1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <map>
120 #include <utility>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "loop-reduce"
125 
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
131 
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137   "enable-lsr-phielim", cl::Hidden, cl::init(true),
138   cl::desc("Enable LSR phi elimination"));
139 
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142   "lsr-insns-cost", cl::Hidden, cl::init(true),
143   cl::desc("Add instruction count to a LSR cost model"));
144 
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147   "lsr-exp-narrow", cl::Hidden, cl::init(false),
148   cl::desc("Narrow LSR complex solution using"
149            " expectation of registers number"));
150 
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156              " with the same ScaledReg and Scale"));
157 
158 static cl::opt<bool> EnableBackedgeIndexing(
159   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
160   cl::desc("Enable the generation of cross iteration indexed memops"));
161 
162 static cl::opt<unsigned> ComplexityLimit(
163   "lsr-complexity-limit", cl::Hidden,
164   cl::init(std::numeric_limits<uint16_t>::max()),
165   cl::desc("LSR search space complexity limit"));
166 
167 static cl::opt<bool> EnableRecursiveSetupCost(
168   "lsr-recursive-setupcost", cl::Hidden, cl::init(true),
169   cl::desc("Enable more thorough lsr setup cost calculation"));
170 
171 #ifndef NDEBUG
172 // Stress test IV chain generation.
173 static cl::opt<bool> StressIVChain(
174   "stress-ivchain", cl::Hidden, cl::init(false),
175   cl::desc("Stress test LSR IV chains"));
176 #else
177 static bool StressIVChain = false;
178 #endif
179 
180 namespace {
181 
182 struct MemAccessTy {
183   /// Used in situations where the accessed memory type is unknown.
184   static const unsigned UnknownAddressSpace =
185       std::numeric_limits<unsigned>::max();
186 
187   Type *MemTy = nullptr;
188   unsigned AddrSpace = UnknownAddressSpace;
189 
190   MemAccessTy() = default;
191   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
192 
193   bool operator==(MemAccessTy Other) const {
194     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
195   }
196 
197   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
198 
199   static MemAccessTy getUnknown(LLVMContext &Ctx,
200                                 unsigned AS = UnknownAddressSpace) {
201     return MemAccessTy(Type::getVoidTy(Ctx), AS);
202   }
203 
204   Type *getType() { return MemTy; }
205 };
206 
207 /// This class holds data which is used to order reuse candidates.
208 class RegSortData {
209 public:
210   /// This represents the set of LSRUse indices which reference
211   /// a particular register.
212   SmallBitVector UsedByIndices;
213 
214   void print(raw_ostream &OS) const;
215   void dump() const;
216 };
217 
218 } // end anonymous namespace
219 
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream &OS) const {
222   OS << "[NumUses=" << UsedByIndices.count() << ']';
223 }
224 
225 LLVM_DUMP_METHOD void RegSortData::dump() const {
226   print(errs()); errs() << '\n';
227 }
228 #endif
229 
230 namespace {
231 
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker {
234   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
235 
236   RegUsesTy RegUsesMap;
237   SmallVector<const SCEV *, 16> RegSequence;
238 
239 public:
240   void countRegister(const SCEV *Reg, size_t LUIdx);
241   void dropRegister(const SCEV *Reg, size_t LUIdx);
242   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
243 
244   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
245 
246   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
247 
248   void clear();
249 
250   using iterator = SmallVectorImpl<const SCEV *>::iterator;
251   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
252 
253   iterator begin() { return RegSequence.begin(); }
254   iterator end()   { return RegSequence.end(); }
255   const_iterator begin() const { return RegSequence.begin(); }
256   const_iterator end() const   { return RegSequence.end(); }
257 };
258 
259 } // end anonymous namespace
260 
261 void
262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
263   std::pair<RegUsesTy::iterator, bool> Pair =
264     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
265   RegSortData &RSD = Pair.first->second;
266   if (Pair.second)
267     RegSequence.push_back(Reg);
268   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
269   RSD.UsedByIndices.set(LUIdx);
270 }
271 
272 void
273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
274   RegUsesTy::iterator It = RegUsesMap.find(Reg);
275   assert(It != RegUsesMap.end());
276   RegSortData &RSD = It->second;
277   assert(RSD.UsedByIndices.size() > LUIdx);
278   RSD.UsedByIndices.reset(LUIdx);
279 }
280 
281 void
282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
283   assert(LUIdx <= LastLUIdx);
284 
285   // Update RegUses. The data structure is not optimized for this purpose;
286   // we must iterate through it and update each of the bit vectors.
287   for (auto &Pair : RegUsesMap) {
288     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
289     if (LUIdx < UsedByIndices.size())
290       UsedByIndices[LUIdx] =
291         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
292     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
293   }
294 }
295 
296 bool
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
298   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
299   if (I == RegUsesMap.end())
300     return false;
301   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
302   int i = UsedByIndices.find_first();
303   if (i == -1) return false;
304   if ((size_t)i != LUIdx) return true;
305   return UsedByIndices.find_next(i) != -1;
306 }
307 
308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
309   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
310   assert(I != RegUsesMap.end() && "Unknown register!");
311   return I->second.UsedByIndices;
312 }
313 
314 void RegUseTracker::clear() {
315   RegUsesMap.clear();
316   RegSequence.clear();
317 }
318 
319 namespace {
320 
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
323 struct Formula {
324   /// Global base address used for complex addressing.
325   GlobalValue *BaseGV = nullptr;
326 
327   /// Base offset for complex addressing.
328   int64_t BaseOffset = 0;
329 
330   /// Whether any complex addressing has a base register.
331   bool HasBaseReg = false;
332 
333   /// The scale of any complex addressing.
334   int64_t Scale = 0;
335 
336   /// The list of "base" registers for this use. When this is non-empty. The
337   /// canonical representation of a formula is
338   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340   /// 3. The reg containing recurrent expr related with currect loop in the
341   /// formula should be put in the ScaledReg.
342   /// #1 enforces that the scaled register is always used when at least two
343   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344   /// #2 enforces that 1 * reg is reg.
345   /// #3 ensures invariant regs with respect to current loop can be combined
346   /// together in LSR codegen.
347   /// This invariant can be temporarily broken while building a formula.
348   /// However, every formula inserted into the LSRInstance must be in canonical
349   /// form.
350   SmallVector<const SCEV *, 4> BaseRegs;
351 
352   /// The 'scaled' register for this use. This should be non-null when Scale is
353   /// not zero.
354   const SCEV *ScaledReg = nullptr;
355 
356   /// An additional constant offset which added near the use. This requires a
357   /// temporary register, but the offset itself can live in an add immediate
358   /// field rather than a register.
359   int64_t UnfoldedOffset = 0;
360 
361   Formula() = default;
362 
363   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
364 
365   bool isCanonical(const Loop &L) const;
366 
367   void canonicalize(const Loop &L);
368 
369   bool unscale();
370 
371   bool hasZeroEnd() const;
372 
373   size_t getNumRegs() const;
374   Type *getType() const;
375 
376   void deleteBaseReg(const SCEV *&S);
377 
378   bool referencesReg(const SCEV *S) const;
379   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
380                                   const RegUseTracker &RegUses) const;
381 
382   void print(raw_ostream &OS) const;
383   void dump() const;
384 };
385 
386 } // end anonymous namespace
387 
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV *S, Loop *L,
390                            SmallVectorImpl<const SCEV *> &Good,
391                            SmallVectorImpl<const SCEV *> &Bad,
392                            ScalarEvolution &SE) {
393   // Collect expressions which properly dominate the loop header.
394   if (SE.properlyDominates(S, L->getHeader())) {
395     Good.push_back(S);
396     return;
397   }
398 
399   // Look at add operands.
400   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
401     for (const SCEV *S : Add->operands())
402       DoInitialMatch(S, L, Good, Bad, SE);
403     return;
404   }
405 
406   // Look at addrec operands.
407   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
408     if (!AR->getStart()->isZero() && AR->isAffine()) {
409       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
410       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
411                                       AR->getStepRecurrence(SE),
412                                       // FIXME: AR->getNoWrapFlags()
413                                       AR->getLoop(), SCEV::FlagAnyWrap),
414                      L, Good, Bad, SE);
415       return;
416     }
417 
418   // Handle a multiplication by -1 (negation) if it didn't fold.
419   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
420     if (Mul->getOperand(0)->isAllOnesValue()) {
421       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
422       const SCEV *NewMul = SE.getMulExpr(Ops);
423 
424       SmallVector<const SCEV *, 4> MyGood;
425       SmallVector<const SCEV *, 4> MyBad;
426       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
427       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
428         SE.getEffectiveSCEVType(NewMul->getType())));
429       for (const SCEV *S : MyGood)
430         Good.push_back(SE.getMulExpr(NegOne, S));
431       for (const SCEV *S : MyBad)
432         Bad.push_back(SE.getMulExpr(NegOne, S));
433       return;
434     }
435 
436   // Ok, we can't do anything interesting. Just stuff the whole thing into a
437   // register and hope for the best.
438   Bad.push_back(S);
439 }
440 
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
444   SmallVector<const SCEV *, 4> Good;
445   SmallVector<const SCEV *, 4> Bad;
446   DoInitialMatch(S, L, Good, Bad, SE);
447   if (!Good.empty()) {
448     const SCEV *Sum = SE.getAddExpr(Good);
449     if (!Sum->isZero())
450       BaseRegs.push_back(Sum);
451     HasBaseReg = true;
452   }
453   if (!Bad.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Bad);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   canonicalize(*L);
460 }
461 
462 /// Check whether or not this formula satisfies the canonical
463 /// representation.
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop &L) const {
466   if (!ScaledReg)
467     return BaseRegs.size() <= 1;
468 
469   if (Scale != 1)
470     return true;
471 
472   if (Scale == 1 && BaseRegs.empty())
473     return false;
474 
475   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
476   if (SAR && SAR->getLoop() == &L)
477     return true;
478 
479   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481   // loop, we want to swap the reg in BaseRegs with ScaledReg.
482   auto I =
483       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
484         return isa<const SCEVAddRecExpr>(S) &&
485                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
486       });
487   return I == BaseRegs.end();
488 }
489 
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop &L) {
497   if (isCanonical(L))
498     return;
499   // So far we did not need this case. This is easy to implement but it is
500   // useless to maintain dead code. Beside it could hurt compile time.
501   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
502 
503   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
504   if (!ScaledReg) {
505     ScaledReg = BaseRegs.back();
506     BaseRegs.pop_back();
507     Scale = 1;
508   }
509 
510   // If ScaledReg is an invariant with respect to L, find the reg from
511   // BaseRegs containing the recurrent expr related with Loop L. Swap the
512   // reg with ScaledReg.
513   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
514   if (!SAR || SAR->getLoop() != &L) {
515     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
516                      [&](const SCEV *S) {
517                        return isa<const SCEVAddRecExpr>(S) &&
518                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
519                      });
520     if (I != BaseRegs.end())
521       std::swap(ScaledReg, *I);
522   }
523 }
524 
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
530   if (Scale != 1)
531     return false;
532   Scale = 0;
533   BaseRegs.push_back(ScaledReg);
534   ScaledReg = nullptr;
535   return true;
536 }
537 
538 bool Formula::hasZeroEnd() const {
539   if (UnfoldedOffset || BaseOffset)
540     return false;
541   if (BaseRegs.size() != 1 || ScaledReg)
542     return false;
543   return true;
544 }
545 
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549   return !!ScaledReg + BaseRegs.size();
550 }
551 
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type *Formula::getType() const {
555   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
556          ScaledReg ? ScaledReg->getType() :
557          BaseGV ? BaseGV->getType() :
558          nullptr;
559 }
560 
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV *&S) {
563   if (&S != &BaseRegs.back())
564     std::swap(S, BaseRegs.back());
565   BaseRegs.pop_back();
566 }
567 
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV *S) const {
570   return S == ScaledReg || is_contained(BaseRegs, S);
571 }
572 
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
576                                          const RegUseTracker &RegUses) const {
577   if (ScaledReg)
578     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
579       return true;
580   for (const SCEV *BaseReg : BaseRegs)
581     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
582       return true;
583   return false;
584 }
585 
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream &OS) const {
588   bool First = true;
589   if (BaseGV) {
590     if (!First) OS << " + "; else First = false;
591     BaseGV->printAsOperand(OS, /*PrintType=*/false);
592   }
593   if (BaseOffset != 0) {
594     if (!First) OS << " + "; else First = false;
595     OS << BaseOffset;
596   }
597   for (const SCEV *BaseReg : BaseRegs) {
598     if (!First) OS << " + "; else First = false;
599     OS << "reg(" << *BaseReg << ')';
600   }
601   if (HasBaseReg && BaseRegs.empty()) {
602     if (!First) OS << " + "; else First = false;
603     OS << "**error: HasBaseReg**";
604   } else if (!HasBaseReg && !BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: !HasBaseReg**";
607   }
608   if (Scale != 0) {
609     if (!First) OS << " + "; else First = false;
610     OS << Scale << "*reg(";
611     if (ScaledReg)
612       OS << *ScaledReg;
613     else
614       OS << "<unknown>";
615     OS << ')';
616   }
617   if (UnfoldedOffset != 0) {
618     if (!First) OS << " + ";
619     OS << "imm(" << UnfoldedOffset << ')';
620   }
621 }
622 
623 LLVM_DUMP_METHOD void Formula::dump() const {
624   print(errs()); errs() << '\n';
625 }
626 #endif
627 
628 /// Return true if the given addrec can be sign-extended without changing its
629 /// value.
630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
631   Type *WideTy =
632     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
633   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
634 }
635 
636 /// Return true if the given add can be sign-extended without changing its
637 /// value.
638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
639   Type *WideTy =
640     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
641   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
642 }
643 
644 /// Return true if the given mul can be sign-extended without changing its
645 /// value.
646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
647   Type *WideTy =
648     IntegerType::get(SE.getContext(),
649                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
650   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
651 }
652 
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
659                                 ScalarEvolution &SE,
660                                 bool IgnoreSignificantBits = false) {
661   // Handle the trivial case, which works for any SCEV type.
662   if (LHS == RHS)
663     return SE.getConstant(LHS->getType(), 1);
664 
665   // Handle a few RHS special cases.
666   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
667   if (RC) {
668     const APInt &RA = RC->getAPInt();
669     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
670     // some folding.
671     if (RA.isAllOnesValue())
672       return SE.getMulExpr(LHS, RC);
673     // Handle x /s 1 as x.
674     if (RA == 1)
675       return LHS;
676   }
677 
678   // Check for a division of a constant by a constant.
679   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
680     if (!RC)
681       return nullptr;
682     const APInt &LA = C->getAPInt();
683     const APInt &RA = RC->getAPInt();
684     if (LA.srem(RA) != 0)
685       return nullptr;
686     return SE.getConstant(LA.sdiv(RA));
687   }
688 
689   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
691     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
692       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
693                                       IgnoreSignificantBits);
694       if (!Step) return nullptr;
695       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
696                                        IgnoreSignificantBits);
697       if (!Start) return nullptr;
698       // FlagNW is independent of the start value, step direction, and is
699       // preserved with smaller magnitude steps.
700       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
702     }
703     return nullptr;
704   }
705 
706   // Distribute the sdiv over add operands, if the add doesn't overflow.
707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
708     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
709       SmallVector<const SCEV *, 8> Ops;
710       for (const SCEV *S : Add->operands()) {
711         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
712         if (!Op) return nullptr;
713         Ops.push_back(Op);
714       }
715       return SE.getAddExpr(Ops);
716     }
717     return nullptr;
718   }
719 
720   // Check for a multiply operand that we can pull RHS out of.
721   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
722     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
723       SmallVector<const SCEV *, 4> Ops;
724       bool Found = false;
725       for (const SCEV *S : Mul->operands()) {
726         if (!Found)
727           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
728                                            IgnoreSignificantBits)) {
729             S = Q;
730             Found = true;
731           }
732         Ops.push_back(S);
733       }
734       return Found ? SE.getMulExpr(Ops) : nullptr;
735     }
736     return nullptr;
737   }
738 
739   // Otherwise we don't know.
740   return nullptr;
741 }
742 
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
746   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
747     if (C->getAPInt().getMinSignedBits() <= 64) {
748       S = SE.getConstant(C->getType(), 0);
749       return C->getValue()->getSExtValue();
750     }
751   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
752     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
753     int64_t Result = ExtractImmediate(NewOps.front(), SE);
754     if (Result != 0)
755       S = SE.getAddExpr(NewOps);
756     return Result;
757   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
758     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
759     int64_t Result = ExtractImmediate(NewOps.front(), SE);
760     if (Result != 0)
761       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
762                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
763                            SCEV::FlagAnyWrap);
764     return Result;
765   }
766   return 0;
767 }
768 
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
772   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
773     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
774       S = SE.getConstant(GV->getType(), 0);
775       return GV;
776     }
777   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
778     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
779     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
780     if (Result)
781       S = SE.getAddExpr(NewOps);
782     return Result;
783   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
784     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
785     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
786     if (Result)
787       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
788                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
789                            SCEV::FlagAnyWrap);
790     return Result;
791   }
792   return nullptr;
793 }
794 
795 /// Returns true if the specified instruction is using the specified value as an
796 /// address.
797 static bool isAddressUse(const TargetTransformInfo &TTI,
798                          Instruction *Inst, Value *OperandVal) {
799   bool isAddress = isa<LoadInst>(Inst);
800   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
801     if (SI->getPointerOperand() == OperandVal)
802       isAddress = true;
803   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
804     // Addressing modes can also be folded into prefetches and a variety
805     // of intrinsics.
806     switch (II->getIntrinsicID()) {
807     case Intrinsic::memset:
808     case Intrinsic::prefetch:
809       if (II->getArgOperand(0) == OperandVal)
810         isAddress = true;
811       break;
812     case Intrinsic::memmove:
813     case Intrinsic::memcpy:
814       if (II->getArgOperand(0) == OperandVal ||
815           II->getArgOperand(1) == OperandVal)
816         isAddress = true;
817       break;
818     default: {
819       MemIntrinsicInfo IntrInfo;
820       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
821         if (IntrInfo.PtrVal == OperandVal)
822           isAddress = true;
823       }
824     }
825     }
826   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
827     if (RMW->getPointerOperand() == OperandVal)
828       isAddress = true;
829   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
830     if (CmpX->getPointerOperand() == OperandVal)
831       isAddress = true;
832   }
833   return isAddress;
834 }
835 
836 /// Return the type of the memory being accessed.
837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
838                                  Instruction *Inst, Value *OperandVal) {
839   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
840   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
841     AccessTy.MemTy = SI->getOperand(0)->getType();
842     AccessTy.AddrSpace = SI->getPointerAddressSpace();
843   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
844     AccessTy.AddrSpace = LI->getPointerAddressSpace();
845   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
846     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
847   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
849   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
850     switch (II->getIntrinsicID()) {
851     case Intrinsic::prefetch:
852     case Intrinsic::memset:
853       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
854       AccessTy.MemTy = OperandVal->getType();
855       break;
856     case Intrinsic::memmove:
857     case Intrinsic::memcpy:
858       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
859       AccessTy.MemTy = OperandVal->getType();
860       break;
861     default: {
862       MemIntrinsicInfo IntrInfo;
863       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
864         AccessTy.AddrSpace
865           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
866       }
867 
868       break;
869     }
870     }
871   }
872 
873   // All pointers have the same requirements, so canonicalize them to an
874   // arbitrary pointer type to minimize variation.
875   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
876     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
877                                       PTy->getAddressSpace());
878 
879   return AccessTy;
880 }
881 
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
884   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
885     if (SE.isSCEVable(PN.getType()) &&
886         (SE.getEffectiveSCEVType(PN.getType()) ==
887          SE.getEffectiveSCEVType(AR->getType())) &&
888         SE.getSCEV(&PN) == AR)
889       return true;
890   }
891   return false;
892 }
893 
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
897 ///
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
900 ///
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV *S,
904                                 SmallPtrSetImpl<const SCEV*> &Processed,
905                                 ScalarEvolution &SE) {
906   // Zero/One operand expressions
907   switch (S->getSCEVType()) {
908   case scUnknown:
909   case scConstant:
910     return false;
911   case scTruncate:
912     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
913                                Processed, SE);
914   case scZeroExtend:
915     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
916                                Processed, SE);
917   case scSignExtend:
918     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
919                                Processed, SE);
920   }
921 
922   if (!Processed.insert(S).second)
923     return false;
924 
925   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
926     for (const SCEV *S : Add->operands()) {
927       if (isHighCostExpansion(S, Processed, SE))
928         return true;
929     }
930     return false;
931   }
932 
933   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
934     if (Mul->getNumOperands() == 2) {
935       // Multiplication by a constant is ok
936       if (isa<SCEVConstant>(Mul->getOperand(0)))
937         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
938 
939       // If we have the value of one operand, check if an existing
940       // multiplication already generates this expression.
941       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
942         Value *UVal = U->getValue();
943         for (User *UR : UVal->users()) {
944           // If U is a constant, it may be used by a ConstantExpr.
945           Instruction *UI = dyn_cast<Instruction>(UR);
946           if (UI && UI->getOpcode() == Instruction::Mul &&
947               SE.isSCEVable(UI->getType())) {
948             return SE.getSCEV(UI) == Mul;
949           }
950         }
951       }
952     }
953   }
954 
955   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
956     if (isExistingPhi(AR, SE))
957       return false;
958   }
959 
960   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
961   return true;
962 }
963 
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
966 static bool
967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
968   bool Changed = false;
969 
970   while (!DeadInsts.empty()) {
971     Value *V = DeadInsts.pop_back_val();
972     Instruction *I = dyn_cast_or_null<Instruction>(V);
973 
974     if (!I || !isInstructionTriviallyDead(I))
975       continue;
976 
977     for (Use &O : I->operands())
978       if (Instruction *U = dyn_cast<Instruction>(O)) {
979         O = nullptr;
980         if (U->use_empty())
981           DeadInsts.emplace_back(U);
982       }
983 
984     I->eraseFromParent();
985     Changed = true;
986   }
987 
988   return Changed;
989 }
990 
991 namespace {
992 
993 class LSRUse;
994 
995 } // end anonymous namespace
996 
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1007                                  const LSRUse &LU, const Formula &F);
1008 
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1011                                      const LSRUse &LU, const Formula &F,
1012                                      const Loop &L);
1013 
1014 namespace {
1015 
1016 /// This class is used to measure and compare candidate formulae.
1017 class Cost {
1018   const Loop *L = nullptr;
1019   ScalarEvolution *SE = nullptr;
1020   const TargetTransformInfo *TTI = nullptr;
1021   TargetTransformInfo::LSRCost C;
1022 
1023 public:
1024   Cost() = delete;
1025   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1026     L(L), SE(&SE), TTI(&TTI) {
1027     C.Insns = 0;
1028     C.NumRegs = 0;
1029     C.AddRecCost = 0;
1030     C.NumIVMuls = 0;
1031     C.NumBaseAdds = 0;
1032     C.ImmCost = 0;
1033     C.SetupCost = 0;
1034     C.ScaleCost = 0;
1035   }
1036 
1037   bool isLess(Cost &Other);
1038 
1039   void Lose();
1040 
1041 #ifndef NDEBUG
1042   // Once any of the metrics loses, they must all remain losers.
1043   bool isValid() {
1044     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1045              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1046       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1047            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1048   }
1049 #endif
1050 
1051   bool isLoser() {
1052     assert(isValid() && "invalid cost");
1053     return C.NumRegs == ~0u;
1054   }
1055 
1056   void RateFormula(const Formula &F,
1057                    SmallPtrSetImpl<const SCEV *> &Regs,
1058                    const DenseSet<const SCEV *> &VisitedRegs,
1059                    const LSRUse &LU,
1060                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1061 
1062   void print(raw_ostream &OS) const;
1063   void dump() const;
1064 
1065 private:
1066   void RateRegister(const Formula &F, const SCEV *Reg,
1067                     SmallPtrSetImpl<const SCEV *> &Regs);
1068   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1069                            SmallPtrSetImpl<const SCEV *> &Regs,
1070                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1071 };
1072 
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1075 struct LSRFixup {
1076   /// The instruction which will be updated.
1077   Instruction *UserInst = nullptr;
1078 
1079   /// The operand of the instruction which will be replaced. The operand may be
1080   /// used more than once; every instance will be replaced.
1081   Value *OperandValToReplace = nullptr;
1082 
1083   /// If this user is to use the post-incremented value of an induction
1084   /// variable, this set is non-empty and holds the loops associated with the
1085   /// induction variable.
1086   PostIncLoopSet PostIncLoops;
1087 
1088   /// A constant offset to be added to the LSRUse expression.  This allows
1089   /// multiple fixups to share the same LSRUse with different offsets, for
1090   /// example in an unrolled loop.
1091   int64_t Offset = 0;
1092 
1093   LSRFixup() = default;
1094 
1095   bool isUseFullyOutsideLoop(const Loop *L) const;
1096 
1097   void print(raw_ostream &OS) const;
1098   void dump() const;
1099 };
1100 
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo {
1104   static SmallVector<const SCEV *, 4> getEmptyKey() {
1105     SmallVector<const SCEV *, 4>  V;
1106     V.push_back(reinterpret_cast<const SCEV *>(-1));
1107     return V;
1108   }
1109 
1110   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1111     SmallVector<const SCEV *, 4> V;
1112     V.push_back(reinterpret_cast<const SCEV *>(-2));
1113     return V;
1114   }
1115 
1116   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1117     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1118   }
1119 
1120   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1121                       const SmallVector<const SCEV *, 4> &RHS) {
1122     return LHS == RHS;
1123   }
1124 };
1125 
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied.  TODO: Represent multiple
1130 /// users of the same expression in common?
1131 class LSRUse {
1132   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1133 
1134 public:
1135   /// An enum for a kind of use, indicating what types of scaled and immediate
1136   /// operands it might support.
1137   enum KindType {
1138     Basic,   ///< A normal use, with no folding.
1139     Special, ///< A special case of basic, allowing -1 scales.
1140     Address, ///< An address use; folding according to TargetLowering
1141     ICmpZero ///< An equality icmp with both operands folded into one.
1142     // TODO: Add a generic icmp too?
1143   };
1144 
1145   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1146 
1147   KindType Kind;
1148   MemAccessTy AccessTy;
1149 
1150   /// The list of operands which are to be replaced.
1151   SmallVector<LSRFixup, 8> Fixups;
1152 
1153   /// Keep track of the min and max offsets of the fixups.
1154   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1155   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1156 
1157   /// This records whether all of the fixups using this LSRUse are outside of
1158   /// the loop, in which case some special-case heuristics may be used.
1159   bool AllFixupsOutsideLoop = true;
1160 
1161   /// RigidFormula is set to true to guarantee that this use will be associated
1162   /// with a single formula--the one that initially matched. Some SCEV
1163   /// expressions cannot be expanded. This allows LSR to consider the registers
1164   /// used by those expressions without the need to expand them later after
1165   /// changing the formula.
1166   bool RigidFormula = false;
1167 
1168   /// This records the widest use type for any fixup using this
1169   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170   /// fixup widths to be equivalent, because the narrower one may be relying on
1171   /// the implicit truncation to truncate away bogus bits.
1172   Type *WidestFixupType = nullptr;
1173 
1174   /// A list of ways to build a value that can satisfy this user.  After the
1175   /// list is populated, one of these is selected heuristically and used to
1176   /// formulate a replacement for OperandValToReplace in UserInst.
1177   SmallVector<Formula, 12> Formulae;
1178 
1179   /// The set of register candidates used by all formulae in this LSRUse.
1180   SmallPtrSet<const SCEV *, 4> Regs;
1181 
1182   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1183 
1184   LSRFixup &getNewFixup() {
1185     Fixups.push_back(LSRFixup());
1186     return Fixups.back();
1187   }
1188 
1189   void pushFixup(LSRFixup &f) {
1190     Fixups.push_back(f);
1191     if (f.Offset > MaxOffset)
1192       MaxOffset = f.Offset;
1193     if (f.Offset < MinOffset)
1194       MinOffset = f.Offset;
1195   }
1196 
1197   bool HasFormulaWithSameRegs(const Formula &F) const;
1198   float getNotSelectedProbability(const SCEV *Reg) const;
1199   bool InsertFormula(const Formula &F, const Loop &L);
1200   void DeleteFormula(Formula &F);
1201   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1202 
1203   void print(raw_ostream &OS) const;
1204   void dump() const;
1205 };
1206 
1207 } // end anonymous namespace
1208 
1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1210                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1211                                  GlobalValue *BaseGV, int64_t BaseOffset,
1212                                  bool HasBaseReg, int64_t Scale,
1213                                  Instruction *Fixup = nullptr);
1214 
1215 static unsigned getSetupCost(const SCEV *Reg) {
1216   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1217     return 1;
1218   if (!EnableRecursiveSetupCost)
1219     return 0;
1220   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1221     return getSetupCost(S->getStart());
1222   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1223     return getSetupCost(S->getOperand());
1224   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1225     return std::accumulate(S->op_begin(), S->op_end(), 0,
1226                            [](unsigned i, const SCEV *Reg) {
1227                              return i + getSetupCost(Reg);
1228                            });
1229   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1230     return getSetupCost(S->getLHS()) + getSetupCost(S->getRHS());
1231   return 0;
1232 }
1233 
1234 /// Tally up interesting quantities from the given register.
1235 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1236                         SmallPtrSetImpl<const SCEV *> &Regs) {
1237   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1238     // If this is an addrec for another loop, it should be an invariant
1239     // with respect to L since L is the innermost loop (at least
1240     // for now LSR only handles innermost loops).
1241     if (AR->getLoop() != L) {
1242       // If the AddRec exists, consider it's register free and leave it alone.
1243       if (isExistingPhi(AR, *SE))
1244         return;
1245 
1246       // It is bad to allow LSR for current loop to add induction variables
1247       // for its sibling loops.
1248       if (!AR->getLoop()->contains(L)) {
1249         Lose();
1250         return;
1251       }
1252 
1253       // Otherwise, it will be an invariant with respect to Loop L.
1254       ++C.NumRegs;
1255       return;
1256     }
1257 
1258     unsigned LoopCost = 1;
1259     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1260         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1261 
1262       // If the step size matches the base offset, we could use pre-indexed
1263       // addressing.
1264       if (TTI->shouldFavorBackedgeIndex(L)) {
1265         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1266           if (Step->getAPInt() == F.BaseOffset)
1267             LoopCost = 0;
1268       }
1269 
1270       if (TTI->shouldFavorPostInc()) {
1271         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1272         if (isa<SCEVConstant>(LoopStep)) {
1273           const SCEV *LoopStart = AR->getStart();
1274           if (!isa<SCEVConstant>(LoopStart) &&
1275               SE->isLoopInvariant(LoopStart, L))
1276             LoopCost = 0;
1277         }
1278       }
1279     }
1280     C.AddRecCost += LoopCost;
1281 
1282     // Add the step value register, if it needs one.
1283     // TODO: The non-affine case isn't precisely modeled here.
1284     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1285       if (!Regs.count(AR->getOperand(1))) {
1286         RateRegister(F, AR->getOperand(1), Regs);
1287         if (isLoser())
1288           return;
1289       }
1290     }
1291   }
1292   ++C.NumRegs;
1293 
1294   // Rough heuristic; favor registers which don't require extra setup
1295   // instructions in the preheader.
1296   C.SetupCost += getSetupCost(Reg);
1297 
1298   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1299                SE->hasComputableLoopEvolution(Reg, L);
1300 }
1301 
1302 /// Record this register in the set. If we haven't seen it before, rate
1303 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1304 /// one of those regs an instant loser.
1305 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1306                                SmallPtrSetImpl<const SCEV *> &Regs,
1307                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1308   if (LoserRegs && LoserRegs->count(Reg)) {
1309     Lose();
1310     return;
1311   }
1312   if (Regs.insert(Reg).second) {
1313     RateRegister(F, Reg, Regs);
1314     if (LoserRegs && isLoser())
1315       LoserRegs->insert(Reg);
1316   }
1317 }
1318 
1319 void Cost::RateFormula(const Formula &F,
1320                        SmallPtrSetImpl<const SCEV *> &Regs,
1321                        const DenseSet<const SCEV *> &VisitedRegs,
1322                        const LSRUse &LU,
1323                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1324   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1325   // Tally up the registers.
1326   unsigned PrevAddRecCost = C.AddRecCost;
1327   unsigned PrevNumRegs = C.NumRegs;
1328   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1329   if (const SCEV *ScaledReg = F.ScaledReg) {
1330     if (VisitedRegs.count(ScaledReg)) {
1331       Lose();
1332       return;
1333     }
1334     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1335     if (isLoser())
1336       return;
1337   }
1338   for (const SCEV *BaseReg : F.BaseRegs) {
1339     if (VisitedRegs.count(BaseReg)) {
1340       Lose();
1341       return;
1342     }
1343     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1344     if (isLoser())
1345       return;
1346   }
1347 
1348   // Determine how many (unfolded) adds we'll need inside the loop.
1349   size_t NumBaseParts = F.getNumRegs();
1350   if (NumBaseParts > 1)
1351     // Do not count the base and a possible second register if the target
1352     // allows to fold 2 registers.
1353     C.NumBaseAdds +=
1354         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1355   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1356 
1357   // Accumulate non-free scaling amounts.
1358   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1359 
1360   // Tally up the non-zero immediates.
1361   for (const LSRFixup &Fixup : LU.Fixups) {
1362     int64_t O = Fixup.Offset;
1363     int64_t Offset = (uint64_t)O + F.BaseOffset;
1364     if (F.BaseGV)
1365       C.ImmCost += 64; // Handle symbolic values conservatively.
1366                      // TODO: This should probably be the pointer size.
1367     else if (Offset != 0)
1368       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1369 
1370     // Check with target if this offset with this instruction is
1371     // specifically not supported.
1372     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1373         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1374                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1375       C.NumBaseAdds++;
1376   }
1377 
1378   // If we don't count instruction cost exit here.
1379   if (!InsnsCost) {
1380     assert(isValid() && "invalid cost");
1381     return;
1382   }
1383 
1384   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1385   // additional instruction (at least fill).
1386   unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1;
1387   if (C.NumRegs > TTIRegNum) {
1388     // Cost already exceeded TTIRegNum, then only newly added register can add
1389     // new instructions.
1390     if (PrevNumRegs > TTIRegNum)
1391       C.Insns += (C.NumRegs - PrevNumRegs);
1392     else
1393       C.Insns += (C.NumRegs - TTIRegNum);
1394   }
1395 
1396   // If ICmpZero formula ends with not 0, it could not be replaced by
1397   // just add or sub. We'll need to compare final result of AddRec.
1398   // That means we'll need an additional instruction. But if the target can
1399   // macro-fuse a compare with a branch, don't count this extra instruction.
1400   // For -10 + {0, +, 1}:
1401   // i = i + 1;
1402   // cmp i, 10
1403   //
1404   // For {-10, +, 1}:
1405   // i = i + 1;
1406   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1407       !TTI->canMacroFuseCmp())
1408     C.Insns++;
1409   // Each new AddRec adds 1 instruction to calculation.
1410   C.Insns += (C.AddRecCost - PrevAddRecCost);
1411 
1412   // BaseAdds adds instructions for unfolded registers.
1413   if (LU.Kind != LSRUse::ICmpZero)
1414     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1415   assert(isValid() && "invalid cost");
1416 }
1417 
1418 /// Set this cost to a losing value.
1419 void Cost::Lose() {
1420   C.Insns = std::numeric_limits<unsigned>::max();
1421   C.NumRegs = std::numeric_limits<unsigned>::max();
1422   C.AddRecCost = std::numeric_limits<unsigned>::max();
1423   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1424   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1425   C.ImmCost = std::numeric_limits<unsigned>::max();
1426   C.SetupCost = std::numeric_limits<unsigned>::max();
1427   C.ScaleCost = std::numeric_limits<unsigned>::max();
1428 }
1429 
1430 /// Choose the lower cost.
1431 bool Cost::isLess(Cost &Other) {
1432   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1433       C.Insns != Other.C.Insns)
1434     return C.Insns < Other.C.Insns;
1435   return TTI->isLSRCostLess(C, Other.C);
1436 }
1437 
1438 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1439 void Cost::print(raw_ostream &OS) const {
1440   if (InsnsCost)
1441     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1442   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1443   if (C.AddRecCost != 0)
1444     OS << ", with addrec cost " << C.AddRecCost;
1445   if (C.NumIVMuls != 0)
1446     OS << ", plus " << C.NumIVMuls << " IV mul"
1447        << (C.NumIVMuls == 1 ? "" : "s");
1448   if (C.NumBaseAdds != 0)
1449     OS << ", plus " << C.NumBaseAdds << " base add"
1450        << (C.NumBaseAdds == 1 ? "" : "s");
1451   if (C.ScaleCost != 0)
1452     OS << ", plus " << C.ScaleCost << " scale cost";
1453   if (C.ImmCost != 0)
1454     OS << ", plus " << C.ImmCost << " imm cost";
1455   if (C.SetupCost != 0)
1456     OS << ", plus " << C.SetupCost << " setup cost";
1457 }
1458 
1459 LLVM_DUMP_METHOD void Cost::dump() const {
1460   print(errs()); errs() << '\n';
1461 }
1462 #endif
1463 
1464 /// Test whether this fixup always uses its value outside of the given loop.
1465 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1466   // PHI nodes use their value in their incoming blocks.
1467   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1468     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1469       if (PN->getIncomingValue(i) == OperandValToReplace &&
1470           L->contains(PN->getIncomingBlock(i)))
1471         return false;
1472     return true;
1473   }
1474 
1475   return !L->contains(UserInst);
1476 }
1477 
1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1479 void LSRFixup::print(raw_ostream &OS) const {
1480   OS << "UserInst=";
1481   // Store is common and interesting enough to be worth special-casing.
1482   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1483     OS << "store ";
1484     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1485   } else if (UserInst->getType()->isVoidTy())
1486     OS << UserInst->getOpcodeName();
1487   else
1488     UserInst->printAsOperand(OS, /*PrintType=*/false);
1489 
1490   OS << ", OperandValToReplace=";
1491   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1492 
1493   for (const Loop *PIL : PostIncLoops) {
1494     OS << ", PostIncLoop=";
1495     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1496   }
1497 
1498   if (Offset != 0)
1499     OS << ", Offset=" << Offset;
1500 }
1501 
1502 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1503   print(errs()); errs() << '\n';
1504 }
1505 #endif
1506 
1507 /// Test whether this use as a formula which has the same registers as the given
1508 /// formula.
1509 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1510   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1511   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1512   // Unstable sort by host order ok, because this is only used for uniquifying.
1513   llvm::sort(Key);
1514   return Uniquifier.count(Key);
1515 }
1516 
1517 /// The function returns a probability of selecting formula without Reg.
1518 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1519   unsigned FNum = 0;
1520   for (const Formula &F : Formulae)
1521     if (F.referencesReg(Reg))
1522       FNum++;
1523   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1524 }
1525 
1526 /// If the given formula has not yet been inserted, add it to the list, and
1527 /// return true. Return false otherwise.  The formula must be in canonical form.
1528 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1529   assert(F.isCanonical(L) && "Invalid canonical representation");
1530 
1531   if (!Formulae.empty() && RigidFormula)
1532     return false;
1533 
1534   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1535   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1536   // Unstable sort by host order ok, because this is only used for uniquifying.
1537   llvm::sort(Key);
1538 
1539   if (!Uniquifier.insert(Key).second)
1540     return false;
1541 
1542   // Using a register to hold the value of 0 is not profitable.
1543   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1544          "Zero allocated in a scaled register!");
1545 #ifndef NDEBUG
1546   for (const SCEV *BaseReg : F.BaseRegs)
1547     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1548 #endif
1549 
1550   // Add the formula to the list.
1551   Formulae.push_back(F);
1552 
1553   // Record registers now being used by this use.
1554   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1555   if (F.ScaledReg)
1556     Regs.insert(F.ScaledReg);
1557 
1558   return true;
1559 }
1560 
1561 /// Remove the given formula from this use's list.
1562 void LSRUse::DeleteFormula(Formula &F) {
1563   if (&F != &Formulae.back())
1564     std::swap(F, Formulae.back());
1565   Formulae.pop_back();
1566 }
1567 
1568 /// Recompute the Regs field, and update RegUses.
1569 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1570   // Now that we've filtered out some formulae, recompute the Regs set.
1571   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1572   Regs.clear();
1573   for (const Formula &F : Formulae) {
1574     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1575     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1576   }
1577 
1578   // Update the RegTracker.
1579   for (const SCEV *S : OldRegs)
1580     if (!Regs.count(S))
1581       RegUses.dropRegister(S, LUIdx);
1582 }
1583 
1584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1585 void LSRUse::print(raw_ostream &OS) const {
1586   OS << "LSR Use: Kind=";
1587   switch (Kind) {
1588   case Basic:    OS << "Basic"; break;
1589   case Special:  OS << "Special"; break;
1590   case ICmpZero: OS << "ICmpZero"; break;
1591   case Address:
1592     OS << "Address of ";
1593     if (AccessTy.MemTy->isPointerTy())
1594       OS << "pointer"; // the full pointer type could be really verbose
1595     else {
1596       OS << *AccessTy.MemTy;
1597     }
1598 
1599     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1600   }
1601 
1602   OS << ", Offsets={";
1603   bool NeedComma = false;
1604   for (const LSRFixup &Fixup : Fixups) {
1605     if (NeedComma) OS << ',';
1606     OS << Fixup.Offset;
1607     NeedComma = true;
1608   }
1609   OS << '}';
1610 
1611   if (AllFixupsOutsideLoop)
1612     OS << ", all-fixups-outside-loop";
1613 
1614   if (WidestFixupType)
1615     OS << ", widest fixup type: " << *WidestFixupType;
1616 }
1617 
1618 LLVM_DUMP_METHOD void LSRUse::dump() const {
1619   print(errs()); errs() << '\n';
1620 }
1621 #endif
1622 
1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1624                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1625                                  GlobalValue *BaseGV, int64_t BaseOffset,
1626                                  bool HasBaseReg, int64_t Scale,
1627                                  Instruction *Fixup/*= nullptr*/) {
1628   switch (Kind) {
1629   case LSRUse::Address:
1630     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1631                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1632 
1633   case LSRUse::ICmpZero:
1634     // There's not even a target hook for querying whether it would be legal to
1635     // fold a GV into an ICmp.
1636     if (BaseGV)
1637       return false;
1638 
1639     // ICmp only has two operands; don't allow more than two non-trivial parts.
1640     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1641       return false;
1642 
1643     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1644     // putting the scaled register in the other operand of the icmp.
1645     if (Scale != 0 && Scale != -1)
1646       return false;
1647 
1648     // If we have low-level target information, ask the target if it can fold an
1649     // integer immediate on an icmp.
1650     if (BaseOffset != 0) {
1651       // We have one of:
1652       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1653       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1654       // Offs is the ICmp immediate.
1655       if (Scale == 0)
1656         // The cast does the right thing with
1657         // std::numeric_limits<int64_t>::min().
1658         BaseOffset = -(uint64_t)BaseOffset;
1659       return TTI.isLegalICmpImmediate(BaseOffset);
1660     }
1661 
1662     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1663     return true;
1664 
1665   case LSRUse::Basic:
1666     // Only handle single-register values.
1667     return !BaseGV && Scale == 0 && BaseOffset == 0;
1668 
1669   case LSRUse::Special:
1670     // Special case Basic to handle -1 scales.
1671     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1672   }
1673 
1674   llvm_unreachable("Invalid LSRUse Kind!");
1675 }
1676 
1677 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1678                                  int64_t MinOffset, int64_t MaxOffset,
1679                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1680                                  GlobalValue *BaseGV, int64_t BaseOffset,
1681                                  bool HasBaseReg, int64_t Scale) {
1682   // Check for overflow.
1683   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1684       (MinOffset > 0))
1685     return false;
1686   MinOffset = (uint64_t)BaseOffset + MinOffset;
1687   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1688       (MaxOffset > 0))
1689     return false;
1690   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1691 
1692   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1693                               HasBaseReg, Scale) &&
1694          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1695                               HasBaseReg, Scale);
1696 }
1697 
1698 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1699                                  int64_t MinOffset, int64_t MaxOffset,
1700                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1701                                  const Formula &F, const Loop &L) {
1702   // For the purpose of isAMCompletelyFolded either having a canonical formula
1703   // or a scale not equal to zero is correct.
1704   // Problems may arise from non canonical formulae having a scale == 0.
1705   // Strictly speaking it would best to just rely on canonical formulae.
1706   // However, when we generate the scaled formulae, we first check that the
1707   // scaling factor is profitable before computing the actual ScaledReg for
1708   // compile time sake.
1709   assert((F.isCanonical(L) || F.Scale != 0));
1710   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1711                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1712 }
1713 
1714 /// Test whether we know how to expand the current formula.
1715 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1716                        int64_t MaxOffset, LSRUse::KindType Kind,
1717                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1718                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1719   // We know how to expand completely foldable formulae.
1720   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1721                               BaseOffset, HasBaseReg, Scale) ||
1722          // Or formulae that use a base register produced by a sum of base
1723          // registers.
1724          (Scale == 1 &&
1725           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1726                                BaseGV, BaseOffset, true, 0));
1727 }
1728 
1729 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1730                        int64_t MaxOffset, LSRUse::KindType Kind,
1731                        MemAccessTy AccessTy, const Formula &F) {
1732   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1733                     F.BaseOffset, F.HasBaseReg, F.Scale);
1734 }
1735 
1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1737                                  const LSRUse &LU, const Formula &F) {
1738   // Target may want to look at the user instructions.
1739   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1740     for (const LSRFixup &Fixup : LU.Fixups)
1741       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1742                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1743                                 F.Scale, Fixup.UserInst))
1744         return false;
1745     return true;
1746   }
1747 
1748   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1749                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1750                               F.Scale);
1751 }
1752 
1753 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1754                                      const LSRUse &LU, const Formula &F,
1755                                      const Loop &L) {
1756   if (!F.Scale)
1757     return 0;
1758 
1759   // If the use is not completely folded in that instruction, we will have to
1760   // pay an extra cost only for scale != 1.
1761   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1762                             LU.AccessTy, F, L))
1763     return F.Scale != 1;
1764 
1765   switch (LU.Kind) {
1766   case LSRUse::Address: {
1767     // Check the scaling factor cost with both the min and max offsets.
1768     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1769         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1770         F.Scale, LU.AccessTy.AddrSpace);
1771     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1772         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1773         F.Scale, LU.AccessTy.AddrSpace);
1774 
1775     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1776            "Legal addressing mode has an illegal cost!");
1777     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1778   }
1779   case LSRUse::ICmpZero:
1780   case LSRUse::Basic:
1781   case LSRUse::Special:
1782     // The use is completely folded, i.e., everything is folded into the
1783     // instruction.
1784     return 0;
1785   }
1786 
1787   llvm_unreachable("Invalid LSRUse Kind!");
1788 }
1789 
1790 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1791                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1792                              GlobalValue *BaseGV, int64_t BaseOffset,
1793                              bool HasBaseReg) {
1794   // Fast-path: zero is always foldable.
1795   if (BaseOffset == 0 && !BaseGV) return true;
1796 
1797   // Conservatively, create an address with an immediate and a
1798   // base and a scale.
1799   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1800 
1801   // Canonicalize a scale of 1 to a base register if the formula doesn't
1802   // already have a base register.
1803   if (!HasBaseReg && Scale == 1) {
1804     Scale = 0;
1805     HasBaseReg = true;
1806   }
1807 
1808   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1809                               HasBaseReg, Scale);
1810 }
1811 
1812 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1813                              ScalarEvolution &SE, int64_t MinOffset,
1814                              int64_t MaxOffset, LSRUse::KindType Kind,
1815                              MemAccessTy AccessTy, const SCEV *S,
1816                              bool HasBaseReg) {
1817   // Fast-path: zero is always foldable.
1818   if (S->isZero()) return true;
1819 
1820   // Conservatively, create an address with an immediate and a
1821   // base and a scale.
1822   int64_t BaseOffset = ExtractImmediate(S, SE);
1823   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1824 
1825   // If there's anything else involved, it's not foldable.
1826   if (!S->isZero()) return false;
1827 
1828   // Fast-path: zero is always foldable.
1829   if (BaseOffset == 0 && !BaseGV) return true;
1830 
1831   // Conservatively, create an address with an immediate and a
1832   // base and a scale.
1833   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1834 
1835   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1836                               BaseOffset, HasBaseReg, Scale);
1837 }
1838 
1839 namespace {
1840 
1841 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1842 /// an expression that computes the IV it uses from the IV used by the previous
1843 /// link in the Chain.
1844 ///
1845 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1846 /// original IVOperand. The head of the chain's IVOperand is only valid during
1847 /// chain collection, before LSR replaces IV users. During chain generation,
1848 /// IncExpr can be used to find the new IVOperand that computes the same
1849 /// expression.
1850 struct IVInc {
1851   Instruction *UserInst;
1852   Value* IVOperand;
1853   const SCEV *IncExpr;
1854 
1855   IVInc(Instruction *U, Value *O, const SCEV *E)
1856       : UserInst(U), IVOperand(O), IncExpr(E) {}
1857 };
1858 
1859 // The list of IV increments in program order.  We typically add the head of a
1860 // chain without finding subsequent links.
1861 struct IVChain {
1862   SmallVector<IVInc, 1> Incs;
1863   const SCEV *ExprBase = nullptr;
1864 
1865   IVChain() = default;
1866   IVChain(const IVInc &Head, const SCEV *Base)
1867       : Incs(1, Head), ExprBase(Base) {}
1868 
1869   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1870 
1871   // Return the first increment in the chain.
1872   const_iterator begin() const {
1873     assert(!Incs.empty());
1874     return std::next(Incs.begin());
1875   }
1876   const_iterator end() const {
1877     return Incs.end();
1878   }
1879 
1880   // Returns true if this chain contains any increments.
1881   bool hasIncs() const { return Incs.size() >= 2; }
1882 
1883   // Add an IVInc to the end of this chain.
1884   void add(const IVInc &X) { Incs.push_back(X); }
1885 
1886   // Returns the last UserInst in the chain.
1887   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1888 
1889   // Returns true if IncExpr can be profitably added to this chain.
1890   bool isProfitableIncrement(const SCEV *OperExpr,
1891                              const SCEV *IncExpr,
1892                              ScalarEvolution&);
1893 };
1894 
1895 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1896 /// between FarUsers that definitely cross IV increments and NearUsers that may
1897 /// be used between IV increments.
1898 struct ChainUsers {
1899   SmallPtrSet<Instruction*, 4> FarUsers;
1900   SmallPtrSet<Instruction*, 4> NearUsers;
1901 };
1902 
1903 /// This class holds state for the main loop strength reduction logic.
1904 class LSRInstance {
1905   IVUsers &IU;
1906   ScalarEvolution &SE;
1907   DominatorTree &DT;
1908   LoopInfo &LI;
1909   const TargetTransformInfo &TTI;
1910   Loop *const L;
1911   bool FavorBackedgeIndex = false;
1912   bool Changed = false;
1913 
1914   /// This is the insert position that the current loop's induction variable
1915   /// increment should be placed. In simple loops, this is the latch block's
1916   /// terminator. But in more complicated cases, this is a position which will
1917   /// dominate all the in-loop post-increment users.
1918   Instruction *IVIncInsertPos = nullptr;
1919 
1920   /// Interesting factors between use strides.
1921   ///
1922   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1923   /// default, a SmallDenseSet, because we need to use the full range of
1924   /// int64_ts, and there's currently no good way of doing that with
1925   /// SmallDenseSet.
1926   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1927 
1928   /// Interesting use types, to facilitate truncation reuse.
1929   SmallSetVector<Type *, 4> Types;
1930 
1931   /// The list of interesting uses.
1932   SmallVector<LSRUse, 16> Uses;
1933 
1934   /// Track which uses use which register candidates.
1935   RegUseTracker RegUses;
1936 
1937   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1938   // have more than a few IV increment chains in a loop. Missing a Chain falls
1939   // back to normal LSR behavior for those uses.
1940   static const unsigned MaxChains = 8;
1941 
1942   /// IV users can form a chain of IV increments.
1943   SmallVector<IVChain, MaxChains> IVChainVec;
1944 
1945   /// IV users that belong to profitable IVChains.
1946   SmallPtrSet<Use*, MaxChains> IVIncSet;
1947 
1948   void OptimizeShadowIV();
1949   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1950   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1951   void OptimizeLoopTermCond();
1952 
1953   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1954                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1955   void FinalizeChain(IVChain &Chain);
1956   void CollectChains();
1957   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1958                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1959 
1960   void CollectInterestingTypesAndFactors();
1961   void CollectFixupsAndInitialFormulae();
1962 
1963   // Support for sharing of LSRUses between LSRFixups.
1964   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1965   UseMapTy UseMap;
1966 
1967   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1968                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1969 
1970   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1971                                     MemAccessTy AccessTy);
1972 
1973   void DeleteUse(LSRUse &LU, size_t LUIdx);
1974 
1975   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1976 
1977   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1978   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1979   void CountRegisters(const Formula &F, size_t LUIdx);
1980   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1981 
1982   void CollectLoopInvariantFixupsAndFormulae();
1983 
1984   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1985                               unsigned Depth = 0);
1986 
1987   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1988                                   const Formula &Base, unsigned Depth,
1989                                   size_t Idx, bool IsScaledReg = false);
1990   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1991   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1992                                    const Formula &Base, size_t Idx,
1993                                    bool IsScaledReg = false);
1994   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1995   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1996                                    const Formula &Base,
1997                                    const SmallVectorImpl<int64_t> &Worklist,
1998                                    size_t Idx, bool IsScaledReg = false);
1999   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2002   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateCrossUseConstantOffsets();
2004   void GenerateAllReuseFormulae();
2005 
2006   void FilterOutUndesirableDedicatedRegisters();
2007 
2008   size_t EstimateSearchSpaceComplexity() const;
2009   void NarrowSearchSpaceByDetectingSupersets();
2010   void NarrowSearchSpaceByCollapsingUnrolledCode();
2011   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2012   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2013   void NarrowSearchSpaceByDeletingCostlyFormulas();
2014   void NarrowSearchSpaceByPickingWinnerRegs();
2015   void NarrowSearchSpaceUsingHeuristics();
2016 
2017   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2018                     Cost &SolutionCost,
2019                     SmallVectorImpl<const Formula *> &Workspace,
2020                     const Cost &CurCost,
2021                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2022                     DenseSet<const SCEV *> &VisitedRegs) const;
2023   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2024 
2025   BasicBlock::iterator
2026     HoistInsertPosition(BasicBlock::iterator IP,
2027                         const SmallVectorImpl<Instruction *> &Inputs) const;
2028   BasicBlock::iterator
2029     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2030                                   const LSRFixup &LF,
2031                                   const LSRUse &LU,
2032                                   SCEVExpander &Rewriter) const;
2033 
2034   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2035                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2036                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2037   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2038                      const Formula &F, SCEVExpander &Rewriter,
2039                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2040   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2041                SCEVExpander &Rewriter,
2042                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2043   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2044 
2045 public:
2046   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2047               LoopInfo &LI, const TargetTransformInfo &TTI);
2048 
2049   bool getChanged() const { return Changed; }
2050 
2051   void print_factors_and_types(raw_ostream &OS) const;
2052   void print_fixups(raw_ostream &OS) const;
2053   void print_uses(raw_ostream &OS) const;
2054   void print(raw_ostream &OS) const;
2055   void dump() const;
2056 };
2057 
2058 } // end anonymous namespace
2059 
2060 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2061 /// the cast operation.
2062 void LSRInstance::OptimizeShadowIV() {
2063   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2064   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2065     return;
2066 
2067   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2068        UI != E; /* empty */) {
2069     IVUsers::const_iterator CandidateUI = UI;
2070     ++UI;
2071     Instruction *ShadowUse = CandidateUI->getUser();
2072     Type *DestTy = nullptr;
2073     bool IsSigned = false;
2074 
2075     /* If shadow use is a int->float cast then insert a second IV
2076        to eliminate this cast.
2077 
2078          for (unsigned i = 0; i < n; ++i)
2079            foo((double)i);
2080 
2081        is transformed into
2082 
2083          double d = 0.0;
2084          for (unsigned i = 0; i < n; ++i, ++d)
2085            foo(d);
2086     */
2087     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2088       IsSigned = false;
2089       DestTy = UCast->getDestTy();
2090     }
2091     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2092       IsSigned = true;
2093       DestTy = SCast->getDestTy();
2094     }
2095     if (!DestTy) continue;
2096 
2097     // If target does not support DestTy natively then do not apply
2098     // this transformation.
2099     if (!TTI.isTypeLegal(DestTy)) continue;
2100 
2101     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2102     if (!PH) continue;
2103     if (PH->getNumIncomingValues() != 2) continue;
2104 
2105     // If the calculation in integers overflows, the result in FP type will
2106     // differ. So we only can do this transformation if we are guaranteed to not
2107     // deal with overflowing values
2108     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2109     if (!AR) continue;
2110     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2111     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2112 
2113     Type *SrcTy = PH->getType();
2114     int Mantissa = DestTy->getFPMantissaWidth();
2115     if (Mantissa == -1) continue;
2116     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2117       continue;
2118 
2119     unsigned Entry, Latch;
2120     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2121       Entry = 0;
2122       Latch = 1;
2123     } else {
2124       Entry = 1;
2125       Latch = 0;
2126     }
2127 
2128     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2129     if (!Init) continue;
2130     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2131                                         (double)Init->getSExtValue() :
2132                                         (double)Init->getZExtValue());
2133 
2134     BinaryOperator *Incr =
2135       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2136     if (!Incr) continue;
2137     if (Incr->getOpcode() != Instruction::Add
2138         && Incr->getOpcode() != Instruction::Sub)
2139       continue;
2140 
2141     /* Initialize new IV, double d = 0.0 in above example. */
2142     ConstantInt *C = nullptr;
2143     if (Incr->getOperand(0) == PH)
2144       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2145     else if (Incr->getOperand(1) == PH)
2146       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2147     else
2148       continue;
2149 
2150     if (!C) continue;
2151 
2152     // Ignore negative constants, as the code below doesn't handle them
2153     // correctly. TODO: Remove this restriction.
2154     if (!C->getValue().isStrictlyPositive()) continue;
2155 
2156     /* Add new PHINode. */
2157     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2158 
2159     /* create new increment. '++d' in above example. */
2160     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2161     BinaryOperator *NewIncr =
2162       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2163                                Instruction::FAdd : Instruction::FSub,
2164                              NewPH, CFP, "IV.S.next.", Incr);
2165 
2166     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2167     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2168 
2169     /* Remove cast operation */
2170     ShadowUse->replaceAllUsesWith(NewPH);
2171     ShadowUse->eraseFromParent();
2172     Changed = true;
2173     break;
2174   }
2175 }
2176 
2177 /// If Cond has an operand that is an expression of an IV, set the IV user and
2178 /// stride information and return true, otherwise return false.
2179 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2180   for (IVStrideUse &U : IU)
2181     if (U.getUser() == Cond) {
2182       // NOTE: we could handle setcc instructions with multiple uses here, but
2183       // InstCombine does it as well for simple uses, it's not clear that it
2184       // occurs enough in real life to handle.
2185       CondUse = &U;
2186       return true;
2187     }
2188   return false;
2189 }
2190 
2191 /// Rewrite the loop's terminating condition if it uses a max computation.
2192 ///
2193 /// This is a narrow solution to a specific, but acute, problem. For loops
2194 /// like this:
2195 ///
2196 ///   i = 0;
2197 ///   do {
2198 ///     p[i] = 0.0;
2199 ///   } while (++i < n);
2200 ///
2201 /// the trip count isn't just 'n', because 'n' might not be positive. And
2202 /// unfortunately this can come up even for loops where the user didn't use
2203 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2204 /// will commonly be lowered like this:
2205 ///
2206 ///   if (n > 0) {
2207 ///     i = 0;
2208 ///     do {
2209 ///       p[i] = 0.0;
2210 ///     } while (++i < n);
2211 ///   }
2212 ///
2213 /// and then it's possible for subsequent optimization to obscure the if
2214 /// test in such a way that indvars can't find it.
2215 ///
2216 /// When indvars can't find the if test in loops like this, it creates a
2217 /// max expression, which allows it to give the loop a canonical
2218 /// induction variable:
2219 ///
2220 ///   i = 0;
2221 ///   max = n < 1 ? 1 : n;
2222 ///   do {
2223 ///     p[i] = 0.0;
2224 ///   } while (++i != max);
2225 ///
2226 /// Canonical induction variables are necessary because the loop passes
2227 /// are designed around them. The most obvious example of this is the
2228 /// LoopInfo analysis, which doesn't remember trip count values. It
2229 /// expects to be able to rediscover the trip count each time it is
2230 /// needed, and it does this using a simple analysis that only succeeds if
2231 /// the loop has a canonical induction variable.
2232 ///
2233 /// However, when it comes time to generate code, the maximum operation
2234 /// can be quite costly, especially if it's inside of an outer loop.
2235 ///
2236 /// This function solves this problem by detecting this type of loop and
2237 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2238 /// the instructions for the maximum computation.
2239 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2240   // Check that the loop matches the pattern we're looking for.
2241   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2242       Cond->getPredicate() != CmpInst::ICMP_NE)
2243     return Cond;
2244 
2245   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2246   if (!Sel || !Sel->hasOneUse()) return Cond;
2247 
2248   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2249   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2250     return Cond;
2251   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2252 
2253   // Add one to the backedge-taken count to get the trip count.
2254   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2255   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2256 
2257   // Check for a max calculation that matches the pattern. There's no check
2258   // for ICMP_ULE here because the comparison would be with zero, which
2259   // isn't interesting.
2260   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2261   const SCEVNAryExpr *Max = nullptr;
2262   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2263     Pred = ICmpInst::ICMP_SLE;
2264     Max = S;
2265   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2266     Pred = ICmpInst::ICMP_SLT;
2267     Max = S;
2268   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2269     Pred = ICmpInst::ICMP_ULT;
2270     Max = U;
2271   } else {
2272     // No match; bail.
2273     return Cond;
2274   }
2275 
2276   // To handle a max with more than two operands, this optimization would
2277   // require additional checking and setup.
2278   if (Max->getNumOperands() != 2)
2279     return Cond;
2280 
2281   const SCEV *MaxLHS = Max->getOperand(0);
2282   const SCEV *MaxRHS = Max->getOperand(1);
2283 
2284   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2285   // for a comparison with 1. For <= and >=, a comparison with zero.
2286   if (!MaxLHS ||
2287       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2288     return Cond;
2289 
2290   // Check the relevant induction variable for conformance to
2291   // the pattern.
2292   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2293   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2294   if (!AR || !AR->isAffine() ||
2295       AR->getStart() != One ||
2296       AR->getStepRecurrence(SE) != One)
2297     return Cond;
2298 
2299   assert(AR->getLoop() == L &&
2300          "Loop condition operand is an addrec in a different loop!");
2301 
2302   // Check the right operand of the select, and remember it, as it will
2303   // be used in the new comparison instruction.
2304   Value *NewRHS = nullptr;
2305   if (ICmpInst::isTrueWhenEqual(Pred)) {
2306     // Look for n+1, and grab n.
2307     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2308       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2309          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2310            NewRHS = BO->getOperand(0);
2311     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2312       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2313         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2314           NewRHS = BO->getOperand(0);
2315     if (!NewRHS)
2316       return Cond;
2317   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2318     NewRHS = Sel->getOperand(1);
2319   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2320     NewRHS = Sel->getOperand(2);
2321   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2322     NewRHS = SU->getValue();
2323   else
2324     // Max doesn't match expected pattern.
2325     return Cond;
2326 
2327   // Determine the new comparison opcode. It may be signed or unsigned,
2328   // and the original comparison may be either equality or inequality.
2329   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2330     Pred = CmpInst::getInversePredicate(Pred);
2331 
2332   // Ok, everything looks ok to change the condition into an SLT or SGE and
2333   // delete the max calculation.
2334   ICmpInst *NewCond =
2335     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2336 
2337   // Delete the max calculation instructions.
2338   Cond->replaceAllUsesWith(NewCond);
2339   CondUse->setUser(NewCond);
2340   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2341   Cond->eraseFromParent();
2342   Sel->eraseFromParent();
2343   if (Cmp->use_empty())
2344     Cmp->eraseFromParent();
2345   return NewCond;
2346 }
2347 
2348 /// Change loop terminating condition to use the postinc iv when possible.
2349 void
2350 LSRInstance::OptimizeLoopTermCond() {
2351   SmallPtrSet<Instruction *, 4> PostIncs;
2352 
2353   // We need a different set of heuristics for rotated and non-rotated loops.
2354   // If a loop is rotated then the latch is also the backedge, so inserting
2355   // post-inc expressions just before the latch is ideal. To reduce live ranges
2356   // it also makes sense to rewrite terminating conditions to use post-inc
2357   // expressions.
2358   //
2359   // If the loop is not rotated then the latch is not a backedge; the latch
2360   // check is done in the loop head. Adding post-inc expressions before the
2361   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2362   // in the loop body. In this case we do *not* want to use post-inc expressions
2363   // in the latch check, and we want to insert post-inc expressions before
2364   // the backedge.
2365   BasicBlock *LatchBlock = L->getLoopLatch();
2366   SmallVector<BasicBlock*, 8> ExitingBlocks;
2367   L->getExitingBlocks(ExitingBlocks);
2368   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2369         return LatchBlock != BB;
2370       })) {
2371     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2372     IVIncInsertPos = LatchBlock->getTerminator();
2373     return;
2374   }
2375 
2376   // Otherwise treat this as a rotated loop.
2377   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2378     // Get the terminating condition for the loop if possible.  If we
2379     // can, we want to change it to use a post-incremented version of its
2380     // induction variable, to allow coalescing the live ranges for the IV into
2381     // one register value.
2382 
2383     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2384     if (!TermBr)
2385       continue;
2386     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2387     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2388       continue;
2389 
2390     // Search IVUsesByStride to find Cond's IVUse if there is one.
2391     IVStrideUse *CondUse = nullptr;
2392     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2393     if (!FindIVUserForCond(Cond, CondUse))
2394       continue;
2395 
2396     // If the trip count is computed in terms of a max (due to ScalarEvolution
2397     // being unable to find a sufficient guard, for example), change the loop
2398     // comparison to use SLT or ULT instead of NE.
2399     // One consequence of doing this now is that it disrupts the count-down
2400     // optimization. That's not always a bad thing though, because in such
2401     // cases it may still be worthwhile to avoid a max.
2402     Cond = OptimizeMax(Cond, CondUse);
2403 
2404     // If this exiting block dominates the latch block, it may also use
2405     // the post-inc value if it won't be shared with other uses.
2406     // Check for dominance.
2407     if (!DT.dominates(ExitingBlock, LatchBlock))
2408       continue;
2409 
2410     // Conservatively avoid trying to use the post-inc value in non-latch
2411     // exits if there may be pre-inc users in intervening blocks.
2412     if (LatchBlock != ExitingBlock)
2413       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2414         // Test if the use is reachable from the exiting block. This dominator
2415         // query is a conservative approximation of reachability.
2416         if (&*UI != CondUse &&
2417             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2418           // Conservatively assume there may be reuse if the quotient of their
2419           // strides could be a legal scale.
2420           const SCEV *A = IU.getStride(*CondUse, L);
2421           const SCEV *B = IU.getStride(*UI, L);
2422           if (!A || !B) continue;
2423           if (SE.getTypeSizeInBits(A->getType()) !=
2424               SE.getTypeSizeInBits(B->getType())) {
2425             if (SE.getTypeSizeInBits(A->getType()) >
2426                 SE.getTypeSizeInBits(B->getType()))
2427               B = SE.getSignExtendExpr(B, A->getType());
2428             else
2429               A = SE.getSignExtendExpr(A, B->getType());
2430           }
2431           if (const SCEVConstant *D =
2432                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2433             const ConstantInt *C = D->getValue();
2434             // Stride of one or negative one can have reuse with non-addresses.
2435             if (C->isOne() || C->isMinusOne())
2436               goto decline_post_inc;
2437             // Avoid weird situations.
2438             if (C->getValue().getMinSignedBits() >= 64 ||
2439                 C->getValue().isMinSignedValue())
2440               goto decline_post_inc;
2441             // Check for possible scaled-address reuse.
2442             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2443               MemAccessTy AccessTy = getAccessType(
2444                   TTI, UI->getUser(), UI->getOperandValToReplace());
2445               int64_t Scale = C->getSExtValue();
2446               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2447                                             /*BaseOffset=*/0,
2448                                             /*HasBaseReg=*/false, Scale,
2449                                             AccessTy.AddrSpace))
2450                 goto decline_post_inc;
2451               Scale = -Scale;
2452               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2453                                             /*BaseOffset=*/0,
2454                                             /*HasBaseReg=*/false, Scale,
2455                                             AccessTy.AddrSpace))
2456                 goto decline_post_inc;
2457             }
2458           }
2459         }
2460 
2461     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2462                       << *Cond << '\n');
2463 
2464     // It's possible for the setcc instruction to be anywhere in the loop, and
2465     // possible for it to have multiple users.  If it is not immediately before
2466     // the exiting block branch, move it.
2467     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2468       if (Cond->hasOneUse()) {
2469         Cond->moveBefore(TermBr);
2470       } else {
2471         // Clone the terminating condition and insert into the loopend.
2472         ICmpInst *OldCond = Cond;
2473         Cond = cast<ICmpInst>(Cond->clone());
2474         Cond->setName(L->getHeader()->getName() + ".termcond");
2475         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2476 
2477         // Clone the IVUse, as the old use still exists!
2478         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2479         TermBr->replaceUsesOfWith(OldCond, Cond);
2480       }
2481     }
2482 
2483     // If we get to here, we know that we can transform the setcc instruction to
2484     // use the post-incremented version of the IV, allowing us to coalesce the
2485     // live ranges for the IV correctly.
2486     CondUse->transformToPostInc(L);
2487     Changed = true;
2488 
2489     PostIncs.insert(Cond);
2490   decline_post_inc:;
2491   }
2492 
2493   // Determine an insertion point for the loop induction variable increment. It
2494   // must dominate all the post-inc comparisons we just set up, and it must
2495   // dominate the loop latch edge.
2496   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2497   for (Instruction *Inst : PostIncs) {
2498     BasicBlock *BB =
2499       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2500                                     Inst->getParent());
2501     if (BB == Inst->getParent())
2502       IVIncInsertPos = Inst;
2503     else if (BB != IVIncInsertPos->getParent())
2504       IVIncInsertPos = BB->getTerminator();
2505   }
2506 }
2507 
2508 /// Determine if the given use can accommodate a fixup at the given offset and
2509 /// other details. If so, update the use and return true.
2510 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2511                                      bool HasBaseReg, LSRUse::KindType Kind,
2512                                      MemAccessTy AccessTy) {
2513   int64_t NewMinOffset = LU.MinOffset;
2514   int64_t NewMaxOffset = LU.MaxOffset;
2515   MemAccessTy NewAccessTy = AccessTy;
2516 
2517   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2518   // something conservative, however this can pessimize in the case that one of
2519   // the uses will have all its uses outside the loop, for example.
2520   if (LU.Kind != Kind)
2521     return false;
2522 
2523   // Check for a mismatched access type, and fall back conservatively as needed.
2524   // TODO: Be less conservative when the type is similar and can use the same
2525   // addressing modes.
2526   if (Kind == LSRUse::Address) {
2527     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2528       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2529                                             AccessTy.AddrSpace);
2530     }
2531   }
2532 
2533   // Conservatively assume HasBaseReg is true for now.
2534   if (NewOffset < LU.MinOffset) {
2535     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2536                           LU.MaxOffset - NewOffset, HasBaseReg))
2537       return false;
2538     NewMinOffset = NewOffset;
2539   } else if (NewOffset > LU.MaxOffset) {
2540     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2541                           NewOffset - LU.MinOffset, HasBaseReg))
2542       return false;
2543     NewMaxOffset = NewOffset;
2544   }
2545 
2546   // Update the use.
2547   LU.MinOffset = NewMinOffset;
2548   LU.MaxOffset = NewMaxOffset;
2549   LU.AccessTy = NewAccessTy;
2550   return true;
2551 }
2552 
2553 /// Return an LSRUse index and an offset value for a fixup which needs the given
2554 /// expression, with the given kind and optional access type.  Either reuse an
2555 /// existing use or create a new one, as needed.
2556 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2557                                                LSRUse::KindType Kind,
2558                                                MemAccessTy AccessTy) {
2559   const SCEV *Copy = Expr;
2560   int64_t Offset = ExtractImmediate(Expr, SE);
2561 
2562   // Basic uses can't accept any offset, for example.
2563   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2564                         Offset, /*HasBaseReg=*/ true)) {
2565     Expr = Copy;
2566     Offset = 0;
2567   }
2568 
2569   std::pair<UseMapTy::iterator, bool> P =
2570     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2571   if (!P.second) {
2572     // A use already existed with this base.
2573     size_t LUIdx = P.first->second;
2574     LSRUse &LU = Uses[LUIdx];
2575     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2576       // Reuse this use.
2577       return std::make_pair(LUIdx, Offset);
2578   }
2579 
2580   // Create a new use.
2581   size_t LUIdx = Uses.size();
2582   P.first->second = LUIdx;
2583   Uses.push_back(LSRUse(Kind, AccessTy));
2584   LSRUse &LU = Uses[LUIdx];
2585 
2586   LU.MinOffset = Offset;
2587   LU.MaxOffset = Offset;
2588   return std::make_pair(LUIdx, Offset);
2589 }
2590 
2591 /// Delete the given use from the Uses list.
2592 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2593   if (&LU != &Uses.back())
2594     std::swap(LU, Uses.back());
2595   Uses.pop_back();
2596 
2597   // Update RegUses.
2598   RegUses.swapAndDropUse(LUIdx, Uses.size());
2599 }
2600 
2601 /// Look for a use distinct from OrigLU which is has a formula that has the same
2602 /// registers as the given formula.
2603 LSRUse *
2604 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2605                                        const LSRUse &OrigLU) {
2606   // Search all uses for the formula. This could be more clever.
2607   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2608     LSRUse &LU = Uses[LUIdx];
2609     // Check whether this use is close enough to OrigLU, to see whether it's
2610     // worthwhile looking through its formulae.
2611     // Ignore ICmpZero uses because they may contain formulae generated by
2612     // GenerateICmpZeroScales, in which case adding fixup offsets may
2613     // be invalid.
2614     if (&LU != &OrigLU &&
2615         LU.Kind != LSRUse::ICmpZero &&
2616         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2617         LU.WidestFixupType == OrigLU.WidestFixupType &&
2618         LU.HasFormulaWithSameRegs(OrigF)) {
2619       // Scan through this use's formulae.
2620       for (const Formula &F : LU.Formulae) {
2621         // Check to see if this formula has the same registers and symbols
2622         // as OrigF.
2623         if (F.BaseRegs == OrigF.BaseRegs &&
2624             F.ScaledReg == OrigF.ScaledReg &&
2625             F.BaseGV == OrigF.BaseGV &&
2626             F.Scale == OrigF.Scale &&
2627             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2628           if (F.BaseOffset == 0)
2629             return &LU;
2630           // This is the formula where all the registers and symbols matched;
2631           // there aren't going to be any others. Since we declined it, we
2632           // can skip the rest of the formulae and proceed to the next LSRUse.
2633           break;
2634         }
2635       }
2636     }
2637   }
2638 
2639   // Nothing looked good.
2640   return nullptr;
2641 }
2642 
2643 void LSRInstance::CollectInterestingTypesAndFactors() {
2644   SmallSetVector<const SCEV *, 4> Strides;
2645 
2646   // Collect interesting types and strides.
2647   SmallVector<const SCEV *, 4> Worklist;
2648   for (const IVStrideUse &U : IU) {
2649     const SCEV *Expr = IU.getExpr(U);
2650 
2651     // Collect interesting types.
2652     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2653 
2654     // Add strides for mentioned loops.
2655     Worklist.push_back(Expr);
2656     do {
2657       const SCEV *S = Worklist.pop_back_val();
2658       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2659         if (AR->getLoop() == L)
2660           Strides.insert(AR->getStepRecurrence(SE));
2661         Worklist.push_back(AR->getStart());
2662       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2663         Worklist.append(Add->op_begin(), Add->op_end());
2664       }
2665     } while (!Worklist.empty());
2666   }
2667 
2668   // Compute interesting factors from the set of interesting strides.
2669   for (SmallSetVector<const SCEV *, 4>::const_iterator
2670        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2671     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2672          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2673       const SCEV *OldStride = *I;
2674       const SCEV *NewStride = *NewStrideIter;
2675 
2676       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2677           SE.getTypeSizeInBits(NewStride->getType())) {
2678         if (SE.getTypeSizeInBits(OldStride->getType()) >
2679             SE.getTypeSizeInBits(NewStride->getType()))
2680           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2681         else
2682           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2683       }
2684       if (const SCEVConstant *Factor =
2685             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2686                                                         SE, true))) {
2687         if (Factor->getAPInt().getMinSignedBits() <= 64)
2688           Factors.insert(Factor->getAPInt().getSExtValue());
2689       } else if (const SCEVConstant *Factor =
2690                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2691                                                                NewStride,
2692                                                                SE, true))) {
2693         if (Factor->getAPInt().getMinSignedBits() <= 64)
2694           Factors.insert(Factor->getAPInt().getSExtValue());
2695       }
2696     }
2697 
2698   // If all uses use the same type, don't bother looking for truncation-based
2699   // reuse.
2700   if (Types.size() == 1)
2701     Types.clear();
2702 
2703   LLVM_DEBUG(print_factors_and_types(dbgs()));
2704 }
2705 
2706 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2707 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2708 /// IVStrideUses, we could partially skip this.
2709 static User::op_iterator
2710 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2711               Loop *L, ScalarEvolution &SE) {
2712   for(; OI != OE; ++OI) {
2713     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2714       if (!SE.isSCEVable(Oper->getType()))
2715         continue;
2716 
2717       if (const SCEVAddRecExpr *AR =
2718           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2719         if (AR->getLoop() == L)
2720           break;
2721       }
2722     }
2723   }
2724   return OI;
2725 }
2726 
2727 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2728 /// a convenient helper.
2729 static Value *getWideOperand(Value *Oper) {
2730   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2731     return Trunc->getOperand(0);
2732   return Oper;
2733 }
2734 
2735 /// Return true if we allow an IV chain to include both types.
2736 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2737   Type *LType = LVal->getType();
2738   Type *RType = RVal->getType();
2739   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2740                               // Different address spaces means (possibly)
2741                               // different types of the pointer implementation,
2742                               // e.g. i16 vs i32 so disallow that.
2743                               (LType->getPointerAddressSpace() ==
2744                                RType->getPointerAddressSpace()));
2745 }
2746 
2747 /// Return an approximation of this SCEV expression's "base", or NULL for any
2748 /// constant. Returning the expression itself is conservative. Returning a
2749 /// deeper subexpression is more precise and valid as long as it isn't less
2750 /// complex than another subexpression. For expressions involving multiple
2751 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2752 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2753 /// IVInc==b-a.
2754 ///
2755 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2756 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2757 static const SCEV *getExprBase(const SCEV *S) {
2758   switch (S->getSCEVType()) {
2759   default: // uncluding scUnknown.
2760     return S;
2761   case scConstant:
2762     return nullptr;
2763   case scTruncate:
2764     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2765   case scZeroExtend:
2766     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2767   case scSignExtend:
2768     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2769   case scAddExpr: {
2770     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2771     // there's nothing more complex.
2772     // FIXME: not sure if we want to recognize negation.
2773     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2774     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2775            E(Add->op_begin()); I != E; ++I) {
2776       const SCEV *SubExpr = *I;
2777       if (SubExpr->getSCEVType() == scAddExpr)
2778         return getExprBase(SubExpr);
2779 
2780       if (SubExpr->getSCEVType() != scMulExpr)
2781         return SubExpr;
2782     }
2783     return S; // all operands are scaled, be conservative.
2784   }
2785   case scAddRecExpr:
2786     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2787   }
2788 }
2789 
2790 /// Return true if the chain increment is profitable to expand into a loop
2791 /// invariant value, which may require its own register. A profitable chain
2792 /// increment will be an offset relative to the same base. We allow such offsets
2793 /// to potentially be used as chain increment as long as it's not obviously
2794 /// expensive to expand using real instructions.
2795 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2796                                     const SCEV *IncExpr,
2797                                     ScalarEvolution &SE) {
2798   // Aggressively form chains when -stress-ivchain.
2799   if (StressIVChain)
2800     return true;
2801 
2802   // Do not replace a constant offset from IV head with a nonconstant IV
2803   // increment.
2804   if (!isa<SCEVConstant>(IncExpr)) {
2805     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2806     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2807       return false;
2808   }
2809 
2810   SmallPtrSet<const SCEV*, 8> Processed;
2811   return !isHighCostExpansion(IncExpr, Processed, SE);
2812 }
2813 
2814 /// Return true if the number of registers needed for the chain is estimated to
2815 /// be less than the number required for the individual IV users. First prohibit
2816 /// any IV users that keep the IV live across increments (the Users set should
2817 /// be empty). Next count the number and type of increments in the chain.
2818 ///
2819 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2820 /// effectively use postinc addressing modes. Only consider it profitable it the
2821 /// increments can be computed in fewer registers when chained.
2822 ///
2823 /// TODO: Consider IVInc free if it's already used in another chains.
2824 static bool
2825 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2826                   ScalarEvolution &SE) {
2827   if (StressIVChain)
2828     return true;
2829 
2830   if (!Chain.hasIncs())
2831     return false;
2832 
2833   if (!Users.empty()) {
2834     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2835                for (Instruction *Inst
2836                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2837     return false;
2838   }
2839   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2840 
2841   // The chain itself may require a register, so intialize cost to 1.
2842   int cost = 1;
2843 
2844   // A complete chain likely eliminates the need for keeping the original IV in
2845   // a register. LSR does not currently know how to form a complete chain unless
2846   // the header phi already exists.
2847   if (isa<PHINode>(Chain.tailUserInst())
2848       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2849     --cost;
2850   }
2851   const SCEV *LastIncExpr = nullptr;
2852   unsigned NumConstIncrements = 0;
2853   unsigned NumVarIncrements = 0;
2854   unsigned NumReusedIncrements = 0;
2855   for (const IVInc &Inc : Chain) {
2856     if (Inc.IncExpr->isZero())
2857       continue;
2858 
2859     // Incrementing by zero or some constant is neutral. We assume constants can
2860     // be folded into an addressing mode or an add's immediate operand.
2861     if (isa<SCEVConstant>(Inc.IncExpr)) {
2862       ++NumConstIncrements;
2863       continue;
2864     }
2865 
2866     if (Inc.IncExpr == LastIncExpr)
2867       ++NumReusedIncrements;
2868     else
2869       ++NumVarIncrements;
2870 
2871     LastIncExpr = Inc.IncExpr;
2872   }
2873   // An IV chain with a single increment is handled by LSR's postinc
2874   // uses. However, a chain with multiple increments requires keeping the IV's
2875   // value live longer than it needs to be if chained.
2876   if (NumConstIncrements > 1)
2877     --cost;
2878 
2879   // Materializing increment expressions in the preheader that didn't exist in
2880   // the original code may cost a register. For example, sign-extended array
2881   // indices can produce ridiculous increments like this:
2882   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2883   cost += NumVarIncrements;
2884 
2885   // Reusing variable increments likely saves a register to hold the multiple of
2886   // the stride.
2887   cost -= NumReusedIncrements;
2888 
2889   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2890                     << "\n");
2891 
2892   return cost < 0;
2893 }
2894 
2895 /// Add this IV user to an existing chain or make it the head of a new chain.
2896 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2897                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2898   // When IVs are used as types of varying widths, they are generally converted
2899   // to a wider type with some uses remaining narrow under a (free) trunc.
2900   Value *const NextIV = getWideOperand(IVOper);
2901   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2902   const SCEV *const OperExprBase = getExprBase(OperExpr);
2903 
2904   // Visit all existing chains. Check if its IVOper can be computed as a
2905   // profitable loop invariant increment from the last link in the Chain.
2906   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2907   const SCEV *LastIncExpr = nullptr;
2908   for (; ChainIdx < NChains; ++ChainIdx) {
2909     IVChain &Chain = IVChainVec[ChainIdx];
2910 
2911     // Prune the solution space aggressively by checking that both IV operands
2912     // are expressions that operate on the same unscaled SCEVUnknown. This
2913     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2914     // first avoids creating extra SCEV expressions.
2915     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2916       continue;
2917 
2918     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2919     if (!isCompatibleIVType(PrevIV, NextIV))
2920       continue;
2921 
2922     // A phi node terminates a chain.
2923     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2924       continue;
2925 
2926     // The increment must be loop-invariant so it can be kept in a register.
2927     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2928     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2929     if (!SE.isLoopInvariant(IncExpr, L))
2930       continue;
2931 
2932     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2933       LastIncExpr = IncExpr;
2934       break;
2935     }
2936   }
2937   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2938   // bother for phi nodes, because they must be last in the chain.
2939   if (ChainIdx == NChains) {
2940     if (isa<PHINode>(UserInst))
2941       return;
2942     if (NChains >= MaxChains && !StressIVChain) {
2943       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2944       return;
2945     }
2946     LastIncExpr = OperExpr;
2947     // IVUsers may have skipped over sign/zero extensions. We don't currently
2948     // attempt to form chains involving extensions unless they can be hoisted
2949     // into this loop's AddRec.
2950     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2951       return;
2952     ++NChains;
2953     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2954                                  OperExprBase));
2955     ChainUsersVec.resize(NChains);
2956     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2957                       << ") IV=" << *LastIncExpr << "\n");
2958   } else {
2959     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2960                       << ") IV+" << *LastIncExpr << "\n");
2961     // Add this IV user to the end of the chain.
2962     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2963   }
2964   IVChain &Chain = IVChainVec[ChainIdx];
2965 
2966   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2967   // This chain's NearUsers become FarUsers.
2968   if (!LastIncExpr->isZero()) {
2969     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2970                                             NearUsers.end());
2971     NearUsers.clear();
2972   }
2973 
2974   // All other uses of IVOperand become near uses of the chain.
2975   // We currently ignore intermediate values within SCEV expressions, assuming
2976   // they will eventually be used be the current chain, or can be computed
2977   // from one of the chain increments. To be more precise we could
2978   // transitively follow its user and only add leaf IV users to the set.
2979   for (User *U : IVOper->users()) {
2980     Instruction *OtherUse = dyn_cast<Instruction>(U);
2981     if (!OtherUse)
2982       continue;
2983     // Uses in the chain will no longer be uses if the chain is formed.
2984     // Include the head of the chain in this iteration (not Chain.begin()).
2985     IVChain::const_iterator IncIter = Chain.Incs.begin();
2986     IVChain::const_iterator IncEnd = Chain.Incs.end();
2987     for( ; IncIter != IncEnd; ++IncIter) {
2988       if (IncIter->UserInst == OtherUse)
2989         break;
2990     }
2991     if (IncIter != IncEnd)
2992       continue;
2993 
2994     if (SE.isSCEVable(OtherUse->getType())
2995         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2996         && IU.isIVUserOrOperand(OtherUse)) {
2997       continue;
2998     }
2999     NearUsers.insert(OtherUse);
3000   }
3001 
3002   // Since this user is part of the chain, it's no longer considered a use
3003   // of the chain.
3004   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3005 }
3006 
3007 /// Populate the vector of Chains.
3008 ///
3009 /// This decreases ILP at the architecture level. Targets with ample registers,
3010 /// multiple memory ports, and no register renaming probably don't want
3011 /// this. However, such targets should probably disable LSR altogether.
3012 ///
3013 /// The job of LSR is to make a reasonable choice of induction variables across
3014 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3015 /// ILP *within the loop* if the target wants it.
3016 ///
3017 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3018 /// will not reorder memory operations, it will recognize this as a chain, but
3019 /// will generate redundant IV increments. Ideally this would be corrected later
3020 /// by a smart scheduler:
3021 ///        = A[i]
3022 ///        = A[i+x]
3023 /// A[i]   =
3024 /// A[i+x] =
3025 ///
3026 /// TODO: Walk the entire domtree within this loop, not just the path to the
3027 /// loop latch. This will discover chains on side paths, but requires
3028 /// maintaining multiple copies of the Chains state.
3029 void LSRInstance::CollectChains() {
3030   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3031   SmallVector<ChainUsers, 8> ChainUsersVec;
3032 
3033   SmallVector<BasicBlock *,8> LatchPath;
3034   BasicBlock *LoopHeader = L->getHeader();
3035   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3036        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3037     LatchPath.push_back(Rung->getBlock());
3038   }
3039   LatchPath.push_back(LoopHeader);
3040 
3041   // Walk the instruction stream from the loop header to the loop latch.
3042   for (BasicBlock *BB : reverse(LatchPath)) {
3043     for (Instruction &I : *BB) {
3044       // Skip instructions that weren't seen by IVUsers analysis.
3045       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3046         continue;
3047 
3048       // Ignore users that are part of a SCEV expression. This way we only
3049       // consider leaf IV Users. This effectively rediscovers a portion of
3050       // IVUsers analysis but in program order this time.
3051       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3052           continue;
3053 
3054       // Remove this instruction from any NearUsers set it may be in.
3055       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3056            ChainIdx < NChains; ++ChainIdx) {
3057         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3058       }
3059       // Search for operands that can be chained.
3060       SmallPtrSet<Instruction*, 4> UniqueOperands;
3061       User::op_iterator IVOpEnd = I.op_end();
3062       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3063       while (IVOpIter != IVOpEnd) {
3064         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3065         if (UniqueOperands.insert(IVOpInst).second)
3066           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3067         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3068       }
3069     } // Continue walking down the instructions.
3070   } // Continue walking down the domtree.
3071   // Visit phi backedges to determine if the chain can generate the IV postinc.
3072   for (PHINode &PN : L->getHeader()->phis()) {
3073     if (!SE.isSCEVable(PN.getType()))
3074       continue;
3075 
3076     Instruction *IncV =
3077         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3078     if (IncV)
3079       ChainInstruction(&PN, IncV, ChainUsersVec);
3080   }
3081   // Remove any unprofitable chains.
3082   unsigned ChainIdx = 0;
3083   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3084        UsersIdx < NChains; ++UsersIdx) {
3085     if (!isProfitableChain(IVChainVec[UsersIdx],
3086                            ChainUsersVec[UsersIdx].FarUsers, SE))
3087       continue;
3088     // Preserve the chain at UsesIdx.
3089     if (ChainIdx != UsersIdx)
3090       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3091     FinalizeChain(IVChainVec[ChainIdx]);
3092     ++ChainIdx;
3093   }
3094   IVChainVec.resize(ChainIdx);
3095 }
3096 
3097 void LSRInstance::FinalizeChain(IVChain &Chain) {
3098   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3099   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3100 
3101   for (const IVInc &Inc : Chain) {
3102     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3103     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3104     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3105     IVIncSet.insert(UseI);
3106   }
3107 }
3108 
3109 /// Return true if the IVInc can be folded into an addressing mode.
3110 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3111                              Value *Operand, const TargetTransformInfo &TTI) {
3112   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3113   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3114     return false;
3115 
3116   if (IncConst->getAPInt().getMinSignedBits() > 64)
3117     return false;
3118 
3119   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3120   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3121   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3122                         IncOffset, /*HaseBaseReg=*/false))
3123     return false;
3124 
3125   return true;
3126 }
3127 
3128 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3129 /// user's operand from the previous IV user's operand.
3130 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3131                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3132   // Find the new IVOperand for the head of the chain. It may have been replaced
3133   // by LSR.
3134   const IVInc &Head = Chain.Incs[0];
3135   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3136   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3137   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3138                                              IVOpEnd, L, SE);
3139   Value *IVSrc = nullptr;
3140   while (IVOpIter != IVOpEnd) {
3141     IVSrc = getWideOperand(*IVOpIter);
3142 
3143     // If this operand computes the expression that the chain needs, we may use
3144     // it. (Check this after setting IVSrc which is used below.)
3145     //
3146     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3147     // narrow for the chain, so we can no longer use it. We do allow using a
3148     // wider phi, assuming the LSR checked for free truncation. In that case we
3149     // should already have a truncate on this operand such that
3150     // getSCEV(IVSrc) == IncExpr.
3151     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3152         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3153       break;
3154     }
3155     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3156   }
3157   if (IVOpIter == IVOpEnd) {
3158     // Gracefully give up on this chain.
3159     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3160     return;
3161   }
3162 
3163   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3164   Type *IVTy = IVSrc->getType();
3165   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3166   const SCEV *LeftOverExpr = nullptr;
3167   for (const IVInc &Inc : Chain) {
3168     Instruction *InsertPt = Inc.UserInst;
3169     if (isa<PHINode>(InsertPt))
3170       InsertPt = L->getLoopLatch()->getTerminator();
3171 
3172     // IVOper will replace the current IV User's operand. IVSrc is the IV
3173     // value currently held in a register.
3174     Value *IVOper = IVSrc;
3175     if (!Inc.IncExpr->isZero()) {
3176       // IncExpr was the result of subtraction of two narrow values, so must
3177       // be signed.
3178       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3179       LeftOverExpr = LeftOverExpr ?
3180         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3181     }
3182     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3183       // Expand the IV increment.
3184       Rewriter.clearPostInc();
3185       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3186       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3187                                              SE.getUnknown(IncV));
3188       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3189 
3190       // If an IV increment can't be folded, use it as the next IV value.
3191       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3192         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3193         IVSrc = IVOper;
3194         LeftOverExpr = nullptr;
3195       }
3196     }
3197     Type *OperTy = Inc.IVOperand->getType();
3198     if (IVTy != OperTy) {
3199       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3200              "cannot extend a chained IV");
3201       IRBuilder<> Builder(InsertPt);
3202       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3203     }
3204     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3205     DeadInsts.emplace_back(Inc.IVOperand);
3206   }
3207   // If LSR created a new, wider phi, we may also replace its postinc. We only
3208   // do this if we also found a wide value for the head of the chain.
3209   if (isa<PHINode>(Chain.tailUserInst())) {
3210     for (PHINode &Phi : L->getHeader()->phis()) {
3211       if (!isCompatibleIVType(&Phi, IVSrc))
3212         continue;
3213       Instruction *PostIncV = dyn_cast<Instruction>(
3214           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3215       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3216         continue;
3217       Value *IVOper = IVSrc;
3218       Type *PostIncTy = PostIncV->getType();
3219       if (IVTy != PostIncTy) {
3220         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3221         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3222         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3223         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3224       }
3225       Phi.replaceUsesOfWith(PostIncV, IVOper);
3226       DeadInsts.emplace_back(PostIncV);
3227     }
3228   }
3229 }
3230 
3231 void LSRInstance::CollectFixupsAndInitialFormulae() {
3232   for (const IVStrideUse &U : IU) {
3233     Instruction *UserInst = U.getUser();
3234     // Skip IV users that are part of profitable IV Chains.
3235     User::op_iterator UseI =
3236         find(UserInst->operands(), U.getOperandValToReplace());
3237     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3238     if (IVIncSet.count(UseI)) {
3239       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3240       continue;
3241     }
3242 
3243     LSRUse::KindType Kind = LSRUse::Basic;
3244     MemAccessTy AccessTy;
3245     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3246       Kind = LSRUse::Address;
3247       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3248     }
3249 
3250     const SCEV *S = IU.getExpr(U);
3251     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3252 
3253     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3254     // (N - i == 0), and this allows (N - i) to be the expression that we work
3255     // with rather than just N or i, so we can consider the register
3256     // requirements for both N and i at the same time. Limiting this code to
3257     // equality icmps is not a problem because all interesting loops use
3258     // equality icmps, thanks to IndVarSimplify.
3259     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3260       if (CI->isEquality()) {
3261         // Swap the operands if needed to put the OperandValToReplace on the
3262         // left, for consistency.
3263         Value *NV = CI->getOperand(1);
3264         if (NV == U.getOperandValToReplace()) {
3265           CI->setOperand(1, CI->getOperand(0));
3266           CI->setOperand(0, NV);
3267           NV = CI->getOperand(1);
3268           Changed = true;
3269         }
3270 
3271         // x == y  -->  x - y == 0
3272         const SCEV *N = SE.getSCEV(NV);
3273         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3274           // S is normalized, so normalize N before folding it into S
3275           // to keep the result normalized.
3276           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3277           Kind = LSRUse::ICmpZero;
3278           S = SE.getMinusSCEV(N, S);
3279         }
3280 
3281         // -1 and the negations of all interesting strides (except the negation
3282         // of -1) are now also interesting.
3283         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3284           if (Factors[i] != -1)
3285             Factors.insert(-(uint64_t)Factors[i]);
3286         Factors.insert(-1);
3287       }
3288 
3289     // Get or create an LSRUse.
3290     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3291     size_t LUIdx = P.first;
3292     int64_t Offset = P.second;
3293     LSRUse &LU = Uses[LUIdx];
3294 
3295     // Record the fixup.
3296     LSRFixup &LF = LU.getNewFixup();
3297     LF.UserInst = UserInst;
3298     LF.OperandValToReplace = U.getOperandValToReplace();
3299     LF.PostIncLoops = TmpPostIncLoops;
3300     LF.Offset = Offset;
3301     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3302 
3303     if (!LU.WidestFixupType ||
3304         SE.getTypeSizeInBits(LU.WidestFixupType) <
3305         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3306       LU.WidestFixupType = LF.OperandValToReplace->getType();
3307 
3308     // If this is the first use of this LSRUse, give it a formula.
3309     if (LU.Formulae.empty()) {
3310       InsertInitialFormula(S, LU, LUIdx);
3311       CountRegisters(LU.Formulae.back(), LUIdx);
3312     }
3313   }
3314 
3315   LLVM_DEBUG(print_fixups(dbgs()));
3316 }
3317 
3318 /// Insert a formula for the given expression into the given use, separating out
3319 /// loop-variant portions from loop-invariant and loop-computable portions.
3320 void
3321 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3322   // Mark uses whose expressions cannot be expanded.
3323   if (!isSafeToExpand(S, SE))
3324     LU.RigidFormula = true;
3325 
3326   Formula F;
3327   F.initialMatch(S, L, SE);
3328   bool Inserted = InsertFormula(LU, LUIdx, F);
3329   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3330 }
3331 
3332 /// Insert a simple single-register formula for the given expression into the
3333 /// given use.
3334 void
3335 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3336                                        LSRUse &LU, size_t LUIdx) {
3337   Formula F;
3338   F.BaseRegs.push_back(S);
3339   F.HasBaseReg = true;
3340   bool Inserted = InsertFormula(LU, LUIdx, F);
3341   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3342 }
3343 
3344 /// Note which registers are used by the given formula, updating RegUses.
3345 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3346   if (F.ScaledReg)
3347     RegUses.countRegister(F.ScaledReg, LUIdx);
3348   for (const SCEV *BaseReg : F.BaseRegs)
3349     RegUses.countRegister(BaseReg, LUIdx);
3350 }
3351 
3352 /// If the given formula has not yet been inserted, add it to the list, and
3353 /// return true. Return false otherwise.
3354 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3355   // Do not insert formula that we will not be able to expand.
3356   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3357          "Formula is illegal");
3358 
3359   if (!LU.InsertFormula(F, *L))
3360     return false;
3361 
3362   CountRegisters(F, LUIdx);
3363   return true;
3364 }
3365 
3366 /// Check for other uses of loop-invariant values which we're tracking. These
3367 /// other uses will pin these values in registers, making them less profitable
3368 /// for elimination.
3369 /// TODO: This currently misses non-constant addrec step registers.
3370 /// TODO: Should this give more weight to users inside the loop?
3371 void
3372 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3373   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3374   SmallPtrSet<const SCEV *, 32> Visited;
3375 
3376   while (!Worklist.empty()) {
3377     const SCEV *S = Worklist.pop_back_val();
3378 
3379     // Don't process the same SCEV twice
3380     if (!Visited.insert(S).second)
3381       continue;
3382 
3383     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3384       Worklist.append(N->op_begin(), N->op_end());
3385     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3386       Worklist.push_back(C->getOperand());
3387     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3388       Worklist.push_back(D->getLHS());
3389       Worklist.push_back(D->getRHS());
3390     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3391       const Value *V = US->getValue();
3392       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3393         // Look for instructions defined outside the loop.
3394         if (L->contains(Inst)) continue;
3395       } else if (isa<UndefValue>(V))
3396         // Undef doesn't have a live range, so it doesn't matter.
3397         continue;
3398       for (const Use &U : V->uses()) {
3399         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3400         // Ignore non-instructions.
3401         if (!UserInst)
3402           continue;
3403         // Ignore instructions in other functions (as can happen with
3404         // Constants).
3405         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3406           continue;
3407         // Ignore instructions not dominated by the loop.
3408         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3409           UserInst->getParent() :
3410           cast<PHINode>(UserInst)->getIncomingBlock(
3411             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3412         if (!DT.dominates(L->getHeader(), UseBB))
3413           continue;
3414         // Don't bother if the instruction is in a BB which ends in an EHPad.
3415         if (UseBB->getTerminator()->isEHPad())
3416           continue;
3417         // Don't bother rewriting PHIs in catchswitch blocks.
3418         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3419           continue;
3420         // Ignore uses which are part of other SCEV expressions, to avoid
3421         // analyzing them multiple times.
3422         if (SE.isSCEVable(UserInst->getType())) {
3423           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3424           // If the user is a no-op, look through to its uses.
3425           if (!isa<SCEVUnknown>(UserS))
3426             continue;
3427           if (UserS == US) {
3428             Worklist.push_back(
3429               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3430             continue;
3431           }
3432         }
3433         // Ignore icmp instructions which are already being analyzed.
3434         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3435           unsigned OtherIdx = !U.getOperandNo();
3436           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3437           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3438             continue;
3439         }
3440 
3441         std::pair<size_t, int64_t> P = getUse(
3442             S, LSRUse::Basic, MemAccessTy());
3443         size_t LUIdx = P.first;
3444         int64_t Offset = P.second;
3445         LSRUse &LU = Uses[LUIdx];
3446         LSRFixup &LF = LU.getNewFixup();
3447         LF.UserInst = const_cast<Instruction *>(UserInst);
3448         LF.OperandValToReplace = U;
3449         LF.Offset = Offset;
3450         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3451         if (!LU.WidestFixupType ||
3452             SE.getTypeSizeInBits(LU.WidestFixupType) <
3453             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3454           LU.WidestFixupType = LF.OperandValToReplace->getType();
3455         InsertSupplementalFormula(US, LU, LUIdx);
3456         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3457         break;
3458       }
3459     }
3460   }
3461 }
3462 
3463 /// Split S into subexpressions which can be pulled out into separate
3464 /// registers. If C is non-null, multiply each subexpression by C.
3465 ///
3466 /// Return remainder expression after factoring the subexpressions captured by
3467 /// Ops. If Ops is complete, return NULL.
3468 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3469                                    SmallVectorImpl<const SCEV *> &Ops,
3470                                    const Loop *L,
3471                                    ScalarEvolution &SE,
3472                                    unsigned Depth = 0) {
3473   // Arbitrarily cap recursion to protect compile time.
3474   if (Depth >= 3)
3475     return S;
3476 
3477   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3478     // Break out add operands.
3479     for (const SCEV *S : Add->operands()) {
3480       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3481       if (Remainder)
3482         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3483     }
3484     return nullptr;
3485   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3486     // Split a non-zero base out of an addrec.
3487     if (AR->getStart()->isZero() || !AR->isAffine())
3488       return S;
3489 
3490     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3491                                             C, Ops, L, SE, Depth+1);
3492     // Split the non-zero AddRec unless it is part of a nested recurrence that
3493     // does not pertain to this loop.
3494     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3495       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3496       Remainder = nullptr;
3497     }
3498     if (Remainder != AR->getStart()) {
3499       if (!Remainder)
3500         Remainder = SE.getConstant(AR->getType(), 0);
3501       return SE.getAddRecExpr(Remainder,
3502                               AR->getStepRecurrence(SE),
3503                               AR->getLoop(),
3504                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3505                               SCEV::FlagAnyWrap);
3506     }
3507   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3508     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3509     if (Mul->getNumOperands() != 2)
3510       return S;
3511     if (const SCEVConstant *Op0 =
3512         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3513       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3514       const SCEV *Remainder =
3515         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3516       if (Remainder)
3517         Ops.push_back(SE.getMulExpr(C, Remainder));
3518       return nullptr;
3519     }
3520   }
3521   return S;
3522 }
3523 
3524 /// Return true if the SCEV represents a value that may end up as a
3525 /// post-increment operation.
3526 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3527                               LSRUse &LU, const SCEV *S, const Loop *L,
3528                               ScalarEvolution &SE) {
3529   if (LU.Kind != LSRUse::Address ||
3530       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3531     return false;
3532   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3533   if (!AR)
3534     return false;
3535   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3536   if (!isa<SCEVConstant>(LoopStep))
3537     return false;
3538   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3539       LoopStep->getType()->getScalarSizeInBits())
3540     return false;
3541   // Check if a post-indexed load/store can be used.
3542   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3543       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3544     const SCEV *LoopStart = AR->getStart();
3545     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3546       return true;
3547   }
3548   return false;
3549 }
3550 
3551 /// Helper function for LSRInstance::GenerateReassociations.
3552 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3553                                              const Formula &Base,
3554                                              unsigned Depth, size_t Idx,
3555                                              bool IsScaledReg) {
3556   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3557   // Don't generate reassociations for the base register of a value that
3558   // may generate a post-increment operator. The reason is that the
3559   // reassociations cause extra base+register formula to be created,
3560   // and possibly chosen, but the post-increment is more efficient.
3561   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3562     return;
3563   SmallVector<const SCEV *, 8> AddOps;
3564   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3565   if (Remainder)
3566     AddOps.push_back(Remainder);
3567 
3568   if (AddOps.size() == 1)
3569     return;
3570 
3571   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3572                                                      JE = AddOps.end();
3573        J != JE; ++J) {
3574     // Loop-variant "unknown" values are uninteresting; we won't be able to
3575     // do anything meaningful with them.
3576     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3577       continue;
3578 
3579     // Don't pull a constant into a register if the constant could be folded
3580     // into an immediate field.
3581     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3582                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3583       continue;
3584 
3585     // Collect all operands except *J.
3586     SmallVector<const SCEV *, 8> InnerAddOps(
3587         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3588     InnerAddOps.append(std::next(J),
3589                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3590 
3591     // Don't leave just a constant behind in a register if the constant could
3592     // be folded into an immediate field.
3593     if (InnerAddOps.size() == 1 &&
3594         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3595                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3596       continue;
3597 
3598     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3599     if (InnerSum->isZero())
3600       continue;
3601     Formula F = Base;
3602 
3603     // Add the remaining pieces of the add back into the new formula.
3604     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3605     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3606         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3607                                 InnerSumSC->getValue()->getZExtValue())) {
3608       F.UnfoldedOffset =
3609           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3610       if (IsScaledReg)
3611         F.ScaledReg = nullptr;
3612       else
3613         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3614     } else if (IsScaledReg)
3615       F.ScaledReg = InnerSum;
3616     else
3617       F.BaseRegs[Idx] = InnerSum;
3618 
3619     // Add J as its own register, or an unfolded immediate.
3620     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3621     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3622         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3623                                 SC->getValue()->getZExtValue()))
3624       F.UnfoldedOffset =
3625           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3626     else
3627       F.BaseRegs.push_back(*J);
3628     // We may have changed the number of register in base regs, adjust the
3629     // formula accordingly.
3630     F.canonicalize(*L);
3631 
3632     if (InsertFormula(LU, LUIdx, F))
3633       // If that formula hadn't been seen before, recurse to find more like
3634       // it.
3635       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3636       // Because just Depth is not enough to bound compile time.
3637       // This means that every time AddOps.size() is greater 16^x we will add
3638       // x to Depth.
3639       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3640                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3641   }
3642 }
3643 
3644 /// Split out subexpressions from adds and the bases of addrecs.
3645 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3646                                          Formula Base, unsigned Depth) {
3647   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3648   // Arbitrarily cap recursion to protect compile time.
3649   if (Depth >= 3)
3650     return;
3651 
3652   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3653     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3654 
3655   if (Base.Scale == 1)
3656     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3657                                /* Idx */ -1, /* IsScaledReg */ true);
3658 }
3659 
3660 ///  Generate a formula consisting of all of the loop-dominating registers added
3661 /// into a single register.
3662 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3663                                        Formula Base) {
3664   // This method is only interesting on a plurality of registers.
3665   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3666       (Base.UnfoldedOffset != 0) <= 1)
3667     return;
3668 
3669   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3670   // processing the formula.
3671   Base.unscale();
3672   SmallVector<const SCEV *, 4> Ops;
3673   Formula NewBase = Base;
3674   NewBase.BaseRegs.clear();
3675   Type *CombinedIntegerType = nullptr;
3676   for (const SCEV *BaseReg : Base.BaseRegs) {
3677     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3678         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3679       if (!CombinedIntegerType)
3680         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3681       Ops.push_back(BaseReg);
3682     }
3683     else
3684       NewBase.BaseRegs.push_back(BaseReg);
3685   }
3686 
3687   // If no register is relevant, we're done.
3688   if (Ops.size() == 0)
3689     return;
3690 
3691   // Utility function for generating the required variants of the combined
3692   // registers.
3693   auto GenerateFormula = [&](const SCEV *Sum) {
3694     Formula F = NewBase;
3695 
3696     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3697     // opportunity to fold something. For now, just ignore such cases
3698     // rather than proceed with zero in a register.
3699     if (Sum->isZero())
3700       return;
3701 
3702     F.BaseRegs.push_back(Sum);
3703     F.canonicalize(*L);
3704     (void)InsertFormula(LU, LUIdx, F);
3705   };
3706 
3707   // If we collected at least two registers, generate a formula combining them.
3708   if (Ops.size() > 1) {
3709     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3710     GenerateFormula(SE.getAddExpr(OpsCopy));
3711   }
3712 
3713   // If we have an unfolded offset, generate a formula combining it with the
3714   // registers collected.
3715   if (NewBase.UnfoldedOffset) {
3716     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3717     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3718                                  true));
3719     NewBase.UnfoldedOffset = 0;
3720     GenerateFormula(SE.getAddExpr(Ops));
3721   }
3722 }
3723 
3724 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3725 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3726                                               const Formula &Base, size_t Idx,
3727                                               bool IsScaledReg) {
3728   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3729   GlobalValue *GV = ExtractSymbol(G, SE);
3730   if (G->isZero() || !GV)
3731     return;
3732   Formula F = Base;
3733   F.BaseGV = GV;
3734   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3735     return;
3736   if (IsScaledReg)
3737     F.ScaledReg = G;
3738   else
3739     F.BaseRegs[Idx] = G;
3740   (void)InsertFormula(LU, LUIdx, F);
3741 }
3742 
3743 /// Generate reuse formulae using symbolic offsets.
3744 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3745                                           Formula Base) {
3746   // We can't add a symbolic offset if the address already contains one.
3747   if (Base.BaseGV) return;
3748 
3749   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3750     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3751   if (Base.Scale == 1)
3752     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3753                                 /* IsScaledReg */ true);
3754 }
3755 
3756 /// Helper function for LSRInstance::GenerateConstantOffsets.
3757 void LSRInstance::GenerateConstantOffsetsImpl(
3758     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3759     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3760 
3761   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3762     Formula F = Base;
3763     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3764 
3765     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3766                    LU.AccessTy, F)) {
3767       // Add the offset to the base register.
3768       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3769       // If it cancelled out, drop the base register, otherwise update it.
3770       if (NewG->isZero()) {
3771         if (IsScaledReg) {
3772           F.Scale = 0;
3773           F.ScaledReg = nullptr;
3774         } else
3775           F.deleteBaseReg(F.BaseRegs[Idx]);
3776         F.canonicalize(*L);
3777       } else if (IsScaledReg)
3778         F.ScaledReg = NewG;
3779       else
3780         F.BaseRegs[Idx] = NewG;
3781 
3782       (void)InsertFormula(LU, LUIdx, F);
3783     }
3784   };
3785 
3786   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3787 
3788   // With constant offsets and constant steps, we can generate pre-inc
3789   // accesses by having the offset equal the step. So, for access #0 with a
3790   // step of 8, we generate a G - 8 base which would require the first access
3791   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3792   // for itself and hopefully becomes the base for other accesses. This means
3793   // means that a single pre-indexed access can be generated to become the new
3794   // base pointer for each iteration of the loop, resulting in no extra add/sub
3795   // instructions for pointer updating.
3796   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3797     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3798       if (auto *StepRec =
3799           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3800         const APInt &StepInt = StepRec->getAPInt();
3801         int64_t Step = StepInt.isNegative() ?
3802           StepInt.getSExtValue() : StepInt.getZExtValue();
3803 
3804         for (int64_t Offset : Worklist) {
3805           Offset -= Step;
3806           GenerateOffset(G, Offset);
3807         }
3808       }
3809     }
3810   }
3811   for (int64_t Offset : Worklist)
3812     GenerateOffset(G, Offset);
3813 
3814   int64_t Imm = ExtractImmediate(G, SE);
3815   if (G->isZero() || Imm == 0)
3816     return;
3817   Formula F = Base;
3818   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3819   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3820     return;
3821   if (IsScaledReg)
3822     F.ScaledReg = G;
3823   else
3824     F.BaseRegs[Idx] = G;
3825   (void)InsertFormula(LU, LUIdx, F);
3826 }
3827 
3828 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3829 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3830                                           Formula Base) {
3831   // TODO: For now, just add the min and max offset, because it usually isn't
3832   // worthwhile looking at everything inbetween.
3833   SmallVector<int64_t, 2> Worklist;
3834   Worklist.push_back(LU.MinOffset);
3835   if (LU.MaxOffset != LU.MinOffset)
3836     Worklist.push_back(LU.MaxOffset);
3837 
3838   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3839     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3840   if (Base.Scale == 1)
3841     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3842                                 /* IsScaledReg */ true);
3843 }
3844 
3845 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3846 /// == y -> x*c == y*c.
3847 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3848                                          Formula Base) {
3849   if (LU.Kind != LSRUse::ICmpZero) return;
3850 
3851   // Determine the integer type for the base formula.
3852   Type *IntTy = Base.getType();
3853   if (!IntTy) return;
3854   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3855 
3856   // Don't do this if there is more than one offset.
3857   if (LU.MinOffset != LU.MaxOffset) return;
3858 
3859   // Check if transformation is valid. It is illegal to multiply pointer.
3860   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3861     return;
3862   for (const SCEV *BaseReg : Base.BaseRegs)
3863     if (BaseReg->getType()->isPointerTy())
3864       return;
3865   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3866 
3867   // Check each interesting stride.
3868   for (int64_t Factor : Factors) {
3869     // Check that the multiplication doesn't overflow.
3870     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3871       continue;
3872     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3873     if (NewBaseOffset / Factor != Base.BaseOffset)
3874       continue;
3875     // If the offset will be truncated at this use, check that it is in bounds.
3876     if (!IntTy->isPointerTy() &&
3877         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3878       continue;
3879 
3880     // Check that multiplying with the use offset doesn't overflow.
3881     int64_t Offset = LU.MinOffset;
3882     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3883       continue;
3884     Offset = (uint64_t)Offset * Factor;
3885     if (Offset / Factor != LU.MinOffset)
3886       continue;
3887     // If the offset will be truncated at this use, check that it is in bounds.
3888     if (!IntTy->isPointerTy() &&
3889         !ConstantInt::isValueValidForType(IntTy, Offset))
3890       continue;
3891 
3892     Formula F = Base;
3893     F.BaseOffset = NewBaseOffset;
3894 
3895     // Check that this scale is legal.
3896     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3897       continue;
3898 
3899     // Compensate for the use having MinOffset built into it.
3900     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3901 
3902     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3903 
3904     // Check that multiplying with each base register doesn't overflow.
3905     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3906       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3907       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3908         goto next;
3909     }
3910 
3911     // Check that multiplying with the scaled register doesn't overflow.
3912     if (F.ScaledReg) {
3913       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3914       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3915         continue;
3916     }
3917 
3918     // Check that multiplying with the unfolded offset doesn't overflow.
3919     if (F.UnfoldedOffset != 0) {
3920       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3921           Factor == -1)
3922         continue;
3923       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3924       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3925         continue;
3926       // If the offset will be truncated, check that it is in bounds.
3927       if (!IntTy->isPointerTy() &&
3928           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3929         continue;
3930     }
3931 
3932     // If we make it here and it's legal, add it.
3933     (void)InsertFormula(LU, LUIdx, F);
3934   next:;
3935   }
3936 }
3937 
3938 /// Generate stride factor reuse formulae by making use of scaled-offset address
3939 /// modes, for example.
3940 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3941   // Determine the integer type for the base formula.
3942   Type *IntTy = Base.getType();
3943   if (!IntTy) return;
3944 
3945   // If this Formula already has a scaled register, we can't add another one.
3946   // Try to unscale the formula to generate a better scale.
3947   if (Base.Scale != 0 && !Base.unscale())
3948     return;
3949 
3950   assert(Base.Scale == 0 && "unscale did not did its job!");
3951 
3952   // Check each interesting stride.
3953   for (int64_t Factor : Factors) {
3954     Base.Scale = Factor;
3955     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3956     // Check whether this scale is going to be legal.
3957     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3958                     Base)) {
3959       // As a special-case, handle special out-of-loop Basic users specially.
3960       // TODO: Reconsider this special case.
3961       if (LU.Kind == LSRUse::Basic &&
3962           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3963                      LU.AccessTy, Base) &&
3964           LU.AllFixupsOutsideLoop)
3965         LU.Kind = LSRUse::Special;
3966       else
3967         continue;
3968     }
3969     // For an ICmpZero, negating a solitary base register won't lead to
3970     // new solutions.
3971     if (LU.Kind == LSRUse::ICmpZero &&
3972         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3973       continue;
3974     // For each addrec base reg, if its loop is current loop, apply the scale.
3975     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3976       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3977       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3978         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3979         if (FactorS->isZero())
3980           continue;
3981         // Divide out the factor, ignoring high bits, since we'll be
3982         // scaling the value back up in the end.
3983         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3984           // TODO: This could be optimized to avoid all the copying.
3985           Formula F = Base;
3986           F.ScaledReg = Quotient;
3987           F.deleteBaseReg(F.BaseRegs[i]);
3988           // The canonical representation of 1*reg is reg, which is already in
3989           // Base. In that case, do not try to insert the formula, it will be
3990           // rejected anyway.
3991           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3992                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3993             continue;
3994           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3995           // non canonical Formula with ScaledReg's loop not being L.
3996           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3997             F.canonicalize(*L);
3998           (void)InsertFormula(LU, LUIdx, F);
3999         }
4000       }
4001     }
4002   }
4003 }
4004 
4005 /// Generate reuse formulae from different IV types.
4006 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4007   // Don't bother truncating symbolic values.
4008   if (Base.BaseGV) return;
4009 
4010   // Determine the integer type for the base formula.
4011   Type *DstTy = Base.getType();
4012   if (!DstTy) return;
4013   DstTy = SE.getEffectiveSCEVType(DstTy);
4014 
4015   for (Type *SrcTy : Types) {
4016     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4017       Formula F = Base;
4018 
4019       // Sometimes SCEV is able to prove zero during ext transform. It may
4020       // happen if SCEV did not do all possible transforms while creating the
4021       // initial node (maybe due to depth limitations), but it can do them while
4022       // taking ext.
4023       if (F.ScaledReg) {
4024         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4025         if (NewScaledReg->isZero())
4026          continue;
4027         F.ScaledReg = NewScaledReg;
4028       }
4029       bool HasZeroBaseReg = false;
4030       for (const SCEV *&BaseReg : F.BaseRegs) {
4031         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4032         if (NewBaseReg->isZero()) {
4033           HasZeroBaseReg = true;
4034           break;
4035         }
4036         BaseReg = NewBaseReg;
4037       }
4038       if (HasZeroBaseReg)
4039         continue;
4040 
4041       // TODO: This assumes we've done basic processing on all uses and
4042       // have an idea what the register usage is.
4043       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4044         continue;
4045 
4046       F.canonicalize(*L);
4047       (void)InsertFormula(LU, LUIdx, F);
4048     }
4049   }
4050 }
4051 
4052 namespace {
4053 
4054 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4055 /// modifications so that the search phase doesn't have to worry about the data
4056 /// structures moving underneath it.
4057 struct WorkItem {
4058   size_t LUIdx;
4059   int64_t Imm;
4060   const SCEV *OrigReg;
4061 
4062   WorkItem(size_t LI, int64_t I, const SCEV *R)
4063       : LUIdx(LI), Imm(I), OrigReg(R) {}
4064 
4065   void print(raw_ostream &OS) const;
4066   void dump() const;
4067 };
4068 
4069 } // end anonymous namespace
4070 
4071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4072 void WorkItem::print(raw_ostream &OS) const {
4073   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4074      << " , add offset " << Imm;
4075 }
4076 
4077 LLVM_DUMP_METHOD void WorkItem::dump() const {
4078   print(errs()); errs() << '\n';
4079 }
4080 #endif
4081 
4082 /// Look for registers which are a constant distance apart and try to form reuse
4083 /// opportunities between them.
4084 void LSRInstance::GenerateCrossUseConstantOffsets() {
4085   // Group the registers by their value without any added constant offset.
4086   using ImmMapTy = std::map<int64_t, const SCEV *>;
4087 
4088   DenseMap<const SCEV *, ImmMapTy> Map;
4089   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4090   SmallVector<const SCEV *, 8> Sequence;
4091   for (const SCEV *Use : RegUses) {
4092     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4093     int64_t Imm = ExtractImmediate(Reg, SE);
4094     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4095     if (Pair.second)
4096       Sequence.push_back(Reg);
4097     Pair.first->second.insert(std::make_pair(Imm, Use));
4098     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4099   }
4100 
4101   // Now examine each set of registers with the same base value. Build up
4102   // a list of work to do and do the work in a separate step so that we're
4103   // not adding formulae and register counts while we're searching.
4104   SmallVector<WorkItem, 32> WorkItems;
4105   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4106   for (const SCEV *Reg : Sequence) {
4107     const ImmMapTy &Imms = Map.find(Reg)->second;
4108 
4109     // It's not worthwhile looking for reuse if there's only one offset.
4110     if (Imms.size() == 1)
4111       continue;
4112 
4113     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4114                for (const auto &Entry
4115                     : Imms) dbgs()
4116                << ' ' << Entry.first;
4117                dbgs() << '\n');
4118 
4119     // Examine each offset.
4120     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4121          J != JE; ++J) {
4122       const SCEV *OrigReg = J->second;
4123 
4124       int64_t JImm = J->first;
4125       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4126 
4127       if (!isa<SCEVConstant>(OrigReg) &&
4128           UsedByIndicesMap[Reg].count() == 1) {
4129         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4130                           << '\n');
4131         continue;
4132       }
4133 
4134       // Conservatively examine offsets between this orig reg a few selected
4135       // other orig regs.
4136       int64_t First = Imms.begin()->first;
4137       int64_t Last = std::prev(Imms.end())->first;
4138       // Compute (First + Last)  / 2 without overflow using the fact that
4139       // First + Last = 2 * (First + Last) + (First ^ Last).
4140       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4141       // If the result is negative and First is odd and Last even (or vice versa),
4142       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4143       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4144       ImmMapTy::const_iterator OtherImms[] = {
4145           Imms.begin(), std::prev(Imms.end()),
4146          Imms.lower_bound(Avg)};
4147       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4148         ImmMapTy::const_iterator M = OtherImms[i];
4149         if (M == J || M == JE) continue;
4150 
4151         // Compute the difference between the two.
4152         int64_t Imm = (uint64_t)JImm - M->first;
4153         for (unsigned LUIdx : UsedByIndices.set_bits())
4154           // Make a memo of this use, offset, and register tuple.
4155           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4156             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4157       }
4158     }
4159   }
4160 
4161   Map.clear();
4162   Sequence.clear();
4163   UsedByIndicesMap.clear();
4164   UniqueItems.clear();
4165 
4166   // Now iterate through the worklist and add new formulae.
4167   for (const WorkItem &WI : WorkItems) {
4168     size_t LUIdx = WI.LUIdx;
4169     LSRUse &LU = Uses[LUIdx];
4170     int64_t Imm = WI.Imm;
4171     const SCEV *OrigReg = WI.OrigReg;
4172 
4173     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4174     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4175     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4176 
4177     // TODO: Use a more targeted data structure.
4178     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4179       Formula F = LU.Formulae[L];
4180       // FIXME: The code for the scaled and unscaled registers looks
4181       // very similar but slightly different. Investigate if they
4182       // could be merged. That way, we would not have to unscale the
4183       // Formula.
4184       F.unscale();
4185       // Use the immediate in the scaled register.
4186       if (F.ScaledReg == OrigReg) {
4187         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4188         // Don't create 50 + reg(-50).
4189         if (F.referencesReg(SE.getSCEV(
4190                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4191           continue;
4192         Formula NewF = F;
4193         NewF.BaseOffset = Offset;
4194         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4195                         NewF))
4196           continue;
4197         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4198 
4199         // If the new scale is a constant in a register, and adding the constant
4200         // value to the immediate would produce a value closer to zero than the
4201         // immediate itself, then the formula isn't worthwhile.
4202         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4203           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4204               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4205                   .ule(std::abs(NewF.BaseOffset)))
4206             continue;
4207 
4208         // OK, looks good.
4209         NewF.canonicalize(*this->L);
4210         (void)InsertFormula(LU, LUIdx, NewF);
4211       } else {
4212         // Use the immediate in a base register.
4213         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4214           const SCEV *BaseReg = F.BaseRegs[N];
4215           if (BaseReg != OrigReg)
4216             continue;
4217           Formula NewF = F;
4218           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4219           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4220                           LU.Kind, LU.AccessTy, NewF)) {
4221             if (TTI.shouldFavorPostInc() &&
4222                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4223               continue;
4224             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4225               continue;
4226             NewF = F;
4227             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4228           }
4229           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4230 
4231           // If the new formula has a constant in a register, and adding the
4232           // constant value to the immediate would produce a value closer to
4233           // zero than the immediate itself, then the formula isn't worthwhile.
4234           for (const SCEV *NewReg : NewF.BaseRegs)
4235             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4236               if ((C->getAPInt() + NewF.BaseOffset)
4237                       .abs()
4238                       .slt(std::abs(NewF.BaseOffset)) &&
4239                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4240                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4241                 goto skip_formula;
4242 
4243           // Ok, looks good.
4244           NewF.canonicalize(*this->L);
4245           (void)InsertFormula(LU, LUIdx, NewF);
4246           break;
4247         skip_formula:;
4248         }
4249       }
4250     }
4251   }
4252 }
4253 
4254 /// Generate formulae for each use.
4255 void
4256 LSRInstance::GenerateAllReuseFormulae() {
4257   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4258   // queries are more precise.
4259   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4260     LSRUse &LU = Uses[LUIdx];
4261     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4262       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4263     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4264       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4265   }
4266   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4267     LSRUse &LU = Uses[LUIdx];
4268     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4269       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4270     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4271       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4272     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4273       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4274     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4275       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4276   }
4277   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4278     LSRUse &LU = Uses[LUIdx];
4279     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4280       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4281   }
4282 
4283   GenerateCrossUseConstantOffsets();
4284 
4285   LLVM_DEBUG(dbgs() << "\n"
4286                        "After generating reuse formulae:\n";
4287              print_uses(dbgs()));
4288 }
4289 
4290 /// If there are multiple formulae with the same set of registers used
4291 /// by other uses, pick the best one and delete the others.
4292 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4293   DenseSet<const SCEV *> VisitedRegs;
4294   SmallPtrSet<const SCEV *, 16> Regs;
4295   SmallPtrSet<const SCEV *, 16> LoserRegs;
4296 #ifndef NDEBUG
4297   bool ChangedFormulae = false;
4298 #endif
4299 
4300   // Collect the best formula for each unique set of shared registers. This
4301   // is reset for each use.
4302   using BestFormulaeTy =
4303       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4304 
4305   BestFormulaeTy BestFormulae;
4306 
4307   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4308     LSRUse &LU = Uses[LUIdx];
4309     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4310                dbgs() << '\n');
4311 
4312     bool Any = false;
4313     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4314          FIdx != NumForms; ++FIdx) {
4315       Formula &F = LU.Formulae[FIdx];
4316 
4317       // Some formulas are instant losers. For example, they may depend on
4318       // nonexistent AddRecs from other loops. These need to be filtered
4319       // immediately, otherwise heuristics could choose them over others leading
4320       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4321       // avoids the need to recompute this information across formulae using the
4322       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4323       // the corresponding bad register from the Regs set.
4324       Cost CostF(L, SE, TTI);
4325       Regs.clear();
4326       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4327       if (CostF.isLoser()) {
4328         // During initial formula generation, undesirable formulae are generated
4329         // by uses within other loops that have some non-trivial address mode or
4330         // use the postinc form of the IV. LSR needs to provide these formulae
4331         // as the basis of rediscovering the desired formula that uses an AddRec
4332         // corresponding to the existing phi. Once all formulae have been
4333         // generated, these initial losers may be pruned.
4334         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4335                    dbgs() << "\n");
4336       }
4337       else {
4338         SmallVector<const SCEV *, 4> Key;
4339         for (const SCEV *Reg : F.BaseRegs) {
4340           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4341             Key.push_back(Reg);
4342         }
4343         if (F.ScaledReg &&
4344             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4345           Key.push_back(F.ScaledReg);
4346         // Unstable sort by host order ok, because this is only used for
4347         // uniquifying.
4348         llvm::sort(Key);
4349 
4350         std::pair<BestFormulaeTy::const_iterator, bool> P =
4351           BestFormulae.insert(std::make_pair(Key, FIdx));
4352         if (P.second)
4353           continue;
4354 
4355         Formula &Best = LU.Formulae[P.first->second];
4356 
4357         Cost CostBest(L, SE, TTI);
4358         Regs.clear();
4359         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4360         if (CostF.isLess(CostBest))
4361           std::swap(F, Best);
4362         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4363                    dbgs() << "\n"
4364                              "    in favor of formula ";
4365                    Best.print(dbgs()); dbgs() << '\n');
4366       }
4367 #ifndef NDEBUG
4368       ChangedFormulae = true;
4369 #endif
4370       LU.DeleteFormula(F);
4371       --FIdx;
4372       --NumForms;
4373       Any = true;
4374     }
4375 
4376     // Now that we've filtered out some formulae, recompute the Regs set.
4377     if (Any)
4378       LU.RecomputeRegs(LUIdx, RegUses);
4379 
4380     // Reset this to prepare for the next use.
4381     BestFormulae.clear();
4382   }
4383 
4384   LLVM_DEBUG(if (ChangedFormulae) {
4385     dbgs() << "\n"
4386               "After filtering out undesirable candidates:\n";
4387     print_uses(dbgs());
4388   });
4389 }
4390 
4391 /// Estimate the worst-case number of solutions the solver might have to
4392 /// consider. It almost never considers this many solutions because it prune the
4393 /// search space, but the pruning isn't always sufficient.
4394 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4395   size_t Power = 1;
4396   for (const LSRUse &LU : Uses) {
4397     size_t FSize = LU.Formulae.size();
4398     if (FSize >= ComplexityLimit) {
4399       Power = ComplexityLimit;
4400       break;
4401     }
4402     Power *= FSize;
4403     if (Power >= ComplexityLimit)
4404       break;
4405   }
4406   return Power;
4407 }
4408 
4409 /// When one formula uses a superset of the registers of another formula, it
4410 /// won't help reduce register pressure (though it may not necessarily hurt
4411 /// register pressure); remove it to simplify the system.
4412 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4413   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4414     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4415 
4416     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4417                          "which use a superset of registers used by other "
4418                          "formulae.\n");
4419 
4420     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4421       LSRUse &LU = Uses[LUIdx];
4422       bool Any = false;
4423       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4424         Formula &F = LU.Formulae[i];
4425         // Look for a formula with a constant or GV in a register. If the use
4426         // also has a formula with that same value in an immediate field,
4427         // delete the one that uses a register.
4428         for (SmallVectorImpl<const SCEV *>::const_iterator
4429              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4430           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4431             Formula NewF = F;
4432             //FIXME: Formulas should store bitwidth to do wrapping properly.
4433             //       See PR41034.
4434             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4435             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4436                                 (I - F.BaseRegs.begin()));
4437             if (LU.HasFormulaWithSameRegs(NewF)) {
4438               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4439                          dbgs() << '\n');
4440               LU.DeleteFormula(F);
4441               --i;
4442               --e;
4443               Any = true;
4444               break;
4445             }
4446           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4447             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4448               if (!F.BaseGV) {
4449                 Formula NewF = F;
4450                 NewF.BaseGV = GV;
4451                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4452                                     (I - F.BaseRegs.begin()));
4453                 if (LU.HasFormulaWithSameRegs(NewF)) {
4454                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4455                              dbgs() << '\n');
4456                   LU.DeleteFormula(F);
4457                   --i;
4458                   --e;
4459                   Any = true;
4460                   break;
4461                 }
4462               }
4463           }
4464         }
4465       }
4466       if (Any)
4467         LU.RecomputeRegs(LUIdx, RegUses);
4468     }
4469 
4470     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4471   }
4472 }
4473 
4474 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4475 /// allocate a single register for them.
4476 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4477   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4478     return;
4479 
4480   LLVM_DEBUG(
4481       dbgs() << "The search space is too complex.\n"
4482                 "Narrowing the search space by assuming that uses separated "
4483                 "by a constant offset will use the same registers.\n");
4484 
4485   // This is especially useful for unrolled loops.
4486 
4487   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4488     LSRUse &LU = Uses[LUIdx];
4489     for (const Formula &F : LU.Formulae) {
4490       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4491         continue;
4492 
4493       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4494       if (!LUThatHas)
4495         continue;
4496 
4497       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4498                               LU.Kind, LU.AccessTy))
4499         continue;
4500 
4501       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4502 
4503       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4504 
4505       // Transfer the fixups of LU to LUThatHas.
4506       for (LSRFixup &Fixup : LU.Fixups) {
4507         Fixup.Offset += F.BaseOffset;
4508         LUThatHas->pushFixup(Fixup);
4509         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4510       }
4511 
4512       // Delete formulae from the new use which are no longer legal.
4513       bool Any = false;
4514       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4515         Formula &F = LUThatHas->Formulae[i];
4516         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4517                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4518           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4519           LUThatHas->DeleteFormula(F);
4520           --i;
4521           --e;
4522           Any = true;
4523         }
4524       }
4525 
4526       if (Any)
4527         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4528 
4529       // Delete the old use.
4530       DeleteUse(LU, LUIdx);
4531       --LUIdx;
4532       --NumUses;
4533       break;
4534     }
4535   }
4536 
4537   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4538 }
4539 
4540 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4541 /// we've done more filtering, as it may be able to find more formulae to
4542 /// eliminate.
4543 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4544   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4545     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4546 
4547     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4548                          "undesirable dedicated registers.\n");
4549 
4550     FilterOutUndesirableDedicatedRegisters();
4551 
4552     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4553   }
4554 }
4555 
4556 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4557 /// Pick the best one and delete the others.
4558 /// This narrowing heuristic is to keep as many formulae with different
4559 /// Scale and ScaledReg pair as possible while narrowing the search space.
4560 /// The benefit is that it is more likely to find out a better solution
4561 /// from a formulae set with more Scale and ScaledReg variations than
4562 /// a formulae set with the same Scale and ScaledReg. The picking winner
4563 /// reg heuristic will often keep the formulae with the same Scale and
4564 /// ScaledReg and filter others, and we want to avoid that if possible.
4565 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4566   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4567     return;
4568 
4569   LLVM_DEBUG(
4570       dbgs() << "The search space is too complex.\n"
4571                 "Narrowing the search space by choosing the best Formula "
4572                 "from the Formulae with the same Scale and ScaledReg.\n");
4573 
4574   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4575   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4576 
4577   BestFormulaeTy BestFormulae;
4578 #ifndef NDEBUG
4579   bool ChangedFormulae = false;
4580 #endif
4581   DenseSet<const SCEV *> VisitedRegs;
4582   SmallPtrSet<const SCEV *, 16> Regs;
4583 
4584   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4585     LSRUse &LU = Uses[LUIdx];
4586     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4587                dbgs() << '\n');
4588 
4589     // Return true if Formula FA is better than Formula FB.
4590     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4591       // First we will try to choose the Formula with fewer new registers.
4592       // For a register used by current Formula, the more the register is
4593       // shared among LSRUses, the less we increase the register number
4594       // counter of the formula.
4595       size_t FARegNum = 0;
4596       for (const SCEV *Reg : FA.BaseRegs) {
4597         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4598         FARegNum += (NumUses - UsedByIndices.count() + 1);
4599       }
4600       size_t FBRegNum = 0;
4601       for (const SCEV *Reg : FB.BaseRegs) {
4602         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4603         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4604       }
4605       if (FARegNum != FBRegNum)
4606         return FARegNum < FBRegNum;
4607 
4608       // If the new register numbers are the same, choose the Formula with
4609       // less Cost.
4610       Cost CostFA(L, SE, TTI);
4611       Cost CostFB(L, SE, TTI);
4612       Regs.clear();
4613       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4614       Regs.clear();
4615       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4616       return CostFA.isLess(CostFB);
4617     };
4618 
4619     bool Any = false;
4620     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4621          ++FIdx) {
4622       Formula &F = LU.Formulae[FIdx];
4623       if (!F.ScaledReg)
4624         continue;
4625       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4626       if (P.second)
4627         continue;
4628 
4629       Formula &Best = LU.Formulae[P.first->second];
4630       if (IsBetterThan(F, Best))
4631         std::swap(F, Best);
4632       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4633                  dbgs() << "\n"
4634                            "    in favor of formula ";
4635                  Best.print(dbgs()); dbgs() << '\n');
4636 #ifndef NDEBUG
4637       ChangedFormulae = true;
4638 #endif
4639       LU.DeleteFormula(F);
4640       --FIdx;
4641       --NumForms;
4642       Any = true;
4643     }
4644     if (Any)
4645       LU.RecomputeRegs(LUIdx, RegUses);
4646 
4647     // Reset this to prepare for the next use.
4648     BestFormulae.clear();
4649   }
4650 
4651   LLVM_DEBUG(if (ChangedFormulae) {
4652     dbgs() << "\n"
4653               "After filtering out undesirable candidates:\n";
4654     print_uses(dbgs());
4655   });
4656 }
4657 
4658 /// The function delete formulas with high registers number expectation.
4659 /// Assuming we don't know the value of each formula (already delete
4660 /// all inefficient), generate probability of not selecting for each
4661 /// register.
4662 /// For example,
4663 /// Use1:
4664 ///  reg(a) + reg({0,+,1})
4665 ///  reg(a) + reg({-1,+,1}) + 1
4666 ///  reg({a,+,1})
4667 /// Use2:
4668 ///  reg(b) + reg({0,+,1})
4669 ///  reg(b) + reg({-1,+,1}) + 1
4670 ///  reg({b,+,1})
4671 /// Use3:
4672 ///  reg(c) + reg(b) + reg({0,+,1})
4673 ///  reg(c) + reg({b,+,1})
4674 ///
4675 /// Probability of not selecting
4676 ///                 Use1   Use2    Use3
4677 /// reg(a)         (1/3) *   1   *   1
4678 /// reg(b)           1   * (1/3) * (1/2)
4679 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4680 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4681 /// reg({a,+,1})   (2/3) *   1   *   1
4682 /// reg({b,+,1})     1   * (2/3) * (2/3)
4683 /// reg(c)           1   *   1   *   0
4684 ///
4685 /// Now count registers number mathematical expectation for each formula:
4686 /// Note that for each use we exclude probability if not selecting for the use.
4687 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4688 /// probabilty 1/3 of not selecting for Use1).
4689 /// Use1:
4690 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4691 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4692 ///  reg({a,+,1})                   1
4693 /// Use2:
4694 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4695 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4696 ///  reg({b,+,1})                   2/3
4697 /// Use3:
4698 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4699 ///  reg(c) + reg({b,+,1})          1 + 2/3
4700 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4701   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4702     return;
4703   // Ok, we have too many of formulae on our hands to conveniently handle.
4704   // Use a rough heuristic to thin out the list.
4705 
4706   // Set of Regs wich will be 100% used in final solution.
4707   // Used in each formula of a solution (in example above this is reg(c)).
4708   // We can skip them in calculations.
4709   SmallPtrSet<const SCEV *, 4> UniqRegs;
4710   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4711 
4712   // Map each register to probability of not selecting
4713   DenseMap <const SCEV *, float> RegNumMap;
4714   for (const SCEV *Reg : RegUses) {
4715     if (UniqRegs.count(Reg))
4716       continue;
4717     float PNotSel = 1;
4718     for (const LSRUse &LU : Uses) {
4719       if (!LU.Regs.count(Reg))
4720         continue;
4721       float P = LU.getNotSelectedProbability(Reg);
4722       if (P != 0.0)
4723         PNotSel *= P;
4724       else
4725         UniqRegs.insert(Reg);
4726     }
4727     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4728   }
4729 
4730   LLVM_DEBUG(
4731       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4732 
4733   // Delete formulas where registers number expectation is high.
4734   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4735     LSRUse &LU = Uses[LUIdx];
4736     // If nothing to delete - continue.
4737     if (LU.Formulae.size() < 2)
4738       continue;
4739     // This is temporary solution to test performance. Float should be
4740     // replaced with round independent type (based on integers) to avoid
4741     // different results for different target builds.
4742     float FMinRegNum = LU.Formulae[0].getNumRegs();
4743     float FMinARegNum = LU.Formulae[0].getNumRegs();
4744     size_t MinIdx = 0;
4745     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4746       Formula &F = LU.Formulae[i];
4747       float FRegNum = 0;
4748       float FARegNum = 0;
4749       for (const SCEV *BaseReg : F.BaseRegs) {
4750         if (UniqRegs.count(BaseReg))
4751           continue;
4752         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4753         if (isa<SCEVAddRecExpr>(BaseReg))
4754           FARegNum +=
4755               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4756       }
4757       if (const SCEV *ScaledReg = F.ScaledReg) {
4758         if (!UniqRegs.count(ScaledReg)) {
4759           FRegNum +=
4760               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4761           if (isa<SCEVAddRecExpr>(ScaledReg))
4762             FARegNum +=
4763                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4764         }
4765       }
4766       if (FMinRegNum > FRegNum ||
4767           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4768         FMinRegNum = FRegNum;
4769         FMinARegNum = FARegNum;
4770         MinIdx = i;
4771       }
4772     }
4773     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4774                dbgs() << " with min reg num " << FMinRegNum << '\n');
4775     if (MinIdx != 0)
4776       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4777     while (LU.Formulae.size() != 1) {
4778       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4779                  dbgs() << '\n');
4780       LU.Formulae.pop_back();
4781     }
4782     LU.RecomputeRegs(LUIdx, RegUses);
4783     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4784     Formula &F = LU.Formulae[0];
4785     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4786     // When we choose the formula, the regs become unique.
4787     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4788     if (F.ScaledReg)
4789       UniqRegs.insert(F.ScaledReg);
4790   }
4791   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4792 }
4793 
4794 /// Pick a register which seems likely to be profitable, and then in any use
4795 /// which has any reference to that register, delete all formulae which do not
4796 /// reference that register.
4797 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4798   // With all other options exhausted, loop until the system is simple
4799   // enough to handle.
4800   SmallPtrSet<const SCEV *, 4> Taken;
4801   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4802     // Ok, we have too many of formulae on our hands to conveniently handle.
4803     // Use a rough heuristic to thin out the list.
4804     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4805 
4806     // Pick the register which is used by the most LSRUses, which is likely
4807     // to be a good reuse register candidate.
4808     const SCEV *Best = nullptr;
4809     unsigned BestNum = 0;
4810     for (const SCEV *Reg : RegUses) {
4811       if (Taken.count(Reg))
4812         continue;
4813       if (!Best) {
4814         Best = Reg;
4815         BestNum = RegUses.getUsedByIndices(Reg).count();
4816       } else {
4817         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4818         if (Count > BestNum) {
4819           Best = Reg;
4820           BestNum = Count;
4821         }
4822       }
4823     }
4824 
4825     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4826                       << " will yield profitable reuse.\n");
4827     Taken.insert(Best);
4828 
4829     // In any use with formulae which references this register, delete formulae
4830     // which don't reference it.
4831     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4832       LSRUse &LU = Uses[LUIdx];
4833       if (!LU.Regs.count(Best)) continue;
4834 
4835       bool Any = false;
4836       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4837         Formula &F = LU.Formulae[i];
4838         if (!F.referencesReg(Best)) {
4839           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4840           LU.DeleteFormula(F);
4841           --e;
4842           --i;
4843           Any = true;
4844           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4845           continue;
4846         }
4847       }
4848 
4849       if (Any)
4850         LU.RecomputeRegs(LUIdx, RegUses);
4851     }
4852 
4853     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4854   }
4855 }
4856 
4857 /// If there are an extraordinary number of formulae to choose from, use some
4858 /// rough heuristics to prune down the number of formulae. This keeps the main
4859 /// solver from taking an extraordinary amount of time in some worst-case
4860 /// scenarios.
4861 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4862   NarrowSearchSpaceByDetectingSupersets();
4863   NarrowSearchSpaceByCollapsingUnrolledCode();
4864   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4865   if (FilterSameScaledReg)
4866     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4867   if (LSRExpNarrow)
4868     NarrowSearchSpaceByDeletingCostlyFormulas();
4869   else
4870     NarrowSearchSpaceByPickingWinnerRegs();
4871 }
4872 
4873 /// This is the recursive solver.
4874 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4875                                Cost &SolutionCost,
4876                                SmallVectorImpl<const Formula *> &Workspace,
4877                                const Cost &CurCost,
4878                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4879                                DenseSet<const SCEV *> &VisitedRegs) const {
4880   // Some ideas:
4881   //  - prune more:
4882   //    - use more aggressive filtering
4883   //    - sort the formula so that the most profitable solutions are found first
4884   //    - sort the uses too
4885   //  - search faster:
4886   //    - don't compute a cost, and then compare. compare while computing a cost
4887   //      and bail early.
4888   //    - track register sets with SmallBitVector
4889 
4890   const LSRUse &LU = Uses[Workspace.size()];
4891 
4892   // If this use references any register that's already a part of the
4893   // in-progress solution, consider it a requirement that a formula must
4894   // reference that register in order to be considered. This prunes out
4895   // unprofitable searching.
4896   SmallSetVector<const SCEV *, 4> ReqRegs;
4897   for (const SCEV *S : CurRegs)
4898     if (LU.Regs.count(S))
4899       ReqRegs.insert(S);
4900 
4901   SmallPtrSet<const SCEV *, 16> NewRegs;
4902   Cost NewCost(L, SE, TTI);
4903   for (const Formula &F : LU.Formulae) {
4904     // Ignore formulae which may not be ideal in terms of register reuse of
4905     // ReqRegs.  The formula should use all required registers before
4906     // introducing new ones.
4907     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4908     for (const SCEV *Reg : ReqRegs) {
4909       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4910           is_contained(F.BaseRegs, Reg)) {
4911         --NumReqRegsToFind;
4912         if (NumReqRegsToFind == 0)
4913           break;
4914       }
4915     }
4916     if (NumReqRegsToFind != 0) {
4917       // If none of the formulae satisfied the required registers, then we could
4918       // clear ReqRegs and try again. Currently, we simply give up in this case.
4919       continue;
4920     }
4921 
4922     // Evaluate the cost of the current formula. If it's already worse than
4923     // the current best, prune the search at that point.
4924     NewCost = CurCost;
4925     NewRegs = CurRegs;
4926     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4927     if (NewCost.isLess(SolutionCost)) {
4928       Workspace.push_back(&F);
4929       if (Workspace.size() != Uses.size()) {
4930         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4931                      NewRegs, VisitedRegs);
4932         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4933           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4934       } else {
4935         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4936                    dbgs() << ".\nRegs:\n";
4937                    for (const SCEV *S : NewRegs) dbgs()
4938                       << "- " << *S << "\n";
4939                    dbgs() << '\n');
4940 
4941         SolutionCost = NewCost;
4942         Solution = Workspace;
4943       }
4944       Workspace.pop_back();
4945     }
4946   }
4947 }
4948 
4949 /// Choose one formula from each use. Return the results in the given Solution
4950 /// vector.
4951 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4952   SmallVector<const Formula *, 8> Workspace;
4953   Cost SolutionCost(L, SE, TTI);
4954   SolutionCost.Lose();
4955   Cost CurCost(L, SE, TTI);
4956   SmallPtrSet<const SCEV *, 16> CurRegs;
4957   DenseSet<const SCEV *> VisitedRegs;
4958   Workspace.reserve(Uses.size());
4959 
4960   // SolveRecurse does all the work.
4961   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4962                CurRegs, VisitedRegs);
4963   if (Solution.empty()) {
4964     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4965     return;
4966   }
4967 
4968   // Ok, we've now made all our decisions.
4969   LLVM_DEBUG(dbgs() << "\n"
4970                        "The chosen solution requires ";
4971              SolutionCost.print(dbgs()); dbgs() << ":\n";
4972              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4973                dbgs() << "  ";
4974                Uses[i].print(dbgs());
4975                dbgs() << "\n"
4976                          "    ";
4977                Solution[i]->print(dbgs());
4978                dbgs() << '\n';
4979              });
4980 
4981   assert(Solution.size() == Uses.size() && "Malformed solution!");
4982 }
4983 
4984 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4985 /// we can go while still being dominated by the input positions. This helps
4986 /// canonicalize the insert position, which encourages sharing.
4987 BasicBlock::iterator
4988 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4989                                  const SmallVectorImpl<Instruction *> &Inputs)
4990                                                                          const {
4991   Instruction *Tentative = &*IP;
4992   while (true) {
4993     bool AllDominate = true;
4994     Instruction *BetterPos = nullptr;
4995     // Don't bother attempting to insert before a catchswitch, their basic block
4996     // cannot have other non-PHI instructions.
4997     if (isa<CatchSwitchInst>(Tentative))
4998       return IP;
4999 
5000     for (Instruction *Inst : Inputs) {
5001       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5002         AllDominate = false;
5003         break;
5004       }
5005       // Attempt to find an insert position in the middle of the block,
5006       // instead of at the end, so that it can be used for other expansions.
5007       if (Tentative->getParent() == Inst->getParent() &&
5008           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5009         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5010     }
5011     if (!AllDominate)
5012       break;
5013     if (BetterPos)
5014       IP = BetterPos->getIterator();
5015     else
5016       IP = Tentative->getIterator();
5017 
5018     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5019     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5020 
5021     BasicBlock *IDom;
5022     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5023       if (!Rung) return IP;
5024       Rung = Rung->getIDom();
5025       if (!Rung) return IP;
5026       IDom = Rung->getBlock();
5027 
5028       // Don't climb into a loop though.
5029       const Loop *IDomLoop = LI.getLoopFor(IDom);
5030       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5031       if (IDomDepth <= IPLoopDepth &&
5032           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5033         break;
5034     }
5035 
5036     Tentative = IDom->getTerminator();
5037   }
5038 
5039   return IP;
5040 }
5041 
5042 /// Determine an input position which will be dominated by the operands and
5043 /// which will dominate the result.
5044 BasicBlock::iterator
5045 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5046                                            const LSRFixup &LF,
5047                                            const LSRUse &LU,
5048                                            SCEVExpander &Rewriter) const {
5049   // Collect some instructions which must be dominated by the
5050   // expanding replacement. These must be dominated by any operands that
5051   // will be required in the expansion.
5052   SmallVector<Instruction *, 4> Inputs;
5053   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5054     Inputs.push_back(I);
5055   if (LU.Kind == LSRUse::ICmpZero)
5056     if (Instruction *I =
5057           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5058       Inputs.push_back(I);
5059   if (LF.PostIncLoops.count(L)) {
5060     if (LF.isUseFullyOutsideLoop(L))
5061       Inputs.push_back(L->getLoopLatch()->getTerminator());
5062     else
5063       Inputs.push_back(IVIncInsertPos);
5064   }
5065   // The expansion must also be dominated by the increment positions of any
5066   // loops it for which it is using post-inc mode.
5067   for (const Loop *PIL : LF.PostIncLoops) {
5068     if (PIL == L) continue;
5069 
5070     // Be dominated by the loop exit.
5071     SmallVector<BasicBlock *, 4> ExitingBlocks;
5072     PIL->getExitingBlocks(ExitingBlocks);
5073     if (!ExitingBlocks.empty()) {
5074       BasicBlock *BB = ExitingBlocks[0];
5075       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5076         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5077       Inputs.push_back(BB->getTerminator());
5078     }
5079   }
5080 
5081   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5082          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5083          "Insertion point must be a normal instruction");
5084 
5085   // Then, climb up the immediate dominator tree as far as we can go while
5086   // still being dominated by the input positions.
5087   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5088 
5089   // Don't insert instructions before PHI nodes.
5090   while (isa<PHINode>(IP)) ++IP;
5091 
5092   // Ignore landingpad instructions.
5093   while (IP->isEHPad()) ++IP;
5094 
5095   // Ignore debug intrinsics.
5096   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5097 
5098   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5099   // IP consistent across expansions and allows the previously inserted
5100   // instructions to be reused by subsequent expansion.
5101   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5102     ++IP;
5103 
5104   return IP;
5105 }
5106 
5107 /// Emit instructions for the leading candidate expression for this LSRUse (this
5108 /// is called "expanding").
5109 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5110                            const Formula &F, BasicBlock::iterator IP,
5111                            SCEVExpander &Rewriter,
5112                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5113   if (LU.RigidFormula)
5114     return LF.OperandValToReplace;
5115 
5116   // Determine an input position which will be dominated by the operands and
5117   // which will dominate the result.
5118   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5119   Rewriter.setInsertPoint(&*IP);
5120 
5121   // Inform the Rewriter if we have a post-increment use, so that it can
5122   // perform an advantageous expansion.
5123   Rewriter.setPostInc(LF.PostIncLoops);
5124 
5125   // This is the type that the user actually needs.
5126   Type *OpTy = LF.OperandValToReplace->getType();
5127   // This will be the type that we'll initially expand to.
5128   Type *Ty = F.getType();
5129   if (!Ty)
5130     // No type known; just expand directly to the ultimate type.
5131     Ty = OpTy;
5132   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5133     // Expand directly to the ultimate type if it's the right size.
5134     Ty = OpTy;
5135   // This is the type to do integer arithmetic in.
5136   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5137 
5138   // Build up a list of operands to add together to form the full base.
5139   SmallVector<const SCEV *, 8> Ops;
5140 
5141   // Expand the BaseRegs portion.
5142   for (const SCEV *Reg : F.BaseRegs) {
5143     assert(!Reg->isZero() && "Zero allocated in a base register!");
5144 
5145     // If we're expanding for a post-inc user, make the post-inc adjustment.
5146     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5147     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5148   }
5149 
5150   // Expand the ScaledReg portion.
5151   Value *ICmpScaledV = nullptr;
5152   if (F.Scale != 0) {
5153     const SCEV *ScaledS = F.ScaledReg;
5154 
5155     // If we're expanding for a post-inc user, make the post-inc adjustment.
5156     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5157     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5158 
5159     if (LU.Kind == LSRUse::ICmpZero) {
5160       // Expand ScaleReg as if it was part of the base regs.
5161       if (F.Scale == 1)
5162         Ops.push_back(
5163             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5164       else {
5165         // An interesting way of "folding" with an icmp is to use a negated
5166         // scale, which we'll implement by inserting it into the other operand
5167         // of the icmp.
5168         assert(F.Scale == -1 &&
5169                "The only scale supported by ICmpZero uses is -1!");
5170         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5171       }
5172     } else {
5173       // Otherwise just expand the scaled register and an explicit scale,
5174       // which is expected to be matched as part of the address.
5175 
5176       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5177       // Unless the addressing mode will not be folded.
5178       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5179           isAMCompletelyFolded(TTI, LU, F)) {
5180         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5181         Ops.clear();
5182         Ops.push_back(SE.getUnknown(FullV));
5183       }
5184       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5185       if (F.Scale != 1)
5186         ScaledS =
5187             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5188       Ops.push_back(ScaledS);
5189     }
5190   }
5191 
5192   // Expand the GV portion.
5193   if (F.BaseGV) {
5194     // Flush the operand list to suppress SCEVExpander hoisting.
5195     if (!Ops.empty()) {
5196       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5197       Ops.clear();
5198       Ops.push_back(SE.getUnknown(FullV));
5199     }
5200     Ops.push_back(SE.getUnknown(F.BaseGV));
5201   }
5202 
5203   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5204   // unfolded offsets. LSR assumes they both live next to their uses.
5205   if (!Ops.empty()) {
5206     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5207     Ops.clear();
5208     Ops.push_back(SE.getUnknown(FullV));
5209   }
5210 
5211   // Expand the immediate portion.
5212   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5213   if (Offset != 0) {
5214     if (LU.Kind == LSRUse::ICmpZero) {
5215       // The other interesting way of "folding" with an ICmpZero is to use a
5216       // negated immediate.
5217       if (!ICmpScaledV)
5218         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5219       else {
5220         Ops.push_back(SE.getUnknown(ICmpScaledV));
5221         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5222       }
5223     } else {
5224       // Just add the immediate values. These again are expected to be matched
5225       // as part of the address.
5226       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5227     }
5228   }
5229 
5230   // Expand the unfolded offset portion.
5231   int64_t UnfoldedOffset = F.UnfoldedOffset;
5232   if (UnfoldedOffset != 0) {
5233     // Just add the immediate values.
5234     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5235                                                        UnfoldedOffset)));
5236   }
5237 
5238   // Emit instructions summing all the operands.
5239   const SCEV *FullS = Ops.empty() ?
5240                       SE.getConstant(IntTy, 0) :
5241                       SE.getAddExpr(Ops);
5242   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5243 
5244   // We're done expanding now, so reset the rewriter.
5245   Rewriter.clearPostInc();
5246 
5247   // An ICmpZero Formula represents an ICmp which we're handling as a
5248   // comparison against zero. Now that we've expanded an expression for that
5249   // form, update the ICmp's other operand.
5250   if (LU.Kind == LSRUse::ICmpZero) {
5251     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5252     DeadInsts.emplace_back(CI->getOperand(1));
5253     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5254                            "a scale at the same time!");
5255     if (F.Scale == -1) {
5256       if (ICmpScaledV->getType() != OpTy) {
5257         Instruction *Cast =
5258           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5259                                                    OpTy, false),
5260                            ICmpScaledV, OpTy, "tmp", CI);
5261         ICmpScaledV = Cast;
5262       }
5263       CI->setOperand(1, ICmpScaledV);
5264     } else {
5265       // A scale of 1 means that the scale has been expanded as part of the
5266       // base regs.
5267       assert((F.Scale == 0 || F.Scale == 1) &&
5268              "ICmp does not support folding a global value and "
5269              "a scale at the same time!");
5270       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5271                                            -(uint64_t)Offset);
5272       if (C->getType() != OpTy)
5273         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5274                                                           OpTy, false),
5275                                   C, OpTy);
5276 
5277       CI->setOperand(1, C);
5278     }
5279   }
5280 
5281   return FullV;
5282 }
5283 
5284 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5285 /// effectively happens in their predecessor blocks, so the expression may need
5286 /// to be expanded in multiple places.
5287 void LSRInstance::RewriteForPHI(
5288     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5289     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5290   DenseMap<BasicBlock *, Value *> Inserted;
5291   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5292     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5293       BasicBlock *BB = PN->getIncomingBlock(i);
5294 
5295       // If this is a critical edge, split the edge so that we do not insert
5296       // the code on all predecessor/successor paths.  We do this unless this
5297       // is the canonical backedge for this loop, which complicates post-inc
5298       // users.
5299       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5300           !isa<IndirectBrInst>(BB->getTerminator()) &&
5301           !isa<CatchSwitchInst>(BB->getTerminator())) {
5302         BasicBlock *Parent = PN->getParent();
5303         Loop *PNLoop = LI.getLoopFor(Parent);
5304         if (!PNLoop || Parent != PNLoop->getHeader()) {
5305           // Split the critical edge.
5306           BasicBlock *NewBB = nullptr;
5307           if (!Parent->isLandingPad()) {
5308             NewBB = SplitCriticalEdge(BB, Parent,
5309                                       CriticalEdgeSplittingOptions(&DT, &LI)
5310                                           .setMergeIdenticalEdges()
5311                                           .setKeepOneInputPHIs());
5312           } else {
5313             SmallVector<BasicBlock*, 2> NewBBs;
5314             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5315             NewBB = NewBBs[0];
5316           }
5317           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5318           // phi predecessors are identical. The simple thing to do is skip
5319           // splitting in this case rather than complicate the API.
5320           if (NewBB) {
5321             // If PN is outside of the loop and BB is in the loop, we want to
5322             // move the block to be immediately before the PHI block, not
5323             // immediately after BB.
5324             if (L->contains(BB) && !L->contains(PN))
5325               NewBB->moveBefore(PN->getParent());
5326 
5327             // Splitting the edge can reduce the number of PHI entries we have.
5328             e = PN->getNumIncomingValues();
5329             BB = NewBB;
5330             i = PN->getBasicBlockIndex(BB);
5331           }
5332         }
5333       }
5334 
5335       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5336         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5337       if (!Pair.second)
5338         PN->setIncomingValue(i, Pair.first->second);
5339       else {
5340         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5341                               Rewriter, DeadInsts);
5342 
5343         // If this is reuse-by-noop-cast, insert the noop cast.
5344         Type *OpTy = LF.OperandValToReplace->getType();
5345         if (FullV->getType() != OpTy)
5346           FullV =
5347             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5348                                                      OpTy, false),
5349                              FullV, LF.OperandValToReplace->getType(),
5350                              "tmp", BB->getTerminator());
5351 
5352         PN->setIncomingValue(i, FullV);
5353         Pair.first->second = FullV;
5354       }
5355     }
5356 }
5357 
5358 /// Emit instructions for the leading candidate expression for this LSRUse (this
5359 /// is called "expanding"), and update the UserInst to reference the newly
5360 /// expanded value.
5361 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5362                           const Formula &F, SCEVExpander &Rewriter,
5363                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5364   // First, find an insertion point that dominates UserInst. For PHI nodes,
5365   // find the nearest block which dominates all the relevant uses.
5366   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5367     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5368   } else {
5369     Value *FullV =
5370       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5371 
5372     // If this is reuse-by-noop-cast, insert the noop cast.
5373     Type *OpTy = LF.OperandValToReplace->getType();
5374     if (FullV->getType() != OpTy) {
5375       Instruction *Cast =
5376         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5377                          FullV, OpTy, "tmp", LF.UserInst);
5378       FullV = Cast;
5379     }
5380 
5381     // Update the user. ICmpZero is handled specially here (for now) because
5382     // Expand may have updated one of the operands of the icmp already, and
5383     // its new value may happen to be equal to LF.OperandValToReplace, in
5384     // which case doing replaceUsesOfWith leads to replacing both operands
5385     // with the same value. TODO: Reorganize this.
5386     if (LU.Kind == LSRUse::ICmpZero)
5387       LF.UserInst->setOperand(0, FullV);
5388     else
5389       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5390   }
5391 
5392   DeadInsts.emplace_back(LF.OperandValToReplace);
5393 }
5394 
5395 /// Rewrite all the fixup locations with new values, following the chosen
5396 /// solution.
5397 void LSRInstance::ImplementSolution(
5398     const SmallVectorImpl<const Formula *> &Solution) {
5399   // Keep track of instructions we may have made dead, so that
5400   // we can remove them after we are done working.
5401   SmallVector<WeakTrackingVH, 16> DeadInsts;
5402 
5403   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5404                         "lsr");
5405 #ifndef NDEBUG
5406   Rewriter.setDebugType(DEBUG_TYPE);
5407 #endif
5408   Rewriter.disableCanonicalMode();
5409   Rewriter.enableLSRMode();
5410   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5411 
5412   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5413   for (const IVChain &Chain : IVChainVec) {
5414     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5415       Rewriter.setChainedPhi(PN);
5416   }
5417 
5418   // Expand the new value definitions and update the users.
5419   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5420     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5421       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5422       Changed = true;
5423     }
5424 
5425   for (const IVChain &Chain : IVChainVec) {
5426     GenerateIVChain(Chain, Rewriter, DeadInsts);
5427     Changed = true;
5428   }
5429   // Clean up after ourselves. This must be done before deleting any
5430   // instructions.
5431   Rewriter.clear();
5432 
5433   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5434 }
5435 
5436 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5437                          DominatorTree &DT, LoopInfo &LI,
5438                          const TargetTransformInfo &TTI)
5439     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L),
5440       FavorBackedgeIndex(EnableBackedgeIndexing &&
5441                          TTI.shouldFavorBackedgeIndex(L)) {
5442   // If LoopSimplify form is not available, stay out of trouble.
5443   if (!L->isLoopSimplifyForm())
5444     return;
5445 
5446   // If there's no interesting work to be done, bail early.
5447   if (IU.empty()) return;
5448 
5449   // If there's too much analysis to be done, bail early. We won't be able to
5450   // model the problem anyway.
5451   unsigned NumUsers = 0;
5452   for (const IVStrideUse &U : IU) {
5453     if (++NumUsers > MaxIVUsers) {
5454       (void)U;
5455       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5456                         << "\n");
5457       return;
5458     }
5459     // Bail out if we have a PHI on an EHPad that gets a value from a
5460     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5461     // no good place to stick any instructions.
5462     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5463        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5464        if (isa<FuncletPadInst>(FirstNonPHI) ||
5465            isa<CatchSwitchInst>(FirstNonPHI))
5466          for (BasicBlock *PredBB : PN->blocks())
5467            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5468              return;
5469     }
5470   }
5471 
5472 #ifndef NDEBUG
5473   // All dominating loops must have preheaders, or SCEVExpander may not be able
5474   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5475   //
5476   // IVUsers analysis should only create users that are dominated by simple loop
5477   // headers. Since this loop should dominate all of its users, its user list
5478   // should be empty if this loop itself is not within a simple loop nest.
5479   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5480        Rung; Rung = Rung->getIDom()) {
5481     BasicBlock *BB = Rung->getBlock();
5482     const Loop *DomLoop = LI.getLoopFor(BB);
5483     if (DomLoop && DomLoop->getHeader() == BB) {
5484       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5485     }
5486   }
5487 #endif // DEBUG
5488 
5489   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5490              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5491              dbgs() << ":\n");
5492 
5493   // First, perform some low-level loop optimizations.
5494   OptimizeShadowIV();
5495   OptimizeLoopTermCond();
5496 
5497   // If loop preparation eliminates all interesting IV users, bail.
5498   if (IU.empty()) return;
5499 
5500   // Skip nested loops until we can model them better with formulae.
5501   if (!L->empty()) {
5502     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5503     return;
5504   }
5505 
5506   // Start collecting data and preparing for the solver.
5507   CollectChains();
5508   CollectInterestingTypesAndFactors();
5509   CollectFixupsAndInitialFormulae();
5510   CollectLoopInvariantFixupsAndFormulae();
5511 
5512   if (Uses.empty())
5513     return;
5514 
5515   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5516              print_uses(dbgs()));
5517 
5518   // Now use the reuse data to generate a bunch of interesting ways
5519   // to formulate the values needed for the uses.
5520   GenerateAllReuseFormulae();
5521 
5522   FilterOutUndesirableDedicatedRegisters();
5523   NarrowSearchSpaceUsingHeuristics();
5524 
5525   SmallVector<const Formula *, 8> Solution;
5526   Solve(Solution);
5527 
5528   // Release memory that is no longer needed.
5529   Factors.clear();
5530   Types.clear();
5531   RegUses.clear();
5532 
5533   if (Solution.empty())
5534     return;
5535 
5536 #ifndef NDEBUG
5537   // Formulae should be legal.
5538   for (const LSRUse &LU : Uses) {
5539     for (const Formula &F : LU.Formulae)
5540       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5541                         F) && "Illegal formula generated!");
5542   };
5543 #endif
5544 
5545   // Now that we've decided what we want, make it so.
5546   ImplementSolution(Solution);
5547 }
5548 
5549 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5550 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5551   if (Factors.empty() && Types.empty()) return;
5552 
5553   OS << "LSR has identified the following interesting factors and types: ";
5554   bool First = true;
5555 
5556   for (int64_t Factor : Factors) {
5557     if (!First) OS << ", ";
5558     First = false;
5559     OS << '*' << Factor;
5560   }
5561 
5562   for (Type *Ty : Types) {
5563     if (!First) OS << ", ";
5564     First = false;
5565     OS << '(' << *Ty << ')';
5566   }
5567   OS << '\n';
5568 }
5569 
5570 void LSRInstance::print_fixups(raw_ostream &OS) const {
5571   OS << "LSR is examining the following fixup sites:\n";
5572   for (const LSRUse &LU : Uses)
5573     for (const LSRFixup &LF : LU.Fixups) {
5574       dbgs() << "  ";
5575       LF.print(OS);
5576       OS << '\n';
5577     }
5578 }
5579 
5580 void LSRInstance::print_uses(raw_ostream &OS) const {
5581   OS << "LSR is examining the following uses:\n";
5582   for (const LSRUse &LU : Uses) {
5583     dbgs() << "  ";
5584     LU.print(OS);
5585     OS << '\n';
5586     for (const Formula &F : LU.Formulae) {
5587       OS << "    ";
5588       F.print(OS);
5589       OS << '\n';
5590     }
5591   }
5592 }
5593 
5594 void LSRInstance::print(raw_ostream &OS) const {
5595   print_factors_and_types(OS);
5596   print_fixups(OS);
5597   print_uses(OS);
5598 }
5599 
5600 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5601   print(errs()); errs() << '\n';
5602 }
5603 #endif
5604 
5605 namespace {
5606 
5607 class LoopStrengthReduce : public LoopPass {
5608 public:
5609   static char ID; // Pass ID, replacement for typeid
5610 
5611   LoopStrengthReduce();
5612 
5613 private:
5614   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5615   void getAnalysisUsage(AnalysisUsage &AU) const override;
5616 };
5617 
5618 } // end anonymous namespace
5619 
5620 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5621   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5622 }
5623 
5624 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5625   // We split critical edges, so we change the CFG.  However, we do update
5626   // many analyses if they are around.
5627   AU.addPreservedID(LoopSimplifyID);
5628 
5629   AU.addRequired<LoopInfoWrapperPass>();
5630   AU.addPreserved<LoopInfoWrapperPass>();
5631   AU.addRequiredID(LoopSimplifyID);
5632   AU.addRequired<DominatorTreeWrapperPass>();
5633   AU.addPreserved<DominatorTreeWrapperPass>();
5634   AU.addRequired<ScalarEvolutionWrapperPass>();
5635   AU.addPreserved<ScalarEvolutionWrapperPass>();
5636   // Requiring LoopSimplify a second time here prevents IVUsers from running
5637   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5638   AU.addRequiredID(LoopSimplifyID);
5639   AU.addRequired<IVUsersWrapperPass>();
5640   AU.addPreserved<IVUsersWrapperPass>();
5641   AU.addRequired<TargetTransformInfoWrapperPass>();
5642 }
5643 
5644 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5645                                DominatorTree &DT, LoopInfo &LI,
5646                                const TargetTransformInfo &TTI) {
5647   bool Changed = false;
5648 
5649   // Run the main LSR transformation.
5650   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5651 
5652   // Remove any extra phis created by processing inner loops.
5653   Changed |= DeleteDeadPHIs(L->getHeader());
5654   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5655     SmallVector<WeakTrackingVH, 16> DeadInsts;
5656     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5657     SCEVExpander Rewriter(SE, DL, "lsr");
5658 #ifndef NDEBUG
5659     Rewriter.setDebugType(DEBUG_TYPE);
5660 #endif
5661     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5662     if (numFolded) {
5663       Changed = true;
5664       DeleteTriviallyDeadInstructions(DeadInsts);
5665       DeleteDeadPHIs(L->getHeader());
5666     }
5667   }
5668   return Changed;
5669 }
5670 
5671 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5672   if (skipLoop(L))
5673     return false;
5674 
5675   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5676   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5677   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5678   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5679   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5680       *L->getHeader()->getParent());
5681   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5682 }
5683 
5684 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5685                                               LoopStandardAnalysisResults &AR,
5686                                               LPMUpdater &) {
5687   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5688                           AR.DT, AR.LI, AR.TTI))
5689     return PreservedAnalyses::all();
5690 
5691   return getLoopPassPreservedAnalyses();
5692 }
5693 
5694 char LoopStrengthReduce::ID = 0;
5695 
5696 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5697                       "Loop Strength Reduction", false, false)
5698 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5699 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5700 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5701 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5702 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5703 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5704 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5705                     "Loop Strength Reduction", false, false)
5706 
5707 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5708