1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Config/llvm-config.h" 81 #include "llvm/IR/BasicBlock.h" 82 #include "llvm/IR/Constant.h" 83 #include "llvm/IR/Constants.h" 84 #include "llvm/IR/DebugInfoMetadata.h" 85 #include "llvm/IR/DerivedTypes.h" 86 #include "llvm/IR/Dominators.h" 87 #include "llvm/IR/GlobalValue.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/IntrinsicInst.h" 93 #include "llvm/IR/Intrinsics.h" 94 #include "llvm/IR/Module.h" 95 #include "llvm/IR/OperandTraits.h" 96 #include "llvm/IR/Operator.h" 97 #include "llvm/IR/PassManager.h" 98 #include "llvm/IR/Type.h" 99 #include "llvm/IR/Use.h" 100 #include "llvm/IR/User.h" 101 #include "llvm/IR/Value.h" 102 #include "llvm/IR/ValueHandle.h" 103 #include "llvm/InitializePasses.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Transforms/Scalar.h" 113 #include "llvm/Transforms/Utils.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstdlib> 122 #include <iterator> 123 #include <limits> 124 #include <map> 125 #include <numeric> 126 #include <utility> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "loop-reduce" 131 132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 133 /// bail out. This threshold is far beyond the number of users that LSR can 134 /// conceivably solve, so it should not affect generated code, but catches the 135 /// worst cases before LSR burns too much compile time and stack space. 136 static const unsigned MaxIVUsers = 200; 137 138 // Temporary flag to cleanup congruent phis after LSR phi expansion. 139 // It's currently disabled until we can determine whether it's truly useful or 140 // not. The flag should be removed after the v3.0 release. 141 // This is now needed for ivchains. 142 static cl::opt<bool> EnablePhiElim( 143 "enable-lsr-phielim", cl::Hidden, cl::init(true), 144 cl::desc("Enable LSR phi elimination")); 145 146 // The flag adds instruction count to solutions cost comparision. 147 static cl::opt<bool> InsnsCost( 148 "lsr-insns-cost", cl::Hidden, cl::init(true), 149 cl::desc("Add instruction count to a LSR cost model")); 150 151 // Flag to choose how to narrow complex lsr solution 152 static cl::opt<bool> LSRExpNarrow( 153 "lsr-exp-narrow", cl::Hidden, cl::init(false), 154 cl::desc("Narrow LSR complex solution using" 155 " expectation of registers number")); 156 157 // Flag to narrow search space by filtering non-optimal formulae with 158 // the same ScaledReg and Scale. 159 static cl::opt<bool> FilterSameScaledReg( 160 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 161 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 162 " with the same ScaledReg and Scale")); 163 164 static cl::opt<bool> EnableBackedgeIndexing( 165 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 166 cl::desc("Enable the generation of cross iteration indexed memops")); 167 168 static cl::opt<unsigned> ComplexityLimit( 169 "lsr-complexity-limit", cl::Hidden, 170 cl::init(std::numeric_limits<uint16_t>::max()), 171 cl::desc("LSR search space complexity limit")); 172 173 static cl::opt<unsigned> SetupCostDepthLimit( 174 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 175 cl::desc("The limit on recursion depth for LSRs setup cost")); 176 177 #ifndef NDEBUG 178 // Stress test IV chain generation. 179 static cl::opt<bool> StressIVChain( 180 "stress-ivchain", cl::Hidden, cl::init(false), 181 cl::desc("Stress test LSR IV chains")); 182 #else 183 static bool StressIVChain = false; 184 #endif 185 186 namespace { 187 188 struct MemAccessTy { 189 /// Used in situations where the accessed memory type is unknown. 190 static const unsigned UnknownAddressSpace = 191 std::numeric_limits<unsigned>::max(); 192 193 Type *MemTy = nullptr; 194 unsigned AddrSpace = UnknownAddressSpace; 195 196 MemAccessTy() = default; 197 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 198 199 bool operator==(MemAccessTy Other) const { 200 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 201 } 202 203 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 204 205 static MemAccessTy getUnknown(LLVMContext &Ctx, 206 unsigned AS = UnknownAddressSpace) { 207 return MemAccessTy(Type::getVoidTy(Ctx), AS); 208 } 209 210 Type *getType() { return MemTy; } 211 }; 212 213 /// This class holds data which is used to order reuse candidates. 214 class RegSortData { 215 public: 216 /// This represents the set of LSRUse indices which reference 217 /// a particular register. 218 SmallBitVector UsedByIndices; 219 220 void print(raw_ostream &OS) const; 221 void dump() const; 222 }; 223 224 } // end anonymous namespace 225 226 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 227 void RegSortData::print(raw_ostream &OS) const { 228 OS << "[NumUses=" << UsedByIndices.count() << ']'; 229 } 230 231 LLVM_DUMP_METHOD void RegSortData::dump() const { 232 print(errs()); errs() << '\n'; 233 } 234 #endif 235 236 namespace { 237 238 /// Map register candidates to information about how they are used. 239 class RegUseTracker { 240 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 241 242 RegUsesTy RegUsesMap; 243 SmallVector<const SCEV *, 16> RegSequence; 244 245 public: 246 void countRegister(const SCEV *Reg, size_t LUIdx); 247 void dropRegister(const SCEV *Reg, size_t LUIdx); 248 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 249 250 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 251 252 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 253 254 void clear(); 255 256 using iterator = SmallVectorImpl<const SCEV *>::iterator; 257 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 258 259 iterator begin() { return RegSequence.begin(); } 260 iterator end() { return RegSequence.end(); } 261 const_iterator begin() const { return RegSequence.begin(); } 262 const_iterator end() const { return RegSequence.end(); } 263 }; 264 265 } // end anonymous namespace 266 267 void 268 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 269 std::pair<RegUsesTy::iterator, bool> Pair = 270 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 271 RegSortData &RSD = Pair.first->second; 272 if (Pair.second) 273 RegSequence.push_back(Reg); 274 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 275 RSD.UsedByIndices.set(LUIdx); 276 } 277 278 void 279 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 280 RegUsesTy::iterator It = RegUsesMap.find(Reg); 281 assert(It != RegUsesMap.end()); 282 RegSortData &RSD = It->second; 283 assert(RSD.UsedByIndices.size() > LUIdx); 284 RSD.UsedByIndices.reset(LUIdx); 285 } 286 287 void 288 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 289 assert(LUIdx <= LastLUIdx); 290 291 // Update RegUses. The data structure is not optimized for this purpose; 292 // we must iterate through it and update each of the bit vectors. 293 for (auto &Pair : RegUsesMap) { 294 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 295 if (LUIdx < UsedByIndices.size()) 296 UsedByIndices[LUIdx] = 297 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 298 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 299 } 300 } 301 302 bool 303 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 304 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 305 if (I == RegUsesMap.end()) 306 return false; 307 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 308 int i = UsedByIndices.find_first(); 309 if (i == -1) return false; 310 if ((size_t)i != LUIdx) return true; 311 return UsedByIndices.find_next(i) != -1; 312 } 313 314 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 315 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 316 assert(I != RegUsesMap.end() && "Unknown register!"); 317 return I->second.UsedByIndices; 318 } 319 320 void RegUseTracker::clear() { 321 RegUsesMap.clear(); 322 RegSequence.clear(); 323 } 324 325 namespace { 326 327 /// This class holds information that describes a formula for computing 328 /// satisfying a use. It may include broken-out immediates and scaled registers. 329 struct Formula { 330 /// Global base address used for complex addressing. 331 GlobalValue *BaseGV = nullptr; 332 333 /// Base offset for complex addressing. 334 int64_t BaseOffset = 0; 335 336 /// Whether any complex addressing has a base register. 337 bool HasBaseReg = false; 338 339 /// The scale of any complex addressing. 340 int64_t Scale = 0; 341 342 /// The list of "base" registers for this use. When this is non-empty. The 343 /// canonical representation of a formula is 344 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 345 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 346 /// 3. The reg containing recurrent expr related with currect loop in the 347 /// formula should be put in the ScaledReg. 348 /// #1 enforces that the scaled register is always used when at least two 349 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 350 /// #2 enforces that 1 * reg is reg. 351 /// #3 ensures invariant regs with respect to current loop can be combined 352 /// together in LSR codegen. 353 /// This invariant can be temporarily broken while building a formula. 354 /// However, every formula inserted into the LSRInstance must be in canonical 355 /// form. 356 SmallVector<const SCEV *, 4> BaseRegs; 357 358 /// The 'scaled' register for this use. This should be non-null when Scale is 359 /// not zero. 360 const SCEV *ScaledReg = nullptr; 361 362 /// An additional constant offset which added near the use. This requires a 363 /// temporary register, but the offset itself can live in an add immediate 364 /// field rather than a register. 365 int64_t UnfoldedOffset = 0; 366 367 Formula() = default; 368 369 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 370 371 bool isCanonical(const Loop &L) const; 372 373 void canonicalize(const Loop &L); 374 375 bool unscale(); 376 377 bool hasZeroEnd() const; 378 379 size_t getNumRegs() const; 380 Type *getType() const; 381 382 void deleteBaseReg(const SCEV *&S); 383 384 bool referencesReg(const SCEV *S) const; 385 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 386 const RegUseTracker &RegUses) const; 387 388 void print(raw_ostream &OS) const; 389 void dump() const; 390 }; 391 392 } // end anonymous namespace 393 394 /// Recursion helper for initialMatch. 395 static void DoInitialMatch(const SCEV *S, Loop *L, 396 SmallVectorImpl<const SCEV *> &Good, 397 SmallVectorImpl<const SCEV *> &Bad, 398 ScalarEvolution &SE) { 399 // Collect expressions which properly dominate the loop header. 400 if (SE.properlyDominates(S, L->getHeader())) { 401 Good.push_back(S); 402 return; 403 } 404 405 // Look at add operands. 406 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 407 for (const SCEV *S : Add->operands()) 408 DoInitialMatch(S, L, Good, Bad, SE); 409 return; 410 } 411 412 // Look at addrec operands. 413 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 414 if (!AR->getStart()->isZero() && AR->isAffine()) { 415 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 416 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 417 AR->getStepRecurrence(SE), 418 // FIXME: AR->getNoWrapFlags() 419 AR->getLoop(), SCEV::FlagAnyWrap), 420 L, Good, Bad, SE); 421 return; 422 } 423 424 // Handle a multiplication by -1 (negation) if it didn't fold. 425 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 426 if (Mul->getOperand(0)->isAllOnesValue()) { 427 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 428 const SCEV *NewMul = SE.getMulExpr(Ops); 429 430 SmallVector<const SCEV *, 4> MyGood; 431 SmallVector<const SCEV *, 4> MyBad; 432 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 433 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 434 SE.getEffectiveSCEVType(NewMul->getType()))); 435 for (const SCEV *S : MyGood) 436 Good.push_back(SE.getMulExpr(NegOne, S)); 437 for (const SCEV *S : MyBad) 438 Bad.push_back(SE.getMulExpr(NegOne, S)); 439 return; 440 } 441 442 // Ok, we can't do anything interesting. Just stuff the whole thing into a 443 // register and hope for the best. 444 Bad.push_back(S); 445 } 446 447 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 448 /// all loop-invariant and loop-computable values in a single base register. 449 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 450 SmallVector<const SCEV *, 4> Good; 451 SmallVector<const SCEV *, 4> Bad; 452 DoInitialMatch(S, L, Good, Bad, SE); 453 if (!Good.empty()) { 454 const SCEV *Sum = SE.getAddExpr(Good); 455 if (!Sum->isZero()) 456 BaseRegs.push_back(Sum); 457 HasBaseReg = true; 458 } 459 if (!Bad.empty()) { 460 const SCEV *Sum = SE.getAddExpr(Bad); 461 if (!Sum->isZero()) 462 BaseRegs.push_back(Sum); 463 HasBaseReg = true; 464 } 465 canonicalize(*L); 466 } 467 468 /// Check whether or not this formula satisfies the canonical 469 /// representation. 470 /// \see Formula::BaseRegs. 471 bool Formula::isCanonical(const Loop &L) const { 472 if (!ScaledReg) 473 return BaseRegs.size() <= 1; 474 475 if (Scale != 1) 476 return true; 477 478 if (Scale == 1 && BaseRegs.empty()) 479 return false; 480 481 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 482 if (SAR && SAR->getLoop() == &L) 483 return true; 484 485 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 486 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 487 // loop, we want to swap the reg in BaseRegs with ScaledReg. 488 auto I = 489 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 490 return isa<const SCEVAddRecExpr>(S) && 491 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 492 }); 493 return I == BaseRegs.end(); 494 } 495 496 /// Helper method to morph a formula into its canonical representation. 497 /// \see Formula::BaseRegs. 498 /// Every formula having more than one base register, must use the ScaledReg 499 /// field. Otherwise, we would have to do special cases everywhere in LSR 500 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 501 /// On the other hand, 1*reg should be canonicalized into reg. 502 void Formula::canonicalize(const Loop &L) { 503 if (isCanonical(L)) 504 return; 505 // So far we did not need this case. This is easy to implement but it is 506 // useless to maintain dead code. Beside it could hurt compile time. 507 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 508 509 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 510 if (!ScaledReg) { 511 ScaledReg = BaseRegs.back(); 512 BaseRegs.pop_back(); 513 Scale = 1; 514 } 515 516 // If ScaledReg is an invariant with respect to L, find the reg from 517 // BaseRegs containing the recurrent expr related with Loop L. Swap the 518 // reg with ScaledReg. 519 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 520 if (!SAR || SAR->getLoop() != &L) { 521 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 522 [&](const SCEV *S) { 523 return isa<const SCEVAddRecExpr>(S) && 524 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 525 }); 526 if (I != BaseRegs.end()) 527 std::swap(ScaledReg, *I); 528 } 529 } 530 531 /// Get rid of the scale in the formula. 532 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 533 /// \return true if it was possible to get rid of the scale, false otherwise. 534 /// \note After this operation the formula may not be in the canonical form. 535 bool Formula::unscale() { 536 if (Scale != 1) 537 return false; 538 Scale = 0; 539 BaseRegs.push_back(ScaledReg); 540 ScaledReg = nullptr; 541 return true; 542 } 543 544 bool Formula::hasZeroEnd() const { 545 if (UnfoldedOffset || BaseOffset) 546 return false; 547 if (BaseRegs.size() != 1 || ScaledReg) 548 return false; 549 return true; 550 } 551 552 /// Return the total number of register operands used by this formula. This does 553 /// not include register uses implied by non-constant addrec strides. 554 size_t Formula::getNumRegs() const { 555 return !!ScaledReg + BaseRegs.size(); 556 } 557 558 /// Return the type of this formula, if it has one, or null otherwise. This type 559 /// is meaningless except for the bit size. 560 Type *Formula::getType() const { 561 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 562 ScaledReg ? ScaledReg->getType() : 563 BaseGV ? BaseGV->getType() : 564 nullptr; 565 } 566 567 /// Delete the given base reg from the BaseRegs list. 568 void Formula::deleteBaseReg(const SCEV *&S) { 569 if (&S != &BaseRegs.back()) 570 std::swap(S, BaseRegs.back()); 571 BaseRegs.pop_back(); 572 } 573 574 /// Test if this formula references the given register. 575 bool Formula::referencesReg(const SCEV *S) const { 576 return S == ScaledReg || is_contained(BaseRegs, S); 577 } 578 579 /// Test whether this formula uses registers which are used by uses other than 580 /// the use with the given index. 581 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 582 const RegUseTracker &RegUses) const { 583 if (ScaledReg) 584 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 585 return true; 586 for (const SCEV *BaseReg : BaseRegs) 587 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 588 return true; 589 return false; 590 } 591 592 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 593 void Formula::print(raw_ostream &OS) const { 594 bool First = true; 595 if (BaseGV) { 596 if (!First) OS << " + "; else First = false; 597 BaseGV->printAsOperand(OS, /*PrintType=*/false); 598 } 599 if (BaseOffset != 0) { 600 if (!First) OS << " + "; else First = false; 601 OS << BaseOffset; 602 } 603 for (const SCEV *BaseReg : BaseRegs) { 604 if (!First) OS << " + "; else First = false; 605 OS << "reg(" << *BaseReg << ')'; 606 } 607 if (HasBaseReg && BaseRegs.empty()) { 608 if (!First) OS << " + "; else First = false; 609 OS << "**error: HasBaseReg**"; 610 } else if (!HasBaseReg && !BaseRegs.empty()) { 611 if (!First) OS << " + "; else First = false; 612 OS << "**error: !HasBaseReg**"; 613 } 614 if (Scale != 0) { 615 if (!First) OS << " + "; else First = false; 616 OS << Scale << "*reg("; 617 if (ScaledReg) 618 OS << *ScaledReg; 619 else 620 OS << "<unknown>"; 621 OS << ')'; 622 } 623 if (UnfoldedOffset != 0) { 624 if (!First) OS << " + "; 625 OS << "imm(" << UnfoldedOffset << ')'; 626 } 627 } 628 629 LLVM_DUMP_METHOD void Formula::dump() const { 630 print(errs()); errs() << '\n'; 631 } 632 #endif 633 634 /// Return true if the given addrec can be sign-extended without changing its 635 /// value. 636 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 637 Type *WideTy = 638 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 639 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 640 } 641 642 /// Return true if the given add can be sign-extended without changing its 643 /// value. 644 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 645 Type *WideTy = 646 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 647 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 648 } 649 650 /// Return true if the given mul can be sign-extended without changing its 651 /// value. 652 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 653 Type *WideTy = 654 IntegerType::get(SE.getContext(), 655 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 656 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 657 } 658 659 /// Return an expression for LHS /s RHS, if it can be determined and if the 660 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 661 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 662 /// the multiplication may overflow, which is useful when the result will be 663 /// used in a context where the most significant bits are ignored. 664 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 665 ScalarEvolution &SE, 666 bool IgnoreSignificantBits = false) { 667 // Handle the trivial case, which works for any SCEV type. 668 if (LHS == RHS) 669 return SE.getConstant(LHS->getType(), 1); 670 671 // Handle a few RHS special cases. 672 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 673 if (RC) { 674 const APInt &RA = RC->getAPInt(); 675 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 676 // some folding. 677 if (RA.isAllOnesValue()) 678 return SE.getMulExpr(LHS, RC); 679 // Handle x /s 1 as x. 680 if (RA == 1) 681 return LHS; 682 } 683 684 // Check for a division of a constant by a constant. 685 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 686 if (!RC) 687 return nullptr; 688 const APInt &LA = C->getAPInt(); 689 const APInt &RA = RC->getAPInt(); 690 if (LA.srem(RA) != 0) 691 return nullptr; 692 return SE.getConstant(LA.sdiv(RA)); 693 } 694 695 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 696 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 697 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 698 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 699 IgnoreSignificantBits); 700 if (!Step) return nullptr; 701 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 702 IgnoreSignificantBits); 703 if (!Start) return nullptr; 704 // FlagNW is independent of the start value, step direction, and is 705 // preserved with smaller magnitude steps. 706 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 707 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 708 } 709 return nullptr; 710 } 711 712 // Distribute the sdiv over add operands, if the add doesn't overflow. 713 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 714 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 715 SmallVector<const SCEV *, 8> Ops; 716 for (const SCEV *S : Add->operands()) { 717 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 718 if (!Op) return nullptr; 719 Ops.push_back(Op); 720 } 721 return SE.getAddExpr(Ops); 722 } 723 return nullptr; 724 } 725 726 // Check for a multiply operand that we can pull RHS out of. 727 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 728 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 729 SmallVector<const SCEV *, 4> Ops; 730 bool Found = false; 731 for (const SCEV *S : Mul->operands()) { 732 if (!Found) 733 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 734 IgnoreSignificantBits)) { 735 S = Q; 736 Found = true; 737 } 738 Ops.push_back(S); 739 } 740 return Found ? SE.getMulExpr(Ops) : nullptr; 741 } 742 return nullptr; 743 } 744 745 // Otherwise we don't know. 746 return nullptr; 747 } 748 749 /// If S involves the addition of a constant integer value, return that integer 750 /// value, and mutate S to point to a new SCEV with that value excluded. 751 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 752 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 753 if (C->getAPInt().getMinSignedBits() <= 64) { 754 S = SE.getConstant(C->getType(), 0); 755 return C->getValue()->getSExtValue(); 756 } 757 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 758 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 759 int64_t Result = ExtractImmediate(NewOps.front(), SE); 760 if (Result != 0) 761 S = SE.getAddExpr(NewOps); 762 return Result; 763 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 764 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 765 int64_t Result = ExtractImmediate(NewOps.front(), SE); 766 if (Result != 0) 767 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 768 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 769 SCEV::FlagAnyWrap); 770 return Result; 771 } 772 return 0; 773 } 774 775 /// If S involves the addition of a GlobalValue address, return that symbol, and 776 /// mutate S to point to a new SCEV with that value excluded. 777 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 778 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 779 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 780 S = SE.getConstant(GV->getType(), 0); 781 return GV; 782 } 783 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 784 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 785 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 786 if (Result) 787 S = SE.getAddExpr(NewOps); 788 return Result; 789 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 790 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 791 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 792 if (Result) 793 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 794 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 795 SCEV::FlagAnyWrap); 796 return Result; 797 } 798 return nullptr; 799 } 800 801 /// Returns true if the specified instruction is using the specified value as an 802 /// address. 803 static bool isAddressUse(const TargetTransformInfo &TTI, 804 Instruction *Inst, Value *OperandVal) { 805 bool isAddress = isa<LoadInst>(Inst); 806 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 807 if (SI->getPointerOperand() == OperandVal) 808 isAddress = true; 809 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 810 // Addressing modes can also be folded into prefetches and a variety 811 // of intrinsics. 812 switch (II->getIntrinsicID()) { 813 case Intrinsic::memset: 814 case Intrinsic::prefetch: 815 case Intrinsic::masked_load: 816 if (II->getArgOperand(0) == OperandVal) 817 isAddress = true; 818 break; 819 case Intrinsic::masked_store: 820 if (II->getArgOperand(1) == OperandVal) 821 isAddress = true; 822 break; 823 case Intrinsic::memmove: 824 case Intrinsic::memcpy: 825 if (II->getArgOperand(0) == OperandVal || 826 II->getArgOperand(1) == OperandVal) 827 isAddress = true; 828 break; 829 default: { 830 MemIntrinsicInfo IntrInfo; 831 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 832 if (IntrInfo.PtrVal == OperandVal) 833 isAddress = true; 834 } 835 } 836 } 837 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 838 if (RMW->getPointerOperand() == OperandVal) 839 isAddress = true; 840 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 841 if (CmpX->getPointerOperand() == OperandVal) 842 isAddress = true; 843 } 844 return isAddress; 845 } 846 847 /// Return the type of the memory being accessed. 848 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 849 Instruction *Inst, Value *OperandVal) { 850 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 851 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 852 AccessTy.MemTy = SI->getOperand(0)->getType(); 853 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 854 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 855 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 856 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 857 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 858 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 859 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 860 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 861 switch (II->getIntrinsicID()) { 862 case Intrinsic::prefetch: 863 case Intrinsic::memset: 864 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 865 AccessTy.MemTy = OperandVal->getType(); 866 break; 867 case Intrinsic::memmove: 868 case Intrinsic::memcpy: 869 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 870 AccessTy.MemTy = OperandVal->getType(); 871 break; 872 case Intrinsic::masked_load: 873 AccessTy.AddrSpace = 874 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 875 break; 876 case Intrinsic::masked_store: 877 AccessTy.MemTy = II->getOperand(0)->getType(); 878 AccessTy.AddrSpace = 879 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 880 break; 881 default: { 882 MemIntrinsicInfo IntrInfo; 883 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 884 AccessTy.AddrSpace 885 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 886 } 887 888 break; 889 } 890 } 891 } 892 893 // All pointers have the same requirements, so canonicalize them to an 894 // arbitrary pointer type to minimize variation. 895 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 896 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 897 PTy->getAddressSpace()); 898 899 return AccessTy; 900 } 901 902 /// Return true if this AddRec is already a phi in its loop. 903 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 904 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 905 if (SE.isSCEVable(PN.getType()) && 906 (SE.getEffectiveSCEVType(PN.getType()) == 907 SE.getEffectiveSCEVType(AR->getType())) && 908 SE.getSCEV(&PN) == AR) 909 return true; 910 } 911 return false; 912 } 913 914 /// Check if expanding this expression is likely to incur significant cost. This 915 /// is tricky because SCEV doesn't track which expressions are actually computed 916 /// by the current IR. 917 /// 918 /// We currently allow expansion of IV increments that involve adds, 919 /// multiplication by constants, and AddRecs from existing phis. 920 /// 921 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 922 /// obvious multiple of the UDivExpr. 923 static bool isHighCostExpansion(const SCEV *S, 924 SmallPtrSetImpl<const SCEV*> &Processed, 925 ScalarEvolution &SE) { 926 // Zero/One operand expressions 927 switch (S->getSCEVType()) { 928 case scUnknown: 929 case scConstant: 930 return false; 931 case scTruncate: 932 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 933 Processed, SE); 934 case scZeroExtend: 935 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 936 Processed, SE); 937 case scSignExtend: 938 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 939 Processed, SE); 940 default: 941 break; 942 } 943 944 if (!Processed.insert(S).second) 945 return false; 946 947 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 948 for (const SCEV *S : Add->operands()) { 949 if (isHighCostExpansion(S, Processed, SE)) 950 return true; 951 } 952 return false; 953 } 954 955 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 956 if (Mul->getNumOperands() == 2) { 957 // Multiplication by a constant is ok 958 if (isa<SCEVConstant>(Mul->getOperand(0))) 959 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 960 961 // If we have the value of one operand, check if an existing 962 // multiplication already generates this expression. 963 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 964 Value *UVal = U->getValue(); 965 for (User *UR : UVal->users()) { 966 // If U is a constant, it may be used by a ConstantExpr. 967 Instruction *UI = dyn_cast<Instruction>(UR); 968 if (UI && UI->getOpcode() == Instruction::Mul && 969 SE.isSCEVable(UI->getType())) { 970 return SE.getSCEV(UI) == Mul; 971 } 972 } 973 } 974 } 975 } 976 977 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 978 if (isExistingPhi(AR, SE)) 979 return false; 980 } 981 982 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 983 return true; 984 } 985 986 namespace { 987 988 class LSRUse; 989 990 } // end anonymous namespace 991 992 /// Check if the addressing mode defined by \p F is completely 993 /// folded in \p LU at isel time. 994 /// This includes address-mode folding and special icmp tricks. 995 /// This function returns true if \p LU can accommodate what \p F 996 /// defines and up to 1 base + 1 scaled + offset. 997 /// In other words, if \p F has several base registers, this function may 998 /// still return true. Therefore, users still need to account for 999 /// additional base registers and/or unfolded offsets to derive an 1000 /// accurate cost model. 1001 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1002 const LSRUse &LU, const Formula &F); 1003 1004 // Get the cost of the scaling factor used in F for LU. 1005 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1006 const LSRUse &LU, const Formula &F, 1007 const Loop &L); 1008 1009 namespace { 1010 1011 /// This class is used to measure and compare candidate formulae. 1012 class Cost { 1013 const Loop *L = nullptr; 1014 ScalarEvolution *SE = nullptr; 1015 const TargetTransformInfo *TTI = nullptr; 1016 TargetTransformInfo::LSRCost C; 1017 1018 public: 1019 Cost() = delete; 1020 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1021 L(L), SE(&SE), TTI(&TTI) { 1022 C.Insns = 0; 1023 C.NumRegs = 0; 1024 C.AddRecCost = 0; 1025 C.NumIVMuls = 0; 1026 C.NumBaseAdds = 0; 1027 C.ImmCost = 0; 1028 C.SetupCost = 0; 1029 C.ScaleCost = 0; 1030 } 1031 1032 bool isLess(Cost &Other); 1033 1034 void Lose(); 1035 1036 #ifndef NDEBUG 1037 // Once any of the metrics loses, they must all remain losers. 1038 bool isValid() { 1039 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1040 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1041 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1042 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1043 } 1044 #endif 1045 1046 bool isLoser() { 1047 assert(isValid() && "invalid cost"); 1048 return C.NumRegs == ~0u; 1049 } 1050 1051 void RateFormula(const Formula &F, 1052 SmallPtrSetImpl<const SCEV *> &Regs, 1053 const DenseSet<const SCEV *> &VisitedRegs, 1054 const LSRUse &LU, 1055 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1056 1057 void print(raw_ostream &OS) const; 1058 void dump() const; 1059 1060 private: 1061 void RateRegister(const Formula &F, const SCEV *Reg, 1062 SmallPtrSetImpl<const SCEV *> &Regs); 1063 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1064 SmallPtrSetImpl<const SCEV *> &Regs, 1065 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1066 }; 1067 1068 /// An operand value in an instruction which is to be replaced with some 1069 /// equivalent, possibly strength-reduced, replacement. 1070 struct LSRFixup { 1071 /// The instruction which will be updated. 1072 Instruction *UserInst = nullptr; 1073 1074 /// The operand of the instruction which will be replaced. The operand may be 1075 /// used more than once; every instance will be replaced. 1076 Value *OperandValToReplace = nullptr; 1077 1078 /// If this user is to use the post-incremented value of an induction 1079 /// variable, this set is non-empty and holds the loops associated with the 1080 /// induction variable. 1081 PostIncLoopSet PostIncLoops; 1082 1083 /// A constant offset to be added to the LSRUse expression. This allows 1084 /// multiple fixups to share the same LSRUse with different offsets, for 1085 /// example in an unrolled loop. 1086 int64_t Offset = 0; 1087 1088 LSRFixup() = default; 1089 1090 bool isUseFullyOutsideLoop(const Loop *L) const; 1091 1092 void print(raw_ostream &OS) const; 1093 void dump() const; 1094 }; 1095 1096 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1097 /// SmallVectors of const SCEV*. 1098 struct UniquifierDenseMapInfo { 1099 static SmallVector<const SCEV *, 4> getEmptyKey() { 1100 SmallVector<const SCEV *, 4> V; 1101 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1102 return V; 1103 } 1104 1105 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1106 SmallVector<const SCEV *, 4> V; 1107 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1108 return V; 1109 } 1110 1111 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1112 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1113 } 1114 1115 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1116 const SmallVector<const SCEV *, 4> &RHS) { 1117 return LHS == RHS; 1118 } 1119 }; 1120 1121 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1122 /// as uses invented by LSR itself. It includes information about what kinds of 1123 /// things can be folded into the user, information about the user itself, and 1124 /// information about how the use may be satisfied. TODO: Represent multiple 1125 /// users of the same expression in common? 1126 class LSRUse { 1127 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1128 1129 public: 1130 /// An enum for a kind of use, indicating what types of scaled and immediate 1131 /// operands it might support. 1132 enum KindType { 1133 Basic, ///< A normal use, with no folding. 1134 Special, ///< A special case of basic, allowing -1 scales. 1135 Address, ///< An address use; folding according to TargetLowering 1136 ICmpZero ///< An equality icmp with both operands folded into one. 1137 // TODO: Add a generic icmp too? 1138 }; 1139 1140 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1141 1142 KindType Kind; 1143 MemAccessTy AccessTy; 1144 1145 /// The list of operands which are to be replaced. 1146 SmallVector<LSRFixup, 8> Fixups; 1147 1148 /// Keep track of the min and max offsets of the fixups. 1149 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1150 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1151 1152 /// This records whether all of the fixups using this LSRUse are outside of 1153 /// the loop, in which case some special-case heuristics may be used. 1154 bool AllFixupsOutsideLoop = true; 1155 1156 /// RigidFormula is set to true to guarantee that this use will be associated 1157 /// with a single formula--the one that initially matched. Some SCEV 1158 /// expressions cannot be expanded. This allows LSR to consider the registers 1159 /// used by those expressions without the need to expand them later after 1160 /// changing the formula. 1161 bool RigidFormula = false; 1162 1163 /// This records the widest use type for any fixup using this 1164 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1165 /// fixup widths to be equivalent, because the narrower one may be relying on 1166 /// the implicit truncation to truncate away bogus bits. 1167 Type *WidestFixupType = nullptr; 1168 1169 /// A list of ways to build a value that can satisfy this user. After the 1170 /// list is populated, one of these is selected heuristically and used to 1171 /// formulate a replacement for OperandValToReplace in UserInst. 1172 SmallVector<Formula, 12> Formulae; 1173 1174 /// The set of register candidates used by all formulae in this LSRUse. 1175 SmallPtrSet<const SCEV *, 4> Regs; 1176 1177 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1178 1179 LSRFixup &getNewFixup() { 1180 Fixups.push_back(LSRFixup()); 1181 return Fixups.back(); 1182 } 1183 1184 void pushFixup(LSRFixup &f) { 1185 Fixups.push_back(f); 1186 if (f.Offset > MaxOffset) 1187 MaxOffset = f.Offset; 1188 if (f.Offset < MinOffset) 1189 MinOffset = f.Offset; 1190 } 1191 1192 bool HasFormulaWithSameRegs(const Formula &F) const; 1193 float getNotSelectedProbability(const SCEV *Reg) const; 1194 bool InsertFormula(const Formula &F, const Loop &L); 1195 void DeleteFormula(Formula &F); 1196 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1197 1198 void print(raw_ostream &OS) const; 1199 void dump() const; 1200 }; 1201 1202 } // end anonymous namespace 1203 1204 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1205 LSRUse::KindType Kind, MemAccessTy AccessTy, 1206 GlobalValue *BaseGV, int64_t BaseOffset, 1207 bool HasBaseReg, int64_t Scale, 1208 Instruction *Fixup = nullptr); 1209 1210 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1211 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1212 return 1; 1213 if (Depth == 0) 1214 return 0; 1215 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1216 return getSetupCost(S->getStart(), Depth - 1); 1217 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1218 return getSetupCost(S->getOperand(), Depth - 1); 1219 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1220 return std::accumulate(S->op_begin(), S->op_end(), 0, 1221 [&](unsigned i, const SCEV *Reg) { 1222 return i + getSetupCost(Reg, Depth - 1); 1223 }); 1224 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1225 return getSetupCost(S->getLHS(), Depth - 1) + 1226 getSetupCost(S->getRHS(), Depth - 1); 1227 return 0; 1228 } 1229 1230 /// Tally up interesting quantities from the given register. 1231 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1232 SmallPtrSetImpl<const SCEV *> &Regs) { 1233 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1234 // If this is an addrec for another loop, it should be an invariant 1235 // with respect to L since L is the innermost loop (at least 1236 // for now LSR only handles innermost loops). 1237 if (AR->getLoop() != L) { 1238 // If the AddRec exists, consider it's register free and leave it alone. 1239 if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc()) 1240 return; 1241 1242 // It is bad to allow LSR for current loop to add induction variables 1243 // for its sibling loops. 1244 if (!AR->getLoop()->contains(L)) { 1245 Lose(); 1246 return; 1247 } 1248 1249 // Otherwise, it will be an invariant with respect to Loop L. 1250 ++C.NumRegs; 1251 return; 1252 } 1253 1254 unsigned LoopCost = 1; 1255 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1256 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1257 1258 // If the step size matches the base offset, we could use pre-indexed 1259 // addressing. 1260 if (TTI->shouldFavorBackedgeIndex(L)) { 1261 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1262 if (Step->getAPInt() == F.BaseOffset) 1263 LoopCost = 0; 1264 } 1265 1266 if (TTI->shouldFavorPostInc()) { 1267 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1268 if (isa<SCEVConstant>(LoopStep)) { 1269 const SCEV *LoopStart = AR->getStart(); 1270 if (!isa<SCEVConstant>(LoopStart) && 1271 SE->isLoopInvariant(LoopStart, L)) 1272 LoopCost = 0; 1273 } 1274 } 1275 } 1276 C.AddRecCost += LoopCost; 1277 1278 // Add the step value register, if it needs one. 1279 // TODO: The non-affine case isn't precisely modeled here. 1280 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1281 if (!Regs.count(AR->getOperand(1))) { 1282 RateRegister(F, AR->getOperand(1), Regs); 1283 if (isLoser()) 1284 return; 1285 } 1286 } 1287 } 1288 ++C.NumRegs; 1289 1290 // Rough heuristic; favor registers which don't require extra setup 1291 // instructions in the preheader. 1292 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1293 // Ensure we don't, even with the recusion limit, produce invalid costs. 1294 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1295 1296 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1297 SE->hasComputableLoopEvolution(Reg, L); 1298 } 1299 1300 /// Record this register in the set. If we haven't seen it before, rate 1301 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1302 /// one of those regs an instant loser. 1303 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1304 SmallPtrSetImpl<const SCEV *> &Regs, 1305 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1306 if (LoserRegs && LoserRegs->count(Reg)) { 1307 Lose(); 1308 return; 1309 } 1310 if (Regs.insert(Reg).second) { 1311 RateRegister(F, Reg, Regs); 1312 if (LoserRegs && isLoser()) 1313 LoserRegs->insert(Reg); 1314 } 1315 } 1316 1317 void Cost::RateFormula(const Formula &F, 1318 SmallPtrSetImpl<const SCEV *> &Regs, 1319 const DenseSet<const SCEV *> &VisitedRegs, 1320 const LSRUse &LU, 1321 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1322 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1323 // Tally up the registers. 1324 unsigned PrevAddRecCost = C.AddRecCost; 1325 unsigned PrevNumRegs = C.NumRegs; 1326 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1327 if (const SCEV *ScaledReg = F.ScaledReg) { 1328 if (VisitedRegs.count(ScaledReg)) { 1329 Lose(); 1330 return; 1331 } 1332 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1333 if (isLoser()) 1334 return; 1335 } 1336 for (const SCEV *BaseReg : F.BaseRegs) { 1337 if (VisitedRegs.count(BaseReg)) { 1338 Lose(); 1339 return; 1340 } 1341 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1342 if (isLoser()) 1343 return; 1344 } 1345 1346 // Determine how many (unfolded) adds we'll need inside the loop. 1347 size_t NumBaseParts = F.getNumRegs(); 1348 if (NumBaseParts > 1) 1349 // Do not count the base and a possible second register if the target 1350 // allows to fold 2 registers. 1351 C.NumBaseAdds += 1352 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1353 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1354 1355 // Accumulate non-free scaling amounts. 1356 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1357 1358 // Tally up the non-zero immediates. 1359 for (const LSRFixup &Fixup : LU.Fixups) { 1360 int64_t O = Fixup.Offset; 1361 int64_t Offset = (uint64_t)O + F.BaseOffset; 1362 if (F.BaseGV) 1363 C.ImmCost += 64; // Handle symbolic values conservatively. 1364 // TODO: This should probably be the pointer size. 1365 else if (Offset != 0) 1366 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1367 1368 // Check with target if this offset with this instruction is 1369 // specifically not supported. 1370 if (LU.Kind == LSRUse::Address && Offset != 0 && 1371 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1372 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1373 C.NumBaseAdds++; 1374 } 1375 1376 // If we don't count instruction cost exit here. 1377 if (!InsnsCost) { 1378 assert(isValid() && "invalid cost"); 1379 return; 1380 } 1381 1382 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1383 // additional instruction (at least fill). 1384 // TODO: Need distinguish register class? 1385 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1386 TTI->getRegisterClassForType(false, F.getType())) - 1; 1387 if (C.NumRegs > TTIRegNum) { 1388 // Cost already exceeded TTIRegNum, then only newly added register can add 1389 // new instructions. 1390 if (PrevNumRegs > TTIRegNum) 1391 C.Insns += (C.NumRegs - PrevNumRegs); 1392 else 1393 C.Insns += (C.NumRegs - TTIRegNum); 1394 } 1395 1396 // If ICmpZero formula ends with not 0, it could not be replaced by 1397 // just add or sub. We'll need to compare final result of AddRec. 1398 // That means we'll need an additional instruction. But if the target can 1399 // macro-fuse a compare with a branch, don't count this extra instruction. 1400 // For -10 + {0, +, 1}: 1401 // i = i + 1; 1402 // cmp i, 10 1403 // 1404 // For {-10, +, 1}: 1405 // i = i + 1; 1406 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1407 !TTI->canMacroFuseCmp()) 1408 C.Insns++; 1409 // Each new AddRec adds 1 instruction to calculation. 1410 C.Insns += (C.AddRecCost - PrevAddRecCost); 1411 1412 // BaseAdds adds instructions for unfolded registers. 1413 if (LU.Kind != LSRUse::ICmpZero) 1414 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1415 assert(isValid() && "invalid cost"); 1416 } 1417 1418 /// Set this cost to a losing value. 1419 void Cost::Lose() { 1420 C.Insns = std::numeric_limits<unsigned>::max(); 1421 C.NumRegs = std::numeric_limits<unsigned>::max(); 1422 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1423 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1424 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1425 C.ImmCost = std::numeric_limits<unsigned>::max(); 1426 C.SetupCost = std::numeric_limits<unsigned>::max(); 1427 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1428 } 1429 1430 /// Choose the lower cost. 1431 bool Cost::isLess(Cost &Other) { 1432 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1433 C.Insns != Other.C.Insns) 1434 return C.Insns < Other.C.Insns; 1435 return TTI->isLSRCostLess(C, Other.C); 1436 } 1437 1438 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1439 void Cost::print(raw_ostream &OS) const { 1440 if (InsnsCost) 1441 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1442 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1443 if (C.AddRecCost != 0) 1444 OS << ", with addrec cost " << C.AddRecCost; 1445 if (C.NumIVMuls != 0) 1446 OS << ", plus " << C.NumIVMuls << " IV mul" 1447 << (C.NumIVMuls == 1 ? "" : "s"); 1448 if (C.NumBaseAdds != 0) 1449 OS << ", plus " << C.NumBaseAdds << " base add" 1450 << (C.NumBaseAdds == 1 ? "" : "s"); 1451 if (C.ScaleCost != 0) 1452 OS << ", plus " << C.ScaleCost << " scale cost"; 1453 if (C.ImmCost != 0) 1454 OS << ", plus " << C.ImmCost << " imm cost"; 1455 if (C.SetupCost != 0) 1456 OS << ", plus " << C.SetupCost << " setup cost"; 1457 } 1458 1459 LLVM_DUMP_METHOD void Cost::dump() const { 1460 print(errs()); errs() << '\n'; 1461 } 1462 #endif 1463 1464 /// Test whether this fixup always uses its value outside of the given loop. 1465 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1466 // PHI nodes use their value in their incoming blocks. 1467 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1468 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1469 if (PN->getIncomingValue(i) == OperandValToReplace && 1470 L->contains(PN->getIncomingBlock(i))) 1471 return false; 1472 return true; 1473 } 1474 1475 return !L->contains(UserInst); 1476 } 1477 1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1479 void LSRFixup::print(raw_ostream &OS) const { 1480 OS << "UserInst="; 1481 // Store is common and interesting enough to be worth special-casing. 1482 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1483 OS << "store "; 1484 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1485 } else if (UserInst->getType()->isVoidTy()) 1486 OS << UserInst->getOpcodeName(); 1487 else 1488 UserInst->printAsOperand(OS, /*PrintType=*/false); 1489 1490 OS << ", OperandValToReplace="; 1491 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1492 1493 for (const Loop *PIL : PostIncLoops) { 1494 OS << ", PostIncLoop="; 1495 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1496 } 1497 1498 if (Offset != 0) 1499 OS << ", Offset=" << Offset; 1500 } 1501 1502 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1503 print(errs()); errs() << '\n'; 1504 } 1505 #endif 1506 1507 /// Test whether this use as a formula which has the same registers as the given 1508 /// formula. 1509 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1510 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1511 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1512 // Unstable sort by host order ok, because this is only used for uniquifying. 1513 llvm::sort(Key); 1514 return Uniquifier.count(Key); 1515 } 1516 1517 /// The function returns a probability of selecting formula without Reg. 1518 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1519 unsigned FNum = 0; 1520 for (const Formula &F : Formulae) 1521 if (F.referencesReg(Reg)) 1522 FNum++; 1523 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1524 } 1525 1526 /// If the given formula has not yet been inserted, add it to the list, and 1527 /// return true. Return false otherwise. The formula must be in canonical form. 1528 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1529 assert(F.isCanonical(L) && "Invalid canonical representation"); 1530 1531 if (!Formulae.empty() && RigidFormula) 1532 return false; 1533 1534 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1535 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1536 // Unstable sort by host order ok, because this is only used for uniquifying. 1537 llvm::sort(Key); 1538 1539 if (!Uniquifier.insert(Key).second) 1540 return false; 1541 1542 // Using a register to hold the value of 0 is not profitable. 1543 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1544 "Zero allocated in a scaled register!"); 1545 #ifndef NDEBUG 1546 for (const SCEV *BaseReg : F.BaseRegs) 1547 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1548 #endif 1549 1550 // Add the formula to the list. 1551 Formulae.push_back(F); 1552 1553 // Record registers now being used by this use. 1554 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1555 if (F.ScaledReg) 1556 Regs.insert(F.ScaledReg); 1557 1558 return true; 1559 } 1560 1561 /// Remove the given formula from this use's list. 1562 void LSRUse::DeleteFormula(Formula &F) { 1563 if (&F != &Formulae.back()) 1564 std::swap(F, Formulae.back()); 1565 Formulae.pop_back(); 1566 } 1567 1568 /// Recompute the Regs field, and update RegUses. 1569 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1570 // Now that we've filtered out some formulae, recompute the Regs set. 1571 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1572 Regs.clear(); 1573 for (const Formula &F : Formulae) { 1574 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1575 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1576 } 1577 1578 // Update the RegTracker. 1579 for (const SCEV *S : OldRegs) 1580 if (!Regs.count(S)) 1581 RegUses.dropRegister(S, LUIdx); 1582 } 1583 1584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1585 void LSRUse::print(raw_ostream &OS) const { 1586 OS << "LSR Use: Kind="; 1587 switch (Kind) { 1588 case Basic: OS << "Basic"; break; 1589 case Special: OS << "Special"; break; 1590 case ICmpZero: OS << "ICmpZero"; break; 1591 case Address: 1592 OS << "Address of "; 1593 if (AccessTy.MemTy->isPointerTy()) 1594 OS << "pointer"; // the full pointer type could be really verbose 1595 else { 1596 OS << *AccessTy.MemTy; 1597 } 1598 1599 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1600 } 1601 1602 OS << ", Offsets={"; 1603 bool NeedComma = false; 1604 for (const LSRFixup &Fixup : Fixups) { 1605 if (NeedComma) OS << ','; 1606 OS << Fixup.Offset; 1607 NeedComma = true; 1608 } 1609 OS << '}'; 1610 1611 if (AllFixupsOutsideLoop) 1612 OS << ", all-fixups-outside-loop"; 1613 1614 if (WidestFixupType) 1615 OS << ", widest fixup type: " << *WidestFixupType; 1616 } 1617 1618 LLVM_DUMP_METHOD void LSRUse::dump() const { 1619 print(errs()); errs() << '\n'; 1620 } 1621 #endif 1622 1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1624 LSRUse::KindType Kind, MemAccessTy AccessTy, 1625 GlobalValue *BaseGV, int64_t BaseOffset, 1626 bool HasBaseReg, int64_t Scale, 1627 Instruction *Fixup/*= nullptr*/) { 1628 switch (Kind) { 1629 case LSRUse::Address: 1630 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1631 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1632 1633 case LSRUse::ICmpZero: 1634 // There's not even a target hook for querying whether it would be legal to 1635 // fold a GV into an ICmp. 1636 if (BaseGV) 1637 return false; 1638 1639 // ICmp only has two operands; don't allow more than two non-trivial parts. 1640 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1641 return false; 1642 1643 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1644 // putting the scaled register in the other operand of the icmp. 1645 if (Scale != 0 && Scale != -1) 1646 return false; 1647 1648 // If we have low-level target information, ask the target if it can fold an 1649 // integer immediate on an icmp. 1650 if (BaseOffset != 0) { 1651 // We have one of: 1652 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1653 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1654 // Offs is the ICmp immediate. 1655 if (Scale == 0) 1656 // The cast does the right thing with 1657 // std::numeric_limits<int64_t>::min(). 1658 BaseOffset = -(uint64_t)BaseOffset; 1659 return TTI.isLegalICmpImmediate(BaseOffset); 1660 } 1661 1662 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1663 return true; 1664 1665 case LSRUse::Basic: 1666 // Only handle single-register values. 1667 return !BaseGV && Scale == 0 && BaseOffset == 0; 1668 1669 case LSRUse::Special: 1670 // Special case Basic to handle -1 scales. 1671 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1672 } 1673 1674 llvm_unreachable("Invalid LSRUse Kind!"); 1675 } 1676 1677 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1678 int64_t MinOffset, int64_t MaxOffset, 1679 LSRUse::KindType Kind, MemAccessTy AccessTy, 1680 GlobalValue *BaseGV, int64_t BaseOffset, 1681 bool HasBaseReg, int64_t Scale) { 1682 // Check for overflow. 1683 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1684 (MinOffset > 0)) 1685 return false; 1686 MinOffset = (uint64_t)BaseOffset + MinOffset; 1687 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1688 (MaxOffset > 0)) 1689 return false; 1690 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1691 1692 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1693 HasBaseReg, Scale) && 1694 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1695 HasBaseReg, Scale); 1696 } 1697 1698 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1699 int64_t MinOffset, int64_t MaxOffset, 1700 LSRUse::KindType Kind, MemAccessTy AccessTy, 1701 const Formula &F, const Loop &L) { 1702 // For the purpose of isAMCompletelyFolded either having a canonical formula 1703 // or a scale not equal to zero is correct. 1704 // Problems may arise from non canonical formulae having a scale == 0. 1705 // Strictly speaking it would best to just rely on canonical formulae. 1706 // However, when we generate the scaled formulae, we first check that the 1707 // scaling factor is profitable before computing the actual ScaledReg for 1708 // compile time sake. 1709 assert((F.isCanonical(L) || F.Scale != 0)); 1710 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1711 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1712 } 1713 1714 /// Test whether we know how to expand the current formula. 1715 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1716 int64_t MaxOffset, LSRUse::KindType Kind, 1717 MemAccessTy AccessTy, GlobalValue *BaseGV, 1718 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1719 // We know how to expand completely foldable formulae. 1720 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1721 BaseOffset, HasBaseReg, Scale) || 1722 // Or formulae that use a base register produced by a sum of base 1723 // registers. 1724 (Scale == 1 && 1725 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1726 BaseGV, BaseOffset, true, 0)); 1727 } 1728 1729 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1730 int64_t MaxOffset, LSRUse::KindType Kind, 1731 MemAccessTy AccessTy, const Formula &F) { 1732 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1733 F.BaseOffset, F.HasBaseReg, F.Scale); 1734 } 1735 1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1737 const LSRUse &LU, const Formula &F) { 1738 // Target may want to look at the user instructions. 1739 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1740 for (const LSRFixup &Fixup : LU.Fixups) 1741 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1742 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1743 F.Scale, Fixup.UserInst)) 1744 return false; 1745 return true; 1746 } 1747 1748 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1749 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1750 F.Scale); 1751 } 1752 1753 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1754 const LSRUse &LU, const Formula &F, 1755 const Loop &L) { 1756 if (!F.Scale) 1757 return 0; 1758 1759 // If the use is not completely folded in that instruction, we will have to 1760 // pay an extra cost only for scale != 1. 1761 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1762 LU.AccessTy, F, L)) 1763 return F.Scale != 1; 1764 1765 switch (LU.Kind) { 1766 case LSRUse::Address: { 1767 // Check the scaling factor cost with both the min and max offsets. 1768 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1769 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1770 F.Scale, LU.AccessTy.AddrSpace); 1771 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1772 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1773 F.Scale, LU.AccessTy.AddrSpace); 1774 1775 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1776 "Legal addressing mode has an illegal cost!"); 1777 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1778 } 1779 case LSRUse::ICmpZero: 1780 case LSRUse::Basic: 1781 case LSRUse::Special: 1782 // The use is completely folded, i.e., everything is folded into the 1783 // instruction. 1784 return 0; 1785 } 1786 1787 llvm_unreachable("Invalid LSRUse Kind!"); 1788 } 1789 1790 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1791 LSRUse::KindType Kind, MemAccessTy AccessTy, 1792 GlobalValue *BaseGV, int64_t BaseOffset, 1793 bool HasBaseReg) { 1794 // Fast-path: zero is always foldable. 1795 if (BaseOffset == 0 && !BaseGV) return true; 1796 1797 // Conservatively, create an address with an immediate and a 1798 // base and a scale. 1799 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1800 1801 // Canonicalize a scale of 1 to a base register if the formula doesn't 1802 // already have a base register. 1803 if (!HasBaseReg && Scale == 1) { 1804 Scale = 0; 1805 HasBaseReg = true; 1806 } 1807 1808 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1809 HasBaseReg, Scale); 1810 } 1811 1812 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1813 ScalarEvolution &SE, int64_t MinOffset, 1814 int64_t MaxOffset, LSRUse::KindType Kind, 1815 MemAccessTy AccessTy, const SCEV *S, 1816 bool HasBaseReg) { 1817 // Fast-path: zero is always foldable. 1818 if (S->isZero()) return true; 1819 1820 // Conservatively, create an address with an immediate and a 1821 // base and a scale. 1822 int64_t BaseOffset = ExtractImmediate(S, SE); 1823 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1824 1825 // If there's anything else involved, it's not foldable. 1826 if (!S->isZero()) return false; 1827 1828 // Fast-path: zero is always foldable. 1829 if (BaseOffset == 0 && !BaseGV) return true; 1830 1831 // Conservatively, create an address with an immediate and a 1832 // base and a scale. 1833 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1834 1835 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1836 BaseOffset, HasBaseReg, Scale); 1837 } 1838 1839 namespace { 1840 1841 /// An individual increment in a Chain of IV increments. Relate an IV user to 1842 /// an expression that computes the IV it uses from the IV used by the previous 1843 /// link in the Chain. 1844 /// 1845 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1846 /// original IVOperand. The head of the chain's IVOperand is only valid during 1847 /// chain collection, before LSR replaces IV users. During chain generation, 1848 /// IncExpr can be used to find the new IVOperand that computes the same 1849 /// expression. 1850 struct IVInc { 1851 Instruction *UserInst; 1852 Value* IVOperand; 1853 const SCEV *IncExpr; 1854 1855 IVInc(Instruction *U, Value *O, const SCEV *E) 1856 : UserInst(U), IVOperand(O), IncExpr(E) {} 1857 }; 1858 1859 // The list of IV increments in program order. We typically add the head of a 1860 // chain without finding subsequent links. 1861 struct IVChain { 1862 SmallVector<IVInc, 1> Incs; 1863 const SCEV *ExprBase = nullptr; 1864 1865 IVChain() = default; 1866 IVChain(const IVInc &Head, const SCEV *Base) 1867 : Incs(1, Head), ExprBase(Base) {} 1868 1869 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1870 1871 // Return the first increment in the chain. 1872 const_iterator begin() const { 1873 assert(!Incs.empty()); 1874 return std::next(Incs.begin()); 1875 } 1876 const_iterator end() const { 1877 return Incs.end(); 1878 } 1879 1880 // Returns true if this chain contains any increments. 1881 bool hasIncs() const { return Incs.size() >= 2; } 1882 1883 // Add an IVInc to the end of this chain. 1884 void add(const IVInc &X) { Incs.push_back(X); } 1885 1886 // Returns the last UserInst in the chain. 1887 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1888 1889 // Returns true if IncExpr can be profitably added to this chain. 1890 bool isProfitableIncrement(const SCEV *OperExpr, 1891 const SCEV *IncExpr, 1892 ScalarEvolution&); 1893 }; 1894 1895 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1896 /// between FarUsers that definitely cross IV increments and NearUsers that may 1897 /// be used between IV increments. 1898 struct ChainUsers { 1899 SmallPtrSet<Instruction*, 4> FarUsers; 1900 SmallPtrSet<Instruction*, 4> NearUsers; 1901 }; 1902 1903 /// This class holds state for the main loop strength reduction logic. 1904 class LSRInstance { 1905 IVUsers &IU; 1906 ScalarEvolution &SE; 1907 DominatorTree &DT; 1908 LoopInfo &LI; 1909 AssumptionCache &AC; 1910 TargetLibraryInfo &TLI; 1911 const TargetTransformInfo &TTI; 1912 Loop *const L; 1913 MemorySSAUpdater *MSSAU; 1914 bool FavorBackedgeIndex = false; 1915 bool Changed = false; 1916 1917 /// This is the insert position that the current loop's induction variable 1918 /// increment should be placed. In simple loops, this is the latch block's 1919 /// terminator. But in more complicated cases, this is a position which will 1920 /// dominate all the in-loop post-increment users. 1921 Instruction *IVIncInsertPos = nullptr; 1922 1923 /// Interesting factors between use strides. 1924 /// 1925 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1926 /// default, a SmallDenseSet, because we need to use the full range of 1927 /// int64_ts, and there's currently no good way of doing that with 1928 /// SmallDenseSet. 1929 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1930 1931 /// Interesting use types, to facilitate truncation reuse. 1932 SmallSetVector<Type *, 4> Types; 1933 1934 /// The list of interesting uses. 1935 mutable SmallVector<LSRUse, 16> Uses; 1936 1937 /// Track which uses use which register candidates. 1938 RegUseTracker RegUses; 1939 1940 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1941 // have more than a few IV increment chains in a loop. Missing a Chain falls 1942 // back to normal LSR behavior for those uses. 1943 static const unsigned MaxChains = 8; 1944 1945 /// IV users can form a chain of IV increments. 1946 SmallVector<IVChain, MaxChains> IVChainVec; 1947 1948 /// IV users that belong to profitable IVChains. 1949 SmallPtrSet<Use*, MaxChains> IVIncSet; 1950 1951 void OptimizeShadowIV(); 1952 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1953 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1954 void OptimizeLoopTermCond(); 1955 1956 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1957 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1958 void FinalizeChain(IVChain &Chain); 1959 void CollectChains(); 1960 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1961 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1962 1963 void CollectInterestingTypesAndFactors(); 1964 void CollectFixupsAndInitialFormulae(); 1965 1966 // Support for sharing of LSRUses between LSRFixups. 1967 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1968 UseMapTy UseMap; 1969 1970 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1971 LSRUse::KindType Kind, MemAccessTy AccessTy); 1972 1973 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1974 MemAccessTy AccessTy); 1975 1976 void DeleteUse(LSRUse &LU, size_t LUIdx); 1977 1978 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1979 1980 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1981 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1982 void CountRegisters(const Formula &F, size_t LUIdx); 1983 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1984 1985 void CollectLoopInvariantFixupsAndFormulae(); 1986 1987 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1988 unsigned Depth = 0); 1989 1990 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1991 const Formula &Base, unsigned Depth, 1992 size_t Idx, bool IsScaledReg = false); 1993 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1994 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1995 const Formula &Base, size_t Idx, 1996 bool IsScaledReg = false); 1997 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1998 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1999 const Formula &Base, 2000 const SmallVectorImpl<int64_t> &Worklist, 2001 size_t Idx, bool IsScaledReg = false); 2002 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2003 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2004 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2005 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2006 void GenerateCrossUseConstantOffsets(); 2007 void GenerateAllReuseFormulae(); 2008 2009 void FilterOutUndesirableDedicatedRegisters(); 2010 2011 size_t EstimateSearchSpaceComplexity() const; 2012 void NarrowSearchSpaceByDetectingSupersets(); 2013 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2014 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2015 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2016 void NarrowSearchSpaceByFilterPostInc(); 2017 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2018 void NarrowSearchSpaceByPickingWinnerRegs(); 2019 void NarrowSearchSpaceUsingHeuristics(); 2020 2021 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2022 Cost &SolutionCost, 2023 SmallVectorImpl<const Formula *> &Workspace, 2024 const Cost &CurCost, 2025 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2026 DenseSet<const SCEV *> &VisitedRegs) const; 2027 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2028 2029 BasicBlock::iterator 2030 HoistInsertPosition(BasicBlock::iterator IP, 2031 const SmallVectorImpl<Instruction *> &Inputs) const; 2032 BasicBlock::iterator 2033 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2034 const LSRFixup &LF, 2035 const LSRUse &LU, 2036 SCEVExpander &Rewriter) const; 2037 2038 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2039 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2040 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2041 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2042 const Formula &F, SCEVExpander &Rewriter, 2043 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2044 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2045 SCEVExpander &Rewriter, 2046 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2047 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2048 2049 public: 2050 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2051 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2052 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2053 2054 bool getChanged() const { return Changed; } 2055 2056 void print_factors_and_types(raw_ostream &OS) const; 2057 void print_fixups(raw_ostream &OS) const; 2058 void print_uses(raw_ostream &OS) const; 2059 void print(raw_ostream &OS) const; 2060 void dump() const; 2061 }; 2062 2063 } // end anonymous namespace 2064 2065 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2066 /// the cast operation. 2067 void LSRInstance::OptimizeShadowIV() { 2068 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2069 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2070 return; 2071 2072 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2073 UI != E; /* empty */) { 2074 IVUsers::const_iterator CandidateUI = UI; 2075 ++UI; 2076 Instruction *ShadowUse = CandidateUI->getUser(); 2077 Type *DestTy = nullptr; 2078 bool IsSigned = false; 2079 2080 /* If shadow use is a int->float cast then insert a second IV 2081 to eliminate this cast. 2082 2083 for (unsigned i = 0; i < n; ++i) 2084 foo((double)i); 2085 2086 is transformed into 2087 2088 double d = 0.0; 2089 for (unsigned i = 0; i < n; ++i, ++d) 2090 foo(d); 2091 */ 2092 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2093 IsSigned = false; 2094 DestTy = UCast->getDestTy(); 2095 } 2096 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2097 IsSigned = true; 2098 DestTy = SCast->getDestTy(); 2099 } 2100 if (!DestTy) continue; 2101 2102 // If target does not support DestTy natively then do not apply 2103 // this transformation. 2104 if (!TTI.isTypeLegal(DestTy)) continue; 2105 2106 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2107 if (!PH) continue; 2108 if (PH->getNumIncomingValues() != 2) continue; 2109 2110 // If the calculation in integers overflows, the result in FP type will 2111 // differ. So we only can do this transformation if we are guaranteed to not 2112 // deal with overflowing values 2113 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2114 if (!AR) continue; 2115 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2116 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2117 2118 Type *SrcTy = PH->getType(); 2119 int Mantissa = DestTy->getFPMantissaWidth(); 2120 if (Mantissa == -1) continue; 2121 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2122 continue; 2123 2124 unsigned Entry, Latch; 2125 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2126 Entry = 0; 2127 Latch = 1; 2128 } else { 2129 Entry = 1; 2130 Latch = 0; 2131 } 2132 2133 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2134 if (!Init) continue; 2135 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2136 (double)Init->getSExtValue() : 2137 (double)Init->getZExtValue()); 2138 2139 BinaryOperator *Incr = 2140 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2141 if (!Incr) continue; 2142 if (Incr->getOpcode() != Instruction::Add 2143 && Incr->getOpcode() != Instruction::Sub) 2144 continue; 2145 2146 /* Initialize new IV, double d = 0.0 in above example. */ 2147 ConstantInt *C = nullptr; 2148 if (Incr->getOperand(0) == PH) 2149 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2150 else if (Incr->getOperand(1) == PH) 2151 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2152 else 2153 continue; 2154 2155 if (!C) continue; 2156 2157 // Ignore negative constants, as the code below doesn't handle them 2158 // correctly. TODO: Remove this restriction. 2159 if (!C->getValue().isStrictlyPositive()) continue; 2160 2161 /* Add new PHINode. */ 2162 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2163 2164 /* create new increment. '++d' in above example. */ 2165 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2166 BinaryOperator *NewIncr = 2167 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2168 Instruction::FAdd : Instruction::FSub, 2169 NewPH, CFP, "IV.S.next.", Incr); 2170 2171 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2172 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2173 2174 /* Remove cast operation */ 2175 ShadowUse->replaceAllUsesWith(NewPH); 2176 ShadowUse->eraseFromParent(); 2177 Changed = true; 2178 break; 2179 } 2180 } 2181 2182 /// If Cond has an operand that is an expression of an IV, set the IV user and 2183 /// stride information and return true, otherwise return false. 2184 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2185 for (IVStrideUse &U : IU) 2186 if (U.getUser() == Cond) { 2187 // NOTE: we could handle setcc instructions with multiple uses here, but 2188 // InstCombine does it as well for simple uses, it's not clear that it 2189 // occurs enough in real life to handle. 2190 CondUse = &U; 2191 return true; 2192 } 2193 return false; 2194 } 2195 2196 /// Rewrite the loop's terminating condition if it uses a max computation. 2197 /// 2198 /// This is a narrow solution to a specific, but acute, problem. For loops 2199 /// like this: 2200 /// 2201 /// i = 0; 2202 /// do { 2203 /// p[i] = 0.0; 2204 /// } while (++i < n); 2205 /// 2206 /// the trip count isn't just 'n', because 'n' might not be positive. And 2207 /// unfortunately this can come up even for loops where the user didn't use 2208 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2209 /// will commonly be lowered like this: 2210 /// 2211 /// if (n > 0) { 2212 /// i = 0; 2213 /// do { 2214 /// p[i] = 0.0; 2215 /// } while (++i < n); 2216 /// } 2217 /// 2218 /// and then it's possible for subsequent optimization to obscure the if 2219 /// test in such a way that indvars can't find it. 2220 /// 2221 /// When indvars can't find the if test in loops like this, it creates a 2222 /// max expression, which allows it to give the loop a canonical 2223 /// induction variable: 2224 /// 2225 /// i = 0; 2226 /// max = n < 1 ? 1 : n; 2227 /// do { 2228 /// p[i] = 0.0; 2229 /// } while (++i != max); 2230 /// 2231 /// Canonical induction variables are necessary because the loop passes 2232 /// are designed around them. The most obvious example of this is the 2233 /// LoopInfo analysis, which doesn't remember trip count values. It 2234 /// expects to be able to rediscover the trip count each time it is 2235 /// needed, and it does this using a simple analysis that only succeeds if 2236 /// the loop has a canonical induction variable. 2237 /// 2238 /// However, when it comes time to generate code, the maximum operation 2239 /// can be quite costly, especially if it's inside of an outer loop. 2240 /// 2241 /// This function solves this problem by detecting this type of loop and 2242 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2243 /// the instructions for the maximum computation. 2244 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2245 // Check that the loop matches the pattern we're looking for. 2246 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2247 Cond->getPredicate() != CmpInst::ICMP_NE) 2248 return Cond; 2249 2250 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2251 if (!Sel || !Sel->hasOneUse()) return Cond; 2252 2253 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2254 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2255 return Cond; 2256 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2257 2258 // Add one to the backedge-taken count to get the trip count. 2259 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2260 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2261 2262 // Check for a max calculation that matches the pattern. There's no check 2263 // for ICMP_ULE here because the comparison would be with zero, which 2264 // isn't interesting. 2265 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2266 const SCEVNAryExpr *Max = nullptr; 2267 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2268 Pred = ICmpInst::ICMP_SLE; 2269 Max = S; 2270 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2271 Pred = ICmpInst::ICMP_SLT; 2272 Max = S; 2273 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2274 Pred = ICmpInst::ICMP_ULT; 2275 Max = U; 2276 } else { 2277 // No match; bail. 2278 return Cond; 2279 } 2280 2281 // To handle a max with more than two operands, this optimization would 2282 // require additional checking and setup. 2283 if (Max->getNumOperands() != 2) 2284 return Cond; 2285 2286 const SCEV *MaxLHS = Max->getOperand(0); 2287 const SCEV *MaxRHS = Max->getOperand(1); 2288 2289 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2290 // for a comparison with 1. For <= and >=, a comparison with zero. 2291 if (!MaxLHS || 2292 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2293 return Cond; 2294 2295 // Check the relevant induction variable for conformance to 2296 // the pattern. 2297 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2298 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2299 if (!AR || !AR->isAffine() || 2300 AR->getStart() != One || 2301 AR->getStepRecurrence(SE) != One) 2302 return Cond; 2303 2304 assert(AR->getLoop() == L && 2305 "Loop condition operand is an addrec in a different loop!"); 2306 2307 // Check the right operand of the select, and remember it, as it will 2308 // be used in the new comparison instruction. 2309 Value *NewRHS = nullptr; 2310 if (ICmpInst::isTrueWhenEqual(Pred)) { 2311 // Look for n+1, and grab n. 2312 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2313 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2314 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2315 NewRHS = BO->getOperand(0); 2316 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2317 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2318 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2319 NewRHS = BO->getOperand(0); 2320 if (!NewRHS) 2321 return Cond; 2322 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2323 NewRHS = Sel->getOperand(1); 2324 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2325 NewRHS = Sel->getOperand(2); 2326 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2327 NewRHS = SU->getValue(); 2328 else 2329 // Max doesn't match expected pattern. 2330 return Cond; 2331 2332 // Determine the new comparison opcode. It may be signed or unsigned, 2333 // and the original comparison may be either equality or inequality. 2334 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2335 Pred = CmpInst::getInversePredicate(Pred); 2336 2337 // Ok, everything looks ok to change the condition into an SLT or SGE and 2338 // delete the max calculation. 2339 ICmpInst *NewCond = 2340 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2341 2342 // Delete the max calculation instructions. 2343 Cond->replaceAllUsesWith(NewCond); 2344 CondUse->setUser(NewCond); 2345 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2346 Cond->eraseFromParent(); 2347 Sel->eraseFromParent(); 2348 if (Cmp->use_empty()) 2349 Cmp->eraseFromParent(); 2350 return NewCond; 2351 } 2352 2353 /// Change loop terminating condition to use the postinc iv when possible. 2354 void 2355 LSRInstance::OptimizeLoopTermCond() { 2356 SmallPtrSet<Instruction *, 4> PostIncs; 2357 2358 // We need a different set of heuristics for rotated and non-rotated loops. 2359 // If a loop is rotated then the latch is also the backedge, so inserting 2360 // post-inc expressions just before the latch is ideal. To reduce live ranges 2361 // it also makes sense to rewrite terminating conditions to use post-inc 2362 // expressions. 2363 // 2364 // If the loop is not rotated then the latch is not a backedge; the latch 2365 // check is done in the loop head. Adding post-inc expressions before the 2366 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2367 // in the loop body. In this case we do *not* want to use post-inc expressions 2368 // in the latch check, and we want to insert post-inc expressions before 2369 // the backedge. 2370 BasicBlock *LatchBlock = L->getLoopLatch(); 2371 SmallVector<BasicBlock*, 8> ExitingBlocks; 2372 L->getExitingBlocks(ExitingBlocks); 2373 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2374 return LatchBlock != BB; 2375 })) { 2376 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2377 IVIncInsertPos = LatchBlock->getTerminator(); 2378 return; 2379 } 2380 2381 // Otherwise treat this as a rotated loop. 2382 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2383 // Get the terminating condition for the loop if possible. If we 2384 // can, we want to change it to use a post-incremented version of its 2385 // induction variable, to allow coalescing the live ranges for the IV into 2386 // one register value. 2387 2388 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2389 if (!TermBr) 2390 continue; 2391 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2392 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2393 continue; 2394 2395 // Search IVUsesByStride to find Cond's IVUse if there is one. 2396 IVStrideUse *CondUse = nullptr; 2397 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2398 if (!FindIVUserForCond(Cond, CondUse)) 2399 continue; 2400 2401 // If the trip count is computed in terms of a max (due to ScalarEvolution 2402 // being unable to find a sufficient guard, for example), change the loop 2403 // comparison to use SLT or ULT instead of NE. 2404 // One consequence of doing this now is that it disrupts the count-down 2405 // optimization. That's not always a bad thing though, because in such 2406 // cases it may still be worthwhile to avoid a max. 2407 Cond = OptimizeMax(Cond, CondUse); 2408 2409 // If this exiting block dominates the latch block, it may also use 2410 // the post-inc value if it won't be shared with other uses. 2411 // Check for dominance. 2412 if (!DT.dominates(ExitingBlock, LatchBlock)) 2413 continue; 2414 2415 // Conservatively avoid trying to use the post-inc value in non-latch 2416 // exits if there may be pre-inc users in intervening blocks. 2417 if (LatchBlock != ExitingBlock) 2418 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2419 // Test if the use is reachable from the exiting block. This dominator 2420 // query is a conservative approximation of reachability. 2421 if (&*UI != CondUse && 2422 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2423 // Conservatively assume there may be reuse if the quotient of their 2424 // strides could be a legal scale. 2425 const SCEV *A = IU.getStride(*CondUse, L); 2426 const SCEV *B = IU.getStride(*UI, L); 2427 if (!A || !B) continue; 2428 if (SE.getTypeSizeInBits(A->getType()) != 2429 SE.getTypeSizeInBits(B->getType())) { 2430 if (SE.getTypeSizeInBits(A->getType()) > 2431 SE.getTypeSizeInBits(B->getType())) 2432 B = SE.getSignExtendExpr(B, A->getType()); 2433 else 2434 A = SE.getSignExtendExpr(A, B->getType()); 2435 } 2436 if (const SCEVConstant *D = 2437 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2438 const ConstantInt *C = D->getValue(); 2439 // Stride of one or negative one can have reuse with non-addresses. 2440 if (C->isOne() || C->isMinusOne()) 2441 goto decline_post_inc; 2442 // Avoid weird situations. 2443 if (C->getValue().getMinSignedBits() >= 64 || 2444 C->getValue().isMinSignedValue()) 2445 goto decline_post_inc; 2446 // Check for possible scaled-address reuse. 2447 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2448 MemAccessTy AccessTy = getAccessType( 2449 TTI, UI->getUser(), UI->getOperandValToReplace()); 2450 int64_t Scale = C->getSExtValue(); 2451 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2452 /*BaseOffset=*/0, 2453 /*HasBaseReg=*/false, Scale, 2454 AccessTy.AddrSpace)) 2455 goto decline_post_inc; 2456 Scale = -Scale; 2457 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2458 /*BaseOffset=*/0, 2459 /*HasBaseReg=*/false, Scale, 2460 AccessTy.AddrSpace)) 2461 goto decline_post_inc; 2462 } 2463 } 2464 } 2465 2466 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2467 << *Cond << '\n'); 2468 2469 // It's possible for the setcc instruction to be anywhere in the loop, and 2470 // possible for it to have multiple users. If it is not immediately before 2471 // the exiting block branch, move it. 2472 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2473 if (Cond->hasOneUse()) { 2474 Cond->moveBefore(TermBr); 2475 } else { 2476 // Clone the terminating condition and insert into the loopend. 2477 ICmpInst *OldCond = Cond; 2478 Cond = cast<ICmpInst>(Cond->clone()); 2479 Cond->setName(L->getHeader()->getName() + ".termcond"); 2480 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2481 2482 // Clone the IVUse, as the old use still exists! 2483 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2484 TermBr->replaceUsesOfWith(OldCond, Cond); 2485 } 2486 } 2487 2488 // If we get to here, we know that we can transform the setcc instruction to 2489 // use the post-incremented version of the IV, allowing us to coalesce the 2490 // live ranges for the IV correctly. 2491 CondUse->transformToPostInc(L); 2492 Changed = true; 2493 2494 PostIncs.insert(Cond); 2495 decline_post_inc:; 2496 } 2497 2498 // Determine an insertion point for the loop induction variable increment. It 2499 // must dominate all the post-inc comparisons we just set up, and it must 2500 // dominate the loop latch edge. 2501 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2502 for (Instruction *Inst : PostIncs) { 2503 BasicBlock *BB = 2504 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2505 Inst->getParent()); 2506 if (BB == Inst->getParent()) 2507 IVIncInsertPos = Inst; 2508 else if (BB != IVIncInsertPos->getParent()) 2509 IVIncInsertPos = BB->getTerminator(); 2510 } 2511 } 2512 2513 /// Determine if the given use can accommodate a fixup at the given offset and 2514 /// other details. If so, update the use and return true. 2515 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2516 bool HasBaseReg, LSRUse::KindType Kind, 2517 MemAccessTy AccessTy) { 2518 int64_t NewMinOffset = LU.MinOffset; 2519 int64_t NewMaxOffset = LU.MaxOffset; 2520 MemAccessTy NewAccessTy = AccessTy; 2521 2522 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2523 // something conservative, however this can pessimize in the case that one of 2524 // the uses will have all its uses outside the loop, for example. 2525 if (LU.Kind != Kind) 2526 return false; 2527 2528 // Check for a mismatched access type, and fall back conservatively as needed. 2529 // TODO: Be less conservative when the type is similar and can use the same 2530 // addressing modes. 2531 if (Kind == LSRUse::Address) { 2532 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2533 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2534 AccessTy.AddrSpace); 2535 } 2536 } 2537 2538 // Conservatively assume HasBaseReg is true for now. 2539 if (NewOffset < LU.MinOffset) { 2540 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2541 LU.MaxOffset - NewOffset, HasBaseReg)) 2542 return false; 2543 NewMinOffset = NewOffset; 2544 } else if (NewOffset > LU.MaxOffset) { 2545 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2546 NewOffset - LU.MinOffset, HasBaseReg)) 2547 return false; 2548 NewMaxOffset = NewOffset; 2549 } 2550 2551 // Update the use. 2552 LU.MinOffset = NewMinOffset; 2553 LU.MaxOffset = NewMaxOffset; 2554 LU.AccessTy = NewAccessTy; 2555 return true; 2556 } 2557 2558 /// Return an LSRUse index and an offset value for a fixup which needs the given 2559 /// expression, with the given kind and optional access type. Either reuse an 2560 /// existing use or create a new one, as needed. 2561 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2562 LSRUse::KindType Kind, 2563 MemAccessTy AccessTy) { 2564 const SCEV *Copy = Expr; 2565 int64_t Offset = ExtractImmediate(Expr, SE); 2566 2567 // Basic uses can't accept any offset, for example. 2568 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2569 Offset, /*HasBaseReg=*/ true)) { 2570 Expr = Copy; 2571 Offset = 0; 2572 } 2573 2574 std::pair<UseMapTy::iterator, bool> P = 2575 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2576 if (!P.second) { 2577 // A use already existed with this base. 2578 size_t LUIdx = P.first->second; 2579 LSRUse &LU = Uses[LUIdx]; 2580 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2581 // Reuse this use. 2582 return std::make_pair(LUIdx, Offset); 2583 } 2584 2585 // Create a new use. 2586 size_t LUIdx = Uses.size(); 2587 P.first->second = LUIdx; 2588 Uses.push_back(LSRUse(Kind, AccessTy)); 2589 LSRUse &LU = Uses[LUIdx]; 2590 2591 LU.MinOffset = Offset; 2592 LU.MaxOffset = Offset; 2593 return std::make_pair(LUIdx, Offset); 2594 } 2595 2596 /// Delete the given use from the Uses list. 2597 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2598 if (&LU != &Uses.back()) 2599 std::swap(LU, Uses.back()); 2600 Uses.pop_back(); 2601 2602 // Update RegUses. 2603 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2604 } 2605 2606 /// Look for a use distinct from OrigLU which is has a formula that has the same 2607 /// registers as the given formula. 2608 LSRUse * 2609 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2610 const LSRUse &OrigLU) { 2611 // Search all uses for the formula. This could be more clever. 2612 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2613 LSRUse &LU = Uses[LUIdx]; 2614 // Check whether this use is close enough to OrigLU, to see whether it's 2615 // worthwhile looking through its formulae. 2616 // Ignore ICmpZero uses because they may contain formulae generated by 2617 // GenerateICmpZeroScales, in which case adding fixup offsets may 2618 // be invalid. 2619 if (&LU != &OrigLU && 2620 LU.Kind != LSRUse::ICmpZero && 2621 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2622 LU.WidestFixupType == OrigLU.WidestFixupType && 2623 LU.HasFormulaWithSameRegs(OrigF)) { 2624 // Scan through this use's formulae. 2625 for (const Formula &F : LU.Formulae) { 2626 // Check to see if this formula has the same registers and symbols 2627 // as OrigF. 2628 if (F.BaseRegs == OrigF.BaseRegs && 2629 F.ScaledReg == OrigF.ScaledReg && 2630 F.BaseGV == OrigF.BaseGV && 2631 F.Scale == OrigF.Scale && 2632 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2633 if (F.BaseOffset == 0) 2634 return &LU; 2635 // This is the formula where all the registers and symbols matched; 2636 // there aren't going to be any others. Since we declined it, we 2637 // can skip the rest of the formulae and proceed to the next LSRUse. 2638 break; 2639 } 2640 } 2641 } 2642 } 2643 2644 // Nothing looked good. 2645 return nullptr; 2646 } 2647 2648 void LSRInstance::CollectInterestingTypesAndFactors() { 2649 SmallSetVector<const SCEV *, 4> Strides; 2650 2651 // Collect interesting types and strides. 2652 SmallVector<const SCEV *, 4> Worklist; 2653 for (const IVStrideUse &U : IU) { 2654 const SCEV *Expr = IU.getExpr(U); 2655 2656 // Collect interesting types. 2657 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2658 2659 // Add strides for mentioned loops. 2660 Worklist.push_back(Expr); 2661 do { 2662 const SCEV *S = Worklist.pop_back_val(); 2663 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2664 if (AR->getLoop() == L) 2665 Strides.insert(AR->getStepRecurrence(SE)); 2666 Worklist.push_back(AR->getStart()); 2667 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2668 Worklist.append(Add->op_begin(), Add->op_end()); 2669 } 2670 } while (!Worklist.empty()); 2671 } 2672 2673 // Compute interesting factors from the set of interesting strides. 2674 for (SmallSetVector<const SCEV *, 4>::const_iterator 2675 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2676 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2677 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2678 const SCEV *OldStride = *I; 2679 const SCEV *NewStride = *NewStrideIter; 2680 2681 if (SE.getTypeSizeInBits(OldStride->getType()) != 2682 SE.getTypeSizeInBits(NewStride->getType())) { 2683 if (SE.getTypeSizeInBits(OldStride->getType()) > 2684 SE.getTypeSizeInBits(NewStride->getType())) 2685 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2686 else 2687 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2688 } 2689 if (const SCEVConstant *Factor = 2690 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2691 SE, true))) { 2692 if (Factor->getAPInt().getMinSignedBits() <= 64) 2693 Factors.insert(Factor->getAPInt().getSExtValue()); 2694 } else if (const SCEVConstant *Factor = 2695 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2696 NewStride, 2697 SE, true))) { 2698 if (Factor->getAPInt().getMinSignedBits() <= 64) 2699 Factors.insert(Factor->getAPInt().getSExtValue()); 2700 } 2701 } 2702 2703 // If all uses use the same type, don't bother looking for truncation-based 2704 // reuse. 2705 if (Types.size() == 1) 2706 Types.clear(); 2707 2708 LLVM_DEBUG(print_factors_and_types(dbgs())); 2709 } 2710 2711 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2712 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2713 /// IVStrideUses, we could partially skip this. 2714 static User::op_iterator 2715 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2716 Loop *L, ScalarEvolution &SE) { 2717 for(; OI != OE; ++OI) { 2718 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2719 if (!SE.isSCEVable(Oper->getType())) 2720 continue; 2721 2722 if (const SCEVAddRecExpr *AR = 2723 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2724 if (AR->getLoop() == L) 2725 break; 2726 } 2727 } 2728 } 2729 return OI; 2730 } 2731 2732 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2733 /// a convenient helper. 2734 static Value *getWideOperand(Value *Oper) { 2735 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2736 return Trunc->getOperand(0); 2737 return Oper; 2738 } 2739 2740 /// Return true if we allow an IV chain to include both types. 2741 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2742 Type *LType = LVal->getType(); 2743 Type *RType = RVal->getType(); 2744 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2745 // Different address spaces means (possibly) 2746 // different types of the pointer implementation, 2747 // e.g. i16 vs i32 so disallow that. 2748 (LType->getPointerAddressSpace() == 2749 RType->getPointerAddressSpace())); 2750 } 2751 2752 /// Return an approximation of this SCEV expression's "base", or NULL for any 2753 /// constant. Returning the expression itself is conservative. Returning a 2754 /// deeper subexpression is more precise and valid as long as it isn't less 2755 /// complex than another subexpression. For expressions involving multiple 2756 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2757 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2758 /// IVInc==b-a. 2759 /// 2760 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2761 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2762 static const SCEV *getExprBase(const SCEV *S) { 2763 switch (S->getSCEVType()) { 2764 default: // uncluding scUnknown. 2765 return S; 2766 case scConstant: 2767 return nullptr; 2768 case scTruncate: 2769 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2770 case scZeroExtend: 2771 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2772 case scSignExtend: 2773 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2774 case scAddExpr: { 2775 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2776 // there's nothing more complex. 2777 // FIXME: not sure if we want to recognize negation. 2778 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2779 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2780 E(Add->op_begin()); I != E; ++I) { 2781 const SCEV *SubExpr = *I; 2782 if (SubExpr->getSCEVType() == scAddExpr) 2783 return getExprBase(SubExpr); 2784 2785 if (SubExpr->getSCEVType() != scMulExpr) 2786 return SubExpr; 2787 } 2788 return S; // all operands are scaled, be conservative. 2789 } 2790 case scAddRecExpr: 2791 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2792 } 2793 llvm_unreachable("Unknown SCEV kind!"); 2794 } 2795 2796 /// Return true if the chain increment is profitable to expand into a loop 2797 /// invariant value, which may require its own register. A profitable chain 2798 /// increment will be an offset relative to the same base. We allow such offsets 2799 /// to potentially be used as chain increment as long as it's not obviously 2800 /// expensive to expand using real instructions. 2801 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2802 const SCEV *IncExpr, 2803 ScalarEvolution &SE) { 2804 // Aggressively form chains when -stress-ivchain. 2805 if (StressIVChain) 2806 return true; 2807 2808 // Do not replace a constant offset from IV head with a nonconstant IV 2809 // increment. 2810 if (!isa<SCEVConstant>(IncExpr)) { 2811 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2812 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2813 return false; 2814 } 2815 2816 SmallPtrSet<const SCEV*, 8> Processed; 2817 return !isHighCostExpansion(IncExpr, Processed, SE); 2818 } 2819 2820 /// Return true if the number of registers needed for the chain is estimated to 2821 /// be less than the number required for the individual IV users. First prohibit 2822 /// any IV users that keep the IV live across increments (the Users set should 2823 /// be empty). Next count the number and type of increments in the chain. 2824 /// 2825 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2826 /// effectively use postinc addressing modes. Only consider it profitable it the 2827 /// increments can be computed in fewer registers when chained. 2828 /// 2829 /// TODO: Consider IVInc free if it's already used in another chains. 2830 static bool isProfitableChain(IVChain &Chain, 2831 SmallPtrSetImpl<Instruction *> &Users, 2832 ScalarEvolution &SE, 2833 const TargetTransformInfo &TTI) { 2834 if (StressIVChain) 2835 return true; 2836 2837 if (!Chain.hasIncs()) 2838 return false; 2839 2840 if (!Users.empty()) { 2841 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2842 for (Instruction *Inst 2843 : Users) { dbgs() << " " << *Inst << "\n"; }); 2844 return false; 2845 } 2846 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2847 2848 // The chain itself may require a register, so intialize cost to 1. 2849 int cost = 1; 2850 2851 // A complete chain likely eliminates the need for keeping the original IV in 2852 // a register. LSR does not currently know how to form a complete chain unless 2853 // the header phi already exists. 2854 if (isa<PHINode>(Chain.tailUserInst()) 2855 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2856 --cost; 2857 } 2858 const SCEV *LastIncExpr = nullptr; 2859 unsigned NumConstIncrements = 0; 2860 unsigned NumVarIncrements = 0; 2861 unsigned NumReusedIncrements = 0; 2862 2863 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2864 return true; 2865 2866 for (const IVInc &Inc : Chain) { 2867 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2868 return true; 2869 if (Inc.IncExpr->isZero()) 2870 continue; 2871 2872 // Incrementing by zero or some constant is neutral. We assume constants can 2873 // be folded into an addressing mode or an add's immediate operand. 2874 if (isa<SCEVConstant>(Inc.IncExpr)) { 2875 ++NumConstIncrements; 2876 continue; 2877 } 2878 2879 if (Inc.IncExpr == LastIncExpr) 2880 ++NumReusedIncrements; 2881 else 2882 ++NumVarIncrements; 2883 2884 LastIncExpr = Inc.IncExpr; 2885 } 2886 // An IV chain with a single increment is handled by LSR's postinc 2887 // uses. However, a chain with multiple increments requires keeping the IV's 2888 // value live longer than it needs to be if chained. 2889 if (NumConstIncrements > 1) 2890 --cost; 2891 2892 // Materializing increment expressions in the preheader that didn't exist in 2893 // the original code may cost a register. For example, sign-extended array 2894 // indices can produce ridiculous increments like this: 2895 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2896 cost += NumVarIncrements; 2897 2898 // Reusing variable increments likely saves a register to hold the multiple of 2899 // the stride. 2900 cost -= NumReusedIncrements; 2901 2902 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2903 << "\n"); 2904 2905 return cost < 0; 2906 } 2907 2908 /// Add this IV user to an existing chain or make it the head of a new chain. 2909 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2910 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2911 // When IVs are used as types of varying widths, they are generally converted 2912 // to a wider type with some uses remaining narrow under a (free) trunc. 2913 Value *const NextIV = getWideOperand(IVOper); 2914 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2915 const SCEV *const OperExprBase = getExprBase(OperExpr); 2916 2917 // Visit all existing chains. Check if its IVOper can be computed as a 2918 // profitable loop invariant increment from the last link in the Chain. 2919 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2920 const SCEV *LastIncExpr = nullptr; 2921 for (; ChainIdx < NChains; ++ChainIdx) { 2922 IVChain &Chain = IVChainVec[ChainIdx]; 2923 2924 // Prune the solution space aggressively by checking that both IV operands 2925 // are expressions that operate on the same unscaled SCEVUnknown. This 2926 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2927 // first avoids creating extra SCEV expressions. 2928 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2929 continue; 2930 2931 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2932 if (!isCompatibleIVType(PrevIV, NextIV)) 2933 continue; 2934 2935 // A phi node terminates a chain. 2936 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2937 continue; 2938 2939 // The increment must be loop-invariant so it can be kept in a register. 2940 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2941 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2942 if (!SE.isLoopInvariant(IncExpr, L)) 2943 continue; 2944 2945 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2946 LastIncExpr = IncExpr; 2947 break; 2948 } 2949 } 2950 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2951 // bother for phi nodes, because they must be last in the chain. 2952 if (ChainIdx == NChains) { 2953 if (isa<PHINode>(UserInst)) 2954 return; 2955 if (NChains >= MaxChains && !StressIVChain) { 2956 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2957 return; 2958 } 2959 LastIncExpr = OperExpr; 2960 // IVUsers may have skipped over sign/zero extensions. We don't currently 2961 // attempt to form chains involving extensions unless they can be hoisted 2962 // into this loop's AddRec. 2963 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2964 return; 2965 ++NChains; 2966 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2967 OperExprBase)); 2968 ChainUsersVec.resize(NChains); 2969 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2970 << ") IV=" << *LastIncExpr << "\n"); 2971 } else { 2972 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2973 << ") IV+" << *LastIncExpr << "\n"); 2974 // Add this IV user to the end of the chain. 2975 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2976 } 2977 IVChain &Chain = IVChainVec[ChainIdx]; 2978 2979 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2980 // This chain's NearUsers become FarUsers. 2981 if (!LastIncExpr->isZero()) { 2982 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2983 NearUsers.end()); 2984 NearUsers.clear(); 2985 } 2986 2987 // All other uses of IVOperand become near uses of the chain. 2988 // We currently ignore intermediate values within SCEV expressions, assuming 2989 // they will eventually be used be the current chain, or can be computed 2990 // from one of the chain increments. To be more precise we could 2991 // transitively follow its user and only add leaf IV users to the set. 2992 for (User *U : IVOper->users()) { 2993 Instruction *OtherUse = dyn_cast<Instruction>(U); 2994 if (!OtherUse) 2995 continue; 2996 // Uses in the chain will no longer be uses if the chain is formed. 2997 // Include the head of the chain in this iteration (not Chain.begin()). 2998 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2999 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3000 for( ; IncIter != IncEnd; ++IncIter) { 3001 if (IncIter->UserInst == OtherUse) 3002 break; 3003 } 3004 if (IncIter != IncEnd) 3005 continue; 3006 3007 if (SE.isSCEVable(OtherUse->getType()) 3008 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3009 && IU.isIVUserOrOperand(OtherUse)) { 3010 continue; 3011 } 3012 NearUsers.insert(OtherUse); 3013 } 3014 3015 // Since this user is part of the chain, it's no longer considered a use 3016 // of the chain. 3017 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3018 } 3019 3020 /// Populate the vector of Chains. 3021 /// 3022 /// This decreases ILP at the architecture level. Targets with ample registers, 3023 /// multiple memory ports, and no register renaming probably don't want 3024 /// this. However, such targets should probably disable LSR altogether. 3025 /// 3026 /// The job of LSR is to make a reasonable choice of induction variables across 3027 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3028 /// ILP *within the loop* if the target wants it. 3029 /// 3030 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3031 /// will not reorder memory operations, it will recognize this as a chain, but 3032 /// will generate redundant IV increments. Ideally this would be corrected later 3033 /// by a smart scheduler: 3034 /// = A[i] 3035 /// = A[i+x] 3036 /// A[i] = 3037 /// A[i+x] = 3038 /// 3039 /// TODO: Walk the entire domtree within this loop, not just the path to the 3040 /// loop latch. This will discover chains on side paths, but requires 3041 /// maintaining multiple copies of the Chains state. 3042 void LSRInstance::CollectChains() { 3043 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3044 SmallVector<ChainUsers, 8> ChainUsersVec; 3045 3046 SmallVector<BasicBlock *,8> LatchPath; 3047 BasicBlock *LoopHeader = L->getHeader(); 3048 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3049 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3050 LatchPath.push_back(Rung->getBlock()); 3051 } 3052 LatchPath.push_back(LoopHeader); 3053 3054 // Walk the instruction stream from the loop header to the loop latch. 3055 for (BasicBlock *BB : reverse(LatchPath)) { 3056 for (Instruction &I : *BB) { 3057 // Skip instructions that weren't seen by IVUsers analysis. 3058 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3059 continue; 3060 3061 // Ignore users that are part of a SCEV expression. This way we only 3062 // consider leaf IV Users. This effectively rediscovers a portion of 3063 // IVUsers analysis but in program order this time. 3064 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3065 continue; 3066 3067 // Remove this instruction from any NearUsers set it may be in. 3068 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3069 ChainIdx < NChains; ++ChainIdx) { 3070 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3071 } 3072 // Search for operands that can be chained. 3073 SmallPtrSet<Instruction*, 4> UniqueOperands; 3074 User::op_iterator IVOpEnd = I.op_end(); 3075 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3076 while (IVOpIter != IVOpEnd) { 3077 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3078 if (UniqueOperands.insert(IVOpInst).second) 3079 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3080 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3081 } 3082 } // Continue walking down the instructions. 3083 } // Continue walking down the domtree. 3084 // Visit phi backedges to determine if the chain can generate the IV postinc. 3085 for (PHINode &PN : L->getHeader()->phis()) { 3086 if (!SE.isSCEVable(PN.getType())) 3087 continue; 3088 3089 Instruction *IncV = 3090 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3091 if (IncV) 3092 ChainInstruction(&PN, IncV, ChainUsersVec); 3093 } 3094 // Remove any unprofitable chains. 3095 unsigned ChainIdx = 0; 3096 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3097 UsersIdx < NChains; ++UsersIdx) { 3098 if (!isProfitableChain(IVChainVec[UsersIdx], 3099 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3100 continue; 3101 // Preserve the chain at UsesIdx. 3102 if (ChainIdx != UsersIdx) 3103 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3104 FinalizeChain(IVChainVec[ChainIdx]); 3105 ++ChainIdx; 3106 } 3107 IVChainVec.resize(ChainIdx); 3108 } 3109 3110 void LSRInstance::FinalizeChain(IVChain &Chain) { 3111 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3112 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3113 3114 for (const IVInc &Inc : Chain) { 3115 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3116 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3117 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3118 IVIncSet.insert(UseI); 3119 } 3120 } 3121 3122 /// Return true if the IVInc can be folded into an addressing mode. 3123 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3124 Value *Operand, const TargetTransformInfo &TTI) { 3125 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3126 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3127 return false; 3128 3129 if (IncConst->getAPInt().getMinSignedBits() > 64) 3130 return false; 3131 3132 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3133 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3134 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3135 IncOffset, /*HasBaseReg=*/false)) 3136 return false; 3137 3138 return true; 3139 } 3140 3141 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3142 /// user's operand from the previous IV user's operand. 3143 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3144 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3145 // Find the new IVOperand for the head of the chain. It may have been replaced 3146 // by LSR. 3147 const IVInc &Head = Chain.Incs[0]; 3148 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3149 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3150 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3151 IVOpEnd, L, SE); 3152 Value *IVSrc = nullptr; 3153 while (IVOpIter != IVOpEnd) { 3154 IVSrc = getWideOperand(*IVOpIter); 3155 3156 // If this operand computes the expression that the chain needs, we may use 3157 // it. (Check this after setting IVSrc which is used below.) 3158 // 3159 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3160 // narrow for the chain, so we can no longer use it. We do allow using a 3161 // wider phi, assuming the LSR checked for free truncation. In that case we 3162 // should already have a truncate on this operand such that 3163 // getSCEV(IVSrc) == IncExpr. 3164 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3165 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3166 break; 3167 } 3168 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3169 } 3170 if (IVOpIter == IVOpEnd) { 3171 // Gracefully give up on this chain. 3172 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3173 return; 3174 } 3175 assert(IVSrc && "Failed to find IV chain source"); 3176 3177 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3178 Type *IVTy = IVSrc->getType(); 3179 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3180 const SCEV *LeftOverExpr = nullptr; 3181 for (const IVInc &Inc : Chain) { 3182 Instruction *InsertPt = Inc.UserInst; 3183 if (isa<PHINode>(InsertPt)) 3184 InsertPt = L->getLoopLatch()->getTerminator(); 3185 3186 // IVOper will replace the current IV User's operand. IVSrc is the IV 3187 // value currently held in a register. 3188 Value *IVOper = IVSrc; 3189 if (!Inc.IncExpr->isZero()) { 3190 // IncExpr was the result of subtraction of two narrow values, so must 3191 // be signed. 3192 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3193 LeftOverExpr = LeftOverExpr ? 3194 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3195 } 3196 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3197 // Expand the IV increment. 3198 Rewriter.clearPostInc(); 3199 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3200 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3201 SE.getUnknown(IncV)); 3202 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3203 3204 // If an IV increment can't be folded, use it as the next IV value. 3205 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3206 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3207 IVSrc = IVOper; 3208 LeftOverExpr = nullptr; 3209 } 3210 } 3211 Type *OperTy = Inc.IVOperand->getType(); 3212 if (IVTy != OperTy) { 3213 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3214 "cannot extend a chained IV"); 3215 IRBuilder<> Builder(InsertPt); 3216 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3217 } 3218 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3219 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3220 DeadInsts.emplace_back(OperandIsInstr); 3221 } 3222 // If LSR created a new, wider phi, we may also replace its postinc. We only 3223 // do this if we also found a wide value for the head of the chain. 3224 if (isa<PHINode>(Chain.tailUserInst())) { 3225 for (PHINode &Phi : L->getHeader()->phis()) { 3226 if (!isCompatibleIVType(&Phi, IVSrc)) 3227 continue; 3228 Instruction *PostIncV = dyn_cast<Instruction>( 3229 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3230 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3231 continue; 3232 Value *IVOper = IVSrc; 3233 Type *PostIncTy = PostIncV->getType(); 3234 if (IVTy != PostIncTy) { 3235 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3236 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3237 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3238 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3239 } 3240 Phi.replaceUsesOfWith(PostIncV, IVOper); 3241 DeadInsts.emplace_back(PostIncV); 3242 } 3243 } 3244 } 3245 3246 void LSRInstance::CollectFixupsAndInitialFormulae() { 3247 BranchInst *ExitBranch = nullptr; 3248 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3249 3250 for (const IVStrideUse &U : IU) { 3251 Instruction *UserInst = U.getUser(); 3252 // Skip IV users that are part of profitable IV Chains. 3253 User::op_iterator UseI = 3254 find(UserInst->operands(), U.getOperandValToReplace()); 3255 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3256 if (IVIncSet.count(UseI)) { 3257 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3258 continue; 3259 } 3260 3261 LSRUse::KindType Kind = LSRUse::Basic; 3262 MemAccessTy AccessTy; 3263 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3264 Kind = LSRUse::Address; 3265 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3266 } 3267 3268 const SCEV *S = IU.getExpr(U); 3269 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3270 3271 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3272 // (N - i == 0), and this allows (N - i) to be the expression that we work 3273 // with rather than just N or i, so we can consider the register 3274 // requirements for both N and i at the same time. Limiting this code to 3275 // equality icmps is not a problem because all interesting loops use 3276 // equality icmps, thanks to IndVarSimplify. 3277 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3278 // If CI can be saved in some target, like replaced inside hardware loop 3279 // in PowerPC, no need to generate initial formulae for it. 3280 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3281 continue; 3282 if (CI->isEquality()) { 3283 // Swap the operands if needed to put the OperandValToReplace on the 3284 // left, for consistency. 3285 Value *NV = CI->getOperand(1); 3286 if (NV == U.getOperandValToReplace()) { 3287 CI->setOperand(1, CI->getOperand(0)); 3288 CI->setOperand(0, NV); 3289 NV = CI->getOperand(1); 3290 Changed = true; 3291 } 3292 3293 // x == y --> x - y == 0 3294 const SCEV *N = SE.getSCEV(NV); 3295 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3296 // S is normalized, so normalize N before folding it into S 3297 // to keep the result normalized. 3298 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3299 Kind = LSRUse::ICmpZero; 3300 S = SE.getMinusSCEV(N, S); 3301 } 3302 3303 // -1 and the negations of all interesting strides (except the negation 3304 // of -1) are now also interesting. 3305 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3306 if (Factors[i] != -1) 3307 Factors.insert(-(uint64_t)Factors[i]); 3308 Factors.insert(-1); 3309 } 3310 } 3311 3312 // Get or create an LSRUse. 3313 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3314 size_t LUIdx = P.first; 3315 int64_t Offset = P.second; 3316 LSRUse &LU = Uses[LUIdx]; 3317 3318 // Record the fixup. 3319 LSRFixup &LF = LU.getNewFixup(); 3320 LF.UserInst = UserInst; 3321 LF.OperandValToReplace = U.getOperandValToReplace(); 3322 LF.PostIncLoops = TmpPostIncLoops; 3323 LF.Offset = Offset; 3324 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3325 3326 if (!LU.WidestFixupType || 3327 SE.getTypeSizeInBits(LU.WidestFixupType) < 3328 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3329 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3330 3331 // If this is the first use of this LSRUse, give it a formula. 3332 if (LU.Formulae.empty()) { 3333 InsertInitialFormula(S, LU, LUIdx); 3334 CountRegisters(LU.Formulae.back(), LUIdx); 3335 } 3336 } 3337 3338 LLVM_DEBUG(print_fixups(dbgs())); 3339 } 3340 3341 /// Insert a formula for the given expression into the given use, separating out 3342 /// loop-variant portions from loop-invariant and loop-computable portions. 3343 void 3344 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3345 // Mark uses whose expressions cannot be expanded. 3346 if (!isSafeToExpand(S, SE)) 3347 LU.RigidFormula = true; 3348 3349 Formula F; 3350 F.initialMatch(S, L, SE); 3351 bool Inserted = InsertFormula(LU, LUIdx, F); 3352 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3353 } 3354 3355 /// Insert a simple single-register formula for the given expression into the 3356 /// given use. 3357 void 3358 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3359 LSRUse &LU, size_t LUIdx) { 3360 Formula F; 3361 F.BaseRegs.push_back(S); 3362 F.HasBaseReg = true; 3363 bool Inserted = InsertFormula(LU, LUIdx, F); 3364 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3365 } 3366 3367 /// Note which registers are used by the given formula, updating RegUses. 3368 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3369 if (F.ScaledReg) 3370 RegUses.countRegister(F.ScaledReg, LUIdx); 3371 for (const SCEV *BaseReg : F.BaseRegs) 3372 RegUses.countRegister(BaseReg, LUIdx); 3373 } 3374 3375 /// If the given formula has not yet been inserted, add it to the list, and 3376 /// return true. Return false otherwise. 3377 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3378 // Do not insert formula that we will not be able to expand. 3379 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3380 "Formula is illegal"); 3381 3382 if (!LU.InsertFormula(F, *L)) 3383 return false; 3384 3385 CountRegisters(F, LUIdx); 3386 return true; 3387 } 3388 3389 /// Check for other uses of loop-invariant values which we're tracking. These 3390 /// other uses will pin these values in registers, making them less profitable 3391 /// for elimination. 3392 /// TODO: This currently misses non-constant addrec step registers. 3393 /// TODO: Should this give more weight to users inside the loop? 3394 void 3395 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3396 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3397 SmallPtrSet<const SCEV *, 32> Visited; 3398 3399 while (!Worklist.empty()) { 3400 const SCEV *S = Worklist.pop_back_val(); 3401 3402 // Don't process the same SCEV twice 3403 if (!Visited.insert(S).second) 3404 continue; 3405 3406 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3407 Worklist.append(N->op_begin(), N->op_end()); 3408 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3409 Worklist.push_back(C->getOperand()); 3410 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3411 Worklist.push_back(D->getLHS()); 3412 Worklist.push_back(D->getRHS()); 3413 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3414 const Value *V = US->getValue(); 3415 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3416 // Look for instructions defined outside the loop. 3417 if (L->contains(Inst)) continue; 3418 } else if (isa<UndefValue>(V)) 3419 // Undef doesn't have a live range, so it doesn't matter. 3420 continue; 3421 for (const Use &U : V->uses()) { 3422 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3423 // Ignore non-instructions. 3424 if (!UserInst) 3425 continue; 3426 // Ignore instructions in other functions (as can happen with 3427 // Constants). 3428 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3429 continue; 3430 // Ignore instructions not dominated by the loop. 3431 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3432 UserInst->getParent() : 3433 cast<PHINode>(UserInst)->getIncomingBlock( 3434 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3435 if (!DT.dominates(L->getHeader(), UseBB)) 3436 continue; 3437 // Don't bother if the instruction is in a BB which ends in an EHPad. 3438 if (UseBB->getTerminator()->isEHPad()) 3439 continue; 3440 // Don't bother rewriting PHIs in catchswitch blocks. 3441 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3442 continue; 3443 // Ignore uses which are part of other SCEV expressions, to avoid 3444 // analyzing them multiple times. 3445 if (SE.isSCEVable(UserInst->getType())) { 3446 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3447 // If the user is a no-op, look through to its uses. 3448 if (!isa<SCEVUnknown>(UserS)) 3449 continue; 3450 if (UserS == US) { 3451 Worklist.push_back( 3452 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3453 continue; 3454 } 3455 } 3456 // Ignore icmp instructions which are already being analyzed. 3457 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3458 unsigned OtherIdx = !U.getOperandNo(); 3459 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3460 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3461 continue; 3462 } 3463 3464 std::pair<size_t, int64_t> P = getUse( 3465 S, LSRUse::Basic, MemAccessTy()); 3466 size_t LUIdx = P.first; 3467 int64_t Offset = P.second; 3468 LSRUse &LU = Uses[LUIdx]; 3469 LSRFixup &LF = LU.getNewFixup(); 3470 LF.UserInst = const_cast<Instruction *>(UserInst); 3471 LF.OperandValToReplace = U; 3472 LF.Offset = Offset; 3473 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3474 if (!LU.WidestFixupType || 3475 SE.getTypeSizeInBits(LU.WidestFixupType) < 3476 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3477 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3478 InsertSupplementalFormula(US, LU, LUIdx); 3479 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3480 break; 3481 } 3482 } 3483 } 3484 } 3485 3486 /// Split S into subexpressions which can be pulled out into separate 3487 /// registers. If C is non-null, multiply each subexpression by C. 3488 /// 3489 /// Return remainder expression after factoring the subexpressions captured by 3490 /// Ops. If Ops is complete, return NULL. 3491 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3492 SmallVectorImpl<const SCEV *> &Ops, 3493 const Loop *L, 3494 ScalarEvolution &SE, 3495 unsigned Depth = 0) { 3496 // Arbitrarily cap recursion to protect compile time. 3497 if (Depth >= 3) 3498 return S; 3499 3500 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3501 // Break out add operands. 3502 for (const SCEV *S : Add->operands()) { 3503 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3504 if (Remainder) 3505 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3506 } 3507 return nullptr; 3508 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3509 // Split a non-zero base out of an addrec. 3510 if (AR->getStart()->isZero() || !AR->isAffine()) 3511 return S; 3512 3513 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3514 C, Ops, L, SE, Depth+1); 3515 // Split the non-zero AddRec unless it is part of a nested recurrence that 3516 // does not pertain to this loop. 3517 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3518 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3519 Remainder = nullptr; 3520 } 3521 if (Remainder != AR->getStart()) { 3522 if (!Remainder) 3523 Remainder = SE.getConstant(AR->getType(), 0); 3524 return SE.getAddRecExpr(Remainder, 3525 AR->getStepRecurrence(SE), 3526 AR->getLoop(), 3527 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3528 SCEV::FlagAnyWrap); 3529 } 3530 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3531 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3532 if (Mul->getNumOperands() != 2) 3533 return S; 3534 if (const SCEVConstant *Op0 = 3535 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3536 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3537 const SCEV *Remainder = 3538 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3539 if (Remainder) 3540 Ops.push_back(SE.getMulExpr(C, Remainder)); 3541 return nullptr; 3542 } 3543 } 3544 return S; 3545 } 3546 3547 /// Return true if the SCEV represents a value that may end up as a 3548 /// post-increment operation. 3549 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3550 LSRUse &LU, const SCEV *S, const Loop *L, 3551 ScalarEvolution &SE) { 3552 if (LU.Kind != LSRUse::Address || 3553 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3554 return false; 3555 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3556 if (!AR) 3557 return false; 3558 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3559 if (!isa<SCEVConstant>(LoopStep)) 3560 return false; 3561 // Check if a post-indexed load/store can be used. 3562 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3563 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3564 const SCEV *LoopStart = AR->getStart(); 3565 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3566 return true; 3567 } 3568 return false; 3569 } 3570 3571 /// Helper function for LSRInstance::GenerateReassociations. 3572 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3573 const Formula &Base, 3574 unsigned Depth, size_t Idx, 3575 bool IsScaledReg) { 3576 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3577 // Don't generate reassociations for the base register of a value that 3578 // may generate a post-increment operator. The reason is that the 3579 // reassociations cause extra base+register formula to be created, 3580 // and possibly chosen, but the post-increment is more efficient. 3581 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3582 return; 3583 SmallVector<const SCEV *, 8> AddOps; 3584 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3585 if (Remainder) 3586 AddOps.push_back(Remainder); 3587 3588 if (AddOps.size() == 1) 3589 return; 3590 3591 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3592 JE = AddOps.end(); 3593 J != JE; ++J) { 3594 // Loop-variant "unknown" values are uninteresting; we won't be able to 3595 // do anything meaningful with them. 3596 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3597 continue; 3598 3599 // Don't pull a constant into a register if the constant could be folded 3600 // into an immediate field. 3601 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3602 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3603 continue; 3604 3605 // Collect all operands except *J. 3606 SmallVector<const SCEV *, 8> InnerAddOps( 3607 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3608 InnerAddOps.append(std::next(J), 3609 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3610 3611 // Don't leave just a constant behind in a register if the constant could 3612 // be folded into an immediate field. 3613 if (InnerAddOps.size() == 1 && 3614 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3615 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3616 continue; 3617 3618 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3619 if (InnerSum->isZero()) 3620 continue; 3621 Formula F = Base; 3622 3623 // Add the remaining pieces of the add back into the new formula. 3624 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3625 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3626 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3627 InnerSumSC->getValue()->getZExtValue())) { 3628 F.UnfoldedOffset = 3629 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3630 if (IsScaledReg) 3631 F.ScaledReg = nullptr; 3632 else 3633 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3634 } else if (IsScaledReg) 3635 F.ScaledReg = InnerSum; 3636 else 3637 F.BaseRegs[Idx] = InnerSum; 3638 3639 // Add J as its own register, or an unfolded immediate. 3640 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3641 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3642 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3643 SC->getValue()->getZExtValue())) 3644 F.UnfoldedOffset = 3645 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3646 else 3647 F.BaseRegs.push_back(*J); 3648 // We may have changed the number of register in base regs, adjust the 3649 // formula accordingly. 3650 F.canonicalize(*L); 3651 3652 if (InsertFormula(LU, LUIdx, F)) 3653 // If that formula hadn't been seen before, recurse to find more like 3654 // it. 3655 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3656 // Because just Depth is not enough to bound compile time. 3657 // This means that every time AddOps.size() is greater 16^x we will add 3658 // x to Depth. 3659 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3660 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3661 } 3662 } 3663 3664 /// Split out subexpressions from adds and the bases of addrecs. 3665 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3666 Formula Base, unsigned Depth) { 3667 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3668 // Arbitrarily cap recursion to protect compile time. 3669 if (Depth >= 3) 3670 return; 3671 3672 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3673 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3674 3675 if (Base.Scale == 1) 3676 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3677 /* Idx */ -1, /* IsScaledReg */ true); 3678 } 3679 3680 /// Generate a formula consisting of all of the loop-dominating registers added 3681 /// into a single register. 3682 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3683 Formula Base) { 3684 // This method is only interesting on a plurality of registers. 3685 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3686 (Base.UnfoldedOffset != 0) <= 1) 3687 return; 3688 3689 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3690 // processing the formula. 3691 Base.unscale(); 3692 SmallVector<const SCEV *, 4> Ops; 3693 Formula NewBase = Base; 3694 NewBase.BaseRegs.clear(); 3695 Type *CombinedIntegerType = nullptr; 3696 for (const SCEV *BaseReg : Base.BaseRegs) { 3697 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3698 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3699 if (!CombinedIntegerType) 3700 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3701 Ops.push_back(BaseReg); 3702 } 3703 else 3704 NewBase.BaseRegs.push_back(BaseReg); 3705 } 3706 3707 // If no register is relevant, we're done. 3708 if (Ops.size() == 0) 3709 return; 3710 3711 // Utility function for generating the required variants of the combined 3712 // registers. 3713 auto GenerateFormula = [&](const SCEV *Sum) { 3714 Formula F = NewBase; 3715 3716 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3717 // opportunity to fold something. For now, just ignore such cases 3718 // rather than proceed with zero in a register. 3719 if (Sum->isZero()) 3720 return; 3721 3722 F.BaseRegs.push_back(Sum); 3723 F.canonicalize(*L); 3724 (void)InsertFormula(LU, LUIdx, F); 3725 }; 3726 3727 // If we collected at least two registers, generate a formula combining them. 3728 if (Ops.size() > 1) { 3729 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3730 GenerateFormula(SE.getAddExpr(OpsCopy)); 3731 } 3732 3733 // If we have an unfolded offset, generate a formula combining it with the 3734 // registers collected. 3735 if (NewBase.UnfoldedOffset) { 3736 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3737 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3738 true)); 3739 NewBase.UnfoldedOffset = 0; 3740 GenerateFormula(SE.getAddExpr(Ops)); 3741 } 3742 } 3743 3744 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3745 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3746 const Formula &Base, size_t Idx, 3747 bool IsScaledReg) { 3748 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3749 GlobalValue *GV = ExtractSymbol(G, SE); 3750 if (G->isZero() || !GV) 3751 return; 3752 Formula F = Base; 3753 F.BaseGV = GV; 3754 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3755 return; 3756 if (IsScaledReg) 3757 F.ScaledReg = G; 3758 else 3759 F.BaseRegs[Idx] = G; 3760 (void)InsertFormula(LU, LUIdx, F); 3761 } 3762 3763 /// Generate reuse formulae using symbolic offsets. 3764 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3765 Formula Base) { 3766 // We can't add a symbolic offset if the address already contains one. 3767 if (Base.BaseGV) return; 3768 3769 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3770 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3771 if (Base.Scale == 1) 3772 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3773 /* IsScaledReg */ true); 3774 } 3775 3776 /// Helper function for LSRInstance::GenerateConstantOffsets. 3777 void LSRInstance::GenerateConstantOffsetsImpl( 3778 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3779 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3780 3781 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3782 Formula F = Base; 3783 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3784 3785 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3786 LU.AccessTy, F)) { 3787 // Add the offset to the base register. 3788 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3789 // If it cancelled out, drop the base register, otherwise update it. 3790 if (NewG->isZero()) { 3791 if (IsScaledReg) { 3792 F.Scale = 0; 3793 F.ScaledReg = nullptr; 3794 } else 3795 F.deleteBaseReg(F.BaseRegs[Idx]); 3796 F.canonicalize(*L); 3797 } else if (IsScaledReg) 3798 F.ScaledReg = NewG; 3799 else 3800 F.BaseRegs[Idx] = NewG; 3801 3802 (void)InsertFormula(LU, LUIdx, F); 3803 } 3804 }; 3805 3806 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3807 3808 // With constant offsets and constant steps, we can generate pre-inc 3809 // accesses by having the offset equal the step. So, for access #0 with a 3810 // step of 8, we generate a G - 8 base which would require the first access 3811 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3812 // for itself and hopefully becomes the base for other accesses. This means 3813 // means that a single pre-indexed access can be generated to become the new 3814 // base pointer for each iteration of the loop, resulting in no extra add/sub 3815 // instructions for pointer updating. 3816 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3817 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3818 if (auto *StepRec = 3819 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3820 const APInt &StepInt = StepRec->getAPInt(); 3821 int64_t Step = StepInt.isNegative() ? 3822 StepInt.getSExtValue() : StepInt.getZExtValue(); 3823 3824 for (int64_t Offset : Worklist) { 3825 Offset -= Step; 3826 GenerateOffset(G, Offset); 3827 } 3828 } 3829 } 3830 } 3831 for (int64_t Offset : Worklist) 3832 GenerateOffset(G, Offset); 3833 3834 int64_t Imm = ExtractImmediate(G, SE); 3835 if (G->isZero() || Imm == 0) 3836 return; 3837 Formula F = Base; 3838 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3839 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3840 return; 3841 if (IsScaledReg) { 3842 F.ScaledReg = G; 3843 } else { 3844 F.BaseRegs[Idx] = G; 3845 // We may generate non canonical Formula if G is a recurrent expr reg 3846 // related with current loop while F.ScaledReg is not. 3847 F.canonicalize(*L); 3848 } 3849 (void)InsertFormula(LU, LUIdx, F); 3850 } 3851 3852 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3853 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3854 Formula Base) { 3855 // TODO: For now, just add the min and max offset, because it usually isn't 3856 // worthwhile looking at everything inbetween. 3857 SmallVector<int64_t, 2> Worklist; 3858 Worklist.push_back(LU.MinOffset); 3859 if (LU.MaxOffset != LU.MinOffset) 3860 Worklist.push_back(LU.MaxOffset); 3861 3862 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3863 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3864 if (Base.Scale == 1) 3865 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3866 /* IsScaledReg */ true); 3867 } 3868 3869 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3870 /// == y -> x*c == y*c. 3871 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3872 Formula Base) { 3873 if (LU.Kind != LSRUse::ICmpZero) return; 3874 3875 // Determine the integer type for the base formula. 3876 Type *IntTy = Base.getType(); 3877 if (!IntTy) return; 3878 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3879 3880 // Don't do this if there is more than one offset. 3881 if (LU.MinOffset != LU.MaxOffset) return; 3882 3883 // Check if transformation is valid. It is illegal to multiply pointer. 3884 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3885 return; 3886 for (const SCEV *BaseReg : Base.BaseRegs) 3887 if (BaseReg->getType()->isPointerTy()) 3888 return; 3889 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3890 3891 // Check each interesting stride. 3892 for (int64_t Factor : Factors) { 3893 // Check that the multiplication doesn't overflow. 3894 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3895 continue; 3896 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3897 if (NewBaseOffset / Factor != Base.BaseOffset) 3898 continue; 3899 // If the offset will be truncated at this use, check that it is in bounds. 3900 if (!IntTy->isPointerTy() && 3901 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3902 continue; 3903 3904 // Check that multiplying with the use offset doesn't overflow. 3905 int64_t Offset = LU.MinOffset; 3906 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3907 continue; 3908 Offset = (uint64_t)Offset * Factor; 3909 if (Offset / Factor != LU.MinOffset) 3910 continue; 3911 // If the offset will be truncated at this use, check that it is in bounds. 3912 if (!IntTy->isPointerTy() && 3913 !ConstantInt::isValueValidForType(IntTy, Offset)) 3914 continue; 3915 3916 Formula F = Base; 3917 F.BaseOffset = NewBaseOffset; 3918 3919 // Check that this scale is legal. 3920 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3921 continue; 3922 3923 // Compensate for the use having MinOffset built into it. 3924 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3925 3926 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3927 3928 // Check that multiplying with each base register doesn't overflow. 3929 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3930 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3931 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3932 goto next; 3933 } 3934 3935 // Check that multiplying with the scaled register doesn't overflow. 3936 if (F.ScaledReg) { 3937 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3938 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3939 continue; 3940 } 3941 3942 // Check that multiplying with the unfolded offset doesn't overflow. 3943 if (F.UnfoldedOffset != 0) { 3944 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3945 Factor == -1) 3946 continue; 3947 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3948 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3949 continue; 3950 // If the offset will be truncated, check that it is in bounds. 3951 if (!IntTy->isPointerTy() && 3952 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3953 continue; 3954 } 3955 3956 // If we make it here and it's legal, add it. 3957 (void)InsertFormula(LU, LUIdx, F); 3958 next:; 3959 } 3960 } 3961 3962 /// Generate stride factor reuse formulae by making use of scaled-offset address 3963 /// modes, for example. 3964 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3965 // Determine the integer type for the base formula. 3966 Type *IntTy = Base.getType(); 3967 if (!IntTy) return; 3968 3969 // If this Formula already has a scaled register, we can't add another one. 3970 // Try to unscale the formula to generate a better scale. 3971 if (Base.Scale != 0 && !Base.unscale()) 3972 return; 3973 3974 assert(Base.Scale == 0 && "unscale did not did its job!"); 3975 3976 // Check each interesting stride. 3977 for (int64_t Factor : Factors) { 3978 Base.Scale = Factor; 3979 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3980 // Check whether this scale is going to be legal. 3981 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3982 Base)) { 3983 // As a special-case, handle special out-of-loop Basic users specially. 3984 // TODO: Reconsider this special case. 3985 if (LU.Kind == LSRUse::Basic && 3986 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3987 LU.AccessTy, Base) && 3988 LU.AllFixupsOutsideLoop) 3989 LU.Kind = LSRUse::Special; 3990 else 3991 continue; 3992 } 3993 // For an ICmpZero, negating a solitary base register won't lead to 3994 // new solutions. 3995 if (LU.Kind == LSRUse::ICmpZero && 3996 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3997 continue; 3998 // For each addrec base reg, if its loop is current loop, apply the scale. 3999 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4000 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4001 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4002 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4003 if (FactorS->isZero()) 4004 continue; 4005 // Divide out the factor, ignoring high bits, since we'll be 4006 // scaling the value back up in the end. 4007 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4008 // TODO: This could be optimized to avoid all the copying. 4009 Formula F = Base; 4010 F.ScaledReg = Quotient; 4011 F.deleteBaseReg(F.BaseRegs[i]); 4012 // The canonical representation of 1*reg is reg, which is already in 4013 // Base. In that case, do not try to insert the formula, it will be 4014 // rejected anyway. 4015 if (F.Scale == 1 && (F.BaseRegs.empty() || 4016 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4017 continue; 4018 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4019 // non canonical Formula with ScaledReg's loop not being L. 4020 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4021 F.canonicalize(*L); 4022 (void)InsertFormula(LU, LUIdx, F); 4023 } 4024 } 4025 } 4026 } 4027 } 4028 4029 /// Generate reuse formulae from different IV types. 4030 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4031 // Don't bother truncating symbolic values. 4032 if (Base.BaseGV) return; 4033 4034 // Determine the integer type for the base formula. 4035 Type *DstTy = Base.getType(); 4036 if (!DstTy) return; 4037 DstTy = SE.getEffectiveSCEVType(DstTy); 4038 4039 for (Type *SrcTy : Types) { 4040 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4041 Formula F = Base; 4042 4043 // Sometimes SCEV is able to prove zero during ext transform. It may 4044 // happen if SCEV did not do all possible transforms while creating the 4045 // initial node (maybe due to depth limitations), but it can do them while 4046 // taking ext. 4047 if (F.ScaledReg) { 4048 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4049 if (NewScaledReg->isZero()) 4050 continue; 4051 F.ScaledReg = NewScaledReg; 4052 } 4053 bool HasZeroBaseReg = false; 4054 for (const SCEV *&BaseReg : F.BaseRegs) { 4055 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4056 if (NewBaseReg->isZero()) { 4057 HasZeroBaseReg = true; 4058 break; 4059 } 4060 BaseReg = NewBaseReg; 4061 } 4062 if (HasZeroBaseReg) 4063 continue; 4064 4065 // TODO: This assumes we've done basic processing on all uses and 4066 // have an idea what the register usage is. 4067 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4068 continue; 4069 4070 F.canonicalize(*L); 4071 (void)InsertFormula(LU, LUIdx, F); 4072 } 4073 } 4074 } 4075 4076 namespace { 4077 4078 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4079 /// modifications so that the search phase doesn't have to worry about the data 4080 /// structures moving underneath it. 4081 struct WorkItem { 4082 size_t LUIdx; 4083 int64_t Imm; 4084 const SCEV *OrigReg; 4085 4086 WorkItem(size_t LI, int64_t I, const SCEV *R) 4087 : LUIdx(LI), Imm(I), OrigReg(R) {} 4088 4089 void print(raw_ostream &OS) const; 4090 void dump() const; 4091 }; 4092 4093 } // end anonymous namespace 4094 4095 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4096 void WorkItem::print(raw_ostream &OS) const { 4097 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4098 << " , add offset " << Imm; 4099 } 4100 4101 LLVM_DUMP_METHOD void WorkItem::dump() const { 4102 print(errs()); errs() << '\n'; 4103 } 4104 #endif 4105 4106 /// Look for registers which are a constant distance apart and try to form reuse 4107 /// opportunities between them. 4108 void LSRInstance::GenerateCrossUseConstantOffsets() { 4109 // Group the registers by their value without any added constant offset. 4110 using ImmMapTy = std::map<int64_t, const SCEV *>; 4111 4112 DenseMap<const SCEV *, ImmMapTy> Map; 4113 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4114 SmallVector<const SCEV *, 8> Sequence; 4115 for (const SCEV *Use : RegUses) { 4116 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4117 int64_t Imm = ExtractImmediate(Reg, SE); 4118 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4119 if (Pair.second) 4120 Sequence.push_back(Reg); 4121 Pair.first->second.insert(std::make_pair(Imm, Use)); 4122 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4123 } 4124 4125 // Now examine each set of registers with the same base value. Build up 4126 // a list of work to do and do the work in a separate step so that we're 4127 // not adding formulae and register counts while we're searching. 4128 SmallVector<WorkItem, 32> WorkItems; 4129 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4130 for (const SCEV *Reg : Sequence) { 4131 const ImmMapTy &Imms = Map.find(Reg)->second; 4132 4133 // It's not worthwhile looking for reuse if there's only one offset. 4134 if (Imms.size() == 1) 4135 continue; 4136 4137 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4138 for (const auto &Entry 4139 : Imms) dbgs() 4140 << ' ' << Entry.first; 4141 dbgs() << '\n'); 4142 4143 // Examine each offset. 4144 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4145 J != JE; ++J) { 4146 const SCEV *OrigReg = J->second; 4147 4148 int64_t JImm = J->first; 4149 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4150 4151 if (!isa<SCEVConstant>(OrigReg) && 4152 UsedByIndicesMap[Reg].count() == 1) { 4153 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4154 << '\n'); 4155 continue; 4156 } 4157 4158 // Conservatively examine offsets between this orig reg a few selected 4159 // other orig regs. 4160 int64_t First = Imms.begin()->first; 4161 int64_t Last = std::prev(Imms.end())->first; 4162 // Compute (First + Last) / 2 without overflow using the fact that 4163 // First + Last = 2 * (First + Last) + (First ^ Last). 4164 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4165 // If the result is negative and First is odd and Last even (or vice versa), 4166 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4167 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4168 ImmMapTy::const_iterator OtherImms[] = { 4169 Imms.begin(), std::prev(Imms.end()), 4170 Imms.lower_bound(Avg)}; 4171 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4172 ImmMapTy::const_iterator M = OtherImms[i]; 4173 if (M == J || M == JE) continue; 4174 4175 // Compute the difference between the two. 4176 int64_t Imm = (uint64_t)JImm - M->first; 4177 for (unsigned LUIdx : UsedByIndices.set_bits()) 4178 // Make a memo of this use, offset, and register tuple. 4179 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4180 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4181 } 4182 } 4183 } 4184 4185 Map.clear(); 4186 Sequence.clear(); 4187 UsedByIndicesMap.clear(); 4188 UniqueItems.clear(); 4189 4190 // Now iterate through the worklist and add new formulae. 4191 for (const WorkItem &WI : WorkItems) { 4192 size_t LUIdx = WI.LUIdx; 4193 LSRUse &LU = Uses[LUIdx]; 4194 int64_t Imm = WI.Imm; 4195 const SCEV *OrigReg = WI.OrigReg; 4196 4197 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4198 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4199 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4200 4201 // TODO: Use a more targeted data structure. 4202 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4203 Formula F = LU.Formulae[L]; 4204 // FIXME: The code for the scaled and unscaled registers looks 4205 // very similar but slightly different. Investigate if they 4206 // could be merged. That way, we would not have to unscale the 4207 // Formula. 4208 F.unscale(); 4209 // Use the immediate in the scaled register. 4210 if (F.ScaledReg == OrigReg) { 4211 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4212 // Don't create 50 + reg(-50). 4213 if (F.referencesReg(SE.getSCEV( 4214 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4215 continue; 4216 Formula NewF = F; 4217 NewF.BaseOffset = Offset; 4218 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4219 NewF)) 4220 continue; 4221 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4222 4223 // If the new scale is a constant in a register, and adding the constant 4224 // value to the immediate would produce a value closer to zero than the 4225 // immediate itself, then the formula isn't worthwhile. 4226 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4227 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4228 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4229 .ule(std::abs(NewF.BaseOffset))) 4230 continue; 4231 4232 // OK, looks good. 4233 NewF.canonicalize(*this->L); 4234 (void)InsertFormula(LU, LUIdx, NewF); 4235 } else { 4236 // Use the immediate in a base register. 4237 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4238 const SCEV *BaseReg = F.BaseRegs[N]; 4239 if (BaseReg != OrigReg) 4240 continue; 4241 Formula NewF = F; 4242 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4243 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4244 LU.Kind, LU.AccessTy, NewF)) { 4245 if (TTI.shouldFavorPostInc() && 4246 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4247 continue; 4248 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4249 continue; 4250 NewF = F; 4251 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4252 } 4253 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4254 4255 // If the new formula has a constant in a register, and adding the 4256 // constant value to the immediate would produce a value closer to 4257 // zero than the immediate itself, then the formula isn't worthwhile. 4258 for (const SCEV *NewReg : NewF.BaseRegs) 4259 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4260 if ((C->getAPInt() + NewF.BaseOffset) 4261 .abs() 4262 .slt(std::abs(NewF.BaseOffset)) && 4263 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4264 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4265 goto skip_formula; 4266 4267 // Ok, looks good. 4268 NewF.canonicalize(*this->L); 4269 (void)InsertFormula(LU, LUIdx, NewF); 4270 break; 4271 skip_formula:; 4272 } 4273 } 4274 } 4275 } 4276 } 4277 4278 /// Generate formulae for each use. 4279 void 4280 LSRInstance::GenerateAllReuseFormulae() { 4281 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4282 // queries are more precise. 4283 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4284 LSRUse &LU = Uses[LUIdx]; 4285 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4286 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4287 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4288 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4289 } 4290 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4291 LSRUse &LU = Uses[LUIdx]; 4292 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4293 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4294 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4295 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4296 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4297 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4298 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4299 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4300 } 4301 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4302 LSRUse &LU = Uses[LUIdx]; 4303 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4304 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4305 } 4306 4307 GenerateCrossUseConstantOffsets(); 4308 4309 LLVM_DEBUG(dbgs() << "\n" 4310 "After generating reuse formulae:\n"; 4311 print_uses(dbgs())); 4312 } 4313 4314 /// If there are multiple formulae with the same set of registers used 4315 /// by other uses, pick the best one and delete the others. 4316 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4317 DenseSet<const SCEV *> VisitedRegs; 4318 SmallPtrSet<const SCEV *, 16> Regs; 4319 SmallPtrSet<const SCEV *, 16> LoserRegs; 4320 #ifndef NDEBUG 4321 bool ChangedFormulae = false; 4322 #endif 4323 4324 // Collect the best formula for each unique set of shared registers. This 4325 // is reset for each use. 4326 using BestFormulaeTy = 4327 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4328 4329 BestFormulaeTy BestFormulae; 4330 4331 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4332 LSRUse &LU = Uses[LUIdx]; 4333 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4334 dbgs() << '\n'); 4335 4336 bool Any = false; 4337 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4338 FIdx != NumForms; ++FIdx) { 4339 Formula &F = LU.Formulae[FIdx]; 4340 4341 // Some formulas are instant losers. For example, they may depend on 4342 // nonexistent AddRecs from other loops. These need to be filtered 4343 // immediately, otherwise heuristics could choose them over others leading 4344 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4345 // avoids the need to recompute this information across formulae using the 4346 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4347 // the corresponding bad register from the Regs set. 4348 Cost CostF(L, SE, TTI); 4349 Regs.clear(); 4350 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4351 if (CostF.isLoser()) { 4352 // During initial formula generation, undesirable formulae are generated 4353 // by uses within other loops that have some non-trivial address mode or 4354 // use the postinc form of the IV. LSR needs to provide these formulae 4355 // as the basis of rediscovering the desired formula that uses an AddRec 4356 // corresponding to the existing phi. Once all formulae have been 4357 // generated, these initial losers may be pruned. 4358 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4359 dbgs() << "\n"); 4360 } 4361 else { 4362 SmallVector<const SCEV *, 4> Key; 4363 for (const SCEV *Reg : F.BaseRegs) { 4364 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4365 Key.push_back(Reg); 4366 } 4367 if (F.ScaledReg && 4368 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4369 Key.push_back(F.ScaledReg); 4370 // Unstable sort by host order ok, because this is only used for 4371 // uniquifying. 4372 llvm::sort(Key); 4373 4374 std::pair<BestFormulaeTy::const_iterator, bool> P = 4375 BestFormulae.insert(std::make_pair(Key, FIdx)); 4376 if (P.second) 4377 continue; 4378 4379 Formula &Best = LU.Formulae[P.first->second]; 4380 4381 Cost CostBest(L, SE, TTI); 4382 Regs.clear(); 4383 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4384 if (CostF.isLess(CostBest)) 4385 std::swap(F, Best); 4386 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4387 dbgs() << "\n" 4388 " in favor of formula "; 4389 Best.print(dbgs()); dbgs() << '\n'); 4390 } 4391 #ifndef NDEBUG 4392 ChangedFormulae = true; 4393 #endif 4394 LU.DeleteFormula(F); 4395 --FIdx; 4396 --NumForms; 4397 Any = true; 4398 } 4399 4400 // Now that we've filtered out some formulae, recompute the Regs set. 4401 if (Any) 4402 LU.RecomputeRegs(LUIdx, RegUses); 4403 4404 // Reset this to prepare for the next use. 4405 BestFormulae.clear(); 4406 } 4407 4408 LLVM_DEBUG(if (ChangedFormulae) { 4409 dbgs() << "\n" 4410 "After filtering out undesirable candidates:\n"; 4411 print_uses(dbgs()); 4412 }); 4413 } 4414 4415 /// Estimate the worst-case number of solutions the solver might have to 4416 /// consider. It almost never considers this many solutions because it prune the 4417 /// search space, but the pruning isn't always sufficient. 4418 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4419 size_t Power = 1; 4420 for (const LSRUse &LU : Uses) { 4421 size_t FSize = LU.Formulae.size(); 4422 if (FSize >= ComplexityLimit) { 4423 Power = ComplexityLimit; 4424 break; 4425 } 4426 Power *= FSize; 4427 if (Power >= ComplexityLimit) 4428 break; 4429 } 4430 return Power; 4431 } 4432 4433 /// When one formula uses a superset of the registers of another formula, it 4434 /// won't help reduce register pressure (though it may not necessarily hurt 4435 /// register pressure); remove it to simplify the system. 4436 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4437 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4438 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4439 4440 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4441 "which use a superset of registers used by other " 4442 "formulae.\n"); 4443 4444 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4445 LSRUse &LU = Uses[LUIdx]; 4446 bool Any = false; 4447 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4448 Formula &F = LU.Formulae[i]; 4449 // Look for a formula with a constant or GV in a register. If the use 4450 // also has a formula with that same value in an immediate field, 4451 // delete the one that uses a register. 4452 for (SmallVectorImpl<const SCEV *>::const_iterator 4453 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4454 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4455 Formula NewF = F; 4456 //FIXME: Formulas should store bitwidth to do wrapping properly. 4457 // See PR41034. 4458 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4459 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4460 (I - F.BaseRegs.begin())); 4461 if (LU.HasFormulaWithSameRegs(NewF)) { 4462 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4463 dbgs() << '\n'); 4464 LU.DeleteFormula(F); 4465 --i; 4466 --e; 4467 Any = true; 4468 break; 4469 } 4470 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4471 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4472 if (!F.BaseGV) { 4473 Formula NewF = F; 4474 NewF.BaseGV = GV; 4475 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4476 (I - F.BaseRegs.begin())); 4477 if (LU.HasFormulaWithSameRegs(NewF)) { 4478 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4479 dbgs() << '\n'); 4480 LU.DeleteFormula(F); 4481 --i; 4482 --e; 4483 Any = true; 4484 break; 4485 } 4486 } 4487 } 4488 } 4489 } 4490 if (Any) 4491 LU.RecomputeRegs(LUIdx, RegUses); 4492 } 4493 4494 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4495 } 4496 } 4497 4498 /// When there are many registers for expressions like A, A+1, A+2, etc., 4499 /// allocate a single register for them. 4500 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4501 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4502 return; 4503 4504 LLVM_DEBUG( 4505 dbgs() << "The search space is too complex.\n" 4506 "Narrowing the search space by assuming that uses separated " 4507 "by a constant offset will use the same registers.\n"); 4508 4509 // This is especially useful for unrolled loops. 4510 4511 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4512 LSRUse &LU = Uses[LUIdx]; 4513 for (const Formula &F : LU.Formulae) { 4514 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4515 continue; 4516 4517 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4518 if (!LUThatHas) 4519 continue; 4520 4521 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4522 LU.Kind, LU.AccessTy)) 4523 continue; 4524 4525 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4526 4527 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4528 4529 // Transfer the fixups of LU to LUThatHas. 4530 for (LSRFixup &Fixup : LU.Fixups) { 4531 Fixup.Offset += F.BaseOffset; 4532 LUThatHas->pushFixup(Fixup); 4533 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4534 } 4535 4536 // Delete formulae from the new use which are no longer legal. 4537 bool Any = false; 4538 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4539 Formula &F = LUThatHas->Formulae[i]; 4540 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4541 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4542 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4543 LUThatHas->DeleteFormula(F); 4544 --i; 4545 --e; 4546 Any = true; 4547 } 4548 } 4549 4550 if (Any) 4551 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4552 4553 // Delete the old use. 4554 DeleteUse(LU, LUIdx); 4555 --LUIdx; 4556 --NumUses; 4557 break; 4558 } 4559 } 4560 4561 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4562 } 4563 4564 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4565 /// we've done more filtering, as it may be able to find more formulae to 4566 /// eliminate. 4567 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4568 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4569 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4570 4571 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4572 "undesirable dedicated registers.\n"); 4573 4574 FilterOutUndesirableDedicatedRegisters(); 4575 4576 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4577 } 4578 } 4579 4580 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4581 /// Pick the best one and delete the others. 4582 /// This narrowing heuristic is to keep as many formulae with different 4583 /// Scale and ScaledReg pair as possible while narrowing the search space. 4584 /// The benefit is that it is more likely to find out a better solution 4585 /// from a formulae set with more Scale and ScaledReg variations than 4586 /// a formulae set with the same Scale and ScaledReg. The picking winner 4587 /// reg heuristic will often keep the formulae with the same Scale and 4588 /// ScaledReg and filter others, and we want to avoid that if possible. 4589 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4590 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4591 return; 4592 4593 LLVM_DEBUG( 4594 dbgs() << "The search space is too complex.\n" 4595 "Narrowing the search space by choosing the best Formula " 4596 "from the Formulae with the same Scale and ScaledReg.\n"); 4597 4598 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4599 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4600 4601 BestFormulaeTy BestFormulae; 4602 #ifndef NDEBUG 4603 bool ChangedFormulae = false; 4604 #endif 4605 DenseSet<const SCEV *> VisitedRegs; 4606 SmallPtrSet<const SCEV *, 16> Regs; 4607 4608 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4609 LSRUse &LU = Uses[LUIdx]; 4610 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4611 dbgs() << '\n'); 4612 4613 // Return true if Formula FA is better than Formula FB. 4614 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4615 // First we will try to choose the Formula with fewer new registers. 4616 // For a register used by current Formula, the more the register is 4617 // shared among LSRUses, the less we increase the register number 4618 // counter of the formula. 4619 size_t FARegNum = 0; 4620 for (const SCEV *Reg : FA.BaseRegs) { 4621 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4622 FARegNum += (NumUses - UsedByIndices.count() + 1); 4623 } 4624 size_t FBRegNum = 0; 4625 for (const SCEV *Reg : FB.BaseRegs) { 4626 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4627 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4628 } 4629 if (FARegNum != FBRegNum) 4630 return FARegNum < FBRegNum; 4631 4632 // If the new register numbers are the same, choose the Formula with 4633 // less Cost. 4634 Cost CostFA(L, SE, TTI); 4635 Cost CostFB(L, SE, TTI); 4636 Regs.clear(); 4637 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4638 Regs.clear(); 4639 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4640 return CostFA.isLess(CostFB); 4641 }; 4642 4643 bool Any = false; 4644 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4645 ++FIdx) { 4646 Formula &F = LU.Formulae[FIdx]; 4647 if (!F.ScaledReg) 4648 continue; 4649 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4650 if (P.second) 4651 continue; 4652 4653 Formula &Best = LU.Formulae[P.first->second]; 4654 if (IsBetterThan(F, Best)) 4655 std::swap(F, Best); 4656 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4657 dbgs() << "\n" 4658 " in favor of formula "; 4659 Best.print(dbgs()); dbgs() << '\n'); 4660 #ifndef NDEBUG 4661 ChangedFormulae = true; 4662 #endif 4663 LU.DeleteFormula(F); 4664 --FIdx; 4665 --NumForms; 4666 Any = true; 4667 } 4668 if (Any) 4669 LU.RecomputeRegs(LUIdx, RegUses); 4670 4671 // Reset this to prepare for the next use. 4672 BestFormulae.clear(); 4673 } 4674 4675 LLVM_DEBUG(if (ChangedFormulae) { 4676 dbgs() << "\n" 4677 "After filtering out undesirable candidates:\n"; 4678 print_uses(dbgs()); 4679 }); 4680 } 4681 4682 /// If we are over the complexity limit, filter out any post-inc prefering 4683 /// variables to only post-inc values. 4684 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4685 if (!TTI.shouldFavorPostInc()) 4686 return; 4687 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4688 return; 4689 4690 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4691 "Narrowing the search space by choosing the lowest " 4692 "register Formula for PostInc Uses.\n"); 4693 4694 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4695 LSRUse &LU = Uses[LUIdx]; 4696 4697 if (LU.Kind != LSRUse::Address) 4698 continue; 4699 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4700 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4701 continue; 4702 4703 size_t MinRegs = std::numeric_limits<size_t>::max(); 4704 for (const Formula &F : LU.Formulae) 4705 MinRegs = std::min(F.getNumRegs(), MinRegs); 4706 4707 bool Any = false; 4708 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4709 ++FIdx) { 4710 Formula &F = LU.Formulae[FIdx]; 4711 if (F.getNumRegs() > MinRegs) { 4712 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4713 dbgs() << "\n"); 4714 LU.DeleteFormula(F); 4715 --FIdx; 4716 --NumForms; 4717 Any = true; 4718 } 4719 } 4720 if (Any) 4721 LU.RecomputeRegs(LUIdx, RegUses); 4722 4723 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4724 break; 4725 } 4726 4727 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4728 } 4729 4730 /// The function delete formulas with high registers number expectation. 4731 /// Assuming we don't know the value of each formula (already delete 4732 /// all inefficient), generate probability of not selecting for each 4733 /// register. 4734 /// For example, 4735 /// Use1: 4736 /// reg(a) + reg({0,+,1}) 4737 /// reg(a) + reg({-1,+,1}) + 1 4738 /// reg({a,+,1}) 4739 /// Use2: 4740 /// reg(b) + reg({0,+,1}) 4741 /// reg(b) + reg({-1,+,1}) + 1 4742 /// reg({b,+,1}) 4743 /// Use3: 4744 /// reg(c) + reg(b) + reg({0,+,1}) 4745 /// reg(c) + reg({b,+,1}) 4746 /// 4747 /// Probability of not selecting 4748 /// Use1 Use2 Use3 4749 /// reg(a) (1/3) * 1 * 1 4750 /// reg(b) 1 * (1/3) * (1/2) 4751 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4752 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4753 /// reg({a,+,1}) (2/3) * 1 * 1 4754 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4755 /// reg(c) 1 * 1 * 0 4756 /// 4757 /// Now count registers number mathematical expectation for each formula: 4758 /// Note that for each use we exclude probability if not selecting for the use. 4759 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4760 /// probabilty 1/3 of not selecting for Use1). 4761 /// Use1: 4762 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4763 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4764 /// reg({a,+,1}) 1 4765 /// Use2: 4766 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4767 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4768 /// reg({b,+,1}) 2/3 4769 /// Use3: 4770 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4771 /// reg(c) + reg({b,+,1}) 1 + 2/3 4772 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4773 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4774 return; 4775 // Ok, we have too many of formulae on our hands to conveniently handle. 4776 // Use a rough heuristic to thin out the list. 4777 4778 // Set of Regs wich will be 100% used in final solution. 4779 // Used in each formula of a solution (in example above this is reg(c)). 4780 // We can skip them in calculations. 4781 SmallPtrSet<const SCEV *, 4> UniqRegs; 4782 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4783 4784 // Map each register to probability of not selecting 4785 DenseMap <const SCEV *, float> RegNumMap; 4786 for (const SCEV *Reg : RegUses) { 4787 if (UniqRegs.count(Reg)) 4788 continue; 4789 float PNotSel = 1; 4790 for (const LSRUse &LU : Uses) { 4791 if (!LU.Regs.count(Reg)) 4792 continue; 4793 float P = LU.getNotSelectedProbability(Reg); 4794 if (P != 0.0) 4795 PNotSel *= P; 4796 else 4797 UniqRegs.insert(Reg); 4798 } 4799 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4800 } 4801 4802 LLVM_DEBUG( 4803 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4804 4805 // Delete formulas where registers number expectation is high. 4806 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4807 LSRUse &LU = Uses[LUIdx]; 4808 // If nothing to delete - continue. 4809 if (LU.Formulae.size() < 2) 4810 continue; 4811 // This is temporary solution to test performance. Float should be 4812 // replaced with round independent type (based on integers) to avoid 4813 // different results for different target builds. 4814 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4815 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4816 size_t MinIdx = 0; 4817 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4818 Formula &F = LU.Formulae[i]; 4819 float FRegNum = 0; 4820 float FARegNum = 0; 4821 for (const SCEV *BaseReg : F.BaseRegs) { 4822 if (UniqRegs.count(BaseReg)) 4823 continue; 4824 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4825 if (isa<SCEVAddRecExpr>(BaseReg)) 4826 FARegNum += 4827 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4828 } 4829 if (const SCEV *ScaledReg = F.ScaledReg) { 4830 if (!UniqRegs.count(ScaledReg)) { 4831 FRegNum += 4832 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4833 if (isa<SCEVAddRecExpr>(ScaledReg)) 4834 FARegNum += 4835 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4836 } 4837 } 4838 if (FMinRegNum > FRegNum || 4839 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4840 FMinRegNum = FRegNum; 4841 FMinARegNum = FARegNum; 4842 MinIdx = i; 4843 } 4844 } 4845 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4846 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4847 if (MinIdx != 0) 4848 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4849 while (LU.Formulae.size() != 1) { 4850 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4851 dbgs() << '\n'); 4852 LU.Formulae.pop_back(); 4853 } 4854 LU.RecomputeRegs(LUIdx, RegUses); 4855 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4856 Formula &F = LU.Formulae[0]; 4857 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4858 // When we choose the formula, the regs become unique. 4859 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4860 if (F.ScaledReg) 4861 UniqRegs.insert(F.ScaledReg); 4862 } 4863 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4864 } 4865 4866 /// Pick a register which seems likely to be profitable, and then in any use 4867 /// which has any reference to that register, delete all formulae which do not 4868 /// reference that register. 4869 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4870 // With all other options exhausted, loop until the system is simple 4871 // enough to handle. 4872 SmallPtrSet<const SCEV *, 4> Taken; 4873 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4874 // Ok, we have too many of formulae on our hands to conveniently handle. 4875 // Use a rough heuristic to thin out the list. 4876 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4877 4878 // Pick the register which is used by the most LSRUses, which is likely 4879 // to be a good reuse register candidate. 4880 const SCEV *Best = nullptr; 4881 unsigned BestNum = 0; 4882 for (const SCEV *Reg : RegUses) { 4883 if (Taken.count(Reg)) 4884 continue; 4885 if (!Best) { 4886 Best = Reg; 4887 BestNum = RegUses.getUsedByIndices(Reg).count(); 4888 } else { 4889 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4890 if (Count > BestNum) { 4891 Best = Reg; 4892 BestNum = Count; 4893 } 4894 } 4895 } 4896 assert(Best && "Failed to find best LSRUse candidate"); 4897 4898 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4899 << " will yield profitable reuse.\n"); 4900 Taken.insert(Best); 4901 4902 // In any use with formulae which references this register, delete formulae 4903 // which don't reference it. 4904 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4905 LSRUse &LU = Uses[LUIdx]; 4906 if (!LU.Regs.count(Best)) continue; 4907 4908 bool Any = false; 4909 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4910 Formula &F = LU.Formulae[i]; 4911 if (!F.referencesReg(Best)) { 4912 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4913 LU.DeleteFormula(F); 4914 --e; 4915 --i; 4916 Any = true; 4917 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4918 continue; 4919 } 4920 } 4921 4922 if (Any) 4923 LU.RecomputeRegs(LUIdx, RegUses); 4924 } 4925 4926 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4927 } 4928 } 4929 4930 /// If there are an extraordinary number of formulae to choose from, use some 4931 /// rough heuristics to prune down the number of formulae. This keeps the main 4932 /// solver from taking an extraordinary amount of time in some worst-case 4933 /// scenarios. 4934 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4935 NarrowSearchSpaceByDetectingSupersets(); 4936 NarrowSearchSpaceByCollapsingUnrolledCode(); 4937 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4938 if (FilterSameScaledReg) 4939 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4940 NarrowSearchSpaceByFilterPostInc(); 4941 if (LSRExpNarrow) 4942 NarrowSearchSpaceByDeletingCostlyFormulas(); 4943 else 4944 NarrowSearchSpaceByPickingWinnerRegs(); 4945 } 4946 4947 /// This is the recursive solver. 4948 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4949 Cost &SolutionCost, 4950 SmallVectorImpl<const Formula *> &Workspace, 4951 const Cost &CurCost, 4952 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4953 DenseSet<const SCEV *> &VisitedRegs) const { 4954 // Some ideas: 4955 // - prune more: 4956 // - use more aggressive filtering 4957 // - sort the formula so that the most profitable solutions are found first 4958 // - sort the uses too 4959 // - search faster: 4960 // - don't compute a cost, and then compare. compare while computing a cost 4961 // and bail early. 4962 // - track register sets with SmallBitVector 4963 4964 const LSRUse &LU = Uses[Workspace.size()]; 4965 4966 // If this use references any register that's already a part of the 4967 // in-progress solution, consider it a requirement that a formula must 4968 // reference that register in order to be considered. This prunes out 4969 // unprofitable searching. 4970 SmallSetVector<const SCEV *, 4> ReqRegs; 4971 for (const SCEV *S : CurRegs) 4972 if (LU.Regs.count(S)) 4973 ReqRegs.insert(S); 4974 4975 SmallPtrSet<const SCEV *, 16> NewRegs; 4976 Cost NewCost(L, SE, TTI); 4977 for (const Formula &F : LU.Formulae) { 4978 // Ignore formulae which may not be ideal in terms of register reuse of 4979 // ReqRegs. The formula should use all required registers before 4980 // introducing new ones. 4981 // This can sometimes (notably when trying to favour postinc) lead to 4982 // sub-optimial decisions. There it is best left to the cost modelling to 4983 // get correct. 4984 if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) { 4985 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4986 for (const SCEV *Reg : ReqRegs) { 4987 if ((F.ScaledReg && F.ScaledReg == Reg) || 4988 is_contained(F.BaseRegs, Reg)) { 4989 --NumReqRegsToFind; 4990 if (NumReqRegsToFind == 0) 4991 break; 4992 } 4993 } 4994 if (NumReqRegsToFind != 0) { 4995 // If none of the formulae satisfied the required registers, then we could 4996 // clear ReqRegs and try again. Currently, we simply give up in this case. 4997 continue; 4998 } 4999 } 5000 5001 // Evaluate the cost of the current formula. If it's already worse than 5002 // the current best, prune the search at that point. 5003 NewCost = CurCost; 5004 NewRegs = CurRegs; 5005 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5006 if (NewCost.isLess(SolutionCost)) { 5007 Workspace.push_back(&F); 5008 if (Workspace.size() != Uses.size()) { 5009 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5010 NewRegs, VisitedRegs); 5011 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5012 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5013 } else { 5014 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5015 dbgs() << ".\nRegs:\n"; 5016 for (const SCEV *S : NewRegs) dbgs() 5017 << "- " << *S << "\n"; 5018 dbgs() << '\n'); 5019 5020 SolutionCost = NewCost; 5021 Solution = Workspace; 5022 } 5023 Workspace.pop_back(); 5024 } 5025 } 5026 } 5027 5028 /// Choose one formula from each use. Return the results in the given Solution 5029 /// vector. 5030 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5031 SmallVector<const Formula *, 8> Workspace; 5032 Cost SolutionCost(L, SE, TTI); 5033 SolutionCost.Lose(); 5034 Cost CurCost(L, SE, TTI); 5035 SmallPtrSet<const SCEV *, 16> CurRegs; 5036 DenseSet<const SCEV *> VisitedRegs; 5037 Workspace.reserve(Uses.size()); 5038 5039 // SolveRecurse does all the work. 5040 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5041 CurRegs, VisitedRegs); 5042 if (Solution.empty()) { 5043 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5044 return; 5045 } 5046 5047 // Ok, we've now made all our decisions. 5048 LLVM_DEBUG(dbgs() << "\n" 5049 "The chosen solution requires "; 5050 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5051 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5052 dbgs() << " "; 5053 Uses[i].print(dbgs()); 5054 dbgs() << "\n" 5055 " "; 5056 Solution[i]->print(dbgs()); 5057 dbgs() << '\n'; 5058 }); 5059 5060 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5061 } 5062 5063 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5064 /// we can go while still being dominated by the input positions. This helps 5065 /// canonicalize the insert position, which encourages sharing. 5066 BasicBlock::iterator 5067 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5068 const SmallVectorImpl<Instruction *> &Inputs) 5069 const { 5070 Instruction *Tentative = &*IP; 5071 while (true) { 5072 bool AllDominate = true; 5073 Instruction *BetterPos = nullptr; 5074 // Don't bother attempting to insert before a catchswitch, their basic block 5075 // cannot have other non-PHI instructions. 5076 if (isa<CatchSwitchInst>(Tentative)) 5077 return IP; 5078 5079 for (Instruction *Inst : Inputs) { 5080 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5081 AllDominate = false; 5082 break; 5083 } 5084 // Attempt to find an insert position in the middle of the block, 5085 // instead of at the end, so that it can be used for other expansions. 5086 if (Tentative->getParent() == Inst->getParent() && 5087 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5088 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5089 } 5090 if (!AllDominate) 5091 break; 5092 if (BetterPos) 5093 IP = BetterPos->getIterator(); 5094 else 5095 IP = Tentative->getIterator(); 5096 5097 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5098 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5099 5100 BasicBlock *IDom; 5101 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5102 if (!Rung) return IP; 5103 Rung = Rung->getIDom(); 5104 if (!Rung) return IP; 5105 IDom = Rung->getBlock(); 5106 5107 // Don't climb into a loop though. 5108 const Loop *IDomLoop = LI.getLoopFor(IDom); 5109 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5110 if (IDomDepth <= IPLoopDepth && 5111 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5112 break; 5113 } 5114 5115 Tentative = IDom->getTerminator(); 5116 } 5117 5118 return IP; 5119 } 5120 5121 /// Determine an input position which will be dominated by the operands and 5122 /// which will dominate the result. 5123 BasicBlock::iterator 5124 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5125 const LSRFixup &LF, 5126 const LSRUse &LU, 5127 SCEVExpander &Rewriter) const { 5128 // Collect some instructions which must be dominated by the 5129 // expanding replacement. These must be dominated by any operands that 5130 // will be required in the expansion. 5131 SmallVector<Instruction *, 4> Inputs; 5132 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5133 Inputs.push_back(I); 5134 if (LU.Kind == LSRUse::ICmpZero) 5135 if (Instruction *I = 5136 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5137 Inputs.push_back(I); 5138 if (LF.PostIncLoops.count(L)) { 5139 if (LF.isUseFullyOutsideLoop(L)) 5140 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5141 else 5142 Inputs.push_back(IVIncInsertPos); 5143 } 5144 // The expansion must also be dominated by the increment positions of any 5145 // loops it for which it is using post-inc mode. 5146 for (const Loop *PIL : LF.PostIncLoops) { 5147 if (PIL == L) continue; 5148 5149 // Be dominated by the loop exit. 5150 SmallVector<BasicBlock *, 4> ExitingBlocks; 5151 PIL->getExitingBlocks(ExitingBlocks); 5152 if (!ExitingBlocks.empty()) { 5153 BasicBlock *BB = ExitingBlocks[0]; 5154 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5155 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5156 Inputs.push_back(BB->getTerminator()); 5157 } 5158 } 5159 5160 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5161 && !isa<DbgInfoIntrinsic>(LowestIP) && 5162 "Insertion point must be a normal instruction"); 5163 5164 // Then, climb up the immediate dominator tree as far as we can go while 5165 // still being dominated by the input positions. 5166 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5167 5168 // Don't insert instructions before PHI nodes. 5169 while (isa<PHINode>(IP)) ++IP; 5170 5171 // Ignore landingpad instructions. 5172 while (IP->isEHPad()) ++IP; 5173 5174 // Ignore debug intrinsics. 5175 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5176 5177 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5178 // IP consistent across expansions and allows the previously inserted 5179 // instructions to be reused by subsequent expansion. 5180 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5181 ++IP; 5182 5183 return IP; 5184 } 5185 5186 /// Emit instructions for the leading candidate expression for this LSRUse (this 5187 /// is called "expanding"). 5188 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5189 const Formula &F, BasicBlock::iterator IP, 5190 SCEVExpander &Rewriter, 5191 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5192 if (LU.RigidFormula) 5193 return LF.OperandValToReplace; 5194 5195 // Determine an input position which will be dominated by the operands and 5196 // which will dominate the result. 5197 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5198 Rewriter.setInsertPoint(&*IP); 5199 5200 // Inform the Rewriter if we have a post-increment use, so that it can 5201 // perform an advantageous expansion. 5202 Rewriter.setPostInc(LF.PostIncLoops); 5203 5204 // This is the type that the user actually needs. 5205 Type *OpTy = LF.OperandValToReplace->getType(); 5206 // This will be the type that we'll initially expand to. 5207 Type *Ty = F.getType(); 5208 if (!Ty) 5209 // No type known; just expand directly to the ultimate type. 5210 Ty = OpTy; 5211 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5212 // Expand directly to the ultimate type if it's the right size. 5213 Ty = OpTy; 5214 // This is the type to do integer arithmetic in. 5215 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5216 5217 // Build up a list of operands to add together to form the full base. 5218 SmallVector<const SCEV *, 8> Ops; 5219 5220 // Expand the BaseRegs portion. 5221 for (const SCEV *Reg : F.BaseRegs) { 5222 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5223 5224 // If we're expanding for a post-inc user, make the post-inc adjustment. 5225 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5226 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5227 } 5228 5229 // Expand the ScaledReg portion. 5230 Value *ICmpScaledV = nullptr; 5231 if (F.Scale != 0) { 5232 const SCEV *ScaledS = F.ScaledReg; 5233 5234 // If we're expanding for a post-inc user, make the post-inc adjustment. 5235 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5236 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5237 5238 if (LU.Kind == LSRUse::ICmpZero) { 5239 // Expand ScaleReg as if it was part of the base regs. 5240 if (F.Scale == 1) 5241 Ops.push_back( 5242 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5243 else { 5244 // An interesting way of "folding" with an icmp is to use a negated 5245 // scale, which we'll implement by inserting it into the other operand 5246 // of the icmp. 5247 assert(F.Scale == -1 && 5248 "The only scale supported by ICmpZero uses is -1!"); 5249 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5250 } 5251 } else { 5252 // Otherwise just expand the scaled register and an explicit scale, 5253 // which is expected to be matched as part of the address. 5254 5255 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5256 // Unless the addressing mode will not be folded. 5257 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5258 isAMCompletelyFolded(TTI, LU, F)) { 5259 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5260 Ops.clear(); 5261 Ops.push_back(SE.getUnknown(FullV)); 5262 } 5263 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5264 if (F.Scale != 1) 5265 ScaledS = 5266 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5267 Ops.push_back(ScaledS); 5268 } 5269 } 5270 5271 // Expand the GV portion. 5272 if (F.BaseGV) { 5273 // Flush the operand list to suppress SCEVExpander hoisting. 5274 if (!Ops.empty()) { 5275 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5276 Ops.clear(); 5277 Ops.push_back(SE.getUnknown(FullV)); 5278 } 5279 Ops.push_back(SE.getUnknown(F.BaseGV)); 5280 } 5281 5282 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5283 // unfolded offsets. LSR assumes they both live next to their uses. 5284 if (!Ops.empty()) { 5285 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5286 Ops.clear(); 5287 Ops.push_back(SE.getUnknown(FullV)); 5288 } 5289 5290 // Expand the immediate portion. 5291 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5292 if (Offset != 0) { 5293 if (LU.Kind == LSRUse::ICmpZero) { 5294 // The other interesting way of "folding" with an ICmpZero is to use a 5295 // negated immediate. 5296 if (!ICmpScaledV) 5297 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5298 else { 5299 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5300 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5301 } 5302 } else { 5303 // Just add the immediate values. These again are expected to be matched 5304 // as part of the address. 5305 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5306 } 5307 } 5308 5309 // Expand the unfolded offset portion. 5310 int64_t UnfoldedOffset = F.UnfoldedOffset; 5311 if (UnfoldedOffset != 0) { 5312 // Just add the immediate values. 5313 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5314 UnfoldedOffset))); 5315 } 5316 5317 // Emit instructions summing all the operands. 5318 const SCEV *FullS = Ops.empty() ? 5319 SE.getConstant(IntTy, 0) : 5320 SE.getAddExpr(Ops); 5321 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5322 5323 // We're done expanding now, so reset the rewriter. 5324 Rewriter.clearPostInc(); 5325 5326 // An ICmpZero Formula represents an ICmp which we're handling as a 5327 // comparison against zero. Now that we've expanded an expression for that 5328 // form, update the ICmp's other operand. 5329 if (LU.Kind == LSRUse::ICmpZero) { 5330 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5331 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5332 DeadInsts.emplace_back(OperandIsInstr); 5333 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5334 "a scale at the same time!"); 5335 if (F.Scale == -1) { 5336 if (ICmpScaledV->getType() != OpTy) { 5337 Instruction *Cast = 5338 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5339 OpTy, false), 5340 ICmpScaledV, OpTy, "tmp", CI); 5341 ICmpScaledV = Cast; 5342 } 5343 CI->setOperand(1, ICmpScaledV); 5344 } else { 5345 // A scale of 1 means that the scale has been expanded as part of the 5346 // base regs. 5347 assert((F.Scale == 0 || F.Scale == 1) && 5348 "ICmp does not support folding a global value and " 5349 "a scale at the same time!"); 5350 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5351 -(uint64_t)Offset); 5352 if (C->getType() != OpTy) 5353 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5354 OpTy, false), 5355 C, OpTy); 5356 5357 CI->setOperand(1, C); 5358 } 5359 } 5360 5361 return FullV; 5362 } 5363 5364 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5365 /// effectively happens in their predecessor blocks, so the expression may need 5366 /// to be expanded in multiple places. 5367 void LSRInstance::RewriteForPHI( 5368 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5369 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5370 DenseMap<BasicBlock *, Value *> Inserted; 5371 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5372 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5373 bool needUpdateFixups = false; 5374 BasicBlock *BB = PN->getIncomingBlock(i); 5375 5376 // If this is a critical edge, split the edge so that we do not insert 5377 // the code on all predecessor/successor paths. We do this unless this 5378 // is the canonical backedge for this loop, which complicates post-inc 5379 // users. 5380 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5381 !isa<IndirectBrInst>(BB->getTerminator()) && 5382 !isa<CatchSwitchInst>(BB->getTerminator())) { 5383 BasicBlock *Parent = PN->getParent(); 5384 Loop *PNLoop = LI.getLoopFor(Parent); 5385 if (!PNLoop || Parent != PNLoop->getHeader()) { 5386 // Split the critical edge. 5387 BasicBlock *NewBB = nullptr; 5388 if (!Parent->isLandingPad()) { 5389 NewBB = 5390 SplitCriticalEdge(BB, Parent, 5391 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5392 .setMergeIdenticalEdges() 5393 .setKeepOneInputPHIs()); 5394 } else { 5395 SmallVector<BasicBlock*, 2> NewBBs; 5396 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5397 NewBB = NewBBs[0]; 5398 } 5399 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5400 // phi predecessors are identical. The simple thing to do is skip 5401 // splitting in this case rather than complicate the API. 5402 if (NewBB) { 5403 // If PN is outside of the loop and BB is in the loop, we want to 5404 // move the block to be immediately before the PHI block, not 5405 // immediately after BB. 5406 if (L->contains(BB) && !L->contains(PN)) 5407 NewBB->moveBefore(PN->getParent()); 5408 5409 // Splitting the edge can reduce the number of PHI entries we have. 5410 e = PN->getNumIncomingValues(); 5411 BB = NewBB; 5412 i = PN->getBasicBlockIndex(BB); 5413 5414 needUpdateFixups = true; 5415 } 5416 } 5417 } 5418 5419 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5420 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5421 if (!Pair.second) 5422 PN->setIncomingValue(i, Pair.first->second); 5423 else { 5424 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5425 Rewriter, DeadInsts); 5426 5427 // If this is reuse-by-noop-cast, insert the noop cast. 5428 Type *OpTy = LF.OperandValToReplace->getType(); 5429 if (FullV->getType() != OpTy) 5430 FullV = 5431 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5432 OpTy, false), 5433 FullV, LF.OperandValToReplace->getType(), 5434 "tmp", BB->getTerminator()); 5435 5436 PN->setIncomingValue(i, FullV); 5437 Pair.first->second = FullV; 5438 } 5439 5440 // If LSR splits critical edge and phi node has other pending 5441 // fixup operands, we need to update those pending fixups. Otherwise 5442 // formulae will not be implemented completely and some instructions 5443 // will not be eliminated. 5444 if (needUpdateFixups) { 5445 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5446 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5447 // If fixup is supposed to rewrite some operand in the phi 5448 // that was just updated, it may be already moved to 5449 // another phi node. Such fixup requires update. 5450 if (Fixup.UserInst == PN) { 5451 // Check if the operand we try to replace still exists in the 5452 // original phi. 5453 bool foundInOriginalPHI = false; 5454 for (const auto &val : PN->incoming_values()) 5455 if (val == Fixup.OperandValToReplace) { 5456 foundInOriginalPHI = true; 5457 break; 5458 } 5459 5460 // If fixup operand found in original PHI - nothing to do. 5461 if (foundInOriginalPHI) 5462 continue; 5463 5464 // Otherwise it might be moved to another PHI and requires update. 5465 // If fixup operand not found in any of the incoming blocks that 5466 // means we have already rewritten it - nothing to do. 5467 for (const auto &Block : PN->blocks()) 5468 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5469 ++I) { 5470 PHINode *NewPN = cast<PHINode>(I); 5471 for (const auto &val : NewPN->incoming_values()) 5472 if (val == Fixup.OperandValToReplace) 5473 Fixup.UserInst = NewPN; 5474 } 5475 } 5476 } 5477 } 5478 } 5479 5480 /// Emit instructions for the leading candidate expression for this LSRUse (this 5481 /// is called "expanding"), and update the UserInst to reference the newly 5482 /// expanded value. 5483 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5484 const Formula &F, SCEVExpander &Rewriter, 5485 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5486 // First, find an insertion point that dominates UserInst. For PHI nodes, 5487 // find the nearest block which dominates all the relevant uses. 5488 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5489 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5490 } else { 5491 Value *FullV = 5492 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5493 5494 // If this is reuse-by-noop-cast, insert the noop cast. 5495 Type *OpTy = LF.OperandValToReplace->getType(); 5496 if (FullV->getType() != OpTy) { 5497 Instruction *Cast = 5498 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5499 FullV, OpTy, "tmp", LF.UserInst); 5500 FullV = Cast; 5501 } 5502 5503 // Update the user. ICmpZero is handled specially here (for now) because 5504 // Expand may have updated one of the operands of the icmp already, and 5505 // its new value may happen to be equal to LF.OperandValToReplace, in 5506 // which case doing replaceUsesOfWith leads to replacing both operands 5507 // with the same value. TODO: Reorganize this. 5508 if (LU.Kind == LSRUse::ICmpZero) 5509 LF.UserInst->setOperand(0, FullV); 5510 else 5511 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5512 } 5513 5514 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5515 DeadInsts.emplace_back(OperandIsInstr); 5516 } 5517 5518 /// Rewrite all the fixup locations with new values, following the chosen 5519 /// solution. 5520 void LSRInstance::ImplementSolution( 5521 const SmallVectorImpl<const Formula *> &Solution) { 5522 // Keep track of instructions we may have made dead, so that 5523 // we can remove them after we are done working. 5524 SmallVector<WeakTrackingVH, 16> DeadInsts; 5525 5526 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5527 false); 5528 #ifndef NDEBUG 5529 Rewriter.setDebugType(DEBUG_TYPE); 5530 #endif 5531 Rewriter.disableCanonicalMode(); 5532 Rewriter.enableLSRMode(); 5533 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5534 5535 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5536 for (const IVChain &Chain : IVChainVec) { 5537 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5538 Rewriter.setChainedPhi(PN); 5539 } 5540 5541 // Expand the new value definitions and update the users. 5542 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5543 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5544 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5545 Changed = true; 5546 } 5547 5548 for (const IVChain &Chain : IVChainVec) { 5549 GenerateIVChain(Chain, Rewriter, DeadInsts); 5550 Changed = true; 5551 } 5552 // Clean up after ourselves. This must be done before deleting any 5553 // instructions. 5554 Rewriter.clear(); 5555 5556 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5557 &TLI, MSSAU); 5558 } 5559 5560 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5561 DominatorTree &DT, LoopInfo &LI, 5562 const TargetTransformInfo &TTI, AssumptionCache &AC, 5563 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5564 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5565 MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing && 5566 TTI.shouldFavorBackedgeIndex(L)) { 5567 // If LoopSimplify form is not available, stay out of trouble. 5568 if (!L->isLoopSimplifyForm()) 5569 return; 5570 5571 // If there's no interesting work to be done, bail early. 5572 if (IU.empty()) return; 5573 5574 // If there's too much analysis to be done, bail early. We won't be able to 5575 // model the problem anyway. 5576 unsigned NumUsers = 0; 5577 for (const IVStrideUse &U : IU) { 5578 if (++NumUsers > MaxIVUsers) { 5579 (void)U; 5580 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5581 << "\n"); 5582 return; 5583 } 5584 // Bail out if we have a PHI on an EHPad that gets a value from a 5585 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5586 // no good place to stick any instructions. 5587 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5588 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5589 if (isa<FuncletPadInst>(FirstNonPHI) || 5590 isa<CatchSwitchInst>(FirstNonPHI)) 5591 for (BasicBlock *PredBB : PN->blocks()) 5592 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5593 return; 5594 } 5595 } 5596 5597 #ifndef NDEBUG 5598 // All dominating loops must have preheaders, or SCEVExpander may not be able 5599 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5600 // 5601 // IVUsers analysis should only create users that are dominated by simple loop 5602 // headers. Since this loop should dominate all of its users, its user list 5603 // should be empty if this loop itself is not within a simple loop nest. 5604 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5605 Rung; Rung = Rung->getIDom()) { 5606 BasicBlock *BB = Rung->getBlock(); 5607 const Loop *DomLoop = LI.getLoopFor(BB); 5608 if (DomLoop && DomLoop->getHeader() == BB) { 5609 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5610 } 5611 } 5612 #endif // DEBUG 5613 5614 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5615 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5616 dbgs() << ":\n"); 5617 5618 // First, perform some low-level loop optimizations. 5619 OptimizeShadowIV(); 5620 OptimizeLoopTermCond(); 5621 5622 // If loop preparation eliminates all interesting IV users, bail. 5623 if (IU.empty()) return; 5624 5625 // Skip nested loops until we can model them better with formulae. 5626 if (!L->isInnermost()) { 5627 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5628 return; 5629 } 5630 5631 // Start collecting data and preparing for the solver. 5632 // If number of registers is not the major cost, we cannot benefit from the 5633 // current profitable chain optimization which is based on number of 5634 // registers. 5635 // FIXME: add profitable chain optimization for other kinds major cost, for 5636 // example number of instructions. 5637 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5638 CollectChains(); 5639 CollectInterestingTypesAndFactors(); 5640 CollectFixupsAndInitialFormulae(); 5641 CollectLoopInvariantFixupsAndFormulae(); 5642 5643 if (Uses.empty()) 5644 return; 5645 5646 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5647 print_uses(dbgs())); 5648 5649 // Now use the reuse data to generate a bunch of interesting ways 5650 // to formulate the values needed for the uses. 5651 GenerateAllReuseFormulae(); 5652 5653 FilterOutUndesirableDedicatedRegisters(); 5654 NarrowSearchSpaceUsingHeuristics(); 5655 5656 SmallVector<const Formula *, 8> Solution; 5657 Solve(Solution); 5658 5659 // Release memory that is no longer needed. 5660 Factors.clear(); 5661 Types.clear(); 5662 RegUses.clear(); 5663 5664 if (Solution.empty()) 5665 return; 5666 5667 #ifndef NDEBUG 5668 // Formulae should be legal. 5669 for (const LSRUse &LU : Uses) { 5670 for (const Formula &F : LU.Formulae) 5671 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5672 F) && "Illegal formula generated!"); 5673 }; 5674 #endif 5675 5676 // Now that we've decided what we want, make it so. 5677 ImplementSolution(Solution); 5678 } 5679 5680 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5681 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5682 if (Factors.empty() && Types.empty()) return; 5683 5684 OS << "LSR has identified the following interesting factors and types: "; 5685 bool First = true; 5686 5687 for (int64_t Factor : Factors) { 5688 if (!First) OS << ", "; 5689 First = false; 5690 OS << '*' << Factor; 5691 } 5692 5693 for (Type *Ty : Types) { 5694 if (!First) OS << ", "; 5695 First = false; 5696 OS << '(' << *Ty << ')'; 5697 } 5698 OS << '\n'; 5699 } 5700 5701 void LSRInstance::print_fixups(raw_ostream &OS) const { 5702 OS << "LSR is examining the following fixup sites:\n"; 5703 for (const LSRUse &LU : Uses) 5704 for (const LSRFixup &LF : LU.Fixups) { 5705 dbgs() << " "; 5706 LF.print(OS); 5707 OS << '\n'; 5708 } 5709 } 5710 5711 void LSRInstance::print_uses(raw_ostream &OS) const { 5712 OS << "LSR is examining the following uses:\n"; 5713 for (const LSRUse &LU : Uses) { 5714 dbgs() << " "; 5715 LU.print(OS); 5716 OS << '\n'; 5717 for (const Formula &F : LU.Formulae) { 5718 OS << " "; 5719 F.print(OS); 5720 OS << '\n'; 5721 } 5722 } 5723 } 5724 5725 void LSRInstance::print(raw_ostream &OS) const { 5726 print_factors_and_types(OS); 5727 print_fixups(OS); 5728 print_uses(OS); 5729 } 5730 5731 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5732 print(errs()); errs() << '\n'; 5733 } 5734 #endif 5735 5736 namespace { 5737 5738 class LoopStrengthReduce : public LoopPass { 5739 public: 5740 static char ID; // Pass ID, replacement for typeid 5741 5742 LoopStrengthReduce(); 5743 5744 private: 5745 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5746 void getAnalysisUsage(AnalysisUsage &AU) const override; 5747 }; 5748 5749 } // end anonymous namespace 5750 5751 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5752 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5753 } 5754 5755 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5756 // We split critical edges, so we change the CFG. However, we do update 5757 // many analyses if they are around. 5758 AU.addPreservedID(LoopSimplifyID); 5759 5760 AU.addRequired<LoopInfoWrapperPass>(); 5761 AU.addPreserved<LoopInfoWrapperPass>(); 5762 AU.addRequiredID(LoopSimplifyID); 5763 AU.addRequired<DominatorTreeWrapperPass>(); 5764 AU.addPreserved<DominatorTreeWrapperPass>(); 5765 AU.addRequired<ScalarEvolutionWrapperPass>(); 5766 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5767 AU.addRequired<AssumptionCacheTracker>(); 5768 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5769 // Requiring LoopSimplify a second time here prevents IVUsers from running 5770 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5771 AU.addRequiredID(LoopSimplifyID); 5772 AU.addRequired<IVUsersWrapperPass>(); 5773 AU.addPreserved<IVUsersWrapperPass>(); 5774 AU.addRequired<TargetTransformInfoWrapperPass>(); 5775 AU.addPreserved<MemorySSAWrapperPass>(); 5776 } 5777 5778 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t, DIExpression *>, 4>; 5779 using EqualValuesMap = DenseMap<DbgValueInst *, EqualValues>; 5780 5781 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5782 EqualValuesMap &DbgValueToEqualSet) { 5783 for (auto &B : L->getBlocks()) { 5784 for (auto &I : *B) { 5785 auto DVI = dyn_cast<DbgValueInst>(&I); 5786 if (!DVI) 5787 continue; 5788 auto V = DVI->getVariableLocation(); 5789 if (!V || !SE.isSCEVable(V->getType())) 5790 continue; 5791 auto DbgValueSCEV = SE.getSCEV(V); 5792 EqualValues EqSet; 5793 for (PHINode &Phi : L->getHeader()->phis()) { 5794 if (V->getType() != Phi.getType()) 5795 continue; 5796 if (!SE.isSCEVable(Phi.getType())) 5797 continue; 5798 auto PhiSCEV = SE.getSCEV(&Phi); 5799 if (Optional<APInt> Offset = 5800 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV)) 5801 EqSet.emplace_back(std::make_tuple( 5802 &Phi, Offset.getValue().getSExtValue(), DVI->getExpression())); 5803 } 5804 DbgValueToEqualSet[DVI] = std::move(EqSet); 5805 } 5806 } 5807 } 5808 5809 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet) { 5810 for (auto A : DbgValueToEqualSet) { 5811 auto DVI = A.first; 5812 // Only update those that are now undef. 5813 if (!isa_and_nonnull<UndefValue>(DVI->getVariableLocation())) 5814 continue; 5815 for (auto EV : A.second) { 5816 auto V = std::get<WeakVH>(EV); 5817 if (!V) 5818 continue; 5819 auto DbgDIExpr = std::get<DIExpression *>(EV); 5820 auto Offset = std::get<int64_t>(EV); 5821 auto &Ctx = DVI->getContext(); 5822 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 5823 if (Offset) { 5824 SmallVector<uint64_t, 8> Ops; 5825 DIExpression::appendOffset(Ops, Offset); 5826 DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true); 5827 } 5828 DVI->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr)); 5829 break; 5830 } 5831 } 5832 } 5833 5834 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5835 DominatorTree &DT, LoopInfo &LI, 5836 const TargetTransformInfo &TTI, 5837 AssumptionCache &AC, TargetLibraryInfo &TLI, 5838 MemorySSA *MSSA) { 5839 5840 bool Changed = false; 5841 std::unique_ptr<MemorySSAUpdater> MSSAU; 5842 if (MSSA) 5843 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5844 5845 // Run the main LSR transformation. 5846 Changed |= 5847 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5848 5849 // Debug preservation - before we start removing anything create equivalence 5850 // sets for the llvm.dbg.value intrinsics. 5851 EqualValuesMap DbgValueToEqualSet; 5852 DbgGatherEqualValues(L, SE, DbgValueToEqualSet); 5853 5854 // Remove any extra phis created by processing inner loops. 5855 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5856 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5857 SmallVector<WeakTrackingVH, 16> DeadInsts; 5858 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5859 SCEVExpander Rewriter(SE, DL, "lsr", false); 5860 #ifndef NDEBUG 5861 Rewriter.setDebugType(DEBUG_TYPE); 5862 #endif 5863 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5864 if (numFolded) { 5865 Changed = true; 5866 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5867 MSSAU.get()); 5868 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5869 } 5870 } 5871 5872 DbgApplyEqualValues(DbgValueToEqualSet); 5873 5874 return Changed; 5875 } 5876 5877 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5878 if (skipLoop(L)) 5879 return false; 5880 5881 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5882 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5883 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5884 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5885 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5886 *L->getHeader()->getParent()); 5887 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5888 *L->getHeader()->getParent()); 5889 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5890 *L->getHeader()->getParent()); 5891 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5892 MemorySSA *MSSA = nullptr; 5893 if (MSSAAnalysis) 5894 MSSA = &MSSAAnalysis->getMSSA(); 5895 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5896 } 5897 5898 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5899 LoopStandardAnalysisResults &AR, 5900 LPMUpdater &) { 5901 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5902 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5903 return PreservedAnalyses::all(); 5904 5905 auto PA = getLoopPassPreservedAnalyses(); 5906 if (AR.MSSA) 5907 PA.preserve<MemorySSAAnalysis>(); 5908 return PA; 5909 } 5910 5911 char LoopStrengthReduce::ID = 0; 5912 5913 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5914 "Loop Strength Reduction", false, false) 5915 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5916 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5917 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5918 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5919 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5920 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5921 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5922 "Loop Strength Reduction", false, false) 5923 5924 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5925