 5790 OS << '\n'; 5791 } 5792 } 5793 } 5794 5795 void LSRInstance::print(raw_ostream &OS) const { 5796 print_factors_and_types(OS); 5797 print_fixups(OS); 5798 print_uses(OS); 5799 } 5800 5801 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5802 print(errs()); errs() << '\n'; 5803 } 5804 #endif 5805 5806 namespace { 5807 5808 class LoopStrengthReduce : public LoopPass { 5809 public: 5810 static char ID; // Pass ID, replacement for typeid 5811 5812 LoopStrengthReduce(); 5813 5814 private: 5815 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5816 void getAnalysisUsage(AnalysisUsage &AU) const override; 5817 }; 5818 5819 } // end anonymous namespace 5820 5821 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5822 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5823 } 5824 5825 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5826 // We split critical edges, so we change the CFG. However, we do update 5827 // many analyses if they are around. 5828 AU.addPreservedID(LoopSimplifyID); 5829 5830 AU.addRequired<LoopInfoWrapperPass>(); 5831 AU.addPreserved<LoopInfoWrapperPass>(); 5832 AU.addRequiredID(LoopSimplifyID); 5833 AU.addRequired<DominatorTreeWrapperPass>(); 5834 AU.addPreserved<DominatorTreeWrapperPass>(); 5835 AU.addRequired<ScalarEvolutionWrapperPass>(); 5836 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5837 AU.addRequired<AssumptionCacheTracker>(); 5838 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5839 // Requiring LoopSimplify a second time here prevents IVUsers from running 5840 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5841 AU.addRequiredID(LoopSimplifyID); 5842 AU.addRequired<IVUsersWrapperPass>(); 5843 AU.addPreserved<IVUsersWrapperPass>(); 5844 AU.addRequired<TargetTransformInfoWrapperPass>(); 5845 AU.addPreserved<MemorySSAWrapperPass>(); 5846 } 5847 5848 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t>, 4>; 5849 using EqualValuesMap = 5850 DenseMap<DbgValueInst *, SmallVector<std::pair<unsigned, EqualValues>>>; 5851 using LocationMap = 5852 DenseMap<DbgValueInst *, std::pair<DIExpression *, Metadata *>>; 5853 5854 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5855 EqualValuesMap &DbgValueToEqualSet, 5856 LocationMap &DbgValueToLocation) { 5857 for (auto &B : L->getBlocks()) { 5858 for (auto &I : *B) { 5859 auto DVI = dyn_cast<DbgValueInst>(&I); 5860 if (!DVI) 5861 continue; 5862 for (unsigned Idx = 0; Idx < DVI->getNumVariableLocationOps(); ++Idx) { 5863 // TODO: We can duplicate results if the same arg appears more than 5864 // once. 5865 Value *V = DVI->getVariableLocationOp(Idx); 5866 if (!V || !SE.isSCEVable(V->getType())) 5867 continue; 5868 auto DbgValueSCEV = SE.getSCEV(V); 5869 EqualValues EqSet; 5870 for (PHINode &Phi : L->getHeader()->phis()) { 5871 if (V->getType() != Phi.getType()) 5872 continue; 5873 if (!SE.isSCEVable(Phi.getType())) 5874 continue; 5875 auto PhiSCEV = SE.getSCEV(&Phi); 5876 Optional<APInt> Offset = 5877 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV); 5878 if (Offset && Offset->getMinSignedBits() <= 64) 5879 EqSet.emplace_back( 5880 std::make_tuple(&Phi, Offset.getValue().getSExtValue())); 5881 } 5882 DbgValueToEqualSet[DVI].push_back({Idx, std::move(EqSet)}); 5883 // If we fall back to using this raw location, at least one location op 5884 // must be dead. A DIArgList will automatically undef arguments when 5885 // they become unavailable, but a ValueAsMetadata will not; since we 5886 // know the value should be undef, we use the undef value directly here. 5887 Metadata *RawLocation = 5888 DVI->hasArgList() ? DVI->getRawLocation() 5889 : ValueAsMetadata::get(UndefValue::get( 5890 DVI->getVariableLocationOp(0)->getType())); 5891 DbgValueToLocation[DVI] = {DVI->getExpression(), RawLocation}; 5892 } 5893 } 5894 } 5895 } 5896 5897 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet, 5898 LocationMap &DbgValueToLocation) { 5899 for (auto A : DbgValueToEqualSet) { 5900 auto *DVI = A.first; 5901 // Only update those that are now undef. 5902 if (!DVI->isUndef()) 5903 continue; 5904 // The dbg.value may have had its value or expression changed during LSR by 5905 // a failed salvage attempt; refresh them from the map. 5906 auto *DbgDIExpr = DbgValueToLocation[DVI].first; 5907 DVI->setRawLocation(DbgValueToLocation[DVI].second); 5908 DVI->setExpression(DbgDIExpr); 5909 assert(DVI->isUndef() && "dbg.value with non-undef location should not " 5910 "have been modified by LSR."); 5911 for (auto IdxEV : A.second) { 5912 unsigned Idx = IdxEV.first; 5913 for (auto EV : IdxEV.second) { 5914 auto EVHandle = std::get<WeakVH>(EV); 5915 if (!EVHandle) 5916 continue; 5917 int64_t Offset = std::get<int64_t>(EV); 5918 DVI->replaceVariableLocationOp(Idx, EVHandle); 5919 if (Offset) { 5920 SmallVector<uint64_t, 8> Ops; 5921 DIExpression::appendOffset(Ops, Offset); 5922 DbgDIExpr = DIExpression::appendOpsToArg(DbgDIExpr, Ops, Idx, true); 5923 } 5924 DVI->setExpression(DbgDIExpr); 5925 break; 5926 } 5927 } 5928 } 5929 } 5930 5931 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5932 DominatorTree &DT, LoopInfo &LI, 5933 const TargetTransformInfo &TTI, 5934 AssumptionCache &AC, TargetLibraryInfo &TLI, 5935 MemorySSA *MSSA) { 5936 5937 bool Changed = false; 5938 std::unique_ptr<MemorySSAUpdater> MSSAU; 5939 if (MSSA) 5940 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5941 5942 // Run the main LSR transformation. 5943 Changed |= 5944 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5945 5946 // Debug preservation - before we start removing anything create equivalence 5947 // sets for the llvm.dbg.value intrinsics. 5948 EqualValuesMap DbgValueToEqualSet; 5949 LocationMap DbgValueToLocation; 5950 DbgGatherEqualValues(L, SE, DbgValueToEqualSet, DbgValueToLocation); 5951 5952 // Remove any extra phis created by processing inner loops. 5953 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5954 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5955 SmallVector<WeakTrackingVH, 16> DeadInsts; 5956 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5957 SCEVExpander Rewriter(SE, DL, "lsr", false); 5958 #ifndef NDEBUG 5959 Rewriter.setDebugType(DEBUG_TYPE); 5960 #endif 5961 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5962 if (numFolded) { 5963 Changed = true; 5964 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5965 MSSAU.get()); 5966 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5967 } 5968 } 5969 5970 DbgApplyEqualValues(DbgValueToEqualSet, DbgValueToLocation); 5971 5972 return Changed; 5973 } 5974 5975 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5976 if (skipLoop(L)) 5977 return false; 5978 5979 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5980 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5981 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5982 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5983 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5984 *L->getHeader()->getParent()); 5985 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5986 *L->getHeader()->getParent()); 5987 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5988 *L->getHeader()->getParent()); 5989 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5990 MemorySSA *MSSA = nullptr; 5991 if (MSSAAnalysis) 5992 MSSA = &MSSAAnalysis->getMSSA(); 5993 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5994 } 5995 5996 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5997 LoopStandardAnalysisResults &AR, 5998 LPMUpdater &) { 5999 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6000 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6001 return PreservedAnalyses::all(); 6002 6003 auto PA = getLoopPassPreservedAnalyses(); 6004 if (AR.MSSA) 6005 PA.preserve<MemorySSAAnalysis>(); 6006 return PA; 6007 } 6008 6009 char LoopStrengthReduce::ID = 0; 6010 6011 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6012 "Loop Strength Reduction", false, false) 6013 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6014 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6015 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6016 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6017 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6018 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6019 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6020 "Loop Strength Reduction", false, false) 6021 6022 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6023