1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 // The flag adds instruction count to solutions cost comparision. 133 static cl::opt<bool> InsnsCost( 134 "lsr-insns-cost", cl::Hidden, cl::init(true), 135 cl::desc("Add instruction count to a LSR cost model")); 136 137 // Flag to choose how to narrow complex lsr solution 138 static cl::opt<bool> LSRExpNarrow( 139 "lsr-exp-narrow", cl::Hidden, cl::init(false), 140 cl::desc("Narrow LSR complex solution using" 141 " expectation of registers number")); 142 143 // Flag to narrow search space by filtering non-optimal formulae with 144 // the same ScaledReg and Scale. 145 static cl::opt<bool> FilterSameScaledReg( 146 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 147 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 148 " with the same ScaledReg and Scale")); 149 150 #ifndef NDEBUG 151 // Stress test IV chain generation. 152 static cl::opt<bool> StressIVChain( 153 "stress-ivchain", cl::Hidden, cl::init(false), 154 cl::desc("Stress test LSR IV chains")); 155 #else 156 static bool StressIVChain = false; 157 #endif 158 159 namespace { 160 161 struct MemAccessTy { 162 /// Used in situations where the accessed memory type is unknown. 163 static const unsigned UnknownAddressSpace = ~0u; 164 165 Type *MemTy; 166 unsigned AddrSpace; 167 168 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 169 170 MemAccessTy(Type *Ty, unsigned AS) : 171 MemTy(Ty), AddrSpace(AS) {} 172 173 bool operator==(MemAccessTy Other) const { 174 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 175 } 176 177 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 178 179 static MemAccessTy getUnknown(LLVMContext &Ctx, 180 unsigned AS = UnknownAddressSpace) { 181 return MemAccessTy(Type::getVoidTy(Ctx), AS); 182 } 183 }; 184 185 /// This class holds data which is used to order reuse candidates. 186 class RegSortData { 187 public: 188 /// This represents the set of LSRUse indices which reference 189 /// a particular register. 190 SmallBitVector UsedByIndices; 191 192 void print(raw_ostream &OS) const; 193 void dump() const; 194 }; 195 196 } // end anonymous namespace 197 198 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 199 void RegSortData::print(raw_ostream &OS) const { 200 OS << "[NumUses=" << UsedByIndices.count() << ']'; 201 } 202 203 LLVM_DUMP_METHOD void RegSortData::dump() const { 204 print(errs()); errs() << '\n'; 205 } 206 #endif 207 208 namespace { 209 210 /// Map register candidates to information about how they are used. 211 class RegUseTracker { 212 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 213 214 RegUsesTy RegUsesMap; 215 SmallVector<const SCEV *, 16> RegSequence; 216 217 public: 218 void countRegister(const SCEV *Reg, size_t LUIdx); 219 void dropRegister(const SCEV *Reg, size_t LUIdx); 220 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 221 222 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 223 224 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 225 226 void clear(); 227 228 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 229 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 230 iterator begin() { return RegSequence.begin(); } 231 iterator end() { return RegSequence.end(); } 232 const_iterator begin() const { return RegSequence.begin(); } 233 const_iterator end() const { return RegSequence.end(); } 234 }; 235 236 } // end anonymous namespace 237 238 void 239 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 240 std::pair<RegUsesTy::iterator, bool> Pair = 241 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 242 RegSortData &RSD = Pair.first->second; 243 if (Pair.second) 244 RegSequence.push_back(Reg); 245 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 246 RSD.UsedByIndices.set(LUIdx); 247 } 248 249 void 250 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 251 RegUsesTy::iterator It = RegUsesMap.find(Reg); 252 assert(It != RegUsesMap.end()); 253 RegSortData &RSD = It->second; 254 assert(RSD.UsedByIndices.size() > LUIdx); 255 RSD.UsedByIndices.reset(LUIdx); 256 } 257 258 void 259 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 260 assert(LUIdx <= LastLUIdx); 261 262 // Update RegUses. The data structure is not optimized for this purpose; 263 // we must iterate through it and update each of the bit vectors. 264 for (auto &Pair : RegUsesMap) { 265 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 266 if (LUIdx < UsedByIndices.size()) 267 UsedByIndices[LUIdx] = 268 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 269 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 270 } 271 } 272 273 bool 274 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 275 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 276 if (I == RegUsesMap.end()) 277 return false; 278 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 279 int i = UsedByIndices.find_first(); 280 if (i == -1) return false; 281 if ((size_t)i != LUIdx) return true; 282 return UsedByIndices.find_next(i) != -1; 283 } 284 285 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 286 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 287 assert(I != RegUsesMap.end() && "Unknown register!"); 288 return I->second.UsedByIndices; 289 } 290 291 void RegUseTracker::clear() { 292 RegUsesMap.clear(); 293 RegSequence.clear(); 294 } 295 296 namespace { 297 298 /// This class holds information that describes a formula for computing 299 /// satisfying a use. It may include broken-out immediates and scaled registers. 300 struct Formula { 301 /// Global base address used for complex addressing. 302 GlobalValue *BaseGV; 303 304 /// Base offset for complex addressing. 305 int64_t BaseOffset; 306 307 /// Whether any complex addressing has a base register. 308 bool HasBaseReg; 309 310 /// The scale of any complex addressing. 311 int64_t Scale; 312 313 /// The list of "base" registers for this use. When this is non-empty. The 314 /// canonical representation of a formula is 315 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 316 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 317 /// 3. The reg containing recurrent expr related with currect loop in the 318 /// formula should be put in the ScaledReg. 319 /// #1 enforces that the scaled register is always used when at least two 320 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 321 /// #2 enforces that 1 * reg is reg. 322 /// #3 ensures invariant regs with respect to current loop can be combined 323 /// together in LSR codegen. 324 /// This invariant can be temporarly broken while building a formula. 325 /// However, every formula inserted into the LSRInstance must be in canonical 326 /// form. 327 SmallVector<const SCEV *, 4> BaseRegs; 328 329 /// The 'scaled' register for this use. This should be non-null when Scale is 330 /// not zero. 331 const SCEV *ScaledReg; 332 333 /// An additional constant offset which added near the use. This requires a 334 /// temporary register, but the offset itself can live in an add immediate 335 /// field rather than a register. 336 int64_t UnfoldedOffset; 337 338 Formula() 339 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 340 ScaledReg(nullptr), UnfoldedOffset(0) {} 341 342 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 343 344 bool isCanonical(const Loop &L) const; 345 346 void canonicalize(const Loop &L); 347 348 bool unscale(); 349 350 bool hasZeroEnd() const; 351 352 size_t getNumRegs() const; 353 Type *getType() const; 354 355 void deleteBaseReg(const SCEV *&S); 356 357 bool referencesReg(const SCEV *S) const; 358 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 359 const RegUseTracker &RegUses) const; 360 361 void print(raw_ostream &OS) const; 362 void dump() const; 363 }; 364 365 } // end anonymous namespace 366 367 /// Recursion helper for initialMatch. 368 static void DoInitialMatch(const SCEV *S, Loop *L, 369 SmallVectorImpl<const SCEV *> &Good, 370 SmallVectorImpl<const SCEV *> &Bad, 371 ScalarEvolution &SE) { 372 // Collect expressions which properly dominate the loop header. 373 if (SE.properlyDominates(S, L->getHeader())) { 374 Good.push_back(S); 375 return; 376 } 377 378 // Look at add operands. 379 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 380 for (const SCEV *S : Add->operands()) 381 DoInitialMatch(S, L, Good, Bad, SE); 382 return; 383 } 384 385 // Look at addrec operands. 386 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 387 if (!AR->getStart()->isZero() && AR->isAffine()) { 388 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 389 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 390 AR->getStepRecurrence(SE), 391 // FIXME: AR->getNoWrapFlags() 392 AR->getLoop(), SCEV::FlagAnyWrap), 393 L, Good, Bad, SE); 394 return; 395 } 396 397 // Handle a multiplication by -1 (negation) if it didn't fold. 398 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 399 if (Mul->getOperand(0)->isAllOnesValue()) { 400 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 401 const SCEV *NewMul = SE.getMulExpr(Ops); 402 403 SmallVector<const SCEV *, 4> MyGood; 404 SmallVector<const SCEV *, 4> MyBad; 405 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 406 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 407 SE.getEffectiveSCEVType(NewMul->getType()))); 408 for (const SCEV *S : MyGood) 409 Good.push_back(SE.getMulExpr(NegOne, S)); 410 for (const SCEV *S : MyBad) 411 Bad.push_back(SE.getMulExpr(NegOne, S)); 412 return; 413 } 414 415 // Ok, we can't do anything interesting. Just stuff the whole thing into a 416 // register and hope for the best. 417 Bad.push_back(S); 418 } 419 420 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 421 /// all loop-invariant and loop-computable values in a single base register. 422 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 423 SmallVector<const SCEV *, 4> Good; 424 SmallVector<const SCEV *, 4> Bad; 425 DoInitialMatch(S, L, Good, Bad, SE); 426 if (!Good.empty()) { 427 const SCEV *Sum = SE.getAddExpr(Good); 428 if (!Sum->isZero()) 429 BaseRegs.push_back(Sum); 430 HasBaseReg = true; 431 } 432 if (!Bad.empty()) { 433 const SCEV *Sum = SE.getAddExpr(Bad); 434 if (!Sum->isZero()) 435 BaseRegs.push_back(Sum); 436 HasBaseReg = true; 437 } 438 canonicalize(*L); 439 } 440 441 /// \brief Check whether or not this formula statisfies the canonical 442 /// representation. 443 /// \see Formula::BaseRegs. 444 bool Formula::isCanonical(const Loop &L) const { 445 if (!ScaledReg) 446 return BaseRegs.size() <= 1; 447 448 if (Scale != 1) 449 return true; 450 451 if (Scale == 1 && BaseRegs.empty()) 452 return false; 453 454 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 455 if (SAR && SAR->getLoop() == &L) 456 return true; 457 458 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 459 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 460 // loop, we want to swap the reg in BaseRegs with ScaledReg. 461 auto I = 462 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 463 return isa<const SCEVAddRecExpr>(S) && 464 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 465 }); 466 return I == BaseRegs.end(); 467 } 468 469 /// \brief Helper method to morph a formula into its canonical representation. 470 /// \see Formula::BaseRegs. 471 /// Every formula having more than one base register, must use the ScaledReg 472 /// field. Otherwise, we would have to do special cases everywhere in LSR 473 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 474 /// On the other hand, 1*reg should be canonicalized into reg. 475 void Formula::canonicalize(const Loop &L) { 476 if (isCanonical(L)) 477 return; 478 // So far we did not need this case. This is easy to implement but it is 479 // useless to maintain dead code. Beside it could hurt compile time. 480 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 481 482 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 483 if (!ScaledReg) { 484 ScaledReg = BaseRegs.back(); 485 BaseRegs.pop_back(); 486 Scale = 1; 487 } 488 489 // If ScaledReg is an invariant with respect to L, find the reg from 490 // BaseRegs containing the recurrent expr related with Loop L. Swap the 491 // reg with ScaledReg. 492 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 493 if (!SAR || SAR->getLoop() != &L) { 494 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 495 [&](const SCEV *S) { 496 return isa<const SCEVAddRecExpr>(S) && 497 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 498 }); 499 if (I != BaseRegs.end()) 500 std::swap(ScaledReg, *I); 501 } 502 } 503 504 /// \brief Get rid of the scale in the formula. 505 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 506 /// \return true if it was possible to get rid of the scale, false otherwise. 507 /// \note After this operation the formula may not be in the canonical form. 508 bool Formula::unscale() { 509 if (Scale != 1) 510 return false; 511 Scale = 0; 512 BaseRegs.push_back(ScaledReg); 513 ScaledReg = nullptr; 514 return true; 515 } 516 517 bool Formula::hasZeroEnd() const { 518 if (UnfoldedOffset || BaseOffset) 519 return false; 520 if (BaseRegs.size() != 1 || ScaledReg) 521 return false; 522 return true; 523 } 524 525 /// Return the total number of register operands used by this formula. This does 526 /// not include register uses implied by non-constant addrec strides. 527 size_t Formula::getNumRegs() const { 528 return !!ScaledReg + BaseRegs.size(); 529 } 530 531 /// Return the type of this formula, if it has one, or null otherwise. This type 532 /// is meaningless except for the bit size. 533 Type *Formula::getType() const { 534 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 535 ScaledReg ? ScaledReg->getType() : 536 BaseGV ? BaseGV->getType() : 537 nullptr; 538 } 539 540 /// Delete the given base reg from the BaseRegs list. 541 void Formula::deleteBaseReg(const SCEV *&S) { 542 if (&S != &BaseRegs.back()) 543 std::swap(S, BaseRegs.back()); 544 BaseRegs.pop_back(); 545 } 546 547 /// Test if this formula references the given register. 548 bool Formula::referencesReg(const SCEV *S) const { 549 return S == ScaledReg || is_contained(BaseRegs, S); 550 } 551 552 /// Test whether this formula uses registers which are used by uses other than 553 /// the use with the given index. 554 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 555 const RegUseTracker &RegUses) const { 556 if (ScaledReg) 557 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 558 return true; 559 for (const SCEV *BaseReg : BaseRegs) 560 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 561 return true; 562 return false; 563 } 564 565 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 566 void Formula::print(raw_ostream &OS) const { 567 bool First = true; 568 if (BaseGV) { 569 if (!First) OS << " + "; else First = false; 570 BaseGV->printAsOperand(OS, /*PrintType=*/false); 571 } 572 if (BaseOffset != 0) { 573 if (!First) OS << " + "; else First = false; 574 OS << BaseOffset; 575 } 576 for (const SCEV *BaseReg : BaseRegs) { 577 if (!First) OS << " + "; else First = false; 578 OS << "reg(" << *BaseReg << ')'; 579 } 580 if (HasBaseReg && BaseRegs.empty()) { 581 if (!First) OS << " + "; else First = false; 582 OS << "**error: HasBaseReg**"; 583 } else if (!HasBaseReg && !BaseRegs.empty()) { 584 if (!First) OS << " + "; else First = false; 585 OS << "**error: !HasBaseReg**"; 586 } 587 if (Scale != 0) { 588 if (!First) OS << " + "; else First = false; 589 OS << Scale << "*reg("; 590 if (ScaledReg) 591 OS << *ScaledReg; 592 else 593 OS << "<unknown>"; 594 OS << ')'; 595 } 596 if (UnfoldedOffset != 0) { 597 if (!First) OS << " + "; 598 OS << "imm(" << UnfoldedOffset << ')'; 599 } 600 } 601 602 LLVM_DUMP_METHOD void Formula::dump() const { 603 print(errs()); errs() << '\n'; 604 } 605 #endif 606 607 /// Return true if the given addrec can be sign-extended without changing its 608 /// value. 609 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 610 Type *WideTy = 611 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 612 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 613 } 614 615 /// Return true if the given add can be sign-extended without changing its 616 /// value. 617 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 618 Type *WideTy = 619 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 620 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 621 } 622 623 /// Return true if the given mul can be sign-extended without changing its 624 /// value. 625 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 626 Type *WideTy = 627 IntegerType::get(SE.getContext(), 628 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 629 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 630 } 631 632 /// Return an expression for LHS /s RHS, if it can be determined and if the 633 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 634 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 635 /// the multiplication may overflow, which is useful when the result will be 636 /// used in a context where the most significant bits are ignored. 637 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 638 ScalarEvolution &SE, 639 bool IgnoreSignificantBits = false) { 640 // Handle the trivial case, which works for any SCEV type. 641 if (LHS == RHS) 642 return SE.getConstant(LHS->getType(), 1); 643 644 // Handle a few RHS special cases. 645 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 646 if (RC) { 647 const APInt &RA = RC->getAPInt(); 648 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 649 // some folding. 650 if (RA.isAllOnesValue()) 651 return SE.getMulExpr(LHS, RC); 652 // Handle x /s 1 as x. 653 if (RA == 1) 654 return LHS; 655 } 656 657 // Check for a division of a constant by a constant. 658 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 659 if (!RC) 660 return nullptr; 661 const APInt &LA = C->getAPInt(); 662 const APInt &RA = RC->getAPInt(); 663 if (LA.srem(RA) != 0) 664 return nullptr; 665 return SE.getConstant(LA.sdiv(RA)); 666 } 667 668 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 669 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 670 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 671 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 672 IgnoreSignificantBits); 673 if (!Step) return nullptr; 674 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 675 IgnoreSignificantBits); 676 if (!Start) return nullptr; 677 // FlagNW is independent of the start value, step direction, and is 678 // preserved with smaller magnitude steps. 679 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 680 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 681 } 682 return nullptr; 683 } 684 685 // Distribute the sdiv over add operands, if the add doesn't overflow. 686 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 687 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 688 SmallVector<const SCEV *, 8> Ops; 689 for (const SCEV *S : Add->operands()) { 690 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 691 if (!Op) return nullptr; 692 Ops.push_back(Op); 693 } 694 return SE.getAddExpr(Ops); 695 } 696 return nullptr; 697 } 698 699 // Check for a multiply operand that we can pull RHS out of. 700 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 701 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 702 SmallVector<const SCEV *, 4> Ops; 703 bool Found = false; 704 for (const SCEV *S : Mul->operands()) { 705 if (!Found) 706 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 707 IgnoreSignificantBits)) { 708 S = Q; 709 Found = true; 710 } 711 Ops.push_back(S); 712 } 713 return Found ? SE.getMulExpr(Ops) : nullptr; 714 } 715 return nullptr; 716 } 717 718 // Otherwise we don't know. 719 return nullptr; 720 } 721 722 /// If S involves the addition of a constant integer value, return that integer 723 /// value, and mutate S to point to a new SCEV with that value excluded. 724 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 725 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 726 if (C->getAPInt().getMinSignedBits() <= 64) { 727 S = SE.getConstant(C->getType(), 0); 728 return C->getValue()->getSExtValue(); 729 } 730 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 731 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 732 int64_t Result = ExtractImmediate(NewOps.front(), SE); 733 if (Result != 0) 734 S = SE.getAddExpr(NewOps); 735 return Result; 736 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 737 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 738 int64_t Result = ExtractImmediate(NewOps.front(), SE); 739 if (Result != 0) 740 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 741 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 742 SCEV::FlagAnyWrap); 743 return Result; 744 } 745 return 0; 746 } 747 748 /// If S involves the addition of a GlobalValue address, return that symbol, and 749 /// mutate S to point to a new SCEV with that value excluded. 750 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 751 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 752 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 753 S = SE.getConstant(GV->getType(), 0); 754 return GV; 755 } 756 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 757 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 758 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 759 if (Result) 760 S = SE.getAddExpr(NewOps); 761 return Result; 762 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 763 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 764 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 765 if (Result) 766 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 767 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 768 SCEV::FlagAnyWrap); 769 return Result; 770 } 771 return nullptr; 772 } 773 774 /// Returns true if the specified instruction is using the specified value as an 775 /// address. 776 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 777 bool isAddress = isa<LoadInst>(Inst); 778 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 779 if (SI->getPointerOperand() == OperandVal) 780 isAddress = true; 781 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 782 // Addressing modes can also be folded into prefetches and a variety 783 // of intrinsics. 784 switch (II->getIntrinsicID()) { 785 default: break; 786 case Intrinsic::memset: 787 case Intrinsic::prefetch: 788 if (II->getArgOperand(0) == OperandVal) 789 isAddress = true; 790 break; 791 case Intrinsic::memmove: 792 case Intrinsic::memcpy: 793 if (II->getArgOperand(0) == OperandVal || 794 II->getArgOperand(1) == OperandVal) 795 isAddress = true; 796 break; 797 } 798 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 799 if (RMW->getPointerOperand() == OperandVal) 800 isAddress = true; 801 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 802 if (CmpX->getPointerOperand() == OperandVal) 803 isAddress = true; 804 } 805 return isAddress; 806 } 807 808 /// Return the type of the memory being accessed. 809 static MemAccessTy getAccessType(const Instruction *Inst) { 810 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 811 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 812 AccessTy.MemTy = SI->getOperand(0)->getType(); 813 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 814 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 815 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 816 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 817 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 818 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 819 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 820 } 821 822 // All pointers have the same requirements, so canonicalize them to an 823 // arbitrary pointer type to minimize variation. 824 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 825 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 826 PTy->getAddressSpace()); 827 828 return AccessTy; 829 } 830 831 /// Return true if this AddRec is already a phi in its loop. 832 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 833 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 834 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 835 if (SE.isSCEVable(PN->getType()) && 836 (SE.getEffectiveSCEVType(PN->getType()) == 837 SE.getEffectiveSCEVType(AR->getType())) && 838 SE.getSCEV(PN) == AR) 839 return true; 840 } 841 return false; 842 } 843 844 /// Check if expanding this expression is likely to incur significant cost. This 845 /// is tricky because SCEV doesn't track which expressions are actually computed 846 /// by the current IR. 847 /// 848 /// We currently allow expansion of IV increments that involve adds, 849 /// multiplication by constants, and AddRecs from existing phis. 850 /// 851 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 852 /// obvious multiple of the UDivExpr. 853 static bool isHighCostExpansion(const SCEV *S, 854 SmallPtrSetImpl<const SCEV*> &Processed, 855 ScalarEvolution &SE) { 856 // Zero/One operand expressions 857 switch (S->getSCEVType()) { 858 case scUnknown: 859 case scConstant: 860 return false; 861 case scTruncate: 862 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 863 Processed, SE); 864 case scZeroExtend: 865 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 866 Processed, SE); 867 case scSignExtend: 868 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 869 Processed, SE); 870 } 871 872 if (!Processed.insert(S).second) 873 return false; 874 875 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 876 for (const SCEV *S : Add->operands()) { 877 if (isHighCostExpansion(S, Processed, SE)) 878 return true; 879 } 880 return false; 881 } 882 883 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 884 if (Mul->getNumOperands() == 2) { 885 // Multiplication by a constant is ok 886 if (isa<SCEVConstant>(Mul->getOperand(0))) 887 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 888 889 // If we have the value of one operand, check if an existing 890 // multiplication already generates this expression. 891 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 892 Value *UVal = U->getValue(); 893 for (User *UR : UVal->users()) { 894 // If U is a constant, it may be used by a ConstantExpr. 895 Instruction *UI = dyn_cast<Instruction>(UR); 896 if (UI && UI->getOpcode() == Instruction::Mul && 897 SE.isSCEVable(UI->getType())) { 898 return SE.getSCEV(UI) == Mul; 899 } 900 } 901 } 902 } 903 } 904 905 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 906 if (isExistingPhi(AR, SE)) 907 return false; 908 } 909 910 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 911 return true; 912 } 913 914 /// If any of the instructions is the specified set are trivially dead, delete 915 /// them and see if this makes any of their operands subsequently dead. 916 static bool 917 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 918 bool Changed = false; 919 920 while (!DeadInsts.empty()) { 921 Value *V = DeadInsts.pop_back_val(); 922 Instruction *I = dyn_cast_or_null<Instruction>(V); 923 924 if (!I || !isInstructionTriviallyDead(I)) 925 continue; 926 927 for (Use &O : I->operands()) 928 if (Instruction *U = dyn_cast<Instruction>(O)) { 929 O = nullptr; 930 if (U->use_empty()) 931 DeadInsts.emplace_back(U); 932 } 933 934 I->eraseFromParent(); 935 Changed = true; 936 } 937 938 return Changed; 939 } 940 941 namespace { 942 943 class LSRUse; 944 945 } // end anonymous namespace 946 947 /// \brief Check if the addressing mode defined by \p F is completely 948 /// folded in \p LU at isel time. 949 /// This includes address-mode folding and special icmp tricks. 950 /// This function returns true if \p LU can accommodate what \p F 951 /// defines and up to 1 base + 1 scaled + offset. 952 /// In other words, if \p F has several base registers, this function may 953 /// still return true. Therefore, users still need to account for 954 /// additional base registers and/or unfolded offsets to derive an 955 /// accurate cost model. 956 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 957 const LSRUse &LU, const Formula &F); 958 // Get the cost of the scaling factor used in F for LU. 959 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 960 const LSRUse &LU, const Formula &F, 961 const Loop &L); 962 963 namespace { 964 965 /// This class is used to measure and compare candidate formulae. 966 class Cost { 967 TargetTransformInfo::LSRCost C; 968 969 public: 970 Cost() { 971 C.Insns = 0; 972 C.NumRegs = 0; 973 C.AddRecCost = 0; 974 C.NumIVMuls = 0; 975 C.NumBaseAdds = 0; 976 C.ImmCost = 0; 977 C.SetupCost = 0; 978 C.ScaleCost = 0; 979 } 980 981 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 982 983 void Lose(); 984 985 #ifndef NDEBUG 986 // Once any of the metrics loses, they must all remain losers. 987 bool isValid() { 988 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 989 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 990 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 991 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 992 } 993 #endif 994 995 bool isLoser() { 996 assert(isValid() && "invalid cost"); 997 return C.NumRegs == ~0u; 998 } 999 1000 void RateFormula(const TargetTransformInfo &TTI, 1001 const Formula &F, 1002 SmallPtrSetImpl<const SCEV *> &Regs, 1003 const DenseSet<const SCEV *> &VisitedRegs, 1004 const Loop *L, 1005 ScalarEvolution &SE, DominatorTree &DT, 1006 const LSRUse &LU, 1007 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1008 1009 void print(raw_ostream &OS) const; 1010 void dump() const; 1011 1012 private: 1013 void RateRegister(const SCEV *Reg, 1014 SmallPtrSetImpl<const SCEV *> &Regs, 1015 const Loop *L, 1016 ScalarEvolution &SE, DominatorTree &DT); 1017 void RatePrimaryRegister(const SCEV *Reg, 1018 SmallPtrSetImpl<const SCEV *> &Regs, 1019 const Loop *L, 1020 ScalarEvolution &SE, DominatorTree &DT, 1021 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1022 }; 1023 1024 /// An operand value in an instruction which is to be replaced with some 1025 /// equivalent, possibly strength-reduced, replacement. 1026 struct LSRFixup { 1027 /// The instruction which will be updated. 1028 Instruction *UserInst; 1029 1030 /// The operand of the instruction which will be replaced. The operand may be 1031 /// used more than once; every instance will be replaced. 1032 Value *OperandValToReplace; 1033 1034 /// If this user is to use the post-incremented value of an induction 1035 /// variable, this variable is non-null and holds the loop associated with the 1036 /// induction variable. 1037 PostIncLoopSet PostIncLoops; 1038 1039 /// A constant offset to be added to the LSRUse expression. This allows 1040 /// multiple fixups to share the same LSRUse with different offsets, for 1041 /// example in an unrolled loop. 1042 int64_t Offset; 1043 1044 bool isUseFullyOutsideLoop(const Loop *L) const; 1045 1046 LSRFixup(); 1047 1048 void print(raw_ostream &OS) const; 1049 void dump() const; 1050 }; 1051 1052 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1053 /// SmallVectors of const SCEV*. 1054 struct UniquifierDenseMapInfo { 1055 static SmallVector<const SCEV *, 4> getEmptyKey() { 1056 SmallVector<const SCEV *, 4> V; 1057 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1058 return V; 1059 } 1060 1061 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1062 SmallVector<const SCEV *, 4> V; 1063 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1064 return V; 1065 } 1066 1067 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1068 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1069 } 1070 1071 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1072 const SmallVector<const SCEV *, 4> &RHS) { 1073 return LHS == RHS; 1074 } 1075 }; 1076 1077 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1078 /// as uses invented by LSR itself. It includes information about what kinds of 1079 /// things can be folded into the user, information about the user itself, and 1080 /// information about how the use may be satisfied. TODO: Represent multiple 1081 /// users of the same expression in common? 1082 class LSRUse { 1083 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1084 1085 public: 1086 /// An enum for a kind of use, indicating what types of scaled and immediate 1087 /// operands it might support. 1088 enum KindType { 1089 Basic, ///< A normal use, with no folding. 1090 Special, ///< A special case of basic, allowing -1 scales. 1091 Address, ///< An address use; folding according to TargetLowering 1092 ICmpZero ///< An equality icmp with both operands folded into one. 1093 // TODO: Add a generic icmp too? 1094 }; 1095 1096 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1097 1098 KindType Kind; 1099 MemAccessTy AccessTy; 1100 1101 /// The list of operands which are to be replaced. 1102 SmallVector<LSRFixup, 8> Fixups; 1103 1104 /// Keep track of the min and max offsets of the fixups. 1105 int64_t MinOffset; 1106 int64_t MaxOffset; 1107 1108 /// This records whether all of the fixups using this LSRUse are outside of 1109 /// the loop, in which case some special-case heuristics may be used. 1110 bool AllFixupsOutsideLoop; 1111 1112 /// RigidFormula is set to true to guarantee that this use will be associated 1113 /// with a single formula--the one that initially matched. Some SCEV 1114 /// expressions cannot be expanded. This allows LSR to consider the registers 1115 /// used by those expressions without the need to expand them later after 1116 /// changing the formula. 1117 bool RigidFormula; 1118 1119 /// This records the widest use type for any fixup using this 1120 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1121 /// fixup widths to be equivalent, because the narrower one may be relying on 1122 /// the implicit truncation to truncate away bogus bits. 1123 Type *WidestFixupType; 1124 1125 /// A list of ways to build a value that can satisfy this user. After the 1126 /// list is populated, one of these is selected heuristically and used to 1127 /// formulate a replacement for OperandValToReplace in UserInst. 1128 SmallVector<Formula, 12> Formulae; 1129 1130 /// The set of register candidates used by all formulae in this LSRUse. 1131 SmallPtrSet<const SCEV *, 4> Regs; 1132 1133 LSRUse(KindType K, MemAccessTy AT) 1134 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1135 AllFixupsOutsideLoop(true), RigidFormula(false), 1136 WidestFixupType(nullptr) {} 1137 1138 LSRFixup &getNewFixup() { 1139 Fixups.push_back(LSRFixup()); 1140 return Fixups.back(); 1141 } 1142 1143 void pushFixup(LSRFixup &f) { 1144 Fixups.push_back(f); 1145 if (f.Offset > MaxOffset) 1146 MaxOffset = f.Offset; 1147 if (f.Offset < MinOffset) 1148 MinOffset = f.Offset; 1149 } 1150 1151 bool HasFormulaWithSameRegs(const Formula &F) const; 1152 float getNotSelectedProbability(const SCEV *Reg) const; 1153 bool InsertFormula(const Formula &F, const Loop &L); 1154 void DeleteFormula(Formula &F); 1155 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1156 1157 void print(raw_ostream &OS) const; 1158 void dump() const; 1159 }; 1160 1161 } // end anonymous namespace 1162 1163 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1164 LSRUse::KindType Kind, MemAccessTy AccessTy, 1165 GlobalValue *BaseGV, int64_t BaseOffset, 1166 bool HasBaseReg, int64_t Scale, 1167 Instruction *Fixup = nullptr); 1168 1169 /// Tally up interesting quantities from the given register. 1170 void Cost::RateRegister(const SCEV *Reg, 1171 SmallPtrSetImpl<const SCEV *> &Regs, 1172 const Loop *L, 1173 ScalarEvolution &SE, DominatorTree &DT) { 1174 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1175 // If this is an addrec for another loop, it should be an invariant 1176 // with respect to L since L is the innermost loop (at least 1177 // for now LSR only handles innermost loops). 1178 if (AR->getLoop() != L) { 1179 // If the AddRec exists, consider it's register free and leave it alone. 1180 if (isExistingPhi(AR, SE)) 1181 return; 1182 1183 // It is bad to allow LSR for current loop to add induction variables 1184 // for its sibling loops. 1185 if (!AR->getLoop()->contains(L)) { 1186 Lose(); 1187 return; 1188 } 1189 1190 // Otherwise, it will be an invariant with respect to Loop L. 1191 ++C.NumRegs; 1192 return; 1193 } 1194 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1195 1196 // Add the step value register, if it needs one. 1197 // TODO: The non-affine case isn't precisely modeled here. 1198 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1199 if (!Regs.count(AR->getOperand(1))) { 1200 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1201 if (isLoser()) 1202 return; 1203 } 1204 } 1205 } 1206 ++C.NumRegs; 1207 1208 // Rough heuristic; favor registers which don't require extra setup 1209 // instructions in the preheader. 1210 if (!isa<SCEVUnknown>(Reg) && 1211 !isa<SCEVConstant>(Reg) && 1212 !(isa<SCEVAddRecExpr>(Reg) && 1213 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1214 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1215 ++C.SetupCost; 1216 1217 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1218 SE.hasComputableLoopEvolution(Reg, L); 1219 } 1220 1221 /// Record this register in the set. If we haven't seen it before, rate 1222 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1223 /// one of those regs an instant loser. 1224 void Cost::RatePrimaryRegister(const SCEV *Reg, 1225 SmallPtrSetImpl<const SCEV *> &Regs, 1226 const Loop *L, 1227 ScalarEvolution &SE, DominatorTree &DT, 1228 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1229 if (LoserRegs && LoserRegs->count(Reg)) { 1230 Lose(); 1231 return; 1232 } 1233 if (Regs.insert(Reg).second) { 1234 RateRegister(Reg, Regs, L, SE, DT); 1235 if (LoserRegs && isLoser()) 1236 LoserRegs->insert(Reg); 1237 } 1238 } 1239 1240 void Cost::RateFormula(const TargetTransformInfo &TTI, 1241 const Formula &F, 1242 SmallPtrSetImpl<const SCEV *> &Regs, 1243 const DenseSet<const SCEV *> &VisitedRegs, 1244 const Loop *L, 1245 ScalarEvolution &SE, DominatorTree &DT, 1246 const LSRUse &LU, 1247 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1248 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1249 // Tally up the registers. 1250 unsigned PrevAddRecCost = C.AddRecCost; 1251 unsigned PrevNumRegs = C.NumRegs; 1252 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1253 if (const SCEV *ScaledReg = F.ScaledReg) { 1254 if (VisitedRegs.count(ScaledReg)) { 1255 Lose(); 1256 return; 1257 } 1258 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1259 if (isLoser()) 1260 return; 1261 } 1262 for (const SCEV *BaseReg : F.BaseRegs) { 1263 if (VisitedRegs.count(BaseReg)) { 1264 Lose(); 1265 return; 1266 } 1267 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1268 if (isLoser()) 1269 return; 1270 } 1271 1272 // Determine how many (unfolded) adds we'll need inside the loop. 1273 size_t NumBaseParts = F.getNumRegs(); 1274 if (NumBaseParts > 1) 1275 // Do not count the base and a possible second register if the target 1276 // allows to fold 2 registers. 1277 C.NumBaseAdds += 1278 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1279 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1280 1281 // Accumulate non-free scaling amounts. 1282 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1283 1284 // Tally up the non-zero immediates. 1285 for (const LSRFixup &Fixup : LU.Fixups) { 1286 int64_t O = Fixup.Offset; 1287 int64_t Offset = (uint64_t)O + F.BaseOffset; 1288 if (F.BaseGV) 1289 C.ImmCost += 64; // Handle symbolic values conservatively. 1290 // TODO: This should probably be the pointer size. 1291 else if (Offset != 0) 1292 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1293 1294 // Check with target if this offset with this instruction is 1295 // specifically not supported. 1296 if (LU.Kind == LSRUse::Address && Offset != 0 && 1297 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1298 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1299 C.NumBaseAdds++; 1300 } 1301 1302 // If we don't count instruction cost exit here. 1303 if (!InsnsCost) { 1304 assert(isValid() && "invalid cost"); 1305 return; 1306 } 1307 1308 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1309 // additional instruction (at least fill). 1310 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1311 if (C.NumRegs > TTIRegNum) { 1312 // Cost already exceeded TTIRegNum, then only newly added register can add 1313 // new instructions. 1314 if (PrevNumRegs > TTIRegNum) 1315 C.Insns += (C.NumRegs - PrevNumRegs); 1316 else 1317 C.Insns += (C.NumRegs - TTIRegNum); 1318 } 1319 1320 // If ICmpZero formula ends with not 0, it could not be replaced by 1321 // just add or sub. We'll need to compare final result of AddRec. 1322 // That means we'll need an additional instruction. 1323 // For -10 + {0, +, 1}: 1324 // i = i + 1; 1325 // cmp i, 10 1326 // 1327 // For {-10, +, 1}: 1328 // i = i + 1; 1329 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1330 C.Insns++; 1331 // Each new AddRec adds 1 instruction to calculation. 1332 C.Insns += (C.AddRecCost - PrevAddRecCost); 1333 1334 // BaseAdds adds instructions for unfolded registers. 1335 if (LU.Kind != LSRUse::ICmpZero) 1336 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1337 assert(isValid() && "invalid cost"); 1338 } 1339 1340 /// Set this cost to a losing value. 1341 void Cost::Lose() { 1342 C.Insns = ~0u; 1343 C.NumRegs = ~0u; 1344 C.AddRecCost = ~0u; 1345 C.NumIVMuls = ~0u; 1346 C.NumBaseAdds = ~0u; 1347 C.ImmCost = ~0u; 1348 C.SetupCost = ~0u; 1349 C.ScaleCost = ~0u; 1350 } 1351 1352 /// Choose the lower cost. 1353 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1354 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1355 C.Insns != Other.C.Insns) 1356 return C.Insns < Other.C.Insns; 1357 return TTI.isLSRCostLess(C, Other.C); 1358 } 1359 1360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1361 void Cost::print(raw_ostream &OS) const { 1362 if (InsnsCost) 1363 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1364 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1365 if (C.AddRecCost != 0) 1366 OS << ", with addrec cost " << C.AddRecCost; 1367 if (C.NumIVMuls != 0) 1368 OS << ", plus " << C.NumIVMuls << " IV mul" 1369 << (C.NumIVMuls == 1 ? "" : "s"); 1370 if (C.NumBaseAdds != 0) 1371 OS << ", plus " << C.NumBaseAdds << " base add" 1372 << (C.NumBaseAdds == 1 ? "" : "s"); 1373 if (C.ScaleCost != 0) 1374 OS << ", plus " << C.ScaleCost << " scale cost"; 1375 if (C.ImmCost != 0) 1376 OS << ", plus " << C.ImmCost << " imm cost"; 1377 if (C.SetupCost != 0) 1378 OS << ", plus " << C.SetupCost << " setup cost"; 1379 } 1380 1381 LLVM_DUMP_METHOD void Cost::dump() const { 1382 print(errs()); errs() << '\n'; 1383 } 1384 #endif 1385 1386 LSRFixup::LSRFixup() 1387 : UserInst(nullptr), OperandValToReplace(nullptr), 1388 Offset(0) {} 1389 1390 /// Test whether this fixup always uses its value outside of the given loop. 1391 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1392 // PHI nodes use their value in their incoming blocks. 1393 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1394 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1395 if (PN->getIncomingValue(i) == OperandValToReplace && 1396 L->contains(PN->getIncomingBlock(i))) 1397 return false; 1398 return true; 1399 } 1400 1401 return !L->contains(UserInst); 1402 } 1403 1404 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1405 void LSRFixup::print(raw_ostream &OS) const { 1406 OS << "UserInst="; 1407 // Store is common and interesting enough to be worth special-casing. 1408 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1409 OS << "store "; 1410 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1411 } else if (UserInst->getType()->isVoidTy()) 1412 OS << UserInst->getOpcodeName(); 1413 else 1414 UserInst->printAsOperand(OS, /*PrintType=*/false); 1415 1416 OS << ", OperandValToReplace="; 1417 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1418 1419 for (const Loop *PIL : PostIncLoops) { 1420 OS << ", PostIncLoop="; 1421 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1422 } 1423 1424 if (Offset != 0) 1425 OS << ", Offset=" << Offset; 1426 } 1427 1428 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1429 print(errs()); errs() << '\n'; 1430 } 1431 #endif 1432 1433 /// Test whether this use as a formula which has the same registers as the given 1434 /// formula. 1435 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1436 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1437 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1438 // Unstable sort by host order ok, because this is only used for uniquifying. 1439 std::sort(Key.begin(), Key.end()); 1440 return Uniquifier.count(Key); 1441 } 1442 1443 /// The function returns a probability of selecting formula without Reg. 1444 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1445 unsigned FNum = 0; 1446 for (const Formula &F : Formulae) 1447 if (F.referencesReg(Reg)) 1448 FNum++; 1449 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1450 } 1451 1452 /// If the given formula has not yet been inserted, add it to the list, and 1453 /// return true. Return false otherwise. The formula must be in canonical form. 1454 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1455 assert(F.isCanonical(L) && "Invalid canonical representation"); 1456 1457 if (!Formulae.empty() && RigidFormula) 1458 return false; 1459 1460 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1461 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1462 // Unstable sort by host order ok, because this is only used for uniquifying. 1463 std::sort(Key.begin(), Key.end()); 1464 1465 if (!Uniquifier.insert(Key).second) 1466 return false; 1467 1468 // Using a register to hold the value of 0 is not profitable. 1469 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1470 "Zero allocated in a scaled register!"); 1471 #ifndef NDEBUG 1472 for (const SCEV *BaseReg : F.BaseRegs) 1473 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1474 #endif 1475 1476 // Add the formula to the list. 1477 Formulae.push_back(F); 1478 1479 // Record registers now being used by this use. 1480 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1481 if (F.ScaledReg) 1482 Regs.insert(F.ScaledReg); 1483 1484 return true; 1485 } 1486 1487 /// Remove the given formula from this use's list. 1488 void LSRUse::DeleteFormula(Formula &F) { 1489 if (&F != &Formulae.back()) 1490 std::swap(F, Formulae.back()); 1491 Formulae.pop_back(); 1492 } 1493 1494 /// Recompute the Regs field, and update RegUses. 1495 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1496 // Now that we've filtered out some formulae, recompute the Regs set. 1497 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1498 Regs.clear(); 1499 for (const Formula &F : Formulae) { 1500 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1501 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1502 } 1503 1504 // Update the RegTracker. 1505 for (const SCEV *S : OldRegs) 1506 if (!Regs.count(S)) 1507 RegUses.dropRegister(S, LUIdx); 1508 } 1509 1510 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1511 void LSRUse::print(raw_ostream &OS) const { 1512 OS << "LSR Use: Kind="; 1513 switch (Kind) { 1514 case Basic: OS << "Basic"; break; 1515 case Special: OS << "Special"; break; 1516 case ICmpZero: OS << "ICmpZero"; break; 1517 case Address: 1518 OS << "Address of "; 1519 if (AccessTy.MemTy->isPointerTy()) 1520 OS << "pointer"; // the full pointer type could be really verbose 1521 else { 1522 OS << *AccessTy.MemTy; 1523 } 1524 1525 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1526 } 1527 1528 OS << ", Offsets={"; 1529 bool NeedComma = false; 1530 for (const LSRFixup &Fixup : Fixups) { 1531 if (NeedComma) OS << ','; 1532 OS << Fixup.Offset; 1533 NeedComma = true; 1534 } 1535 OS << '}'; 1536 1537 if (AllFixupsOutsideLoop) 1538 OS << ", all-fixups-outside-loop"; 1539 1540 if (WidestFixupType) 1541 OS << ", widest fixup type: " << *WidestFixupType; 1542 } 1543 1544 LLVM_DUMP_METHOD void LSRUse::dump() const { 1545 print(errs()); errs() << '\n'; 1546 } 1547 #endif 1548 1549 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1550 LSRUse::KindType Kind, MemAccessTy AccessTy, 1551 GlobalValue *BaseGV, int64_t BaseOffset, 1552 bool HasBaseReg, int64_t Scale, 1553 Instruction *Fixup/*= nullptr*/) { 1554 switch (Kind) { 1555 case LSRUse::Address: 1556 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1557 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1558 1559 case LSRUse::ICmpZero: 1560 // There's not even a target hook for querying whether it would be legal to 1561 // fold a GV into an ICmp. 1562 if (BaseGV) 1563 return false; 1564 1565 // ICmp only has two operands; don't allow more than two non-trivial parts. 1566 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1567 return false; 1568 1569 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1570 // putting the scaled register in the other operand of the icmp. 1571 if (Scale != 0 && Scale != -1) 1572 return false; 1573 1574 // If we have low-level target information, ask the target if it can fold an 1575 // integer immediate on an icmp. 1576 if (BaseOffset != 0) { 1577 // We have one of: 1578 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1579 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1580 // Offs is the ICmp immediate. 1581 if (Scale == 0) 1582 // The cast does the right thing with INT64_MIN. 1583 BaseOffset = -(uint64_t)BaseOffset; 1584 return TTI.isLegalICmpImmediate(BaseOffset); 1585 } 1586 1587 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1588 return true; 1589 1590 case LSRUse::Basic: 1591 // Only handle single-register values. 1592 return !BaseGV && Scale == 0 && BaseOffset == 0; 1593 1594 case LSRUse::Special: 1595 // Special case Basic to handle -1 scales. 1596 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1597 } 1598 1599 llvm_unreachable("Invalid LSRUse Kind!"); 1600 } 1601 1602 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1603 int64_t MinOffset, int64_t MaxOffset, 1604 LSRUse::KindType Kind, MemAccessTy AccessTy, 1605 GlobalValue *BaseGV, int64_t BaseOffset, 1606 bool HasBaseReg, int64_t Scale) { 1607 // Check for overflow. 1608 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1609 (MinOffset > 0)) 1610 return false; 1611 MinOffset = (uint64_t)BaseOffset + MinOffset; 1612 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1613 (MaxOffset > 0)) 1614 return false; 1615 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1616 1617 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1618 HasBaseReg, Scale) && 1619 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1620 HasBaseReg, Scale); 1621 } 1622 1623 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1624 int64_t MinOffset, int64_t MaxOffset, 1625 LSRUse::KindType Kind, MemAccessTy AccessTy, 1626 const Formula &F, const Loop &L) { 1627 // For the purpose of isAMCompletelyFolded either having a canonical formula 1628 // or a scale not equal to zero is correct. 1629 // Problems may arise from non canonical formulae having a scale == 0. 1630 // Strictly speaking it would best to just rely on canonical formulae. 1631 // However, when we generate the scaled formulae, we first check that the 1632 // scaling factor is profitable before computing the actual ScaledReg for 1633 // compile time sake. 1634 assert((F.isCanonical(L) || F.Scale != 0)); 1635 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1636 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1637 } 1638 1639 /// Test whether we know how to expand the current formula. 1640 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1641 int64_t MaxOffset, LSRUse::KindType Kind, 1642 MemAccessTy AccessTy, GlobalValue *BaseGV, 1643 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1644 // We know how to expand completely foldable formulae. 1645 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1646 BaseOffset, HasBaseReg, Scale) || 1647 // Or formulae that use a base register produced by a sum of base 1648 // registers. 1649 (Scale == 1 && 1650 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1651 BaseGV, BaseOffset, true, 0)); 1652 } 1653 1654 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1655 int64_t MaxOffset, LSRUse::KindType Kind, 1656 MemAccessTy AccessTy, const Formula &F) { 1657 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1658 F.BaseOffset, F.HasBaseReg, F.Scale); 1659 } 1660 1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1662 const LSRUse &LU, const Formula &F) { 1663 // Target may want to look at the user instructions. 1664 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1665 for (const LSRFixup &Fixup : LU.Fixups) 1666 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1667 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1668 F.Scale, Fixup.UserInst)) 1669 return false; 1670 return true; 1671 } 1672 1673 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1674 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1675 F.Scale); 1676 } 1677 1678 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1679 const LSRUse &LU, const Formula &F, 1680 const Loop &L) { 1681 if (!F.Scale) 1682 return 0; 1683 1684 // If the use is not completely folded in that instruction, we will have to 1685 // pay an extra cost only for scale != 1. 1686 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1687 LU.AccessTy, F, L)) 1688 return F.Scale != 1; 1689 1690 switch (LU.Kind) { 1691 case LSRUse::Address: { 1692 // Check the scaling factor cost with both the min and max offsets. 1693 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1694 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1695 F.Scale, LU.AccessTy.AddrSpace); 1696 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1697 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1698 F.Scale, LU.AccessTy.AddrSpace); 1699 1700 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1701 "Legal addressing mode has an illegal cost!"); 1702 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1703 } 1704 case LSRUse::ICmpZero: 1705 case LSRUse::Basic: 1706 case LSRUse::Special: 1707 // The use is completely folded, i.e., everything is folded into the 1708 // instruction. 1709 return 0; 1710 } 1711 1712 llvm_unreachable("Invalid LSRUse Kind!"); 1713 } 1714 1715 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1716 LSRUse::KindType Kind, MemAccessTy AccessTy, 1717 GlobalValue *BaseGV, int64_t BaseOffset, 1718 bool HasBaseReg) { 1719 // Fast-path: zero is always foldable. 1720 if (BaseOffset == 0 && !BaseGV) return true; 1721 1722 // Conservatively, create an address with an immediate and a 1723 // base and a scale. 1724 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1725 1726 // Canonicalize a scale of 1 to a base register if the formula doesn't 1727 // already have a base register. 1728 if (!HasBaseReg && Scale == 1) { 1729 Scale = 0; 1730 HasBaseReg = true; 1731 } 1732 1733 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1734 HasBaseReg, Scale); 1735 } 1736 1737 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1738 ScalarEvolution &SE, int64_t MinOffset, 1739 int64_t MaxOffset, LSRUse::KindType Kind, 1740 MemAccessTy AccessTy, const SCEV *S, 1741 bool HasBaseReg) { 1742 // Fast-path: zero is always foldable. 1743 if (S->isZero()) return true; 1744 1745 // Conservatively, create an address with an immediate and a 1746 // base and a scale. 1747 int64_t BaseOffset = ExtractImmediate(S, SE); 1748 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1749 1750 // If there's anything else involved, it's not foldable. 1751 if (!S->isZero()) return false; 1752 1753 // Fast-path: zero is always foldable. 1754 if (BaseOffset == 0 && !BaseGV) return true; 1755 1756 // Conservatively, create an address with an immediate and a 1757 // base and a scale. 1758 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1759 1760 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1761 BaseOffset, HasBaseReg, Scale); 1762 } 1763 1764 namespace { 1765 1766 /// An individual increment in a Chain of IV increments. Relate an IV user to 1767 /// an expression that computes the IV it uses from the IV used by the previous 1768 /// link in the Chain. 1769 /// 1770 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1771 /// original IVOperand. The head of the chain's IVOperand is only valid during 1772 /// chain collection, before LSR replaces IV users. During chain generation, 1773 /// IncExpr can be used to find the new IVOperand that computes the same 1774 /// expression. 1775 struct IVInc { 1776 Instruction *UserInst; 1777 Value* IVOperand; 1778 const SCEV *IncExpr; 1779 1780 IVInc(Instruction *U, Value *O, const SCEV *E): 1781 UserInst(U), IVOperand(O), IncExpr(E) {} 1782 }; 1783 1784 // The list of IV increments in program order. We typically add the head of a 1785 // chain without finding subsequent links. 1786 struct IVChain { 1787 SmallVector<IVInc,1> Incs; 1788 const SCEV *ExprBase; 1789 1790 IVChain() : ExprBase(nullptr) {} 1791 1792 IVChain(const IVInc &Head, const SCEV *Base) 1793 : Incs(1, Head), ExprBase(Base) {} 1794 1795 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1796 1797 // Return the first increment in the chain. 1798 const_iterator begin() const { 1799 assert(!Incs.empty()); 1800 return std::next(Incs.begin()); 1801 } 1802 const_iterator end() const { 1803 return Incs.end(); 1804 } 1805 1806 // Returns true if this chain contains any increments. 1807 bool hasIncs() const { return Incs.size() >= 2; } 1808 1809 // Add an IVInc to the end of this chain. 1810 void add(const IVInc &X) { Incs.push_back(X); } 1811 1812 // Returns the last UserInst in the chain. 1813 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1814 1815 // Returns true if IncExpr can be profitably added to this chain. 1816 bool isProfitableIncrement(const SCEV *OperExpr, 1817 const SCEV *IncExpr, 1818 ScalarEvolution&); 1819 }; 1820 1821 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1822 /// between FarUsers that definitely cross IV increments and NearUsers that may 1823 /// be used between IV increments. 1824 struct ChainUsers { 1825 SmallPtrSet<Instruction*, 4> FarUsers; 1826 SmallPtrSet<Instruction*, 4> NearUsers; 1827 }; 1828 1829 /// This class holds state for the main loop strength reduction logic. 1830 class LSRInstance { 1831 IVUsers &IU; 1832 ScalarEvolution &SE; 1833 DominatorTree &DT; 1834 LoopInfo &LI; 1835 const TargetTransformInfo &TTI; 1836 Loop *const L; 1837 bool Changed; 1838 1839 /// This is the insert position that the current loop's induction variable 1840 /// increment should be placed. In simple loops, this is the latch block's 1841 /// terminator. But in more complicated cases, this is a position which will 1842 /// dominate all the in-loop post-increment users. 1843 Instruction *IVIncInsertPos; 1844 1845 /// Interesting factors between use strides. 1846 /// 1847 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1848 /// default, a SmallDenseSet, because we need to use the full range of 1849 /// int64_ts, and there's currently no good way of doing that with 1850 /// SmallDenseSet. 1851 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1852 1853 /// Interesting use types, to facilitate truncation reuse. 1854 SmallSetVector<Type *, 4> Types; 1855 1856 /// The list of interesting uses. 1857 SmallVector<LSRUse, 16> Uses; 1858 1859 /// Track which uses use which register candidates. 1860 RegUseTracker RegUses; 1861 1862 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1863 // have more than a few IV increment chains in a loop. Missing a Chain falls 1864 // back to normal LSR behavior for those uses. 1865 static const unsigned MaxChains = 8; 1866 1867 /// IV users can form a chain of IV increments. 1868 SmallVector<IVChain, MaxChains> IVChainVec; 1869 1870 /// IV users that belong to profitable IVChains. 1871 SmallPtrSet<Use*, MaxChains> IVIncSet; 1872 1873 void OptimizeShadowIV(); 1874 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1875 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1876 void OptimizeLoopTermCond(); 1877 1878 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1879 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1880 void FinalizeChain(IVChain &Chain); 1881 void CollectChains(); 1882 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1883 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1884 1885 void CollectInterestingTypesAndFactors(); 1886 void CollectFixupsAndInitialFormulae(); 1887 1888 // Support for sharing of LSRUses between LSRFixups. 1889 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1890 UseMapTy UseMap; 1891 1892 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1893 LSRUse::KindType Kind, MemAccessTy AccessTy); 1894 1895 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1896 MemAccessTy AccessTy); 1897 1898 void DeleteUse(LSRUse &LU, size_t LUIdx); 1899 1900 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1901 1902 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1903 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1904 void CountRegisters(const Formula &F, size_t LUIdx); 1905 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1906 1907 void CollectLoopInvariantFixupsAndFormulae(); 1908 1909 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1910 unsigned Depth = 0); 1911 1912 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1913 const Formula &Base, unsigned Depth, 1914 size_t Idx, bool IsScaledReg = false); 1915 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1916 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1917 const Formula &Base, size_t Idx, 1918 bool IsScaledReg = false); 1919 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1920 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1921 const Formula &Base, 1922 const SmallVectorImpl<int64_t> &Worklist, 1923 size_t Idx, bool IsScaledReg = false); 1924 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1925 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1926 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1927 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1928 void GenerateCrossUseConstantOffsets(); 1929 void GenerateAllReuseFormulae(); 1930 1931 void FilterOutUndesirableDedicatedRegisters(); 1932 1933 size_t EstimateSearchSpaceComplexity() const; 1934 void NarrowSearchSpaceByDetectingSupersets(); 1935 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1936 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1937 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1938 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1939 void NarrowSearchSpaceByPickingWinnerRegs(); 1940 void NarrowSearchSpaceUsingHeuristics(); 1941 1942 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1943 Cost &SolutionCost, 1944 SmallVectorImpl<const Formula *> &Workspace, 1945 const Cost &CurCost, 1946 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1947 DenseSet<const SCEV *> &VisitedRegs) const; 1948 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1949 1950 BasicBlock::iterator 1951 HoistInsertPosition(BasicBlock::iterator IP, 1952 const SmallVectorImpl<Instruction *> &Inputs) const; 1953 BasicBlock::iterator 1954 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1955 const LSRFixup &LF, 1956 const LSRUse &LU, 1957 SCEVExpander &Rewriter) const; 1958 1959 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1960 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1961 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1962 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1963 const Formula &F, SCEVExpander &Rewriter, 1964 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1965 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1966 SCEVExpander &Rewriter, 1967 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1968 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1969 1970 public: 1971 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1972 LoopInfo &LI, const TargetTransformInfo &TTI); 1973 1974 bool getChanged() const { return Changed; } 1975 1976 void print_factors_and_types(raw_ostream &OS) const; 1977 void print_fixups(raw_ostream &OS) const; 1978 void print_uses(raw_ostream &OS) const; 1979 void print(raw_ostream &OS) const; 1980 void dump() const; 1981 }; 1982 1983 } // end anonymous namespace 1984 1985 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1986 /// the cast operation. 1987 void LSRInstance::OptimizeShadowIV() { 1988 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1989 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1990 return; 1991 1992 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1993 UI != E; /* empty */) { 1994 IVUsers::const_iterator CandidateUI = UI; 1995 ++UI; 1996 Instruction *ShadowUse = CandidateUI->getUser(); 1997 Type *DestTy = nullptr; 1998 bool IsSigned = false; 1999 2000 /* If shadow use is a int->float cast then insert a second IV 2001 to eliminate this cast. 2002 2003 for (unsigned i = 0; i < n; ++i) 2004 foo((double)i); 2005 2006 is transformed into 2007 2008 double d = 0.0; 2009 for (unsigned i = 0; i < n; ++i, ++d) 2010 foo(d); 2011 */ 2012 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2013 IsSigned = false; 2014 DestTy = UCast->getDestTy(); 2015 } 2016 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2017 IsSigned = true; 2018 DestTy = SCast->getDestTy(); 2019 } 2020 if (!DestTy) continue; 2021 2022 // If target does not support DestTy natively then do not apply 2023 // this transformation. 2024 if (!TTI.isTypeLegal(DestTy)) continue; 2025 2026 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2027 if (!PH) continue; 2028 if (PH->getNumIncomingValues() != 2) continue; 2029 2030 Type *SrcTy = PH->getType(); 2031 int Mantissa = DestTy->getFPMantissaWidth(); 2032 if (Mantissa == -1) continue; 2033 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2034 continue; 2035 2036 unsigned Entry, Latch; 2037 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2038 Entry = 0; 2039 Latch = 1; 2040 } else { 2041 Entry = 1; 2042 Latch = 0; 2043 } 2044 2045 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2046 if (!Init) continue; 2047 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2048 (double)Init->getSExtValue() : 2049 (double)Init->getZExtValue()); 2050 2051 BinaryOperator *Incr = 2052 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2053 if (!Incr) continue; 2054 if (Incr->getOpcode() != Instruction::Add 2055 && Incr->getOpcode() != Instruction::Sub) 2056 continue; 2057 2058 /* Initialize new IV, double d = 0.0 in above example. */ 2059 ConstantInt *C = nullptr; 2060 if (Incr->getOperand(0) == PH) 2061 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2062 else if (Incr->getOperand(1) == PH) 2063 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2064 else 2065 continue; 2066 2067 if (!C) continue; 2068 2069 // Ignore negative constants, as the code below doesn't handle them 2070 // correctly. TODO: Remove this restriction. 2071 if (!C->getValue().isStrictlyPositive()) continue; 2072 2073 /* Add new PHINode. */ 2074 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2075 2076 /* create new increment. '++d' in above example. */ 2077 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2078 BinaryOperator *NewIncr = 2079 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2080 Instruction::FAdd : Instruction::FSub, 2081 NewPH, CFP, "IV.S.next.", Incr); 2082 2083 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2084 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2085 2086 /* Remove cast operation */ 2087 ShadowUse->replaceAllUsesWith(NewPH); 2088 ShadowUse->eraseFromParent(); 2089 Changed = true; 2090 break; 2091 } 2092 } 2093 2094 /// If Cond has an operand that is an expression of an IV, set the IV user and 2095 /// stride information and return true, otherwise return false. 2096 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2097 for (IVStrideUse &U : IU) 2098 if (U.getUser() == Cond) { 2099 // NOTE: we could handle setcc instructions with multiple uses here, but 2100 // InstCombine does it as well for simple uses, it's not clear that it 2101 // occurs enough in real life to handle. 2102 CondUse = &U; 2103 return true; 2104 } 2105 return false; 2106 } 2107 2108 /// Rewrite the loop's terminating condition if it uses a max computation. 2109 /// 2110 /// This is a narrow solution to a specific, but acute, problem. For loops 2111 /// like this: 2112 /// 2113 /// i = 0; 2114 /// do { 2115 /// p[i] = 0.0; 2116 /// } while (++i < n); 2117 /// 2118 /// the trip count isn't just 'n', because 'n' might not be positive. And 2119 /// unfortunately this can come up even for loops where the user didn't use 2120 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2121 /// will commonly be lowered like this: 2122 // 2123 /// if (n > 0) { 2124 /// i = 0; 2125 /// do { 2126 /// p[i] = 0.0; 2127 /// } while (++i < n); 2128 /// } 2129 /// 2130 /// and then it's possible for subsequent optimization to obscure the if 2131 /// test in such a way that indvars can't find it. 2132 /// 2133 /// When indvars can't find the if test in loops like this, it creates a 2134 /// max expression, which allows it to give the loop a canonical 2135 /// induction variable: 2136 /// 2137 /// i = 0; 2138 /// max = n < 1 ? 1 : n; 2139 /// do { 2140 /// p[i] = 0.0; 2141 /// } while (++i != max); 2142 /// 2143 /// Canonical induction variables are necessary because the loop passes 2144 /// are designed around them. The most obvious example of this is the 2145 /// LoopInfo analysis, which doesn't remember trip count values. It 2146 /// expects to be able to rediscover the trip count each time it is 2147 /// needed, and it does this using a simple analysis that only succeeds if 2148 /// the loop has a canonical induction variable. 2149 /// 2150 /// However, when it comes time to generate code, the maximum operation 2151 /// can be quite costly, especially if it's inside of an outer loop. 2152 /// 2153 /// This function solves this problem by detecting this type of loop and 2154 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2155 /// the instructions for the maximum computation. 2156 /// 2157 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2158 // Check that the loop matches the pattern we're looking for. 2159 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2160 Cond->getPredicate() != CmpInst::ICMP_NE) 2161 return Cond; 2162 2163 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2164 if (!Sel || !Sel->hasOneUse()) return Cond; 2165 2166 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2167 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2168 return Cond; 2169 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2170 2171 // Add one to the backedge-taken count to get the trip count. 2172 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2173 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2174 2175 // Check for a max calculation that matches the pattern. There's no check 2176 // for ICMP_ULE here because the comparison would be with zero, which 2177 // isn't interesting. 2178 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2179 const SCEVNAryExpr *Max = nullptr; 2180 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2181 Pred = ICmpInst::ICMP_SLE; 2182 Max = S; 2183 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2184 Pred = ICmpInst::ICMP_SLT; 2185 Max = S; 2186 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2187 Pred = ICmpInst::ICMP_ULT; 2188 Max = U; 2189 } else { 2190 // No match; bail. 2191 return Cond; 2192 } 2193 2194 // To handle a max with more than two operands, this optimization would 2195 // require additional checking and setup. 2196 if (Max->getNumOperands() != 2) 2197 return Cond; 2198 2199 const SCEV *MaxLHS = Max->getOperand(0); 2200 const SCEV *MaxRHS = Max->getOperand(1); 2201 2202 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2203 // for a comparison with 1. For <= and >=, a comparison with zero. 2204 if (!MaxLHS || 2205 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2206 return Cond; 2207 2208 // Check the relevant induction variable for conformance to 2209 // the pattern. 2210 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2211 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2212 if (!AR || !AR->isAffine() || 2213 AR->getStart() != One || 2214 AR->getStepRecurrence(SE) != One) 2215 return Cond; 2216 2217 assert(AR->getLoop() == L && 2218 "Loop condition operand is an addrec in a different loop!"); 2219 2220 // Check the right operand of the select, and remember it, as it will 2221 // be used in the new comparison instruction. 2222 Value *NewRHS = nullptr; 2223 if (ICmpInst::isTrueWhenEqual(Pred)) { 2224 // Look for n+1, and grab n. 2225 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2226 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2227 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2228 NewRHS = BO->getOperand(0); 2229 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2230 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2231 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2232 NewRHS = BO->getOperand(0); 2233 if (!NewRHS) 2234 return Cond; 2235 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2236 NewRHS = Sel->getOperand(1); 2237 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2238 NewRHS = Sel->getOperand(2); 2239 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2240 NewRHS = SU->getValue(); 2241 else 2242 // Max doesn't match expected pattern. 2243 return Cond; 2244 2245 // Determine the new comparison opcode. It may be signed or unsigned, 2246 // and the original comparison may be either equality or inequality. 2247 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2248 Pred = CmpInst::getInversePredicate(Pred); 2249 2250 // Ok, everything looks ok to change the condition into an SLT or SGE and 2251 // delete the max calculation. 2252 ICmpInst *NewCond = 2253 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2254 2255 // Delete the max calculation instructions. 2256 Cond->replaceAllUsesWith(NewCond); 2257 CondUse->setUser(NewCond); 2258 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2259 Cond->eraseFromParent(); 2260 Sel->eraseFromParent(); 2261 if (Cmp->use_empty()) 2262 Cmp->eraseFromParent(); 2263 return NewCond; 2264 } 2265 2266 /// Change loop terminating condition to use the postinc iv when possible. 2267 void 2268 LSRInstance::OptimizeLoopTermCond() { 2269 SmallPtrSet<Instruction *, 4> PostIncs; 2270 2271 // We need a different set of heuristics for rotated and non-rotated loops. 2272 // If a loop is rotated then the latch is also the backedge, so inserting 2273 // post-inc expressions just before the latch is ideal. To reduce live ranges 2274 // it also makes sense to rewrite terminating conditions to use post-inc 2275 // expressions. 2276 // 2277 // If the loop is not rotated then the latch is not a backedge; the latch 2278 // check is done in the loop head. Adding post-inc expressions before the 2279 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2280 // in the loop body. In this case we do *not* want to use post-inc expressions 2281 // in the latch check, and we want to insert post-inc expressions before 2282 // the backedge. 2283 BasicBlock *LatchBlock = L->getLoopLatch(); 2284 SmallVector<BasicBlock*, 8> ExitingBlocks; 2285 L->getExitingBlocks(ExitingBlocks); 2286 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2287 return LatchBlock != BB; 2288 })) { 2289 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2290 IVIncInsertPos = LatchBlock->getTerminator(); 2291 return; 2292 } 2293 2294 // Otherwise treat this as a rotated loop. 2295 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2296 2297 // Get the terminating condition for the loop if possible. If we 2298 // can, we want to change it to use a post-incremented version of its 2299 // induction variable, to allow coalescing the live ranges for the IV into 2300 // one register value. 2301 2302 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2303 if (!TermBr) 2304 continue; 2305 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2306 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2307 continue; 2308 2309 // Search IVUsesByStride to find Cond's IVUse if there is one. 2310 IVStrideUse *CondUse = nullptr; 2311 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2312 if (!FindIVUserForCond(Cond, CondUse)) 2313 continue; 2314 2315 // If the trip count is computed in terms of a max (due to ScalarEvolution 2316 // being unable to find a sufficient guard, for example), change the loop 2317 // comparison to use SLT or ULT instead of NE. 2318 // One consequence of doing this now is that it disrupts the count-down 2319 // optimization. That's not always a bad thing though, because in such 2320 // cases it may still be worthwhile to avoid a max. 2321 Cond = OptimizeMax(Cond, CondUse); 2322 2323 // If this exiting block dominates the latch block, it may also use 2324 // the post-inc value if it won't be shared with other uses. 2325 // Check for dominance. 2326 if (!DT.dominates(ExitingBlock, LatchBlock)) 2327 continue; 2328 2329 // Conservatively avoid trying to use the post-inc value in non-latch 2330 // exits if there may be pre-inc users in intervening blocks. 2331 if (LatchBlock != ExitingBlock) 2332 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2333 // Test if the use is reachable from the exiting block. This dominator 2334 // query is a conservative approximation of reachability. 2335 if (&*UI != CondUse && 2336 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2337 // Conservatively assume there may be reuse if the quotient of their 2338 // strides could be a legal scale. 2339 const SCEV *A = IU.getStride(*CondUse, L); 2340 const SCEV *B = IU.getStride(*UI, L); 2341 if (!A || !B) continue; 2342 if (SE.getTypeSizeInBits(A->getType()) != 2343 SE.getTypeSizeInBits(B->getType())) { 2344 if (SE.getTypeSizeInBits(A->getType()) > 2345 SE.getTypeSizeInBits(B->getType())) 2346 B = SE.getSignExtendExpr(B, A->getType()); 2347 else 2348 A = SE.getSignExtendExpr(A, B->getType()); 2349 } 2350 if (const SCEVConstant *D = 2351 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2352 const ConstantInt *C = D->getValue(); 2353 // Stride of one or negative one can have reuse with non-addresses. 2354 if (C->isOne() || C->isMinusOne()) 2355 goto decline_post_inc; 2356 // Avoid weird situations. 2357 if (C->getValue().getMinSignedBits() >= 64 || 2358 C->getValue().isMinSignedValue()) 2359 goto decline_post_inc; 2360 // Check for possible scaled-address reuse. 2361 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2362 int64_t Scale = C->getSExtValue(); 2363 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2364 /*BaseOffset=*/0, 2365 /*HasBaseReg=*/false, Scale, 2366 AccessTy.AddrSpace)) 2367 goto decline_post_inc; 2368 Scale = -Scale; 2369 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2370 /*BaseOffset=*/0, 2371 /*HasBaseReg=*/false, Scale, 2372 AccessTy.AddrSpace)) 2373 goto decline_post_inc; 2374 } 2375 } 2376 2377 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2378 << *Cond << '\n'); 2379 2380 // It's possible for the setcc instruction to be anywhere in the loop, and 2381 // possible for it to have multiple users. If it is not immediately before 2382 // the exiting block branch, move it. 2383 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2384 if (Cond->hasOneUse()) { 2385 Cond->moveBefore(TermBr); 2386 } else { 2387 // Clone the terminating condition and insert into the loopend. 2388 ICmpInst *OldCond = Cond; 2389 Cond = cast<ICmpInst>(Cond->clone()); 2390 Cond->setName(L->getHeader()->getName() + ".termcond"); 2391 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2392 2393 // Clone the IVUse, as the old use still exists! 2394 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2395 TermBr->replaceUsesOfWith(OldCond, Cond); 2396 } 2397 } 2398 2399 // If we get to here, we know that we can transform the setcc instruction to 2400 // use the post-incremented version of the IV, allowing us to coalesce the 2401 // live ranges for the IV correctly. 2402 CondUse->transformToPostInc(L); 2403 Changed = true; 2404 2405 PostIncs.insert(Cond); 2406 decline_post_inc:; 2407 } 2408 2409 // Determine an insertion point for the loop induction variable increment. It 2410 // must dominate all the post-inc comparisons we just set up, and it must 2411 // dominate the loop latch edge. 2412 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2413 for (Instruction *Inst : PostIncs) { 2414 BasicBlock *BB = 2415 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2416 Inst->getParent()); 2417 if (BB == Inst->getParent()) 2418 IVIncInsertPos = Inst; 2419 else if (BB != IVIncInsertPos->getParent()) 2420 IVIncInsertPos = BB->getTerminator(); 2421 } 2422 } 2423 2424 /// Determine if the given use can accommodate a fixup at the given offset and 2425 /// other details. If so, update the use and return true. 2426 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2427 bool HasBaseReg, LSRUse::KindType Kind, 2428 MemAccessTy AccessTy) { 2429 int64_t NewMinOffset = LU.MinOffset; 2430 int64_t NewMaxOffset = LU.MaxOffset; 2431 MemAccessTy NewAccessTy = AccessTy; 2432 2433 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2434 // something conservative, however this can pessimize in the case that one of 2435 // the uses will have all its uses outside the loop, for example. 2436 if (LU.Kind != Kind) 2437 return false; 2438 2439 // Check for a mismatched access type, and fall back conservatively as needed. 2440 // TODO: Be less conservative when the type is similar and can use the same 2441 // addressing modes. 2442 if (Kind == LSRUse::Address) { 2443 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2444 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2445 AccessTy.AddrSpace); 2446 } 2447 } 2448 2449 // Conservatively assume HasBaseReg is true for now. 2450 if (NewOffset < LU.MinOffset) { 2451 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2452 LU.MaxOffset - NewOffset, HasBaseReg)) 2453 return false; 2454 NewMinOffset = NewOffset; 2455 } else if (NewOffset > LU.MaxOffset) { 2456 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2457 NewOffset - LU.MinOffset, HasBaseReg)) 2458 return false; 2459 NewMaxOffset = NewOffset; 2460 } 2461 2462 // Update the use. 2463 LU.MinOffset = NewMinOffset; 2464 LU.MaxOffset = NewMaxOffset; 2465 LU.AccessTy = NewAccessTy; 2466 return true; 2467 } 2468 2469 /// Return an LSRUse index and an offset value for a fixup which needs the given 2470 /// expression, with the given kind and optional access type. Either reuse an 2471 /// existing use or create a new one, as needed. 2472 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2473 LSRUse::KindType Kind, 2474 MemAccessTy AccessTy) { 2475 const SCEV *Copy = Expr; 2476 int64_t Offset = ExtractImmediate(Expr, SE); 2477 2478 // Basic uses can't accept any offset, for example. 2479 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2480 Offset, /*HasBaseReg=*/ true)) { 2481 Expr = Copy; 2482 Offset = 0; 2483 } 2484 2485 std::pair<UseMapTy::iterator, bool> P = 2486 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2487 if (!P.second) { 2488 // A use already existed with this base. 2489 size_t LUIdx = P.first->second; 2490 LSRUse &LU = Uses[LUIdx]; 2491 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2492 // Reuse this use. 2493 return std::make_pair(LUIdx, Offset); 2494 } 2495 2496 // Create a new use. 2497 size_t LUIdx = Uses.size(); 2498 P.first->second = LUIdx; 2499 Uses.push_back(LSRUse(Kind, AccessTy)); 2500 LSRUse &LU = Uses[LUIdx]; 2501 2502 LU.MinOffset = Offset; 2503 LU.MaxOffset = Offset; 2504 return std::make_pair(LUIdx, Offset); 2505 } 2506 2507 /// Delete the given use from the Uses list. 2508 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2509 if (&LU != &Uses.back()) 2510 std::swap(LU, Uses.back()); 2511 Uses.pop_back(); 2512 2513 // Update RegUses. 2514 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2515 } 2516 2517 /// Look for a use distinct from OrigLU which is has a formula that has the same 2518 /// registers as the given formula. 2519 LSRUse * 2520 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2521 const LSRUse &OrigLU) { 2522 // Search all uses for the formula. This could be more clever. 2523 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2524 LSRUse &LU = Uses[LUIdx]; 2525 // Check whether this use is close enough to OrigLU, to see whether it's 2526 // worthwhile looking through its formulae. 2527 // Ignore ICmpZero uses because they may contain formulae generated by 2528 // GenerateICmpZeroScales, in which case adding fixup offsets may 2529 // be invalid. 2530 if (&LU != &OrigLU && 2531 LU.Kind != LSRUse::ICmpZero && 2532 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2533 LU.WidestFixupType == OrigLU.WidestFixupType && 2534 LU.HasFormulaWithSameRegs(OrigF)) { 2535 // Scan through this use's formulae. 2536 for (const Formula &F : LU.Formulae) { 2537 // Check to see if this formula has the same registers and symbols 2538 // as OrigF. 2539 if (F.BaseRegs == OrigF.BaseRegs && 2540 F.ScaledReg == OrigF.ScaledReg && 2541 F.BaseGV == OrigF.BaseGV && 2542 F.Scale == OrigF.Scale && 2543 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2544 if (F.BaseOffset == 0) 2545 return &LU; 2546 // This is the formula where all the registers and symbols matched; 2547 // there aren't going to be any others. Since we declined it, we 2548 // can skip the rest of the formulae and proceed to the next LSRUse. 2549 break; 2550 } 2551 } 2552 } 2553 } 2554 2555 // Nothing looked good. 2556 return nullptr; 2557 } 2558 2559 void LSRInstance::CollectInterestingTypesAndFactors() { 2560 SmallSetVector<const SCEV *, 4> Strides; 2561 2562 // Collect interesting types and strides. 2563 SmallVector<const SCEV *, 4> Worklist; 2564 for (const IVStrideUse &U : IU) { 2565 const SCEV *Expr = IU.getExpr(U); 2566 2567 // Collect interesting types. 2568 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2569 2570 // Add strides for mentioned loops. 2571 Worklist.push_back(Expr); 2572 do { 2573 const SCEV *S = Worklist.pop_back_val(); 2574 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2575 if (AR->getLoop() == L) 2576 Strides.insert(AR->getStepRecurrence(SE)); 2577 Worklist.push_back(AR->getStart()); 2578 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2579 Worklist.append(Add->op_begin(), Add->op_end()); 2580 } 2581 } while (!Worklist.empty()); 2582 } 2583 2584 // Compute interesting factors from the set of interesting strides. 2585 for (SmallSetVector<const SCEV *, 4>::const_iterator 2586 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2587 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2588 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2589 const SCEV *OldStride = *I; 2590 const SCEV *NewStride = *NewStrideIter; 2591 2592 if (SE.getTypeSizeInBits(OldStride->getType()) != 2593 SE.getTypeSizeInBits(NewStride->getType())) { 2594 if (SE.getTypeSizeInBits(OldStride->getType()) > 2595 SE.getTypeSizeInBits(NewStride->getType())) 2596 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2597 else 2598 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2599 } 2600 if (const SCEVConstant *Factor = 2601 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2602 SE, true))) { 2603 if (Factor->getAPInt().getMinSignedBits() <= 64) 2604 Factors.insert(Factor->getAPInt().getSExtValue()); 2605 } else if (const SCEVConstant *Factor = 2606 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2607 NewStride, 2608 SE, true))) { 2609 if (Factor->getAPInt().getMinSignedBits() <= 64) 2610 Factors.insert(Factor->getAPInt().getSExtValue()); 2611 } 2612 } 2613 2614 // If all uses use the same type, don't bother looking for truncation-based 2615 // reuse. 2616 if (Types.size() == 1) 2617 Types.clear(); 2618 2619 DEBUG(print_factors_and_types(dbgs())); 2620 } 2621 2622 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2623 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2624 /// IVStrideUses, we could partially skip this. 2625 static User::op_iterator 2626 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2627 Loop *L, ScalarEvolution &SE) { 2628 for(; OI != OE; ++OI) { 2629 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2630 if (!SE.isSCEVable(Oper->getType())) 2631 continue; 2632 2633 if (const SCEVAddRecExpr *AR = 2634 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2635 if (AR->getLoop() == L) 2636 break; 2637 } 2638 } 2639 } 2640 return OI; 2641 } 2642 2643 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2644 /// a convenient helper. 2645 static Value *getWideOperand(Value *Oper) { 2646 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2647 return Trunc->getOperand(0); 2648 return Oper; 2649 } 2650 2651 /// Return true if we allow an IV chain to include both types. 2652 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2653 Type *LType = LVal->getType(); 2654 Type *RType = RVal->getType(); 2655 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2656 // Different address spaces means (possibly) 2657 // different types of the pointer implementation, 2658 // e.g. i16 vs i32 so disallow that. 2659 (LType->getPointerAddressSpace() == 2660 RType->getPointerAddressSpace())); 2661 } 2662 2663 /// Return an approximation of this SCEV expression's "base", or NULL for any 2664 /// constant. Returning the expression itself is conservative. Returning a 2665 /// deeper subexpression is more precise and valid as long as it isn't less 2666 /// complex than another subexpression. For expressions involving multiple 2667 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2668 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2669 /// IVInc==b-a. 2670 /// 2671 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2672 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2673 static const SCEV *getExprBase(const SCEV *S) { 2674 switch (S->getSCEVType()) { 2675 default: // uncluding scUnknown. 2676 return S; 2677 case scConstant: 2678 return nullptr; 2679 case scTruncate: 2680 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2681 case scZeroExtend: 2682 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2683 case scSignExtend: 2684 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2685 case scAddExpr: { 2686 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2687 // there's nothing more complex. 2688 // FIXME: not sure if we want to recognize negation. 2689 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2690 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2691 E(Add->op_begin()); I != E; ++I) { 2692 const SCEV *SubExpr = *I; 2693 if (SubExpr->getSCEVType() == scAddExpr) 2694 return getExprBase(SubExpr); 2695 2696 if (SubExpr->getSCEVType() != scMulExpr) 2697 return SubExpr; 2698 } 2699 return S; // all operands are scaled, be conservative. 2700 } 2701 case scAddRecExpr: 2702 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2703 } 2704 } 2705 2706 /// Return true if the chain increment is profitable to expand into a loop 2707 /// invariant value, which may require its own register. A profitable chain 2708 /// increment will be an offset relative to the same base. We allow such offsets 2709 /// to potentially be used as chain increment as long as it's not obviously 2710 /// expensive to expand using real instructions. 2711 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2712 const SCEV *IncExpr, 2713 ScalarEvolution &SE) { 2714 // Aggressively form chains when -stress-ivchain. 2715 if (StressIVChain) 2716 return true; 2717 2718 // Do not replace a constant offset from IV head with a nonconstant IV 2719 // increment. 2720 if (!isa<SCEVConstant>(IncExpr)) { 2721 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2722 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2723 return false; 2724 } 2725 2726 SmallPtrSet<const SCEV*, 8> Processed; 2727 return !isHighCostExpansion(IncExpr, Processed, SE); 2728 } 2729 2730 /// Return true if the number of registers needed for the chain is estimated to 2731 /// be less than the number required for the individual IV users. First prohibit 2732 /// any IV users that keep the IV live across increments (the Users set should 2733 /// be empty). Next count the number and type of increments in the chain. 2734 /// 2735 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2736 /// effectively use postinc addressing modes. Only consider it profitable it the 2737 /// increments can be computed in fewer registers when chained. 2738 /// 2739 /// TODO: Consider IVInc free if it's already used in another chains. 2740 static bool 2741 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2742 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2743 if (StressIVChain) 2744 return true; 2745 2746 if (!Chain.hasIncs()) 2747 return false; 2748 2749 if (!Users.empty()) { 2750 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2751 for (Instruction *Inst : Users) { 2752 dbgs() << " " << *Inst << "\n"; 2753 }); 2754 return false; 2755 } 2756 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2757 2758 // The chain itself may require a register, so intialize cost to 1. 2759 int cost = 1; 2760 2761 // A complete chain likely eliminates the need for keeping the original IV in 2762 // a register. LSR does not currently know how to form a complete chain unless 2763 // the header phi already exists. 2764 if (isa<PHINode>(Chain.tailUserInst()) 2765 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2766 --cost; 2767 } 2768 const SCEV *LastIncExpr = nullptr; 2769 unsigned NumConstIncrements = 0; 2770 unsigned NumVarIncrements = 0; 2771 unsigned NumReusedIncrements = 0; 2772 for (const IVInc &Inc : Chain) { 2773 if (Inc.IncExpr->isZero()) 2774 continue; 2775 2776 // Incrementing by zero or some constant is neutral. We assume constants can 2777 // be folded into an addressing mode or an add's immediate operand. 2778 if (isa<SCEVConstant>(Inc.IncExpr)) { 2779 ++NumConstIncrements; 2780 continue; 2781 } 2782 2783 if (Inc.IncExpr == LastIncExpr) 2784 ++NumReusedIncrements; 2785 else 2786 ++NumVarIncrements; 2787 2788 LastIncExpr = Inc.IncExpr; 2789 } 2790 // An IV chain with a single increment is handled by LSR's postinc 2791 // uses. However, a chain with multiple increments requires keeping the IV's 2792 // value live longer than it needs to be if chained. 2793 if (NumConstIncrements > 1) 2794 --cost; 2795 2796 // Materializing increment expressions in the preheader that didn't exist in 2797 // the original code may cost a register. For example, sign-extended array 2798 // indices can produce ridiculous increments like this: 2799 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2800 cost += NumVarIncrements; 2801 2802 // Reusing variable increments likely saves a register to hold the multiple of 2803 // the stride. 2804 cost -= NumReusedIncrements; 2805 2806 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2807 << "\n"); 2808 2809 return cost < 0; 2810 } 2811 2812 /// Add this IV user to an existing chain or make it the head of a new chain. 2813 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2814 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2815 // When IVs are used as types of varying widths, they are generally converted 2816 // to a wider type with some uses remaining narrow under a (free) trunc. 2817 Value *const NextIV = getWideOperand(IVOper); 2818 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2819 const SCEV *const OperExprBase = getExprBase(OperExpr); 2820 2821 // Visit all existing chains. Check if its IVOper can be computed as a 2822 // profitable loop invariant increment from the last link in the Chain. 2823 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2824 const SCEV *LastIncExpr = nullptr; 2825 for (; ChainIdx < NChains; ++ChainIdx) { 2826 IVChain &Chain = IVChainVec[ChainIdx]; 2827 2828 // Prune the solution space aggressively by checking that both IV operands 2829 // are expressions that operate on the same unscaled SCEVUnknown. This 2830 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2831 // first avoids creating extra SCEV expressions. 2832 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2833 continue; 2834 2835 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2836 if (!isCompatibleIVType(PrevIV, NextIV)) 2837 continue; 2838 2839 // A phi node terminates a chain. 2840 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2841 continue; 2842 2843 // The increment must be loop-invariant so it can be kept in a register. 2844 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2845 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2846 if (!SE.isLoopInvariant(IncExpr, L)) 2847 continue; 2848 2849 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2850 LastIncExpr = IncExpr; 2851 break; 2852 } 2853 } 2854 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2855 // bother for phi nodes, because they must be last in the chain. 2856 if (ChainIdx == NChains) { 2857 if (isa<PHINode>(UserInst)) 2858 return; 2859 if (NChains >= MaxChains && !StressIVChain) { 2860 DEBUG(dbgs() << "IV Chain Limit\n"); 2861 return; 2862 } 2863 LastIncExpr = OperExpr; 2864 // IVUsers may have skipped over sign/zero extensions. We don't currently 2865 // attempt to form chains involving extensions unless they can be hoisted 2866 // into this loop's AddRec. 2867 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2868 return; 2869 ++NChains; 2870 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2871 OperExprBase)); 2872 ChainUsersVec.resize(NChains); 2873 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2874 << ") IV=" << *LastIncExpr << "\n"); 2875 } else { 2876 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2877 << ") IV+" << *LastIncExpr << "\n"); 2878 // Add this IV user to the end of the chain. 2879 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2880 } 2881 IVChain &Chain = IVChainVec[ChainIdx]; 2882 2883 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2884 // This chain's NearUsers become FarUsers. 2885 if (!LastIncExpr->isZero()) { 2886 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2887 NearUsers.end()); 2888 NearUsers.clear(); 2889 } 2890 2891 // All other uses of IVOperand become near uses of the chain. 2892 // We currently ignore intermediate values within SCEV expressions, assuming 2893 // they will eventually be used be the current chain, or can be computed 2894 // from one of the chain increments. To be more precise we could 2895 // transitively follow its user and only add leaf IV users to the set. 2896 for (User *U : IVOper->users()) { 2897 Instruction *OtherUse = dyn_cast<Instruction>(U); 2898 if (!OtherUse) 2899 continue; 2900 // Uses in the chain will no longer be uses if the chain is formed. 2901 // Include the head of the chain in this iteration (not Chain.begin()). 2902 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2903 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2904 for( ; IncIter != IncEnd; ++IncIter) { 2905 if (IncIter->UserInst == OtherUse) 2906 break; 2907 } 2908 if (IncIter != IncEnd) 2909 continue; 2910 2911 if (SE.isSCEVable(OtherUse->getType()) 2912 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2913 && IU.isIVUserOrOperand(OtherUse)) { 2914 continue; 2915 } 2916 NearUsers.insert(OtherUse); 2917 } 2918 2919 // Since this user is part of the chain, it's no longer considered a use 2920 // of the chain. 2921 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2922 } 2923 2924 /// Populate the vector of Chains. 2925 /// 2926 /// This decreases ILP at the architecture level. Targets with ample registers, 2927 /// multiple memory ports, and no register renaming probably don't want 2928 /// this. However, such targets should probably disable LSR altogether. 2929 /// 2930 /// The job of LSR is to make a reasonable choice of induction variables across 2931 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2932 /// ILP *within the loop* if the target wants it. 2933 /// 2934 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2935 /// will not reorder memory operations, it will recognize this as a chain, but 2936 /// will generate redundant IV increments. Ideally this would be corrected later 2937 /// by a smart scheduler: 2938 /// = A[i] 2939 /// = A[i+x] 2940 /// A[i] = 2941 /// A[i+x] = 2942 /// 2943 /// TODO: Walk the entire domtree within this loop, not just the path to the 2944 /// loop latch. This will discover chains on side paths, but requires 2945 /// maintaining multiple copies of the Chains state. 2946 void LSRInstance::CollectChains() { 2947 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2948 SmallVector<ChainUsers, 8> ChainUsersVec; 2949 2950 SmallVector<BasicBlock *,8> LatchPath; 2951 BasicBlock *LoopHeader = L->getHeader(); 2952 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2953 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2954 LatchPath.push_back(Rung->getBlock()); 2955 } 2956 LatchPath.push_back(LoopHeader); 2957 2958 // Walk the instruction stream from the loop header to the loop latch. 2959 for (BasicBlock *BB : reverse(LatchPath)) { 2960 for (Instruction &I : *BB) { 2961 // Skip instructions that weren't seen by IVUsers analysis. 2962 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2963 continue; 2964 2965 // Ignore users that are part of a SCEV expression. This way we only 2966 // consider leaf IV Users. This effectively rediscovers a portion of 2967 // IVUsers analysis but in program order this time. 2968 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2969 continue; 2970 2971 // Remove this instruction from any NearUsers set it may be in. 2972 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2973 ChainIdx < NChains; ++ChainIdx) { 2974 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2975 } 2976 // Search for operands that can be chained. 2977 SmallPtrSet<Instruction*, 4> UniqueOperands; 2978 User::op_iterator IVOpEnd = I.op_end(); 2979 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2980 while (IVOpIter != IVOpEnd) { 2981 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2982 if (UniqueOperands.insert(IVOpInst).second) 2983 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2984 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2985 } 2986 } // Continue walking down the instructions. 2987 } // Continue walking down the domtree. 2988 // Visit phi backedges to determine if the chain can generate the IV postinc. 2989 for (BasicBlock::iterator I = L->getHeader()->begin(); 2990 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2991 if (!SE.isSCEVable(PN->getType())) 2992 continue; 2993 2994 Instruction *IncV = 2995 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2996 if (IncV) 2997 ChainInstruction(PN, IncV, ChainUsersVec); 2998 } 2999 // Remove any unprofitable chains. 3000 unsigned ChainIdx = 0; 3001 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3002 UsersIdx < NChains; ++UsersIdx) { 3003 if (!isProfitableChain(IVChainVec[UsersIdx], 3004 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3005 continue; 3006 // Preserve the chain at UsesIdx. 3007 if (ChainIdx != UsersIdx) 3008 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3009 FinalizeChain(IVChainVec[ChainIdx]); 3010 ++ChainIdx; 3011 } 3012 IVChainVec.resize(ChainIdx); 3013 } 3014 3015 void LSRInstance::FinalizeChain(IVChain &Chain) { 3016 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3017 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3018 3019 for (const IVInc &Inc : Chain) { 3020 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3021 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3022 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3023 IVIncSet.insert(UseI); 3024 } 3025 } 3026 3027 /// Return true if the IVInc can be folded into an addressing mode. 3028 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3029 Value *Operand, const TargetTransformInfo &TTI) { 3030 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3031 if (!IncConst || !isAddressUse(UserInst, Operand)) 3032 return false; 3033 3034 if (IncConst->getAPInt().getMinSignedBits() > 64) 3035 return false; 3036 3037 MemAccessTy AccessTy = getAccessType(UserInst); 3038 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3039 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3040 IncOffset, /*HaseBaseReg=*/false)) 3041 return false; 3042 3043 return true; 3044 } 3045 3046 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3047 /// user's operand from the previous IV user's operand. 3048 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3049 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3050 // Find the new IVOperand for the head of the chain. It may have been replaced 3051 // by LSR. 3052 const IVInc &Head = Chain.Incs[0]; 3053 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3054 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3055 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3056 IVOpEnd, L, SE); 3057 Value *IVSrc = nullptr; 3058 while (IVOpIter != IVOpEnd) { 3059 IVSrc = getWideOperand(*IVOpIter); 3060 3061 // If this operand computes the expression that the chain needs, we may use 3062 // it. (Check this after setting IVSrc which is used below.) 3063 // 3064 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3065 // narrow for the chain, so we can no longer use it. We do allow using a 3066 // wider phi, assuming the LSR checked for free truncation. In that case we 3067 // should already have a truncate on this operand such that 3068 // getSCEV(IVSrc) == IncExpr. 3069 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3070 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3071 break; 3072 } 3073 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3074 } 3075 if (IVOpIter == IVOpEnd) { 3076 // Gracefully give up on this chain. 3077 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3078 return; 3079 } 3080 3081 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3082 Type *IVTy = IVSrc->getType(); 3083 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3084 const SCEV *LeftOverExpr = nullptr; 3085 for (const IVInc &Inc : Chain) { 3086 Instruction *InsertPt = Inc.UserInst; 3087 if (isa<PHINode>(InsertPt)) 3088 InsertPt = L->getLoopLatch()->getTerminator(); 3089 3090 // IVOper will replace the current IV User's operand. IVSrc is the IV 3091 // value currently held in a register. 3092 Value *IVOper = IVSrc; 3093 if (!Inc.IncExpr->isZero()) { 3094 // IncExpr was the result of subtraction of two narrow values, so must 3095 // be signed. 3096 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3097 LeftOverExpr = LeftOverExpr ? 3098 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3099 } 3100 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3101 // Expand the IV increment. 3102 Rewriter.clearPostInc(); 3103 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3104 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3105 SE.getUnknown(IncV)); 3106 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3107 3108 // If an IV increment can't be folded, use it as the next IV value. 3109 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3110 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3111 IVSrc = IVOper; 3112 LeftOverExpr = nullptr; 3113 } 3114 } 3115 Type *OperTy = Inc.IVOperand->getType(); 3116 if (IVTy != OperTy) { 3117 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3118 "cannot extend a chained IV"); 3119 IRBuilder<> Builder(InsertPt); 3120 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3121 } 3122 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3123 DeadInsts.emplace_back(Inc.IVOperand); 3124 } 3125 // If LSR created a new, wider phi, we may also replace its postinc. We only 3126 // do this if we also found a wide value for the head of the chain. 3127 if (isa<PHINode>(Chain.tailUserInst())) { 3128 for (BasicBlock::iterator I = L->getHeader()->begin(); 3129 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3130 if (!isCompatibleIVType(Phi, IVSrc)) 3131 continue; 3132 Instruction *PostIncV = dyn_cast<Instruction>( 3133 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3134 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3135 continue; 3136 Value *IVOper = IVSrc; 3137 Type *PostIncTy = PostIncV->getType(); 3138 if (IVTy != PostIncTy) { 3139 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3140 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3141 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3142 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3143 } 3144 Phi->replaceUsesOfWith(PostIncV, IVOper); 3145 DeadInsts.emplace_back(PostIncV); 3146 } 3147 } 3148 } 3149 3150 void LSRInstance::CollectFixupsAndInitialFormulae() { 3151 for (const IVStrideUse &U : IU) { 3152 Instruction *UserInst = U.getUser(); 3153 // Skip IV users that are part of profitable IV Chains. 3154 User::op_iterator UseI = 3155 find(UserInst->operands(), U.getOperandValToReplace()); 3156 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3157 if (IVIncSet.count(UseI)) { 3158 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3159 continue; 3160 } 3161 3162 LSRUse::KindType Kind = LSRUse::Basic; 3163 MemAccessTy AccessTy; 3164 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3165 Kind = LSRUse::Address; 3166 AccessTy = getAccessType(UserInst); 3167 } 3168 3169 const SCEV *S = IU.getExpr(U); 3170 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3171 3172 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3173 // (N - i == 0), and this allows (N - i) to be the expression that we work 3174 // with rather than just N or i, so we can consider the register 3175 // requirements for both N and i at the same time. Limiting this code to 3176 // equality icmps is not a problem because all interesting loops use 3177 // equality icmps, thanks to IndVarSimplify. 3178 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3179 if (CI->isEquality()) { 3180 // Swap the operands if needed to put the OperandValToReplace on the 3181 // left, for consistency. 3182 Value *NV = CI->getOperand(1); 3183 if (NV == U.getOperandValToReplace()) { 3184 CI->setOperand(1, CI->getOperand(0)); 3185 CI->setOperand(0, NV); 3186 NV = CI->getOperand(1); 3187 Changed = true; 3188 } 3189 3190 // x == y --> x - y == 0 3191 const SCEV *N = SE.getSCEV(NV); 3192 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3193 // S is normalized, so normalize N before folding it into S 3194 // to keep the result normalized. 3195 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3196 Kind = LSRUse::ICmpZero; 3197 S = SE.getMinusSCEV(N, S); 3198 } 3199 3200 // -1 and the negations of all interesting strides (except the negation 3201 // of -1) are now also interesting. 3202 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3203 if (Factors[i] != -1) 3204 Factors.insert(-(uint64_t)Factors[i]); 3205 Factors.insert(-1); 3206 } 3207 3208 // Get or create an LSRUse. 3209 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3210 size_t LUIdx = P.first; 3211 int64_t Offset = P.second; 3212 LSRUse &LU = Uses[LUIdx]; 3213 3214 // Record the fixup. 3215 LSRFixup &LF = LU.getNewFixup(); 3216 LF.UserInst = UserInst; 3217 LF.OperandValToReplace = U.getOperandValToReplace(); 3218 LF.PostIncLoops = TmpPostIncLoops; 3219 LF.Offset = Offset; 3220 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3221 3222 if (!LU.WidestFixupType || 3223 SE.getTypeSizeInBits(LU.WidestFixupType) < 3224 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3225 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3226 3227 // If this is the first use of this LSRUse, give it a formula. 3228 if (LU.Formulae.empty()) { 3229 InsertInitialFormula(S, LU, LUIdx); 3230 CountRegisters(LU.Formulae.back(), LUIdx); 3231 } 3232 } 3233 3234 DEBUG(print_fixups(dbgs())); 3235 } 3236 3237 /// Insert a formula for the given expression into the given use, separating out 3238 /// loop-variant portions from loop-invariant and loop-computable portions. 3239 void 3240 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3241 // Mark uses whose expressions cannot be expanded. 3242 if (!isSafeToExpand(S, SE)) 3243 LU.RigidFormula = true; 3244 3245 Formula F; 3246 F.initialMatch(S, L, SE); 3247 bool Inserted = InsertFormula(LU, LUIdx, F); 3248 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3249 } 3250 3251 /// Insert a simple single-register formula for the given expression into the 3252 /// given use. 3253 void 3254 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3255 LSRUse &LU, size_t LUIdx) { 3256 Formula F; 3257 F.BaseRegs.push_back(S); 3258 F.HasBaseReg = true; 3259 bool Inserted = InsertFormula(LU, LUIdx, F); 3260 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3261 } 3262 3263 /// Note which registers are used by the given formula, updating RegUses. 3264 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3265 if (F.ScaledReg) 3266 RegUses.countRegister(F.ScaledReg, LUIdx); 3267 for (const SCEV *BaseReg : F.BaseRegs) 3268 RegUses.countRegister(BaseReg, LUIdx); 3269 } 3270 3271 /// If the given formula has not yet been inserted, add it to the list, and 3272 /// return true. Return false otherwise. 3273 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3274 // Do not insert formula that we will not be able to expand. 3275 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3276 "Formula is illegal"); 3277 3278 if (!LU.InsertFormula(F, *L)) 3279 return false; 3280 3281 CountRegisters(F, LUIdx); 3282 return true; 3283 } 3284 3285 /// Check for other uses of loop-invariant values which we're tracking. These 3286 /// other uses will pin these values in registers, making them less profitable 3287 /// for elimination. 3288 /// TODO: This currently misses non-constant addrec step registers. 3289 /// TODO: Should this give more weight to users inside the loop? 3290 void 3291 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3292 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3293 SmallPtrSet<const SCEV *, 32> Visited; 3294 3295 while (!Worklist.empty()) { 3296 const SCEV *S = Worklist.pop_back_val(); 3297 3298 // Don't process the same SCEV twice 3299 if (!Visited.insert(S).second) 3300 continue; 3301 3302 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3303 Worklist.append(N->op_begin(), N->op_end()); 3304 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3305 Worklist.push_back(C->getOperand()); 3306 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3307 Worklist.push_back(D->getLHS()); 3308 Worklist.push_back(D->getRHS()); 3309 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3310 const Value *V = US->getValue(); 3311 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3312 // Look for instructions defined outside the loop. 3313 if (L->contains(Inst)) continue; 3314 } else if (isa<UndefValue>(V)) 3315 // Undef doesn't have a live range, so it doesn't matter. 3316 continue; 3317 for (const Use &U : V->uses()) { 3318 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3319 // Ignore non-instructions. 3320 if (!UserInst) 3321 continue; 3322 // Ignore instructions in other functions (as can happen with 3323 // Constants). 3324 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3325 continue; 3326 // Ignore instructions not dominated by the loop. 3327 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3328 UserInst->getParent() : 3329 cast<PHINode>(UserInst)->getIncomingBlock( 3330 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3331 if (!DT.dominates(L->getHeader(), UseBB)) 3332 continue; 3333 // Don't bother if the instruction is in a BB which ends in an EHPad. 3334 if (UseBB->getTerminator()->isEHPad()) 3335 continue; 3336 // Don't bother rewriting PHIs in catchswitch blocks. 3337 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3338 continue; 3339 // Ignore uses which are part of other SCEV expressions, to avoid 3340 // analyzing them multiple times. 3341 if (SE.isSCEVable(UserInst->getType())) { 3342 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3343 // If the user is a no-op, look through to its uses. 3344 if (!isa<SCEVUnknown>(UserS)) 3345 continue; 3346 if (UserS == US) { 3347 Worklist.push_back( 3348 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3349 continue; 3350 } 3351 } 3352 // Ignore icmp instructions which are already being analyzed. 3353 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3354 unsigned OtherIdx = !U.getOperandNo(); 3355 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3356 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3357 continue; 3358 } 3359 3360 std::pair<size_t, int64_t> P = getUse( 3361 S, LSRUse::Basic, MemAccessTy()); 3362 size_t LUIdx = P.first; 3363 int64_t Offset = P.second; 3364 LSRUse &LU = Uses[LUIdx]; 3365 LSRFixup &LF = LU.getNewFixup(); 3366 LF.UserInst = const_cast<Instruction *>(UserInst); 3367 LF.OperandValToReplace = U; 3368 LF.Offset = Offset; 3369 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3370 if (!LU.WidestFixupType || 3371 SE.getTypeSizeInBits(LU.WidestFixupType) < 3372 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3373 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3374 InsertSupplementalFormula(US, LU, LUIdx); 3375 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3376 break; 3377 } 3378 } 3379 } 3380 } 3381 3382 /// Split S into subexpressions which can be pulled out into separate 3383 /// registers. If C is non-null, multiply each subexpression by C. 3384 /// 3385 /// Return remainder expression after factoring the subexpressions captured by 3386 /// Ops. If Ops is complete, return NULL. 3387 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3388 SmallVectorImpl<const SCEV *> &Ops, 3389 const Loop *L, 3390 ScalarEvolution &SE, 3391 unsigned Depth = 0) { 3392 // Arbitrarily cap recursion to protect compile time. 3393 if (Depth >= 3) 3394 return S; 3395 3396 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3397 // Break out add operands. 3398 for (const SCEV *S : Add->operands()) { 3399 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3400 if (Remainder) 3401 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3402 } 3403 return nullptr; 3404 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3405 // Split a non-zero base out of an addrec. 3406 if (AR->getStart()->isZero() || !AR->isAffine()) 3407 return S; 3408 3409 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3410 C, Ops, L, SE, Depth+1); 3411 // Split the non-zero AddRec unless it is part of a nested recurrence that 3412 // does not pertain to this loop. 3413 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3414 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3415 Remainder = nullptr; 3416 } 3417 if (Remainder != AR->getStart()) { 3418 if (!Remainder) 3419 Remainder = SE.getConstant(AR->getType(), 0); 3420 return SE.getAddRecExpr(Remainder, 3421 AR->getStepRecurrence(SE), 3422 AR->getLoop(), 3423 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3424 SCEV::FlagAnyWrap); 3425 } 3426 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3427 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3428 if (Mul->getNumOperands() != 2) 3429 return S; 3430 if (const SCEVConstant *Op0 = 3431 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3432 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3433 const SCEV *Remainder = 3434 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3435 if (Remainder) 3436 Ops.push_back(SE.getMulExpr(C, Remainder)); 3437 return nullptr; 3438 } 3439 } 3440 return S; 3441 } 3442 3443 /// \brief Helper function for LSRInstance::GenerateReassociations. 3444 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3445 const Formula &Base, 3446 unsigned Depth, size_t Idx, 3447 bool IsScaledReg) { 3448 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3449 SmallVector<const SCEV *, 8> AddOps; 3450 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3451 if (Remainder) 3452 AddOps.push_back(Remainder); 3453 3454 if (AddOps.size() == 1) 3455 return; 3456 3457 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3458 JE = AddOps.end(); 3459 J != JE; ++J) { 3460 3461 // Loop-variant "unknown" values are uninteresting; we won't be able to 3462 // do anything meaningful with them. 3463 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3464 continue; 3465 3466 // Don't pull a constant into a register if the constant could be folded 3467 // into an immediate field. 3468 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3469 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3470 continue; 3471 3472 // Collect all operands except *J. 3473 SmallVector<const SCEV *, 8> InnerAddOps( 3474 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3475 InnerAddOps.append(std::next(J), 3476 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3477 3478 // Don't leave just a constant behind in a register if the constant could 3479 // be folded into an immediate field. 3480 if (InnerAddOps.size() == 1 && 3481 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3482 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3483 continue; 3484 3485 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3486 if (InnerSum->isZero()) 3487 continue; 3488 Formula F = Base; 3489 3490 // Add the remaining pieces of the add back into the new formula. 3491 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3492 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3493 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3494 InnerSumSC->getValue()->getZExtValue())) { 3495 F.UnfoldedOffset = 3496 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3497 if (IsScaledReg) 3498 F.ScaledReg = nullptr; 3499 else 3500 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3501 } else if (IsScaledReg) 3502 F.ScaledReg = InnerSum; 3503 else 3504 F.BaseRegs[Idx] = InnerSum; 3505 3506 // Add J as its own register, or an unfolded immediate. 3507 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3508 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3509 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3510 SC->getValue()->getZExtValue())) 3511 F.UnfoldedOffset = 3512 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3513 else 3514 F.BaseRegs.push_back(*J); 3515 // We may have changed the number of register in base regs, adjust the 3516 // formula accordingly. 3517 F.canonicalize(*L); 3518 3519 if (InsertFormula(LU, LUIdx, F)) 3520 // If that formula hadn't been seen before, recurse to find more like 3521 // it. 3522 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3523 } 3524 } 3525 3526 /// Split out subexpressions from adds and the bases of addrecs. 3527 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3528 Formula Base, unsigned Depth) { 3529 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3530 // Arbitrarily cap recursion to protect compile time. 3531 if (Depth >= 3) 3532 return; 3533 3534 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3535 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3536 3537 if (Base.Scale == 1) 3538 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3539 /* Idx */ -1, /* IsScaledReg */ true); 3540 } 3541 3542 /// Generate a formula consisting of all of the loop-dominating registers added 3543 /// into a single register. 3544 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3545 Formula Base) { 3546 // This method is only interesting on a plurality of registers. 3547 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3548 return; 3549 3550 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3551 // processing the formula. 3552 Base.unscale(); 3553 Formula F = Base; 3554 F.BaseRegs.clear(); 3555 SmallVector<const SCEV *, 4> Ops; 3556 for (const SCEV *BaseReg : Base.BaseRegs) { 3557 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3558 !SE.hasComputableLoopEvolution(BaseReg, L)) 3559 Ops.push_back(BaseReg); 3560 else 3561 F.BaseRegs.push_back(BaseReg); 3562 } 3563 if (Ops.size() > 1) { 3564 const SCEV *Sum = SE.getAddExpr(Ops); 3565 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3566 // opportunity to fold something. For now, just ignore such cases 3567 // rather than proceed with zero in a register. 3568 if (!Sum->isZero()) { 3569 F.BaseRegs.push_back(Sum); 3570 F.canonicalize(*L); 3571 (void)InsertFormula(LU, LUIdx, F); 3572 } 3573 } 3574 } 3575 3576 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3577 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3578 const Formula &Base, size_t Idx, 3579 bool IsScaledReg) { 3580 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3581 GlobalValue *GV = ExtractSymbol(G, SE); 3582 if (G->isZero() || !GV) 3583 return; 3584 Formula F = Base; 3585 F.BaseGV = GV; 3586 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3587 return; 3588 if (IsScaledReg) 3589 F.ScaledReg = G; 3590 else 3591 F.BaseRegs[Idx] = G; 3592 (void)InsertFormula(LU, LUIdx, F); 3593 } 3594 3595 /// Generate reuse formulae using symbolic offsets. 3596 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3597 Formula Base) { 3598 // We can't add a symbolic offset if the address already contains one. 3599 if (Base.BaseGV) return; 3600 3601 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3602 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3603 if (Base.Scale == 1) 3604 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3605 /* IsScaledReg */ true); 3606 } 3607 3608 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3609 void LSRInstance::GenerateConstantOffsetsImpl( 3610 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3611 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3612 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3613 for (int64_t Offset : Worklist) { 3614 Formula F = Base; 3615 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3616 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3617 LU.AccessTy, F)) { 3618 // Add the offset to the base register. 3619 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3620 // If it cancelled out, drop the base register, otherwise update it. 3621 if (NewG->isZero()) { 3622 if (IsScaledReg) { 3623 F.Scale = 0; 3624 F.ScaledReg = nullptr; 3625 } else 3626 F.deleteBaseReg(F.BaseRegs[Idx]); 3627 F.canonicalize(*L); 3628 } else if (IsScaledReg) 3629 F.ScaledReg = NewG; 3630 else 3631 F.BaseRegs[Idx] = NewG; 3632 3633 (void)InsertFormula(LU, LUIdx, F); 3634 } 3635 } 3636 3637 int64_t Imm = ExtractImmediate(G, SE); 3638 if (G->isZero() || Imm == 0) 3639 return; 3640 Formula F = Base; 3641 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3642 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3643 return; 3644 if (IsScaledReg) 3645 F.ScaledReg = G; 3646 else 3647 F.BaseRegs[Idx] = G; 3648 (void)InsertFormula(LU, LUIdx, F); 3649 } 3650 3651 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3652 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3653 Formula Base) { 3654 // TODO: For now, just add the min and max offset, because it usually isn't 3655 // worthwhile looking at everything inbetween. 3656 SmallVector<int64_t, 2> Worklist; 3657 Worklist.push_back(LU.MinOffset); 3658 if (LU.MaxOffset != LU.MinOffset) 3659 Worklist.push_back(LU.MaxOffset); 3660 3661 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3662 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3663 if (Base.Scale == 1) 3664 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3665 /* IsScaledReg */ true); 3666 } 3667 3668 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3669 /// == y -> x*c == y*c. 3670 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3671 Formula Base) { 3672 if (LU.Kind != LSRUse::ICmpZero) return; 3673 3674 // Determine the integer type for the base formula. 3675 Type *IntTy = Base.getType(); 3676 if (!IntTy) return; 3677 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3678 3679 // Don't do this if there is more than one offset. 3680 if (LU.MinOffset != LU.MaxOffset) return; 3681 3682 // Check if transformation is valid. It is illegal to multiply pointer. 3683 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3684 return; 3685 for (const SCEV *BaseReg : Base.BaseRegs) 3686 if (BaseReg->getType()->isPointerTy()) 3687 return; 3688 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3689 3690 // Check each interesting stride. 3691 for (int64_t Factor : Factors) { 3692 // Check that the multiplication doesn't overflow. 3693 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3694 continue; 3695 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3696 if (NewBaseOffset / Factor != Base.BaseOffset) 3697 continue; 3698 // If the offset will be truncated at this use, check that it is in bounds. 3699 if (!IntTy->isPointerTy() && 3700 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3701 continue; 3702 3703 // Check that multiplying with the use offset doesn't overflow. 3704 int64_t Offset = LU.MinOffset; 3705 if (Offset == INT64_MIN && Factor == -1) 3706 continue; 3707 Offset = (uint64_t)Offset * Factor; 3708 if (Offset / Factor != LU.MinOffset) 3709 continue; 3710 // If the offset will be truncated at this use, check that it is in bounds. 3711 if (!IntTy->isPointerTy() && 3712 !ConstantInt::isValueValidForType(IntTy, Offset)) 3713 continue; 3714 3715 Formula F = Base; 3716 F.BaseOffset = NewBaseOffset; 3717 3718 // Check that this scale is legal. 3719 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3720 continue; 3721 3722 // Compensate for the use having MinOffset built into it. 3723 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3724 3725 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3726 3727 // Check that multiplying with each base register doesn't overflow. 3728 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3729 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3730 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3731 goto next; 3732 } 3733 3734 // Check that multiplying with the scaled register doesn't overflow. 3735 if (F.ScaledReg) { 3736 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3737 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3738 continue; 3739 } 3740 3741 // Check that multiplying with the unfolded offset doesn't overflow. 3742 if (F.UnfoldedOffset != 0) { 3743 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3744 continue; 3745 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3746 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3747 continue; 3748 // If the offset will be truncated, check that it is in bounds. 3749 if (!IntTy->isPointerTy() && 3750 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3751 continue; 3752 } 3753 3754 // If we make it here and it's legal, add it. 3755 (void)InsertFormula(LU, LUIdx, F); 3756 next:; 3757 } 3758 } 3759 3760 /// Generate stride factor reuse formulae by making use of scaled-offset address 3761 /// modes, for example. 3762 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3763 // Determine the integer type for the base formula. 3764 Type *IntTy = Base.getType(); 3765 if (!IntTy) return; 3766 3767 // If this Formula already has a scaled register, we can't add another one. 3768 // Try to unscale the formula to generate a better scale. 3769 if (Base.Scale != 0 && !Base.unscale()) 3770 return; 3771 3772 assert(Base.Scale == 0 && "unscale did not did its job!"); 3773 3774 // Check each interesting stride. 3775 for (int64_t Factor : Factors) { 3776 Base.Scale = Factor; 3777 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3778 // Check whether this scale is going to be legal. 3779 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3780 Base)) { 3781 // As a special-case, handle special out-of-loop Basic users specially. 3782 // TODO: Reconsider this special case. 3783 if (LU.Kind == LSRUse::Basic && 3784 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3785 LU.AccessTy, Base) && 3786 LU.AllFixupsOutsideLoop) 3787 LU.Kind = LSRUse::Special; 3788 else 3789 continue; 3790 } 3791 // For an ICmpZero, negating a solitary base register won't lead to 3792 // new solutions. 3793 if (LU.Kind == LSRUse::ICmpZero && 3794 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3795 continue; 3796 // For each addrec base reg, if its loop is current loop, apply the scale. 3797 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3798 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3799 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3800 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3801 if (FactorS->isZero()) 3802 continue; 3803 // Divide out the factor, ignoring high bits, since we'll be 3804 // scaling the value back up in the end. 3805 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3806 // TODO: This could be optimized to avoid all the copying. 3807 Formula F = Base; 3808 F.ScaledReg = Quotient; 3809 F.deleteBaseReg(F.BaseRegs[i]); 3810 // The canonical representation of 1*reg is reg, which is already in 3811 // Base. In that case, do not try to insert the formula, it will be 3812 // rejected anyway. 3813 if (F.Scale == 1 && (F.BaseRegs.empty() || 3814 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3815 continue; 3816 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3817 // non canonical Formula with ScaledReg's loop not being L. 3818 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3819 F.canonicalize(*L); 3820 (void)InsertFormula(LU, LUIdx, F); 3821 } 3822 } 3823 } 3824 } 3825 } 3826 3827 /// Generate reuse formulae from different IV types. 3828 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3829 // Don't bother truncating symbolic values. 3830 if (Base.BaseGV) return; 3831 3832 // Determine the integer type for the base formula. 3833 Type *DstTy = Base.getType(); 3834 if (!DstTy) return; 3835 DstTy = SE.getEffectiveSCEVType(DstTy); 3836 3837 for (Type *SrcTy : Types) { 3838 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3839 Formula F = Base; 3840 3841 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3842 for (const SCEV *&BaseReg : F.BaseRegs) 3843 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3844 3845 // TODO: This assumes we've done basic processing on all uses and 3846 // have an idea what the register usage is. 3847 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3848 continue; 3849 3850 F.canonicalize(*L); 3851 (void)InsertFormula(LU, LUIdx, F); 3852 } 3853 } 3854 } 3855 3856 namespace { 3857 3858 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3859 /// modifications so that the search phase doesn't have to worry about the data 3860 /// structures moving underneath it. 3861 struct WorkItem { 3862 size_t LUIdx; 3863 int64_t Imm; 3864 const SCEV *OrigReg; 3865 3866 WorkItem(size_t LI, int64_t I, const SCEV *R) 3867 : LUIdx(LI), Imm(I), OrigReg(R) {} 3868 3869 void print(raw_ostream &OS) const; 3870 void dump() const; 3871 }; 3872 3873 } // end anonymous namespace 3874 3875 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3876 void WorkItem::print(raw_ostream &OS) const { 3877 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3878 << " , add offset " << Imm; 3879 } 3880 3881 LLVM_DUMP_METHOD void WorkItem::dump() const { 3882 print(errs()); errs() << '\n'; 3883 } 3884 #endif 3885 3886 /// Look for registers which are a constant distance apart and try to form reuse 3887 /// opportunities between them. 3888 void LSRInstance::GenerateCrossUseConstantOffsets() { 3889 // Group the registers by their value without any added constant offset. 3890 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3891 DenseMap<const SCEV *, ImmMapTy> Map; 3892 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3893 SmallVector<const SCEV *, 8> Sequence; 3894 for (const SCEV *Use : RegUses) { 3895 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3896 int64_t Imm = ExtractImmediate(Reg, SE); 3897 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3898 if (Pair.second) 3899 Sequence.push_back(Reg); 3900 Pair.first->second.insert(std::make_pair(Imm, Use)); 3901 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3902 } 3903 3904 // Now examine each set of registers with the same base value. Build up 3905 // a list of work to do and do the work in a separate step so that we're 3906 // not adding formulae and register counts while we're searching. 3907 SmallVector<WorkItem, 32> WorkItems; 3908 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3909 for (const SCEV *Reg : Sequence) { 3910 const ImmMapTy &Imms = Map.find(Reg)->second; 3911 3912 // It's not worthwhile looking for reuse if there's only one offset. 3913 if (Imms.size() == 1) 3914 continue; 3915 3916 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3917 for (const auto &Entry : Imms) 3918 dbgs() << ' ' << Entry.first; 3919 dbgs() << '\n'); 3920 3921 // Examine each offset. 3922 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3923 J != JE; ++J) { 3924 const SCEV *OrigReg = J->second; 3925 3926 int64_t JImm = J->first; 3927 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3928 3929 if (!isa<SCEVConstant>(OrigReg) && 3930 UsedByIndicesMap[Reg].count() == 1) { 3931 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3932 continue; 3933 } 3934 3935 // Conservatively examine offsets between this orig reg a few selected 3936 // other orig regs. 3937 ImmMapTy::const_iterator OtherImms[] = { 3938 Imms.begin(), std::prev(Imms.end()), 3939 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3940 2) 3941 }; 3942 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3943 ImmMapTy::const_iterator M = OtherImms[i]; 3944 if (M == J || M == JE) continue; 3945 3946 // Compute the difference between the two. 3947 int64_t Imm = (uint64_t)JImm - M->first; 3948 for (unsigned LUIdx : UsedByIndices.set_bits()) 3949 // Make a memo of this use, offset, and register tuple. 3950 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3951 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3952 } 3953 } 3954 } 3955 3956 Map.clear(); 3957 Sequence.clear(); 3958 UsedByIndicesMap.clear(); 3959 UniqueItems.clear(); 3960 3961 // Now iterate through the worklist and add new formulae. 3962 for (const WorkItem &WI : WorkItems) { 3963 size_t LUIdx = WI.LUIdx; 3964 LSRUse &LU = Uses[LUIdx]; 3965 int64_t Imm = WI.Imm; 3966 const SCEV *OrigReg = WI.OrigReg; 3967 3968 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3969 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3970 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3971 3972 // TODO: Use a more targeted data structure. 3973 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3974 Formula F = LU.Formulae[L]; 3975 // FIXME: The code for the scaled and unscaled registers looks 3976 // very similar but slightly different. Investigate if they 3977 // could be merged. That way, we would not have to unscale the 3978 // Formula. 3979 F.unscale(); 3980 // Use the immediate in the scaled register. 3981 if (F.ScaledReg == OrigReg) { 3982 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3983 // Don't create 50 + reg(-50). 3984 if (F.referencesReg(SE.getSCEV( 3985 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3986 continue; 3987 Formula NewF = F; 3988 NewF.BaseOffset = Offset; 3989 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3990 NewF)) 3991 continue; 3992 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3993 3994 // If the new scale is a constant in a register, and adding the constant 3995 // value to the immediate would produce a value closer to zero than the 3996 // immediate itself, then the formula isn't worthwhile. 3997 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3998 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3999 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4000 .ule(std::abs(NewF.BaseOffset))) 4001 continue; 4002 4003 // OK, looks good. 4004 NewF.canonicalize(*this->L); 4005 (void)InsertFormula(LU, LUIdx, NewF); 4006 } else { 4007 // Use the immediate in a base register. 4008 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4009 const SCEV *BaseReg = F.BaseRegs[N]; 4010 if (BaseReg != OrigReg) 4011 continue; 4012 Formula NewF = F; 4013 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4014 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4015 LU.Kind, LU.AccessTy, NewF)) { 4016 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4017 continue; 4018 NewF = F; 4019 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4020 } 4021 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4022 4023 // If the new formula has a constant in a register, and adding the 4024 // constant value to the immediate would produce a value closer to 4025 // zero than the immediate itself, then the formula isn't worthwhile. 4026 for (const SCEV *NewReg : NewF.BaseRegs) 4027 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4028 if ((C->getAPInt() + NewF.BaseOffset) 4029 .abs() 4030 .slt(std::abs(NewF.BaseOffset)) && 4031 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4032 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4033 goto skip_formula; 4034 4035 // Ok, looks good. 4036 NewF.canonicalize(*this->L); 4037 (void)InsertFormula(LU, LUIdx, NewF); 4038 break; 4039 skip_formula:; 4040 } 4041 } 4042 } 4043 } 4044 } 4045 4046 /// Generate formulae for each use. 4047 void 4048 LSRInstance::GenerateAllReuseFormulae() { 4049 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4050 // queries are more precise. 4051 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4052 LSRUse &LU = Uses[LUIdx]; 4053 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4054 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4055 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4056 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4057 } 4058 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4059 LSRUse &LU = Uses[LUIdx]; 4060 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4061 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4062 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4063 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4064 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4065 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4066 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4067 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4068 } 4069 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4070 LSRUse &LU = Uses[LUIdx]; 4071 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4072 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4073 } 4074 4075 GenerateCrossUseConstantOffsets(); 4076 4077 DEBUG(dbgs() << "\n" 4078 "After generating reuse formulae:\n"; 4079 print_uses(dbgs())); 4080 } 4081 4082 /// If there are multiple formulae with the same set of registers used 4083 /// by other uses, pick the best one and delete the others. 4084 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4085 DenseSet<const SCEV *> VisitedRegs; 4086 SmallPtrSet<const SCEV *, 16> Regs; 4087 SmallPtrSet<const SCEV *, 16> LoserRegs; 4088 #ifndef NDEBUG 4089 bool ChangedFormulae = false; 4090 #endif 4091 4092 // Collect the best formula for each unique set of shared registers. This 4093 // is reset for each use. 4094 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 4095 BestFormulaeTy; 4096 BestFormulaeTy BestFormulae; 4097 4098 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4099 LSRUse &LU = Uses[LUIdx]; 4100 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4101 4102 bool Any = false; 4103 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4104 FIdx != NumForms; ++FIdx) { 4105 Formula &F = LU.Formulae[FIdx]; 4106 4107 // Some formulas are instant losers. For example, they may depend on 4108 // nonexistent AddRecs from other loops. These need to be filtered 4109 // immediately, otherwise heuristics could choose them over others leading 4110 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4111 // avoids the need to recompute this information across formulae using the 4112 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4113 // the corresponding bad register from the Regs set. 4114 Cost CostF; 4115 Regs.clear(); 4116 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4117 if (CostF.isLoser()) { 4118 // During initial formula generation, undesirable formulae are generated 4119 // by uses within other loops that have some non-trivial address mode or 4120 // use the postinc form of the IV. LSR needs to provide these formulae 4121 // as the basis of rediscovering the desired formula that uses an AddRec 4122 // corresponding to the existing phi. Once all formulae have been 4123 // generated, these initial losers may be pruned. 4124 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4125 dbgs() << "\n"); 4126 } 4127 else { 4128 SmallVector<const SCEV *, 4> Key; 4129 for (const SCEV *Reg : F.BaseRegs) { 4130 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4131 Key.push_back(Reg); 4132 } 4133 if (F.ScaledReg && 4134 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4135 Key.push_back(F.ScaledReg); 4136 // Unstable sort by host order ok, because this is only used for 4137 // uniquifying. 4138 std::sort(Key.begin(), Key.end()); 4139 4140 std::pair<BestFormulaeTy::const_iterator, bool> P = 4141 BestFormulae.insert(std::make_pair(Key, FIdx)); 4142 if (P.second) 4143 continue; 4144 4145 Formula &Best = LU.Formulae[P.first->second]; 4146 4147 Cost CostBest; 4148 Regs.clear(); 4149 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4150 if (CostF.isLess(CostBest, TTI)) 4151 std::swap(F, Best); 4152 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4153 dbgs() << "\n" 4154 " in favor of formula "; Best.print(dbgs()); 4155 dbgs() << '\n'); 4156 } 4157 #ifndef NDEBUG 4158 ChangedFormulae = true; 4159 #endif 4160 LU.DeleteFormula(F); 4161 --FIdx; 4162 --NumForms; 4163 Any = true; 4164 } 4165 4166 // Now that we've filtered out some formulae, recompute the Regs set. 4167 if (Any) 4168 LU.RecomputeRegs(LUIdx, RegUses); 4169 4170 // Reset this to prepare for the next use. 4171 BestFormulae.clear(); 4172 } 4173 4174 DEBUG(if (ChangedFormulae) { 4175 dbgs() << "\n" 4176 "After filtering out undesirable candidates:\n"; 4177 print_uses(dbgs()); 4178 }); 4179 } 4180 4181 // This is a rough guess that seems to work fairly well. 4182 static const size_t ComplexityLimit = UINT16_MAX; 4183 4184 /// Estimate the worst-case number of solutions the solver might have to 4185 /// consider. It almost never considers this many solutions because it prune the 4186 /// search space, but the pruning isn't always sufficient. 4187 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4188 size_t Power = 1; 4189 for (const LSRUse &LU : Uses) { 4190 size_t FSize = LU.Formulae.size(); 4191 if (FSize >= ComplexityLimit) { 4192 Power = ComplexityLimit; 4193 break; 4194 } 4195 Power *= FSize; 4196 if (Power >= ComplexityLimit) 4197 break; 4198 } 4199 return Power; 4200 } 4201 4202 /// When one formula uses a superset of the registers of another formula, it 4203 /// won't help reduce register pressure (though it may not necessarily hurt 4204 /// register pressure); remove it to simplify the system. 4205 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4206 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4207 DEBUG(dbgs() << "The search space is too complex.\n"); 4208 4209 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4210 "which use a superset of registers used by other " 4211 "formulae.\n"); 4212 4213 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4214 LSRUse &LU = Uses[LUIdx]; 4215 bool Any = false; 4216 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4217 Formula &F = LU.Formulae[i]; 4218 // Look for a formula with a constant or GV in a register. If the use 4219 // also has a formula with that same value in an immediate field, 4220 // delete the one that uses a register. 4221 for (SmallVectorImpl<const SCEV *>::const_iterator 4222 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4223 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4224 Formula NewF = F; 4225 NewF.BaseOffset += C->getValue()->getSExtValue(); 4226 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4227 (I - F.BaseRegs.begin())); 4228 if (LU.HasFormulaWithSameRegs(NewF)) { 4229 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4230 LU.DeleteFormula(F); 4231 --i; 4232 --e; 4233 Any = true; 4234 break; 4235 } 4236 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4237 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4238 if (!F.BaseGV) { 4239 Formula NewF = F; 4240 NewF.BaseGV = GV; 4241 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4242 (I - F.BaseRegs.begin())); 4243 if (LU.HasFormulaWithSameRegs(NewF)) { 4244 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4245 dbgs() << '\n'); 4246 LU.DeleteFormula(F); 4247 --i; 4248 --e; 4249 Any = true; 4250 break; 4251 } 4252 } 4253 } 4254 } 4255 } 4256 if (Any) 4257 LU.RecomputeRegs(LUIdx, RegUses); 4258 } 4259 4260 DEBUG(dbgs() << "After pre-selection:\n"; 4261 print_uses(dbgs())); 4262 } 4263 } 4264 4265 /// When there are many registers for expressions like A, A+1, A+2, etc., 4266 /// allocate a single register for them. 4267 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4268 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4269 return; 4270 4271 DEBUG(dbgs() << "The search space is too complex.\n" 4272 "Narrowing the search space by assuming that uses separated " 4273 "by a constant offset will use the same registers.\n"); 4274 4275 // This is especially useful for unrolled loops. 4276 4277 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4278 LSRUse &LU = Uses[LUIdx]; 4279 for (const Formula &F : LU.Formulae) { 4280 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4281 continue; 4282 4283 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4284 if (!LUThatHas) 4285 continue; 4286 4287 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4288 LU.Kind, LU.AccessTy)) 4289 continue; 4290 4291 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4292 4293 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4294 4295 // Transfer the fixups of LU to LUThatHas. 4296 for (LSRFixup &Fixup : LU.Fixups) { 4297 Fixup.Offset += F.BaseOffset; 4298 LUThatHas->pushFixup(Fixup); 4299 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4300 } 4301 4302 // Delete formulae from the new use which are no longer legal. 4303 bool Any = false; 4304 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4305 Formula &F = LUThatHas->Formulae[i]; 4306 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4307 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4308 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4309 dbgs() << '\n'); 4310 LUThatHas->DeleteFormula(F); 4311 --i; 4312 --e; 4313 Any = true; 4314 } 4315 } 4316 4317 if (Any) 4318 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4319 4320 // Delete the old use. 4321 DeleteUse(LU, LUIdx); 4322 --LUIdx; 4323 --NumUses; 4324 break; 4325 } 4326 } 4327 4328 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4329 } 4330 4331 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4332 /// we've done more filtering, as it may be able to find more formulae to 4333 /// eliminate. 4334 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4335 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4336 DEBUG(dbgs() << "The search space is too complex.\n"); 4337 4338 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4339 "undesirable dedicated registers.\n"); 4340 4341 FilterOutUndesirableDedicatedRegisters(); 4342 4343 DEBUG(dbgs() << "After pre-selection:\n"; 4344 print_uses(dbgs())); 4345 } 4346 } 4347 4348 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4349 /// Pick the best one and delete the others. 4350 /// This narrowing heuristic is to keep as many formulae with different 4351 /// Scale and ScaledReg pair as possible while narrowing the search space. 4352 /// The benefit is that it is more likely to find out a better solution 4353 /// from a formulae set with more Scale and ScaledReg variations than 4354 /// a formulae set with the same Scale and ScaledReg. The picking winner 4355 /// reg heurstic will often keep the formulae with the same Scale and 4356 /// ScaledReg and filter others, and we want to avoid that if possible. 4357 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4358 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4359 return; 4360 4361 DEBUG(dbgs() << "The search space is too complex.\n" 4362 "Narrowing the search space by choosing the best Formula " 4363 "from the Formulae with the same Scale and ScaledReg.\n"); 4364 4365 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4366 typedef DenseMap<std::pair<const SCEV *, int64_t>, size_t> BestFormulaeTy; 4367 BestFormulaeTy BestFormulae; 4368 #ifndef NDEBUG 4369 bool ChangedFormulae = false; 4370 #endif 4371 DenseSet<const SCEV *> VisitedRegs; 4372 SmallPtrSet<const SCEV *, 16> Regs; 4373 4374 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4375 LSRUse &LU = Uses[LUIdx]; 4376 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4377 4378 // Return true if Formula FA is better than Formula FB. 4379 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4380 // First we will try to choose the Formula with fewer new registers. 4381 // For a register used by current Formula, the more the register is 4382 // shared among LSRUses, the less we increase the register number 4383 // counter of the formula. 4384 size_t FARegNum = 0; 4385 for (const SCEV *Reg : FA.BaseRegs) { 4386 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4387 FARegNum += (NumUses - UsedByIndices.count() + 1); 4388 } 4389 size_t FBRegNum = 0; 4390 for (const SCEV *Reg : FB.BaseRegs) { 4391 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4392 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4393 } 4394 if (FARegNum != FBRegNum) 4395 return FARegNum < FBRegNum; 4396 4397 // If the new register numbers are the same, choose the Formula with 4398 // less Cost. 4399 Cost CostFA, CostFB; 4400 Regs.clear(); 4401 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4402 Regs.clear(); 4403 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4404 return CostFA.isLess(CostFB, TTI); 4405 }; 4406 4407 bool Any = false; 4408 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4409 ++FIdx) { 4410 Formula &F = LU.Formulae[FIdx]; 4411 if (!F.ScaledReg) 4412 continue; 4413 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4414 if (P.second) 4415 continue; 4416 4417 Formula &Best = LU.Formulae[P.first->second]; 4418 if (IsBetterThan(F, Best)) 4419 std::swap(F, Best); 4420 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4421 dbgs() << "\n" 4422 " in favor of formula "; 4423 Best.print(dbgs()); dbgs() << '\n'); 4424 #ifndef NDEBUG 4425 ChangedFormulae = true; 4426 #endif 4427 LU.DeleteFormula(F); 4428 --FIdx; 4429 --NumForms; 4430 Any = true; 4431 } 4432 if (Any) 4433 LU.RecomputeRegs(LUIdx, RegUses); 4434 4435 // Reset this to prepare for the next use. 4436 BestFormulae.clear(); 4437 } 4438 4439 DEBUG(if (ChangedFormulae) { 4440 dbgs() << "\n" 4441 "After filtering out undesirable candidates:\n"; 4442 print_uses(dbgs()); 4443 }); 4444 } 4445 4446 /// The function delete formulas with high registers number expectation. 4447 /// Assuming we don't know the value of each formula (already delete 4448 /// all inefficient), generate probability of not selecting for each 4449 /// register. 4450 /// For example, 4451 /// Use1: 4452 /// reg(a) + reg({0,+,1}) 4453 /// reg(a) + reg({-1,+,1}) + 1 4454 /// reg({a,+,1}) 4455 /// Use2: 4456 /// reg(b) + reg({0,+,1}) 4457 /// reg(b) + reg({-1,+,1}) + 1 4458 /// reg({b,+,1}) 4459 /// Use3: 4460 /// reg(c) + reg(b) + reg({0,+,1}) 4461 /// reg(c) + reg({b,+,1}) 4462 /// 4463 /// Probability of not selecting 4464 /// Use1 Use2 Use3 4465 /// reg(a) (1/3) * 1 * 1 4466 /// reg(b) 1 * (1/3) * (1/2) 4467 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4468 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4469 /// reg({a,+,1}) (2/3) * 1 * 1 4470 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4471 /// reg(c) 1 * 1 * 0 4472 /// 4473 /// Now count registers number mathematical expectation for each formula: 4474 /// Note that for each use we exclude probability if not selecting for the use. 4475 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4476 /// probabilty 1/3 of not selecting for Use1). 4477 /// Use1: 4478 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4479 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4480 /// reg({a,+,1}) 1 4481 /// Use2: 4482 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4483 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4484 /// reg({b,+,1}) 2/3 4485 /// Use3: 4486 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4487 /// reg(c) + reg({b,+,1}) 1 + 2/3 4488 4489 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4490 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4491 return; 4492 // Ok, we have too many of formulae on our hands to conveniently handle. 4493 // Use a rough heuristic to thin out the list. 4494 4495 // Set of Regs wich will be 100% used in final solution. 4496 // Used in each formula of a solution (in example above this is reg(c)). 4497 // We can skip them in calculations. 4498 SmallPtrSet<const SCEV *, 4> UniqRegs; 4499 DEBUG(dbgs() << "The search space is too complex.\n"); 4500 4501 // Map each register to probability of not selecting 4502 DenseMap <const SCEV *, float> RegNumMap; 4503 for (const SCEV *Reg : RegUses) { 4504 if (UniqRegs.count(Reg)) 4505 continue; 4506 float PNotSel = 1; 4507 for (const LSRUse &LU : Uses) { 4508 if (!LU.Regs.count(Reg)) 4509 continue; 4510 float P = LU.getNotSelectedProbability(Reg); 4511 if (P != 0.0) 4512 PNotSel *= P; 4513 else 4514 UniqRegs.insert(Reg); 4515 } 4516 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4517 } 4518 4519 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4520 4521 // Delete formulas where registers number expectation is high. 4522 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4523 LSRUse &LU = Uses[LUIdx]; 4524 // If nothing to delete - continue. 4525 if (LU.Formulae.size() < 2) 4526 continue; 4527 // This is temporary solution to test performance. Float should be 4528 // replaced with round independent type (based on integers) to avoid 4529 // different results for different target builds. 4530 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4531 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4532 size_t MinIdx = 0; 4533 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4534 Formula &F = LU.Formulae[i]; 4535 float FRegNum = 0; 4536 float FARegNum = 0; 4537 for (const SCEV *BaseReg : F.BaseRegs) { 4538 if (UniqRegs.count(BaseReg)) 4539 continue; 4540 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4541 if (isa<SCEVAddRecExpr>(BaseReg)) 4542 FARegNum += 4543 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4544 } 4545 if (const SCEV *ScaledReg = F.ScaledReg) { 4546 if (!UniqRegs.count(ScaledReg)) { 4547 FRegNum += 4548 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4549 if (isa<SCEVAddRecExpr>(ScaledReg)) 4550 FARegNum += 4551 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4552 } 4553 } 4554 if (FMinRegNum > FRegNum || 4555 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4556 FMinRegNum = FRegNum; 4557 FMinARegNum = FARegNum; 4558 MinIdx = i; 4559 } 4560 } 4561 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4562 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4563 if (MinIdx != 0) 4564 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4565 while (LU.Formulae.size() != 1) { 4566 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4567 dbgs() << '\n'); 4568 LU.Formulae.pop_back(); 4569 } 4570 LU.RecomputeRegs(LUIdx, RegUses); 4571 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4572 Formula &F = LU.Formulae[0]; 4573 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4574 // When we choose the formula, the regs become unique. 4575 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4576 if (F.ScaledReg) 4577 UniqRegs.insert(F.ScaledReg); 4578 } 4579 DEBUG(dbgs() << "After pre-selection:\n"; 4580 print_uses(dbgs())); 4581 } 4582 4583 4584 /// Pick a register which seems likely to be profitable, and then in any use 4585 /// which has any reference to that register, delete all formulae which do not 4586 /// reference that register. 4587 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4588 // With all other options exhausted, loop until the system is simple 4589 // enough to handle. 4590 SmallPtrSet<const SCEV *, 4> Taken; 4591 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4592 // Ok, we have too many of formulae on our hands to conveniently handle. 4593 // Use a rough heuristic to thin out the list. 4594 DEBUG(dbgs() << "The search space is too complex.\n"); 4595 4596 // Pick the register which is used by the most LSRUses, which is likely 4597 // to be a good reuse register candidate. 4598 const SCEV *Best = nullptr; 4599 unsigned BestNum = 0; 4600 for (const SCEV *Reg : RegUses) { 4601 if (Taken.count(Reg)) 4602 continue; 4603 if (!Best) { 4604 Best = Reg; 4605 BestNum = RegUses.getUsedByIndices(Reg).count(); 4606 } else { 4607 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4608 if (Count > BestNum) { 4609 Best = Reg; 4610 BestNum = Count; 4611 } 4612 } 4613 } 4614 4615 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4616 << " will yield profitable reuse.\n"); 4617 Taken.insert(Best); 4618 4619 // In any use with formulae which references this register, delete formulae 4620 // which don't reference it. 4621 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4622 LSRUse &LU = Uses[LUIdx]; 4623 if (!LU.Regs.count(Best)) continue; 4624 4625 bool Any = false; 4626 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4627 Formula &F = LU.Formulae[i]; 4628 if (!F.referencesReg(Best)) { 4629 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4630 LU.DeleteFormula(F); 4631 --e; 4632 --i; 4633 Any = true; 4634 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4635 continue; 4636 } 4637 } 4638 4639 if (Any) 4640 LU.RecomputeRegs(LUIdx, RegUses); 4641 } 4642 4643 DEBUG(dbgs() << "After pre-selection:\n"; 4644 print_uses(dbgs())); 4645 } 4646 } 4647 4648 /// If there are an extraordinary number of formulae to choose from, use some 4649 /// rough heuristics to prune down the number of formulae. This keeps the main 4650 /// solver from taking an extraordinary amount of time in some worst-case 4651 /// scenarios. 4652 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4653 NarrowSearchSpaceByDetectingSupersets(); 4654 NarrowSearchSpaceByCollapsingUnrolledCode(); 4655 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4656 if (FilterSameScaledReg) 4657 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4658 if (LSRExpNarrow) 4659 NarrowSearchSpaceByDeletingCostlyFormulas(); 4660 else 4661 NarrowSearchSpaceByPickingWinnerRegs(); 4662 } 4663 4664 /// This is the recursive solver. 4665 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4666 Cost &SolutionCost, 4667 SmallVectorImpl<const Formula *> &Workspace, 4668 const Cost &CurCost, 4669 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4670 DenseSet<const SCEV *> &VisitedRegs) const { 4671 // Some ideas: 4672 // - prune more: 4673 // - use more aggressive filtering 4674 // - sort the formula so that the most profitable solutions are found first 4675 // - sort the uses too 4676 // - search faster: 4677 // - don't compute a cost, and then compare. compare while computing a cost 4678 // and bail early. 4679 // - track register sets with SmallBitVector 4680 4681 const LSRUse &LU = Uses[Workspace.size()]; 4682 4683 // If this use references any register that's already a part of the 4684 // in-progress solution, consider it a requirement that a formula must 4685 // reference that register in order to be considered. This prunes out 4686 // unprofitable searching. 4687 SmallSetVector<const SCEV *, 4> ReqRegs; 4688 for (const SCEV *S : CurRegs) 4689 if (LU.Regs.count(S)) 4690 ReqRegs.insert(S); 4691 4692 SmallPtrSet<const SCEV *, 16> NewRegs; 4693 Cost NewCost; 4694 for (const Formula &F : LU.Formulae) { 4695 // Ignore formulae which may not be ideal in terms of register reuse of 4696 // ReqRegs. The formula should use all required registers before 4697 // introducing new ones. 4698 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4699 for (const SCEV *Reg : ReqRegs) { 4700 if ((F.ScaledReg && F.ScaledReg == Reg) || 4701 is_contained(F.BaseRegs, Reg)) { 4702 --NumReqRegsToFind; 4703 if (NumReqRegsToFind == 0) 4704 break; 4705 } 4706 } 4707 if (NumReqRegsToFind != 0) { 4708 // If none of the formulae satisfied the required registers, then we could 4709 // clear ReqRegs and try again. Currently, we simply give up in this case. 4710 continue; 4711 } 4712 4713 // Evaluate the cost of the current formula. If it's already worse than 4714 // the current best, prune the search at that point. 4715 NewCost = CurCost; 4716 NewRegs = CurRegs; 4717 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4718 if (NewCost.isLess(SolutionCost, TTI)) { 4719 Workspace.push_back(&F); 4720 if (Workspace.size() != Uses.size()) { 4721 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4722 NewRegs, VisitedRegs); 4723 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4724 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4725 } else { 4726 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4727 dbgs() << ".\n Regs:"; 4728 for (const SCEV *S : NewRegs) 4729 dbgs() << ' ' << *S; 4730 dbgs() << '\n'); 4731 4732 SolutionCost = NewCost; 4733 Solution = Workspace; 4734 } 4735 Workspace.pop_back(); 4736 } 4737 } 4738 } 4739 4740 /// Choose one formula from each use. Return the results in the given Solution 4741 /// vector. 4742 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4743 SmallVector<const Formula *, 8> Workspace; 4744 Cost SolutionCost; 4745 SolutionCost.Lose(); 4746 Cost CurCost; 4747 SmallPtrSet<const SCEV *, 16> CurRegs; 4748 DenseSet<const SCEV *> VisitedRegs; 4749 Workspace.reserve(Uses.size()); 4750 4751 // SolveRecurse does all the work. 4752 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4753 CurRegs, VisitedRegs); 4754 if (Solution.empty()) { 4755 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4756 return; 4757 } 4758 4759 // Ok, we've now made all our decisions. 4760 DEBUG(dbgs() << "\n" 4761 "The chosen solution requires "; SolutionCost.print(dbgs()); 4762 dbgs() << ":\n"; 4763 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4764 dbgs() << " "; 4765 Uses[i].print(dbgs()); 4766 dbgs() << "\n" 4767 " "; 4768 Solution[i]->print(dbgs()); 4769 dbgs() << '\n'; 4770 }); 4771 4772 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4773 } 4774 4775 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4776 /// we can go while still being dominated by the input positions. This helps 4777 /// canonicalize the insert position, which encourages sharing. 4778 BasicBlock::iterator 4779 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4780 const SmallVectorImpl<Instruction *> &Inputs) 4781 const { 4782 Instruction *Tentative = &*IP; 4783 while (true) { 4784 bool AllDominate = true; 4785 Instruction *BetterPos = nullptr; 4786 // Don't bother attempting to insert before a catchswitch, their basic block 4787 // cannot have other non-PHI instructions. 4788 if (isa<CatchSwitchInst>(Tentative)) 4789 return IP; 4790 4791 for (Instruction *Inst : Inputs) { 4792 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4793 AllDominate = false; 4794 break; 4795 } 4796 // Attempt to find an insert position in the middle of the block, 4797 // instead of at the end, so that it can be used for other expansions. 4798 if (Tentative->getParent() == Inst->getParent() && 4799 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4800 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4801 } 4802 if (!AllDominate) 4803 break; 4804 if (BetterPos) 4805 IP = BetterPos->getIterator(); 4806 else 4807 IP = Tentative->getIterator(); 4808 4809 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4810 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4811 4812 BasicBlock *IDom; 4813 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4814 if (!Rung) return IP; 4815 Rung = Rung->getIDom(); 4816 if (!Rung) return IP; 4817 IDom = Rung->getBlock(); 4818 4819 // Don't climb into a loop though. 4820 const Loop *IDomLoop = LI.getLoopFor(IDom); 4821 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4822 if (IDomDepth <= IPLoopDepth && 4823 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4824 break; 4825 } 4826 4827 Tentative = IDom->getTerminator(); 4828 } 4829 4830 return IP; 4831 } 4832 4833 /// Determine an input position which will be dominated by the operands and 4834 /// which will dominate the result. 4835 BasicBlock::iterator 4836 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4837 const LSRFixup &LF, 4838 const LSRUse &LU, 4839 SCEVExpander &Rewriter) const { 4840 // Collect some instructions which must be dominated by the 4841 // expanding replacement. These must be dominated by any operands that 4842 // will be required in the expansion. 4843 SmallVector<Instruction *, 4> Inputs; 4844 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4845 Inputs.push_back(I); 4846 if (LU.Kind == LSRUse::ICmpZero) 4847 if (Instruction *I = 4848 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4849 Inputs.push_back(I); 4850 if (LF.PostIncLoops.count(L)) { 4851 if (LF.isUseFullyOutsideLoop(L)) 4852 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4853 else 4854 Inputs.push_back(IVIncInsertPos); 4855 } 4856 // The expansion must also be dominated by the increment positions of any 4857 // loops it for which it is using post-inc mode. 4858 for (const Loop *PIL : LF.PostIncLoops) { 4859 if (PIL == L) continue; 4860 4861 // Be dominated by the loop exit. 4862 SmallVector<BasicBlock *, 4> ExitingBlocks; 4863 PIL->getExitingBlocks(ExitingBlocks); 4864 if (!ExitingBlocks.empty()) { 4865 BasicBlock *BB = ExitingBlocks[0]; 4866 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4867 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4868 Inputs.push_back(BB->getTerminator()); 4869 } 4870 } 4871 4872 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4873 && !isa<DbgInfoIntrinsic>(LowestIP) && 4874 "Insertion point must be a normal instruction"); 4875 4876 // Then, climb up the immediate dominator tree as far as we can go while 4877 // still being dominated by the input positions. 4878 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4879 4880 // Don't insert instructions before PHI nodes. 4881 while (isa<PHINode>(IP)) ++IP; 4882 4883 // Ignore landingpad instructions. 4884 while (IP->isEHPad()) ++IP; 4885 4886 // Ignore debug intrinsics. 4887 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4888 4889 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4890 // IP consistent across expansions and allows the previously inserted 4891 // instructions to be reused by subsequent expansion. 4892 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4893 ++IP; 4894 4895 return IP; 4896 } 4897 4898 /// Emit instructions for the leading candidate expression for this LSRUse (this 4899 /// is called "expanding"). 4900 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4901 const Formula &F, BasicBlock::iterator IP, 4902 SCEVExpander &Rewriter, 4903 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4904 if (LU.RigidFormula) 4905 return LF.OperandValToReplace; 4906 4907 // Determine an input position which will be dominated by the operands and 4908 // which will dominate the result. 4909 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4910 Rewriter.setInsertPoint(&*IP); 4911 4912 // Inform the Rewriter if we have a post-increment use, so that it can 4913 // perform an advantageous expansion. 4914 Rewriter.setPostInc(LF.PostIncLoops); 4915 4916 // This is the type that the user actually needs. 4917 Type *OpTy = LF.OperandValToReplace->getType(); 4918 // This will be the type that we'll initially expand to. 4919 Type *Ty = F.getType(); 4920 if (!Ty) 4921 // No type known; just expand directly to the ultimate type. 4922 Ty = OpTy; 4923 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4924 // Expand directly to the ultimate type if it's the right size. 4925 Ty = OpTy; 4926 // This is the type to do integer arithmetic in. 4927 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4928 4929 // Build up a list of operands to add together to form the full base. 4930 SmallVector<const SCEV *, 8> Ops; 4931 4932 // Expand the BaseRegs portion. 4933 for (const SCEV *Reg : F.BaseRegs) { 4934 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4935 4936 // If we're expanding for a post-inc user, make the post-inc adjustment. 4937 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4938 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4939 } 4940 4941 // Expand the ScaledReg portion. 4942 Value *ICmpScaledV = nullptr; 4943 if (F.Scale != 0) { 4944 const SCEV *ScaledS = F.ScaledReg; 4945 4946 // If we're expanding for a post-inc user, make the post-inc adjustment. 4947 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4948 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4949 4950 if (LU.Kind == LSRUse::ICmpZero) { 4951 // Expand ScaleReg as if it was part of the base regs. 4952 if (F.Scale == 1) 4953 Ops.push_back( 4954 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4955 else { 4956 // An interesting way of "folding" with an icmp is to use a negated 4957 // scale, which we'll implement by inserting it into the other operand 4958 // of the icmp. 4959 assert(F.Scale == -1 && 4960 "The only scale supported by ICmpZero uses is -1!"); 4961 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4962 } 4963 } else { 4964 // Otherwise just expand the scaled register and an explicit scale, 4965 // which is expected to be matched as part of the address. 4966 4967 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4968 // Unless the addressing mode will not be folded. 4969 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4970 isAMCompletelyFolded(TTI, LU, F)) { 4971 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4972 Ops.clear(); 4973 Ops.push_back(SE.getUnknown(FullV)); 4974 } 4975 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4976 if (F.Scale != 1) 4977 ScaledS = 4978 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4979 Ops.push_back(ScaledS); 4980 } 4981 } 4982 4983 // Expand the GV portion. 4984 if (F.BaseGV) { 4985 // Flush the operand list to suppress SCEVExpander hoisting. 4986 if (!Ops.empty()) { 4987 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4988 Ops.clear(); 4989 Ops.push_back(SE.getUnknown(FullV)); 4990 } 4991 Ops.push_back(SE.getUnknown(F.BaseGV)); 4992 } 4993 4994 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4995 // unfolded offsets. LSR assumes they both live next to their uses. 4996 if (!Ops.empty()) { 4997 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4998 Ops.clear(); 4999 Ops.push_back(SE.getUnknown(FullV)); 5000 } 5001 5002 // Expand the immediate portion. 5003 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5004 if (Offset != 0) { 5005 if (LU.Kind == LSRUse::ICmpZero) { 5006 // The other interesting way of "folding" with an ICmpZero is to use a 5007 // negated immediate. 5008 if (!ICmpScaledV) 5009 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5010 else { 5011 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5012 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5013 } 5014 } else { 5015 // Just add the immediate values. These again are expected to be matched 5016 // as part of the address. 5017 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5018 } 5019 } 5020 5021 // Expand the unfolded offset portion. 5022 int64_t UnfoldedOffset = F.UnfoldedOffset; 5023 if (UnfoldedOffset != 0) { 5024 // Just add the immediate values. 5025 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5026 UnfoldedOffset))); 5027 } 5028 5029 // Emit instructions summing all the operands. 5030 const SCEV *FullS = Ops.empty() ? 5031 SE.getConstant(IntTy, 0) : 5032 SE.getAddExpr(Ops); 5033 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5034 5035 // We're done expanding now, so reset the rewriter. 5036 Rewriter.clearPostInc(); 5037 5038 // An ICmpZero Formula represents an ICmp which we're handling as a 5039 // comparison against zero. Now that we've expanded an expression for that 5040 // form, update the ICmp's other operand. 5041 if (LU.Kind == LSRUse::ICmpZero) { 5042 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5043 DeadInsts.emplace_back(CI->getOperand(1)); 5044 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5045 "a scale at the same time!"); 5046 if (F.Scale == -1) { 5047 if (ICmpScaledV->getType() != OpTy) { 5048 Instruction *Cast = 5049 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5050 OpTy, false), 5051 ICmpScaledV, OpTy, "tmp", CI); 5052 ICmpScaledV = Cast; 5053 } 5054 CI->setOperand(1, ICmpScaledV); 5055 } else { 5056 // A scale of 1 means that the scale has been expanded as part of the 5057 // base regs. 5058 assert((F.Scale == 0 || F.Scale == 1) && 5059 "ICmp does not support folding a global value and " 5060 "a scale at the same time!"); 5061 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5062 -(uint64_t)Offset); 5063 if (C->getType() != OpTy) 5064 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5065 OpTy, false), 5066 C, OpTy); 5067 5068 CI->setOperand(1, C); 5069 } 5070 } 5071 5072 return FullV; 5073 } 5074 5075 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5076 /// effectively happens in their predecessor blocks, so the expression may need 5077 /// to be expanded in multiple places. 5078 void LSRInstance::RewriteForPHI( 5079 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5080 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5081 DenseMap<BasicBlock *, Value *> Inserted; 5082 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5083 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5084 BasicBlock *BB = PN->getIncomingBlock(i); 5085 5086 // If this is a critical edge, split the edge so that we do not insert 5087 // the code on all predecessor/successor paths. We do this unless this 5088 // is the canonical backedge for this loop, which complicates post-inc 5089 // users. 5090 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5091 !isa<IndirectBrInst>(BB->getTerminator()) && 5092 !isa<CatchSwitchInst>(BB->getTerminator())) { 5093 BasicBlock *Parent = PN->getParent(); 5094 Loop *PNLoop = LI.getLoopFor(Parent); 5095 if (!PNLoop || Parent != PNLoop->getHeader()) { 5096 // Split the critical edge. 5097 BasicBlock *NewBB = nullptr; 5098 if (!Parent->isLandingPad()) { 5099 NewBB = SplitCriticalEdge(BB, Parent, 5100 CriticalEdgeSplittingOptions(&DT, &LI) 5101 .setMergeIdenticalEdges() 5102 .setDontDeleteUselessPHIs()); 5103 } else { 5104 SmallVector<BasicBlock*, 2> NewBBs; 5105 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5106 NewBB = NewBBs[0]; 5107 } 5108 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5109 // phi predecessors are identical. The simple thing to do is skip 5110 // splitting in this case rather than complicate the API. 5111 if (NewBB) { 5112 // If PN is outside of the loop and BB is in the loop, we want to 5113 // move the block to be immediately before the PHI block, not 5114 // immediately after BB. 5115 if (L->contains(BB) && !L->contains(PN)) 5116 NewBB->moveBefore(PN->getParent()); 5117 5118 // Splitting the edge can reduce the number of PHI entries we have. 5119 e = PN->getNumIncomingValues(); 5120 BB = NewBB; 5121 i = PN->getBasicBlockIndex(BB); 5122 } 5123 } 5124 } 5125 5126 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5127 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5128 if (!Pair.second) 5129 PN->setIncomingValue(i, Pair.first->second); 5130 else { 5131 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5132 Rewriter, DeadInsts); 5133 5134 // If this is reuse-by-noop-cast, insert the noop cast. 5135 Type *OpTy = LF.OperandValToReplace->getType(); 5136 if (FullV->getType() != OpTy) 5137 FullV = 5138 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5139 OpTy, false), 5140 FullV, LF.OperandValToReplace->getType(), 5141 "tmp", BB->getTerminator()); 5142 5143 PN->setIncomingValue(i, FullV); 5144 Pair.first->second = FullV; 5145 } 5146 } 5147 } 5148 5149 /// Emit instructions for the leading candidate expression for this LSRUse (this 5150 /// is called "expanding"), and update the UserInst to reference the newly 5151 /// expanded value. 5152 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5153 const Formula &F, SCEVExpander &Rewriter, 5154 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5155 // First, find an insertion point that dominates UserInst. For PHI nodes, 5156 // find the nearest block which dominates all the relevant uses. 5157 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5158 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5159 } else { 5160 Value *FullV = 5161 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5162 5163 // If this is reuse-by-noop-cast, insert the noop cast. 5164 Type *OpTy = LF.OperandValToReplace->getType(); 5165 if (FullV->getType() != OpTy) { 5166 Instruction *Cast = 5167 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5168 FullV, OpTy, "tmp", LF.UserInst); 5169 FullV = Cast; 5170 } 5171 5172 // Update the user. ICmpZero is handled specially here (for now) because 5173 // Expand may have updated one of the operands of the icmp already, and 5174 // its new value may happen to be equal to LF.OperandValToReplace, in 5175 // which case doing replaceUsesOfWith leads to replacing both operands 5176 // with the same value. TODO: Reorganize this. 5177 if (LU.Kind == LSRUse::ICmpZero) 5178 LF.UserInst->setOperand(0, FullV); 5179 else 5180 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5181 } 5182 5183 DeadInsts.emplace_back(LF.OperandValToReplace); 5184 } 5185 5186 /// Rewrite all the fixup locations with new values, following the chosen 5187 /// solution. 5188 void LSRInstance::ImplementSolution( 5189 const SmallVectorImpl<const Formula *> &Solution) { 5190 // Keep track of instructions we may have made dead, so that 5191 // we can remove them after we are done working. 5192 SmallVector<WeakTrackingVH, 16> DeadInsts; 5193 5194 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5195 "lsr"); 5196 #ifndef NDEBUG 5197 Rewriter.setDebugType(DEBUG_TYPE); 5198 #endif 5199 Rewriter.disableCanonicalMode(); 5200 Rewriter.enableLSRMode(); 5201 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5202 5203 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5204 for (const IVChain &Chain : IVChainVec) { 5205 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5206 Rewriter.setChainedPhi(PN); 5207 } 5208 5209 // Expand the new value definitions and update the users. 5210 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5211 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5212 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5213 Changed = true; 5214 } 5215 5216 for (const IVChain &Chain : IVChainVec) { 5217 GenerateIVChain(Chain, Rewriter, DeadInsts); 5218 Changed = true; 5219 } 5220 // Clean up after ourselves. This must be done before deleting any 5221 // instructions. 5222 Rewriter.clear(); 5223 5224 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5225 } 5226 5227 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5228 DominatorTree &DT, LoopInfo &LI, 5229 const TargetTransformInfo &TTI) 5230 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 5231 IVIncInsertPos(nullptr) { 5232 // If LoopSimplify form is not available, stay out of trouble. 5233 if (!L->isLoopSimplifyForm()) 5234 return; 5235 5236 // If there's no interesting work to be done, bail early. 5237 if (IU.empty()) return; 5238 5239 // If there's too much analysis to be done, bail early. We won't be able to 5240 // model the problem anyway. 5241 unsigned NumUsers = 0; 5242 for (const IVStrideUse &U : IU) { 5243 if (++NumUsers > MaxIVUsers) { 5244 (void)U; 5245 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5246 return; 5247 } 5248 // Bail out if we have a PHI on an EHPad that gets a value from a 5249 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5250 // no good place to stick any instructions. 5251 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5252 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5253 if (isa<FuncletPadInst>(FirstNonPHI) || 5254 isa<CatchSwitchInst>(FirstNonPHI)) 5255 for (BasicBlock *PredBB : PN->blocks()) 5256 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5257 return; 5258 } 5259 } 5260 5261 #ifndef NDEBUG 5262 // All dominating loops must have preheaders, or SCEVExpander may not be able 5263 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5264 // 5265 // IVUsers analysis should only create users that are dominated by simple loop 5266 // headers. Since this loop should dominate all of its users, its user list 5267 // should be empty if this loop itself is not within a simple loop nest. 5268 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5269 Rung; Rung = Rung->getIDom()) { 5270 BasicBlock *BB = Rung->getBlock(); 5271 const Loop *DomLoop = LI.getLoopFor(BB); 5272 if (DomLoop && DomLoop->getHeader() == BB) { 5273 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5274 } 5275 } 5276 #endif // DEBUG 5277 5278 DEBUG(dbgs() << "\nLSR on loop "; 5279 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5280 dbgs() << ":\n"); 5281 5282 // First, perform some low-level loop optimizations. 5283 OptimizeShadowIV(); 5284 OptimizeLoopTermCond(); 5285 5286 // If loop preparation eliminates all interesting IV users, bail. 5287 if (IU.empty()) return; 5288 5289 // Skip nested loops until we can model them better with formulae. 5290 if (!L->empty()) { 5291 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5292 return; 5293 } 5294 5295 // Start collecting data and preparing for the solver. 5296 CollectChains(); 5297 CollectInterestingTypesAndFactors(); 5298 CollectFixupsAndInitialFormulae(); 5299 CollectLoopInvariantFixupsAndFormulae(); 5300 5301 assert(!Uses.empty() && "IVUsers reported at least one use"); 5302 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5303 print_uses(dbgs())); 5304 5305 // Now use the reuse data to generate a bunch of interesting ways 5306 // to formulate the values needed for the uses. 5307 GenerateAllReuseFormulae(); 5308 5309 FilterOutUndesirableDedicatedRegisters(); 5310 NarrowSearchSpaceUsingHeuristics(); 5311 5312 SmallVector<const Formula *, 8> Solution; 5313 Solve(Solution); 5314 5315 // Release memory that is no longer needed. 5316 Factors.clear(); 5317 Types.clear(); 5318 RegUses.clear(); 5319 5320 if (Solution.empty()) 5321 return; 5322 5323 #ifndef NDEBUG 5324 // Formulae should be legal. 5325 for (const LSRUse &LU : Uses) { 5326 for (const Formula &F : LU.Formulae) 5327 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5328 F) && "Illegal formula generated!"); 5329 }; 5330 #endif 5331 5332 // Now that we've decided what we want, make it so. 5333 ImplementSolution(Solution); 5334 } 5335 5336 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5337 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5338 if (Factors.empty() && Types.empty()) return; 5339 5340 OS << "LSR has identified the following interesting factors and types: "; 5341 bool First = true; 5342 5343 for (int64_t Factor : Factors) { 5344 if (!First) OS << ", "; 5345 First = false; 5346 OS << '*' << Factor; 5347 } 5348 5349 for (Type *Ty : Types) { 5350 if (!First) OS << ", "; 5351 First = false; 5352 OS << '(' << *Ty << ')'; 5353 } 5354 OS << '\n'; 5355 } 5356 5357 void LSRInstance::print_fixups(raw_ostream &OS) const { 5358 OS << "LSR is examining the following fixup sites:\n"; 5359 for (const LSRUse &LU : Uses) 5360 for (const LSRFixup &LF : LU.Fixups) { 5361 dbgs() << " "; 5362 LF.print(OS); 5363 OS << '\n'; 5364 } 5365 } 5366 5367 void LSRInstance::print_uses(raw_ostream &OS) const { 5368 OS << "LSR is examining the following uses:\n"; 5369 for (const LSRUse &LU : Uses) { 5370 dbgs() << " "; 5371 LU.print(OS); 5372 OS << '\n'; 5373 for (const Formula &F : LU.Formulae) { 5374 OS << " "; 5375 F.print(OS); 5376 OS << '\n'; 5377 } 5378 } 5379 } 5380 5381 void LSRInstance::print(raw_ostream &OS) const { 5382 print_factors_and_types(OS); 5383 print_fixups(OS); 5384 print_uses(OS); 5385 } 5386 5387 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5388 print(errs()); errs() << '\n'; 5389 } 5390 #endif 5391 5392 namespace { 5393 5394 class LoopStrengthReduce : public LoopPass { 5395 public: 5396 static char ID; // Pass ID, replacement for typeid 5397 5398 LoopStrengthReduce(); 5399 5400 private: 5401 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5402 void getAnalysisUsage(AnalysisUsage &AU) const override; 5403 }; 5404 5405 } // end anonymous namespace 5406 5407 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5408 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5409 } 5410 5411 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5412 // We split critical edges, so we change the CFG. However, we do update 5413 // many analyses if they are around. 5414 AU.addPreservedID(LoopSimplifyID); 5415 5416 AU.addRequired<LoopInfoWrapperPass>(); 5417 AU.addPreserved<LoopInfoWrapperPass>(); 5418 AU.addRequiredID(LoopSimplifyID); 5419 AU.addRequired<DominatorTreeWrapperPass>(); 5420 AU.addPreserved<DominatorTreeWrapperPass>(); 5421 AU.addRequired<ScalarEvolutionWrapperPass>(); 5422 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5423 // Requiring LoopSimplify a second time here prevents IVUsers from running 5424 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5425 AU.addRequiredID(LoopSimplifyID); 5426 AU.addRequired<IVUsersWrapperPass>(); 5427 AU.addPreserved<IVUsersWrapperPass>(); 5428 AU.addRequired<TargetTransformInfoWrapperPass>(); 5429 } 5430 5431 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5432 DominatorTree &DT, LoopInfo &LI, 5433 const TargetTransformInfo &TTI) { 5434 bool Changed = false; 5435 5436 // Run the main LSR transformation. 5437 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5438 5439 // Remove any extra phis created by processing inner loops. 5440 Changed |= DeleteDeadPHIs(L->getHeader()); 5441 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5442 SmallVector<WeakTrackingVH, 16> DeadInsts; 5443 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5444 SCEVExpander Rewriter(SE, DL, "lsr"); 5445 #ifndef NDEBUG 5446 Rewriter.setDebugType(DEBUG_TYPE); 5447 #endif 5448 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5449 if (numFolded) { 5450 Changed = true; 5451 DeleteTriviallyDeadInstructions(DeadInsts); 5452 DeleteDeadPHIs(L->getHeader()); 5453 } 5454 } 5455 return Changed; 5456 } 5457 5458 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5459 if (skipLoop(L)) 5460 return false; 5461 5462 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5463 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5464 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5465 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5466 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5467 *L->getHeader()->getParent()); 5468 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5469 } 5470 5471 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5472 LoopStandardAnalysisResults &AR, 5473 LPMUpdater &) { 5474 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5475 AR.DT, AR.LI, AR.TTI)) 5476 return PreservedAnalyses::all(); 5477 5478 return getLoopPassPreservedAnalyses(); 5479 } 5480 5481 char LoopStrengthReduce::ID = 0; 5482 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5483 "Loop Strength Reduction", false, false) 5484 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5485 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5486 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5487 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5488 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5489 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5490 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5491 "Loop Strength Reduction", false, false) 5492 5493 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5494