1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 // The flag adds instruction count to solutions cost comparision.
133 static cl::opt<bool> InsnsCost(
134   "lsr-insns-cost", cl::Hidden, cl::init(true),
135   cl::desc("Add instruction count to a LSR cost model"));
136 
137 // Flag to choose how to narrow complex lsr solution
138 static cl::opt<bool> LSRExpNarrow(
139   "lsr-exp-narrow", cl::Hidden, cl::init(false),
140   cl::desc("Narrow LSR complex solution using"
141            " expectation of registers number"));
142 
143 // Flag to narrow search space by filtering non-optimal formulae with
144 // the same ScaledReg and Scale.
145 static cl::opt<bool> FilterSameScaledReg(
146     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
147     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
148              " with the same ScaledReg and Scale"));
149 
150 #ifndef NDEBUG
151 // Stress test IV chain generation.
152 static cl::opt<bool> StressIVChain(
153   "stress-ivchain", cl::Hidden, cl::init(false),
154   cl::desc("Stress test LSR IV chains"));
155 #else
156 static bool StressIVChain = false;
157 #endif
158 
159 namespace {
160 
161 struct MemAccessTy {
162   /// Used in situations where the accessed memory type is unknown.
163   static const unsigned UnknownAddressSpace = ~0u;
164 
165   Type *MemTy;
166   unsigned AddrSpace;
167 
168   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
169 
170   MemAccessTy(Type *Ty, unsigned AS) :
171     MemTy(Ty), AddrSpace(AS) {}
172 
173   bool operator==(MemAccessTy Other) const {
174     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
175   }
176 
177   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
178 
179   static MemAccessTy getUnknown(LLVMContext &Ctx,
180                                 unsigned AS = UnknownAddressSpace) {
181     return MemAccessTy(Type::getVoidTy(Ctx), AS);
182   }
183 };
184 
185 /// This class holds data which is used to order reuse candidates.
186 class RegSortData {
187 public:
188   /// This represents the set of LSRUse indices which reference
189   /// a particular register.
190   SmallBitVector UsedByIndices;
191 
192   void print(raw_ostream &OS) const;
193   void dump() const;
194 };
195 
196 } // end anonymous namespace
197 
198 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
199 void RegSortData::print(raw_ostream &OS) const {
200   OS << "[NumUses=" << UsedByIndices.count() << ']';
201 }
202 
203 LLVM_DUMP_METHOD void RegSortData::dump() const {
204   print(errs()); errs() << '\n';
205 }
206 #endif
207 
208 namespace {
209 
210 /// Map register candidates to information about how they are used.
211 class RegUseTracker {
212   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
213 
214   RegUsesTy RegUsesMap;
215   SmallVector<const SCEV *, 16> RegSequence;
216 
217 public:
218   void countRegister(const SCEV *Reg, size_t LUIdx);
219   void dropRegister(const SCEV *Reg, size_t LUIdx);
220   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
221 
222   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
223 
224   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
225 
226   void clear();
227 
228   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
229   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
230   iterator begin() { return RegSequence.begin(); }
231   iterator end()   { return RegSequence.end(); }
232   const_iterator begin() const { return RegSequence.begin(); }
233   const_iterator end() const   { return RegSequence.end(); }
234 };
235 
236 } // end anonymous namespace
237 
238 void
239 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
240   std::pair<RegUsesTy::iterator, bool> Pair =
241     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
242   RegSortData &RSD = Pair.first->second;
243   if (Pair.second)
244     RegSequence.push_back(Reg);
245   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
246   RSD.UsedByIndices.set(LUIdx);
247 }
248 
249 void
250 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
251   RegUsesTy::iterator It = RegUsesMap.find(Reg);
252   assert(It != RegUsesMap.end());
253   RegSortData &RSD = It->second;
254   assert(RSD.UsedByIndices.size() > LUIdx);
255   RSD.UsedByIndices.reset(LUIdx);
256 }
257 
258 void
259 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
260   assert(LUIdx <= LastLUIdx);
261 
262   // Update RegUses. The data structure is not optimized for this purpose;
263   // we must iterate through it and update each of the bit vectors.
264   for (auto &Pair : RegUsesMap) {
265     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
266     if (LUIdx < UsedByIndices.size())
267       UsedByIndices[LUIdx] =
268         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
269     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
270   }
271 }
272 
273 bool
274 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
275   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
276   if (I == RegUsesMap.end())
277     return false;
278   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
279   int i = UsedByIndices.find_first();
280   if (i == -1) return false;
281   if ((size_t)i != LUIdx) return true;
282   return UsedByIndices.find_next(i) != -1;
283 }
284 
285 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
286   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
287   assert(I != RegUsesMap.end() && "Unknown register!");
288   return I->second.UsedByIndices;
289 }
290 
291 void RegUseTracker::clear() {
292   RegUsesMap.clear();
293   RegSequence.clear();
294 }
295 
296 namespace {
297 
298 /// This class holds information that describes a formula for computing
299 /// satisfying a use. It may include broken-out immediates and scaled registers.
300 struct Formula {
301   /// Global base address used for complex addressing.
302   GlobalValue *BaseGV;
303 
304   /// Base offset for complex addressing.
305   int64_t BaseOffset;
306 
307   /// Whether any complex addressing has a base register.
308   bool HasBaseReg;
309 
310   /// The scale of any complex addressing.
311   int64_t Scale;
312 
313   /// The list of "base" registers for this use. When this is non-empty. The
314   /// canonical representation of a formula is
315   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
316   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
317   /// 3. The reg containing recurrent expr related with currect loop in the
318   /// formula should be put in the ScaledReg.
319   /// #1 enforces that the scaled register is always used when at least two
320   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
321   /// #2 enforces that 1 * reg is reg.
322   /// #3 ensures invariant regs with respect to current loop can be combined
323   /// together in LSR codegen.
324   /// This invariant can be temporarly broken while building a formula.
325   /// However, every formula inserted into the LSRInstance must be in canonical
326   /// form.
327   SmallVector<const SCEV *, 4> BaseRegs;
328 
329   /// The 'scaled' register for this use. This should be non-null when Scale is
330   /// not zero.
331   const SCEV *ScaledReg;
332 
333   /// An additional constant offset which added near the use. This requires a
334   /// temporary register, but the offset itself can live in an add immediate
335   /// field rather than a register.
336   int64_t UnfoldedOffset;
337 
338   Formula()
339       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
340         ScaledReg(nullptr), UnfoldedOffset(0) {}
341 
342   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
343 
344   bool isCanonical(const Loop &L) const;
345 
346   void canonicalize(const Loop &L);
347 
348   bool unscale();
349 
350   bool hasZeroEnd() const;
351 
352   size_t getNumRegs() const;
353   Type *getType() const;
354 
355   void deleteBaseReg(const SCEV *&S);
356 
357   bool referencesReg(const SCEV *S) const;
358   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
359                                   const RegUseTracker &RegUses) const;
360 
361   void print(raw_ostream &OS) const;
362   void dump() const;
363 };
364 
365 } // end anonymous namespace
366 
367 /// Recursion helper for initialMatch.
368 static void DoInitialMatch(const SCEV *S, Loop *L,
369                            SmallVectorImpl<const SCEV *> &Good,
370                            SmallVectorImpl<const SCEV *> &Bad,
371                            ScalarEvolution &SE) {
372   // Collect expressions which properly dominate the loop header.
373   if (SE.properlyDominates(S, L->getHeader())) {
374     Good.push_back(S);
375     return;
376   }
377 
378   // Look at add operands.
379   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
380     for (const SCEV *S : Add->operands())
381       DoInitialMatch(S, L, Good, Bad, SE);
382     return;
383   }
384 
385   // Look at addrec operands.
386   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
387     if (!AR->getStart()->isZero() && AR->isAffine()) {
388       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
389       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
390                                       AR->getStepRecurrence(SE),
391                                       // FIXME: AR->getNoWrapFlags()
392                                       AR->getLoop(), SCEV::FlagAnyWrap),
393                      L, Good, Bad, SE);
394       return;
395     }
396 
397   // Handle a multiplication by -1 (negation) if it didn't fold.
398   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
399     if (Mul->getOperand(0)->isAllOnesValue()) {
400       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
401       const SCEV *NewMul = SE.getMulExpr(Ops);
402 
403       SmallVector<const SCEV *, 4> MyGood;
404       SmallVector<const SCEV *, 4> MyBad;
405       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
406       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
407         SE.getEffectiveSCEVType(NewMul->getType())));
408       for (const SCEV *S : MyGood)
409         Good.push_back(SE.getMulExpr(NegOne, S));
410       for (const SCEV *S : MyBad)
411         Bad.push_back(SE.getMulExpr(NegOne, S));
412       return;
413     }
414 
415   // Ok, we can't do anything interesting. Just stuff the whole thing into a
416   // register and hope for the best.
417   Bad.push_back(S);
418 }
419 
420 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
421 /// all loop-invariant and loop-computable values in a single base register.
422 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
423   SmallVector<const SCEV *, 4> Good;
424   SmallVector<const SCEV *, 4> Bad;
425   DoInitialMatch(S, L, Good, Bad, SE);
426   if (!Good.empty()) {
427     const SCEV *Sum = SE.getAddExpr(Good);
428     if (!Sum->isZero())
429       BaseRegs.push_back(Sum);
430     HasBaseReg = true;
431   }
432   if (!Bad.empty()) {
433     const SCEV *Sum = SE.getAddExpr(Bad);
434     if (!Sum->isZero())
435       BaseRegs.push_back(Sum);
436     HasBaseReg = true;
437   }
438   canonicalize(*L);
439 }
440 
441 /// \brief Check whether or not this formula statisfies the canonical
442 /// representation.
443 /// \see Formula::BaseRegs.
444 bool Formula::isCanonical(const Loop &L) const {
445   if (!ScaledReg)
446     return BaseRegs.size() <= 1;
447 
448   if (Scale != 1)
449     return true;
450 
451   if (Scale == 1 && BaseRegs.empty())
452     return false;
453 
454   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
455   if (SAR && SAR->getLoop() == &L)
456     return true;
457 
458   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
459   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
460   // loop, we want to swap the reg in BaseRegs with ScaledReg.
461   auto I =
462       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
463         return isa<const SCEVAddRecExpr>(S) &&
464                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
465       });
466   return I == BaseRegs.end();
467 }
468 
469 /// \brief Helper method to morph a formula into its canonical representation.
470 /// \see Formula::BaseRegs.
471 /// Every formula having more than one base register, must use the ScaledReg
472 /// field. Otherwise, we would have to do special cases everywhere in LSR
473 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
474 /// On the other hand, 1*reg should be canonicalized into reg.
475 void Formula::canonicalize(const Loop &L) {
476   if (isCanonical(L))
477     return;
478   // So far we did not need this case. This is easy to implement but it is
479   // useless to maintain dead code. Beside it could hurt compile time.
480   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
481 
482   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
483   if (!ScaledReg) {
484     ScaledReg = BaseRegs.back();
485     BaseRegs.pop_back();
486     Scale = 1;
487   }
488 
489   // If ScaledReg is an invariant with respect to L, find the reg from
490   // BaseRegs containing the recurrent expr related with Loop L. Swap the
491   // reg with ScaledReg.
492   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
493   if (!SAR || SAR->getLoop() != &L) {
494     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
495                      [&](const SCEV *S) {
496                        return isa<const SCEVAddRecExpr>(S) &&
497                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
498                      });
499     if (I != BaseRegs.end())
500       std::swap(ScaledReg, *I);
501   }
502 }
503 
504 /// \brief Get rid of the scale in the formula.
505 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
506 /// \return true if it was possible to get rid of the scale, false otherwise.
507 /// \note After this operation the formula may not be in the canonical form.
508 bool Formula::unscale() {
509   if (Scale != 1)
510     return false;
511   Scale = 0;
512   BaseRegs.push_back(ScaledReg);
513   ScaledReg = nullptr;
514   return true;
515 }
516 
517 bool Formula::hasZeroEnd() const {
518   if (UnfoldedOffset || BaseOffset)
519     return false;
520   if (BaseRegs.size() != 1 || ScaledReg)
521     return false;
522   return true;
523 }
524 
525 /// Return the total number of register operands used by this formula. This does
526 /// not include register uses implied by non-constant addrec strides.
527 size_t Formula::getNumRegs() const {
528   return !!ScaledReg + BaseRegs.size();
529 }
530 
531 /// Return the type of this formula, if it has one, or null otherwise. This type
532 /// is meaningless except for the bit size.
533 Type *Formula::getType() const {
534   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
535          ScaledReg ? ScaledReg->getType() :
536          BaseGV ? BaseGV->getType() :
537          nullptr;
538 }
539 
540 /// Delete the given base reg from the BaseRegs list.
541 void Formula::deleteBaseReg(const SCEV *&S) {
542   if (&S != &BaseRegs.back())
543     std::swap(S, BaseRegs.back());
544   BaseRegs.pop_back();
545 }
546 
547 /// Test if this formula references the given register.
548 bool Formula::referencesReg(const SCEV *S) const {
549   return S == ScaledReg || is_contained(BaseRegs, S);
550 }
551 
552 /// Test whether this formula uses registers which are used by uses other than
553 /// the use with the given index.
554 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
555                                          const RegUseTracker &RegUses) const {
556   if (ScaledReg)
557     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
558       return true;
559   for (const SCEV *BaseReg : BaseRegs)
560     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
561       return true;
562   return false;
563 }
564 
565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
566 void Formula::print(raw_ostream &OS) const {
567   bool First = true;
568   if (BaseGV) {
569     if (!First) OS << " + "; else First = false;
570     BaseGV->printAsOperand(OS, /*PrintType=*/false);
571   }
572   if (BaseOffset != 0) {
573     if (!First) OS << " + "; else First = false;
574     OS << BaseOffset;
575   }
576   for (const SCEV *BaseReg : BaseRegs) {
577     if (!First) OS << " + "; else First = false;
578     OS << "reg(" << *BaseReg << ')';
579   }
580   if (HasBaseReg && BaseRegs.empty()) {
581     if (!First) OS << " + "; else First = false;
582     OS << "**error: HasBaseReg**";
583   } else if (!HasBaseReg && !BaseRegs.empty()) {
584     if (!First) OS << " + "; else First = false;
585     OS << "**error: !HasBaseReg**";
586   }
587   if (Scale != 0) {
588     if (!First) OS << " + "; else First = false;
589     OS << Scale << "*reg(";
590     if (ScaledReg)
591       OS << *ScaledReg;
592     else
593       OS << "<unknown>";
594     OS << ')';
595   }
596   if (UnfoldedOffset != 0) {
597     if (!First) OS << " + ";
598     OS << "imm(" << UnfoldedOffset << ')';
599   }
600 }
601 
602 LLVM_DUMP_METHOD void Formula::dump() const {
603   print(errs()); errs() << '\n';
604 }
605 #endif
606 
607 /// Return true if the given addrec can be sign-extended without changing its
608 /// value.
609 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
610   Type *WideTy =
611     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
612   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
613 }
614 
615 /// Return true if the given add can be sign-extended without changing its
616 /// value.
617 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
618   Type *WideTy =
619     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
620   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
621 }
622 
623 /// Return true if the given mul can be sign-extended without changing its
624 /// value.
625 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
626   Type *WideTy =
627     IntegerType::get(SE.getContext(),
628                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
629   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
630 }
631 
632 /// Return an expression for LHS /s RHS, if it can be determined and if the
633 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
634 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
635 /// the multiplication may overflow, which is useful when the result will be
636 /// used in a context where the most significant bits are ignored.
637 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
638                                 ScalarEvolution &SE,
639                                 bool IgnoreSignificantBits = false) {
640   // Handle the trivial case, which works for any SCEV type.
641   if (LHS == RHS)
642     return SE.getConstant(LHS->getType(), 1);
643 
644   // Handle a few RHS special cases.
645   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
646   if (RC) {
647     const APInt &RA = RC->getAPInt();
648     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
649     // some folding.
650     if (RA.isAllOnesValue())
651       return SE.getMulExpr(LHS, RC);
652     // Handle x /s 1 as x.
653     if (RA == 1)
654       return LHS;
655   }
656 
657   // Check for a division of a constant by a constant.
658   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
659     if (!RC)
660       return nullptr;
661     const APInt &LA = C->getAPInt();
662     const APInt &RA = RC->getAPInt();
663     if (LA.srem(RA) != 0)
664       return nullptr;
665     return SE.getConstant(LA.sdiv(RA));
666   }
667 
668   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
669   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
670     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
671       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
672                                       IgnoreSignificantBits);
673       if (!Step) return nullptr;
674       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
675                                        IgnoreSignificantBits);
676       if (!Start) return nullptr;
677       // FlagNW is independent of the start value, step direction, and is
678       // preserved with smaller magnitude steps.
679       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
680       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
681     }
682     return nullptr;
683   }
684 
685   // Distribute the sdiv over add operands, if the add doesn't overflow.
686   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
687     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
688       SmallVector<const SCEV *, 8> Ops;
689       for (const SCEV *S : Add->operands()) {
690         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
691         if (!Op) return nullptr;
692         Ops.push_back(Op);
693       }
694       return SE.getAddExpr(Ops);
695     }
696     return nullptr;
697   }
698 
699   // Check for a multiply operand that we can pull RHS out of.
700   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
701     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
702       SmallVector<const SCEV *, 4> Ops;
703       bool Found = false;
704       for (const SCEV *S : Mul->operands()) {
705         if (!Found)
706           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
707                                            IgnoreSignificantBits)) {
708             S = Q;
709             Found = true;
710           }
711         Ops.push_back(S);
712       }
713       return Found ? SE.getMulExpr(Ops) : nullptr;
714     }
715     return nullptr;
716   }
717 
718   // Otherwise we don't know.
719   return nullptr;
720 }
721 
722 /// If S involves the addition of a constant integer value, return that integer
723 /// value, and mutate S to point to a new SCEV with that value excluded.
724 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
725   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
726     if (C->getAPInt().getMinSignedBits() <= 64) {
727       S = SE.getConstant(C->getType(), 0);
728       return C->getValue()->getSExtValue();
729     }
730   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
731     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
732     int64_t Result = ExtractImmediate(NewOps.front(), SE);
733     if (Result != 0)
734       S = SE.getAddExpr(NewOps);
735     return Result;
736   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
737     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
738     int64_t Result = ExtractImmediate(NewOps.front(), SE);
739     if (Result != 0)
740       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
741                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
742                            SCEV::FlagAnyWrap);
743     return Result;
744   }
745   return 0;
746 }
747 
748 /// If S involves the addition of a GlobalValue address, return that symbol, and
749 /// mutate S to point to a new SCEV with that value excluded.
750 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
751   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
752     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
753       S = SE.getConstant(GV->getType(), 0);
754       return GV;
755     }
756   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
757     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
758     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
759     if (Result)
760       S = SE.getAddExpr(NewOps);
761     return Result;
762   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
763     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
764     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
765     if (Result)
766       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
767                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
768                            SCEV::FlagAnyWrap);
769     return Result;
770   }
771   return nullptr;
772 }
773 
774 /// Returns true if the specified instruction is using the specified value as an
775 /// address.
776 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
777   bool isAddress = isa<LoadInst>(Inst);
778   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
779     if (SI->getPointerOperand() == OperandVal)
780       isAddress = true;
781   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
782     // Addressing modes can also be folded into prefetches and a variety
783     // of intrinsics.
784     switch (II->getIntrinsicID()) {
785       default: break;
786       case Intrinsic::memset:
787       case Intrinsic::prefetch:
788         if (II->getArgOperand(0) == OperandVal)
789           isAddress = true;
790         break;
791       case Intrinsic::memmove:
792       case Intrinsic::memcpy:
793         if (II->getArgOperand(0) == OperandVal ||
794             II->getArgOperand(1) == OperandVal)
795           isAddress = true;
796         break;
797     }
798   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
799     if (RMW->getPointerOperand() == OperandVal)
800       isAddress = true;
801   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
802     if (CmpX->getPointerOperand() == OperandVal)
803       isAddress = true;
804   }
805   return isAddress;
806 }
807 
808 /// Return the type of the memory being accessed.
809 static MemAccessTy getAccessType(const Instruction *Inst) {
810   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
811   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
812     AccessTy.MemTy = SI->getOperand(0)->getType();
813     AccessTy.AddrSpace = SI->getPointerAddressSpace();
814   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
815     AccessTy.AddrSpace = LI->getPointerAddressSpace();
816   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
817     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
818   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
819     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
820   }
821 
822   // All pointers have the same requirements, so canonicalize them to an
823   // arbitrary pointer type to minimize variation.
824   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
825     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
826                                       PTy->getAddressSpace());
827 
828   return AccessTy;
829 }
830 
831 /// Return true if this AddRec is already a phi in its loop.
832 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
833   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
834        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
835     if (SE.isSCEVable(PN->getType()) &&
836         (SE.getEffectiveSCEVType(PN->getType()) ==
837          SE.getEffectiveSCEVType(AR->getType())) &&
838         SE.getSCEV(PN) == AR)
839       return true;
840   }
841   return false;
842 }
843 
844 /// Check if expanding this expression is likely to incur significant cost. This
845 /// is tricky because SCEV doesn't track which expressions are actually computed
846 /// by the current IR.
847 ///
848 /// We currently allow expansion of IV increments that involve adds,
849 /// multiplication by constants, and AddRecs from existing phis.
850 ///
851 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
852 /// obvious multiple of the UDivExpr.
853 static bool isHighCostExpansion(const SCEV *S,
854                                 SmallPtrSetImpl<const SCEV*> &Processed,
855                                 ScalarEvolution &SE) {
856   // Zero/One operand expressions
857   switch (S->getSCEVType()) {
858   case scUnknown:
859   case scConstant:
860     return false;
861   case scTruncate:
862     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
863                                Processed, SE);
864   case scZeroExtend:
865     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
866                                Processed, SE);
867   case scSignExtend:
868     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
869                                Processed, SE);
870   }
871 
872   if (!Processed.insert(S).second)
873     return false;
874 
875   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
876     for (const SCEV *S : Add->operands()) {
877       if (isHighCostExpansion(S, Processed, SE))
878         return true;
879     }
880     return false;
881   }
882 
883   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
884     if (Mul->getNumOperands() == 2) {
885       // Multiplication by a constant is ok
886       if (isa<SCEVConstant>(Mul->getOperand(0)))
887         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
888 
889       // If we have the value of one operand, check if an existing
890       // multiplication already generates this expression.
891       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
892         Value *UVal = U->getValue();
893         for (User *UR : UVal->users()) {
894           // If U is a constant, it may be used by a ConstantExpr.
895           Instruction *UI = dyn_cast<Instruction>(UR);
896           if (UI && UI->getOpcode() == Instruction::Mul &&
897               SE.isSCEVable(UI->getType())) {
898             return SE.getSCEV(UI) == Mul;
899           }
900         }
901       }
902     }
903   }
904 
905   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
906     if (isExistingPhi(AR, SE))
907       return false;
908   }
909 
910   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
911   return true;
912 }
913 
914 /// If any of the instructions is the specified set are trivially dead, delete
915 /// them and see if this makes any of their operands subsequently dead.
916 static bool
917 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
918   bool Changed = false;
919 
920   while (!DeadInsts.empty()) {
921     Value *V = DeadInsts.pop_back_val();
922     Instruction *I = dyn_cast_or_null<Instruction>(V);
923 
924     if (!I || !isInstructionTriviallyDead(I))
925       continue;
926 
927     for (Use &O : I->operands())
928       if (Instruction *U = dyn_cast<Instruction>(O)) {
929         O = nullptr;
930         if (U->use_empty())
931           DeadInsts.emplace_back(U);
932       }
933 
934     I->eraseFromParent();
935     Changed = true;
936   }
937 
938   return Changed;
939 }
940 
941 namespace {
942 
943 class LSRUse;
944 
945 } // end anonymous namespace
946 
947 /// \brief Check if the addressing mode defined by \p F is completely
948 /// folded in \p LU at isel time.
949 /// This includes address-mode folding and special icmp tricks.
950 /// This function returns true if \p LU can accommodate what \p F
951 /// defines and up to 1 base + 1 scaled + offset.
952 /// In other words, if \p F has several base registers, this function may
953 /// still return true. Therefore, users still need to account for
954 /// additional base registers and/or unfolded offsets to derive an
955 /// accurate cost model.
956 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
957                                  const LSRUse &LU, const Formula &F);
958 // Get the cost of the scaling factor used in F for LU.
959 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
960                                      const LSRUse &LU, const Formula &F,
961                                      const Loop &L);
962 
963 namespace {
964 
965 /// This class is used to measure and compare candidate formulae.
966 class Cost {
967   TargetTransformInfo::LSRCost C;
968 
969 public:
970   Cost() {
971     C.Insns = 0;
972     C.NumRegs = 0;
973     C.AddRecCost = 0;
974     C.NumIVMuls = 0;
975     C.NumBaseAdds = 0;
976     C.ImmCost = 0;
977     C.SetupCost = 0;
978     C.ScaleCost = 0;
979   }
980 
981   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
982 
983   void Lose();
984 
985 #ifndef NDEBUG
986   // Once any of the metrics loses, they must all remain losers.
987   bool isValid() {
988     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
989              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
990       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
991            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
992   }
993 #endif
994 
995   bool isLoser() {
996     assert(isValid() && "invalid cost");
997     return C.NumRegs == ~0u;
998   }
999 
1000   void RateFormula(const TargetTransformInfo &TTI,
1001                    const Formula &F,
1002                    SmallPtrSetImpl<const SCEV *> &Regs,
1003                    const DenseSet<const SCEV *> &VisitedRegs,
1004                    const Loop *L,
1005                    ScalarEvolution &SE, DominatorTree &DT,
1006                    const LSRUse &LU,
1007                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1008 
1009   void print(raw_ostream &OS) const;
1010   void dump() const;
1011 
1012 private:
1013   void RateRegister(const SCEV *Reg,
1014                     SmallPtrSetImpl<const SCEV *> &Regs,
1015                     const Loop *L,
1016                     ScalarEvolution &SE, DominatorTree &DT);
1017   void RatePrimaryRegister(const SCEV *Reg,
1018                            SmallPtrSetImpl<const SCEV *> &Regs,
1019                            const Loop *L,
1020                            ScalarEvolution &SE, DominatorTree &DT,
1021                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1022 };
1023 
1024 /// An operand value in an instruction which is to be replaced with some
1025 /// equivalent, possibly strength-reduced, replacement.
1026 struct LSRFixup {
1027   /// The instruction which will be updated.
1028   Instruction *UserInst;
1029 
1030   /// The operand of the instruction which will be replaced. The operand may be
1031   /// used more than once; every instance will be replaced.
1032   Value *OperandValToReplace;
1033 
1034   /// If this user is to use the post-incremented value of an induction
1035   /// variable, this variable is non-null and holds the loop associated with the
1036   /// induction variable.
1037   PostIncLoopSet PostIncLoops;
1038 
1039   /// A constant offset to be added to the LSRUse expression.  This allows
1040   /// multiple fixups to share the same LSRUse with different offsets, for
1041   /// example in an unrolled loop.
1042   int64_t Offset;
1043 
1044   bool isUseFullyOutsideLoop(const Loop *L) const;
1045 
1046   LSRFixup();
1047 
1048   void print(raw_ostream &OS) const;
1049   void dump() const;
1050 };
1051 
1052 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1053 /// SmallVectors of const SCEV*.
1054 struct UniquifierDenseMapInfo {
1055   static SmallVector<const SCEV *, 4> getEmptyKey() {
1056     SmallVector<const SCEV *, 4>  V;
1057     V.push_back(reinterpret_cast<const SCEV *>(-1));
1058     return V;
1059   }
1060 
1061   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1062     SmallVector<const SCEV *, 4> V;
1063     V.push_back(reinterpret_cast<const SCEV *>(-2));
1064     return V;
1065   }
1066 
1067   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1068     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1069   }
1070 
1071   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1072                       const SmallVector<const SCEV *, 4> &RHS) {
1073     return LHS == RHS;
1074   }
1075 };
1076 
1077 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1078 /// as uses invented by LSR itself. It includes information about what kinds of
1079 /// things can be folded into the user, information about the user itself, and
1080 /// information about how the use may be satisfied.  TODO: Represent multiple
1081 /// users of the same expression in common?
1082 class LSRUse {
1083   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1084 
1085 public:
1086   /// An enum for a kind of use, indicating what types of scaled and immediate
1087   /// operands it might support.
1088   enum KindType {
1089     Basic,   ///< A normal use, with no folding.
1090     Special, ///< A special case of basic, allowing -1 scales.
1091     Address, ///< An address use; folding according to TargetLowering
1092     ICmpZero ///< An equality icmp with both operands folded into one.
1093     // TODO: Add a generic icmp too?
1094   };
1095 
1096   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1097 
1098   KindType Kind;
1099   MemAccessTy AccessTy;
1100 
1101   /// The list of operands which are to be replaced.
1102   SmallVector<LSRFixup, 8> Fixups;
1103 
1104   /// Keep track of the min and max offsets of the fixups.
1105   int64_t MinOffset;
1106   int64_t MaxOffset;
1107 
1108   /// This records whether all of the fixups using this LSRUse are outside of
1109   /// the loop, in which case some special-case heuristics may be used.
1110   bool AllFixupsOutsideLoop;
1111 
1112   /// RigidFormula is set to true to guarantee that this use will be associated
1113   /// with a single formula--the one that initially matched. Some SCEV
1114   /// expressions cannot be expanded. This allows LSR to consider the registers
1115   /// used by those expressions without the need to expand them later after
1116   /// changing the formula.
1117   bool RigidFormula;
1118 
1119   /// This records the widest use type for any fixup using this
1120   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1121   /// fixup widths to be equivalent, because the narrower one may be relying on
1122   /// the implicit truncation to truncate away bogus bits.
1123   Type *WidestFixupType;
1124 
1125   /// A list of ways to build a value that can satisfy this user.  After the
1126   /// list is populated, one of these is selected heuristically and used to
1127   /// formulate a replacement for OperandValToReplace in UserInst.
1128   SmallVector<Formula, 12> Formulae;
1129 
1130   /// The set of register candidates used by all formulae in this LSRUse.
1131   SmallPtrSet<const SCEV *, 4> Regs;
1132 
1133   LSRUse(KindType K, MemAccessTy AT)
1134       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1135         AllFixupsOutsideLoop(true), RigidFormula(false),
1136         WidestFixupType(nullptr) {}
1137 
1138   LSRFixup &getNewFixup() {
1139     Fixups.push_back(LSRFixup());
1140     return Fixups.back();
1141   }
1142 
1143   void pushFixup(LSRFixup &f) {
1144     Fixups.push_back(f);
1145     if (f.Offset > MaxOffset)
1146       MaxOffset = f.Offset;
1147     if (f.Offset < MinOffset)
1148       MinOffset = f.Offset;
1149   }
1150 
1151   bool HasFormulaWithSameRegs(const Formula &F) const;
1152   float getNotSelectedProbability(const SCEV *Reg) const;
1153   bool InsertFormula(const Formula &F, const Loop &L);
1154   void DeleteFormula(Formula &F);
1155   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1156 
1157   void print(raw_ostream &OS) const;
1158   void dump() const;
1159 };
1160 
1161 } // end anonymous namespace
1162 
1163 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1164                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1165                                  GlobalValue *BaseGV, int64_t BaseOffset,
1166                                  bool HasBaseReg, int64_t Scale,
1167                                  Instruction *Fixup = nullptr);
1168 
1169 /// Tally up interesting quantities from the given register.
1170 void Cost::RateRegister(const SCEV *Reg,
1171                         SmallPtrSetImpl<const SCEV *> &Regs,
1172                         const Loop *L,
1173                         ScalarEvolution &SE, DominatorTree &DT) {
1174   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1175     // If this is an addrec for another loop, it should be an invariant
1176     // with respect to L since L is the innermost loop (at least
1177     // for now LSR only handles innermost loops).
1178     if (AR->getLoop() != L) {
1179       // If the AddRec exists, consider it's register free and leave it alone.
1180       if (isExistingPhi(AR, SE))
1181         return;
1182 
1183       // It is bad to allow LSR for current loop to add induction variables
1184       // for its sibling loops.
1185       if (!AR->getLoop()->contains(L)) {
1186         Lose();
1187         return;
1188       }
1189 
1190       // Otherwise, it will be an invariant with respect to Loop L.
1191       ++C.NumRegs;
1192       return;
1193     }
1194     C.AddRecCost += 1; /// TODO: This should be a function of the stride.
1195 
1196     // Add the step value register, if it needs one.
1197     // TODO: The non-affine case isn't precisely modeled here.
1198     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1199       if (!Regs.count(AR->getOperand(1))) {
1200         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1201         if (isLoser())
1202           return;
1203       }
1204     }
1205   }
1206   ++C.NumRegs;
1207 
1208   // Rough heuristic; favor registers which don't require extra setup
1209   // instructions in the preheader.
1210   if (!isa<SCEVUnknown>(Reg) &&
1211       !isa<SCEVConstant>(Reg) &&
1212       !(isa<SCEVAddRecExpr>(Reg) &&
1213         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1214          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1215     ++C.SetupCost;
1216 
1217   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1218                SE.hasComputableLoopEvolution(Reg, L);
1219 }
1220 
1221 /// Record this register in the set. If we haven't seen it before, rate
1222 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1223 /// one of those regs an instant loser.
1224 void Cost::RatePrimaryRegister(const SCEV *Reg,
1225                                SmallPtrSetImpl<const SCEV *> &Regs,
1226                                const Loop *L,
1227                                ScalarEvolution &SE, DominatorTree &DT,
1228                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1229   if (LoserRegs && LoserRegs->count(Reg)) {
1230     Lose();
1231     return;
1232   }
1233   if (Regs.insert(Reg).second) {
1234     RateRegister(Reg, Regs, L, SE, DT);
1235     if (LoserRegs && isLoser())
1236       LoserRegs->insert(Reg);
1237   }
1238 }
1239 
1240 void Cost::RateFormula(const TargetTransformInfo &TTI,
1241                        const Formula &F,
1242                        SmallPtrSetImpl<const SCEV *> &Regs,
1243                        const DenseSet<const SCEV *> &VisitedRegs,
1244                        const Loop *L,
1245                        ScalarEvolution &SE, DominatorTree &DT,
1246                        const LSRUse &LU,
1247                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1248   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1249   // Tally up the registers.
1250   unsigned PrevAddRecCost = C.AddRecCost;
1251   unsigned PrevNumRegs = C.NumRegs;
1252   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1253   if (const SCEV *ScaledReg = F.ScaledReg) {
1254     if (VisitedRegs.count(ScaledReg)) {
1255       Lose();
1256       return;
1257     }
1258     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1259     if (isLoser())
1260       return;
1261   }
1262   for (const SCEV *BaseReg : F.BaseRegs) {
1263     if (VisitedRegs.count(BaseReg)) {
1264       Lose();
1265       return;
1266     }
1267     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1268     if (isLoser())
1269       return;
1270   }
1271 
1272   // Determine how many (unfolded) adds we'll need inside the loop.
1273   size_t NumBaseParts = F.getNumRegs();
1274   if (NumBaseParts > 1)
1275     // Do not count the base and a possible second register if the target
1276     // allows to fold 2 registers.
1277     C.NumBaseAdds +=
1278         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1279   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1280 
1281   // Accumulate non-free scaling amounts.
1282   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1283 
1284   // Tally up the non-zero immediates.
1285   for (const LSRFixup &Fixup : LU.Fixups) {
1286     int64_t O = Fixup.Offset;
1287     int64_t Offset = (uint64_t)O + F.BaseOffset;
1288     if (F.BaseGV)
1289       C.ImmCost += 64; // Handle symbolic values conservatively.
1290                      // TODO: This should probably be the pointer size.
1291     else if (Offset != 0)
1292       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1293 
1294     // Check with target if this offset with this instruction is
1295     // specifically not supported.
1296     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1297         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1298                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1299       C.NumBaseAdds++;
1300   }
1301 
1302   // If we don't count instruction cost exit here.
1303   if (!InsnsCost) {
1304     assert(isValid() && "invalid cost");
1305     return;
1306   }
1307 
1308   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1309   // additional instruction (at least fill).
1310   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1311   if (C.NumRegs > TTIRegNum) {
1312     // Cost already exceeded TTIRegNum, then only newly added register can add
1313     // new instructions.
1314     if (PrevNumRegs > TTIRegNum)
1315       C.Insns += (C.NumRegs - PrevNumRegs);
1316     else
1317       C.Insns += (C.NumRegs - TTIRegNum);
1318   }
1319 
1320   // If ICmpZero formula ends with not 0, it could not be replaced by
1321   // just add or sub. We'll need to compare final result of AddRec.
1322   // That means we'll need an additional instruction.
1323   // For -10 + {0, +, 1}:
1324   // i = i + 1;
1325   // cmp i, 10
1326   //
1327   // For {-10, +, 1}:
1328   // i = i + 1;
1329   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd())
1330     C.Insns++;
1331   // Each new AddRec adds 1 instruction to calculation.
1332   C.Insns += (C.AddRecCost - PrevAddRecCost);
1333 
1334   // BaseAdds adds instructions for unfolded registers.
1335   if (LU.Kind != LSRUse::ICmpZero)
1336     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1337   assert(isValid() && "invalid cost");
1338 }
1339 
1340 /// Set this cost to a losing value.
1341 void Cost::Lose() {
1342   C.Insns = ~0u;
1343   C.NumRegs = ~0u;
1344   C.AddRecCost = ~0u;
1345   C.NumIVMuls = ~0u;
1346   C.NumBaseAdds = ~0u;
1347   C.ImmCost = ~0u;
1348   C.SetupCost = ~0u;
1349   C.ScaleCost = ~0u;
1350 }
1351 
1352 /// Choose the lower cost.
1353 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1354   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1355       C.Insns != Other.C.Insns)
1356     return C.Insns < Other.C.Insns;
1357   return TTI.isLSRCostLess(C, Other.C);
1358 }
1359 
1360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1361 void Cost::print(raw_ostream &OS) const {
1362   if (InsnsCost)
1363     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1364   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1365   if (C.AddRecCost != 0)
1366     OS << ", with addrec cost " << C.AddRecCost;
1367   if (C.NumIVMuls != 0)
1368     OS << ", plus " << C.NumIVMuls << " IV mul"
1369        << (C.NumIVMuls == 1 ? "" : "s");
1370   if (C.NumBaseAdds != 0)
1371     OS << ", plus " << C.NumBaseAdds << " base add"
1372        << (C.NumBaseAdds == 1 ? "" : "s");
1373   if (C.ScaleCost != 0)
1374     OS << ", plus " << C.ScaleCost << " scale cost";
1375   if (C.ImmCost != 0)
1376     OS << ", plus " << C.ImmCost << " imm cost";
1377   if (C.SetupCost != 0)
1378     OS << ", plus " << C.SetupCost << " setup cost";
1379 }
1380 
1381 LLVM_DUMP_METHOD void Cost::dump() const {
1382   print(errs()); errs() << '\n';
1383 }
1384 #endif
1385 
1386 LSRFixup::LSRFixup()
1387   : UserInst(nullptr), OperandValToReplace(nullptr),
1388     Offset(0) {}
1389 
1390 /// Test whether this fixup always uses its value outside of the given loop.
1391 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1392   // PHI nodes use their value in their incoming blocks.
1393   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1394     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1395       if (PN->getIncomingValue(i) == OperandValToReplace &&
1396           L->contains(PN->getIncomingBlock(i)))
1397         return false;
1398     return true;
1399   }
1400 
1401   return !L->contains(UserInst);
1402 }
1403 
1404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1405 void LSRFixup::print(raw_ostream &OS) const {
1406   OS << "UserInst=";
1407   // Store is common and interesting enough to be worth special-casing.
1408   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1409     OS << "store ";
1410     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1411   } else if (UserInst->getType()->isVoidTy())
1412     OS << UserInst->getOpcodeName();
1413   else
1414     UserInst->printAsOperand(OS, /*PrintType=*/false);
1415 
1416   OS << ", OperandValToReplace=";
1417   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1418 
1419   for (const Loop *PIL : PostIncLoops) {
1420     OS << ", PostIncLoop=";
1421     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1422   }
1423 
1424   if (Offset != 0)
1425     OS << ", Offset=" << Offset;
1426 }
1427 
1428 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1429   print(errs()); errs() << '\n';
1430 }
1431 #endif
1432 
1433 /// Test whether this use as a formula which has the same registers as the given
1434 /// formula.
1435 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1436   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1437   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1438   // Unstable sort by host order ok, because this is only used for uniquifying.
1439   std::sort(Key.begin(), Key.end());
1440   return Uniquifier.count(Key);
1441 }
1442 
1443 /// The function returns a probability of selecting formula without Reg.
1444 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1445   unsigned FNum = 0;
1446   for (const Formula &F : Formulae)
1447     if (F.referencesReg(Reg))
1448       FNum++;
1449   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1450 }
1451 
1452 /// If the given formula has not yet been inserted, add it to the list, and
1453 /// return true. Return false otherwise.  The formula must be in canonical form.
1454 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1455   assert(F.isCanonical(L) && "Invalid canonical representation");
1456 
1457   if (!Formulae.empty() && RigidFormula)
1458     return false;
1459 
1460   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1461   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1462   // Unstable sort by host order ok, because this is only used for uniquifying.
1463   std::sort(Key.begin(), Key.end());
1464 
1465   if (!Uniquifier.insert(Key).second)
1466     return false;
1467 
1468   // Using a register to hold the value of 0 is not profitable.
1469   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1470          "Zero allocated in a scaled register!");
1471 #ifndef NDEBUG
1472   for (const SCEV *BaseReg : F.BaseRegs)
1473     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1474 #endif
1475 
1476   // Add the formula to the list.
1477   Formulae.push_back(F);
1478 
1479   // Record registers now being used by this use.
1480   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1481   if (F.ScaledReg)
1482     Regs.insert(F.ScaledReg);
1483 
1484   return true;
1485 }
1486 
1487 /// Remove the given formula from this use's list.
1488 void LSRUse::DeleteFormula(Formula &F) {
1489   if (&F != &Formulae.back())
1490     std::swap(F, Formulae.back());
1491   Formulae.pop_back();
1492 }
1493 
1494 /// Recompute the Regs field, and update RegUses.
1495 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1496   // Now that we've filtered out some formulae, recompute the Regs set.
1497   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1498   Regs.clear();
1499   for (const Formula &F : Formulae) {
1500     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1501     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1502   }
1503 
1504   // Update the RegTracker.
1505   for (const SCEV *S : OldRegs)
1506     if (!Regs.count(S))
1507       RegUses.dropRegister(S, LUIdx);
1508 }
1509 
1510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1511 void LSRUse::print(raw_ostream &OS) const {
1512   OS << "LSR Use: Kind=";
1513   switch (Kind) {
1514   case Basic:    OS << "Basic"; break;
1515   case Special:  OS << "Special"; break;
1516   case ICmpZero: OS << "ICmpZero"; break;
1517   case Address:
1518     OS << "Address of ";
1519     if (AccessTy.MemTy->isPointerTy())
1520       OS << "pointer"; // the full pointer type could be really verbose
1521     else {
1522       OS << *AccessTy.MemTy;
1523     }
1524 
1525     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1526   }
1527 
1528   OS << ", Offsets={";
1529   bool NeedComma = false;
1530   for (const LSRFixup &Fixup : Fixups) {
1531     if (NeedComma) OS << ',';
1532     OS << Fixup.Offset;
1533     NeedComma = true;
1534   }
1535   OS << '}';
1536 
1537   if (AllFixupsOutsideLoop)
1538     OS << ", all-fixups-outside-loop";
1539 
1540   if (WidestFixupType)
1541     OS << ", widest fixup type: " << *WidestFixupType;
1542 }
1543 
1544 LLVM_DUMP_METHOD void LSRUse::dump() const {
1545   print(errs()); errs() << '\n';
1546 }
1547 #endif
1548 
1549 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1550                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1551                                  GlobalValue *BaseGV, int64_t BaseOffset,
1552                                  bool HasBaseReg, int64_t Scale,
1553                                  Instruction *Fixup/*= nullptr*/) {
1554   switch (Kind) {
1555   case LSRUse::Address:
1556     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1557                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1558 
1559   case LSRUse::ICmpZero:
1560     // There's not even a target hook for querying whether it would be legal to
1561     // fold a GV into an ICmp.
1562     if (BaseGV)
1563       return false;
1564 
1565     // ICmp only has two operands; don't allow more than two non-trivial parts.
1566     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1567       return false;
1568 
1569     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1570     // putting the scaled register in the other operand of the icmp.
1571     if (Scale != 0 && Scale != -1)
1572       return false;
1573 
1574     // If we have low-level target information, ask the target if it can fold an
1575     // integer immediate on an icmp.
1576     if (BaseOffset != 0) {
1577       // We have one of:
1578       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1579       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1580       // Offs is the ICmp immediate.
1581       if (Scale == 0)
1582         // The cast does the right thing with INT64_MIN.
1583         BaseOffset = -(uint64_t)BaseOffset;
1584       return TTI.isLegalICmpImmediate(BaseOffset);
1585     }
1586 
1587     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1588     return true;
1589 
1590   case LSRUse::Basic:
1591     // Only handle single-register values.
1592     return !BaseGV && Scale == 0 && BaseOffset == 0;
1593 
1594   case LSRUse::Special:
1595     // Special case Basic to handle -1 scales.
1596     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1597   }
1598 
1599   llvm_unreachable("Invalid LSRUse Kind!");
1600 }
1601 
1602 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1603                                  int64_t MinOffset, int64_t MaxOffset,
1604                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1605                                  GlobalValue *BaseGV, int64_t BaseOffset,
1606                                  bool HasBaseReg, int64_t Scale) {
1607   // Check for overflow.
1608   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1609       (MinOffset > 0))
1610     return false;
1611   MinOffset = (uint64_t)BaseOffset + MinOffset;
1612   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1613       (MaxOffset > 0))
1614     return false;
1615   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1616 
1617   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1618                               HasBaseReg, Scale) &&
1619          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1620                               HasBaseReg, Scale);
1621 }
1622 
1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1624                                  int64_t MinOffset, int64_t MaxOffset,
1625                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1626                                  const Formula &F, const Loop &L) {
1627   // For the purpose of isAMCompletelyFolded either having a canonical formula
1628   // or a scale not equal to zero is correct.
1629   // Problems may arise from non canonical formulae having a scale == 0.
1630   // Strictly speaking it would best to just rely on canonical formulae.
1631   // However, when we generate the scaled formulae, we first check that the
1632   // scaling factor is profitable before computing the actual ScaledReg for
1633   // compile time sake.
1634   assert((F.isCanonical(L) || F.Scale != 0));
1635   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1636                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1637 }
1638 
1639 /// Test whether we know how to expand the current formula.
1640 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1641                        int64_t MaxOffset, LSRUse::KindType Kind,
1642                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1643                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1644   // We know how to expand completely foldable formulae.
1645   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1646                               BaseOffset, HasBaseReg, Scale) ||
1647          // Or formulae that use a base register produced by a sum of base
1648          // registers.
1649          (Scale == 1 &&
1650           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1651                                BaseGV, BaseOffset, true, 0));
1652 }
1653 
1654 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1655                        int64_t MaxOffset, LSRUse::KindType Kind,
1656                        MemAccessTy AccessTy, const Formula &F) {
1657   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1658                     F.BaseOffset, F.HasBaseReg, F.Scale);
1659 }
1660 
1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1662                                  const LSRUse &LU, const Formula &F) {
1663   // Target may want to look at the user instructions.
1664   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1665     for (const LSRFixup &Fixup : LU.Fixups)
1666       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1667                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1668                                 F.Scale, Fixup.UserInst))
1669         return false;
1670     return true;
1671   }
1672 
1673   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1674                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1675                               F.Scale);
1676 }
1677 
1678 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1679                                      const LSRUse &LU, const Formula &F,
1680                                      const Loop &L) {
1681   if (!F.Scale)
1682     return 0;
1683 
1684   // If the use is not completely folded in that instruction, we will have to
1685   // pay an extra cost only for scale != 1.
1686   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1687                             LU.AccessTy, F, L))
1688     return F.Scale != 1;
1689 
1690   switch (LU.Kind) {
1691   case LSRUse::Address: {
1692     // Check the scaling factor cost with both the min and max offsets.
1693     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1694         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1695         F.Scale, LU.AccessTy.AddrSpace);
1696     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1697         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1698         F.Scale, LU.AccessTy.AddrSpace);
1699 
1700     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1701            "Legal addressing mode has an illegal cost!");
1702     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1703   }
1704   case LSRUse::ICmpZero:
1705   case LSRUse::Basic:
1706   case LSRUse::Special:
1707     // The use is completely folded, i.e., everything is folded into the
1708     // instruction.
1709     return 0;
1710   }
1711 
1712   llvm_unreachable("Invalid LSRUse Kind!");
1713 }
1714 
1715 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1716                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1717                              GlobalValue *BaseGV, int64_t BaseOffset,
1718                              bool HasBaseReg) {
1719   // Fast-path: zero is always foldable.
1720   if (BaseOffset == 0 && !BaseGV) return true;
1721 
1722   // Conservatively, create an address with an immediate and a
1723   // base and a scale.
1724   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1725 
1726   // Canonicalize a scale of 1 to a base register if the formula doesn't
1727   // already have a base register.
1728   if (!HasBaseReg && Scale == 1) {
1729     Scale = 0;
1730     HasBaseReg = true;
1731   }
1732 
1733   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1734                               HasBaseReg, Scale);
1735 }
1736 
1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1738                              ScalarEvolution &SE, int64_t MinOffset,
1739                              int64_t MaxOffset, LSRUse::KindType Kind,
1740                              MemAccessTy AccessTy, const SCEV *S,
1741                              bool HasBaseReg) {
1742   // Fast-path: zero is always foldable.
1743   if (S->isZero()) return true;
1744 
1745   // Conservatively, create an address with an immediate and a
1746   // base and a scale.
1747   int64_t BaseOffset = ExtractImmediate(S, SE);
1748   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1749 
1750   // If there's anything else involved, it's not foldable.
1751   if (!S->isZero()) return false;
1752 
1753   // Fast-path: zero is always foldable.
1754   if (BaseOffset == 0 && !BaseGV) return true;
1755 
1756   // Conservatively, create an address with an immediate and a
1757   // base and a scale.
1758   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1759 
1760   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1761                               BaseOffset, HasBaseReg, Scale);
1762 }
1763 
1764 namespace {
1765 
1766 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1767 /// an expression that computes the IV it uses from the IV used by the previous
1768 /// link in the Chain.
1769 ///
1770 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1771 /// original IVOperand. The head of the chain's IVOperand is only valid during
1772 /// chain collection, before LSR replaces IV users. During chain generation,
1773 /// IncExpr can be used to find the new IVOperand that computes the same
1774 /// expression.
1775 struct IVInc {
1776   Instruction *UserInst;
1777   Value* IVOperand;
1778   const SCEV *IncExpr;
1779 
1780   IVInc(Instruction *U, Value *O, const SCEV *E):
1781     UserInst(U), IVOperand(O), IncExpr(E) {}
1782 };
1783 
1784 // The list of IV increments in program order.  We typically add the head of a
1785 // chain without finding subsequent links.
1786 struct IVChain {
1787   SmallVector<IVInc,1> Incs;
1788   const SCEV *ExprBase;
1789 
1790   IVChain() : ExprBase(nullptr) {}
1791 
1792   IVChain(const IVInc &Head, const SCEV *Base)
1793     : Incs(1, Head), ExprBase(Base) {}
1794 
1795   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1796 
1797   // Return the first increment in the chain.
1798   const_iterator begin() const {
1799     assert(!Incs.empty());
1800     return std::next(Incs.begin());
1801   }
1802   const_iterator end() const {
1803     return Incs.end();
1804   }
1805 
1806   // Returns true if this chain contains any increments.
1807   bool hasIncs() const { return Incs.size() >= 2; }
1808 
1809   // Add an IVInc to the end of this chain.
1810   void add(const IVInc &X) { Incs.push_back(X); }
1811 
1812   // Returns the last UserInst in the chain.
1813   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1814 
1815   // Returns true if IncExpr can be profitably added to this chain.
1816   bool isProfitableIncrement(const SCEV *OperExpr,
1817                              const SCEV *IncExpr,
1818                              ScalarEvolution&);
1819 };
1820 
1821 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1822 /// between FarUsers that definitely cross IV increments and NearUsers that may
1823 /// be used between IV increments.
1824 struct ChainUsers {
1825   SmallPtrSet<Instruction*, 4> FarUsers;
1826   SmallPtrSet<Instruction*, 4> NearUsers;
1827 };
1828 
1829 /// This class holds state for the main loop strength reduction logic.
1830 class LSRInstance {
1831   IVUsers &IU;
1832   ScalarEvolution &SE;
1833   DominatorTree &DT;
1834   LoopInfo &LI;
1835   const TargetTransformInfo &TTI;
1836   Loop *const L;
1837   bool Changed;
1838 
1839   /// This is the insert position that the current loop's induction variable
1840   /// increment should be placed. In simple loops, this is the latch block's
1841   /// terminator. But in more complicated cases, this is a position which will
1842   /// dominate all the in-loop post-increment users.
1843   Instruction *IVIncInsertPos;
1844 
1845   /// Interesting factors between use strides.
1846   ///
1847   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1848   /// default, a SmallDenseSet, because we need to use the full range of
1849   /// int64_ts, and there's currently no good way of doing that with
1850   /// SmallDenseSet.
1851   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1852 
1853   /// Interesting use types, to facilitate truncation reuse.
1854   SmallSetVector<Type *, 4> Types;
1855 
1856   /// The list of interesting uses.
1857   SmallVector<LSRUse, 16> Uses;
1858 
1859   /// Track which uses use which register candidates.
1860   RegUseTracker RegUses;
1861 
1862   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1863   // have more than a few IV increment chains in a loop. Missing a Chain falls
1864   // back to normal LSR behavior for those uses.
1865   static const unsigned MaxChains = 8;
1866 
1867   /// IV users can form a chain of IV increments.
1868   SmallVector<IVChain, MaxChains> IVChainVec;
1869 
1870   /// IV users that belong to profitable IVChains.
1871   SmallPtrSet<Use*, MaxChains> IVIncSet;
1872 
1873   void OptimizeShadowIV();
1874   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1875   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1876   void OptimizeLoopTermCond();
1877 
1878   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1879                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1880   void FinalizeChain(IVChain &Chain);
1881   void CollectChains();
1882   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1883                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1884 
1885   void CollectInterestingTypesAndFactors();
1886   void CollectFixupsAndInitialFormulae();
1887 
1888   // Support for sharing of LSRUses between LSRFixups.
1889   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1890   UseMapTy UseMap;
1891 
1892   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1893                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1894 
1895   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1896                                     MemAccessTy AccessTy);
1897 
1898   void DeleteUse(LSRUse &LU, size_t LUIdx);
1899 
1900   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1901 
1902   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1903   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1904   void CountRegisters(const Formula &F, size_t LUIdx);
1905   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1906 
1907   void CollectLoopInvariantFixupsAndFormulae();
1908 
1909   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1910                               unsigned Depth = 0);
1911 
1912   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1913                                   const Formula &Base, unsigned Depth,
1914                                   size_t Idx, bool IsScaledReg = false);
1915   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1916   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1917                                    const Formula &Base, size_t Idx,
1918                                    bool IsScaledReg = false);
1919   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1920   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1921                                    const Formula &Base,
1922                                    const SmallVectorImpl<int64_t> &Worklist,
1923                                    size_t Idx, bool IsScaledReg = false);
1924   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1925   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1926   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1927   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1928   void GenerateCrossUseConstantOffsets();
1929   void GenerateAllReuseFormulae();
1930 
1931   void FilterOutUndesirableDedicatedRegisters();
1932 
1933   size_t EstimateSearchSpaceComplexity() const;
1934   void NarrowSearchSpaceByDetectingSupersets();
1935   void NarrowSearchSpaceByCollapsingUnrolledCode();
1936   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1937   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1938   void NarrowSearchSpaceByDeletingCostlyFormulas();
1939   void NarrowSearchSpaceByPickingWinnerRegs();
1940   void NarrowSearchSpaceUsingHeuristics();
1941 
1942   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1943                     Cost &SolutionCost,
1944                     SmallVectorImpl<const Formula *> &Workspace,
1945                     const Cost &CurCost,
1946                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1947                     DenseSet<const SCEV *> &VisitedRegs) const;
1948   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1949 
1950   BasicBlock::iterator
1951     HoistInsertPosition(BasicBlock::iterator IP,
1952                         const SmallVectorImpl<Instruction *> &Inputs) const;
1953   BasicBlock::iterator
1954     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1955                                   const LSRFixup &LF,
1956                                   const LSRUse &LU,
1957                                   SCEVExpander &Rewriter) const;
1958 
1959   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1960                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1961                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1962   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1963                      const Formula &F, SCEVExpander &Rewriter,
1964                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1965   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1966                SCEVExpander &Rewriter,
1967                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1968   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1969 
1970 public:
1971   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1972               LoopInfo &LI, const TargetTransformInfo &TTI);
1973 
1974   bool getChanged() const { return Changed; }
1975 
1976   void print_factors_and_types(raw_ostream &OS) const;
1977   void print_fixups(raw_ostream &OS) const;
1978   void print_uses(raw_ostream &OS) const;
1979   void print(raw_ostream &OS) const;
1980   void dump() const;
1981 };
1982 
1983 } // end anonymous namespace
1984 
1985 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1986 /// the cast operation.
1987 void LSRInstance::OptimizeShadowIV() {
1988   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1989   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1990     return;
1991 
1992   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1993        UI != E; /* empty */) {
1994     IVUsers::const_iterator CandidateUI = UI;
1995     ++UI;
1996     Instruction *ShadowUse = CandidateUI->getUser();
1997     Type *DestTy = nullptr;
1998     bool IsSigned = false;
1999 
2000     /* If shadow use is a int->float cast then insert a second IV
2001        to eliminate this cast.
2002 
2003          for (unsigned i = 0; i < n; ++i)
2004            foo((double)i);
2005 
2006        is transformed into
2007 
2008          double d = 0.0;
2009          for (unsigned i = 0; i < n; ++i, ++d)
2010            foo(d);
2011     */
2012     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2013       IsSigned = false;
2014       DestTy = UCast->getDestTy();
2015     }
2016     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2017       IsSigned = true;
2018       DestTy = SCast->getDestTy();
2019     }
2020     if (!DestTy) continue;
2021 
2022     // If target does not support DestTy natively then do not apply
2023     // this transformation.
2024     if (!TTI.isTypeLegal(DestTy)) continue;
2025 
2026     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2027     if (!PH) continue;
2028     if (PH->getNumIncomingValues() != 2) continue;
2029 
2030     Type *SrcTy = PH->getType();
2031     int Mantissa = DestTy->getFPMantissaWidth();
2032     if (Mantissa == -1) continue;
2033     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2034       continue;
2035 
2036     unsigned Entry, Latch;
2037     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2038       Entry = 0;
2039       Latch = 1;
2040     } else {
2041       Entry = 1;
2042       Latch = 0;
2043     }
2044 
2045     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2046     if (!Init) continue;
2047     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2048                                         (double)Init->getSExtValue() :
2049                                         (double)Init->getZExtValue());
2050 
2051     BinaryOperator *Incr =
2052       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2053     if (!Incr) continue;
2054     if (Incr->getOpcode() != Instruction::Add
2055         && Incr->getOpcode() != Instruction::Sub)
2056       continue;
2057 
2058     /* Initialize new IV, double d = 0.0 in above example. */
2059     ConstantInt *C = nullptr;
2060     if (Incr->getOperand(0) == PH)
2061       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2062     else if (Incr->getOperand(1) == PH)
2063       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2064     else
2065       continue;
2066 
2067     if (!C) continue;
2068 
2069     // Ignore negative constants, as the code below doesn't handle them
2070     // correctly. TODO: Remove this restriction.
2071     if (!C->getValue().isStrictlyPositive()) continue;
2072 
2073     /* Add new PHINode. */
2074     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2075 
2076     /* create new increment. '++d' in above example. */
2077     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2078     BinaryOperator *NewIncr =
2079       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2080                                Instruction::FAdd : Instruction::FSub,
2081                              NewPH, CFP, "IV.S.next.", Incr);
2082 
2083     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2084     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2085 
2086     /* Remove cast operation */
2087     ShadowUse->replaceAllUsesWith(NewPH);
2088     ShadowUse->eraseFromParent();
2089     Changed = true;
2090     break;
2091   }
2092 }
2093 
2094 /// If Cond has an operand that is an expression of an IV, set the IV user and
2095 /// stride information and return true, otherwise return false.
2096 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2097   for (IVStrideUse &U : IU)
2098     if (U.getUser() == Cond) {
2099       // NOTE: we could handle setcc instructions with multiple uses here, but
2100       // InstCombine does it as well for simple uses, it's not clear that it
2101       // occurs enough in real life to handle.
2102       CondUse = &U;
2103       return true;
2104     }
2105   return false;
2106 }
2107 
2108 /// Rewrite the loop's terminating condition if it uses a max computation.
2109 ///
2110 /// This is a narrow solution to a specific, but acute, problem. For loops
2111 /// like this:
2112 ///
2113 ///   i = 0;
2114 ///   do {
2115 ///     p[i] = 0.0;
2116 ///   } while (++i < n);
2117 ///
2118 /// the trip count isn't just 'n', because 'n' might not be positive. And
2119 /// unfortunately this can come up even for loops where the user didn't use
2120 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2121 /// will commonly be lowered like this:
2122 //
2123 ///   if (n > 0) {
2124 ///     i = 0;
2125 ///     do {
2126 ///       p[i] = 0.0;
2127 ///     } while (++i < n);
2128 ///   }
2129 ///
2130 /// and then it's possible for subsequent optimization to obscure the if
2131 /// test in such a way that indvars can't find it.
2132 ///
2133 /// When indvars can't find the if test in loops like this, it creates a
2134 /// max expression, which allows it to give the loop a canonical
2135 /// induction variable:
2136 ///
2137 ///   i = 0;
2138 ///   max = n < 1 ? 1 : n;
2139 ///   do {
2140 ///     p[i] = 0.0;
2141 ///   } while (++i != max);
2142 ///
2143 /// Canonical induction variables are necessary because the loop passes
2144 /// are designed around them. The most obvious example of this is the
2145 /// LoopInfo analysis, which doesn't remember trip count values. It
2146 /// expects to be able to rediscover the trip count each time it is
2147 /// needed, and it does this using a simple analysis that only succeeds if
2148 /// the loop has a canonical induction variable.
2149 ///
2150 /// However, when it comes time to generate code, the maximum operation
2151 /// can be quite costly, especially if it's inside of an outer loop.
2152 ///
2153 /// This function solves this problem by detecting this type of loop and
2154 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2155 /// the instructions for the maximum computation.
2156 ///
2157 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2158   // Check that the loop matches the pattern we're looking for.
2159   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2160       Cond->getPredicate() != CmpInst::ICMP_NE)
2161     return Cond;
2162 
2163   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2164   if (!Sel || !Sel->hasOneUse()) return Cond;
2165 
2166   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2167   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2168     return Cond;
2169   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2170 
2171   // Add one to the backedge-taken count to get the trip count.
2172   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2173   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2174 
2175   // Check for a max calculation that matches the pattern. There's no check
2176   // for ICMP_ULE here because the comparison would be with zero, which
2177   // isn't interesting.
2178   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2179   const SCEVNAryExpr *Max = nullptr;
2180   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2181     Pred = ICmpInst::ICMP_SLE;
2182     Max = S;
2183   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2184     Pred = ICmpInst::ICMP_SLT;
2185     Max = S;
2186   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2187     Pred = ICmpInst::ICMP_ULT;
2188     Max = U;
2189   } else {
2190     // No match; bail.
2191     return Cond;
2192   }
2193 
2194   // To handle a max with more than two operands, this optimization would
2195   // require additional checking and setup.
2196   if (Max->getNumOperands() != 2)
2197     return Cond;
2198 
2199   const SCEV *MaxLHS = Max->getOperand(0);
2200   const SCEV *MaxRHS = Max->getOperand(1);
2201 
2202   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2203   // for a comparison with 1. For <= and >=, a comparison with zero.
2204   if (!MaxLHS ||
2205       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2206     return Cond;
2207 
2208   // Check the relevant induction variable for conformance to
2209   // the pattern.
2210   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2211   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2212   if (!AR || !AR->isAffine() ||
2213       AR->getStart() != One ||
2214       AR->getStepRecurrence(SE) != One)
2215     return Cond;
2216 
2217   assert(AR->getLoop() == L &&
2218          "Loop condition operand is an addrec in a different loop!");
2219 
2220   // Check the right operand of the select, and remember it, as it will
2221   // be used in the new comparison instruction.
2222   Value *NewRHS = nullptr;
2223   if (ICmpInst::isTrueWhenEqual(Pred)) {
2224     // Look for n+1, and grab n.
2225     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2226       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2227          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2228            NewRHS = BO->getOperand(0);
2229     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2230       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2231         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2232           NewRHS = BO->getOperand(0);
2233     if (!NewRHS)
2234       return Cond;
2235   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2236     NewRHS = Sel->getOperand(1);
2237   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2238     NewRHS = Sel->getOperand(2);
2239   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2240     NewRHS = SU->getValue();
2241   else
2242     // Max doesn't match expected pattern.
2243     return Cond;
2244 
2245   // Determine the new comparison opcode. It may be signed or unsigned,
2246   // and the original comparison may be either equality or inequality.
2247   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2248     Pred = CmpInst::getInversePredicate(Pred);
2249 
2250   // Ok, everything looks ok to change the condition into an SLT or SGE and
2251   // delete the max calculation.
2252   ICmpInst *NewCond =
2253     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2254 
2255   // Delete the max calculation instructions.
2256   Cond->replaceAllUsesWith(NewCond);
2257   CondUse->setUser(NewCond);
2258   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2259   Cond->eraseFromParent();
2260   Sel->eraseFromParent();
2261   if (Cmp->use_empty())
2262     Cmp->eraseFromParent();
2263   return NewCond;
2264 }
2265 
2266 /// Change loop terminating condition to use the postinc iv when possible.
2267 void
2268 LSRInstance::OptimizeLoopTermCond() {
2269   SmallPtrSet<Instruction *, 4> PostIncs;
2270 
2271   // We need a different set of heuristics for rotated and non-rotated loops.
2272   // If a loop is rotated then the latch is also the backedge, so inserting
2273   // post-inc expressions just before the latch is ideal. To reduce live ranges
2274   // it also makes sense to rewrite terminating conditions to use post-inc
2275   // expressions.
2276   //
2277   // If the loop is not rotated then the latch is not a backedge; the latch
2278   // check is done in the loop head. Adding post-inc expressions before the
2279   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2280   // in the loop body. In this case we do *not* want to use post-inc expressions
2281   // in the latch check, and we want to insert post-inc expressions before
2282   // the backedge.
2283   BasicBlock *LatchBlock = L->getLoopLatch();
2284   SmallVector<BasicBlock*, 8> ExitingBlocks;
2285   L->getExitingBlocks(ExitingBlocks);
2286   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2287         return LatchBlock != BB;
2288       })) {
2289     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2290     IVIncInsertPos = LatchBlock->getTerminator();
2291     return;
2292   }
2293 
2294   // Otherwise treat this as a rotated loop.
2295   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2296 
2297     // Get the terminating condition for the loop if possible.  If we
2298     // can, we want to change it to use a post-incremented version of its
2299     // induction variable, to allow coalescing the live ranges for the IV into
2300     // one register value.
2301 
2302     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2303     if (!TermBr)
2304       continue;
2305     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2306     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2307       continue;
2308 
2309     // Search IVUsesByStride to find Cond's IVUse if there is one.
2310     IVStrideUse *CondUse = nullptr;
2311     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2312     if (!FindIVUserForCond(Cond, CondUse))
2313       continue;
2314 
2315     // If the trip count is computed in terms of a max (due to ScalarEvolution
2316     // being unable to find a sufficient guard, for example), change the loop
2317     // comparison to use SLT or ULT instead of NE.
2318     // One consequence of doing this now is that it disrupts the count-down
2319     // optimization. That's not always a bad thing though, because in such
2320     // cases it may still be worthwhile to avoid a max.
2321     Cond = OptimizeMax(Cond, CondUse);
2322 
2323     // If this exiting block dominates the latch block, it may also use
2324     // the post-inc value if it won't be shared with other uses.
2325     // Check for dominance.
2326     if (!DT.dominates(ExitingBlock, LatchBlock))
2327       continue;
2328 
2329     // Conservatively avoid trying to use the post-inc value in non-latch
2330     // exits if there may be pre-inc users in intervening blocks.
2331     if (LatchBlock != ExitingBlock)
2332       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2333         // Test if the use is reachable from the exiting block. This dominator
2334         // query is a conservative approximation of reachability.
2335         if (&*UI != CondUse &&
2336             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2337           // Conservatively assume there may be reuse if the quotient of their
2338           // strides could be a legal scale.
2339           const SCEV *A = IU.getStride(*CondUse, L);
2340           const SCEV *B = IU.getStride(*UI, L);
2341           if (!A || !B) continue;
2342           if (SE.getTypeSizeInBits(A->getType()) !=
2343               SE.getTypeSizeInBits(B->getType())) {
2344             if (SE.getTypeSizeInBits(A->getType()) >
2345                 SE.getTypeSizeInBits(B->getType()))
2346               B = SE.getSignExtendExpr(B, A->getType());
2347             else
2348               A = SE.getSignExtendExpr(A, B->getType());
2349           }
2350           if (const SCEVConstant *D =
2351                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2352             const ConstantInt *C = D->getValue();
2353             // Stride of one or negative one can have reuse with non-addresses.
2354             if (C->isOne() || C->isMinusOne())
2355               goto decline_post_inc;
2356             // Avoid weird situations.
2357             if (C->getValue().getMinSignedBits() >= 64 ||
2358                 C->getValue().isMinSignedValue())
2359               goto decline_post_inc;
2360             // Check for possible scaled-address reuse.
2361             MemAccessTy AccessTy = getAccessType(UI->getUser());
2362             int64_t Scale = C->getSExtValue();
2363             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2364                                           /*BaseOffset=*/0,
2365                                           /*HasBaseReg=*/false, Scale,
2366                                           AccessTy.AddrSpace))
2367               goto decline_post_inc;
2368             Scale = -Scale;
2369             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2370                                           /*BaseOffset=*/0,
2371                                           /*HasBaseReg=*/false, Scale,
2372                                           AccessTy.AddrSpace))
2373               goto decline_post_inc;
2374           }
2375         }
2376 
2377     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2378                  << *Cond << '\n');
2379 
2380     // It's possible for the setcc instruction to be anywhere in the loop, and
2381     // possible for it to have multiple users.  If it is not immediately before
2382     // the exiting block branch, move it.
2383     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2384       if (Cond->hasOneUse()) {
2385         Cond->moveBefore(TermBr);
2386       } else {
2387         // Clone the terminating condition and insert into the loopend.
2388         ICmpInst *OldCond = Cond;
2389         Cond = cast<ICmpInst>(Cond->clone());
2390         Cond->setName(L->getHeader()->getName() + ".termcond");
2391         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2392 
2393         // Clone the IVUse, as the old use still exists!
2394         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2395         TermBr->replaceUsesOfWith(OldCond, Cond);
2396       }
2397     }
2398 
2399     // If we get to here, we know that we can transform the setcc instruction to
2400     // use the post-incremented version of the IV, allowing us to coalesce the
2401     // live ranges for the IV correctly.
2402     CondUse->transformToPostInc(L);
2403     Changed = true;
2404 
2405     PostIncs.insert(Cond);
2406   decline_post_inc:;
2407   }
2408 
2409   // Determine an insertion point for the loop induction variable increment. It
2410   // must dominate all the post-inc comparisons we just set up, and it must
2411   // dominate the loop latch edge.
2412   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2413   for (Instruction *Inst : PostIncs) {
2414     BasicBlock *BB =
2415       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2416                                     Inst->getParent());
2417     if (BB == Inst->getParent())
2418       IVIncInsertPos = Inst;
2419     else if (BB != IVIncInsertPos->getParent())
2420       IVIncInsertPos = BB->getTerminator();
2421   }
2422 }
2423 
2424 /// Determine if the given use can accommodate a fixup at the given offset and
2425 /// other details. If so, update the use and return true.
2426 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2427                                      bool HasBaseReg, LSRUse::KindType Kind,
2428                                      MemAccessTy AccessTy) {
2429   int64_t NewMinOffset = LU.MinOffset;
2430   int64_t NewMaxOffset = LU.MaxOffset;
2431   MemAccessTy NewAccessTy = AccessTy;
2432 
2433   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2434   // something conservative, however this can pessimize in the case that one of
2435   // the uses will have all its uses outside the loop, for example.
2436   if (LU.Kind != Kind)
2437     return false;
2438 
2439   // Check for a mismatched access type, and fall back conservatively as needed.
2440   // TODO: Be less conservative when the type is similar and can use the same
2441   // addressing modes.
2442   if (Kind == LSRUse::Address) {
2443     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2444       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2445                                             AccessTy.AddrSpace);
2446     }
2447   }
2448 
2449   // Conservatively assume HasBaseReg is true for now.
2450   if (NewOffset < LU.MinOffset) {
2451     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2452                           LU.MaxOffset - NewOffset, HasBaseReg))
2453       return false;
2454     NewMinOffset = NewOffset;
2455   } else if (NewOffset > LU.MaxOffset) {
2456     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2457                           NewOffset - LU.MinOffset, HasBaseReg))
2458       return false;
2459     NewMaxOffset = NewOffset;
2460   }
2461 
2462   // Update the use.
2463   LU.MinOffset = NewMinOffset;
2464   LU.MaxOffset = NewMaxOffset;
2465   LU.AccessTy = NewAccessTy;
2466   return true;
2467 }
2468 
2469 /// Return an LSRUse index and an offset value for a fixup which needs the given
2470 /// expression, with the given kind and optional access type.  Either reuse an
2471 /// existing use or create a new one, as needed.
2472 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2473                                                LSRUse::KindType Kind,
2474                                                MemAccessTy AccessTy) {
2475   const SCEV *Copy = Expr;
2476   int64_t Offset = ExtractImmediate(Expr, SE);
2477 
2478   // Basic uses can't accept any offset, for example.
2479   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2480                         Offset, /*HasBaseReg=*/ true)) {
2481     Expr = Copy;
2482     Offset = 0;
2483   }
2484 
2485   std::pair<UseMapTy::iterator, bool> P =
2486     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2487   if (!P.second) {
2488     // A use already existed with this base.
2489     size_t LUIdx = P.first->second;
2490     LSRUse &LU = Uses[LUIdx];
2491     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2492       // Reuse this use.
2493       return std::make_pair(LUIdx, Offset);
2494   }
2495 
2496   // Create a new use.
2497   size_t LUIdx = Uses.size();
2498   P.first->second = LUIdx;
2499   Uses.push_back(LSRUse(Kind, AccessTy));
2500   LSRUse &LU = Uses[LUIdx];
2501 
2502   LU.MinOffset = Offset;
2503   LU.MaxOffset = Offset;
2504   return std::make_pair(LUIdx, Offset);
2505 }
2506 
2507 /// Delete the given use from the Uses list.
2508 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2509   if (&LU != &Uses.back())
2510     std::swap(LU, Uses.back());
2511   Uses.pop_back();
2512 
2513   // Update RegUses.
2514   RegUses.swapAndDropUse(LUIdx, Uses.size());
2515 }
2516 
2517 /// Look for a use distinct from OrigLU which is has a formula that has the same
2518 /// registers as the given formula.
2519 LSRUse *
2520 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2521                                        const LSRUse &OrigLU) {
2522   // Search all uses for the formula. This could be more clever.
2523   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2524     LSRUse &LU = Uses[LUIdx];
2525     // Check whether this use is close enough to OrigLU, to see whether it's
2526     // worthwhile looking through its formulae.
2527     // Ignore ICmpZero uses because they may contain formulae generated by
2528     // GenerateICmpZeroScales, in which case adding fixup offsets may
2529     // be invalid.
2530     if (&LU != &OrigLU &&
2531         LU.Kind != LSRUse::ICmpZero &&
2532         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2533         LU.WidestFixupType == OrigLU.WidestFixupType &&
2534         LU.HasFormulaWithSameRegs(OrigF)) {
2535       // Scan through this use's formulae.
2536       for (const Formula &F : LU.Formulae) {
2537         // Check to see if this formula has the same registers and symbols
2538         // as OrigF.
2539         if (F.BaseRegs == OrigF.BaseRegs &&
2540             F.ScaledReg == OrigF.ScaledReg &&
2541             F.BaseGV == OrigF.BaseGV &&
2542             F.Scale == OrigF.Scale &&
2543             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2544           if (F.BaseOffset == 0)
2545             return &LU;
2546           // This is the formula where all the registers and symbols matched;
2547           // there aren't going to be any others. Since we declined it, we
2548           // can skip the rest of the formulae and proceed to the next LSRUse.
2549           break;
2550         }
2551       }
2552     }
2553   }
2554 
2555   // Nothing looked good.
2556   return nullptr;
2557 }
2558 
2559 void LSRInstance::CollectInterestingTypesAndFactors() {
2560   SmallSetVector<const SCEV *, 4> Strides;
2561 
2562   // Collect interesting types and strides.
2563   SmallVector<const SCEV *, 4> Worklist;
2564   for (const IVStrideUse &U : IU) {
2565     const SCEV *Expr = IU.getExpr(U);
2566 
2567     // Collect interesting types.
2568     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2569 
2570     // Add strides for mentioned loops.
2571     Worklist.push_back(Expr);
2572     do {
2573       const SCEV *S = Worklist.pop_back_val();
2574       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2575         if (AR->getLoop() == L)
2576           Strides.insert(AR->getStepRecurrence(SE));
2577         Worklist.push_back(AR->getStart());
2578       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2579         Worklist.append(Add->op_begin(), Add->op_end());
2580       }
2581     } while (!Worklist.empty());
2582   }
2583 
2584   // Compute interesting factors from the set of interesting strides.
2585   for (SmallSetVector<const SCEV *, 4>::const_iterator
2586        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2587     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2588          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2589       const SCEV *OldStride = *I;
2590       const SCEV *NewStride = *NewStrideIter;
2591 
2592       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2593           SE.getTypeSizeInBits(NewStride->getType())) {
2594         if (SE.getTypeSizeInBits(OldStride->getType()) >
2595             SE.getTypeSizeInBits(NewStride->getType()))
2596           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2597         else
2598           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2599       }
2600       if (const SCEVConstant *Factor =
2601             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2602                                                         SE, true))) {
2603         if (Factor->getAPInt().getMinSignedBits() <= 64)
2604           Factors.insert(Factor->getAPInt().getSExtValue());
2605       } else if (const SCEVConstant *Factor =
2606                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2607                                                                NewStride,
2608                                                                SE, true))) {
2609         if (Factor->getAPInt().getMinSignedBits() <= 64)
2610           Factors.insert(Factor->getAPInt().getSExtValue());
2611       }
2612     }
2613 
2614   // If all uses use the same type, don't bother looking for truncation-based
2615   // reuse.
2616   if (Types.size() == 1)
2617     Types.clear();
2618 
2619   DEBUG(print_factors_and_types(dbgs()));
2620 }
2621 
2622 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2623 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2624 /// IVStrideUses, we could partially skip this.
2625 static User::op_iterator
2626 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2627               Loop *L, ScalarEvolution &SE) {
2628   for(; OI != OE; ++OI) {
2629     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2630       if (!SE.isSCEVable(Oper->getType()))
2631         continue;
2632 
2633       if (const SCEVAddRecExpr *AR =
2634           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2635         if (AR->getLoop() == L)
2636           break;
2637       }
2638     }
2639   }
2640   return OI;
2641 }
2642 
2643 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2644 /// a convenient helper.
2645 static Value *getWideOperand(Value *Oper) {
2646   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2647     return Trunc->getOperand(0);
2648   return Oper;
2649 }
2650 
2651 /// Return true if we allow an IV chain to include both types.
2652 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2653   Type *LType = LVal->getType();
2654   Type *RType = RVal->getType();
2655   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2656                               // Different address spaces means (possibly)
2657                               // different types of the pointer implementation,
2658                               // e.g. i16 vs i32 so disallow that.
2659                               (LType->getPointerAddressSpace() ==
2660                                RType->getPointerAddressSpace()));
2661 }
2662 
2663 /// Return an approximation of this SCEV expression's "base", or NULL for any
2664 /// constant. Returning the expression itself is conservative. Returning a
2665 /// deeper subexpression is more precise and valid as long as it isn't less
2666 /// complex than another subexpression. For expressions involving multiple
2667 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2668 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2669 /// IVInc==b-a.
2670 ///
2671 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2672 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2673 static const SCEV *getExprBase(const SCEV *S) {
2674   switch (S->getSCEVType()) {
2675   default: // uncluding scUnknown.
2676     return S;
2677   case scConstant:
2678     return nullptr;
2679   case scTruncate:
2680     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2681   case scZeroExtend:
2682     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2683   case scSignExtend:
2684     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2685   case scAddExpr: {
2686     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2687     // there's nothing more complex.
2688     // FIXME: not sure if we want to recognize negation.
2689     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2690     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2691            E(Add->op_begin()); I != E; ++I) {
2692       const SCEV *SubExpr = *I;
2693       if (SubExpr->getSCEVType() == scAddExpr)
2694         return getExprBase(SubExpr);
2695 
2696       if (SubExpr->getSCEVType() != scMulExpr)
2697         return SubExpr;
2698     }
2699     return S; // all operands are scaled, be conservative.
2700   }
2701   case scAddRecExpr:
2702     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2703   }
2704 }
2705 
2706 /// Return true if the chain increment is profitable to expand into a loop
2707 /// invariant value, which may require its own register. A profitable chain
2708 /// increment will be an offset relative to the same base. We allow such offsets
2709 /// to potentially be used as chain increment as long as it's not obviously
2710 /// expensive to expand using real instructions.
2711 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2712                                     const SCEV *IncExpr,
2713                                     ScalarEvolution &SE) {
2714   // Aggressively form chains when -stress-ivchain.
2715   if (StressIVChain)
2716     return true;
2717 
2718   // Do not replace a constant offset from IV head with a nonconstant IV
2719   // increment.
2720   if (!isa<SCEVConstant>(IncExpr)) {
2721     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2722     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2723       return false;
2724   }
2725 
2726   SmallPtrSet<const SCEV*, 8> Processed;
2727   return !isHighCostExpansion(IncExpr, Processed, SE);
2728 }
2729 
2730 /// Return true if the number of registers needed for the chain is estimated to
2731 /// be less than the number required for the individual IV users. First prohibit
2732 /// any IV users that keep the IV live across increments (the Users set should
2733 /// be empty). Next count the number and type of increments in the chain.
2734 ///
2735 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2736 /// effectively use postinc addressing modes. Only consider it profitable it the
2737 /// increments can be computed in fewer registers when chained.
2738 ///
2739 /// TODO: Consider IVInc free if it's already used in another chains.
2740 static bool
2741 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2742                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2743   if (StressIVChain)
2744     return true;
2745 
2746   if (!Chain.hasIncs())
2747     return false;
2748 
2749   if (!Users.empty()) {
2750     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2751           for (Instruction *Inst : Users) {
2752             dbgs() << "  " << *Inst << "\n";
2753           });
2754     return false;
2755   }
2756   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2757 
2758   // The chain itself may require a register, so intialize cost to 1.
2759   int cost = 1;
2760 
2761   // A complete chain likely eliminates the need for keeping the original IV in
2762   // a register. LSR does not currently know how to form a complete chain unless
2763   // the header phi already exists.
2764   if (isa<PHINode>(Chain.tailUserInst())
2765       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2766     --cost;
2767   }
2768   const SCEV *LastIncExpr = nullptr;
2769   unsigned NumConstIncrements = 0;
2770   unsigned NumVarIncrements = 0;
2771   unsigned NumReusedIncrements = 0;
2772   for (const IVInc &Inc : Chain) {
2773     if (Inc.IncExpr->isZero())
2774       continue;
2775 
2776     // Incrementing by zero or some constant is neutral. We assume constants can
2777     // be folded into an addressing mode or an add's immediate operand.
2778     if (isa<SCEVConstant>(Inc.IncExpr)) {
2779       ++NumConstIncrements;
2780       continue;
2781     }
2782 
2783     if (Inc.IncExpr == LastIncExpr)
2784       ++NumReusedIncrements;
2785     else
2786       ++NumVarIncrements;
2787 
2788     LastIncExpr = Inc.IncExpr;
2789   }
2790   // An IV chain with a single increment is handled by LSR's postinc
2791   // uses. However, a chain with multiple increments requires keeping the IV's
2792   // value live longer than it needs to be if chained.
2793   if (NumConstIncrements > 1)
2794     --cost;
2795 
2796   // Materializing increment expressions in the preheader that didn't exist in
2797   // the original code may cost a register. For example, sign-extended array
2798   // indices can produce ridiculous increments like this:
2799   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2800   cost += NumVarIncrements;
2801 
2802   // Reusing variable increments likely saves a register to hold the multiple of
2803   // the stride.
2804   cost -= NumReusedIncrements;
2805 
2806   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2807                << "\n");
2808 
2809   return cost < 0;
2810 }
2811 
2812 /// Add this IV user to an existing chain or make it the head of a new chain.
2813 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2814                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2815   // When IVs are used as types of varying widths, they are generally converted
2816   // to a wider type with some uses remaining narrow under a (free) trunc.
2817   Value *const NextIV = getWideOperand(IVOper);
2818   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2819   const SCEV *const OperExprBase = getExprBase(OperExpr);
2820 
2821   // Visit all existing chains. Check if its IVOper can be computed as a
2822   // profitable loop invariant increment from the last link in the Chain.
2823   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2824   const SCEV *LastIncExpr = nullptr;
2825   for (; ChainIdx < NChains; ++ChainIdx) {
2826     IVChain &Chain = IVChainVec[ChainIdx];
2827 
2828     // Prune the solution space aggressively by checking that both IV operands
2829     // are expressions that operate on the same unscaled SCEVUnknown. This
2830     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2831     // first avoids creating extra SCEV expressions.
2832     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2833       continue;
2834 
2835     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2836     if (!isCompatibleIVType(PrevIV, NextIV))
2837       continue;
2838 
2839     // A phi node terminates a chain.
2840     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2841       continue;
2842 
2843     // The increment must be loop-invariant so it can be kept in a register.
2844     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2845     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2846     if (!SE.isLoopInvariant(IncExpr, L))
2847       continue;
2848 
2849     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2850       LastIncExpr = IncExpr;
2851       break;
2852     }
2853   }
2854   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2855   // bother for phi nodes, because they must be last in the chain.
2856   if (ChainIdx == NChains) {
2857     if (isa<PHINode>(UserInst))
2858       return;
2859     if (NChains >= MaxChains && !StressIVChain) {
2860       DEBUG(dbgs() << "IV Chain Limit\n");
2861       return;
2862     }
2863     LastIncExpr = OperExpr;
2864     // IVUsers may have skipped over sign/zero extensions. We don't currently
2865     // attempt to form chains involving extensions unless they can be hoisted
2866     // into this loop's AddRec.
2867     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2868       return;
2869     ++NChains;
2870     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2871                                  OperExprBase));
2872     ChainUsersVec.resize(NChains);
2873     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2874                  << ") IV=" << *LastIncExpr << "\n");
2875   } else {
2876     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2877                  << ") IV+" << *LastIncExpr << "\n");
2878     // Add this IV user to the end of the chain.
2879     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2880   }
2881   IVChain &Chain = IVChainVec[ChainIdx];
2882 
2883   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2884   // This chain's NearUsers become FarUsers.
2885   if (!LastIncExpr->isZero()) {
2886     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2887                                             NearUsers.end());
2888     NearUsers.clear();
2889   }
2890 
2891   // All other uses of IVOperand become near uses of the chain.
2892   // We currently ignore intermediate values within SCEV expressions, assuming
2893   // they will eventually be used be the current chain, or can be computed
2894   // from one of the chain increments. To be more precise we could
2895   // transitively follow its user and only add leaf IV users to the set.
2896   for (User *U : IVOper->users()) {
2897     Instruction *OtherUse = dyn_cast<Instruction>(U);
2898     if (!OtherUse)
2899       continue;
2900     // Uses in the chain will no longer be uses if the chain is formed.
2901     // Include the head of the chain in this iteration (not Chain.begin()).
2902     IVChain::const_iterator IncIter = Chain.Incs.begin();
2903     IVChain::const_iterator IncEnd = Chain.Incs.end();
2904     for( ; IncIter != IncEnd; ++IncIter) {
2905       if (IncIter->UserInst == OtherUse)
2906         break;
2907     }
2908     if (IncIter != IncEnd)
2909       continue;
2910 
2911     if (SE.isSCEVable(OtherUse->getType())
2912         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2913         && IU.isIVUserOrOperand(OtherUse)) {
2914       continue;
2915     }
2916     NearUsers.insert(OtherUse);
2917   }
2918 
2919   // Since this user is part of the chain, it's no longer considered a use
2920   // of the chain.
2921   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2922 }
2923 
2924 /// Populate the vector of Chains.
2925 ///
2926 /// This decreases ILP at the architecture level. Targets with ample registers,
2927 /// multiple memory ports, and no register renaming probably don't want
2928 /// this. However, such targets should probably disable LSR altogether.
2929 ///
2930 /// The job of LSR is to make a reasonable choice of induction variables across
2931 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2932 /// ILP *within the loop* if the target wants it.
2933 ///
2934 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2935 /// will not reorder memory operations, it will recognize this as a chain, but
2936 /// will generate redundant IV increments. Ideally this would be corrected later
2937 /// by a smart scheduler:
2938 ///        = A[i]
2939 ///        = A[i+x]
2940 /// A[i]   =
2941 /// A[i+x] =
2942 ///
2943 /// TODO: Walk the entire domtree within this loop, not just the path to the
2944 /// loop latch. This will discover chains on side paths, but requires
2945 /// maintaining multiple copies of the Chains state.
2946 void LSRInstance::CollectChains() {
2947   DEBUG(dbgs() << "Collecting IV Chains.\n");
2948   SmallVector<ChainUsers, 8> ChainUsersVec;
2949 
2950   SmallVector<BasicBlock *,8> LatchPath;
2951   BasicBlock *LoopHeader = L->getHeader();
2952   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2953        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2954     LatchPath.push_back(Rung->getBlock());
2955   }
2956   LatchPath.push_back(LoopHeader);
2957 
2958   // Walk the instruction stream from the loop header to the loop latch.
2959   for (BasicBlock *BB : reverse(LatchPath)) {
2960     for (Instruction &I : *BB) {
2961       // Skip instructions that weren't seen by IVUsers analysis.
2962       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2963         continue;
2964 
2965       // Ignore users that are part of a SCEV expression. This way we only
2966       // consider leaf IV Users. This effectively rediscovers a portion of
2967       // IVUsers analysis but in program order this time.
2968       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2969         continue;
2970 
2971       // Remove this instruction from any NearUsers set it may be in.
2972       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2973            ChainIdx < NChains; ++ChainIdx) {
2974         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2975       }
2976       // Search for operands that can be chained.
2977       SmallPtrSet<Instruction*, 4> UniqueOperands;
2978       User::op_iterator IVOpEnd = I.op_end();
2979       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2980       while (IVOpIter != IVOpEnd) {
2981         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2982         if (UniqueOperands.insert(IVOpInst).second)
2983           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2984         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2985       }
2986     } // Continue walking down the instructions.
2987   } // Continue walking down the domtree.
2988   // Visit phi backedges to determine if the chain can generate the IV postinc.
2989   for (BasicBlock::iterator I = L->getHeader()->begin();
2990        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2991     if (!SE.isSCEVable(PN->getType()))
2992       continue;
2993 
2994     Instruction *IncV =
2995       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2996     if (IncV)
2997       ChainInstruction(PN, IncV, ChainUsersVec);
2998   }
2999   // Remove any unprofitable chains.
3000   unsigned ChainIdx = 0;
3001   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3002        UsersIdx < NChains; ++UsersIdx) {
3003     if (!isProfitableChain(IVChainVec[UsersIdx],
3004                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3005       continue;
3006     // Preserve the chain at UsesIdx.
3007     if (ChainIdx != UsersIdx)
3008       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3009     FinalizeChain(IVChainVec[ChainIdx]);
3010     ++ChainIdx;
3011   }
3012   IVChainVec.resize(ChainIdx);
3013 }
3014 
3015 void LSRInstance::FinalizeChain(IVChain &Chain) {
3016   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3017   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3018 
3019   for (const IVInc &Inc : Chain) {
3020     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3021     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3022     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3023     IVIncSet.insert(UseI);
3024   }
3025 }
3026 
3027 /// Return true if the IVInc can be folded into an addressing mode.
3028 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3029                              Value *Operand, const TargetTransformInfo &TTI) {
3030   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3031   if (!IncConst || !isAddressUse(UserInst, Operand))
3032     return false;
3033 
3034   if (IncConst->getAPInt().getMinSignedBits() > 64)
3035     return false;
3036 
3037   MemAccessTy AccessTy = getAccessType(UserInst);
3038   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3039   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3040                         IncOffset, /*HaseBaseReg=*/false))
3041     return false;
3042 
3043   return true;
3044 }
3045 
3046 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3047 /// user's operand from the previous IV user's operand.
3048 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3049                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3050   // Find the new IVOperand for the head of the chain. It may have been replaced
3051   // by LSR.
3052   const IVInc &Head = Chain.Incs[0];
3053   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3054   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3055   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3056                                              IVOpEnd, L, SE);
3057   Value *IVSrc = nullptr;
3058   while (IVOpIter != IVOpEnd) {
3059     IVSrc = getWideOperand(*IVOpIter);
3060 
3061     // If this operand computes the expression that the chain needs, we may use
3062     // it. (Check this after setting IVSrc which is used below.)
3063     //
3064     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3065     // narrow for the chain, so we can no longer use it. We do allow using a
3066     // wider phi, assuming the LSR checked for free truncation. In that case we
3067     // should already have a truncate on this operand such that
3068     // getSCEV(IVSrc) == IncExpr.
3069     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3070         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3071       break;
3072     }
3073     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3074   }
3075   if (IVOpIter == IVOpEnd) {
3076     // Gracefully give up on this chain.
3077     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3078     return;
3079   }
3080 
3081   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3082   Type *IVTy = IVSrc->getType();
3083   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3084   const SCEV *LeftOverExpr = nullptr;
3085   for (const IVInc &Inc : Chain) {
3086     Instruction *InsertPt = Inc.UserInst;
3087     if (isa<PHINode>(InsertPt))
3088       InsertPt = L->getLoopLatch()->getTerminator();
3089 
3090     // IVOper will replace the current IV User's operand. IVSrc is the IV
3091     // value currently held in a register.
3092     Value *IVOper = IVSrc;
3093     if (!Inc.IncExpr->isZero()) {
3094       // IncExpr was the result of subtraction of two narrow values, so must
3095       // be signed.
3096       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3097       LeftOverExpr = LeftOverExpr ?
3098         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3099     }
3100     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3101       // Expand the IV increment.
3102       Rewriter.clearPostInc();
3103       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3104       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3105                                              SE.getUnknown(IncV));
3106       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3107 
3108       // If an IV increment can't be folded, use it as the next IV value.
3109       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3110         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3111         IVSrc = IVOper;
3112         LeftOverExpr = nullptr;
3113       }
3114     }
3115     Type *OperTy = Inc.IVOperand->getType();
3116     if (IVTy != OperTy) {
3117       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3118              "cannot extend a chained IV");
3119       IRBuilder<> Builder(InsertPt);
3120       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3121     }
3122     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3123     DeadInsts.emplace_back(Inc.IVOperand);
3124   }
3125   // If LSR created a new, wider phi, we may also replace its postinc. We only
3126   // do this if we also found a wide value for the head of the chain.
3127   if (isa<PHINode>(Chain.tailUserInst())) {
3128     for (BasicBlock::iterator I = L->getHeader()->begin();
3129          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
3130       if (!isCompatibleIVType(Phi, IVSrc))
3131         continue;
3132       Instruction *PostIncV = dyn_cast<Instruction>(
3133         Phi->getIncomingValueForBlock(L->getLoopLatch()));
3134       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3135         continue;
3136       Value *IVOper = IVSrc;
3137       Type *PostIncTy = PostIncV->getType();
3138       if (IVTy != PostIncTy) {
3139         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3140         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3141         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3142         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3143       }
3144       Phi->replaceUsesOfWith(PostIncV, IVOper);
3145       DeadInsts.emplace_back(PostIncV);
3146     }
3147   }
3148 }
3149 
3150 void LSRInstance::CollectFixupsAndInitialFormulae() {
3151   for (const IVStrideUse &U : IU) {
3152     Instruction *UserInst = U.getUser();
3153     // Skip IV users that are part of profitable IV Chains.
3154     User::op_iterator UseI =
3155         find(UserInst->operands(), U.getOperandValToReplace());
3156     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3157     if (IVIncSet.count(UseI)) {
3158       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3159       continue;
3160     }
3161 
3162     LSRUse::KindType Kind = LSRUse::Basic;
3163     MemAccessTy AccessTy;
3164     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3165       Kind = LSRUse::Address;
3166       AccessTy = getAccessType(UserInst);
3167     }
3168 
3169     const SCEV *S = IU.getExpr(U);
3170     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3171 
3172     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3173     // (N - i == 0), and this allows (N - i) to be the expression that we work
3174     // with rather than just N or i, so we can consider the register
3175     // requirements for both N and i at the same time. Limiting this code to
3176     // equality icmps is not a problem because all interesting loops use
3177     // equality icmps, thanks to IndVarSimplify.
3178     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3179       if (CI->isEquality()) {
3180         // Swap the operands if needed to put the OperandValToReplace on the
3181         // left, for consistency.
3182         Value *NV = CI->getOperand(1);
3183         if (NV == U.getOperandValToReplace()) {
3184           CI->setOperand(1, CI->getOperand(0));
3185           CI->setOperand(0, NV);
3186           NV = CI->getOperand(1);
3187           Changed = true;
3188         }
3189 
3190         // x == y  -->  x - y == 0
3191         const SCEV *N = SE.getSCEV(NV);
3192         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3193           // S is normalized, so normalize N before folding it into S
3194           // to keep the result normalized.
3195           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3196           Kind = LSRUse::ICmpZero;
3197           S = SE.getMinusSCEV(N, S);
3198         }
3199 
3200         // -1 and the negations of all interesting strides (except the negation
3201         // of -1) are now also interesting.
3202         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3203           if (Factors[i] != -1)
3204             Factors.insert(-(uint64_t)Factors[i]);
3205         Factors.insert(-1);
3206       }
3207 
3208     // Get or create an LSRUse.
3209     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3210     size_t LUIdx = P.first;
3211     int64_t Offset = P.second;
3212     LSRUse &LU = Uses[LUIdx];
3213 
3214     // Record the fixup.
3215     LSRFixup &LF = LU.getNewFixup();
3216     LF.UserInst = UserInst;
3217     LF.OperandValToReplace = U.getOperandValToReplace();
3218     LF.PostIncLoops = TmpPostIncLoops;
3219     LF.Offset = Offset;
3220     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3221 
3222     if (!LU.WidestFixupType ||
3223         SE.getTypeSizeInBits(LU.WidestFixupType) <
3224         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3225       LU.WidestFixupType = LF.OperandValToReplace->getType();
3226 
3227     // If this is the first use of this LSRUse, give it a formula.
3228     if (LU.Formulae.empty()) {
3229       InsertInitialFormula(S, LU, LUIdx);
3230       CountRegisters(LU.Formulae.back(), LUIdx);
3231     }
3232   }
3233 
3234   DEBUG(print_fixups(dbgs()));
3235 }
3236 
3237 /// Insert a formula for the given expression into the given use, separating out
3238 /// loop-variant portions from loop-invariant and loop-computable portions.
3239 void
3240 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3241   // Mark uses whose expressions cannot be expanded.
3242   if (!isSafeToExpand(S, SE))
3243     LU.RigidFormula = true;
3244 
3245   Formula F;
3246   F.initialMatch(S, L, SE);
3247   bool Inserted = InsertFormula(LU, LUIdx, F);
3248   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3249 }
3250 
3251 /// Insert a simple single-register formula for the given expression into the
3252 /// given use.
3253 void
3254 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3255                                        LSRUse &LU, size_t LUIdx) {
3256   Formula F;
3257   F.BaseRegs.push_back(S);
3258   F.HasBaseReg = true;
3259   bool Inserted = InsertFormula(LU, LUIdx, F);
3260   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3261 }
3262 
3263 /// Note which registers are used by the given formula, updating RegUses.
3264 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3265   if (F.ScaledReg)
3266     RegUses.countRegister(F.ScaledReg, LUIdx);
3267   for (const SCEV *BaseReg : F.BaseRegs)
3268     RegUses.countRegister(BaseReg, LUIdx);
3269 }
3270 
3271 /// If the given formula has not yet been inserted, add it to the list, and
3272 /// return true. Return false otherwise.
3273 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3274   // Do not insert formula that we will not be able to expand.
3275   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3276          "Formula is illegal");
3277 
3278   if (!LU.InsertFormula(F, *L))
3279     return false;
3280 
3281   CountRegisters(F, LUIdx);
3282   return true;
3283 }
3284 
3285 /// Check for other uses of loop-invariant values which we're tracking. These
3286 /// other uses will pin these values in registers, making them less profitable
3287 /// for elimination.
3288 /// TODO: This currently misses non-constant addrec step registers.
3289 /// TODO: Should this give more weight to users inside the loop?
3290 void
3291 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3292   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3293   SmallPtrSet<const SCEV *, 32> Visited;
3294 
3295   while (!Worklist.empty()) {
3296     const SCEV *S = Worklist.pop_back_val();
3297 
3298     // Don't process the same SCEV twice
3299     if (!Visited.insert(S).second)
3300       continue;
3301 
3302     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3303       Worklist.append(N->op_begin(), N->op_end());
3304     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3305       Worklist.push_back(C->getOperand());
3306     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3307       Worklist.push_back(D->getLHS());
3308       Worklist.push_back(D->getRHS());
3309     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3310       const Value *V = US->getValue();
3311       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3312         // Look for instructions defined outside the loop.
3313         if (L->contains(Inst)) continue;
3314       } else if (isa<UndefValue>(V))
3315         // Undef doesn't have a live range, so it doesn't matter.
3316         continue;
3317       for (const Use &U : V->uses()) {
3318         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3319         // Ignore non-instructions.
3320         if (!UserInst)
3321           continue;
3322         // Ignore instructions in other functions (as can happen with
3323         // Constants).
3324         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3325           continue;
3326         // Ignore instructions not dominated by the loop.
3327         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3328           UserInst->getParent() :
3329           cast<PHINode>(UserInst)->getIncomingBlock(
3330             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3331         if (!DT.dominates(L->getHeader(), UseBB))
3332           continue;
3333         // Don't bother if the instruction is in a BB which ends in an EHPad.
3334         if (UseBB->getTerminator()->isEHPad())
3335           continue;
3336         // Don't bother rewriting PHIs in catchswitch blocks.
3337         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3338           continue;
3339         // Ignore uses which are part of other SCEV expressions, to avoid
3340         // analyzing them multiple times.
3341         if (SE.isSCEVable(UserInst->getType())) {
3342           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3343           // If the user is a no-op, look through to its uses.
3344           if (!isa<SCEVUnknown>(UserS))
3345             continue;
3346           if (UserS == US) {
3347             Worklist.push_back(
3348               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3349             continue;
3350           }
3351         }
3352         // Ignore icmp instructions which are already being analyzed.
3353         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3354           unsigned OtherIdx = !U.getOperandNo();
3355           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3356           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3357             continue;
3358         }
3359 
3360         std::pair<size_t, int64_t> P = getUse(
3361             S, LSRUse::Basic, MemAccessTy());
3362         size_t LUIdx = P.first;
3363         int64_t Offset = P.second;
3364         LSRUse &LU = Uses[LUIdx];
3365         LSRFixup &LF = LU.getNewFixup();
3366         LF.UserInst = const_cast<Instruction *>(UserInst);
3367         LF.OperandValToReplace = U;
3368         LF.Offset = Offset;
3369         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3370         if (!LU.WidestFixupType ||
3371             SE.getTypeSizeInBits(LU.WidestFixupType) <
3372             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3373           LU.WidestFixupType = LF.OperandValToReplace->getType();
3374         InsertSupplementalFormula(US, LU, LUIdx);
3375         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3376         break;
3377       }
3378     }
3379   }
3380 }
3381 
3382 /// Split S into subexpressions which can be pulled out into separate
3383 /// registers. If C is non-null, multiply each subexpression by C.
3384 ///
3385 /// Return remainder expression after factoring the subexpressions captured by
3386 /// Ops. If Ops is complete, return NULL.
3387 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3388                                    SmallVectorImpl<const SCEV *> &Ops,
3389                                    const Loop *L,
3390                                    ScalarEvolution &SE,
3391                                    unsigned Depth = 0) {
3392   // Arbitrarily cap recursion to protect compile time.
3393   if (Depth >= 3)
3394     return S;
3395 
3396   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3397     // Break out add operands.
3398     for (const SCEV *S : Add->operands()) {
3399       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3400       if (Remainder)
3401         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3402     }
3403     return nullptr;
3404   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3405     // Split a non-zero base out of an addrec.
3406     if (AR->getStart()->isZero() || !AR->isAffine())
3407       return S;
3408 
3409     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3410                                             C, Ops, L, SE, Depth+1);
3411     // Split the non-zero AddRec unless it is part of a nested recurrence that
3412     // does not pertain to this loop.
3413     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3414       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3415       Remainder = nullptr;
3416     }
3417     if (Remainder != AR->getStart()) {
3418       if (!Remainder)
3419         Remainder = SE.getConstant(AR->getType(), 0);
3420       return SE.getAddRecExpr(Remainder,
3421                               AR->getStepRecurrence(SE),
3422                               AR->getLoop(),
3423                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3424                               SCEV::FlagAnyWrap);
3425     }
3426   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3427     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3428     if (Mul->getNumOperands() != 2)
3429       return S;
3430     if (const SCEVConstant *Op0 =
3431         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3432       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3433       const SCEV *Remainder =
3434         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3435       if (Remainder)
3436         Ops.push_back(SE.getMulExpr(C, Remainder));
3437       return nullptr;
3438     }
3439   }
3440   return S;
3441 }
3442 
3443 /// \brief Helper function for LSRInstance::GenerateReassociations.
3444 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3445                                              const Formula &Base,
3446                                              unsigned Depth, size_t Idx,
3447                                              bool IsScaledReg) {
3448   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3449   SmallVector<const SCEV *, 8> AddOps;
3450   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3451   if (Remainder)
3452     AddOps.push_back(Remainder);
3453 
3454   if (AddOps.size() == 1)
3455     return;
3456 
3457   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3458                                                      JE = AddOps.end();
3459        J != JE; ++J) {
3460 
3461     // Loop-variant "unknown" values are uninteresting; we won't be able to
3462     // do anything meaningful with them.
3463     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3464       continue;
3465 
3466     // Don't pull a constant into a register if the constant could be folded
3467     // into an immediate field.
3468     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3469                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3470       continue;
3471 
3472     // Collect all operands except *J.
3473     SmallVector<const SCEV *, 8> InnerAddOps(
3474         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3475     InnerAddOps.append(std::next(J),
3476                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3477 
3478     // Don't leave just a constant behind in a register if the constant could
3479     // be folded into an immediate field.
3480     if (InnerAddOps.size() == 1 &&
3481         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3482                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3483       continue;
3484 
3485     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3486     if (InnerSum->isZero())
3487       continue;
3488     Formula F = Base;
3489 
3490     // Add the remaining pieces of the add back into the new formula.
3491     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3492     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3493         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3494                                 InnerSumSC->getValue()->getZExtValue())) {
3495       F.UnfoldedOffset =
3496           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3497       if (IsScaledReg)
3498         F.ScaledReg = nullptr;
3499       else
3500         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3501     } else if (IsScaledReg)
3502       F.ScaledReg = InnerSum;
3503     else
3504       F.BaseRegs[Idx] = InnerSum;
3505 
3506     // Add J as its own register, or an unfolded immediate.
3507     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3508     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3509         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3510                                 SC->getValue()->getZExtValue()))
3511       F.UnfoldedOffset =
3512           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3513     else
3514       F.BaseRegs.push_back(*J);
3515     // We may have changed the number of register in base regs, adjust the
3516     // formula accordingly.
3517     F.canonicalize(*L);
3518 
3519     if (InsertFormula(LU, LUIdx, F))
3520       // If that formula hadn't been seen before, recurse to find more like
3521       // it.
3522       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3523   }
3524 }
3525 
3526 /// Split out subexpressions from adds and the bases of addrecs.
3527 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3528                                          Formula Base, unsigned Depth) {
3529   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3530   // Arbitrarily cap recursion to protect compile time.
3531   if (Depth >= 3)
3532     return;
3533 
3534   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3535     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3536 
3537   if (Base.Scale == 1)
3538     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3539                                /* Idx */ -1, /* IsScaledReg */ true);
3540 }
3541 
3542 ///  Generate a formula consisting of all of the loop-dominating registers added
3543 /// into a single register.
3544 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3545                                        Formula Base) {
3546   // This method is only interesting on a plurality of registers.
3547   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3548     return;
3549 
3550   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3551   // processing the formula.
3552   Base.unscale();
3553   Formula F = Base;
3554   F.BaseRegs.clear();
3555   SmallVector<const SCEV *, 4> Ops;
3556   for (const SCEV *BaseReg : Base.BaseRegs) {
3557     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3558         !SE.hasComputableLoopEvolution(BaseReg, L))
3559       Ops.push_back(BaseReg);
3560     else
3561       F.BaseRegs.push_back(BaseReg);
3562   }
3563   if (Ops.size() > 1) {
3564     const SCEV *Sum = SE.getAddExpr(Ops);
3565     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3566     // opportunity to fold something. For now, just ignore such cases
3567     // rather than proceed with zero in a register.
3568     if (!Sum->isZero()) {
3569       F.BaseRegs.push_back(Sum);
3570       F.canonicalize(*L);
3571       (void)InsertFormula(LU, LUIdx, F);
3572     }
3573   }
3574 }
3575 
3576 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3577 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3578                                               const Formula &Base, size_t Idx,
3579                                               bool IsScaledReg) {
3580   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3581   GlobalValue *GV = ExtractSymbol(G, SE);
3582   if (G->isZero() || !GV)
3583     return;
3584   Formula F = Base;
3585   F.BaseGV = GV;
3586   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3587     return;
3588   if (IsScaledReg)
3589     F.ScaledReg = G;
3590   else
3591     F.BaseRegs[Idx] = G;
3592   (void)InsertFormula(LU, LUIdx, F);
3593 }
3594 
3595 /// Generate reuse formulae using symbolic offsets.
3596 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3597                                           Formula Base) {
3598   // We can't add a symbolic offset if the address already contains one.
3599   if (Base.BaseGV) return;
3600 
3601   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3602     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3603   if (Base.Scale == 1)
3604     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3605                                 /* IsScaledReg */ true);
3606 }
3607 
3608 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3609 void LSRInstance::GenerateConstantOffsetsImpl(
3610     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3611     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3612   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3613   for (int64_t Offset : Worklist) {
3614     Formula F = Base;
3615     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3616     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3617                    LU.AccessTy, F)) {
3618       // Add the offset to the base register.
3619       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3620       // If it cancelled out, drop the base register, otherwise update it.
3621       if (NewG->isZero()) {
3622         if (IsScaledReg) {
3623           F.Scale = 0;
3624           F.ScaledReg = nullptr;
3625         } else
3626           F.deleteBaseReg(F.BaseRegs[Idx]);
3627         F.canonicalize(*L);
3628       } else if (IsScaledReg)
3629         F.ScaledReg = NewG;
3630       else
3631         F.BaseRegs[Idx] = NewG;
3632 
3633       (void)InsertFormula(LU, LUIdx, F);
3634     }
3635   }
3636 
3637   int64_t Imm = ExtractImmediate(G, SE);
3638   if (G->isZero() || Imm == 0)
3639     return;
3640   Formula F = Base;
3641   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3642   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3643     return;
3644   if (IsScaledReg)
3645     F.ScaledReg = G;
3646   else
3647     F.BaseRegs[Idx] = G;
3648   (void)InsertFormula(LU, LUIdx, F);
3649 }
3650 
3651 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3652 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3653                                           Formula Base) {
3654   // TODO: For now, just add the min and max offset, because it usually isn't
3655   // worthwhile looking at everything inbetween.
3656   SmallVector<int64_t, 2> Worklist;
3657   Worklist.push_back(LU.MinOffset);
3658   if (LU.MaxOffset != LU.MinOffset)
3659     Worklist.push_back(LU.MaxOffset);
3660 
3661   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3662     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3663   if (Base.Scale == 1)
3664     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3665                                 /* IsScaledReg */ true);
3666 }
3667 
3668 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3669 /// == y -> x*c == y*c.
3670 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3671                                          Formula Base) {
3672   if (LU.Kind != LSRUse::ICmpZero) return;
3673 
3674   // Determine the integer type for the base formula.
3675   Type *IntTy = Base.getType();
3676   if (!IntTy) return;
3677   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3678 
3679   // Don't do this if there is more than one offset.
3680   if (LU.MinOffset != LU.MaxOffset) return;
3681 
3682   // Check if transformation is valid. It is illegal to multiply pointer.
3683   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3684     return;
3685   for (const SCEV *BaseReg : Base.BaseRegs)
3686     if (BaseReg->getType()->isPointerTy())
3687       return;
3688   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3689 
3690   // Check each interesting stride.
3691   for (int64_t Factor : Factors) {
3692     // Check that the multiplication doesn't overflow.
3693     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3694       continue;
3695     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3696     if (NewBaseOffset / Factor != Base.BaseOffset)
3697       continue;
3698     // If the offset will be truncated at this use, check that it is in bounds.
3699     if (!IntTy->isPointerTy() &&
3700         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3701       continue;
3702 
3703     // Check that multiplying with the use offset doesn't overflow.
3704     int64_t Offset = LU.MinOffset;
3705     if (Offset == INT64_MIN && Factor == -1)
3706       continue;
3707     Offset = (uint64_t)Offset * Factor;
3708     if (Offset / Factor != LU.MinOffset)
3709       continue;
3710     // If the offset will be truncated at this use, check that it is in bounds.
3711     if (!IntTy->isPointerTy() &&
3712         !ConstantInt::isValueValidForType(IntTy, Offset))
3713       continue;
3714 
3715     Formula F = Base;
3716     F.BaseOffset = NewBaseOffset;
3717 
3718     // Check that this scale is legal.
3719     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3720       continue;
3721 
3722     // Compensate for the use having MinOffset built into it.
3723     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3724 
3725     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3726 
3727     // Check that multiplying with each base register doesn't overflow.
3728     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3729       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3730       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3731         goto next;
3732     }
3733 
3734     // Check that multiplying with the scaled register doesn't overflow.
3735     if (F.ScaledReg) {
3736       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3737       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3738         continue;
3739     }
3740 
3741     // Check that multiplying with the unfolded offset doesn't overflow.
3742     if (F.UnfoldedOffset != 0) {
3743       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3744         continue;
3745       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3746       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3747         continue;
3748       // If the offset will be truncated, check that it is in bounds.
3749       if (!IntTy->isPointerTy() &&
3750           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3751         continue;
3752     }
3753 
3754     // If we make it here and it's legal, add it.
3755     (void)InsertFormula(LU, LUIdx, F);
3756   next:;
3757   }
3758 }
3759 
3760 /// Generate stride factor reuse formulae by making use of scaled-offset address
3761 /// modes, for example.
3762 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3763   // Determine the integer type for the base formula.
3764   Type *IntTy = Base.getType();
3765   if (!IntTy) return;
3766 
3767   // If this Formula already has a scaled register, we can't add another one.
3768   // Try to unscale the formula to generate a better scale.
3769   if (Base.Scale != 0 && !Base.unscale())
3770     return;
3771 
3772   assert(Base.Scale == 0 && "unscale did not did its job!");
3773 
3774   // Check each interesting stride.
3775   for (int64_t Factor : Factors) {
3776     Base.Scale = Factor;
3777     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3778     // Check whether this scale is going to be legal.
3779     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3780                     Base)) {
3781       // As a special-case, handle special out-of-loop Basic users specially.
3782       // TODO: Reconsider this special case.
3783       if (LU.Kind == LSRUse::Basic &&
3784           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3785                      LU.AccessTy, Base) &&
3786           LU.AllFixupsOutsideLoop)
3787         LU.Kind = LSRUse::Special;
3788       else
3789         continue;
3790     }
3791     // For an ICmpZero, negating a solitary base register won't lead to
3792     // new solutions.
3793     if (LU.Kind == LSRUse::ICmpZero &&
3794         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3795       continue;
3796     // For each addrec base reg, if its loop is current loop, apply the scale.
3797     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3798       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3799       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3800         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3801         if (FactorS->isZero())
3802           continue;
3803         // Divide out the factor, ignoring high bits, since we'll be
3804         // scaling the value back up in the end.
3805         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3806           // TODO: This could be optimized to avoid all the copying.
3807           Formula F = Base;
3808           F.ScaledReg = Quotient;
3809           F.deleteBaseReg(F.BaseRegs[i]);
3810           // The canonical representation of 1*reg is reg, which is already in
3811           // Base. In that case, do not try to insert the formula, it will be
3812           // rejected anyway.
3813           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3814                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3815             continue;
3816           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3817           // non canonical Formula with ScaledReg's loop not being L.
3818           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3819             F.canonicalize(*L);
3820           (void)InsertFormula(LU, LUIdx, F);
3821         }
3822       }
3823     }
3824   }
3825 }
3826 
3827 /// Generate reuse formulae from different IV types.
3828 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3829   // Don't bother truncating symbolic values.
3830   if (Base.BaseGV) return;
3831 
3832   // Determine the integer type for the base formula.
3833   Type *DstTy = Base.getType();
3834   if (!DstTy) return;
3835   DstTy = SE.getEffectiveSCEVType(DstTy);
3836 
3837   for (Type *SrcTy : Types) {
3838     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3839       Formula F = Base;
3840 
3841       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3842       for (const SCEV *&BaseReg : F.BaseRegs)
3843         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3844 
3845       // TODO: This assumes we've done basic processing on all uses and
3846       // have an idea what the register usage is.
3847       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3848         continue;
3849 
3850       F.canonicalize(*L);
3851       (void)InsertFormula(LU, LUIdx, F);
3852     }
3853   }
3854 }
3855 
3856 namespace {
3857 
3858 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3859 /// modifications so that the search phase doesn't have to worry about the data
3860 /// structures moving underneath it.
3861 struct WorkItem {
3862   size_t LUIdx;
3863   int64_t Imm;
3864   const SCEV *OrigReg;
3865 
3866   WorkItem(size_t LI, int64_t I, const SCEV *R)
3867     : LUIdx(LI), Imm(I), OrigReg(R) {}
3868 
3869   void print(raw_ostream &OS) const;
3870   void dump() const;
3871 };
3872 
3873 } // end anonymous namespace
3874 
3875 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3876 void WorkItem::print(raw_ostream &OS) const {
3877   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3878      << " , add offset " << Imm;
3879 }
3880 
3881 LLVM_DUMP_METHOD void WorkItem::dump() const {
3882   print(errs()); errs() << '\n';
3883 }
3884 #endif
3885 
3886 /// Look for registers which are a constant distance apart and try to form reuse
3887 /// opportunities between them.
3888 void LSRInstance::GenerateCrossUseConstantOffsets() {
3889   // Group the registers by their value without any added constant offset.
3890   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3891   DenseMap<const SCEV *, ImmMapTy> Map;
3892   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3893   SmallVector<const SCEV *, 8> Sequence;
3894   for (const SCEV *Use : RegUses) {
3895     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3896     int64_t Imm = ExtractImmediate(Reg, SE);
3897     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3898     if (Pair.second)
3899       Sequence.push_back(Reg);
3900     Pair.first->second.insert(std::make_pair(Imm, Use));
3901     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3902   }
3903 
3904   // Now examine each set of registers with the same base value. Build up
3905   // a list of work to do and do the work in a separate step so that we're
3906   // not adding formulae and register counts while we're searching.
3907   SmallVector<WorkItem, 32> WorkItems;
3908   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3909   for (const SCEV *Reg : Sequence) {
3910     const ImmMapTy &Imms = Map.find(Reg)->second;
3911 
3912     // It's not worthwhile looking for reuse if there's only one offset.
3913     if (Imms.size() == 1)
3914       continue;
3915 
3916     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3917           for (const auto &Entry : Imms)
3918             dbgs() << ' ' << Entry.first;
3919           dbgs() << '\n');
3920 
3921     // Examine each offset.
3922     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3923          J != JE; ++J) {
3924       const SCEV *OrigReg = J->second;
3925 
3926       int64_t JImm = J->first;
3927       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3928 
3929       if (!isa<SCEVConstant>(OrigReg) &&
3930           UsedByIndicesMap[Reg].count() == 1) {
3931         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3932         continue;
3933       }
3934 
3935       // Conservatively examine offsets between this orig reg a few selected
3936       // other orig regs.
3937       ImmMapTy::const_iterator OtherImms[] = {
3938         Imms.begin(), std::prev(Imms.end()),
3939         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3940                          2)
3941       };
3942       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3943         ImmMapTy::const_iterator M = OtherImms[i];
3944         if (M == J || M == JE) continue;
3945 
3946         // Compute the difference between the two.
3947         int64_t Imm = (uint64_t)JImm - M->first;
3948         for (unsigned LUIdx : UsedByIndices.set_bits())
3949           // Make a memo of this use, offset, and register tuple.
3950           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3951             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3952       }
3953     }
3954   }
3955 
3956   Map.clear();
3957   Sequence.clear();
3958   UsedByIndicesMap.clear();
3959   UniqueItems.clear();
3960 
3961   // Now iterate through the worklist and add new formulae.
3962   for (const WorkItem &WI : WorkItems) {
3963     size_t LUIdx = WI.LUIdx;
3964     LSRUse &LU = Uses[LUIdx];
3965     int64_t Imm = WI.Imm;
3966     const SCEV *OrigReg = WI.OrigReg;
3967 
3968     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3969     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3970     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3971 
3972     // TODO: Use a more targeted data structure.
3973     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3974       Formula F = LU.Formulae[L];
3975       // FIXME: The code for the scaled and unscaled registers looks
3976       // very similar but slightly different. Investigate if they
3977       // could be merged. That way, we would not have to unscale the
3978       // Formula.
3979       F.unscale();
3980       // Use the immediate in the scaled register.
3981       if (F.ScaledReg == OrigReg) {
3982         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3983         // Don't create 50 + reg(-50).
3984         if (F.referencesReg(SE.getSCEV(
3985                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3986           continue;
3987         Formula NewF = F;
3988         NewF.BaseOffset = Offset;
3989         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3990                         NewF))
3991           continue;
3992         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3993 
3994         // If the new scale is a constant in a register, and adding the constant
3995         // value to the immediate would produce a value closer to zero than the
3996         // immediate itself, then the formula isn't worthwhile.
3997         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3998           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3999               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4000                   .ule(std::abs(NewF.BaseOffset)))
4001             continue;
4002 
4003         // OK, looks good.
4004         NewF.canonicalize(*this->L);
4005         (void)InsertFormula(LU, LUIdx, NewF);
4006       } else {
4007         // Use the immediate in a base register.
4008         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4009           const SCEV *BaseReg = F.BaseRegs[N];
4010           if (BaseReg != OrigReg)
4011             continue;
4012           Formula NewF = F;
4013           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4014           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4015                           LU.Kind, LU.AccessTy, NewF)) {
4016             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4017               continue;
4018             NewF = F;
4019             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4020           }
4021           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4022 
4023           // If the new formula has a constant in a register, and adding the
4024           // constant value to the immediate would produce a value closer to
4025           // zero than the immediate itself, then the formula isn't worthwhile.
4026           for (const SCEV *NewReg : NewF.BaseRegs)
4027             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4028               if ((C->getAPInt() + NewF.BaseOffset)
4029                       .abs()
4030                       .slt(std::abs(NewF.BaseOffset)) &&
4031                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4032                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4033                 goto skip_formula;
4034 
4035           // Ok, looks good.
4036           NewF.canonicalize(*this->L);
4037           (void)InsertFormula(LU, LUIdx, NewF);
4038           break;
4039         skip_formula:;
4040         }
4041       }
4042     }
4043   }
4044 }
4045 
4046 /// Generate formulae for each use.
4047 void
4048 LSRInstance::GenerateAllReuseFormulae() {
4049   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4050   // queries are more precise.
4051   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4052     LSRUse &LU = Uses[LUIdx];
4053     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4054       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4055     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4056       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4057   }
4058   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4059     LSRUse &LU = Uses[LUIdx];
4060     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4061       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4062     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4063       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4064     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4065       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4066     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4067       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4068   }
4069   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4070     LSRUse &LU = Uses[LUIdx];
4071     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4072       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4073   }
4074 
4075   GenerateCrossUseConstantOffsets();
4076 
4077   DEBUG(dbgs() << "\n"
4078                   "After generating reuse formulae:\n";
4079         print_uses(dbgs()));
4080 }
4081 
4082 /// If there are multiple formulae with the same set of registers used
4083 /// by other uses, pick the best one and delete the others.
4084 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4085   DenseSet<const SCEV *> VisitedRegs;
4086   SmallPtrSet<const SCEV *, 16> Regs;
4087   SmallPtrSet<const SCEV *, 16> LoserRegs;
4088 #ifndef NDEBUG
4089   bool ChangedFormulae = false;
4090 #endif
4091 
4092   // Collect the best formula for each unique set of shared registers. This
4093   // is reset for each use.
4094   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
4095     BestFormulaeTy;
4096   BestFormulaeTy BestFormulae;
4097 
4098   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4099     LSRUse &LU = Uses[LUIdx];
4100     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4101 
4102     bool Any = false;
4103     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4104          FIdx != NumForms; ++FIdx) {
4105       Formula &F = LU.Formulae[FIdx];
4106 
4107       // Some formulas are instant losers. For example, they may depend on
4108       // nonexistent AddRecs from other loops. These need to be filtered
4109       // immediately, otherwise heuristics could choose them over others leading
4110       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4111       // avoids the need to recompute this information across formulae using the
4112       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4113       // the corresponding bad register from the Regs set.
4114       Cost CostF;
4115       Regs.clear();
4116       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4117       if (CostF.isLoser()) {
4118         // During initial formula generation, undesirable formulae are generated
4119         // by uses within other loops that have some non-trivial address mode or
4120         // use the postinc form of the IV. LSR needs to provide these formulae
4121         // as the basis of rediscovering the desired formula that uses an AddRec
4122         // corresponding to the existing phi. Once all formulae have been
4123         // generated, these initial losers may be pruned.
4124         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4125               dbgs() << "\n");
4126       }
4127       else {
4128         SmallVector<const SCEV *, 4> Key;
4129         for (const SCEV *Reg : F.BaseRegs) {
4130           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4131             Key.push_back(Reg);
4132         }
4133         if (F.ScaledReg &&
4134             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4135           Key.push_back(F.ScaledReg);
4136         // Unstable sort by host order ok, because this is only used for
4137         // uniquifying.
4138         std::sort(Key.begin(), Key.end());
4139 
4140         std::pair<BestFormulaeTy::const_iterator, bool> P =
4141           BestFormulae.insert(std::make_pair(Key, FIdx));
4142         if (P.second)
4143           continue;
4144 
4145         Formula &Best = LU.Formulae[P.first->second];
4146 
4147         Cost CostBest;
4148         Regs.clear();
4149         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4150         if (CostF.isLess(CostBest, TTI))
4151           std::swap(F, Best);
4152         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4153               dbgs() << "\n"
4154                         "    in favor of formula "; Best.print(dbgs());
4155               dbgs() << '\n');
4156       }
4157 #ifndef NDEBUG
4158       ChangedFormulae = true;
4159 #endif
4160       LU.DeleteFormula(F);
4161       --FIdx;
4162       --NumForms;
4163       Any = true;
4164     }
4165 
4166     // Now that we've filtered out some formulae, recompute the Regs set.
4167     if (Any)
4168       LU.RecomputeRegs(LUIdx, RegUses);
4169 
4170     // Reset this to prepare for the next use.
4171     BestFormulae.clear();
4172   }
4173 
4174   DEBUG(if (ChangedFormulae) {
4175           dbgs() << "\n"
4176                     "After filtering out undesirable candidates:\n";
4177           print_uses(dbgs());
4178         });
4179 }
4180 
4181 // This is a rough guess that seems to work fairly well.
4182 static const size_t ComplexityLimit = UINT16_MAX;
4183 
4184 /// Estimate the worst-case number of solutions the solver might have to
4185 /// consider. It almost never considers this many solutions because it prune the
4186 /// search space, but the pruning isn't always sufficient.
4187 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4188   size_t Power = 1;
4189   for (const LSRUse &LU : Uses) {
4190     size_t FSize = LU.Formulae.size();
4191     if (FSize >= ComplexityLimit) {
4192       Power = ComplexityLimit;
4193       break;
4194     }
4195     Power *= FSize;
4196     if (Power >= ComplexityLimit)
4197       break;
4198   }
4199   return Power;
4200 }
4201 
4202 /// When one formula uses a superset of the registers of another formula, it
4203 /// won't help reduce register pressure (though it may not necessarily hurt
4204 /// register pressure); remove it to simplify the system.
4205 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4206   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4207     DEBUG(dbgs() << "The search space is too complex.\n");
4208 
4209     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4210                     "which use a superset of registers used by other "
4211                     "formulae.\n");
4212 
4213     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4214       LSRUse &LU = Uses[LUIdx];
4215       bool Any = false;
4216       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4217         Formula &F = LU.Formulae[i];
4218         // Look for a formula with a constant or GV in a register. If the use
4219         // also has a formula with that same value in an immediate field,
4220         // delete the one that uses a register.
4221         for (SmallVectorImpl<const SCEV *>::const_iterator
4222              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4223           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4224             Formula NewF = F;
4225             NewF.BaseOffset += C->getValue()->getSExtValue();
4226             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4227                                 (I - F.BaseRegs.begin()));
4228             if (LU.HasFormulaWithSameRegs(NewF)) {
4229               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4230               LU.DeleteFormula(F);
4231               --i;
4232               --e;
4233               Any = true;
4234               break;
4235             }
4236           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4237             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4238               if (!F.BaseGV) {
4239                 Formula NewF = F;
4240                 NewF.BaseGV = GV;
4241                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4242                                     (I - F.BaseRegs.begin()));
4243                 if (LU.HasFormulaWithSameRegs(NewF)) {
4244                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4245                         dbgs() << '\n');
4246                   LU.DeleteFormula(F);
4247                   --i;
4248                   --e;
4249                   Any = true;
4250                   break;
4251                 }
4252               }
4253           }
4254         }
4255       }
4256       if (Any)
4257         LU.RecomputeRegs(LUIdx, RegUses);
4258     }
4259 
4260     DEBUG(dbgs() << "After pre-selection:\n";
4261           print_uses(dbgs()));
4262   }
4263 }
4264 
4265 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4266 /// allocate a single register for them.
4267 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4268   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4269     return;
4270 
4271   DEBUG(dbgs() << "The search space is too complex.\n"
4272                   "Narrowing the search space by assuming that uses separated "
4273                   "by a constant offset will use the same registers.\n");
4274 
4275   // This is especially useful for unrolled loops.
4276 
4277   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4278     LSRUse &LU = Uses[LUIdx];
4279     for (const Formula &F : LU.Formulae) {
4280       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4281         continue;
4282 
4283       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4284       if (!LUThatHas)
4285         continue;
4286 
4287       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4288                               LU.Kind, LU.AccessTy))
4289         continue;
4290 
4291       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4292 
4293       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4294 
4295       // Transfer the fixups of LU to LUThatHas.
4296       for (LSRFixup &Fixup : LU.Fixups) {
4297         Fixup.Offset += F.BaseOffset;
4298         LUThatHas->pushFixup(Fixup);
4299         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4300       }
4301 
4302       // Delete formulae from the new use which are no longer legal.
4303       bool Any = false;
4304       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4305         Formula &F = LUThatHas->Formulae[i];
4306         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4307                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4308           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4309                 dbgs() << '\n');
4310           LUThatHas->DeleteFormula(F);
4311           --i;
4312           --e;
4313           Any = true;
4314         }
4315       }
4316 
4317       if (Any)
4318         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4319 
4320       // Delete the old use.
4321       DeleteUse(LU, LUIdx);
4322       --LUIdx;
4323       --NumUses;
4324       break;
4325     }
4326   }
4327 
4328   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4329 }
4330 
4331 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4332 /// we've done more filtering, as it may be able to find more formulae to
4333 /// eliminate.
4334 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4335   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4336     DEBUG(dbgs() << "The search space is too complex.\n");
4337 
4338     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4339                     "undesirable dedicated registers.\n");
4340 
4341     FilterOutUndesirableDedicatedRegisters();
4342 
4343     DEBUG(dbgs() << "After pre-selection:\n";
4344           print_uses(dbgs()));
4345   }
4346 }
4347 
4348 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4349 /// Pick the best one and delete the others.
4350 /// This narrowing heuristic is to keep as many formulae with different
4351 /// Scale and ScaledReg pair as possible while narrowing the search space.
4352 /// The benefit is that it is more likely to find out a better solution
4353 /// from a formulae set with more Scale and ScaledReg variations than
4354 /// a formulae set with the same Scale and ScaledReg. The picking winner
4355 /// reg heurstic will often keep the formulae with the same Scale and
4356 /// ScaledReg and filter others, and we want to avoid that if possible.
4357 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4358   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4359     return;
4360 
4361   DEBUG(dbgs() << "The search space is too complex.\n"
4362                   "Narrowing the search space by choosing the best Formula "
4363                   "from the Formulae with the same Scale and ScaledReg.\n");
4364 
4365   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4366   typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy;
4367   BestFormulaeTy BestFormulae;
4368 #ifndef NDEBUG
4369   bool ChangedFormulae = false;
4370 #endif
4371   DenseSet<const SCEV *> VisitedRegs;
4372   SmallPtrSet<const SCEV *, 16> Regs;
4373 
4374   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4375     LSRUse &LU = Uses[LUIdx];
4376     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4377 
4378     // Return true if Formula FA is better than Formula FB.
4379     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4380       // First we will try to choose the Formula with fewer new registers.
4381       // For a register used by current Formula, the more the register is
4382       // shared among LSRUses, the less we increase the register number
4383       // counter of the formula.
4384       size_t FARegNum = 0;
4385       for (const SCEV *Reg : FA.BaseRegs) {
4386         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4387         FARegNum += (NumUses - UsedByIndices.count() + 1);
4388       }
4389       size_t FBRegNum = 0;
4390       for (const SCEV *Reg : FB.BaseRegs) {
4391         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4392         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4393       }
4394       if (FARegNum != FBRegNum)
4395         return FARegNum < FBRegNum;
4396 
4397       // If the new register numbers are the same, choose the Formula with
4398       // less Cost.
4399       Cost CostFA, CostFB;
4400       Regs.clear();
4401       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4402       Regs.clear();
4403       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4404       return CostFA.isLess(CostFB, TTI);
4405     };
4406 
4407     bool Any = false;
4408     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4409          ++FIdx) {
4410       Formula &F = LU.Formulae[FIdx];
4411       if (!F.ScaledReg)
4412         continue;
4413       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4414       if (P.second)
4415         continue;
4416 
4417       Formula &Best = LU.Formulae[P.first->second];
4418       if (IsBetterThan(F, Best))
4419         std::swap(F, Best);
4420       DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4421             dbgs() << "\n"
4422                       "    in favor of formula ";
4423             Best.print(dbgs()); dbgs() << '\n');
4424 #ifndef NDEBUG
4425       ChangedFormulae = true;
4426 #endif
4427       LU.DeleteFormula(F);
4428       --FIdx;
4429       --NumForms;
4430       Any = true;
4431     }
4432     if (Any)
4433       LU.RecomputeRegs(LUIdx, RegUses);
4434 
4435     // Reset this to prepare for the next use.
4436     BestFormulae.clear();
4437   }
4438 
4439   DEBUG(if (ChangedFormulae) {
4440     dbgs() << "\n"
4441               "After filtering out undesirable candidates:\n";
4442     print_uses(dbgs());
4443   });
4444 }
4445 
4446 /// The function delete formulas with high registers number expectation.
4447 /// Assuming we don't know the value of each formula (already delete
4448 /// all inefficient), generate probability of not selecting for each
4449 /// register.
4450 /// For example,
4451 /// Use1:
4452 ///  reg(a) + reg({0,+,1})
4453 ///  reg(a) + reg({-1,+,1}) + 1
4454 ///  reg({a,+,1})
4455 /// Use2:
4456 ///  reg(b) + reg({0,+,1})
4457 ///  reg(b) + reg({-1,+,1}) + 1
4458 ///  reg({b,+,1})
4459 /// Use3:
4460 ///  reg(c) + reg(b) + reg({0,+,1})
4461 ///  reg(c) + reg({b,+,1})
4462 ///
4463 /// Probability of not selecting
4464 ///                 Use1   Use2    Use3
4465 /// reg(a)         (1/3) *   1   *   1
4466 /// reg(b)           1   * (1/3) * (1/2)
4467 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4468 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4469 /// reg({a,+,1})   (2/3) *   1   *   1
4470 /// reg({b,+,1})     1   * (2/3) * (2/3)
4471 /// reg(c)           1   *   1   *   0
4472 ///
4473 /// Now count registers number mathematical expectation for each formula:
4474 /// Note that for each use we exclude probability if not selecting for the use.
4475 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4476 /// probabilty 1/3 of not selecting for Use1).
4477 /// Use1:
4478 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4479 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4480 ///  reg({a,+,1})                   1
4481 /// Use2:
4482 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4483 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4484 ///  reg({b,+,1})                   2/3
4485 /// Use3:
4486 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4487 ///  reg(c) + reg({b,+,1})          1 + 2/3
4488 
4489 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4490   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4491     return;
4492   // Ok, we have too many of formulae on our hands to conveniently handle.
4493   // Use a rough heuristic to thin out the list.
4494 
4495   // Set of Regs wich will be 100% used in final solution.
4496   // Used in each formula of a solution (in example above this is reg(c)).
4497   // We can skip them in calculations.
4498   SmallPtrSet<const SCEV *, 4> UniqRegs;
4499   DEBUG(dbgs() << "The search space is too complex.\n");
4500 
4501   // Map each register to probability of not selecting
4502   DenseMap <const SCEV *, float> RegNumMap;
4503   for (const SCEV *Reg : RegUses) {
4504     if (UniqRegs.count(Reg))
4505       continue;
4506     float PNotSel = 1;
4507     for (const LSRUse &LU : Uses) {
4508       if (!LU.Regs.count(Reg))
4509         continue;
4510       float P = LU.getNotSelectedProbability(Reg);
4511       if (P != 0.0)
4512         PNotSel *= P;
4513       else
4514         UniqRegs.insert(Reg);
4515     }
4516     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4517   }
4518 
4519   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4520 
4521   // Delete formulas where registers number expectation is high.
4522   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4523     LSRUse &LU = Uses[LUIdx];
4524     // If nothing to delete - continue.
4525     if (LU.Formulae.size() < 2)
4526       continue;
4527     // This is temporary solution to test performance. Float should be
4528     // replaced with round independent type (based on integers) to avoid
4529     // different results for different target builds.
4530     float FMinRegNum = LU.Formulae[0].getNumRegs();
4531     float FMinARegNum = LU.Formulae[0].getNumRegs();
4532     size_t MinIdx = 0;
4533     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4534       Formula &F = LU.Formulae[i];
4535       float FRegNum = 0;
4536       float FARegNum = 0;
4537       for (const SCEV *BaseReg : F.BaseRegs) {
4538         if (UniqRegs.count(BaseReg))
4539           continue;
4540         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4541         if (isa<SCEVAddRecExpr>(BaseReg))
4542           FARegNum +=
4543               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4544       }
4545       if (const SCEV *ScaledReg = F.ScaledReg) {
4546         if (!UniqRegs.count(ScaledReg)) {
4547           FRegNum +=
4548               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4549           if (isa<SCEVAddRecExpr>(ScaledReg))
4550             FARegNum +=
4551                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4552         }
4553       }
4554       if (FMinRegNum > FRegNum ||
4555           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4556         FMinRegNum = FRegNum;
4557         FMinARegNum = FARegNum;
4558         MinIdx = i;
4559       }
4560     }
4561     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4562           dbgs() << " with min reg num " << FMinRegNum << '\n');
4563     if (MinIdx != 0)
4564       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4565     while (LU.Formulae.size() != 1) {
4566       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4567             dbgs() << '\n');
4568       LU.Formulae.pop_back();
4569     }
4570     LU.RecomputeRegs(LUIdx, RegUses);
4571     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4572     Formula &F = LU.Formulae[0];
4573     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4574     // When we choose the formula, the regs become unique.
4575     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4576     if (F.ScaledReg)
4577       UniqRegs.insert(F.ScaledReg);
4578   }
4579   DEBUG(dbgs() << "After pre-selection:\n";
4580   print_uses(dbgs()));
4581 }
4582 
4583 
4584 /// Pick a register which seems likely to be profitable, and then in any use
4585 /// which has any reference to that register, delete all formulae which do not
4586 /// reference that register.
4587 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4588   // With all other options exhausted, loop until the system is simple
4589   // enough to handle.
4590   SmallPtrSet<const SCEV *, 4> Taken;
4591   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4592     // Ok, we have too many of formulae on our hands to conveniently handle.
4593     // Use a rough heuristic to thin out the list.
4594     DEBUG(dbgs() << "The search space is too complex.\n");
4595 
4596     // Pick the register which is used by the most LSRUses, which is likely
4597     // to be a good reuse register candidate.
4598     const SCEV *Best = nullptr;
4599     unsigned BestNum = 0;
4600     for (const SCEV *Reg : RegUses) {
4601       if (Taken.count(Reg))
4602         continue;
4603       if (!Best) {
4604         Best = Reg;
4605         BestNum = RegUses.getUsedByIndices(Reg).count();
4606       } else {
4607         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4608         if (Count > BestNum) {
4609           Best = Reg;
4610           BestNum = Count;
4611         }
4612       }
4613     }
4614 
4615     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4616                  << " will yield profitable reuse.\n");
4617     Taken.insert(Best);
4618 
4619     // In any use with formulae which references this register, delete formulae
4620     // which don't reference it.
4621     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4622       LSRUse &LU = Uses[LUIdx];
4623       if (!LU.Regs.count(Best)) continue;
4624 
4625       bool Any = false;
4626       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4627         Formula &F = LU.Formulae[i];
4628         if (!F.referencesReg(Best)) {
4629           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4630           LU.DeleteFormula(F);
4631           --e;
4632           --i;
4633           Any = true;
4634           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4635           continue;
4636         }
4637       }
4638 
4639       if (Any)
4640         LU.RecomputeRegs(LUIdx, RegUses);
4641     }
4642 
4643     DEBUG(dbgs() << "After pre-selection:\n";
4644           print_uses(dbgs()));
4645   }
4646 }
4647 
4648 /// If there are an extraordinary number of formulae to choose from, use some
4649 /// rough heuristics to prune down the number of formulae. This keeps the main
4650 /// solver from taking an extraordinary amount of time in some worst-case
4651 /// scenarios.
4652 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4653   NarrowSearchSpaceByDetectingSupersets();
4654   NarrowSearchSpaceByCollapsingUnrolledCode();
4655   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4656   if (FilterSameScaledReg)
4657     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4658   if (LSRExpNarrow)
4659     NarrowSearchSpaceByDeletingCostlyFormulas();
4660   else
4661     NarrowSearchSpaceByPickingWinnerRegs();
4662 }
4663 
4664 /// This is the recursive solver.
4665 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4666                                Cost &SolutionCost,
4667                                SmallVectorImpl<const Formula *> &Workspace,
4668                                const Cost &CurCost,
4669                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4670                                DenseSet<const SCEV *> &VisitedRegs) const {
4671   // Some ideas:
4672   //  - prune more:
4673   //    - use more aggressive filtering
4674   //    - sort the formula so that the most profitable solutions are found first
4675   //    - sort the uses too
4676   //  - search faster:
4677   //    - don't compute a cost, and then compare. compare while computing a cost
4678   //      and bail early.
4679   //    - track register sets with SmallBitVector
4680 
4681   const LSRUse &LU = Uses[Workspace.size()];
4682 
4683   // If this use references any register that's already a part of the
4684   // in-progress solution, consider it a requirement that a formula must
4685   // reference that register in order to be considered. This prunes out
4686   // unprofitable searching.
4687   SmallSetVector<const SCEV *, 4> ReqRegs;
4688   for (const SCEV *S : CurRegs)
4689     if (LU.Regs.count(S))
4690       ReqRegs.insert(S);
4691 
4692   SmallPtrSet<const SCEV *, 16> NewRegs;
4693   Cost NewCost;
4694   for (const Formula &F : LU.Formulae) {
4695     // Ignore formulae which may not be ideal in terms of register reuse of
4696     // ReqRegs.  The formula should use all required registers before
4697     // introducing new ones.
4698     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4699     for (const SCEV *Reg : ReqRegs) {
4700       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4701           is_contained(F.BaseRegs, Reg)) {
4702         --NumReqRegsToFind;
4703         if (NumReqRegsToFind == 0)
4704           break;
4705       }
4706     }
4707     if (NumReqRegsToFind != 0) {
4708       // If none of the formulae satisfied the required registers, then we could
4709       // clear ReqRegs and try again. Currently, we simply give up in this case.
4710       continue;
4711     }
4712 
4713     // Evaluate the cost of the current formula. If it's already worse than
4714     // the current best, prune the search at that point.
4715     NewCost = CurCost;
4716     NewRegs = CurRegs;
4717     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4718     if (NewCost.isLess(SolutionCost, TTI)) {
4719       Workspace.push_back(&F);
4720       if (Workspace.size() != Uses.size()) {
4721         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4722                      NewRegs, VisitedRegs);
4723         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4724           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4725       } else {
4726         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4727               dbgs() << ".\n Regs:";
4728               for (const SCEV *S : NewRegs)
4729                 dbgs() << ' ' << *S;
4730               dbgs() << '\n');
4731 
4732         SolutionCost = NewCost;
4733         Solution = Workspace;
4734       }
4735       Workspace.pop_back();
4736     }
4737   }
4738 }
4739 
4740 /// Choose one formula from each use. Return the results in the given Solution
4741 /// vector.
4742 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4743   SmallVector<const Formula *, 8> Workspace;
4744   Cost SolutionCost;
4745   SolutionCost.Lose();
4746   Cost CurCost;
4747   SmallPtrSet<const SCEV *, 16> CurRegs;
4748   DenseSet<const SCEV *> VisitedRegs;
4749   Workspace.reserve(Uses.size());
4750 
4751   // SolveRecurse does all the work.
4752   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4753                CurRegs, VisitedRegs);
4754   if (Solution.empty()) {
4755     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4756     return;
4757   }
4758 
4759   // Ok, we've now made all our decisions.
4760   DEBUG(dbgs() << "\n"
4761                   "The chosen solution requires "; SolutionCost.print(dbgs());
4762         dbgs() << ":\n";
4763         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4764           dbgs() << "  ";
4765           Uses[i].print(dbgs());
4766           dbgs() << "\n"
4767                     "    ";
4768           Solution[i]->print(dbgs());
4769           dbgs() << '\n';
4770         });
4771 
4772   assert(Solution.size() == Uses.size() && "Malformed solution!");
4773 }
4774 
4775 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4776 /// we can go while still being dominated by the input positions. This helps
4777 /// canonicalize the insert position, which encourages sharing.
4778 BasicBlock::iterator
4779 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4780                                  const SmallVectorImpl<Instruction *> &Inputs)
4781                                                                          const {
4782   Instruction *Tentative = &*IP;
4783   while (true) {
4784     bool AllDominate = true;
4785     Instruction *BetterPos = nullptr;
4786     // Don't bother attempting to insert before a catchswitch, their basic block
4787     // cannot have other non-PHI instructions.
4788     if (isa<CatchSwitchInst>(Tentative))
4789       return IP;
4790 
4791     for (Instruction *Inst : Inputs) {
4792       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4793         AllDominate = false;
4794         break;
4795       }
4796       // Attempt to find an insert position in the middle of the block,
4797       // instead of at the end, so that it can be used for other expansions.
4798       if (Tentative->getParent() == Inst->getParent() &&
4799           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4800         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4801     }
4802     if (!AllDominate)
4803       break;
4804     if (BetterPos)
4805       IP = BetterPos->getIterator();
4806     else
4807       IP = Tentative->getIterator();
4808 
4809     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4810     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4811 
4812     BasicBlock *IDom;
4813     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4814       if (!Rung) return IP;
4815       Rung = Rung->getIDom();
4816       if (!Rung) return IP;
4817       IDom = Rung->getBlock();
4818 
4819       // Don't climb into a loop though.
4820       const Loop *IDomLoop = LI.getLoopFor(IDom);
4821       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4822       if (IDomDepth <= IPLoopDepth &&
4823           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4824         break;
4825     }
4826 
4827     Tentative = IDom->getTerminator();
4828   }
4829 
4830   return IP;
4831 }
4832 
4833 /// Determine an input position which will be dominated by the operands and
4834 /// which will dominate the result.
4835 BasicBlock::iterator
4836 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4837                                            const LSRFixup &LF,
4838                                            const LSRUse &LU,
4839                                            SCEVExpander &Rewriter) const {
4840   // Collect some instructions which must be dominated by the
4841   // expanding replacement. These must be dominated by any operands that
4842   // will be required in the expansion.
4843   SmallVector<Instruction *, 4> Inputs;
4844   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4845     Inputs.push_back(I);
4846   if (LU.Kind == LSRUse::ICmpZero)
4847     if (Instruction *I =
4848           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4849       Inputs.push_back(I);
4850   if (LF.PostIncLoops.count(L)) {
4851     if (LF.isUseFullyOutsideLoop(L))
4852       Inputs.push_back(L->getLoopLatch()->getTerminator());
4853     else
4854       Inputs.push_back(IVIncInsertPos);
4855   }
4856   // The expansion must also be dominated by the increment positions of any
4857   // loops it for which it is using post-inc mode.
4858   for (const Loop *PIL : LF.PostIncLoops) {
4859     if (PIL == L) continue;
4860 
4861     // Be dominated by the loop exit.
4862     SmallVector<BasicBlock *, 4> ExitingBlocks;
4863     PIL->getExitingBlocks(ExitingBlocks);
4864     if (!ExitingBlocks.empty()) {
4865       BasicBlock *BB = ExitingBlocks[0];
4866       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4867         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4868       Inputs.push_back(BB->getTerminator());
4869     }
4870   }
4871 
4872   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4873          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4874          "Insertion point must be a normal instruction");
4875 
4876   // Then, climb up the immediate dominator tree as far as we can go while
4877   // still being dominated by the input positions.
4878   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4879 
4880   // Don't insert instructions before PHI nodes.
4881   while (isa<PHINode>(IP)) ++IP;
4882 
4883   // Ignore landingpad instructions.
4884   while (IP->isEHPad()) ++IP;
4885 
4886   // Ignore debug intrinsics.
4887   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4888 
4889   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4890   // IP consistent across expansions and allows the previously inserted
4891   // instructions to be reused by subsequent expansion.
4892   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4893     ++IP;
4894 
4895   return IP;
4896 }
4897 
4898 /// Emit instructions for the leading candidate expression for this LSRUse (this
4899 /// is called "expanding").
4900 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4901                            const Formula &F, BasicBlock::iterator IP,
4902                            SCEVExpander &Rewriter,
4903                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4904   if (LU.RigidFormula)
4905     return LF.OperandValToReplace;
4906 
4907   // Determine an input position which will be dominated by the operands and
4908   // which will dominate the result.
4909   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4910   Rewriter.setInsertPoint(&*IP);
4911 
4912   // Inform the Rewriter if we have a post-increment use, so that it can
4913   // perform an advantageous expansion.
4914   Rewriter.setPostInc(LF.PostIncLoops);
4915 
4916   // This is the type that the user actually needs.
4917   Type *OpTy = LF.OperandValToReplace->getType();
4918   // This will be the type that we'll initially expand to.
4919   Type *Ty = F.getType();
4920   if (!Ty)
4921     // No type known; just expand directly to the ultimate type.
4922     Ty = OpTy;
4923   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4924     // Expand directly to the ultimate type if it's the right size.
4925     Ty = OpTy;
4926   // This is the type to do integer arithmetic in.
4927   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4928 
4929   // Build up a list of operands to add together to form the full base.
4930   SmallVector<const SCEV *, 8> Ops;
4931 
4932   // Expand the BaseRegs portion.
4933   for (const SCEV *Reg : F.BaseRegs) {
4934     assert(!Reg->isZero() && "Zero allocated in a base register!");
4935 
4936     // If we're expanding for a post-inc user, make the post-inc adjustment.
4937     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4938     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4939   }
4940 
4941   // Expand the ScaledReg portion.
4942   Value *ICmpScaledV = nullptr;
4943   if (F.Scale != 0) {
4944     const SCEV *ScaledS = F.ScaledReg;
4945 
4946     // If we're expanding for a post-inc user, make the post-inc adjustment.
4947     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4948     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4949 
4950     if (LU.Kind == LSRUse::ICmpZero) {
4951       // Expand ScaleReg as if it was part of the base regs.
4952       if (F.Scale == 1)
4953         Ops.push_back(
4954             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4955       else {
4956         // An interesting way of "folding" with an icmp is to use a negated
4957         // scale, which we'll implement by inserting it into the other operand
4958         // of the icmp.
4959         assert(F.Scale == -1 &&
4960                "The only scale supported by ICmpZero uses is -1!");
4961         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4962       }
4963     } else {
4964       // Otherwise just expand the scaled register and an explicit scale,
4965       // which is expected to be matched as part of the address.
4966 
4967       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4968       // Unless the addressing mode will not be folded.
4969       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4970           isAMCompletelyFolded(TTI, LU, F)) {
4971         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4972         Ops.clear();
4973         Ops.push_back(SE.getUnknown(FullV));
4974       }
4975       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4976       if (F.Scale != 1)
4977         ScaledS =
4978             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4979       Ops.push_back(ScaledS);
4980     }
4981   }
4982 
4983   // Expand the GV portion.
4984   if (F.BaseGV) {
4985     // Flush the operand list to suppress SCEVExpander hoisting.
4986     if (!Ops.empty()) {
4987       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4988       Ops.clear();
4989       Ops.push_back(SE.getUnknown(FullV));
4990     }
4991     Ops.push_back(SE.getUnknown(F.BaseGV));
4992   }
4993 
4994   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4995   // unfolded offsets. LSR assumes they both live next to their uses.
4996   if (!Ops.empty()) {
4997     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4998     Ops.clear();
4999     Ops.push_back(SE.getUnknown(FullV));
5000   }
5001 
5002   // Expand the immediate portion.
5003   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5004   if (Offset != 0) {
5005     if (LU.Kind == LSRUse::ICmpZero) {
5006       // The other interesting way of "folding" with an ICmpZero is to use a
5007       // negated immediate.
5008       if (!ICmpScaledV)
5009         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5010       else {
5011         Ops.push_back(SE.getUnknown(ICmpScaledV));
5012         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5013       }
5014     } else {
5015       // Just add the immediate values. These again are expected to be matched
5016       // as part of the address.
5017       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5018     }
5019   }
5020 
5021   // Expand the unfolded offset portion.
5022   int64_t UnfoldedOffset = F.UnfoldedOffset;
5023   if (UnfoldedOffset != 0) {
5024     // Just add the immediate values.
5025     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5026                                                        UnfoldedOffset)));
5027   }
5028 
5029   // Emit instructions summing all the operands.
5030   const SCEV *FullS = Ops.empty() ?
5031                       SE.getConstant(IntTy, 0) :
5032                       SE.getAddExpr(Ops);
5033   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5034 
5035   // We're done expanding now, so reset the rewriter.
5036   Rewriter.clearPostInc();
5037 
5038   // An ICmpZero Formula represents an ICmp which we're handling as a
5039   // comparison against zero. Now that we've expanded an expression for that
5040   // form, update the ICmp's other operand.
5041   if (LU.Kind == LSRUse::ICmpZero) {
5042     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5043     DeadInsts.emplace_back(CI->getOperand(1));
5044     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5045                            "a scale at the same time!");
5046     if (F.Scale == -1) {
5047       if (ICmpScaledV->getType() != OpTy) {
5048         Instruction *Cast =
5049           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5050                                                    OpTy, false),
5051                            ICmpScaledV, OpTy, "tmp", CI);
5052         ICmpScaledV = Cast;
5053       }
5054       CI->setOperand(1, ICmpScaledV);
5055     } else {
5056       // A scale of 1 means that the scale has been expanded as part of the
5057       // base regs.
5058       assert((F.Scale == 0 || F.Scale == 1) &&
5059              "ICmp does not support folding a global value and "
5060              "a scale at the same time!");
5061       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5062                                            -(uint64_t)Offset);
5063       if (C->getType() != OpTy)
5064         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5065                                                           OpTy, false),
5066                                   C, OpTy);
5067 
5068       CI->setOperand(1, C);
5069     }
5070   }
5071 
5072   return FullV;
5073 }
5074 
5075 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5076 /// effectively happens in their predecessor blocks, so the expression may need
5077 /// to be expanded in multiple places.
5078 void LSRInstance::RewriteForPHI(
5079     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5080     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5081   DenseMap<BasicBlock *, Value *> Inserted;
5082   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5083     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5084       BasicBlock *BB = PN->getIncomingBlock(i);
5085 
5086       // If this is a critical edge, split the edge so that we do not insert
5087       // the code on all predecessor/successor paths.  We do this unless this
5088       // is the canonical backedge for this loop, which complicates post-inc
5089       // users.
5090       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5091           !isa<IndirectBrInst>(BB->getTerminator()) &&
5092           !isa<CatchSwitchInst>(BB->getTerminator())) {
5093         BasicBlock *Parent = PN->getParent();
5094         Loop *PNLoop = LI.getLoopFor(Parent);
5095         if (!PNLoop || Parent != PNLoop->getHeader()) {
5096           // Split the critical edge.
5097           BasicBlock *NewBB = nullptr;
5098           if (!Parent->isLandingPad()) {
5099             NewBB = SplitCriticalEdge(BB, Parent,
5100                                       CriticalEdgeSplittingOptions(&DT, &LI)
5101                                           .setMergeIdenticalEdges()
5102                                           .setDontDeleteUselessPHIs());
5103           } else {
5104             SmallVector<BasicBlock*, 2> NewBBs;
5105             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5106             NewBB = NewBBs[0];
5107           }
5108           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5109           // phi predecessors are identical. The simple thing to do is skip
5110           // splitting in this case rather than complicate the API.
5111           if (NewBB) {
5112             // If PN is outside of the loop and BB is in the loop, we want to
5113             // move the block to be immediately before the PHI block, not
5114             // immediately after BB.
5115             if (L->contains(BB) && !L->contains(PN))
5116               NewBB->moveBefore(PN->getParent());
5117 
5118             // Splitting the edge can reduce the number of PHI entries we have.
5119             e = PN->getNumIncomingValues();
5120             BB = NewBB;
5121             i = PN->getBasicBlockIndex(BB);
5122           }
5123         }
5124       }
5125 
5126       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5127         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5128       if (!Pair.second)
5129         PN->setIncomingValue(i, Pair.first->second);
5130       else {
5131         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5132                               Rewriter, DeadInsts);
5133 
5134         // If this is reuse-by-noop-cast, insert the noop cast.
5135         Type *OpTy = LF.OperandValToReplace->getType();
5136         if (FullV->getType() != OpTy)
5137           FullV =
5138             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5139                                                      OpTy, false),
5140                              FullV, LF.OperandValToReplace->getType(),
5141                              "tmp", BB->getTerminator());
5142 
5143         PN->setIncomingValue(i, FullV);
5144         Pair.first->second = FullV;
5145       }
5146     }
5147 }
5148 
5149 /// Emit instructions for the leading candidate expression for this LSRUse (this
5150 /// is called "expanding"), and update the UserInst to reference the newly
5151 /// expanded value.
5152 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5153                           const Formula &F, SCEVExpander &Rewriter,
5154                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5155   // First, find an insertion point that dominates UserInst. For PHI nodes,
5156   // find the nearest block which dominates all the relevant uses.
5157   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5158     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5159   } else {
5160     Value *FullV =
5161       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5162 
5163     // If this is reuse-by-noop-cast, insert the noop cast.
5164     Type *OpTy = LF.OperandValToReplace->getType();
5165     if (FullV->getType() != OpTy) {
5166       Instruction *Cast =
5167         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5168                          FullV, OpTy, "tmp", LF.UserInst);
5169       FullV = Cast;
5170     }
5171 
5172     // Update the user. ICmpZero is handled specially here (for now) because
5173     // Expand may have updated one of the operands of the icmp already, and
5174     // its new value may happen to be equal to LF.OperandValToReplace, in
5175     // which case doing replaceUsesOfWith leads to replacing both operands
5176     // with the same value. TODO: Reorganize this.
5177     if (LU.Kind == LSRUse::ICmpZero)
5178       LF.UserInst->setOperand(0, FullV);
5179     else
5180       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5181   }
5182 
5183   DeadInsts.emplace_back(LF.OperandValToReplace);
5184 }
5185 
5186 /// Rewrite all the fixup locations with new values, following the chosen
5187 /// solution.
5188 void LSRInstance::ImplementSolution(
5189     const SmallVectorImpl<const Formula *> &Solution) {
5190   // Keep track of instructions we may have made dead, so that
5191   // we can remove them after we are done working.
5192   SmallVector<WeakTrackingVH, 16> DeadInsts;
5193 
5194   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5195                         "lsr");
5196 #ifndef NDEBUG
5197   Rewriter.setDebugType(DEBUG_TYPE);
5198 #endif
5199   Rewriter.disableCanonicalMode();
5200   Rewriter.enableLSRMode();
5201   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5202 
5203   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5204   for (const IVChain &Chain : IVChainVec) {
5205     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5206       Rewriter.setChainedPhi(PN);
5207   }
5208 
5209   // Expand the new value definitions and update the users.
5210   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5211     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5212       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5213       Changed = true;
5214     }
5215 
5216   for (const IVChain &Chain : IVChainVec) {
5217     GenerateIVChain(Chain, Rewriter, DeadInsts);
5218     Changed = true;
5219   }
5220   // Clean up after ourselves. This must be done before deleting any
5221   // instructions.
5222   Rewriter.clear();
5223 
5224   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5225 }
5226 
5227 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5228                          DominatorTree &DT, LoopInfo &LI,
5229                          const TargetTransformInfo &TTI)
5230     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
5231       IVIncInsertPos(nullptr) {
5232   // If LoopSimplify form is not available, stay out of trouble.
5233   if (!L->isLoopSimplifyForm())
5234     return;
5235 
5236   // If there's no interesting work to be done, bail early.
5237   if (IU.empty()) return;
5238 
5239   // If there's too much analysis to be done, bail early. We won't be able to
5240   // model the problem anyway.
5241   unsigned NumUsers = 0;
5242   for (const IVStrideUse &U : IU) {
5243     if (++NumUsers > MaxIVUsers) {
5244       (void)U;
5245       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5246       return;
5247     }
5248     // Bail out if we have a PHI on an EHPad that gets a value from a
5249     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5250     // no good place to stick any instructions.
5251     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5252        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5253        if (isa<FuncletPadInst>(FirstNonPHI) ||
5254            isa<CatchSwitchInst>(FirstNonPHI))
5255          for (BasicBlock *PredBB : PN->blocks())
5256            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5257              return;
5258     }
5259   }
5260 
5261 #ifndef NDEBUG
5262   // All dominating loops must have preheaders, or SCEVExpander may not be able
5263   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5264   //
5265   // IVUsers analysis should only create users that are dominated by simple loop
5266   // headers. Since this loop should dominate all of its users, its user list
5267   // should be empty if this loop itself is not within a simple loop nest.
5268   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5269        Rung; Rung = Rung->getIDom()) {
5270     BasicBlock *BB = Rung->getBlock();
5271     const Loop *DomLoop = LI.getLoopFor(BB);
5272     if (DomLoop && DomLoop->getHeader() == BB) {
5273       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5274     }
5275   }
5276 #endif // DEBUG
5277 
5278   DEBUG(dbgs() << "\nLSR on loop ";
5279         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5280         dbgs() << ":\n");
5281 
5282   // First, perform some low-level loop optimizations.
5283   OptimizeShadowIV();
5284   OptimizeLoopTermCond();
5285 
5286   // If loop preparation eliminates all interesting IV users, bail.
5287   if (IU.empty()) return;
5288 
5289   // Skip nested loops until we can model them better with formulae.
5290   if (!L->empty()) {
5291     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5292     return;
5293   }
5294 
5295   // Start collecting data and preparing for the solver.
5296   CollectChains();
5297   CollectInterestingTypesAndFactors();
5298   CollectFixupsAndInitialFormulae();
5299   CollectLoopInvariantFixupsAndFormulae();
5300 
5301   assert(!Uses.empty() && "IVUsers reported at least one use");
5302   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5303         print_uses(dbgs()));
5304 
5305   // Now use the reuse data to generate a bunch of interesting ways
5306   // to formulate the values needed for the uses.
5307   GenerateAllReuseFormulae();
5308 
5309   FilterOutUndesirableDedicatedRegisters();
5310   NarrowSearchSpaceUsingHeuristics();
5311 
5312   SmallVector<const Formula *, 8> Solution;
5313   Solve(Solution);
5314 
5315   // Release memory that is no longer needed.
5316   Factors.clear();
5317   Types.clear();
5318   RegUses.clear();
5319 
5320   if (Solution.empty())
5321     return;
5322 
5323 #ifndef NDEBUG
5324   // Formulae should be legal.
5325   for (const LSRUse &LU : Uses) {
5326     for (const Formula &F : LU.Formulae)
5327       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5328                         F) && "Illegal formula generated!");
5329   };
5330 #endif
5331 
5332   // Now that we've decided what we want, make it so.
5333   ImplementSolution(Solution);
5334 }
5335 
5336 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5337 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5338   if (Factors.empty() && Types.empty()) return;
5339 
5340   OS << "LSR has identified the following interesting factors and types: ";
5341   bool First = true;
5342 
5343   for (int64_t Factor : Factors) {
5344     if (!First) OS << ", ";
5345     First = false;
5346     OS << '*' << Factor;
5347   }
5348 
5349   for (Type *Ty : Types) {
5350     if (!First) OS << ", ";
5351     First = false;
5352     OS << '(' << *Ty << ')';
5353   }
5354   OS << '\n';
5355 }
5356 
5357 void LSRInstance::print_fixups(raw_ostream &OS) const {
5358   OS << "LSR is examining the following fixup sites:\n";
5359   for (const LSRUse &LU : Uses)
5360     for (const LSRFixup &LF : LU.Fixups) {
5361       dbgs() << "  ";
5362       LF.print(OS);
5363       OS << '\n';
5364     }
5365 }
5366 
5367 void LSRInstance::print_uses(raw_ostream &OS) const {
5368   OS << "LSR is examining the following uses:\n";
5369   for (const LSRUse &LU : Uses) {
5370     dbgs() << "  ";
5371     LU.print(OS);
5372     OS << '\n';
5373     for (const Formula &F : LU.Formulae) {
5374       OS << "    ";
5375       F.print(OS);
5376       OS << '\n';
5377     }
5378   }
5379 }
5380 
5381 void LSRInstance::print(raw_ostream &OS) const {
5382   print_factors_and_types(OS);
5383   print_fixups(OS);
5384   print_uses(OS);
5385 }
5386 
5387 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5388   print(errs()); errs() << '\n';
5389 }
5390 #endif
5391 
5392 namespace {
5393 
5394 class LoopStrengthReduce : public LoopPass {
5395 public:
5396   static char ID; // Pass ID, replacement for typeid
5397 
5398   LoopStrengthReduce();
5399 
5400 private:
5401   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5402   void getAnalysisUsage(AnalysisUsage &AU) const override;
5403 };
5404 
5405 } // end anonymous namespace
5406 
5407 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5408   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5409 }
5410 
5411 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5412   // We split critical edges, so we change the CFG.  However, we do update
5413   // many analyses if they are around.
5414   AU.addPreservedID(LoopSimplifyID);
5415 
5416   AU.addRequired<LoopInfoWrapperPass>();
5417   AU.addPreserved<LoopInfoWrapperPass>();
5418   AU.addRequiredID(LoopSimplifyID);
5419   AU.addRequired<DominatorTreeWrapperPass>();
5420   AU.addPreserved<DominatorTreeWrapperPass>();
5421   AU.addRequired<ScalarEvolutionWrapperPass>();
5422   AU.addPreserved<ScalarEvolutionWrapperPass>();
5423   // Requiring LoopSimplify a second time here prevents IVUsers from running
5424   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5425   AU.addRequiredID(LoopSimplifyID);
5426   AU.addRequired<IVUsersWrapperPass>();
5427   AU.addPreserved<IVUsersWrapperPass>();
5428   AU.addRequired<TargetTransformInfoWrapperPass>();
5429 }
5430 
5431 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5432                                DominatorTree &DT, LoopInfo &LI,
5433                                const TargetTransformInfo &TTI) {
5434   bool Changed = false;
5435 
5436   // Run the main LSR transformation.
5437   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5438 
5439   // Remove any extra phis created by processing inner loops.
5440   Changed |= DeleteDeadPHIs(L->getHeader());
5441   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5442     SmallVector<WeakTrackingVH, 16> DeadInsts;
5443     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5444     SCEVExpander Rewriter(SE, DL, "lsr");
5445 #ifndef NDEBUG
5446     Rewriter.setDebugType(DEBUG_TYPE);
5447 #endif
5448     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5449     if (numFolded) {
5450       Changed = true;
5451       DeleteTriviallyDeadInstructions(DeadInsts);
5452       DeleteDeadPHIs(L->getHeader());
5453     }
5454   }
5455   return Changed;
5456 }
5457 
5458 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5459   if (skipLoop(L))
5460     return false;
5461 
5462   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5463   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5464   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5465   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5466   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5467       *L->getHeader()->getParent());
5468   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5469 }
5470 
5471 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5472                                               LoopStandardAnalysisResults &AR,
5473                                               LPMUpdater &) {
5474   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5475                           AR.DT, AR.LI, AR.TTI))
5476     return PreservedAnalyses::all();
5477 
5478   return getLoopPassPreservedAnalyses();
5479 }
5480 
5481 char LoopStrengthReduce::ID = 0;
5482 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5483                       "Loop Strength Reduction", false, false)
5484 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5485 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5486 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5487 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5488 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5489 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5490 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5491                     "Loop Strength Reduction", false, false)
5492 
5493 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5494