1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 #define DEBUG_TYPE "loop-reduce" 82 83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 84 /// bail out. This threshold is far beyond the number of users that LSR can 85 /// conceivably solve, so it should not affect generated code, but catches the 86 /// worst cases before LSR burns too much compile time and stack space. 87 static const unsigned MaxIVUsers = 200; 88 89 // Temporary flag to cleanup congruent phis after LSR phi expansion. 90 // It's currently disabled until we can determine whether it's truly useful or 91 // not. The flag should be removed after the v3.0 release. 92 // This is now needed for ivchains. 93 static cl::opt<bool> EnablePhiElim( 94 "enable-lsr-phielim", cl::Hidden, cl::init(true), 95 cl::desc("Enable LSR phi elimination")); 96 97 #ifndef NDEBUG 98 // Stress test IV chain generation. 99 static cl::opt<bool> StressIVChain( 100 "stress-ivchain", cl::Hidden, cl::init(false), 101 cl::desc("Stress test LSR IV chains")); 102 #else 103 static bool StressIVChain = false; 104 #endif 105 106 namespace { 107 108 /// RegSortData - This class holds data which is used to order reuse candidates. 109 class RegSortData { 110 public: 111 /// UsedByIndices - This represents the set of LSRUse indices which reference 112 /// a particular register. 113 SmallBitVector UsedByIndices; 114 115 void print(raw_ostream &OS) const; 116 void dump() const; 117 }; 118 119 } 120 121 void RegSortData::print(raw_ostream &OS) const { 122 OS << "[NumUses=" << UsedByIndices.count() << ']'; 123 } 124 125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 126 void RegSortData::dump() const { 127 print(errs()); errs() << '\n'; 128 } 129 #endif 130 131 namespace { 132 133 /// RegUseTracker - Map register candidates to information about how they are 134 /// used. 135 class RegUseTracker { 136 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 137 138 RegUsesTy RegUsesMap; 139 SmallVector<const SCEV *, 16> RegSequence; 140 141 public: 142 void CountRegister(const SCEV *Reg, size_t LUIdx); 143 void DropRegister(const SCEV *Reg, size_t LUIdx); 144 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 145 146 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 147 148 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 149 150 void clear(); 151 152 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 153 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 154 iterator begin() { return RegSequence.begin(); } 155 iterator end() { return RegSequence.end(); } 156 const_iterator begin() const { return RegSequence.begin(); } 157 const_iterator end() const { return RegSequence.end(); } 158 }; 159 160 } 161 162 void 163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 164 std::pair<RegUsesTy::iterator, bool> Pair = 165 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 166 RegSortData &RSD = Pair.first->second; 167 if (Pair.second) 168 RegSequence.push_back(Reg); 169 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 170 RSD.UsedByIndices.set(LUIdx); 171 } 172 173 void 174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 175 RegUsesTy::iterator It = RegUsesMap.find(Reg); 176 assert(It != RegUsesMap.end()); 177 RegSortData &RSD = It->second; 178 assert(RSD.UsedByIndices.size() > LUIdx); 179 RSD.UsedByIndices.reset(LUIdx); 180 } 181 182 void 183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 184 assert(LUIdx <= LastLUIdx); 185 186 // Update RegUses. The data structure is not optimized for this purpose; 187 // we must iterate through it and update each of the bit vectors. 188 for (auto &Pair : RegUsesMap) { 189 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 190 if (LUIdx < UsedByIndices.size()) 191 UsedByIndices[LUIdx] = 192 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 193 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 194 } 195 } 196 197 bool 198 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 199 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 200 if (I == RegUsesMap.end()) 201 return false; 202 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 203 int i = UsedByIndices.find_first(); 204 if (i == -1) return false; 205 if ((size_t)i != LUIdx) return true; 206 return UsedByIndices.find_next(i) != -1; 207 } 208 209 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 210 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 211 assert(I != RegUsesMap.end() && "Unknown register!"); 212 return I->second.UsedByIndices; 213 } 214 215 void RegUseTracker::clear() { 216 RegUsesMap.clear(); 217 RegSequence.clear(); 218 } 219 220 namespace { 221 222 /// Formula - This class holds information that describes a formula for 223 /// computing satisfying a use. It may include broken-out immediates and scaled 224 /// registers. 225 struct Formula { 226 /// Global base address used for complex addressing. 227 GlobalValue *BaseGV; 228 229 /// Base offset for complex addressing. 230 int64_t BaseOffset; 231 232 /// Whether any complex addressing has a base register. 233 bool HasBaseReg; 234 235 /// The scale of any complex addressing. 236 int64_t Scale; 237 238 /// BaseRegs - The list of "base" registers for this use. When this is 239 /// non-empty. The canonical representation of a formula is 240 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 241 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 242 /// #1 enforces that the scaled register is always used when at least two 243 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 244 /// #2 enforces that 1 * reg is reg. 245 /// This invariant can be temporarly broken while building a formula. 246 /// However, every formula inserted into the LSRInstance must be in canonical 247 /// form. 248 SmallVector<const SCEV *, 4> BaseRegs; 249 250 /// ScaledReg - The 'scaled' register for this use. This should be non-null 251 /// when Scale is not zero. 252 const SCEV *ScaledReg; 253 254 /// UnfoldedOffset - An additional constant offset which added near the 255 /// use. This requires a temporary register, but the offset itself can 256 /// live in an add immediate field rather than a register. 257 int64_t UnfoldedOffset; 258 259 /// ZeroExtendScaledReg - This formula zero extends the scale register to 260 /// ZeroExtendType before its use. 261 bool ZeroExtendScaledReg; 262 263 /// ZeroExtendBaseReg - This formula zero extends all the base registers to 264 /// ZeroExtendType before their use. 265 bool ZeroExtendBaseReg; 266 267 /// ZeroExtendType - The destination type of the zero extension implied by 268 /// the above two booleans. 269 Type *ZeroExtendType; 270 271 Formula() 272 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 273 ScaledReg(nullptr), UnfoldedOffset(0), ZeroExtendScaledReg(false), 274 ZeroExtendBaseReg(false), ZeroExtendType(nullptr) {} 275 276 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 277 278 bool isCanonical() const; 279 280 void Canonicalize(); 281 282 bool Unscale(); 283 284 size_t getNumRegs() const; 285 Type *getType() const; 286 287 void DeleteBaseReg(const SCEV *&S); 288 289 bool referencesReg(const SCEV *S) const; 290 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 291 const RegUseTracker &RegUses) const; 292 293 void print(raw_ostream &OS) const; 294 void dump() const; 295 }; 296 297 } 298 299 /// DoInitialMatch - Recursion helper for InitialMatch. 300 static void DoInitialMatch(const SCEV *S, Loop *L, 301 SmallVectorImpl<const SCEV *> &Good, 302 SmallVectorImpl<const SCEV *> &Bad, 303 ScalarEvolution &SE) { 304 // Collect expressions which properly dominate the loop header. 305 if (SE.properlyDominates(S, L->getHeader())) { 306 Good.push_back(S); 307 return; 308 } 309 310 // Look at add operands. 311 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 312 for (const SCEV *S : Add->operands()) 313 DoInitialMatch(S, L, Good, Bad, SE); 314 return; 315 } 316 317 // Look at addrec operands. 318 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 319 if (!AR->getStart()->isZero()) { 320 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 321 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 322 AR->getStepRecurrence(SE), 323 // FIXME: AR->getNoWrapFlags() 324 AR->getLoop(), SCEV::FlagAnyWrap), 325 L, Good, Bad, SE); 326 return; 327 } 328 329 // Handle a multiplication by -1 (negation) if it didn't fold. 330 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 331 if (Mul->getOperand(0)->isAllOnesValue()) { 332 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 333 const SCEV *NewMul = SE.getMulExpr(Ops); 334 335 SmallVector<const SCEV *, 4> MyGood; 336 SmallVector<const SCEV *, 4> MyBad; 337 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 338 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 339 SE.getEffectiveSCEVType(NewMul->getType()))); 340 for (const SCEV *S : MyGood) 341 Good.push_back(SE.getMulExpr(NegOne, S)); 342 for (const SCEV *S : MyBad) 343 Bad.push_back(SE.getMulExpr(NegOne, S)); 344 return; 345 } 346 347 // Ok, we can't do anything interesting. Just stuff the whole thing into a 348 // register and hope for the best. 349 Bad.push_back(S); 350 } 351 352 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 353 /// attempting to keep all loop-invariant and loop-computable values in a 354 /// single base register. 355 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 356 SmallVector<const SCEV *, 4> Good; 357 SmallVector<const SCEV *, 4> Bad; 358 DoInitialMatch(S, L, Good, Bad, SE); 359 if (!Good.empty()) { 360 const SCEV *Sum = SE.getAddExpr(Good); 361 if (!Sum->isZero()) 362 BaseRegs.push_back(Sum); 363 HasBaseReg = true; 364 } 365 if (!Bad.empty()) { 366 const SCEV *Sum = SE.getAddExpr(Bad); 367 if (!Sum->isZero()) 368 BaseRegs.push_back(Sum); 369 HasBaseReg = true; 370 } 371 Canonicalize(); 372 } 373 374 /// \brief Check whether or not this formula statisfies the canonical 375 /// representation. 376 /// \see Formula::BaseRegs. 377 bool Formula::isCanonical() const { 378 if (ScaledReg) 379 return Scale != 1 || !BaseRegs.empty(); 380 return BaseRegs.size() <= 1; 381 } 382 383 /// \brief Helper method to morph a formula into its canonical representation. 384 /// \see Formula::BaseRegs. 385 /// Every formula having more than one base register, must use the ScaledReg 386 /// field. Otherwise, we would have to do special cases everywhere in LSR 387 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 388 /// On the other hand, 1*reg should be canonicalized into reg. 389 void Formula::Canonicalize() { 390 if (isCanonical()) 391 return; 392 // So far we did not need this case. This is easy to implement but it is 393 // useless to maintain dead code. Beside it could hurt compile time. 394 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 395 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 396 ScaledReg = BaseRegs.back(); 397 BaseRegs.pop_back(); 398 Scale = 1; 399 size_t BaseRegsSize = BaseRegs.size(); 400 size_t Try = 0; 401 // If ScaledReg is an invariant, try to find a variant expression. 402 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 403 std::swap(ScaledReg, BaseRegs[Try++]); 404 } 405 406 /// \brief Get rid of the scale in the formula. 407 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 408 /// \return true if it was possible to get rid of the scale, false otherwise. 409 /// \note After this operation the formula may not be in the canonical form. 410 bool Formula::Unscale() { 411 if (Scale != 1) 412 return false; 413 Scale = 0; 414 BaseRegs.push_back(ScaledReg); 415 ScaledReg = nullptr; 416 return true; 417 } 418 419 /// getNumRegs - Return the total number of register operands used by this 420 /// formula. This does not include register uses implied by non-constant 421 /// addrec strides. 422 size_t Formula::getNumRegs() const { 423 return !!ScaledReg + BaseRegs.size(); 424 } 425 426 /// getType - Return the type of this formula, if it has one, or null 427 /// otherwise. This type is meaningless except for the bit size. 428 Type *Formula::getType() const { 429 return ZeroExtendType 430 ? ZeroExtendType 431 : !BaseRegs.empty() 432 ? BaseRegs.front()->getType() 433 : ScaledReg ? ScaledReg->getType() 434 : BaseGV ? BaseGV->getType() : nullptr; 435 } 436 437 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 438 void Formula::DeleteBaseReg(const SCEV *&S) { 439 if (&S != &BaseRegs.back()) 440 std::swap(S, BaseRegs.back()); 441 BaseRegs.pop_back(); 442 } 443 444 /// referencesReg - Test if this formula references the given register. 445 bool Formula::referencesReg(const SCEV *S) const { 446 return S == ScaledReg || 447 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 448 } 449 450 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 451 /// which are used by uses other than the use with the given index. 452 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 453 const RegUseTracker &RegUses) const { 454 if (ScaledReg) 455 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 456 return true; 457 for (const SCEV *BaseReg : BaseRegs) 458 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 459 return true; 460 return false; 461 } 462 463 void Formula::print(raw_ostream &OS) const { 464 bool First = true; 465 if (BaseGV) { 466 if (!First) OS << " + "; else First = false; 467 BaseGV->printAsOperand(OS, /*PrintType=*/false); 468 } 469 if (BaseOffset != 0) { 470 if (!First) OS << " + "; else First = false; 471 OS << BaseOffset; 472 } 473 for (const SCEV *BaseReg : BaseRegs) { 474 if (!First) OS << " + "; else First = false; 475 if (ZeroExtendBaseReg) 476 OS << "reg(zext " << *BaseReg << " to " << *ZeroExtendType << ')'; 477 else 478 OS << "reg(" << *BaseReg << ')'; 479 } 480 if (HasBaseReg && BaseRegs.empty()) { 481 if (!First) OS << " + "; else First = false; 482 OS << "**error: HasBaseReg**"; 483 } else if (!HasBaseReg && !BaseRegs.empty()) { 484 if (!First) OS << " + "; else First = false; 485 OS << "**error: !HasBaseReg**"; 486 } 487 if (Scale != 0) { 488 if (!First) OS << " + "; else First = false; 489 OS << Scale << "*reg("; 490 if (ScaledReg) { 491 if (ZeroExtendScaledReg) 492 OS << "(zext " << *ScaledReg << " to " << *ZeroExtendType << ')'; 493 else 494 OS << *ScaledReg; 495 } else 496 OS << "<unknown>"; 497 OS << ')'; 498 } 499 if (UnfoldedOffset != 0) { 500 if (!First) OS << " + "; 501 OS << "imm(" << UnfoldedOffset << ')'; 502 } 503 } 504 505 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 506 void Formula::dump() const { 507 print(errs()); errs() << '\n'; 508 } 509 #endif 510 511 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 512 /// without changing its value. 513 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 514 Type *WideTy = 515 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 516 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 517 } 518 519 /// isAddSExtable - Return true if the given add can be sign-extended 520 /// without changing its value. 521 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 522 Type *WideTy = 523 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 524 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 525 } 526 527 /// isMulSExtable - Return true if the given mul can be sign-extended 528 /// without changing its value. 529 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 530 Type *WideTy = 531 IntegerType::get(SE.getContext(), 532 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 533 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 534 } 535 536 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 537 /// and if the remainder is known to be zero, or null otherwise. If 538 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 539 /// to Y, ignoring that the multiplication may overflow, which is useful when 540 /// the result will be used in a context where the most significant bits are 541 /// ignored. 542 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 543 ScalarEvolution &SE, 544 bool IgnoreSignificantBits = false) { 545 // Handle the trivial case, which works for any SCEV type. 546 if (LHS == RHS) 547 return SE.getConstant(LHS->getType(), 1); 548 549 // Handle a few RHS special cases. 550 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 551 if (RC) { 552 const APInt &RA = RC->getValue()->getValue(); 553 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 554 // some folding. 555 if (RA.isAllOnesValue()) 556 return SE.getMulExpr(LHS, RC); 557 // Handle x /s 1 as x. 558 if (RA == 1) 559 return LHS; 560 } 561 562 // Check for a division of a constant by a constant. 563 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 564 if (!RC) 565 return nullptr; 566 const APInt &LA = C->getValue()->getValue(); 567 const APInt &RA = RC->getValue()->getValue(); 568 if (LA.srem(RA) != 0) 569 return nullptr; 570 return SE.getConstant(LA.sdiv(RA)); 571 } 572 573 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 574 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 575 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 576 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 577 IgnoreSignificantBits); 578 if (!Step) return nullptr; 579 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 580 IgnoreSignificantBits); 581 if (!Start) return nullptr; 582 // FlagNW is independent of the start value, step direction, and is 583 // preserved with smaller magnitude steps. 584 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 585 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 586 } 587 return nullptr; 588 } 589 590 // Distribute the sdiv over add operands, if the add doesn't overflow. 591 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 592 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 593 SmallVector<const SCEV *, 8> Ops; 594 for (const SCEV *S : Add->operands()) { 595 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 596 if (!Op) return nullptr; 597 Ops.push_back(Op); 598 } 599 return SE.getAddExpr(Ops); 600 } 601 return nullptr; 602 } 603 604 // Check for a multiply operand that we can pull RHS out of. 605 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 606 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 607 SmallVector<const SCEV *, 4> Ops; 608 bool Found = false; 609 for (const SCEV *S : Mul->operands()) { 610 if (!Found) 611 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 612 IgnoreSignificantBits)) { 613 S = Q; 614 Found = true; 615 } 616 Ops.push_back(S); 617 } 618 return Found ? SE.getMulExpr(Ops) : nullptr; 619 } 620 return nullptr; 621 } 622 623 // Otherwise we don't know. 624 return nullptr; 625 } 626 627 /// ExtractImmediate - If S involves the addition of a constant integer value, 628 /// return that integer value, and mutate S to point to a new SCEV with that 629 /// value excluded. 630 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 631 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 632 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 633 S = SE.getConstant(C->getType(), 0); 634 return C->getValue()->getSExtValue(); 635 } 636 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 637 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 638 int64_t Result = ExtractImmediate(NewOps.front(), SE); 639 if (Result != 0) 640 S = SE.getAddExpr(NewOps); 641 return Result; 642 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 643 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 644 int64_t Result = ExtractImmediate(NewOps.front(), SE); 645 if (Result != 0) 646 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 647 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 648 SCEV::FlagAnyWrap); 649 return Result; 650 } 651 return 0; 652 } 653 654 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 655 /// return that symbol, and mutate S to point to a new SCEV with that 656 /// value excluded. 657 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 658 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 659 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 660 S = SE.getConstant(GV->getType(), 0); 661 return GV; 662 } 663 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 664 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 665 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 666 if (Result) 667 S = SE.getAddExpr(NewOps); 668 return Result; 669 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 670 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 671 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 672 if (Result) 673 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 674 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 675 SCEV::FlagAnyWrap); 676 return Result; 677 } 678 return nullptr; 679 } 680 681 /// isAddressUse - Returns true if the specified instruction is using the 682 /// specified value as an address. 683 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 684 bool isAddress = isa<LoadInst>(Inst); 685 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 686 if (SI->getOperand(1) == OperandVal) 687 isAddress = true; 688 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 689 // Addressing modes can also be folded into prefetches and a variety 690 // of intrinsics. 691 switch (II->getIntrinsicID()) { 692 default: break; 693 case Intrinsic::prefetch: 694 case Intrinsic::x86_sse_storeu_ps: 695 case Intrinsic::x86_sse2_storeu_pd: 696 case Intrinsic::x86_sse2_storeu_dq: 697 case Intrinsic::x86_sse2_storel_dq: 698 if (II->getArgOperand(0) == OperandVal) 699 isAddress = true; 700 break; 701 } 702 } 703 return isAddress; 704 } 705 706 /// getAccessType - Return the type of the memory being accessed. 707 static Type *getAccessType(const Instruction *Inst) { 708 Type *AccessTy = Inst->getType(); 709 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 710 AccessTy = SI->getOperand(0)->getType(); 711 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 712 // Addressing modes can also be folded into prefetches and a variety 713 // of intrinsics. 714 switch (II->getIntrinsicID()) { 715 default: break; 716 case Intrinsic::x86_sse_storeu_ps: 717 case Intrinsic::x86_sse2_storeu_pd: 718 case Intrinsic::x86_sse2_storeu_dq: 719 case Intrinsic::x86_sse2_storel_dq: 720 AccessTy = II->getArgOperand(0)->getType(); 721 break; 722 } 723 } 724 725 // All pointers have the same requirements, so canonicalize them to an 726 // arbitrary pointer type to minimize variation. 727 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 728 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 729 PTy->getAddressSpace()); 730 731 return AccessTy; 732 } 733 734 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 735 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 736 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 737 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 738 if (SE.isSCEVable(PN->getType()) && 739 (SE.getEffectiveSCEVType(PN->getType()) == 740 SE.getEffectiveSCEVType(AR->getType())) && 741 SE.getSCEV(PN) == AR) 742 return true; 743 } 744 return false; 745 } 746 747 /// Check if expanding this expression is likely to incur significant cost. This 748 /// is tricky because SCEV doesn't track which expressions are actually computed 749 /// by the current IR. 750 /// 751 /// We currently allow expansion of IV increments that involve adds, 752 /// multiplication by constants, and AddRecs from existing phis. 753 /// 754 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 755 /// obvious multiple of the UDivExpr. 756 static bool isHighCostExpansion(const SCEV *S, 757 SmallPtrSetImpl<const SCEV*> &Processed, 758 ScalarEvolution &SE) { 759 // Zero/One operand expressions 760 switch (S->getSCEVType()) { 761 case scUnknown: 762 case scConstant: 763 return false; 764 case scTruncate: 765 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 766 Processed, SE); 767 case scZeroExtend: 768 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 769 Processed, SE); 770 case scSignExtend: 771 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 772 Processed, SE); 773 } 774 775 if (!Processed.insert(S).second) 776 return false; 777 778 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 779 for (const SCEV *S : Add->operands()) { 780 if (isHighCostExpansion(S, Processed, SE)) 781 return true; 782 } 783 return false; 784 } 785 786 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 787 if (Mul->getNumOperands() == 2) { 788 // Multiplication by a constant is ok 789 if (isa<SCEVConstant>(Mul->getOperand(0))) 790 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 791 792 // If we have the value of one operand, check if an existing 793 // multiplication already generates this expression. 794 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 795 Value *UVal = U->getValue(); 796 for (User *UR : UVal->users()) { 797 // If U is a constant, it may be used by a ConstantExpr. 798 Instruction *UI = dyn_cast<Instruction>(UR); 799 if (UI && UI->getOpcode() == Instruction::Mul && 800 SE.isSCEVable(UI->getType())) { 801 return SE.getSCEV(UI) == Mul; 802 } 803 } 804 } 805 } 806 } 807 808 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 809 if (isExistingPhi(AR, SE)) 810 return false; 811 } 812 813 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 814 return true; 815 } 816 817 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 818 /// specified set are trivially dead, delete them and see if this makes any of 819 /// their operands subsequently dead. 820 static bool 821 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 822 bool Changed = false; 823 824 while (!DeadInsts.empty()) { 825 Value *V = DeadInsts.pop_back_val(); 826 Instruction *I = dyn_cast_or_null<Instruction>(V); 827 828 if (!I || !isInstructionTriviallyDead(I)) 829 continue; 830 831 for (Use &O : I->operands()) 832 if (Instruction *U = dyn_cast<Instruction>(O)) { 833 O = nullptr; 834 if (U->use_empty()) 835 DeadInsts.emplace_back(U); 836 } 837 838 I->eraseFromParent(); 839 Changed = true; 840 } 841 842 return Changed; 843 } 844 845 namespace { 846 class LSRUse; 847 } 848 849 /// \brief Check if the addressing mode defined by \p F is completely 850 /// folded in \p LU at isel time. 851 /// This includes address-mode folding and special icmp tricks. 852 /// This function returns true if \p LU can accommodate what \p F 853 /// defines and up to 1 base + 1 scaled + offset. 854 /// In other words, if \p F has several base registers, this function may 855 /// still return true. Therefore, users still need to account for 856 /// additional base registers and/or unfolded offsets to derive an 857 /// accurate cost model. 858 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 859 const LSRUse &LU, const Formula &F); 860 // Get the cost of the scaling factor used in F for LU. 861 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 862 const LSRUse &LU, const Formula &F); 863 864 namespace { 865 866 /// Cost - This class is used to measure and compare candidate formulae. 867 class Cost { 868 /// TODO: Some of these could be merged. Also, a lexical ordering 869 /// isn't always optimal. 870 unsigned NumRegs; 871 unsigned AddRecCost; 872 unsigned NumIVMuls; 873 unsigned NumBaseAdds; 874 unsigned ImmCost; 875 unsigned SetupCost; 876 unsigned ScaleCost; 877 878 public: 879 Cost() 880 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 881 SetupCost(0), ScaleCost(0) {} 882 883 bool operator<(const Cost &Other) const; 884 885 void Lose(); 886 887 #ifndef NDEBUG 888 // Once any of the metrics loses, they must all remain losers. 889 bool isValid() { 890 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 891 | ImmCost | SetupCost | ScaleCost) != ~0u) 892 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 893 & ImmCost & SetupCost & ScaleCost) == ~0u); 894 } 895 #endif 896 897 bool isLoser() { 898 assert(isValid() && "invalid cost"); 899 return NumRegs == ~0u; 900 } 901 902 void RateFormula(const TargetTransformInfo &TTI, 903 const Formula &F, 904 SmallPtrSetImpl<const SCEV *> &Regs, 905 const DenseSet<const SCEV *> &VisitedRegs, 906 const Loop *L, 907 const SmallVectorImpl<int64_t> &Offsets, 908 ScalarEvolution &SE, DominatorTree &DT, 909 const LSRUse &LU, 910 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 911 912 void print(raw_ostream &OS) const; 913 void dump() const; 914 915 private: 916 void RateRegister(const SCEV *Reg, 917 SmallPtrSetImpl<const SCEV *> &Regs, 918 const Loop *L, 919 ScalarEvolution &SE, DominatorTree &DT); 920 void RatePrimaryRegister(const SCEV *Reg, 921 SmallPtrSetImpl<const SCEV *> &Regs, 922 const Loop *L, 923 ScalarEvolution &SE, DominatorTree &DT, 924 SmallPtrSetImpl<const SCEV *> *LoserRegs); 925 }; 926 927 } 928 929 /// RateRegister - Tally up interesting quantities from the given register. 930 void Cost::RateRegister(const SCEV *Reg, 931 SmallPtrSetImpl<const SCEV *> &Regs, 932 const Loop *L, 933 ScalarEvolution &SE, DominatorTree &DT) { 934 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 935 // If this is an addrec for another loop, don't second-guess its addrec phi 936 // nodes. LSR isn't currently smart enough to reason about more than one 937 // loop at a time. LSR has already run on inner loops, will not run on outer 938 // loops, and cannot be expected to change sibling loops. 939 if (AR->getLoop() != L) { 940 // If the AddRec exists, consider it's register free and leave it alone. 941 if (isExistingPhi(AR, SE)) 942 return; 943 944 // Otherwise, do not consider this formula at all. 945 Lose(); 946 return; 947 } 948 AddRecCost += 1; /// TODO: This should be a function of the stride. 949 950 // Add the step value register, if it needs one. 951 // TODO: The non-affine case isn't precisely modeled here. 952 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 953 if (!Regs.count(AR->getOperand(1))) { 954 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 955 if (isLoser()) 956 return; 957 } 958 } 959 } 960 ++NumRegs; 961 962 // Rough heuristic; favor registers which don't require extra setup 963 // instructions in the preheader. 964 if (!isa<SCEVUnknown>(Reg) && 965 !isa<SCEVConstant>(Reg) && 966 !(isa<SCEVAddRecExpr>(Reg) && 967 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 968 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 969 ++SetupCost; 970 971 NumIVMuls += isa<SCEVMulExpr>(Reg) && 972 SE.hasComputableLoopEvolution(Reg, L); 973 } 974 975 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 976 /// before, rate it. Optional LoserRegs provides a way to declare any formula 977 /// that refers to one of those regs an instant loser. 978 void Cost::RatePrimaryRegister(const SCEV *Reg, 979 SmallPtrSetImpl<const SCEV *> &Regs, 980 const Loop *L, 981 ScalarEvolution &SE, DominatorTree &DT, 982 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 983 if (LoserRegs && LoserRegs->count(Reg)) { 984 Lose(); 985 return; 986 } 987 if (Regs.insert(Reg).second) { 988 RateRegister(Reg, Regs, L, SE, DT); 989 if (LoserRegs && isLoser()) 990 LoserRegs->insert(Reg); 991 } 992 } 993 994 void Cost::RateFormula(const TargetTransformInfo &TTI, 995 const Formula &F, 996 SmallPtrSetImpl<const SCEV *> &Regs, 997 const DenseSet<const SCEV *> &VisitedRegs, 998 const Loop *L, 999 const SmallVectorImpl<int64_t> &Offsets, 1000 ScalarEvolution &SE, DominatorTree &DT, 1001 const LSRUse &LU, 1002 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1003 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1004 // Tally up the registers. 1005 if (const SCEV *ScaledReg = F.ScaledReg) { 1006 if (VisitedRegs.count(ScaledReg)) { 1007 Lose(); 1008 return; 1009 } 1010 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1011 if (isLoser()) 1012 return; 1013 } 1014 for (const SCEV *BaseReg : F.BaseRegs) { 1015 if (VisitedRegs.count(BaseReg)) { 1016 Lose(); 1017 return; 1018 } 1019 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1020 if (isLoser()) 1021 return; 1022 } 1023 1024 // Determine how many (unfolded) adds we'll need inside the loop. 1025 size_t NumBaseParts = F.getNumRegs(); 1026 if (NumBaseParts > 1) 1027 // Do not count the base and a possible second register if the target 1028 // allows to fold 2 registers. 1029 NumBaseAdds += 1030 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1031 NumBaseAdds += (F.UnfoldedOffset != 0); 1032 1033 // Accumulate non-free scaling amounts. 1034 ScaleCost += getScalingFactorCost(TTI, LU, F); 1035 1036 // Tally up the non-zero immediates. 1037 for (int64_t O : Offsets) { 1038 int64_t Offset = (uint64_t)O + F.BaseOffset; 1039 if (F.BaseGV) 1040 ImmCost += 64; // Handle symbolic values conservatively. 1041 // TODO: This should probably be the pointer size. 1042 else if (Offset != 0) 1043 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1044 } 1045 assert(isValid() && "invalid cost"); 1046 } 1047 1048 /// Lose - Set this cost to a losing value. 1049 void Cost::Lose() { 1050 NumRegs = ~0u; 1051 AddRecCost = ~0u; 1052 NumIVMuls = ~0u; 1053 NumBaseAdds = ~0u; 1054 ImmCost = ~0u; 1055 SetupCost = ~0u; 1056 ScaleCost = ~0u; 1057 } 1058 1059 /// operator< - Choose the lower cost. 1060 bool Cost::operator<(const Cost &Other) const { 1061 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1062 ImmCost, SetupCost) < 1063 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1064 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1065 Other.SetupCost); 1066 } 1067 1068 void Cost::print(raw_ostream &OS) const { 1069 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1070 if (AddRecCost != 0) 1071 OS << ", with addrec cost " << AddRecCost; 1072 if (NumIVMuls != 0) 1073 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1074 if (NumBaseAdds != 0) 1075 OS << ", plus " << NumBaseAdds << " base add" 1076 << (NumBaseAdds == 1 ? "" : "s"); 1077 if (ScaleCost != 0) 1078 OS << ", plus " << ScaleCost << " scale cost"; 1079 if (ImmCost != 0) 1080 OS << ", plus " << ImmCost << " imm cost"; 1081 if (SetupCost != 0) 1082 OS << ", plus " << SetupCost << " setup cost"; 1083 } 1084 1085 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1086 void Cost::dump() const { 1087 print(errs()); errs() << '\n'; 1088 } 1089 #endif 1090 1091 namespace { 1092 1093 /// LSRFixup - An operand value in an instruction which is to be replaced 1094 /// with some equivalent, possibly strength-reduced, replacement. 1095 struct LSRFixup { 1096 /// UserInst - The instruction which will be updated. 1097 Instruction *UserInst; 1098 1099 /// OperandValToReplace - The operand of the instruction which will 1100 /// be replaced. The operand may be used more than once; every instance 1101 /// will be replaced. 1102 Value *OperandValToReplace; 1103 1104 /// PostIncLoops - If this user is to use the post-incremented value of an 1105 /// induction variable, this variable is non-null and holds the loop 1106 /// associated with the induction variable. 1107 PostIncLoopSet PostIncLoops; 1108 1109 /// LUIdx - The index of the LSRUse describing the expression which 1110 /// this fixup needs, minus an offset (below). 1111 size_t LUIdx; 1112 1113 /// Offset - A constant offset to be added to the LSRUse expression. 1114 /// This allows multiple fixups to share the same LSRUse with different 1115 /// offsets, for example in an unrolled loop. 1116 int64_t Offset; 1117 1118 bool isUseFullyOutsideLoop(const Loop *L) const; 1119 1120 LSRFixup(); 1121 1122 void print(raw_ostream &OS) const; 1123 void dump() const; 1124 }; 1125 1126 } 1127 1128 LSRFixup::LSRFixup() 1129 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1130 Offset(0) {} 1131 1132 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1133 /// value outside of the given loop. 1134 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1135 // PHI nodes use their value in their incoming blocks. 1136 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1137 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1138 if (PN->getIncomingValue(i) == OperandValToReplace && 1139 L->contains(PN->getIncomingBlock(i))) 1140 return false; 1141 return true; 1142 } 1143 1144 return !L->contains(UserInst); 1145 } 1146 1147 void LSRFixup::print(raw_ostream &OS) const { 1148 OS << "UserInst="; 1149 // Store is common and interesting enough to be worth special-casing. 1150 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1151 OS << "store "; 1152 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1153 } else if (UserInst->getType()->isVoidTy()) 1154 OS << UserInst->getOpcodeName(); 1155 else 1156 UserInst->printAsOperand(OS, /*PrintType=*/false); 1157 1158 OS << ", OperandValToReplace="; 1159 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1160 1161 for (const Loop *PIL : PostIncLoops) { 1162 OS << ", PostIncLoop="; 1163 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1164 } 1165 1166 if (LUIdx != ~size_t(0)) 1167 OS << ", LUIdx=" << LUIdx; 1168 1169 if (Offset != 0) 1170 OS << ", Offset=" << Offset; 1171 } 1172 1173 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1174 void LSRFixup::dump() const { 1175 print(errs()); errs() << '\n'; 1176 } 1177 #endif 1178 1179 namespace { 1180 1181 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1182 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1183 struct UniquifierDenseMapInfo { 1184 static SmallVector<const SCEV *, 4> getEmptyKey() { 1185 SmallVector<const SCEV *, 4> V; 1186 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1187 return V; 1188 } 1189 1190 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1191 SmallVector<const SCEV *, 4> V; 1192 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1193 return V; 1194 } 1195 1196 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1197 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1198 } 1199 1200 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1201 const SmallVector<const SCEV *, 4> &RHS) { 1202 return LHS == RHS; 1203 } 1204 }; 1205 1206 /// LSRUse - This class holds the state that LSR keeps for each use in 1207 /// IVUsers, as well as uses invented by LSR itself. It includes information 1208 /// about what kinds of things can be folded into the user, information about 1209 /// the user itself, and information about how the use may be satisfied. 1210 /// TODO: Represent multiple users of the same expression in common? 1211 class LSRUse { 1212 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1213 1214 public: 1215 /// KindType - An enum for a kind of use, indicating what types of 1216 /// scaled and immediate operands it might support. 1217 enum KindType { 1218 Basic, ///< A normal use, with no folding. 1219 Special, ///< A special case of basic, allowing -1 scales. 1220 Address, ///< An address use; folding according to TargetLowering 1221 ICmpZero ///< An equality icmp with both operands folded into one. 1222 // TODO: Add a generic icmp too? 1223 }; 1224 1225 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1226 1227 KindType Kind; 1228 Type *AccessTy; 1229 1230 SmallVector<int64_t, 8> Offsets; 1231 int64_t MinOffset; 1232 int64_t MaxOffset; 1233 1234 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1235 /// LSRUse are outside of the loop, in which case some special-case heuristics 1236 /// may be used. 1237 bool AllFixupsOutsideLoop; 1238 1239 /// RigidFormula is set to true to guarantee that this use will be associated 1240 /// with a single formula--the one that initially matched. Some SCEV 1241 /// expressions cannot be expanded. This allows LSR to consider the registers 1242 /// used by those expressions without the need to expand them later after 1243 /// changing the formula. 1244 bool RigidFormula; 1245 1246 /// WidestFixupType - This records the widest use type for any fixup using 1247 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1248 /// max fixup widths to be equivalent, because the narrower one may be relying 1249 /// on the implicit truncation to truncate away bogus bits. 1250 Type *WidestFixupType; 1251 1252 /// Formulae - A list of ways to build a value that can satisfy this user. 1253 /// After the list is populated, one of these is selected heuristically and 1254 /// used to formulate a replacement for OperandValToReplace in UserInst. 1255 SmallVector<Formula, 12> Formulae; 1256 1257 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1258 SmallPtrSet<const SCEV *, 4> Regs; 1259 1260 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1261 MinOffset(INT64_MAX), 1262 MaxOffset(INT64_MIN), 1263 AllFixupsOutsideLoop(true), 1264 RigidFormula(false), 1265 WidestFixupType(nullptr) {} 1266 1267 bool HasFormulaWithSameRegs(const Formula &F) const; 1268 bool InsertFormula(const Formula &F); 1269 void DeleteFormula(Formula &F); 1270 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1271 1272 void print(raw_ostream &OS) const; 1273 void dump() const; 1274 }; 1275 1276 } 1277 1278 /// HasFormula - Test whether this use as a formula which has the same 1279 /// registers as the given formula. 1280 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1281 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1282 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1283 // Unstable sort by host order ok, because this is only used for uniquifying. 1284 std::sort(Key.begin(), Key.end()); 1285 return Uniquifier.count(Key); 1286 } 1287 1288 /// InsertFormula - If the given formula has not yet been inserted, add it to 1289 /// the list, and return true. Return false otherwise. 1290 /// The formula must be in canonical form. 1291 bool LSRUse::InsertFormula(const Formula &F) { 1292 assert(F.isCanonical() && "Invalid canonical representation"); 1293 1294 if (!Formulae.empty() && RigidFormula) 1295 return false; 1296 1297 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1298 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1299 // Unstable sort by host order ok, because this is only used for uniquifying. 1300 std::sort(Key.begin(), Key.end()); 1301 1302 if (!Uniquifier.insert(Key).second) 1303 return false; 1304 1305 // Using a register to hold the value of 0 is not profitable. 1306 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1307 "Zero allocated in a scaled register!"); 1308 #ifndef NDEBUG 1309 for (const SCEV *BaseReg : F.BaseRegs) 1310 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1311 #endif 1312 1313 // Add the formula to the list. 1314 Formulae.push_back(F); 1315 1316 // Record registers now being used by this use. 1317 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1318 if (F.ScaledReg) 1319 Regs.insert(F.ScaledReg); 1320 1321 return true; 1322 } 1323 1324 /// DeleteFormula - Remove the given formula from this use's list. 1325 void LSRUse::DeleteFormula(Formula &F) { 1326 if (&F != &Formulae.back()) 1327 std::swap(F, Formulae.back()); 1328 Formulae.pop_back(); 1329 } 1330 1331 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1332 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1333 // Now that we've filtered out some formulae, recompute the Regs set. 1334 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1335 Regs.clear(); 1336 for (const Formula &F : Formulae) { 1337 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1338 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1339 } 1340 1341 // Update the RegTracker. 1342 for (const SCEV *S : OldRegs) 1343 if (!Regs.count(S)) 1344 RegUses.DropRegister(S, LUIdx); 1345 } 1346 1347 void LSRUse::print(raw_ostream &OS) const { 1348 OS << "LSR Use: Kind="; 1349 switch (Kind) { 1350 case Basic: OS << "Basic"; break; 1351 case Special: OS << "Special"; break; 1352 case ICmpZero: OS << "ICmpZero"; break; 1353 case Address: 1354 OS << "Address of "; 1355 if (AccessTy->isPointerTy()) 1356 OS << "pointer"; // the full pointer type could be really verbose 1357 else 1358 OS << *AccessTy; 1359 } 1360 1361 OS << ", Offsets={"; 1362 bool NeedComma = false; 1363 for (int64_t O : Offsets) { 1364 if (NeedComma) OS << ','; 1365 OS << O; 1366 NeedComma = true; 1367 } 1368 OS << '}'; 1369 1370 if (AllFixupsOutsideLoop) 1371 OS << ", all-fixups-outside-loop"; 1372 1373 if (WidestFixupType) 1374 OS << ", widest fixup type: " << *WidestFixupType; 1375 } 1376 1377 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1378 void LSRUse::dump() const { 1379 print(errs()); errs() << '\n'; 1380 } 1381 #endif 1382 1383 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1384 LSRUse::KindType Kind, Type *AccessTy, 1385 GlobalValue *BaseGV, int64_t BaseOffset, 1386 bool HasBaseReg, int64_t Scale) { 1387 switch (Kind) { 1388 case LSRUse::Address: 1389 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1390 1391 case LSRUse::ICmpZero: 1392 // There's not even a target hook for querying whether it would be legal to 1393 // fold a GV into an ICmp. 1394 if (BaseGV) 1395 return false; 1396 1397 // ICmp only has two operands; don't allow more than two non-trivial parts. 1398 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1399 return false; 1400 1401 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1402 // putting the scaled register in the other operand of the icmp. 1403 if (Scale != 0 && Scale != -1) 1404 return false; 1405 1406 // If we have low-level target information, ask the target if it can fold an 1407 // integer immediate on an icmp. 1408 if (BaseOffset != 0) { 1409 // We have one of: 1410 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1411 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1412 // Offs is the ICmp immediate. 1413 if (Scale == 0) 1414 // The cast does the right thing with INT64_MIN. 1415 BaseOffset = -(uint64_t)BaseOffset; 1416 return TTI.isLegalICmpImmediate(BaseOffset); 1417 } 1418 1419 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1420 return true; 1421 1422 case LSRUse::Basic: 1423 // Only handle single-register values. 1424 return !BaseGV && Scale == 0 && BaseOffset == 0; 1425 1426 case LSRUse::Special: 1427 // Special case Basic to handle -1 scales. 1428 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1429 } 1430 1431 llvm_unreachable("Invalid LSRUse Kind!"); 1432 } 1433 1434 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1435 int64_t MinOffset, int64_t MaxOffset, 1436 LSRUse::KindType Kind, Type *AccessTy, 1437 GlobalValue *BaseGV, int64_t BaseOffset, 1438 bool HasBaseReg, int64_t Scale) { 1439 // Check for overflow. 1440 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1441 (MinOffset > 0)) 1442 return false; 1443 MinOffset = (uint64_t)BaseOffset + MinOffset; 1444 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1445 (MaxOffset > 0)) 1446 return false; 1447 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1448 1449 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1450 HasBaseReg, Scale) && 1451 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1452 HasBaseReg, Scale); 1453 } 1454 1455 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1456 int64_t MinOffset, int64_t MaxOffset, 1457 LSRUse::KindType Kind, Type *AccessTy, 1458 const Formula &F) { 1459 // For the purpose of isAMCompletelyFolded either having a canonical formula 1460 // or a scale not equal to zero is correct. 1461 // Problems may arise from non canonical formulae having a scale == 0. 1462 // Strictly speaking it would best to just rely on canonical formulae. 1463 // However, when we generate the scaled formulae, we first check that the 1464 // scaling factor is profitable before computing the actual ScaledReg for 1465 // compile time sake. 1466 assert((F.isCanonical() || F.Scale != 0)); 1467 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1468 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1469 } 1470 1471 /// isLegalUse - Test whether we know how to expand the current formula. 1472 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1473 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1474 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1475 int64_t Scale) { 1476 // We know how to expand completely foldable formulae. 1477 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1478 BaseOffset, HasBaseReg, Scale) || 1479 // Or formulae that use a base register produced by a sum of base 1480 // registers. 1481 (Scale == 1 && 1482 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1483 BaseGV, BaseOffset, true, 0)); 1484 } 1485 1486 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1487 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1488 const Formula &F) { 1489 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1490 F.BaseOffset, F.HasBaseReg, F.Scale); 1491 } 1492 1493 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1494 const LSRUse &LU, const Formula &F) { 1495 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1496 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1497 F.Scale); 1498 } 1499 1500 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1501 const LSRUse &LU, const Formula &F) { 1502 if (!F.Scale) 1503 return 0; 1504 1505 // If the use is not completely folded in that instruction, we will have to 1506 // pay an extra cost only for scale != 1. 1507 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1508 LU.AccessTy, F)) 1509 return F.Scale != 1; 1510 1511 switch (LU.Kind) { 1512 case LSRUse::Address: { 1513 // Check the scaling factor cost with both the min and max offsets. 1514 int ScaleCostMinOffset = 1515 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1516 F.BaseOffset + LU.MinOffset, 1517 F.HasBaseReg, F.Scale); 1518 int ScaleCostMaxOffset = 1519 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1520 F.BaseOffset + LU.MaxOffset, 1521 F.HasBaseReg, F.Scale); 1522 1523 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1524 "Legal addressing mode has an illegal cost!"); 1525 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1526 } 1527 case LSRUse::ICmpZero: 1528 case LSRUse::Basic: 1529 case LSRUse::Special: 1530 // The use is completely folded, i.e., everything is folded into the 1531 // instruction. 1532 return 0; 1533 } 1534 1535 llvm_unreachable("Invalid LSRUse Kind!"); 1536 } 1537 1538 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1539 LSRUse::KindType Kind, Type *AccessTy, 1540 GlobalValue *BaseGV, int64_t BaseOffset, 1541 bool HasBaseReg) { 1542 // Fast-path: zero is always foldable. 1543 if (BaseOffset == 0 && !BaseGV) return true; 1544 1545 // Conservatively, create an address with an immediate and a 1546 // base and a scale. 1547 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1548 1549 // Canonicalize a scale of 1 to a base register if the formula doesn't 1550 // already have a base register. 1551 if (!HasBaseReg && Scale == 1) { 1552 Scale = 0; 1553 HasBaseReg = true; 1554 } 1555 1556 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1557 HasBaseReg, Scale); 1558 } 1559 1560 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1561 ScalarEvolution &SE, int64_t MinOffset, 1562 int64_t MaxOffset, LSRUse::KindType Kind, 1563 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1564 // Fast-path: zero is always foldable. 1565 if (S->isZero()) return true; 1566 1567 // Conservatively, create an address with an immediate and a 1568 // base and a scale. 1569 int64_t BaseOffset = ExtractImmediate(S, SE); 1570 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1571 1572 // If there's anything else involved, it's not foldable. 1573 if (!S->isZero()) return false; 1574 1575 // Fast-path: zero is always foldable. 1576 if (BaseOffset == 0 && !BaseGV) return true; 1577 1578 // Conservatively, create an address with an immediate and a 1579 // base and a scale. 1580 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1581 1582 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1583 BaseOffset, HasBaseReg, Scale); 1584 } 1585 1586 namespace { 1587 1588 /// IVInc - An individual increment in a Chain of IV increments. 1589 /// Relate an IV user to an expression that computes the IV it uses from the IV 1590 /// used by the previous link in the Chain. 1591 /// 1592 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1593 /// original IVOperand. The head of the chain's IVOperand is only valid during 1594 /// chain collection, before LSR replaces IV users. During chain generation, 1595 /// IncExpr can be used to find the new IVOperand that computes the same 1596 /// expression. 1597 struct IVInc { 1598 Instruction *UserInst; 1599 Value* IVOperand; 1600 const SCEV *IncExpr; 1601 1602 IVInc(Instruction *U, Value *O, const SCEV *E): 1603 UserInst(U), IVOperand(O), IncExpr(E) {} 1604 }; 1605 1606 // IVChain - The list of IV increments in program order. 1607 // We typically add the head of a chain without finding subsequent links. 1608 struct IVChain { 1609 SmallVector<IVInc,1> Incs; 1610 const SCEV *ExprBase; 1611 1612 IVChain() : ExprBase(nullptr) {} 1613 1614 IVChain(const IVInc &Head, const SCEV *Base) 1615 : Incs(1, Head), ExprBase(Base) {} 1616 1617 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1618 1619 // begin - return the first increment in the chain. 1620 const_iterator begin() const { 1621 assert(!Incs.empty()); 1622 return std::next(Incs.begin()); 1623 } 1624 const_iterator end() const { 1625 return Incs.end(); 1626 } 1627 1628 // hasIncs - Returns true if this chain contains any increments. 1629 bool hasIncs() const { return Incs.size() >= 2; } 1630 1631 // add - Add an IVInc to the end of this chain. 1632 void add(const IVInc &X) { Incs.push_back(X); } 1633 1634 // tailUserInst - Returns the last UserInst in the chain. 1635 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1636 1637 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1638 // this chain. 1639 bool isProfitableIncrement(const SCEV *OperExpr, 1640 const SCEV *IncExpr, 1641 ScalarEvolution&); 1642 }; 1643 1644 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1645 /// Distinguish between FarUsers that definitely cross IV increments and 1646 /// NearUsers that may be used between IV increments. 1647 struct ChainUsers { 1648 SmallPtrSet<Instruction*, 4> FarUsers; 1649 SmallPtrSet<Instruction*, 4> NearUsers; 1650 }; 1651 1652 /// LSRInstance - This class holds state for the main loop strength reduction 1653 /// logic. 1654 class LSRInstance { 1655 IVUsers &IU; 1656 ScalarEvolution &SE; 1657 DominatorTree &DT; 1658 LoopInfo &LI; 1659 const TargetTransformInfo &TTI; 1660 Loop *const L; 1661 bool Changed; 1662 1663 /// IVIncInsertPos - This is the insert position that the current loop's 1664 /// induction variable increment should be placed. In simple loops, this is 1665 /// the latch block's terminator. But in more complicated cases, this is a 1666 /// position which will dominate all the in-loop post-increment users. 1667 Instruction *IVIncInsertPos; 1668 1669 /// Factors - Interesting factors between use strides. 1670 SmallSetVector<int64_t, 8> Factors; 1671 1672 /// Types - Interesting use types, to facilitate truncation reuse. 1673 SmallSetVector<Type *, 4> Types; 1674 1675 /// Fixups - The list of operands which are to be replaced. 1676 SmallVector<LSRFixup, 16> Fixups; 1677 1678 /// Uses - The list of interesting uses. 1679 SmallVector<LSRUse, 16> Uses; 1680 1681 /// RegUses - Track which uses use which register candidates. 1682 RegUseTracker RegUses; 1683 1684 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1685 // have more than a few IV increment chains in a loop. Missing a Chain falls 1686 // back to normal LSR behavior for those uses. 1687 static const unsigned MaxChains = 8; 1688 1689 /// IVChainVec - IV users can form a chain of IV increments. 1690 SmallVector<IVChain, MaxChains> IVChainVec; 1691 1692 /// IVIncSet - IV users that belong to profitable IVChains. 1693 SmallPtrSet<Use*, MaxChains> IVIncSet; 1694 1695 void OptimizeShadowIV(); 1696 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1697 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1698 void OptimizeLoopTermCond(); 1699 1700 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1701 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1702 void FinalizeChain(IVChain &Chain); 1703 void CollectChains(); 1704 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1705 SmallVectorImpl<WeakVH> &DeadInsts); 1706 1707 void CollectInterestingTypesAndFactors(); 1708 void CollectFixupsAndInitialFormulae(); 1709 1710 LSRFixup &getNewFixup() { 1711 Fixups.push_back(LSRFixup()); 1712 return Fixups.back(); 1713 } 1714 1715 // Support for sharing of LSRUses between LSRFixups. 1716 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1717 UseMapTy UseMap; 1718 1719 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1720 LSRUse::KindType Kind, Type *AccessTy); 1721 1722 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1723 LSRUse::KindType Kind, 1724 Type *AccessTy); 1725 1726 void DeleteUse(LSRUse &LU, size_t LUIdx); 1727 1728 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1729 1730 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1731 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1732 void CountRegisters(const Formula &F, size_t LUIdx); 1733 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1734 1735 void CollectLoopInvariantFixupsAndFormulae(); 1736 1737 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1738 unsigned Depth = 0); 1739 1740 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1741 const Formula &Base, unsigned Depth, 1742 size_t Idx, bool IsScaledReg = false); 1743 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1744 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1745 const Formula &Base, size_t Idx, 1746 bool IsScaledReg = false); 1747 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1748 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1749 const Formula &Base, 1750 const SmallVectorImpl<int64_t> &Worklist, 1751 size_t Idx, bool IsScaledReg = false); 1752 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1753 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1754 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1755 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1756 void GenerateZExts(LSRUse &LU, unsigned LUIdx, Formula Base); 1757 void GenerateCrossUseConstantOffsets(); 1758 void GenerateAllReuseFormulae(); 1759 1760 void FilterOutUndesirableDedicatedRegisters(); 1761 1762 size_t EstimateSearchSpaceComplexity() const; 1763 void NarrowSearchSpaceByDetectingSupersets(); 1764 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1765 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1766 void NarrowSearchSpaceByPickingWinnerRegs(); 1767 void NarrowSearchSpaceUsingHeuristics(); 1768 1769 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1770 Cost &SolutionCost, 1771 SmallVectorImpl<const Formula *> &Workspace, 1772 const Cost &CurCost, 1773 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1774 DenseSet<const SCEV *> &VisitedRegs) const; 1775 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1776 1777 BasicBlock::iterator 1778 HoistInsertPosition(BasicBlock::iterator IP, 1779 const SmallVectorImpl<Instruction *> &Inputs) const; 1780 BasicBlock::iterator 1781 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1782 const LSRFixup &LF, 1783 const LSRUse &LU, 1784 SCEVExpander &Rewriter) const; 1785 1786 Value *Expand(const LSRFixup &LF, 1787 const Formula &F, 1788 BasicBlock::iterator IP, 1789 SCEVExpander &Rewriter, 1790 SmallVectorImpl<WeakVH> &DeadInsts) const; 1791 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1792 const Formula &F, 1793 SCEVExpander &Rewriter, 1794 SmallVectorImpl<WeakVH> &DeadInsts, 1795 Pass *P) const; 1796 void Rewrite(const LSRFixup &LF, 1797 const Formula &F, 1798 SCEVExpander &Rewriter, 1799 SmallVectorImpl<WeakVH> &DeadInsts, 1800 Pass *P) const; 1801 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1802 Pass *P); 1803 1804 public: 1805 LSRInstance(Loop *L, Pass *P); 1806 1807 bool getChanged() const { return Changed; } 1808 1809 void print_factors_and_types(raw_ostream &OS) const; 1810 void print_fixups(raw_ostream &OS) const; 1811 void print_uses(raw_ostream &OS) const; 1812 void print(raw_ostream &OS) const; 1813 void dump() const; 1814 }; 1815 1816 } 1817 1818 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1819 /// inside the loop then try to eliminate the cast operation. 1820 void LSRInstance::OptimizeShadowIV() { 1821 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1822 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1823 return; 1824 1825 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1826 UI != E; /* empty */) { 1827 IVUsers::const_iterator CandidateUI = UI; 1828 ++UI; 1829 Instruction *ShadowUse = CandidateUI->getUser(); 1830 Type *DestTy = nullptr; 1831 bool IsSigned = false; 1832 1833 /* If shadow use is a int->float cast then insert a second IV 1834 to eliminate this cast. 1835 1836 for (unsigned i = 0; i < n; ++i) 1837 foo((double)i); 1838 1839 is transformed into 1840 1841 double d = 0.0; 1842 for (unsigned i = 0; i < n; ++i, ++d) 1843 foo(d); 1844 */ 1845 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1846 IsSigned = false; 1847 DestTy = UCast->getDestTy(); 1848 } 1849 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1850 IsSigned = true; 1851 DestTy = SCast->getDestTy(); 1852 } 1853 if (!DestTy) continue; 1854 1855 // If target does not support DestTy natively then do not apply 1856 // this transformation. 1857 if (!TTI.isTypeLegal(DestTy)) continue; 1858 1859 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1860 if (!PH) continue; 1861 if (PH->getNumIncomingValues() != 2) continue; 1862 1863 Type *SrcTy = PH->getType(); 1864 int Mantissa = DestTy->getFPMantissaWidth(); 1865 if (Mantissa == -1) continue; 1866 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1867 continue; 1868 1869 unsigned Entry, Latch; 1870 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1871 Entry = 0; 1872 Latch = 1; 1873 } else { 1874 Entry = 1; 1875 Latch = 0; 1876 } 1877 1878 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1879 if (!Init) continue; 1880 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1881 (double)Init->getSExtValue() : 1882 (double)Init->getZExtValue()); 1883 1884 BinaryOperator *Incr = 1885 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1886 if (!Incr) continue; 1887 if (Incr->getOpcode() != Instruction::Add 1888 && Incr->getOpcode() != Instruction::Sub) 1889 continue; 1890 1891 /* Initialize new IV, double d = 0.0 in above example. */ 1892 ConstantInt *C = nullptr; 1893 if (Incr->getOperand(0) == PH) 1894 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1895 else if (Incr->getOperand(1) == PH) 1896 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1897 else 1898 continue; 1899 1900 if (!C) continue; 1901 1902 // Ignore negative constants, as the code below doesn't handle them 1903 // correctly. TODO: Remove this restriction. 1904 if (!C->getValue().isStrictlyPositive()) continue; 1905 1906 /* Add new PHINode. */ 1907 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1908 1909 /* create new increment. '++d' in above example. */ 1910 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1911 BinaryOperator *NewIncr = 1912 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1913 Instruction::FAdd : Instruction::FSub, 1914 NewPH, CFP, "IV.S.next.", Incr); 1915 1916 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1917 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1918 1919 /* Remove cast operation */ 1920 ShadowUse->replaceAllUsesWith(NewPH); 1921 ShadowUse->eraseFromParent(); 1922 Changed = true; 1923 break; 1924 } 1925 } 1926 1927 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1928 /// set the IV user and stride information and return true, otherwise return 1929 /// false. 1930 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1931 for (IVStrideUse &U : IU) 1932 if (U.getUser() == Cond) { 1933 // NOTE: we could handle setcc instructions with multiple uses here, but 1934 // InstCombine does it as well for simple uses, it's not clear that it 1935 // occurs enough in real life to handle. 1936 CondUse = &U; 1937 return true; 1938 } 1939 return false; 1940 } 1941 1942 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1943 /// a max computation. 1944 /// 1945 /// This is a narrow solution to a specific, but acute, problem. For loops 1946 /// like this: 1947 /// 1948 /// i = 0; 1949 /// do { 1950 /// p[i] = 0.0; 1951 /// } while (++i < n); 1952 /// 1953 /// the trip count isn't just 'n', because 'n' might not be positive. And 1954 /// unfortunately this can come up even for loops where the user didn't use 1955 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1956 /// will commonly be lowered like this: 1957 // 1958 /// if (n > 0) { 1959 /// i = 0; 1960 /// do { 1961 /// p[i] = 0.0; 1962 /// } while (++i < n); 1963 /// } 1964 /// 1965 /// and then it's possible for subsequent optimization to obscure the if 1966 /// test in such a way that indvars can't find it. 1967 /// 1968 /// When indvars can't find the if test in loops like this, it creates a 1969 /// max expression, which allows it to give the loop a canonical 1970 /// induction variable: 1971 /// 1972 /// i = 0; 1973 /// max = n < 1 ? 1 : n; 1974 /// do { 1975 /// p[i] = 0.0; 1976 /// } while (++i != max); 1977 /// 1978 /// Canonical induction variables are necessary because the loop passes 1979 /// are designed around them. The most obvious example of this is the 1980 /// LoopInfo analysis, which doesn't remember trip count values. It 1981 /// expects to be able to rediscover the trip count each time it is 1982 /// needed, and it does this using a simple analysis that only succeeds if 1983 /// the loop has a canonical induction variable. 1984 /// 1985 /// However, when it comes time to generate code, the maximum operation 1986 /// can be quite costly, especially if it's inside of an outer loop. 1987 /// 1988 /// This function solves this problem by detecting this type of loop and 1989 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1990 /// the instructions for the maximum computation. 1991 /// 1992 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1993 // Check that the loop matches the pattern we're looking for. 1994 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1995 Cond->getPredicate() != CmpInst::ICMP_NE) 1996 return Cond; 1997 1998 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1999 if (!Sel || !Sel->hasOneUse()) return Cond; 2000 2001 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2002 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2003 return Cond; 2004 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2005 2006 // Add one to the backedge-taken count to get the trip count. 2007 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2008 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2009 2010 // Check for a max calculation that matches the pattern. There's no check 2011 // for ICMP_ULE here because the comparison would be with zero, which 2012 // isn't interesting. 2013 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2014 const SCEVNAryExpr *Max = nullptr; 2015 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2016 Pred = ICmpInst::ICMP_SLE; 2017 Max = S; 2018 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2019 Pred = ICmpInst::ICMP_SLT; 2020 Max = S; 2021 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2022 Pred = ICmpInst::ICMP_ULT; 2023 Max = U; 2024 } else { 2025 // No match; bail. 2026 return Cond; 2027 } 2028 2029 // To handle a max with more than two operands, this optimization would 2030 // require additional checking and setup. 2031 if (Max->getNumOperands() != 2) 2032 return Cond; 2033 2034 const SCEV *MaxLHS = Max->getOperand(0); 2035 const SCEV *MaxRHS = Max->getOperand(1); 2036 2037 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2038 // for a comparison with 1. For <= and >=, a comparison with zero. 2039 if (!MaxLHS || 2040 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2041 return Cond; 2042 2043 // Check the relevant induction variable for conformance to 2044 // the pattern. 2045 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2046 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2047 if (!AR || !AR->isAffine() || 2048 AR->getStart() != One || 2049 AR->getStepRecurrence(SE) != One) 2050 return Cond; 2051 2052 assert(AR->getLoop() == L && 2053 "Loop condition operand is an addrec in a different loop!"); 2054 2055 // Check the right operand of the select, and remember it, as it will 2056 // be used in the new comparison instruction. 2057 Value *NewRHS = nullptr; 2058 if (ICmpInst::isTrueWhenEqual(Pred)) { 2059 // Look for n+1, and grab n. 2060 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2061 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2062 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2063 NewRHS = BO->getOperand(0); 2064 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2065 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2066 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2067 NewRHS = BO->getOperand(0); 2068 if (!NewRHS) 2069 return Cond; 2070 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2071 NewRHS = Sel->getOperand(1); 2072 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2073 NewRHS = Sel->getOperand(2); 2074 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2075 NewRHS = SU->getValue(); 2076 else 2077 // Max doesn't match expected pattern. 2078 return Cond; 2079 2080 // Determine the new comparison opcode. It may be signed or unsigned, 2081 // and the original comparison may be either equality or inequality. 2082 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2083 Pred = CmpInst::getInversePredicate(Pred); 2084 2085 // Ok, everything looks ok to change the condition into an SLT or SGE and 2086 // delete the max calculation. 2087 ICmpInst *NewCond = 2088 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2089 2090 // Delete the max calculation instructions. 2091 Cond->replaceAllUsesWith(NewCond); 2092 CondUse->setUser(NewCond); 2093 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2094 Cond->eraseFromParent(); 2095 Sel->eraseFromParent(); 2096 if (Cmp->use_empty()) 2097 Cmp->eraseFromParent(); 2098 return NewCond; 2099 } 2100 2101 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2102 /// postinc iv when possible. 2103 void 2104 LSRInstance::OptimizeLoopTermCond() { 2105 SmallPtrSet<Instruction *, 4> PostIncs; 2106 2107 BasicBlock *LatchBlock = L->getLoopLatch(); 2108 SmallVector<BasicBlock*, 8> ExitingBlocks; 2109 L->getExitingBlocks(ExitingBlocks); 2110 2111 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2112 2113 // Get the terminating condition for the loop if possible. If we 2114 // can, we want to change it to use a post-incremented version of its 2115 // induction variable, to allow coalescing the live ranges for the IV into 2116 // one register value. 2117 2118 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2119 if (!TermBr) 2120 continue; 2121 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2122 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2123 continue; 2124 2125 // Search IVUsesByStride to find Cond's IVUse if there is one. 2126 IVStrideUse *CondUse = nullptr; 2127 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2128 if (!FindIVUserForCond(Cond, CondUse)) 2129 continue; 2130 2131 // If the trip count is computed in terms of a max (due to ScalarEvolution 2132 // being unable to find a sufficient guard, for example), change the loop 2133 // comparison to use SLT or ULT instead of NE. 2134 // One consequence of doing this now is that it disrupts the count-down 2135 // optimization. That's not always a bad thing though, because in such 2136 // cases it may still be worthwhile to avoid a max. 2137 Cond = OptimizeMax(Cond, CondUse); 2138 2139 // If this exiting block dominates the latch block, it may also use 2140 // the post-inc value if it won't be shared with other uses. 2141 // Check for dominance. 2142 if (!DT.dominates(ExitingBlock, LatchBlock)) 2143 continue; 2144 2145 // Conservatively avoid trying to use the post-inc value in non-latch 2146 // exits if there may be pre-inc users in intervening blocks. 2147 if (LatchBlock != ExitingBlock) 2148 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2149 // Test if the use is reachable from the exiting block. This dominator 2150 // query is a conservative approximation of reachability. 2151 if (&*UI != CondUse && 2152 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2153 // Conservatively assume there may be reuse if the quotient of their 2154 // strides could be a legal scale. 2155 const SCEV *A = IU.getStride(*CondUse, L); 2156 const SCEV *B = IU.getStride(*UI, L); 2157 if (!A || !B) continue; 2158 if (SE.getTypeSizeInBits(A->getType()) != 2159 SE.getTypeSizeInBits(B->getType())) { 2160 if (SE.getTypeSizeInBits(A->getType()) > 2161 SE.getTypeSizeInBits(B->getType())) 2162 B = SE.getSignExtendExpr(B, A->getType()); 2163 else 2164 A = SE.getSignExtendExpr(A, B->getType()); 2165 } 2166 if (const SCEVConstant *D = 2167 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2168 const ConstantInt *C = D->getValue(); 2169 // Stride of one or negative one can have reuse with non-addresses. 2170 if (C->isOne() || C->isAllOnesValue()) 2171 goto decline_post_inc; 2172 // Avoid weird situations. 2173 if (C->getValue().getMinSignedBits() >= 64 || 2174 C->getValue().isMinSignedValue()) 2175 goto decline_post_inc; 2176 // Check for possible scaled-address reuse. 2177 Type *AccessTy = getAccessType(UI->getUser()); 2178 int64_t Scale = C->getSExtValue(); 2179 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2180 /*BaseOffset=*/ 0, 2181 /*HasBaseReg=*/ false, Scale)) 2182 goto decline_post_inc; 2183 Scale = -Scale; 2184 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2185 /*BaseOffset=*/ 0, 2186 /*HasBaseReg=*/ false, Scale)) 2187 goto decline_post_inc; 2188 } 2189 } 2190 2191 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2192 << *Cond << '\n'); 2193 2194 // It's possible for the setcc instruction to be anywhere in the loop, and 2195 // possible for it to have multiple users. If it is not immediately before 2196 // the exiting block branch, move it. 2197 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2198 if (Cond->hasOneUse()) { 2199 Cond->moveBefore(TermBr); 2200 } else { 2201 // Clone the terminating condition and insert into the loopend. 2202 ICmpInst *OldCond = Cond; 2203 Cond = cast<ICmpInst>(Cond->clone()); 2204 Cond->setName(L->getHeader()->getName() + ".termcond"); 2205 ExitingBlock->getInstList().insert(TermBr, Cond); 2206 2207 // Clone the IVUse, as the old use still exists! 2208 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2209 TermBr->replaceUsesOfWith(OldCond, Cond); 2210 } 2211 } 2212 2213 // If we get to here, we know that we can transform the setcc instruction to 2214 // use the post-incremented version of the IV, allowing us to coalesce the 2215 // live ranges for the IV correctly. 2216 CondUse->transformToPostInc(L); 2217 Changed = true; 2218 2219 PostIncs.insert(Cond); 2220 decline_post_inc:; 2221 } 2222 2223 // Determine an insertion point for the loop induction variable increment. It 2224 // must dominate all the post-inc comparisons we just set up, and it must 2225 // dominate the loop latch edge. 2226 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2227 for (Instruction *Inst : PostIncs) { 2228 BasicBlock *BB = 2229 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2230 Inst->getParent()); 2231 if (BB == Inst->getParent()) 2232 IVIncInsertPos = Inst; 2233 else if (BB != IVIncInsertPos->getParent()) 2234 IVIncInsertPos = BB->getTerminator(); 2235 } 2236 } 2237 2238 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2239 /// at the given offset and other details. If so, update the use and 2240 /// return true. 2241 bool 2242 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2243 LSRUse::KindType Kind, Type *AccessTy) { 2244 int64_t NewMinOffset = LU.MinOffset; 2245 int64_t NewMaxOffset = LU.MaxOffset; 2246 Type *NewAccessTy = AccessTy; 2247 2248 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2249 // something conservative, however this can pessimize in the case that one of 2250 // the uses will have all its uses outside the loop, for example. 2251 if (LU.Kind != Kind) 2252 return false; 2253 2254 // Check for a mismatched access type, and fall back conservatively as needed. 2255 // TODO: Be less conservative when the type is similar and can use the same 2256 // addressing modes. 2257 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2258 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2259 2260 // Conservatively assume HasBaseReg is true for now. 2261 if (NewOffset < LU.MinOffset) { 2262 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2263 LU.MaxOffset - NewOffset, HasBaseReg)) 2264 return false; 2265 NewMinOffset = NewOffset; 2266 } else if (NewOffset > LU.MaxOffset) { 2267 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2268 NewOffset - LU.MinOffset, HasBaseReg)) 2269 return false; 2270 NewMaxOffset = NewOffset; 2271 } 2272 2273 // Update the use. 2274 LU.MinOffset = NewMinOffset; 2275 LU.MaxOffset = NewMaxOffset; 2276 LU.AccessTy = NewAccessTy; 2277 if (NewOffset != LU.Offsets.back()) 2278 LU.Offsets.push_back(NewOffset); 2279 return true; 2280 } 2281 2282 /// getUse - Return an LSRUse index and an offset value for a fixup which 2283 /// needs the given expression, with the given kind and optional access type. 2284 /// Either reuse an existing use or create a new one, as needed. 2285 std::pair<size_t, int64_t> 2286 LSRInstance::getUse(const SCEV *&Expr, 2287 LSRUse::KindType Kind, Type *AccessTy) { 2288 const SCEV *Copy = Expr; 2289 int64_t Offset = ExtractImmediate(Expr, SE); 2290 2291 // Basic uses can't accept any offset, for example. 2292 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2293 Offset, /*HasBaseReg=*/ true)) { 2294 Expr = Copy; 2295 Offset = 0; 2296 } 2297 2298 std::pair<UseMapTy::iterator, bool> P = 2299 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2300 if (!P.second) { 2301 // A use already existed with this base. 2302 size_t LUIdx = P.first->second; 2303 LSRUse &LU = Uses[LUIdx]; 2304 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2305 // Reuse this use. 2306 return std::make_pair(LUIdx, Offset); 2307 } 2308 2309 // Create a new use. 2310 size_t LUIdx = Uses.size(); 2311 P.first->second = LUIdx; 2312 Uses.push_back(LSRUse(Kind, AccessTy)); 2313 LSRUse &LU = Uses[LUIdx]; 2314 2315 // We don't need to track redundant offsets, but we don't need to go out 2316 // of our way here to avoid them. 2317 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2318 LU.Offsets.push_back(Offset); 2319 2320 LU.MinOffset = Offset; 2321 LU.MaxOffset = Offset; 2322 return std::make_pair(LUIdx, Offset); 2323 } 2324 2325 /// DeleteUse - Delete the given use from the Uses list. 2326 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2327 if (&LU != &Uses.back()) 2328 std::swap(LU, Uses.back()); 2329 Uses.pop_back(); 2330 2331 // Update RegUses. 2332 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2333 } 2334 2335 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2336 /// a formula that has the same registers as the given formula. 2337 LSRUse * 2338 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2339 const LSRUse &OrigLU) { 2340 // Search all uses for the formula. This could be more clever. 2341 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2342 LSRUse &LU = Uses[LUIdx]; 2343 // Check whether this use is close enough to OrigLU, to see whether it's 2344 // worthwhile looking through its formulae. 2345 // Ignore ICmpZero uses because they may contain formulae generated by 2346 // GenerateICmpZeroScales, in which case adding fixup offsets may 2347 // be invalid. 2348 if (&LU != &OrigLU && 2349 LU.Kind != LSRUse::ICmpZero && 2350 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2351 LU.WidestFixupType == OrigLU.WidestFixupType && 2352 LU.HasFormulaWithSameRegs(OrigF)) { 2353 // Scan through this use's formulae. 2354 for (const Formula &F : LU.Formulae) { 2355 // Check to see if this formula has the same registers and symbols 2356 // as OrigF. 2357 if (F.BaseRegs == OrigF.BaseRegs && 2358 F.ScaledReg == OrigF.ScaledReg && 2359 F.BaseGV == OrigF.BaseGV && 2360 F.Scale == OrigF.Scale && 2361 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2362 if (F.BaseOffset == 0) 2363 return &LU; 2364 // This is the formula where all the registers and symbols matched; 2365 // there aren't going to be any others. Since we declined it, we 2366 // can skip the rest of the formulae and proceed to the next LSRUse. 2367 break; 2368 } 2369 } 2370 } 2371 } 2372 2373 // Nothing looked good. 2374 return nullptr; 2375 } 2376 2377 void LSRInstance::CollectInterestingTypesAndFactors() { 2378 SmallSetVector<const SCEV *, 4> Strides; 2379 2380 // Collect interesting types and strides. 2381 SmallVector<const SCEV *, 4> Worklist; 2382 for (const IVStrideUse &U : IU) { 2383 const SCEV *Expr = IU.getExpr(U); 2384 2385 // Collect interesting types. 2386 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2387 2388 // Add strides for mentioned loops. 2389 Worklist.push_back(Expr); 2390 do { 2391 const SCEV *S = Worklist.pop_back_val(); 2392 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2393 if (AR->getLoop() == L) 2394 Strides.insert(AR->getStepRecurrence(SE)); 2395 Worklist.push_back(AR->getStart()); 2396 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2397 Worklist.append(Add->op_begin(), Add->op_end()); 2398 } 2399 } while (!Worklist.empty()); 2400 } 2401 2402 // Compute interesting factors from the set of interesting strides. 2403 for (SmallSetVector<const SCEV *, 4>::const_iterator 2404 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2405 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2406 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2407 const SCEV *OldStride = *I; 2408 const SCEV *NewStride = *NewStrideIter; 2409 2410 if (SE.getTypeSizeInBits(OldStride->getType()) != 2411 SE.getTypeSizeInBits(NewStride->getType())) { 2412 if (SE.getTypeSizeInBits(OldStride->getType()) > 2413 SE.getTypeSizeInBits(NewStride->getType())) 2414 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2415 else 2416 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2417 } 2418 if (const SCEVConstant *Factor = 2419 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2420 SE, true))) { 2421 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2422 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2423 } else if (const SCEVConstant *Factor = 2424 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2425 NewStride, 2426 SE, true))) { 2427 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2428 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2429 } 2430 } 2431 2432 // If all uses use the same type, don't bother looking for truncation-based 2433 // reuse. 2434 if (Types.size() == 1) 2435 Types.clear(); 2436 2437 DEBUG(print_factors_and_types(dbgs())); 2438 } 2439 2440 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2441 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2442 /// Instructions to IVStrideUses, we could partially skip this. 2443 static User::op_iterator 2444 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2445 Loop *L, ScalarEvolution &SE) { 2446 for(; OI != OE; ++OI) { 2447 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2448 if (!SE.isSCEVable(Oper->getType())) 2449 continue; 2450 2451 if (const SCEVAddRecExpr *AR = 2452 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2453 if (AR->getLoop() == L) 2454 break; 2455 } 2456 } 2457 } 2458 return OI; 2459 } 2460 2461 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2462 /// operands, so wrap it in a convenient helper. 2463 static Value *getWideOperand(Value *Oper) { 2464 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2465 return Trunc->getOperand(0); 2466 return Oper; 2467 } 2468 2469 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2470 /// types. 2471 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2472 Type *LType = LVal->getType(); 2473 Type *RType = RVal->getType(); 2474 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2475 } 2476 2477 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2478 /// NULL for any constant. Returning the expression itself is 2479 /// conservative. Returning a deeper subexpression is more precise and valid as 2480 /// long as it isn't less complex than another subexpression. For expressions 2481 /// involving multiple unscaled values, we need to return the pointer-type 2482 /// SCEVUnknown. This avoids forming chains across objects, such as: 2483 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2484 /// 2485 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2486 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2487 static const SCEV *getExprBase(const SCEV *S) { 2488 switch (S->getSCEVType()) { 2489 default: // uncluding scUnknown. 2490 return S; 2491 case scConstant: 2492 return nullptr; 2493 case scTruncate: 2494 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2495 case scZeroExtend: 2496 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2497 case scSignExtend: 2498 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2499 case scAddExpr: { 2500 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2501 // there's nothing more complex. 2502 // FIXME: not sure if we want to recognize negation. 2503 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2504 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2505 E(Add->op_begin()); I != E; ++I) { 2506 const SCEV *SubExpr = *I; 2507 if (SubExpr->getSCEVType() == scAddExpr) 2508 return getExprBase(SubExpr); 2509 2510 if (SubExpr->getSCEVType() != scMulExpr) 2511 return SubExpr; 2512 } 2513 return S; // all operands are scaled, be conservative. 2514 } 2515 case scAddRecExpr: 2516 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2517 } 2518 } 2519 2520 /// Return true if the chain increment is profitable to expand into a loop 2521 /// invariant value, which may require its own register. A profitable chain 2522 /// increment will be an offset relative to the same base. We allow such offsets 2523 /// to potentially be used as chain increment as long as it's not obviously 2524 /// expensive to expand using real instructions. 2525 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2526 const SCEV *IncExpr, 2527 ScalarEvolution &SE) { 2528 // Aggressively form chains when -stress-ivchain. 2529 if (StressIVChain) 2530 return true; 2531 2532 // Do not replace a constant offset from IV head with a nonconstant IV 2533 // increment. 2534 if (!isa<SCEVConstant>(IncExpr)) { 2535 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2536 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2537 return 0; 2538 } 2539 2540 SmallPtrSet<const SCEV*, 8> Processed; 2541 return !isHighCostExpansion(IncExpr, Processed, SE); 2542 } 2543 2544 /// Return true if the number of registers needed for the chain is estimated to 2545 /// be less than the number required for the individual IV users. First prohibit 2546 /// any IV users that keep the IV live across increments (the Users set should 2547 /// be empty). Next count the number and type of increments in the chain. 2548 /// 2549 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2550 /// effectively use postinc addressing modes. Only consider it profitable it the 2551 /// increments can be computed in fewer registers when chained. 2552 /// 2553 /// TODO: Consider IVInc free if it's already used in another chains. 2554 static bool 2555 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2556 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2557 if (StressIVChain) 2558 return true; 2559 2560 if (!Chain.hasIncs()) 2561 return false; 2562 2563 if (!Users.empty()) { 2564 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2565 for (Instruction *Inst : Users) { 2566 dbgs() << " " << *Inst << "\n"; 2567 }); 2568 return false; 2569 } 2570 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2571 2572 // The chain itself may require a register, so intialize cost to 1. 2573 int cost = 1; 2574 2575 // A complete chain likely eliminates the need for keeping the original IV in 2576 // a register. LSR does not currently know how to form a complete chain unless 2577 // the header phi already exists. 2578 if (isa<PHINode>(Chain.tailUserInst()) 2579 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2580 --cost; 2581 } 2582 const SCEV *LastIncExpr = nullptr; 2583 unsigned NumConstIncrements = 0; 2584 unsigned NumVarIncrements = 0; 2585 unsigned NumReusedIncrements = 0; 2586 for (const IVInc &Inc : Chain) { 2587 if (Inc.IncExpr->isZero()) 2588 continue; 2589 2590 // Incrementing by zero or some constant is neutral. We assume constants can 2591 // be folded into an addressing mode or an add's immediate operand. 2592 if (isa<SCEVConstant>(Inc.IncExpr)) { 2593 ++NumConstIncrements; 2594 continue; 2595 } 2596 2597 if (Inc.IncExpr == LastIncExpr) 2598 ++NumReusedIncrements; 2599 else 2600 ++NumVarIncrements; 2601 2602 LastIncExpr = Inc.IncExpr; 2603 } 2604 // An IV chain with a single increment is handled by LSR's postinc 2605 // uses. However, a chain with multiple increments requires keeping the IV's 2606 // value live longer than it needs to be if chained. 2607 if (NumConstIncrements > 1) 2608 --cost; 2609 2610 // Materializing increment expressions in the preheader that didn't exist in 2611 // the original code may cost a register. For example, sign-extended array 2612 // indices can produce ridiculous increments like this: 2613 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2614 cost += NumVarIncrements; 2615 2616 // Reusing variable increments likely saves a register to hold the multiple of 2617 // the stride. 2618 cost -= NumReusedIncrements; 2619 2620 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2621 << "\n"); 2622 2623 return cost < 0; 2624 } 2625 2626 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2627 /// of a new chain. 2628 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2629 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2630 // When IVs are used as types of varying widths, they are generally converted 2631 // to a wider type with some uses remaining narrow under a (free) trunc. 2632 Value *const NextIV = getWideOperand(IVOper); 2633 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2634 const SCEV *const OperExprBase = getExprBase(OperExpr); 2635 2636 // Visit all existing chains. Check if its IVOper can be computed as a 2637 // profitable loop invariant increment from the last link in the Chain. 2638 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2639 const SCEV *LastIncExpr = nullptr; 2640 for (; ChainIdx < NChains; ++ChainIdx) { 2641 IVChain &Chain = IVChainVec[ChainIdx]; 2642 2643 // Prune the solution space aggressively by checking that both IV operands 2644 // are expressions that operate on the same unscaled SCEVUnknown. This 2645 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2646 // first avoids creating extra SCEV expressions. 2647 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2648 continue; 2649 2650 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2651 if (!isCompatibleIVType(PrevIV, NextIV)) 2652 continue; 2653 2654 // A phi node terminates a chain. 2655 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2656 continue; 2657 2658 // The increment must be loop-invariant so it can be kept in a register. 2659 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2660 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2661 if (!SE.isLoopInvariant(IncExpr, L)) 2662 continue; 2663 2664 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2665 LastIncExpr = IncExpr; 2666 break; 2667 } 2668 } 2669 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2670 // bother for phi nodes, because they must be last in the chain. 2671 if (ChainIdx == NChains) { 2672 if (isa<PHINode>(UserInst)) 2673 return; 2674 if (NChains >= MaxChains && !StressIVChain) { 2675 DEBUG(dbgs() << "IV Chain Limit\n"); 2676 return; 2677 } 2678 LastIncExpr = OperExpr; 2679 // IVUsers may have skipped over sign/zero extensions. We don't currently 2680 // attempt to form chains involving extensions unless they can be hoisted 2681 // into this loop's AddRec. 2682 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2683 return; 2684 ++NChains; 2685 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2686 OperExprBase)); 2687 ChainUsersVec.resize(NChains); 2688 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2689 << ") IV=" << *LastIncExpr << "\n"); 2690 } else { 2691 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2692 << ") IV+" << *LastIncExpr << "\n"); 2693 // Add this IV user to the end of the chain. 2694 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2695 } 2696 IVChain &Chain = IVChainVec[ChainIdx]; 2697 2698 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2699 // This chain's NearUsers become FarUsers. 2700 if (!LastIncExpr->isZero()) { 2701 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2702 NearUsers.end()); 2703 NearUsers.clear(); 2704 } 2705 2706 // All other uses of IVOperand become near uses of the chain. 2707 // We currently ignore intermediate values within SCEV expressions, assuming 2708 // they will eventually be used be the current chain, or can be computed 2709 // from one of the chain increments. To be more precise we could 2710 // transitively follow its user and only add leaf IV users to the set. 2711 for (User *U : IVOper->users()) { 2712 Instruction *OtherUse = dyn_cast<Instruction>(U); 2713 if (!OtherUse) 2714 continue; 2715 // Uses in the chain will no longer be uses if the chain is formed. 2716 // Include the head of the chain in this iteration (not Chain.begin()). 2717 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2718 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2719 for( ; IncIter != IncEnd; ++IncIter) { 2720 if (IncIter->UserInst == OtherUse) 2721 break; 2722 } 2723 if (IncIter != IncEnd) 2724 continue; 2725 2726 if (SE.isSCEVable(OtherUse->getType()) 2727 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2728 && IU.isIVUserOrOperand(OtherUse)) { 2729 continue; 2730 } 2731 NearUsers.insert(OtherUse); 2732 } 2733 2734 // Since this user is part of the chain, it's no longer considered a use 2735 // of the chain. 2736 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2737 } 2738 2739 /// CollectChains - Populate the vector of Chains. 2740 /// 2741 /// This decreases ILP at the architecture level. Targets with ample registers, 2742 /// multiple memory ports, and no register renaming probably don't want 2743 /// this. However, such targets should probably disable LSR altogether. 2744 /// 2745 /// The job of LSR is to make a reasonable choice of induction variables across 2746 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2747 /// ILP *within the loop* if the target wants it. 2748 /// 2749 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2750 /// will not reorder memory operations, it will recognize this as a chain, but 2751 /// will generate redundant IV increments. Ideally this would be corrected later 2752 /// by a smart scheduler: 2753 /// = A[i] 2754 /// = A[i+x] 2755 /// A[i] = 2756 /// A[i+x] = 2757 /// 2758 /// TODO: Walk the entire domtree within this loop, not just the path to the 2759 /// loop latch. This will discover chains on side paths, but requires 2760 /// maintaining multiple copies of the Chains state. 2761 void LSRInstance::CollectChains() { 2762 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2763 SmallVector<ChainUsers, 8> ChainUsersVec; 2764 2765 SmallVector<BasicBlock *,8> LatchPath; 2766 BasicBlock *LoopHeader = L->getHeader(); 2767 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2768 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2769 LatchPath.push_back(Rung->getBlock()); 2770 } 2771 LatchPath.push_back(LoopHeader); 2772 2773 // Walk the instruction stream from the loop header to the loop latch. 2774 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2775 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2776 BBIter != BBEnd; ++BBIter) { 2777 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2778 I != E; ++I) { 2779 // Skip instructions that weren't seen by IVUsers analysis. 2780 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2781 continue; 2782 2783 // Ignore users that are part of a SCEV expression. This way we only 2784 // consider leaf IV Users. This effectively rediscovers a portion of 2785 // IVUsers analysis but in program order this time. 2786 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2787 continue; 2788 2789 // Remove this instruction from any NearUsers set it may be in. 2790 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2791 ChainIdx < NChains; ++ChainIdx) { 2792 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2793 } 2794 // Search for operands that can be chained. 2795 SmallPtrSet<Instruction*, 4> UniqueOperands; 2796 User::op_iterator IVOpEnd = I->op_end(); 2797 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2798 while (IVOpIter != IVOpEnd) { 2799 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2800 if (UniqueOperands.insert(IVOpInst).second) 2801 ChainInstruction(I, IVOpInst, ChainUsersVec); 2802 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2803 } 2804 } // Continue walking down the instructions. 2805 } // Continue walking down the domtree. 2806 // Visit phi backedges to determine if the chain can generate the IV postinc. 2807 for (BasicBlock::iterator I = L->getHeader()->begin(); 2808 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2809 if (!SE.isSCEVable(PN->getType())) 2810 continue; 2811 2812 Instruction *IncV = 2813 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2814 if (IncV) 2815 ChainInstruction(PN, IncV, ChainUsersVec); 2816 } 2817 // Remove any unprofitable chains. 2818 unsigned ChainIdx = 0; 2819 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2820 UsersIdx < NChains; ++UsersIdx) { 2821 if (!isProfitableChain(IVChainVec[UsersIdx], 2822 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2823 continue; 2824 // Preserve the chain at UsesIdx. 2825 if (ChainIdx != UsersIdx) 2826 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2827 FinalizeChain(IVChainVec[ChainIdx]); 2828 ++ChainIdx; 2829 } 2830 IVChainVec.resize(ChainIdx); 2831 } 2832 2833 void LSRInstance::FinalizeChain(IVChain &Chain) { 2834 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2835 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2836 2837 for (const IVInc &Inc : Chain) { 2838 DEBUG(dbgs() << " Inc: " << Inc.UserInst << "\n"); 2839 auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(), 2840 Inc.IVOperand); 2841 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2842 IVIncSet.insert(UseI); 2843 } 2844 } 2845 2846 /// Return true if the IVInc can be folded into an addressing mode. 2847 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2848 Value *Operand, const TargetTransformInfo &TTI) { 2849 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2850 if (!IncConst || !isAddressUse(UserInst, Operand)) 2851 return false; 2852 2853 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2854 return false; 2855 2856 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2857 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2858 getAccessType(UserInst), /*BaseGV=*/ nullptr, 2859 IncOffset, /*HaseBaseReg=*/ false)) 2860 return false; 2861 2862 return true; 2863 } 2864 2865 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2866 /// materialize the IV user's operand from the previous IV user's operand. 2867 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2868 SmallVectorImpl<WeakVH> &DeadInsts) { 2869 // Find the new IVOperand for the head of the chain. It may have been replaced 2870 // by LSR. 2871 const IVInc &Head = Chain.Incs[0]; 2872 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2873 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2874 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2875 IVOpEnd, L, SE); 2876 Value *IVSrc = nullptr; 2877 while (IVOpIter != IVOpEnd) { 2878 IVSrc = getWideOperand(*IVOpIter); 2879 2880 // If this operand computes the expression that the chain needs, we may use 2881 // it. (Check this after setting IVSrc which is used below.) 2882 // 2883 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2884 // narrow for the chain, so we can no longer use it. We do allow using a 2885 // wider phi, assuming the LSR checked for free truncation. In that case we 2886 // should already have a truncate on this operand such that 2887 // getSCEV(IVSrc) == IncExpr. 2888 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2889 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2890 break; 2891 } 2892 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2893 } 2894 if (IVOpIter == IVOpEnd) { 2895 // Gracefully give up on this chain. 2896 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2897 return; 2898 } 2899 2900 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2901 Type *IVTy = IVSrc->getType(); 2902 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2903 const SCEV *LeftOverExpr = nullptr; 2904 for (const IVInc &Inc : Chain) { 2905 Instruction *InsertPt = Inc.UserInst; 2906 if (isa<PHINode>(InsertPt)) 2907 InsertPt = L->getLoopLatch()->getTerminator(); 2908 2909 // IVOper will replace the current IV User's operand. IVSrc is the IV 2910 // value currently held in a register. 2911 Value *IVOper = IVSrc; 2912 if (!Inc.IncExpr->isZero()) { 2913 // IncExpr was the result of subtraction of two narrow values, so must 2914 // be signed. 2915 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2916 LeftOverExpr = LeftOverExpr ? 2917 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2918 } 2919 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2920 // Expand the IV increment. 2921 Rewriter.clearPostInc(); 2922 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2923 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2924 SE.getUnknown(IncV)); 2925 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2926 2927 // If an IV increment can't be folded, use it as the next IV value. 2928 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2929 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2930 IVSrc = IVOper; 2931 LeftOverExpr = nullptr; 2932 } 2933 } 2934 Type *OperTy = Inc.IVOperand->getType(); 2935 if (IVTy != OperTy) { 2936 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2937 "cannot extend a chained IV"); 2938 IRBuilder<> Builder(InsertPt); 2939 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2940 } 2941 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2942 DeadInsts.emplace_back(Inc.IVOperand); 2943 } 2944 // If LSR created a new, wider phi, we may also replace its postinc. We only 2945 // do this if we also found a wide value for the head of the chain. 2946 if (isa<PHINode>(Chain.tailUserInst())) { 2947 for (BasicBlock::iterator I = L->getHeader()->begin(); 2948 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2949 if (!isCompatibleIVType(Phi, IVSrc)) 2950 continue; 2951 Instruction *PostIncV = dyn_cast<Instruction>( 2952 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2953 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2954 continue; 2955 Value *IVOper = IVSrc; 2956 Type *PostIncTy = PostIncV->getType(); 2957 if (IVTy != PostIncTy) { 2958 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2959 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2960 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2961 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2962 } 2963 Phi->replaceUsesOfWith(PostIncV, IVOper); 2964 DeadInsts.emplace_back(PostIncV); 2965 } 2966 } 2967 } 2968 2969 void LSRInstance::CollectFixupsAndInitialFormulae() { 2970 for (const IVStrideUse &U : IU) { 2971 Instruction *UserInst = U.getUser(); 2972 // Skip IV users that are part of profitable IV Chains. 2973 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2974 U.getOperandValToReplace()); 2975 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2976 if (IVIncSet.count(UseI)) 2977 continue; 2978 2979 // Record the uses. 2980 LSRFixup &LF = getNewFixup(); 2981 LF.UserInst = UserInst; 2982 LF.OperandValToReplace = U.getOperandValToReplace(); 2983 LF.PostIncLoops = U.getPostIncLoops(); 2984 2985 LSRUse::KindType Kind = LSRUse::Basic; 2986 Type *AccessTy = nullptr; 2987 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2988 Kind = LSRUse::Address; 2989 AccessTy = getAccessType(LF.UserInst); 2990 } 2991 2992 const SCEV *S = IU.getExpr(U); 2993 2994 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2995 // (N - i == 0), and this allows (N - i) to be the expression that we work 2996 // with rather than just N or i, so we can consider the register 2997 // requirements for both N and i at the same time. Limiting this code to 2998 // equality icmps is not a problem because all interesting loops use 2999 // equality icmps, thanks to IndVarSimplify. 3000 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 3001 if (CI->isEquality()) { 3002 // Swap the operands if needed to put the OperandValToReplace on the 3003 // left, for consistency. 3004 Value *NV = CI->getOperand(1); 3005 if (NV == LF.OperandValToReplace) { 3006 CI->setOperand(1, CI->getOperand(0)); 3007 CI->setOperand(0, NV); 3008 NV = CI->getOperand(1); 3009 Changed = true; 3010 } 3011 3012 // x == y --> x - y == 0 3013 const SCEV *N = SE.getSCEV(NV); 3014 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3015 // S is normalized, so normalize N before folding it into S 3016 // to keep the result normalized. 3017 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3018 LF.PostIncLoops, SE, DT); 3019 Kind = LSRUse::ICmpZero; 3020 S = SE.getMinusSCEV(N, S); 3021 } 3022 3023 // -1 and the negations of all interesting strides (except the negation 3024 // of -1) are now also interesting. 3025 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3026 if (Factors[i] != -1) 3027 Factors.insert(-(uint64_t)Factors[i]); 3028 Factors.insert(-1); 3029 } 3030 3031 // Set up the initial formula for this use. 3032 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3033 LF.LUIdx = P.first; 3034 LF.Offset = P.second; 3035 LSRUse &LU = Uses[LF.LUIdx]; 3036 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3037 if (!LU.WidestFixupType || 3038 SE.getTypeSizeInBits(LU.WidestFixupType) < 3039 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3040 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3041 3042 // If this is the first use of this LSRUse, give it a formula. 3043 if (LU.Formulae.empty()) { 3044 InsertInitialFormula(S, LU, LF.LUIdx); 3045 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3046 } 3047 } 3048 3049 DEBUG(print_fixups(dbgs())); 3050 } 3051 3052 /// InsertInitialFormula - Insert a formula for the given expression into 3053 /// the given use, separating out loop-variant portions from loop-invariant 3054 /// and loop-computable portions. 3055 void 3056 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3057 // Mark uses whose expressions cannot be expanded. 3058 if (!isSafeToExpand(S, SE)) 3059 LU.RigidFormula = true; 3060 3061 Formula F; 3062 F.InitialMatch(S, L, SE); 3063 bool Inserted = InsertFormula(LU, LUIdx, F); 3064 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3065 } 3066 3067 /// InsertSupplementalFormula - Insert a simple single-register formula for 3068 /// the given expression into the given use. 3069 void 3070 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3071 LSRUse &LU, size_t LUIdx) { 3072 Formula F; 3073 F.BaseRegs.push_back(S); 3074 F.HasBaseReg = true; 3075 bool Inserted = InsertFormula(LU, LUIdx, F); 3076 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3077 } 3078 3079 /// CountRegisters - Note which registers are used by the given formula, 3080 /// updating RegUses. 3081 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3082 if (F.ScaledReg) 3083 RegUses.CountRegister(F.ScaledReg, LUIdx); 3084 for (const SCEV *BaseReg : F.BaseRegs) 3085 RegUses.CountRegister(BaseReg, LUIdx); 3086 } 3087 3088 /// InsertFormula - If the given formula has not yet been inserted, add it to 3089 /// the list, and return true. Return false otherwise. 3090 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3091 // Do not insert formula that we will not be able to expand. 3092 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3093 "Formula is illegal"); 3094 if (!LU.InsertFormula(F)) 3095 return false; 3096 3097 CountRegisters(F, LUIdx); 3098 return true; 3099 } 3100 3101 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3102 /// loop-invariant values which we're tracking. These other uses will pin these 3103 /// values in registers, making them less profitable for elimination. 3104 /// TODO: This currently misses non-constant addrec step registers. 3105 /// TODO: Should this give more weight to users inside the loop? 3106 void 3107 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3108 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3109 SmallPtrSet<const SCEV *, 32> Visited; 3110 3111 while (!Worklist.empty()) { 3112 const SCEV *S = Worklist.pop_back_val(); 3113 3114 // Don't process the same SCEV twice 3115 if (!Visited.insert(S).second) 3116 continue; 3117 3118 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3119 Worklist.append(N->op_begin(), N->op_end()); 3120 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3121 Worklist.push_back(C->getOperand()); 3122 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3123 Worklist.push_back(D->getLHS()); 3124 Worklist.push_back(D->getRHS()); 3125 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3126 const Value *V = US->getValue(); 3127 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3128 // Look for instructions defined outside the loop. 3129 if (L->contains(Inst)) continue; 3130 } else if (isa<UndefValue>(V)) 3131 // Undef doesn't have a live range, so it doesn't matter. 3132 continue; 3133 for (const Use &U : V->uses()) { 3134 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3135 // Ignore non-instructions. 3136 if (!UserInst) 3137 continue; 3138 // Ignore instructions in other functions (as can happen with 3139 // Constants). 3140 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3141 continue; 3142 // Ignore instructions not dominated by the loop. 3143 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3144 UserInst->getParent() : 3145 cast<PHINode>(UserInst)->getIncomingBlock( 3146 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3147 if (!DT.dominates(L->getHeader(), UseBB)) 3148 continue; 3149 // Ignore uses which are part of other SCEV expressions, to avoid 3150 // analyzing them multiple times. 3151 if (SE.isSCEVable(UserInst->getType())) { 3152 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3153 // If the user is a no-op, look through to its uses. 3154 if (!isa<SCEVUnknown>(UserS)) 3155 continue; 3156 if (UserS == US) { 3157 Worklist.push_back( 3158 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3159 continue; 3160 } 3161 } 3162 // Ignore icmp instructions which are already being analyzed. 3163 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3164 unsigned OtherIdx = !U.getOperandNo(); 3165 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3166 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3167 continue; 3168 } 3169 3170 LSRFixup &LF = getNewFixup(); 3171 LF.UserInst = const_cast<Instruction *>(UserInst); 3172 LF.OperandValToReplace = U; 3173 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); 3174 LF.LUIdx = P.first; 3175 LF.Offset = P.second; 3176 LSRUse &LU = Uses[LF.LUIdx]; 3177 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3178 if (!LU.WidestFixupType || 3179 SE.getTypeSizeInBits(LU.WidestFixupType) < 3180 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3181 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3182 InsertSupplementalFormula(US, LU, LF.LUIdx); 3183 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3184 break; 3185 } 3186 } 3187 } 3188 } 3189 3190 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3191 /// separate registers. If C is non-null, multiply each subexpression by C. 3192 /// 3193 /// Return remainder expression after factoring the subexpressions captured by 3194 /// Ops. If Ops is complete, return NULL. 3195 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3196 SmallVectorImpl<const SCEV *> &Ops, 3197 const Loop *L, 3198 ScalarEvolution &SE, 3199 unsigned Depth = 0) { 3200 // Arbitrarily cap recursion to protect compile time. 3201 if (Depth >= 3) 3202 return S; 3203 3204 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3205 // Break out add operands. 3206 for (const SCEV *S : Add->operands()) { 3207 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3208 if (Remainder) 3209 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3210 } 3211 return nullptr; 3212 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3213 // Split a non-zero base out of an addrec. 3214 if (AR->getStart()->isZero()) 3215 return S; 3216 3217 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3218 C, Ops, L, SE, Depth+1); 3219 // Split the non-zero AddRec unless it is part of a nested recurrence that 3220 // does not pertain to this loop. 3221 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3222 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3223 Remainder = nullptr; 3224 } 3225 if (Remainder != AR->getStart()) { 3226 if (!Remainder) 3227 Remainder = SE.getConstant(AR->getType(), 0); 3228 return SE.getAddRecExpr(Remainder, 3229 AR->getStepRecurrence(SE), 3230 AR->getLoop(), 3231 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3232 SCEV::FlagAnyWrap); 3233 } 3234 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3235 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3236 if (Mul->getNumOperands() != 2) 3237 return S; 3238 if (const SCEVConstant *Op0 = 3239 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3240 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3241 const SCEV *Remainder = 3242 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3243 if (Remainder) 3244 Ops.push_back(SE.getMulExpr(C, Remainder)); 3245 return nullptr; 3246 } 3247 } 3248 return S; 3249 } 3250 3251 /// \brief Helper function for LSRInstance::GenerateReassociations. 3252 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3253 const Formula &Base, 3254 unsigned Depth, size_t Idx, 3255 bool IsScaledReg) { 3256 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3257 SmallVector<const SCEV *, 8> AddOps; 3258 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3259 if (Remainder) 3260 AddOps.push_back(Remainder); 3261 3262 if (AddOps.size() == 1) 3263 return; 3264 3265 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3266 JE = AddOps.end(); 3267 J != JE; ++J) { 3268 3269 // Loop-variant "unknown" values are uninteresting; we won't be able to 3270 // do anything meaningful with them. 3271 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3272 continue; 3273 3274 // Don't pull a constant into a register if the constant could be folded 3275 // into an immediate field. 3276 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3277 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3278 continue; 3279 3280 // Collect all operands except *J. 3281 SmallVector<const SCEV *, 8> InnerAddOps( 3282 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3283 InnerAddOps.append(std::next(J), 3284 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3285 3286 // Don't leave just a constant behind in a register if the constant could 3287 // be folded into an immediate field. 3288 if (InnerAddOps.size() == 1 && 3289 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3290 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3291 continue; 3292 3293 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3294 if (InnerSum->isZero()) 3295 continue; 3296 Formula F = Base; 3297 3298 // Add the remaining pieces of the add back into the new formula. 3299 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3300 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3301 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3302 InnerSumSC->getValue()->getZExtValue())) { 3303 F.UnfoldedOffset = 3304 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3305 if (IsScaledReg) 3306 F.ScaledReg = nullptr; 3307 else 3308 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3309 } else if (IsScaledReg) 3310 F.ScaledReg = InnerSum; 3311 else 3312 F.BaseRegs[Idx] = InnerSum; 3313 3314 // Add J as its own register, or an unfolded immediate. 3315 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3316 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3317 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3318 SC->getValue()->getZExtValue())) 3319 F.UnfoldedOffset = 3320 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3321 else 3322 F.BaseRegs.push_back(*J); 3323 // We may have changed the number of register in base regs, adjust the 3324 // formula accordingly. 3325 F.Canonicalize(); 3326 3327 if (InsertFormula(LU, LUIdx, F)) 3328 // If that formula hadn't been seen before, recurse to find more like 3329 // it. 3330 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3331 } 3332 } 3333 3334 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3335 /// addrecs. 3336 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3337 Formula Base, unsigned Depth) { 3338 assert(Base.isCanonical() && "Input must be in the canonical form"); 3339 // Arbitrarily cap recursion to protect compile time. 3340 if (Depth >= 3) 3341 return; 3342 3343 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3344 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3345 3346 if (Base.Scale == 1) 3347 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3348 /* Idx */ -1, /* IsScaledReg */ true); 3349 } 3350 3351 /// GenerateCombinations - Generate a formula consisting of all of the 3352 /// loop-dominating registers added into a single register. 3353 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3354 Formula Base) { 3355 // This method is only interesting on a plurality of registers. 3356 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3357 return; 3358 3359 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3360 // processing the formula. 3361 Base.Unscale(); 3362 Formula F = Base; 3363 F.BaseRegs.clear(); 3364 SmallVector<const SCEV *, 4> Ops; 3365 for (const SCEV *BaseReg : Base.BaseRegs) { 3366 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3367 !SE.hasComputableLoopEvolution(BaseReg, L)) 3368 Ops.push_back(BaseReg); 3369 else 3370 F.BaseRegs.push_back(BaseReg); 3371 } 3372 if (Ops.size() > 1) { 3373 const SCEV *Sum = SE.getAddExpr(Ops); 3374 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3375 // opportunity to fold something. For now, just ignore such cases 3376 // rather than proceed with zero in a register. 3377 if (!Sum->isZero()) { 3378 F.BaseRegs.push_back(Sum); 3379 F.Canonicalize(); 3380 (void)InsertFormula(LU, LUIdx, F); 3381 } 3382 } 3383 } 3384 3385 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3386 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3387 const Formula &Base, size_t Idx, 3388 bool IsScaledReg) { 3389 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3390 GlobalValue *GV = ExtractSymbol(G, SE); 3391 if (G->isZero() || !GV) 3392 return; 3393 Formula F = Base; 3394 F.BaseGV = GV; 3395 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3396 return; 3397 if (IsScaledReg) 3398 F.ScaledReg = G; 3399 else 3400 F.BaseRegs[Idx] = G; 3401 (void)InsertFormula(LU, LUIdx, F); 3402 } 3403 3404 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3405 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3406 Formula Base) { 3407 // We can't add a symbolic offset if the address already contains one. 3408 if (Base.BaseGV) return; 3409 3410 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3411 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3412 if (Base.Scale == 1) 3413 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3414 /* IsScaledReg */ true); 3415 } 3416 3417 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3418 void LSRInstance::GenerateConstantOffsetsImpl( 3419 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3420 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3421 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3422 for (int64_t Offset : Worklist) { 3423 Formula F = Base; 3424 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3425 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3426 LU.AccessTy, F)) { 3427 // Add the offset to the base register. 3428 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3429 // If it cancelled out, drop the base register, otherwise update it. 3430 if (NewG->isZero()) { 3431 if (IsScaledReg) { 3432 F.Scale = 0; 3433 F.ScaledReg = nullptr; 3434 } else 3435 F.DeleteBaseReg(F.BaseRegs[Idx]); 3436 F.Canonicalize(); 3437 } else if (IsScaledReg) 3438 F.ScaledReg = NewG; 3439 else 3440 F.BaseRegs[Idx] = NewG; 3441 3442 (void)InsertFormula(LU, LUIdx, F); 3443 } 3444 } 3445 3446 int64_t Imm = ExtractImmediate(G, SE); 3447 if (G->isZero() || Imm == 0) 3448 return; 3449 Formula F = Base; 3450 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3451 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3452 return; 3453 if (IsScaledReg) 3454 F.ScaledReg = G; 3455 else 3456 F.BaseRegs[Idx] = G; 3457 (void)InsertFormula(LU, LUIdx, F); 3458 } 3459 3460 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3461 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3462 Formula Base) { 3463 // TODO: For now, just add the min and max offset, because it usually isn't 3464 // worthwhile looking at everything inbetween. 3465 SmallVector<int64_t, 2> Worklist; 3466 Worklist.push_back(LU.MinOffset); 3467 if (LU.MaxOffset != LU.MinOffset) 3468 Worklist.push_back(LU.MaxOffset); 3469 3470 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3471 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3472 if (Base.Scale == 1) 3473 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3474 /* IsScaledReg */ true); 3475 } 3476 3477 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3478 /// the comparison. For example, x == y -> x*c == y*c. 3479 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3480 Formula Base) { 3481 if (LU.Kind != LSRUse::ICmpZero) return; 3482 3483 // Determine the integer type for the base formula. 3484 Type *IntTy = Base.getType(); 3485 if (!IntTy) return; 3486 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3487 3488 // Don't do this if there is more than one offset. 3489 if (LU.MinOffset != LU.MaxOffset) return; 3490 3491 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3492 3493 // Check each interesting stride. 3494 for (int64_t Factor : Factors) { 3495 // Check that the multiplication doesn't overflow. 3496 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3497 continue; 3498 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3499 if (NewBaseOffset / Factor != Base.BaseOffset) 3500 continue; 3501 // If the offset will be truncated at this use, check that it is in bounds. 3502 if (!IntTy->isPointerTy() && 3503 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3504 continue; 3505 3506 // Check that multiplying with the use offset doesn't overflow. 3507 int64_t Offset = LU.MinOffset; 3508 if (Offset == INT64_MIN && Factor == -1) 3509 continue; 3510 Offset = (uint64_t)Offset * Factor; 3511 if (Offset / Factor != LU.MinOffset) 3512 continue; 3513 // If the offset will be truncated at this use, check that it is in bounds. 3514 if (!IntTy->isPointerTy() && 3515 !ConstantInt::isValueValidForType(IntTy, Offset)) 3516 continue; 3517 3518 Formula F = Base; 3519 F.BaseOffset = NewBaseOffset; 3520 3521 // Check that this scale is legal. 3522 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3523 continue; 3524 3525 // Compensate for the use having MinOffset built into it. 3526 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3527 3528 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3529 3530 // Check that multiplying with each base register doesn't overflow. 3531 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3532 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3533 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3534 goto next; 3535 } 3536 3537 // Check that multiplying with the scaled register doesn't overflow. 3538 if (F.ScaledReg) { 3539 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3540 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3541 continue; 3542 } 3543 3544 // Check that multiplying with the unfolded offset doesn't overflow. 3545 if (F.UnfoldedOffset != 0) { 3546 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3547 continue; 3548 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3549 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3550 continue; 3551 // If the offset will be truncated, check that it is in bounds. 3552 if (!IntTy->isPointerTy() && 3553 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3554 continue; 3555 } 3556 3557 // If we make it here and it's legal, add it. 3558 (void)InsertFormula(LU, LUIdx, F); 3559 next:; 3560 } 3561 } 3562 3563 /// GenerateScales - Generate stride factor reuse formulae by making use of 3564 /// scaled-offset address modes, for example. 3565 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3566 // Determine the integer type for the base formula. 3567 Type *IntTy = Base.getType(); 3568 if (!IntTy) return; 3569 3570 // If this Formula already has a scaled register, we can't add another one. 3571 // Try to unscale the formula to generate a better scale. 3572 if (Base.Scale != 0 && !Base.Unscale()) 3573 return; 3574 3575 assert(Base.Scale == 0 && "Unscale did not did its job!"); 3576 3577 // Check each interesting stride. 3578 for (int64_t Factor : Factors) { 3579 Base.Scale = Factor; 3580 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3581 // Check whether this scale is going to be legal. 3582 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3583 Base)) { 3584 // As a special-case, handle special out-of-loop Basic users specially. 3585 // TODO: Reconsider this special case. 3586 if (LU.Kind == LSRUse::Basic && 3587 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3588 LU.AccessTy, Base) && 3589 LU.AllFixupsOutsideLoop) 3590 LU.Kind = LSRUse::Special; 3591 else 3592 continue; 3593 } 3594 // For an ICmpZero, negating a solitary base register won't lead to 3595 // new solutions. 3596 if (LU.Kind == LSRUse::ICmpZero && 3597 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3598 continue; 3599 // For each addrec base reg, apply the scale, if possible. 3600 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3601 if (const SCEVAddRecExpr *AR = 3602 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3603 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3604 if (FactorS->isZero()) 3605 continue; 3606 // Divide out the factor, ignoring high bits, since we'll be 3607 // scaling the value back up in the end. 3608 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3609 // TODO: This could be optimized to avoid all the copying. 3610 Formula F = Base; 3611 F.ScaledReg = Quotient; 3612 F.DeleteBaseReg(F.BaseRegs[i]); 3613 // The canonical representation of 1*reg is reg, which is already in 3614 // Base. In that case, do not try to insert the formula, it will be 3615 // rejected anyway. 3616 if (F.Scale == 1 && F.BaseRegs.empty()) 3617 continue; 3618 (void)InsertFormula(LU, LUIdx, F); 3619 } 3620 } 3621 } 3622 } 3623 3624 /// GenerateTruncates - Generate reuse formulae from different IV types. 3625 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3626 // Don't bother truncating symbolic values. 3627 if (Base.BaseGV) return; 3628 3629 // Determine the integer type for the base formula. 3630 Type *DstTy = Base.getType(); 3631 if (!DstTy) return; 3632 DstTy = SE.getEffectiveSCEVType(DstTy); 3633 3634 for (Type *SrcTy : Types) { 3635 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3636 Formula F = Base; 3637 3638 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3639 for (const SCEV *&BaseReg : F.BaseRegs) 3640 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3641 3642 // TODO: This assumes we've done basic processing on all uses and 3643 // have an idea what the register usage is. 3644 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3645 continue; 3646 3647 (void)InsertFormula(LU, LUIdx, F); 3648 } 3649 } 3650 } 3651 3652 /// GenerateZExts - If a scale or a base register can be rewritten as 3653 /// "Zext({A,+,1})" then consider a formula of that form. 3654 void LSRInstance::GenerateZExts(LSRUse &LU, unsigned LUIdx, Formula Base) { 3655 // Don't bother with symbolic values. 3656 if (Base.BaseGV) 3657 return; 3658 3659 auto CanBeNarrowed = [&](const SCEV *Reg) -> const SCEV * { 3660 // Check if the register is an increment can be rewritten as zext(R) where 3661 // the zext is free. 3662 3663 const auto *RegAR = dyn_cast_or_null<SCEVAddRecExpr>(Reg); 3664 if (!RegAR) 3665 return nullptr; 3666 3667 const auto *ZExtStart = dyn_cast<SCEVZeroExtendExpr>(RegAR->getStart()); 3668 const auto *ConstStep = 3669 dyn_cast<SCEVConstant>(RegAR->getStepRecurrence(SE)); 3670 if (!ZExtStart || !ConstStep || ConstStep->getValue()->getValue() != 1) 3671 return nullptr; 3672 3673 const SCEV *NarrowStart = ZExtStart->getOperand(); 3674 if (!TTI.isZExtFree(NarrowStart->getType(), ZExtStart->getType())) 3675 return nullptr; 3676 3677 const auto *NarrowAR = dyn_cast<SCEVAddRecExpr>( 3678 SE.getAddRecExpr(NarrowStart, SE.getConstant(NarrowStart->getType(), 1), 3679 RegAR->getLoop(), RegAR->getNoWrapFlags())); 3680 3681 if (!NarrowAR || !NarrowAR->getNoWrapFlags(SCEV::FlagNUW)) 3682 return nullptr; 3683 3684 return NarrowAR; 3685 }; 3686 3687 if (Base.ScaledReg && !Base.ZeroExtendType) 3688 if (const SCEV *S = CanBeNarrowed(Base.ScaledReg)) { 3689 Formula F = Base; 3690 F.ZeroExtendType = Base.ScaledReg->getType(); 3691 F.ZeroExtendScaledReg = true; 3692 F.ScaledReg = S; 3693 3694 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3695 InsertFormula(LU, LUIdx, F); 3696 } 3697 3698 if (Base.BaseRegs.size() == 1 && !Base.ZeroExtendType) 3699 if (const SCEV *S = CanBeNarrowed(Base.BaseRegs[0])) { 3700 Formula F = Base; 3701 F.ZeroExtendType = Base.BaseRegs[0]->getType(); 3702 F.ZeroExtendBaseReg = true; 3703 F.BaseRegs[0] = S; 3704 3705 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3706 InsertFormula(LU, LUIdx, F); 3707 } 3708 } 3709 3710 namespace { 3711 3712 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3713 /// defer modifications so that the search phase doesn't have to worry about 3714 /// the data structures moving underneath it. 3715 struct WorkItem { 3716 size_t LUIdx; 3717 int64_t Imm; 3718 const SCEV *OrigReg; 3719 3720 WorkItem(size_t LI, int64_t I, const SCEV *R) 3721 : LUIdx(LI), Imm(I), OrigReg(R) {} 3722 3723 void print(raw_ostream &OS) const; 3724 void dump() const; 3725 }; 3726 3727 } 3728 3729 void WorkItem::print(raw_ostream &OS) const { 3730 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3731 << " , add offset " << Imm; 3732 } 3733 3734 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3735 void WorkItem::dump() const { 3736 print(errs()); errs() << '\n'; 3737 } 3738 #endif 3739 3740 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3741 /// distance apart and try to form reuse opportunities between them. 3742 void LSRInstance::GenerateCrossUseConstantOffsets() { 3743 // Group the registers by their value without any added constant offset. 3744 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3745 DenseMap<const SCEV *, ImmMapTy> Map; 3746 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3747 SmallVector<const SCEV *, 8> Sequence; 3748 for (const SCEV *Use : RegUses) { 3749 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3750 int64_t Imm = ExtractImmediate(Reg, SE); 3751 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3752 if (Pair.second) 3753 Sequence.push_back(Reg); 3754 Pair.first->second.insert(std::make_pair(Imm, Use)); 3755 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3756 } 3757 3758 // Now examine each set of registers with the same base value. Build up 3759 // a list of work to do and do the work in a separate step so that we're 3760 // not adding formulae and register counts while we're searching. 3761 SmallVector<WorkItem, 32> WorkItems; 3762 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3763 for (const SCEV *Reg : Sequence) { 3764 const ImmMapTy &Imms = Map.find(Reg)->second; 3765 3766 // It's not worthwhile looking for reuse if there's only one offset. 3767 if (Imms.size() == 1) 3768 continue; 3769 3770 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3771 for (const auto &Entry : Imms) 3772 dbgs() << ' ' << Entry.first; 3773 dbgs() << '\n'); 3774 3775 // Examine each offset. 3776 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3777 J != JE; ++J) { 3778 const SCEV *OrigReg = J->second; 3779 3780 int64_t JImm = J->first; 3781 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3782 3783 if (!isa<SCEVConstant>(OrigReg) && 3784 UsedByIndicesMap[Reg].count() == 1) { 3785 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3786 continue; 3787 } 3788 3789 // Conservatively examine offsets between this orig reg a few selected 3790 // other orig regs. 3791 ImmMapTy::const_iterator OtherImms[] = { 3792 Imms.begin(), std::prev(Imms.end()), 3793 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3794 2) 3795 }; 3796 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3797 ImmMapTy::const_iterator M = OtherImms[i]; 3798 if (M == J || M == JE) continue; 3799 3800 // Compute the difference between the two. 3801 int64_t Imm = (uint64_t)JImm - M->first; 3802 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3803 LUIdx = UsedByIndices.find_next(LUIdx)) 3804 // Make a memo of this use, offset, and register tuple. 3805 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3806 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3807 } 3808 } 3809 } 3810 3811 Map.clear(); 3812 Sequence.clear(); 3813 UsedByIndicesMap.clear(); 3814 UniqueItems.clear(); 3815 3816 // Now iterate through the worklist and add new formulae. 3817 for (const WorkItem &WI : WorkItems) { 3818 size_t LUIdx = WI.LUIdx; 3819 LSRUse &LU = Uses[LUIdx]; 3820 int64_t Imm = WI.Imm; 3821 const SCEV *OrigReg = WI.OrigReg; 3822 3823 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3824 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3825 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3826 3827 // TODO: Use a more targeted data structure. 3828 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3829 Formula F = LU.Formulae[L]; 3830 // FIXME: The code for the scaled and unscaled registers looks 3831 // very similar but slightly different. Investigate if they 3832 // could be merged. That way, we would not have to unscale the 3833 // Formula. 3834 F.Unscale(); 3835 // Use the immediate in the scaled register. 3836 if (F.ScaledReg == OrigReg) { 3837 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3838 // Don't create 50 + reg(-50). 3839 if (F.referencesReg(SE.getSCEV( 3840 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3841 continue; 3842 Formula NewF = F; 3843 NewF.BaseOffset = Offset; 3844 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3845 NewF)) 3846 continue; 3847 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3848 3849 // If the new scale is a constant in a register, and adding the constant 3850 // value to the immediate would produce a value closer to zero than the 3851 // immediate itself, then the formula isn't worthwhile. 3852 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3853 if (C->getValue()->isNegative() != 3854 (NewF.BaseOffset < 0) && 3855 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3856 .ule(std::abs(NewF.BaseOffset))) 3857 continue; 3858 3859 // OK, looks good. 3860 NewF.Canonicalize(); 3861 (void)InsertFormula(LU, LUIdx, NewF); 3862 } else { 3863 // Use the immediate in a base register. 3864 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3865 const SCEV *BaseReg = F.BaseRegs[N]; 3866 if (BaseReg != OrigReg) 3867 continue; 3868 Formula NewF = F; 3869 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3870 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3871 LU.Kind, LU.AccessTy, NewF)) { 3872 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3873 continue; 3874 NewF = F; 3875 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3876 } 3877 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3878 3879 // If the new formula has a constant in a register, and adding the 3880 // constant value to the immediate would produce a value closer to 3881 // zero than the immediate itself, then the formula isn't worthwhile. 3882 for (const SCEV *NewReg : NewF.BaseRegs) 3883 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3884 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3885 std::abs(NewF.BaseOffset)) && 3886 (C->getValue()->getValue() + 3887 NewF.BaseOffset).countTrailingZeros() >= 3888 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3889 goto skip_formula; 3890 3891 // Ok, looks good. 3892 NewF.Canonicalize(); 3893 (void)InsertFormula(LU, LUIdx, NewF); 3894 break; 3895 skip_formula:; 3896 } 3897 } 3898 } 3899 } 3900 } 3901 3902 /// GenerateAllReuseFormulae - Generate formulae for each use. 3903 void 3904 LSRInstance::GenerateAllReuseFormulae() { 3905 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3906 // queries are more precise. 3907 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3908 LSRUse &LU = Uses[LUIdx]; 3909 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3910 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3911 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3912 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3913 } 3914 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3915 LSRUse &LU = Uses[LUIdx]; 3916 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3917 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3918 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3919 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3920 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3921 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3922 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3923 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3924 } 3925 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3926 LSRUse &LU = Uses[LUIdx]; 3927 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3928 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3929 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3930 GenerateZExts(LU, LUIdx, LU.Formulae[i]); 3931 } 3932 3933 GenerateCrossUseConstantOffsets(); 3934 3935 DEBUG(dbgs() << "\n" 3936 "After generating reuse formulae:\n"; 3937 print_uses(dbgs())); 3938 } 3939 3940 /// If there are multiple formulae with the same set of registers used 3941 /// by other uses, pick the best one and delete the others. 3942 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3943 DenseSet<const SCEV *> VisitedRegs; 3944 SmallPtrSet<const SCEV *, 16> Regs; 3945 SmallPtrSet<const SCEV *, 16> LoserRegs; 3946 #ifndef NDEBUG 3947 bool ChangedFormulae = false; 3948 #endif 3949 3950 // Collect the best formula for each unique set of shared registers. This 3951 // is reset for each use. 3952 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3953 BestFormulaeTy; 3954 BestFormulaeTy BestFormulae; 3955 3956 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3957 LSRUse &LU = Uses[LUIdx]; 3958 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3959 3960 bool Any = false; 3961 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3962 FIdx != NumForms; ++FIdx) { 3963 Formula &F = LU.Formulae[FIdx]; 3964 3965 // Some formulas are instant losers. For example, they may depend on 3966 // nonexistent AddRecs from other loops. These need to be filtered 3967 // immediately, otherwise heuristics could choose them over others leading 3968 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3969 // avoids the need to recompute this information across formulae using the 3970 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3971 // the corresponding bad register from the Regs set. 3972 Cost CostF; 3973 Regs.clear(); 3974 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3975 &LoserRegs); 3976 if (CostF.isLoser()) { 3977 // During initial formula generation, undesirable formulae are generated 3978 // by uses within other loops that have some non-trivial address mode or 3979 // use the postinc form of the IV. LSR needs to provide these formulae 3980 // as the basis of rediscovering the desired formula that uses an AddRec 3981 // corresponding to the existing phi. Once all formulae have been 3982 // generated, these initial losers may be pruned. 3983 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3984 dbgs() << "\n"); 3985 } 3986 else { 3987 SmallVector<const SCEV *, 4> Key; 3988 for (const SCEV *Reg : F.BaseRegs) { 3989 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3990 Key.push_back(Reg); 3991 } 3992 if (F.ScaledReg && 3993 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3994 Key.push_back(F.ScaledReg); 3995 // Unstable sort by host order ok, because this is only used for 3996 // uniquifying. 3997 std::sort(Key.begin(), Key.end()); 3998 3999 std::pair<BestFormulaeTy::const_iterator, bool> P = 4000 BestFormulae.insert(std::make_pair(Key, FIdx)); 4001 if (P.second) 4002 continue; 4003 4004 Formula &Best = LU.Formulae[P.first->second]; 4005 4006 Cost CostBest; 4007 Regs.clear(); 4008 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 4009 DT, LU); 4010 if (CostF < CostBest) 4011 std::swap(F, Best); 4012 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4013 dbgs() << "\n" 4014 " in favor of formula "; Best.print(dbgs()); 4015 dbgs() << '\n'); 4016 } 4017 #ifndef NDEBUG 4018 ChangedFormulae = true; 4019 #endif 4020 LU.DeleteFormula(F); 4021 --FIdx; 4022 --NumForms; 4023 Any = true; 4024 } 4025 4026 // Now that we've filtered out some formulae, recompute the Regs set. 4027 if (Any) 4028 LU.RecomputeRegs(LUIdx, RegUses); 4029 4030 // Reset this to prepare for the next use. 4031 BestFormulae.clear(); 4032 } 4033 4034 DEBUG(if (ChangedFormulae) { 4035 dbgs() << "\n" 4036 "After filtering out undesirable candidates:\n"; 4037 print_uses(dbgs()); 4038 }); 4039 } 4040 4041 // This is a rough guess that seems to work fairly well. 4042 static const size_t ComplexityLimit = UINT16_MAX; 4043 4044 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 4045 /// solutions the solver might have to consider. It almost never considers 4046 /// this many solutions because it prune the search space, but the pruning 4047 /// isn't always sufficient. 4048 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4049 size_t Power = 1; 4050 for (const LSRUse &LU : Uses) { 4051 size_t FSize = LU.Formulae.size(); 4052 if (FSize >= ComplexityLimit) { 4053 Power = ComplexityLimit; 4054 break; 4055 } 4056 Power *= FSize; 4057 if (Power >= ComplexityLimit) 4058 break; 4059 } 4060 return Power; 4061 } 4062 4063 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 4064 /// of the registers of another formula, it won't help reduce register 4065 /// pressure (though it may not necessarily hurt register pressure); remove 4066 /// it to simplify the system. 4067 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4068 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4069 DEBUG(dbgs() << "The search space is too complex.\n"); 4070 4071 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4072 "which use a superset of registers used by other " 4073 "formulae.\n"); 4074 4075 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4076 LSRUse &LU = Uses[LUIdx]; 4077 bool Any = false; 4078 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4079 Formula &F = LU.Formulae[i]; 4080 // Look for a formula with a constant or GV in a register. If the use 4081 // also has a formula with that same value in an immediate field, 4082 // delete the one that uses a register. 4083 for (SmallVectorImpl<const SCEV *>::const_iterator 4084 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4085 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4086 Formula NewF = F; 4087 NewF.BaseOffset += C->getValue()->getSExtValue(); 4088 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4089 (I - F.BaseRegs.begin())); 4090 if (LU.HasFormulaWithSameRegs(NewF)) { 4091 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4092 LU.DeleteFormula(F); 4093 --i; 4094 --e; 4095 Any = true; 4096 break; 4097 } 4098 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4099 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4100 if (!F.BaseGV) { 4101 Formula NewF = F; 4102 NewF.BaseGV = GV; 4103 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4104 (I - F.BaseRegs.begin())); 4105 if (LU.HasFormulaWithSameRegs(NewF)) { 4106 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4107 dbgs() << '\n'); 4108 LU.DeleteFormula(F); 4109 --i; 4110 --e; 4111 Any = true; 4112 break; 4113 } 4114 } 4115 } 4116 } 4117 } 4118 if (Any) 4119 LU.RecomputeRegs(LUIdx, RegUses); 4120 } 4121 4122 DEBUG(dbgs() << "After pre-selection:\n"; 4123 print_uses(dbgs())); 4124 } 4125 } 4126 4127 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 4128 /// for expressions like A, A+1, A+2, etc., allocate a single register for 4129 /// them. 4130 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4131 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4132 return; 4133 4134 DEBUG(dbgs() << "The search space is too complex.\n" 4135 "Narrowing the search space by assuming that uses separated " 4136 "by a constant offset will use the same registers.\n"); 4137 4138 // This is especially useful for unrolled loops. 4139 4140 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4141 LSRUse &LU = Uses[LUIdx]; 4142 for (const Formula &F : LU.Formulae) { 4143 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4144 continue; 4145 4146 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4147 if (!LUThatHas) 4148 continue; 4149 4150 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4151 LU.Kind, LU.AccessTy)) 4152 continue; 4153 4154 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4155 4156 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4157 4158 // Update the relocs to reference the new use. 4159 for (LSRFixup &Fixup : Fixups) { 4160 if (Fixup.LUIdx == LUIdx) { 4161 Fixup.LUIdx = LUThatHas - &Uses.front(); 4162 Fixup.Offset += F.BaseOffset; 4163 // Add the new offset to LUThatHas' offset list. 4164 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4165 LUThatHas->Offsets.push_back(Fixup.Offset); 4166 if (Fixup.Offset > LUThatHas->MaxOffset) 4167 LUThatHas->MaxOffset = Fixup.Offset; 4168 if (Fixup.Offset < LUThatHas->MinOffset) 4169 LUThatHas->MinOffset = Fixup.Offset; 4170 } 4171 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4172 } 4173 if (Fixup.LUIdx == NumUses-1) 4174 Fixup.LUIdx = LUIdx; 4175 } 4176 4177 // Delete formulae from the new use which are no longer legal. 4178 bool Any = false; 4179 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4180 Formula &F = LUThatHas->Formulae[i]; 4181 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4182 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4183 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4184 dbgs() << '\n'); 4185 LUThatHas->DeleteFormula(F); 4186 --i; 4187 --e; 4188 Any = true; 4189 } 4190 } 4191 4192 if (Any) 4193 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4194 4195 // Delete the old use. 4196 DeleteUse(LU, LUIdx); 4197 --LUIdx; 4198 --NumUses; 4199 break; 4200 } 4201 } 4202 4203 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4204 } 4205 4206 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4207 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4208 /// we've done more filtering, as it may be able to find more formulae to 4209 /// eliminate. 4210 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4211 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4212 DEBUG(dbgs() << "The search space is too complex.\n"); 4213 4214 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4215 "undesirable dedicated registers.\n"); 4216 4217 FilterOutUndesirableDedicatedRegisters(); 4218 4219 DEBUG(dbgs() << "After pre-selection:\n"; 4220 print_uses(dbgs())); 4221 } 4222 } 4223 4224 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4225 /// to be profitable, and then in any use which has any reference to that 4226 /// register, delete all formulae which do not reference that register. 4227 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4228 // With all other options exhausted, loop until the system is simple 4229 // enough to handle. 4230 SmallPtrSet<const SCEV *, 4> Taken; 4231 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4232 // Ok, we have too many of formulae on our hands to conveniently handle. 4233 // Use a rough heuristic to thin out the list. 4234 DEBUG(dbgs() << "The search space is too complex.\n"); 4235 4236 // Pick the register which is used by the most LSRUses, which is likely 4237 // to be a good reuse register candidate. 4238 const SCEV *Best = nullptr; 4239 unsigned BestNum = 0; 4240 for (const SCEV *Reg : RegUses) { 4241 if (Taken.count(Reg)) 4242 continue; 4243 if (!Best) 4244 Best = Reg; 4245 else { 4246 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4247 if (Count > BestNum) { 4248 Best = Reg; 4249 BestNum = Count; 4250 } 4251 } 4252 } 4253 4254 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4255 << " will yield profitable reuse.\n"); 4256 Taken.insert(Best); 4257 4258 // In any use with formulae which references this register, delete formulae 4259 // which don't reference it. 4260 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4261 LSRUse &LU = Uses[LUIdx]; 4262 if (!LU.Regs.count(Best)) continue; 4263 4264 bool Any = false; 4265 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4266 Formula &F = LU.Formulae[i]; 4267 if (!F.referencesReg(Best)) { 4268 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4269 LU.DeleteFormula(F); 4270 --e; 4271 --i; 4272 Any = true; 4273 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4274 continue; 4275 } 4276 } 4277 4278 if (Any) 4279 LU.RecomputeRegs(LUIdx, RegUses); 4280 } 4281 4282 DEBUG(dbgs() << "After pre-selection:\n"; 4283 print_uses(dbgs())); 4284 } 4285 } 4286 4287 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4288 /// formulae to choose from, use some rough heuristics to prune down the number 4289 /// of formulae. This keeps the main solver from taking an extraordinary amount 4290 /// of time in some worst-case scenarios. 4291 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4292 NarrowSearchSpaceByDetectingSupersets(); 4293 NarrowSearchSpaceByCollapsingUnrolledCode(); 4294 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4295 NarrowSearchSpaceByPickingWinnerRegs(); 4296 } 4297 4298 /// SolveRecurse - This is the recursive solver. 4299 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4300 Cost &SolutionCost, 4301 SmallVectorImpl<const Formula *> &Workspace, 4302 const Cost &CurCost, 4303 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4304 DenseSet<const SCEV *> &VisitedRegs) const { 4305 // Some ideas: 4306 // - prune more: 4307 // - use more aggressive filtering 4308 // - sort the formula so that the most profitable solutions are found first 4309 // - sort the uses too 4310 // - search faster: 4311 // - don't compute a cost, and then compare. compare while computing a cost 4312 // and bail early. 4313 // - track register sets with SmallBitVector 4314 4315 const LSRUse &LU = Uses[Workspace.size()]; 4316 4317 // If this use references any register that's already a part of the 4318 // in-progress solution, consider it a requirement that a formula must 4319 // reference that register in order to be considered. This prunes out 4320 // unprofitable searching. 4321 SmallSetVector<const SCEV *, 4> ReqRegs; 4322 for (const SCEV *S : CurRegs) 4323 if (LU.Regs.count(S)) 4324 ReqRegs.insert(S); 4325 4326 SmallPtrSet<const SCEV *, 16> NewRegs; 4327 Cost NewCost; 4328 for (const Formula &F : LU.Formulae) { 4329 // Ignore formulae which may not be ideal in terms of register reuse of 4330 // ReqRegs. The formula should use all required registers before 4331 // introducing new ones. 4332 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4333 for (const SCEV *Reg : ReqRegs) { 4334 if ((F.ScaledReg && F.ScaledReg == Reg) || 4335 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4336 F.BaseRegs.end()) { 4337 --NumReqRegsToFind; 4338 if (NumReqRegsToFind == 0) 4339 break; 4340 } 4341 } 4342 if (NumReqRegsToFind != 0) { 4343 // If none of the formulae satisfied the required registers, then we could 4344 // clear ReqRegs and try again. Currently, we simply give up in this case. 4345 continue; 4346 } 4347 4348 // Evaluate the cost of the current formula. If it's already worse than 4349 // the current best, prune the search at that point. 4350 NewCost = CurCost; 4351 NewRegs = CurRegs; 4352 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4353 LU); 4354 if (NewCost < SolutionCost) { 4355 Workspace.push_back(&F); 4356 if (Workspace.size() != Uses.size()) { 4357 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4358 NewRegs, VisitedRegs); 4359 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4360 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4361 } else { 4362 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4363 dbgs() << ".\n Regs:"; 4364 for (const SCEV *S : NewRegs) 4365 dbgs() << ' ' << *S; 4366 dbgs() << '\n'); 4367 4368 SolutionCost = NewCost; 4369 Solution = Workspace; 4370 } 4371 Workspace.pop_back(); 4372 } 4373 } 4374 } 4375 4376 /// Solve - Choose one formula from each use. Return the results in the given 4377 /// Solution vector. 4378 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4379 SmallVector<const Formula *, 8> Workspace; 4380 Cost SolutionCost; 4381 SolutionCost.Lose(); 4382 Cost CurCost; 4383 SmallPtrSet<const SCEV *, 16> CurRegs; 4384 DenseSet<const SCEV *> VisitedRegs; 4385 Workspace.reserve(Uses.size()); 4386 4387 // SolveRecurse does all the work. 4388 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4389 CurRegs, VisitedRegs); 4390 if (Solution.empty()) { 4391 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4392 return; 4393 } 4394 4395 // Ok, we've now made all our decisions. 4396 DEBUG(dbgs() << "\n" 4397 "The chosen solution requires "; SolutionCost.print(dbgs()); 4398 dbgs() << ":\n"; 4399 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4400 dbgs() << " "; 4401 Uses[i].print(dbgs()); 4402 dbgs() << "\n" 4403 " "; 4404 Solution[i]->print(dbgs()); 4405 dbgs() << '\n'; 4406 }); 4407 4408 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4409 } 4410 4411 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4412 /// the dominator tree far as we can go while still being dominated by the 4413 /// input positions. This helps canonicalize the insert position, which 4414 /// encourages sharing. 4415 BasicBlock::iterator 4416 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4417 const SmallVectorImpl<Instruction *> &Inputs) 4418 const { 4419 for (;;) { 4420 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4421 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4422 4423 BasicBlock *IDom; 4424 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4425 if (!Rung) return IP; 4426 Rung = Rung->getIDom(); 4427 if (!Rung) return IP; 4428 IDom = Rung->getBlock(); 4429 4430 // Don't climb into a loop though. 4431 const Loop *IDomLoop = LI.getLoopFor(IDom); 4432 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4433 if (IDomDepth <= IPLoopDepth && 4434 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4435 break; 4436 } 4437 4438 bool AllDominate = true; 4439 Instruction *BetterPos = nullptr; 4440 Instruction *Tentative = IDom->getTerminator(); 4441 for (Instruction *Inst : Inputs) { 4442 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4443 AllDominate = false; 4444 break; 4445 } 4446 // Attempt to find an insert position in the middle of the block, 4447 // instead of at the end, so that it can be used for other expansions. 4448 if (IDom == Inst->getParent() && 4449 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4450 BetterPos = std::next(BasicBlock::iterator(Inst)); 4451 } 4452 if (!AllDominate) 4453 break; 4454 if (BetterPos) 4455 IP = BetterPos; 4456 else 4457 IP = Tentative; 4458 } 4459 4460 return IP; 4461 } 4462 4463 /// AdjustInsertPositionForExpand - Determine an input position which will be 4464 /// dominated by the operands and which will dominate the result. 4465 BasicBlock::iterator 4466 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4467 const LSRFixup &LF, 4468 const LSRUse &LU, 4469 SCEVExpander &Rewriter) const { 4470 // Collect some instructions which must be dominated by the 4471 // expanding replacement. These must be dominated by any operands that 4472 // will be required in the expansion. 4473 SmallVector<Instruction *, 4> Inputs; 4474 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4475 Inputs.push_back(I); 4476 if (LU.Kind == LSRUse::ICmpZero) 4477 if (Instruction *I = 4478 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4479 Inputs.push_back(I); 4480 if (LF.PostIncLoops.count(L)) { 4481 if (LF.isUseFullyOutsideLoop(L)) 4482 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4483 else 4484 Inputs.push_back(IVIncInsertPos); 4485 } 4486 // The expansion must also be dominated by the increment positions of any 4487 // loops it for which it is using post-inc mode. 4488 for (const Loop *PIL : LF.PostIncLoops) { 4489 if (PIL == L) continue; 4490 4491 // Be dominated by the loop exit. 4492 SmallVector<BasicBlock *, 4> ExitingBlocks; 4493 PIL->getExitingBlocks(ExitingBlocks); 4494 if (!ExitingBlocks.empty()) { 4495 BasicBlock *BB = ExitingBlocks[0]; 4496 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4497 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4498 Inputs.push_back(BB->getTerminator()); 4499 } 4500 } 4501 4502 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4503 && !isa<DbgInfoIntrinsic>(LowestIP) && 4504 "Insertion point must be a normal instruction"); 4505 4506 // Then, climb up the immediate dominator tree as far as we can go while 4507 // still being dominated by the input positions. 4508 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4509 4510 // Don't insert instructions before PHI nodes. 4511 while (isa<PHINode>(IP)) ++IP; 4512 4513 // Ignore landingpad instructions. 4514 while (isa<LandingPadInst>(IP)) ++IP; 4515 4516 // Ignore debug intrinsics. 4517 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4518 4519 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4520 // IP consistent across expansions and allows the previously inserted 4521 // instructions to be reused by subsequent expansion. 4522 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4523 4524 return IP; 4525 } 4526 4527 /// Expand - Emit instructions for the leading candidate expression for this 4528 /// LSRUse (this is called "expanding"). 4529 Value *LSRInstance::Expand(const LSRFixup &LF, 4530 const Formula &F, 4531 BasicBlock::iterator IP, 4532 SCEVExpander &Rewriter, 4533 SmallVectorImpl<WeakVH> &DeadInsts) const { 4534 const LSRUse &LU = Uses[LF.LUIdx]; 4535 if (LU.RigidFormula) 4536 return LF.OperandValToReplace; 4537 4538 // Determine an input position which will be dominated by the operands and 4539 // which will dominate the result. 4540 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4541 4542 // Inform the Rewriter if we have a post-increment use, so that it can 4543 // perform an advantageous expansion. 4544 Rewriter.setPostInc(LF.PostIncLoops); 4545 4546 // This is the type that the user actually needs. 4547 Type *OpTy = LF.OperandValToReplace->getType(); 4548 // This will be the type that we'll initially expand to. 4549 Type *Ty = F.getType(); 4550 if (!Ty) 4551 // No type known; just expand directly to the ultimate type. 4552 Ty = OpTy; 4553 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4554 // Expand directly to the ultimate type if it's the right size. 4555 Ty = OpTy; 4556 // This is the type to do integer arithmetic in. 4557 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4558 4559 // Build up a list of operands to add together to form the full base. 4560 SmallVector<const SCEV *, 8> Ops; 4561 4562 // Expand the BaseRegs portion. 4563 for (const SCEV *Reg : F.BaseRegs) { 4564 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4565 4566 // If we're expanding for a post-inc user, make the post-inc adjustment. 4567 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4568 const SCEV *ExtendedReg = 4569 F.ZeroExtendBaseReg ? SE.getZeroExtendExpr(Reg, F.ZeroExtendType) : Reg; 4570 4571 const SCEV *PostIncReg = 4572 TransformForPostIncUse(Denormalize, ExtendedReg, LF.UserInst, 4573 LF.OperandValToReplace, Loops, SE, DT); 4574 if (PostIncReg == ExtendedReg) { 4575 Value *Expanded = Rewriter.expandCodeFor(Reg, nullptr, IP); 4576 if (F.ZeroExtendBaseReg) 4577 Expanded = new ZExtInst(Expanded, F.ZeroExtendType, "", IP); 4578 Ops.push_back(SE.getUnknown(Expanded)); 4579 } else { 4580 Ops.push_back( 4581 SE.getUnknown(Rewriter.expandCodeFor(PostIncReg, nullptr, IP))); 4582 } 4583 } 4584 4585 // Note on post-inc uses and zero extends -- since the no-wrap behavior for 4586 // the post-inc SCEV can be different from the no-wrap behavior of the pre-inc 4587 // SCEV, if a post-inc transform is required we do the zero extension on the 4588 // pre-inc expression before doing the post-inc transform. 4589 4590 // Expand the ScaledReg portion. 4591 Value *ICmpScaledV = nullptr; 4592 if (F.Scale != 0) { 4593 const SCEV *ScaledS = F.ScaledReg; 4594 4595 // If we're expanding for a post-inc user, make the post-inc adjustment. 4596 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4597 const SCEV *ExtendedScaleS = 4598 F.ZeroExtendScaledReg ? SE.getZeroExtendExpr(ScaledS, F.ZeroExtendType) 4599 : ScaledS; 4600 const SCEV *PostIncScaleS = 4601 TransformForPostIncUse(Denormalize, ExtendedScaleS, LF.UserInst, 4602 LF.OperandValToReplace, Loops, SE, DT); 4603 4604 if (LU.Kind == LSRUse::ICmpZero) { 4605 // Expand ScaleReg as if it was part of the base regs. 4606 Value *Expanded = nullptr; 4607 if (PostIncScaleS == ExtendedScaleS) { 4608 Expanded = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4609 if (F.ZeroExtendScaledReg) 4610 Expanded = new ZExtInst(Expanded, F.ZeroExtendType, "", IP); 4611 } else { 4612 Expanded = Rewriter.expandCodeFor(PostIncScaleS, nullptr, IP); 4613 } 4614 4615 if (F.Scale == 1) 4616 Ops.push_back(SE.getUnknown(Expanded)); 4617 else { 4618 // An interesting way of "folding" with an icmp is to use a negated 4619 // scale, which we'll implement by inserting it into the other operand 4620 // of the icmp. 4621 assert(F.Scale == -1 && 4622 "The only scale supported by ICmpZero uses is -1!"); 4623 ICmpScaledV = Expanded; 4624 } 4625 } else { 4626 // Otherwise just expand the scaled register and an explicit scale, 4627 // which is expected to be matched as part of the address. 4628 4629 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4630 // Unless the addressing mode will not be folded. 4631 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4632 isAMCompletelyFolded(TTI, LU, F)) { 4633 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4634 Ops.clear(); 4635 Ops.push_back(SE.getUnknown(FullV)); 4636 } 4637 4638 Value *Expanded = nullptr; 4639 if (PostIncScaleS == ExtendedScaleS) { 4640 Expanded = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4641 if (F.ZeroExtendScaledReg) 4642 Expanded = new ZExtInst(Expanded, F.ZeroExtendType, "", IP); 4643 } else { 4644 Expanded = Rewriter.expandCodeFor(PostIncScaleS, nullptr, IP); 4645 } 4646 4647 ScaledS = SE.getUnknown(Expanded); 4648 if (F.Scale != 1) 4649 ScaledS = 4650 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4651 Ops.push_back(ScaledS); 4652 } 4653 } 4654 4655 // Expand the GV portion. 4656 if (F.BaseGV) { 4657 // Flush the operand list to suppress SCEVExpander hoisting. 4658 if (!Ops.empty()) { 4659 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4660 Ops.clear(); 4661 Ops.push_back(SE.getUnknown(FullV)); 4662 } 4663 Ops.push_back(SE.getUnknown(F.BaseGV)); 4664 } 4665 4666 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4667 // unfolded offsets. LSR assumes they both live next to their uses. 4668 if (!Ops.empty()) { 4669 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4670 Ops.clear(); 4671 Ops.push_back(SE.getUnknown(FullV)); 4672 } 4673 4674 // Expand the immediate portion. 4675 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4676 if (Offset != 0) { 4677 if (LU.Kind == LSRUse::ICmpZero) { 4678 // The other interesting way of "folding" with an ICmpZero is to use a 4679 // negated immediate. 4680 if (!ICmpScaledV) 4681 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4682 else { 4683 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4684 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4685 } 4686 } else { 4687 // Just add the immediate values. These again are expected to be matched 4688 // as part of the address. 4689 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4690 } 4691 } 4692 4693 // Expand the unfolded offset portion. 4694 int64_t UnfoldedOffset = F.UnfoldedOffset; 4695 if (UnfoldedOffset != 0) { 4696 // Just add the immediate values. 4697 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4698 UnfoldedOffset))); 4699 } 4700 4701 // Emit instructions summing all the operands. 4702 const SCEV *FullS = Ops.empty() ? 4703 SE.getConstant(IntTy, 0) : 4704 SE.getAddExpr(Ops); 4705 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4706 4707 // We're done expanding now, so reset the rewriter. 4708 Rewriter.clearPostInc(); 4709 4710 // An ICmpZero Formula represents an ICmp which we're handling as a 4711 // comparison against zero. Now that we've expanded an expression for that 4712 // form, update the ICmp's other operand. 4713 if (LU.Kind == LSRUse::ICmpZero) { 4714 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4715 DeadInsts.emplace_back(CI->getOperand(1)); 4716 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4717 "a scale at the same time!"); 4718 if (F.Scale == -1) { 4719 if (ICmpScaledV->getType() != OpTy) { 4720 Instruction *Cast = 4721 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4722 OpTy, false), 4723 ICmpScaledV, OpTy, "tmp", CI); 4724 ICmpScaledV = Cast; 4725 } 4726 CI->setOperand(1, ICmpScaledV); 4727 } else { 4728 // A scale of 1 means that the scale has been expanded as part of the 4729 // base regs. 4730 assert((F.Scale == 0 || F.Scale == 1) && 4731 "ICmp does not support folding a global value and " 4732 "a scale at the same time!"); 4733 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4734 -(uint64_t)Offset); 4735 if (C->getType() != OpTy) 4736 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4737 OpTy, false), 4738 C, OpTy); 4739 4740 CI->setOperand(1, C); 4741 } 4742 } 4743 4744 return FullV; 4745 } 4746 4747 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4748 /// of their operands effectively happens in their predecessor blocks, so the 4749 /// expression may need to be expanded in multiple places. 4750 void LSRInstance::RewriteForPHI(PHINode *PN, 4751 const LSRFixup &LF, 4752 const Formula &F, 4753 SCEVExpander &Rewriter, 4754 SmallVectorImpl<WeakVH> &DeadInsts, 4755 Pass *P) const { 4756 DenseMap<BasicBlock *, Value *> Inserted; 4757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4758 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4759 BasicBlock *BB = PN->getIncomingBlock(i); 4760 4761 // If this is a critical edge, split the edge so that we do not insert 4762 // the code on all predecessor/successor paths. We do this unless this 4763 // is the canonical backedge for this loop, which complicates post-inc 4764 // users. 4765 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4766 !isa<IndirectBrInst>(BB->getTerminator())) { 4767 BasicBlock *Parent = PN->getParent(); 4768 Loop *PNLoop = LI.getLoopFor(Parent); 4769 if (!PNLoop || Parent != PNLoop->getHeader()) { 4770 // Split the critical edge. 4771 BasicBlock *NewBB = nullptr; 4772 if (!Parent->isLandingPad()) { 4773 NewBB = SplitCriticalEdge(BB, Parent, 4774 CriticalEdgeSplittingOptions(&DT, &LI) 4775 .setMergeIdenticalEdges() 4776 .setDontDeleteUselessPHIs()); 4777 } else { 4778 SmallVector<BasicBlock*, 2> NewBBs; 4779 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4780 NewBB = NewBBs[0]; 4781 } 4782 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4783 // phi predecessors are identical. The simple thing to do is skip 4784 // splitting in this case rather than complicate the API. 4785 if (NewBB) { 4786 // If PN is outside of the loop and BB is in the loop, we want to 4787 // move the block to be immediately before the PHI block, not 4788 // immediately after BB. 4789 if (L->contains(BB) && !L->contains(PN)) 4790 NewBB->moveBefore(PN->getParent()); 4791 4792 // Splitting the edge can reduce the number of PHI entries we have. 4793 e = PN->getNumIncomingValues(); 4794 BB = NewBB; 4795 i = PN->getBasicBlockIndex(BB); 4796 } 4797 } 4798 } 4799 4800 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4801 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4802 if (!Pair.second) 4803 PN->setIncomingValue(i, Pair.first->second); 4804 else { 4805 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4806 4807 // If this is reuse-by-noop-cast, insert the noop cast. 4808 Type *OpTy = LF.OperandValToReplace->getType(); 4809 if (FullV->getType() != OpTy) 4810 FullV = 4811 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4812 OpTy, false), 4813 FullV, LF.OperandValToReplace->getType(), 4814 "tmp", BB->getTerminator()); 4815 4816 PN->setIncomingValue(i, FullV); 4817 Pair.first->second = FullV; 4818 } 4819 } 4820 } 4821 4822 /// Rewrite - Emit instructions for the leading candidate expression for this 4823 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4824 /// the newly expanded value. 4825 void LSRInstance::Rewrite(const LSRFixup &LF, 4826 const Formula &F, 4827 SCEVExpander &Rewriter, 4828 SmallVectorImpl<WeakVH> &DeadInsts, 4829 Pass *P) const { 4830 // First, find an insertion point that dominates UserInst. For PHI nodes, 4831 // find the nearest block which dominates all the relevant uses. 4832 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4833 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4834 } else { 4835 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4836 4837 // If this is reuse-by-noop-cast, insert the noop cast. 4838 Type *OpTy = LF.OperandValToReplace->getType(); 4839 if (FullV->getType() != OpTy) { 4840 Instruction *Cast = 4841 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4842 FullV, OpTy, "tmp", LF.UserInst); 4843 FullV = Cast; 4844 } 4845 4846 // Update the user. ICmpZero is handled specially here (for now) because 4847 // Expand may have updated one of the operands of the icmp already, and 4848 // its new value may happen to be equal to LF.OperandValToReplace, in 4849 // which case doing replaceUsesOfWith leads to replacing both operands 4850 // with the same value. TODO: Reorganize this. 4851 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4852 LF.UserInst->setOperand(0, FullV); 4853 else 4854 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4855 } 4856 4857 DeadInsts.emplace_back(LF.OperandValToReplace); 4858 } 4859 4860 /// ImplementSolution - Rewrite all the fixup locations with new values, 4861 /// following the chosen solution. 4862 void 4863 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4864 Pass *P) { 4865 // Keep track of instructions we may have made dead, so that 4866 // we can remove them after we are done working. 4867 SmallVector<WeakVH, 16> DeadInsts; 4868 4869 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4870 "lsr"); 4871 #ifndef NDEBUG 4872 Rewriter.setDebugType(DEBUG_TYPE); 4873 #endif 4874 Rewriter.disableCanonicalMode(); 4875 Rewriter.enableLSRMode(); 4876 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4877 4878 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4879 for (const IVChain &Chain : IVChainVec) { 4880 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4881 Rewriter.setChainedPhi(PN); 4882 } 4883 4884 // Expand the new value definitions and update the users. 4885 for (const LSRFixup &Fixup : Fixups) { 4886 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4887 4888 Changed = true; 4889 } 4890 4891 for (const IVChain &Chain : IVChainVec) { 4892 GenerateIVChain(Chain, Rewriter, DeadInsts); 4893 Changed = true; 4894 } 4895 // Clean up after ourselves. This must be done before deleting any 4896 // instructions. 4897 Rewriter.clear(); 4898 4899 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4900 } 4901 4902 LSRInstance::LSRInstance(Loop *L, Pass *P) 4903 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4904 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4905 LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), 4906 TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 4907 *L->getHeader()->getParent())), 4908 L(L), Changed(false), IVIncInsertPos(nullptr) { 4909 // If LoopSimplify form is not available, stay out of trouble. 4910 if (!L->isLoopSimplifyForm()) 4911 return; 4912 4913 // If there's no interesting work to be done, bail early. 4914 if (IU.empty()) return; 4915 4916 // If there's too much analysis to be done, bail early. We won't be able to 4917 // model the problem anyway. 4918 unsigned NumUsers = 0; 4919 for (const IVStrideUse &U : IU) { 4920 if (++NumUsers > MaxIVUsers) { 4921 (void)U; 4922 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4923 return; 4924 } 4925 } 4926 4927 #ifndef NDEBUG 4928 // All dominating loops must have preheaders, or SCEVExpander may not be able 4929 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4930 // 4931 // IVUsers analysis should only create users that are dominated by simple loop 4932 // headers. Since this loop should dominate all of its users, its user list 4933 // should be empty if this loop itself is not within a simple loop nest. 4934 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4935 Rung; Rung = Rung->getIDom()) { 4936 BasicBlock *BB = Rung->getBlock(); 4937 const Loop *DomLoop = LI.getLoopFor(BB); 4938 if (DomLoop && DomLoop->getHeader() == BB) { 4939 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4940 } 4941 } 4942 #endif // DEBUG 4943 4944 DEBUG(dbgs() << "\nLSR on loop "; 4945 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4946 dbgs() << ":\n"); 4947 4948 // First, perform some low-level loop optimizations. 4949 OptimizeShadowIV(); 4950 OptimizeLoopTermCond(); 4951 4952 // If loop preparation eliminates all interesting IV users, bail. 4953 if (IU.empty()) return; 4954 4955 // Skip nested loops until we can model them better with formulae. 4956 if (!L->empty()) { 4957 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4958 return; 4959 } 4960 4961 // Start collecting data and preparing for the solver. 4962 CollectChains(); 4963 CollectInterestingTypesAndFactors(); 4964 CollectFixupsAndInitialFormulae(); 4965 CollectLoopInvariantFixupsAndFormulae(); 4966 4967 assert(!Uses.empty() && "IVUsers reported at least one use"); 4968 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4969 print_uses(dbgs())); 4970 4971 // Now use the reuse data to generate a bunch of interesting ways 4972 // to formulate the values needed for the uses. 4973 GenerateAllReuseFormulae(); 4974 4975 FilterOutUndesirableDedicatedRegisters(); 4976 NarrowSearchSpaceUsingHeuristics(); 4977 4978 SmallVector<const Formula *, 8> Solution; 4979 Solve(Solution); 4980 4981 // Release memory that is no longer needed. 4982 Factors.clear(); 4983 Types.clear(); 4984 RegUses.clear(); 4985 4986 if (Solution.empty()) 4987 return; 4988 4989 #ifndef NDEBUG 4990 // Formulae should be legal. 4991 for (const LSRUse &LU : Uses) { 4992 for (const Formula &F : LU.Formulae) 4993 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4994 F) && "Illegal formula generated!"); 4995 }; 4996 #endif 4997 4998 // Now that we've decided what we want, make it so. 4999 ImplementSolution(Solution, P); 5000 } 5001 5002 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5003 if (Factors.empty() && Types.empty()) return; 5004 5005 OS << "LSR has identified the following interesting factors and types: "; 5006 bool First = true; 5007 5008 for (int64_t Factor : Factors) { 5009 if (!First) OS << ", "; 5010 First = false; 5011 OS << '*' << Factor; 5012 } 5013 5014 for (Type *Ty : Types) { 5015 if (!First) OS << ", "; 5016 First = false; 5017 OS << '(' << *Ty << ')'; 5018 } 5019 OS << '\n'; 5020 } 5021 5022 void LSRInstance::print_fixups(raw_ostream &OS) const { 5023 OS << "LSR is examining the following fixup sites:\n"; 5024 for (const LSRFixup &LF : Fixups) { 5025 dbgs() << " "; 5026 LF.print(OS); 5027 OS << '\n'; 5028 } 5029 } 5030 5031 void LSRInstance::print_uses(raw_ostream &OS) const { 5032 OS << "LSR is examining the following uses:\n"; 5033 for (const LSRUse &LU : Uses) { 5034 dbgs() << " "; 5035 LU.print(OS); 5036 OS << '\n'; 5037 for (const Formula &F : LU.Formulae) { 5038 OS << " "; 5039 F.print(OS); 5040 OS << '\n'; 5041 } 5042 } 5043 } 5044 5045 void LSRInstance::print(raw_ostream &OS) const { 5046 print_factors_and_types(OS); 5047 print_fixups(OS); 5048 print_uses(OS); 5049 } 5050 5051 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5052 void LSRInstance::dump() const { 5053 print(errs()); errs() << '\n'; 5054 } 5055 #endif 5056 5057 namespace { 5058 5059 class LoopStrengthReduce : public LoopPass { 5060 public: 5061 static char ID; // Pass ID, replacement for typeid 5062 LoopStrengthReduce(); 5063 5064 private: 5065 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5066 void getAnalysisUsage(AnalysisUsage &AU) const override; 5067 }; 5068 5069 } 5070 5071 char LoopStrengthReduce::ID = 0; 5072 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5073 "Loop Strength Reduction", false, false) 5074 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5075 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5076 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5077 INITIALIZE_PASS_DEPENDENCY(IVUsers) 5078 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5079 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5080 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5081 "Loop Strength Reduction", false, false) 5082 5083 5084 Pass *llvm::createLoopStrengthReducePass() { 5085 return new LoopStrengthReduce(); 5086 } 5087 5088 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5089 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5090 } 5091 5092 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5093 // We split critical edges, so we change the CFG. However, we do update 5094 // many analyses if they are around. 5095 AU.addPreservedID(LoopSimplifyID); 5096 5097 AU.addRequired<LoopInfoWrapperPass>(); 5098 AU.addPreserved<LoopInfoWrapperPass>(); 5099 AU.addRequiredID(LoopSimplifyID); 5100 AU.addRequired<DominatorTreeWrapperPass>(); 5101 AU.addPreserved<DominatorTreeWrapperPass>(); 5102 AU.addRequired<ScalarEvolution>(); 5103 AU.addPreserved<ScalarEvolution>(); 5104 // Requiring LoopSimplify a second time here prevents IVUsers from running 5105 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5106 AU.addRequiredID(LoopSimplifyID); 5107 AU.addRequired<IVUsers>(); 5108 AU.addPreserved<IVUsers>(); 5109 AU.addRequired<TargetTransformInfoWrapperPass>(); 5110 } 5111 5112 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5113 if (skipOptnoneFunction(L)) 5114 return false; 5115 5116 bool Changed = false; 5117 5118 // Run the main LSR transformation. 5119 Changed |= LSRInstance(L, this).getChanged(); 5120 5121 // Remove any extra phis created by processing inner loops. 5122 Changed |= DeleteDeadPHIs(L->getHeader()); 5123 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5124 SmallVector<WeakVH, 16> DeadInsts; 5125 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5126 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr"); 5127 #ifndef NDEBUG 5128 Rewriter.setDebugType(DEBUG_TYPE); 5129 #endif 5130 unsigned numFolded = Rewriter.replaceCongruentIVs( 5131 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5132 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5133 *L->getHeader()->getParent())); 5134 if (numFolded) { 5135 Changed = true; 5136 DeleteTriviallyDeadInstructions(DeadInsts); 5137 DeleteDeadPHIs(L->getHeader()); 5138 } 5139 } 5140 return Changed; 5141 } 5142