1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 #define DEBUG_TYPE "loop-reduce" 82 83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 84 /// bail out. This threshold is far beyond the number of users that LSR can 85 /// conceivably solve, so it should not affect generated code, but catches the 86 /// worst cases before LSR burns too much compile time and stack space. 87 static const unsigned MaxIVUsers = 200; 88 89 // Temporary flag to cleanup congruent phis after LSR phi expansion. 90 // It's currently disabled until we can determine whether it's truly useful or 91 // not. The flag should be removed after the v3.0 release. 92 // This is now needed for ivchains. 93 static cl::opt<bool> EnablePhiElim( 94 "enable-lsr-phielim", cl::Hidden, cl::init(true), 95 cl::desc("Enable LSR phi elimination")); 96 97 #ifndef NDEBUG 98 // Stress test IV chain generation. 99 static cl::opt<bool> StressIVChain( 100 "stress-ivchain", cl::Hidden, cl::init(false), 101 cl::desc("Stress test LSR IV chains")); 102 #else 103 static bool StressIVChain = false; 104 #endif 105 106 namespace { 107 108 struct MemAccessTy { 109 /// Used in situations where the accessed memory type is unknown. 110 static const unsigned UnknownAddressSpace = ~0u; 111 112 Type *MemTy; 113 unsigned AddrSpace; 114 115 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 116 117 MemAccessTy(Type *Ty, unsigned AS) : 118 MemTy(Ty), AddrSpace(AS) {} 119 120 bool operator==(MemAccessTy Other) const { 121 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 122 } 123 124 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 125 126 static MemAccessTy getUnknown(LLVMContext &Ctx) { 127 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 128 } 129 }; 130 131 /// This class holds data which is used to order reuse candidates. 132 class RegSortData { 133 public: 134 /// This represents the set of LSRUse indices which reference 135 /// a particular register. 136 SmallBitVector UsedByIndices; 137 138 void print(raw_ostream &OS) const; 139 void dump() const; 140 }; 141 142 } 143 144 void RegSortData::print(raw_ostream &OS) const { 145 OS << "[NumUses=" << UsedByIndices.count() << ']'; 146 } 147 148 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 149 void RegSortData::dump() const { 150 print(errs()); errs() << '\n'; 151 } 152 #endif 153 154 namespace { 155 156 /// Map register candidates to information about how they are used. 157 class RegUseTracker { 158 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 159 160 RegUsesTy RegUsesMap; 161 SmallVector<const SCEV *, 16> RegSequence; 162 163 public: 164 void countRegister(const SCEV *Reg, size_t LUIdx); 165 void dropRegister(const SCEV *Reg, size_t LUIdx); 166 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 167 168 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 169 170 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 171 172 void clear(); 173 174 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 175 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 176 iterator begin() { return RegSequence.begin(); } 177 iterator end() { return RegSequence.end(); } 178 const_iterator begin() const { return RegSequence.begin(); } 179 const_iterator end() const { return RegSequence.end(); } 180 }; 181 182 } 183 184 void 185 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 186 std::pair<RegUsesTy::iterator, bool> Pair = 187 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 188 RegSortData &RSD = Pair.first->second; 189 if (Pair.second) 190 RegSequence.push_back(Reg); 191 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 192 RSD.UsedByIndices.set(LUIdx); 193 } 194 195 void 196 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 197 RegUsesTy::iterator It = RegUsesMap.find(Reg); 198 assert(It != RegUsesMap.end()); 199 RegSortData &RSD = It->second; 200 assert(RSD.UsedByIndices.size() > LUIdx); 201 RSD.UsedByIndices.reset(LUIdx); 202 } 203 204 void 205 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 206 assert(LUIdx <= LastLUIdx); 207 208 // Update RegUses. The data structure is not optimized for this purpose; 209 // we must iterate through it and update each of the bit vectors. 210 for (auto &Pair : RegUsesMap) { 211 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 212 if (LUIdx < UsedByIndices.size()) 213 UsedByIndices[LUIdx] = 214 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 215 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 216 } 217 } 218 219 bool 220 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 221 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 222 if (I == RegUsesMap.end()) 223 return false; 224 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 225 int i = UsedByIndices.find_first(); 226 if (i == -1) return false; 227 if ((size_t)i != LUIdx) return true; 228 return UsedByIndices.find_next(i) != -1; 229 } 230 231 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 232 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 233 assert(I != RegUsesMap.end() && "Unknown register!"); 234 return I->second.UsedByIndices; 235 } 236 237 void RegUseTracker::clear() { 238 RegUsesMap.clear(); 239 RegSequence.clear(); 240 } 241 242 namespace { 243 244 /// This class holds information that describes a formula for computing 245 /// satisfying a use. It may include broken-out immediates and scaled registers. 246 struct Formula { 247 /// Global base address used for complex addressing. 248 GlobalValue *BaseGV; 249 250 /// Base offset for complex addressing. 251 int64_t BaseOffset; 252 253 /// Whether any complex addressing has a base register. 254 bool HasBaseReg; 255 256 /// The scale of any complex addressing. 257 int64_t Scale; 258 259 /// The list of "base" registers for this use. When this is non-empty. The 260 /// canonical representation of a formula is 261 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 262 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 263 /// #1 enforces that the scaled register is always used when at least two 264 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 265 /// #2 enforces that 1 * reg is reg. 266 /// This invariant can be temporarly broken while building a formula. 267 /// However, every formula inserted into the LSRInstance must be in canonical 268 /// form. 269 SmallVector<const SCEV *, 4> BaseRegs; 270 271 /// The 'scaled' register for this use. This should be non-null when Scale is 272 /// not zero. 273 const SCEV *ScaledReg; 274 275 /// An additional constant offset which added near the use. This requires a 276 /// temporary register, but the offset itself can live in an add immediate 277 /// field rather than a register. 278 int64_t UnfoldedOffset; 279 280 Formula() 281 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 282 ScaledReg(nullptr), UnfoldedOffset(0) {} 283 284 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 285 286 bool isCanonical() const; 287 288 void canonicalize(); 289 290 bool unscale(); 291 292 size_t getNumRegs() const; 293 Type *getType() const; 294 295 void deleteBaseReg(const SCEV *&S); 296 297 bool referencesReg(const SCEV *S) const; 298 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 299 const RegUseTracker &RegUses) const; 300 301 void print(raw_ostream &OS) const; 302 void dump() const; 303 }; 304 305 } 306 307 /// Recursion helper for initialMatch. 308 static void DoInitialMatch(const SCEV *S, Loop *L, 309 SmallVectorImpl<const SCEV *> &Good, 310 SmallVectorImpl<const SCEV *> &Bad, 311 ScalarEvolution &SE) { 312 // Collect expressions which properly dominate the loop header. 313 if (SE.properlyDominates(S, L->getHeader())) { 314 Good.push_back(S); 315 return; 316 } 317 318 // Look at add operands. 319 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 320 for (const SCEV *S : Add->operands()) 321 DoInitialMatch(S, L, Good, Bad, SE); 322 return; 323 } 324 325 // Look at addrec operands. 326 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 327 if (!AR->getStart()->isZero()) { 328 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 329 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 330 AR->getStepRecurrence(SE), 331 // FIXME: AR->getNoWrapFlags() 332 AR->getLoop(), SCEV::FlagAnyWrap), 333 L, Good, Bad, SE); 334 return; 335 } 336 337 // Handle a multiplication by -1 (negation) if it didn't fold. 338 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 339 if (Mul->getOperand(0)->isAllOnesValue()) { 340 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 341 const SCEV *NewMul = SE.getMulExpr(Ops); 342 343 SmallVector<const SCEV *, 4> MyGood; 344 SmallVector<const SCEV *, 4> MyBad; 345 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 346 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 347 SE.getEffectiveSCEVType(NewMul->getType()))); 348 for (const SCEV *S : MyGood) 349 Good.push_back(SE.getMulExpr(NegOne, S)); 350 for (const SCEV *S : MyBad) 351 Bad.push_back(SE.getMulExpr(NegOne, S)); 352 return; 353 } 354 355 // Ok, we can't do anything interesting. Just stuff the whole thing into a 356 // register and hope for the best. 357 Bad.push_back(S); 358 } 359 360 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 361 /// all loop-invariant and loop-computable values in a single base register. 362 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 363 SmallVector<const SCEV *, 4> Good; 364 SmallVector<const SCEV *, 4> Bad; 365 DoInitialMatch(S, L, Good, Bad, SE); 366 if (!Good.empty()) { 367 const SCEV *Sum = SE.getAddExpr(Good); 368 if (!Sum->isZero()) 369 BaseRegs.push_back(Sum); 370 HasBaseReg = true; 371 } 372 if (!Bad.empty()) { 373 const SCEV *Sum = SE.getAddExpr(Bad); 374 if (!Sum->isZero()) 375 BaseRegs.push_back(Sum); 376 HasBaseReg = true; 377 } 378 canonicalize(); 379 } 380 381 /// \brief Check whether or not this formula statisfies the canonical 382 /// representation. 383 /// \see Formula::BaseRegs. 384 bool Formula::isCanonical() const { 385 if (ScaledReg) 386 return Scale != 1 || !BaseRegs.empty(); 387 return BaseRegs.size() <= 1; 388 } 389 390 /// \brief Helper method to morph a formula into its canonical representation. 391 /// \see Formula::BaseRegs. 392 /// Every formula having more than one base register, must use the ScaledReg 393 /// field. Otherwise, we would have to do special cases everywhere in LSR 394 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 395 /// On the other hand, 1*reg should be canonicalized into reg. 396 void Formula::canonicalize() { 397 if (isCanonical()) 398 return; 399 // So far we did not need this case. This is easy to implement but it is 400 // useless to maintain dead code. Beside it could hurt compile time. 401 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 402 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 403 ScaledReg = BaseRegs.back(); 404 BaseRegs.pop_back(); 405 Scale = 1; 406 size_t BaseRegsSize = BaseRegs.size(); 407 size_t Try = 0; 408 // If ScaledReg is an invariant, try to find a variant expression. 409 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 410 std::swap(ScaledReg, BaseRegs[Try++]); 411 } 412 413 /// \brief Get rid of the scale in the formula. 414 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 415 /// \return true if it was possible to get rid of the scale, false otherwise. 416 /// \note After this operation the formula may not be in the canonical form. 417 bool Formula::unscale() { 418 if (Scale != 1) 419 return false; 420 Scale = 0; 421 BaseRegs.push_back(ScaledReg); 422 ScaledReg = nullptr; 423 return true; 424 } 425 426 /// Return the total number of register operands used by this formula. This does 427 /// not include register uses implied by non-constant addrec strides. 428 size_t Formula::getNumRegs() const { 429 return !!ScaledReg + BaseRegs.size(); 430 } 431 432 /// Return the type of this formula, if it has one, or null otherwise. This type 433 /// is meaningless except for the bit size. 434 Type *Formula::getType() const { 435 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 436 ScaledReg ? ScaledReg->getType() : 437 BaseGV ? BaseGV->getType() : 438 nullptr; 439 } 440 441 /// Delete the given base reg from the BaseRegs list. 442 void Formula::deleteBaseReg(const SCEV *&S) { 443 if (&S != &BaseRegs.back()) 444 std::swap(S, BaseRegs.back()); 445 BaseRegs.pop_back(); 446 } 447 448 /// Test if this formula references the given register. 449 bool Formula::referencesReg(const SCEV *S) const { 450 return S == ScaledReg || 451 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 452 } 453 454 /// Test whether this formula uses registers which are used by uses other than 455 /// the use with the given index. 456 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 457 const RegUseTracker &RegUses) const { 458 if (ScaledReg) 459 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 460 return true; 461 for (const SCEV *BaseReg : BaseRegs) 462 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 463 return true; 464 return false; 465 } 466 467 void Formula::print(raw_ostream &OS) const { 468 bool First = true; 469 if (BaseGV) { 470 if (!First) OS << " + "; else First = false; 471 BaseGV->printAsOperand(OS, /*PrintType=*/false); 472 } 473 if (BaseOffset != 0) { 474 if (!First) OS << " + "; else First = false; 475 OS << BaseOffset; 476 } 477 for (const SCEV *BaseReg : BaseRegs) { 478 if (!First) OS << " + "; else First = false; 479 OS << "reg(" << *BaseReg << ')'; 480 } 481 if (HasBaseReg && BaseRegs.empty()) { 482 if (!First) OS << " + "; else First = false; 483 OS << "**error: HasBaseReg**"; 484 } else if (!HasBaseReg && !BaseRegs.empty()) { 485 if (!First) OS << " + "; else First = false; 486 OS << "**error: !HasBaseReg**"; 487 } 488 if (Scale != 0) { 489 if (!First) OS << " + "; else First = false; 490 OS << Scale << "*reg("; 491 if (ScaledReg) 492 OS << *ScaledReg; 493 else 494 OS << "<unknown>"; 495 OS << ')'; 496 } 497 if (UnfoldedOffset != 0) { 498 if (!First) OS << " + "; 499 OS << "imm(" << UnfoldedOffset << ')'; 500 } 501 } 502 503 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 504 void Formula::dump() const { 505 print(errs()); errs() << '\n'; 506 } 507 #endif 508 509 /// Return true if the given addrec can be sign-extended without changing its 510 /// value. 511 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 512 Type *WideTy = 513 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 514 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 515 } 516 517 /// Return true if the given add can be sign-extended without changing its 518 /// value. 519 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 520 Type *WideTy = 521 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 522 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 523 } 524 525 /// Return true if the given mul can be sign-extended without changing its 526 /// value. 527 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 528 Type *WideTy = 529 IntegerType::get(SE.getContext(), 530 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 531 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 532 } 533 534 /// Return an expression for LHS /s RHS, if it can be determined and if the 535 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 536 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 537 /// the multiplication may overflow, which is useful when the result will be 538 /// used in a context where the most significant bits are ignored. 539 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 540 ScalarEvolution &SE, 541 bool IgnoreSignificantBits = false) { 542 // Handle the trivial case, which works for any SCEV type. 543 if (LHS == RHS) 544 return SE.getConstant(LHS->getType(), 1); 545 546 // Handle a few RHS special cases. 547 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 548 if (RC) { 549 const APInt &RA = RC->getValue()->getValue(); 550 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 551 // some folding. 552 if (RA.isAllOnesValue()) 553 return SE.getMulExpr(LHS, RC); 554 // Handle x /s 1 as x. 555 if (RA == 1) 556 return LHS; 557 } 558 559 // Check for a division of a constant by a constant. 560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 561 if (!RC) 562 return nullptr; 563 const APInt &LA = C->getValue()->getValue(); 564 const APInt &RA = RC->getValue()->getValue(); 565 if (LA.srem(RA) != 0) 566 return nullptr; 567 return SE.getConstant(LA.sdiv(RA)); 568 } 569 570 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 571 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 572 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 573 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 574 IgnoreSignificantBits); 575 if (!Step) return nullptr; 576 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 577 IgnoreSignificantBits); 578 if (!Start) return nullptr; 579 // FlagNW is independent of the start value, step direction, and is 580 // preserved with smaller magnitude steps. 581 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 582 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 583 } 584 return nullptr; 585 } 586 587 // Distribute the sdiv over add operands, if the add doesn't overflow. 588 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 589 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 590 SmallVector<const SCEV *, 8> Ops; 591 for (const SCEV *S : Add->operands()) { 592 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 593 if (!Op) return nullptr; 594 Ops.push_back(Op); 595 } 596 return SE.getAddExpr(Ops); 597 } 598 return nullptr; 599 } 600 601 // Check for a multiply operand that we can pull RHS out of. 602 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 603 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 604 SmallVector<const SCEV *, 4> Ops; 605 bool Found = false; 606 for (const SCEV *S : Mul->operands()) { 607 if (!Found) 608 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 609 IgnoreSignificantBits)) { 610 S = Q; 611 Found = true; 612 } 613 Ops.push_back(S); 614 } 615 return Found ? SE.getMulExpr(Ops) : nullptr; 616 } 617 return nullptr; 618 } 619 620 // Otherwise we don't know. 621 return nullptr; 622 } 623 624 /// If S involves the addition of a constant integer value, return that integer 625 /// value, and mutate S to point to a new SCEV with that value excluded. 626 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 627 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 628 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 629 S = SE.getConstant(C->getType(), 0); 630 return C->getValue()->getSExtValue(); 631 } 632 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 633 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 634 int64_t Result = ExtractImmediate(NewOps.front(), SE); 635 if (Result != 0) 636 S = SE.getAddExpr(NewOps); 637 return Result; 638 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 639 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 640 int64_t Result = ExtractImmediate(NewOps.front(), SE); 641 if (Result != 0) 642 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 643 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 644 SCEV::FlagAnyWrap); 645 return Result; 646 } 647 return 0; 648 } 649 650 /// If S involves the addition of a GlobalValue address, return that symbol, and 651 /// mutate S to point to a new SCEV with that value excluded. 652 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 653 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 654 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 655 S = SE.getConstant(GV->getType(), 0); 656 return GV; 657 } 658 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 659 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 660 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 661 if (Result) 662 S = SE.getAddExpr(NewOps); 663 return Result; 664 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 665 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 666 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 667 if (Result) 668 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 669 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 670 SCEV::FlagAnyWrap); 671 return Result; 672 } 673 return nullptr; 674 } 675 676 /// Returns true if the specified instruction is using the specified value as an 677 /// address. 678 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 679 bool isAddress = isa<LoadInst>(Inst); 680 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 681 if (SI->getOperand(1) == OperandVal) 682 isAddress = true; 683 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 684 // Addressing modes can also be folded into prefetches and a variety 685 // of intrinsics. 686 switch (II->getIntrinsicID()) { 687 default: break; 688 case Intrinsic::prefetch: 689 case Intrinsic::x86_sse_storeu_ps: 690 case Intrinsic::x86_sse2_storeu_pd: 691 case Intrinsic::x86_sse2_storeu_dq: 692 case Intrinsic::x86_sse2_storel_dq: 693 if (II->getArgOperand(0) == OperandVal) 694 isAddress = true; 695 break; 696 } 697 } 698 return isAddress; 699 } 700 701 /// Return the type of the memory being accessed. 702 static MemAccessTy getAccessType(const Instruction *Inst) { 703 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 704 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 705 AccessTy.MemTy = SI->getOperand(0)->getType(); 706 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 707 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 708 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 709 } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 710 // Addressing modes can also be folded into prefetches and a variety 711 // of intrinsics. 712 switch (II->getIntrinsicID()) { 713 default: break; 714 case Intrinsic::x86_sse_storeu_ps: 715 case Intrinsic::x86_sse2_storeu_pd: 716 case Intrinsic::x86_sse2_storeu_dq: 717 case Intrinsic::x86_sse2_storel_dq: 718 AccessTy.MemTy = II->getArgOperand(0)->getType(); 719 break; 720 } 721 } 722 723 // All pointers have the same requirements, so canonicalize them to an 724 // arbitrary pointer type to minimize variation. 725 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 726 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 727 PTy->getAddressSpace()); 728 729 return AccessTy; 730 } 731 732 /// Return true if this AddRec is already a phi in its loop. 733 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 734 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 735 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 736 if (SE.isSCEVable(PN->getType()) && 737 (SE.getEffectiveSCEVType(PN->getType()) == 738 SE.getEffectiveSCEVType(AR->getType())) && 739 SE.getSCEV(PN) == AR) 740 return true; 741 } 742 return false; 743 } 744 745 /// Check if expanding this expression is likely to incur significant cost. This 746 /// is tricky because SCEV doesn't track which expressions are actually computed 747 /// by the current IR. 748 /// 749 /// We currently allow expansion of IV increments that involve adds, 750 /// multiplication by constants, and AddRecs from existing phis. 751 /// 752 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 753 /// obvious multiple of the UDivExpr. 754 static bool isHighCostExpansion(const SCEV *S, 755 SmallPtrSetImpl<const SCEV*> &Processed, 756 ScalarEvolution &SE) { 757 // Zero/One operand expressions 758 switch (S->getSCEVType()) { 759 case scUnknown: 760 case scConstant: 761 return false; 762 case scTruncate: 763 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 764 Processed, SE); 765 case scZeroExtend: 766 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 767 Processed, SE); 768 case scSignExtend: 769 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 770 Processed, SE); 771 } 772 773 if (!Processed.insert(S).second) 774 return false; 775 776 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 777 for (const SCEV *S : Add->operands()) { 778 if (isHighCostExpansion(S, Processed, SE)) 779 return true; 780 } 781 return false; 782 } 783 784 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 785 if (Mul->getNumOperands() == 2) { 786 // Multiplication by a constant is ok 787 if (isa<SCEVConstant>(Mul->getOperand(0))) 788 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 789 790 // If we have the value of one operand, check if an existing 791 // multiplication already generates this expression. 792 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 793 Value *UVal = U->getValue(); 794 for (User *UR : UVal->users()) { 795 // If U is a constant, it may be used by a ConstantExpr. 796 Instruction *UI = dyn_cast<Instruction>(UR); 797 if (UI && UI->getOpcode() == Instruction::Mul && 798 SE.isSCEVable(UI->getType())) { 799 return SE.getSCEV(UI) == Mul; 800 } 801 } 802 } 803 } 804 } 805 806 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 807 if (isExistingPhi(AR, SE)) 808 return false; 809 } 810 811 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 812 return true; 813 } 814 815 /// If any of the instructions is the specified set are trivially dead, delete 816 /// them and see if this makes any of their operands subsequently dead. 817 static bool 818 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 819 bool Changed = false; 820 821 while (!DeadInsts.empty()) { 822 Value *V = DeadInsts.pop_back_val(); 823 Instruction *I = dyn_cast_or_null<Instruction>(V); 824 825 if (!I || !isInstructionTriviallyDead(I)) 826 continue; 827 828 for (Use &O : I->operands()) 829 if (Instruction *U = dyn_cast<Instruction>(O)) { 830 O = nullptr; 831 if (U->use_empty()) 832 DeadInsts.emplace_back(U); 833 } 834 835 I->eraseFromParent(); 836 Changed = true; 837 } 838 839 return Changed; 840 } 841 842 namespace { 843 class LSRUse; 844 } 845 846 /// \brief Check if the addressing mode defined by \p F is completely 847 /// folded in \p LU at isel time. 848 /// This includes address-mode folding and special icmp tricks. 849 /// This function returns true if \p LU can accommodate what \p F 850 /// defines and up to 1 base + 1 scaled + offset. 851 /// In other words, if \p F has several base registers, this function may 852 /// still return true. Therefore, users still need to account for 853 /// additional base registers and/or unfolded offsets to derive an 854 /// accurate cost model. 855 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 856 const LSRUse &LU, const Formula &F); 857 // Get the cost of the scaling factor used in F for LU. 858 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 859 const LSRUse &LU, const Formula &F); 860 861 namespace { 862 863 /// This class is used to measure and compare candidate formulae. 864 class Cost { 865 /// TODO: Some of these could be merged. Also, a lexical ordering 866 /// isn't always optimal. 867 unsigned NumRegs; 868 unsigned AddRecCost; 869 unsigned NumIVMuls; 870 unsigned NumBaseAdds; 871 unsigned ImmCost; 872 unsigned SetupCost; 873 unsigned ScaleCost; 874 875 public: 876 Cost() 877 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 878 SetupCost(0), ScaleCost(0) {} 879 880 bool operator<(const Cost &Other) const; 881 882 void Lose(); 883 884 #ifndef NDEBUG 885 // Once any of the metrics loses, they must all remain losers. 886 bool isValid() { 887 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 888 | ImmCost | SetupCost | ScaleCost) != ~0u) 889 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 890 & ImmCost & SetupCost & ScaleCost) == ~0u); 891 } 892 #endif 893 894 bool isLoser() { 895 assert(isValid() && "invalid cost"); 896 return NumRegs == ~0u; 897 } 898 899 void RateFormula(const TargetTransformInfo &TTI, 900 const Formula &F, 901 SmallPtrSetImpl<const SCEV *> &Regs, 902 const DenseSet<const SCEV *> &VisitedRegs, 903 const Loop *L, 904 const SmallVectorImpl<int64_t> &Offsets, 905 ScalarEvolution &SE, DominatorTree &DT, 906 const LSRUse &LU, 907 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 908 909 void print(raw_ostream &OS) const; 910 void dump() const; 911 912 private: 913 void RateRegister(const SCEV *Reg, 914 SmallPtrSetImpl<const SCEV *> &Regs, 915 const Loop *L, 916 ScalarEvolution &SE, DominatorTree &DT); 917 void RatePrimaryRegister(const SCEV *Reg, 918 SmallPtrSetImpl<const SCEV *> &Regs, 919 const Loop *L, 920 ScalarEvolution &SE, DominatorTree &DT, 921 SmallPtrSetImpl<const SCEV *> *LoserRegs); 922 }; 923 924 } 925 926 /// Tally up interesting quantities from the given register. 927 void Cost::RateRegister(const SCEV *Reg, 928 SmallPtrSetImpl<const SCEV *> &Regs, 929 const Loop *L, 930 ScalarEvolution &SE, DominatorTree &DT) { 931 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 932 // If this is an addrec for another loop, don't second-guess its addrec phi 933 // nodes. LSR isn't currently smart enough to reason about more than one 934 // loop at a time. LSR has already run on inner loops, will not run on outer 935 // loops, and cannot be expected to change sibling loops. 936 if (AR->getLoop() != L) { 937 // If the AddRec exists, consider it's register free and leave it alone. 938 if (isExistingPhi(AR, SE)) 939 return; 940 941 // Otherwise, do not consider this formula at all. 942 Lose(); 943 return; 944 } 945 AddRecCost += 1; /// TODO: This should be a function of the stride. 946 947 // Add the step value register, if it needs one. 948 // TODO: The non-affine case isn't precisely modeled here. 949 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 950 if (!Regs.count(AR->getOperand(1))) { 951 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 952 if (isLoser()) 953 return; 954 } 955 } 956 } 957 ++NumRegs; 958 959 // Rough heuristic; favor registers which don't require extra setup 960 // instructions in the preheader. 961 if (!isa<SCEVUnknown>(Reg) && 962 !isa<SCEVConstant>(Reg) && 963 !(isa<SCEVAddRecExpr>(Reg) && 964 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 965 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 966 ++SetupCost; 967 968 NumIVMuls += isa<SCEVMulExpr>(Reg) && 969 SE.hasComputableLoopEvolution(Reg, L); 970 } 971 972 /// Record this register in the set. If we haven't seen it before, rate 973 /// it. Optional LoserRegs provides a way to declare any formula that refers to 974 /// one of those regs an instant loser. 975 void Cost::RatePrimaryRegister(const SCEV *Reg, 976 SmallPtrSetImpl<const SCEV *> &Regs, 977 const Loop *L, 978 ScalarEvolution &SE, DominatorTree &DT, 979 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 980 if (LoserRegs && LoserRegs->count(Reg)) { 981 Lose(); 982 return; 983 } 984 if (Regs.insert(Reg).second) { 985 RateRegister(Reg, Regs, L, SE, DT); 986 if (LoserRegs && isLoser()) 987 LoserRegs->insert(Reg); 988 } 989 } 990 991 void Cost::RateFormula(const TargetTransformInfo &TTI, 992 const Formula &F, 993 SmallPtrSetImpl<const SCEV *> &Regs, 994 const DenseSet<const SCEV *> &VisitedRegs, 995 const Loop *L, 996 const SmallVectorImpl<int64_t> &Offsets, 997 ScalarEvolution &SE, DominatorTree &DT, 998 const LSRUse &LU, 999 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1000 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1001 // Tally up the registers. 1002 if (const SCEV *ScaledReg = F.ScaledReg) { 1003 if (VisitedRegs.count(ScaledReg)) { 1004 Lose(); 1005 return; 1006 } 1007 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1008 if (isLoser()) 1009 return; 1010 } 1011 for (const SCEV *BaseReg : F.BaseRegs) { 1012 if (VisitedRegs.count(BaseReg)) { 1013 Lose(); 1014 return; 1015 } 1016 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1017 if (isLoser()) 1018 return; 1019 } 1020 1021 // Determine how many (unfolded) adds we'll need inside the loop. 1022 size_t NumBaseParts = F.getNumRegs(); 1023 if (NumBaseParts > 1) 1024 // Do not count the base and a possible second register if the target 1025 // allows to fold 2 registers. 1026 NumBaseAdds += 1027 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1028 NumBaseAdds += (F.UnfoldedOffset != 0); 1029 1030 // Accumulate non-free scaling amounts. 1031 ScaleCost += getScalingFactorCost(TTI, LU, F); 1032 1033 // Tally up the non-zero immediates. 1034 for (int64_t O : Offsets) { 1035 int64_t Offset = (uint64_t)O + F.BaseOffset; 1036 if (F.BaseGV) 1037 ImmCost += 64; // Handle symbolic values conservatively. 1038 // TODO: This should probably be the pointer size. 1039 else if (Offset != 0) 1040 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1041 } 1042 assert(isValid() && "invalid cost"); 1043 } 1044 1045 /// Set this cost to a losing value. 1046 void Cost::Lose() { 1047 NumRegs = ~0u; 1048 AddRecCost = ~0u; 1049 NumIVMuls = ~0u; 1050 NumBaseAdds = ~0u; 1051 ImmCost = ~0u; 1052 SetupCost = ~0u; 1053 ScaleCost = ~0u; 1054 } 1055 1056 /// Choose the lower cost. 1057 bool Cost::operator<(const Cost &Other) const { 1058 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1059 ImmCost, SetupCost) < 1060 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1061 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1062 Other.SetupCost); 1063 } 1064 1065 void Cost::print(raw_ostream &OS) const { 1066 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1067 if (AddRecCost != 0) 1068 OS << ", with addrec cost " << AddRecCost; 1069 if (NumIVMuls != 0) 1070 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1071 if (NumBaseAdds != 0) 1072 OS << ", plus " << NumBaseAdds << " base add" 1073 << (NumBaseAdds == 1 ? "" : "s"); 1074 if (ScaleCost != 0) 1075 OS << ", plus " << ScaleCost << " scale cost"; 1076 if (ImmCost != 0) 1077 OS << ", plus " << ImmCost << " imm cost"; 1078 if (SetupCost != 0) 1079 OS << ", plus " << SetupCost << " setup cost"; 1080 } 1081 1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1083 void Cost::dump() const { 1084 print(errs()); errs() << '\n'; 1085 } 1086 #endif 1087 1088 namespace { 1089 1090 /// An operand value in an instruction which is to be replaced with some 1091 /// equivalent, possibly strength-reduced, replacement. 1092 struct LSRFixup { 1093 /// The instruction which will be updated. 1094 Instruction *UserInst; 1095 1096 /// The operand of the instruction which will be replaced. The operand may be 1097 /// used more than once; every instance will be replaced. 1098 Value *OperandValToReplace; 1099 1100 /// If this user is to use the post-incremented value of an induction 1101 /// variable, this variable is non-null and holds the loop associated with the 1102 /// induction variable. 1103 PostIncLoopSet PostIncLoops; 1104 1105 /// The index of the LSRUse describing the expression which this fixup needs, 1106 /// minus an offset (below). 1107 size_t LUIdx; 1108 1109 /// A constant offset to be added to the LSRUse expression. This allows 1110 /// multiple fixups to share the same LSRUse with different offsets, for 1111 /// example in an unrolled loop. 1112 int64_t Offset; 1113 1114 bool isUseFullyOutsideLoop(const Loop *L) const; 1115 1116 LSRFixup(); 1117 1118 void print(raw_ostream &OS) const; 1119 void dump() const; 1120 }; 1121 1122 } 1123 1124 LSRFixup::LSRFixup() 1125 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1126 Offset(0) {} 1127 1128 /// Test whether this fixup always uses its value outside of the given loop. 1129 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1130 // PHI nodes use their value in their incoming blocks. 1131 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1132 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1133 if (PN->getIncomingValue(i) == OperandValToReplace && 1134 L->contains(PN->getIncomingBlock(i))) 1135 return false; 1136 return true; 1137 } 1138 1139 return !L->contains(UserInst); 1140 } 1141 1142 void LSRFixup::print(raw_ostream &OS) const { 1143 OS << "UserInst="; 1144 // Store is common and interesting enough to be worth special-casing. 1145 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1146 OS << "store "; 1147 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1148 } else if (UserInst->getType()->isVoidTy()) 1149 OS << UserInst->getOpcodeName(); 1150 else 1151 UserInst->printAsOperand(OS, /*PrintType=*/false); 1152 1153 OS << ", OperandValToReplace="; 1154 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1155 1156 for (const Loop *PIL : PostIncLoops) { 1157 OS << ", PostIncLoop="; 1158 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1159 } 1160 1161 if (LUIdx != ~size_t(0)) 1162 OS << ", LUIdx=" << LUIdx; 1163 1164 if (Offset != 0) 1165 OS << ", Offset=" << Offset; 1166 } 1167 1168 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1169 void LSRFixup::dump() const { 1170 print(errs()); errs() << '\n'; 1171 } 1172 #endif 1173 1174 namespace { 1175 1176 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1177 /// SmallVectors of const SCEV*. 1178 struct UniquifierDenseMapInfo { 1179 static SmallVector<const SCEV *, 4> getEmptyKey() { 1180 SmallVector<const SCEV *, 4> V; 1181 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1182 return V; 1183 } 1184 1185 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1186 SmallVector<const SCEV *, 4> V; 1187 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1188 return V; 1189 } 1190 1191 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1192 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1193 } 1194 1195 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1196 const SmallVector<const SCEV *, 4> &RHS) { 1197 return LHS == RHS; 1198 } 1199 }; 1200 1201 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1202 /// as uses invented by LSR itself. It includes information about what kinds of 1203 /// things can be folded into the user, information about the user itself, and 1204 /// information about how the use may be satisfied. TODO: Represent multiple 1205 /// users of the same expression in common? 1206 class LSRUse { 1207 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1208 1209 public: 1210 /// An enum for a kind of use, indicating what types of scaled and immediate 1211 /// operands it might support. 1212 enum KindType { 1213 Basic, ///< A normal use, with no folding. 1214 Special, ///< A special case of basic, allowing -1 scales. 1215 Address, ///< An address use; folding according to TargetLowering 1216 ICmpZero ///< An equality icmp with both operands folded into one. 1217 // TODO: Add a generic icmp too? 1218 }; 1219 1220 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1221 1222 KindType Kind; 1223 MemAccessTy AccessTy; 1224 1225 SmallVector<int64_t, 8> Offsets; 1226 int64_t MinOffset; 1227 int64_t MaxOffset; 1228 1229 /// This records whether all of the fixups using this LSRUse are outside of 1230 /// the loop, in which case some special-case heuristics may be used. 1231 bool AllFixupsOutsideLoop; 1232 1233 /// RigidFormula is set to true to guarantee that this use will be associated 1234 /// with a single formula--the one that initially matched. Some SCEV 1235 /// expressions cannot be expanded. This allows LSR to consider the registers 1236 /// used by those expressions without the need to expand them later after 1237 /// changing the formula. 1238 bool RigidFormula; 1239 1240 /// This records the widest use type for any fixup using this 1241 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1242 /// fixup widths to be equivalent, because the narrower one may be relying on 1243 /// the implicit truncation to truncate away bogus bits. 1244 Type *WidestFixupType; 1245 1246 /// A list of ways to build a value that can satisfy this user. After the 1247 /// list is populated, one of these is selected heuristically and used to 1248 /// formulate a replacement for OperandValToReplace in UserInst. 1249 SmallVector<Formula, 12> Formulae; 1250 1251 /// The set of register candidates used by all formulae in this LSRUse. 1252 SmallPtrSet<const SCEV *, 4> Regs; 1253 1254 LSRUse(KindType K, MemAccessTy AT) 1255 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1256 AllFixupsOutsideLoop(true), RigidFormula(false), 1257 WidestFixupType(nullptr) {} 1258 1259 bool HasFormulaWithSameRegs(const Formula &F) const; 1260 bool InsertFormula(const Formula &F); 1261 void DeleteFormula(Formula &F); 1262 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1263 1264 void print(raw_ostream &OS) const; 1265 void dump() const; 1266 }; 1267 1268 } 1269 1270 /// Test whether this use as a formula which has the same registers as the given 1271 /// formula. 1272 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1273 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1274 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1275 // Unstable sort by host order ok, because this is only used for uniquifying. 1276 std::sort(Key.begin(), Key.end()); 1277 return Uniquifier.count(Key); 1278 } 1279 1280 /// If the given formula has not yet been inserted, add it to the list, and 1281 /// return true. Return false otherwise. The formula must be in canonical form. 1282 bool LSRUse::InsertFormula(const Formula &F) { 1283 assert(F.isCanonical() && "Invalid canonical representation"); 1284 1285 if (!Formulae.empty() && RigidFormula) 1286 return false; 1287 1288 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1289 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1290 // Unstable sort by host order ok, because this is only used for uniquifying. 1291 std::sort(Key.begin(), Key.end()); 1292 1293 if (!Uniquifier.insert(Key).second) 1294 return false; 1295 1296 // Using a register to hold the value of 0 is not profitable. 1297 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1298 "Zero allocated in a scaled register!"); 1299 #ifndef NDEBUG 1300 for (const SCEV *BaseReg : F.BaseRegs) 1301 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1302 #endif 1303 1304 // Add the formula to the list. 1305 Formulae.push_back(F); 1306 1307 // Record registers now being used by this use. 1308 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1309 if (F.ScaledReg) 1310 Regs.insert(F.ScaledReg); 1311 1312 return true; 1313 } 1314 1315 /// Remove the given formula from this use's list. 1316 void LSRUse::DeleteFormula(Formula &F) { 1317 if (&F != &Formulae.back()) 1318 std::swap(F, Formulae.back()); 1319 Formulae.pop_back(); 1320 } 1321 1322 /// Recompute the Regs field, and update RegUses. 1323 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1324 // Now that we've filtered out some formulae, recompute the Regs set. 1325 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1326 Regs.clear(); 1327 for (const Formula &F : Formulae) { 1328 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1329 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1330 } 1331 1332 // Update the RegTracker. 1333 for (const SCEV *S : OldRegs) 1334 if (!Regs.count(S)) 1335 RegUses.dropRegister(S, LUIdx); 1336 } 1337 1338 void LSRUse::print(raw_ostream &OS) const { 1339 OS << "LSR Use: Kind="; 1340 switch (Kind) { 1341 case Basic: OS << "Basic"; break; 1342 case Special: OS << "Special"; break; 1343 case ICmpZero: OS << "ICmpZero"; break; 1344 case Address: 1345 OS << "Address of "; 1346 if (AccessTy.MemTy->isPointerTy()) 1347 OS << "pointer"; // the full pointer type could be really verbose 1348 else { 1349 OS << *AccessTy.MemTy; 1350 } 1351 1352 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1353 } 1354 1355 OS << ", Offsets={"; 1356 bool NeedComma = false; 1357 for (int64_t O : Offsets) { 1358 if (NeedComma) OS << ','; 1359 OS << O; 1360 NeedComma = true; 1361 } 1362 OS << '}'; 1363 1364 if (AllFixupsOutsideLoop) 1365 OS << ", all-fixups-outside-loop"; 1366 1367 if (WidestFixupType) 1368 OS << ", widest fixup type: " << *WidestFixupType; 1369 } 1370 1371 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1372 void LSRUse::dump() const { 1373 print(errs()); errs() << '\n'; 1374 } 1375 #endif 1376 1377 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1378 LSRUse::KindType Kind, MemAccessTy AccessTy, 1379 GlobalValue *BaseGV, int64_t BaseOffset, 1380 bool HasBaseReg, int64_t Scale) { 1381 switch (Kind) { 1382 case LSRUse::Address: 1383 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1384 HasBaseReg, Scale, AccessTy.AddrSpace); 1385 1386 case LSRUse::ICmpZero: 1387 // There's not even a target hook for querying whether it would be legal to 1388 // fold a GV into an ICmp. 1389 if (BaseGV) 1390 return false; 1391 1392 // ICmp only has two operands; don't allow more than two non-trivial parts. 1393 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1394 return false; 1395 1396 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1397 // putting the scaled register in the other operand of the icmp. 1398 if (Scale != 0 && Scale != -1) 1399 return false; 1400 1401 // If we have low-level target information, ask the target if it can fold an 1402 // integer immediate on an icmp. 1403 if (BaseOffset != 0) { 1404 // We have one of: 1405 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1406 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1407 // Offs is the ICmp immediate. 1408 if (Scale == 0) 1409 // The cast does the right thing with INT64_MIN. 1410 BaseOffset = -(uint64_t)BaseOffset; 1411 return TTI.isLegalICmpImmediate(BaseOffset); 1412 } 1413 1414 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1415 return true; 1416 1417 case LSRUse::Basic: 1418 // Only handle single-register values. 1419 return !BaseGV && Scale == 0 && BaseOffset == 0; 1420 1421 case LSRUse::Special: 1422 // Special case Basic to handle -1 scales. 1423 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1424 } 1425 1426 llvm_unreachable("Invalid LSRUse Kind!"); 1427 } 1428 1429 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1430 int64_t MinOffset, int64_t MaxOffset, 1431 LSRUse::KindType Kind, MemAccessTy AccessTy, 1432 GlobalValue *BaseGV, int64_t BaseOffset, 1433 bool HasBaseReg, int64_t Scale) { 1434 // Check for overflow. 1435 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1436 (MinOffset > 0)) 1437 return false; 1438 MinOffset = (uint64_t)BaseOffset + MinOffset; 1439 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1440 (MaxOffset > 0)) 1441 return false; 1442 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1443 1444 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1445 HasBaseReg, Scale) && 1446 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1447 HasBaseReg, Scale); 1448 } 1449 1450 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1451 int64_t MinOffset, int64_t MaxOffset, 1452 LSRUse::KindType Kind, MemAccessTy AccessTy, 1453 const Formula &F) { 1454 // For the purpose of isAMCompletelyFolded either having a canonical formula 1455 // or a scale not equal to zero is correct. 1456 // Problems may arise from non canonical formulae having a scale == 0. 1457 // Strictly speaking it would best to just rely on canonical formulae. 1458 // However, when we generate the scaled formulae, we first check that the 1459 // scaling factor is profitable before computing the actual ScaledReg for 1460 // compile time sake. 1461 assert((F.isCanonical() || F.Scale != 0)); 1462 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1463 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1464 } 1465 1466 /// Test whether we know how to expand the current formula. 1467 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1468 int64_t MaxOffset, LSRUse::KindType Kind, 1469 MemAccessTy AccessTy, GlobalValue *BaseGV, 1470 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1471 // We know how to expand completely foldable formulae. 1472 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1473 BaseOffset, HasBaseReg, Scale) || 1474 // Or formulae that use a base register produced by a sum of base 1475 // registers. 1476 (Scale == 1 && 1477 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1478 BaseGV, BaseOffset, true, 0)); 1479 } 1480 1481 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1482 int64_t MaxOffset, LSRUse::KindType Kind, 1483 MemAccessTy AccessTy, const Formula &F) { 1484 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1485 F.BaseOffset, F.HasBaseReg, F.Scale); 1486 } 1487 1488 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1489 const LSRUse &LU, const Formula &F) { 1490 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1491 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1492 F.Scale); 1493 } 1494 1495 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1496 const LSRUse &LU, const Formula &F) { 1497 if (!F.Scale) 1498 return 0; 1499 1500 // If the use is not completely folded in that instruction, we will have to 1501 // pay an extra cost only for scale != 1. 1502 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1503 LU.AccessTy, F)) 1504 return F.Scale != 1; 1505 1506 switch (LU.Kind) { 1507 case LSRUse::Address: { 1508 // Check the scaling factor cost with both the min and max offsets. 1509 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1510 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1511 F.Scale, LU.AccessTy.AddrSpace); 1512 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1513 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1514 F.Scale, LU.AccessTy.AddrSpace); 1515 1516 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1517 "Legal addressing mode has an illegal cost!"); 1518 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1519 } 1520 case LSRUse::ICmpZero: 1521 case LSRUse::Basic: 1522 case LSRUse::Special: 1523 // The use is completely folded, i.e., everything is folded into the 1524 // instruction. 1525 return 0; 1526 } 1527 1528 llvm_unreachable("Invalid LSRUse Kind!"); 1529 } 1530 1531 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1532 LSRUse::KindType Kind, MemAccessTy AccessTy, 1533 GlobalValue *BaseGV, int64_t BaseOffset, 1534 bool HasBaseReg) { 1535 // Fast-path: zero is always foldable. 1536 if (BaseOffset == 0 && !BaseGV) return true; 1537 1538 // Conservatively, create an address with an immediate and a 1539 // base and a scale. 1540 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1541 1542 // Canonicalize a scale of 1 to a base register if the formula doesn't 1543 // already have a base register. 1544 if (!HasBaseReg && Scale == 1) { 1545 Scale = 0; 1546 HasBaseReg = true; 1547 } 1548 1549 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1550 HasBaseReg, Scale); 1551 } 1552 1553 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1554 ScalarEvolution &SE, int64_t MinOffset, 1555 int64_t MaxOffset, LSRUse::KindType Kind, 1556 MemAccessTy AccessTy, const SCEV *S, 1557 bool HasBaseReg) { 1558 // Fast-path: zero is always foldable. 1559 if (S->isZero()) return true; 1560 1561 // Conservatively, create an address with an immediate and a 1562 // base and a scale. 1563 int64_t BaseOffset = ExtractImmediate(S, SE); 1564 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1565 1566 // If there's anything else involved, it's not foldable. 1567 if (!S->isZero()) return false; 1568 1569 // Fast-path: zero is always foldable. 1570 if (BaseOffset == 0 && !BaseGV) return true; 1571 1572 // Conservatively, create an address with an immediate and a 1573 // base and a scale. 1574 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1575 1576 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1577 BaseOffset, HasBaseReg, Scale); 1578 } 1579 1580 namespace { 1581 1582 /// An individual increment in a Chain of IV increments. Relate an IV user to 1583 /// an expression that computes the IV it uses from the IV used by the previous 1584 /// link in the Chain. 1585 /// 1586 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1587 /// original IVOperand. The head of the chain's IVOperand is only valid during 1588 /// chain collection, before LSR replaces IV users. During chain generation, 1589 /// IncExpr can be used to find the new IVOperand that computes the same 1590 /// expression. 1591 struct IVInc { 1592 Instruction *UserInst; 1593 Value* IVOperand; 1594 const SCEV *IncExpr; 1595 1596 IVInc(Instruction *U, Value *O, const SCEV *E): 1597 UserInst(U), IVOperand(O), IncExpr(E) {} 1598 }; 1599 1600 // The list of IV increments in program order. We typically add the head of a 1601 // chain without finding subsequent links. 1602 struct IVChain { 1603 SmallVector<IVInc,1> Incs; 1604 const SCEV *ExprBase; 1605 1606 IVChain() : ExprBase(nullptr) {} 1607 1608 IVChain(const IVInc &Head, const SCEV *Base) 1609 : Incs(1, Head), ExprBase(Base) {} 1610 1611 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1612 1613 // Return the first increment in the chain. 1614 const_iterator begin() const { 1615 assert(!Incs.empty()); 1616 return std::next(Incs.begin()); 1617 } 1618 const_iterator end() const { 1619 return Incs.end(); 1620 } 1621 1622 // Returns true if this chain contains any increments. 1623 bool hasIncs() const { return Incs.size() >= 2; } 1624 1625 // Add an IVInc to the end of this chain. 1626 void add(const IVInc &X) { Incs.push_back(X); } 1627 1628 // Returns the last UserInst in the chain. 1629 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1630 1631 // Returns true if IncExpr can be profitably added to this chain. 1632 bool isProfitableIncrement(const SCEV *OperExpr, 1633 const SCEV *IncExpr, 1634 ScalarEvolution&); 1635 }; 1636 1637 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1638 /// between FarUsers that definitely cross IV increments and NearUsers that may 1639 /// be used between IV increments. 1640 struct ChainUsers { 1641 SmallPtrSet<Instruction*, 4> FarUsers; 1642 SmallPtrSet<Instruction*, 4> NearUsers; 1643 }; 1644 1645 /// This class holds state for the main loop strength reduction logic. 1646 class LSRInstance { 1647 IVUsers &IU; 1648 ScalarEvolution &SE; 1649 DominatorTree &DT; 1650 LoopInfo &LI; 1651 const TargetTransformInfo &TTI; 1652 Loop *const L; 1653 bool Changed; 1654 1655 /// This is the insert position that the current loop's induction variable 1656 /// increment should be placed. In simple loops, this is the latch block's 1657 /// terminator. But in more complicated cases, this is a position which will 1658 /// dominate all the in-loop post-increment users. 1659 Instruction *IVIncInsertPos; 1660 1661 /// Interesting factors between use strides. 1662 SmallSetVector<int64_t, 8> Factors; 1663 1664 /// Interesting use types, to facilitate truncation reuse. 1665 SmallSetVector<Type *, 4> Types; 1666 1667 /// The list of operands which are to be replaced. 1668 SmallVector<LSRFixup, 16> Fixups; 1669 1670 /// The list of interesting uses. 1671 SmallVector<LSRUse, 16> Uses; 1672 1673 /// Track which uses use which register candidates. 1674 RegUseTracker RegUses; 1675 1676 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1677 // have more than a few IV increment chains in a loop. Missing a Chain falls 1678 // back to normal LSR behavior for those uses. 1679 static const unsigned MaxChains = 8; 1680 1681 /// IV users can form a chain of IV increments. 1682 SmallVector<IVChain, MaxChains> IVChainVec; 1683 1684 /// IV users that belong to profitable IVChains. 1685 SmallPtrSet<Use*, MaxChains> IVIncSet; 1686 1687 void OptimizeShadowIV(); 1688 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1689 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1690 void OptimizeLoopTermCond(); 1691 1692 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1693 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1694 void FinalizeChain(IVChain &Chain); 1695 void CollectChains(); 1696 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1697 SmallVectorImpl<WeakVH> &DeadInsts); 1698 1699 void CollectInterestingTypesAndFactors(); 1700 void CollectFixupsAndInitialFormulae(); 1701 1702 LSRFixup &getNewFixup() { 1703 Fixups.push_back(LSRFixup()); 1704 return Fixups.back(); 1705 } 1706 1707 // Support for sharing of LSRUses between LSRFixups. 1708 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1709 UseMapTy UseMap; 1710 1711 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1712 LSRUse::KindType Kind, MemAccessTy AccessTy); 1713 1714 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1715 MemAccessTy AccessTy); 1716 1717 void DeleteUse(LSRUse &LU, size_t LUIdx); 1718 1719 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1720 1721 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1722 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1723 void CountRegisters(const Formula &F, size_t LUIdx); 1724 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1725 1726 void CollectLoopInvariantFixupsAndFormulae(); 1727 1728 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1729 unsigned Depth = 0); 1730 1731 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1732 const Formula &Base, unsigned Depth, 1733 size_t Idx, bool IsScaledReg = false); 1734 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1735 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1736 const Formula &Base, size_t Idx, 1737 bool IsScaledReg = false); 1738 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1739 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1740 const Formula &Base, 1741 const SmallVectorImpl<int64_t> &Worklist, 1742 size_t Idx, bool IsScaledReg = false); 1743 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1744 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1745 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1746 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1747 void GenerateCrossUseConstantOffsets(); 1748 void GenerateAllReuseFormulae(); 1749 1750 void FilterOutUndesirableDedicatedRegisters(); 1751 1752 size_t EstimateSearchSpaceComplexity() const; 1753 void NarrowSearchSpaceByDetectingSupersets(); 1754 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1755 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1756 void NarrowSearchSpaceByPickingWinnerRegs(); 1757 void NarrowSearchSpaceUsingHeuristics(); 1758 1759 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1760 Cost &SolutionCost, 1761 SmallVectorImpl<const Formula *> &Workspace, 1762 const Cost &CurCost, 1763 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1764 DenseSet<const SCEV *> &VisitedRegs) const; 1765 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1766 1767 BasicBlock::iterator 1768 HoistInsertPosition(BasicBlock::iterator IP, 1769 const SmallVectorImpl<Instruction *> &Inputs) const; 1770 BasicBlock::iterator 1771 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1772 const LSRFixup &LF, 1773 const LSRUse &LU, 1774 SCEVExpander &Rewriter) const; 1775 1776 Value *Expand(const LSRFixup &LF, 1777 const Formula &F, 1778 BasicBlock::iterator IP, 1779 SCEVExpander &Rewriter, 1780 SmallVectorImpl<WeakVH> &DeadInsts) const; 1781 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1782 const Formula &F, 1783 SCEVExpander &Rewriter, 1784 SmallVectorImpl<WeakVH> &DeadInsts, 1785 Pass *P) const; 1786 void Rewrite(const LSRFixup &LF, 1787 const Formula &F, 1788 SCEVExpander &Rewriter, 1789 SmallVectorImpl<WeakVH> &DeadInsts, 1790 Pass *P) const; 1791 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1792 Pass *P); 1793 1794 public: 1795 LSRInstance(Loop *L, Pass *P); 1796 1797 bool getChanged() const { return Changed; } 1798 1799 void print_factors_and_types(raw_ostream &OS) const; 1800 void print_fixups(raw_ostream &OS) const; 1801 void print_uses(raw_ostream &OS) const; 1802 void print(raw_ostream &OS) const; 1803 void dump() const; 1804 }; 1805 1806 } 1807 1808 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1809 /// the cast operation. 1810 void LSRInstance::OptimizeShadowIV() { 1811 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1812 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1813 return; 1814 1815 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1816 UI != E; /* empty */) { 1817 IVUsers::const_iterator CandidateUI = UI; 1818 ++UI; 1819 Instruction *ShadowUse = CandidateUI->getUser(); 1820 Type *DestTy = nullptr; 1821 bool IsSigned = false; 1822 1823 /* If shadow use is a int->float cast then insert a second IV 1824 to eliminate this cast. 1825 1826 for (unsigned i = 0; i < n; ++i) 1827 foo((double)i); 1828 1829 is transformed into 1830 1831 double d = 0.0; 1832 for (unsigned i = 0; i < n; ++i, ++d) 1833 foo(d); 1834 */ 1835 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1836 IsSigned = false; 1837 DestTy = UCast->getDestTy(); 1838 } 1839 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1840 IsSigned = true; 1841 DestTy = SCast->getDestTy(); 1842 } 1843 if (!DestTy) continue; 1844 1845 // If target does not support DestTy natively then do not apply 1846 // this transformation. 1847 if (!TTI.isTypeLegal(DestTy)) continue; 1848 1849 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1850 if (!PH) continue; 1851 if (PH->getNumIncomingValues() != 2) continue; 1852 1853 Type *SrcTy = PH->getType(); 1854 int Mantissa = DestTy->getFPMantissaWidth(); 1855 if (Mantissa == -1) continue; 1856 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1857 continue; 1858 1859 unsigned Entry, Latch; 1860 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1861 Entry = 0; 1862 Latch = 1; 1863 } else { 1864 Entry = 1; 1865 Latch = 0; 1866 } 1867 1868 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1869 if (!Init) continue; 1870 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1871 (double)Init->getSExtValue() : 1872 (double)Init->getZExtValue()); 1873 1874 BinaryOperator *Incr = 1875 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1876 if (!Incr) continue; 1877 if (Incr->getOpcode() != Instruction::Add 1878 && Incr->getOpcode() != Instruction::Sub) 1879 continue; 1880 1881 /* Initialize new IV, double d = 0.0 in above example. */ 1882 ConstantInt *C = nullptr; 1883 if (Incr->getOperand(0) == PH) 1884 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1885 else if (Incr->getOperand(1) == PH) 1886 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1887 else 1888 continue; 1889 1890 if (!C) continue; 1891 1892 // Ignore negative constants, as the code below doesn't handle them 1893 // correctly. TODO: Remove this restriction. 1894 if (!C->getValue().isStrictlyPositive()) continue; 1895 1896 /* Add new PHINode. */ 1897 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1898 1899 /* create new increment. '++d' in above example. */ 1900 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1901 BinaryOperator *NewIncr = 1902 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1903 Instruction::FAdd : Instruction::FSub, 1904 NewPH, CFP, "IV.S.next.", Incr); 1905 1906 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1907 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1908 1909 /* Remove cast operation */ 1910 ShadowUse->replaceAllUsesWith(NewPH); 1911 ShadowUse->eraseFromParent(); 1912 Changed = true; 1913 break; 1914 } 1915 } 1916 1917 /// If Cond has an operand that is an expression of an IV, set the IV user and 1918 /// stride information and return true, otherwise return false. 1919 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1920 for (IVStrideUse &U : IU) 1921 if (U.getUser() == Cond) { 1922 // NOTE: we could handle setcc instructions with multiple uses here, but 1923 // InstCombine does it as well for simple uses, it's not clear that it 1924 // occurs enough in real life to handle. 1925 CondUse = &U; 1926 return true; 1927 } 1928 return false; 1929 } 1930 1931 /// Rewrite the loop's terminating condition if it uses a max computation. 1932 /// 1933 /// This is a narrow solution to a specific, but acute, problem. For loops 1934 /// like this: 1935 /// 1936 /// i = 0; 1937 /// do { 1938 /// p[i] = 0.0; 1939 /// } while (++i < n); 1940 /// 1941 /// the trip count isn't just 'n', because 'n' might not be positive. And 1942 /// unfortunately this can come up even for loops where the user didn't use 1943 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1944 /// will commonly be lowered like this: 1945 // 1946 /// if (n > 0) { 1947 /// i = 0; 1948 /// do { 1949 /// p[i] = 0.0; 1950 /// } while (++i < n); 1951 /// } 1952 /// 1953 /// and then it's possible for subsequent optimization to obscure the if 1954 /// test in such a way that indvars can't find it. 1955 /// 1956 /// When indvars can't find the if test in loops like this, it creates a 1957 /// max expression, which allows it to give the loop a canonical 1958 /// induction variable: 1959 /// 1960 /// i = 0; 1961 /// max = n < 1 ? 1 : n; 1962 /// do { 1963 /// p[i] = 0.0; 1964 /// } while (++i != max); 1965 /// 1966 /// Canonical induction variables are necessary because the loop passes 1967 /// are designed around them. The most obvious example of this is the 1968 /// LoopInfo analysis, which doesn't remember trip count values. It 1969 /// expects to be able to rediscover the trip count each time it is 1970 /// needed, and it does this using a simple analysis that only succeeds if 1971 /// the loop has a canonical induction variable. 1972 /// 1973 /// However, when it comes time to generate code, the maximum operation 1974 /// can be quite costly, especially if it's inside of an outer loop. 1975 /// 1976 /// This function solves this problem by detecting this type of loop and 1977 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1978 /// the instructions for the maximum computation. 1979 /// 1980 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1981 // Check that the loop matches the pattern we're looking for. 1982 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1983 Cond->getPredicate() != CmpInst::ICMP_NE) 1984 return Cond; 1985 1986 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1987 if (!Sel || !Sel->hasOneUse()) return Cond; 1988 1989 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1990 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1991 return Cond; 1992 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1993 1994 // Add one to the backedge-taken count to get the trip count. 1995 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1996 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1997 1998 // Check for a max calculation that matches the pattern. There's no check 1999 // for ICMP_ULE here because the comparison would be with zero, which 2000 // isn't interesting. 2001 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2002 const SCEVNAryExpr *Max = nullptr; 2003 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2004 Pred = ICmpInst::ICMP_SLE; 2005 Max = S; 2006 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2007 Pred = ICmpInst::ICMP_SLT; 2008 Max = S; 2009 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2010 Pred = ICmpInst::ICMP_ULT; 2011 Max = U; 2012 } else { 2013 // No match; bail. 2014 return Cond; 2015 } 2016 2017 // To handle a max with more than two operands, this optimization would 2018 // require additional checking and setup. 2019 if (Max->getNumOperands() != 2) 2020 return Cond; 2021 2022 const SCEV *MaxLHS = Max->getOperand(0); 2023 const SCEV *MaxRHS = Max->getOperand(1); 2024 2025 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2026 // for a comparison with 1. For <= and >=, a comparison with zero. 2027 if (!MaxLHS || 2028 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2029 return Cond; 2030 2031 // Check the relevant induction variable for conformance to 2032 // the pattern. 2033 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2034 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2035 if (!AR || !AR->isAffine() || 2036 AR->getStart() != One || 2037 AR->getStepRecurrence(SE) != One) 2038 return Cond; 2039 2040 assert(AR->getLoop() == L && 2041 "Loop condition operand is an addrec in a different loop!"); 2042 2043 // Check the right operand of the select, and remember it, as it will 2044 // be used in the new comparison instruction. 2045 Value *NewRHS = nullptr; 2046 if (ICmpInst::isTrueWhenEqual(Pred)) { 2047 // Look for n+1, and grab n. 2048 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2049 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2050 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2051 NewRHS = BO->getOperand(0); 2052 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2053 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2054 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2055 NewRHS = BO->getOperand(0); 2056 if (!NewRHS) 2057 return Cond; 2058 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2059 NewRHS = Sel->getOperand(1); 2060 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2061 NewRHS = Sel->getOperand(2); 2062 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2063 NewRHS = SU->getValue(); 2064 else 2065 // Max doesn't match expected pattern. 2066 return Cond; 2067 2068 // Determine the new comparison opcode. It may be signed or unsigned, 2069 // and the original comparison may be either equality or inequality. 2070 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2071 Pred = CmpInst::getInversePredicate(Pred); 2072 2073 // Ok, everything looks ok to change the condition into an SLT or SGE and 2074 // delete the max calculation. 2075 ICmpInst *NewCond = 2076 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2077 2078 // Delete the max calculation instructions. 2079 Cond->replaceAllUsesWith(NewCond); 2080 CondUse->setUser(NewCond); 2081 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2082 Cond->eraseFromParent(); 2083 Sel->eraseFromParent(); 2084 if (Cmp->use_empty()) 2085 Cmp->eraseFromParent(); 2086 return NewCond; 2087 } 2088 2089 /// Change loop terminating condition to use the postinc iv when possible. 2090 void 2091 LSRInstance::OptimizeLoopTermCond() { 2092 SmallPtrSet<Instruction *, 4> PostIncs; 2093 2094 BasicBlock *LatchBlock = L->getLoopLatch(); 2095 SmallVector<BasicBlock*, 8> ExitingBlocks; 2096 L->getExitingBlocks(ExitingBlocks); 2097 2098 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2099 2100 // Get the terminating condition for the loop if possible. If we 2101 // can, we want to change it to use a post-incremented version of its 2102 // induction variable, to allow coalescing the live ranges for the IV into 2103 // one register value. 2104 2105 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2106 if (!TermBr) 2107 continue; 2108 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2109 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2110 continue; 2111 2112 // Search IVUsesByStride to find Cond's IVUse if there is one. 2113 IVStrideUse *CondUse = nullptr; 2114 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2115 if (!FindIVUserForCond(Cond, CondUse)) 2116 continue; 2117 2118 // If the trip count is computed in terms of a max (due to ScalarEvolution 2119 // being unable to find a sufficient guard, for example), change the loop 2120 // comparison to use SLT or ULT instead of NE. 2121 // One consequence of doing this now is that it disrupts the count-down 2122 // optimization. That's not always a bad thing though, because in such 2123 // cases it may still be worthwhile to avoid a max. 2124 Cond = OptimizeMax(Cond, CondUse); 2125 2126 // If this exiting block dominates the latch block, it may also use 2127 // the post-inc value if it won't be shared with other uses. 2128 // Check for dominance. 2129 if (!DT.dominates(ExitingBlock, LatchBlock)) 2130 continue; 2131 2132 // Conservatively avoid trying to use the post-inc value in non-latch 2133 // exits if there may be pre-inc users in intervening blocks. 2134 if (LatchBlock != ExitingBlock) 2135 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2136 // Test if the use is reachable from the exiting block. This dominator 2137 // query is a conservative approximation of reachability. 2138 if (&*UI != CondUse && 2139 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2140 // Conservatively assume there may be reuse if the quotient of their 2141 // strides could be a legal scale. 2142 const SCEV *A = IU.getStride(*CondUse, L); 2143 const SCEV *B = IU.getStride(*UI, L); 2144 if (!A || !B) continue; 2145 if (SE.getTypeSizeInBits(A->getType()) != 2146 SE.getTypeSizeInBits(B->getType())) { 2147 if (SE.getTypeSizeInBits(A->getType()) > 2148 SE.getTypeSizeInBits(B->getType())) 2149 B = SE.getSignExtendExpr(B, A->getType()); 2150 else 2151 A = SE.getSignExtendExpr(A, B->getType()); 2152 } 2153 if (const SCEVConstant *D = 2154 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2155 const ConstantInt *C = D->getValue(); 2156 // Stride of one or negative one can have reuse with non-addresses. 2157 if (C->isOne() || C->isAllOnesValue()) 2158 goto decline_post_inc; 2159 // Avoid weird situations. 2160 if (C->getValue().getMinSignedBits() >= 64 || 2161 C->getValue().isMinSignedValue()) 2162 goto decline_post_inc; 2163 // Check for possible scaled-address reuse. 2164 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2165 int64_t Scale = C->getSExtValue(); 2166 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2167 /*BaseOffset=*/0, 2168 /*HasBaseReg=*/false, Scale, 2169 AccessTy.AddrSpace)) 2170 goto decline_post_inc; 2171 Scale = -Scale; 2172 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2173 /*BaseOffset=*/0, 2174 /*HasBaseReg=*/false, Scale, 2175 AccessTy.AddrSpace)) 2176 goto decline_post_inc; 2177 } 2178 } 2179 2180 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2181 << *Cond << '\n'); 2182 2183 // It's possible for the setcc instruction to be anywhere in the loop, and 2184 // possible for it to have multiple users. If it is not immediately before 2185 // the exiting block branch, move it. 2186 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2187 if (Cond->hasOneUse()) { 2188 Cond->moveBefore(TermBr); 2189 } else { 2190 // Clone the terminating condition and insert into the loopend. 2191 ICmpInst *OldCond = Cond; 2192 Cond = cast<ICmpInst>(Cond->clone()); 2193 Cond->setName(L->getHeader()->getName() + ".termcond"); 2194 ExitingBlock->getInstList().insert(TermBr, Cond); 2195 2196 // Clone the IVUse, as the old use still exists! 2197 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2198 TermBr->replaceUsesOfWith(OldCond, Cond); 2199 } 2200 } 2201 2202 // If we get to here, we know that we can transform the setcc instruction to 2203 // use the post-incremented version of the IV, allowing us to coalesce the 2204 // live ranges for the IV correctly. 2205 CondUse->transformToPostInc(L); 2206 Changed = true; 2207 2208 PostIncs.insert(Cond); 2209 decline_post_inc:; 2210 } 2211 2212 // Determine an insertion point for the loop induction variable increment. It 2213 // must dominate all the post-inc comparisons we just set up, and it must 2214 // dominate the loop latch edge. 2215 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2216 for (Instruction *Inst : PostIncs) { 2217 BasicBlock *BB = 2218 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2219 Inst->getParent()); 2220 if (BB == Inst->getParent()) 2221 IVIncInsertPos = Inst; 2222 else if (BB != IVIncInsertPos->getParent()) 2223 IVIncInsertPos = BB->getTerminator(); 2224 } 2225 } 2226 2227 /// Determine if the given use can accommodate a fixup at the given offset and 2228 /// other details. If so, update the use and return true. 2229 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2230 bool HasBaseReg, LSRUse::KindType Kind, 2231 MemAccessTy AccessTy) { 2232 int64_t NewMinOffset = LU.MinOffset; 2233 int64_t NewMaxOffset = LU.MaxOffset; 2234 MemAccessTy NewAccessTy = AccessTy; 2235 2236 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2237 // something conservative, however this can pessimize in the case that one of 2238 // the uses will have all its uses outside the loop, for example. 2239 if (LU.Kind != Kind) 2240 return false; 2241 2242 // Check for a mismatched access type, and fall back conservatively as needed. 2243 // TODO: Be less conservative when the type is similar and can use the same 2244 // addressing modes. 2245 if (Kind == LSRUse::Address) { 2246 if (AccessTy != LU.AccessTy) 2247 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2248 } 2249 2250 // Conservatively assume HasBaseReg is true for now. 2251 if (NewOffset < LU.MinOffset) { 2252 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2253 LU.MaxOffset - NewOffset, HasBaseReg)) 2254 return false; 2255 NewMinOffset = NewOffset; 2256 } else if (NewOffset > LU.MaxOffset) { 2257 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2258 NewOffset - LU.MinOffset, HasBaseReg)) 2259 return false; 2260 NewMaxOffset = NewOffset; 2261 } 2262 2263 // Update the use. 2264 LU.MinOffset = NewMinOffset; 2265 LU.MaxOffset = NewMaxOffset; 2266 LU.AccessTy = NewAccessTy; 2267 if (NewOffset != LU.Offsets.back()) 2268 LU.Offsets.push_back(NewOffset); 2269 return true; 2270 } 2271 2272 /// Return an LSRUse index and an offset value for a fixup which needs the given 2273 /// expression, with the given kind and optional access type. Either reuse an 2274 /// existing use or create a new one, as needed. 2275 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2276 LSRUse::KindType Kind, 2277 MemAccessTy AccessTy) { 2278 const SCEV *Copy = Expr; 2279 int64_t Offset = ExtractImmediate(Expr, SE); 2280 2281 // Basic uses can't accept any offset, for example. 2282 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2283 Offset, /*HasBaseReg=*/ true)) { 2284 Expr = Copy; 2285 Offset = 0; 2286 } 2287 2288 std::pair<UseMapTy::iterator, bool> P = 2289 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2290 if (!P.second) { 2291 // A use already existed with this base. 2292 size_t LUIdx = P.first->second; 2293 LSRUse &LU = Uses[LUIdx]; 2294 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2295 // Reuse this use. 2296 return std::make_pair(LUIdx, Offset); 2297 } 2298 2299 // Create a new use. 2300 size_t LUIdx = Uses.size(); 2301 P.first->second = LUIdx; 2302 Uses.push_back(LSRUse(Kind, AccessTy)); 2303 LSRUse &LU = Uses[LUIdx]; 2304 2305 // We don't need to track redundant offsets, but we don't need to go out 2306 // of our way here to avoid them. 2307 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2308 LU.Offsets.push_back(Offset); 2309 2310 LU.MinOffset = Offset; 2311 LU.MaxOffset = Offset; 2312 return std::make_pair(LUIdx, Offset); 2313 } 2314 2315 /// Delete the given use from the Uses list. 2316 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2317 if (&LU != &Uses.back()) 2318 std::swap(LU, Uses.back()); 2319 Uses.pop_back(); 2320 2321 // Update RegUses. 2322 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2323 } 2324 2325 /// Look for a use distinct from OrigLU which is has a formula that has the same 2326 /// registers as the given formula. 2327 LSRUse * 2328 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2329 const LSRUse &OrigLU) { 2330 // Search all uses for the formula. This could be more clever. 2331 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2332 LSRUse &LU = Uses[LUIdx]; 2333 // Check whether this use is close enough to OrigLU, to see whether it's 2334 // worthwhile looking through its formulae. 2335 // Ignore ICmpZero uses because they may contain formulae generated by 2336 // GenerateICmpZeroScales, in which case adding fixup offsets may 2337 // be invalid. 2338 if (&LU != &OrigLU && 2339 LU.Kind != LSRUse::ICmpZero && 2340 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2341 LU.WidestFixupType == OrigLU.WidestFixupType && 2342 LU.HasFormulaWithSameRegs(OrigF)) { 2343 // Scan through this use's formulae. 2344 for (const Formula &F : LU.Formulae) { 2345 // Check to see if this formula has the same registers and symbols 2346 // as OrigF. 2347 if (F.BaseRegs == OrigF.BaseRegs && 2348 F.ScaledReg == OrigF.ScaledReg && 2349 F.BaseGV == OrigF.BaseGV && 2350 F.Scale == OrigF.Scale && 2351 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2352 if (F.BaseOffset == 0) 2353 return &LU; 2354 // This is the formula where all the registers and symbols matched; 2355 // there aren't going to be any others. Since we declined it, we 2356 // can skip the rest of the formulae and proceed to the next LSRUse. 2357 break; 2358 } 2359 } 2360 } 2361 } 2362 2363 // Nothing looked good. 2364 return nullptr; 2365 } 2366 2367 void LSRInstance::CollectInterestingTypesAndFactors() { 2368 SmallSetVector<const SCEV *, 4> Strides; 2369 2370 // Collect interesting types and strides. 2371 SmallVector<const SCEV *, 4> Worklist; 2372 for (const IVStrideUse &U : IU) { 2373 const SCEV *Expr = IU.getExpr(U); 2374 2375 // Collect interesting types. 2376 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2377 2378 // Add strides for mentioned loops. 2379 Worklist.push_back(Expr); 2380 do { 2381 const SCEV *S = Worklist.pop_back_val(); 2382 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2383 if (AR->getLoop() == L) 2384 Strides.insert(AR->getStepRecurrence(SE)); 2385 Worklist.push_back(AR->getStart()); 2386 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2387 Worklist.append(Add->op_begin(), Add->op_end()); 2388 } 2389 } while (!Worklist.empty()); 2390 } 2391 2392 // Compute interesting factors from the set of interesting strides. 2393 for (SmallSetVector<const SCEV *, 4>::const_iterator 2394 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2395 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2396 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2397 const SCEV *OldStride = *I; 2398 const SCEV *NewStride = *NewStrideIter; 2399 2400 if (SE.getTypeSizeInBits(OldStride->getType()) != 2401 SE.getTypeSizeInBits(NewStride->getType())) { 2402 if (SE.getTypeSizeInBits(OldStride->getType()) > 2403 SE.getTypeSizeInBits(NewStride->getType())) 2404 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2405 else 2406 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2407 } 2408 if (const SCEVConstant *Factor = 2409 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2410 SE, true))) { 2411 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2412 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2413 } else if (const SCEVConstant *Factor = 2414 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2415 NewStride, 2416 SE, true))) { 2417 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2418 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2419 } 2420 } 2421 2422 // If all uses use the same type, don't bother looking for truncation-based 2423 // reuse. 2424 if (Types.size() == 1) 2425 Types.clear(); 2426 2427 DEBUG(print_factors_and_types(dbgs())); 2428 } 2429 2430 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2431 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2432 /// IVStrideUses, we could partially skip this. 2433 static User::op_iterator 2434 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2435 Loop *L, ScalarEvolution &SE) { 2436 for(; OI != OE; ++OI) { 2437 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2438 if (!SE.isSCEVable(Oper->getType())) 2439 continue; 2440 2441 if (const SCEVAddRecExpr *AR = 2442 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2443 if (AR->getLoop() == L) 2444 break; 2445 } 2446 } 2447 } 2448 return OI; 2449 } 2450 2451 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2452 /// a convenient helper. 2453 static Value *getWideOperand(Value *Oper) { 2454 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2455 return Trunc->getOperand(0); 2456 return Oper; 2457 } 2458 2459 /// Return true if we allow an IV chain to include both types. 2460 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2461 Type *LType = LVal->getType(); 2462 Type *RType = RVal->getType(); 2463 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2464 } 2465 2466 /// Return an approximation of this SCEV expression's "base", or NULL for any 2467 /// constant. Returning the expression itself is conservative. Returning a 2468 /// deeper subexpression is more precise and valid as long as it isn't less 2469 /// complex than another subexpression. For expressions involving multiple 2470 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2471 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2472 /// IVInc==b-a. 2473 /// 2474 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2475 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2476 static const SCEV *getExprBase(const SCEV *S) { 2477 switch (S->getSCEVType()) { 2478 default: // uncluding scUnknown. 2479 return S; 2480 case scConstant: 2481 return nullptr; 2482 case scTruncate: 2483 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2484 case scZeroExtend: 2485 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2486 case scSignExtend: 2487 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2488 case scAddExpr: { 2489 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2490 // there's nothing more complex. 2491 // FIXME: not sure if we want to recognize negation. 2492 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2493 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2494 E(Add->op_begin()); I != E; ++I) { 2495 const SCEV *SubExpr = *I; 2496 if (SubExpr->getSCEVType() == scAddExpr) 2497 return getExprBase(SubExpr); 2498 2499 if (SubExpr->getSCEVType() != scMulExpr) 2500 return SubExpr; 2501 } 2502 return S; // all operands are scaled, be conservative. 2503 } 2504 case scAddRecExpr: 2505 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2506 } 2507 } 2508 2509 /// Return true if the chain increment is profitable to expand into a loop 2510 /// invariant value, which may require its own register. A profitable chain 2511 /// increment will be an offset relative to the same base. We allow such offsets 2512 /// to potentially be used as chain increment as long as it's not obviously 2513 /// expensive to expand using real instructions. 2514 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2515 const SCEV *IncExpr, 2516 ScalarEvolution &SE) { 2517 // Aggressively form chains when -stress-ivchain. 2518 if (StressIVChain) 2519 return true; 2520 2521 // Do not replace a constant offset from IV head with a nonconstant IV 2522 // increment. 2523 if (!isa<SCEVConstant>(IncExpr)) { 2524 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2525 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2526 return 0; 2527 } 2528 2529 SmallPtrSet<const SCEV*, 8> Processed; 2530 return !isHighCostExpansion(IncExpr, Processed, SE); 2531 } 2532 2533 /// Return true if the number of registers needed for the chain is estimated to 2534 /// be less than the number required for the individual IV users. First prohibit 2535 /// any IV users that keep the IV live across increments (the Users set should 2536 /// be empty). Next count the number and type of increments in the chain. 2537 /// 2538 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2539 /// effectively use postinc addressing modes. Only consider it profitable it the 2540 /// increments can be computed in fewer registers when chained. 2541 /// 2542 /// TODO: Consider IVInc free if it's already used in another chains. 2543 static bool 2544 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2545 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2546 if (StressIVChain) 2547 return true; 2548 2549 if (!Chain.hasIncs()) 2550 return false; 2551 2552 if (!Users.empty()) { 2553 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2554 for (Instruction *Inst : Users) { 2555 dbgs() << " " << *Inst << "\n"; 2556 }); 2557 return false; 2558 } 2559 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2560 2561 // The chain itself may require a register, so intialize cost to 1. 2562 int cost = 1; 2563 2564 // A complete chain likely eliminates the need for keeping the original IV in 2565 // a register. LSR does not currently know how to form a complete chain unless 2566 // the header phi already exists. 2567 if (isa<PHINode>(Chain.tailUserInst()) 2568 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2569 --cost; 2570 } 2571 const SCEV *LastIncExpr = nullptr; 2572 unsigned NumConstIncrements = 0; 2573 unsigned NumVarIncrements = 0; 2574 unsigned NumReusedIncrements = 0; 2575 for (const IVInc &Inc : Chain) { 2576 if (Inc.IncExpr->isZero()) 2577 continue; 2578 2579 // Incrementing by zero or some constant is neutral. We assume constants can 2580 // be folded into an addressing mode or an add's immediate operand. 2581 if (isa<SCEVConstant>(Inc.IncExpr)) { 2582 ++NumConstIncrements; 2583 continue; 2584 } 2585 2586 if (Inc.IncExpr == LastIncExpr) 2587 ++NumReusedIncrements; 2588 else 2589 ++NumVarIncrements; 2590 2591 LastIncExpr = Inc.IncExpr; 2592 } 2593 // An IV chain with a single increment is handled by LSR's postinc 2594 // uses. However, a chain with multiple increments requires keeping the IV's 2595 // value live longer than it needs to be if chained. 2596 if (NumConstIncrements > 1) 2597 --cost; 2598 2599 // Materializing increment expressions in the preheader that didn't exist in 2600 // the original code may cost a register. For example, sign-extended array 2601 // indices can produce ridiculous increments like this: 2602 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2603 cost += NumVarIncrements; 2604 2605 // Reusing variable increments likely saves a register to hold the multiple of 2606 // the stride. 2607 cost -= NumReusedIncrements; 2608 2609 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2610 << "\n"); 2611 2612 return cost < 0; 2613 } 2614 2615 /// Add this IV user to an existing chain or make it the head of a new chain. 2616 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2617 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2618 // When IVs are used as types of varying widths, they are generally converted 2619 // to a wider type with some uses remaining narrow under a (free) trunc. 2620 Value *const NextIV = getWideOperand(IVOper); 2621 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2622 const SCEV *const OperExprBase = getExprBase(OperExpr); 2623 2624 // Visit all existing chains. Check if its IVOper can be computed as a 2625 // profitable loop invariant increment from the last link in the Chain. 2626 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2627 const SCEV *LastIncExpr = nullptr; 2628 for (; ChainIdx < NChains; ++ChainIdx) { 2629 IVChain &Chain = IVChainVec[ChainIdx]; 2630 2631 // Prune the solution space aggressively by checking that both IV operands 2632 // are expressions that operate on the same unscaled SCEVUnknown. This 2633 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2634 // first avoids creating extra SCEV expressions. 2635 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2636 continue; 2637 2638 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2639 if (!isCompatibleIVType(PrevIV, NextIV)) 2640 continue; 2641 2642 // A phi node terminates a chain. 2643 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2644 continue; 2645 2646 // The increment must be loop-invariant so it can be kept in a register. 2647 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2648 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2649 if (!SE.isLoopInvariant(IncExpr, L)) 2650 continue; 2651 2652 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2653 LastIncExpr = IncExpr; 2654 break; 2655 } 2656 } 2657 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2658 // bother for phi nodes, because they must be last in the chain. 2659 if (ChainIdx == NChains) { 2660 if (isa<PHINode>(UserInst)) 2661 return; 2662 if (NChains >= MaxChains && !StressIVChain) { 2663 DEBUG(dbgs() << "IV Chain Limit\n"); 2664 return; 2665 } 2666 LastIncExpr = OperExpr; 2667 // IVUsers may have skipped over sign/zero extensions. We don't currently 2668 // attempt to form chains involving extensions unless they can be hoisted 2669 // into this loop's AddRec. 2670 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2671 return; 2672 ++NChains; 2673 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2674 OperExprBase)); 2675 ChainUsersVec.resize(NChains); 2676 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2677 << ") IV=" << *LastIncExpr << "\n"); 2678 } else { 2679 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2680 << ") IV+" << *LastIncExpr << "\n"); 2681 // Add this IV user to the end of the chain. 2682 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2683 } 2684 IVChain &Chain = IVChainVec[ChainIdx]; 2685 2686 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2687 // This chain's NearUsers become FarUsers. 2688 if (!LastIncExpr->isZero()) { 2689 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2690 NearUsers.end()); 2691 NearUsers.clear(); 2692 } 2693 2694 // All other uses of IVOperand become near uses of the chain. 2695 // We currently ignore intermediate values within SCEV expressions, assuming 2696 // they will eventually be used be the current chain, or can be computed 2697 // from one of the chain increments. To be more precise we could 2698 // transitively follow its user and only add leaf IV users to the set. 2699 for (User *U : IVOper->users()) { 2700 Instruction *OtherUse = dyn_cast<Instruction>(U); 2701 if (!OtherUse) 2702 continue; 2703 // Uses in the chain will no longer be uses if the chain is formed. 2704 // Include the head of the chain in this iteration (not Chain.begin()). 2705 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2706 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2707 for( ; IncIter != IncEnd; ++IncIter) { 2708 if (IncIter->UserInst == OtherUse) 2709 break; 2710 } 2711 if (IncIter != IncEnd) 2712 continue; 2713 2714 if (SE.isSCEVable(OtherUse->getType()) 2715 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2716 && IU.isIVUserOrOperand(OtherUse)) { 2717 continue; 2718 } 2719 NearUsers.insert(OtherUse); 2720 } 2721 2722 // Since this user is part of the chain, it's no longer considered a use 2723 // of the chain. 2724 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2725 } 2726 2727 /// Populate the vector of Chains. 2728 /// 2729 /// This decreases ILP at the architecture level. Targets with ample registers, 2730 /// multiple memory ports, and no register renaming probably don't want 2731 /// this. However, such targets should probably disable LSR altogether. 2732 /// 2733 /// The job of LSR is to make a reasonable choice of induction variables across 2734 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2735 /// ILP *within the loop* if the target wants it. 2736 /// 2737 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2738 /// will not reorder memory operations, it will recognize this as a chain, but 2739 /// will generate redundant IV increments. Ideally this would be corrected later 2740 /// by a smart scheduler: 2741 /// = A[i] 2742 /// = A[i+x] 2743 /// A[i] = 2744 /// A[i+x] = 2745 /// 2746 /// TODO: Walk the entire domtree within this loop, not just the path to the 2747 /// loop latch. This will discover chains on side paths, but requires 2748 /// maintaining multiple copies of the Chains state. 2749 void LSRInstance::CollectChains() { 2750 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2751 SmallVector<ChainUsers, 8> ChainUsersVec; 2752 2753 SmallVector<BasicBlock *,8> LatchPath; 2754 BasicBlock *LoopHeader = L->getHeader(); 2755 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2756 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2757 LatchPath.push_back(Rung->getBlock()); 2758 } 2759 LatchPath.push_back(LoopHeader); 2760 2761 // Walk the instruction stream from the loop header to the loop latch. 2762 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2763 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2764 BBIter != BBEnd; ++BBIter) { 2765 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2766 I != E; ++I) { 2767 // Skip instructions that weren't seen by IVUsers analysis. 2768 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2769 continue; 2770 2771 // Ignore users that are part of a SCEV expression. This way we only 2772 // consider leaf IV Users. This effectively rediscovers a portion of 2773 // IVUsers analysis but in program order this time. 2774 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2775 continue; 2776 2777 // Remove this instruction from any NearUsers set it may be in. 2778 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2779 ChainIdx < NChains; ++ChainIdx) { 2780 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2781 } 2782 // Search for operands that can be chained. 2783 SmallPtrSet<Instruction*, 4> UniqueOperands; 2784 User::op_iterator IVOpEnd = I->op_end(); 2785 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2786 while (IVOpIter != IVOpEnd) { 2787 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2788 if (UniqueOperands.insert(IVOpInst).second) 2789 ChainInstruction(I, IVOpInst, ChainUsersVec); 2790 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2791 } 2792 } // Continue walking down the instructions. 2793 } // Continue walking down the domtree. 2794 // Visit phi backedges to determine if the chain can generate the IV postinc. 2795 for (BasicBlock::iterator I = L->getHeader()->begin(); 2796 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2797 if (!SE.isSCEVable(PN->getType())) 2798 continue; 2799 2800 Instruction *IncV = 2801 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2802 if (IncV) 2803 ChainInstruction(PN, IncV, ChainUsersVec); 2804 } 2805 // Remove any unprofitable chains. 2806 unsigned ChainIdx = 0; 2807 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2808 UsersIdx < NChains; ++UsersIdx) { 2809 if (!isProfitableChain(IVChainVec[UsersIdx], 2810 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2811 continue; 2812 // Preserve the chain at UsesIdx. 2813 if (ChainIdx != UsersIdx) 2814 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2815 FinalizeChain(IVChainVec[ChainIdx]); 2816 ++ChainIdx; 2817 } 2818 IVChainVec.resize(ChainIdx); 2819 } 2820 2821 void LSRInstance::FinalizeChain(IVChain &Chain) { 2822 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2823 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2824 2825 for (const IVInc &Inc : Chain) { 2826 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2827 auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(), 2828 Inc.IVOperand); 2829 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2830 IVIncSet.insert(UseI); 2831 } 2832 } 2833 2834 /// Return true if the IVInc can be folded into an addressing mode. 2835 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2836 Value *Operand, const TargetTransformInfo &TTI) { 2837 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2838 if (!IncConst || !isAddressUse(UserInst, Operand)) 2839 return false; 2840 2841 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2842 return false; 2843 2844 MemAccessTy AccessTy = getAccessType(UserInst); 2845 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2846 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2847 IncOffset, /*HaseBaseReg=*/false)) 2848 return false; 2849 2850 return true; 2851 } 2852 2853 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2854 /// user's operand from the previous IV user's operand. 2855 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2856 SmallVectorImpl<WeakVH> &DeadInsts) { 2857 // Find the new IVOperand for the head of the chain. It may have been replaced 2858 // by LSR. 2859 const IVInc &Head = Chain.Incs[0]; 2860 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2861 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2862 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2863 IVOpEnd, L, SE); 2864 Value *IVSrc = nullptr; 2865 while (IVOpIter != IVOpEnd) { 2866 IVSrc = getWideOperand(*IVOpIter); 2867 2868 // If this operand computes the expression that the chain needs, we may use 2869 // it. (Check this after setting IVSrc which is used below.) 2870 // 2871 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2872 // narrow for the chain, so we can no longer use it. We do allow using a 2873 // wider phi, assuming the LSR checked for free truncation. In that case we 2874 // should already have a truncate on this operand such that 2875 // getSCEV(IVSrc) == IncExpr. 2876 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2877 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2878 break; 2879 } 2880 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2881 } 2882 if (IVOpIter == IVOpEnd) { 2883 // Gracefully give up on this chain. 2884 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2885 return; 2886 } 2887 2888 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2889 Type *IVTy = IVSrc->getType(); 2890 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2891 const SCEV *LeftOverExpr = nullptr; 2892 for (const IVInc &Inc : Chain) { 2893 Instruction *InsertPt = Inc.UserInst; 2894 if (isa<PHINode>(InsertPt)) 2895 InsertPt = L->getLoopLatch()->getTerminator(); 2896 2897 // IVOper will replace the current IV User's operand. IVSrc is the IV 2898 // value currently held in a register. 2899 Value *IVOper = IVSrc; 2900 if (!Inc.IncExpr->isZero()) { 2901 // IncExpr was the result of subtraction of two narrow values, so must 2902 // be signed. 2903 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2904 LeftOverExpr = LeftOverExpr ? 2905 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2906 } 2907 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2908 // Expand the IV increment. 2909 Rewriter.clearPostInc(); 2910 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2911 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2912 SE.getUnknown(IncV)); 2913 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2914 2915 // If an IV increment can't be folded, use it as the next IV value. 2916 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2917 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2918 IVSrc = IVOper; 2919 LeftOverExpr = nullptr; 2920 } 2921 } 2922 Type *OperTy = Inc.IVOperand->getType(); 2923 if (IVTy != OperTy) { 2924 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2925 "cannot extend a chained IV"); 2926 IRBuilder<> Builder(InsertPt); 2927 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2928 } 2929 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2930 DeadInsts.emplace_back(Inc.IVOperand); 2931 } 2932 // If LSR created a new, wider phi, we may also replace its postinc. We only 2933 // do this if we also found a wide value for the head of the chain. 2934 if (isa<PHINode>(Chain.tailUserInst())) { 2935 for (BasicBlock::iterator I = L->getHeader()->begin(); 2936 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2937 if (!isCompatibleIVType(Phi, IVSrc)) 2938 continue; 2939 Instruction *PostIncV = dyn_cast<Instruction>( 2940 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2941 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2942 continue; 2943 Value *IVOper = IVSrc; 2944 Type *PostIncTy = PostIncV->getType(); 2945 if (IVTy != PostIncTy) { 2946 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2947 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2948 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2949 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2950 } 2951 Phi->replaceUsesOfWith(PostIncV, IVOper); 2952 DeadInsts.emplace_back(PostIncV); 2953 } 2954 } 2955 } 2956 2957 void LSRInstance::CollectFixupsAndInitialFormulae() { 2958 for (const IVStrideUse &U : IU) { 2959 Instruction *UserInst = U.getUser(); 2960 // Skip IV users that are part of profitable IV Chains. 2961 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2962 U.getOperandValToReplace()); 2963 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2964 if (IVIncSet.count(UseI)) 2965 continue; 2966 2967 // Record the uses. 2968 LSRFixup &LF = getNewFixup(); 2969 LF.UserInst = UserInst; 2970 LF.OperandValToReplace = U.getOperandValToReplace(); 2971 LF.PostIncLoops = U.getPostIncLoops(); 2972 2973 LSRUse::KindType Kind = LSRUse::Basic; 2974 MemAccessTy AccessTy; 2975 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2976 Kind = LSRUse::Address; 2977 AccessTy = getAccessType(LF.UserInst); 2978 } 2979 2980 const SCEV *S = IU.getExpr(U); 2981 2982 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2983 // (N - i == 0), and this allows (N - i) to be the expression that we work 2984 // with rather than just N or i, so we can consider the register 2985 // requirements for both N and i at the same time. Limiting this code to 2986 // equality icmps is not a problem because all interesting loops use 2987 // equality icmps, thanks to IndVarSimplify. 2988 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2989 if (CI->isEquality()) { 2990 // Swap the operands if needed to put the OperandValToReplace on the 2991 // left, for consistency. 2992 Value *NV = CI->getOperand(1); 2993 if (NV == LF.OperandValToReplace) { 2994 CI->setOperand(1, CI->getOperand(0)); 2995 CI->setOperand(0, NV); 2996 NV = CI->getOperand(1); 2997 Changed = true; 2998 } 2999 3000 // x == y --> x - y == 0 3001 const SCEV *N = SE.getSCEV(NV); 3002 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3003 // S is normalized, so normalize N before folding it into S 3004 // to keep the result normalized. 3005 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3006 LF.PostIncLoops, SE, DT); 3007 Kind = LSRUse::ICmpZero; 3008 S = SE.getMinusSCEV(N, S); 3009 } 3010 3011 // -1 and the negations of all interesting strides (except the negation 3012 // of -1) are now also interesting. 3013 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3014 if (Factors[i] != -1) 3015 Factors.insert(-(uint64_t)Factors[i]); 3016 Factors.insert(-1); 3017 } 3018 3019 // Set up the initial formula for this use. 3020 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3021 LF.LUIdx = P.first; 3022 LF.Offset = P.second; 3023 LSRUse &LU = Uses[LF.LUIdx]; 3024 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3025 if (!LU.WidestFixupType || 3026 SE.getTypeSizeInBits(LU.WidestFixupType) < 3027 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3028 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3029 3030 // If this is the first use of this LSRUse, give it a formula. 3031 if (LU.Formulae.empty()) { 3032 InsertInitialFormula(S, LU, LF.LUIdx); 3033 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3034 } 3035 } 3036 3037 DEBUG(print_fixups(dbgs())); 3038 } 3039 3040 /// Insert a formula for the given expression into the given use, separating out 3041 /// loop-variant portions from loop-invariant and loop-computable portions. 3042 void 3043 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3044 // Mark uses whose expressions cannot be expanded. 3045 if (!isSafeToExpand(S, SE)) 3046 LU.RigidFormula = true; 3047 3048 Formula F; 3049 F.initialMatch(S, L, SE); 3050 bool Inserted = InsertFormula(LU, LUIdx, F); 3051 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3052 } 3053 3054 /// Insert a simple single-register formula for the given expression into the 3055 /// given use. 3056 void 3057 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3058 LSRUse &LU, size_t LUIdx) { 3059 Formula F; 3060 F.BaseRegs.push_back(S); 3061 F.HasBaseReg = true; 3062 bool Inserted = InsertFormula(LU, LUIdx, F); 3063 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3064 } 3065 3066 /// Note which registers are used by the given formula, updating RegUses. 3067 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3068 if (F.ScaledReg) 3069 RegUses.countRegister(F.ScaledReg, LUIdx); 3070 for (const SCEV *BaseReg : F.BaseRegs) 3071 RegUses.countRegister(BaseReg, LUIdx); 3072 } 3073 3074 /// If the given formula has not yet been inserted, add it to the list, and 3075 /// return true. Return false otherwise. 3076 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3077 // Do not insert formula that we will not be able to expand. 3078 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3079 "Formula is illegal"); 3080 if (!LU.InsertFormula(F)) 3081 return false; 3082 3083 CountRegisters(F, LUIdx); 3084 return true; 3085 } 3086 3087 /// Check for other uses of loop-invariant values which we're tracking. These 3088 /// other uses will pin these values in registers, making them less profitable 3089 /// for elimination. 3090 /// TODO: This currently misses non-constant addrec step registers. 3091 /// TODO: Should this give more weight to users inside the loop? 3092 void 3093 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3094 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3095 SmallPtrSet<const SCEV *, 32> Visited; 3096 3097 while (!Worklist.empty()) { 3098 const SCEV *S = Worklist.pop_back_val(); 3099 3100 // Don't process the same SCEV twice 3101 if (!Visited.insert(S).second) 3102 continue; 3103 3104 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3105 Worklist.append(N->op_begin(), N->op_end()); 3106 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3107 Worklist.push_back(C->getOperand()); 3108 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3109 Worklist.push_back(D->getLHS()); 3110 Worklist.push_back(D->getRHS()); 3111 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3112 const Value *V = US->getValue(); 3113 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3114 // Look for instructions defined outside the loop. 3115 if (L->contains(Inst)) continue; 3116 } else if (isa<UndefValue>(V)) 3117 // Undef doesn't have a live range, so it doesn't matter. 3118 continue; 3119 for (const Use &U : V->uses()) { 3120 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3121 // Ignore non-instructions. 3122 if (!UserInst) 3123 continue; 3124 // Ignore instructions in other functions (as can happen with 3125 // Constants). 3126 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3127 continue; 3128 // Ignore instructions not dominated by the loop. 3129 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3130 UserInst->getParent() : 3131 cast<PHINode>(UserInst)->getIncomingBlock( 3132 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3133 if (!DT.dominates(L->getHeader(), UseBB)) 3134 continue; 3135 // Ignore uses which are part of other SCEV expressions, to avoid 3136 // analyzing them multiple times. 3137 if (SE.isSCEVable(UserInst->getType())) { 3138 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3139 // If the user is a no-op, look through to its uses. 3140 if (!isa<SCEVUnknown>(UserS)) 3141 continue; 3142 if (UserS == US) { 3143 Worklist.push_back( 3144 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3145 continue; 3146 } 3147 } 3148 // Ignore icmp instructions which are already being analyzed. 3149 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3150 unsigned OtherIdx = !U.getOperandNo(); 3151 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3152 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3153 continue; 3154 } 3155 3156 LSRFixup &LF = getNewFixup(); 3157 LF.UserInst = const_cast<Instruction *>(UserInst); 3158 LF.OperandValToReplace = U; 3159 std::pair<size_t, int64_t> P = getUse( 3160 S, LSRUse::Basic, MemAccessTy()); 3161 LF.LUIdx = P.first; 3162 LF.Offset = P.second; 3163 LSRUse &LU = Uses[LF.LUIdx]; 3164 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3165 if (!LU.WidestFixupType || 3166 SE.getTypeSizeInBits(LU.WidestFixupType) < 3167 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3168 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3169 InsertSupplementalFormula(US, LU, LF.LUIdx); 3170 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3171 break; 3172 } 3173 } 3174 } 3175 } 3176 3177 /// Split S into subexpressions which can be pulled out into separate 3178 /// registers. If C is non-null, multiply each subexpression by C. 3179 /// 3180 /// Return remainder expression after factoring the subexpressions captured by 3181 /// Ops. If Ops is complete, return NULL. 3182 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3183 SmallVectorImpl<const SCEV *> &Ops, 3184 const Loop *L, 3185 ScalarEvolution &SE, 3186 unsigned Depth = 0) { 3187 // Arbitrarily cap recursion to protect compile time. 3188 if (Depth >= 3) 3189 return S; 3190 3191 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3192 // Break out add operands. 3193 for (const SCEV *S : Add->operands()) { 3194 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3195 if (Remainder) 3196 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3197 } 3198 return nullptr; 3199 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3200 // Split a non-zero base out of an addrec. 3201 if (AR->getStart()->isZero()) 3202 return S; 3203 3204 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3205 C, Ops, L, SE, Depth+1); 3206 // Split the non-zero AddRec unless it is part of a nested recurrence that 3207 // does not pertain to this loop. 3208 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3209 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3210 Remainder = nullptr; 3211 } 3212 if (Remainder != AR->getStart()) { 3213 if (!Remainder) 3214 Remainder = SE.getConstant(AR->getType(), 0); 3215 return SE.getAddRecExpr(Remainder, 3216 AR->getStepRecurrence(SE), 3217 AR->getLoop(), 3218 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3219 SCEV::FlagAnyWrap); 3220 } 3221 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3222 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3223 if (Mul->getNumOperands() != 2) 3224 return S; 3225 if (const SCEVConstant *Op0 = 3226 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3227 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3228 const SCEV *Remainder = 3229 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3230 if (Remainder) 3231 Ops.push_back(SE.getMulExpr(C, Remainder)); 3232 return nullptr; 3233 } 3234 } 3235 return S; 3236 } 3237 3238 /// \brief Helper function for LSRInstance::GenerateReassociations. 3239 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3240 const Formula &Base, 3241 unsigned Depth, size_t Idx, 3242 bool IsScaledReg) { 3243 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3244 SmallVector<const SCEV *, 8> AddOps; 3245 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3246 if (Remainder) 3247 AddOps.push_back(Remainder); 3248 3249 if (AddOps.size() == 1) 3250 return; 3251 3252 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3253 JE = AddOps.end(); 3254 J != JE; ++J) { 3255 3256 // Loop-variant "unknown" values are uninteresting; we won't be able to 3257 // do anything meaningful with them. 3258 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3259 continue; 3260 3261 // Don't pull a constant into a register if the constant could be folded 3262 // into an immediate field. 3263 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3264 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3265 continue; 3266 3267 // Collect all operands except *J. 3268 SmallVector<const SCEV *, 8> InnerAddOps( 3269 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3270 InnerAddOps.append(std::next(J), 3271 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3272 3273 // Don't leave just a constant behind in a register if the constant could 3274 // be folded into an immediate field. 3275 if (InnerAddOps.size() == 1 && 3276 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3277 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3278 continue; 3279 3280 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3281 if (InnerSum->isZero()) 3282 continue; 3283 Formula F = Base; 3284 3285 // Add the remaining pieces of the add back into the new formula. 3286 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3287 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3288 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3289 InnerSumSC->getValue()->getZExtValue())) { 3290 F.UnfoldedOffset = 3291 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3292 if (IsScaledReg) 3293 F.ScaledReg = nullptr; 3294 else 3295 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3296 } else if (IsScaledReg) 3297 F.ScaledReg = InnerSum; 3298 else 3299 F.BaseRegs[Idx] = InnerSum; 3300 3301 // Add J as its own register, or an unfolded immediate. 3302 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3303 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3304 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3305 SC->getValue()->getZExtValue())) 3306 F.UnfoldedOffset = 3307 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3308 else 3309 F.BaseRegs.push_back(*J); 3310 // We may have changed the number of register in base regs, adjust the 3311 // formula accordingly. 3312 F.canonicalize(); 3313 3314 if (InsertFormula(LU, LUIdx, F)) 3315 // If that formula hadn't been seen before, recurse to find more like 3316 // it. 3317 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3318 } 3319 } 3320 3321 /// Split out subexpressions from adds and the bases of addrecs. 3322 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3323 Formula Base, unsigned Depth) { 3324 assert(Base.isCanonical() && "Input must be in the canonical form"); 3325 // Arbitrarily cap recursion to protect compile time. 3326 if (Depth >= 3) 3327 return; 3328 3329 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3330 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3331 3332 if (Base.Scale == 1) 3333 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3334 /* Idx */ -1, /* IsScaledReg */ true); 3335 } 3336 3337 /// Generate a formula consisting of all of the loop-dominating registers added 3338 /// into a single register. 3339 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3340 Formula Base) { 3341 // This method is only interesting on a plurality of registers. 3342 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3343 return; 3344 3345 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3346 // processing the formula. 3347 Base.unscale(); 3348 Formula F = Base; 3349 F.BaseRegs.clear(); 3350 SmallVector<const SCEV *, 4> Ops; 3351 for (const SCEV *BaseReg : Base.BaseRegs) { 3352 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3353 !SE.hasComputableLoopEvolution(BaseReg, L)) 3354 Ops.push_back(BaseReg); 3355 else 3356 F.BaseRegs.push_back(BaseReg); 3357 } 3358 if (Ops.size() > 1) { 3359 const SCEV *Sum = SE.getAddExpr(Ops); 3360 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3361 // opportunity to fold something. For now, just ignore such cases 3362 // rather than proceed with zero in a register. 3363 if (!Sum->isZero()) { 3364 F.BaseRegs.push_back(Sum); 3365 F.canonicalize(); 3366 (void)InsertFormula(LU, LUIdx, F); 3367 } 3368 } 3369 } 3370 3371 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3372 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3373 const Formula &Base, size_t Idx, 3374 bool IsScaledReg) { 3375 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3376 GlobalValue *GV = ExtractSymbol(G, SE); 3377 if (G->isZero() || !GV) 3378 return; 3379 Formula F = Base; 3380 F.BaseGV = GV; 3381 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3382 return; 3383 if (IsScaledReg) 3384 F.ScaledReg = G; 3385 else 3386 F.BaseRegs[Idx] = G; 3387 (void)InsertFormula(LU, LUIdx, F); 3388 } 3389 3390 /// Generate reuse formulae using symbolic offsets. 3391 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3392 Formula Base) { 3393 // We can't add a symbolic offset if the address already contains one. 3394 if (Base.BaseGV) return; 3395 3396 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3397 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3398 if (Base.Scale == 1) 3399 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3400 /* IsScaledReg */ true); 3401 } 3402 3403 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3404 void LSRInstance::GenerateConstantOffsetsImpl( 3405 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3406 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3407 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3408 for (int64_t Offset : Worklist) { 3409 Formula F = Base; 3410 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3411 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3412 LU.AccessTy, F)) { 3413 // Add the offset to the base register. 3414 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3415 // If it cancelled out, drop the base register, otherwise update it. 3416 if (NewG->isZero()) { 3417 if (IsScaledReg) { 3418 F.Scale = 0; 3419 F.ScaledReg = nullptr; 3420 } else 3421 F.deleteBaseReg(F.BaseRegs[Idx]); 3422 F.canonicalize(); 3423 } else if (IsScaledReg) 3424 F.ScaledReg = NewG; 3425 else 3426 F.BaseRegs[Idx] = NewG; 3427 3428 (void)InsertFormula(LU, LUIdx, F); 3429 } 3430 } 3431 3432 int64_t Imm = ExtractImmediate(G, SE); 3433 if (G->isZero() || Imm == 0) 3434 return; 3435 Formula F = Base; 3436 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3437 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3438 return; 3439 if (IsScaledReg) 3440 F.ScaledReg = G; 3441 else 3442 F.BaseRegs[Idx] = G; 3443 (void)InsertFormula(LU, LUIdx, F); 3444 } 3445 3446 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3447 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3448 Formula Base) { 3449 // TODO: For now, just add the min and max offset, because it usually isn't 3450 // worthwhile looking at everything inbetween. 3451 SmallVector<int64_t, 2> Worklist; 3452 Worklist.push_back(LU.MinOffset); 3453 if (LU.MaxOffset != LU.MinOffset) 3454 Worklist.push_back(LU.MaxOffset); 3455 3456 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3457 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3458 if (Base.Scale == 1) 3459 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3460 /* IsScaledReg */ true); 3461 } 3462 3463 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3464 /// == y -> x*c == y*c. 3465 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3466 Formula Base) { 3467 if (LU.Kind != LSRUse::ICmpZero) return; 3468 3469 // Determine the integer type for the base formula. 3470 Type *IntTy = Base.getType(); 3471 if (!IntTy) return; 3472 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3473 3474 // Don't do this if there is more than one offset. 3475 if (LU.MinOffset != LU.MaxOffset) return; 3476 3477 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3478 3479 // Check each interesting stride. 3480 for (int64_t Factor : Factors) { 3481 // Check that the multiplication doesn't overflow. 3482 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3483 continue; 3484 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3485 if (NewBaseOffset / Factor != Base.BaseOffset) 3486 continue; 3487 // If the offset will be truncated at this use, check that it is in bounds. 3488 if (!IntTy->isPointerTy() && 3489 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3490 continue; 3491 3492 // Check that multiplying with the use offset doesn't overflow. 3493 int64_t Offset = LU.MinOffset; 3494 if (Offset == INT64_MIN && Factor == -1) 3495 continue; 3496 Offset = (uint64_t)Offset * Factor; 3497 if (Offset / Factor != LU.MinOffset) 3498 continue; 3499 // If the offset will be truncated at this use, check that it is in bounds. 3500 if (!IntTy->isPointerTy() && 3501 !ConstantInt::isValueValidForType(IntTy, Offset)) 3502 continue; 3503 3504 Formula F = Base; 3505 F.BaseOffset = NewBaseOffset; 3506 3507 // Check that this scale is legal. 3508 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3509 continue; 3510 3511 // Compensate for the use having MinOffset built into it. 3512 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3513 3514 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3515 3516 // Check that multiplying with each base register doesn't overflow. 3517 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3518 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3519 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3520 goto next; 3521 } 3522 3523 // Check that multiplying with the scaled register doesn't overflow. 3524 if (F.ScaledReg) { 3525 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3526 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3527 continue; 3528 } 3529 3530 // Check that multiplying with the unfolded offset doesn't overflow. 3531 if (F.UnfoldedOffset != 0) { 3532 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3533 continue; 3534 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3535 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3536 continue; 3537 // If the offset will be truncated, check that it is in bounds. 3538 if (!IntTy->isPointerTy() && 3539 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3540 continue; 3541 } 3542 3543 // If we make it here and it's legal, add it. 3544 (void)InsertFormula(LU, LUIdx, F); 3545 next:; 3546 } 3547 } 3548 3549 /// Generate stride factor reuse formulae by making use of scaled-offset address 3550 /// modes, for example. 3551 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3552 // Determine the integer type for the base formula. 3553 Type *IntTy = Base.getType(); 3554 if (!IntTy) return; 3555 3556 // If this Formula already has a scaled register, we can't add another one. 3557 // Try to unscale the formula to generate a better scale. 3558 if (Base.Scale != 0 && !Base.unscale()) 3559 return; 3560 3561 assert(Base.Scale == 0 && "unscale did not did its job!"); 3562 3563 // Check each interesting stride. 3564 for (int64_t Factor : Factors) { 3565 Base.Scale = Factor; 3566 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3567 // Check whether this scale is going to be legal. 3568 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3569 Base)) { 3570 // As a special-case, handle special out-of-loop Basic users specially. 3571 // TODO: Reconsider this special case. 3572 if (LU.Kind == LSRUse::Basic && 3573 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3574 LU.AccessTy, Base) && 3575 LU.AllFixupsOutsideLoop) 3576 LU.Kind = LSRUse::Special; 3577 else 3578 continue; 3579 } 3580 // For an ICmpZero, negating a solitary base register won't lead to 3581 // new solutions. 3582 if (LU.Kind == LSRUse::ICmpZero && 3583 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3584 continue; 3585 // For each addrec base reg, apply the scale, if possible. 3586 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3587 if (const SCEVAddRecExpr *AR = 3588 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3589 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3590 if (FactorS->isZero()) 3591 continue; 3592 // Divide out the factor, ignoring high bits, since we'll be 3593 // scaling the value back up in the end. 3594 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3595 // TODO: This could be optimized to avoid all the copying. 3596 Formula F = Base; 3597 F.ScaledReg = Quotient; 3598 F.deleteBaseReg(F.BaseRegs[i]); 3599 // The canonical representation of 1*reg is reg, which is already in 3600 // Base. In that case, do not try to insert the formula, it will be 3601 // rejected anyway. 3602 if (F.Scale == 1 && F.BaseRegs.empty()) 3603 continue; 3604 (void)InsertFormula(LU, LUIdx, F); 3605 } 3606 } 3607 } 3608 } 3609 3610 /// Generate reuse formulae from different IV types. 3611 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3612 // Don't bother truncating symbolic values. 3613 if (Base.BaseGV) return; 3614 3615 // Determine the integer type for the base formula. 3616 Type *DstTy = Base.getType(); 3617 if (!DstTy) return; 3618 DstTy = SE.getEffectiveSCEVType(DstTy); 3619 3620 for (Type *SrcTy : Types) { 3621 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3622 Formula F = Base; 3623 3624 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3625 for (const SCEV *&BaseReg : F.BaseRegs) 3626 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3627 3628 // TODO: This assumes we've done basic processing on all uses and 3629 // have an idea what the register usage is. 3630 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3631 continue; 3632 3633 (void)InsertFormula(LU, LUIdx, F); 3634 } 3635 } 3636 } 3637 3638 namespace { 3639 3640 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3641 /// modifications so that the search phase doesn't have to worry about the data 3642 /// structures moving underneath it. 3643 struct WorkItem { 3644 size_t LUIdx; 3645 int64_t Imm; 3646 const SCEV *OrigReg; 3647 3648 WorkItem(size_t LI, int64_t I, const SCEV *R) 3649 : LUIdx(LI), Imm(I), OrigReg(R) {} 3650 3651 void print(raw_ostream &OS) const; 3652 void dump() const; 3653 }; 3654 3655 } 3656 3657 void WorkItem::print(raw_ostream &OS) const { 3658 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3659 << " , add offset " << Imm; 3660 } 3661 3662 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3663 void WorkItem::dump() const { 3664 print(errs()); errs() << '\n'; 3665 } 3666 #endif 3667 3668 /// Look for registers which are a constant distance apart and try to form reuse 3669 /// opportunities between them. 3670 void LSRInstance::GenerateCrossUseConstantOffsets() { 3671 // Group the registers by their value without any added constant offset. 3672 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3673 DenseMap<const SCEV *, ImmMapTy> Map; 3674 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3675 SmallVector<const SCEV *, 8> Sequence; 3676 for (const SCEV *Use : RegUses) { 3677 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3678 int64_t Imm = ExtractImmediate(Reg, SE); 3679 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3680 if (Pair.second) 3681 Sequence.push_back(Reg); 3682 Pair.first->second.insert(std::make_pair(Imm, Use)); 3683 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3684 } 3685 3686 // Now examine each set of registers with the same base value. Build up 3687 // a list of work to do and do the work in a separate step so that we're 3688 // not adding formulae and register counts while we're searching. 3689 SmallVector<WorkItem, 32> WorkItems; 3690 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3691 for (const SCEV *Reg : Sequence) { 3692 const ImmMapTy &Imms = Map.find(Reg)->second; 3693 3694 // It's not worthwhile looking for reuse if there's only one offset. 3695 if (Imms.size() == 1) 3696 continue; 3697 3698 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3699 for (const auto &Entry : Imms) 3700 dbgs() << ' ' << Entry.first; 3701 dbgs() << '\n'); 3702 3703 // Examine each offset. 3704 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3705 J != JE; ++J) { 3706 const SCEV *OrigReg = J->second; 3707 3708 int64_t JImm = J->first; 3709 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3710 3711 if (!isa<SCEVConstant>(OrigReg) && 3712 UsedByIndicesMap[Reg].count() == 1) { 3713 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3714 continue; 3715 } 3716 3717 // Conservatively examine offsets between this orig reg a few selected 3718 // other orig regs. 3719 ImmMapTy::const_iterator OtherImms[] = { 3720 Imms.begin(), std::prev(Imms.end()), 3721 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3722 2) 3723 }; 3724 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3725 ImmMapTy::const_iterator M = OtherImms[i]; 3726 if (M == J || M == JE) continue; 3727 3728 // Compute the difference between the two. 3729 int64_t Imm = (uint64_t)JImm - M->first; 3730 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3731 LUIdx = UsedByIndices.find_next(LUIdx)) 3732 // Make a memo of this use, offset, and register tuple. 3733 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3734 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3735 } 3736 } 3737 } 3738 3739 Map.clear(); 3740 Sequence.clear(); 3741 UsedByIndicesMap.clear(); 3742 UniqueItems.clear(); 3743 3744 // Now iterate through the worklist and add new formulae. 3745 for (const WorkItem &WI : WorkItems) { 3746 size_t LUIdx = WI.LUIdx; 3747 LSRUse &LU = Uses[LUIdx]; 3748 int64_t Imm = WI.Imm; 3749 const SCEV *OrigReg = WI.OrigReg; 3750 3751 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3752 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3753 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3754 3755 // TODO: Use a more targeted data structure. 3756 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3757 Formula F = LU.Formulae[L]; 3758 // FIXME: The code for the scaled and unscaled registers looks 3759 // very similar but slightly different. Investigate if they 3760 // could be merged. That way, we would not have to unscale the 3761 // Formula. 3762 F.unscale(); 3763 // Use the immediate in the scaled register. 3764 if (F.ScaledReg == OrigReg) { 3765 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3766 // Don't create 50 + reg(-50). 3767 if (F.referencesReg(SE.getSCEV( 3768 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3769 continue; 3770 Formula NewF = F; 3771 NewF.BaseOffset = Offset; 3772 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3773 NewF)) 3774 continue; 3775 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3776 3777 // If the new scale is a constant in a register, and adding the constant 3778 // value to the immediate would produce a value closer to zero than the 3779 // immediate itself, then the formula isn't worthwhile. 3780 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3781 if (C->getValue()->isNegative() != 3782 (NewF.BaseOffset < 0) && 3783 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3784 .ule(std::abs(NewF.BaseOffset))) 3785 continue; 3786 3787 // OK, looks good. 3788 NewF.canonicalize(); 3789 (void)InsertFormula(LU, LUIdx, NewF); 3790 } else { 3791 // Use the immediate in a base register. 3792 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3793 const SCEV *BaseReg = F.BaseRegs[N]; 3794 if (BaseReg != OrigReg) 3795 continue; 3796 Formula NewF = F; 3797 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3798 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3799 LU.Kind, LU.AccessTy, NewF)) { 3800 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3801 continue; 3802 NewF = F; 3803 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3804 } 3805 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3806 3807 // If the new formula has a constant in a register, and adding the 3808 // constant value to the immediate would produce a value closer to 3809 // zero than the immediate itself, then the formula isn't worthwhile. 3810 for (const SCEV *NewReg : NewF.BaseRegs) 3811 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3812 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3813 std::abs(NewF.BaseOffset)) && 3814 (C->getValue()->getValue() + 3815 NewF.BaseOffset).countTrailingZeros() >= 3816 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3817 goto skip_formula; 3818 3819 // Ok, looks good. 3820 NewF.canonicalize(); 3821 (void)InsertFormula(LU, LUIdx, NewF); 3822 break; 3823 skip_formula:; 3824 } 3825 } 3826 } 3827 } 3828 } 3829 3830 /// Generate formulae for each use. 3831 void 3832 LSRInstance::GenerateAllReuseFormulae() { 3833 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3834 // queries are more precise. 3835 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3836 LSRUse &LU = Uses[LUIdx]; 3837 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3838 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3839 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3840 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3841 } 3842 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3843 LSRUse &LU = Uses[LUIdx]; 3844 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3845 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3846 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3847 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3848 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3849 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3850 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3851 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3852 } 3853 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3854 LSRUse &LU = Uses[LUIdx]; 3855 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3856 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3857 } 3858 3859 GenerateCrossUseConstantOffsets(); 3860 3861 DEBUG(dbgs() << "\n" 3862 "After generating reuse formulae:\n"; 3863 print_uses(dbgs())); 3864 } 3865 3866 /// If there are multiple formulae with the same set of registers used 3867 /// by other uses, pick the best one and delete the others. 3868 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3869 DenseSet<const SCEV *> VisitedRegs; 3870 SmallPtrSet<const SCEV *, 16> Regs; 3871 SmallPtrSet<const SCEV *, 16> LoserRegs; 3872 #ifndef NDEBUG 3873 bool ChangedFormulae = false; 3874 #endif 3875 3876 // Collect the best formula for each unique set of shared registers. This 3877 // is reset for each use. 3878 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3879 BestFormulaeTy; 3880 BestFormulaeTy BestFormulae; 3881 3882 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3883 LSRUse &LU = Uses[LUIdx]; 3884 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3885 3886 bool Any = false; 3887 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3888 FIdx != NumForms; ++FIdx) { 3889 Formula &F = LU.Formulae[FIdx]; 3890 3891 // Some formulas are instant losers. For example, they may depend on 3892 // nonexistent AddRecs from other loops. These need to be filtered 3893 // immediately, otherwise heuristics could choose them over others leading 3894 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3895 // avoids the need to recompute this information across formulae using the 3896 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3897 // the corresponding bad register from the Regs set. 3898 Cost CostF; 3899 Regs.clear(); 3900 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3901 &LoserRegs); 3902 if (CostF.isLoser()) { 3903 // During initial formula generation, undesirable formulae are generated 3904 // by uses within other loops that have some non-trivial address mode or 3905 // use the postinc form of the IV. LSR needs to provide these formulae 3906 // as the basis of rediscovering the desired formula that uses an AddRec 3907 // corresponding to the existing phi. Once all formulae have been 3908 // generated, these initial losers may be pruned. 3909 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3910 dbgs() << "\n"); 3911 } 3912 else { 3913 SmallVector<const SCEV *, 4> Key; 3914 for (const SCEV *Reg : F.BaseRegs) { 3915 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3916 Key.push_back(Reg); 3917 } 3918 if (F.ScaledReg && 3919 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3920 Key.push_back(F.ScaledReg); 3921 // Unstable sort by host order ok, because this is only used for 3922 // uniquifying. 3923 std::sort(Key.begin(), Key.end()); 3924 3925 std::pair<BestFormulaeTy::const_iterator, bool> P = 3926 BestFormulae.insert(std::make_pair(Key, FIdx)); 3927 if (P.second) 3928 continue; 3929 3930 Formula &Best = LU.Formulae[P.first->second]; 3931 3932 Cost CostBest; 3933 Regs.clear(); 3934 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3935 DT, LU); 3936 if (CostF < CostBest) 3937 std::swap(F, Best); 3938 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3939 dbgs() << "\n" 3940 " in favor of formula "; Best.print(dbgs()); 3941 dbgs() << '\n'); 3942 } 3943 #ifndef NDEBUG 3944 ChangedFormulae = true; 3945 #endif 3946 LU.DeleteFormula(F); 3947 --FIdx; 3948 --NumForms; 3949 Any = true; 3950 } 3951 3952 // Now that we've filtered out some formulae, recompute the Regs set. 3953 if (Any) 3954 LU.RecomputeRegs(LUIdx, RegUses); 3955 3956 // Reset this to prepare for the next use. 3957 BestFormulae.clear(); 3958 } 3959 3960 DEBUG(if (ChangedFormulae) { 3961 dbgs() << "\n" 3962 "After filtering out undesirable candidates:\n"; 3963 print_uses(dbgs()); 3964 }); 3965 } 3966 3967 // This is a rough guess that seems to work fairly well. 3968 static const size_t ComplexityLimit = UINT16_MAX; 3969 3970 /// Estimate the worst-case number of solutions the solver might have to 3971 /// consider. It almost never considers this many solutions because it prune the 3972 /// search space, but the pruning isn't always sufficient. 3973 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 3974 size_t Power = 1; 3975 for (const LSRUse &LU : Uses) { 3976 size_t FSize = LU.Formulae.size(); 3977 if (FSize >= ComplexityLimit) { 3978 Power = ComplexityLimit; 3979 break; 3980 } 3981 Power *= FSize; 3982 if (Power >= ComplexityLimit) 3983 break; 3984 } 3985 return Power; 3986 } 3987 3988 /// When one formula uses a superset of the registers of another formula, it 3989 /// won't help reduce register pressure (though it may not necessarily hurt 3990 /// register pressure); remove it to simplify the system. 3991 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3992 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3993 DEBUG(dbgs() << "The search space is too complex.\n"); 3994 3995 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3996 "which use a superset of registers used by other " 3997 "formulae.\n"); 3998 3999 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4000 LSRUse &LU = Uses[LUIdx]; 4001 bool Any = false; 4002 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4003 Formula &F = LU.Formulae[i]; 4004 // Look for a formula with a constant or GV in a register. If the use 4005 // also has a formula with that same value in an immediate field, 4006 // delete the one that uses a register. 4007 for (SmallVectorImpl<const SCEV *>::const_iterator 4008 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4009 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4010 Formula NewF = F; 4011 NewF.BaseOffset += C->getValue()->getSExtValue(); 4012 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4013 (I - F.BaseRegs.begin())); 4014 if (LU.HasFormulaWithSameRegs(NewF)) { 4015 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4016 LU.DeleteFormula(F); 4017 --i; 4018 --e; 4019 Any = true; 4020 break; 4021 } 4022 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4023 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4024 if (!F.BaseGV) { 4025 Formula NewF = F; 4026 NewF.BaseGV = GV; 4027 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4028 (I - F.BaseRegs.begin())); 4029 if (LU.HasFormulaWithSameRegs(NewF)) { 4030 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4031 dbgs() << '\n'); 4032 LU.DeleteFormula(F); 4033 --i; 4034 --e; 4035 Any = true; 4036 break; 4037 } 4038 } 4039 } 4040 } 4041 } 4042 if (Any) 4043 LU.RecomputeRegs(LUIdx, RegUses); 4044 } 4045 4046 DEBUG(dbgs() << "After pre-selection:\n"; 4047 print_uses(dbgs())); 4048 } 4049 } 4050 4051 /// When there are many registers for expressions like A, A+1, A+2, etc., 4052 /// allocate a single register for them. 4053 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4054 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4055 return; 4056 4057 DEBUG(dbgs() << "The search space is too complex.\n" 4058 "Narrowing the search space by assuming that uses separated " 4059 "by a constant offset will use the same registers.\n"); 4060 4061 // This is especially useful for unrolled loops. 4062 4063 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4064 LSRUse &LU = Uses[LUIdx]; 4065 for (const Formula &F : LU.Formulae) { 4066 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4067 continue; 4068 4069 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4070 if (!LUThatHas) 4071 continue; 4072 4073 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4074 LU.Kind, LU.AccessTy)) 4075 continue; 4076 4077 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4078 4079 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4080 4081 // Update the relocs to reference the new use. 4082 for (LSRFixup &Fixup : Fixups) { 4083 if (Fixup.LUIdx == LUIdx) { 4084 Fixup.LUIdx = LUThatHas - &Uses.front(); 4085 Fixup.Offset += F.BaseOffset; 4086 // Add the new offset to LUThatHas' offset list. 4087 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4088 LUThatHas->Offsets.push_back(Fixup.Offset); 4089 if (Fixup.Offset > LUThatHas->MaxOffset) 4090 LUThatHas->MaxOffset = Fixup.Offset; 4091 if (Fixup.Offset < LUThatHas->MinOffset) 4092 LUThatHas->MinOffset = Fixup.Offset; 4093 } 4094 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4095 } 4096 if (Fixup.LUIdx == NumUses-1) 4097 Fixup.LUIdx = LUIdx; 4098 } 4099 4100 // Delete formulae from the new use which are no longer legal. 4101 bool Any = false; 4102 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4103 Formula &F = LUThatHas->Formulae[i]; 4104 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4105 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4106 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4107 dbgs() << '\n'); 4108 LUThatHas->DeleteFormula(F); 4109 --i; 4110 --e; 4111 Any = true; 4112 } 4113 } 4114 4115 if (Any) 4116 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4117 4118 // Delete the old use. 4119 DeleteUse(LU, LUIdx); 4120 --LUIdx; 4121 --NumUses; 4122 break; 4123 } 4124 } 4125 4126 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4127 } 4128 4129 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4130 /// we've done more filtering, as it may be able to find more formulae to 4131 /// eliminate. 4132 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4133 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4134 DEBUG(dbgs() << "The search space is too complex.\n"); 4135 4136 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4137 "undesirable dedicated registers.\n"); 4138 4139 FilterOutUndesirableDedicatedRegisters(); 4140 4141 DEBUG(dbgs() << "After pre-selection:\n"; 4142 print_uses(dbgs())); 4143 } 4144 } 4145 4146 /// Pick a register which seems likely to be profitable, and then in any use 4147 /// which has any reference to that register, delete all formulae which do not 4148 /// reference that register. 4149 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4150 // With all other options exhausted, loop until the system is simple 4151 // enough to handle. 4152 SmallPtrSet<const SCEV *, 4> Taken; 4153 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4154 // Ok, we have too many of formulae on our hands to conveniently handle. 4155 // Use a rough heuristic to thin out the list. 4156 DEBUG(dbgs() << "The search space is too complex.\n"); 4157 4158 // Pick the register which is used by the most LSRUses, which is likely 4159 // to be a good reuse register candidate. 4160 const SCEV *Best = nullptr; 4161 unsigned BestNum = 0; 4162 for (const SCEV *Reg : RegUses) { 4163 if (Taken.count(Reg)) 4164 continue; 4165 if (!Best) 4166 Best = Reg; 4167 else { 4168 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4169 if (Count > BestNum) { 4170 Best = Reg; 4171 BestNum = Count; 4172 } 4173 } 4174 } 4175 4176 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4177 << " will yield profitable reuse.\n"); 4178 Taken.insert(Best); 4179 4180 // In any use with formulae which references this register, delete formulae 4181 // which don't reference it. 4182 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4183 LSRUse &LU = Uses[LUIdx]; 4184 if (!LU.Regs.count(Best)) continue; 4185 4186 bool Any = false; 4187 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4188 Formula &F = LU.Formulae[i]; 4189 if (!F.referencesReg(Best)) { 4190 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4191 LU.DeleteFormula(F); 4192 --e; 4193 --i; 4194 Any = true; 4195 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4196 continue; 4197 } 4198 } 4199 4200 if (Any) 4201 LU.RecomputeRegs(LUIdx, RegUses); 4202 } 4203 4204 DEBUG(dbgs() << "After pre-selection:\n"; 4205 print_uses(dbgs())); 4206 } 4207 } 4208 4209 /// If there are an extraordinary number of formulae to choose from, use some 4210 /// rough heuristics to prune down the number of formulae. This keeps the main 4211 /// solver from taking an extraordinary amount of time in some worst-case 4212 /// scenarios. 4213 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4214 NarrowSearchSpaceByDetectingSupersets(); 4215 NarrowSearchSpaceByCollapsingUnrolledCode(); 4216 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4217 NarrowSearchSpaceByPickingWinnerRegs(); 4218 } 4219 4220 /// This is the recursive solver. 4221 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4222 Cost &SolutionCost, 4223 SmallVectorImpl<const Formula *> &Workspace, 4224 const Cost &CurCost, 4225 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4226 DenseSet<const SCEV *> &VisitedRegs) const { 4227 // Some ideas: 4228 // - prune more: 4229 // - use more aggressive filtering 4230 // - sort the formula so that the most profitable solutions are found first 4231 // - sort the uses too 4232 // - search faster: 4233 // - don't compute a cost, and then compare. compare while computing a cost 4234 // and bail early. 4235 // - track register sets with SmallBitVector 4236 4237 const LSRUse &LU = Uses[Workspace.size()]; 4238 4239 // If this use references any register that's already a part of the 4240 // in-progress solution, consider it a requirement that a formula must 4241 // reference that register in order to be considered. This prunes out 4242 // unprofitable searching. 4243 SmallSetVector<const SCEV *, 4> ReqRegs; 4244 for (const SCEV *S : CurRegs) 4245 if (LU.Regs.count(S)) 4246 ReqRegs.insert(S); 4247 4248 SmallPtrSet<const SCEV *, 16> NewRegs; 4249 Cost NewCost; 4250 for (const Formula &F : LU.Formulae) { 4251 // Ignore formulae which may not be ideal in terms of register reuse of 4252 // ReqRegs. The formula should use all required registers before 4253 // introducing new ones. 4254 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4255 for (const SCEV *Reg : ReqRegs) { 4256 if ((F.ScaledReg && F.ScaledReg == Reg) || 4257 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4258 F.BaseRegs.end()) { 4259 --NumReqRegsToFind; 4260 if (NumReqRegsToFind == 0) 4261 break; 4262 } 4263 } 4264 if (NumReqRegsToFind != 0) { 4265 // If none of the formulae satisfied the required registers, then we could 4266 // clear ReqRegs and try again. Currently, we simply give up in this case. 4267 continue; 4268 } 4269 4270 // Evaluate the cost of the current formula. If it's already worse than 4271 // the current best, prune the search at that point. 4272 NewCost = CurCost; 4273 NewRegs = CurRegs; 4274 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4275 LU); 4276 if (NewCost < SolutionCost) { 4277 Workspace.push_back(&F); 4278 if (Workspace.size() != Uses.size()) { 4279 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4280 NewRegs, VisitedRegs); 4281 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4282 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4283 } else { 4284 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4285 dbgs() << ".\n Regs:"; 4286 for (const SCEV *S : NewRegs) 4287 dbgs() << ' ' << *S; 4288 dbgs() << '\n'); 4289 4290 SolutionCost = NewCost; 4291 Solution = Workspace; 4292 } 4293 Workspace.pop_back(); 4294 } 4295 } 4296 } 4297 4298 /// Choose one formula from each use. Return the results in the given Solution 4299 /// vector. 4300 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4301 SmallVector<const Formula *, 8> Workspace; 4302 Cost SolutionCost; 4303 SolutionCost.Lose(); 4304 Cost CurCost; 4305 SmallPtrSet<const SCEV *, 16> CurRegs; 4306 DenseSet<const SCEV *> VisitedRegs; 4307 Workspace.reserve(Uses.size()); 4308 4309 // SolveRecurse does all the work. 4310 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4311 CurRegs, VisitedRegs); 4312 if (Solution.empty()) { 4313 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4314 return; 4315 } 4316 4317 // Ok, we've now made all our decisions. 4318 DEBUG(dbgs() << "\n" 4319 "The chosen solution requires "; SolutionCost.print(dbgs()); 4320 dbgs() << ":\n"; 4321 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4322 dbgs() << " "; 4323 Uses[i].print(dbgs()); 4324 dbgs() << "\n" 4325 " "; 4326 Solution[i]->print(dbgs()); 4327 dbgs() << '\n'; 4328 }); 4329 4330 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4331 } 4332 4333 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4334 /// we can go while still being dominated by the input positions. This helps 4335 /// canonicalize the insert position, which encourages sharing. 4336 BasicBlock::iterator 4337 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4338 const SmallVectorImpl<Instruction *> &Inputs) 4339 const { 4340 for (;;) { 4341 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4342 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4343 4344 BasicBlock *IDom; 4345 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4346 if (!Rung) return IP; 4347 Rung = Rung->getIDom(); 4348 if (!Rung) return IP; 4349 IDom = Rung->getBlock(); 4350 4351 // Don't climb into a loop though. 4352 const Loop *IDomLoop = LI.getLoopFor(IDom); 4353 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4354 if (IDomDepth <= IPLoopDepth && 4355 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4356 break; 4357 } 4358 4359 bool AllDominate = true; 4360 Instruction *BetterPos = nullptr; 4361 Instruction *Tentative = IDom->getTerminator(); 4362 for (Instruction *Inst : Inputs) { 4363 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4364 AllDominate = false; 4365 break; 4366 } 4367 // Attempt to find an insert position in the middle of the block, 4368 // instead of at the end, so that it can be used for other expansions. 4369 if (IDom == Inst->getParent() && 4370 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4371 BetterPos = std::next(BasicBlock::iterator(Inst)); 4372 } 4373 if (!AllDominate) 4374 break; 4375 if (BetterPos) 4376 IP = BetterPos; 4377 else 4378 IP = Tentative; 4379 } 4380 4381 return IP; 4382 } 4383 4384 /// Determine an input position which will be dominated by the operands and 4385 /// which will dominate the result. 4386 BasicBlock::iterator 4387 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4388 const LSRFixup &LF, 4389 const LSRUse &LU, 4390 SCEVExpander &Rewriter) const { 4391 // Collect some instructions which must be dominated by the 4392 // expanding replacement. These must be dominated by any operands that 4393 // will be required in the expansion. 4394 SmallVector<Instruction *, 4> Inputs; 4395 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4396 Inputs.push_back(I); 4397 if (LU.Kind == LSRUse::ICmpZero) 4398 if (Instruction *I = 4399 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4400 Inputs.push_back(I); 4401 if (LF.PostIncLoops.count(L)) { 4402 if (LF.isUseFullyOutsideLoop(L)) 4403 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4404 else 4405 Inputs.push_back(IVIncInsertPos); 4406 } 4407 // The expansion must also be dominated by the increment positions of any 4408 // loops it for which it is using post-inc mode. 4409 for (const Loop *PIL : LF.PostIncLoops) { 4410 if (PIL == L) continue; 4411 4412 // Be dominated by the loop exit. 4413 SmallVector<BasicBlock *, 4> ExitingBlocks; 4414 PIL->getExitingBlocks(ExitingBlocks); 4415 if (!ExitingBlocks.empty()) { 4416 BasicBlock *BB = ExitingBlocks[0]; 4417 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4418 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4419 Inputs.push_back(BB->getTerminator()); 4420 } 4421 } 4422 4423 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4424 && !isa<DbgInfoIntrinsic>(LowestIP) && 4425 "Insertion point must be a normal instruction"); 4426 4427 // Then, climb up the immediate dominator tree as far as we can go while 4428 // still being dominated by the input positions. 4429 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4430 4431 // Don't insert instructions before PHI nodes. 4432 while (isa<PHINode>(IP)) ++IP; 4433 4434 // Ignore landingpad instructions. 4435 while (IP->isEHPad()) ++IP; 4436 4437 // Ignore debug intrinsics. 4438 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4439 4440 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4441 // IP consistent across expansions and allows the previously inserted 4442 // instructions to be reused by subsequent expansion. 4443 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4444 4445 return IP; 4446 } 4447 4448 /// Emit instructions for the leading candidate expression for this LSRUse (this 4449 /// is called "expanding"). 4450 Value *LSRInstance::Expand(const LSRFixup &LF, 4451 const Formula &F, 4452 BasicBlock::iterator IP, 4453 SCEVExpander &Rewriter, 4454 SmallVectorImpl<WeakVH> &DeadInsts) const { 4455 const LSRUse &LU = Uses[LF.LUIdx]; 4456 if (LU.RigidFormula) 4457 return LF.OperandValToReplace; 4458 4459 // Determine an input position which will be dominated by the operands and 4460 // which will dominate the result. 4461 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4462 4463 // Inform the Rewriter if we have a post-increment use, so that it can 4464 // perform an advantageous expansion. 4465 Rewriter.setPostInc(LF.PostIncLoops); 4466 4467 // This is the type that the user actually needs. 4468 Type *OpTy = LF.OperandValToReplace->getType(); 4469 // This will be the type that we'll initially expand to. 4470 Type *Ty = F.getType(); 4471 if (!Ty) 4472 // No type known; just expand directly to the ultimate type. 4473 Ty = OpTy; 4474 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4475 // Expand directly to the ultimate type if it's the right size. 4476 Ty = OpTy; 4477 // This is the type to do integer arithmetic in. 4478 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4479 4480 // Build up a list of operands to add together to form the full base. 4481 SmallVector<const SCEV *, 8> Ops; 4482 4483 // Expand the BaseRegs portion. 4484 for (const SCEV *Reg : F.BaseRegs) { 4485 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4486 4487 // If we're expanding for a post-inc user, make the post-inc adjustment. 4488 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4489 Reg = TransformForPostIncUse(Denormalize, Reg, 4490 LF.UserInst, LF.OperandValToReplace, 4491 Loops, SE, DT); 4492 4493 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); 4494 } 4495 4496 // Expand the ScaledReg portion. 4497 Value *ICmpScaledV = nullptr; 4498 if (F.Scale != 0) { 4499 const SCEV *ScaledS = F.ScaledReg; 4500 4501 // If we're expanding for a post-inc user, make the post-inc adjustment. 4502 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4503 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4504 LF.UserInst, LF.OperandValToReplace, 4505 Loops, SE, DT); 4506 4507 if (LU.Kind == LSRUse::ICmpZero) { 4508 // Expand ScaleReg as if it was part of the base regs. 4509 if (F.Scale == 1) 4510 Ops.push_back( 4511 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); 4512 else { 4513 // An interesting way of "folding" with an icmp is to use a negated 4514 // scale, which we'll implement by inserting it into the other operand 4515 // of the icmp. 4516 assert(F.Scale == -1 && 4517 "The only scale supported by ICmpZero uses is -1!"); 4518 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4519 } 4520 } else { 4521 // Otherwise just expand the scaled register and an explicit scale, 4522 // which is expected to be matched as part of the address. 4523 4524 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4525 // Unless the addressing mode will not be folded. 4526 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4527 isAMCompletelyFolded(TTI, LU, F)) { 4528 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4529 Ops.clear(); 4530 Ops.push_back(SE.getUnknown(FullV)); 4531 } 4532 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); 4533 if (F.Scale != 1) 4534 ScaledS = 4535 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4536 Ops.push_back(ScaledS); 4537 } 4538 } 4539 4540 // Expand the GV portion. 4541 if (F.BaseGV) { 4542 // Flush the operand list to suppress SCEVExpander hoisting. 4543 if (!Ops.empty()) { 4544 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4545 Ops.clear(); 4546 Ops.push_back(SE.getUnknown(FullV)); 4547 } 4548 Ops.push_back(SE.getUnknown(F.BaseGV)); 4549 } 4550 4551 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4552 // unfolded offsets. LSR assumes they both live next to their uses. 4553 if (!Ops.empty()) { 4554 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4555 Ops.clear(); 4556 Ops.push_back(SE.getUnknown(FullV)); 4557 } 4558 4559 // Expand the immediate portion. 4560 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4561 if (Offset != 0) { 4562 if (LU.Kind == LSRUse::ICmpZero) { 4563 // The other interesting way of "folding" with an ICmpZero is to use a 4564 // negated immediate. 4565 if (!ICmpScaledV) 4566 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4567 else { 4568 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4569 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4570 } 4571 } else { 4572 // Just add the immediate values. These again are expected to be matched 4573 // as part of the address. 4574 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4575 } 4576 } 4577 4578 // Expand the unfolded offset portion. 4579 int64_t UnfoldedOffset = F.UnfoldedOffset; 4580 if (UnfoldedOffset != 0) { 4581 // Just add the immediate values. 4582 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4583 UnfoldedOffset))); 4584 } 4585 4586 // Emit instructions summing all the operands. 4587 const SCEV *FullS = Ops.empty() ? 4588 SE.getConstant(IntTy, 0) : 4589 SE.getAddExpr(Ops); 4590 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4591 4592 // We're done expanding now, so reset the rewriter. 4593 Rewriter.clearPostInc(); 4594 4595 // An ICmpZero Formula represents an ICmp which we're handling as a 4596 // comparison against zero. Now that we've expanded an expression for that 4597 // form, update the ICmp's other operand. 4598 if (LU.Kind == LSRUse::ICmpZero) { 4599 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4600 DeadInsts.emplace_back(CI->getOperand(1)); 4601 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4602 "a scale at the same time!"); 4603 if (F.Scale == -1) { 4604 if (ICmpScaledV->getType() != OpTy) { 4605 Instruction *Cast = 4606 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4607 OpTy, false), 4608 ICmpScaledV, OpTy, "tmp", CI); 4609 ICmpScaledV = Cast; 4610 } 4611 CI->setOperand(1, ICmpScaledV); 4612 } else { 4613 // A scale of 1 means that the scale has been expanded as part of the 4614 // base regs. 4615 assert((F.Scale == 0 || F.Scale == 1) && 4616 "ICmp does not support folding a global value and " 4617 "a scale at the same time!"); 4618 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4619 -(uint64_t)Offset); 4620 if (C->getType() != OpTy) 4621 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4622 OpTy, false), 4623 C, OpTy); 4624 4625 CI->setOperand(1, C); 4626 } 4627 } 4628 4629 return FullV; 4630 } 4631 4632 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4633 /// effectively happens in their predecessor blocks, so the expression may need 4634 /// to be expanded in multiple places. 4635 void LSRInstance::RewriteForPHI(PHINode *PN, 4636 const LSRFixup &LF, 4637 const Formula &F, 4638 SCEVExpander &Rewriter, 4639 SmallVectorImpl<WeakVH> &DeadInsts, 4640 Pass *P) const { 4641 DenseMap<BasicBlock *, Value *> Inserted; 4642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4643 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4644 BasicBlock *BB = PN->getIncomingBlock(i); 4645 4646 // If this is a critical edge, split the edge so that we do not insert 4647 // the code on all predecessor/successor paths. We do this unless this 4648 // is the canonical backedge for this loop, which complicates post-inc 4649 // users. 4650 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4651 !isa<IndirectBrInst>(BB->getTerminator())) { 4652 BasicBlock *Parent = PN->getParent(); 4653 Loop *PNLoop = LI.getLoopFor(Parent); 4654 if (!PNLoop || Parent != PNLoop->getHeader()) { 4655 // Split the critical edge. 4656 BasicBlock *NewBB = nullptr; 4657 if (!Parent->isLandingPad()) { 4658 NewBB = SplitCriticalEdge(BB, Parent, 4659 CriticalEdgeSplittingOptions(&DT, &LI) 4660 .setMergeIdenticalEdges() 4661 .setDontDeleteUselessPHIs()); 4662 } else { 4663 SmallVector<BasicBlock*, 2> NewBBs; 4664 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4665 NewBB = NewBBs[0]; 4666 } 4667 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4668 // phi predecessors are identical. The simple thing to do is skip 4669 // splitting in this case rather than complicate the API. 4670 if (NewBB) { 4671 // If PN is outside of the loop and BB is in the loop, we want to 4672 // move the block to be immediately before the PHI block, not 4673 // immediately after BB. 4674 if (L->contains(BB) && !L->contains(PN)) 4675 NewBB->moveBefore(PN->getParent()); 4676 4677 // Splitting the edge can reduce the number of PHI entries we have. 4678 e = PN->getNumIncomingValues(); 4679 BB = NewBB; 4680 i = PN->getBasicBlockIndex(BB); 4681 } 4682 } 4683 } 4684 4685 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4686 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4687 if (!Pair.second) 4688 PN->setIncomingValue(i, Pair.first->second); 4689 else { 4690 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4691 4692 // If this is reuse-by-noop-cast, insert the noop cast. 4693 Type *OpTy = LF.OperandValToReplace->getType(); 4694 if (FullV->getType() != OpTy) 4695 FullV = 4696 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4697 OpTy, false), 4698 FullV, LF.OperandValToReplace->getType(), 4699 "tmp", BB->getTerminator()); 4700 4701 PN->setIncomingValue(i, FullV); 4702 Pair.first->second = FullV; 4703 } 4704 } 4705 } 4706 4707 /// Emit instructions for the leading candidate expression for this LSRUse (this 4708 /// is called "expanding"), and update the UserInst to reference the newly 4709 /// expanded value. 4710 void LSRInstance::Rewrite(const LSRFixup &LF, 4711 const Formula &F, 4712 SCEVExpander &Rewriter, 4713 SmallVectorImpl<WeakVH> &DeadInsts, 4714 Pass *P) const { 4715 // First, find an insertion point that dominates UserInst. For PHI nodes, 4716 // find the nearest block which dominates all the relevant uses. 4717 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4718 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4719 } else { 4720 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4721 4722 // If this is reuse-by-noop-cast, insert the noop cast. 4723 Type *OpTy = LF.OperandValToReplace->getType(); 4724 if (FullV->getType() != OpTy) { 4725 Instruction *Cast = 4726 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4727 FullV, OpTy, "tmp", LF.UserInst); 4728 FullV = Cast; 4729 } 4730 4731 // Update the user. ICmpZero is handled specially here (for now) because 4732 // Expand may have updated one of the operands of the icmp already, and 4733 // its new value may happen to be equal to LF.OperandValToReplace, in 4734 // which case doing replaceUsesOfWith leads to replacing both operands 4735 // with the same value. TODO: Reorganize this. 4736 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4737 LF.UserInst->setOperand(0, FullV); 4738 else 4739 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4740 } 4741 4742 DeadInsts.emplace_back(LF.OperandValToReplace); 4743 } 4744 4745 /// Rewrite all the fixup locations with new values, following the chosen 4746 /// solution. 4747 void 4748 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4749 Pass *P) { 4750 // Keep track of instructions we may have made dead, so that 4751 // we can remove them after we are done working. 4752 SmallVector<WeakVH, 16> DeadInsts; 4753 4754 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4755 "lsr"); 4756 #ifndef NDEBUG 4757 Rewriter.setDebugType(DEBUG_TYPE); 4758 #endif 4759 Rewriter.disableCanonicalMode(); 4760 Rewriter.enableLSRMode(); 4761 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4762 4763 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4764 for (const IVChain &Chain : IVChainVec) { 4765 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4766 Rewriter.setChainedPhi(PN); 4767 } 4768 4769 // Expand the new value definitions and update the users. 4770 for (const LSRFixup &Fixup : Fixups) { 4771 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4772 4773 Changed = true; 4774 } 4775 4776 for (const IVChain &Chain : IVChainVec) { 4777 GenerateIVChain(Chain, Rewriter, DeadInsts); 4778 Changed = true; 4779 } 4780 // Clean up after ourselves. This must be done before deleting any 4781 // instructions. 4782 Rewriter.clear(); 4783 4784 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4785 } 4786 4787 LSRInstance::LSRInstance(Loop *L, Pass *P) 4788 : IU(P->getAnalysis<IVUsers>()), 4789 SE(P->getAnalysis<ScalarEvolutionWrapperPass>().getSE()), 4790 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4791 LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), 4792 TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 4793 *L->getHeader()->getParent())), 4794 L(L), Changed(false), IVIncInsertPos(nullptr) { 4795 // If LoopSimplify form is not available, stay out of trouble. 4796 if (!L->isLoopSimplifyForm()) 4797 return; 4798 4799 // If there's no interesting work to be done, bail early. 4800 if (IU.empty()) return; 4801 4802 // If there's too much analysis to be done, bail early. We won't be able to 4803 // model the problem anyway. 4804 unsigned NumUsers = 0; 4805 for (const IVStrideUse &U : IU) { 4806 if (++NumUsers > MaxIVUsers) { 4807 (void)U; 4808 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4809 return; 4810 } 4811 } 4812 4813 #ifndef NDEBUG 4814 // All dominating loops must have preheaders, or SCEVExpander may not be able 4815 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4816 // 4817 // IVUsers analysis should only create users that are dominated by simple loop 4818 // headers. Since this loop should dominate all of its users, its user list 4819 // should be empty if this loop itself is not within a simple loop nest. 4820 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4821 Rung; Rung = Rung->getIDom()) { 4822 BasicBlock *BB = Rung->getBlock(); 4823 const Loop *DomLoop = LI.getLoopFor(BB); 4824 if (DomLoop && DomLoop->getHeader() == BB) { 4825 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4826 } 4827 } 4828 #endif // DEBUG 4829 4830 DEBUG(dbgs() << "\nLSR on loop "; 4831 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4832 dbgs() << ":\n"); 4833 4834 // First, perform some low-level loop optimizations. 4835 OptimizeShadowIV(); 4836 OptimizeLoopTermCond(); 4837 4838 // If loop preparation eliminates all interesting IV users, bail. 4839 if (IU.empty()) return; 4840 4841 // Skip nested loops until we can model them better with formulae. 4842 if (!L->empty()) { 4843 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4844 return; 4845 } 4846 4847 // Start collecting data and preparing for the solver. 4848 CollectChains(); 4849 CollectInterestingTypesAndFactors(); 4850 CollectFixupsAndInitialFormulae(); 4851 CollectLoopInvariantFixupsAndFormulae(); 4852 4853 assert(!Uses.empty() && "IVUsers reported at least one use"); 4854 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4855 print_uses(dbgs())); 4856 4857 // Now use the reuse data to generate a bunch of interesting ways 4858 // to formulate the values needed for the uses. 4859 GenerateAllReuseFormulae(); 4860 4861 FilterOutUndesirableDedicatedRegisters(); 4862 NarrowSearchSpaceUsingHeuristics(); 4863 4864 SmallVector<const Formula *, 8> Solution; 4865 Solve(Solution); 4866 4867 // Release memory that is no longer needed. 4868 Factors.clear(); 4869 Types.clear(); 4870 RegUses.clear(); 4871 4872 if (Solution.empty()) 4873 return; 4874 4875 #ifndef NDEBUG 4876 // Formulae should be legal. 4877 for (const LSRUse &LU : Uses) { 4878 for (const Formula &F : LU.Formulae) 4879 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4880 F) && "Illegal formula generated!"); 4881 }; 4882 #endif 4883 4884 // Now that we've decided what we want, make it so. 4885 ImplementSolution(Solution, P); 4886 } 4887 4888 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4889 if (Factors.empty() && Types.empty()) return; 4890 4891 OS << "LSR has identified the following interesting factors and types: "; 4892 bool First = true; 4893 4894 for (int64_t Factor : Factors) { 4895 if (!First) OS << ", "; 4896 First = false; 4897 OS << '*' << Factor; 4898 } 4899 4900 for (Type *Ty : Types) { 4901 if (!First) OS << ", "; 4902 First = false; 4903 OS << '(' << *Ty << ')'; 4904 } 4905 OS << '\n'; 4906 } 4907 4908 void LSRInstance::print_fixups(raw_ostream &OS) const { 4909 OS << "LSR is examining the following fixup sites:\n"; 4910 for (const LSRFixup &LF : Fixups) { 4911 dbgs() << " "; 4912 LF.print(OS); 4913 OS << '\n'; 4914 } 4915 } 4916 4917 void LSRInstance::print_uses(raw_ostream &OS) const { 4918 OS << "LSR is examining the following uses:\n"; 4919 for (const LSRUse &LU : Uses) { 4920 dbgs() << " "; 4921 LU.print(OS); 4922 OS << '\n'; 4923 for (const Formula &F : LU.Formulae) { 4924 OS << " "; 4925 F.print(OS); 4926 OS << '\n'; 4927 } 4928 } 4929 } 4930 4931 void LSRInstance::print(raw_ostream &OS) const { 4932 print_factors_and_types(OS); 4933 print_fixups(OS); 4934 print_uses(OS); 4935 } 4936 4937 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4938 void LSRInstance::dump() const { 4939 print(errs()); errs() << '\n'; 4940 } 4941 #endif 4942 4943 namespace { 4944 4945 class LoopStrengthReduce : public LoopPass { 4946 public: 4947 static char ID; // Pass ID, replacement for typeid 4948 LoopStrengthReduce(); 4949 4950 private: 4951 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4952 void getAnalysisUsage(AnalysisUsage &AU) const override; 4953 }; 4954 4955 } 4956 4957 char LoopStrengthReduce::ID = 0; 4958 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 4959 "Loop Strength Reduction", false, false) 4960 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 4961 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 4962 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 4963 INITIALIZE_PASS_DEPENDENCY(IVUsers) 4964 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 4965 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 4966 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 4967 "Loop Strength Reduction", false, false) 4968 4969 4970 Pass *llvm::createLoopStrengthReducePass() { 4971 return new LoopStrengthReduce(); 4972 } 4973 4974 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 4975 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 4976 } 4977 4978 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 4979 // We split critical edges, so we change the CFG. However, we do update 4980 // many analyses if they are around. 4981 AU.addPreservedID(LoopSimplifyID); 4982 4983 AU.addRequired<LoopInfoWrapperPass>(); 4984 AU.addPreserved<LoopInfoWrapperPass>(); 4985 AU.addRequiredID(LoopSimplifyID); 4986 AU.addRequired<DominatorTreeWrapperPass>(); 4987 AU.addPreserved<DominatorTreeWrapperPass>(); 4988 AU.addRequired<ScalarEvolutionWrapperPass>(); 4989 AU.addPreserved<ScalarEvolutionWrapperPass>(); 4990 // Requiring LoopSimplify a second time here prevents IVUsers from running 4991 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 4992 AU.addRequiredID(LoopSimplifyID); 4993 AU.addRequired<IVUsers>(); 4994 AU.addPreserved<IVUsers>(); 4995 AU.addRequired<TargetTransformInfoWrapperPass>(); 4996 } 4997 4998 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4999 if (skipOptnoneFunction(L)) 5000 return false; 5001 5002 bool Changed = false; 5003 5004 // Run the main LSR transformation. 5005 Changed |= LSRInstance(L, this).getChanged(); 5006 5007 // Remove any extra phis created by processing inner loops. 5008 Changed |= DeleteDeadPHIs(L->getHeader()); 5009 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5010 SmallVector<WeakVH, 16> DeadInsts; 5011 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5012 SCEVExpander Rewriter(getAnalysis<ScalarEvolutionWrapperPass>().getSE(), DL, 5013 "lsr"); 5014 #ifndef NDEBUG 5015 Rewriter.setDebugType(DEBUG_TYPE); 5016 #endif 5017 unsigned numFolded = Rewriter.replaceCongruentIVs( 5018 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5019 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5020 *L->getHeader()->getParent())); 5021 if (numFolded) { 5022 Changed = true; 5023 DeleteTriviallyDeadInstructions(DeadInsts); 5024 DeleteDeadPHIs(L->getHeader()); 5025 } 5026 } 5027 return Changed; 5028 } 5029