1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopAnalysisManager.h"
70 #include "llvm/Analysis/LoopInfo.h"
71 #include "llvm/Analysis/LoopPass.h"
72 #include "llvm/Analysis/ScalarEvolution.h"
73 #include "llvm/Analysis/ScalarEvolutionExpander.h"
74 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
75 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
76 #include "llvm/Analysis/TargetTransformInfo.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Config/llvm-config.h"
79 #include "llvm/IR/BasicBlock.h"
80 #include "llvm/IR/Constant.h"
81 #include "llvm/IR/Constants.h"
82 #include "llvm/IR/DerivedTypes.h"
83 #include "llvm/IR/Dominators.h"
84 #include "llvm/IR/GlobalValue.h"
85 #include "llvm/IR/IRBuilder.h"
86 #include "llvm/IR/InstrTypes.h"
87 #include "llvm/IR/Instruction.h"
88 #include "llvm/IR/Instructions.h"
89 #include "llvm/IR/IntrinsicInst.h"
90 #include "llvm/IR/Intrinsics.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/OperandTraits.h"
93 #include "llvm/IR/Operator.h"
94 #include "llvm/IR/PassManager.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/IR/ValueHandle.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Transforms/Scalar.h"
109 #include "llvm/Transforms/Utils.h"
110 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstddef>
114 #include <cstdint>
115 #include <cstdlib>
116 #include <iterator>
117 #include <limits>
118 #include <numeric>
119 #include <map>
120 #include <utility>
121 
122 using namespace llvm;
123 
124 #define DEBUG_TYPE "loop-reduce"
125 
126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
127 /// bail out. This threshold is far beyond the number of users that LSR can
128 /// conceivably solve, so it should not affect generated code, but catches the
129 /// worst cases before LSR burns too much compile time and stack space.
130 static const unsigned MaxIVUsers = 200;
131 
132 // Temporary flag to cleanup congruent phis after LSR phi expansion.
133 // It's currently disabled until we can determine whether it's truly useful or
134 // not. The flag should be removed after the v3.0 release.
135 // This is now needed for ivchains.
136 static cl::opt<bool> EnablePhiElim(
137   "enable-lsr-phielim", cl::Hidden, cl::init(true),
138   cl::desc("Enable LSR phi elimination"));
139 
140 // The flag adds instruction count to solutions cost comparision.
141 static cl::opt<bool> InsnsCost(
142   "lsr-insns-cost", cl::Hidden, cl::init(true),
143   cl::desc("Add instruction count to a LSR cost model"));
144 
145 // Flag to choose how to narrow complex lsr solution
146 static cl::opt<bool> LSRExpNarrow(
147   "lsr-exp-narrow", cl::Hidden, cl::init(false),
148   cl::desc("Narrow LSR complex solution using"
149            " expectation of registers number"));
150 
151 // Flag to narrow search space by filtering non-optimal formulae with
152 // the same ScaledReg and Scale.
153 static cl::opt<bool> FilterSameScaledReg(
154     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
155     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
156              " with the same ScaledReg and Scale"));
157 
158 static cl::opt<bool> EnableBackedgeIndexing(
159   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
160   cl::desc("Enable the generation of cross iteration indexed memops"));
161 
162 static cl::opt<unsigned> ComplexityLimit(
163   "lsr-complexity-limit", cl::Hidden,
164   cl::init(std::numeric_limits<uint16_t>::max()),
165   cl::desc("LSR search space complexity limit"));
166 
167 static cl::opt<unsigned> SetupCostDepthLimit(
168     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
169     cl::desc("The limit on recursion depth for LSRs setup cost"));
170 
171 #ifndef NDEBUG
172 // Stress test IV chain generation.
173 static cl::opt<bool> StressIVChain(
174   "stress-ivchain", cl::Hidden, cl::init(false),
175   cl::desc("Stress test LSR IV chains"));
176 #else
177 static bool StressIVChain = false;
178 #endif
179 
180 namespace {
181 
182 struct MemAccessTy {
183   /// Used in situations where the accessed memory type is unknown.
184   static const unsigned UnknownAddressSpace =
185       std::numeric_limits<unsigned>::max();
186 
187   Type *MemTy = nullptr;
188   unsigned AddrSpace = UnknownAddressSpace;
189 
190   MemAccessTy() = default;
191   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
192 
193   bool operator==(MemAccessTy Other) const {
194     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
195   }
196 
197   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
198 
199   static MemAccessTy getUnknown(LLVMContext &Ctx,
200                                 unsigned AS = UnknownAddressSpace) {
201     return MemAccessTy(Type::getVoidTy(Ctx), AS);
202   }
203 
204   Type *getType() { return MemTy; }
205 };
206 
207 /// This class holds data which is used to order reuse candidates.
208 class RegSortData {
209 public:
210   /// This represents the set of LSRUse indices which reference
211   /// a particular register.
212   SmallBitVector UsedByIndices;
213 
214   void print(raw_ostream &OS) const;
215   void dump() const;
216 };
217 
218 } // end anonymous namespace
219 
220 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
221 void RegSortData::print(raw_ostream &OS) const {
222   OS << "[NumUses=" << UsedByIndices.count() << ']';
223 }
224 
225 LLVM_DUMP_METHOD void RegSortData::dump() const {
226   print(errs()); errs() << '\n';
227 }
228 #endif
229 
230 namespace {
231 
232 /// Map register candidates to information about how they are used.
233 class RegUseTracker {
234   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
235 
236   RegUsesTy RegUsesMap;
237   SmallVector<const SCEV *, 16> RegSequence;
238 
239 public:
240   void countRegister(const SCEV *Reg, size_t LUIdx);
241   void dropRegister(const SCEV *Reg, size_t LUIdx);
242   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
243 
244   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
245 
246   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
247 
248   void clear();
249 
250   using iterator = SmallVectorImpl<const SCEV *>::iterator;
251   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
252 
253   iterator begin() { return RegSequence.begin(); }
254   iterator end()   { return RegSequence.end(); }
255   const_iterator begin() const { return RegSequence.begin(); }
256   const_iterator end() const   { return RegSequence.end(); }
257 };
258 
259 } // end anonymous namespace
260 
261 void
262 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
263   std::pair<RegUsesTy::iterator, bool> Pair =
264     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
265   RegSortData &RSD = Pair.first->second;
266   if (Pair.second)
267     RegSequence.push_back(Reg);
268   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
269   RSD.UsedByIndices.set(LUIdx);
270 }
271 
272 void
273 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
274   RegUsesTy::iterator It = RegUsesMap.find(Reg);
275   assert(It != RegUsesMap.end());
276   RegSortData &RSD = It->second;
277   assert(RSD.UsedByIndices.size() > LUIdx);
278   RSD.UsedByIndices.reset(LUIdx);
279 }
280 
281 void
282 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
283   assert(LUIdx <= LastLUIdx);
284 
285   // Update RegUses. The data structure is not optimized for this purpose;
286   // we must iterate through it and update each of the bit vectors.
287   for (auto &Pair : RegUsesMap) {
288     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
289     if (LUIdx < UsedByIndices.size())
290       UsedByIndices[LUIdx] =
291         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
292     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
293   }
294 }
295 
296 bool
297 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
298   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
299   if (I == RegUsesMap.end())
300     return false;
301   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
302   int i = UsedByIndices.find_first();
303   if (i == -1) return false;
304   if ((size_t)i != LUIdx) return true;
305   return UsedByIndices.find_next(i) != -1;
306 }
307 
308 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
309   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
310   assert(I != RegUsesMap.end() && "Unknown register!");
311   return I->second.UsedByIndices;
312 }
313 
314 void RegUseTracker::clear() {
315   RegUsesMap.clear();
316   RegSequence.clear();
317 }
318 
319 namespace {
320 
321 /// This class holds information that describes a formula for computing
322 /// satisfying a use. It may include broken-out immediates and scaled registers.
323 struct Formula {
324   /// Global base address used for complex addressing.
325   GlobalValue *BaseGV = nullptr;
326 
327   /// Base offset for complex addressing.
328   int64_t BaseOffset = 0;
329 
330   /// Whether any complex addressing has a base register.
331   bool HasBaseReg = false;
332 
333   /// The scale of any complex addressing.
334   int64_t Scale = 0;
335 
336   /// The list of "base" registers for this use. When this is non-empty. The
337   /// canonical representation of a formula is
338   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
339   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
340   /// 3. The reg containing recurrent expr related with currect loop in the
341   /// formula should be put in the ScaledReg.
342   /// #1 enforces that the scaled register is always used when at least two
343   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
344   /// #2 enforces that 1 * reg is reg.
345   /// #3 ensures invariant regs with respect to current loop can be combined
346   /// together in LSR codegen.
347   /// This invariant can be temporarily broken while building a formula.
348   /// However, every formula inserted into the LSRInstance must be in canonical
349   /// form.
350   SmallVector<const SCEV *, 4> BaseRegs;
351 
352   /// The 'scaled' register for this use. This should be non-null when Scale is
353   /// not zero.
354   const SCEV *ScaledReg = nullptr;
355 
356   /// An additional constant offset which added near the use. This requires a
357   /// temporary register, but the offset itself can live in an add immediate
358   /// field rather than a register.
359   int64_t UnfoldedOffset = 0;
360 
361   Formula() = default;
362 
363   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
364 
365   bool isCanonical(const Loop &L) const;
366 
367   void canonicalize(const Loop &L);
368 
369   bool unscale();
370 
371   bool hasZeroEnd() const;
372 
373   size_t getNumRegs() const;
374   Type *getType() const;
375 
376   void deleteBaseReg(const SCEV *&S);
377 
378   bool referencesReg(const SCEV *S) const;
379   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
380                                   const RegUseTracker &RegUses) const;
381 
382   void print(raw_ostream &OS) const;
383   void dump() const;
384 };
385 
386 } // end anonymous namespace
387 
388 /// Recursion helper for initialMatch.
389 static void DoInitialMatch(const SCEV *S, Loop *L,
390                            SmallVectorImpl<const SCEV *> &Good,
391                            SmallVectorImpl<const SCEV *> &Bad,
392                            ScalarEvolution &SE) {
393   // Collect expressions which properly dominate the loop header.
394   if (SE.properlyDominates(S, L->getHeader())) {
395     Good.push_back(S);
396     return;
397   }
398 
399   // Look at add operands.
400   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
401     for (const SCEV *S : Add->operands())
402       DoInitialMatch(S, L, Good, Bad, SE);
403     return;
404   }
405 
406   // Look at addrec operands.
407   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
408     if (!AR->getStart()->isZero() && AR->isAffine()) {
409       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
410       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
411                                       AR->getStepRecurrence(SE),
412                                       // FIXME: AR->getNoWrapFlags()
413                                       AR->getLoop(), SCEV::FlagAnyWrap),
414                      L, Good, Bad, SE);
415       return;
416     }
417 
418   // Handle a multiplication by -1 (negation) if it didn't fold.
419   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
420     if (Mul->getOperand(0)->isAllOnesValue()) {
421       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
422       const SCEV *NewMul = SE.getMulExpr(Ops);
423 
424       SmallVector<const SCEV *, 4> MyGood;
425       SmallVector<const SCEV *, 4> MyBad;
426       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
427       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
428         SE.getEffectiveSCEVType(NewMul->getType())));
429       for (const SCEV *S : MyGood)
430         Good.push_back(SE.getMulExpr(NegOne, S));
431       for (const SCEV *S : MyBad)
432         Bad.push_back(SE.getMulExpr(NegOne, S));
433       return;
434     }
435 
436   // Ok, we can't do anything interesting. Just stuff the whole thing into a
437   // register and hope for the best.
438   Bad.push_back(S);
439 }
440 
441 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
442 /// all loop-invariant and loop-computable values in a single base register.
443 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
444   SmallVector<const SCEV *, 4> Good;
445   SmallVector<const SCEV *, 4> Bad;
446   DoInitialMatch(S, L, Good, Bad, SE);
447   if (!Good.empty()) {
448     const SCEV *Sum = SE.getAddExpr(Good);
449     if (!Sum->isZero())
450       BaseRegs.push_back(Sum);
451     HasBaseReg = true;
452   }
453   if (!Bad.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Bad);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   canonicalize(*L);
460 }
461 
462 /// Check whether or not this formula satisfies the canonical
463 /// representation.
464 /// \see Formula::BaseRegs.
465 bool Formula::isCanonical(const Loop &L) const {
466   if (!ScaledReg)
467     return BaseRegs.size() <= 1;
468 
469   if (Scale != 1)
470     return true;
471 
472   if (Scale == 1 && BaseRegs.empty())
473     return false;
474 
475   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
476   if (SAR && SAR->getLoop() == &L)
477     return true;
478 
479   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
480   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
481   // loop, we want to swap the reg in BaseRegs with ScaledReg.
482   auto I =
483       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
484         return isa<const SCEVAddRecExpr>(S) &&
485                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
486       });
487   return I == BaseRegs.end();
488 }
489 
490 /// Helper method to morph a formula into its canonical representation.
491 /// \see Formula::BaseRegs.
492 /// Every formula having more than one base register, must use the ScaledReg
493 /// field. Otherwise, we would have to do special cases everywhere in LSR
494 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
495 /// On the other hand, 1*reg should be canonicalized into reg.
496 void Formula::canonicalize(const Loop &L) {
497   if (isCanonical(L))
498     return;
499   // So far we did not need this case. This is easy to implement but it is
500   // useless to maintain dead code. Beside it could hurt compile time.
501   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
502 
503   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
504   if (!ScaledReg) {
505     ScaledReg = BaseRegs.back();
506     BaseRegs.pop_back();
507     Scale = 1;
508   }
509 
510   // If ScaledReg is an invariant with respect to L, find the reg from
511   // BaseRegs containing the recurrent expr related with Loop L. Swap the
512   // reg with ScaledReg.
513   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
514   if (!SAR || SAR->getLoop() != &L) {
515     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
516                      [&](const SCEV *S) {
517                        return isa<const SCEVAddRecExpr>(S) &&
518                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
519                      });
520     if (I != BaseRegs.end())
521       std::swap(ScaledReg, *I);
522   }
523 }
524 
525 /// Get rid of the scale in the formula.
526 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
527 /// \return true if it was possible to get rid of the scale, false otherwise.
528 /// \note After this operation the formula may not be in the canonical form.
529 bool Formula::unscale() {
530   if (Scale != 1)
531     return false;
532   Scale = 0;
533   BaseRegs.push_back(ScaledReg);
534   ScaledReg = nullptr;
535   return true;
536 }
537 
538 bool Formula::hasZeroEnd() const {
539   if (UnfoldedOffset || BaseOffset)
540     return false;
541   if (BaseRegs.size() != 1 || ScaledReg)
542     return false;
543   return true;
544 }
545 
546 /// Return the total number of register operands used by this formula. This does
547 /// not include register uses implied by non-constant addrec strides.
548 size_t Formula::getNumRegs() const {
549   return !!ScaledReg + BaseRegs.size();
550 }
551 
552 /// Return the type of this formula, if it has one, or null otherwise. This type
553 /// is meaningless except for the bit size.
554 Type *Formula::getType() const {
555   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
556          ScaledReg ? ScaledReg->getType() :
557          BaseGV ? BaseGV->getType() :
558          nullptr;
559 }
560 
561 /// Delete the given base reg from the BaseRegs list.
562 void Formula::deleteBaseReg(const SCEV *&S) {
563   if (&S != &BaseRegs.back())
564     std::swap(S, BaseRegs.back());
565   BaseRegs.pop_back();
566 }
567 
568 /// Test if this formula references the given register.
569 bool Formula::referencesReg(const SCEV *S) const {
570   return S == ScaledReg || is_contained(BaseRegs, S);
571 }
572 
573 /// Test whether this formula uses registers which are used by uses other than
574 /// the use with the given index.
575 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
576                                          const RegUseTracker &RegUses) const {
577   if (ScaledReg)
578     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
579       return true;
580   for (const SCEV *BaseReg : BaseRegs)
581     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
582       return true;
583   return false;
584 }
585 
586 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
587 void Formula::print(raw_ostream &OS) const {
588   bool First = true;
589   if (BaseGV) {
590     if (!First) OS << " + "; else First = false;
591     BaseGV->printAsOperand(OS, /*PrintType=*/false);
592   }
593   if (BaseOffset != 0) {
594     if (!First) OS << " + "; else First = false;
595     OS << BaseOffset;
596   }
597   for (const SCEV *BaseReg : BaseRegs) {
598     if (!First) OS << " + "; else First = false;
599     OS << "reg(" << *BaseReg << ')';
600   }
601   if (HasBaseReg && BaseRegs.empty()) {
602     if (!First) OS << " + "; else First = false;
603     OS << "**error: HasBaseReg**";
604   } else if (!HasBaseReg && !BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: !HasBaseReg**";
607   }
608   if (Scale != 0) {
609     if (!First) OS << " + "; else First = false;
610     OS << Scale << "*reg(";
611     if (ScaledReg)
612       OS << *ScaledReg;
613     else
614       OS << "<unknown>";
615     OS << ')';
616   }
617   if (UnfoldedOffset != 0) {
618     if (!First) OS << " + ";
619     OS << "imm(" << UnfoldedOffset << ')';
620   }
621 }
622 
623 LLVM_DUMP_METHOD void Formula::dump() const {
624   print(errs()); errs() << '\n';
625 }
626 #endif
627 
628 /// Return true if the given addrec can be sign-extended without changing its
629 /// value.
630 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
631   Type *WideTy =
632     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
633   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
634 }
635 
636 /// Return true if the given add can be sign-extended without changing its
637 /// value.
638 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
639   Type *WideTy =
640     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
641   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
642 }
643 
644 /// Return true if the given mul can be sign-extended without changing its
645 /// value.
646 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
647   Type *WideTy =
648     IntegerType::get(SE.getContext(),
649                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
650   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
651 }
652 
653 /// Return an expression for LHS /s RHS, if it can be determined and if the
654 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
655 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
656 /// the multiplication may overflow, which is useful when the result will be
657 /// used in a context where the most significant bits are ignored.
658 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
659                                 ScalarEvolution &SE,
660                                 bool IgnoreSignificantBits = false) {
661   // Handle the trivial case, which works for any SCEV type.
662   if (LHS == RHS)
663     return SE.getConstant(LHS->getType(), 1);
664 
665   // Handle a few RHS special cases.
666   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
667   if (RC) {
668     const APInt &RA = RC->getAPInt();
669     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
670     // some folding.
671     if (RA.isAllOnesValue())
672       return SE.getMulExpr(LHS, RC);
673     // Handle x /s 1 as x.
674     if (RA == 1)
675       return LHS;
676   }
677 
678   // Check for a division of a constant by a constant.
679   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
680     if (!RC)
681       return nullptr;
682     const APInt &LA = C->getAPInt();
683     const APInt &RA = RC->getAPInt();
684     if (LA.srem(RA) != 0)
685       return nullptr;
686     return SE.getConstant(LA.sdiv(RA));
687   }
688 
689   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
690   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
691     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
692       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
693                                       IgnoreSignificantBits);
694       if (!Step) return nullptr;
695       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
696                                        IgnoreSignificantBits);
697       if (!Start) return nullptr;
698       // FlagNW is independent of the start value, step direction, and is
699       // preserved with smaller magnitude steps.
700       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
701       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
702     }
703     return nullptr;
704   }
705 
706   // Distribute the sdiv over add operands, if the add doesn't overflow.
707   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
708     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
709       SmallVector<const SCEV *, 8> Ops;
710       for (const SCEV *S : Add->operands()) {
711         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
712         if (!Op) return nullptr;
713         Ops.push_back(Op);
714       }
715       return SE.getAddExpr(Ops);
716     }
717     return nullptr;
718   }
719 
720   // Check for a multiply operand that we can pull RHS out of.
721   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
722     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
723       SmallVector<const SCEV *, 4> Ops;
724       bool Found = false;
725       for (const SCEV *S : Mul->operands()) {
726         if (!Found)
727           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
728                                            IgnoreSignificantBits)) {
729             S = Q;
730             Found = true;
731           }
732         Ops.push_back(S);
733       }
734       return Found ? SE.getMulExpr(Ops) : nullptr;
735     }
736     return nullptr;
737   }
738 
739   // Otherwise we don't know.
740   return nullptr;
741 }
742 
743 /// If S involves the addition of a constant integer value, return that integer
744 /// value, and mutate S to point to a new SCEV with that value excluded.
745 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
746   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
747     if (C->getAPInt().getMinSignedBits() <= 64) {
748       S = SE.getConstant(C->getType(), 0);
749       return C->getValue()->getSExtValue();
750     }
751   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
752     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
753     int64_t Result = ExtractImmediate(NewOps.front(), SE);
754     if (Result != 0)
755       S = SE.getAddExpr(NewOps);
756     return Result;
757   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
758     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
759     int64_t Result = ExtractImmediate(NewOps.front(), SE);
760     if (Result != 0)
761       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
762                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
763                            SCEV::FlagAnyWrap);
764     return Result;
765   }
766   return 0;
767 }
768 
769 /// If S involves the addition of a GlobalValue address, return that symbol, and
770 /// mutate S to point to a new SCEV with that value excluded.
771 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
772   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
773     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
774       S = SE.getConstant(GV->getType(), 0);
775       return GV;
776     }
777   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
778     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
779     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
780     if (Result)
781       S = SE.getAddExpr(NewOps);
782     return Result;
783   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
784     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
785     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
786     if (Result)
787       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
788                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
789                            SCEV::FlagAnyWrap);
790     return Result;
791   }
792   return nullptr;
793 }
794 
795 /// Returns true if the specified instruction is using the specified value as an
796 /// address.
797 static bool isAddressUse(const TargetTransformInfo &TTI,
798                          Instruction *Inst, Value *OperandVal) {
799   bool isAddress = isa<LoadInst>(Inst);
800   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
801     if (SI->getPointerOperand() == OperandVal)
802       isAddress = true;
803   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
804     // Addressing modes can also be folded into prefetches and a variety
805     // of intrinsics.
806     switch (II->getIntrinsicID()) {
807     case Intrinsic::memset:
808     case Intrinsic::prefetch:
809       if (II->getArgOperand(0) == OperandVal)
810         isAddress = true;
811       break;
812     case Intrinsic::memmove:
813     case Intrinsic::memcpy:
814       if (II->getArgOperand(0) == OperandVal ||
815           II->getArgOperand(1) == OperandVal)
816         isAddress = true;
817       break;
818     default: {
819       MemIntrinsicInfo IntrInfo;
820       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
821         if (IntrInfo.PtrVal == OperandVal)
822           isAddress = true;
823       }
824     }
825     }
826   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
827     if (RMW->getPointerOperand() == OperandVal)
828       isAddress = true;
829   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
830     if (CmpX->getPointerOperand() == OperandVal)
831       isAddress = true;
832   }
833   return isAddress;
834 }
835 
836 /// Return the type of the memory being accessed.
837 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
838                                  Instruction *Inst, Value *OperandVal) {
839   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
840   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
841     AccessTy.MemTy = SI->getOperand(0)->getType();
842     AccessTy.AddrSpace = SI->getPointerAddressSpace();
843   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
844     AccessTy.AddrSpace = LI->getPointerAddressSpace();
845   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
846     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
847   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
848     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
849   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
850     switch (II->getIntrinsicID()) {
851     case Intrinsic::prefetch:
852     case Intrinsic::memset:
853       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
854       AccessTy.MemTy = OperandVal->getType();
855       break;
856     case Intrinsic::memmove:
857     case Intrinsic::memcpy:
858       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
859       AccessTy.MemTy = OperandVal->getType();
860       break;
861     default: {
862       MemIntrinsicInfo IntrInfo;
863       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
864         AccessTy.AddrSpace
865           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
866       }
867 
868       break;
869     }
870     }
871   }
872 
873   // All pointers have the same requirements, so canonicalize them to an
874   // arbitrary pointer type to minimize variation.
875   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
876     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
877                                       PTy->getAddressSpace());
878 
879   return AccessTy;
880 }
881 
882 /// Return true if this AddRec is already a phi in its loop.
883 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
884   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
885     if (SE.isSCEVable(PN.getType()) &&
886         (SE.getEffectiveSCEVType(PN.getType()) ==
887          SE.getEffectiveSCEVType(AR->getType())) &&
888         SE.getSCEV(&PN) == AR)
889       return true;
890   }
891   return false;
892 }
893 
894 /// Check if expanding this expression is likely to incur significant cost. This
895 /// is tricky because SCEV doesn't track which expressions are actually computed
896 /// by the current IR.
897 ///
898 /// We currently allow expansion of IV increments that involve adds,
899 /// multiplication by constants, and AddRecs from existing phis.
900 ///
901 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
902 /// obvious multiple of the UDivExpr.
903 static bool isHighCostExpansion(const SCEV *S,
904                                 SmallPtrSetImpl<const SCEV*> &Processed,
905                                 ScalarEvolution &SE) {
906   // Zero/One operand expressions
907   switch (S->getSCEVType()) {
908   case scUnknown:
909   case scConstant:
910     return false;
911   case scTruncate:
912     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
913                                Processed, SE);
914   case scZeroExtend:
915     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
916                                Processed, SE);
917   case scSignExtend:
918     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
919                                Processed, SE);
920   }
921 
922   if (!Processed.insert(S).second)
923     return false;
924 
925   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
926     for (const SCEV *S : Add->operands()) {
927       if (isHighCostExpansion(S, Processed, SE))
928         return true;
929     }
930     return false;
931   }
932 
933   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
934     if (Mul->getNumOperands() == 2) {
935       // Multiplication by a constant is ok
936       if (isa<SCEVConstant>(Mul->getOperand(0)))
937         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
938 
939       // If we have the value of one operand, check if an existing
940       // multiplication already generates this expression.
941       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
942         Value *UVal = U->getValue();
943         for (User *UR : UVal->users()) {
944           // If U is a constant, it may be used by a ConstantExpr.
945           Instruction *UI = dyn_cast<Instruction>(UR);
946           if (UI && UI->getOpcode() == Instruction::Mul &&
947               SE.isSCEVable(UI->getType())) {
948             return SE.getSCEV(UI) == Mul;
949           }
950         }
951       }
952     }
953   }
954 
955   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
956     if (isExistingPhi(AR, SE))
957       return false;
958   }
959 
960   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
961   return true;
962 }
963 
964 /// If any of the instructions in the specified set are trivially dead, delete
965 /// them and see if this makes any of their operands subsequently dead.
966 static bool
967 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
968   bool Changed = false;
969 
970   while (!DeadInsts.empty()) {
971     Value *V = DeadInsts.pop_back_val();
972     Instruction *I = dyn_cast_or_null<Instruction>(V);
973 
974     if (!I || !isInstructionTriviallyDead(I))
975       continue;
976 
977     for (Use &O : I->operands())
978       if (Instruction *U = dyn_cast<Instruction>(O)) {
979         O = nullptr;
980         if (U->use_empty())
981           DeadInsts.emplace_back(U);
982       }
983 
984     I->eraseFromParent();
985     Changed = true;
986   }
987 
988   return Changed;
989 }
990 
991 namespace {
992 
993 class LSRUse;
994 
995 } // end anonymous namespace
996 
997 /// Check if the addressing mode defined by \p F is completely
998 /// folded in \p LU at isel time.
999 /// This includes address-mode folding and special icmp tricks.
1000 /// This function returns true if \p LU can accommodate what \p F
1001 /// defines and up to 1 base + 1 scaled + offset.
1002 /// In other words, if \p F has several base registers, this function may
1003 /// still return true. Therefore, users still need to account for
1004 /// additional base registers and/or unfolded offsets to derive an
1005 /// accurate cost model.
1006 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1007                                  const LSRUse &LU, const Formula &F);
1008 
1009 // Get the cost of the scaling factor used in F for LU.
1010 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1011                                      const LSRUse &LU, const Formula &F,
1012                                      const Loop &L);
1013 
1014 namespace {
1015 
1016 /// This class is used to measure and compare candidate formulae.
1017 class Cost {
1018   const Loop *L = nullptr;
1019   ScalarEvolution *SE = nullptr;
1020   const TargetTransformInfo *TTI = nullptr;
1021   TargetTransformInfo::LSRCost C;
1022 
1023 public:
1024   Cost() = delete;
1025   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1026     L(L), SE(&SE), TTI(&TTI) {
1027     C.Insns = 0;
1028     C.NumRegs = 0;
1029     C.AddRecCost = 0;
1030     C.NumIVMuls = 0;
1031     C.NumBaseAdds = 0;
1032     C.ImmCost = 0;
1033     C.SetupCost = 0;
1034     C.ScaleCost = 0;
1035   }
1036 
1037   bool isLess(Cost &Other);
1038 
1039   void Lose();
1040 
1041 #ifndef NDEBUG
1042   // Once any of the metrics loses, they must all remain losers.
1043   bool isValid() {
1044     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1045              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1046       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1047            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1048   }
1049 #endif
1050 
1051   bool isLoser() {
1052     assert(isValid() && "invalid cost");
1053     return C.NumRegs == ~0u;
1054   }
1055 
1056   void RateFormula(const Formula &F,
1057                    SmallPtrSetImpl<const SCEV *> &Regs,
1058                    const DenseSet<const SCEV *> &VisitedRegs,
1059                    const LSRUse &LU,
1060                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1061 
1062   void print(raw_ostream &OS) const;
1063   void dump() const;
1064 
1065 private:
1066   void RateRegister(const Formula &F, const SCEV *Reg,
1067                     SmallPtrSetImpl<const SCEV *> &Regs);
1068   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1069                            SmallPtrSetImpl<const SCEV *> &Regs,
1070                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1071 };
1072 
1073 /// An operand value in an instruction which is to be replaced with some
1074 /// equivalent, possibly strength-reduced, replacement.
1075 struct LSRFixup {
1076   /// The instruction which will be updated.
1077   Instruction *UserInst = nullptr;
1078 
1079   /// The operand of the instruction which will be replaced. The operand may be
1080   /// used more than once; every instance will be replaced.
1081   Value *OperandValToReplace = nullptr;
1082 
1083   /// If this user is to use the post-incremented value of an induction
1084   /// variable, this set is non-empty and holds the loops associated with the
1085   /// induction variable.
1086   PostIncLoopSet PostIncLoops;
1087 
1088   /// A constant offset to be added to the LSRUse expression.  This allows
1089   /// multiple fixups to share the same LSRUse with different offsets, for
1090   /// example in an unrolled loop.
1091   int64_t Offset = 0;
1092 
1093   LSRFixup() = default;
1094 
1095   bool isUseFullyOutsideLoop(const Loop *L) const;
1096 
1097   void print(raw_ostream &OS) const;
1098   void dump() const;
1099 };
1100 
1101 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1102 /// SmallVectors of const SCEV*.
1103 struct UniquifierDenseMapInfo {
1104   static SmallVector<const SCEV *, 4> getEmptyKey() {
1105     SmallVector<const SCEV *, 4>  V;
1106     V.push_back(reinterpret_cast<const SCEV *>(-1));
1107     return V;
1108   }
1109 
1110   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1111     SmallVector<const SCEV *, 4> V;
1112     V.push_back(reinterpret_cast<const SCEV *>(-2));
1113     return V;
1114   }
1115 
1116   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1117     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1118   }
1119 
1120   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1121                       const SmallVector<const SCEV *, 4> &RHS) {
1122     return LHS == RHS;
1123   }
1124 };
1125 
1126 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1127 /// as uses invented by LSR itself. It includes information about what kinds of
1128 /// things can be folded into the user, information about the user itself, and
1129 /// information about how the use may be satisfied.  TODO: Represent multiple
1130 /// users of the same expression in common?
1131 class LSRUse {
1132   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1133 
1134 public:
1135   /// An enum for a kind of use, indicating what types of scaled and immediate
1136   /// operands it might support.
1137   enum KindType {
1138     Basic,   ///< A normal use, with no folding.
1139     Special, ///< A special case of basic, allowing -1 scales.
1140     Address, ///< An address use; folding according to TargetLowering
1141     ICmpZero ///< An equality icmp with both operands folded into one.
1142     // TODO: Add a generic icmp too?
1143   };
1144 
1145   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1146 
1147   KindType Kind;
1148   MemAccessTy AccessTy;
1149 
1150   /// The list of operands which are to be replaced.
1151   SmallVector<LSRFixup, 8> Fixups;
1152 
1153   /// Keep track of the min and max offsets of the fixups.
1154   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1155   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1156 
1157   /// This records whether all of the fixups using this LSRUse are outside of
1158   /// the loop, in which case some special-case heuristics may be used.
1159   bool AllFixupsOutsideLoop = true;
1160 
1161   /// RigidFormula is set to true to guarantee that this use will be associated
1162   /// with a single formula--the one that initially matched. Some SCEV
1163   /// expressions cannot be expanded. This allows LSR to consider the registers
1164   /// used by those expressions without the need to expand them later after
1165   /// changing the formula.
1166   bool RigidFormula = false;
1167 
1168   /// This records the widest use type for any fixup using this
1169   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1170   /// fixup widths to be equivalent, because the narrower one may be relying on
1171   /// the implicit truncation to truncate away bogus bits.
1172   Type *WidestFixupType = nullptr;
1173 
1174   /// A list of ways to build a value that can satisfy this user.  After the
1175   /// list is populated, one of these is selected heuristically and used to
1176   /// formulate a replacement for OperandValToReplace in UserInst.
1177   SmallVector<Formula, 12> Formulae;
1178 
1179   /// The set of register candidates used by all formulae in this LSRUse.
1180   SmallPtrSet<const SCEV *, 4> Regs;
1181 
1182   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1183 
1184   LSRFixup &getNewFixup() {
1185     Fixups.push_back(LSRFixup());
1186     return Fixups.back();
1187   }
1188 
1189   void pushFixup(LSRFixup &f) {
1190     Fixups.push_back(f);
1191     if (f.Offset > MaxOffset)
1192       MaxOffset = f.Offset;
1193     if (f.Offset < MinOffset)
1194       MinOffset = f.Offset;
1195   }
1196 
1197   bool HasFormulaWithSameRegs(const Formula &F) const;
1198   float getNotSelectedProbability(const SCEV *Reg) const;
1199   bool InsertFormula(const Formula &F, const Loop &L);
1200   void DeleteFormula(Formula &F);
1201   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1202 
1203   void print(raw_ostream &OS) const;
1204   void dump() const;
1205 };
1206 
1207 } // end anonymous namespace
1208 
1209 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1210                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1211                                  GlobalValue *BaseGV, int64_t BaseOffset,
1212                                  bool HasBaseReg, int64_t Scale,
1213                                  Instruction *Fixup = nullptr);
1214 
1215 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1216   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1217     return 1;
1218   if (Depth == 0)
1219     return 0;
1220   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1221     return getSetupCost(S->getStart(), Depth - 1);
1222   if (auto S = dyn_cast<SCEVCastExpr>(Reg))
1223     return getSetupCost(S->getOperand(), Depth - 1);
1224   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1225     return std::accumulate(S->op_begin(), S->op_end(), 0,
1226                            [&](unsigned i, const SCEV *Reg) {
1227                              return i + getSetupCost(Reg, Depth - 1);
1228                            });
1229   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1230     return getSetupCost(S->getLHS(), Depth - 1) +
1231            getSetupCost(S->getRHS(), Depth - 1);
1232   return 0;
1233 }
1234 
1235 /// Tally up interesting quantities from the given register.
1236 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1237                         SmallPtrSetImpl<const SCEV *> &Regs) {
1238   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1239     // If this is an addrec for another loop, it should be an invariant
1240     // with respect to L since L is the innermost loop (at least
1241     // for now LSR only handles innermost loops).
1242     if (AR->getLoop() != L) {
1243       // If the AddRec exists, consider it's register free and leave it alone.
1244       if (isExistingPhi(AR, *SE))
1245         return;
1246 
1247       // It is bad to allow LSR for current loop to add induction variables
1248       // for its sibling loops.
1249       if (!AR->getLoop()->contains(L)) {
1250         Lose();
1251         return;
1252       }
1253 
1254       // Otherwise, it will be an invariant with respect to Loop L.
1255       ++C.NumRegs;
1256       return;
1257     }
1258 
1259     unsigned LoopCost = 1;
1260     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1261         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1262 
1263       // If the step size matches the base offset, we could use pre-indexed
1264       // addressing.
1265       if (TTI->shouldFavorBackedgeIndex(L)) {
1266         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1267           if (Step->getAPInt() == F.BaseOffset)
1268             LoopCost = 0;
1269       }
1270 
1271       if (TTI->shouldFavorPostInc()) {
1272         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1273         if (isa<SCEVConstant>(LoopStep)) {
1274           const SCEV *LoopStart = AR->getStart();
1275           if (!isa<SCEVConstant>(LoopStart) &&
1276               SE->isLoopInvariant(LoopStart, L))
1277             LoopCost = 0;
1278         }
1279       }
1280     }
1281     C.AddRecCost += LoopCost;
1282 
1283     // Add the step value register, if it needs one.
1284     // TODO: The non-affine case isn't precisely modeled here.
1285     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1286       if (!Regs.count(AR->getOperand(1))) {
1287         RateRegister(F, AR->getOperand(1), Regs);
1288         if (isLoser())
1289           return;
1290       }
1291     }
1292   }
1293   ++C.NumRegs;
1294 
1295   // Rough heuristic; favor registers which don't require extra setup
1296   // instructions in the preheader.
1297   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1298   // Ensure we don't, even with the recusion limit, produce invalid costs.
1299   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1300 
1301   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1302                SE->hasComputableLoopEvolution(Reg, L);
1303 }
1304 
1305 /// Record this register in the set. If we haven't seen it before, rate
1306 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1307 /// one of those regs an instant loser.
1308 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1309                                SmallPtrSetImpl<const SCEV *> &Regs,
1310                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1311   if (LoserRegs && LoserRegs->count(Reg)) {
1312     Lose();
1313     return;
1314   }
1315   if (Regs.insert(Reg).second) {
1316     RateRegister(F, Reg, Regs);
1317     if (LoserRegs && isLoser())
1318       LoserRegs->insert(Reg);
1319   }
1320 }
1321 
1322 void Cost::RateFormula(const Formula &F,
1323                        SmallPtrSetImpl<const SCEV *> &Regs,
1324                        const DenseSet<const SCEV *> &VisitedRegs,
1325                        const LSRUse &LU,
1326                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1327   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1328   // Tally up the registers.
1329   unsigned PrevAddRecCost = C.AddRecCost;
1330   unsigned PrevNumRegs = C.NumRegs;
1331   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1332   if (const SCEV *ScaledReg = F.ScaledReg) {
1333     if (VisitedRegs.count(ScaledReg)) {
1334       Lose();
1335       return;
1336     }
1337     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1338     if (isLoser())
1339       return;
1340   }
1341   for (const SCEV *BaseReg : F.BaseRegs) {
1342     if (VisitedRegs.count(BaseReg)) {
1343       Lose();
1344       return;
1345     }
1346     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1347     if (isLoser())
1348       return;
1349   }
1350 
1351   // Determine how many (unfolded) adds we'll need inside the loop.
1352   size_t NumBaseParts = F.getNumRegs();
1353   if (NumBaseParts > 1)
1354     // Do not count the base and a possible second register if the target
1355     // allows to fold 2 registers.
1356     C.NumBaseAdds +=
1357         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1358   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1359 
1360   // Accumulate non-free scaling amounts.
1361   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1362 
1363   // Tally up the non-zero immediates.
1364   for (const LSRFixup &Fixup : LU.Fixups) {
1365     int64_t O = Fixup.Offset;
1366     int64_t Offset = (uint64_t)O + F.BaseOffset;
1367     if (F.BaseGV)
1368       C.ImmCost += 64; // Handle symbolic values conservatively.
1369                      // TODO: This should probably be the pointer size.
1370     else if (Offset != 0)
1371       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1372 
1373     // Check with target if this offset with this instruction is
1374     // specifically not supported.
1375     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1376         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1377                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1378       C.NumBaseAdds++;
1379   }
1380 
1381   // If we don't count instruction cost exit here.
1382   if (!InsnsCost) {
1383     assert(isValid() && "invalid cost");
1384     return;
1385   }
1386 
1387   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1388   // additional instruction (at least fill).
1389   unsigned TTIRegNum = TTI->getNumberOfRegisters(false) - 1;
1390   if (C.NumRegs > TTIRegNum) {
1391     // Cost already exceeded TTIRegNum, then only newly added register can add
1392     // new instructions.
1393     if (PrevNumRegs > TTIRegNum)
1394       C.Insns += (C.NumRegs - PrevNumRegs);
1395     else
1396       C.Insns += (C.NumRegs - TTIRegNum);
1397   }
1398 
1399   // If ICmpZero formula ends with not 0, it could not be replaced by
1400   // just add or sub. We'll need to compare final result of AddRec.
1401   // That means we'll need an additional instruction. But if the target can
1402   // macro-fuse a compare with a branch, don't count this extra instruction.
1403   // For -10 + {0, +, 1}:
1404   // i = i + 1;
1405   // cmp i, 10
1406   //
1407   // For {-10, +, 1}:
1408   // i = i + 1;
1409   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1410       !TTI->canMacroFuseCmp())
1411     C.Insns++;
1412   // Each new AddRec adds 1 instruction to calculation.
1413   C.Insns += (C.AddRecCost - PrevAddRecCost);
1414 
1415   // BaseAdds adds instructions for unfolded registers.
1416   if (LU.Kind != LSRUse::ICmpZero)
1417     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1418   assert(isValid() && "invalid cost");
1419 }
1420 
1421 /// Set this cost to a losing value.
1422 void Cost::Lose() {
1423   C.Insns = std::numeric_limits<unsigned>::max();
1424   C.NumRegs = std::numeric_limits<unsigned>::max();
1425   C.AddRecCost = std::numeric_limits<unsigned>::max();
1426   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1427   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1428   C.ImmCost = std::numeric_limits<unsigned>::max();
1429   C.SetupCost = std::numeric_limits<unsigned>::max();
1430   C.ScaleCost = std::numeric_limits<unsigned>::max();
1431 }
1432 
1433 /// Choose the lower cost.
1434 bool Cost::isLess(Cost &Other) {
1435   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1436       C.Insns != Other.C.Insns)
1437     return C.Insns < Other.C.Insns;
1438   return TTI->isLSRCostLess(C, Other.C);
1439 }
1440 
1441 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1442 void Cost::print(raw_ostream &OS) const {
1443   if (InsnsCost)
1444     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1445   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1446   if (C.AddRecCost != 0)
1447     OS << ", with addrec cost " << C.AddRecCost;
1448   if (C.NumIVMuls != 0)
1449     OS << ", plus " << C.NumIVMuls << " IV mul"
1450        << (C.NumIVMuls == 1 ? "" : "s");
1451   if (C.NumBaseAdds != 0)
1452     OS << ", plus " << C.NumBaseAdds << " base add"
1453        << (C.NumBaseAdds == 1 ? "" : "s");
1454   if (C.ScaleCost != 0)
1455     OS << ", plus " << C.ScaleCost << " scale cost";
1456   if (C.ImmCost != 0)
1457     OS << ", plus " << C.ImmCost << " imm cost";
1458   if (C.SetupCost != 0)
1459     OS << ", plus " << C.SetupCost << " setup cost";
1460 }
1461 
1462 LLVM_DUMP_METHOD void Cost::dump() const {
1463   print(errs()); errs() << '\n';
1464 }
1465 #endif
1466 
1467 /// Test whether this fixup always uses its value outside of the given loop.
1468 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1469   // PHI nodes use their value in their incoming blocks.
1470   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1471     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1472       if (PN->getIncomingValue(i) == OperandValToReplace &&
1473           L->contains(PN->getIncomingBlock(i)))
1474         return false;
1475     return true;
1476   }
1477 
1478   return !L->contains(UserInst);
1479 }
1480 
1481 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1482 void LSRFixup::print(raw_ostream &OS) const {
1483   OS << "UserInst=";
1484   // Store is common and interesting enough to be worth special-casing.
1485   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1486     OS << "store ";
1487     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1488   } else if (UserInst->getType()->isVoidTy())
1489     OS << UserInst->getOpcodeName();
1490   else
1491     UserInst->printAsOperand(OS, /*PrintType=*/false);
1492 
1493   OS << ", OperandValToReplace=";
1494   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1495 
1496   for (const Loop *PIL : PostIncLoops) {
1497     OS << ", PostIncLoop=";
1498     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1499   }
1500 
1501   if (Offset != 0)
1502     OS << ", Offset=" << Offset;
1503 }
1504 
1505 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1506   print(errs()); errs() << '\n';
1507 }
1508 #endif
1509 
1510 /// Test whether this use as a formula which has the same registers as the given
1511 /// formula.
1512 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1513   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1514   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1515   // Unstable sort by host order ok, because this is only used for uniquifying.
1516   llvm::sort(Key);
1517   return Uniquifier.count(Key);
1518 }
1519 
1520 /// The function returns a probability of selecting formula without Reg.
1521 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1522   unsigned FNum = 0;
1523   for (const Formula &F : Formulae)
1524     if (F.referencesReg(Reg))
1525       FNum++;
1526   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1527 }
1528 
1529 /// If the given formula has not yet been inserted, add it to the list, and
1530 /// return true. Return false otherwise.  The formula must be in canonical form.
1531 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1532   assert(F.isCanonical(L) && "Invalid canonical representation");
1533 
1534   if (!Formulae.empty() && RigidFormula)
1535     return false;
1536 
1537   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1538   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1539   // Unstable sort by host order ok, because this is only used for uniquifying.
1540   llvm::sort(Key);
1541 
1542   if (!Uniquifier.insert(Key).second)
1543     return false;
1544 
1545   // Using a register to hold the value of 0 is not profitable.
1546   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1547          "Zero allocated in a scaled register!");
1548 #ifndef NDEBUG
1549   for (const SCEV *BaseReg : F.BaseRegs)
1550     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1551 #endif
1552 
1553   // Add the formula to the list.
1554   Formulae.push_back(F);
1555 
1556   // Record registers now being used by this use.
1557   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1558   if (F.ScaledReg)
1559     Regs.insert(F.ScaledReg);
1560 
1561   return true;
1562 }
1563 
1564 /// Remove the given formula from this use's list.
1565 void LSRUse::DeleteFormula(Formula &F) {
1566   if (&F != &Formulae.back())
1567     std::swap(F, Formulae.back());
1568   Formulae.pop_back();
1569 }
1570 
1571 /// Recompute the Regs field, and update RegUses.
1572 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1573   // Now that we've filtered out some formulae, recompute the Regs set.
1574   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1575   Regs.clear();
1576   for (const Formula &F : Formulae) {
1577     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1578     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1579   }
1580 
1581   // Update the RegTracker.
1582   for (const SCEV *S : OldRegs)
1583     if (!Regs.count(S))
1584       RegUses.dropRegister(S, LUIdx);
1585 }
1586 
1587 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1588 void LSRUse::print(raw_ostream &OS) const {
1589   OS << "LSR Use: Kind=";
1590   switch (Kind) {
1591   case Basic:    OS << "Basic"; break;
1592   case Special:  OS << "Special"; break;
1593   case ICmpZero: OS << "ICmpZero"; break;
1594   case Address:
1595     OS << "Address of ";
1596     if (AccessTy.MemTy->isPointerTy())
1597       OS << "pointer"; // the full pointer type could be really verbose
1598     else {
1599       OS << *AccessTy.MemTy;
1600     }
1601 
1602     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1603   }
1604 
1605   OS << ", Offsets={";
1606   bool NeedComma = false;
1607   for (const LSRFixup &Fixup : Fixups) {
1608     if (NeedComma) OS << ',';
1609     OS << Fixup.Offset;
1610     NeedComma = true;
1611   }
1612   OS << '}';
1613 
1614   if (AllFixupsOutsideLoop)
1615     OS << ", all-fixups-outside-loop";
1616 
1617   if (WidestFixupType)
1618     OS << ", widest fixup type: " << *WidestFixupType;
1619 }
1620 
1621 LLVM_DUMP_METHOD void LSRUse::dump() const {
1622   print(errs()); errs() << '\n';
1623 }
1624 #endif
1625 
1626 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1627                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1628                                  GlobalValue *BaseGV, int64_t BaseOffset,
1629                                  bool HasBaseReg, int64_t Scale,
1630                                  Instruction *Fixup/*= nullptr*/) {
1631   switch (Kind) {
1632   case LSRUse::Address:
1633     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1634                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1635 
1636   case LSRUse::ICmpZero:
1637     // There's not even a target hook for querying whether it would be legal to
1638     // fold a GV into an ICmp.
1639     if (BaseGV)
1640       return false;
1641 
1642     // ICmp only has two operands; don't allow more than two non-trivial parts.
1643     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1644       return false;
1645 
1646     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1647     // putting the scaled register in the other operand of the icmp.
1648     if (Scale != 0 && Scale != -1)
1649       return false;
1650 
1651     // If we have low-level target information, ask the target if it can fold an
1652     // integer immediate on an icmp.
1653     if (BaseOffset != 0) {
1654       // We have one of:
1655       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1656       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1657       // Offs is the ICmp immediate.
1658       if (Scale == 0)
1659         // The cast does the right thing with
1660         // std::numeric_limits<int64_t>::min().
1661         BaseOffset = -(uint64_t)BaseOffset;
1662       return TTI.isLegalICmpImmediate(BaseOffset);
1663     }
1664 
1665     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1666     return true;
1667 
1668   case LSRUse::Basic:
1669     // Only handle single-register values.
1670     return !BaseGV && Scale == 0 && BaseOffset == 0;
1671 
1672   case LSRUse::Special:
1673     // Special case Basic to handle -1 scales.
1674     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1675   }
1676 
1677   llvm_unreachable("Invalid LSRUse Kind!");
1678 }
1679 
1680 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1681                                  int64_t MinOffset, int64_t MaxOffset,
1682                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1683                                  GlobalValue *BaseGV, int64_t BaseOffset,
1684                                  bool HasBaseReg, int64_t Scale) {
1685   // Check for overflow.
1686   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1687       (MinOffset > 0))
1688     return false;
1689   MinOffset = (uint64_t)BaseOffset + MinOffset;
1690   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1691       (MaxOffset > 0))
1692     return false;
1693   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1694 
1695   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1696                               HasBaseReg, Scale) &&
1697          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1698                               HasBaseReg, Scale);
1699 }
1700 
1701 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1702                                  int64_t MinOffset, int64_t MaxOffset,
1703                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1704                                  const Formula &F, const Loop &L) {
1705   // For the purpose of isAMCompletelyFolded either having a canonical formula
1706   // or a scale not equal to zero is correct.
1707   // Problems may arise from non canonical formulae having a scale == 0.
1708   // Strictly speaking it would best to just rely on canonical formulae.
1709   // However, when we generate the scaled formulae, we first check that the
1710   // scaling factor is profitable before computing the actual ScaledReg for
1711   // compile time sake.
1712   assert((F.isCanonical(L) || F.Scale != 0));
1713   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1714                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1715 }
1716 
1717 /// Test whether we know how to expand the current formula.
1718 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1719                        int64_t MaxOffset, LSRUse::KindType Kind,
1720                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1721                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1722   // We know how to expand completely foldable formulae.
1723   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1724                               BaseOffset, HasBaseReg, Scale) ||
1725          // Or formulae that use a base register produced by a sum of base
1726          // registers.
1727          (Scale == 1 &&
1728           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1729                                BaseGV, BaseOffset, true, 0));
1730 }
1731 
1732 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1733                        int64_t MaxOffset, LSRUse::KindType Kind,
1734                        MemAccessTy AccessTy, const Formula &F) {
1735   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1736                     F.BaseOffset, F.HasBaseReg, F.Scale);
1737 }
1738 
1739 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1740                                  const LSRUse &LU, const Formula &F) {
1741   // Target may want to look at the user instructions.
1742   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1743     for (const LSRFixup &Fixup : LU.Fixups)
1744       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1745                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1746                                 F.Scale, Fixup.UserInst))
1747         return false;
1748     return true;
1749   }
1750 
1751   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1752                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1753                               F.Scale);
1754 }
1755 
1756 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1757                                      const LSRUse &LU, const Formula &F,
1758                                      const Loop &L) {
1759   if (!F.Scale)
1760     return 0;
1761 
1762   // If the use is not completely folded in that instruction, we will have to
1763   // pay an extra cost only for scale != 1.
1764   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1765                             LU.AccessTy, F, L))
1766     return F.Scale != 1;
1767 
1768   switch (LU.Kind) {
1769   case LSRUse::Address: {
1770     // Check the scaling factor cost with both the min and max offsets.
1771     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1772         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1773         F.Scale, LU.AccessTy.AddrSpace);
1774     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1775         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1776         F.Scale, LU.AccessTy.AddrSpace);
1777 
1778     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1779            "Legal addressing mode has an illegal cost!");
1780     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1781   }
1782   case LSRUse::ICmpZero:
1783   case LSRUse::Basic:
1784   case LSRUse::Special:
1785     // The use is completely folded, i.e., everything is folded into the
1786     // instruction.
1787     return 0;
1788   }
1789 
1790   llvm_unreachable("Invalid LSRUse Kind!");
1791 }
1792 
1793 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1794                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1795                              GlobalValue *BaseGV, int64_t BaseOffset,
1796                              bool HasBaseReg) {
1797   // Fast-path: zero is always foldable.
1798   if (BaseOffset == 0 && !BaseGV) return true;
1799 
1800   // Conservatively, create an address with an immediate and a
1801   // base and a scale.
1802   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1803 
1804   // Canonicalize a scale of 1 to a base register if the formula doesn't
1805   // already have a base register.
1806   if (!HasBaseReg && Scale == 1) {
1807     Scale = 0;
1808     HasBaseReg = true;
1809   }
1810 
1811   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1812                               HasBaseReg, Scale);
1813 }
1814 
1815 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1816                              ScalarEvolution &SE, int64_t MinOffset,
1817                              int64_t MaxOffset, LSRUse::KindType Kind,
1818                              MemAccessTy AccessTy, const SCEV *S,
1819                              bool HasBaseReg) {
1820   // Fast-path: zero is always foldable.
1821   if (S->isZero()) return true;
1822 
1823   // Conservatively, create an address with an immediate and a
1824   // base and a scale.
1825   int64_t BaseOffset = ExtractImmediate(S, SE);
1826   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1827 
1828   // If there's anything else involved, it's not foldable.
1829   if (!S->isZero()) return false;
1830 
1831   // Fast-path: zero is always foldable.
1832   if (BaseOffset == 0 && !BaseGV) return true;
1833 
1834   // Conservatively, create an address with an immediate and a
1835   // base and a scale.
1836   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1837 
1838   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1839                               BaseOffset, HasBaseReg, Scale);
1840 }
1841 
1842 namespace {
1843 
1844 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1845 /// an expression that computes the IV it uses from the IV used by the previous
1846 /// link in the Chain.
1847 ///
1848 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1849 /// original IVOperand. The head of the chain's IVOperand is only valid during
1850 /// chain collection, before LSR replaces IV users. During chain generation,
1851 /// IncExpr can be used to find the new IVOperand that computes the same
1852 /// expression.
1853 struct IVInc {
1854   Instruction *UserInst;
1855   Value* IVOperand;
1856   const SCEV *IncExpr;
1857 
1858   IVInc(Instruction *U, Value *O, const SCEV *E)
1859       : UserInst(U), IVOperand(O), IncExpr(E) {}
1860 };
1861 
1862 // The list of IV increments in program order.  We typically add the head of a
1863 // chain without finding subsequent links.
1864 struct IVChain {
1865   SmallVector<IVInc, 1> Incs;
1866   const SCEV *ExprBase = nullptr;
1867 
1868   IVChain() = default;
1869   IVChain(const IVInc &Head, const SCEV *Base)
1870       : Incs(1, Head), ExprBase(Base) {}
1871 
1872   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1873 
1874   // Return the first increment in the chain.
1875   const_iterator begin() const {
1876     assert(!Incs.empty());
1877     return std::next(Incs.begin());
1878   }
1879   const_iterator end() const {
1880     return Incs.end();
1881   }
1882 
1883   // Returns true if this chain contains any increments.
1884   bool hasIncs() const { return Incs.size() >= 2; }
1885 
1886   // Add an IVInc to the end of this chain.
1887   void add(const IVInc &X) { Incs.push_back(X); }
1888 
1889   // Returns the last UserInst in the chain.
1890   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1891 
1892   // Returns true if IncExpr can be profitably added to this chain.
1893   bool isProfitableIncrement(const SCEV *OperExpr,
1894                              const SCEV *IncExpr,
1895                              ScalarEvolution&);
1896 };
1897 
1898 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1899 /// between FarUsers that definitely cross IV increments and NearUsers that may
1900 /// be used between IV increments.
1901 struct ChainUsers {
1902   SmallPtrSet<Instruction*, 4> FarUsers;
1903   SmallPtrSet<Instruction*, 4> NearUsers;
1904 };
1905 
1906 /// This class holds state for the main loop strength reduction logic.
1907 class LSRInstance {
1908   IVUsers &IU;
1909   ScalarEvolution &SE;
1910   DominatorTree &DT;
1911   LoopInfo &LI;
1912   AssumptionCache &AC;
1913   TargetLibraryInfo &LibInfo;
1914   const TargetTransformInfo &TTI;
1915   Loop *const L;
1916   bool FavorBackedgeIndex = false;
1917   bool Changed = false;
1918 
1919   /// This is the insert position that the current loop's induction variable
1920   /// increment should be placed. In simple loops, this is the latch block's
1921   /// terminator. But in more complicated cases, this is a position which will
1922   /// dominate all the in-loop post-increment users.
1923   Instruction *IVIncInsertPos = nullptr;
1924 
1925   /// Interesting factors between use strides.
1926   ///
1927   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1928   /// default, a SmallDenseSet, because we need to use the full range of
1929   /// int64_ts, and there's currently no good way of doing that with
1930   /// SmallDenseSet.
1931   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1932 
1933   /// Interesting use types, to facilitate truncation reuse.
1934   SmallSetVector<Type *, 4> Types;
1935 
1936   /// The list of interesting uses.
1937   mutable SmallVector<LSRUse, 16> Uses;
1938 
1939   /// Track which uses use which register candidates.
1940   RegUseTracker RegUses;
1941 
1942   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1943   // have more than a few IV increment chains in a loop. Missing a Chain falls
1944   // back to normal LSR behavior for those uses.
1945   static const unsigned MaxChains = 8;
1946 
1947   /// IV users can form a chain of IV increments.
1948   SmallVector<IVChain, MaxChains> IVChainVec;
1949 
1950   /// IV users that belong to profitable IVChains.
1951   SmallPtrSet<Use*, MaxChains> IVIncSet;
1952 
1953   void OptimizeShadowIV();
1954   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1955   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1956   void OptimizeLoopTermCond();
1957 
1958   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1959                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1960   void FinalizeChain(IVChain &Chain);
1961   void CollectChains();
1962   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1963                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1964 
1965   void CollectInterestingTypesAndFactors();
1966   void CollectFixupsAndInitialFormulae();
1967 
1968   // Support for sharing of LSRUses between LSRFixups.
1969   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1970   UseMapTy UseMap;
1971 
1972   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1973                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1974 
1975   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1976                                     MemAccessTy AccessTy);
1977 
1978   void DeleteUse(LSRUse &LU, size_t LUIdx);
1979 
1980   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1981 
1982   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1983   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1984   void CountRegisters(const Formula &F, size_t LUIdx);
1985   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1986 
1987   void CollectLoopInvariantFixupsAndFormulae();
1988 
1989   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1990                               unsigned Depth = 0);
1991 
1992   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1993                                   const Formula &Base, unsigned Depth,
1994                                   size_t Idx, bool IsScaledReg = false);
1995   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1996   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1997                                    const Formula &Base, size_t Idx,
1998                                    bool IsScaledReg = false);
1999   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2001                                    const Formula &Base,
2002                                    const SmallVectorImpl<int64_t> &Worklist,
2003                                    size_t Idx, bool IsScaledReg = false);
2004   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2005   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2006   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2007   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2008   void GenerateCrossUseConstantOffsets();
2009   void GenerateAllReuseFormulae();
2010 
2011   void FilterOutUndesirableDedicatedRegisters();
2012 
2013   size_t EstimateSearchSpaceComplexity() const;
2014   void NarrowSearchSpaceByDetectingSupersets();
2015   void NarrowSearchSpaceByCollapsingUnrolledCode();
2016   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2017   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2018   void NarrowSearchSpaceByDeletingCostlyFormulas();
2019   void NarrowSearchSpaceByPickingWinnerRegs();
2020   void NarrowSearchSpaceUsingHeuristics();
2021 
2022   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2023                     Cost &SolutionCost,
2024                     SmallVectorImpl<const Formula *> &Workspace,
2025                     const Cost &CurCost,
2026                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2027                     DenseSet<const SCEV *> &VisitedRegs) const;
2028   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2029 
2030   BasicBlock::iterator
2031     HoistInsertPosition(BasicBlock::iterator IP,
2032                         const SmallVectorImpl<Instruction *> &Inputs) const;
2033   BasicBlock::iterator
2034     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2035                                   const LSRFixup &LF,
2036                                   const LSRUse &LU,
2037                                   SCEVExpander &Rewriter) const;
2038 
2039   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2040                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2041                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2042   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2043                      const Formula &F, SCEVExpander &Rewriter,
2044                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2045   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2046                SCEVExpander &Rewriter,
2047                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2048   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2049 
2050 public:
2051   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2052               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2053               TargetLibraryInfo &LibInfo);
2054 
2055   bool getChanged() const { return Changed; }
2056 
2057   void print_factors_and_types(raw_ostream &OS) const;
2058   void print_fixups(raw_ostream &OS) const;
2059   void print_uses(raw_ostream &OS) const;
2060   void print(raw_ostream &OS) const;
2061   void dump() const;
2062 };
2063 
2064 } // end anonymous namespace
2065 
2066 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2067 /// the cast operation.
2068 void LSRInstance::OptimizeShadowIV() {
2069   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2070   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2071     return;
2072 
2073   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2074        UI != E; /* empty */) {
2075     IVUsers::const_iterator CandidateUI = UI;
2076     ++UI;
2077     Instruction *ShadowUse = CandidateUI->getUser();
2078     Type *DestTy = nullptr;
2079     bool IsSigned = false;
2080 
2081     /* If shadow use is a int->float cast then insert a second IV
2082        to eliminate this cast.
2083 
2084          for (unsigned i = 0; i < n; ++i)
2085            foo((double)i);
2086 
2087        is transformed into
2088 
2089          double d = 0.0;
2090          for (unsigned i = 0; i < n; ++i, ++d)
2091            foo(d);
2092     */
2093     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2094       IsSigned = false;
2095       DestTy = UCast->getDestTy();
2096     }
2097     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2098       IsSigned = true;
2099       DestTy = SCast->getDestTy();
2100     }
2101     if (!DestTy) continue;
2102 
2103     // If target does not support DestTy natively then do not apply
2104     // this transformation.
2105     if (!TTI.isTypeLegal(DestTy)) continue;
2106 
2107     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2108     if (!PH) continue;
2109     if (PH->getNumIncomingValues() != 2) continue;
2110 
2111     // If the calculation in integers overflows, the result in FP type will
2112     // differ. So we only can do this transformation if we are guaranteed to not
2113     // deal with overflowing values
2114     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2115     if (!AR) continue;
2116     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2117     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2118 
2119     Type *SrcTy = PH->getType();
2120     int Mantissa = DestTy->getFPMantissaWidth();
2121     if (Mantissa == -1) continue;
2122     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2123       continue;
2124 
2125     unsigned Entry, Latch;
2126     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2127       Entry = 0;
2128       Latch = 1;
2129     } else {
2130       Entry = 1;
2131       Latch = 0;
2132     }
2133 
2134     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2135     if (!Init) continue;
2136     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2137                                         (double)Init->getSExtValue() :
2138                                         (double)Init->getZExtValue());
2139 
2140     BinaryOperator *Incr =
2141       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2142     if (!Incr) continue;
2143     if (Incr->getOpcode() != Instruction::Add
2144         && Incr->getOpcode() != Instruction::Sub)
2145       continue;
2146 
2147     /* Initialize new IV, double d = 0.0 in above example. */
2148     ConstantInt *C = nullptr;
2149     if (Incr->getOperand(0) == PH)
2150       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2151     else if (Incr->getOperand(1) == PH)
2152       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2153     else
2154       continue;
2155 
2156     if (!C) continue;
2157 
2158     // Ignore negative constants, as the code below doesn't handle them
2159     // correctly. TODO: Remove this restriction.
2160     if (!C->getValue().isStrictlyPositive()) continue;
2161 
2162     /* Add new PHINode. */
2163     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2164 
2165     /* create new increment. '++d' in above example. */
2166     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2167     BinaryOperator *NewIncr =
2168       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2169                                Instruction::FAdd : Instruction::FSub,
2170                              NewPH, CFP, "IV.S.next.", Incr);
2171 
2172     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2173     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2174 
2175     /* Remove cast operation */
2176     ShadowUse->replaceAllUsesWith(NewPH);
2177     ShadowUse->eraseFromParent();
2178     Changed = true;
2179     break;
2180   }
2181 }
2182 
2183 /// If Cond has an operand that is an expression of an IV, set the IV user and
2184 /// stride information and return true, otherwise return false.
2185 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2186   for (IVStrideUse &U : IU)
2187     if (U.getUser() == Cond) {
2188       // NOTE: we could handle setcc instructions with multiple uses here, but
2189       // InstCombine does it as well for simple uses, it's not clear that it
2190       // occurs enough in real life to handle.
2191       CondUse = &U;
2192       return true;
2193     }
2194   return false;
2195 }
2196 
2197 /// Rewrite the loop's terminating condition if it uses a max computation.
2198 ///
2199 /// This is a narrow solution to a specific, but acute, problem. For loops
2200 /// like this:
2201 ///
2202 ///   i = 0;
2203 ///   do {
2204 ///     p[i] = 0.0;
2205 ///   } while (++i < n);
2206 ///
2207 /// the trip count isn't just 'n', because 'n' might not be positive. And
2208 /// unfortunately this can come up even for loops where the user didn't use
2209 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2210 /// will commonly be lowered like this:
2211 ///
2212 ///   if (n > 0) {
2213 ///     i = 0;
2214 ///     do {
2215 ///       p[i] = 0.0;
2216 ///     } while (++i < n);
2217 ///   }
2218 ///
2219 /// and then it's possible for subsequent optimization to obscure the if
2220 /// test in such a way that indvars can't find it.
2221 ///
2222 /// When indvars can't find the if test in loops like this, it creates a
2223 /// max expression, which allows it to give the loop a canonical
2224 /// induction variable:
2225 ///
2226 ///   i = 0;
2227 ///   max = n < 1 ? 1 : n;
2228 ///   do {
2229 ///     p[i] = 0.0;
2230 ///   } while (++i != max);
2231 ///
2232 /// Canonical induction variables are necessary because the loop passes
2233 /// are designed around them. The most obvious example of this is the
2234 /// LoopInfo analysis, which doesn't remember trip count values. It
2235 /// expects to be able to rediscover the trip count each time it is
2236 /// needed, and it does this using a simple analysis that only succeeds if
2237 /// the loop has a canonical induction variable.
2238 ///
2239 /// However, when it comes time to generate code, the maximum operation
2240 /// can be quite costly, especially if it's inside of an outer loop.
2241 ///
2242 /// This function solves this problem by detecting this type of loop and
2243 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2244 /// the instructions for the maximum computation.
2245 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2246   // Check that the loop matches the pattern we're looking for.
2247   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2248       Cond->getPredicate() != CmpInst::ICMP_NE)
2249     return Cond;
2250 
2251   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2252   if (!Sel || !Sel->hasOneUse()) return Cond;
2253 
2254   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2255   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2256     return Cond;
2257   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2258 
2259   // Add one to the backedge-taken count to get the trip count.
2260   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2261   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2262 
2263   // Check for a max calculation that matches the pattern. There's no check
2264   // for ICMP_ULE here because the comparison would be with zero, which
2265   // isn't interesting.
2266   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2267   const SCEVNAryExpr *Max = nullptr;
2268   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2269     Pred = ICmpInst::ICMP_SLE;
2270     Max = S;
2271   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2272     Pred = ICmpInst::ICMP_SLT;
2273     Max = S;
2274   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2275     Pred = ICmpInst::ICMP_ULT;
2276     Max = U;
2277   } else {
2278     // No match; bail.
2279     return Cond;
2280   }
2281 
2282   // To handle a max with more than two operands, this optimization would
2283   // require additional checking and setup.
2284   if (Max->getNumOperands() != 2)
2285     return Cond;
2286 
2287   const SCEV *MaxLHS = Max->getOperand(0);
2288   const SCEV *MaxRHS = Max->getOperand(1);
2289 
2290   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2291   // for a comparison with 1. For <= and >=, a comparison with zero.
2292   if (!MaxLHS ||
2293       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2294     return Cond;
2295 
2296   // Check the relevant induction variable for conformance to
2297   // the pattern.
2298   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2299   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2300   if (!AR || !AR->isAffine() ||
2301       AR->getStart() != One ||
2302       AR->getStepRecurrence(SE) != One)
2303     return Cond;
2304 
2305   assert(AR->getLoop() == L &&
2306          "Loop condition operand is an addrec in a different loop!");
2307 
2308   // Check the right operand of the select, and remember it, as it will
2309   // be used in the new comparison instruction.
2310   Value *NewRHS = nullptr;
2311   if (ICmpInst::isTrueWhenEqual(Pred)) {
2312     // Look for n+1, and grab n.
2313     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2314       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2315          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2316            NewRHS = BO->getOperand(0);
2317     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2318       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2319         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2320           NewRHS = BO->getOperand(0);
2321     if (!NewRHS)
2322       return Cond;
2323   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2324     NewRHS = Sel->getOperand(1);
2325   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2326     NewRHS = Sel->getOperand(2);
2327   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2328     NewRHS = SU->getValue();
2329   else
2330     // Max doesn't match expected pattern.
2331     return Cond;
2332 
2333   // Determine the new comparison opcode. It may be signed or unsigned,
2334   // and the original comparison may be either equality or inequality.
2335   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2336     Pred = CmpInst::getInversePredicate(Pred);
2337 
2338   // Ok, everything looks ok to change the condition into an SLT or SGE and
2339   // delete the max calculation.
2340   ICmpInst *NewCond =
2341     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2342 
2343   // Delete the max calculation instructions.
2344   Cond->replaceAllUsesWith(NewCond);
2345   CondUse->setUser(NewCond);
2346   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2347   Cond->eraseFromParent();
2348   Sel->eraseFromParent();
2349   if (Cmp->use_empty())
2350     Cmp->eraseFromParent();
2351   return NewCond;
2352 }
2353 
2354 /// Change loop terminating condition to use the postinc iv when possible.
2355 void
2356 LSRInstance::OptimizeLoopTermCond() {
2357   SmallPtrSet<Instruction *, 4> PostIncs;
2358 
2359   // We need a different set of heuristics for rotated and non-rotated loops.
2360   // If a loop is rotated then the latch is also the backedge, so inserting
2361   // post-inc expressions just before the latch is ideal. To reduce live ranges
2362   // it also makes sense to rewrite terminating conditions to use post-inc
2363   // expressions.
2364   //
2365   // If the loop is not rotated then the latch is not a backedge; the latch
2366   // check is done in the loop head. Adding post-inc expressions before the
2367   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2368   // in the loop body. In this case we do *not* want to use post-inc expressions
2369   // in the latch check, and we want to insert post-inc expressions before
2370   // the backedge.
2371   BasicBlock *LatchBlock = L->getLoopLatch();
2372   SmallVector<BasicBlock*, 8> ExitingBlocks;
2373   L->getExitingBlocks(ExitingBlocks);
2374   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2375         return LatchBlock != BB;
2376       })) {
2377     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2378     IVIncInsertPos = LatchBlock->getTerminator();
2379     return;
2380   }
2381 
2382   // Otherwise treat this as a rotated loop.
2383   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2384     // Get the terminating condition for the loop if possible.  If we
2385     // can, we want to change it to use a post-incremented version of its
2386     // induction variable, to allow coalescing the live ranges for the IV into
2387     // one register value.
2388 
2389     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2390     if (!TermBr)
2391       continue;
2392     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2393     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2394       continue;
2395 
2396     // Search IVUsesByStride to find Cond's IVUse if there is one.
2397     IVStrideUse *CondUse = nullptr;
2398     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2399     if (!FindIVUserForCond(Cond, CondUse))
2400       continue;
2401 
2402     // If the trip count is computed in terms of a max (due to ScalarEvolution
2403     // being unable to find a sufficient guard, for example), change the loop
2404     // comparison to use SLT or ULT instead of NE.
2405     // One consequence of doing this now is that it disrupts the count-down
2406     // optimization. That's not always a bad thing though, because in such
2407     // cases it may still be worthwhile to avoid a max.
2408     Cond = OptimizeMax(Cond, CondUse);
2409 
2410     // If this exiting block dominates the latch block, it may also use
2411     // the post-inc value if it won't be shared with other uses.
2412     // Check for dominance.
2413     if (!DT.dominates(ExitingBlock, LatchBlock))
2414       continue;
2415 
2416     // Conservatively avoid trying to use the post-inc value in non-latch
2417     // exits if there may be pre-inc users in intervening blocks.
2418     if (LatchBlock != ExitingBlock)
2419       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2420         // Test if the use is reachable from the exiting block. This dominator
2421         // query is a conservative approximation of reachability.
2422         if (&*UI != CondUse &&
2423             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2424           // Conservatively assume there may be reuse if the quotient of their
2425           // strides could be a legal scale.
2426           const SCEV *A = IU.getStride(*CondUse, L);
2427           const SCEV *B = IU.getStride(*UI, L);
2428           if (!A || !B) continue;
2429           if (SE.getTypeSizeInBits(A->getType()) !=
2430               SE.getTypeSizeInBits(B->getType())) {
2431             if (SE.getTypeSizeInBits(A->getType()) >
2432                 SE.getTypeSizeInBits(B->getType()))
2433               B = SE.getSignExtendExpr(B, A->getType());
2434             else
2435               A = SE.getSignExtendExpr(A, B->getType());
2436           }
2437           if (const SCEVConstant *D =
2438                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2439             const ConstantInt *C = D->getValue();
2440             // Stride of one or negative one can have reuse with non-addresses.
2441             if (C->isOne() || C->isMinusOne())
2442               goto decline_post_inc;
2443             // Avoid weird situations.
2444             if (C->getValue().getMinSignedBits() >= 64 ||
2445                 C->getValue().isMinSignedValue())
2446               goto decline_post_inc;
2447             // Check for possible scaled-address reuse.
2448             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2449               MemAccessTy AccessTy = getAccessType(
2450                   TTI, UI->getUser(), UI->getOperandValToReplace());
2451               int64_t Scale = C->getSExtValue();
2452               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2453                                             /*BaseOffset=*/0,
2454                                             /*HasBaseReg=*/false, Scale,
2455                                             AccessTy.AddrSpace))
2456                 goto decline_post_inc;
2457               Scale = -Scale;
2458               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2459                                             /*BaseOffset=*/0,
2460                                             /*HasBaseReg=*/false, Scale,
2461                                             AccessTy.AddrSpace))
2462                 goto decline_post_inc;
2463             }
2464           }
2465         }
2466 
2467     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2468                       << *Cond << '\n');
2469 
2470     // It's possible for the setcc instruction to be anywhere in the loop, and
2471     // possible for it to have multiple users.  If it is not immediately before
2472     // the exiting block branch, move it.
2473     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2474       if (Cond->hasOneUse()) {
2475         Cond->moveBefore(TermBr);
2476       } else {
2477         // Clone the terminating condition and insert into the loopend.
2478         ICmpInst *OldCond = Cond;
2479         Cond = cast<ICmpInst>(Cond->clone());
2480         Cond->setName(L->getHeader()->getName() + ".termcond");
2481         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2482 
2483         // Clone the IVUse, as the old use still exists!
2484         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2485         TermBr->replaceUsesOfWith(OldCond, Cond);
2486       }
2487     }
2488 
2489     // If we get to here, we know that we can transform the setcc instruction to
2490     // use the post-incremented version of the IV, allowing us to coalesce the
2491     // live ranges for the IV correctly.
2492     CondUse->transformToPostInc(L);
2493     Changed = true;
2494 
2495     PostIncs.insert(Cond);
2496   decline_post_inc:;
2497   }
2498 
2499   // Determine an insertion point for the loop induction variable increment. It
2500   // must dominate all the post-inc comparisons we just set up, and it must
2501   // dominate the loop latch edge.
2502   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2503   for (Instruction *Inst : PostIncs) {
2504     BasicBlock *BB =
2505       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2506                                     Inst->getParent());
2507     if (BB == Inst->getParent())
2508       IVIncInsertPos = Inst;
2509     else if (BB != IVIncInsertPos->getParent())
2510       IVIncInsertPos = BB->getTerminator();
2511   }
2512 }
2513 
2514 /// Determine if the given use can accommodate a fixup at the given offset and
2515 /// other details. If so, update the use and return true.
2516 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2517                                      bool HasBaseReg, LSRUse::KindType Kind,
2518                                      MemAccessTy AccessTy) {
2519   int64_t NewMinOffset = LU.MinOffset;
2520   int64_t NewMaxOffset = LU.MaxOffset;
2521   MemAccessTy NewAccessTy = AccessTy;
2522 
2523   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2524   // something conservative, however this can pessimize in the case that one of
2525   // the uses will have all its uses outside the loop, for example.
2526   if (LU.Kind != Kind)
2527     return false;
2528 
2529   // Check for a mismatched access type, and fall back conservatively as needed.
2530   // TODO: Be less conservative when the type is similar and can use the same
2531   // addressing modes.
2532   if (Kind == LSRUse::Address) {
2533     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2534       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2535                                             AccessTy.AddrSpace);
2536     }
2537   }
2538 
2539   // Conservatively assume HasBaseReg is true for now.
2540   if (NewOffset < LU.MinOffset) {
2541     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2542                           LU.MaxOffset - NewOffset, HasBaseReg))
2543       return false;
2544     NewMinOffset = NewOffset;
2545   } else if (NewOffset > LU.MaxOffset) {
2546     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2547                           NewOffset - LU.MinOffset, HasBaseReg))
2548       return false;
2549     NewMaxOffset = NewOffset;
2550   }
2551 
2552   // Update the use.
2553   LU.MinOffset = NewMinOffset;
2554   LU.MaxOffset = NewMaxOffset;
2555   LU.AccessTy = NewAccessTy;
2556   return true;
2557 }
2558 
2559 /// Return an LSRUse index and an offset value for a fixup which needs the given
2560 /// expression, with the given kind and optional access type.  Either reuse an
2561 /// existing use or create a new one, as needed.
2562 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2563                                                LSRUse::KindType Kind,
2564                                                MemAccessTy AccessTy) {
2565   const SCEV *Copy = Expr;
2566   int64_t Offset = ExtractImmediate(Expr, SE);
2567 
2568   // Basic uses can't accept any offset, for example.
2569   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2570                         Offset, /*HasBaseReg=*/ true)) {
2571     Expr = Copy;
2572     Offset = 0;
2573   }
2574 
2575   std::pair<UseMapTy::iterator, bool> P =
2576     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2577   if (!P.second) {
2578     // A use already existed with this base.
2579     size_t LUIdx = P.first->second;
2580     LSRUse &LU = Uses[LUIdx];
2581     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2582       // Reuse this use.
2583       return std::make_pair(LUIdx, Offset);
2584   }
2585 
2586   // Create a new use.
2587   size_t LUIdx = Uses.size();
2588   P.first->second = LUIdx;
2589   Uses.push_back(LSRUse(Kind, AccessTy));
2590   LSRUse &LU = Uses[LUIdx];
2591 
2592   LU.MinOffset = Offset;
2593   LU.MaxOffset = Offset;
2594   return std::make_pair(LUIdx, Offset);
2595 }
2596 
2597 /// Delete the given use from the Uses list.
2598 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2599   if (&LU != &Uses.back())
2600     std::swap(LU, Uses.back());
2601   Uses.pop_back();
2602 
2603   // Update RegUses.
2604   RegUses.swapAndDropUse(LUIdx, Uses.size());
2605 }
2606 
2607 /// Look for a use distinct from OrigLU which is has a formula that has the same
2608 /// registers as the given formula.
2609 LSRUse *
2610 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2611                                        const LSRUse &OrigLU) {
2612   // Search all uses for the formula. This could be more clever.
2613   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2614     LSRUse &LU = Uses[LUIdx];
2615     // Check whether this use is close enough to OrigLU, to see whether it's
2616     // worthwhile looking through its formulae.
2617     // Ignore ICmpZero uses because they may contain formulae generated by
2618     // GenerateICmpZeroScales, in which case adding fixup offsets may
2619     // be invalid.
2620     if (&LU != &OrigLU &&
2621         LU.Kind != LSRUse::ICmpZero &&
2622         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2623         LU.WidestFixupType == OrigLU.WidestFixupType &&
2624         LU.HasFormulaWithSameRegs(OrigF)) {
2625       // Scan through this use's formulae.
2626       for (const Formula &F : LU.Formulae) {
2627         // Check to see if this formula has the same registers and symbols
2628         // as OrigF.
2629         if (F.BaseRegs == OrigF.BaseRegs &&
2630             F.ScaledReg == OrigF.ScaledReg &&
2631             F.BaseGV == OrigF.BaseGV &&
2632             F.Scale == OrigF.Scale &&
2633             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2634           if (F.BaseOffset == 0)
2635             return &LU;
2636           // This is the formula where all the registers and symbols matched;
2637           // there aren't going to be any others. Since we declined it, we
2638           // can skip the rest of the formulae and proceed to the next LSRUse.
2639           break;
2640         }
2641       }
2642     }
2643   }
2644 
2645   // Nothing looked good.
2646   return nullptr;
2647 }
2648 
2649 void LSRInstance::CollectInterestingTypesAndFactors() {
2650   SmallSetVector<const SCEV *, 4> Strides;
2651 
2652   // Collect interesting types and strides.
2653   SmallVector<const SCEV *, 4> Worklist;
2654   for (const IVStrideUse &U : IU) {
2655     const SCEV *Expr = IU.getExpr(U);
2656 
2657     // Collect interesting types.
2658     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2659 
2660     // Add strides for mentioned loops.
2661     Worklist.push_back(Expr);
2662     do {
2663       const SCEV *S = Worklist.pop_back_val();
2664       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2665         if (AR->getLoop() == L)
2666           Strides.insert(AR->getStepRecurrence(SE));
2667         Worklist.push_back(AR->getStart());
2668       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2669         Worklist.append(Add->op_begin(), Add->op_end());
2670       }
2671     } while (!Worklist.empty());
2672   }
2673 
2674   // Compute interesting factors from the set of interesting strides.
2675   for (SmallSetVector<const SCEV *, 4>::const_iterator
2676        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2677     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2678          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2679       const SCEV *OldStride = *I;
2680       const SCEV *NewStride = *NewStrideIter;
2681 
2682       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2683           SE.getTypeSizeInBits(NewStride->getType())) {
2684         if (SE.getTypeSizeInBits(OldStride->getType()) >
2685             SE.getTypeSizeInBits(NewStride->getType()))
2686           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2687         else
2688           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2689       }
2690       if (const SCEVConstant *Factor =
2691             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2692                                                         SE, true))) {
2693         if (Factor->getAPInt().getMinSignedBits() <= 64)
2694           Factors.insert(Factor->getAPInt().getSExtValue());
2695       } else if (const SCEVConstant *Factor =
2696                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2697                                                                NewStride,
2698                                                                SE, true))) {
2699         if (Factor->getAPInt().getMinSignedBits() <= 64)
2700           Factors.insert(Factor->getAPInt().getSExtValue());
2701       }
2702     }
2703 
2704   // If all uses use the same type, don't bother looking for truncation-based
2705   // reuse.
2706   if (Types.size() == 1)
2707     Types.clear();
2708 
2709   LLVM_DEBUG(print_factors_and_types(dbgs()));
2710 }
2711 
2712 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2713 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2714 /// IVStrideUses, we could partially skip this.
2715 static User::op_iterator
2716 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2717               Loop *L, ScalarEvolution &SE) {
2718   for(; OI != OE; ++OI) {
2719     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2720       if (!SE.isSCEVable(Oper->getType()))
2721         continue;
2722 
2723       if (const SCEVAddRecExpr *AR =
2724           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2725         if (AR->getLoop() == L)
2726           break;
2727       }
2728     }
2729   }
2730   return OI;
2731 }
2732 
2733 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2734 /// a convenient helper.
2735 static Value *getWideOperand(Value *Oper) {
2736   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2737     return Trunc->getOperand(0);
2738   return Oper;
2739 }
2740 
2741 /// Return true if we allow an IV chain to include both types.
2742 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2743   Type *LType = LVal->getType();
2744   Type *RType = RVal->getType();
2745   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2746                               // Different address spaces means (possibly)
2747                               // different types of the pointer implementation,
2748                               // e.g. i16 vs i32 so disallow that.
2749                               (LType->getPointerAddressSpace() ==
2750                                RType->getPointerAddressSpace()));
2751 }
2752 
2753 /// Return an approximation of this SCEV expression's "base", or NULL for any
2754 /// constant. Returning the expression itself is conservative. Returning a
2755 /// deeper subexpression is more precise and valid as long as it isn't less
2756 /// complex than another subexpression. For expressions involving multiple
2757 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2758 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2759 /// IVInc==b-a.
2760 ///
2761 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2762 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2763 static const SCEV *getExprBase(const SCEV *S) {
2764   switch (S->getSCEVType()) {
2765   default: // uncluding scUnknown.
2766     return S;
2767   case scConstant:
2768     return nullptr;
2769   case scTruncate:
2770     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2771   case scZeroExtend:
2772     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2773   case scSignExtend:
2774     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2775   case scAddExpr: {
2776     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2777     // there's nothing more complex.
2778     // FIXME: not sure if we want to recognize negation.
2779     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2780     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2781            E(Add->op_begin()); I != E; ++I) {
2782       const SCEV *SubExpr = *I;
2783       if (SubExpr->getSCEVType() == scAddExpr)
2784         return getExprBase(SubExpr);
2785 
2786       if (SubExpr->getSCEVType() != scMulExpr)
2787         return SubExpr;
2788     }
2789     return S; // all operands are scaled, be conservative.
2790   }
2791   case scAddRecExpr:
2792     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2793   }
2794 }
2795 
2796 /// Return true if the chain increment is profitable to expand into a loop
2797 /// invariant value, which may require its own register. A profitable chain
2798 /// increment will be an offset relative to the same base. We allow such offsets
2799 /// to potentially be used as chain increment as long as it's not obviously
2800 /// expensive to expand using real instructions.
2801 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2802                                     const SCEV *IncExpr,
2803                                     ScalarEvolution &SE) {
2804   // Aggressively form chains when -stress-ivchain.
2805   if (StressIVChain)
2806     return true;
2807 
2808   // Do not replace a constant offset from IV head with a nonconstant IV
2809   // increment.
2810   if (!isa<SCEVConstant>(IncExpr)) {
2811     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2812     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2813       return false;
2814   }
2815 
2816   SmallPtrSet<const SCEV*, 8> Processed;
2817   return !isHighCostExpansion(IncExpr, Processed, SE);
2818 }
2819 
2820 /// Return true if the number of registers needed for the chain is estimated to
2821 /// be less than the number required for the individual IV users. First prohibit
2822 /// any IV users that keep the IV live across increments (the Users set should
2823 /// be empty). Next count the number and type of increments in the chain.
2824 ///
2825 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2826 /// effectively use postinc addressing modes. Only consider it profitable it the
2827 /// increments can be computed in fewer registers when chained.
2828 ///
2829 /// TODO: Consider IVInc free if it's already used in another chains.
2830 static bool
2831 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2832                   ScalarEvolution &SE) {
2833   if (StressIVChain)
2834     return true;
2835 
2836   if (!Chain.hasIncs())
2837     return false;
2838 
2839   if (!Users.empty()) {
2840     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2841                for (Instruction *Inst
2842                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2843     return false;
2844   }
2845   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2846 
2847   // The chain itself may require a register, so intialize cost to 1.
2848   int cost = 1;
2849 
2850   // A complete chain likely eliminates the need for keeping the original IV in
2851   // a register. LSR does not currently know how to form a complete chain unless
2852   // the header phi already exists.
2853   if (isa<PHINode>(Chain.tailUserInst())
2854       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2855     --cost;
2856   }
2857   const SCEV *LastIncExpr = nullptr;
2858   unsigned NumConstIncrements = 0;
2859   unsigned NumVarIncrements = 0;
2860   unsigned NumReusedIncrements = 0;
2861   for (const IVInc &Inc : Chain) {
2862     if (Inc.IncExpr->isZero())
2863       continue;
2864 
2865     // Incrementing by zero or some constant is neutral. We assume constants can
2866     // be folded into an addressing mode or an add's immediate operand.
2867     if (isa<SCEVConstant>(Inc.IncExpr)) {
2868       ++NumConstIncrements;
2869       continue;
2870     }
2871 
2872     if (Inc.IncExpr == LastIncExpr)
2873       ++NumReusedIncrements;
2874     else
2875       ++NumVarIncrements;
2876 
2877     LastIncExpr = Inc.IncExpr;
2878   }
2879   // An IV chain with a single increment is handled by LSR's postinc
2880   // uses. However, a chain with multiple increments requires keeping the IV's
2881   // value live longer than it needs to be if chained.
2882   if (NumConstIncrements > 1)
2883     --cost;
2884 
2885   // Materializing increment expressions in the preheader that didn't exist in
2886   // the original code may cost a register. For example, sign-extended array
2887   // indices can produce ridiculous increments like this:
2888   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2889   cost += NumVarIncrements;
2890 
2891   // Reusing variable increments likely saves a register to hold the multiple of
2892   // the stride.
2893   cost -= NumReusedIncrements;
2894 
2895   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2896                     << "\n");
2897 
2898   return cost < 0;
2899 }
2900 
2901 /// Add this IV user to an existing chain or make it the head of a new chain.
2902 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2903                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2904   // When IVs are used as types of varying widths, they are generally converted
2905   // to a wider type with some uses remaining narrow under a (free) trunc.
2906   Value *const NextIV = getWideOperand(IVOper);
2907   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2908   const SCEV *const OperExprBase = getExprBase(OperExpr);
2909 
2910   // Visit all existing chains. Check if its IVOper can be computed as a
2911   // profitable loop invariant increment from the last link in the Chain.
2912   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2913   const SCEV *LastIncExpr = nullptr;
2914   for (; ChainIdx < NChains; ++ChainIdx) {
2915     IVChain &Chain = IVChainVec[ChainIdx];
2916 
2917     // Prune the solution space aggressively by checking that both IV operands
2918     // are expressions that operate on the same unscaled SCEVUnknown. This
2919     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2920     // first avoids creating extra SCEV expressions.
2921     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2922       continue;
2923 
2924     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2925     if (!isCompatibleIVType(PrevIV, NextIV))
2926       continue;
2927 
2928     // A phi node terminates a chain.
2929     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2930       continue;
2931 
2932     // The increment must be loop-invariant so it can be kept in a register.
2933     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2934     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2935     if (!SE.isLoopInvariant(IncExpr, L))
2936       continue;
2937 
2938     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2939       LastIncExpr = IncExpr;
2940       break;
2941     }
2942   }
2943   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2944   // bother for phi nodes, because they must be last in the chain.
2945   if (ChainIdx == NChains) {
2946     if (isa<PHINode>(UserInst))
2947       return;
2948     if (NChains >= MaxChains && !StressIVChain) {
2949       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2950       return;
2951     }
2952     LastIncExpr = OperExpr;
2953     // IVUsers may have skipped over sign/zero extensions. We don't currently
2954     // attempt to form chains involving extensions unless they can be hoisted
2955     // into this loop's AddRec.
2956     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2957       return;
2958     ++NChains;
2959     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2960                                  OperExprBase));
2961     ChainUsersVec.resize(NChains);
2962     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2963                       << ") IV=" << *LastIncExpr << "\n");
2964   } else {
2965     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2966                       << ") IV+" << *LastIncExpr << "\n");
2967     // Add this IV user to the end of the chain.
2968     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2969   }
2970   IVChain &Chain = IVChainVec[ChainIdx];
2971 
2972   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2973   // This chain's NearUsers become FarUsers.
2974   if (!LastIncExpr->isZero()) {
2975     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2976                                             NearUsers.end());
2977     NearUsers.clear();
2978   }
2979 
2980   // All other uses of IVOperand become near uses of the chain.
2981   // We currently ignore intermediate values within SCEV expressions, assuming
2982   // they will eventually be used be the current chain, or can be computed
2983   // from one of the chain increments. To be more precise we could
2984   // transitively follow its user and only add leaf IV users to the set.
2985   for (User *U : IVOper->users()) {
2986     Instruction *OtherUse = dyn_cast<Instruction>(U);
2987     if (!OtherUse)
2988       continue;
2989     // Uses in the chain will no longer be uses if the chain is formed.
2990     // Include the head of the chain in this iteration (not Chain.begin()).
2991     IVChain::const_iterator IncIter = Chain.Incs.begin();
2992     IVChain::const_iterator IncEnd = Chain.Incs.end();
2993     for( ; IncIter != IncEnd; ++IncIter) {
2994       if (IncIter->UserInst == OtherUse)
2995         break;
2996     }
2997     if (IncIter != IncEnd)
2998       continue;
2999 
3000     if (SE.isSCEVable(OtherUse->getType())
3001         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3002         && IU.isIVUserOrOperand(OtherUse)) {
3003       continue;
3004     }
3005     NearUsers.insert(OtherUse);
3006   }
3007 
3008   // Since this user is part of the chain, it's no longer considered a use
3009   // of the chain.
3010   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3011 }
3012 
3013 /// Populate the vector of Chains.
3014 ///
3015 /// This decreases ILP at the architecture level. Targets with ample registers,
3016 /// multiple memory ports, and no register renaming probably don't want
3017 /// this. However, such targets should probably disable LSR altogether.
3018 ///
3019 /// The job of LSR is to make a reasonable choice of induction variables across
3020 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3021 /// ILP *within the loop* if the target wants it.
3022 ///
3023 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3024 /// will not reorder memory operations, it will recognize this as a chain, but
3025 /// will generate redundant IV increments. Ideally this would be corrected later
3026 /// by a smart scheduler:
3027 ///        = A[i]
3028 ///        = A[i+x]
3029 /// A[i]   =
3030 /// A[i+x] =
3031 ///
3032 /// TODO: Walk the entire domtree within this loop, not just the path to the
3033 /// loop latch. This will discover chains on side paths, but requires
3034 /// maintaining multiple copies of the Chains state.
3035 void LSRInstance::CollectChains() {
3036   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3037   SmallVector<ChainUsers, 8> ChainUsersVec;
3038 
3039   SmallVector<BasicBlock *,8> LatchPath;
3040   BasicBlock *LoopHeader = L->getHeader();
3041   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3042        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3043     LatchPath.push_back(Rung->getBlock());
3044   }
3045   LatchPath.push_back(LoopHeader);
3046 
3047   // Walk the instruction stream from the loop header to the loop latch.
3048   for (BasicBlock *BB : reverse(LatchPath)) {
3049     for (Instruction &I : *BB) {
3050       // Skip instructions that weren't seen by IVUsers analysis.
3051       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3052         continue;
3053 
3054       // Ignore users that are part of a SCEV expression. This way we only
3055       // consider leaf IV Users. This effectively rediscovers a portion of
3056       // IVUsers analysis but in program order this time.
3057       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3058           continue;
3059 
3060       // Remove this instruction from any NearUsers set it may be in.
3061       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3062            ChainIdx < NChains; ++ChainIdx) {
3063         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3064       }
3065       // Search for operands that can be chained.
3066       SmallPtrSet<Instruction*, 4> UniqueOperands;
3067       User::op_iterator IVOpEnd = I.op_end();
3068       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3069       while (IVOpIter != IVOpEnd) {
3070         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3071         if (UniqueOperands.insert(IVOpInst).second)
3072           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3073         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3074       }
3075     } // Continue walking down the instructions.
3076   } // Continue walking down the domtree.
3077   // Visit phi backedges to determine if the chain can generate the IV postinc.
3078   for (PHINode &PN : L->getHeader()->phis()) {
3079     if (!SE.isSCEVable(PN.getType()))
3080       continue;
3081 
3082     Instruction *IncV =
3083         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3084     if (IncV)
3085       ChainInstruction(&PN, IncV, ChainUsersVec);
3086   }
3087   // Remove any unprofitable chains.
3088   unsigned ChainIdx = 0;
3089   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3090        UsersIdx < NChains; ++UsersIdx) {
3091     if (!isProfitableChain(IVChainVec[UsersIdx],
3092                            ChainUsersVec[UsersIdx].FarUsers, SE))
3093       continue;
3094     // Preserve the chain at UsesIdx.
3095     if (ChainIdx != UsersIdx)
3096       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3097     FinalizeChain(IVChainVec[ChainIdx]);
3098     ++ChainIdx;
3099   }
3100   IVChainVec.resize(ChainIdx);
3101 }
3102 
3103 void LSRInstance::FinalizeChain(IVChain &Chain) {
3104   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3105   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3106 
3107   for (const IVInc &Inc : Chain) {
3108     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3109     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3110     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3111     IVIncSet.insert(UseI);
3112   }
3113 }
3114 
3115 /// Return true if the IVInc can be folded into an addressing mode.
3116 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3117                              Value *Operand, const TargetTransformInfo &TTI) {
3118   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3119   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3120     return false;
3121 
3122   if (IncConst->getAPInt().getMinSignedBits() > 64)
3123     return false;
3124 
3125   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3126   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3127   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3128                         IncOffset, /*HasBaseReg=*/false))
3129     return false;
3130 
3131   return true;
3132 }
3133 
3134 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3135 /// user's operand from the previous IV user's operand.
3136 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3137                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3138   // Find the new IVOperand for the head of the chain. It may have been replaced
3139   // by LSR.
3140   const IVInc &Head = Chain.Incs[0];
3141   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3142   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3143   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3144                                              IVOpEnd, L, SE);
3145   Value *IVSrc = nullptr;
3146   while (IVOpIter != IVOpEnd) {
3147     IVSrc = getWideOperand(*IVOpIter);
3148 
3149     // If this operand computes the expression that the chain needs, we may use
3150     // it. (Check this after setting IVSrc which is used below.)
3151     //
3152     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3153     // narrow for the chain, so we can no longer use it. We do allow using a
3154     // wider phi, assuming the LSR checked for free truncation. In that case we
3155     // should already have a truncate on this operand such that
3156     // getSCEV(IVSrc) == IncExpr.
3157     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3158         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3159       break;
3160     }
3161     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3162   }
3163   if (IVOpIter == IVOpEnd) {
3164     // Gracefully give up on this chain.
3165     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3166     return;
3167   }
3168   assert(IVSrc && "Failed to find IV chain source");
3169 
3170   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3171   Type *IVTy = IVSrc->getType();
3172   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3173   const SCEV *LeftOverExpr = nullptr;
3174   for (const IVInc &Inc : Chain) {
3175     Instruction *InsertPt = Inc.UserInst;
3176     if (isa<PHINode>(InsertPt))
3177       InsertPt = L->getLoopLatch()->getTerminator();
3178 
3179     // IVOper will replace the current IV User's operand. IVSrc is the IV
3180     // value currently held in a register.
3181     Value *IVOper = IVSrc;
3182     if (!Inc.IncExpr->isZero()) {
3183       // IncExpr was the result of subtraction of two narrow values, so must
3184       // be signed.
3185       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3186       LeftOverExpr = LeftOverExpr ?
3187         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3188     }
3189     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3190       // Expand the IV increment.
3191       Rewriter.clearPostInc();
3192       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3193       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3194                                              SE.getUnknown(IncV));
3195       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3196 
3197       // If an IV increment can't be folded, use it as the next IV value.
3198       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3199         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3200         IVSrc = IVOper;
3201         LeftOverExpr = nullptr;
3202       }
3203     }
3204     Type *OperTy = Inc.IVOperand->getType();
3205     if (IVTy != OperTy) {
3206       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3207              "cannot extend a chained IV");
3208       IRBuilder<> Builder(InsertPt);
3209       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3210     }
3211     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3212     DeadInsts.emplace_back(Inc.IVOperand);
3213   }
3214   // If LSR created a new, wider phi, we may also replace its postinc. We only
3215   // do this if we also found a wide value for the head of the chain.
3216   if (isa<PHINode>(Chain.tailUserInst())) {
3217     for (PHINode &Phi : L->getHeader()->phis()) {
3218       if (!isCompatibleIVType(&Phi, IVSrc))
3219         continue;
3220       Instruction *PostIncV = dyn_cast<Instruction>(
3221           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3222       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3223         continue;
3224       Value *IVOper = IVSrc;
3225       Type *PostIncTy = PostIncV->getType();
3226       if (IVTy != PostIncTy) {
3227         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3228         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3229         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3230         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3231       }
3232       Phi.replaceUsesOfWith(PostIncV, IVOper);
3233       DeadInsts.emplace_back(PostIncV);
3234     }
3235   }
3236 }
3237 
3238 void LSRInstance::CollectFixupsAndInitialFormulae() {
3239   BranchInst *ExitBranch = nullptr;
3240   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &LibInfo);
3241 
3242   for (const IVStrideUse &U : IU) {
3243     Instruction *UserInst = U.getUser();
3244     // Skip IV users that are part of profitable IV Chains.
3245     User::op_iterator UseI =
3246         find(UserInst->operands(), U.getOperandValToReplace());
3247     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3248     if (IVIncSet.count(UseI)) {
3249       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3250       continue;
3251     }
3252 
3253     LSRUse::KindType Kind = LSRUse::Basic;
3254     MemAccessTy AccessTy;
3255     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3256       Kind = LSRUse::Address;
3257       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3258     }
3259 
3260     const SCEV *S = IU.getExpr(U);
3261     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3262 
3263     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3264     // (N - i == 0), and this allows (N - i) to be the expression that we work
3265     // with rather than just N or i, so we can consider the register
3266     // requirements for both N and i at the same time. Limiting this code to
3267     // equality icmps is not a problem because all interesting loops use
3268     // equality icmps, thanks to IndVarSimplify.
3269     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3270       // If CI can be saved in some target, like replaced inside hardware loop
3271       // in PowerPC, no need to generate initial formulae for it.
3272       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3273         continue;
3274       if (CI->isEquality()) {
3275         // Swap the operands if needed to put the OperandValToReplace on the
3276         // left, for consistency.
3277         Value *NV = CI->getOperand(1);
3278         if (NV == U.getOperandValToReplace()) {
3279           CI->setOperand(1, CI->getOperand(0));
3280           CI->setOperand(0, NV);
3281           NV = CI->getOperand(1);
3282           Changed = true;
3283         }
3284 
3285         // x == y  -->  x - y == 0
3286         const SCEV *N = SE.getSCEV(NV);
3287         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3288           // S is normalized, so normalize N before folding it into S
3289           // to keep the result normalized.
3290           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3291           Kind = LSRUse::ICmpZero;
3292           S = SE.getMinusSCEV(N, S);
3293         }
3294 
3295         // -1 and the negations of all interesting strides (except the negation
3296         // of -1) are now also interesting.
3297         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3298           if (Factors[i] != -1)
3299             Factors.insert(-(uint64_t)Factors[i]);
3300         Factors.insert(-1);
3301       }
3302     }
3303 
3304     // Get or create an LSRUse.
3305     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3306     size_t LUIdx = P.first;
3307     int64_t Offset = P.second;
3308     LSRUse &LU = Uses[LUIdx];
3309 
3310     // Record the fixup.
3311     LSRFixup &LF = LU.getNewFixup();
3312     LF.UserInst = UserInst;
3313     LF.OperandValToReplace = U.getOperandValToReplace();
3314     LF.PostIncLoops = TmpPostIncLoops;
3315     LF.Offset = Offset;
3316     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3317 
3318     if (!LU.WidestFixupType ||
3319         SE.getTypeSizeInBits(LU.WidestFixupType) <
3320         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3321       LU.WidestFixupType = LF.OperandValToReplace->getType();
3322 
3323     // If this is the first use of this LSRUse, give it a formula.
3324     if (LU.Formulae.empty()) {
3325       InsertInitialFormula(S, LU, LUIdx);
3326       CountRegisters(LU.Formulae.back(), LUIdx);
3327     }
3328   }
3329 
3330   LLVM_DEBUG(print_fixups(dbgs()));
3331 }
3332 
3333 /// Insert a formula for the given expression into the given use, separating out
3334 /// loop-variant portions from loop-invariant and loop-computable portions.
3335 void
3336 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3337   // Mark uses whose expressions cannot be expanded.
3338   if (!isSafeToExpand(S, SE))
3339     LU.RigidFormula = true;
3340 
3341   Formula F;
3342   F.initialMatch(S, L, SE);
3343   bool Inserted = InsertFormula(LU, LUIdx, F);
3344   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3345 }
3346 
3347 /// Insert a simple single-register formula for the given expression into the
3348 /// given use.
3349 void
3350 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3351                                        LSRUse &LU, size_t LUIdx) {
3352   Formula F;
3353   F.BaseRegs.push_back(S);
3354   F.HasBaseReg = true;
3355   bool Inserted = InsertFormula(LU, LUIdx, F);
3356   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3357 }
3358 
3359 /// Note which registers are used by the given formula, updating RegUses.
3360 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3361   if (F.ScaledReg)
3362     RegUses.countRegister(F.ScaledReg, LUIdx);
3363   for (const SCEV *BaseReg : F.BaseRegs)
3364     RegUses.countRegister(BaseReg, LUIdx);
3365 }
3366 
3367 /// If the given formula has not yet been inserted, add it to the list, and
3368 /// return true. Return false otherwise.
3369 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3370   // Do not insert formula that we will not be able to expand.
3371   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3372          "Formula is illegal");
3373 
3374   if (!LU.InsertFormula(F, *L))
3375     return false;
3376 
3377   CountRegisters(F, LUIdx);
3378   return true;
3379 }
3380 
3381 /// Check for other uses of loop-invariant values which we're tracking. These
3382 /// other uses will pin these values in registers, making them less profitable
3383 /// for elimination.
3384 /// TODO: This currently misses non-constant addrec step registers.
3385 /// TODO: Should this give more weight to users inside the loop?
3386 void
3387 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3388   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3389   SmallPtrSet<const SCEV *, 32> Visited;
3390 
3391   while (!Worklist.empty()) {
3392     const SCEV *S = Worklist.pop_back_val();
3393 
3394     // Don't process the same SCEV twice
3395     if (!Visited.insert(S).second)
3396       continue;
3397 
3398     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3399       Worklist.append(N->op_begin(), N->op_end());
3400     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3401       Worklist.push_back(C->getOperand());
3402     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3403       Worklist.push_back(D->getLHS());
3404       Worklist.push_back(D->getRHS());
3405     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3406       const Value *V = US->getValue();
3407       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3408         // Look for instructions defined outside the loop.
3409         if (L->contains(Inst)) continue;
3410       } else if (isa<UndefValue>(V))
3411         // Undef doesn't have a live range, so it doesn't matter.
3412         continue;
3413       for (const Use &U : V->uses()) {
3414         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3415         // Ignore non-instructions.
3416         if (!UserInst)
3417           continue;
3418         // Ignore instructions in other functions (as can happen with
3419         // Constants).
3420         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3421           continue;
3422         // Ignore instructions not dominated by the loop.
3423         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3424           UserInst->getParent() :
3425           cast<PHINode>(UserInst)->getIncomingBlock(
3426             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3427         if (!DT.dominates(L->getHeader(), UseBB))
3428           continue;
3429         // Don't bother if the instruction is in a BB which ends in an EHPad.
3430         if (UseBB->getTerminator()->isEHPad())
3431           continue;
3432         // Don't bother rewriting PHIs in catchswitch blocks.
3433         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3434           continue;
3435         // Ignore uses which are part of other SCEV expressions, to avoid
3436         // analyzing them multiple times.
3437         if (SE.isSCEVable(UserInst->getType())) {
3438           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3439           // If the user is a no-op, look through to its uses.
3440           if (!isa<SCEVUnknown>(UserS))
3441             continue;
3442           if (UserS == US) {
3443             Worklist.push_back(
3444               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3445             continue;
3446           }
3447         }
3448         // Ignore icmp instructions which are already being analyzed.
3449         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3450           unsigned OtherIdx = !U.getOperandNo();
3451           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3452           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3453             continue;
3454         }
3455 
3456         std::pair<size_t, int64_t> P = getUse(
3457             S, LSRUse::Basic, MemAccessTy());
3458         size_t LUIdx = P.first;
3459         int64_t Offset = P.second;
3460         LSRUse &LU = Uses[LUIdx];
3461         LSRFixup &LF = LU.getNewFixup();
3462         LF.UserInst = const_cast<Instruction *>(UserInst);
3463         LF.OperandValToReplace = U;
3464         LF.Offset = Offset;
3465         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3466         if (!LU.WidestFixupType ||
3467             SE.getTypeSizeInBits(LU.WidestFixupType) <
3468             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3469           LU.WidestFixupType = LF.OperandValToReplace->getType();
3470         InsertSupplementalFormula(US, LU, LUIdx);
3471         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3472         break;
3473       }
3474     }
3475   }
3476 }
3477 
3478 /// Split S into subexpressions which can be pulled out into separate
3479 /// registers. If C is non-null, multiply each subexpression by C.
3480 ///
3481 /// Return remainder expression after factoring the subexpressions captured by
3482 /// Ops. If Ops is complete, return NULL.
3483 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3484                                    SmallVectorImpl<const SCEV *> &Ops,
3485                                    const Loop *L,
3486                                    ScalarEvolution &SE,
3487                                    unsigned Depth = 0) {
3488   // Arbitrarily cap recursion to protect compile time.
3489   if (Depth >= 3)
3490     return S;
3491 
3492   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3493     // Break out add operands.
3494     for (const SCEV *S : Add->operands()) {
3495       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3496       if (Remainder)
3497         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3498     }
3499     return nullptr;
3500   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3501     // Split a non-zero base out of an addrec.
3502     if (AR->getStart()->isZero() || !AR->isAffine())
3503       return S;
3504 
3505     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3506                                             C, Ops, L, SE, Depth+1);
3507     // Split the non-zero AddRec unless it is part of a nested recurrence that
3508     // does not pertain to this loop.
3509     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3510       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3511       Remainder = nullptr;
3512     }
3513     if (Remainder != AR->getStart()) {
3514       if (!Remainder)
3515         Remainder = SE.getConstant(AR->getType(), 0);
3516       return SE.getAddRecExpr(Remainder,
3517                               AR->getStepRecurrence(SE),
3518                               AR->getLoop(),
3519                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3520                               SCEV::FlagAnyWrap);
3521     }
3522   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3523     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3524     if (Mul->getNumOperands() != 2)
3525       return S;
3526     if (const SCEVConstant *Op0 =
3527         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3528       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3529       const SCEV *Remainder =
3530         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3531       if (Remainder)
3532         Ops.push_back(SE.getMulExpr(C, Remainder));
3533       return nullptr;
3534     }
3535   }
3536   return S;
3537 }
3538 
3539 /// Return true if the SCEV represents a value that may end up as a
3540 /// post-increment operation.
3541 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3542                               LSRUse &LU, const SCEV *S, const Loop *L,
3543                               ScalarEvolution &SE) {
3544   if (LU.Kind != LSRUse::Address ||
3545       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3546     return false;
3547   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3548   if (!AR)
3549     return false;
3550   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3551   if (!isa<SCEVConstant>(LoopStep))
3552     return false;
3553   if (LU.AccessTy.getType()->getScalarSizeInBits() !=
3554       LoopStep->getType()->getScalarSizeInBits())
3555     return false;
3556   // Check if a post-indexed load/store can be used.
3557   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3558       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3559     const SCEV *LoopStart = AR->getStart();
3560     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3561       return true;
3562   }
3563   return false;
3564 }
3565 
3566 /// Helper function for LSRInstance::GenerateReassociations.
3567 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3568                                              const Formula &Base,
3569                                              unsigned Depth, size_t Idx,
3570                                              bool IsScaledReg) {
3571   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3572   // Don't generate reassociations for the base register of a value that
3573   // may generate a post-increment operator. The reason is that the
3574   // reassociations cause extra base+register formula to be created,
3575   // and possibly chosen, but the post-increment is more efficient.
3576   if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3577     return;
3578   SmallVector<const SCEV *, 8> AddOps;
3579   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3580   if (Remainder)
3581     AddOps.push_back(Remainder);
3582 
3583   if (AddOps.size() == 1)
3584     return;
3585 
3586   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3587                                                      JE = AddOps.end();
3588        J != JE; ++J) {
3589     // Loop-variant "unknown" values are uninteresting; we won't be able to
3590     // do anything meaningful with them.
3591     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3592       continue;
3593 
3594     // Don't pull a constant into a register if the constant could be folded
3595     // into an immediate field.
3596     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3597                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3598       continue;
3599 
3600     // Collect all operands except *J.
3601     SmallVector<const SCEV *, 8> InnerAddOps(
3602         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3603     InnerAddOps.append(std::next(J),
3604                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3605 
3606     // Don't leave just a constant behind in a register if the constant could
3607     // be folded into an immediate field.
3608     if (InnerAddOps.size() == 1 &&
3609         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3610                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3611       continue;
3612 
3613     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3614     if (InnerSum->isZero())
3615       continue;
3616     Formula F = Base;
3617 
3618     // Add the remaining pieces of the add back into the new formula.
3619     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3620     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3621         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3622                                 InnerSumSC->getValue()->getZExtValue())) {
3623       F.UnfoldedOffset =
3624           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3625       if (IsScaledReg)
3626         F.ScaledReg = nullptr;
3627       else
3628         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3629     } else if (IsScaledReg)
3630       F.ScaledReg = InnerSum;
3631     else
3632       F.BaseRegs[Idx] = InnerSum;
3633 
3634     // Add J as its own register, or an unfolded immediate.
3635     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3636     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3637         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3638                                 SC->getValue()->getZExtValue()))
3639       F.UnfoldedOffset =
3640           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3641     else
3642       F.BaseRegs.push_back(*J);
3643     // We may have changed the number of register in base regs, adjust the
3644     // formula accordingly.
3645     F.canonicalize(*L);
3646 
3647     if (InsertFormula(LU, LUIdx, F))
3648       // If that formula hadn't been seen before, recurse to find more like
3649       // it.
3650       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3651       // Because just Depth is not enough to bound compile time.
3652       // This means that every time AddOps.size() is greater 16^x we will add
3653       // x to Depth.
3654       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3655                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3656   }
3657 }
3658 
3659 /// Split out subexpressions from adds and the bases of addrecs.
3660 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3661                                          Formula Base, unsigned Depth) {
3662   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3663   // Arbitrarily cap recursion to protect compile time.
3664   if (Depth >= 3)
3665     return;
3666 
3667   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3668     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3669 
3670   if (Base.Scale == 1)
3671     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3672                                /* Idx */ -1, /* IsScaledReg */ true);
3673 }
3674 
3675 ///  Generate a formula consisting of all of the loop-dominating registers added
3676 /// into a single register.
3677 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3678                                        Formula Base) {
3679   // This method is only interesting on a plurality of registers.
3680   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3681       (Base.UnfoldedOffset != 0) <= 1)
3682     return;
3683 
3684   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3685   // processing the formula.
3686   Base.unscale();
3687   SmallVector<const SCEV *, 4> Ops;
3688   Formula NewBase = Base;
3689   NewBase.BaseRegs.clear();
3690   Type *CombinedIntegerType = nullptr;
3691   for (const SCEV *BaseReg : Base.BaseRegs) {
3692     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3693         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3694       if (!CombinedIntegerType)
3695         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3696       Ops.push_back(BaseReg);
3697     }
3698     else
3699       NewBase.BaseRegs.push_back(BaseReg);
3700   }
3701 
3702   // If no register is relevant, we're done.
3703   if (Ops.size() == 0)
3704     return;
3705 
3706   // Utility function for generating the required variants of the combined
3707   // registers.
3708   auto GenerateFormula = [&](const SCEV *Sum) {
3709     Formula F = NewBase;
3710 
3711     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3712     // opportunity to fold something. For now, just ignore such cases
3713     // rather than proceed with zero in a register.
3714     if (Sum->isZero())
3715       return;
3716 
3717     F.BaseRegs.push_back(Sum);
3718     F.canonicalize(*L);
3719     (void)InsertFormula(LU, LUIdx, F);
3720   };
3721 
3722   // If we collected at least two registers, generate a formula combining them.
3723   if (Ops.size() > 1) {
3724     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3725     GenerateFormula(SE.getAddExpr(OpsCopy));
3726   }
3727 
3728   // If we have an unfolded offset, generate a formula combining it with the
3729   // registers collected.
3730   if (NewBase.UnfoldedOffset) {
3731     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3732     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3733                                  true));
3734     NewBase.UnfoldedOffset = 0;
3735     GenerateFormula(SE.getAddExpr(Ops));
3736   }
3737 }
3738 
3739 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3740 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3741                                               const Formula &Base, size_t Idx,
3742                                               bool IsScaledReg) {
3743   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3744   GlobalValue *GV = ExtractSymbol(G, SE);
3745   if (G->isZero() || !GV)
3746     return;
3747   Formula F = Base;
3748   F.BaseGV = GV;
3749   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3750     return;
3751   if (IsScaledReg)
3752     F.ScaledReg = G;
3753   else
3754     F.BaseRegs[Idx] = G;
3755   (void)InsertFormula(LU, LUIdx, F);
3756 }
3757 
3758 /// Generate reuse formulae using symbolic offsets.
3759 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3760                                           Formula Base) {
3761   // We can't add a symbolic offset if the address already contains one.
3762   if (Base.BaseGV) return;
3763 
3764   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3765     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3766   if (Base.Scale == 1)
3767     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3768                                 /* IsScaledReg */ true);
3769 }
3770 
3771 /// Helper function for LSRInstance::GenerateConstantOffsets.
3772 void LSRInstance::GenerateConstantOffsetsImpl(
3773     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3774     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3775 
3776   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3777     Formula F = Base;
3778     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3779 
3780     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3781                    LU.AccessTy, F)) {
3782       // Add the offset to the base register.
3783       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3784       // If it cancelled out, drop the base register, otherwise update it.
3785       if (NewG->isZero()) {
3786         if (IsScaledReg) {
3787           F.Scale = 0;
3788           F.ScaledReg = nullptr;
3789         } else
3790           F.deleteBaseReg(F.BaseRegs[Idx]);
3791         F.canonicalize(*L);
3792       } else if (IsScaledReg)
3793         F.ScaledReg = NewG;
3794       else
3795         F.BaseRegs[Idx] = NewG;
3796 
3797       (void)InsertFormula(LU, LUIdx, F);
3798     }
3799   };
3800 
3801   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3802 
3803   // With constant offsets and constant steps, we can generate pre-inc
3804   // accesses by having the offset equal the step. So, for access #0 with a
3805   // step of 8, we generate a G - 8 base which would require the first access
3806   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3807   // for itself and hopefully becomes the base for other accesses. This means
3808   // means that a single pre-indexed access can be generated to become the new
3809   // base pointer for each iteration of the loop, resulting in no extra add/sub
3810   // instructions for pointer updating.
3811   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3812     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3813       if (auto *StepRec =
3814           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3815         const APInt &StepInt = StepRec->getAPInt();
3816         int64_t Step = StepInt.isNegative() ?
3817           StepInt.getSExtValue() : StepInt.getZExtValue();
3818 
3819         for (int64_t Offset : Worklist) {
3820           Offset -= Step;
3821           GenerateOffset(G, Offset);
3822         }
3823       }
3824     }
3825   }
3826   for (int64_t Offset : Worklist)
3827     GenerateOffset(G, Offset);
3828 
3829   int64_t Imm = ExtractImmediate(G, SE);
3830   if (G->isZero() || Imm == 0)
3831     return;
3832   Formula F = Base;
3833   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3834   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3835     return;
3836   if (IsScaledReg)
3837     F.ScaledReg = G;
3838   else
3839     F.BaseRegs[Idx] = G;
3840   (void)InsertFormula(LU, LUIdx, F);
3841 }
3842 
3843 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3844 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3845                                           Formula Base) {
3846   // TODO: For now, just add the min and max offset, because it usually isn't
3847   // worthwhile looking at everything inbetween.
3848   SmallVector<int64_t, 2> Worklist;
3849   Worklist.push_back(LU.MinOffset);
3850   if (LU.MaxOffset != LU.MinOffset)
3851     Worklist.push_back(LU.MaxOffset);
3852 
3853   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3854     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3855   if (Base.Scale == 1)
3856     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3857                                 /* IsScaledReg */ true);
3858 }
3859 
3860 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3861 /// == y -> x*c == y*c.
3862 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3863                                          Formula Base) {
3864   if (LU.Kind != LSRUse::ICmpZero) return;
3865 
3866   // Determine the integer type for the base formula.
3867   Type *IntTy = Base.getType();
3868   if (!IntTy) return;
3869   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3870 
3871   // Don't do this if there is more than one offset.
3872   if (LU.MinOffset != LU.MaxOffset) return;
3873 
3874   // Check if transformation is valid. It is illegal to multiply pointer.
3875   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3876     return;
3877   for (const SCEV *BaseReg : Base.BaseRegs)
3878     if (BaseReg->getType()->isPointerTy())
3879       return;
3880   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3881 
3882   // Check each interesting stride.
3883   for (int64_t Factor : Factors) {
3884     // Check that the multiplication doesn't overflow.
3885     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3886       continue;
3887     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3888     if (NewBaseOffset / Factor != Base.BaseOffset)
3889       continue;
3890     // If the offset will be truncated at this use, check that it is in bounds.
3891     if (!IntTy->isPointerTy() &&
3892         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3893       continue;
3894 
3895     // Check that multiplying with the use offset doesn't overflow.
3896     int64_t Offset = LU.MinOffset;
3897     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3898       continue;
3899     Offset = (uint64_t)Offset * Factor;
3900     if (Offset / Factor != LU.MinOffset)
3901       continue;
3902     // If the offset will be truncated at this use, check that it is in bounds.
3903     if (!IntTy->isPointerTy() &&
3904         !ConstantInt::isValueValidForType(IntTy, Offset))
3905       continue;
3906 
3907     Formula F = Base;
3908     F.BaseOffset = NewBaseOffset;
3909 
3910     // Check that this scale is legal.
3911     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3912       continue;
3913 
3914     // Compensate for the use having MinOffset built into it.
3915     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3916 
3917     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3918 
3919     // Check that multiplying with each base register doesn't overflow.
3920     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3921       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3922       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3923         goto next;
3924     }
3925 
3926     // Check that multiplying with the scaled register doesn't overflow.
3927     if (F.ScaledReg) {
3928       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3929       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3930         continue;
3931     }
3932 
3933     // Check that multiplying with the unfolded offset doesn't overflow.
3934     if (F.UnfoldedOffset != 0) {
3935       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3936           Factor == -1)
3937         continue;
3938       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3939       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3940         continue;
3941       // If the offset will be truncated, check that it is in bounds.
3942       if (!IntTy->isPointerTy() &&
3943           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3944         continue;
3945     }
3946 
3947     // If we make it here and it's legal, add it.
3948     (void)InsertFormula(LU, LUIdx, F);
3949   next:;
3950   }
3951 }
3952 
3953 /// Generate stride factor reuse formulae by making use of scaled-offset address
3954 /// modes, for example.
3955 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3956   // Determine the integer type for the base formula.
3957   Type *IntTy = Base.getType();
3958   if (!IntTy) return;
3959 
3960   // If this Formula already has a scaled register, we can't add another one.
3961   // Try to unscale the formula to generate a better scale.
3962   if (Base.Scale != 0 && !Base.unscale())
3963     return;
3964 
3965   assert(Base.Scale == 0 && "unscale did not did its job!");
3966 
3967   // Check each interesting stride.
3968   for (int64_t Factor : Factors) {
3969     Base.Scale = Factor;
3970     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3971     // Check whether this scale is going to be legal.
3972     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3973                     Base)) {
3974       // As a special-case, handle special out-of-loop Basic users specially.
3975       // TODO: Reconsider this special case.
3976       if (LU.Kind == LSRUse::Basic &&
3977           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3978                      LU.AccessTy, Base) &&
3979           LU.AllFixupsOutsideLoop)
3980         LU.Kind = LSRUse::Special;
3981       else
3982         continue;
3983     }
3984     // For an ICmpZero, negating a solitary base register won't lead to
3985     // new solutions.
3986     if (LU.Kind == LSRUse::ICmpZero &&
3987         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3988       continue;
3989     // For each addrec base reg, if its loop is current loop, apply the scale.
3990     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3991       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3992       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3993         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3994         if (FactorS->isZero())
3995           continue;
3996         // Divide out the factor, ignoring high bits, since we'll be
3997         // scaling the value back up in the end.
3998         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3999           // TODO: This could be optimized to avoid all the copying.
4000           Formula F = Base;
4001           F.ScaledReg = Quotient;
4002           F.deleteBaseReg(F.BaseRegs[i]);
4003           // The canonical representation of 1*reg is reg, which is already in
4004           // Base. In that case, do not try to insert the formula, it will be
4005           // rejected anyway.
4006           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4007                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4008             continue;
4009           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4010           // non canonical Formula with ScaledReg's loop not being L.
4011           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4012             F.canonicalize(*L);
4013           (void)InsertFormula(LU, LUIdx, F);
4014         }
4015       }
4016     }
4017   }
4018 }
4019 
4020 /// Generate reuse formulae from different IV types.
4021 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4022   // Don't bother truncating symbolic values.
4023   if (Base.BaseGV) return;
4024 
4025   // Determine the integer type for the base formula.
4026   Type *DstTy = Base.getType();
4027   if (!DstTy) return;
4028   DstTy = SE.getEffectiveSCEVType(DstTy);
4029 
4030   for (Type *SrcTy : Types) {
4031     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4032       Formula F = Base;
4033 
4034       // Sometimes SCEV is able to prove zero during ext transform. It may
4035       // happen if SCEV did not do all possible transforms while creating the
4036       // initial node (maybe due to depth limitations), but it can do them while
4037       // taking ext.
4038       if (F.ScaledReg) {
4039         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4040         if (NewScaledReg->isZero())
4041          continue;
4042         F.ScaledReg = NewScaledReg;
4043       }
4044       bool HasZeroBaseReg = false;
4045       for (const SCEV *&BaseReg : F.BaseRegs) {
4046         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4047         if (NewBaseReg->isZero()) {
4048           HasZeroBaseReg = true;
4049           break;
4050         }
4051         BaseReg = NewBaseReg;
4052       }
4053       if (HasZeroBaseReg)
4054         continue;
4055 
4056       // TODO: This assumes we've done basic processing on all uses and
4057       // have an idea what the register usage is.
4058       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4059         continue;
4060 
4061       F.canonicalize(*L);
4062       (void)InsertFormula(LU, LUIdx, F);
4063     }
4064   }
4065 }
4066 
4067 namespace {
4068 
4069 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4070 /// modifications so that the search phase doesn't have to worry about the data
4071 /// structures moving underneath it.
4072 struct WorkItem {
4073   size_t LUIdx;
4074   int64_t Imm;
4075   const SCEV *OrigReg;
4076 
4077   WorkItem(size_t LI, int64_t I, const SCEV *R)
4078       : LUIdx(LI), Imm(I), OrigReg(R) {}
4079 
4080   void print(raw_ostream &OS) const;
4081   void dump() const;
4082 };
4083 
4084 } // end anonymous namespace
4085 
4086 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4087 void WorkItem::print(raw_ostream &OS) const {
4088   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4089      << " , add offset " << Imm;
4090 }
4091 
4092 LLVM_DUMP_METHOD void WorkItem::dump() const {
4093   print(errs()); errs() << '\n';
4094 }
4095 #endif
4096 
4097 /// Look for registers which are a constant distance apart and try to form reuse
4098 /// opportunities between them.
4099 void LSRInstance::GenerateCrossUseConstantOffsets() {
4100   // Group the registers by their value without any added constant offset.
4101   using ImmMapTy = std::map<int64_t, const SCEV *>;
4102 
4103   DenseMap<const SCEV *, ImmMapTy> Map;
4104   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4105   SmallVector<const SCEV *, 8> Sequence;
4106   for (const SCEV *Use : RegUses) {
4107     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4108     int64_t Imm = ExtractImmediate(Reg, SE);
4109     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4110     if (Pair.second)
4111       Sequence.push_back(Reg);
4112     Pair.first->second.insert(std::make_pair(Imm, Use));
4113     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4114   }
4115 
4116   // Now examine each set of registers with the same base value. Build up
4117   // a list of work to do and do the work in a separate step so that we're
4118   // not adding formulae and register counts while we're searching.
4119   SmallVector<WorkItem, 32> WorkItems;
4120   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4121   for (const SCEV *Reg : Sequence) {
4122     const ImmMapTy &Imms = Map.find(Reg)->second;
4123 
4124     // It's not worthwhile looking for reuse if there's only one offset.
4125     if (Imms.size() == 1)
4126       continue;
4127 
4128     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4129                for (const auto &Entry
4130                     : Imms) dbgs()
4131                << ' ' << Entry.first;
4132                dbgs() << '\n');
4133 
4134     // Examine each offset.
4135     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4136          J != JE; ++J) {
4137       const SCEV *OrigReg = J->second;
4138 
4139       int64_t JImm = J->first;
4140       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4141 
4142       if (!isa<SCEVConstant>(OrigReg) &&
4143           UsedByIndicesMap[Reg].count() == 1) {
4144         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4145                           << '\n');
4146         continue;
4147       }
4148 
4149       // Conservatively examine offsets between this orig reg a few selected
4150       // other orig regs.
4151       int64_t First = Imms.begin()->first;
4152       int64_t Last = std::prev(Imms.end())->first;
4153       // Compute (First + Last)  / 2 without overflow using the fact that
4154       // First + Last = 2 * (First + Last) + (First ^ Last).
4155       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4156       // If the result is negative and First is odd and Last even (or vice versa),
4157       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4158       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4159       ImmMapTy::const_iterator OtherImms[] = {
4160           Imms.begin(), std::prev(Imms.end()),
4161          Imms.lower_bound(Avg)};
4162       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4163         ImmMapTy::const_iterator M = OtherImms[i];
4164         if (M == J || M == JE) continue;
4165 
4166         // Compute the difference between the two.
4167         int64_t Imm = (uint64_t)JImm - M->first;
4168         for (unsigned LUIdx : UsedByIndices.set_bits())
4169           // Make a memo of this use, offset, and register tuple.
4170           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4171             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4172       }
4173     }
4174   }
4175 
4176   Map.clear();
4177   Sequence.clear();
4178   UsedByIndicesMap.clear();
4179   UniqueItems.clear();
4180 
4181   // Now iterate through the worklist and add new formulae.
4182   for (const WorkItem &WI : WorkItems) {
4183     size_t LUIdx = WI.LUIdx;
4184     LSRUse &LU = Uses[LUIdx];
4185     int64_t Imm = WI.Imm;
4186     const SCEV *OrigReg = WI.OrigReg;
4187 
4188     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4189     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4190     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4191 
4192     // TODO: Use a more targeted data structure.
4193     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4194       Formula F = LU.Formulae[L];
4195       // FIXME: The code for the scaled and unscaled registers looks
4196       // very similar but slightly different. Investigate if they
4197       // could be merged. That way, we would not have to unscale the
4198       // Formula.
4199       F.unscale();
4200       // Use the immediate in the scaled register.
4201       if (F.ScaledReg == OrigReg) {
4202         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4203         // Don't create 50 + reg(-50).
4204         if (F.referencesReg(SE.getSCEV(
4205                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4206           continue;
4207         Formula NewF = F;
4208         NewF.BaseOffset = Offset;
4209         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4210                         NewF))
4211           continue;
4212         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4213 
4214         // If the new scale is a constant in a register, and adding the constant
4215         // value to the immediate would produce a value closer to zero than the
4216         // immediate itself, then the formula isn't worthwhile.
4217         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4218           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4219               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4220                   .ule(std::abs(NewF.BaseOffset)))
4221             continue;
4222 
4223         // OK, looks good.
4224         NewF.canonicalize(*this->L);
4225         (void)InsertFormula(LU, LUIdx, NewF);
4226       } else {
4227         // Use the immediate in a base register.
4228         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4229           const SCEV *BaseReg = F.BaseRegs[N];
4230           if (BaseReg != OrigReg)
4231             continue;
4232           Formula NewF = F;
4233           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4234           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4235                           LU.Kind, LU.AccessTy, NewF)) {
4236             if (TTI.shouldFavorPostInc() &&
4237                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4238               continue;
4239             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4240               continue;
4241             NewF = F;
4242             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4243           }
4244           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4245 
4246           // If the new formula has a constant in a register, and adding the
4247           // constant value to the immediate would produce a value closer to
4248           // zero than the immediate itself, then the formula isn't worthwhile.
4249           for (const SCEV *NewReg : NewF.BaseRegs)
4250             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4251               if ((C->getAPInt() + NewF.BaseOffset)
4252                       .abs()
4253                       .slt(std::abs(NewF.BaseOffset)) &&
4254                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4255                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4256                 goto skip_formula;
4257 
4258           // Ok, looks good.
4259           NewF.canonicalize(*this->L);
4260           (void)InsertFormula(LU, LUIdx, NewF);
4261           break;
4262         skip_formula:;
4263         }
4264       }
4265     }
4266   }
4267 }
4268 
4269 /// Generate formulae for each use.
4270 void
4271 LSRInstance::GenerateAllReuseFormulae() {
4272   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4273   // queries are more precise.
4274   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4275     LSRUse &LU = Uses[LUIdx];
4276     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4277       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4278     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4279       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4280   }
4281   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4282     LSRUse &LU = Uses[LUIdx];
4283     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4284       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4285     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4286       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4287     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4288       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4289     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4290       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4291   }
4292   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4293     LSRUse &LU = Uses[LUIdx];
4294     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4295       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4296   }
4297 
4298   GenerateCrossUseConstantOffsets();
4299 
4300   LLVM_DEBUG(dbgs() << "\n"
4301                        "After generating reuse formulae:\n";
4302              print_uses(dbgs()));
4303 }
4304 
4305 /// If there are multiple formulae with the same set of registers used
4306 /// by other uses, pick the best one and delete the others.
4307 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4308   DenseSet<const SCEV *> VisitedRegs;
4309   SmallPtrSet<const SCEV *, 16> Regs;
4310   SmallPtrSet<const SCEV *, 16> LoserRegs;
4311 #ifndef NDEBUG
4312   bool ChangedFormulae = false;
4313 #endif
4314 
4315   // Collect the best formula for each unique set of shared registers. This
4316   // is reset for each use.
4317   using BestFormulaeTy =
4318       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4319 
4320   BestFormulaeTy BestFormulae;
4321 
4322   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4323     LSRUse &LU = Uses[LUIdx];
4324     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4325                dbgs() << '\n');
4326 
4327     bool Any = false;
4328     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4329          FIdx != NumForms; ++FIdx) {
4330       Formula &F = LU.Formulae[FIdx];
4331 
4332       // Some formulas are instant losers. For example, they may depend on
4333       // nonexistent AddRecs from other loops. These need to be filtered
4334       // immediately, otherwise heuristics could choose them over others leading
4335       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4336       // avoids the need to recompute this information across formulae using the
4337       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4338       // the corresponding bad register from the Regs set.
4339       Cost CostF(L, SE, TTI);
4340       Regs.clear();
4341       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4342       if (CostF.isLoser()) {
4343         // During initial formula generation, undesirable formulae are generated
4344         // by uses within other loops that have some non-trivial address mode or
4345         // use the postinc form of the IV. LSR needs to provide these formulae
4346         // as the basis of rediscovering the desired formula that uses an AddRec
4347         // corresponding to the existing phi. Once all formulae have been
4348         // generated, these initial losers may be pruned.
4349         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4350                    dbgs() << "\n");
4351       }
4352       else {
4353         SmallVector<const SCEV *, 4> Key;
4354         for (const SCEV *Reg : F.BaseRegs) {
4355           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4356             Key.push_back(Reg);
4357         }
4358         if (F.ScaledReg &&
4359             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4360           Key.push_back(F.ScaledReg);
4361         // Unstable sort by host order ok, because this is only used for
4362         // uniquifying.
4363         llvm::sort(Key);
4364 
4365         std::pair<BestFormulaeTy::const_iterator, bool> P =
4366           BestFormulae.insert(std::make_pair(Key, FIdx));
4367         if (P.second)
4368           continue;
4369 
4370         Formula &Best = LU.Formulae[P.first->second];
4371 
4372         Cost CostBest(L, SE, TTI);
4373         Regs.clear();
4374         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4375         if (CostF.isLess(CostBest))
4376           std::swap(F, Best);
4377         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4378                    dbgs() << "\n"
4379                              "    in favor of formula ";
4380                    Best.print(dbgs()); dbgs() << '\n');
4381       }
4382 #ifndef NDEBUG
4383       ChangedFormulae = true;
4384 #endif
4385       LU.DeleteFormula(F);
4386       --FIdx;
4387       --NumForms;
4388       Any = true;
4389     }
4390 
4391     // Now that we've filtered out some formulae, recompute the Regs set.
4392     if (Any)
4393       LU.RecomputeRegs(LUIdx, RegUses);
4394 
4395     // Reset this to prepare for the next use.
4396     BestFormulae.clear();
4397   }
4398 
4399   LLVM_DEBUG(if (ChangedFormulae) {
4400     dbgs() << "\n"
4401               "After filtering out undesirable candidates:\n";
4402     print_uses(dbgs());
4403   });
4404 }
4405 
4406 /// Estimate the worst-case number of solutions the solver might have to
4407 /// consider. It almost never considers this many solutions because it prune the
4408 /// search space, but the pruning isn't always sufficient.
4409 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4410   size_t Power = 1;
4411   for (const LSRUse &LU : Uses) {
4412     size_t FSize = LU.Formulae.size();
4413     if (FSize >= ComplexityLimit) {
4414       Power = ComplexityLimit;
4415       break;
4416     }
4417     Power *= FSize;
4418     if (Power >= ComplexityLimit)
4419       break;
4420   }
4421   return Power;
4422 }
4423 
4424 /// When one formula uses a superset of the registers of another formula, it
4425 /// won't help reduce register pressure (though it may not necessarily hurt
4426 /// register pressure); remove it to simplify the system.
4427 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4428   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4429     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4430 
4431     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4432                          "which use a superset of registers used by other "
4433                          "formulae.\n");
4434 
4435     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4436       LSRUse &LU = Uses[LUIdx];
4437       bool Any = false;
4438       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4439         Formula &F = LU.Formulae[i];
4440         // Look for a formula with a constant or GV in a register. If the use
4441         // also has a formula with that same value in an immediate field,
4442         // delete the one that uses a register.
4443         for (SmallVectorImpl<const SCEV *>::const_iterator
4444              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4445           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4446             Formula NewF = F;
4447             //FIXME: Formulas should store bitwidth to do wrapping properly.
4448             //       See PR41034.
4449             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4450             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4451                                 (I - F.BaseRegs.begin()));
4452             if (LU.HasFormulaWithSameRegs(NewF)) {
4453               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4454                          dbgs() << '\n');
4455               LU.DeleteFormula(F);
4456               --i;
4457               --e;
4458               Any = true;
4459               break;
4460             }
4461           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4462             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4463               if (!F.BaseGV) {
4464                 Formula NewF = F;
4465                 NewF.BaseGV = GV;
4466                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4467                                     (I - F.BaseRegs.begin()));
4468                 if (LU.HasFormulaWithSameRegs(NewF)) {
4469                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4470                              dbgs() << '\n');
4471                   LU.DeleteFormula(F);
4472                   --i;
4473                   --e;
4474                   Any = true;
4475                   break;
4476                 }
4477               }
4478           }
4479         }
4480       }
4481       if (Any)
4482         LU.RecomputeRegs(LUIdx, RegUses);
4483     }
4484 
4485     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4486   }
4487 }
4488 
4489 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4490 /// allocate a single register for them.
4491 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4492   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4493     return;
4494 
4495   LLVM_DEBUG(
4496       dbgs() << "The search space is too complex.\n"
4497                 "Narrowing the search space by assuming that uses separated "
4498                 "by a constant offset will use the same registers.\n");
4499 
4500   // This is especially useful for unrolled loops.
4501 
4502   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4503     LSRUse &LU = Uses[LUIdx];
4504     for (const Formula &F : LU.Formulae) {
4505       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4506         continue;
4507 
4508       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4509       if (!LUThatHas)
4510         continue;
4511 
4512       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4513                               LU.Kind, LU.AccessTy))
4514         continue;
4515 
4516       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4517 
4518       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4519 
4520       // Transfer the fixups of LU to LUThatHas.
4521       for (LSRFixup &Fixup : LU.Fixups) {
4522         Fixup.Offset += F.BaseOffset;
4523         LUThatHas->pushFixup(Fixup);
4524         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4525       }
4526 
4527       // Delete formulae from the new use which are no longer legal.
4528       bool Any = false;
4529       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4530         Formula &F = LUThatHas->Formulae[i];
4531         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4532                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4533           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4534           LUThatHas->DeleteFormula(F);
4535           --i;
4536           --e;
4537           Any = true;
4538         }
4539       }
4540 
4541       if (Any)
4542         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4543 
4544       // Delete the old use.
4545       DeleteUse(LU, LUIdx);
4546       --LUIdx;
4547       --NumUses;
4548       break;
4549     }
4550   }
4551 
4552   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4553 }
4554 
4555 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4556 /// we've done more filtering, as it may be able to find more formulae to
4557 /// eliminate.
4558 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4559   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4560     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4561 
4562     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4563                          "undesirable dedicated registers.\n");
4564 
4565     FilterOutUndesirableDedicatedRegisters();
4566 
4567     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4568   }
4569 }
4570 
4571 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4572 /// Pick the best one and delete the others.
4573 /// This narrowing heuristic is to keep as many formulae with different
4574 /// Scale and ScaledReg pair as possible while narrowing the search space.
4575 /// The benefit is that it is more likely to find out a better solution
4576 /// from a formulae set with more Scale and ScaledReg variations than
4577 /// a formulae set with the same Scale and ScaledReg. The picking winner
4578 /// reg heuristic will often keep the formulae with the same Scale and
4579 /// ScaledReg and filter others, and we want to avoid that if possible.
4580 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4581   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4582     return;
4583 
4584   LLVM_DEBUG(
4585       dbgs() << "The search space is too complex.\n"
4586                 "Narrowing the search space by choosing the best Formula "
4587                 "from the Formulae with the same Scale and ScaledReg.\n");
4588 
4589   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4590   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4591 
4592   BestFormulaeTy BestFormulae;
4593 #ifndef NDEBUG
4594   bool ChangedFormulae = false;
4595 #endif
4596   DenseSet<const SCEV *> VisitedRegs;
4597   SmallPtrSet<const SCEV *, 16> Regs;
4598 
4599   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4600     LSRUse &LU = Uses[LUIdx];
4601     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4602                dbgs() << '\n');
4603 
4604     // Return true if Formula FA is better than Formula FB.
4605     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4606       // First we will try to choose the Formula with fewer new registers.
4607       // For a register used by current Formula, the more the register is
4608       // shared among LSRUses, the less we increase the register number
4609       // counter of the formula.
4610       size_t FARegNum = 0;
4611       for (const SCEV *Reg : FA.BaseRegs) {
4612         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4613         FARegNum += (NumUses - UsedByIndices.count() + 1);
4614       }
4615       size_t FBRegNum = 0;
4616       for (const SCEV *Reg : FB.BaseRegs) {
4617         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4618         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4619       }
4620       if (FARegNum != FBRegNum)
4621         return FARegNum < FBRegNum;
4622 
4623       // If the new register numbers are the same, choose the Formula with
4624       // less Cost.
4625       Cost CostFA(L, SE, TTI);
4626       Cost CostFB(L, SE, TTI);
4627       Regs.clear();
4628       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4629       Regs.clear();
4630       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4631       return CostFA.isLess(CostFB);
4632     };
4633 
4634     bool Any = false;
4635     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4636          ++FIdx) {
4637       Formula &F = LU.Formulae[FIdx];
4638       if (!F.ScaledReg)
4639         continue;
4640       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4641       if (P.second)
4642         continue;
4643 
4644       Formula &Best = LU.Formulae[P.first->second];
4645       if (IsBetterThan(F, Best))
4646         std::swap(F, Best);
4647       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4648                  dbgs() << "\n"
4649                            "    in favor of formula ";
4650                  Best.print(dbgs()); dbgs() << '\n');
4651 #ifndef NDEBUG
4652       ChangedFormulae = true;
4653 #endif
4654       LU.DeleteFormula(F);
4655       --FIdx;
4656       --NumForms;
4657       Any = true;
4658     }
4659     if (Any)
4660       LU.RecomputeRegs(LUIdx, RegUses);
4661 
4662     // Reset this to prepare for the next use.
4663     BestFormulae.clear();
4664   }
4665 
4666   LLVM_DEBUG(if (ChangedFormulae) {
4667     dbgs() << "\n"
4668               "After filtering out undesirable candidates:\n";
4669     print_uses(dbgs());
4670   });
4671 }
4672 
4673 /// The function delete formulas with high registers number expectation.
4674 /// Assuming we don't know the value of each formula (already delete
4675 /// all inefficient), generate probability of not selecting for each
4676 /// register.
4677 /// For example,
4678 /// Use1:
4679 ///  reg(a) + reg({0,+,1})
4680 ///  reg(a) + reg({-1,+,1}) + 1
4681 ///  reg({a,+,1})
4682 /// Use2:
4683 ///  reg(b) + reg({0,+,1})
4684 ///  reg(b) + reg({-1,+,1}) + 1
4685 ///  reg({b,+,1})
4686 /// Use3:
4687 ///  reg(c) + reg(b) + reg({0,+,1})
4688 ///  reg(c) + reg({b,+,1})
4689 ///
4690 /// Probability of not selecting
4691 ///                 Use1   Use2    Use3
4692 /// reg(a)         (1/3) *   1   *   1
4693 /// reg(b)           1   * (1/3) * (1/2)
4694 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4695 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4696 /// reg({a,+,1})   (2/3) *   1   *   1
4697 /// reg({b,+,1})     1   * (2/3) * (2/3)
4698 /// reg(c)           1   *   1   *   0
4699 ///
4700 /// Now count registers number mathematical expectation for each formula:
4701 /// Note that for each use we exclude probability if not selecting for the use.
4702 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4703 /// probabilty 1/3 of not selecting for Use1).
4704 /// Use1:
4705 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4706 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4707 ///  reg({a,+,1})                   1
4708 /// Use2:
4709 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4710 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4711 ///  reg({b,+,1})                   2/3
4712 /// Use3:
4713 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4714 ///  reg(c) + reg({b,+,1})          1 + 2/3
4715 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4716   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4717     return;
4718   // Ok, we have too many of formulae on our hands to conveniently handle.
4719   // Use a rough heuristic to thin out the list.
4720 
4721   // Set of Regs wich will be 100% used in final solution.
4722   // Used in each formula of a solution (in example above this is reg(c)).
4723   // We can skip them in calculations.
4724   SmallPtrSet<const SCEV *, 4> UniqRegs;
4725   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4726 
4727   // Map each register to probability of not selecting
4728   DenseMap <const SCEV *, float> RegNumMap;
4729   for (const SCEV *Reg : RegUses) {
4730     if (UniqRegs.count(Reg))
4731       continue;
4732     float PNotSel = 1;
4733     for (const LSRUse &LU : Uses) {
4734       if (!LU.Regs.count(Reg))
4735         continue;
4736       float P = LU.getNotSelectedProbability(Reg);
4737       if (P != 0.0)
4738         PNotSel *= P;
4739       else
4740         UniqRegs.insert(Reg);
4741     }
4742     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4743   }
4744 
4745   LLVM_DEBUG(
4746       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4747 
4748   // Delete formulas where registers number expectation is high.
4749   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4750     LSRUse &LU = Uses[LUIdx];
4751     // If nothing to delete - continue.
4752     if (LU.Formulae.size() < 2)
4753       continue;
4754     // This is temporary solution to test performance. Float should be
4755     // replaced with round independent type (based on integers) to avoid
4756     // different results for different target builds.
4757     float FMinRegNum = LU.Formulae[0].getNumRegs();
4758     float FMinARegNum = LU.Formulae[0].getNumRegs();
4759     size_t MinIdx = 0;
4760     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4761       Formula &F = LU.Formulae[i];
4762       float FRegNum = 0;
4763       float FARegNum = 0;
4764       for (const SCEV *BaseReg : F.BaseRegs) {
4765         if (UniqRegs.count(BaseReg))
4766           continue;
4767         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4768         if (isa<SCEVAddRecExpr>(BaseReg))
4769           FARegNum +=
4770               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4771       }
4772       if (const SCEV *ScaledReg = F.ScaledReg) {
4773         if (!UniqRegs.count(ScaledReg)) {
4774           FRegNum +=
4775               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4776           if (isa<SCEVAddRecExpr>(ScaledReg))
4777             FARegNum +=
4778                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4779         }
4780       }
4781       if (FMinRegNum > FRegNum ||
4782           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4783         FMinRegNum = FRegNum;
4784         FMinARegNum = FARegNum;
4785         MinIdx = i;
4786       }
4787     }
4788     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4789                dbgs() << " with min reg num " << FMinRegNum << '\n');
4790     if (MinIdx != 0)
4791       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4792     while (LU.Formulae.size() != 1) {
4793       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4794                  dbgs() << '\n');
4795       LU.Formulae.pop_back();
4796     }
4797     LU.RecomputeRegs(LUIdx, RegUses);
4798     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4799     Formula &F = LU.Formulae[0];
4800     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4801     // When we choose the formula, the regs become unique.
4802     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4803     if (F.ScaledReg)
4804       UniqRegs.insert(F.ScaledReg);
4805   }
4806   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4807 }
4808 
4809 /// Pick a register which seems likely to be profitable, and then in any use
4810 /// which has any reference to that register, delete all formulae which do not
4811 /// reference that register.
4812 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4813   // With all other options exhausted, loop until the system is simple
4814   // enough to handle.
4815   SmallPtrSet<const SCEV *, 4> Taken;
4816   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4817     // Ok, we have too many of formulae on our hands to conveniently handle.
4818     // Use a rough heuristic to thin out the list.
4819     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4820 
4821     // Pick the register which is used by the most LSRUses, which is likely
4822     // to be a good reuse register candidate.
4823     const SCEV *Best = nullptr;
4824     unsigned BestNum = 0;
4825     for (const SCEV *Reg : RegUses) {
4826       if (Taken.count(Reg))
4827         continue;
4828       if (!Best) {
4829         Best = Reg;
4830         BestNum = RegUses.getUsedByIndices(Reg).count();
4831       } else {
4832         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4833         if (Count > BestNum) {
4834           Best = Reg;
4835           BestNum = Count;
4836         }
4837       }
4838     }
4839     assert(Best && "Failed to find best LSRUse candidate");
4840 
4841     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4842                       << " will yield profitable reuse.\n");
4843     Taken.insert(Best);
4844 
4845     // In any use with formulae which references this register, delete formulae
4846     // which don't reference it.
4847     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4848       LSRUse &LU = Uses[LUIdx];
4849       if (!LU.Regs.count(Best)) continue;
4850 
4851       bool Any = false;
4852       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4853         Formula &F = LU.Formulae[i];
4854         if (!F.referencesReg(Best)) {
4855           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4856           LU.DeleteFormula(F);
4857           --e;
4858           --i;
4859           Any = true;
4860           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4861           continue;
4862         }
4863       }
4864 
4865       if (Any)
4866         LU.RecomputeRegs(LUIdx, RegUses);
4867     }
4868 
4869     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4870   }
4871 }
4872 
4873 /// If there are an extraordinary number of formulae to choose from, use some
4874 /// rough heuristics to prune down the number of formulae. This keeps the main
4875 /// solver from taking an extraordinary amount of time in some worst-case
4876 /// scenarios.
4877 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4878   NarrowSearchSpaceByDetectingSupersets();
4879   NarrowSearchSpaceByCollapsingUnrolledCode();
4880   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4881   if (FilterSameScaledReg)
4882     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4883   if (LSRExpNarrow)
4884     NarrowSearchSpaceByDeletingCostlyFormulas();
4885   else
4886     NarrowSearchSpaceByPickingWinnerRegs();
4887 }
4888 
4889 /// This is the recursive solver.
4890 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4891                                Cost &SolutionCost,
4892                                SmallVectorImpl<const Formula *> &Workspace,
4893                                const Cost &CurCost,
4894                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4895                                DenseSet<const SCEV *> &VisitedRegs) const {
4896   // Some ideas:
4897   //  - prune more:
4898   //    - use more aggressive filtering
4899   //    - sort the formula so that the most profitable solutions are found first
4900   //    - sort the uses too
4901   //  - search faster:
4902   //    - don't compute a cost, and then compare. compare while computing a cost
4903   //      and bail early.
4904   //    - track register sets with SmallBitVector
4905 
4906   const LSRUse &LU = Uses[Workspace.size()];
4907 
4908   // If this use references any register that's already a part of the
4909   // in-progress solution, consider it a requirement that a formula must
4910   // reference that register in order to be considered. This prunes out
4911   // unprofitable searching.
4912   SmallSetVector<const SCEV *, 4> ReqRegs;
4913   for (const SCEV *S : CurRegs)
4914     if (LU.Regs.count(S))
4915       ReqRegs.insert(S);
4916 
4917   SmallPtrSet<const SCEV *, 16> NewRegs;
4918   Cost NewCost(L, SE, TTI);
4919   for (const Formula &F : LU.Formulae) {
4920     // Ignore formulae which may not be ideal in terms of register reuse of
4921     // ReqRegs.  The formula should use all required registers before
4922     // introducing new ones.
4923     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4924     for (const SCEV *Reg : ReqRegs) {
4925       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4926           is_contained(F.BaseRegs, Reg)) {
4927         --NumReqRegsToFind;
4928         if (NumReqRegsToFind == 0)
4929           break;
4930       }
4931     }
4932     if (NumReqRegsToFind != 0) {
4933       // If none of the formulae satisfied the required registers, then we could
4934       // clear ReqRegs and try again. Currently, we simply give up in this case.
4935       continue;
4936     }
4937 
4938     // Evaluate the cost of the current formula. If it's already worse than
4939     // the current best, prune the search at that point.
4940     NewCost = CurCost;
4941     NewRegs = CurRegs;
4942     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
4943     if (NewCost.isLess(SolutionCost)) {
4944       Workspace.push_back(&F);
4945       if (Workspace.size() != Uses.size()) {
4946         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4947                      NewRegs, VisitedRegs);
4948         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4949           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4950       } else {
4951         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4952                    dbgs() << ".\nRegs:\n";
4953                    for (const SCEV *S : NewRegs) dbgs()
4954                       << "- " << *S << "\n";
4955                    dbgs() << '\n');
4956 
4957         SolutionCost = NewCost;
4958         Solution = Workspace;
4959       }
4960       Workspace.pop_back();
4961     }
4962   }
4963 }
4964 
4965 /// Choose one formula from each use. Return the results in the given Solution
4966 /// vector.
4967 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4968   SmallVector<const Formula *, 8> Workspace;
4969   Cost SolutionCost(L, SE, TTI);
4970   SolutionCost.Lose();
4971   Cost CurCost(L, SE, TTI);
4972   SmallPtrSet<const SCEV *, 16> CurRegs;
4973   DenseSet<const SCEV *> VisitedRegs;
4974   Workspace.reserve(Uses.size());
4975 
4976   // SolveRecurse does all the work.
4977   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4978                CurRegs, VisitedRegs);
4979   if (Solution.empty()) {
4980     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4981     return;
4982   }
4983 
4984   // Ok, we've now made all our decisions.
4985   LLVM_DEBUG(dbgs() << "\n"
4986                        "The chosen solution requires ";
4987              SolutionCost.print(dbgs()); dbgs() << ":\n";
4988              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4989                dbgs() << "  ";
4990                Uses[i].print(dbgs());
4991                dbgs() << "\n"
4992                          "    ";
4993                Solution[i]->print(dbgs());
4994                dbgs() << '\n';
4995              });
4996 
4997   assert(Solution.size() == Uses.size() && "Malformed solution!");
4998 }
4999 
5000 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5001 /// we can go while still being dominated by the input positions. This helps
5002 /// canonicalize the insert position, which encourages sharing.
5003 BasicBlock::iterator
5004 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5005                                  const SmallVectorImpl<Instruction *> &Inputs)
5006                                                                          const {
5007   Instruction *Tentative = &*IP;
5008   while (true) {
5009     bool AllDominate = true;
5010     Instruction *BetterPos = nullptr;
5011     // Don't bother attempting to insert before a catchswitch, their basic block
5012     // cannot have other non-PHI instructions.
5013     if (isa<CatchSwitchInst>(Tentative))
5014       return IP;
5015 
5016     for (Instruction *Inst : Inputs) {
5017       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5018         AllDominate = false;
5019         break;
5020       }
5021       // Attempt to find an insert position in the middle of the block,
5022       // instead of at the end, so that it can be used for other expansions.
5023       if (Tentative->getParent() == Inst->getParent() &&
5024           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5025         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5026     }
5027     if (!AllDominate)
5028       break;
5029     if (BetterPos)
5030       IP = BetterPos->getIterator();
5031     else
5032       IP = Tentative->getIterator();
5033 
5034     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5035     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5036 
5037     BasicBlock *IDom;
5038     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5039       if (!Rung) return IP;
5040       Rung = Rung->getIDom();
5041       if (!Rung) return IP;
5042       IDom = Rung->getBlock();
5043 
5044       // Don't climb into a loop though.
5045       const Loop *IDomLoop = LI.getLoopFor(IDom);
5046       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5047       if (IDomDepth <= IPLoopDepth &&
5048           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5049         break;
5050     }
5051 
5052     Tentative = IDom->getTerminator();
5053   }
5054 
5055   return IP;
5056 }
5057 
5058 /// Determine an input position which will be dominated by the operands and
5059 /// which will dominate the result.
5060 BasicBlock::iterator
5061 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5062                                            const LSRFixup &LF,
5063                                            const LSRUse &LU,
5064                                            SCEVExpander &Rewriter) const {
5065   // Collect some instructions which must be dominated by the
5066   // expanding replacement. These must be dominated by any operands that
5067   // will be required in the expansion.
5068   SmallVector<Instruction *, 4> Inputs;
5069   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5070     Inputs.push_back(I);
5071   if (LU.Kind == LSRUse::ICmpZero)
5072     if (Instruction *I =
5073           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5074       Inputs.push_back(I);
5075   if (LF.PostIncLoops.count(L)) {
5076     if (LF.isUseFullyOutsideLoop(L))
5077       Inputs.push_back(L->getLoopLatch()->getTerminator());
5078     else
5079       Inputs.push_back(IVIncInsertPos);
5080   }
5081   // The expansion must also be dominated by the increment positions of any
5082   // loops it for which it is using post-inc mode.
5083   for (const Loop *PIL : LF.PostIncLoops) {
5084     if (PIL == L) continue;
5085 
5086     // Be dominated by the loop exit.
5087     SmallVector<BasicBlock *, 4> ExitingBlocks;
5088     PIL->getExitingBlocks(ExitingBlocks);
5089     if (!ExitingBlocks.empty()) {
5090       BasicBlock *BB = ExitingBlocks[0];
5091       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5092         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5093       Inputs.push_back(BB->getTerminator());
5094     }
5095   }
5096 
5097   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5098          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5099          "Insertion point must be a normal instruction");
5100 
5101   // Then, climb up the immediate dominator tree as far as we can go while
5102   // still being dominated by the input positions.
5103   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5104 
5105   // Don't insert instructions before PHI nodes.
5106   while (isa<PHINode>(IP)) ++IP;
5107 
5108   // Ignore landingpad instructions.
5109   while (IP->isEHPad()) ++IP;
5110 
5111   // Ignore debug intrinsics.
5112   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5113 
5114   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5115   // IP consistent across expansions and allows the previously inserted
5116   // instructions to be reused by subsequent expansion.
5117   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5118     ++IP;
5119 
5120   return IP;
5121 }
5122 
5123 /// Emit instructions for the leading candidate expression for this LSRUse (this
5124 /// is called "expanding").
5125 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5126                            const Formula &F, BasicBlock::iterator IP,
5127                            SCEVExpander &Rewriter,
5128                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5129   if (LU.RigidFormula)
5130     return LF.OperandValToReplace;
5131 
5132   // Determine an input position which will be dominated by the operands and
5133   // which will dominate the result.
5134   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5135   Rewriter.setInsertPoint(&*IP);
5136 
5137   // Inform the Rewriter if we have a post-increment use, so that it can
5138   // perform an advantageous expansion.
5139   Rewriter.setPostInc(LF.PostIncLoops);
5140 
5141   // This is the type that the user actually needs.
5142   Type *OpTy = LF.OperandValToReplace->getType();
5143   // This will be the type that we'll initially expand to.
5144   Type *Ty = F.getType();
5145   if (!Ty)
5146     // No type known; just expand directly to the ultimate type.
5147     Ty = OpTy;
5148   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5149     // Expand directly to the ultimate type if it's the right size.
5150     Ty = OpTy;
5151   // This is the type to do integer arithmetic in.
5152   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5153 
5154   // Build up a list of operands to add together to form the full base.
5155   SmallVector<const SCEV *, 8> Ops;
5156 
5157   // Expand the BaseRegs portion.
5158   for (const SCEV *Reg : F.BaseRegs) {
5159     assert(!Reg->isZero() && "Zero allocated in a base register!");
5160 
5161     // If we're expanding for a post-inc user, make the post-inc adjustment.
5162     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5163     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5164   }
5165 
5166   // Expand the ScaledReg portion.
5167   Value *ICmpScaledV = nullptr;
5168   if (F.Scale != 0) {
5169     const SCEV *ScaledS = F.ScaledReg;
5170 
5171     // If we're expanding for a post-inc user, make the post-inc adjustment.
5172     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5173     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5174 
5175     if (LU.Kind == LSRUse::ICmpZero) {
5176       // Expand ScaleReg as if it was part of the base regs.
5177       if (F.Scale == 1)
5178         Ops.push_back(
5179             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5180       else {
5181         // An interesting way of "folding" with an icmp is to use a negated
5182         // scale, which we'll implement by inserting it into the other operand
5183         // of the icmp.
5184         assert(F.Scale == -1 &&
5185                "The only scale supported by ICmpZero uses is -1!");
5186         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5187       }
5188     } else {
5189       // Otherwise just expand the scaled register and an explicit scale,
5190       // which is expected to be matched as part of the address.
5191 
5192       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5193       // Unless the addressing mode will not be folded.
5194       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5195           isAMCompletelyFolded(TTI, LU, F)) {
5196         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5197         Ops.clear();
5198         Ops.push_back(SE.getUnknown(FullV));
5199       }
5200       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5201       if (F.Scale != 1)
5202         ScaledS =
5203             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5204       Ops.push_back(ScaledS);
5205     }
5206   }
5207 
5208   // Expand the GV portion.
5209   if (F.BaseGV) {
5210     // Flush the operand list to suppress SCEVExpander hoisting.
5211     if (!Ops.empty()) {
5212       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5213       Ops.clear();
5214       Ops.push_back(SE.getUnknown(FullV));
5215     }
5216     Ops.push_back(SE.getUnknown(F.BaseGV));
5217   }
5218 
5219   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5220   // unfolded offsets. LSR assumes they both live next to their uses.
5221   if (!Ops.empty()) {
5222     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5223     Ops.clear();
5224     Ops.push_back(SE.getUnknown(FullV));
5225   }
5226 
5227   // Expand the immediate portion.
5228   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5229   if (Offset != 0) {
5230     if (LU.Kind == LSRUse::ICmpZero) {
5231       // The other interesting way of "folding" with an ICmpZero is to use a
5232       // negated immediate.
5233       if (!ICmpScaledV)
5234         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5235       else {
5236         Ops.push_back(SE.getUnknown(ICmpScaledV));
5237         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5238       }
5239     } else {
5240       // Just add the immediate values. These again are expected to be matched
5241       // as part of the address.
5242       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5243     }
5244   }
5245 
5246   // Expand the unfolded offset portion.
5247   int64_t UnfoldedOffset = F.UnfoldedOffset;
5248   if (UnfoldedOffset != 0) {
5249     // Just add the immediate values.
5250     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5251                                                        UnfoldedOffset)));
5252   }
5253 
5254   // Emit instructions summing all the operands.
5255   const SCEV *FullS = Ops.empty() ?
5256                       SE.getConstant(IntTy, 0) :
5257                       SE.getAddExpr(Ops);
5258   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5259 
5260   // We're done expanding now, so reset the rewriter.
5261   Rewriter.clearPostInc();
5262 
5263   // An ICmpZero Formula represents an ICmp which we're handling as a
5264   // comparison against zero. Now that we've expanded an expression for that
5265   // form, update the ICmp's other operand.
5266   if (LU.Kind == LSRUse::ICmpZero) {
5267     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5268     DeadInsts.emplace_back(CI->getOperand(1));
5269     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5270                            "a scale at the same time!");
5271     if (F.Scale == -1) {
5272       if (ICmpScaledV->getType() != OpTy) {
5273         Instruction *Cast =
5274           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5275                                                    OpTy, false),
5276                            ICmpScaledV, OpTy, "tmp", CI);
5277         ICmpScaledV = Cast;
5278       }
5279       CI->setOperand(1, ICmpScaledV);
5280     } else {
5281       // A scale of 1 means that the scale has been expanded as part of the
5282       // base regs.
5283       assert((F.Scale == 0 || F.Scale == 1) &&
5284              "ICmp does not support folding a global value and "
5285              "a scale at the same time!");
5286       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5287                                            -(uint64_t)Offset);
5288       if (C->getType() != OpTy)
5289         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5290                                                           OpTy, false),
5291                                   C, OpTy);
5292 
5293       CI->setOperand(1, C);
5294     }
5295   }
5296 
5297   return FullV;
5298 }
5299 
5300 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5301 /// effectively happens in their predecessor blocks, so the expression may need
5302 /// to be expanded in multiple places.
5303 void LSRInstance::RewriteForPHI(
5304     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5305     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5306   DenseMap<BasicBlock *, Value *> Inserted;
5307   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5308     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5309       bool needUpdateFixups = false;
5310       BasicBlock *BB = PN->getIncomingBlock(i);
5311 
5312       // If this is a critical edge, split the edge so that we do not insert
5313       // the code on all predecessor/successor paths.  We do this unless this
5314       // is the canonical backedge for this loop, which complicates post-inc
5315       // users.
5316       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5317           !isa<IndirectBrInst>(BB->getTerminator()) &&
5318           !isa<CatchSwitchInst>(BB->getTerminator())) {
5319         BasicBlock *Parent = PN->getParent();
5320         Loop *PNLoop = LI.getLoopFor(Parent);
5321         if (!PNLoop || Parent != PNLoop->getHeader()) {
5322           // Split the critical edge.
5323           BasicBlock *NewBB = nullptr;
5324           if (!Parent->isLandingPad()) {
5325             NewBB = SplitCriticalEdge(BB, Parent,
5326                                       CriticalEdgeSplittingOptions(&DT, &LI)
5327                                           .setMergeIdenticalEdges()
5328                                           .setKeepOneInputPHIs());
5329           } else {
5330             SmallVector<BasicBlock*, 2> NewBBs;
5331             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5332             NewBB = NewBBs[0];
5333           }
5334           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5335           // phi predecessors are identical. The simple thing to do is skip
5336           // splitting in this case rather than complicate the API.
5337           if (NewBB) {
5338             // If PN is outside of the loop and BB is in the loop, we want to
5339             // move the block to be immediately before the PHI block, not
5340             // immediately after BB.
5341             if (L->contains(BB) && !L->contains(PN))
5342               NewBB->moveBefore(PN->getParent());
5343 
5344             // Splitting the edge can reduce the number of PHI entries we have.
5345             e = PN->getNumIncomingValues();
5346             BB = NewBB;
5347             i = PN->getBasicBlockIndex(BB);
5348 
5349             needUpdateFixups = true;
5350           }
5351         }
5352       }
5353 
5354       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5355         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5356       if (!Pair.second)
5357         PN->setIncomingValue(i, Pair.first->second);
5358       else {
5359         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5360                               Rewriter, DeadInsts);
5361 
5362         // If this is reuse-by-noop-cast, insert the noop cast.
5363         Type *OpTy = LF.OperandValToReplace->getType();
5364         if (FullV->getType() != OpTy)
5365           FullV =
5366             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5367                                                      OpTy, false),
5368                              FullV, LF.OperandValToReplace->getType(),
5369                              "tmp", BB->getTerminator());
5370 
5371         PN->setIncomingValue(i, FullV);
5372         Pair.first->second = FullV;
5373       }
5374 
5375       // If LSR splits critical edge and phi node has other pending
5376       // fixup operands, we need to update those pending fixups. Otherwise
5377       // formulae will not be implemented completely and some instructions
5378       // will not be eliminated.
5379       if (needUpdateFixups) {
5380         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5381           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5382             // If fixup is supposed to rewrite some operand in the phi
5383             // that was just updated, it may be already moved to
5384             // another phi node. Such fixup requires update.
5385             if (Fixup.UserInst == PN) {
5386               // Check if the operand we try to replace still exists in the
5387               // original phi.
5388               bool foundInOriginalPHI = false;
5389               for (const auto &val : PN->incoming_values())
5390                 if (val == Fixup.OperandValToReplace) {
5391                   foundInOriginalPHI = true;
5392                   break;
5393                 }
5394 
5395               // If fixup operand found in original PHI - nothing to do.
5396               if (foundInOriginalPHI)
5397                 continue;
5398 
5399               // Otherwise it might be moved to another PHI and requires update.
5400               // If fixup operand not found in any of the incoming blocks that
5401               // means we have already rewritten it - nothing to do.
5402               for (const auto &Block : PN->blocks())
5403                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5404                      ++I) {
5405                   PHINode *NewPN = cast<PHINode>(I);
5406                   for (const auto &val : NewPN->incoming_values())
5407                     if (val == Fixup.OperandValToReplace)
5408                       Fixup.UserInst = NewPN;
5409                 }
5410             }
5411       }
5412     }
5413 }
5414 
5415 /// Emit instructions for the leading candidate expression for this LSRUse (this
5416 /// is called "expanding"), and update the UserInst to reference the newly
5417 /// expanded value.
5418 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5419                           const Formula &F, SCEVExpander &Rewriter,
5420                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5421   // First, find an insertion point that dominates UserInst. For PHI nodes,
5422   // find the nearest block which dominates all the relevant uses.
5423   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5424     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5425   } else {
5426     Value *FullV =
5427       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5428 
5429     // If this is reuse-by-noop-cast, insert the noop cast.
5430     Type *OpTy = LF.OperandValToReplace->getType();
5431     if (FullV->getType() != OpTy) {
5432       Instruction *Cast =
5433         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5434                          FullV, OpTy, "tmp", LF.UserInst);
5435       FullV = Cast;
5436     }
5437 
5438     // Update the user. ICmpZero is handled specially here (for now) because
5439     // Expand may have updated one of the operands of the icmp already, and
5440     // its new value may happen to be equal to LF.OperandValToReplace, in
5441     // which case doing replaceUsesOfWith leads to replacing both operands
5442     // with the same value. TODO: Reorganize this.
5443     if (LU.Kind == LSRUse::ICmpZero)
5444       LF.UserInst->setOperand(0, FullV);
5445     else
5446       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5447   }
5448 
5449   DeadInsts.emplace_back(LF.OperandValToReplace);
5450 }
5451 
5452 /// Rewrite all the fixup locations with new values, following the chosen
5453 /// solution.
5454 void LSRInstance::ImplementSolution(
5455     const SmallVectorImpl<const Formula *> &Solution) {
5456   // Keep track of instructions we may have made dead, so that
5457   // we can remove them after we are done working.
5458   SmallVector<WeakTrackingVH, 16> DeadInsts;
5459 
5460   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5461                         "lsr");
5462 #ifndef NDEBUG
5463   Rewriter.setDebugType(DEBUG_TYPE);
5464 #endif
5465   Rewriter.disableCanonicalMode();
5466   Rewriter.enableLSRMode();
5467   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5468 
5469   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5470   for (const IVChain &Chain : IVChainVec) {
5471     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5472       Rewriter.setChainedPhi(PN);
5473   }
5474 
5475   // Expand the new value definitions and update the users.
5476   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5477     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5478       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5479       Changed = true;
5480     }
5481 
5482   for (const IVChain &Chain : IVChainVec) {
5483     GenerateIVChain(Chain, Rewriter, DeadInsts);
5484     Changed = true;
5485   }
5486   // Clean up after ourselves. This must be done before deleting any
5487   // instructions.
5488   Rewriter.clear();
5489 
5490   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5491 }
5492 
5493 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5494                          DominatorTree &DT, LoopInfo &LI,
5495                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5496                          TargetLibraryInfo &LibInfo)
5497     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), LibInfo(LibInfo), TTI(TTI), L(L),
5498       FavorBackedgeIndex(EnableBackedgeIndexing &&
5499                          TTI.shouldFavorBackedgeIndex(L)) {
5500   // If LoopSimplify form is not available, stay out of trouble.
5501   if (!L->isLoopSimplifyForm())
5502     return;
5503 
5504   // If there's no interesting work to be done, bail early.
5505   if (IU.empty()) return;
5506 
5507   // If there's too much analysis to be done, bail early. We won't be able to
5508   // model the problem anyway.
5509   unsigned NumUsers = 0;
5510   for (const IVStrideUse &U : IU) {
5511     if (++NumUsers > MaxIVUsers) {
5512       (void)U;
5513       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5514                         << "\n");
5515       return;
5516     }
5517     // Bail out if we have a PHI on an EHPad that gets a value from a
5518     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5519     // no good place to stick any instructions.
5520     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5521        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5522        if (isa<FuncletPadInst>(FirstNonPHI) ||
5523            isa<CatchSwitchInst>(FirstNonPHI))
5524          for (BasicBlock *PredBB : PN->blocks())
5525            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5526              return;
5527     }
5528   }
5529 
5530 #ifndef NDEBUG
5531   // All dominating loops must have preheaders, or SCEVExpander may not be able
5532   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5533   //
5534   // IVUsers analysis should only create users that are dominated by simple loop
5535   // headers. Since this loop should dominate all of its users, its user list
5536   // should be empty if this loop itself is not within a simple loop nest.
5537   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5538        Rung; Rung = Rung->getIDom()) {
5539     BasicBlock *BB = Rung->getBlock();
5540     const Loop *DomLoop = LI.getLoopFor(BB);
5541     if (DomLoop && DomLoop->getHeader() == BB) {
5542       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5543     }
5544   }
5545 #endif // DEBUG
5546 
5547   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5548              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5549              dbgs() << ":\n");
5550 
5551   // First, perform some low-level loop optimizations.
5552   OptimizeShadowIV();
5553   OptimizeLoopTermCond();
5554 
5555   // If loop preparation eliminates all interesting IV users, bail.
5556   if (IU.empty()) return;
5557 
5558   // Skip nested loops until we can model them better with formulae.
5559   if (!L->empty()) {
5560     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5561     return;
5562   }
5563 
5564   // Start collecting data and preparing for the solver.
5565   CollectChains();
5566   CollectInterestingTypesAndFactors();
5567   CollectFixupsAndInitialFormulae();
5568   CollectLoopInvariantFixupsAndFormulae();
5569 
5570   if (Uses.empty())
5571     return;
5572 
5573   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5574              print_uses(dbgs()));
5575 
5576   // Now use the reuse data to generate a bunch of interesting ways
5577   // to formulate the values needed for the uses.
5578   GenerateAllReuseFormulae();
5579 
5580   FilterOutUndesirableDedicatedRegisters();
5581   NarrowSearchSpaceUsingHeuristics();
5582 
5583   SmallVector<const Formula *, 8> Solution;
5584   Solve(Solution);
5585 
5586   // Release memory that is no longer needed.
5587   Factors.clear();
5588   Types.clear();
5589   RegUses.clear();
5590 
5591   if (Solution.empty())
5592     return;
5593 
5594 #ifndef NDEBUG
5595   // Formulae should be legal.
5596   for (const LSRUse &LU : Uses) {
5597     for (const Formula &F : LU.Formulae)
5598       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5599                         F) && "Illegal formula generated!");
5600   };
5601 #endif
5602 
5603   // Now that we've decided what we want, make it so.
5604   ImplementSolution(Solution);
5605 }
5606 
5607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5608 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5609   if (Factors.empty() && Types.empty()) return;
5610 
5611   OS << "LSR has identified the following interesting factors and types: ";
5612   bool First = true;
5613 
5614   for (int64_t Factor : Factors) {
5615     if (!First) OS << ", ";
5616     First = false;
5617     OS << '*' << Factor;
5618   }
5619 
5620   for (Type *Ty : Types) {
5621     if (!First) OS << ", ";
5622     First = false;
5623     OS << '(' << *Ty << ')';
5624   }
5625   OS << '\n';
5626 }
5627 
5628 void LSRInstance::print_fixups(raw_ostream &OS) const {
5629   OS << "LSR is examining the following fixup sites:\n";
5630   for (const LSRUse &LU : Uses)
5631     for (const LSRFixup &LF : LU.Fixups) {
5632       dbgs() << "  ";
5633       LF.print(OS);
5634       OS << '\n';
5635     }
5636 }
5637 
5638 void LSRInstance::print_uses(raw_ostream &OS) const {
5639   OS << "LSR is examining the following uses:\n";
5640   for (const LSRUse &LU : Uses) {
5641     dbgs() << "  ";
5642     LU.print(OS);
5643     OS << '\n';
5644     for (const Formula &F : LU.Formulae) {
5645       OS << "    ";
5646       F.print(OS);
5647       OS << '\n';
5648     }
5649   }
5650 }
5651 
5652 void LSRInstance::print(raw_ostream &OS) const {
5653   print_factors_and_types(OS);
5654   print_fixups(OS);
5655   print_uses(OS);
5656 }
5657 
5658 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5659   print(errs()); errs() << '\n';
5660 }
5661 #endif
5662 
5663 namespace {
5664 
5665 class LoopStrengthReduce : public LoopPass {
5666 public:
5667   static char ID; // Pass ID, replacement for typeid
5668 
5669   LoopStrengthReduce();
5670 
5671 private:
5672   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5673   void getAnalysisUsage(AnalysisUsage &AU) const override;
5674 };
5675 
5676 } // end anonymous namespace
5677 
5678 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5679   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5680 }
5681 
5682 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5683   // We split critical edges, so we change the CFG.  However, we do update
5684   // many analyses if they are around.
5685   AU.addPreservedID(LoopSimplifyID);
5686 
5687   AU.addRequired<LoopInfoWrapperPass>();
5688   AU.addPreserved<LoopInfoWrapperPass>();
5689   AU.addRequiredID(LoopSimplifyID);
5690   AU.addRequired<DominatorTreeWrapperPass>();
5691   AU.addPreserved<DominatorTreeWrapperPass>();
5692   AU.addRequired<ScalarEvolutionWrapperPass>();
5693   AU.addPreserved<ScalarEvolutionWrapperPass>();
5694   AU.addRequired<AssumptionCacheTracker>();
5695   AU.addRequired<TargetLibraryInfoWrapperPass>();
5696   // Requiring LoopSimplify a second time here prevents IVUsers from running
5697   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5698   AU.addRequiredID(LoopSimplifyID);
5699   AU.addRequired<IVUsersWrapperPass>();
5700   AU.addPreserved<IVUsersWrapperPass>();
5701   AU.addRequired<TargetTransformInfoWrapperPass>();
5702 }
5703 
5704 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5705                                DominatorTree &DT, LoopInfo &LI,
5706                                const TargetTransformInfo &TTI,
5707                                AssumptionCache &AC,
5708                                TargetLibraryInfo &LibInfo) {
5709 
5710   bool Changed = false;
5711 
5712   // Run the main LSR transformation.
5713   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI, AC, LibInfo).getChanged();
5714 
5715   // Remove any extra phis created by processing inner loops.
5716   Changed |= DeleteDeadPHIs(L->getHeader());
5717   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5718     SmallVector<WeakTrackingVH, 16> DeadInsts;
5719     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5720     SCEVExpander Rewriter(SE, DL, "lsr");
5721 #ifndef NDEBUG
5722     Rewriter.setDebugType(DEBUG_TYPE);
5723 #endif
5724     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5725     if (numFolded) {
5726       Changed = true;
5727       DeleteTriviallyDeadInstructions(DeadInsts);
5728       DeleteDeadPHIs(L->getHeader());
5729     }
5730   }
5731   return Changed;
5732 }
5733 
5734 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5735   if (skipLoop(L))
5736     return false;
5737 
5738   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5739   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5740   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5741   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5742   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5743       *L->getHeader()->getParent());
5744   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5745       *L->getHeader()->getParent());
5746   auto &LibInfo = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5747       *L->getHeader()->getParent());
5748   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, LibInfo);
5749 }
5750 
5751 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5752                                               LoopStandardAnalysisResults &AR,
5753                                               LPMUpdater &) {
5754   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5755                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI))
5756     return PreservedAnalyses::all();
5757 
5758   return getLoopPassPreservedAnalyses();
5759 }
5760 
5761 char LoopStrengthReduce::ID = 0;
5762 
5763 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5764                       "Loop Strength Reduction", false, false)
5765 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5766 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5767 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5768 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5769 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5770 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5771 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5772                     "Loop Strength Reduction", false, false)
5773 
5774 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5775