1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopAnalysisManager.h" 70 #include "llvm/Analysis/LoopInfo.h" 71 #include "llvm/Analysis/LoopPass.h" 72 #include "llvm/Analysis/ScalarEvolution.h" 73 #include "llvm/Analysis/ScalarEvolutionExpander.h" 74 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 75 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 76 #include "llvm/Analysis/TargetTransformInfo.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Config/llvm-config.h" 79 #include "llvm/IR/BasicBlock.h" 80 #include "llvm/IR/Constant.h" 81 #include "llvm/IR/Constants.h" 82 #include "llvm/IR/DerivedTypes.h" 83 #include "llvm/IR/Dominators.h" 84 #include "llvm/IR/GlobalValue.h" 85 #include "llvm/IR/IRBuilder.h" 86 #include "llvm/IR/InstrTypes.h" 87 #include "llvm/IR/Instruction.h" 88 #include "llvm/IR/Instructions.h" 89 #include "llvm/IR/IntrinsicInst.h" 90 #include "llvm/IR/Intrinsics.h" 91 #include "llvm/IR/Module.h" 92 #include "llvm/IR/OperandTraits.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PassManager.h" 95 #include "llvm/IR/Type.h" 96 #include "llvm/IR/Use.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/IR/ValueHandle.h" 100 #include "llvm/Pass.h" 101 #include "llvm/Support/Casting.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Transforms/Scalar.h" 109 #include "llvm/Transforms/Utils.h" 110 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstdlib> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <map> 120 #include <utility> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "loop-reduce" 125 126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 127 /// bail out. This threshold is far beyond the number of users that LSR can 128 /// conceivably solve, so it should not affect generated code, but catches the 129 /// worst cases before LSR burns too much compile time and stack space. 130 static const unsigned MaxIVUsers = 200; 131 132 // Temporary flag to cleanup congruent phis after LSR phi expansion. 133 // It's currently disabled until we can determine whether it's truly useful or 134 // not. The flag should be removed after the v3.0 release. 135 // This is now needed for ivchains. 136 static cl::opt<bool> EnablePhiElim( 137 "enable-lsr-phielim", cl::Hidden, cl::init(true), 138 cl::desc("Enable LSR phi elimination")); 139 140 // The flag adds instruction count to solutions cost comparision. 141 static cl::opt<bool> InsnsCost( 142 "lsr-insns-cost", cl::Hidden, cl::init(true), 143 cl::desc("Add instruction count to a LSR cost model")); 144 145 // Flag to choose how to narrow complex lsr solution 146 static cl::opt<bool> LSRExpNarrow( 147 "lsr-exp-narrow", cl::Hidden, cl::init(false), 148 cl::desc("Narrow LSR complex solution using" 149 " expectation of registers number")); 150 151 // Flag to narrow search space by filtering non-optimal formulae with 152 // the same ScaledReg and Scale. 153 static cl::opt<bool> FilterSameScaledReg( 154 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 155 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 156 " with the same ScaledReg and Scale")); 157 158 static cl::opt<bool> EnableBackedgeIndexing( 159 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 160 cl::desc("Enable the generation of cross iteration indexed memops")); 161 162 static cl::opt<unsigned> ComplexityLimit( 163 "lsr-complexity-limit", cl::Hidden, 164 cl::init(std::numeric_limits<uint16_t>::max()), 165 cl::desc("LSR search space complexity limit")); 166 167 static cl::opt<bool> EnableRecursiveSetupCost( 168 "lsr-recursive-setupcost", cl::Hidden, cl::init(true), 169 cl::desc("Enable more thorough lsr setup cost calculation")); 170 171 #ifndef NDEBUG 172 // Stress test IV chain generation. 173 static cl::opt<bool> StressIVChain( 174 "stress-ivchain", cl::Hidden, cl::init(false), 175 cl::desc("Stress test LSR IV chains")); 176 #else 177 static bool StressIVChain = false; 178 #endif 179 180 namespace { 181 182 struct MemAccessTy { 183 /// Used in situations where the accessed memory type is unknown. 184 static const unsigned UnknownAddressSpace = 185 std::numeric_limits<unsigned>::max(); 186 187 Type *MemTy = nullptr; 188 unsigned AddrSpace = UnknownAddressSpace; 189 190 MemAccessTy() = default; 191 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 192 193 bool operator==(MemAccessTy Other) const { 194 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 195 } 196 197 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 198 199 static MemAccessTy getUnknown(LLVMContext &Ctx, 200 unsigned AS = UnknownAddressSpace) { 201 return MemAccessTy(Type::getVoidTy(Ctx), AS); 202 } 203 204 Type *getType() { return MemTy; } 205 }; 206 207 /// This class holds data which is used to order reuse candidates. 208 class RegSortData { 209 public: 210 /// This represents the set of LSRUse indices which reference 211 /// a particular register. 212 SmallBitVector UsedByIndices; 213 214 void print(raw_ostream &OS) const; 215 void dump() const; 216 }; 217 218 } // end anonymous namespace 219 220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 221 void RegSortData::print(raw_ostream &OS) const { 222 OS << "[NumUses=" << UsedByIndices.count() << ']'; 223 } 224 225 LLVM_DUMP_METHOD void RegSortData::dump() const { 226 print(errs()); errs() << '\n'; 227 } 228 #endif 229 230 namespace { 231 232 /// Map register candidates to information about how they are used. 233 class RegUseTracker { 234 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 235 236 RegUsesTy RegUsesMap; 237 SmallVector<const SCEV *, 16> RegSequence; 238 239 public: 240 void countRegister(const SCEV *Reg, size_t LUIdx); 241 void dropRegister(const SCEV *Reg, size_t LUIdx); 242 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 243 244 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 245 246 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 247 248 void clear(); 249 250 using iterator = SmallVectorImpl<const SCEV *>::iterator; 251 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 252 253 iterator begin() { return RegSequence.begin(); } 254 iterator end() { return RegSequence.end(); } 255 const_iterator begin() const { return RegSequence.begin(); } 256 const_iterator end() const { return RegSequence.end(); } 257 }; 258 259 } // end anonymous namespace 260 261 void 262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 263 std::pair<RegUsesTy::iterator, bool> Pair = 264 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 265 RegSortData &RSD = Pair.first->second; 266 if (Pair.second) 267 RegSequence.push_back(Reg); 268 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 269 RSD.UsedByIndices.set(LUIdx); 270 } 271 272 void 273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 274 RegUsesTy::iterator It = RegUsesMap.find(Reg); 275 assert(It != RegUsesMap.end()); 276 RegSortData &RSD = It->second; 277 assert(RSD.UsedByIndices.size() > LUIdx); 278 RSD.UsedByIndices.reset(LUIdx); 279 } 280 281 void 282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 283 assert(LUIdx <= LastLUIdx); 284 285 // Update RegUses. The data structure is not optimized for this purpose; 286 // we must iterate through it and update each of the bit vectors. 287 for (auto &Pair : RegUsesMap) { 288 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 289 if (LUIdx < UsedByIndices.size()) 290 UsedByIndices[LUIdx] = 291 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 292 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 293 } 294 } 295 296 bool 297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 298 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 299 if (I == RegUsesMap.end()) 300 return false; 301 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 302 int i = UsedByIndices.find_first(); 303 if (i == -1) return false; 304 if ((size_t)i != LUIdx) return true; 305 return UsedByIndices.find_next(i) != -1; 306 } 307 308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 309 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 310 assert(I != RegUsesMap.end() && "Unknown register!"); 311 return I->second.UsedByIndices; 312 } 313 314 void RegUseTracker::clear() { 315 RegUsesMap.clear(); 316 RegSequence.clear(); 317 } 318 319 namespace { 320 321 /// This class holds information that describes a formula for computing 322 /// satisfying a use. It may include broken-out immediates and scaled registers. 323 struct Formula { 324 /// Global base address used for complex addressing. 325 GlobalValue *BaseGV = nullptr; 326 327 /// Base offset for complex addressing. 328 int64_t BaseOffset = 0; 329 330 /// Whether any complex addressing has a base register. 331 bool HasBaseReg = false; 332 333 /// The scale of any complex addressing. 334 int64_t Scale = 0; 335 336 /// The list of "base" registers for this use. When this is non-empty. The 337 /// canonical representation of a formula is 338 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 339 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 340 /// 3. The reg containing recurrent expr related with currect loop in the 341 /// formula should be put in the ScaledReg. 342 /// #1 enforces that the scaled register is always used when at least two 343 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 344 /// #2 enforces that 1 * reg is reg. 345 /// #3 ensures invariant regs with respect to current loop can be combined 346 /// together in LSR codegen. 347 /// This invariant can be temporarily broken while building a formula. 348 /// However, every formula inserted into the LSRInstance must be in canonical 349 /// form. 350 SmallVector<const SCEV *, 4> BaseRegs; 351 352 /// The 'scaled' register for this use. This should be non-null when Scale is 353 /// not zero. 354 const SCEV *ScaledReg = nullptr; 355 356 /// An additional constant offset which added near the use. This requires a 357 /// temporary register, but the offset itself can live in an add immediate 358 /// field rather than a register. 359 int64_t UnfoldedOffset = 0; 360 361 Formula() = default; 362 363 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 364 365 bool isCanonical(const Loop &L) const; 366 367 void canonicalize(const Loop &L); 368 369 bool unscale(); 370 371 bool hasZeroEnd() const; 372 373 size_t getNumRegs() const; 374 Type *getType() const; 375 376 void deleteBaseReg(const SCEV *&S); 377 378 bool referencesReg(const SCEV *S) const; 379 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 380 const RegUseTracker &RegUses) const; 381 382 void print(raw_ostream &OS) const; 383 void dump() const; 384 }; 385 386 } // end anonymous namespace 387 388 /// Recursion helper for initialMatch. 389 static void DoInitialMatch(const SCEV *S, Loop *L, 390 SmallVectorImpl<const SCEV *> &Good, 391 SmallVectorImpl<const SCEV *> &Bad, 392 ScalarEvolution &SE) { 393 // Collect expressions which properly dominate the loop header. 394 if (SE.properlyDominates(S, L->getHeader())) { 395 Good.push_back(S); 396 return; 397 } 398 399 // Look at add operands. 400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 401 for (const SCEV *S : Add->operands()) 402 DoInitialMatch(S, L, Good, Bad, SE); 403 return; 404 } 405 406 // Look at addrec operands. 407 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 408 if (!AR->getStart()->isZero() && AR->isAffine()) { 409 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 410 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 411 AR->getStepRecurrence(SE), 412 // FIXME: AR->getNoWrapFlags() 413 AR->getLoop(), SCEV::FlagAnyWrap), 414 L, Good, Bad, SE); 415 return; 416 } 417 418 // Handle a multiplication by -1 (negation) if it didn't fold. 419 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 420 if (Mul->getOperand(0)->isAllOnesValue()) { 421 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 422 const SCEV *NewMul = SE.getMulExpr(Ops); 423 424 SmallVector<const SCEV *, 4> MyGood; 425 SmallVector<const SCEV *, 4> MyBad; 426 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 427 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 428 SE.getEffectiveSCEVType(NewMul->getType()))); 429 for (const SCEV *S : MyGood) 430 Good.push_back(SE.getMulExpr(NegOne, S)); 431 for (const SCEV *S : MyBad) 432 Bad.push_back(SE.getMulExpr(NegOne, S)); 433 return; 434 } 435 436 // Ok, we can't do anything interesting. Just stuff the whole thing into a 437 // register and hope for the best. 438 Bad.push_back(S); 439 } 440 441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 442 /// all loop-invariant and loop-computable values in a single base register. 443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 444 SmallVector<const SCEV *, 4> Good; 445 SmallVector<const SCEV *, 4> Bad; 446 DoInitialMatch(S, L, Good, Bad, SE); 447 if (!Good.empty()) { 448 const SCEV *Sum = SE.getAddExpr(Good); 449 if (!Sum->isZero()) 450 BaseRegs.push_back(Sum); 451 HasBaseReg = true; 452 } 453 if (!Bad.empty()) { 454 const SCEV *Sum = SE.getAddExpr(Bad); 455 if (!Sum->isZero()) 456 BaseRegs.push_back(Sum); 457 HasBaseReg = true; 458 } 459 canonicalize(*L); 460 } 461 462 /// Check whether or not this formula satisfies the canonical 463 /// representation. 464 /// \see Formula::BaseRegs. 465 bool Formula::isCanonical(const Loop &L) const { 466 if (!ScaledReg) 467 return BaseRegs.size() <= 1; 468 469 if (Scale != 1) 470 return true; 471 472 if (Scale == 1 && BaseRegs.empty()) 473 return false; 474 475 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 476 if (SAR && SAR->getLoop() == &L) 477 return true; 478 479 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 480 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 481 // loop, we want to swap the reg in BaseRegs with ScaledReg. 482 auto I = 483 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 484 return isa<const SCEVAddRecExpr>(S) && 485 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 486 }); 487 return I == BaseRegs.end(); 488 } 489 490 /// Helper method to morph a formula into its canonical representation. 491 /// \see Formula::BaseRegs. 492 /// Every formula having more than one base register, must use the ScaledReg 493 /// field. Otherwise, we would have to do special cases everywhere in LSR 494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 495 /// On the other hand, 1*reg should be canonicalized into reg. 496 void Formula::canonicalize(const Loop &L) { 497 if (isCanonical(L)) 498 return; 499 // So far we did not need this case. This is easy to implement but it is 500 // useless to maintain dead code. Beside it could hurt compile time. 501 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 502 503 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 504 if (!ScaledReg) { 505 ScaledReg = BaseRegs.back(); 506 BaseRegs.pop_back(); 507 Scale = 1; 508 } 509 510 // If ScaledReg is an invariant with respect to L, find the reg from 511 // BaseRegs containing the recurrent expr related with Loop L. Swap the 512 // reg with ScaledReg. 513 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 514 if (!SAR || SAR->getLoop() != &L) { 515 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 516 [&](const SCEV *S) { 517 return isa<const SCEVAddRecExpr>(S) && 518 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 519 }); 520 if (I != BaseRegs.end()) 521 std::swap(ScaledReg, *I); 522 } 523 } 524 525 /// Get rid of the scale in the formula. 526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 527 /// \return true if it was possible to get rid of the scale, false otherwise. 528 /// \note After this operation the formula may not be in the canonical form. 529 bool Formula::unscale() { 530 if (Scale != 1) 531 return false; 532 Scale = 0; 533 BaseRegs.push_back(ScaledReg); 534 ScaledReg = nullptr; 535 return true; 536 } 537 538 bool Formula::hasZeroEnd() const { 539 if (UnfoldedOffset || BaseOffset) 540 return false; 541 if (BaseRegs.size() != 1 || ScaledReg) 542 return false; 543 return true; 544 } 545 546 /// Return the total number of register operands used by this formula. This does 547 /// not include register uses implied by non-constant addrec strides. 548 size_t Formula::getNumRegs() const { 549 return !!ScaledReg + BaseRegs.size(); 550 } 551 552 /// Return the type of this formula, if it has one, or null otherwise. This type 553 /// is meaningless except for the bit size. 554 Type *Formula::getType() const { 555 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 556 ScaledReg ? ScaledReg->getType() : 557 BaseGV ? BaseGV->getType() : 558 nullptr; 559 } 560 561 /// Delete the given base reg from the BaseRegs list. 562 void Formula::deleteBaseReg(const SCEV *&S) { 563 if (&S != &BaseRegs.back()) 564 std::swap(S, BaseRegs.back()); 565 BaseRegs.pop_back(); 566 } 567 568 /// Test if this formula references the given register. 569 bool Formula::referencesReg(const SCEV *S) const { 570 return S == ScaledReg || is_contained(BaseRegs, S); 571 } 572 573 /// Test whether this formula uses registers which are used by uses other than 574 /// the use with the given index. 575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 576 const RegUseTracker &RegUses) const { 577 if (ScaledReg) 578 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 579 return true; 580 for (const SCEV *BaseReg : BaseRegs) 581 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 582 return true; 583 return false; 584 } 585 586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 587 void Formula::print(raw_ostream &OS) const { 588 bool First = true; 589 if (BaseGV) { 590 if (!First) OS << " + "; else First = false; 591 BaseGV->printAsOperand(OS, /*PrintType=*/false); 592 } 593 if (BaseOffset != 0) { 594 if (!First) OS << " + "; else First = false; 595 OS << BaseOffset; 596 } 597 for (const SCEV *BaseReg : BaseRegs) { 598 if (!First) OS << " + "; else First = false; 599 OS << "reg(" << *BaseReg << ')'; 600 } 601 if (HasBaseReg && BaseRegs.empty()) { 602 if (!First) OS << " + "; else First = false; 603 OS << "**error: HasBaseReg**"; 604 } else if (!HasBaseReg && !BaseRegs.empty()) { 605 if (!First) OS << " + "; else First = false; 606 OS << "**error: !HasBaseReg**"; 607 } 608 if (Scale != 0) { 609 if (!First) OS << " + "; else First = false; 610 OS << Scale << "*reg("; 611 if (ScaledReg) 612 OS << *ScaledReg; 613 else 614 OS << "<unknown>"; 615 OS << ')'; 616 } 617 if (UnfoldedOffset != 0) { 618 if (!First) OS << " + "; 619 OS << "imm(" << UnfoldedOffset << ')'; 620 } 621 } 622 623 LLVM_DUMP_METHOD void Formula::dump() const { 624 print(errs()); errs() << '\n'; 625 } 626 #endif 627 628 /// Return true if the given addrec can be sign-extended without changing its 629 /// value. 630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 631 Type *WideTy = 632 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 633 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 634 } 635 636 /// Return true if the given add can be sign-extended without changing its 637 /// value. 638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 639 Type *WideTy = 640 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 641 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 642 } 643 644 /// Return true if the given mul can be sign-extended without changing its 645 /// value. 646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 647 Type *WideTy = 648 IntegerType::get(SE.getContext(), 649 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 650 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 651 } 652 653 /// Return an expression for LHS /s RHS, if it can be determined and if the 654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 656 /// the multiplication may overflow, which is useful when the result will be 657 /// used in a context where the most significant bits are ignored. 658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 659 ScalarEvolution &SE, 660 bool IgnoreSignificantBits = false) { 661 // Handle the trivial case, which works for any SCEV type. 662 if (LHS == RHS) 663 return SE.getConstant(LHS->getType(), 1); 664 665 // Handle a few RHS special cases. 666 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 667 if (RC) { 668 const APInt &RA = RC->getAPInt(); 669 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 670 // some folding. 671 if (RA.isAllOnesValue()) 672 return SE.getMulExpr(LHS, RC); 673 // Handle x /s 1 as x. 674 if (RA == 1) 675 return LHS; 676 } 677 678 // Check for a division of a constant by a constant. 679 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 680 if (!RC) 681 return nullptr; 682 const APInt &LA = C->getAPInt(); 683 const APInt &RA = RC->getAPInt(); 684 if (LA.srem(RA) != 0) 685 return nullptr; 686 return SE.getConstant(LA.sdiv(RA)); 687 } 688 689 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 690 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 691 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 692 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 693 IgnoreSignificantBits); 694 if (!Step) return nullptr; 695 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 696 IgnoreSignificantBits); 697 if (!Start) return nullptr; 698 // FlagNW is independent of the start value, step direction, and is 699 // preserved with smaller magnitude steps. 700 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 701 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 702 } 703 return nullptr; 704 } 705 706 // Distribute the sdiv over add operands, if the add doesn't overflow. 707 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 708 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 709 SmallVector<const SCEV *, 8> Ops; 710 for (const SCEV *S : Add->operands()) { 711 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 712 if (!Op) return nullptr; 713 Ops.push_back(Op); 714 } 715 return SE.getAddExpr(Ops); 716 } 717 return nullptr; 718 } 719 720 // Check for a multiply operand that we can pull RHS out of. 721 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 722 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 723 SmallVector<const SCEV *, 4> Ops; 724 bool Found = false; 725 for (const SCEV *S : Mul->operands()) { 726 if (!Found) 727 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 728 IgnoreSignificantBits)) { 729 S = Q; 730 Found = true; 731 } 732 Ops.push_back(S); 733 } 734 return Found ? SE.getMulExpr(Ops) : nullptr; 735 } 736 return nullptr; 737 } 738 739 // Otherwise we don't know. 740 return nullptr; 741 } 742 743 /// If S involves the addition of a constant integer value, return that integer 744 /// value, and mutate S to point to a new SCEV with that value excluded. 745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 746 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 747 if (C->getAPInt().getMinSignedBits() <= 64) { 748 S = SE.getConstant(C->getType(), 0); 749 return C->getValue()->getSExtValue(); 750 } 751 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 752 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 753 int64_t Result = ExtractImmediate(NewOps.front(), SE); 754 if (Result != 0) 755 S = SE.getAddExpr(NewOps); 756 return Result; 757 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 758 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 759 int64_t Result = ExtractImmediate(NewOps.front(), SE); 760 if (Result != 0) 761 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 762 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 763 SCEV::FlagAnyWrap); 764 return Result; 765 } 766 return 0; 767 } 768 769 /// If S involves the addition of a GlobalValue address, return that symbol, and 770 /// mutate S to point to a new SCEV with that value excluded. 771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 772 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 773 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 774 S = SE.getConstant(GV->getType(), 0); 775 return GV; 776 } 777 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 778 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 779 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 780 if (Result) 781 S = SE.getAddExpr(NewOps); 782 return Result; 783 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 784 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 785 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 786 if (Result) 787 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 788 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 789 SCEV::FlagAnyWrap); 790 return Result; 791 } 792 return nullptr; 793 } 794 795 /// Returns true if the specified instruction is using the specified value as an 796 /// address. 797 static bool isAddressUse(const TargetTransformInfo &TTI, 798 Instruction *Inst, Value *OperandVal) { 799 bool isAddress = isa<LoadInst>(Inst); 800 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 801 if (SI->getPointerOperand() == OperandVal) 802 isAddress = true; 803 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 804 // Addressing modes can also be folded into prefetches and a variety 805 // of intrinsics. 806 switch (II->getIntrinsicID()) { 807 case Intrinsic::memset: 808 case Intrinsic::prefetch: 809 if (II->getArgOperand(0) == OperandVal) 810 isAddress = true; 811 break; 812 case Intrinsic::memmove: 813 case Intrinsic::memcpy: 814 if (II->getArgOperand(0) == OperandVal || 815 II->getArgOperand(1) == OperandVal) 816 isAddress = true; 817 break; 818 default: { 819 MemIntrinsicInfo IntrInfo; 820 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 821 if (IntrInfo.PtrVal == OperandVal) 822 isAddress = true; 823 } 824 } 825 } 826 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 827 if (RMW->getPointerOperand() == OperandVal) 828 isAddress = true; 829 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 830 if (CmpX->getPointerOperand() == OperandVal) 831 isAddress = true; 832 } 833 return isAddress; 834 } 835 836 /// Return the type of the memory being accessed. 837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 838 Instruction *Inst, Value *OperandVal) { 839 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 840 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 841 AccessTy.MemTy = SI->getOperand(0)->getType(); 842 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 843 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 844 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 845 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 846 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 847 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 848 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 849 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 850 switch (II->getIntrinsicID()) { 851 case Intrinsic::prefetch: 852 case Intrinsic::memset: 853 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 854 AccessTy.MemTy = OperandVal->getType(); 855 break; 856 case Intrinsic::memmove: 857 case Intrinsic::memcpy: 858 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 859 AccessTy.MemTy = OperandVal->getType(); 860 break; 861 default: { 862 MemIntrinsicInfo IntrInfo; 863 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 864 AccessTy.AddrSpace 865 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 866 } 867 868 break; 869 } 870 } 871 } 872 873 // All pointers have the same requirements, so canonicalize them to an 874 // arbitrary pointer type to minimize variation. 875 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 876 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 877 PTy->getAddressSpace()); 878 879 return AccessTy; 880 } 881 882 /// Return true if this AddRec is already a phi in its loop. 883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 884 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 885 if (SE.isSCEVable(PN.getType()) && 886 (SE.getEffectiveSCEVType(PN.getType()) == 887 SE.getEffectiveSCEVType(AR->getType())) && 888 SE.getSCEV(&PN) == AR) 889 return true; 890 } 891 return false; 892 } 893 894 /// Check if expanding this expression is likely to incur significant cost. This 895 /// is tricky because SCEV doesn't track which expressions are actually computed 896 /// by the current IR. 897 /// 898 /// We currently allow expansion of IV increments that involve adds, 899 /// multiplication by constants, and AddRecs from existing phis. 900 /// 901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 902 /// obvious multiple of the UDivExpr. 903 static bool isHighCostExpansion(const SCEV *S, 904 SmallPtrSetImpl<const SCEV*> &Processed, 905 ScalarEvolution &SE) { 906 // Zero/One operand expressions 907 switch (S->getSCEVType()) { 908 case scUnknown: 909 case scConstant: 910 return false; 911 case scTruncate: 912 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 913 Processed, SE); 914 case scZeroExtend: 915 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 916 Processed, SE); 917 case scSignExtend: 918 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 919 Processed, SE); 920 } 921 922 if (!Processed.insert(S).second) 923 return false; 924 925 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 926 for (const SCEV *S : Add->operands()) { 927 if (isHighCostExpansion(S, Processed, SE)) 928 return true; 929 } 930 return false; 931 } 932 933 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 934 if (Mul->getNumOperands() == 2) { 935 // Multiplication by a constant is ok 936 if (isa<SCEVConstant>(Mul->getOperand(0))) 937 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 938 939 // If we have the value of one operand, check if an existing 940 // multiplication already generates this expression. 941 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 942 Value *UVal = U->getValue(); 943 for (User *UR : UVal->users()) { 944 // If U is a constant, it may be used by a ConstantExpr. 945 Instruction *UI = dyn_cast<Instruction>(UR); 946 if (UI && UI->getOpcode() == Instruction::Mul && 947 SE.isSCEVable(UI->getType())) { 948 return SE.getSCEV(UI) == Mul; 949 } 950 } 951 } 952 } 953 } 954 955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 956 if (isExistingPhi(AR, SE)) 957 return false; 958 } 959 960 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 961 return true; 962 } 963 964 /// If any of the instructions in the specified set are trivially dead, delete 965 /// them and see if this makes any of their operands subsequently dead. 966 static bool 967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 968 bool Changed = false; 969 970 while (!DeadInsts.empty()) { 971 Value *V = DeadInsts.pop_back_val(); 972 Instruction *I = dyn_cast_or_null<Instruction>(V); 973 974 if (!I || !isInstructionTriviallyDead(I)) 975 continue; 976 977 for (Use &O : I->operands()) 978 if (Instruction *U = dyn_cast<Instruction>(O)) { 979 O = nullptr; 980 if (U->use_empty()) 981 DeadInsts.emplace_back(U); 982 } 983 984 I->eraseFromParent(); 985 Changed = true; 986 } 987 988 return Changed; 989 } 990 991 namespace { 992 993 class LSRUse; 994 995 } // end anonymous namespace 996 997 /// Check if the addressing mode defined by \p F is completely 998 /// folded in \p LU at isel time. 999 /// This includes address-mode folding and special icmp tricks. 1000 /// This function returns true if \p LU can accommodate what \p F 1001 /// defines and up to 1 base + 1 scaled + offset. 1002 /// In other words, if \p F has several base registers, this function may 1003 /// still return true. Therefore, users still need to account for 1004 /// additional base registers and/or unfolded offsets to derive an 1005 /// accurate cost model. 1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1007 const LSRUse &LU, const Formula &F); 1008 1009 // Get the cost of the scaling factor used in F for LU. 1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1011 const LSRUse &LU, const Formula &F, 1012 const Loop &L); 1013 1014 namespace { 1015 1016 /// This class is used to measure and compare candidate formulae. 1017 class Cost { 1018 const Loop *L = nullptr; 1019 ScalarEvolution *SE = nullptr; 1020 const TargetTransformInfo *TTI = nullptr; 1021 TargetTransformInfo::LSRCost C; 1022 1023 public: 1024 Cost() = delete; 1025 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1026 L(L), SE(&SE), TTI(&TTI) { 1027 C.Insns = 0; 1028 C.NumRegs = 0; 1029 C.AddRecCost = 0; 1030 C.NumIVMuls = 0; 1031 C.NumBaseAdds = 0; 1032 C.ImmCost = 0; 1033 C.SetupCost = 0; 1034 C.ScaleCost = 0; 1035 } 1036 1037 bool isLess(Cost &Other); 1038 1039 void Lose(); 1040 1041 #ifndef NDEBUG 1042 // Once any of the metrics loses, they must all remain losers. 1043 bool isValid() { 1044 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1045 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1046 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1047 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1048 } 1049 #endif 1050 1051 bool isLoser() { 1052 assert(isValid() && "invalid cost"); 1053 return C.NumRegs == ~0u; 1054 } 1055 1056 void RateFormula(const Formula &F, 1057 SmallPtrSetImpl<const SCEV *> &Regs, 1058 const DenseSet<const SCEV *> &VisitedRegs, 1059 const LSRUse &LU, 1060 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1061 1062 void print(raw_ostream &OS) const; 1063 void dump() const; 1064 1065 private: 1066 void RateRegister(const Formula &F, const SCEV *Reg, 1067 SmallPtrSetImpl<const SCEV *> &Regs); 1068 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1069 SmallPtrSetImpl<const SCEV *> &Regs, 1070 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1071 }; 1072 1073 /// An operand value in an instruction which is to be replaced with some 1074 /// equivalent, possibly strength-reduced, replacement. 1075 struct LSRFixup { 1076 /// The instruction which will be updated. 1077 Instruction *UserInst = nullptr; 1078 1079 /// The operand of the instruction which will be replaced. The operand may be 1080 /// used more than once; every instance will be replaced. 1081 Value *OperandValToReplace = nullptr; 1082 1083 /// If this user is to use the post-incremented value of an induction 1084 /// variable, this set is non-empty and holds the loops associated with the 1085 /// induction variable. 1086 PostIncLoopSet PostIncLoops; 1087 1088 /// A constant offset to be added to the LSRUse expression. This allows 1089 /// multiple fixups to share the same LSRUse with different offsets, for 1090 /// example in an unrolled loop. 1091 int64_t Offset = 0; 1092 1093 LSRFixup() = default; 1094 1095 bool isUseFullyOutsideLoop(const Loop *L) const; 1096 1097 void print(raw_ostream &OS) const; 1098 void dump() const; 1099 }; 1100 1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1102 /// SmallVectors of const SCEV*. 1103 struct UniquifierDenseMapInfo { 1104 static SmallVector<const SCEV *, 4> getEmptyKey() { 1105 SmallVector<const SCEV *, 4> V; 1106 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1107 return V; 1108 } 1109 1110 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1111 SmallVector<const SCEV *, 4> V; 1112 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1113 return V; 1114 } 1115 1116 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1117 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1118 } 1119 1120 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1121 const SmallVector<const SCEV *, 4> &RHS) { 1122 return LHS == RHS; 1123 } 1124 }; 1125 1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1127 /// as uses invented by LSR itself. It includes information about what kinds of 1128 /// things can be folded into the user, information about the user itself, and 1129 /// information about how the use may be satisfied. TODO: Represent multiple 1130 /// users of the same expression in common? 1131 class LSRUse { 1132 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1133 1134 public: 1135 /// An enum for a kind of use, indicating what types of scaled and immediate 1136 /// operands it might support. 1137 enum KindType { 1138 Basic, ///< A normal use, with no folding. 1139 Special, ///< A special case of basic, allowing -1 scales. 1140 Address, ///< An address use; folding according to TargetLowering 1141 ICmpZero ///< An equality icmp with both operands folded into one. 1142 // TODO: Add a generic icmp too? 1143 }; 1144 1145 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1146 1147 KindType Kind; 1148 MemAccessTy AccessTy; 1149 1150 /// The list of operands which are to be replaced. 1151 SmallVector<LSRFixup, 8> Fixups; 1152 1153 /// Keep track of the min and max offsets of the fixups. 1154 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1155 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1156 1157 /// This records whether all of the fixups using this LSRUse are outside of 1158 /// the loop, in which case some special-case heuristics may be used. 1159 bool AllFixupsOutsideLoop = true; 1160 1161 /// RigidFormula is set to true to guarantee that this use will be associated 1162 /// with a single formula--the one that initially matched. Some SCEV 1163 /// expressions cannot be expanded. This allows LSR to consider the registers 1164 /// used by those expressions without the need to expand them later after 1165 /// changing the formula. 1166 bool RigidFormula = false; 1167 1168 /// This records the widest use type for any fixup using this 1169 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1170 /// fixup widths to be equivalent, because the narrower one may be relying on 1171 /// the implicit truncation to truncate away bogus bits. 1172 Type *WidestFixupType = nullptr; 1173 1174 /// A list of ways to build a value that can satisfy this user. After the 1175 /// list is populated, one of these is selected heuristically and used to 1176 /// formulate a replacement for OperandValToReplace in UserInst. 1177 SmallVector<Formula, 12> Formulae; 1178 1179 /// The set of register candidates used by all formulae in this LSRUse. 1180 SmallPtrSet<const SCEV *, 4> Regs; 1181 1182 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1183 1184 LSRFixup &getNewFixup() { 1185 Fixups.push_back(LSRFixup()); 1186 return Fixups.back(); 1187 } 1188 1189 void pushFixup(LSRFixup &f) { 1190 Fixups.push_back(f); 1191 if (f.Offset > MaxOffset) 1192 MaxOffset = f.Offset; 1193 if (f.Offset < MinOffset) 1194 MinOffset = f.Offset; 1195 } 1196 1197 bool HasFormulaWithSameRegs(const Formula &F) const; 1198 float getNotSelectedProbability(const SCEV *Reg) const; 1199 bool InsertFormula(const Formula &F, const Loop &L); 1200 void DeleteFormula(Formula &F); 1201 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1202 1203 void print(raw_ostream &OS) const; 1204 void dump() const; 1205 }; 1206 1207 } // end anonymous namespace 1208 1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1210 LSRUse::KindType Kind, MemAccessTy AccessTy, 1211 GlobalValue *BaseGV, int64_t BaseOffset, 1212 bool HasBaseReg, int64_t Scale, 1213 Instruction *Fixup = nullptr); 1214 1215 static unsigned getSetupCost(const SCEV *Reg) { 1216 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1217 return 1; 1218 if (!EnableRecursiveSetupCost) 1219 return 0; 1220 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1221 return getSetupCost(S->getStart()); 1222 if (auto S = dyn_cast<SCEVCastExpr>(Reg)) 1223 return getSetupCost(S->getOperand()); 1224 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1225 return std::accumulate(S->op_begin(), S->op_end(), 0, 1226 [](unsigned i, const SCEV *Reg) { 1227 return i + getSetupCost(Reg); 1228 }); 1229 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1230 return getSetupCost(S->getLHS()) + getSetupCost(S->getRHS()); 1231 return 0; 1232 } 1233 1234 /// Tally up interesting quantities from the given register. 1235 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1236 SmallPtrSetImpl<const SCEV *> &Regs) { 1237 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1238 // If this is an addrec for another loop, it should be an invariant 1239 // with respect to L since L is the innermost loop (at least 1240 // for now LSR only handles innermost loops). 1241 if (AR->getLoop() != L) { 1242 // If the AddRec exists, consider it's register free and leave it alone. 1243 if (isExistingPhi(AR, *SE)) 1244 return; 1245 1246 // It is bad to allow LSR for current loop to add induction variables 1247 // for its sibling loops. 1248 if (!AR->getLoop()->contains(L)) { 1249 Lose(); 1250 return; 1251 } 1252 1253 // Otherwise, it will be an invariant with respect to Loop L. 1254 ++C.NumRegs; 1255 return; 1256 } 1257 1258 unsigned LoopCost = 1; 1259 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1260 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1261 1262 // If the step size matches the base offset, we could use pre-indexed 1263 // addressing. 1264 if (TTI->shouldFavorBackedgeIndex(L)) { 1265 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1266 if (Step->getAPInt() == F.BaseOffset) 1267 LoopCost = 0; 1268 } 1269 1270 if (TTI->shouldFavorPostInc()) { 1271 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1272 if (isa<SCEVConstant>(LoopStep)) { 1273 const SCEV *LoopStart = AR->getStart(); 1274 if (!isa<SCEVConstant>(LoopStart) && 1275 SE->isLoopInvariant(LoopStart, L)) 1276 LoopCost = 0; 1277 } 1278 } 1279 } 1280 C.AddRecCost += LoopCost; 1281 1282 // Add the step value register, if it needs one. 1283 // TODO: The non-affine case isn't precisely modeled here. 1284 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1285 if (!Regs.count(AR->getOperand(1))) { 1286 RateRegister(F, AR->getOperand(1), Regs); 1287 if (isLoser()) 1288 return; 1289 } 1290 } 1291 } 1292 ++C.NumRegs; 1293 1294 // Rough heuristic; favor registers which don't require extra setup 1295 // instructions in the preheader. 1296 C.SetupCost += getSetupCost(Reg); 1297 1298 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1299 SE->hasComputableLoopEvolution(Reg, L); 1300 } 1301 1302 /// Record this register in the set. If we haven't seen it before, rate 1303 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1304 /// one of those regs an instant loser. 1305 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1306 SmallPtrSetImpl<const SCEV *> &Regs, 1307 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1308 if (LoserRegs && LoserRegs->count(Reg)) { 1309 Lose(); 1310 return; 1311 } 1312 if (Regs.insert(Reg).second) { 1313 RateRegister(F, Reg, Regs); 1314 if (LoserRegs && isLoser()) 1315 LoserRegs->insert(Reg); 1316 } 1317 } 1318 1319 void Cost::RateFormula(const Formula &F, 1320 SmallPtrSetImpl<const SCEV *> &Regs, 1321 const DenseSet<const SCEV *> &VisitedRegs, 1322 const LSRUse &LU, 1323 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1324 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1325 // Tally up the registers. 1326 unsigned PrevAddRecCost = C.AddRecCost; 1327 unsigned PrevNumRegs = C.NumRegs; 1328 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1329 if (const SCEV *ScaledReg = F.ScaledReg) { 1330 if (VisitedRegs.count(ScaledReg)) { 1331 Lose(); 1332 return; 1333 } 1334 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1335 if (isLoser()) 1336 return; 1337 } 1338 for (const SCEV *BaseReg : F.BaseRegs) { 1339 if (VisitedRegs.count(BaseReg)) { 1340 Lose(); 1341 return; 1342 } 1343 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1344 if (isLoser()) 1345 return; 1346 } 1347 1348 // Determine how many (unfolded) adds we'll need inside the loop. 1349 size_t NumBaseParts = F.getNumRegs(); 1350 if (NumBaseParts > 1) 1351 // Do not count the base and a possible second register if the target 1352 // allows to fold 2 registers. 1353 C.NumBaseAdds += 1354 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1355 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1356 1357 // Accumulate non-free scaling amounts. 1358 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1359 1360 // Tally up the non-zero immediates. 1361 for (const LSRFixup &Fixup : LU.Fixups) { 1362 int64_t O = Fixup.Offset; 1363 int64_t Offset = (uint64_t)O + F.BaseOffset; 1364 if (F.BaseGV) 1365 C.ImmCost += 64; // Handle symbolic values conservatively. 1366 // TODO: This should probably be the pointer size. 1367 else if (Offset != 0) 1368 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1369 1370 // Check with target if this offset with this instruction is 1371 // specifically not supported. 1372 if (LU.Kind == LSRUse::Address && Offset != 0 && 1373 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1374 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1375 C.NumBaseAdds++; 1376 } 1377 1378 // If we don't count instruction cost exit here. 1379 if (!InsnsCost) { 1380 assert(isValid() && "invalid cost"); 1381 return; 1382 } 1383 1384 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1385 // additional instruction (at least fill). 1386 unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1; 1387 if (C.NumRegs > TTIRegNum) { 1388 // Cost already exceeded TTIRegNum, then only newly added register can add 1389 // new instructions. 1390 if (PrevNumRegs > TTIRegNum) 1391 C.Insns += (C.NumRegs - PrevNumRegs); 1392 else 1393 C.Insns += (C.NumRegs - TTIRegNum); 1394 } 1395 1396 // If ICmpZero formula ends with not 0, it could not be replaced by 1397 // just add or sub. We'll need to compare final result of AddRec. 1398 // That means we'll need an additional instruction. But if the target can 1399 // macro-fuse a compare with a branch, don't count this extra instruction. 1400 // For -10 + {0, +, 1}: 1401 // i = i + 1; 1402 // cmp i, 10 1403 // 1404 // For {-10, +, 1}: 1405 // i = i + 1; 1406 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1407 !TTI->canMacroFuseCmp()) 1408 C.Insns++; 1409 // Each new AddRec adds 1 instruction to calculation. 1410 C.Insns += (C.AddRecCost - PrevAddRecCost); 1411 1412 // BaseAdds adds instructions for unfolded registers. 1413 if (LU.Kind != LSRUse::ICmpZero) 1414 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1415 assert(isValid() && "invalid cost"); 1416 } 1417 1418 /// Set this cost to a losing value. 1419 void Cost::Lose() { 1420 C.Insns = std::numeric_limits<unsigned>::max(); 1421 C.NumRegs = std::numeric_limits<unsigned>::max(); 1422 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1423 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1424 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1425 C.ImmCost = std::numeric_limits<unsigned>::max(); 1426 C.SetupCost = std::numeric_limits<unsigned>::max(); 1427 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1428 } 1429 1430 /// Choose the lower cost. 1431 bool Cost::isLess(Cost &Other) { 1432 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1433 C.Insns != Other.C.Insns) 1434 return C.Insns < Other.C.Insns; 1435 return TTI->isLSRCostLess(C, Other.C); 1436 } 1437 1438 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1439 void Cost::print(raw_ostream &OS) const { 1440 if (InsnsCost) 1441 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1442 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1443 if (C.AddRecCost != 0) 1444 OS << ", with addrec cost " << C.AddRecCost; 1445 if (C.NumIVMuls != 0) 1446 OS << ", plus " << C.NumIVMuls << " IV mul" 1447 << (C.NumIVMuls == 1 ? "" : "s"); 1448 if (C.NumBaseAdds != 0) 1449 OS << ", plus " << C.NumBaseAdds << " base add" 1450 << (C.NumBaseAdds == 1 ? "" : "s"); 1451 if (C.ScaleCost != 0) 1452 OS << ", plus " << C.ScaleCost << " scale cost"; 1453 if (C.ImmCost != 0) 1454 OS << ", plus " << C.ImmCost << " imm cost"; 1455 if (C.SetupCost != 0) 1456 OS << ", plus " << C.SetupCost << " setup cost"; 1457 } 1458 1459 LLVM_DUMP_METHOD void Cost::dump() const { 1460 print(errs()); errs() << '\n'; 1461 } 1462 #endif 1463 1464 /// Test whether this fixup always uses its value outside of the given loop. 1465 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1466 // PHI nodes use their value in their incoming blocks. 1467 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1468 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1469 if (PN->getIncomingValue(i) == OperandValToReplace && 1470 L->contains(PN->getIncomingBlock(i))) 1471 return false; 1472 return true; 1473 } 1474 1475 return !L->contains(UserInst); 1476 } 1477 1478 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1479 void LSRFixup::print(raw_ostream &OS) const { 1480 OS << "UserInst="; 1481 // Store is common and interesting enough to be worth special-casing. 1482 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1483 OS << "store "; 1484 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1485 } else if (UserInst->getType()->isVoidTy()) 1486 OS << UserInst->getOpcodeName(); 1487 else 1488 UserInst->printAsOperand(OS, /*PrintType=*/false); 1489 1490 OS << ", OperandValToReplace="; 1491 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1492 1493 for (const Loop *PIL : PostIncLoops) { 1494 OS << ", PostIncLoop="; 1495 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1496 } 1497 1498 if (Offset != 0) 1499 OS << ", Offset=" << Offset; 1500 } 1501 1502 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1503 print(errs()); errs() << '\n'; 1504 } 1505 #endif 1506 1507 /// Test whether this use as a formula which has the same registers as the given 1508 /// formula. 1509 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1510 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1511 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1512 // Unstable sort by host order ok, because this is only used for uniquifying. 1513 llvm::sort(Key); 1514 return Uniquifier.count(Key); 1515 } 1516 1517 /// The function returns a probability of selecting formula without Reg. 1518 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1519 unsigned FNum = 0; 1520 for (const Formula &F : Formulae) 1521 if (F.referencesReg(Reg)) 1522 FNum++; 1523 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1524 } 1525 1526 /// If the given formula has not yet been inserted, add it to the list, and 1527 /// return true. Return false otherwise. The formula must be in canonical form. 1528 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1529 assert(F.isCanonical(L) && "Invalid canonical representation"); 1530 1531 if (!Formulae.empty() && RigidFormula) 1532 return false; 1533 1534 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1535 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1536 // Unstable sort by host order ok, because this is only used for uniquifying. 1537 llvm::sort(Key); 1538 1539 if (!Uniquifier.insert(Key).second) 1540 return false; 1541 1542 // Using a register to hold the value of 0 is not profitable. 1543 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1544 "Zero allocated in a scaled register!"); 1545 #ifndef NDEBUG 1546 for (const SCEV *BaseReg : F.BaseRegs) 1547 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1548 #endif 1549 1550 // Add the formula to the list. 1551 Formulae.push_back(F); 1552 1553 // Record registers now being used by this use. 1554 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1555 if (F.ScaledReg) 1556 Regs.insert(F.ScaledReg); 1557 1558 return true; 1559 } 1560 1561 /// Remove the given formula from this use's list. 1562 void LSRUse::DeleteFormula(Formula &F) { 1563 if (&F != &Formulae.back()) 1564 std::swap(F, Formulae.back()); 1565 Formulae.pop_back(); 1566 } 1567 1568 /// Recompute the Regs field, and update RegUses. 1569 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1570 // Now that we've filtered out some formulae, recompute the Regs set. 1571 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1572 Regs.clear(); 1573 for (const Formula &F : Formulae) { 1574 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1575 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1576 } 1577 1578 // Update the RegTracker. 1579 for (const SCEV *S : OldRegs) 1580 if (!Regs.count(S)) 1581 RegUses.dropRegister(S, LUIdx); 1582 } 1583 1584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1585 void LSRUse::print(raw_ostream &OS) const { 1586 OS << "LSR Use: Kind="; 1587 switch (Kind) { 1588 case Basic: OS << "Basic"; break; 1589 case Special: OS << "Special"; break; 1590 case ICmpZero: OS << "ICmpZero"; break; 1591 case Address: 1592 OS << "Address of "; 1593 if (AccessTy.MemTy->isPointerTy()) 1594 OS << "pointer"; // the full pointer type could be really verbose 1595 else { 1596 OS << *AccessTy.MemTy; 1597 } 1598 1599 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1600 } 1601 1602 OS << ", Offsets={"; 1603 bool NeedComma = false; 1604 for (const LSRFixup &Fixup : Fixups) { 1605 if (NeedComma) OS << ','; 1606 OS << Fixup.Offset; 1607 NeedComma = true; 1608 } 1609 OS << '}'; 1610 1611 if (AllFixupsOutsideLoop) 1612 OS << ", all-fixups-outside-loop"; 1613 1614 if (WidestFixupType) 1615 OS << ", widest fixup type: " << *WidestFixupType; 1616 } 1617 1618 LLVM_DUMP_METHOD void LSRUse::dump() const { 1619 print(errs()); errs() << '\n'; 1620 } 1621 #endif 1622 1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1624 LSRUse::KindType Kind, MemAccessTy AccessTy, 1625 GlobalValue *BaseGV, int64_t BaseOffset, 1626 bool HasBaseReg, int64_t Scale, 1627 Instruction *Fixup/*= nullptr*/) { 1628 switch (Kind) { 1629 case LSRUse::Address: 1630 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1631 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1632 1633 case LSRUse::ICmpZero: 1634 // There's not even a target hook for querying whether it would be legal to 1635 // fold a GV into an ICmp. 1636 if (BaseGV) 1637 return false; 1638 1639 // ICmp only has two operands; don't allow more than two non-trivial parts. 1640 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1641 return false; 1642 1643 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1644 // putting the scaled register in the other operand of the icmp. 1645 if (Scale != 0 && Scale != -1) 1646 return false; 1647 1648 // If we have low-level target information, ask the target if it can fold an 1649 // integer immediate on an icmp. 1650 if (BaseOffset != 0) { 1651 // We have one of: 1652 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1653 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1654 // Offs is the ICmp immediate. 1655 if (Scale == 0) 1656 // The cast does the right thing with 1657 // std::numeric_limits<int64_t>::min(). 1658 BaseOffset = -(uint64_t)BaseOffset; 1659 return TTI.isLegalICmpImmediate(BaseOffset); 1660 } 1661 1662 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1663 return true; 1664 1665 case LSRUse::Basic: 1666 // Only handle single-register values. 1667 return !BaseGV && Scale == 0 && BaseOffset == 0; 1668 1669 case LSRUse::Special: 1670 // Special case Basic to handle -1 scales. 1671 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1672 } 1673 1674 llvm_unreachable("Invalid LSRUse Kind!"); 1675 } 1676 1677 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1678 int64_t MinOffset, int64_t MaxOffset, 1679 LSRUse::KindType Kind, MemAccessTy AccessTy, 1680 GlobalValue *BaseGV, int64_t BaseOffset, 1681 bool HasBaseReg, int64_t Scale) { 1682 // Check for overflow. 1683 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1684 (MinOffset > 0)) 1685 return false; 1686 MinOffset = (uint64_t)BaseOffset + MinOffset; 1687 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1688 (MaxOffset > 0)) 1689 return false; 1690 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1691 1692 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1693 HasBaseReg, Scale) && 1694 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1695 HasBaseReg, Scale); 1696 } 1697 1698 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1699 int64_t MinOffset, int64_t MaxOffset, 1700 LSRUse::KindType Kind, MemAccessTy AccessTy, 1701 const Formula &F, const Loop &L) { 1702 // For the purpose of isAMCompletelyFolded either having a canonical formula 1703 // or a scale not equal to zero is correct. 1704 // Problems may arise from non canonical formulae having a scale == 0. 1705 // Strictly speaking it would best to just rely on canonical formulae. 1706 // However, when we generate the scaled formulae, we first check that the 1707 // scaling factor is profitable before computing the actual ScaledReg for 1708 // compile time sake. 1709 assert((F.isCanonical(L) || F.Scale != 0)); 1710 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1711 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1712 } 1713 1714 /// Test whether we know how to expand the current formula. 1715 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1716 int64_t MaxOffset, LSRUse::KindType Kind, 1717 MemAccessTy AccessTy, GlobalValue *BaseGV, 1718 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1719 // We know how to expand completely foldable formulae. 1720 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1721 BaseOffset, HasBaseReg, Scale) || 1722 // Or formulae that use a base register produced by a sum of base 1723 // registers. 1724 (Scale == 1 && 1725 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1726 BaseGV, BaseOffset, true, 0)); 1727 } 1728 1729 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1730 int64_t MaxOffset, LSRUse::KindType Kind, 1731 MemAccessTy AccessTy, const Formula &F) { 1732 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1733 F.BaseOffset, F.HasBaseReg, F.Scale); 1734 } 1735 1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1737 const LSRUse &LU, const Formula &F) { 1738 // Target may want to look at the user instructions. 1739 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1740 for (const LSRFixup &Fixup : LU.Fixups) 1741 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1742 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1743 F.Scale, Fixup.UserInst)) 1744 return false; 1745 return true; 1746 } 1747 1748 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1749 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1750 F.Scale); 1751 } 1752 1753 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1754 const LSRUse &LU, const Formula &F, 1755 const Loop &L) { 1756 if (!F.Scale) 1757 return 0; 1758 1759 // If the use is not completely folded in that instruction, we will have to 1760 // pay an extra cost only for scale != 1. 1761 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1762 LU.AccessTy, F, L)) 1763 return F.Scale != 1; 1764 1765 switch (LU.Kind) { 1766 case LSRUse::Address: { 1767 // Check the scaling factor cost with both the min and max offsets. 1768 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1769 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1770 F.Scale, LU.AccessTy.AddrSpace); 1771 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1772 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1773 F.Scale, LU.AccessTy.AddrSpace); 1774 1775 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1776 "Legal addressing mode has an illegal cost!"); 1777 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1778 } 1779 case LSRUse::ICmpZero: 1780 case LSRUse::Basic: 1781 case LSRUse::Special: 1782 // The use is completely folded, i.e., everything is folded into the 1783 // instruction. 1784 return 0; 1785 } 1786 1787 llvm_unreachable("Invalid LSRUse Kind!"); 1788 } 1789 1790 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1791 LSRUse::KindType Kind, MemAccessTy AccessTy, 1792 GlobalValue *BaseGV, int64_t BaseOffset, 1793 bool HasBaseReg) { 1794 // Fast-path: zero is always foldable. 1795 if (BaseOffset == 0 && !BaseGV) return true; 1796 1797 // Conservatively, create an address with an immediate and a 1798 // base and a scale. 1799 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1800 1801 // Canonicalize a scale of 1 to a base register if the formula doesn't 1802 // already have a base register. 1803 if (!HasBaseReg && Scale == 1) { 1804 Scale = 0; 1805 HasBaseReg = true; 1806 } 1807 1808 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1809 HasBaseReg, Scale); 1810 } 1811 1812 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1813 ScalarEvolution &SE, int64_t MinOffset, 1814 int64_t MaxOffset, LSRUse::KindType Kind, 1815 MemAccessTy AccessTy, const SCEV *S, 1816 bool HasBaseReg) { 1817 // Fast-path: zero is always foldable. 1818 if (S->isZero()) return true; 1819 1820 // Conservatively, create an address with an immediate and a 1821 // base and a scale. 1822 int64_t BaseOffset = ExtractImmediate(S, SE); 1823 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1824 1825 // If there's anything else involved, it's not foldable. 1826 if (!S->isZero()) return false; 1827 1828 // Fast-path: zero is always foldable. 1829 if (BaseOffset == 0 && !BaseGV) return true; 1830 1831 // Conservatively, create an address with an immediate and a 1832 // base and a scale. 1833 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1834 1835 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1836 BaseOffset, HasBaseReg, Scale); 1837 } 1838 1839 namespace { 1840 1841 /// An individual increment in a Chain of IV increments. Relate an IV user to 1842 /// an expression that computes the IV it uses from the IV used by the previous 1843 /// link in the Chain. 1844 /// 1845 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1846 /// original IVOperand. The head of the chain's IVOperand is only valid during 1847 /// chain collection, before LSR replaces IV users. During chain generation, 1848 /// IncExpr can be used to find the new IVOperand that computes the same 1849 /// expression. 1850 struct IVInc { 1851 Instruction *UserInst; 1852 Value* IVOperand; 1853 const SCEV *IncExpr; 1854 1855 IVInc(Instruction *U, Value *O, const SCEV *E) 1856 : UserInst(U), IVOperand(O), IncExpr(E) {} 1857 }; 1858 1859 // The list of IV increments in program order. We typically add the head of a 1860 // chain without finding subsequent links. 1861 struct IVChain { 1862 SmallVector<IVInc, 1> Incs; 1863 const SCEV *ExprBase = nullptr; 1864 1865 IVChain() = default; 1866 IVChain(const IVInc &Head, const SCEV *Base) 1867 : Incs(1, Head), ExprBase(Base) {} 1868 1869 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1870 1871 // Return the first increment in the chain. 1872 const_iterator begin() const { 1873 assert(!Incs.empty()); 1874 return std::next(Incs.begin()); 1875 } 1876 const_iterator end() const { 1877 return Incs.end(); 1878 } 1879 1880 // Returns true if this chain contains any increments. 1881 bool hasIncs() const { return Incs.size() >= 2; } 1882 1883 // Add an IVInc to the end of this chain. 1884 void add(const IVInc &X) { Incs.push_back(X); } 1885 1886 // Returns the last UserInst in the chain. 1887 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1888 1889 // Returns true if IncExpr can be profitably added to this chain. 1890 bool isProfitableIncrement(const SCEV *OperExpr, 1891 const SCEV *IncExpr, 1892 ScalarEvolution&); 1893 }; 1894 1895 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1896 /// between FarUsers that definitely cross IV increments and NearUsers that may 1897 /// be used between IV increments. 1898 struct ChainUsers { 1899 SmallPtrSet<Instruction*, 4> FarUsers; 1900 SmallPtrSet<Instruction*, 4> NearUsers; 1901 }; 1902 1903 /// This class holds state for the main loop strength reduction logic. 1904 class LSRInstance { 1905 IVUsers &IU; 1906 ScalarEvolution &SE; 1907 DominatorTree &DT; 1908 LoopInfo &LI; 1909 const TargetTransformInfo &TTI; 1910 Loop *const L; 1911 bool FavorBackedgeIndex = false; 1912 bool Changed = false; 1913 1914 /// This is the insert position that the current loop's induction variable 1915 /// increment should be placed. In simple loops, this is the latch block's 1916 /// terminator. But in more complicated cases, this is a position which will 1917 /// dominate all the in-loop post-increment users. 1918 Instruction *IVIncInsertPos = nullptr; 1919 1920 /// Interesting factors between use strides. 1921 /// 1922 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1923 /// default, a SmallDenseSet, because we need to use the full range of 1924 /// int64_ts, and there's currently no good way of doing that with 1925 /// SmallDenseSet. 1926 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1927 1928 /// Interesting use types, to facilitate truncation reuse. 1929 SmallSetVector<Type *, 4> Types; 1930 1931 /// The list of interesting uses. 1932 SmallVector<LSRUse, 16> Uses; 1933 1934 /// Track which uses use which register candidates. 1935 RegUseTracker RegUses; 1936 1937 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1938 // have more than a few IV increment chains in a loop. Missing a Chain falls 1939 // back to normal LSR behavior for those uses. 1940 static const unsigned MaxChains = 8; 1941 1942 /// IV users can form a chain of IV increments. 1943 SmallVector<IVChain, MaxChains> IVChainVec; 1944 1945 /// IV users that belong to profitable IVChains. 1946 SmallPtrSet<Use*, MaxChains> IVIncSet; 1947 1948 void OptimizeShadowIV(); 1949 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1950 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1951 void OptimizeLoopTermCond(); 1952 1953 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1954 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1955 void FinalizeChain(IVChain &Chain); 1956 void CollectChains(); 1957 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1958 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1959 1960 void CollectInterestingTypesAndFactors(); 1961 void CollectFixupsAndInitialFormulae(); 1962 1963 // Support for sharing of LSRUses between LSRFixups. 1964 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1965 UseMapTy UseMap; 1966 1967 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1968 LSRUse::KindType Kind, MemAccessTy AccessTy); 1969 1970 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1971 MemAccessTy AccessTy); 1972 1973 void DeleteUse(LSRUse &LU, size_t LUIdx); 1974 1975 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1976 1977 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1978 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1979 void CountRegisters(const Formula &F, size_t LUIdx); 1980 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1981 1982 void CollectLoopInvariantFixupsAndFormulae(); 1983 1984 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1985 unsigned Depth = 0); 1986 1987 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1988 const Formula &Base, unsigned Depth, 1989 size_t Idx, bool IsScaledReg = false); 1990 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1991 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1992 const Formula &Base, size_t Idx, 1993 bool IsScaledReg = false); 1994 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1995 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1996 const Formula &Base, 1997 const SmallVectorImpl<int64_t> &Worklist, 1998 size_t Idx, bool IsScaledReg = false); 1999 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2000 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2001 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2002 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2003 void GenerateCrossUseConstantOffsets(); 2004 void GenerateAllReuseFormulae(); 2005 2006 void FilterOutUndesirableDedicatedRegisters(); 2007 2008 size_t EstimateSearchSpaceComplexity() const; 2009 void NarrowSearchSpaceByDetectingSupersets(); 2010 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2011 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2012 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2013 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2014 void NarrowSearchSpaceByPickingWinnerRegs(); 2015 void NarrowSearchSpaceUsingHeuristics(); 2016 2017 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2018 Cost &SolutionCost, 2019 SmallVectorImpl<const Formula *> &Workspace, 2020 const Cost &CurCost, 2021 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2022 DenseSet<const SCEV *> &VisitedRegs) const; 2023 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2024 2025 BasicBlock::iterator 2026 HoistInsertPosition(BasicBlock::iterator IP, 2027 const SmallVectorImpl<Instruction *> &Inputs) const; 2028 BasicBlock::iterator 2029 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2030 const LSRFixup &LF, 2031 const LSRUse &LU, 2032 SCEVExpander &Rewriter) const; 2033 2034 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2035 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2036 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2037 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2038 const Formula &F, SCEVExpander &Rewriter, 2039 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2040 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2041 SCEVExpander &Rewriter, 2042 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2043 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2044 2045 public: 2046 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2047 LoopInfo &LI, const TargetTransformInfo &TTI); 2048 2049 bool getChanged() const { return Changed; } 2050 2051 void print_factors_and_types(raw_ostream &OS) const; 2052 void print_fixups(raw_ostream &OS) const; 2053 void print_uses(raw_ostream &OS) const; 2054 void print(raw_ostream &OS) const; 2055 void dump() const; 2056 }; 2057 2058 } // end anonymous namespace 2059 2060 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2061 /// the cast operation. 2062 void LSRInstance::OptimizeShadowIV() { 2063 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2064 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2065 return; 2066 2067 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2068 UI != E; /* empty */) { 2069 IVUsers::const_iterator CandidateUI = UI; 2070 ++UI; 2071 Instruction *ShadowUse = CandidateUI->getUser(); 2072 Type *DestTy = nullptr; 2073 bool IsSigned = false; 2074 2075 /* If shadow use is a int->float cast then insert a second IV 2076 to eliminate this cast. 2077 2078 for (unsigned i = 0; i < n; ++i) 2079 foo((double)i); 2080 2081 is transformed into 2082 2083 double d = 0.0; 2084 for (unsigned i = 0; i < n; ++i, ++d) 2085 foo(d); 2086 */ 2087 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2088 IsSigned = false; 2089 DestTy = UCast->getDestTy(); 2090 } 2091 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2092 IsSigned = true; 2093 DestTy = SCast->getDestTy(); 2094 } 2095 if (!DestTy) continue; 2096 2097 // If target does not support DestTy natively then do not apply 2098 // this transformation. 2099 if (!TTI.isTypeLegal(DestTy)) continue; 2100 2101 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2102 if (!PH) continue; 2103 if (PH->getNumIncomingValues() != 2) continue; 2104 2105 // If the calculation in integers overflows, the result in FP type will 2106 // differ. So we only can do this transformation if we are guaranteed to not 2107 // deal with overflowing values 2108 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2109 if (!AR) continue; 2110 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2111 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2112 2113 Type *SrcTy = PH->getType(); 2114 int Mantissa = DestTy->getFPMantissaWidth(); 2115 if (Mantissa == -1) continue; 2116 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2117 continue; 2118 2119 unsigned Entry, Latch; 2120 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2121 Entry = 0; 2122 Latch = 1; 2123 } else { 2124 Entry = 1; 2125 Latch = 0; 2126 } 2127 2128 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2129 if (!Init) continue; 2130 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2131 (double)Init->getSExtValue() : 2132 (double)Init->getZExtValue()); 2133 2134 BinaryOperator *Incr = 2135 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2136 if (!Incr) continue; 2137 if (Incr->getOpcode() != Instruction::Add 2138 && Incr->getOpcode() != Instruction::Sub) 2139 continue; 2140 2141 /* Initialize new IV, double d = 0.0 in above example. */ 2142 ConstantInt *C = nullptr; 2143 if (Incr->getOperand(0) == PH) 2144 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2145 else if (Incr->getOperand(1) == PH) 2146 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2147 else 2148 continue; 2149 2150 if (!C) continue; 2151 2152 // Ignore negative constants, as the code below doesn't handle them 2153 // correctly. TODO: Remove this restriction. 2154 if (!C->getValue().isStrictlyPositive()) continue; 2155 2156 /* Add new PHINode. */ 2157 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2158 2159 /* create new increment. '++d' in above example. */ 2160 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2161 BinaryOperator *NewIncr = 2162 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2163 Instruction::FAdd : Instruction::FSub, 2164 NewPH, CFP, "IV.S.next.", Incr); 2165 2166 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2167 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2168 2169 /* Remove cast operation */ 2170 ShadowUse->replaceAllUsesWith(NewPH); 2171 ShadowUse->eraseFromParent(); 2172 Changed = true; 2173 break; 2174 } 2175 } 2176 2177 /// If Cond has an operand that is an expression of an IV, set the IV user and 2178 /// stride information and return true, otherwise return false. 2179 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2180 for (IVStrideUse &U : IU) 2181 if (U.getUser() == Cond) { 2182 // NOTE: we could handle setcc instructions with multiple uses here, but 2183 // InstCombine does it as well for simple uses, it's not clear that it 2184 // occurs enough in real life to handle. 2185 CondUse = &U; 2186 return true; 2187 } 2188 return false; 2189 } 2190 2191 /// Rewrite the loop's terminating condition if it uses a max computation. 2192 /// 2193 /// This is a narrow solution to a specific, but acute, problem. For loops 2194 /// like this: 2195 /// 2196 /// i = 0; 2197 /// do { 2198 /// p[i] = 0.0; 2199 /// } while (++i < n); 2200 /// 2201 /// the trip count isn't just 'n', because 'n' might not be positive. And 2202 /// unfortunately this can come up even for loops where the user didn't use 2203 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2204 /// will commonly be lowered like this: 2205 /// 2206 /// if (n > 0) { 2207 /// i = 0; 2208 /// do { 2209 /// p[i] = 0.0; 2210 /// } while (++i < n); 2211 /// } 2212 /// 2213 /// and then it's possible for subsequent optimization to obscure the if 2214 /// test in such a way that indvars can't find it. 2215 /// 2216 /// When indvars can't find the if test in loops like this, it creates a 2217 /// max expression, which allows it to give the loop a canonical 2218 /// induction variable: 2219 /// 2220 /// i = 0; 2221 /// max = n < 1 ? 1 : n; 2222 /// do { 2223 /// p[i] = 0.0; 2224 /// } while (++i != max); 2225 /// 2226 /// Canonical induction variables are necessary because the loop passes 2227 /// are designed around them. The most obvious example of this is the 2228 /// LoopInfo analysis, which doesn't remember trip count values. It 2229 /// expects to be able to rediscover the trip count each time it is 2230 /// needed, and it does this using a simple analysis that only succeeds if 2231 /// the loop has a canonical induction variable. 2232 /// 2233 /// However, when it comes time to generate code, the maximum operation 2234 /// can be quite costly, especially if it's inside of an outer loop. 2235 /// 2236 /// This function solves this problem by detecting this type of loop and 2237 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2238 /// the instructions for the maximum computation. 2239 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2240 // Check that the loop matches the pattern we're looking for. 2241 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2242 Cond->getPredicate() != CmpInst::ICMP_NE) 2243 return Cond; 2244 2245 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2246 if (!Sel || !Sel->hasOneUse()) return Cond; 2247 2248 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2249 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2250 return Cond; 2251 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2252 2253 // Add one to the backedge-taken count to get the trip count. 2254 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2255 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2256 2257 // Check for a max calculation that matches the pattern. There's no check 2258 // for ICMP_ULE here because the comparison would be with zero, which 2259 // isn't interesting. 2260 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2261 const SCEVNAryExpr *Max = nullptr; 2262 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2263 Pred = ICmpInst::ICMP_SLE; 2264 Max = S; 2265 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2266 Pred = ICmpInst::ICMP_SLT; 2267 Max = S; 2268 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2269 Pred = ICmpInst::ICMP_ULT; 2270 Max = U; 2271 } else { 2272 // No match; bail. 2273 return Cond; 2274 } 2275 2276 // To handle a max with more than two operands, this optimization would 2277 // require additional checking and setup. 2278 if (Max->getNumOperands() != 2) 2279 return Cond; 2280 2281 const SCEV *MaxLHS = Max->getOperand(0); 2282 const SCEV *MaxRHS = Max->getOperand(1); 2283 2284 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2285 // for a comparison with 1. For <= and >=, a comparison with zero. 2286 if (!MaxLHS || 2287 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2288 return Cond; 2289 2290 // Check the relevant induction variable for conformance to 2291 // the pattern. 2292 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2293 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2294 if (!AR || !AR->isAffine() || 2295 AR->getStart() != One || 2296 AR->getStepRecurrence(SE) != One) 2297 return Cond; 2298 2299 assert(AR->getLoop() == L && 2300 "Loop condition operand is an addrec in a different loop!"); 2301 2302 // Check the right operand of the select, and remember it, as it will 2303 // be used in the new comparison instruction. 2304 Value *NewRHS = nullptr; 2305 if (ICmpInst::isTrueWhenEqual(Pred)) { 2306 // Look for n+1, and grab n. 2307 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2308 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2309 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2310 NewRHS = BO->getOperand(0); 2311 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2312 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2313 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2314 NewRHS = BO->getOperand(0); 2315 if (!NewRHS) 2316 return Cond; 2317 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2318 NewRHS = Sel->getOperand(1); 2319 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2320 NewRHS = Sel->getOperand(2); 2321 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2322 NewRHS = SU->getValue(); 2323 else 2324 // Max doesn't match expected pattern. 2325 return Cond; 2326 2327 // Determine the new comparison opcode. It may be signed or unsigned, 2328 // and the original comparison may be either equality or inequality. 2329 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2330 Pred = CmpInst::getInversePredicate(Pred); 2331 2332 // Ok, everything looks ok to change the condition into an SLT or SGE and 2333 // delete the max calculation. 2334 ICmpInst *NewCond = 2335 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2336 2337 // Delete the max calculation instructions. 2338 Cond->replaceAllUsesWith(NewCond); 2339 CondUse->setUser(NewCond); 2340 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2341 Cond->eraseFromParent(); 2342 Sel->eraseFromParent(); 2343 if (Cmp->use_empty()) 2344 Cmp->eraseFromParent(); 2345 return NewCond; 2346 } 2347 2348 /// Change loop terminating condition to use the postinc iv when possible. 2349 void 2350 LSRInstance::OptimizeLoopTermCond() { 2351 SmallPtrSet<Instruction *, 4> PostIncs; 2352 2353 // We need a different set of heuristics for rotated and non-rotated loops. 2354 // If a loop is rotated then the latch is also the backedge, so inserting 2355 // post-inc expressions just before the latch is ideal. To reduce live ranges 2356 // it also makes sense to rewrite terminating conditions to use post-inc 2357 // expressions. 2358 // 2359 // If the loop is not rotated then the latch is not a backedge; the latch 2360 // check is done in the loop head. Adding post-inc expressions before the 2361 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2362 // in the loop body. In this case we do *not* want to use post-inc expressions 2363 // in the latch check, and we want to insert post-inc expressions before 2364 // the backedge. 2365 BasicBlock *LatchBlock = L->getLoopLatch(); 2366 SmallVector<BasicBlock*, 8> ExitingBlocks; 2367 L->getExitingBlocks(ExitingBlocks); 2368 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2369 return LatchBlock != BB; 2370 })) { 2371 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2372 IVIncInsertPos = LatchBlock->getTerminator(); 2373 return; 2374 } 2375 2376 // Otherwise treat this as a rotated loop. 2377 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2378 // Get the terminating condition for the loop if possible. If we 2379 // can, we want to change it to use a post-incremented version of its 2380 // induction variable, to allow coalescing the live ranges for the IV into 2381 // one register value. 2382 2383 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2384 if (!TermBr) 2385 continue; 2386 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2387 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2388 continue; 2389 2390 // Search IVUsesByStride to find Cond's IVUse if there is one. 2391 IVStrideUse *CondUse = nullptr; 2392 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2393 if (!FindIVUserForCond(Cond, CondUse)) 2394 continue; 2395 2396 // If the trip count is computed in terms of a max (due to ScalarEvolution 2397 // being unable to find a sufficient guard, for example), change the loop 2398 // comparison to use SLT or ULT instead of NE. 2399 // One consequence of doing this now is that it disrupts the count-down 2400 // optimization. That's not always a bad thing though, because in such 2401 // cases it may still be worthwhile to avoid a max. 2402 Cond = OptimizeMax(Cond, CondUse); 2403 2404 // If this exiting block dominates the latch block, it may also use 2405 // the post-inc value if it won't be shared with other uses. 2406 // Check for dominance. 2407 if (!DT.dominates(ExitingBlock, LatchBlock)) 2408 continue; 2409 2410 // Conservatively avoid trying to use the post-inc value in non-latch 2411 // exits if there may be pre-inc users in intervening blocks. 2412 if (LatchBlock != ExitingBlock) 2413 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2414 // Test if the use is reachable from the exiting block. This dominator 2415 // query is a conservative approximation of reachability. 2416 if (&*UI != CondUse && 2417 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2418 // Conservatively assume there may be reuse if the quotient of their 2419 // strides could be a legal scale. 2420 const SCEV *A = IU.getStride(*CondUse, L); 2421 const SCEV *B = IU.getStride(*UI, L); 2422 if (!A || !B) continue; 2423 if (SE.getTypeSizeInBits(A->getType()) != 2424 SE.getTypeSizeInBits(B->getType())) { 2425 if (SE.getTypeSizeInBits(A->getType()) > 2426 SE.getTypeSizeInBits(B->getType())) 2427 B = SE.getSignExtendExpr(B, A->getType()); 2428 else 2429 A = SE.getSignExtendExpr(A, B->getType()); 2430 } 2431 if (const SCEVConstant *D = 2432 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2433 const ConstantInt *C = D->getValue(); 2434 // Stride of one or negative one can have reuse with non-addresses. 2435 if (C->isOne() || C->isMinusOne()) 2436 goto decline_post_inc; 2437 // Avoid weird situations. 2438 if (C->getValue().getMinSignedBits() >= 64 || 2439 C->getValue().isMinSignedValue()) 2440 goto decline_post_inc; 2441 // Check for possible scaled-address reuse. 2442 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2443 MemAccessTy AccessTy = getAccessType( 2444 TTI, UI->getUser(), UI->getOperandValToReplace()); 2445 int64_t Scale = C->getSExtValue(); 2446 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2447 /*BaseOffset=*/0, 2448 /*HasBaseReg=*/false, Scale, 2449 AccessTy.AddrSpace)) 2450 goto decline_post_inc; 2451 Scale = -Scale; 2452 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2453 /*BaseOffset=*/0, 2454 /*HasBaseReg=*/false, Scale, 2455 AccessTy.AddrSpace)) 2456 goto decline_post_inc; 2457 } 2458 } 2459 } 2460 2461 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2462 << *Cond << '\n'); 2463 2464 // It's possible for the setcc instruction to be anywhere in the loop, and 2465 // possible for it to have multiple users. If it is not immediately before 2466 // the exiting block branch, move it. 2467 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2468 if (Cond->hasOneUse()) { 2469 Cond->moveBefore(TermBr); 2470 } else { 2471 // Clone the terminating condition and insert into the loopend. 2472 ICmpInst *OldCond = Cond; 2473 Cond = cast<ICmpInst>(Cond->clone()); 2474 Cond->setName(L->getHeader()->getName() + ".termcond"); 2475 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2476 2477 // Clone the IVUse, as the old use still exists! 2478 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2479 TermBr->replaceUsesOfWith(OldCond, Cond); 2480 } 2481 } 2482 2483 // If we get to here, we know that we can transform the setcc instruction to 2484 // use the post-incremented version of the IV, allowing us to coalesce the 2485 // live ranges for the IV correctly. 2486 CondUse->transformToPostInc(L); 2487 Changed = true; 2488 2489 PostIncs.insert(Cond); 2490 decline_post_inc:; 2491 } 2492 2493 // Determine an insertion point for the loop induction variable increment. It 2494 // must dominate all the post-inc comparisons we just set up, and it must 2495 // dominate the loop latch edge. 2496 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2497 for (Instruction *Inst : PostIncs) { 2498 BasicBlock *BB = 2499 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2500 Inst->getParent()); 2501 if (BB == Inst->getParent()) 2502 IVIncInsertPos = Inst; 2503 else if (BB != IVIncInsertPos->getParent()) 2504 IVIncInsertPos = BB->getTerminator(); 2505 } 2506 } 2507 2508 /// Determine if the given use can accommodate a fixup at the given offset and 2509 /// other details. If so, update the use and return true. 2510 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2511 bool HasBaseReg, LSRUse::KindType Kind, 2512 MemAccessTy AccessTy) { 2513 int64_t NewMinOffset = LU.MinOffset; 2514 int64_t NewMaxOffset = LU.MaxOffset; 2515 MemAccessTy NewAccessTy = AccessTy; 2516 2517 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2518 // something conservative, however this can pessimize in the case that one of 2519 // the uses will have all its uses outside the loop, for example. 2520 if (LU.Kind != Kind) 2521 return false; 2522 2523 // Check for a mismatched access type, and fall back conservatively as needed. 2524 // TODO: Be less conservative when the type is similar and can use the same 2525 // addressing modes. 2526 if (Kind == LSRUse::Address) { 2527 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2528 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2529 AccessTy.AddrSpace); 2530 } 2531 } 2532 2533 // Conservatively assume HasBaseReg is true for now. 2534 if (NewOffset < LU.MinOffset) { 2535 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2536 LU.MaxOffset - NewOffset, HasBaseReg)) 2537 return false; 2538 NewMinOffset = NewOffset; 2539 } else if (NewOffset > LU.MaxOffset) { 2540 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2541 NewOffset - LU.MinOffset, HasBaseReg)) 2542 return false; 2543 NewMaxOffset = NewOffset; 2544 } 2545 2546 // Update the use. 2547 LU.MinOffset = NewMinOffset; 2548 LU.MaxOffset = NewMaxOffset; 2549 LU.AccessTy = NewAccessTy; 2550 return true; 2551 } 2552 2553 /// Return an LSRUse index and an offset value for a fixup which needs the given 2554 /// expression, with the given kind and optional access type. Either reuse an 2555 /// existing use or create a new one, as needed. 2556 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2557 LSRUse::KindType Kind, 2558 MemAccessTy AccessTy) { 2559 const SCEV *Copy = Expr; 2560 int64_t Offset = ExtractImmediate(Expr, SE); 2561 2562 // Basic uses can't accept any offset, for example. 2563 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2564 Offset, /*HasBaseReg=*/ true)) { 2565 Expr = Copy; 2566 Offset = 0; 2567 } 2568 2569 std::pair<UseMapTy::iterator, bool> P = 2570 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2571 if (!P.second) { 2572 // A use already existed with this base. 2573 size_t LUIdx = P.first->second; 2574 LSRUse &LU = Uses[LUIdx]; 2575 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2576 // Reuse this use. 2577 return std::make_pair(LUIdx, Offset); 2578 } 2579 2580 // Create a new use. 2581 size_t LUIdx = Uses.size(); 2582 P.first->second = LUIdx; 2583 Uses.push_back(LSRUse(Kind, AccessTy)); 2584 LSRUse &LU = Uses[LUIdx]; 2585 2586 LU.MinOffset = Offset; 2587 LU.MaxOffset = Offset; 2588 return std::make_pair(LUIdx, Offset); 2589 } 2590 2591 /// Delete the given use from the Uses list. 2592 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2593 if (&LU != &Uses.back()) 2594 std::swap(LU, Uses.back()); 2595 Uses.pop_back(); 2596 2597 // Update RegUses. 2598 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2599 } 2600 2601 /// Look for a use distinct from OrigLU which is has a formula that has the same 2602 /// registers as the given formula. 2603 LSRUse * 2604 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2605 const LSRUse &OrigLU) { 2606 // Search all uses for the formula. This could be more clever. 2607 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2608 LSRUse &LU = Uses[LUIdx]; 2609 // Check whether this use is close enough to OrigLU, to see whether it's 2610 // worthwhile looking through its formulae. 2611 // Ignore ICmpZero uses because they may contain formulae generated by 2612 // GenerateICmpZeroScales, in which case adding fixup offsets may 2613 // be invalid. 2614 if (&LU != &OrigLU && 2615 LU.Kind != LSRUse::ICmpZero && 2616 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2617 LU.WidestFixupType == OrigLU.WidestFixupType && 2618 LU.HasFormulaWithSameRegs(OrigF)) { 2619 // Scan through this use's formulae. 2620 for (const Formula &F : LU.Formulae) { 2621 // Check to see if this formula has the same registers and symbols 2622 // as OrigF. 2623 if (F.BaseRegs == OrigF.BaseRegs && 2624 F.ScaledReg == OrigF.ScaledReg && 2625 F.BaseGV == OrigF.BaseGV && 2626 F.Scale == OrigF.Scale && 2627 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2628 if (F.BaseOffset == 0) 2629 return &LU; 2630 // This is the formula where all the registers and symbols matched; 2631 // there aren't going to be any others. Since we declined it, we 2632 // can skip the rest of the formulae and proceed to the next LSRUse. 2633 break; 2634 } 2635 } 2636 } 2637 } 2638 2639 // Nothing looked good. 2640 return nullptr; 2641 } 2642 2643 void LSRInstance::CollectInterestingTypesAndFactors() { 2644 SmallSetVector<const SCEV *, 4> Strides; 2645 2646 // Collect interesting types and strides. 2647 SmallVector<const SCEV *, 4> Worklist; 2648 for (const IVStrideUse &U : IU) { 2649 const SCEV *Expr = IU.getExpr(U); 2650 2651 // Collect interesting types. 2652 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2653 2654 // Add strides for mentioned loops. 2655 Worklist.push_back(Expr); 2656 do { 2657 const SCEV *S = Worklist.pop_back_val(); 2658 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2659 if (AR->getLoop() == L) 2660 Strides.insert(AR->getStepRecurrence(SE)); 2661 Worklist.push_back(AR->getStart()); 2662 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2663 Worklist.append(Add->op_begin(), Add->op_end()); 2664 } 2665 } while (!Worklist.empty()); 2666 } 2667 2668 // Compute interesting factors from the set of interesting strides. 2669 for (SmallSetVector<const SCEV *, 4>::const_iterator 2670 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2671 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2672 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2673 const SCEV *OldStride = *I; 2674 const SCEV *NewStride = *NewStrideIter; 2675 2676 if (SE.getTypeSizeInBits(OldStride->getType()) != 2677 SE.getTypeSizeInBits(NewStride->getType())) { 2678 if (SE.getTypeSizeInBits(OldStride->getType()) > 2679 SE.getTypeSizeInBits(NewStride->getType())) 2680 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2681 else 2682 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2683 } 2684 if (const SCEVConstant *Factor = 2685 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2686 SE, true))) { 2687 if (Factor->getAPInt().getMinSignedBits() <= 64) 2688 Factors.insert(Factor->getAPInt().getSExtValue()); 2689 } else if (const SCEVConstant *Factor = 2690 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2691 NewStride, 2692 SE, true))) { 2693 if (Factor->getAPInt().getMinSignedBits() <= 64) 2694 Factors.insert(Factor->getAPInt().getSExtValue()); 2695 } 2696 } 2697 2698 // If all uses use the same type, don't bother looking for truncation-based 2699 // reuse. 2700 if (Types.size() == 1) 2701 Types.clear(); 2702 2703 LLVM_DEBUG(print_factors_and_types(dbgs())); 2704 } 2705 2706 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2707 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2708 /// IVStrideUses, we could partially skip this. 2709 static User::op_iterator 2710 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2711 Loop *L, ScalarEvolution &SE) { 2712 for(; OI != OE; ++OI) { 2713 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2714 if (!SE.isSCEVable(Oper->getType())) 2715 continue; 2716 2717 if (const SCEVAddRecExpr *AR = 2718 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2719 if (AR->getLoop() == L) 2720 break; 2721 } 2722 } 2723 } 2724 return OI; 2725 } 2726 2727 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2728 /// a convenient helper. 2729 static Value *getWideOperand(Value *Oper) { 2730 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2731 return Trunc->getOperand(0); 2732 return Oper; 2733 } 2734 2735 /// Return true if we allow an IV chain to include both types. 2736 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2737 Type *LType = LVal->getType(); 2738 Type *RType = RVal->getType(); 2739 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2740 // Different address spaces means (possibly) 2741 // different types of the pointer implementation, 2742 // e.g. i16 vs i32 so disallow that. 2743 (LType->getPointerAddressSpace() == 2744 RType->getPointerAddressSpace())); 2745 } 2746 2747 /// Return an approximation of this SCEV expression's "base", or NULL for any 2748 /// constant. Returning the expression itself is conservative. Returning a 2749 /// deeper subexpression is more precise and valid as long as it isn't less 2750 /// complex than another subexpression. For expressions involving multiple 2751 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2752 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2753 /// IVInc==b-a. 2754 /// 2755 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2756 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2757 static const SCEV *getExprBase(const SCEV *S) { 2758 switch (S->getSCEVType()) { 2759 default: // uncluding scUnknown. 2760 return S; 2761 case scConstant: 2762 return nullptr; 2763 case scTruncate: 2764 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2765 case scZeroExtend: 2766 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2767 case scSignExtend: 2768 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2769 case scAddExpr: { 2770 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2771 // there's nothing more complex. 2772 // FIXME: not sure if we want to recognize negation. 2773 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2774 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2775 E(Add->op_begin()); I != E; ++I) { 2776 const SCEV *SubExpr = *I; 2777 if (SubExpr->getSCEVType() == scAddExpr) 2778 return getExprBase(SubExpr); 2779 2780 if (SubExpr->getSCEVType() != scMulExpr) 2781 return SubExpr; 2782 } 2783 return S; // all operands are scaled, be conservative. 2784 } 2785 case scAddRecExpr: 2786 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2787 } 2788 } 2789 2790 /// Return true if the chain increment is profitable to expand into a loop 2791 /// invariant value, which may require its own register. A profitable chain 2792 /// increment will be an offset relative to the same base. We allow such offsets 2793 /// to potentially be used as chain increment as long as it's not obviously 2794 /// expensive to expand using real instructions. 2795 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2796 const SCEV *IncExpr, 2797 ScalarEvolution &SE) { 2798 // Aggressively form chains when -stress-ivchain. 2799 if (StressIVChain) 2800 return true; 2801 2802 // Do not replace a constant offset from IV head with a nonconstant IV 2803 // increment. 2804 if (!isa<SCEVConstant>(IncExpr)) { 2805 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2806 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2807 return false; 2808 } 2809 2810 SmallPtrSet<const SCEV*, 8> Processed; 2811 return !isHighCostExpansion(IncExpr, Processed, SE); 2812 } 2813 2814 /// Return true if the number of registers needed for the chain is estimated to 2815 /// be less than the number required for the individual IV users. First prohibit 2816 /// any IV users that keep the IV live across increments (the Users set should 2817 /// be empty). Next count the number and type of increments in the chain. 2818 /// 2819 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2820 /// effectively use postinc addressing modes. Only consider it profitable it the 2821 /// increments can be computed in fewer registers when chained. 2822 /// 2823 /// TODO: Consider IVInc free if it's already used in another chains. 2824 static bool 2825 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2826 ScalarEvolution &SE) { 2827 if (StressIVChain) 2828 return true; 2829 2830 if (!Chain.hasIncs()) 2831 return false; 2832 2833 if (!Users.empty()) { 2834 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2835 for (Instruction *Inst 2836 : Users) { dbgs() << " " << *Inst << "\n"; }); 2837 return false; 2838 } 2839 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2840 2841 // The chain itself may require a register, so intialize cost to 1. 2842 int cost = 1; 2843 2844 // A complete chain likely eliminates the need for keeping the original IV in 2845 // a register. LSR does not currently know how to form a complete chain unless 2846 // the header phi already exists. 2847 if (isa<PHINode>(Chain.tailUserInst()) 2848 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2849 --cost; 2850 } 2851 const SCEV *LastIncExpr = nullptr; 2852 unsigned NumConstIncrements = 0; 2853 unsigned NumVarIncrements = 0; 2854 unsigned NumReusedIncrements = 0; 2855 for (const IVInc &Inc : Chain) { 2856 if (Inc.IncExpr->isZero()) 2857 continue; 2858 2859 // Incrementing by zero or some constant is neutral. We assume constants can 2860 // be folded into an addressing mode or an add's immediate operand. 2861 if (isa<SCEVConstant>(Inc.IncExpr)) { 2862 ++NumConstIncrements; 2863 continue; 2864 } 2865 2866 if (Inc.IncExpr == LastIncExpr) 2867 ++NumReusedIncrements; 2868 else 2869 ++NumVarIncrements; 2870 2871 LastIncExpr = Inc.IncExpr; 2872 } 2873 // An IV chain with a single increment is handled by LSR's postinc 2874 // uses. However, a chain with multiple increments requires keeping the IV's 2875 // value live longer than it needs to be if chained. 2876 if (NumConstIncrements > 1) 2877 --cost; 2878 2879 // Materializing increment expressions in the preheader that didn't exist in 2880 // the original code may cost a register. For example, sign-extended array 2881 // indices can produce ridiculous increments like this: 2882 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2883 cost += NumVarIncrements; 2884 2885 // Reusing variable increments likely saves a register to hold the multiple of 2886 // the stride. 2887 cost -= NumReusedIncrements; 2888 2889 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2890 << "\n"); 2891 2892 return cost < 0; 2893 } 2894 2895 /// Add this IV user to an existing chain or make it the head of a new chain. 2896 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2897 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2898 // When IVs are used as types of varying widths, they are generally converted 2899 // to a wider type with some uses remaining narrow under a (free) trunc. 2900 Value *const NextIV = getWideOperand(IVOper); 2901 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2902 const SCEV *const OperExprBase = getExprBase(OperExpr); 2903 2904 // Visit all existing chains. Check if its IVOper can be computed as a 2905 // profitable loop invariant increment from the last link in the Chain. 2906 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2907 const SCEV *LastIncExpr = nullptr; 2908 for (; ChainIdx < NChains; ++ChainIdx) { 2909 IVChain &Chain = IVChainVec[ChainIdx]; 2910 2911 // Prune the solution space aggressively by checking that both IV operands 2912 // are expressions that operate on the same unscaled SCEVUnknown. This 2913 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2914 // first avoids creating extra SCEV expressions. 2915 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2916 continue; 2917 2918 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2919 if (!isCompatibleIVType(PrevIV, NextIV)) 2920 continue; 2921 2922 // A phi node terminates a chain. 2923 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2924 continue; 2925 2926 // The increment must be loop-invariant so it can be kept in a register. 2927 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2928 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2929 if (!SE.isLoopInvariant(IncExpr, L)) 2930 continue; 2931 2932 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2933 LastIncExpr = IncExpr; 2934 break; 2935 } 2936 } 2937 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2938 // bother for phi nodes, because they must be last in the chain. 2939 if (ChainIdx == NChains) { 2940 if (isa<PHINode>(UserInst)) 2941 return; 2942 if (NChains >= MaxChains && !StressIVChain) { 2943 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2944 return; 2945 } 2946 LastIncExpr = OperExpr; 2947 // IVUsers may have skipped over sign/zero extensions. We don't currently 2948 // attempt to form chains involving extensions unless they can be hoisted 2949 // into this loop's AddRec. 2950 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2951 return; 2952 ++NChains; 2953 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2954 OperExprBase)); 2955 ChainUsersVec.resize(NChains); 2956 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2957 << ") IV=" << *LastIncExpr << "\n"); 2958 } else { 2959 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2960 << ") IV+" << *LastIncExpr << "\n"); 2961 // Add this IV user to the end of the chain. 2962 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2963 } 2964 IVChain &Chain = IVChainVec[ChainIdx]; 2965 2966 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2967 // This chain's NearUsers become FarUsers. 2968 if (!LastIncExpr->isZero()) { 2969 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2970 NearUsers.end()); 2971 NearUsers.clear(); 2972 } 2973 2974 // All other uses of IVOperand become near uses of the chain. 2975 // We currently ignore intermediate values within SCEV expressions, assuming 2976 // they will eventually be used be the current chain, or can be computed 2977 // from one of the chain increments. To be more precise we could 2978 // transitively follow its user and only add leaf IV users to the set. 2979 for (User *U : IVOper->users()) { 2980 Instruction *OtherUse = dyn_cast<Instruction>(U); 2981 if (!OtherUse) 2982 continue; 2983 // Uses in the chain will no longer be uses if the chain is formed. 2984 // Include the head of the chain in this iteration (not Chain.begin()). 2985 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2986 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2987 for( ; IncIter != IncEnd; ++IncIter) { 2988 if (IncIter->UserInst == OtherUse) 2989 break; 2990 } 2991 if (IncIter != IncEnd) 2992 continue; 2993 2994 if (SE.isSCEVable(OtherUse->getType()) 2995 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2996 && IU.isIVUserOrOperand(OtherUse)) { 2997 continue; 2998 } 2999 NearUsers.insert(OtherUse); 3000 } 3001 3002 // Since this user is part of the chain, it's no longer considered a use 3003 // of the chain. 3004 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3005 } 3006 3007 /// Populate the vector of Chains. 3008 /// 3009 /// This decreases ILP at the architecture level. Targets with ample registers, 3010 /// multiple memory ports, and no register renaming probably don't want 3011 /// this. However, such targets should probably disable LSR altogether. 3012 /// 3013 /// The job of LSR is to make a reasonable choice of induction variables across 3014 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3015 /// ILP *within the loop* if the target wants it. 3016 /// 3017 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3018 /// will not reorder memory operations, it will recognize this as a chain, but 3019 /// will generate redundant IV increments. Ideally this would be corrected later 3020 /// by a smart scheduler: 3021 /// = A[i] 3022 /// = A[i+x] 3023 /// A[i] = 3024 /// A[i+x] = 3025 /// 3026 /// TODO: Walk the entire domtree within this loop, not just the path to the 3027 /// loop latch. This will discover chains on side paths, but requires 3028 /// maintaining multiple copies of the Chains state. 3029 void LSRInstance::CollectChains() { 3030 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3031 SmallVector<ChainUsers, 8> ChainUsersVec; 3032 3033 SmallVector<BasicBlock *,8> LatchPath; 3034 BasicBlock *LoopHeader = L->getHeader(); 3035 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3036 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3037 LatchPath.push_back(Rung->getBlock()); 3038 } 3039 LatchPath.push_back(LoopHeader); 3040 3041 // Walk the instruction stream from the loop header to the loop latch. 3042 for (BasicBlock *BB : reverse(LatchPath)) { 3043 for (Instruction &I : *BB) { 3044 // Skip instructions that weren't seen by IVUsers analysis. 3045 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3046 continue; 3047 3048 // Ignore users that are part of a SCEV expression. This way we only 3049 // consider leaf IV Users. This effectively rediscovers a portion of 3050 // IVUsers analysis but in program order this time. 3051 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3052 continue; 3053 3054 // Remove this instruction from any NearUsers set it may be in. 3055 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3056 ChainIdx < NChains; ++ChainIdx) { 3057 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3058 } 3059 // Search for operands that can be chained. 3060 SmallPtrSet<Instruction*, 4> UniqueOperands; 3061 User::op_iterator IVOpEnd = I.op_end(); 3062 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3063 while (IVOpIter != IVOpEnd) { 3064 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3065 if (UniqueOperands.insert(IVOpInst).second) 3066 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3067 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3068 } 3069 } // Continue walking down the instructions. 3070 } // Continue walking down the domtree. 3071 // Visit phi backedges to determine if the chain can generate the IV postinc. 3072 for (PHINode &PN : L->getHeader()->phis()) { 3073 if (!SE.isSCEVable(PN.getType())) 3074 continue; 3075 3076 Instruction *IncV = 3077 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3078 if (IncV) 3079 ChainInstruction(&PN, IncV, ChainUsersVec); 3080 } 3081 // Remove any unprofitable chains. 3082 unsigned ChainIdx = 0; 3083 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3084 UsersIdx < NChains; ++UsersIdx) { 3085 if (!isProfitableChain(IVChainVec[UsersIdx], 3086 ChainUsersVec[UsersIdx].FarUsers, SE)) 3087 continue; 3088 // Preserve the chain at UsesIdx. 3089 if (ChainIdx != UsersIdx) 3090 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3091 FinalizeChain(IVChainVec[ChainIdx]); 3092 ++ChainIdx; 3093 } 3094 IVChainVec.resize(ChainIdx); 3095 } 3096 3097 void LSRInstance::FinalizeChain(IVChain &Chain) { 3098 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3099 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3100 3101 for (const IVInc &Inc : Chain) { 3102 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3103 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3104 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3105 IVIncSet.insert(UseI); 3106 } 3107 } 3108 3109 /// Return true if the IVInc can be folded into an addressing mode. 3110 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3111 Value *Operand, const TargetTransformInfo &TTI) { 3112 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3113 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3114 return false; 3115 3116 if (IncConst->getAPInt().getMinSignedBits() > 64) 3117 return false; 3118 3119 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3120 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3121 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3122 IncOffset, /*HaseBaseReg=*/false)) 3123 return false; 3124 3125 return true; 3126 } 3127 3128 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3129 /// user's operand from the previous IV user's operand. 3130 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3131 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3132 // Find the new IVOperand for the head of the chain. It may have been replaced 3133 // by LSR. 3134 const IVInc &Head = Chain.Incs[0]; 3135 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3136 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3137 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3138 IVOpEnd, L, SE); 3139 Value *IVSrc = nullptr; 3140 while (IVOpIter != IVOpEnd) { 3141 IVSrc = getWideOperand(*IVOpIter); 3142 3143 // If this operand computes the expression that the chain needs, we may use 3144 // it. (Check this after setting IVSrc which is used below.) 3145 // 3146 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3147 // narrow for the chain, so we can no longer use it. We do allow using a 3148 // wider phi, assuming the LSR checked for free truncation. In that case we 3149 // should already have a truncate on this operand such that 3150 // getSCEV(IVSrc) == IncExpr. 3151 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3152 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3153 break; 3154 } 3155 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3156 } 3157 if (IVOpIter == IVOpEnd) { 3158 // Gracefully give up on this chain. 3159 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3160 return; 3161 } 3162 3163 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3164 Type *IVTy = IVSrc->getType(); 3165 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3166 const SCEV *LeftOverExpr = nullptr; 3167 for (const IVInc &Inc : Chain) { 3168 Instruction *InsertPt = Inc.UserInst; 3169 if (isa<PHINode>(InsertPt)) 3170 InsertPt = L->getLoopLatch()->getTerminator(); 3171 3172 // IVOper will replace the current IV User's operand. IVSrc is the IV 3173 // value currently held in a register. 3174 Value *IVOper = IVSrc; 3175 if (!Inc.IncExpr->isZero()) { 3176 // IncExpr was the result of subtraction of two narrow values, so must 3177 // be signed. 3178 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3179 LeftOverExpr = LeftOverExpr ? 3180 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3181 } 3182 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3183 // Expand the IV increment. 3184 Rewriter.clearPostInc(); 3185 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3186 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3187 SE.getUnknown(IncV)); 3188 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3189 3190 // If an IV increment can't be folded, use it as the next IV value. 3191 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3192 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3193 IVSrc = IVOper; 3194 LeftOverExpr = nullptr; 3195 } 3196 } 3197 Type *OperTy = Inc.IVOperand->getType(); 3198 if (IVTy != OperTy) { 3199 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3200 "cannot extend a chained IV"); 3201 IRBuilder<> Builder(InsertPt); 3202 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3203 } 3204 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3205 DeadInsts.emplace_back(Inc.IVOperand); 3206 } 3207 // If LSR created a new, wider phi, we may also replace its postinc. We only 3208 // do this if we also found a wide value for the head of the chain. 3209 if (isa<PHINode>(Chain.tailUserInst())) { 3210 for (PHINode &Phi : L->getHeader()->phis()) { 3211 if (!isCompatibleIVType(&Phi, IVSrc)) 3212 continue; 3213 Instruction *PostIncV = dyn_cast<Instruction>( 3214 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3215 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3216 continue; 3217 Value *IVOper = IVSrc; 3218 Type *PostIncTy = PostIncV->getType(); 3219 if (IVTy != PostIncTy) { 3220 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3221 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3222 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3223 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3224 } 3225 Phi.replaceUsesOfWith(PostIncV, IVOper); 3226 DeadInsts.emplace_back(PostIncV); 3227 } 3228 } 3229 } 3230 3231 void LSRInstance::CollectFixupsAndInitialFormulae() { 3232 for (const IVStrideUse &U : IU) { 3233 Instruction *UserInst = U.getUser(); 3234 // Skip IV users that are part of profitable IV Chains. 3235 User::op_iterator UseI = 3236 find(UserInst->operands(), U.getOperandValToReplace()); 3237 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3238 if (IVIncSet.count(UseI)) { 3239 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3240 continue; 3241 } 3242 3243 LSRUse::KindType Kind = LSRUse::Basic; 3244 MemAccessTy AccessTy; 3245 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3246 Kind = LSRUse::Address; 3247 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3248 } 3249 3250 const SCEV *S = IU.getExpr(U); 3251 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3252 3253 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3254 // (N - i == 0), and this allows (N - i) to be the expression that we work 3255 // with rather than just N or i, so we can consider the register 3256 // requirements for both N and i at the same time. Limiting this code to 3257 // equality icmps is not a problem because all interesting loops use 3258 // equality icmps, thanks to IndVarSimplify. 3259 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3260 if (CI->isEquality()) { 3261 // Swap the operands if needed to put the OperandValToReplace on the 3262 // left, for consistency. 3263 Value *NV = CI->getOperand(1); 3264 if (NV == U.getOperandValToReplace()) { 3265 CI->setOperand(1, CI->getOperand(0)); 3266 CI->setOperand(0, NV); 3267 NV = CI->getOperand(1); 3268 Changed = true; 3269 } 3270 3271 // x == y --> x - y == 0 3272 const SCEV *N = SE.getSCEV(NV); 3273 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3274 // S is normalized, so normalize N before folding it into S 3275 // to keep the result normalized. 3276 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3277 Kind = LSRUse::ICmpZero; 3278 S = SE.getMinusSCEV(N, S); 3279 } 3280 3281 // -1 and the negations of all interesting strides (except the negation 3282 // of -1) are now also interesting. 3283 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3284 if (Factors[i] != -1) 3285 Factors.insert(-(uint64_t)Factors[i]); 3286 Factors.insert(-1); 3287 } 3288 3289 // Get or create an LSRUse. 3290 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3291 size_t LUIdx = P.first; 3292 int64_t Offset = P.second; 3293 LSRUse &LU = Uses[LUIdx]; 3294 3295 // Record the fixup. 3296 LSRFixup &LF = LU.getNewFixup(); 3297 LF.UserInst = UserInst; 3298 LF.OperandValToReplace = U.getOperandValToReplace(); 3299 LF.PostIncLoops = TmpPostIncLoops; 3300 LF.Offset = Offset; 3301 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3302 3303 if (!LU.WidestFixupType || 3304 SE.getTypeSizeInBits(LU.WidestFixupType) < 3305 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3306 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3307 3308 // If this is the first use of this LSRUse, give it a formula. 3309 if (LU.Formulae.empty()) { 3310 InsertInitialFormula(S, LU, LUIdx); 3311 CountRegisters(LU.Formulae.back(), LUIdx); 3312 } 3313 } 3314 3315 LLVM_DEBUG(print_fixups(dbgs())); 3316 } 3317 3318 /// Insert a formula for the given expression into the given use, separating out 3319 /// loop-variant portions from loop-invariant and loop-computable portions. 3320 void 3321 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3322 // Mark uses whose expressions cannot be expanded. 3323 if (!isSafeToExpand(S, SE)) 3324 LU.RigidFormula = true; 3325 3326 Formula F; 3327 F.initialMatch(S, L, SE); 3328 bool Inserted = InsertFormula(LU, LUIdx, F); 3329 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3330 } 3331 3332 /// Insert a simple single-register formula for the given expression into the 3333 /// given use. 3334 void 3335 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3336 LSRUse &LU, size_t LUIdx) { 3337 Formula F; 3338 F.BaseRegs.push_back(S); 3339 F.HasBaseReg = true; 3340 bool Inserted = InsertFormula(LU, LUIdx, F); 3341 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3342 } 3343 3344 /// Note which registers are used by the given formula, updating RegUses. 3345 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3346 if (F.ScaledReg) 3347 RegUses.countRegister(F.ScaledReg, LUIdx); 3348 for (const SCEV *BaseReg : F.BaseRegs) 3349 RegUses.countRegister(BaseReg, LUIdx); 3350 } 3351 3352 /// If the given formula has not yet been inserted, add it to the list, and 3353 /// return true. Return false otherwise. 3354 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3355 // Do not insert formula that we will not be able to expand. 3356 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3357 "Formula is illegal"); 3358 3359 if (!LU.InsertFormula(F, *L)) 3360 return false; 3361 3362 CountRegisters(F, LUIdx); 3363 return true; 3364 } 3365 3366 /// Check for other uses of loop-invariant values which we're tracking. These 3367 /// other uses will pin these values in registers, making them less profitable 3368 /// for elimination. 3369 /// TODO: This currently misses non-constant addrec step registers. 3370 /// TODO: Should this give more weight to users inside the loop? 3371 void 3372 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3373 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3374 SmallPtrSet<const SCEV *, 32> Visited; 3375 3376 while (!Worklist.empty()) { 3377 const SCEV *S = Worklist.pop_back_val(); 3378 3379 // Don't process the same SCEV twice 3380 if (!Visited.insert(S).second) 3381 continue; 3382 3383 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3384 Worklist.append(N->op_begin(), N->op_end()); 3385 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3386 Worklist.push_back(C->getOperand()); 3387 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3388 Worklist.push_back(D->getLHS()); 3389 Worklist.push_back(D->getRHS()); 3390 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3391 const Value *V = US->getValue(); 3392 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3393 // Look for instructions defined outside the loop. 3394 if (L->contains(Inst)) continue; 3395 } else if (isa<UndefValue>(V)) 3396 // Undef doesn't have a live range, so it doesn't matter. 3397 continue; 3398 for (const Use &U : V->uses()) { 3399 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3400 // Ignore non-instructions. 3401 if (!UserInst) 3402 continue; 3403 // Ignore instructions in other functions (as can happen with 3404 // Constants). 3405 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3406 continue; 3407 // Ignore instructions not dominated by the loop. 3408 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3409 UserInst->getParent() : 3410 cast<PHINode>(UserInst)->getIncomingBlock( 3411 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3412 if (!DT.dominates(L->getHeader(), UseBB)) 3413 continue; 3414 // Don't bother if the instruction is in a BB which ends in an EHPad. 3415 if (UseBB->getTerminator()->isEHPad()) 3416 continue; 3417 // Don't bother rewriting PHIs in catchswitch blocks. 3418 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3419 continue; 3420 // Ignore uses which are part of other SCEV expressions, to avoid 3421 // analyzing them multiple times. 3422 if (SE.isSCEVable(UserInst->getType())) { 3423 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3424 // If the user is a no-op, look through to its uses. 3425 if (!isa<SCEVUnknown>(UserS)) 3426 continue; 3427 if (UserS == US) { 3428 Worklist.push_back( 3429 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3430 continue; 3431 } 3432 } 3433 // Ignore icmp instructions which are already being analyzed. 3434 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3435 unsigned OtherIdx = !U.getOperandNo(); 3436 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3437 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3438 continue; 3439 } 3440 3441 std::pair<size_t, int64_t> P = getUse( 3442 S, LSRUse::Basic, MemAccessTy()); 3443 size_t LUIdx = P.first; 3444 int64_t Offset = P.second; 3445 LSRUse &LU = Uses[LUIdx]; 3446 LSRFixup &LF = LU.getNewFixup(); 3447 LF.UserInst = const_cast<Instruction *>(UserInst); 3448 LF.OperandValToReplace = U; 3449 LF.Offset = Offset; 3450 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3451 if (!LU.WidestFixupType || 3452 SE.getTypeSizeInBits(LU.WidestFixupType) < 3453 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3454 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3455 InsertSupplementalFormula(US, LU, LUIdx); 3456 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3457 break; 3458 } 3459 } 3460 } 3461 } 3462 3463 /// Split S into subexpressions which can be pulled out into separate 3464 /// registers. If C is non-null, multiply each subexpression by C. 3465 /// 3466 /// Return remainder expression after factoring the subexpressions captured by 3467 /// Ops. If Ops is complete, return NULL. 3468 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3469 SmallVectorImpl<const SCEV *> &Ops, 3470 const Loop *L, 3471 ScalarEvolution &SE, 3472 unsigned Depth = 0) { 3473 // Arbitrarily cap recursion to protect compile time. 3474 if (Depth >= 3) 3475 return S; 3476 3477 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3478 // Break out add operands. 3479 for (const SCEV *S : Add->operands()) { 3480 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3481 if (Remainder) 3482 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3483 } 3484 return nullptr; 3485 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3486 // Split a non-zero base out of an addrec. 3487 if (AR->getStart()->isZero() || !AR->isAffine()) 3488 return S; 3489 3490 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3491 C, Ops, L, SE, Depth+1); 3492 // Split the non-zero AddRec unless it is part of a nested recurrence that 3493 // does not pertain to this loop. 3494 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3495 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3496 Remainder = nullptr; 3497 } 3498 if (Remainder != AR->getStart()) { 3499 if (!Remainder) 3500 Remainder = SE.getConstant(AR->getType(), 0); 3501 return SE.getAddRecExpr(Remainder, 3502 AR->getStepRecurrence(SE), 3503 AR->getLoop(), 3504 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3505 SCEV::FlagAnyWrap); 3506 } 3507 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3508 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3509 if (Mul->getNumOperands() != 2) 3510 return S; 3511 if (const SCEVConstant *Op0 = 3512 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3513 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3514 const SCEV *Remainder = 3515 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3516 if (Remainder) 3517 Ops.push_back(SE.getMulExpr(C, Remainder)); 3518 return nullptr; 3519 } 3520 } 3521 return S; 3522 } 3523 3524 /// Return true if the SCEV represents a value that may end up as a 3525 /// post-increment operation. 3526 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3527 LSRUse &LU, const SCEV *S, const Loop *L, 3528 ScalarEvolution &SE) { 3529 if (LU.Kind != LSRUse::Address || 3530 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3531 return false; 3532 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3533 if (!AR) 3534 return false; 3535 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3536 if (!isa<SCEVConstant>(LoopStep)) 3537 return false; 3538 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3539 LoopStep->getType()->getScalarSizeInBits()) 3540 return false; 3541 // Check if a post-indexed load/store can be used. 3542 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3543 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3544 const SCEV *LoopStart = AR->getStart(); 3545 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3546 return true; 3547 } 3548 return false; 3549 } 3550 3551 /// Helper function for LSRInstance::GenerateReassociations. 3552 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3553 const Formula &Base, 3554 unsigned Depth, size_t Idx, 3555 bool IsScaledReg) { 3556 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3557 // Don't generate reassociations for the base register of a value that 3558 // may generate a post-increment operator. The reason is that the 3559 // reassociations cause extra base+register formula to be created, 3560 // and possibly chosen, but the post-increment is more efficient. 3561 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3562 return; 3563 SmallVector<const SCEV *, 8> AddOps; 3564 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3565 if (Remainder) 3566 AddOps.push_back(Remainder); 3567 3568 if (AddOps.size() == 1) 3569 return; 3570 3571 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3572 JE = AddOps.end(); 3573 J != JE; ++J) { 3574 // Loop-variant "unknown" values are uninteresting; we won't be able to 3575 // do anything meaningful with them. 3576 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3577 continue; 3578 3579 // Don't pull a constant into a register if the constant could be folded 3580 // into an immediate field. 3581 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3582 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3583 continue; 3584 3585 // Collect all operands except *J. 3586 SmallVector<const SCEV *, 8> InnerAddOps( 3587 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3588 InnerAddOps.append(std::next(J), 3589 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3590 3591 // Don't leave just a constant behind in a register if the constant could 3592 // be folded into an immediate field. 3593 if (InnerAddOps.size() == 1 && 3594 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3595 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3596 continue; 3597 3598 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3599 if (InnerSum->isZero()) 3600 continue; 3601 Formula F = Base; 3602 3603 // Add the remaining pieces of the add back into the new formula. 3604 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3605 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3606 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3607 InnerSumSC->getValue()->getZExtValue())) { 3608 F.UnfoldedOffset = 3609 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3610 if (IsScaledReg) 3611 F.ScaledReg = nullptr; 3612 else 3613 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3614 } else if (IsScaledReg) 3615 F.ScaledReg = InnerSum; 3616 else 3617 F.BaseRegs[Idx] = InnerSum; 3618 3619 // Add J as its own register, or an unfolded immediate. 3620 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3621 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3622 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3623 SC->getValue()->getZExtValue())) 3624 F.UnfoldedOffset = 3625 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3626 else 3627 F.BaseRegs.push_back(*J); 3628 // We may have changed the number of register in base regs, adjust the 3629 // formula accordingly. 3630 F.canonicalize(*L); 3631 3632 if (InsertFormula(LU, LUIdx, F)) 3633 // If that formula hadn't been seen before, recurse to find more like 3634 // it. 3635 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3636 // Because just Depth is not enough to bound compile time. 3637 // This means that every time AddOps.size() is greater 16^x we will add 3638 // x to Depth. 3639 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3640 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3641 } 3642 } 3643 3644 /// Split out subexpressions from adds and the bases of addrecs. 3645 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3646 Formula Base, unsigned Depth) { 3647 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3648 // Arbitrarily cap recursion to protect compile time. 3649 if (Depth >= 3) 3650 return; 3651 3652 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3653 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3654 3655 if (Base.Scale == 1) 3656 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3657 /* Idx */ -1, /* IsScaledReg */ true); 3658 } 3659 3660 /// Generate a formula consisting of all of the loop-dominating registers added 3661 /// into a single register. 3662 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3663 Formula Base) { 3664 // This method is only interesting on a plurality of registers. 3665 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3666 (Base.UnfoldedOffset != 0) <= 1) 3667 return; 3668 3669 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3670 // processing the formula. 3671 Base.unscale(); 3672 SmallVector<const SCEV *, 4> Ops; 3673 Formula NewBase = Base; 3674 NewBase.BaseRegs.clear(); 3675 Type *CombinedIntegerType = nullptr; 3676 for (const SCEV *BaseReg : Base.BaseRegs) { 3677 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3678 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3679 if (!CombinedIntegerType) 3680 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3681 Ops.push_back(BaseReg); 3682 } 3683 else 3684 NewBase.BaseRegs.push_back(BaseReg); 3685 } 3686 3687 // If no register is relevant, we're done. 3688 if (Ops.size() == 0) 3689 return; 3690 3691 // Utility function for generating the required variants of the combined 3692 // registers. 3693 auto GenerateFormula = [&](const SCEV *Sum) { 3694 Formula F = NewBase; 3695 3696 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3697 // opportunity to fold something. For now, just ignore such cases 3698 // rather than proceed with zero in a register. 3699 if (Sum->isZero()) 3700 return; 3701 3702 F.BaseRegs.push_back(Sum); 3703 F.canonicalize(*L); 3704 (void)InsertFormula(LU, LUIdx, F); 3705 }; 3706 3707 // If we collected at least two registers, generate a formula combining them. 3708 if (Ops.size() > 1) { 3709 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3710 GenerateFormula(SE.getAddExpr(OpsCopy)); 3711 } 3712 3713 // If we have an unfolded offset, generate a formula combining it with the 3714 // registers collected. 3715 if (NewBase.UnfoldedOffset) { 3716 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3717 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3718 true)); 3719 NewBase.UnfoldedOffset = 0; 3720 GenerateFormula(SE.getAddExpr(Ops)); 3721 } 3722 } 3723 3724 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3725 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3726 const Formula &Base, size_t Idx, 3727 bool IsScaledReg) { 3728 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3729 GlobalValue *GV = ExtractSymbol(G, SE); 3730 if (G->isZero() || !GV) 3731 return; 3732 Formula F = Base; 3733 F.BaseGV = GV; 3734 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3735 return; 3736 if (IsScaledReg) 3737 F.ScaledReg = G; 3738 else 3739 F.BaseRegs[Idx] = G; 3740 (void)InsertFormula(LU, LUIdx, F); 3741 } 3742 3743 /// Generate reuse formulae using symbolic offsets. 3744 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3745 Formula Base) { 3746 // We can't add a symbolic offset if the address already contains one. 3747 if (Base.BaseGV) return; 3748 3749 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3750 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3751 if (Base.Scale == 1) 3752 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3753 /* IsScaledReg */ true); 3754 } 3755 3756 /// Helper function for LSRInstance::GenerateConstantOffsets. 3757 void LSRInstance::GenerateConstantOffsetsImpl( 3758 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3759 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3760 3761 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3762 Formula F = Base; 3763 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3764 3765 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3766 LU.AccessTy, F)) { 3767 // Add the offset to the base register. 3768 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3769 // If it cancelled out, drop the base register, otherwise update it. 3770 if (NewG->isZero()) { 3771 if (IsScaledReg) { 3772 F.Scale = 0; 3773 F.ScaledReg = nullptr; 3774 } else 3775 F.deleteBaseReg(F.BaseRegs[Idx]); 3776 F.canonicalize(*L); 3777 } else if (IsScaledReg) 3778 F.ScaledReg = NewG; 3779 else 3780 F.BaseRegs[Idx] = NewG; 3781 3782 (void)InsertFormula(LU, LUIdx, F); 3783 } 3784 }; 3785 3786 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3787 3788 // With constant offsets and constant steps, we can generate pre-inc 3789 // accesses by having the offset equal the step. So, for access #0 with a 3790 // step of 8, we generate a G - 8 base which would require the first access 3791 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3792 // for itself and hopefully becomes the base for other accesses. This means 3793 // means that a single pre-indexed access can be generated to become the new 3794 // base pointer for each iteration of the loop, resulting in no extra add/sub 3795 // instructions for pointer updating. 3796 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3797 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3798 if (auto *StepRec = 3799 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3800 const APInt &StepInt = StepRec->getAPInt(); 3801 int64_t Step = StepInt.isNegative() ? 3802 StepInt.getSExtValue() : StepInt.getZExtValue(); 3803 3804 for (int64_t Offset : Worklist) { 3805 Offset -= Step; 3806 GenerateOffset(G, Offset); 3807 } 3808 } 3809 } 3810 } 3811 for (int64_t Offset : Worklist) 3812 GenerateOffset(G, Offset); 3813 3814 int64_t Imm = ExtractImmediate(G, SE); 3815 if (G->isZero() || Imm == 0) 3816 return; 3817 Formula F = Base; 3818 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3819 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3820 return; 3821 if (IsScaledReg) 3822 F.ScaledReg = G; 3823 else 3824 F.BaseRegs[Idx] = G; 3825 (void)InsertFormula(LU, LUIdx, F); 3826 } 3827 3828 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3829 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3830 Formula Base) { 3831 // TODO: For now, just add the min and max offset, because it usually isn't 3832 // worthwhile looking at everything inbetween. 3833 SmallVector<int64_t, 2> Worklist; 3834 Worklist.push_back(LU.MinOffset); 3835 if (LU.MaxOffset != LU.MinOffset) 3836 Worklist.push_back(LU.MaxOffset); 3837 3838 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3839 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3840 if (Base.Scale == 1) 3841 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3842 /* IsScaledReg */ true); 3843 } 3844 3845 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3846 /// == y -> x*c == y*c. 3847 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3848 Formula Base) { 3849 if (LU.Kind != LSRUse::ICmpZero) return; 3850 3851 // Determine the integer type for the base formula. 3852 Type *IntTy = Base.getType(); 3853 if (!IntTy) return; 3854 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3855 3856 // Don't do this if there is more than one offset. 3857 if (LU.MinOffset != LU.MaxOffset) return; 3858 3859 // Check if transformation is valid. It is illegal to multiply pointer. 3860 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3861 return; 3862 for (const SCEV *BaseReg : Base.BaseRegs) 3863 if (BaseReg->getType()->isPointerTy()) 3864 return; 3865 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3866 3867 // Check each interesting stride. 3868 for (int64_t Factor : Factors) { 3869 // Check that the multiplication doesn't overflow. 3870 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3871 continue; 3872 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3873 if (NewBaseOffset / Factor != Base.BaseOffset) 3874 continue; 3875 // If the offset will be truncated at this use, check that it is in bounds. 3876 if (!IntTy->isPointerTy() && 3877 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3878 continue; 3879 3880 // Check that multiplying with the use offset doesn't overflow. 3881 int64_t Offset = LU.MinOffset; 3882 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3883 continue; 3884 Offset = (uint64_t)Offset * Factor; 3885 if (Offset / Factor != LU.MinOffset) 3886 continue; 3887 // If the offset will be truncated at this use, check that it is in bounds. 3888 if (!IntTy->isPointerTy() && 3889 !ConstantInt::isValueValidForType(IntTy, Offset)) 3890 continue; 3891 3892 Formula F = Base; 3893 F.BaseOffset = NewBaseOffset; 3894 3895 // Check that this scale is legal. 3896 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3897 continue; 3898 3899 // Compensate for the use having MinOffset built into it. 3900 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3901 3902 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3903 3904 // Check that multiplying with each base register doesn't overflow. 3905 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3906 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3907 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3908 goto next; 3909 } 3910 3911 // Check that multiplying with the scaled register doesn't overflow. 3912 if (F.ScaledReg) { 3913 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3914 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3915 continue; 3916 } 3917 3918 // Check that multiplying with the unfolded offset doesn't overflow. 3919 if (F.UnfoldedOffset != 0) { 3920 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3921 Factor == -1) 3922 continue; 3923 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3924 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3925 continue; 3926 // If the offset will be truncated, check that it is in bounds. 3927 if (!IntTy->isPointerTy() && 3928 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3929 continue; 3930 } 3931 3932 // If we make it here and it's legal, add it. 3933 (void)InsertFormula(LU, LUIdx, F); 3934 next:; 3935 } 3936 } 3937 3938 /// Generate stride factor reuse formulae by making use of scaled-offset address 3939 /// modes, for example. 3940 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3941 // Determine the integer type for the base formula. 3942 Type *IntTy = Base.getType(); 3943 if (!IntTy) return; 3944 3945 // If this Formula already has a scaled register, we can't add another one. 3946 // Try to unscale the formula to generate a better scale. 3947 if (Base.Scale != 0 && !Base.unscale()) 3948 return; 3949 3950 assert(Base.Scale == 0 && "unscale did not did its job!"); 3951 3952 // Check each interesting stride. 3953 for (int64_t Factor : Factors) { 3954 Base.Scale = Factor; 3955 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3956 // Check whether this scale is going to be legal. 3957 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3958 Base)) { 3959 // As a special-case, handle special out-of-loop Basic users specially. 3960 // TODO: Reconsider this special case. 3961 if (LU.Kind == LSRUse::Basic && 3962 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3963 LU.AccessTy, Base) && 3964 LU.AllFixupsOutsideLoop) 3965 LU.Kind = LSRUse::Special; 3966 else 3967 continue; 3968 } 3969 // For an ICmpZero, negating a solitary base register won't lead to 3970 // new solutions. 3971 if (LU.Kind == LSRUse::ICmpZero && 3972 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3973 continue; 3974 // For each addrec base reg, if its loop is current loop, apply the scale. 3975 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3976 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3977 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3978 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3979 if (FactorS->isZero()) 3980 continue; 3981 // Divide out the factor, ignoring high bits, since we'll be 3982 // scaling the value back up in the end. 3983 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3984 // TODO: This could be optimized to avoid all the copying. 3985 Formula F = Base; 3986 F.ScaledReg = Quotient; 3987 F.deleteBaseReg(F.BaseRegs[i]); 3988 // The canonical representation of 1*reg is reg, which is already in 3989 // Base. In that case, do not try to insert the formula, it will be 3990 // rejected anyway. 3991 if (F.Scale == 1 && (F.BaseRegs.empty() || 3992 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3993 continue; 3994 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3995 // non canonical Formula with ScaledReg's loop not being L. 3996 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3997 F.canonicalize(*L); 3998 (void)InsertFormula(LU, LUIdx, F); 3999 } 4000 } 4001 } 4002 } 4003 } 4004 4005 /// Generate reuse formulae from different IV types. 4006 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4007 // Don't bother truncating symbolic values. 4008 if (Base.BaseGV) return; 4009 4010 // Determine the integer type for the base formula. 4011 Type *DstTy = Base.getType(); 4012 if (!DstTy) return; 4013 DstTy = SE.getEffectiveSCEVType(DstTy); 4014 4015 for (Type *SrcTy : Types) { 4016 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4017 Formula F = Base; 4018 4019 // Sometimes SCEV is able to prove zero during ext transform. It may 4020 // happen if SCEV did not do all possible transforms while creating the 4021 // initial node (maybe due to depth limitations), but it can do them while 4022 // taking ext. 4023 if (F.ScaledReg) { 4024 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4025 if (NewScaledReg->isZero()) 4026 continue; 4027 F.ScaledReg = NewScaledReg; 4028 } 4029 bool HasZeroBaseReg = false; 4030 for (const SCEV *&BaseReg : F.BaseRegs) { 4031 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4032 if (NewBaseReg->isZero()) { 4033 HasZeroBaseReg = true; 4034 break; 4035 } 4036 BaseReg = NewBaseReg; 4037 } 4038 if (HasZeroBaseReg) 4039 continue; 4040 4041 // TODO: This assumes we've done basic processing on all uses and 4042 // have an idea what the register usage is. 4043 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4044 continue; 4045 4046 F.canonicalize(*L); 4047 (void)InsertFormula(LU, LUIdx, F); 4048 } 4049 } 4050 } 4051 4052 namespace { 4053 4054 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4055 /// modifications so that the search phase doesn't have to worry about the data 4056 /// structures moving underneath it. 4057 struct WorkItem { 4058 size_t LUIdx; 4059 int64_t Imm; 4060 const SCEV *OrigReg; 4061 4062 WorkItem(size_t LI, int64_t I, const SCEV *R) 4063 : LUIdx(LI), Imm(I), OrigReg(R) {} 4064 4065 void print(raw_ostream &OS) const; 4066 void dump() const; 4067 }; 4068 4069 } // end anonymous namespace 4070 4071 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4072 void WorkItem::print(raw_ostream &OS) const { 4073 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4074 << " , add offset " << Imm; 4075 } 4076 4077 LLVM_DUMP_METHOD void WorkItem::dump() const { 4078 print(errs()); errs() << '\n'; 4079 } 4080 #endif 4081 4082 /// Look for registers which are a constant distance apart and try to form reuse 4083 /// opportunities between them. 4084 void LSRInstance::GenerateCrossUseConstantOffsets() { 4085 // Group the registers by their value without any added constant offset. 4086 using ImmMapTy = std::map<int64_t, const SCEV *>; 4087 4088 DenseMap<const SCEV *, ImmMapTy> Map; 4089 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4090 SmallVector<const SCEV *, 8> Sequence; 4091 for (const SCEV *Use : RegUses) { 4092 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4093 int64_t Imm = ExtractImmediate(Reg, SE); 4094 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4095 if (Pair.second) 4096 Sequence.push_back(Reg); 4097 Pair.first->second.insert(std::make_pair(Imm, Use)); 4098 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4099 } 4100 4101 // Now examine each set of registers with the same base value. Build up 4102 // a list of work to do and do the work in a separate step so that we're 4103 // not adding formulae and register counts while we're searching. 4104 SmallVector<WorkItem, 32> WorkItems; 4105 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4106 for (const SCEV *Reg : Sequence) { 4107 const ImmMapTy &Imms = Map.find(Reg)->second; 4108 4109 // It's not worthwhile looking for reuse if there's only one offset. 4110 if (Imms.size() == 1) 4111 continue; 4112 4113 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4114 for (const auto &Entry 4115 : Imms) dbgs() 4116 << ' ' << Entry.first; 4117 dbgs() << '\n'); 4118 4119 // Examine each offset. 4120 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4121 J != JE; ++J) { 4122 const SCEV *OrigReg = J->second; 4123 4124 int64_t JImm = J->first; 4125 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4126 4127 if (!isa<SCEVConstant>(OrigReg) && 4128 UsedByIndicesMap[Reg].count() == 1) { 4129 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4130 << '\n'); 4131 continue; 4132 } 4133 4134 // Conservatively examine offsets between this orig reg a few selected 4135 // other orig regs. 4136 ImmMapTy::const_iterator OtherImms[] = { 4137 Imms.begin(), std::prev(Imms.end()), 4138 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 4139 2) 4140 }; 4141 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4142 ImmMapTy::const_iterator M = OtherImms[i]; 4143 if (M == J || M == JE) continue; 4144 4145 // Compute the difference between the two. 4146 int64_t Imm = (uint64_t)JImm - M->first; 4147 for (unsigned LUIdx : UsedByIndices.set_bits()) 4148 // Make a memo of this use, offset, and register tuple. 4149 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4150 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4151 } 4152 } 4153 } 4154 4155 Map.clear(); 4156 Sequence.clear(); 4157 UsedByIndicesMap.clear(); 4158 UniqueItems.clear(); 4159 4160 // Now iterate through the worklist and add new formulae. 4161 for (const WorkItem &WI : WorkItems) { 4162 size_t LUIdx = WI.LUIdx; 4163 LSRUse &LU = Uses[LUIdx]; 4164 int64_t Imm = WI.Imm; 4165 const SCEV *OrigReg = WI.OrigReg; 4166 4167 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4168 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4169 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4170 4171 // TODO: Use a more targeted data structure. 4172 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4173 Formula F = LU.Formulae[L]; 4174 // FIXME: The code for the scaled and unscaled registers looks 4175 // very similar but slightly different. Investigate if they 4176 // could be merged. That way, we would not have to unscale the 4177 // Formula. 4178 F.unscale(); 4179 // Use the immediate in the scaled register. 4180 if (F.ScaledReg == OrigReg) { 4181 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4182 // Don't create 50 + reg(-50). 4183 if (F.referencesReg(SE.getSCEV( 4184 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4185 continue; 4186 Formula NewF = F; 4187 NewF.BaseOffset = Offset; 4188 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4189 NewF)) 4190 continue; 4191 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4192 4193 // If the new scale is a constant in a register, and adding the constant 4194 // value to the immediate would produce a value closer to zero than the 4195 // immediate itself, then the formula isn't worthwhile. 4196 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4197 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4198 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4199 .ule(std::abs(NewF.BaseOffset))) 4200 continue; 4201 4202 // OK, looks good. 4203 NewF.canonicalize(*this->L); 4204 (void)InsertFormula(LU, LUIdx, NewF); 4205 } else { 4206 // Use the immediate in a base register. 4207 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4208 const SCEV *BaseReg = F.BaseRegs[N]; 4209 if (BaseReg != OrigReg) 4210 continue; 4211 Formula NewF = F; 4212 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4213 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4214 LU.Kind, LU.AccessTy, NewF)) { 4215 if (TTI.shouldFavorPostInc() && 4216 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4217 continue; 4218 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4219 continue; 4220 NewF = F; 4221 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4222 } 4223 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4224 4225 // If the new formula has a constant in a register, and adding the 4226 // constant value to the immediate would produce a value closer to 4227 // zero than the immediate itself, then the formula isn't worthwhile. 4228 for (const SCEV *NewReg : NewF.BaseRegs) 4229 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4230 if ((C->getAPInt() + NewF.BaseOffset) 4231 .abs() 4232 .slt(std::abs(NewF.BaseOffset)) && 4233 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4234 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4235 goto skip_formula; 4236 4237 // Ok, looks good. 4238 NewF.canonicalize(*this->L); 4239 (void)InsertFormula(LU, LUIdx, NewF); 4240 break; 4241 skip_formula:; 4242 } 4243 } 4244 } 4245 } 4246 } 4247 4248 /// Generate formulae for each use. 4249 void 4250 LSRInstance::GenerateAllReuseFormulae() { 4251 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4252 // queries are more precise. 4253 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4254 LSRUse &LU = Uses[LUIdx]; 4255 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4256 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4257 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4258 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4259 } 4260 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4261 LSRUse &LU = Uses[LUIdx]; 4262 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4263 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4264 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4265 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4266 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4267 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4268 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4269 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4270 } 4271 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4272 LSRUse &LU = Uses[LUIdx]; 4273 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4274 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4275 } 4276 4277 GenerateCrossUseConstantOffsets(); 4278 4279 LLVM_DEBUG(dbgs() << "\n" 4280 "After generating reuse formulae:\n"; 4281 print_uses(dbgs())); 4282 } 4283 4284 /// If there are multiple formulae with the same set of registers used 4285 /// by other uses, pick the best one and delete the others. 4286 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4287 DenseSet<const SCEV *> VisitedRegs; 4288 SmallPtrSet<const SCEV *, 16> Regs; 4289 SmallPtrSet<const SCEV *, 16> LoserRegs; 4290 #ifndef NDEBUG 4291 bool ChangedFormulae = false; 4292 #endif 4293 4294 // Collect the best formula for each unique set of shared registers. This 4295 // is reset for each use. 4296 using BestFormulaeTy = 4297 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4298 4299 BestFormulaeTy BestFormulae; 4300 4301 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4302 LSRUse &LU = Uses[LUIdx]; 4303 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4304 dbgs() << '\n'); 4305 4306 bool Any = false; 4307 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4308 FIdx != NumForms; ++FIdx) { 4309 Formula &F = LU.Formulae[FIdx]; 4310 4311 // Some formulas are instant losers. For example, they may depend on 4312 // nonexistent AddRecs from other loops. These need to be filtered 4313 // immediately, otherwise heuristics could choose them over others leading 4314 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4315 // avoids the need to recompute this information across formulae using the 4316 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4317 // the corresponding bad register from the Regs set. 4318 Cost CostF(L, SE, TTI); 4319 Regs.clear(); 4320 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4321 if (CostF.isLoser()) { 4322 // During initial formula generation, undesirable formulae are generated 4323 // by uses within other loops that have some non-trivial address mode or 4324 // use the postinc form of the IV. LSR needs to provide these formulae 4325 // as the basis of rediscovering the desired formula that uses an AddRec 4326 // corresponding to the existing phi. Once all formulae have been 4327 // generated, these initial losers may be pruned. 4328 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4329 dbgs() << "\n"); 4330 } 4331 else { 4332 SmallVector<const SCEV *, 4> Key; 4333 for (const SCEV *Reg : F.BaseRegs) { 4334 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4335 Key.push_back(Reg); 4336 } 4337 if (F.ScaledReg && 4338 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4339 Key.push_back(F.ScaledReg); 4340 // Unstable sort by host order ok, because this is only used for 4341 // uniquifying. 4342 llvm::sort(Key); 4343 4344 std::pair<BestFormulaeTy::const_iterator, bool> P = 4345 BestFormulae.insert(std::make_pair(Key, FIdx)); 4346 if (P.second) 4347 continue; 4348 4349 Formula &Best = LU.Formulae[P.first->second]; 4350 4351 Cost CostBest(L, SE, TTI); 4352 Regs.clear(); 4353 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4354 if (CostF.isLess(CostBest)) 4355 std::swap(F, Best); 4356 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4357 dbgs() << "\n" 4358 " in favor of formula "; 4359 Best.print(dbgs()); dbgs() << '\n'); 4360 } 4361 #ifndef NDEBUG 4362 ChangedFormulae = true; 4363 #endif 4364 LU.DeleteFormula(F); 4365 --FIdx; 4366 --NumForms; 4367 Any = true; 4368 } 4369 4370 // Now that we've filtered out some formulae, recompute the Regs set. 4371 if (Any) 4372 LU.RecomputeRegs(LUIdx, RegUses); 4373 4374 // Reset this to prepare for the next use. 4375 BestFormulae.clear(); 4376 } 4377 4378 LLVM_DEBUG(if (ChangedFormulae) { 4379 dbgs() << "\n" 4380 "After filtering out undesirable candidates:\n"; 4381 print_uses(dbgs()); 4382 }); 4383 } 4384 4385 /// Estimate the worst-case number of solutions the solver might have to 4386 /// consider. It almost never considers this many solutions because it prune the 4387 /// search space, but the pruning isn't always sufficient. 4388 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4389 size_t Power = 1; 4390 for (const LSRUse &LU : Uses) { 4391 size_t FSize = LU.Formulae.size(); 4392 if (FSize >= ComplexityLimit) { 4393 Power = ComplexityLimit; 4394 break; 4395 } 4396 Power *= FSize; 4397 if (Power >= ComplexityLimit) 4398 break; 4399 } 4400 return Power; 4401 } 4402 4403 /// When one formula uses a superset of the registers of another formula, it 4404 /// won't help reduce register pressure (though it may not necessarily hurt 4405 /// register pressure); remove it to simplify the system. 4406 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4407 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4408 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4409 4410 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4411 "which use a superset of registers used by other " 4412 "formulae.\n"); 4413 4414 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4415 LSRUse &LU = Uses[LUIdx]; 4416 bool Any = false; 4417 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4418 Formula &F = LU.Formulae[i]; 4419 // Look for a formula with a constant or GV in a register. If the use 4420 // also has a formula with that same value in an immediate field, 4421 // delete the one that uses a register. 4422 for (SmallVectorImpl<const SCEV *>::const_iterator 4423 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4424 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4425 Formula NewF = F; 4426 //FIXME: Formulas should store bitwidth to do wrapping properly. 4427 // See PR41034. 4428 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4429 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4430 (I - F.BaseRegs.begin())); 4431 if (LU.HasFormulaWithSameRegs(NewF)) { 4432 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4433 dbgs() << '\n'); 4434 LU.DeleteFormula(F); 4435 --i; 4436 --e; 4437 Any = true; 4438 break; 4439 } 4440 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4441 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4442 if (!F.BaseGV) { 4443 Formula NewF = F; 4444 NewF.BaseGV = GV; 4445 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4446 (I - F.BaseRegs.begin())); 4447 if (LU.HasFormulaWithSameRegs(NewF)) { 4448 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4449 dbgs() << '\n'); 4450 LU.DeleteFormula(F); 4451 --i; 4452 --e; 4453 Any = true; 4454 break; 4455 } 4456 } 4457 } 4458 } 4459 } 4460 if (Any) 4461 LU.RecomputeRegs(LUIdx, RegUses); 4462 } 4463 4464 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4465 } 4466 } 4467 4468 /// When there are many registers for expressions like A, A+1, A+2, etc., 4469 /// allocate a single register for them. 4470 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4471 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4472 return; 4473 4474 LLVM_DEBUG( 4475 dbgs() << "The search space is too complex.\n" 4476 "Narrowing the search space by assuming that uses separated " 4477 "by a constant offset will use the same registers.\n"); 4478 4479 // This is especially useful for unrolled loops. 4480 4481 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4482 LSRUse &LU = Uses[LUIdx]; 4483 for (const Formula &F : LU.Formulae) { 4484 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4485 continue; 4486 4487 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4488 if (!LUThatHas) 4489 continue; 4490 4491 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4492 LU.Kind, LU.AccessTy)) 4493 continue; 4494 4495 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4496 4497 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4498 4499 // Transfer the fixups of LU to LUThatHas. 4500 for (LSRFixup &Fixup : LU.Fixups) { 4501 Fixup.Offset += F.BaseOffset; 4502 LUThatHas->pushFixup(Fixup); 4503 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4504 } 4505 4506 // Delete formulae from the new use which are no longer legal. 4507 bool Any = false; 4508 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4509 Formula &F = LUThatHas->Formulae[i]; 4510 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4511 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4512 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4513 LUThatHas->DeleteFormula(F); 4514 --i; 4515 --e; 4516 Any = true; 4517 } 4518 } 4519 4520 if (Any) 4521 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4522 4523 // Delete the old use. 4524 DeleteUse(LU, LUIdx); 4525 --LUIdx; 4526 --NumUses; 4527 break; 4528 } 4529 } 4530 4531 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4532 } 4533 4534 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4535 /// we've done more filtering, as it may be able to find more formulae to 4536 /// eliminate. 4537 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4538 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4539 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4540 4541 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4542 "undesirable dedicated registers.\n"); 4543 4544 FilterOutUndesirableDedicatedRegisters(); 4545 4546 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4547 } 4548 } 4549 4550 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4551 /// Pick the best one and delete the others. 4552 /// This narrowing heuristic is to keep as many formulae with different 4553 /// Scale and ScaledReg pair as possible while narrowing the search space. 4554 /// The benefit is that it is more likely to find out a better solution 4555 /// from a formulae set with more Scale and ScaledReg variations than 4556 /// a formulae set with the same Scale and ScaledReg. The picking winner 4557 /// reg heuristic will often keep the formulae with the same Scale and 4558 /// ScaledReg and filter others, and we want to avoid that if possible. 4559 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4560 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4561 return; 4562 4563 LLVM_DEBUG( 4564 dbgs() << "The search space is too complex.\n" 4565 "Narrowing the search space by choosing the best Formula " 4566 "from the Formulae with the same Scale and ScaledReg.\n"); 4567 4568 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4569 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4570 4571 BestFormulaeTy BestFormulae; 4572 #ifndef NDEBUG 4573 bool ChangedFormulae = false; 4574 #endif 4575 DenseSet<const SCEV *> VisitedRegs; 4576 SmallPtrSet<const SCEV *, 16> Regs; 4577 4578 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4579 LSRUse &LU = Uses[LUIdx]; 4580 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4581 dbgs() << '\n'); 4582 4583 // Return true if Formula FA is better than Formula FB. 4584 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4585 // First we will try to choose the Formula with fewer new registers. 4586 // For a register used by current Formula, the more the register is 4587 // shared among LSRUses, the less we increase the register number 4588 // counter of the formula. 4589 size_t FARegNum = 0; 4590 for (const SCEV *Reg : FA.BaseRegs) { 4591 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4592 FARegNum += (NumUses - UsedByIndices.count() + 1); 4593 } 4594 size_t FBRegNum = 0; 4595 for (const SCEV *Reg : FB.BaseRegs) { 4596 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4597 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4598 } 4599 if (FARegNum != FBRegNum) 4600 return FARegNum < FBRegNum; 4601 4602 // If the new register numbers are the same, choose the Formula with 4603 // less Cost. 4604 Cost CostFA(L, SE, TTI); 4605 Cost CostFB(L, SE, TTI); 4606 Regs.clear(); 4607 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4608 Regs.clear(); 4609 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4610 return CostFA.isLess(CostFB); 4611 }; 4612 4613 bool Any = false; 4614 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4615 ++FIdx) { 4616 Formula &F = LU.Formulae[FIdx]; 4617 if (!F.ScaledReg) 4618 continue; 4619 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4620 if (P.second) 4621 continue; 4622 4623 Formula &Best = LU.Formulae[P.first->second]; 4624 if (IsBetterThan(F, Best)) 4625 std::swap(F, Best); 4626 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4627 dbgs() << "\n" 4628 " in favor of formula "; 4629 Best.print(dbgs()); dbgs() << '\n'); 4630 #ifndef NDEBUG 4631 ChangedFormulae = true; 4632 #endif 4633 LU.DeleteFormula(F); 4634 --FIdx; 4635 --NumForms; 4636 Any = true; 4637 } 4638 if (Any) 4639 LU.RecomputeRegs(LUIdx, RegUses); 4640 4641 // Reset this to prepare for the next use. 4642 BestFormulae.clear(); 4643 } 4644 4645 LLVM_DEBUG(if (ChangedFormulae) { 4646 dbgs() << "\n" 4647 "After filtering out undesirable candidates:\n"; 4648 print_uses(dbgs()); 4649 }); 4650 } 4651 4652 /// The function delete formulas with high registers number expectation. 4653 /// Assuming we don't know the value of each formula (already delete 4654 /// all inefficient), generate probability of not selecting for each 4655 /// register. 4656 /// For example, 4657 /// Use1: 4658 /// reg(a) + reg({0,+,1}) 4659 /// reg(a) + reg({-1,+,1}) + 1 4660 /// reg({a,+,1}) 4661 /// Use2: 4662 /// reg(b) + reg({0,+,1}) 4663 /// reg(b) + reg({-1,+,1}) + 1 4664 /// reg({b,+,1}) 4665 /// Use3: 4666 /// reg(c) + reg(b) + reg({0,+,1}) 4667 /// reg(c) + reg({b,+,1}) 4668 /// 4669 /// Probability of not selecting 4670 /// Use1 Use2 Use3 4671 /// reg(a) (1/3) * 1 * 1 4672 /// reg(b) 1 * (1/3) * (1/2) 4673 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4674 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4675 /// reg({a,+,1}) (2/3) * 1 * 1 4676 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4677 /// reg(c) 1 * 1 * 0 4678 /// 4679 /// Now count registers number mathematical expectation for each formula: 4680 /// Note that for each use we exclude probability if not selecting for the use. 4681 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4682 /// probabilty 1/3 of not selecting for Use1). 4683 /// Use1: 4684 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4685 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4686 /// reg({a,+,1}) 1 4687 /// Use2: 4688 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4689 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4690 /// reg({b,+,1}) 2/3 4691 /// Use3: 4692 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4693 /// reg(c) + reg({b,+,1}) 1 + 2/3 4694 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4695 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4696 return; 4697 // Ok, we have too many of formulae on our hands to conveniently handle. 4698 // Use a rough heuristic to thin out the list. 4699 4700 // Set of Regs wich will be 100% used in final solution. 4701 // Used in each formula of a solution (in example above this is reg(c)). 4702 // We can skip them in calculations. 4703 SmallPtrSet<const SCEV *, 4> UniqRegs; 4704 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4705 4706 // Map each register to probability of not selecting 4707 DenseMap <const SCEV *, float> RegNumMap; 4708 for (const SCEV *Reg : RegUses) { 4709 if (UniqRegs.count(Reg)) 4710 continue; 4711 float PNotSel = 1; 4712 for (const LSRUse &LU : Uses) { 4713 if (!LU.Regs.count(Reg)) 4714 continue; 4715 float P = LU.getNotSelectedProbability(Reg); 4716 if (P != 0.0) 4717 PNotSel *= P; 4718 else 4719 UniqRegs.insert(Reg); 4720 } 4721 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4722 } 4723 4724 LLVM_DEBUG( 4725 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4726 4727 // Delete formulas where registers number expectation is high. 4728 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4729 LSRUse &LU = Uses[LUIdx]; 4730 // If nothing to delete - continue. 4731 if (LU.Formulae.size() < 2) 4732 continue; 4733 // This is temporary solution to test performance. Float should be 4734 // replaced with round independent type (based on integers) to avoid 4735 // different results for different target builds. 4736 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4737 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4738 size_t MinIdx = 0; 4739 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4740 Formula &F = LU.Formulae[i]; 4741 float FRegNum = 0; 4742 float FARegNum = 0; 4743 for (const SCEV *BaseReg : F.BaseRegs) { 4744 if (UniqRegs.count(BaseReg)) 4745 continue; 4746 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4747 if (isa<SCEVAddRecExpr>(BaseReg)) 4748 FARegNum += 4749 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4750 } 4751 if (const SCEV *ScaledReg = F.ScaledReg) { 4752 if (!UniqRegs.count(ScaledReg)) { 4753 FRegNum += 4754 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4755 if (isa<SCEVAddRecExpr>(ScaledReg)) 4756 FARegNum += 4757 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4758 } 4759 } 4760 if (FMinRegNum > FRegNum || 4761 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4762 FMinRegNum = FRegNum; 4763 FMinARegNum = FARegNum; 4764 MinIdx = i; 4765 } 4766 } 4767 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4768 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4769 if (MinIdx != 0) 4770 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4771 while (LU.Formulae.size() != 1) { 4772 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4773 dbgs() << '\n'); 4774 LU.Formulae.pop_back(); 4775 } 4776 LU.RecomputeRegs(LUIdx, RegUses); 4777 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4778 Formula &F = LU.Formulae[0]; 4779 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4780 // When we choose the formula, the regs become unique. 4781 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4782 if (F.ScaledReg) 4783 UniqRegs.insert(F.ScaledReg); 4784 } 4785 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4786 } 4787 4788 /// Pick a register which seems likely to be profitable, and then in any use 4789 /// which has any reference to that register, delete all formulae which do not 4790 /// reference that register. 4791 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4792 // With all other options exhausted, loop until the system is simple 4793 // enough to handle. 4794 SmallPtrSet<const SCEV *, 4> Taken; 4795 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4796 // Ok, we have too many of formulae on our hands to conveniently handle. 4797 // Use a rough heuristic to thin out the list. 4798 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4799 4800 // Pick the register which is used by the most LSRUses, which is likely 4801 // to be a good reuse register candidate. 4802 const SCEV *Best = nullptr; 4803 unsigned BestNum = 0; 4804 for (const SCEV *Reg : RegUses) { 4805 if (Taken.count(Reg)) 4806 continue; 4807 if (!Best) { 4808 Best = Reg; 4809 BestNum = RegUses.getUsedByIndices(Reg).count(); 4810 } else { 4811 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4812 if (Count > BestNum) { 4813 Best = Reg; 4814 BestNum = Count; 4815 } 4816 } 4817 } 4818 4819 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4820 << " will yield profitable reuse.\n"); 4821 Taken.insert(Best); 4822 4823 // In any use with formulae which references this register, delete formulae 4824 // which don't reference it. 4825 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4826 LSRUse &LU = Uses[LUIdx]; 4827 if (!LU.Regs.count(Best)) continue; 4828 4829 bool Any = false; 4830 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4831 Formula &F = LU.Formulae[i]; 4832 if (!F.referencesReg(Best)) { 4833 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4834 LU.DeleteFormula(F); 4835 --e; 4836 --i; 4837 Any = true; 4838 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4839 continue; 4840 } 4841 } 4842 4843 if (Any) 4844 LU.RecomputeRegs(LUIdx, RegUses); 4845 } 4846 4847 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4848 } 4849 } 4850 4851 /// If there are an extraordinary number of formulae to choose from, use some 4852 /// rough heuristics to prune down the number of formulae. This keeps the main 4853 /// solver from taking an extraordinary amount of time in some worst-case 4854 /// scenarios. 4855 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4856 NarrowSearchSpaceByDetectingSupersets(); 4857 NarrowSearchSpaceByCollapsingUnrolledCode(); 4858 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4859 if (FilterSameScaledReg) 4860 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4861 if (LSRExpNarrow) 4862 NarrowSearchSpaceByDeletingCostlyFormulas(); 4863 else 4864 NarrowSearchSpaceByPickingWinnerRegs(); 4865 } 4866 4867 /// This is the recursive solver. 4868 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4869 Cost &SolutionCost, 4870 SmallVectorImpl<const Formula *> &Workspace, 4871 const Cost &CurCost, 4872 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4873 DenseSet<const SCEV *> &VisitedRegs) const { 4874 // Some ideas: 4875 // - prune more: 4876 // - use more aggressive filtering 4877 // - sort the formula so that the most profitable solutions are found first 4878 // - sort the uses too 4879 // - search faster: 4880 // - don't compute a cost, and then compare. compare while computing a cost 4881 // and bail early. 4882 // - track register sets with SmallBitVector 4883 4884 const LSRUse &LU = Uses[Workspace.size()]; 4885 4886 // If this use references any register that's already a part of the 4887 // in-progress solution, consider it a requirement that a formula must 4888 // reference that register in order to be considered. This prunes out 4889 // unprofitable searching. 4890 SmallSetVector<const SCEV *, 4> ReqRegs; 4891 for (const SCEV *S : CurRegs) 4892 if (LU.Regs.count(S)) 4893 ReqRegs.insert(S); 4894 4895 SmallPtrSet<const SCEV *, 16> NewRegs; 4896 Cost NewCost(L, SE, TTI); 4897 for (const Formula &F : LU.Formulae) { 4898 // Ignore formulae which may not be ideal in terms of register reuse of 4899 // ReqRegs. The formula should use all required registers before 4900 // introducing new ones. 4901 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4902 for (const SCEV *Reg : ReqRegs) { 4903 if ((F.ScaledReg && F.ScaledReg == Reg) || 4904 is_contained(F.BaseRegs, Reg)) { 4905 --NumReqRegsToFind; 4906 if (NumReqRegsToFind == 0) 4907 break; 4908 } 4909 } 4910 if (NumReqRegsToFind != 0) { 4911 // If none of the formulae satisfied the required registers, then we could 4912 // clear ReqRegs and try again. Currently, we simply give up in this case. 4913 continue; 4914 } 4915 4916 // Evaluate the cost of the current formula. If it's already worse than 4917 // the current best, prune the search at that point. 4918 NewCost = CurCost; 4919 NewRegs = CurRegs; 4920 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 4921 if (NewCost.isLess(SolutionCost)) { 4922 Workspace.push_back(&F); 4923 if (Workspace.size() != Uses.size()) { 4924 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4925 NewRegs, VisitedRegs); 4926 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4927 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4928 } else { 4929 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4930 dbgs() << ".\nRegs:\n"; 4931 for (const SCEV *S : NewRegs) dbgs() 4932 << "- " << *S << "\n"; 4933 dbgs() << '\n'); 4934 4935 SolutionCost = NewCost; 4936 Solution = Workspace; 4937 } 4938 Workspace.pop_back(); 4939 } 4940 } 4941 } 4942 4943 /// Choose one formula from each use. Return the results in the given Solution 4944 /// vector. 4945 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4946 SmallVector<const Formula *, 8> Workspace; 4947 Cost SolutionCost(L, SE, TTI); 4948 SolutionCost.Lose(); 4949 Cost CurCost(L, SE, TTI); 4950 SmallPtrSet<const SCEV *, 16> CurRegs; 4951 DenseSet<const SCEV *> VisitedRegs; 4952 Workspace.reserve(Uses.size()); 4953 4954 // SolveRecurse does all the work. 4955 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4956 CurRegs, VisitedRegs); 4957 if (Solution.empty()) { 4958 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4959 return; 4960 } 4961 4962 // Ok, we've now made all our decisions. 4963 LLVM_DEBUG(dbgs() << "\n" 4964 "The chosen solution requires "; 4965 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4966 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4967 dbgs() << " "; 4968 Uses[i].print(dbgs()); 4969 dbgs() << "\n" 4970 " "; 4971 Solution[i]->print(dbgs()); 4972 dbgs() << '\n'; 4973 }); 4974 4975 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4976 } 4977 4978 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4979 /// we can go while still being dominated by the input positions. This helps 4980 /// canonicalize the insert position, which encourages sharing. 4981 BasicBlock::iterator 4982 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4983 const SmallVectorImpl<Instruction *> &Inputs) 4984 const { 4985 Instruction *Tentative = &*IP; 4986 while (true) { 4987 bool AllDominate = true; 4988 Instruction *BetterPos = nullptr; 4989 // Don't bother attempting to insert before a catchswitch, their basic block 4990 // cannot have other non-PHI instructions. 4991 if (isa<CatchSwitchInst>(Tentative)) 4992 return IP; 4993 4994 for (Instruction *Inst : Inputs) { 4995 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4996 AllDominate = false; 4997 break; 4998 } 4999 // Attempt to find an insert position in the middle of the block, 5000 // instead of at the end, so that it can be used for other expansions. 5001 if (Tentative->getParent() == Inst->getParent() && 5002 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5003 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5004 } 5005 if (!AllDominate) 5006 break; 5007 if (BetterPos) 5008 IP = BetterPos->getIterator(); 5009 else 5010 IP = Tentative->getIterator(); 5011 5012 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5013 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5014 5015 BasicBlock *IDom; 5016 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5017 if (!Rung) return IP; 5018 Rung = Rung->getIDom(); 5019 if (!Rung) return IP; 5020 IDom = Rung->getBlock(); 5021 5022 // Don't climb into a loop though. 5023 const Loop *IDomLoop = LI.getLoopFor(IDom); 5024 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5025 if (IDomDepth <= IPLoopDepth && 5026 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5027 break; 5028 } 5029 5030 Tentative = IDom->getTerminator(); 5031 } 5032 5033 return IP; 5034 } 5035 5036 /// Determine an input position which will be dominated by the operands and 5037 /// which will dominate the result. 5038 BasicBlock::iterator 5039 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5040 const LSRFixup &LF, 5041 const LSRUse &LU, 5042 SCEVExpander &Rewriter) const { 5043 // Collect some instructions which must be dominated by the 5044 // expanding replacement. These must be dominated by any operands that 5045 // will be required in the expansion. 5046 SmallVector<Instruction *, 4> Inputs; 5047 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5048 Inputs.push_back(I); 5049 if (LU.Kind == LSRUse::ICmpZero) 5050 if (Instruction *I = 5051 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5052 Inputs.push_back(I); 5053 if (LF.PostIncLoops.count(L)) { 5054 if (LF.isUseFullyOutsideLoop(L)) 5055 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5056 else 5057 Inputs.push_back(IVIncInsertPos); 5058 } 5059 // The expansion must also be dominated by the increment positions of any 5060 // loops it for which it is using post-inc mode. 5061 for (const Loop *PIL : LF.PostIncLoops) { 5062 if (PIL == L) continue; 5063 5064 // Be dominated by the loop exit. 5065 SmallVector<BasicBlock *, 4> ExitingBlocks; 5066 PIL->getExitingBlocks(ExitingBlocks); 5067 if (!ExitingBlocks.empty()) { 5068 BasicBlock *BB = ExitingBlocks[0]; 5069 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5070 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5071 Inputs.push_back(BB->getTerminator()); 5072 } 5073 } 5074 5075 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5076 && !isa<DbgInfoIntrinsic>(LowestIP) && 5077 "Insertion point must be a normal instruction"); 5078 5079 // Then, climb up the immediate dominator tree as far as we can go while 5080 // still being dominated by the input positions. 5081 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5082 5083 // Don't insert instructions before PHI nodes. 5084 while (isa<PHINode>(IP)) ++IP; 5085 5086 // Ignore landingpad instructions. 5087 while (IP->isEHPad()) ++IP; 5088 5089 // Ignore debug intrinsics. 5090 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5091 5092 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5093 // IP consistent across expansions and allows the previously inserted 5094 // instructions to be reused by subsequent expansion. 5095 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5096 ++IP; 5097 5098 return IP; 5099 } 5100 5101 /// Emit instructions for the leading candidate expression for this LSRUse (this 5102 /// is called "expanding"). 5103 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5104 const Formula &F, BasicBlock::iterator IP, 5105 SCEVExpander &Rewriter, 5106 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5107 if (LU.RigidFormula) 5108 return LF.OperandValToReplace; 5109 5110 // Determine an input position which will be dominated by the operands and 5111 // which will dominate the result. 5112 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5113 Rewriter.setInsertPoint(&*IP); 5114 5115 // Inform the Rewriter if we have a post-increment use, so that it can 5116 // perform an advantageous expansion. 5117 Rewriter.setPostInc(LF.PostIncLoops); 5118 5119 // This is the type that the user actually needs. 5120 Type *OpTy = LF.OperandValToReplace->getType(); 5121 // This will be the type that we'll initially expand to. 5122 Type *Ty = F.getType(); 5123 if (!Ty) 5124 // No type known; just expand directly to the ultimate type. 5125 Ty = OpTy; 5126 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5127 // Expand directly to the ultimate type if it's the right size. 5128 Ty = OpTy; 5129 // This is the type to do integer arithmetic in. 5130 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5131 5132 // Build up a list of operands to add together to form the full base. 5133 SmallVector<const SCEV *, 8> Ops; 5134 5135 // Expand the BaseRegs portion. 5136 for (const SCEV *Reg : F.BaseRegs) { 5137 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5138 5139 // If we're expanding for a post-inc user, make the post-inc adjustment. 5140 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5141 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5142 } 5143 5144 // Expand the ScaledReg portion. 5145 Value *ICmpScaledV = nullptr; 5146 if (F.Scale != 0) { 5147 const SCEV *ScaledS = F.ScaledReg; 5148 5149 // If we're expanding for a post-inc user, make the post-inc adjustment. 5150 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5151 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5152 5153 if (LU.Kind == LSRUse::ICmpZero) { 5154 // Expand ScaleReg as if it was part of the base regs. 5155 if (F.Scale == 1) 5156 Ops.push_back( 5157 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5158 else { 5159 // An interesting way of "folding" with an icmp is to use a negated 5160 // scale, which we'll implement by inserting it into the other operand 5161 // of the icmp. 5162 assert(F.Scale == -1 && 5163 "The only scale supported by ICmpZero uses is -1!"); 5164 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5165 } 5166 } else { 5167 // Otherwise just expand the scaled register and an explicit scale, 5168 // which is expected to be matched as part of the address. 5169 5170 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5171 // Unless the addressing mode will not be folded. 5172 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5173 isAMCompletelyFolded(TTI, LU, F)) { 5174 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5175 Ops.clear(); 5176 Ops.push_back(SE.getUnknown(FullV)); 5177 } 5178 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5179 if (F.Scale != 1) 5180 ScaledS = 5181 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5182 Ops.push_back(ScaledS); 5183 } 5184 } 5185 5186 // Expand the GV portion. 5187 if (F.BaseGV) { 5188 // Flush the operand list to suppress SCEVExpander hoisting. 5189 if (!Ops.empty()) { 5190 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5191 Ops.clear(); 5192 Ops.push_back(SE.getUnknown(FullV)); 5193 } 5194 Ops.push_back(SE.getUnknown(F.BaseGV)); 5195 } 5196 5197 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5198 // unfolded offsets. LSR assumes they both live next to their uses. 5199 if (!Ops.empty()) { 5200 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5201 Ops.clear(); 5202 Ops.push_back(SE.getUnknown(FullV)); 5203 } 5204 5205 // Expand the immediate portion. 5206 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5207 if (Offset != 0) { 5208 if (LU.Kind == LSRUse::ICmpZero) { 5209 // The other interesting way of "folding" with an ICmpZero is to use a 5210 // negated immediate. 5211 if (!ICmpScaledV) 5212 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5213 else { 5214 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5215 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5216 } 5217 } else { 5218 // Just add the immediate values. These again are expected to be matched 5219 // as part of the address. 5220 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5221 } 5222 } 5223 5224 // Expand the unfolded offset portion. 5225 int64_t UnfoldedOffset = F.UnfoldedOffset; 5226 if (UnfoldedOffset != 0) { 5227 // Just add the immediate values. 5228 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5229 UnfoldedOffset))); 5230 } 5231 5232 // Emit instructions summing all the operands. 5233 const SCEV *FullS = Ops.empty() ? 5234 SE.getConstant(IntTy, 0) : 5235 SE.getAddExpr(Ops); 5236 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5237 5238 // We're done expanding now, so reset the rewriter. 5239 Rewriter.clearPostInc(); 5240 5241 // An ICmpZero Formula represents an ICmp which we're handling as a 5242 // comparison against zero. Now that we've expanded an expression for that 5243 // form, update the ICmp's other operand. 5244 if (LU.Kind == LSRUse::ICmpZero) { 5245 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5246 DeadInsts.emplace_back(CI->getOperand(1)); 5247 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5248 "a scale at the same time!"); 5249 if (F.Scale == -1) { 5250 if (ICmpScaledV->getType() != OpTy) { 5251 Instruction *Cast = 5252 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5253 OpTy, false), 5254 ICmpScaledV, OpTy, "tmp", CI); 5255 ICmpScaledV = Cast; 5256 } 5257 CI->setOperand(1, ICmpScaledV); 5258 } else { 5259 // A scale of 1 means that the scale has been expanded as part of the 5260 // base regs. 5261 assert((F.Scale == 0 || F.Scale == 1) && 5262 "ICmp does not support folding a global value and " 5263 "a scale at the same time!"); 5264 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5265 -(uint64_t)Offset); 5266 if (C->getType() != OpTy) 5267 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5268 OpTy, false), 5269 C, OpTy); 5270 5271 CI->setOperand(1, C); 5272 } 5273 } 5274 5275 return FullV; 5276 } 5277 5278 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5279 /// effectively happens in their predecessor blocks, so the expression may need 5280 /// to be expanded in multiple places. 5281 void LSRInstance::RewriteForPHI( 5282 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5283 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5284 DenseMap<BasicBlock *, Value *> Inserted; 5285 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5286 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5287 BasicBlock *BB = PN->getIncomingBlock(i); 5288 5289 // If this is a critical edge, split the edge so that we do not insert 5290 // the code on all predecessor/successor paths. We do this unless this 5291 // is the canonical backedge for this loop, which complicates post-inc 5292 // users. 5293 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5294 !isa<IndirectBrInst>(BB->getTerminator()) && 5295 !isa<CatchSwitchInst>(BB->getTerminator())) { 5296 BasicBlock *Parent = PN->getParent(); 5297 Loop *PNLoop = LI.getLoopFor(Parent); 5298 if (!PNLoop || Parent != PNLoop->getHeader()) { 5299 // Split the critical edge. 5300 BasicBlock *NewBB = nullptr; 5301 if (!Parent->isLandingPad()) { 5302 NewBB = SplitCriticalEdge(BB, Parent, 5303 CriticalEdgeSplittingOptions(&DT, &LI) 5304 .setMergeIdenticalEdges() 5305 .setKeepOneInputPHIs()); 5306 } else { 5307 SmallVector<BasicBlock*, 2> NewBBs; 5308 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5309 NewBB = NewBBs[0]; 5310 } 5311 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5312 // phi predecessors are identical. The simple thing to do is skip 5313 // splitting in this case rather than complicate the API. 5314 if (NewBB) { 5315 // If PN is outside of the loop and BB is in the loop, we want to 5316 // move the block to be immediately before the PHI block, not 5317 // immediately after BB. 5318 if (L->contains(BB) && !L->contains(PN)) 5319 NewBB->moveBefore(PN->getParent()); 5320 5321 // Splitting the edge can reduce the number of PHI entries we have. 5322 e = PN->getNumIncomingValues(); 5323 BB = NewBB; 5324 i = PN->getBasicBlockIndex(BB); 5325 } 5326 } 5327 } 5328 5329 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5330 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5331 if (!Pair.second) 5332 PN->setIncomingValue(i, Pair.first->second); 5333 else { 5334 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5335 Rewriter, DeadInsts); 5336 5337 // If this is reuse-by-noop-cast, insert the noop cast. 5338 Type *OpTy = LF.OperandValToReplace->getType(); 5339 if (FullV->getType() != OpTy) 5340 FullV = 5341 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5342 OpTy, false), 5343 FullV, LF.OperandValToReplace->getType(), 5344 "tmp", BB->getTerminator()); 5345 5346 PN->setIncomingValue(i, FullV); 5347 Pair.first->second = FullV; 5348 } 5349 } 5350 } 5351 5352 /// Emit instructions for the leading candidate expression for this LSRUse (this 5353 /// is called "expanding"), and update the UserInst to reference the newly 5354 /// expanded value. 5355 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5356 const Formula &F, SCEVExpander &Rewriter, 5357 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5358 // First, find an insertion point that dominates UserInst. For PHI nodes, 5359 // find the nearest block which dominates all the relevant uses. 5360 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5361 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5362 } else { 5363 Value *FullV = 5364 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5365 5366 // If this is reuse-by-noop-cast, insert the noop cast. 5367 Type *OpTy = LF.OperandValToReplace->getType(); 5368 if (FullV->getType() != OpTy) { 5369 Instruction *Cast = 5370 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5371 FullV, OpTy, "tmp", LF.UserInst); 5372 FullV = Cast; 5373 } 5374 5375 // Update the user. ICmpZero is handled specially here (for now) because 5376 // Expand may have updated one of the operands of the icmp already, and 5377 // its new value may happen to be equal to LF.OperandValToReplace, in 5378 // which case doing replaceUsesOfWith leads to replacing both operands 5379 // with the same value. TODO: Reorganize this. 5380 if (LU.Kind == LSRUse::ICmpZero) 5381 LF.UserInst->setOperand(0, FullV); 5382 else 5383 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5384 } 5385 5386 DeadInsts.emplace_back(LF.OperandValToReplace); 5387 } 5388 5389 /// Rewrite all the fixup locations with new values, following the chosen 5390 /// solution. 5391 void LSRInstance::ImplementSolution( 5392 const SmallVectorImpl<const Formula *> &Solution) { 5393 // Keep track of instructions we may have made dead, so that 5394 // we can remove them after we are done working. 5395 SmallVector<WeakTrackingVH, 16> DeadInsts; 5396 5397 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5398 "lsr"); 5399 #ifndef NDEBUG 5400 Rewriter.setDebugType(DEBUG_TYPE); 5401 #endif 5402 Rewriter.disableCanonicalMode(); 5403 Rewriter.enableLSRMode(); 5404 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5405 5406 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5407 for (const IVChain &Chain : IVChainVec) { 5408 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5409 Rewriter.setChainedPhi(PN); 5410 } 5411 5412 // Expand the new value definitions and update the users. 5413 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5414 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5415 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5416 Changed = true; 5417 } 5418 5419 for (const IVChain &Chain : IVChainVec) { 5420 GenerateIVChain(Chain, Rewriter, DeadInsts); 5421 Changed = true; 5422 } 5423 // Clean up after ourselves. This must be done before deleting any 5424 // instructions. 5425 Rewriter.clear(); 5426 5427 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5428 } 5429 5430 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5431 DominatorTree &DT, LoopInfo &LI, 5432 const TargetTransformInfo &TTI) 5433 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), 5434 FavorBackedgeIndex(EnableBackedgeIndexing && 5435 TTI.shouldFavorBackedgeIndex(L)) { 5436 // If LoopSimplify form is not available, stay out of trouble. 5437 if (!L->isLoopSimplifyForm()) 5438 return; 5439 5440 // If there's no interesting work to be done, bail early. 5441 if (IU.empty()) return; 5442 5443 // If there's too much analysis to be done, bail early. We won't be able to 5444 // model the problem anyway. 5445 unsigned NumUsers = 0; 5446 for (const IVStrideUse &U : IU) { 5447 if (++NumUsers > MaxIVUsers) { 5448 (void)U; 5449 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5450 << "\n"); 5451 return; 5452 } 5453 // Bail out if we have a PHI on an EHPad that gets a value from a 5454 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5455 // no good place to stick any instructions. 5456 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5457 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5458 if (isa<FuncletPadInst>(FirstNonPHI) || 5459 isa<CatchSwitchInst>(FirstNonPHI)) 5460 for (BasicBlock *PredBB : PN->blocks()) 5461 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5462 return; 5463 } 5464 } 5465 5466 #ifndef NDEBUG 5467 // All dominating loops must have preheaders, or SCEVExpander may not be able 5468 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5469 // 5470 // IVUsers analysis should only create users that are dominated by simple loop 5471 // headers. Since this loop should dominate all of its users, its user list 5472 // should be empty if this loop itself is not within a simple loop nest. 5473 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5474 Rung; Rung = Rung->getIDom()) { 5475 BasicBlock *BB = Rung->getBlock(); 5476 const Loop *DomLoop = LI.getLoopFor(BB); 5477 if (DomLoop && DomLoop->getHeader() == BB) { 5478 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5479 } 5480 } 5481 #endif // DEBUG 5482 5483 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5484 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5485 dbgs() << ":\n"); 5486 5487 // First, perform some low-level loop optimizations. 5488 OptimizeShadowIV(); 5489 OptimizeLoopTermCond(); 5490 5491 // If loop preparation eliminates all interesting IV users, bail. 5492 if (IU.empty()) return; 5493 5494 // Skip nested loops until we can model them better with formulae. 5495 if (!L->empty()) { 5496 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5497 return; 5498 } 5499 5500 // Start collecting data and preparing for the solver. 5501 CollectChains(); 5502 CollectInterestingTypesAndFactors(); 5503 CollectFixupsAndInitialFormulae(); 5504 CollectLoopInvariantFixupsAndFormulae(); 5505 5506 if (Uses.empty()) 5507 return; 5508 5509 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5510 print_uses(dbgs())); 5511 5512 // Now use the reuse data to generate a bunch of interesting ways 5513 // to formulate the values needed for the uses. 5514 GenerateAllReuseFormulae(); 5515 5516 FilterOutUndesirableDedicatedRegisters(); 5517 NarrowSearchSpaceUsingHeuristics(); 5518 5519 SmallVector<const Formula *, 8> Solution; 5520 Solve(Solution); 5521 5522 // Release memory that is no longer needed. 5523 Factors.clear(); 5524 Types.clear(); 5525 RegUses.clear(); 5526 5527 if (Solution.empty()) 5528 return; 5529 5530 #ifndef NDEBUG 5531 // Formulae should be legal. 5532 for (const LSRUse &LU : Uses) { 5533 for (const Formula &F : LU.Formulae) 5534 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5535 F) && "Illegal formula generated!"); 5536 }; 5537 #endif 5538 5539 // Now that we've decided what we want, make it so. 5540 ImplementSolution(Solution); 5541 } 5542 5543 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5544 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5545 if (Factors.empty() && Types.empty()) return; 5546 5547 OS << "LSR has identified the following interesting factors and types: "; 5548 bool First = true; 5549 5550 for (int64_t Factor : Factors) { 5551 if (!First) OS << ", "; 5552 First = false; 5553 OS << '*' << Factor; 5554 } 5555 5556 for (Type *Ty : Types) { 5557 if (!First) OS << ", "; 5558 First = false; 5559 OS << '(' << *Ty << ')'; 5560 } 5561 OS << '\n'; 5562 } 5563 5564 void LSRInstance::print_fixups(raw_ostream &OS) const { 5565 OS << "LSR is examining the following fixup sites:\n"; 5566 for (const LSRUse &LU : Uses) 5567 for (const LSRFixup &LF : LU.Fixups) { 5568 dbgs() << " "; 5569 LF.print(OS); 5570 OS << '\n'; 5571 } 5572 } 5573 5574 void LSRInstance::print_uses(raw_ostream &OS) const { 5575 OS << "LSR is examining the following uses:\n"; 5576 for (const LSRUse &LU : Uses) { 5577 dbgs() << " "; 5578 LU.print(OS); 5579 OS << '\n'; 5580 for (const Formula &F : LU.Formulae) { 5581 OS << " "; 5582 F.print(OS); 5583 OS << '\n'; 5584 } 5585 } 5586 } 5587 5588 void LSRInstance::print(raw_ostream &OS) const { 5589 print_factors_and_types(OS); 5590 print_fixups(OS); 5591 print_uses(OS); 5592 } 5593 5594 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5595 print(errs()); errs() << '\n'; 5596 } 5597 #endif 5598 5599 namespace { 5600 5601 class LoopStrengthReduce : public LoopPass { 5602 public: 5603 static char ID; // Pass ID, replacement for typeid 5604 5605 LoopStrengthReduce(); 5606 5607 private: 5608 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5609 void getAnalysisUsage(AnalysisUsage &AU) const override; 5610 }; 5611 5612 } // end anonymous namespace 5613 5614 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5615 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5616 } 5617 5618 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5619 // We split critical edges, so we change the CFG. However, we do update 5620 // many analyses if they are around. 5621 AU.addPreservedID(LoopSimplifyID); 5622 5623 AU.addRequired<LoopInfoWrapperPass>(); 5624 AU.addPreserved<LoopInfoWrapperPass>(); 5625 AU.addRequiredID(LoopSimplifyID); 5626 AU.addRequired<DominatorTreeWrapperPass>(); 5627 AU.addPreserved<DominatorTreeWrapperPass>(); 5628 AU.addRequired<ScalarEvolutionWrapperPass>(); 5629 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5630 // Requiring LoopSimplify a second time here prevents IVUsers from running 5631 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5632 AU.addRequiredID(LoopSimplifyID); 5633 AU.addRequired<IVUsersWrapperPass>(); 5634 AU.addPreserved<IVUsersWrapperPass>(); 5635 AU.addRequired<TargetTransformInfoWrapperPass>(); 5636 } 5637 5638 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5639 DominatorTree &DT, LoopInfo &LI, 5640 const TargetTransformInfo &TTI) { 5641 bool Changed = false; 5642 5643 // Run the main LSR transformation. 5644 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5645 5646 // Remove any extra phis created by processing inner loops. 5647 Changed |= DeleteDeadPHIs(L->getHeader()); 5648 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5649 SmallVector<WeakTrackingVH, 16> DeadInsts; 5650 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5651 SCEVExpander Rewriter(SE, DL, "lsr"); 5652 #ifndef NDEBUG 5653 Rewriter.setDebugType(DEBUG_TYPE); 5654 #endif 5655 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5656 if (numFolded) { 5657 Changed = true; 5658 DeleteTriviallyDeadInstructions(DeadInsts); 5659 DeleteDeadPHIs(L->getHeader()); 5660 } 5661 } 5662 return Changed; 5663 } 5664 5665 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5666 if (skipLoop(L)) 5667 return false; 5668 5669 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5670 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5671 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5672 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5673 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5674 *L->getHeader()->getParent()); 5675 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5676 } 5677 5678 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5679 LoopStandardAnalysisResults &AR, 5680 LPMUpdater &) { 5681 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5682 AR.DT, AR.LI, AR.TTI)) 5683 return PreservedAnalyses::all(); 5684 5685 return getLoopPassPreservedAnalyses(); 5686 } 5687 5688 char LoopStrengthReduce::ID = 0; 5689 5690 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5691 "Loop Strength Reduction", false, false) 5692 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5693 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5694 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5695 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5696 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5697 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5698 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5699 "Loop Strength Reduction", false, false) 5700 5701 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5702