1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Analysis/ValueTracking.h" 81 #include "llvm/BinaryFormat/Dwarf.h" 82 #include "llvm/Config/llvm-config.h" 83 #include "llvm/IR/BasicBlock.h" 84 #include "llvm/IR/Constant.h" 85 #include "llvm/IR/Constants.h" 86 #include "llvm/IR/DebugInfoMetadata.h" 87 #include "llvm/IR/DerivedTypes.h" 88 #include "llvm/IR/Dominators.h" 89 #include "llvm/IR/GlobalValue.h" 90 #include "llvm/IR/IRBuilder.h" 91 #include "llvm/IR/InstrTypes.h" 92 #include "llvm/IR/Instruction.h" 93 #include "llvm/IR/Instructions.h" 94 #include "llvm/IR/IntrinsicInst.h" 95 #include "llvm/IR/Module.h" 96 #include "llvm/IR/Operator.h" 97 #include "llvm/IR/PassManager.h" 98 #include "llvm/IR/Type.h" 99 #include "llvm/IR/Use.h" 100 #include "llvm/IR/User.h" 101 #include "llvm/IR/Value.h" 102 #include "llvm/IR/ValueHandle.h" 103 #include "llvm/InitializePasses.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Transforms/Scalar.h" 113 #include "llvm/Transforms/Utils.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/LoopUtils.h" 117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 118 #include <algorithm> 119 #include <cassert> 120 #include <cstddef> 121 #include <cstdint> 122 #include <iterator> 123 #include <limits> 124 #include <map> 125 #include <numeric> 126 #include <utility> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "loop-reduce" 131 132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 133 /// bail out. This threshold is far beyond the number of users that LSR can 134 /// conceivably solve, so it should not affect generated code, but catches the 135 /// worst cases before LSR burns too much compile time and stack space. 136 static const unsigned MaxIVUsers = 200; 137 138 /// Limit the size of expression that SCEV-based salvaging will attempt to 139 /// translate into a DIExpression. 140 /// Choose a maximum size such that debuginfo is not excessively increased and 141 /// the salvaging is not too expensive for the compiler. 142 static const unsigned MaxSCEVSalvageExpressionSize = 64; 143 144 // Cleanup congruent phis after LSR phi expansion. 145 static cl::opt<bool> EnablePhiElim( 146 "enable-lsr-phielim", cl::Hidden, cl::init(true), 147 cl::desc("Enable LSR phi elimination")); 148 149 // The flag adds instruction count to solutions cost comparision. 150 static cl::opt<bool> InsnsCost( 151 "lsr-insns-cost", cl::Hidden, cl::init(true), 152 cl::desc("Add instruction count to a LSR cost model")); 153 154 // Flag to choose how to narrow complex lsr solution 155 static cl::opt<bool> LSRExpNarrow( 156 "lsr-exp-narrow", cl::Hidden, cl::init(false), 157 cl::desc("Narrow LSR complex solution using" 158 " expectation of registers number")); 159 160 // Flag to narrow search space by filtering non-optimal formulae with 161 // the same ScaledReg and Scale. 162 static cl::opt<bool> FilterSameScaledReg( 163 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 164 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 165 " with the same ScaledReg and Scale")); 166 167 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 168 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 169 cl::desc("A flag that overrides the target's preferred addressing mode."), 170 cl::values(clEnumValN(TTI::AMK_None, 171 "none", 172 "Don't prefer any addressing mode"), 173 clEnumValN(TTI::AMK_PreIndexed, 174 "preindexed", 175 "Prefer pre-indexed addressing mode"), 176 clEnumValN(TTI::AMK_PostIndexed, 177 "postindexed", 178 "Prefer post-indexed addressing mode"))); 179 180 static cl::opt<unsigned> ComplexityLimit( 181 "lsr-complexity-limit", cl::Hidden, 182 cl::init(std::numeric_limits<uint16_t>::max()), 183 cl::desc("LSR search space complexity limit")); 184 185 static cl::opt<unsigned> SetupCostDepthLimit( 186 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 187 cl::desc("The limit on recursion depth for LSRs setup cost")); 188 189 #ifndef NDEBUG 190 // Stress test IV chain generation. 191 static cl::opt<bool> StressIVChain( 192 "stress-ivchain", cl::Hidden, cl::init(false), 193 cl::desc("Stress test LSR IV chains")); 194 #else 195 static bool StressIVChain = false; 196 #endif 197 198 namespace { 199 200 struct MemAccessTy { 201 /// Used in situations where the accessed memory type is unknown. 202 static const unsigned UnknownAddressSpace = 203 std::numeric_limits<unsigned>::max(); 204 205 Type *MemTy = nullptr; 206 unsigned AddrSpace = UnknownAddressSpace; 207 208 MemAccessTy() = default; 209 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 210 211 bool operator==(MemAccessTy Other) const { 212 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 213 } 214 215 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 216 217 static MemAccessTy getUnknown(LLVMContext &Ctx, 218 unsigned AS = UnknownAddressSpace) { 219 return MemAccessTy(Type::getVoidTy(Ctx), AS); 220 } 221 222 Type *getType() { return MemTy; } 223 }; 224 225 /// This class holds data which is used to order reuse candidates. 226 class RegSortData { 227 public: 228 /// This represents the set of LSRUse indices which reference 229 /// a particular register. 230 SmallBitVector UsedByIndices; 231 232 void print(raw_ostream &OS) const; 233 void dump() const; 234 }; 235 236 } // end anonymous namespace 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 void RegSortData::print(raw_ostream &OS) const { 240 OS << "[NumUses=" << UsedByIndices.count() << ']'; 241 } 242 243 LLVM_DUMP_METHOD void RegSortData::dump() const { 244 print(errs()); errs() << '\n'; 245 } 246 #endif 247 248 namespace { 249 250 /// Map register candidates to information about how they are used. 251 class RegUseTracker { 252 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 253 254 RegUsesTy RegUsesMap; 255 SmallVector<const SCEV *, 16> RegSequence; 256 257 public: 258 void countRegister(const SCEV *Reg, size_t LUIdx); 259 void dropRegister(const SCEV *Reg, size_t LUIdx); 260 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 261 262 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 263 264 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 265 266 void clear(); 267 268 using iterator = SmallVectorImpl<const SCEV *>::iterator; 269 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 270 271 iterator begin() { return RegSequence.begin(); } 272 iterator end() { return RegSequence.end(); } 273 const_iterator begin() const { return RegSequence.begin(); } 274 const_iterator end() const { return RegSequence.end(); } 275 }; 276 277 } // end anonymous namespace 278 279 void 280 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 281 std::pair<RegUsesTy::iterator, bool> Pair = 282 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 283 RegSortData &RSD = Pair.first->second; 284 if (Pair.second) 285 RegSequence.push_back(Reg); 286 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 287 RSD.UsedByIndices.set(LUIdx); 288 } 289 290 void 291 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 292 RegUsesTy::iterator It = RegUsesMap.find(Reg); 293 assert(It != RegUsesMap.end()); 294 RegSortData &RSD = It->second; 295 assert(RSD.UsedByIndices.size() > LUIdx); 296 RSD.UsedByIndices.reset(LUIdx); 297 } 298 299 void 300 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 301 assert(LUIdx <= LastLUIdx); 302 303 // Update RegUses. The data structure is not optimized for this purpose; 304 // we must iterate through it and update each of the bit vectors. 305 for (auto &Pair : RegUsesMap) { 306 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 307 if (LUIdx < UsedByIndices.size()) 308 UsedByIndices[LUIdx] = 309 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 310 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 311 } 312 } 313 314 bool 315 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 316 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 317 if (I == RegUsesMap.end()) 318 return false; 319 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 320 int i = UsedByIndices.find_first(); 321 if (i == -1) return false; 322 if ((size_t)i != LUIdx) return true; 323 return UsedByIndices.find_next(i) != -1; 324 } 325 326 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 327 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 328 assert(I != RegUsesMap.end() && "Unknown register!"); 329 return I->second.UsedByIndices; 330 } 331 332 void RegUseTracker::clear() { 333 RegUsesMap.clear(); 334 RegSequence.clear(); 335 } 336 337 namespace { 338 339 /// This class holds information that describes a formula for computing 340 /// satisfying a use. It may include broken-out immediates and scaled registers. 341 struct Formula { 342 /// Global base address used for complex addressing. 343 GlobalValue *BaseGV = nullptr; 344 345 /// Base offset for complex addressing. 346 int64_t BaseOffset = 0; 347 348 /// Whether any complex addressing has a base register. 349 bool HasBaseReg = false; 350 351 /// The scale of any complex addressing. 352 int64_t Scale = 0; 353 354 /// The list of "base" registers for this use. When this is non-empty. The 355 /// canonical representation of a formula is 356 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 357 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 358 /// 3. The reg containing recurrent expr related with currect loop in the 359 /// formula should be put in the ScaledReg. 360 /// #1 enforces that the scaled register is always used when at least two 361 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 362 /// #2 enforces that 1 * reg is reg. 363 /// #3 ensures invariant regs with respect to current loop can be combined 364 /// together in LSR codegen. 365 /// This invariant can be temporarily broken while building a formula. 366 /// However, every formula inserted into the LSRInstance must be in canonical 367 /// form. 368 SmallVector<const SCEV *, 4> BaseRegs; 369 370 /// The 'scaled' register for this use. This should be non-null when Scale is 371 /// not zero. 372 const SCEV *ScaledReg = nullptr; 373 374 /// An additional constant offset which added near the use. This requires a 375 /// temporary register, but the offset itself can live in an add immediate 376 /// field rather than a register. 377 int64_t UnfoldedOffset = 0; 378 379 Formula() = default; 380 381 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 382 383 bool isCanonical(const Loop &L) const; 384 385 void canonicalize(const Loop &L); 386 387 bool unscale(); 388 389 bool hasZeroEnd() const; 390 391 size_t getNumRegs() const; 392 Type *getType() const; 393 394 void deleteBaseReg(const SCEV *&S); 395 396 bool referencesReg(const SCEV *S) const; 397 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 398 const RegUseTracker &RegUses) const; 399 400 void print(raw_ostream &OS) const; 401 void dump() const; 402 }; 403 404 } // end anonymous namespace 405 406 /// Recursion helper for initialMatch. 407 static void DoInitialMatch(const SCEV *S, Loop *L, 408 SmallVectorImpl<const SCEV *> &Good, 409 SmallVectorImpl<const SCEV *> &Bad, 410 ScalarEvolution &SE) { 411 // Collect expressions which properly dominate the loop header. 412 if (SE.properlyDominates(S, L->getHeader())) { 413 Good.push_back(S); 414 return; 415 } 416 417 // Look at add operands. 418 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 419 for (const SCEV *S : Add->operands()) 420 DoInitialMatch(S, L, Good, Bad, SE); 421 return; 422 } 423 424 // Look at addrec operands. 425 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 426 if (!AR->getStart()->isZero() && AR->isAffine()) { 427 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 428 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 429 AR->getStepRecurrence(SE), 430 // FIXME: AR->getNoWrapFlags() 431 AR->getLoop(), SCEV::FlagAnyWrap), 432 L, Good, Bad, SE); 433 return; 434 } 435 436 // Handle a multiplication by -1 (negation) if it didn't fold. 437 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 438 if (Mul->getOperand(0)->isAllOnesValue()) { 439 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 440 const SCEV *NewMul = SE.getMulExpr(Ops); 441 442 SmallVector<const SCEV *, 4> MyGood; 443 SmallVector<const SCEV *, 4> MyBad; 444 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 445 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 446 SE.getEffectiveSCEVType(NewMul->getType()))); 447 for (const SCEV *S : MyGood) 448 Good.push_back(SE.getMulExpr(NegOne, S)); 449 for (const SCEV *S : MyBad) 450 Bad.push_back(SE.getMulExpr(NegOne, S)); 451 return; 452 } 453 454 // Ok, we can't do anything interesting. Just stuff the whole thing into a 455 // register and hope for the best. 456 Bad.push_back(S); 457 } 458 459 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 460 /// all loop-invariant and loop-computable values in a single base register. 461 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 462 SmallVector<const SCEV *, 4> Good; 463 SmallVector<const SCEV *, 4> Bad; 464 DoInitialMatch(S, L, Good, Bad, SE); 465 if (!Good.empty()) { 466 const SCEV *Sum = SE.getAddExpr(Good); 467 if (!Sum->isZero()) 468 BaseRegs.push_back(Sum); 469 HasBaseReg = true; 470 } 471 if (!Bad.empty()) { 472 const SCEV *Sum = SE.getAddExpr(Bad); 473 if (!Sum->isZero()) 474 BaseRegs.push_back(Sum); 475 HasBaseReg = true; 476 } 477 canonicalize(*L); 478 } 479 480 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 481 return SCEVExprContains(S, [&L](const SCEV *S) { 482 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 483 }); 484 } 485 486 /// Check whether or not this formula satisfies the canonical 487 /// representation. 488 /// \see Formula::BaseRegs. 489 bool Formula::isCanonical(const Loop &L) const { 490 if (!ScaledReg) 491 return BaseRegs.size() <= 1; 492 493 if (Scale != 1) 494 return true; 495 496 if (Scale == 1 && BaseRegs.empty()) 497 return false; 498 499 if (containsAddRecDependentOnLoop(ScaledReg, L)) 500 return true; 501 502 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 503 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 504 // loop, we want to swap the reg in BaseRegs with ScaledReg. 505 return none_of(BaseRegs, [&L](const SCEV *S) { 506 return containsAddRecDependentOnLoop(S, L); 507 }); 508 } 509 510 /// Helper method to morph a formula into its canonical representation. 511 /// \see Formula::BaseRegs. 512 /// Every formula having more than one base register, must use the ScaledReg 513 /// field. Otherwise, we would have to do special cases everywhere in LSR 514 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 515 /// On the other hand, 1*reg should be canonicalized into reg. 516 void Formula::canonicalize(const Loop &L) { 517 if (isCanonical(L)) 518 return; 519 520 if (BaseRegs.empty()) { 521 // No base reg? Use scale reg with scale = 1 as such. 522 assert(ScaledReg && "Expected 1*reg => reg"); 523 assert(Scale == 1 && "Expected 1*reg => reg"); 524 BaseRegs.push_back(ScaledReg); 525 Scale = 0; 526 ScaledReg = nullptr; 527 return; 528 } 529 530 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 531 if (!ScaledReg) { 532 ScaledReg = BaseRegs.pop_back_val(); 533 Scale = 1; 534 } 535 536 // If ScaledReg is an invariant with respect to L, find the reg from 537 // BaseRegs containing the recurrent expr related with Loop L. Swap the 538 // reg with ScaledReg. 539 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 540 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 541 return containsAddRecDependentOnLoop(S, L); 542 }); 543 if (I != BaseRegs.end()) 544 std::swap(ScaledReg, *I); 545 } 546 assert(isCanonical(L) && "Failed to canonicalize?"); 547 } 548 549 /// Get rid of the scale in the formula. 550 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 551 /// \return true if it was possible to get rid of the scale, false otherwise. 552 /// \note After this operation the formula may not be in the canonical form. 553 bool Formula::unscale() { 554 if (Scale != 1) 555 return false; 556 Scale = 0; 557 BaseRegs.push_back(ScaledReg); 558 ScaledReg = nullptr; 559 return true; 560 } 561 562 bool Formula::hasZeroEnd() const { 563 if (UnfoldedOffset || BaseOffset) 564 return false; 565 if (BaseRegs.size() != 1 || ScaledReg) 566 return false; 567 return true; 568 } 569 570 /// Return the total number of register operands used by this formula. This does 571 /// not include register uses implied by non-constant addrec strides. 572 size_t Formula::getNumRegs() const { 573 return !!ScaledReg + BaseRegs.size(); 574 } 575 576 /// Return the type of this formula, if it has one, or null otherwise. This type 577 /// is meaningless except for the bit size. 578 Type *Formula::getType() const { 579 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 580 ScaledReg ? ScaledReg->getType() : 581 BaseGV ? BaseGV->getType() : 582 nullptr; 583 } 584 585 /// Delete the given base reg from the BaseRegs list. 586 void Formula::deleteBaseReg(const SCEV *&S) { 587 if (&S != &BaseRegs.back()) 588 std::swap(S, BaseRegs.back()); 589 BaseRegs.pop_back(); 590 } 591 592 /// Test if this formula references the given register. 593 bool Formula::referencesReg(const SCEV *S) const { 594 return S == ScaledReg || is_contained(BaseRegs, S); 595 } 596 597 /// Test whether this formula uses registers which are used by uses other than 598 /// the use with the given index. 599 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 600 const RegUseTracker &RegUses) const { 601 if (ScaledReg) 602 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 603 return true; 604 for (const SCEV *BaseReg : BaseRegs) 605 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 606 return true; 607 return false; 608 } 609 610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 611 void Formula::print(raw_ostream &OS) const { 612 bool First = true; 613 if (BaseGV) { 614 if (!First) OS << " + "; else First = false; 615 BaseGV->printAsOperand(OS, /*PrintType=*/false); 616 } 617 if (BaseOffset != 0) { 618 if (!First) OS << " + "; else First = false; 619 OS << BaseOffset; 620 } 621 for (const SCEV *BaseReg : BaseRegs) { 622 if (!First) OS << " + "; else First = false; 623 OS << "reg(" << *BaseReg << ')'; 624 } 625 if (HasBaseReg && BaseRegs.empty()) { 626 if (!First) OS << " + "; else First = false; 627 OS << "**error: HasBaseReg**"; 628 } else if (!HasBaseReg && !BaseRegs.empty()) { 629 if (!First) OS << " + "; else First = false; 630 OS << "**error: !HasBaseReg**"; 631 } 632 if (Scale != 0) { 633 if (!First) OS << " + "; else First = false; 634 OS << Scale << "*reg("; 635 if (ScaledReg) 636 OS << *ScaledReg; 637 else 638 OS << "<unknown>"; 639 OS << ')'; 640 } 641 if (UnfoldedOffset != 0) { 642 if (!First) OS << " + "; 643 OS << "imm(" << UnfoldedOffset << ')'; 644 } 645 } 646 647 LLVM_DUMP_METHOD void Formula::dump() const { 648 print(errs()); errs() << '\n'; 649 } 650 #endif 651 652 /// Return true if the given addrec can be sign-extended without changing its 653 /// value. 654 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 655 Type *WideTy = 656 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 657 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 658 } 659 660 /// Return true if the given add can be sign-extended without changing its 661 /// value. 662 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 663 Type *WideTy = 664 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 665 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 666 } 667 668 /// Return true if the given mul can be sign-extended without changing its 669 /// value. 670 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 671 Type *WideTy = 672 IntegerType::get(SE.getContext(), 673 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 674 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 675 } 676 677 /// Return an expression for LHS /s RHS, if it can be determined and if the 678 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 679 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 680 /// the multiplication may overflow, which is useful when the result will be 681 /// used in a context where the most significant bits are ignored. 682 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 683 ScalarEvolution &SE, 684 bool IgnoreSignificantBits = false) { 685 // Handle the trivial case, which works for any SCEV type. 686 if (LHS == RHS) 687 return SE.getConstant(LHS->getType(), 1); 688 689 // Handle a few RHS special cases. 690 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 691 if (RC) { 692 const APInt &RA = RC->getAPInt(); 693 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 694 // some folding. 695 if (RA.isAllOnes()) { 696 if (LHS->getType()->isPointerTy()) 697 return nullptr; 698 return SE.getMulExpr(LHS, RC); 699 } 700 // Handle x /s 1 as x. 701 if (RA == 1) 702 return LHS; 703 } 704 705 // Check for a division of a constant by a constant. 706 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 707 if (!RC) 708 return nullptr; 709 const APInt &LA = C->getAPInt(); 710 const APInt &RA = RC->getAPInt(); 711 if (LA.srem(RA) != 0) 712 return nullptr; 713 return SE.getConstant(LA.sdiv(RA)); 714 } 715 716 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 717 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 718 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 719 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 720 IgnoreSignificantBits); 721 if (!Step) return nullptr; 722 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 723 IgnoreSignificantBits); 724 if (!Start) return nullptr; 725 // FlagNW is independent of the start value, step direction, and is 726 // preserved with smaller magnitude steps. 727 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 728 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 729 } 730 return nullptr; 731 } 732 733 // Distribute the sdiv over add operands, if the add doesn't overflow. 734 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 735 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 736 SmallVector<const SCEV *, 8> Ops; 737 for (const SCEV *S : Add->operands()) { 738 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 739 if (!Op) return nullptr; 740 Ops.push_back(Op); 741 } 742 return SE.getAddExpr(Ops); 743 } 744 return nullptr; 745 } 746 747 // Check for a multiply operand that we can pull RHS out of. 748 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 749 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 750 // Handle special case C1*X*Y /s C2*X*Y. 751 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 752 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 753 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 754 const SCEVConstant *RC = 755 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 756 if (LC && RC) { 757 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 758 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 759 if (LOps == ROps) 760 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 761 } 762 } 763 } 764 765 SmallVector<const SCEV *, 4> Ops; 766 bool Found = false; 767 for (const SCEV *S : Mul->operands()) { 768 if (!Found) 769 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 770 IgnoreSignificantBits)) { 771 S = Q; 772 Found = true; 773 } 774 Ops.push_back(S); 775 } 776 return Found ? SE.getMulExpr(Ops) : nullptr; 777 } 778 return nullptr; 779 } 780 781 // Otherwise we don't know. 782 return nullptr; 783 } 784 785 /// If S involves the addition of a constant integer value, return that integer 786 /// value, and mutate S to point to a new SCEV with that value excluded. 787 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 788 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 789 if (C->getAPInt().getMinSignedBits() <= 64) { 790 S = SE.getConstant(C->getType(), 0); 791 return C->getValue()->getSExtValue(); 792 } 793 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 794 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 795 int64_t Result = ExtractImmediate(NewOps.front(), SE); 796 if (Result != 0) 797 S = SE.getAddExpr(NewOps); 798 return Result; 799 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 800 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 801 int64_t Result = ExtractImmediate(NewOps.front(), SE); 802 if (Result != 0) 803 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 804 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 805 SCEV::FlagAnyWrap); 806 return Result; 807 } 808 return 0; 809 } 810 811 /// If S involves the addition of a GlobalValue address, return that symbol, and 812 /// mutate S to point to a new SCEV with that value excluded. 813 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 814 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 815 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 816 S = SE.getConstant(GV->getType(), 0); 817 return GV; 818 } 819 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 820 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 821 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 822 if (Result) 823 S = SE.getAddExpr(NewOps); 824 return Result; 825 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 826 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 827 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 828 if (Result) 829 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 830 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 831 SCEV::FlagAnyWrap); 832 return Result; 833 } 834 return nullptr; 835 } 836 837 /// Returns true if the specified instruction is using the specified value as an 838 /// address. 839 static bool isAddressUse(const TargetTransformInfo &TTI, 840 Instruction *Inst, Value *OperandVal) { 841 bool isAddress = isa<LoadInst>(Inst); 842 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 843 if (SI->getPointerOperand() == OperandVal) 844 isAddress = true; 845 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 846 // Addressing modes can also be folded into prefetches and a variety 847 // of intrinsics. 848 switch (II->getIntrinsicID()) { 849 case Intrinsic::memset: 850 case Intrinsic::prefetch: 851 case Intrinsic::masked_load: 852 if (II->getArgOperand(0) == OperandVal) 853 isAddress = true; 854 break; 855 case Intrinsic::masked_store: 856 if (II->getArgOperand(1) == OperandVal) 857 isAddress = true; 858 break; 859 case Intrinsic::memmove: 860 case Intrinsic::memcpy: 861 if (II->getArgOperand(0) == OperandVal || 862 II->getArgOperand(1) == OperandVal) 863 isAddress = true; 864 break; 865 default: { 866 MemIntrinsicInfo IntrInfo; 867 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 868 if (IntrInfo.PtrVal == OperandVal) 869 isAddress = true; 870 } 871 } 872 } 873 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 874 if (RMW->getPointerOperand() == OperandVal) 875 isAddress = true; 876 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 877 if (CmpX->getPointerOperand() == OperandVal) 878 isAddress = true; 879 } 880 return isAddress; 881 } 882 883 /// Return the type of the memory being accessed. 884 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 885 Instruction *Inst, Value *OperandVal) { 886 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 887 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 888 AccessTy.MemTy = SI->getOperand(0)->getType(); 889 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 890 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 891 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 892 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 893 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 894 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 895 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 896 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 897 switch (II->getIntrinsicID()) { 898 case Intrinsic::prefetch: 899 case Intrinsic::memset: 900 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 901 AccessTy.MemTy = OperandVal->getType(); 902 break; 903 case Intrinsic::memmove: 904 case Intrinsic::memcpy: 905 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 906 AccessTy.MemTy = OperandVal->getType(); 907 break; 908 case Intrinsic::masked_load: 909 AccessTy.AddrSpace = 910 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 911 break; 912 case Intrinsic::masked_store: 913 AccessTy.MemTy = II->getOperand(0)->getType(); 914 AccessTy.AddrSpace = 915 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 916 break; 917 default: { 918 MemIntrinsicInfo IntrInfo; 919 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 920 AccessTy.AddrSpace 921 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 922 } 923 924 break; 925 } 926 } 927 } 928 929 // All pointers have the same requirements, so canonicalize them to an 930 // arbitrary pointer type to minimize variation. 931 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 932 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 933 PTy->getAddressSpace()); 934 935 return AccessTy; 936 } 937 938 /// Return true if this AddRec is already a phi in its loop. 939 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 940 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 941 if (SE.isSCEVable(PN.getType()) && 942 (SE.getEffectiveSCEVType(PN.getType()) == 943 SE.getEffectiveSCEVType(AR->getType())) && 944 SE.getSCEV(&PN) == AR) 945 return true; 946 } 947 return false; 948 } 949 950 /// Check if expanding this expression is likely to incur significant cost. This 951 /// is tricky because SCEV doesn't track which expressions are actually computed 952 /// by the current IR. 953 /// 954 /// We currently allow expansion of IV increments that involve adds, 955 /// multiplication by constants, and AddRecs from existing phis. 956 /// 957 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 958 /// obvious multiple of the UDivExpr. 959 static bool isHighCostExpansion(const SCEV *S, 960 SmallPtrSetImpl<const SCEV*> &Processed, 961 ScalarEvolution &SE) { 962 // Zero/One operand expressions 963 switch (S->getSCEVType()) { 964 case scUnknown: 965 case scConstant: 966 return false; 967 case scTruncate: 968 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 969 Processed, SE); 970 case scZeroExtend: 971 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 972 Processed, SE); 973 case scSignExtend: 974 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 975 Processed, SE); 976 default: 977 break; 978 } 979 980 if (!Processed.insert(S).second) 981 return false; 982 983 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 984 for (const SCEV *S : Add->operands()) { 985 if (isHighCostExpansion(S, Processed, SE)) 986 return true; 987 } 988 return false; 989 } 990 991 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 992 if (Mul->getNumOperands() == 2) { 993 // Multiplication by a constant is ok 994 if (isa<SCEVConstant>(Mul->getOperand(0))) 995 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 996 997 // If we have the value of one operand, check if an existing 998 // multiplication already generates this expression. 999 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1000 Value *UVal = U->getValue(); 1001 for (User *UR : UVal->users()) { 1002 // If U is a constant, it may be used by a ConstantExpr. 1003 Instruction *UI = dyn_cast<Instruction>(UR); 1004 if (UI && UI->getOpcode() == Instruction::Mul && 1005 SE.isSCEVable(UI->getType())) { 1006 return SE.getSCEV(UI) == Mul; 1007 } 1008 } 1009 } 1010 } 1011 } 1012 1013 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1014 if (isExistingPhi(AR, SE)) 1015 return false; 1016 } 1017 1018 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1019 return true; 1020 } 1021 1022 namespace { 1023 1024 class LSRUse; 1025 1026 } // end anonymous namespace 1027 1028 /// Check if the addressing mode defined by \p F is completely 1029 /// folded in \p LU at isel time. 1030 /// This includes address-mode folding and special icmp tricks. 1031 /// This function returns true if \p LU can accommodate what \p F 1032 /// defines and up to 1 base + 1 scaled + offset. 1033 /// In other words, if \p F has several base registers, this function may 1034 /// still return true. Therefore, users still need to account for 1035 /// additional base registers and/or unfolded offsets to derive an 1036 /// accurate cost model. 1037 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1038 const LSRUse &LU, const Formula &F); 1039 1040 // Get the cost of the scaling factor used in F for LU. 1041 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1042 const LSRUse &LU, const Formula &F, 1043 const Loop &L); 1044 1045 namespace { 1046 1047 /// This class is used to measure and compare candidate formulae. 1048 class Cost { 1049 const Loop *L = nullptr; 1050 ScalarEvolution *SE = nullptr; 1051 const TargetTransformInfo *TTI = nullptr; 1052 TargetTransformInfo::LSRCost C; 1053 TTI::AddressingModeKind AMK = TTI::AMK_None; 1054 1055 public: 1056 Cost() = delete; 1057 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1058 TTI::AddressingModeKind AMK) : 1059 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1060 C.Insns = 0; 1061 C.NumRegs = 0; 1062 C.AddRecCost = 0; 1063 C.NumIVMuls = 0; 1064 C.NumBaseAdds = 0; 1065 C.ImmCost = 0; 1066 C.SetupCost = 0; 1067 C.ScaleCost = 0; 1068 } 1069 1070 bool isLess(const Cost &Other); 1071 1072 void Lose(); 1073 1074 #ifndef NDEBUG 1075 // Once any of the metrics loses, they must all remain losers. 1076 bool isValid() { 1077 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1078 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1079 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1080 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1081 } 1082 #endif 1083 1084 bool isLoser() { 1085 assert(isValid() && "invalid cost"); 1086 return C.NumRegs == ~0u; 1087 } 1088 1089 void RateFormula(const Formula &F, 1090 SmallPtrSetImpl<const SCEV *> &Regs, 1091 const DenseSet<const SCEV *> &VisitedRegs, 1092 const LSRUse &LU, 1093 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1094 1095 void print(raw_ostream &OS) const; 1096 void dump() const; 1097 1098 private: 1099 void RateRegister(const Formula &F, const SCEV *Reg, 1100 SmallPtrSetImpl<const SCEV *> &Regs); 1101 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1102 SmallPtrSetImpl<const SCEV *> &Regs, 1103 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1104 }; 1105 1106 /// An operand value in an instruction which is to be replaced with some 1107 /// equivalent, possibly strength-reduced, replacement. 1108 struct LSRFixup { 1109 /// The instruction which will be updated. 1110 Instruction *UserInst = nullptr; 1111 1112 /// The operand of the instruction which will be replaced. The operand may be 1113 /// used more than once; every instance will be replaced. 1114 Value *OperandValToReplace = nullptr; 1115 1116 /// If this user is to use the post-incremented value of an induction 1117 /// variable, this set is non-empty and holds the loops associated with the 1118 /// induction variable. 1119 PostIncLoopSet PostIncLoops; 1120 1121 /// A constant offset to be added to the LSRUse expression. This allows 1122 /// multiple fixups to share the same LSRUse with different offsets, for 1123 /// example in an unrolled loop. 1124 int64_t Offset = 0; 1125 1126 LSRFixup() = default; 1127 1128 bool isUseFullyOutsideLoop(const Loop *L) const; 1129 1130 void print(raw_ostream &OS) const; 1131 void dump() const; 1132 }; 1133 1134 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1135 /// SmallVectors of const SCEV*. 1136 struct UniquifierDenseMapInfo { 1137 static SmallVector<const SCEV *, 4> getEmptyKey() { 1138 SmallVector<const SCEV *, 4> V; 1139 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1140 return V; 1141 } 1142 1143 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1144 SmallVector<const SCEV *, 4> V; 1145 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1146 return V; 1147 } 1148 1149 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1150 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1151 } 1152 1153 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1154 const SmallVector<const SCEV *, 4> &RHS) { 1155 return LHS == RHS; 1156 } 1157 }; 1158 1159 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1160 /// as uses invented by LSR itself. It includes information about what kinds of 1161 /// things can be folded into the user, information about the user itself, and 1162 /// information about how the use may be satisfied. TODO: Represent multiple 1163 /// users of the same expression in common? 1164 class LSRUse { 1165 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1166 1167 public: 1168 /// An enum for a kind of use, indicating what types of scaled and immediate 1169 /// operands it might support. 1170 enum KindType { 1171 Basic, ///< A normal use, with no folding. 1172 Special, ///< A special case of basic, allowing -1 scales. 1173 Address, ///< An address use; folding according to TargetLowering 1174 ICmpZero ///< An equality icmp with both operands folded into one. 1175 // TODO: Add a generic icmp too? 1176 }; 1177 1178 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1179 1180 KindType Kind; 1181 MemAccessTy AccessTy; 1182 1183 /// The list of operands which are to be replaced. 1184 SmallVector<LSRFixup, 8> Fixups; 1185 1186 /// Keep track of the min and max offsets of the fixups. 1187 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1188 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1189 1190 /// This records whether all of the fixups using this LSRUse are outside of 1191 /// the loop, in which case some special-case heuristics may be used. 1192 bool AllFixupsOutsideLoop = true; 1193 1194 /// RigidFormula is set to true to guarantee that this use will be associated 1195 /// with a single formula--the one that initially matched. Some SCEV 1196 /// expressions cannot be expanded. This allows LSR to consider the registers 1197 /// used by those expressions without the need to expand them later after 1198 /// changing the formula. 1199 bool RigidFormula = false; 1200 1201 /// This records the widest use type for any fixup using this 1202 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1203 /// fixup widths to be equivalent, because the narrower one may be relying on 1204 /// the implicit truncation to truncate away bogus bits. 1205 Type *WidestFixupType = nullptr; 1206 1207 /// A list of ways to build a value that can satisfy this user. After the 1208 /// list is populated, one of these is selected heuristically and used to 1209 /// formulate a replacement for OperandValToReplace in UserInst. 1210 SmallVector<Formula, 12> Formulae; 1211 1212 /// The set of register candidates used by all formulae in this LSRUse. 1213 SmallPtrSet<const SCEV *, 4> Regs; 1214 1215 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1216 1217 LSRFixup &getNewFixup() { 1218 Fixups.push_back(LSRFixup()); 1219 return Fixups.back(); 1220 } 1221 1222 void pushFixup(LSRFixup &f) { 1223 Fixups.push_back(f); 1224 if (f.Offset > MaxOffset) 1225 MaxOffset = f.Offset; 1226 if (f.Offset < MinOffset) 1227 MinOffset = f.Offset; 1228 } 1229 1230 bool HasFormulaWithSameRegs(const Formula &F) const; 1231 float getNotSelectedProbability(const SCEV *Reg) const; 1232 bool InsertFormula(const Formula &F, const Loop &L); 1233 void DeleteFormula(Formula &F); 1234 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1235 1236 void print(raw_ostream &OS) const; 1237 void dump() const; 1238 }; 1239 1240 } // end anonymous namespace 1241 1242 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1243 LSRUse::KindType Kind, MemAccessTy AccessTy, 1244 GlobalValue *BaseGV, int64_t BaseOffset, 1245 bool HasBaseReg, int64_t Scale, 1246 Instruction *Fixup = nullptr); 1247 1248 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1249 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1250 return 1; 1251 if (Depth == 0) 1252 return 0; 1253 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1254 return getSetupCost(S->getStart(), Depth - 1); 1255 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1256 return getSetupCost(S->getOperand(), Depth - 1); 1257 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1258 return std::accumulate(S->op_begin(), S->op_end(), 0, 1259 [&](unsigned i, const SCEV *Reg) { 1260 return i + getSetupCost(Reg, Depth - 1); 1261 }); 1262 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1263 return getSetupCost(S->getLHS(), Depth - 1) + 1264 getSetupCost(S->getRHS(), Depth - 1); 1265 return 0; 1266 } 1267 1268 /// Tally up interesting quantities from the given register. 1269 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1270 SmallPtrSetImpl<const SCEV *> &Regs) { 1271 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1272 // If this is an addrec for another loop, it should be an invariant 1273 // with respect to L since L is the innermost loop (at least 1274 // for now LSR only handles innermost loops). 1275 if (AR->getLoop() != L) { 1276 // If the AddRec exists, consider it's register free and leave it alone. 1277 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1278 return; 1279 1280 // It is bad to allow LSR for current loop to add induction variables 1281 // for its sibling loops. 1282 if (!AR->getLoop()->contains(L)) { 1283 Lose(); 1284 return; 1285 } 1286 1287 // Otherwise, it will be an invariant with respect to Loop L. 1288 ++C.NumRegs; 1289 return; 1290 } 1291 1292 unsigned LoopCost = 1; 1293 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1294 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1295 1296 // If the step size matches the base offset, we could use pre-indexed 1297 // addressing. 1298 if (AMK == TTI::AMK_PreIndexed) { 1299 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1300 if (Step->getAPInt() == F.BaseOffset) 1301 LoopCost = 0; 1302 } else if (AMK == TTI::AMK_PostIndexed) { 1303 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1304 if (isa<SCEVConstant>(LoopStep)) { 1305 const SCEV *LoopStart = AR->getStart(); 1306 if (!isa<SCEVConstant>(LoopStart) && 1307 SE->isLoopInvariant(LoopStart, L)) 1308 LoopCost = 0; 1309 } 1310 } 1311 } 1312 C.AddRecCost += LoopCost; 1313 1314 // Add the step value register, if it needs one. 1315 // TODO: The non-affine case isn't precisely modeled here. 1316 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1317 if (!Regs.count(AR->getOperand(1))) { 1318 RateRegister(F, AR->getOperand(1), Regs); 1319 if (isLoser()) 1320 return; 1321 } 1322 } 1323 } 1324 ++C.NumRegs; 1325 1326 // Rough heuristic; favor registers which don't require extra setup 1327 // instructions in the preheader. 1328 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1329 // Ensure we don't, even with the recusion limit, produce invalid costs. 1330 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1331 1332 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1333 SE->hasComputableLoopEvolution(Reg, L); 1334 } 1335 1336 /// Record this register in the set. If we haven't seen it before, rate 1337 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1338 /// one of those regs an instant loser. 1339 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1340 SmallPtrSetImpl<const SCEV *> &Regs, 1341 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1342 if (LoserRegs && LoserRegs->count(Reg)) { 1343 Lose(); 1344 return; 1345 } 1346 if (Regs.insert(Reg).second) { 1347 RateRegister(F, Reg, Regs); 1348 if (LoserRegs && isLoser()) 1349 LoserRegs->insert(Reg); 1350 } 1351 } 1352 1353 void Cost::RateFormula(const Formula &F, 1354 SmallPtrSetImpl<const SCEV *> &Regs, 1355 const DenseSet<const SCEV *> &VisitedRegs, 1356 const LSRUse &LU, 1357 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1358 if (isLoser()) 1359 return; 1360 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1361 // Tally up the registers. 1362 unsigned PrevAddRecCost = C.AddRecCost; 1363 unsigned PrevNumRegs = C.NumRegs; 1364 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1365 if (const SCEV *ScaledReg = F.ScaledReg) { 1366 if (VisitedRegs.count(ScaledReg)) { 1367 Lose(); 1368 return; 1369 } 1370 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1371 if (isLoser()) 1372 return; 1373 } 1374 for (const SCEV *BaseReg : F.BaseRegs) { 1375 if (VisitedRegs.count(BaseReg)) { 1376 Lose(); 1377 return; 1378 } 1379 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1380 if (isLoser()) 1381 return; 1382 } 1383 1384 // Determine how many (unfolded) adds we'll need inside the loop. 1385 size_t NumBaseParts = F.getNumRegs(); 1386 if (NumBaseParts > 1) 1387 // Do not count the base and a possible second register if the target 1388 // allows to fold 2 registers. 1389 C.NumBaseAdds += 1390 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1391 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1392 1393 // Accumulate non-free scaling amounts. 1394 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1395 1396 // Tally up the non-zero immediates. 1397 for (const LSRFixup &Fixup : LU.Fixups) { 1398 int64_t O = Fixup.Offset; 1399 int64_t Offset = (uint64_t)O + F.BaseOffset; 1400 if (F.BaseGV) 1401 C.ImmCost += 64; // Handle symbolic values conservatively. 1402 // TODO: This should probably be the pointer size. 1403 else if (Offset != 0) 1404 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1405 1406 // Check with target if this offset with this instruction is 1407 // specifically not supported. 1408 if (LU.Kind == LSRUse::Address && Offset != 0 && 1409 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1410 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1411 C.NumBaseAdds++; 1412 } 1413 1414 // If we don't count instruction cost exit here. 1415 if (!InsnsCost) { 1416 assert(isValid() && "invalid cost"); 1417 return; 1418 } 1419 1420 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1421 // additional instruction (at least fill). 1422 // TODO: Need distinguish register class? 1423 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1424 TTI->getRegisterClassForType(false, F.getType())) - 1; 1425 if (C.NumRegs > TTIRegNum) { 1426 // Cost already exceeded TTIRegNum, then only newly added register can add 1427 // new instructions. 1428 if (PrevNumRegs > TTIRegNum) 1429 C.Insns += (C.NumRegs - PrevNumRegs); 1430 else 1431 C.Insns += (C.NumRegs - TTIRegNum); 1432 } 1433 1434 // If ICmpZero formula ends with not 0, it could not be replaced by 1435 // just add or sub. We'll need to compare final result of AddRec. 1436 // That means we'll need an additional instruction. But if the target can 1437 // macro-fuse a compare with a branch, don't count this extra instruction. 1438 // For -10 + {0, +, 1}: 1439 // i = i + 1; 1440 // cmp i, 10 1441 // 1442 // For {-10, +, 1}: 1443 // i = i + 1; 1444 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1445 !TTI->canMacroFuseCmp()) 1446 C.Insns++; 1447 // Each new AddRec adds 1 instruction to calculation. 1448 C.Insns += (C.AddRecCost - PrevAddRecCost); 1449 1450 // BaseAdds adds instructions for unfolded registers. 1451 if (LU.Kind != LSRUse::ICmpZero) 1452 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1453 assert(isValid() && "invalid cost"); 1454 } 1455 1456 /// Set this cost to a losing value. 1457 void Cost::Lose() { 1458 C.Insns = std::numeric_limits<unsigned>::max(); 1459 C.NumRegs = std::numeric_limits<unsigned>::max(); 1460 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1461 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1462 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1463 C.ImmCost = std::numeric_limits<unsigned>::max(); 1464 C.SetupCost = std::numeric_limits<unsigned>::max(); 1465 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1466 } 1467 1468 /// Choose the lower cost. 1469 bool Cost::isLess(const Cost &Other) { 1470 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1471 C.Insns != Other.C.Insns) 1472 return C.Insns < Other.C.Insns; 1473 return TTI->isLSRCostLess(C, Other.C); 1474 } 1475 1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1477 void Cost::print(raw_ostream &OS) const { 1478 if (InsnsCost) 1479 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1480 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1481 if (C.AddRecCost != 0) 1482 OS << ", with addrec cost " << C.AddRecCost; 1483 if (C.NumIVMuls != 0) 1484 OS << ", plus " << C.NumIVMuls << " IV mul" 1485 << (C.NumIVMuls == 1 ? "" : "s"); 1486 if (C.NumBaseAdds != 0) 1487 OS << ", plus " << C.NumBaseAdds << " base add" 1488 << (C.NumBaseAdds == 1 ? "" : "s"); 1489 if (C.ScaleCost != 0) 1490 OS << ", plus " << C.ScaleCost << " scale cost"; 1491 if (C.ImmCost != 0) 1492 OS << ", plus " << C.ImmCost << " imm cost"; 1493 if (C.SetupCost != 0) 1494 OS << ", plus " << C.SetupCost << " setup cost"; 1495 } 1496 1497 LLVM_DUMP_METHOD void Cost::dump() const { 1498 print(errs()); errs() << '\n'; 1499 } 1500 #endif 1501 1502 /// Test whether this fixup always uses its value outside of the given loop. 1503 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1504 // PHI nodes use their value in their incoming blocks. 1505 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1506 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1507 if (PN->getIncomingValue(i) == OperandValToReplace && 1508 L->contains(PN->getIncomingBlock(i))) 1509 return false; 1510 return true; 1511 } 1512 1513 return !L->contains(UserInst); 1514 } 1515 1516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1517 void LSRFixup::print(raw_ostream &OS) const { 1518 OS << "UserInst="; 1519 // Store is common and interesting enough to be worth special-casing. 1520 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1521 OS << "store "; 1522 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1523 } else if (UserInst->getType()->isVoidTy()) 1524 OS << UserInst->getOpcodeName(); 1525 else 1526 UserInst->printAsOperand(OS, /*PrintType=*/false); 1527 1528 OS << ", OperandValToReplace="; 1529 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1530 1531 for (const Loop *PIL : PostIncLoops) { 1532 OS << ", PostIncLoop="; 1533 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1534 } 1535 1536 if (Offset != 0) 1537 OS << ", Offset=" << Offset; 1538 } 1539 1540 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1541 print(errs()); errs() << '\n'; 1542 } 1543 #endif 1544 1545 /// Test whether this use as a formula which has the same registers as the given 1546 /// formula. 1547 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1548 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1549 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1550 // Unstable sort by host order ok, because this is only used for uniquifying. 1551 llvm::sort(Key); 1552 return Uniquifier.count(Key); 1553 } 1554 1555 /// The function returns a probability of selecting formula without Reg. 1556 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1557 unsigned FNum = 0; 1558 for (const Formula &F : Formulae) 1559 if (F.referencesReg(Reg)) 1560 FNum++; 1561 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1562 } 1563 1564 /// If the given formula has not yet been inserted, add it to the list, and 1565 /// return true. Return false otherwise. The formula must be in canonical form. 1566 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1567 assert(F.isCanonical(L) && "Invalid canonical representation"); 1568 1569 if (!Formulae.empty() && RigidFormula) 1570 return false; 1571 1572 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1573 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1574 // Unstable sort by host order ok, because this is only used for uniquifying. 1575 llvm::sort(Key); 1576 1577 if (!Uniquifier.insert(Key).second) 1578 return false; 1579 1580 // Using a register to hold the value of 0 is not profitable. 1581 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1582 "Zero allocated in a scaled register!"); 1583 #ifndef NDEBUG 1584 for (const SCEV *BaseReg : F.BaseRegs) 1585 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1586 #endif 1587 1588 // Add the formula to the list. 1589 Formulae.push_back(F); 1590 1591 // Record registers now being used by this use. 1592 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1593 if (F.ScaledReg) 1594 Regs.insert(F.ScaledReg); 1595 1596 return true; 1597 } 1598 1599 /// Remove the given formula from this use's list. 1600 void LSRUse::DeleteFormula(Formula &F) { 1601 if (&F != &Formulae.back()) 1602 std::swap(F, Formulae.back()); 1603 Formulae.pop_back(); 1604 } 1605 1606 /// Recompute the Regs field, and update RegUses. 1607 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1608 // Now that we've filtered out some formulae, recompute the Regs set. 1609 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1610 Regs.clear(); 1611 for (const Formula &F : Formulae) { 1612 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1613 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1614 } 1615 1616 // Update the RegTracker. 1617 for (const SCEV *S : OldRegs) 1618 if (!Regs.count(S)) 1619 RegUses.dropRegister(S, LUIdx); 1620 } 1621 1622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1623 void LSRUse::print(raw_ostream &OS) const { 1624 OS << "LSR Use: Kind="; 1625 switch (Kind) { 1626 case Basic: OS << "Basic"; break; 1627 case Special: OS << "Special"; break; 1628 case ICmpZero: OS << "ICmpZero"; break; 1629 case Address: 1630 OS << "Address of "; 1631 if (AccessTy.MemTy->isPointerTy()) 1632 OS << "pointer"; // the full pointer type could be really verbose 1633 else { 1634 OS << *AccessTy.MemTy; 1635 } 1636 1637 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1638 } 1639 1640 OS << ", Offsets={"; 1641 bool NeedComma = false; 1642 for (const LSRFixup &Fixup : Fixups) { 1643 if (NeedComma) OS << ','; 1644 OS << Fixup.Offset; 1645 NeedComma = true; 1646 } 1647 OS << '}'; 1648 1649 if (AllFixupsOutsideLoop) 1650 OS << ", all-fixups-outside-loop"; 1651 1652 if (WidestFixupType) 1653 OS << ", widest fixup type: " << *WidestFixupType; 1654 } 1655 1656 LLVM_DUMP_METHOD void LSRUse::dump() const { 1657 print(errs()); errs() << '\n'; 1658 } 1659 #endif 1660 1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1662 LSRUse::KindType Kind, MemAccessTy AccessTy, 1663 GlobalValue *BaseGV, int64_t BaseOffset, 1664 bool HasBaseReg, int64_t Scale, 1665 Instruction *Fixup/*= nullptr*/) { 1666 switch (Kind) { 1667 case LSRUse::Address: 1668 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1669 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1670 1671 case LSRUse::ICmpZero: 1672 // There's not even a target hook for querying whether it would be legal to 1673 // fold a GV into an ICmp. 1674 if (BaseGV) 1675 return false; 1676 1677 // ICmp only has two operands; don't allow more than two non-trivial parts. 1678 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1679 return false; 1680 1681 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1682 // putting the scaled register in the other operand of the icmp. 1683 if (Scale != 0 && Scale != -1) 1684 return false; 1685 1686 // If we have low-level target information, ask the target if it can fold an 1687 // integer immediate on an icmp. 1688 if (BaseOffset != 0) { 1689 // We have one of: 1690 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1691 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1692 // Offs is the ICmp immediate. 1693 if (Scale == 0) 1694 // The cast does the right thing with 1695 // std::numeric_limits<int64_t>::min(). 1696 BaseOffset = -(uint64_t)BaseOffset; 1697 return TTI.isLegalICmpImmediate(BaseOffset); 1698 } 1699 1700 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1701 return true; 1702 1703 case LSRUse::Basic: 1704 // Only handle single-register values. 1705 return !BaseGV && Scale == 0 && BaseOffset == 0; 1706 1707 case LSRUse::Special: 1708 // Special case Basic to handle -1 scales. 1709 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1710 } 1711 1712 llvm_unreachable("Invalid LSRUse Kind!"); 1713 } 1714 1715 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1716 int64_t MinOffset, int64_t MaxOffset, 1717 LSRUse::KindType Kind, MemAccessTy AccessTy, 1718 GlobalValue *BaseGV, int64_t BaseOffset, 1719 bool HasBaseReg, int64_t Scale) { 1720 // Check for overflow. 1721 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1722 (MinOffset > 0)) 1723 return false; 1724 MinOffset = (uint64_t)BaseOffset + MinOffset; 1725 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1726 (MaxOffset > 0)) 1727 return false; 1728 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1729 1730 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1731 HasBaseReg, Scale) && 1732 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1733 HasBaseReg, Scale); 1734 } 1735 1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1737 int64_t MinOffset, int64_t MaxOffset, 1738 LSRUse::KindType Kind, MemAccessTy AccessTy, 1739 const Formula &F, const Loop &L) { 1740 // For the purpose of isAMCompletelyFolded either having a canonical formula 1741 // or a scale not equal to zero is correct. 1742 // Problems may arise from non canonical formulae having a scale == 0. 1743 // Strictly speaking it would best to just rely on canonical formulae. 1744 // However, when we generate the scaled formulae, we first check that the 1745 // scaling factor is profitable before computing the actual ScaledReg for 1746 // compile time sake. 1747 assert((F.isCanonical(L) || F.Scale != 0)); 1748 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1749 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1750 } 1751 1752 /// Test whether we know how to expand the current formula. 1753 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1754 int64_t MaxOffset, LSRUse::KindType Kind, 1755 MemAccessTy AccessTy, GlobalValue *BaseGV, 1756 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1757 // We know how to expand completely foldable formulae. 1758 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1759 BaseOffset, HasBaseReg, Scale) || 1760 // Or formulae that use a base register produced by a sum of base 1761 // registers. 1762 (Scale == 1 && 1763 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1764 BaseGV, BaseOffset, true, 0)); 1765 } 1766 1767 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1768 int64_t MaxOffset, LSRUse::KindType Kind, 1769 MemAccessTy AccessTy, const Formula &F) { 1770 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1771 F.BaseOffset, F.HasBaseReg, F.Scale); 1772 } 1773 1774 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1775 const LSRUse &LU, const Formula &F) { 1776 // Target may want to look at the user instructions. 1777 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1778 for (const LSRFixup &Fixup : LU.Fixups) 1779 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1780 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1781 F.Scale, Fixup.UserInst)) 1782 return false; 1783 return true; 1784 } 1785 1786 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1787 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1788 F.Scale); 1789 } 1790 1791 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1792 const LSRUse &LU, const Formula &F, 1793 const Loop &L) { 1794 if (!F.Scale) 1795 return 0; 1796 1797 // If the use is not completely folded in that instruction, we will have to 1798 // pay an extra cost only for scale != 1. 1799 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1800 LU.AccessTy, F, L)) 1801 return F.Scale != 1; 1802 1803 switch (LU.Kind) { 1804 case LSRUse::Address: { 1805 // Check the scaling factor cost with both the min and max offsets. 1806 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1807 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1808 F.Scale, LU.AccessTy.AddrSpace); 1809 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1810 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1811 F.Scale, LU.AccessTy.AddrSpace); 1812 1813 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1814 "Legal addressing mode has an illegal cost!"); 1815 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1816 } 1817 case LSRUse::ICmpZero: 1818 case LSRUse::Basic: 1819 case LSRUse::Special: 1820 // The use is completely folded, i.e., everything is folded into the 1821 // instruction. 1822 return 0; 1823 } 1824 1825 llvm_unreachable("Invalid LSRUse Kind!"); 1826 } 1827 1828 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1829 LSRUse::KindType Kind, MemAccessTy AccessTy, 1830 GlobalValue *BaseGV, int64_t BaseOffset, 1831 bool HasBaseReg) { 1832 // Fast-path: zero is always foldable. 1833 if (BaseOffset == 0 && !BaseGV) return true; 1834 1835 // Conservatively, create an address with an immediate and a 1836 // base and a scale. 1837 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1838 1839 // Canonicalize a scale of 1 to a base register if the formula doesn't 1840 // already have a base register. 1841 if (!HasBaseReg && Scale == 1) { 1842 Scale = 0; 1843 HasBaseReg = true; 1844 } 1845 1846 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1847 HasBaseReg, Scale); 1848 } 1849 1850 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1851 ScalarEvolution &SE, int64_t MinOffset, 1852 int64_t MaxOffset, LSRUse::KindType Kind, 1853 MemAccessTy AccessTy, const SCEV *S, 1854 bool HasBaseReg) { 1855 // Fast-path: zero is always foldable. 1856 if (S->isZero()) return true; 1857 1858 // Conservatively, create an address with an immediate and a 1859 // base and a scale. 1860 int64_t BaseOffset = ExtractImmediate(S, SE); 1861 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1862 1863 // If there's anything else involved, it's not foldable. 1864 if (!S->isZero()) return false; 1865 1866 // Fast-path: zero is always foldable. 1867 if (BaseOffset == 0 && !BaseGV) return true; 1868 1869 // Conservatively, create an address with an immediate and a 1870 // base and a scale. 1871 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1872 1873 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1874 BaseOffset, HasBaseReg, Scale); 1875 } 1876 1877 namespace { 1878 1879 /// An individual increment in a Chain of IV increments. Relate an IV user to 1880 /// an expression that computes the IV it uses from the IV used by the previous 1881 /// link in the Chain. 1882 /// 1883 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1884 /// original IVOperand. The head of the chain's IVOperand is only valid during 1885 /// chain collection, before LSR replaces IV users. During chain generation, 1886 /// IncExpr can be used to find the new IVOperand that computes the same 1887 /// expression. 1888 struct IVInc { 1889 Instruction *UserInst; 1890 Value* IVOperand; 1891 const SCEV *IncExpr; 1892 1893 IVInc(Instruction *U, Value *O, const SCEV *E) 1894 : UserInst(U), IVOperand(O), IncExpr(E) {} 1895 }; 1896 1897 // The list of IV increments in program order. We typically add the head of a 1898 // chain without finding subsequent links. 1899 struct IVChain { 1900 SmallVector<IVInc, 1> Incs; 1901 const SCEV *ExprBase = nullptr; 1902 1903 IVChain() = default; 1904 IVChain(const IVInc &Head, const SCEV *Base) 1905 : Incs(1, Head), ExprBase(Base) {} 1906 1907 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1908 1909 // Return the first increment in the chain. 1910 const_iterator begin() const { 1911 assert(!Incs.empty()); 1912 return std::next(Incs.begin()); 1913 } 1914 const_iterator end() const { 1915 return Incs.end(); 1916 } 1917 1918 // Returns true if this chain contains any increments. 1919 bool hasIncs() const { return Incs.size() >= 2; } 1920 1921 // Add an IVInc to the end of this chain. 1922 void add(const IVInc &X) { Incs.push_back(X); } 1923 1924 // Returns the last UserInst in the chain. 1925 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1926 1927 // Returns true if IncExpr can be profitably added to this chain. 1928 bool isProfitableIncrement(const SCEV *OperExpr, 1929 const SCEV *IncExpr, 1930 ScalarEvolution&); 1931 }; 1932 1933 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1934 /// between FarUsers that definitely cross IV increments and NearUsers that may 1935 /// be used between IV increments. 1936 struct ChainUsers { 1937 SmallPtrSet<Instruction*, 4> FarUsers; 1938 SmallPtrSet<Instruction*, 4> NearUsers; 1939 }; 1940 1941 /// This class holds state for the main loop strength reduction logic. 1942 class LSRInstance { 1943 IVUsers &IU; 1944 ScalarEvolution &SE; 1945 DominatorTree &DT; 1946 LoopInfo &LI; 1947 AssumptionCache &AC; 1948 TargetLibraryInfo &TLI; 1949 const TargetTransformInfo &TTI; 1950 Loop *const L; 1951 MemorySSAUpdater *MSSAU; 1952 TTI::AddressingModeKind AMK; 1953 bool Changed = false; 1954 1955 /// This is the insert position that the current loop's induction variable 1956 /// increment should be placed. In simple loops, this is the latch block's 1957 /// terminator. But in more complicated cases, this is a position which will 1958 /// dominate all the in-loop post-increment users. 1959 Instruction *IVIncInsertPos = nullptr; 1960 1961 /// Interesting factors between use strides. 1962 /// 1963 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1964 /// default, a SmallDenseSet, because we need to use the full range of 1965 /// int64_ts, and there's currently no good way of doing that with 1966 /// SmallDenseSet. 1967 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1968 1969 /// Interesting use types, to facilitate truncation reuse. 1970 SmallSetVector<Type *, 4> Types; 1971 1972 /// The list of interesting uses. 1973 mutable SmallVector<LSRUse, 16> Uses; 1974 1975 /// Track which uses use which register candidates. 1976 RegUseTracker RegUses; 1977 1978 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1979 // have more than a few IV increment chains in a loop. Missing a Chain falls 1980 // back to normal LSR behavior for those uses. 1981 static const unsigned MaxChains = 8; 1982 1983 /// IV users can form a chain of IV increments. 1984 SmallVector<IVChain, MaxChains> IVChainVec; 1985 1986 /// IV users that belong to profitable IVChains. 1987 SmallPtrSet<Use*, MaxChains> IVIncSet; 1988 1989 /// Induction variables that were generated and inserted by the SCEV Expander. 1990 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 1991 1992 void OptimizeShadowIV(); 1993 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1994 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1995 void OptimizeLoopTermCond(); 1996 1997 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1998 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1999 void FinalizeChain(IVChain &Chain); 2000 void CollectChains(); 2001 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2002 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2003 2004 void CollectInterestingTypesAndFactors(); 2005 void CollectFixupsAndInitialFormulae(); 2006 2007 // Support for sharing of LSRUses between LSRFixups. 2008 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2009 UseMapTy UseMap; 2010 2011 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2012 LSRUse::KindType Kind, MemAccessTy AccessTy); 2013 2014 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2015 MemAccessTy AccessTy); 2016 2017 void DeleteUse(LSRUse &LU, size_t LUIdx); 2018 2019 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2020 2021 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2022 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2023 void CountRegisters(const Formula &F, size_t LUIdx); 2024 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2025 2026 void CollectLoopInvariantFixupsAndFormulae(); 2027 2028 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2029 unsigned Depth = 0); 2030 2031 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2032 const Formula &Base, unsigned Depth, 2033 size_t Idx, bool IsScaledReg = false); 2034 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2035 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2036 const Formula &Base, size_t Idx, 2037 bool IsScaledReg = false); 2038 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2039 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2040 const Formula &Base, 2041 const SmallVectorImpl<int64_t> &Worklist, 2042 size_t Idx, bool IsScaledReg = false); 2043 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2044 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2045 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2046 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2047 void GenerateCrossUseConstantOffsets(); 2048 void GenerateAllReuseFormulae(); 2049 2050 void FilterOutUndesirableDedicatedRegisters(); 2051 2052 size_t EstimateSearchSpaceComplexity() const; 2053 void NarrowSearchSpaceByDetectingSupersets(); 2054 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2055 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2056 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2057 void NarrowSearchSpaceByFilterPostInc(); 2058 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2059 void NarrowSearchSpaceByPickingWinnerRegs(); 2060 void NarrowSearchSpaceUsingHeuristics(); 2061 2062 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2063 Cost &SolutionCost, 2064 SmallVectorImpl<const Formula *> &Workspace, 2065 const Cost &CurCost, 2066 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2067 DenseSet<const SCEV *> &VisitedRegs) const; 2068 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2069 2070 BasicBlock::iterator 2071 HoistInsertPosition(BasicBlock::iterator IP, 2072 const SmallVectorImpl<Instruction *> &Inputs) const; 2073 BasicBlock::iterator 2074 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2075 const LSRFixup &LF, 2076 const LSRUse &LU, 2077 SCEVExpander &Rewriter) const; 2078 2079 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2080 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2081 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2082 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2083 const Formula &F, SCEVExpander &Rewriter, 2084 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2085 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2086 SCEVExpander &Rewriter, 2087 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2088 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2089 2090 public: 2091 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2092 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2093 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2094 2095 bool getChanged() const { return Changed; } 2096 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2097 return ScalarEvolutionIVs; 2098 } 2099 2100 void print_factors_and_types(raw_ostream &OS) const; 2101 void print_fixups(raw_ostream &OS) const; 2102 void print_uses(raw_ostream &OS) const; 2103 void print(raw_ostream &OS) const; 2104 void dump() const; 2105 }; 2106 2107 } // end anonymous namespace 2108 2109 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2110 /// the cast operation. 2111 void LSRInstance::OptimizeShadowIV() { 2112 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2113 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2114 return; 2115 2116 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2117 UI != E; /* empty */) { 2118 IVUsers::const_iterator CandidateUI = UI; 2119 ++UI; 2120 Instruction *ShadowUse = CandidateUI->getUser(); 2121 Type *DestTy = nullptr; 2122 bool IsSigned = false; 2123 2124 /* If shadow use is a int->float cast then insert a second IV 2125 to eliminate this cast. 2126 2127 for (unsigned i = 0; i < n; ++i) 2128 foo((double)i); 2129 2130 is transformed into 2131 2132 double d = 0.0; 2133 for (unsigned i = 0; i < n; ++i, ++d) 2134 foo(d); 2135 */ 2136 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2137 IsSigned = false; 2138 DestTy = UCast->getDestTy(); 2139 } 2140 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2141 IsSigned = true; 2142 DestTy = SCast->getDestTy(); 2143 } 2144 if (!DestTy) continue; 2145 2146 // If target does not support DestTy natively then do not apply 2147 // this transformation. 2148 if (!TTI.isTypeLegal(DestTy)) continue; 2149 2150 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2151 if (!PH) continue; 2152 if (PH->getNumIncomingValues() != 2) continue; 2153 2154 // If the calculation in integers overflows, the result in FP type will 2155 // differ. So we only can do this transformation if we are guaranteed to not 2156 // deal with overflowing values 2157 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2158 if (!AR) continue; 2159 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2160 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2161 2162 Type *SrcTy = PH->getType(); 2163 int Mantissa = DestTy->getFPMantissaWidth(); 2164 if (Mantissa == -1) continue; 2165 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2166 continue; 2167 2168 unsigned Entry, Latch; 2169 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2170 Entry = 0; 2171 Latch = 1; 2172 } else { 2173 Entry = 1; 2174 Latch = 0; 2175 } 2176 2177 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2178 if (!Init) continue; 2179 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2180 (double)Init->getSExtValue() : 2181 (double)Init->getZExtValue()); 2182 2183 BinaryOperator *Incr = 2184 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2185 if (!Incr) continue; 2186 if (Incr->getOpcode() != Instruction::Add 2187 && Incr->getOpcode() != Instruction::Sub) 2188 continue; 2189 2190 /* Initialize new IV, double d = 0.0 in above example. */ 2191 ConstantInt *C = nullptr; 2192 if (Incr->getOperand(0) == PH) 2193 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2194 else if (Incr->getOperand(1) == PH) 2195 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2196 else 2197 continue; 2198 2199 if (!C) continue; 2200 2201 // Ignore negative constants, as the code below doesn't handle them 2202 // correctly. TODO: Remove this restriction. 2203 if (!C->getValue().isStrictlyPositive()) continue; 2204 2205 /* Add new PHINode. */ 2206 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2207 2208 /* create new increment. '++d' in above example. */ 2209 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2210 BinaryOperator *NewIncr = 2211 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2212 Instruction::FAdd : Instruction::FSub, 2213 NewPH, CFP, "IV.S.next.", Incr); 2214 2215 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2216 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2217 2218 /* Remove cast operation */ 2219 ShadowUse->replaceAllUsesWith(NewPH); 2220 ShadowUse->eraseFromParent(); 2221 Changed = true; 2222 break; 2223 } 2224 } 2225 2226 /// If Cond has an operand that is an expression of an IV, set the IV user and 2227 /// stride information and return true, otherwise return false. 2228 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2229 for (IVStrideUse &U : IU) 2230 if (U.getUser() == Cond) { 2231 // NOTE: we could handle setcc instructions with multiple uses here, but 2232 // InstCombine does it as well for simple uses, it's not clear that it 2233 // occurs enough in real life to handle. 2234 CondUse = &U; 2235 return true; 2236 } 2237 return false; 2238 } 2239 2240 /// Rewrite the loop's terminating condition if it uses a max computation. 2241 /// 2242 /// This is a narrow solution to a specific, but acute, problem. For loops 2243 /// like this: 2244 /// 2245 /// i = 0; 2246 /// do { 2247 /// p[i] = 0.0; 2248 /// } while (++i < n); 2249 /// 2250 /// the trip count isn't just 'n', because 'n' might not be positive. And 2251 /// unfortunately this can come up even for loops where the user didn't use 2252 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2253 /// will commonly be lowered like this: 2254 /// 2255 /// if (n > 0) { 2256 /// i = 0; 2257 /// do { 2258 /// p[i] = 0.0; 2259 /// } while (++i < n); 2260 /// } 2261 /// 2262 /// and then it's possible for subsequent optimization to obscure the if 2263 /// test in such a way that indvars can't find it. 2264 /// 2265 /// When indvars can't find the if test in loops like this, it creates a 2266 /// max expression, which allows it to give the loop a canonical 2267 /// induction variable: 2268 /// 2269 /// i = 0; 2270 /// max = n < 1 ? 1 : n; 2271 /// do { 2272 /// p[i] = 0.0; 2273 /// } while (++i != max); 2274 /// 2275 /// Canonical induction variables are necessary because the loop passes 2276 /// are designed around them. The most obvious example of this is the 2277 /// LoopInfo analysis, which doesn't remember trip count values. It 2278 /// expects to be able to rediscover the trip count each time it is 2279 /// needed, and it does this using a simple analysis that only succeeds if 2280 /// the loop has a canonical induction variable. 2281 /// 2282 /// However, when it comes time to generate code, the maximum operation 2283 /// can be quite costly, especially if it's inside of an outer loop. 2284 /// 2285 /// This function solves this problem by detecting this type of loop and 2286 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2287 /// the instructions for the maximum computation. 2288 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2289 // Check that the loop matches the pattern we're looking for. 2290 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2291 Cond->getPredicate() != CmpInst::ICMP_NE) 2292 return Cond; 2293 2294 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2295 if (!Sel || !Sel->hasOneUse()) return Cond; 2296 2297 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2298 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2299 return Cond; 2300 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2301 2302 // Add one to the backedge-taken count to get the trip count. 2303 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2304 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2305 2306 // Check for a max calculation that matches the pattern. There's no check 2307 // for ICMP_ULE here because the comparison would be with zero, which 2308 // isn't interesting. 2309 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2310 const SCEVNAryExpr *Max = nullptr; 2311 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2312 Pred = ICmpInst::ICMP_SLE; 2313 Max = S; 2314 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2315 Pred = ICmpInst::ICMP_SLT; 2316 Max = S; 2317 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2318 Pred = ICmpInst::ICMP_ULT; 2319 Max = U; 2320 } else { 2321 // No match; bail. 2322 return Cond; 2323 } 2324 2325 // To handle a max with more than two operands, this optimization would 2326 // require additional checking and setup. 2327 if (Max->getNumOperands() != 2) 2328 return Cond; 2329 2330 const SCEV *MaxLHS = Max->getOperand(0); 2331 const SCEV *MaxRHS = Max->getOperand(1); 2332 2333 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2334 // for a comparison with 1. For <= and >=, a comparison with zero. 2335 if (!MaxLHS || 2336 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2337 return Cond; 2338 2339 // Check the relevant induction variable for conformance to 2340 // the pattern. 2341 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2342 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2343 if (!AR || !AR->isAffine() || 2344 AR->getStart() != One || 2345 AR->getStepRecurrence(SE) != One) 2346 return Cond; 2347 2348 assert(AR->getLoop() == L && 2349 "Loop condition operand is an addrec in a different loop!"); 2350 2351 // Check the right operand of the select, and remember it, as it will 2352 // be used in the new comparison instruction. 2353 Value *NewRHS = nullptr; 2354 if (ICmpInst::isTrueWhenEqual(Pred)) { 2355 // Look for n+1, and grab n. 2356 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2357 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2358 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2359 NewRHS = BO->getOperand(0); 2360 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2361 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2362 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2363 NewRHS = BO->getOperand(0); 2364 if (!NewRHS) 2365 return Cond; 2366 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2367 NewRHS = Sel->getOperand(1); 2368 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2369 NewRHS = Sel->getOperand(2); 2370 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2371 NewRHS = SU->getValue(); 2372 else 2373 // Max doesn't match expected pattern. 2374 return Cond; 2375 2376 // Determine the new comparison opcode. It may be signed or unsigned, 2377 // and the original comparison may be either equality or inequality. 2378 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2379 Pred = CmpInst::getInversePredicate(Pred); 2380 2381 // Ok, everything looks ok to change the condition into an SLT or SGE and 2382 // delete the max calculation. 2383 ICmpInst *NewCond = 2384 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2385 2386 // Delete the max calculation instructions. 2387 NewCond->setDebugLoc(Cond->getDebugLoc()); 2388 Cond->replaceAllUsesWith(NewCond); 2389 CondUse->setUser(NewCond); 2390 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2391 Cond->eraseFromParent(); 2392 Sel->eraseFromParent(); 2393 if (Cmp->use_empty()) 2394 Cmp->eraseFromParent(); 2395 return NewCond; 2396 } 2397 2398 /// Change loop terminating condition to use the postinc iv when possible. 2399 void 2400 LSRInstance::OptimizeLoopTermCond() { 2401 SmallPtrSet<Instruction *, 4> PostIncs; 2402 2403 // We need a different set of heuristics for rotated and non-rotated loops. 2404 // If a loop is rotated then the latch is also the backedge, so inserting 2405 // post-inc expressions just before the latch is ideal. To reduce live ranges 2406 // it also makes sense to rewrite terminating conditions to use post-inc 2407 // expressions. 2408 // 2409 // If the loop is not rotated then the latch is not a backedge; the latch 2410 // check is done in the loop head. Adding post-inc expressions before the 2411 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2412 // in the loop body. In this case we do *not* want to use post-inc expressions 2413 // in the latch check, and we want to insert post-inc expressions before 2414 // the backedge. 2415 BasicBlock *LatchBlock = L->getLoopLatch(); 2416 SmallVector<BasicBlock*, 8> ExitingBlocks; 2417 L->getExitingBlocks(ExitingBlocks); 2418 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2419 return LatchBlock != BB; 2420 })) { 2421 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2422 IVIncInsertPos = LatchBlock->getTerminator(); 2423 return; 2424 } 2425 2426 // Otherwise treat this as a rotated loop. 2427 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2428 // Get the terminating condition for the loop if possible. If we 2429 // can, we want to change it to use a post-incremented version of its 2430 // induction variable, to allow coalescing the live ranges for the IV into 2431 // one register value. 2432 2433 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2434 if (!TermBr) 2435 continue; 2436 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2437 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2438 continue; 2439 2440 // Search IVUsesByStride to find Cond's IVUse if there is one. 2441 IVStrideUse *CondUse = nullptr; 2442 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2443 if (!FindIVUserForCond(Cond, CondUse)) 2444 continue; 2445 2446 // If the trip count is computed in terms of a max (due to ScalarEvolution 2447 // being unable to find a sufficient guard, for example), change the loop 2448 // comparison to use SLT or ULT instead of NE. 2449 // One consequence of doing this now is that it disrupts the count-down 2450 // optimization. That's not always a bad thing though, because in such 2451 // cases it may still be worthwhile to avoid a max. 2452 Cond = OptimizeMax(Cond, CondUse); 2453 2454 // If this exiting block dominates the latch block, it may also use 2455 // the post-inc value if it won't be shared with other uses. 2456 // Check for dominance. 2457 if (!DT.dominates(ExitingBlock, LatchBlock)) 2458 continue; 2459 2460 // Conservatively avoid trying to use the post-inc value in non-latch 2461 // exits if there may be pre-inc users in intervening blocks. 2462 if (LatchBlock != ExitingBlock) 2463 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2464 // Test if the use is reachable from the exiting block. This dominator 2465 // query is a conservative approximation of reachability. 2466 if (&*UI != CondUse && 2467 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2468 // Conservatively assume there may be reuse if the quotient of their 2469 // strides could be a legal scale. 2470 const SCEV *A = IU.getStride(*CondUse, L); 2471 const SCEV *B = IU.getStride(*UI, L); 2472 if (!A || !B) continue; 2473 if (SE.getTypeSizeInBits(A->getType()) != 2474 SE.getTypeSizeInBits(B->getType())) { 2475 if (SE.getTypeSizeInBits(A->getType()) > 2476 SE.getTypeSizeInBits(B->getType())) 2477 B = SE.getSignExtendExpr(B, A->getType()); 2478 else 2479 A = SE.getSignExtendExpr(A, B->getType()); 2480 } 2481 if (const SCEVConstant *D = 2482 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2483 const ConstantInt *C = D->getValue(); 2484 // Stride of one or negative one can have reuse with non-addresses. 2485 if (C->isOne() || C->isMinusOne()) 2486 goto decline_post_inc; 2487 // Avoid weird situations. 2488 if (C->getValue().getMinSignedBits() >= 64 || 2489 C->getValue().isMinSignedValue()) 2490 goto decline_post_inc; 2491 // Check for possible scaled-address reuse. 2492 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2493 MemAccessTy AccessTy = getAccessType( 2494 TTI, UI->getUser(), UI->getOperandValToReplace()); 2495 int64_t Scale = C->getSExtValue(); 2496 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2497 /*BaseOffset=*/0, 2498 /*HasBaseReg=*/false, Scale, 2499 AccessTy.AddrSpace)) 2500 goto decline_post_inc; 2501 Scale = -Scale; 2502 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2503 /*BaseOffset=*/0, 2504 /*HasBaseReg=*/false, Scale, 2505 AccessTy.AddrSpace)) 2506 goto decline_post_inc; 2507 } 2508 } 2509 } 2510 2511 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2512 << *Cond << '\n'); 2513 2514 // It's possible for the setcc instruction to be anywhere in the loop, and 2515 // possible for it to have multiple users. If it is not immediately before 2516 // the exiting block branch, move it. 2517 if (Cond->getNextNonDebugInstruction() != TermBr) { 2518 if (Cond->hasOneUse()) { 2519 Cond->moveBefore(TermBr); 2520 } else { 2521 // Clone the terminating condition and insert into the loopend. 2522 ICmpInst *OldCond = Cond; 2523 Cond = cast<ICmpInst>(Cond->clone()); 2524 Cond->setName(L->getHeader()->getName() + ".termcond"); 2525 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2526 2527 // Clone the IVUse, as the old use still exists! 2528 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2529 TermBr->replaceUsesOfWith(OldCond, Cond); 2530 } 2531 } 2532 2533 // If we get to here, we know that we can transform the setcc instruction to 2534 // use the post-incremented version of the IV, allowing us to coalesce the 2535 // live ranges for the IV correctly. 2536 CondUse->transformToPostInc(L); 2537 Changed = true; 2538 2539 PostIncs.insert(Cond); 2540 decline_post_inc:; 2541 } 2542 2543 // Determine an insertion point for the loop induction variable increment. It 2544 // must dominate all the post-inc comparisons we just set up, and it must 2545 // dominate the loop latch edge. 2546 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2547 for (Instruction *Inst : PostIncs) { 2548 BasicBlock *BB = 2549 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2550 Inst->getParent()); 2551 if (BB == Inst->getParent()) 2552 IVIncInsertPos = Inst; 2553 else if (BB != IVIncInsertPos->getParent()) 2554 IVIncInsertPos = BB->getTerminator(); 2555 } 2556 } 2557 2558 /// Determine if the given use can accommodate a fixup at the given offset and 2559 /// other details. If so, update the use and return true. 2560 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2561 bool HasBaseReg, LSRUse::KindType Kind, 2562 MemAccessTy AccessTy) { 2563 int64_t NewMinOffset = LU.MinOffset; 2564 int64_t NewMaxOffset = LU.MaxOffset; 2565 MemAccessTy NewAccessTy = AccessTy; 2566 2567 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2568 // something conservative, however this can pessimize in the case that one of 2569 // the uses will have all its uses outside the loop, for example. 2570 if (LU.Kind != Kind) 2571 return false; 2572 2573 // Check for a mismatched access type, and fall back conservatively as needed. 2574 // TODO: Be less conservative when the type is similar and can use the same 2575 // addressing modes. 2576 if (Kind == LSRUse::Address) { 2577 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2578 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2579 AccessTy.AddrSpace); 2580 } 2581 } 2582 2583 // Conservatively assume HasBaseReg is true for now. 2584 if (NewOffset < LU.MinOffset) { 2585 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2586 LU.MaxOffset - NewOffset, HasBaseReg)) 2587 return false; 2588 NewMinOffset = NewOffset; 2589 } else if (NewOffset > LU.MaxOffset) { 2590 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2591 NewOffset - LU.MinOffset, HasBaseReg)) 2592 return false; 2593 NewMaxOffset = NewOffset; 2594 } 2595 2596 // Update the use. 2597 LU.MinOffset = NewMinOffset; 2598 LU.MaxOffset = NewMaxOffset; 2599 LU.AccessTy = NewAccessTy; 2600 return true; 2601 } 2602 2603 /// Return an LSRUse index and an offset value for a fixup which needs the given 2604 /// expression, with the given kind and optional access type. Either reuse an 2605 /// existing use or create a new one, as needed. 2606 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2607 LSRUse::KindType Kind, 2608 MemAccessTy AccessTy) { 2609 const SCEV *Copy = Expr; 2610 int64_t Offset = ExtractImmediate(Expr, SE); 2611 2612 // Basic uses can't accept any offset, for example. 2613 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2614 Offset, /*HasBaseReg=*/ true)) { 2615 Expr = Copy; 2616 Offset = 0; 2617 } 2618 2619 std::pair<UseMapTy::iterator, bool> P = 2620 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2621 if (!P.second) { 2622 // A use already existed with this base. 2623 size_t LUIdx = P.first->second; 2624 LSRUse &LU = Uses[LUIdx]; 2625 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2626 // Reuse this use. 2627 return std::make_pair(LUIdx, Offset); 2628 } 2629 2630 // Create a new use. 2631 size_t LUIdx = Uses.size(); 2632 P.first->second = LUIdx; 2633 Uses.push_back(LSRUse(Kind, AccessTy)); 2634 LSRUse &LU = Uses[LUIdx]; 2635 2636 LU.MinOffset = Offset; 2637 LU.MaxOffset = Offset; 2638 return std::make_pair(LUIdx, Offset); 2639 } 2640 2641 /// Delete the given use from the Uses list. 2642 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2643 if (&LU != &Uses.back()) 2644 std::swap(LU, Uses.back()); 2645 Uses.pop_back(); 2646 2647 // Update RegUses. 2648 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2649 } 2650 2651 /// Look for a use distinct from OrigLU which is has a formula that has the same 2652 /// registers as the given formula. 2653 LSRUse * 2654 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2655 const LSRUse &OrigLU) { 2656 // Search all uses for the formula. This could be more clever. 2657 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2658 LSRUse &LU = Uses[LUIdx]; 2659 // Check whether this use is close enough to OrigLU, to see whether it's 2660 // worthwhile looking through its formulae. 2661 // Ignore ICmpZero uses because they may contain formulae generated by 2662 // GenerateICmpZeroScales, in which case adding fixup offsets may 2663 // be invalid. 2664 if (&LU != &OrigLU && 2665 LU.Kind != LSRUse::ICmpZero && 2666 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2667 LU.WidestFixupType == OrigLU.WidestFixupType && 2668 LU.HasFormulaWithSameRegs(OrigF)) { 2669 // Scan through this use's formulae. 2670 for (const Formula &F : LU.Formulae) { 2671 // Check to see if this formula has the same registers and symbols 2672 // as OrigF. 2673 if (F.BaseRegs == OrigF.BaseRegs && 2674 F.ScaledReg == OrigF.ScaledReg && 2675 F.BaseGV == OrigF.BaseGV && 2676 F.Scale == OrigF.Scale && 2677 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2678 if (F.BaseOffset == 0) 2679 return &LU; 2680 // This is the formula where all the registers and symbols matched; 2681 // there aren't going to be any others. Since we declined it, we 2682 // can skip the rest of the formulae and proceed to the next LSRUse. 2683 break; 2684 } 2685 } 2686 } 2687 } 2688 2689 // Nothing looked good. 2690 return nullptr; 2691 } 2692 2693 void LSRInstance::CollectInterestingTypesAndFactors() { 2694 SmallSetVector<const SCEV *, 4> Strides; 2695 2696 // Collect interesting types and strides. 2697 SmallVector<const SCEV *, 4> Worklist; 2698 for (const IVStrideUse &U : IU) { 2699 const SCEV *Expr = IU.getExpr(U); 2700 2701 // Collect interesting types. 2702 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2703 2704 // Add strides for mentioned loops. 2705 Worklist.push_back(Expr); 2706 do { 2707 const SCEV *S = Worklist.pop_back_val(); 2708 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2709 if (AR->getLoop() == L) 2710 Strides.insert(AR->getStepRecurrence(SE)); 2711 Worklist.push_back(AR->getStart()); 2712 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2713 Worklist.append(Add->op_begin(), Add->op_end()); 2714 } 2715 } while (!Worklist.empty()); 2716 } 2717 2718 // Compute interesting factors from the set of interesting strides. 2719 for (SmallSetVector<const SCEV *, 4>::const_iterator 2720 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2721 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2722 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2723 const SCEV *OldStride = *I; 2724 const SCEV *NewStride = *NewStrideIter; 2725 2726 if (SE.getTypeSizeInBits(OldStride->getType()) != 2727 SE.getTypeSizeInBits(NewStride->getType())) { 2728 if (SE.getTypeSizeInBits(OldStride->getType()) > 2729 SE.getTypeSizeInBits(NewStride->getType())) 2730 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2731 else 2732 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2733 } 2734 if (const SCEVConstant *Factor = 2735 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2736 SE, true))) { 2737 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2738 Factors.insert(Factor->getAPInt().getSExtValue()); 2739 } else if (const SCEVConstant *Factor = 2740 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2741 NewStride, 2742 SE, true))) { 2743 if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero()) 2744 Factors.insert(Factor->getAPInt().getSExtValue()); 2745 } 2746 } 2747 2748 // If all uses use the same type, don't bother looking for truncation-based 2749 // reuse. 2750 if (Types.size() == 1) 2751 Types.clear(); 2752 2753 LLVM_DEBUG(print_factors_and_types(dbgs())); 2754 } 2755 2756 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2757 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2758 /// IVStrideUses, we could partially skip this. 2759 static User::op_iterator 2760 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2761 Loop *L, ScalarEvolution &SE) { 2762 for(; OI != OE; ++OI) { 2763 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2764 if (!SE.isSCEVable(Oper->getType())) 2765 continue; 2766 2767 if (const SCEVAddRecExpr *AR = 2768 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2769 if (AR->getLoop() == L) 2770 break; 2771 } 2772 } 2773 } 2774 return OI; 2775 } 2776 2777 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2778 /// a convenient helper. 2779 static Value *getWideOperand(Value *Oper) { 2780 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2781 return Trunc->getOperand(0); 2782 return Oper; 2783 } 2784 2785 /// Return true if we allow an IV chain to include both types. 2786 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2787 Type *LType = LVal->getType(); 2788 Type *RType = RVal->getType(); 2789 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2790 // Different address spaces means (possibly) 2791 // different types of the pointer implementation, 2792 // e.g. i16 vs i32 so disallow that. 2793 (LType->getPointerAddressSpace() == 2794 RType->getPointerAddressSpace())); 2795 } 2796 2797 /// Return an approximation of this SCEV expression's "base", or NULL for any 2798 /// constant. Returning the expression itself is conservative. Returning a 2799 /// deeper subexpression is more precise and valid as long as it isn't less 2800 /// complex than another subexpression. For expressions involving multiple 2801 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2802 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2803 /// IVInc==b-a. 2804 /// 2805 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2806 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2807 static const SCEV *getExprBase(const SCEV *S) { 2808 switch (S->getSCEVType()) { 2809 default: // uncluding scUnknown. 2810 return S; 2811 case scConstant: 2812 return nullptr; 2813 case scTruncate: 2814 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2815 case scZeroExtend: 2816 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2817 case scSignExtend: 2818 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2819 case scAddExpr: { 2820 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2821 // there's nothing more complex. 2822 // FIXME: not sure if we want to recognize negation. 2823 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2824 for (const SCEV *SubExpr : reverse(Add->operands())) { 2825 if (SubExpr->getSCEVType() == scAddExpr) 2826 return getExprBase(SubExpr); 2827 2828 if (SubExpr->getSCEVType() != scMulExpr) 2829 return SubExpr; 2830 } 2831 return S; // all operands are scaled, be conservative. 2832 } 2833 case scAddRecExpr: 2834 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2835 } 2836 llvm_unreachable("Unknown SCEV kind!"); 2837 } 2838 2839 /// Return true if the chain increment is profitable to expand into a loop 2840 /// invariant value, which may require its own register. A profitable chain 2841 /// increment will be an offset relative to the same base. We allow such offsets 2842 /// to potentially be used as chain increment as long as it's not obviously 2843 /// expensive to expand using real instructions. 2844 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2845 const SCEV *IncExpr, 2846 ScalarEvolution &SE) { 2847 // Aggressively form chains when -stress-ivchain. 2848 if (StressIVChain) 2849 return true; 2850 2851 // Do not replace a constant offset from IV head with a nonconstant IV 2852 // increment. 2853 if (!isa<SCEVConstant>(IncExpr)) { 2854 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2855 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2856 return false; 2857 } 2858 2859 SmallPtrSet<const SCEV*, 8> Processed; 2860 return !isHighCostExpansion(IncExpr, Processed, SE); 2861 } 2862 2863 /// Return true if the number of registers needed for the chain is estimated to 2864 /// be less than the number required for the individual IV users. First prohibit 2865 /// any IV users that keep the IV live across increments (the Users set should 2866 /// be empty). Next count the number and type of increments in the chain. 2867 /// 2868 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2869 /// effectively use postinc addressing modes. Only consider it profitable it the 2870 /// increments can be computed in fewer registers when chained. 2871 /// 2872 /// TODO: Consider IVInc free if it's already used in another chains. 2873 static bool isProfitableChain(IVChain &Chain, 2874 SmallPtrSetImpl<Instruction *> &Users, 2875 ScalarEvolution &SE, 2876 const TargetTransformInfo &TTI) { 2877 if (StressIVChain) 2878 return true; 2879 2880 if (!Chain.hasIncs()) 2881 return false; 2882 2883 if (!Users.empty()) { 2884 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2885 for (Instruction *Inst 2886 : Users) { dbgs() << " " << *Inst << "\n"; }); 2887 return false; 2888 } 2889 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2890 2891 // The chain itself may require a register, so intialize cost to 1. 2892 int cost = 1; 2893 2894 // A complete chain likely eliminates the need for keeping the original IV in 2895 // a register. LSR does not currently know how to form a complete chain unless 2896 // the header phi already exists. 2897 if (isa<PHINode>(Chain.tailUserInst()) 2898 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2899 --cost; 2900 } 2901 const SCEV *LastIncExpr = nullptr; 2902 unsigned NumConstIncrements = 0; 2903 unsigned NumVarIncrements = 0; 2904 unsigned NumReusedIncrements = 0; 2905 2906 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2907 return true; 2908 2909 for (const IVInc &Inc : Chain) { 2910 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2911 return true; 2912 if (Inc.IncExpr->isZero()) 2913 continue; 2914 2915 // Incrementing by zero or some constant is neutral. We assume constants can 2916 // be folded into an addressing mode or an add's immediate operand. 2917 if (isa<SCEVConstant>(Inc.IncExpr)) { 2918 ++NumConstIncrements; 2919 continue; 2920 } 2921 2922 if (Inc.IncExpr == LastIncExpr) 2923 ++NumReusedIncrements; 2924 else 2925 ++NumVarIncrements; 2926 2927 LastIncExpr = Inc.IncExpr; 2928 } 2929 // An IV chain with a single increment is handled by LSR's postinc 2930 // uses. However, a chain with multiple increments requires keeping the IV's 2931 // value live longer than it needs to be if chained. 2932 if (NumConstIncrements > 1) 2933 --cost; 2934 2935 // Materializing increment expressions in the preheader that didn't exist in 2936 // the original code may cost a register. For example, sign-extended array 2937 // indices can produce ridiculous increments like this: 2938 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2939 cost += NumVarIncrements; 2940 2941 // Reusing variable increments likely saves a register to hold the multiple of 2942 // the stride. 2943 cost -= NumReusedIncrements; 2944 2945 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2946 << "\n"); 2947 2948 return cost < 0; 2949 } 2950 2951 /// Add this IV user to an existing chain or make it the head of a new chain. 2952 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2953 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2954 // When IVs are used as types of varying widths, they are generally converted 2955 // to a wider type with some uses remaining narrow under a (free) trunc. 2956 Value *const NextIV = getWideOperand(IVOper); 2957 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2958 const SCEV *const OperExprBase = getExprBase(OperExpr); 2959 2960 // Visit all existing chains. Check if its IVOper can be computed as a 2961 // profitable loop invariant increment from the last link in the Chain. 2962 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2963 const SCEV *LastIncExpr = nullptr; 2964 for (; ChainIdx < NChains; ++ChainIdx) { 2965 IVChain &Chain = IVChainVec[ChainIdx]; 2966 2967 // Prune the solution space aggressively by checking that both IV operands 2968 // are expressions that operate on the same unscaled SCEVUnknown. This 2969 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2970 // first avoids creating extra SCEV expressions. 2971 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2972 continue; 2973 2974 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2975 if (!isCompatibleIVType(PrevIV, NextIV)) 2976 continue; 2977 2978 // A phi node terminates a chain. 2979 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2980 continue; 2981 2982 // The increment must be loop-invariant so it can be kept in a register. 2983 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2984 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2985 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 2986 continue; 2987 2988 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2989 LastIncExpr = IncExpr; 2990 break; 2991 } 2992 } 2993 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2994 // bother for phi nodes, because they must be last in the chain. 2995 if (ChainIdx == NChains) { 2996 if (isa<PHINode>(UserInst)) 2997 return; 2998 if (NChains >= MaxChains && !StressIVChain) { 2999 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3000 return; 3001 } 3002 LastIncExpr = OperExpr; 3003 // IVUsers may have skipped over sign/zero extensions. We don't currently 3004 // attempt to form chains involving extensions unless they can be hoisted 3005 // into this loop's AddRec. 3006 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3007 return; 3008 ++NChains; 3009 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3010 OperExprBase)); 3011 ChainUsersVec.resize(NChains); 3012 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3013 << ") IV=" << *LastIncExpr << "\n"); 3014 } else { 3015 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3016 << ") IV+" << *LastIncExpr << "\n"); 3017 // Add this IV user to the end of the chain. 3018 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3019 } 3020 IVChain &Chain = IVChainVec[ChainIdx]; 3021 3022 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3023 // This chain's NearUsers become FarUsers. 3024 if (!LastIncExpr->isZero()) { 3025 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3026 NearUsers.end()); 3027 NearUsers.clear(); 3028 } 3029 3030 // All other uses of IVOperand become near uses of the chain. 3031 // We currently ignore intermediate values within SCEV expressions, assuming 3032 // they will eventually be used be the current chain, or can be computed 3033 // from one of the chain increments. To be more precise we could 3034 // transitively follow its user and only add leaf IV users to the set. 3035 for (User *U : IVOper->users()) { 3036 Instruction *OtherUse = dyn_cast<Instruction>(U); 3037 if (!OtherUse) 3038 continue; 3039 // Uses in the chain will no longer be uses if the chain is formed. 3040 // Include the head of the chain in this iteration (not Chain.begin()). 3041 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3042 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3043 for( ; IncIter != IncEnd; ++IncIter) { 3044 if (IncIter->UserInst == OtherUse) 3045 break; 3046 } 3047 if (IncIter != IncEnd) 3048 continue; 3049 3050 if (SE.isSCEVable(OtherUse->getType()) 3051 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3052 && IU.isIVUserOrOperand(OtherUse)) { 3053 continue; 3054 } 3055 NearUsers.insert(OtherUse); 3056 } 3057 3058 // Since this user is part of the chain, it's no longer considered a use 3059 // of the chain. 3060 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3061 } 3062 3063 /// Populate the vector of Chains. 3064 /// 3065 /// This decreases ILP at the architecture level. Targets with ample registers, 3066 /// multiple memory ports, and no register renaming probably don't want 3067 /// this. However, such targets should probably disable LSR altogether. 3068 /// 3069 /// The job of LSR is to make a reasonable choice of induction variables across 3070 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3071 /// ILP *within the loop* if the target wants it. 3072 /// 3073 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3074 /// will not reorder memory operations, it will recognize this as a chain, but 3075 /// will generate redundant IV increments. Ideally this would be corrected later 3076 /// by a smart scheduler: 3077 /// = A[i] 3078 /// = A[i+x] 3079 /// A[i] = 3080 /// A[i+x] = 3081 /// 3082 /// TODO: Walk the entire domtree within this loop, not just the path to the 3083 /// loop latch. This will discover chains on side paths, but requires 3084 /// maintaining multiple copies of the Chains state. 3085 void LSRInstance::CollectChains() { 3086 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3087 SmallVector<ChainUsers, 8> ChainUsersVec; 3088 3089 SmallVector<BasicBlock *,8> LatchPath; 3090 BasicBlock *LoopHeader = L->getHeader(); 3091 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3092 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3093 LatchPath.push_back(Rung->getBlock()); 3094 } 3095 LatchPath.push_back(LoopHeader); 3096 3097 // Walk the instruction stream from the loop header to the loop latch. 3098 for (BasicBlock *BB : reverse(LatchPath)) { 3099 for (Instruction &I : *BB) { 3100 // Skip instructions that weren't seen by IVUsers analysis. 3101 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3102 continue; 3103 3104 // Ignore users that are part of a SCEV expression. This way we only 3105 // consider leaf IV Users. This effectively rediscovers a portion of 3106 // IVUsers analysis but in program order this time. 3107 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3108 continue; 3109 3110 // Remove this instruction from any NearUsers set it may be in. 3111 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3112 ChainIdx < NChains; ++ChainIdx) { 3113 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3114 } 3115 // Search for operands that can be chained. 3116 SmallPtrSet<Instruction*, 4> UniqueOperands; 3117 User::op_iterator IVOpEnd = I.op_end(); 3118 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3119 while (IVOpIter != IVOpEnd) { 3120 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3121 if (UniqueOperands.insert(IVOpInst).second) 3122 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3123 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3124 } 3125 } // Continue walking down the instructions. 3126 } // Continue walking down the domtree. 3127 // Visit phi backedges to determine if the chain can generate the IV postinc. 3128 for (PHINode &PN : L->getHeader()->phis()) { 3129 if (!SE.isSCEVable(PN.getType())) 3130 continue; 3131 3132 Instruction *IncV = 3133 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3134 if (IncV) 3135 ChainInstruction(&PN, IncV, ChainUsersVec); 3136 } 3137 // Remove any unprofitable chains. 3138 unsigned ChainIdx = 0; 3139 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3140 UsersIdx < NChains; ++UsersIdx) { 3141 if (!isProfitableChain(IVChainVec[UsersIdx], 3142 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3143 continue; 3144 // Preserve the chain at UsesIdx. 3145 if (ChainIdx != UsersIdx) 3146 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3147 FinalizeChain(IVChainVec[ChainIdx]); 3148 ++ChainIdx; 3149 } 3150 IVChainVec.resize(ChainIdx); 3151 } 3152 3153 void LSRInstance::FinalizeChain(IVChain &Chain) { 3154 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3155 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3156 3157 for (const IVInc &Inc : Chain) { 3158 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3159 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3160 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3161 IVIncSet.insert(UseI); 3162 } 3163 } 3164 3165 /// Return true if the IVInc can be folded into an addressing mode. 3166 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3167 Value *Operand, const TargetTransformInfo &TTI) { 3168 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3169 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3170 return false; 3171 3172 if (IncConst->getAPInt().getMinSignedBits() > 64) 3173 return false; 3174 3175 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3176 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3177 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3178 IncOffset, /*HasBaseReg=*/false)) 3179 return false; 3180 3181 return true; 3182 } 3183 3184 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3185 /// user's operand from the previous IV user's operand. 3186 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3187 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3188 // Find the new IVOperand for the head of the chain. It may have been replaced 3189 // by LSR. 3190 const IVInc &Head = Chain.Incs[0]; 3191 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3192 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3193 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3194 IVOpEnd, L, SE); 3195 Value *IVSrc = nullptr; 3196 while (IVOpIter != IVOpEnd) { 3197 IVSrc = getWideOperand(*IVOpIter); 3198 3199 // If this operand computes the expression that the chain needs, we may use 3200 // it. (Check this after setting IVSrc which is used below.) 3201 // 3202 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3203 // narrow for the chain, so we can no longer use it. We do allow using a 3204 // wider phi, assuming the LSR checked for free truncation. In that case we 3205 // should already have a truncate on this operand such that 3206 // getSCEV(IVSrc) == IncExpr. 3207 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3208 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3209 break; 3210 } 3211 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3212 } 3213 if (IVOpIter == IVOpEnd) { 3214 // Gracefully give up on this chain. 3215 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3216 return; 3217 } 3218 assert(IVSrc && "Failed to find IV chain source"); 3219 3220 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3221 Type *IVTy = IVSrc->getType(); 3222 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3223 const SCEV *LeftOverExpr = nullptr; 3224 for (const IVInc &Inc : Chain) { 3225 Instruction *InsertPt = Inc.UserInst; 3226 if (isa<PHINode>(InsertPt)) 3227 InsertPt = L->getLoopLatch()->getTerminator(); 3228 3229 // IVOper will replace the current IV User's operand. IVSrc is the IV 3230 // value currently held in a register. 3231 Value *IVOper = IVSrc; 3232 if (!Inc.IncExpr->isZero()) { 3233 // IncExpr was the result of subtraction of two narrow values, so must 3234 // be signed. 3235 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3236 LeftOverExpr = LeftOverExpr ? 3237 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3238 } 3239 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3240 // Expand the IV increment. 3241 Rewriter.clearPostInc(); 3242 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3243 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3244 SE.getUnknown(IncV)); 3245 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3246 3247 // If an IV increment can't be folded, use it as the next IV value. 3248 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3249 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3250 IVSrc = IVOper; 3251 LeftOverExpr = nullptr; 3252 } 3253 } 3254 Type *OperTy = Inc.IVOperand->getType(); 3255 if (IVTy != OperTy) { 3256 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3257 "cannot extend a chained IV"); 3258 IRBuilder<> Builder(InsertPt); 3259 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3260 } 3261 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3262 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3263 DeadInsts.emplace_back(OperandIsInstr); 3264 } 3265 // If LSR created a new, wider phi, we may also replace its postinc. We only 3266 // do this if we also found a wide value for the head of the chain. 3267 if (isa<PHINode>(Chain.tailUserInst())) { 3268 for (PHINode &Phi : L->getHeader()->phis()) { 3269 if (!isCompatibleIVType(&Phi, IVSrc)) 3270 continue; 3271 Instruction *PostIncV = dyn_cast<Instruction>( 3272 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3273 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3274 continue; 3275 Value *IVOper = IVSrc; 3276 Type *PostIncTy = PostIncV->getType(); 3277 if (IVTy != PostIncTy) { 3278 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3279 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3280 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3281 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3282 } 3283 Phi.replaceUsesOfWith(PostIncV, IVOper); 3284 DeadInsts.emplace_back(PostIncV); 3285 } 3286 } 3287 } 3288 3289 void LSRInstance::CollectFixupsAndInitialFormulae() { 3290 BranchInst *ExitBranch = nullptr; 3291 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3292 3293 for (const IVStrideUse &U : IU) { 3294 Instruction *UserInst = U.getUser(); 3295 // Skip IV users that are part of profitable IV Chains. 3296 User::op_iterator UseI = 3297 find(UserInst->operands(), U.getOperandValToReplace()); 3298 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3299 if (IVIncSet.count(UseI)) { 3300 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3301 continue; 3302 } 3303 3304 LSRUse::KindType Kind = LSRUse::Basic; 3305 MemAccessTy AccessTy; 3306 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3307 Kind = LSRUse::Address; 3308 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3309 } 3310 3311 const SCEV *S = IU.getExpr(U); 3312 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3313 3314 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3315 // (N - i == 0), and this allows (N - i) to be the expression that we work 3316 // with rather than just N or i, so we can consider the register 3317 // requirements for both N and i at the same time. Limiting this code to 3318 // equality icmps is not a problem because all interesting loops use 3319 // equality icmps, thanks to IndVarSimplify. 3320 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3321 // If CI can be saved in some target, like replaced inside hardware loop 3322 // in PowerPC, no need to generate initial formulae for it. 3323 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3324 continue; 3325 if (CI->isEquality()) { 3326 // Swap the operands if needed to put the OperandValToReplace on the 3327 // left, for consistency. 3328 Value *NV = CI->getOperand(1); 3329 if (NV == U.getOperandValToReplace()) { 3330 CI->setOperand(1, CI->getOperand(0)); 3331 CI->setOperand(0, NV); 3332 NV = CI->getOperand(1); 3333 Changed = true; 3334 } 3335 3336 // x == y --> x - y == 0 3337 const SCEV *N = SE.getSCEV(NV); 3338 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) && 3339 (!NV->getType()->isPointerTy() || 3340 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3341 // S is normalized, so normalize N before folding it into S 3342 // to keep the result normalized. 3343 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3344 Kind = LSRUse::ICmpZero; 3345 S = SE.getMinusSCEV(N, S); 3346 } 3347 3348 // -1 and the negations of all interesting strides (except the negation 3349 // of -1) are now also interesting. 3350 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3351 if (Factors[i] != -1) 3352 Factors.insert(-(uint64_t)Factors[i]); 3353 Factors.insert(-1); 3354 } 3355 } 3356 3357 // Get or create an LSRUse. 3358 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3359 size_t LUIdx = P.first; 3360 int64_t Offset = P.second; 3361 LSRUse &LU = Uses[LUIdx]; 3362 3363 // Record the fixup. 3364 LSRFixup &LF = LU.getNewFixup(); 3365 LF.UserInst = UserInst; 3366 LF.OperandValToReplace = U.getOperandValToReplace(); 3367 LF.PostIncLoops = TmpPostIncLoops; 3368 LF.Offset = Offset; 3369 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3370 3371 if (!LU.WidestFixupType || 3372 SE.getTypeSizeInBits(LU.WidestFixupType) < 3373 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3374 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3375 3376 // If this is the first use of this LSRUse, give it a formula. 3377 if (LU.Formulae.empty()) { 3378 InsertInitialFormula(S, LU, LUIdx); 3379 CountRegisters(LU.Formulae.back(), LUIdx); 3380 } 3381 } 3382 3383 LLVM_DEBUG(print_fixups(dbgs())); 3384 } 3385 3386 /// Insert a formula for the given expression into the given use, separating out 3387 /// loop-variant portions from loop-invariant and loop-computable portions. 3388 void 3389 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3390 // Mark uses whose expressions cannot be expanded. 3391 if (!isSafeToExpand(S, SE, /*CanonicalMode*/ false)) 3392 LU.RigidFormula = true; 3393 3394 Formula F; 3395 F.initialMatch(S, L, SE); 3396 bool Inserted = InsertFormula(LU, LUIdx, F); 3397 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3398 } 3399 3400 /// Insert a simple single-register formula for the given expression into the 3401 /// given use. 3402 void 3403 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3404 LSRUse &LU, size_t LUIdx) { 3405 Formula F; 3406 F.BaseRegs.push_back(S); 3407 F.HasBaseReg = true; 3408 bool Inserted = InsertFormula(LU, LUIdx, F); 3409 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3410 } 3411 3412 /// Note which registers are used by the given formula, updating RegUses. 3413 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3414 if (F.ScaledReg) 3415 RegUses.countRegister(F.ScaledReg, LUIdx); 3416 for (const SCEV *BaseReg : F.BaseRegs) 3417 RegUses.countRegister(BaseReg, LUIdx); 3418 } 3419 3420 /// If the given formula has not yet been inserted, add it to the list, and 3421 /// return true. Return false otherwise. 3422 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3423 // Do not insert formula that we will not be able to expand. 3424 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3425 "Formula is illegal"); 3426 3427 if (!LU.InsertFormula(F, *L)) 3428 return false; 3429 3430 CountRegisters(F, LUIdx); 3431 return true; 3432 } 3433 3434 /// Check for other uses of loop-invariant values which we're tracking. These 3435 /// other uses will pin these values in registers, making them less profitable 3436 /// for elimination. 3437 /// TODO: This currently misses non-constant addrec step registers. 3438 /// TODO: Should this give more weight to users inside the loop? 3439 void 3440 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3441 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3442 SmallPtrSet<const SCEV *, 32> Visited; 3443 3444 while (!Worklist.empty()) { 3445 const SCEV *S = Worklist.pop_back_val(); 3446 3447 // Don't process the same SCEV twice 3448 if (!Visited.insert(S).second) 3449 continue; 3450 3451 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3452 Worklist.append(N->op_begin(), N->op_end()); 3453 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3454 Worklist.push_back(C->getOperand()); 3455 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3456 Worklist.push_back(D->getLHS()); 3457 Worklist.push_back(D->getRHS()); 3458 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3459 const Value *V = US->getValue(); 3460 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3461 // Look for instructions defined outside the loop. 3462 if (L->contains(Inst)) continue; 3463 } else if (isa<UndefValue>(V)) 3464 // Undef doesn't have a live range, so it doesn't matter. 3465 continue; 3466 for (const Use &U : V->uses()) { 3467 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3468 // Ignore non-instructions. 3469 if (!UserInst) 3470 continue; 3471 // Don't bother if the instruction is an EHPad. 3472 if (UserInst->isEHPad()) 3473 continue; 3474 // Ignore instructions in other functions (as can happen with 3475 // Constants). 3476 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3477 continue; 3478 // Ignore instructions not dominated by the loop. 3479 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3480 UserInst->getParent() : 3481 cast<PHINode>(UserInst)->getIncomingBlock( 3482 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3483 if (!DT.dominates(L->getHeader(), UseBB)) 3484 continue; 3485 // Don't bother if the instruction is in a BB which ends in an EHPad. 3486 if (UseBB->getTerminator()->isEHPad()) 3487 continue; 3488 3489 // Ignore cases in which the currently-examined value could come from 3490 // a basic block terminated with an EHPad. This checks all incoming 3491 // blocks of the phi node since it is possible that the same incoming 3492 // value comes from multiple basic blocks, only some of which may end 3493 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3494 // pass would try to insert instructions into an EHPad, hitting an 3495 // assertion. 3496 if (isa<PHINode>(UserInst)) { 3497 const auto *PhiNode = cast<PHINode>(UserInst); 3498 bool HasIncompatibleEHPTerminatedBlock = false; 3499 llvm::Value *ExpectedValue = U; 3500 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3501 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3502 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3503 HasIncompatibleEHPTerminatedBlock = true; 3504 break; 3505 } 3506 } 3507 } 3508 if (HasIncompatibleEHPTerminatedBlock) { 3509 continue; 3510 } 3511 } 3512 3513 // Don't bother rewriting PHIs in catchswitch blocks. 3514 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3515 continue; 3516 // Ignore uses which are part of other SCEV expressions, to avoid 3517 // analyzing them multiple times. 3518 if (SE.isSCEVable(UserInst->getType())) { 3519 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3520 // If the user is a no-op, look through to its uses. 3521 if (!isa<SCEVUnknown>(UserS)) 3522 continue; 3523 if (UserS == US) { 3524 Worklist.push_back( 3525 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3526 continue; 3527 } 3528 } 3529 // Ignore icmp instructions which are already being analyzed. 3530 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3531 unsigned OtherIdx = !U.getOperandNo(); 3532 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3533 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3534 continue; 3535 } 3536 3537 std::pair<size_t, int64_t> P = getUse( 3538 S, LSRUse::Basic, MemAccessTy()); 3539 size_t LUIdx = P.first; 3540 int64_t Offset = P.second; 3541 LSRUse &LU = Uses[LUIdx]; 3542 LSRFixup &LF = LU.getNewFixup(); 3543 LF.UserInst = const_cast<Instruction *>(UserInst); 3544 LF.OperandValToReplace = U; 3545 LF.Offset = Offset; 3546 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3547 if (!LU.WidestFixupType || 3548 SE.getTypeSizeInBits(LU.WidestFixupType) < 3549 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3550 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3551 InsertSupplementalFormula(US, LU, LUIdx); 3552 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3553 break; 3554 } 3555 } 3556 } 3557 } 3558 3559 /// Split S into subexpressions which can be pulled out into separate 3560 /// registers. If C is non-null, multiply each subexpression by C. 3561 /// 3562 /// Return remainder expression after factoring the subexpressions captured by 3563 /// Ops. If Ops is complete, return NULL. 3564 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3565 SmallVectorImpl<const SCEV *> &Ops, 3566 const Loop *L, 3567 ScalarEvolution &SE, 3568 unsigned Depth = 0) { 3569 // Arbitrarily cap recursion to protect compile time. 3570 if (Depth >= 3) 3571 return S; 3572 3573 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3574 // Break out add operands. 3575 for (const SCEV *S : Add->operands()) { 3576 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3577 if (Remainder) 3578 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3579 } 3580 return nullptr; 3581 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3582 // Split a non-zero base out of an addrec. 3583 if (AR->getStart()->isZero() || !AR->isAffine()) 3584 return S; 3585 3586 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3587 C, Ops, L, SE, Depth+1); 3588 // Split the non-zero AddRec unless it is part of a nested recurrence that 3589 // does not pertain to this loop. 3590 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3591 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3592 Remainder = nullptr; 3593 } 3594 if (Remainder != AR->getStart()) { 3595 if (!Remainder) 3596 Remainder = SE.getConstant(AR->getType(), 0); 3597 return SE.getAddRecExpr(Remainder, 3598 AR->getStepRecurrence(SE), 3599 AR->getLoop(), 3600 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3601 SCEV::FlagAnyWrap); 3602 } 3603 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3604 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3605 if (Mul->getNumOperands() != 2) 3606 return S; 3607 if (const SCEVConstant *Op0 = 3608 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3609 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3610 const SCEV *Remainder = 3611 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3612 if (Remainder) 3613 Ops.push_back(SE.getMulExpr(C, Remainder)); 3614 return nullptr; 3615 } 3616 } 3617 return S; 3618 } 3619 3620 /// Return true if the SCEV represents a value that may end up as a 3621 /// post-increment operation. 3622 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3623 LSRUse &LU, const SCEV *S, const Loop *L, 3624 ScalarEvolution &SE) { 3625 if (LU.Kind != LSRUse::Address || 3626 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3627 return false; 3628 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3629 if (!AR) 3630 return false; 3631 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3632 if (!isa<SCEVConstant>(LoopStep)) 3633 return false; 3634 // Check if a post-indexed load/store can be used. 3635 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3636 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3637 const SCEV *LoopStart = AR->getStart(); 3638 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3639 return true; 3640 } 3641 return false; 3642 } 3643 3644 /// Helper function for LSRInstance::GenerateReassociations. 3645 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3646 const Formula &Base, 3647 unsigned Depth, size_t Idx, 3648 bool IsScaledReg) { 3649 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3650 // Don't generate reassociations for the base register of a value that 3651 // may generate a post-increment operator. The reason is that the 3652 // reassociations cause extra base+register formula to be created, 3653 // and possibly chosen, but the post-increment is more efficient. 3654 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3655 return; 3656 SmallVector<const SCEV *, 8> AddOps; 3657 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3658 if (Remainder) 3659 AddOps.push_back(Remainder); 3660 3661 if (AddOps.size() == 1) 3662 return; 3663 3664 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3665 JE = AddOps.end(); 3666 J != JE; ++J) { 3667 // Loop-variant "unknown" values are uninteresting; we won't be able to 3668 // do anything meaningful with them. 3669 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3670 continue; 3671 3672 // Don't pull a constant into a register if the constant could be folded 3673 // into an immediate field. 3674 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3675 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3676 continue; 3677 3678 // Collect all operands except *J. 3679 SmallVector<const SCEV *, 8> InnerAddOps( 3680 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3681 InnerAddOps.append(std::next(J), 3682 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3683 3684 // Don't leave just a constant behind in a register if the constant could 3685 // be folded into an immediate field. 3686 if (InnerAddOps.size() == 1 && 3687 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3688 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3689 continue; 3690 3691 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3692 if (InnerSum->isZero()) 3693 continue; 3694 Formula F = Base; 3695 3696 // Add the remaining pieces of the add back into the new formula. 3697 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3698 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3699 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3700 InnerSumSC->getValue()->getZExtValue())) { 3701 F.UnfoldedOffset = 3702 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3703 if (IsScaledReg) 3704 F.ScaledReg = nullptr; 3705 else 3706 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3707 } else if (IsScaledReg) 3708 F.ScaledReg = InnerSum; 3709 else 3710 F.BaseRegs[Idx] = InnerSum; 3711 3712 // Add J as its own register, or an unfolded immediate. 3713 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3714 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3715 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3716 SC->getValue()->getZExtValue())) 3717 F.UnfoldedOffset = 3718 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3719 else 3720 F.BaseRegs.push_back(*J); 3721 // We may have changed the number of register in base regs, adjust the 3722 // formula accordingly. 3723 F.canonicalize(*L); 3724 3725 if (InsertFormula(LU, LUIdx, F)) 3726 // If that formula hadn't been seen before, recurse to find more like 3727 // it. 3728 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3729 // Because just Depth is not enough to bound compile time. 3730 // This means that every time AddOps.size() is greater 16^x we will add 3731 // x to Depth. 3732 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3733 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3734 } 3735 } 3736 3737 /// Split out subexpressions from adds and the bases of addrecs. 3738 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3739 Formula Base, unsigned Depth) { 3740 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3741 // Arbitrarily cap recursion to protect compile time. 3742 if (Depth >= 3) 3743 return; 3744 3745 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3746 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3747 3748 if (Base.Scale == 1) 3749 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3750 /* Idx */ -1, /* IsScaledReg */ true); 3751 } 3752 3753 /// Generate a formula consisting of all of the loop-dominating registers added 3754 /// into a single register. 3755 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3756 Formula Base) { 3757 // This method is only interesting on a plurality of registers. 3758 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3759 (Base.UnfoldedOffset != 0) <= 1) 3760 return; 3761 3762 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3763 // processing the formula. 3764 Base.unscale(); 3765 SmallVector<const SCEV *, 4> Ops; 3766 Formula NewBase = Base; 3767 NewBase.BaseRegs.clear(); 3768 Type *CombinedIntegerType = nullptr; 3769 for (const SCEV *BaseReg : Base.BaseRegs) { 3770 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3771 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3772 if (!CombinedIntegerType) 3773 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3774 Ops.push_back(BaseReg); 3775 } 3776 else 3777 NewBase.BaseRegs.push_back(BaseReg); 3778 } 3779 3780 // If no register is relevant, we're done. 3781 if (Ops.size() == 0) 3782 return; 3783 3784 // Utility function for generating the required variants of the combined 3785 // registers. 3786 auto GenerateFormula = [&](const SCEV *Sum) { 3787 Formula F = NewBase; 3788 3789 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3790 // opportunity to fold something. For now, just ignore such cases 3791 // rather than proceed with zero in a register. 3792 if (Sum->isZero()) 3793 return; 3794 3795 F.BaseRegs.push_back(Sum); 3796 F.canonicalize(*L); 3797 (void)InsertFormula(LU, LUIdx, F); 3798 }; 3799 3800 // If we collected at least two registers, generate a formula combining them. 3801 if (Ops.size() > 1) { 3802 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3803 GenerateFormula(SE.getAddExpr(OpsCopy)); 3804 } 3805 3806 // If we have an unfolded offset, generate a formula combining it with the 3807 // registers collected. 3808 if (NewBase.UnfoldedOffset) { 3809 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3810 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3811 true)); 3812 NewBase.UnfoldedOffset = 0; 3813 GenerateFormula(SE.getAddExpr(Ops)); 3814 } 3815 } 3816 3817 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3818 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3819 const Formula &Base, size_t Idx, 3820 bool IsScaledReg) { 3821 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3822 GlobalValue *GV = ExtractSymbol(G, SE); 3823 if (G->isZero() || !GV) 3824 return; 3825 Formula F = Base; 3826 F.BaseGV = GV; 3827 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3828 return; 3829 if (IsScaledReg) 3830 F.ScaledReg = G; 3831 else 3832 F.BaseRegs[Idx] = G; 3833 (void)InsertFormula(LU, LUIdx, F); 3834 } 3835 3836 /// Generate reuse formulae using symbolic offsets. 3837 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3838 Formula Base) { 3839 // We can't add a symbolic offset if the address already contains one. 3840 if (Base.BaseGV) return; 3841 3842 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3843 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3844 if (Base.Scale == 1) 3845 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3846 /* IsScaledReg */ true); 3847 } 3848 3849 /// Helper function for LSRInstance::GenerateConstantOffsets. 3850 void LSRInstance::GenerateConstantOffsetsImpl( 3851 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3852 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3853 3854 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3855 Formula F = Base; 3856 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3857 3858 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 3859 // Add the offset to the base register. 3860 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3861 // If it cancelled out, drop the base register, otherwise update it. 3862 if (NewG->isZero()) { 3863 if (IsScaledReg) { 3864 F.Scale = 0; 3865 F.ScaledReg = nullptr; 3866 } else 3867 F.deleteBaseReg(F.BaseRegs[Idx]); 3868 F.canonicalize(*L); 3869 } else if (IsScaledReg) 3870 F.ScaledReg = NewG; 3871 else 3872 F.BaseRegs[Idx] = NewG; 3873 3874 (void)InsertFormula(LU, LUIdx, F); 3875 } 3876 }; 3877 3878 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3879 3880 // With constant offsets and constant steps, we can generate pre-inc 3881 // accesses by having the offset equal the step. So, for access #0 with a 3882 // step of 8, we generate a G - 8 base which would require the first access 3883 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3884 // for itself and hopefully becomes the base for other accesses. This means 3885 // means that a single pre-indexed access can be generated to become the new 3886 // base pointer for each iteration of the loop, resulting in no extra add/sub 3887 // instructions for pointer updating. 3888 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3889 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3890 if (auto *StepRec = 3891 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3892 const APInt &StepInt = StepRec->getAPInt(); 3893 int64_t Step = StepInt.isNegative() ? 3894 StepInt.getSExtValue() : StepInt.getZExtValue(); 3895 3896 for (int64_t Offset : Worklist) { 3897 Offset -= Step; 3898 GenerateOffset(G, Offset); 3899 } 3900 } 3901 } 3902 } 3903 for (int64_t Offset : Worklist) 3904 GenerateOffset(G, Offset); 3905 3906 int64_t Imm = ExtractImmediate(G, SE); 3907 if (G->isZero() || Imm == 0) 3908 return; 3909 Formula F = Base; 3910 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3911 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3912 return; 3913 if (IsScaledReg) { 3914 F.ScaledReg = G; 3915 } else { 3916 F.BaseRegs[Idx] = G; 3917 // We may generate non canonical Formula if G is a recurrent expr reg 3918 // related with current loop while F.ScaledReg is not. 3919 F.canonicalize(*L); 3920 } 3921 (void)InsertFormula(LU, LUIdx, F); 3922 } 3923 3924 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3925 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3926 Formula Base) { 3927 // TODO: For now, just add the min and max offset, because it usually isn't 3928 // worthwhile looking at everything inbetween. 3929 SmallVector<int64_t, 2> Worklist; 3930 Worklist.push_back(LU.MinOffset); 3931 if (LU.MaxOffset != LU.MinOffset) 3932 Worklist.push_back(LU.MaxOffset); 3933 3934 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3935 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3936 if (Base.Scale == 1) 3937 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3938 /* IsScaledReg */ true); 3939 } 3940 3941 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3942 /// == y -> x*c == y*c. 3943 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3944 Formula Base) { 3945 if (LU.Kind != LSRUse::ICmpZero) return; 3946 3947 // Determine the integer type for the base formula. 3948 Type *IntTy = Base.getType(); 3949 if (!IntTy) return; 3950 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3951 3952 // Don't do this if there is more than one offset. 3953 if (LU.MinOffset != LU.MaxOffset) return; 3954 3955 // Check if transformation is valid. It is illegal to multiply pointer. 3956 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3957 return; 3958 for (const SCEV *BaseReg : Base.BaseRegs) 3959 if (BaseReg->getType()->isPointerTy()) 3960 return; 3961 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3962 3963 // Check each interesting stride. 3964 for (int64_t Factor : Factors) { 3965 // Check that Factor can be represented by IntTy 3966 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 3967 continue; 3968 // Check that the multiplication doesn't overflow. 3969 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3970 continue; 3971 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3972 assert(Factor != 0 && "Zero factor not expected!"); 3973 if (NewBaseOffset / Factor != Base.BaseOffset) 3974 continue; 3975 // If the offset will be truncated at this use, check that it is in bounds. 3976 if (!IntTy->isPointerTy() && 3977 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3978 continue; 3979 3980 // Check that multiplying with the use offset doesn't overflow. 3981 int64_t Offset = LU.MinOffset; 3982 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3983 continue; 3984 Offset = (uint64_t)Offset * Factor; 3985 if (Offset / Factor != LU.MinOffset) 3986 continue; 3987 // If the offset will be truncated at this use, check that it is in bounds. 3988 if (!IntTy->isPointerTy() && 3989 !ConstantInt::isValueValidForType(IntTy, Offset)) 3990 continue; 3991 3992 Formula F = Base; 3993 F.BaseOffset = NewBaseOffset; 3994 3995 // Check that this scale is legal. 3996 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3997 continue; 3998 3999 // Compensate for the use having MinOffset built into it. 4000 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 4001 4002 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4003 4004 // Check that multiplying with each base register doesn't overflow. 4005 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4006 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4007 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4008 goto next; 4009 } 4010 4011 // Check that multiplying with the scaled register doesn't overflow. 4012 if (F.ScaledReg) { 4013 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4014 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4015 continue; 4016 } 4017 4018 // Check that multiplying with the unfolded offset doesn't overflow. 4019 if (F.UnfoldedOffset != 0) { 4020 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 4021 Factor == -1) 4022 continue; 4023 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 4024 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 4025 continue; 4026 // If the offset will be truncated, check that it is in bounds. 4027 if (!IntTy->isPointerTy() && 4028 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 4029 continue; 4030 } 4031 4032 // If we make it here and it's legal, add it. 4033 (void)InsertFormula(LU, LUIdx, F); 4034 next:; 4035 } 4036 } 4037 4038 /// Generate stride factor reuse formulae by making use of scaled-offset address 4039 /// modes, for example. 4040 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4041 // Determine the integer type for the base formula. 4042 Type *IntTy = Base.getType(); 4043 if (!IntTy) return; 4044 4045 // If this Formula already has a scaled register, we can't add another one. 4046 // Try to unscale the formula to generate a better scale. 4047 if (Base.Scale != 0 && !Base.unscale()) 4048 return; 4049 4050 assert(Base.Scale == 0 && "unscale did not did its job!"); 4051 4052 // Check each interesting stride. 4053 for (int64_t Factor : Factors) { 4054 Base.Scale = Factor; 4055 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4056 // Check whether this scale is going to be legal. 4057 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4058 Base)) { 4059 // As a special-case, handle special out-of-loop Basic users specially. 4060 // TODO: Reconsider this special case. 4061 if (LU.Kind == LSRUse::Basic && 4062 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4063 LU.AccessTy, Base) && 4064 LU.AllFixupsOutsideLoop) 4065 LU.Kind = LSRUse::Special; 4066 else 4067 continue; 4068 } 4069 // For an ICmpZero, negating a solitary base register won't lead to 4070 // new solutions. 4071 if (LU.Kind == LSRUse::ICmpZero && 4072 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4073 continue; 4074 // For each addrec base reg, if its loop is current loop, apply the scale. 4075 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4076 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4077 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4078 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4079 if (FactorS->isZero()) 4080 continue; 4081 // Divide out the factor, ignoring high bits, since we'll be 4082 // scaling the value back up in the end. 4083 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4084 if (!Quotient->isZero()) { 4085 // TODO: This could be optimized to avoid all the copying. 4086 Formula F = Base; 4087 F.ScaledReg = Quotient; 4088 F.deleteBaseReg(F.BaseRegs[i]); 4089 // The canonical representation of 1*reg is reg, which is already in 4090 // Base. In that case, do not try to insert the formula, it will be 4091 // rejected anyway. 4092 if (F.Scale == 1 && (F.BaseRegs.empty() || 4093 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4094 continue; 4095 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4096 // non canonical Formula with ScaledReg's loop not being L. 4097 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4098 F.canonicalize(*L); 4099 (void)InsertFormula(LU, LUIdx, F); 4100 } 4101 } 4102 } 4103 } 4104 } 4105 4106 /// Generate reuse formulae from different IV types. 4107 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4108 // Don't bother truncating symbolic values. 4109 if (Base.BaseGV) return; 4110 4111 // Determine the integer type for the base formula. 4112 Type *DstTy = Base.getType(); 4113 if (!DstTy) return; 4114 if (DstTy->isPointerTy()) 4115 return; 4116 4117 // It is invalid to extend a pointer type so exit early if ScaledReg or 4118 // any of the BaseRegs are pointers. 4119 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4120 return; 4121 if (any_of(Base.BaseRegs, 4122 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4123 return; 4124 4125 for (Type *SrcTy : Types) { 4126 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4127 Formula F = Base; 4128 4129 // Sometimes SCEV is able to prove zero during ext transform. It may 4130 // happen if SCEV did not do all possible transforms while creating the 4131 // initial node (maybe due to depth limitations), but it can do them while 4132 // taking ext. 4133 if (F.ScaledReg) { 4134 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4135 if (NewScaledReg->isZero()) 4136 continue; 4137 F.ScaledReg = NewScaledReg; 4138 } 4139 bool HasZeroBaseReg = false; 4140 for (const SCEV *&BaseReg : F.BaseRegs) { 4141 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4142 if (NewBaseReg->isZero()) { 4143 HasZeroBaseReg = true; 4144 break; 4145 } 4146 BaseReg = NewBaseReg; 4147 } 4148 if (HasZeroBaseReg) 4149 continue; 4150 4151 // TODO: This assumes we've done basic processing on all uses and 4152 // have an idea what the register usage is. 4153 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4154 continue; 4155 4156 F.canonicalize(*L); 4157 (void)InsertFormula(LU, LUIdx, F); 4158 } 4159 } 4160 } 4161 4162 namespace { 4163 4164 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4165 /// modifications so that the search phase doesn't have to worry about the data 4166 /// structures moving underneath it. 4167 struct WorkItem { 4168 size_t LUIdx; 4169 int64_t Imm; 4170 const SCEV *OrigReg; 4171 4172 WorkItem(size_t LI, int64_t I, const SCEV *R) 4173 : LUIdx(LI), Imm(I), OrigReg(R) {} 4174 4175 void print(raw_ostream &OS) const; 4176 void dump() const; 4177 }; 4178 4179 } // end anonymous namespace 4180 4181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4182 void WorkItem::print(raw_ostream &OS) const { 4183 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4184 << " , add offset " << Imm; 4185 } 4186 4187 LLVM_DUMP_METHOD void WorkItem::dump() const { 4188 print(errs()); errs() << '\n'; 4189 } 4190 #endif 4191 4192 /// Look for registers which are a constant distance apart and try to form reuse 4193 /// opportunities between them. 4194 void LSRInstance::GenerateCrossUseConstantOffsets() { 4195 // Group the registers by their value without any added constant offset. 4196 using ImmMapTy = std::map<int64_t, const SCEV *>; 4197 4198 DenseMap<const SCEV *, ImmMapTy> Map; 4199 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4200 SmallVector<const SCEV *, 8> Sequence; 4201 for (const SCEV *Use : RegUses) { 4202 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4203 int64_t Imm = ExtractImmediate(Reg, SE); 4204 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4205 if (Pair.second) 4206 Sequence.push_back(Reg); 4207 Pair.first->second.insert(std::make_pair(Imm, Use)); 4208 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4209 } 4210 4211 // Now examine each set of registers with the same base value. Build up 4212 // a list of work to do and do the work in a separate step so that we're 4213 // not adding formulae and register counts while we're searching. 4214 SmallVector<WorkItem, 32> WorkItems; 4215 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4216 for (const SCEV *Reg : Sequence) { 4217 const ImmMapTy &Imms = Map.find(Reg)->second; 4218 4219 // It's not worthwhile looking for reuse if there's only one offset. 4220 if (Imms.size() == 1) 4221 continue; 4222 4223 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4224 for (const auto &Entry 4225 : Imms) dbgs() 4226 << ' ' << Entry.first; 4227 dbgs() << '\n'); 4228 4229 // Examine each offset. 4230 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4231 J != JE; ++J) { 4232 const SCEV *OrigReg = J->second; 4233 4234 int64_t JImm = J->first; 4235 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4236 4237 if (!isa<SCEVConstant>(OrigReg) && 4238 UsedByIndicesMap[Reg].count() == 1) { 4239 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4240 << '\n'); 4241 continue; 4242 } 4243 4244 // Conservatively examine offsets between this orig reg a few selected 4245 // other orig regs. 4246 int64_t First = Imms.begin()->first; 4247 int64_t Last = std::prev(Imms.end())->first; 4248 // Compute (First + Last) / 2 without overflow using the fact that 4249 // First + Last = 2 * (First + Last) + (First ^ Last). 4250 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4251 // If the result is negative and First is odd and Last even (or vice versa), 4252 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4253 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4254 ImmMapTy::const_iterator OtherImms[] = { 4255 Imms.begin(), std::prev(Imms.end()), 4256 Imms.lower_bound(Avg)}; 4257 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4258 ImmMapTy::const_iterator M = OtherImms[i]; 4259 if (M == J || M == JE) continue; 4260 4261 // Compute the difference between the two. 4262 int64_t Imm = (uint64_t)JImm - M->first; 4263 for (unsigned LUIdx : UsedByIndices.set_bits()) 4264 // Make a memo of this use, offset, and register tuple. 4265 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4266 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4267 } 4268 } 4269 } 4270 4271 Map.clear(); 4272 Sequence.clear(); 4273 UsedByIndicesMap.clear(); 4274 UniqueItems.clear(); 4275 4276 // Now iterate through the worklist and add new formulae. 4277 for (const WorkItem &WI : WorkItems) { 4278 size_t LUIdx = WI.LUIdx; 4279 LSRUse &LU = Uses[LUIdx]; 4280 int64_t Imm = WI.Imm; 4281 const SCEV *OrigReg = WI.OrigReg; 4282 4283 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4284 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4285 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4286 4287 // TODO: Use a more targeted data structure. 4288 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4289 Formula F = LU.Formulae[L]; 4290 // FIXME: The code for the scaled and unscaled registers looks 4291 // very similar but slightly different. Investigate if they 4292 // could be merged. That way, we would not have to unscale the 4293 // Formula. 4294 F.unscale(); 4295 // Use the immediate in the scaled register. 4296 if (F.ScaledReg == OrigReg) { 4297 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4298 // Don't create 50 + reg(-50). 4299 if (F.referencesReg(SE.getSCEV( 4300 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4301 continue; 4302 Formula NewF = F; 4303 NewF.BaseOffset = Offset; 4304 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4305 NewF)) 4306 continue; 4307 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4308 4309 // If the new scale is a constant in a register, and adding the constant 4310 // value to the immediate would produce a value closer to zero than the 4311 // immediate itself, then the formula isn't worthwhile. 4312 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4313 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4314 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4315 .ule(std::abs(NewF.BaseOffset))) 4316 continue; 4317 4318 // OK, looks good. 4319 NewF.canonicalize(*this->L); 4320 (void)InsertFormula(LU, LUIdx, NewF); 4321 } else { 4322 // Use the immediate in a base register. 4323 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4324 const SCEV *BaseReg = F.BaseRegs[N]; 4325 if (BaseReg != OrigReg) 4326 continue; 4327 Formula NewF = F; 4328 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4329 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4330 LU.Kind, LU.AccessTy, NewF)) { 4331 if (AMK == TTI::AMK_PostIndexed && 4332 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4333 continue; 4334 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4335 continue; 4336 NewF = F; 4337 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4338 } 4339 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4340 4341 // If the new formula has a constant in a register, and adding the 4342 // constant value to the immediate would produce a value closer to 4343 // zero than the immediate itself, then the formula isn't worthwhile. 4344 for (const SCEV *NewReg : NewF.BaseRegs) 4345 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4346 if ((C->getAPInt() + NewF.BaseOffset) 4347 .abs() 4348 .slt(std::abs(NewF.BaseOffset)) && 4349 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4350 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4351 goto skip_formula; 4352 4353 // Ok, looks good. 4354 NewF.canonicalize(*this->L); 4355 (void)InsertFormula(LU, LUIdx, NewF); 4356 break; 4357 skip_formula:; 4358 } 4359 } 4360 } 4361 } 4362 } 4363 4364 /// Generate formulae for each use. 4365 void 4366 LSRInstance::GenerateAllReuseFormulae() { 4367 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4368 // queries are more precise. 4369 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4370 LSRUse &LU = Uses[LUIdx]; 4371 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4372 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4373 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4374 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4375 } 4376 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4377 LSRUse &LU = Uses[LUIdx]; 4378 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4379 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4380 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4381 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4382 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4383 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4384 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4385 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4386 } 4387 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4388 LSRUse &LU = Uses[LUIdx]; 4389 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4390 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4391 } 4392 4393 GenerateCrossUseConstantOffsets(); 4394 4395 LLVM_DEBUG(dbgs() << "\n" 4396 "After generating reuse formulae:\n"; 4397 print_uses(dbgs())); 4398 } 4399 4400 /// If there are multiple formulae with the same set of registers used 4401 /// by other uses, pick the best one and delete the others. 4402 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4403 DenseSet<const SCEV *> VisitedRegs; 4404 SmallPtrSet<const SCEV *, 16> Regs; 4405 SmallPtrSet<const SCEV *, 16> LoserRegs; 4406 #ifndef NDEBUG 4407 bool ChangedFormulae = false; 4408 #endif 4409 4410 // Collect the best formula for each unique set of shared registers. This 4411 // is reset for each use. 4412 using BestFormulaeTy = 4413 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4414 4415 BestFormulaeTy BestFormulae; 4416 4417 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4418 LSRUse &LU = Uses[LUIdx]; 4419 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4420 dbgs() << '\n'); 4421 4422 bool Any = false; 4423 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4424 FIdx != NumForms; ++FIdx) { 4425 Formula &F = LU.Formulae[FIdx]; 4426 4427 // Some formulas are instant losers. For example, they may depend on 4428 // nonexistent AddRecs from other loops. These need to be filtered 4429 // immediately, otherwise heuristics could choose them over others leading 4430 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4431 // avoids the need to recompute this information across formulae using the 4432 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4433 // the corresponding bad register from the Regs set. 4434 Cost CostF(L, SE, TTI, AMK); 4435 Regs.clear(); 4436 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4437 if (CostF.isLoser()) { 4438 // During initial formula generation, undesirable formulae are generated 4439 // by uses within other loops that have some non-trivial address mode or 4440 // use the postinc form of the IV. LSR needs to provide these formulae 4441 // as the basis of rediscovering the desired formula that uses an AddRec 4442 // corresponding to the existing phi. Once all formulae have been 4443 // generated, these initial losers may be pruned. 4444 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4445 dbgs() << "\n"); 4446 } 4447 else { 4448 SmallVector<const SCEV *, 4> Key; 4449 for (const SCEV *Reg : F.BaseRegs) { 4450 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4451 Key.push_back(Reg); 4452 } 4453 if (F.ScaledReg && 4454 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4455 Key.push_back(F.ScaledReg); 4456 // Unstable sort by host order ok, because this is only used for 4457 // uniquifying. 4458 llvm::sort(Key); 4459 4460 std::pair<BestFormulaeTy::const_iterator, bool> P = 4461 BestFormulae.insert(std::make_pair(Key, FIdx)); 4462 if (P.second) 4463 continue; 4464 4465 Formula &Best = LU.Formulae[P.first->second]; 4466 4467 Cost CostBest(L, SE, TTI, AMK); 4468 Regs.clear(); 4469 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4470 if (CostF.isLess(CostBest)) 4471 std::swap(F, Best); 4472 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4473 dbgs() << "\n" 4474 " in favor of formula "; 4475 Best.print(dbgs()); dbgs() << '\n'); 4476 } 4477 #ifndef NDEBUG 4478 ChangedFormulae = true; 4479 #endif 4480 LU.DeleteFormula(F); 4481 --FIdx; 4482 --NumForms; 4483 Any = true; 4484 } 4485 4486 // Now that we've filtered out some formulae, recompute the Regs set. 4487 if (Any) 4488 LU.RecomputeRegs(LUIdx, RegUses); 4489 4490 // Reset this to prepare for the next use. 4491 BestFormulae.clear(); 4492 } 4493 4494 LLVM_DEBUG(if (ChangedFormulae) { 4495 dbgs() << "\n" 4496 "After filtering out undesirable candidates:\n"; 4497 print_uses(dbgs()); 4498 }); 4499 } 4500 4501 /// Estimate the worst-case number of solutions the solver might have to 4502 /// consider. It almost never considers this many solutions because it prune the 4503 /// search space, but the pruning isn't always sufficient. 4504 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4505 size_t Power = 1; 4506 for (const LSRUse &LU : Uses) { 4507 size_t FSize = LU.Formulae.size(); 4508 if (FSize >= ComplexityLimit) { 4509 Power = ComplexityLimit; 4510 break; 4511 } 4512 Power *= FSize; 4513 if (Power >= ComplexityLimit) 4514 break; 4515 } 4516 return Power; 4517 } 4518 4519 /// When one formula uses a superset of the registers of another formula, it 4520 /// won't help reduce register pressure (though it may not necessarily hurt 4521 /// register pressure); remove it to simplify the system. 4522 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4523 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4524 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4525 4526 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4527 "which use a superset of registers used by other " 4528 "formulae.\n"); 4529 4530 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4531 LSRUse &LU = Uses[LUIdx]; 4532 bool Any = false; 4533 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4534 Formula &F = LU.Formulae[i]; 4535 // Look for a formula with a constant or GV in a register. If the use 4536 // also has a formula with that same value in an immediate field, 4537 // delete the one that uses a register. 4538 for (SmallVectorImpl<const SCEV *>::const_iterator 4539 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4540 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4541 Formula NewF = F; 4542 //FIXME: Formulas should store bitwidth to do wrapping properly. 4543 // See PR41034. 4544 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4545 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4546 (I - F.BaseRegs.begin())); 4547 if (LU.HasFormulaWithSameRegs(NewF)) { 4548 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4549 dbgs() << '\n'); 4550 LU.DeleteFormula(F); 4551 --i; 4552 --e; 4553 Any = true; 4554 break; 4555 } 4556 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4557 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4558 if (!F.BaseGV) { 4559 Formula NewF = F; 4560 NewF.BaseGV = GV; 4561 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4562 (I - F.BaseRegs.begin())); 4563 if (LU.HasFormulaWithSameRegs(NewF)) { 4564 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4565 dbgs() << '\n'); 4566 LU.DeleteFormula(F); 4567 --i; 4568 --e; 4569 Any = true; 4570 break; 4571 } 4572 } 4573 } 4574 } 4575 } 4576 if (Any) 4577 LU.RecomputeRegs(LUIdx, RegUses); 4578 } 4579 4580 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4581 } 4582 } 4583 4584 /// When there are many registers for expressions like A, A+1, A+2, etc., 4585 /// allocate a single register for them. 4586 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4587 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4588 return; 4589 4590 LLVM_DEBUG( 4591 dbgs() << "The search space is too complex.\n" 4592 "Narrowing the search space by assuming that uses separated " 4593 "by a constant offset will use the same registers.\n"); 4594 4595 // This is especially useful for unrolled loops. 4596 4597 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4598 LSRUse &LU = Uses[LUIdx]; 4599 for (const Formula &F : LU.Formulae) { 4600 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4601 continue; 4602 4603 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4604 if (!LUThatHas) 4605 continue; 4606 4607 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4608 LU.Kind, LU.AccessTy)) 4609 continue; 4610 4611 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4612 4613 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4614 4615 // Transfer the fixups of LU to LUThatHas. 4616 for (LSRFixup &Fixup : LU.Fixups) { 4617 Fixup.Offset += F.BaseOffset; 4618 LUThatHas->pushFixup(Fixup); 4619 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4620 } 4621 4622 // Delete formulae from the new use which are no longer legal. 4623 bool Any = false; 4624 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4625 Formula &F = LUThatHas->Formulae[i]; 4626 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4627 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4628 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4629 LUThatHas->DeleteFormula(F); 4630 --i; 4631 --e; 4632 Any = true; 4633 } 4634 } 4635 4636 if (Any) 4637 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4638 4639 // Delete the old use. 4640 DeleteUse(LU, LUIdx); 4641 --LUIdx; 4642 --NumUses; 4643 break; 4644 } 4645 } 4646 4647 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4648 } 4649 4650 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4651 /// we've done more filtering, as it may be able to find more formulae to 4652 /// eliminate. 4653 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4654 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4655 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4656 4657 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4658 "undesirable dedicated registers.\n"); 4659 4660 FilterOutUndesirableDedicatedRegisters(); 4661 4662 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4663 } 4664 } 4665 4666 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4667 /// Pick the best one and delete the others. 4668 /// This narrowing heuristic is to keep as many formulae with different 4669 /// Scale and ScaledReg pair as possible while narrowing the search space. 4670 /// The benefit is that it is more likely to find out a better solution 4671 /// from a formulae set with more Scale and ScaledReg variations than 4672 /// a formulae set with the same Scale and ScaledReg. The picking winner 4673 /// reg heuristic will often keep the formulae with the same Scale and 4674 /// ScaledReg and filter others, and we want to avoid that if possible. 4675 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4676 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4677 return; 4678 4679 LLVM_DEBUG( 4680 dbgs() << "The search space is too complex.\n" 4681 "Narrowing the search space by choosing the best Formula " 4682 "from the Formulae with the same Scale and ScaledReg.\n"); 4683 4684 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4685 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4686 4687 BestFormulaeTy BestFormulae; 4688 #ifndef NDEBUG 4689 bool ChangedFormulae = false; 4690 #endif 4691 DenseSet<const SCEV *> VisitedRegs; 4692 SmallPtrSet<const SCEV *, 16> Regs; 4693 4694 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4695 LSRUse &LU = Uses[LUIdx]; 4696 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4697 dbgs() << '\n'); 4698 4699 // Return true if Formula FA is better than Formula FB. 4700 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4701 // First we will try to choose the Formula with fewer new registers. 4702 // For a register used by current Formula, the more the register is 4703 // shared among LSRUses, the less we increase the register number 4704 // counter of the formula. 4705 size_t FARegNum = 0; 4706 for (const SCEV *Reg : FA.BaseRegs) { 4707 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4708 FARegNum += (NumUses - UsedByIndices.count() + 1); 4709 } 4710 size_t FBRegNum = 0; 4711 for (const SCEV *Reg : FB.BaseRegs) { 4712 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4713 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4714 } 4715 if (FARegNum != FBRegNum) 4716 return FARegNum < FBRegNum; 4717 4718 // If the new register numbers are the same, choose the Formula with 4719 // less Cost. 4720 Cost CostFA(L, SE, TTI, AMK); 4721 Cost CostFB(L, SE, TTI, AMK); 4722 Regs.clear(); 4723 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4724 Regs.clear(); 4725 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4726 return CostFA.isLess(CostFB); 4727 }; 4728 4729 bool Any = false; 4730 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4731 ++FIdx) { 4732 Formula &F = LU.Formulae[FIdx]; 4733 if (!F.ScaledReg) 4734 continue; 4735 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4736 if (P.second) 4737 continue; 4738 4739 Formula &Best = LU.Formulae[P.first->second]; 4740 if (IsBetterThan(F, Best)) 4741 std::swap(F, Best); 4742 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4743 dbgs() << "\n" 4744 " in favor of formula "; 4745 Best.print(dbgs()); dbgs() << '\n'); 4746 #ifndef NDEBUG 4747 ChangedFormulae = true; 4748 #endif 4749 LU.DeleteFormula(F); 4750 --FIdx; 4751 --NumForms; 4752 Any = true; 4753 } 4754 if (Any) 4755 LU.RecomputeRegs(LUIdx, RegUses); 4756 4757 // Reset this to prepare for the next use. 4758 BestFormulae.clear(); 4759 } 4760 4761 LLVM_DEBUG(if (ChangedFormulae) { 4762 dbgs() << "\n" 4763 "After filtering out undesirable candidates:\n"; 4764 print_uses(dbgs()); 4765 }); 4766 } 4767 4768 /// If we are over the complexity limit, filter out any post-inc prefering 4769 /// variables to only post-inc values. 4770 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4771 if (AMK != TTI::AMK_PostIndexed) 4772 return; 4773 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4774 return; 4775 4776 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4777 "Narrowing the search space by choosing the lowest " 4778 "register Formula for PostInc Uses.\n"); 4779 4780 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4781 LSRUse &LU = Uses[LUIdx]; 4782 4783 if (LU.Kind != LSRUse::Address) 4784 continue; 4785 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4786 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4787 continue; 4788 4789 size_t MinRegs = std::numeric_limits<size_t>::max(); 4790 for (const Formula &F : LU.Formulae) 4791 MinRegs = std::min(F.getNumRegs(), MinRegs); 4792 4793 bool Any = false; 4794 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4795 ++FIdx) { 4796 Formula &F = LU.Formulae[FIdx]; 4797 if (F.getNumRegs() > MinRegs) { 4798 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4799 dbgs() << "\n"); 4800 LU.DeleteFormula(F); 4801 --FIdx; 4802 --NumForms; 4803 Any = true; 4804 } 4805 } 4806 if (Any) 4807 LU.RecomputeRegs(LUIdx, RegUses); 4808 4809 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4810 break; 4811 } 4812 4813 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4814 } 4815 4816 /// The function delete formulas with high registers number expectation. 4817 /// Assuming we don't know the value of each formula (already delete 4818 /// all inefficient), generate probability of not selecting for each 4819 /// register. 4820 /// For example, 4821 /// Use1: 4822 /// reg(a) + reg({0,+,1}) 4823 /// reg(a) + reg({-1,+,1}) + 1 4824 /// reg({a,+,1}) 4825 /// Use2: 4826 /// reg(b) + reg({0,+,1}) 4827 /// reg(b) + reg({-1,+,1}) + 1 4828 /// reg({b,+,1}) 4829 /// Use3: 4830 /// reg(c) + reg(b) + reg({0,+,1}) 4831 /// reg(c) + reg({b,+,1}) 4832 /// 4833 /// Probability of not selecting 4834 /// Use1 Use2 Use3 4835 /// reg(a) (1/3) * 1 * 1 4836 /// reg(b) 1 * (1/3) * (1/2) 4837 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4838 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4839 /// reg({a,+,1}) (2/3) * 1 * 1 4840 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4841 /// reg(c) 1 * 1 * 0 4842 /// 4843 /// Now count registers number mathematical expectation for each formula: 4844 /// Note that for each use we exclude probability if not selecting for the use. 4845 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4846 /// probabilty 1/3 of not selecting for Use1). 4847 /// Use1: 4848 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4849 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4850 /// reg({a,+,1}) 1 4851 /// Use2: 4852 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4853 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4854 /// reg({b,+,1}) 2/3 4855 /// Use3: 4856 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4857 /// reg(c) + reg({b,+,1}) 1 + 2/3 4858 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4859 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4860 return; 4861 // Ok, we have too many of formulae on our hands to conveniently handle. 4862 // Use a rough heuristic to thin out the list. 4863 4864 // Set of Regs wich will be 100% used in final solution. 4865 // Used in each formula of a solution (in example above this is reg(c)). 4866 // We can skip them in calculations. 4867 SmallPtrSet<const SCEV *, 4> UniqRegs; 4868 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4869 4870 // Map each register to probability of not selecting 4871 DenseMap <const SCEV *, float> RegNumMap; 4872 for (const SCEV *Reg : RegUses) { 4873 if (UniqRegs.count(Reg)) 4874 continue; 4875 float PNotSel = 1; 4876 for (const LSRUse &LU : Uses) { 4877 if (!LU.Regs.count(Reg)) 4878 continue; 4879 float P = LU.getNotSelectedProbability(Reg); 4880 if (P != 0.0) 4881 PNotSel *= P; 4882 else 4883 UniqRegs.insert(Reg); 4884 } 4885 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4886 } 4887 4888 LLVM_DEBUG( 4889 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4890 4891 // Delete formulas where registers number expectation is high. 4892 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4893 LSRUse &LU = Uses[LUIdx]; 4894 // If nothing to delete - continue. 4895 if (LU.Formulae.size() < 2) 4896 continue; 4897 // This is temporary solution to test performance. Float should be 4898 // replaced with round independent type (based on integers) to avoid 4899 // different results for different target builds. 4900 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4901 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4902 size_t MinIdx = 0; 4903 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4904 Formula &F = LU.Formulae[i]; 4905 float FRegNum = 0; 4906 float FARegNum = 0; 4907 for (const SCEV *BaseReg : F.BaseRegs) { 4908 if (UniqRegs.count(BaseReg)) 4909 continue; 4910 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4911 if (isa<SCEVAddRecExpr>(BaseReg)) 4912 FARegNum += 4913 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4914 } 4915 if (const SCEV *ScaledReg = F.ScaledReg) { 4916 if (!UniqRegs.count(ScaledReg)) { 4917 FRegNum += 4918 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4919 if (isa<SCEVAddRecExpr>(ScaledReg)) 4920 FARegNum += 4921 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4922 } 4923 } 4924 if (FMinRegNum > FRegNum || 4925 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4926 FMinRegNum = FRegNum; 4927 FMinARegNum = FARegNum; 4928 MinIdx = i; 4929 } 4930 } 4931 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4932 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4933 if (MinIdx != 0) 4934 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4935 while (LU.Formulae.size() != 1) { 4936 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4937 dbgs() << '\n'); 4938 LU.Formulae.pop_back(); 4939 } 4940 LU.RecomputeRegs(LUIdx, RegUses); 4941 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4942 Formula &F = LU.Formulae[0]; 4943 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4944 // When we choose the formula, the regs become unique. 4945 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4946 if (F.ScaledReg) 4947 UniqRegs.insert(F.ScaledReg); 4948 } 4949 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4950 } 4951 4952 /// Pick a register which seems likely to be profitable, and then in any use 4953 /// which has any reference to that register, delete all formulae which do not 4954 /// reference that register. 4955 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4956 // With all other options exhausted, loop until the system is simple 4957 // enough to handle. 4958 SmallPtrSet<const SCEV *, 4> Taken; 4959 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4960 // Ok, we have too many of formulae on our hands to conveniently handle. 4961 // Use a rough heuristic to thin out the list. 4962 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4963 4964 // Pick the register which is used by the most LSRUses, which is likely 4965 // to be a good reuse register candidate. 4966 const SCEV *Best = nullptr; 4967 unsigned BestNum = 0; 4968 for (const SCEV *Reg : RegUses) { 4969 if (Taken.count(Reg)) 4970 continue; 4971 if (!Best) { 4972 Best = Reg; 4973 BestNum = RegUses.getUsedByIndices(Reg).count(); 4974 } else { 4975 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4976 if (Count > BestNum) { 4977 Best = Reg; 4978 BestNum = Count; 4979 } 4980 } 4981 } 4982 assert(Best && "Failed to find best LSRUse candidate"); 4983 4984 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4985 << " will yield profitable reuse.\n"); 4986 Taken.insert(Best); 4987 4988 // In any use with formulae which references this register, delete formulae 4989 // which don't reference it. 4990 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4991 LSRUse &LU = Uses[LUIdx]; 4992 if (!LU.Regs.count(Best)) continue; 4993 4994 bool Any = false; 4995 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4996 Formula &F = LU.Formulae[i]; 4997 if (!F.referencesReg(Best)) { 4998 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4999 LU.DeleteFormula(F); 5000 --e; 5001 --i; 5002 Any = true; 5003 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5004 continue; 5005 } 5006 } 5007 5008 if (Any) 5009 LU.RecomputeRegs(LUIdx, RegUses); 5010 } 5011 5012 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5013 } 5014 } 5015 5016 /// If there are an extraordinary number of formulae to choose from, use some 5017 /// rough heuristics to prune down the number of formulae. This keeps the main 5018 /// solver from taking an extraordinary amount of time in some worst-case 5019 /// scenarios. 5020 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5021 NarrowSearchSpaceByDetectingSupersets(); 5022 NarrowSearchSpaceByCollapsingUnrolledCode(); 5023 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5024 if (FilterSameScaledReg) 5025 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5026 NarrowSearchSpaceByFilterPostInc(); 5027 if (LSRExpNarrow) 5028 NarrowSearchSpaceByDeletingCostlyFormulas(); 5029 else 5030 NarrowSearchSpaceByPickingWinnerRegs(); 5031 } 5032 5033 /// This is the recursive solver. 5034 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5035 Cost &SolutionCost, 5036 SmallVectorImpl<const Formula *> &Workspace, 5037 const Cost &CurCost, 5038 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5039 DenseSet<const SCEV *> &VisitedRegs) const { 5040 // Some ideas: 5041 // - prune more: 5042 // - use more aggressive filtering 5043 // - sort the formula so that the most profitable solutions are found first 5044 // - sort the uses too 5045 // - search faster: 5046 // - don't compute a cost, and then compare. compare while computing a cost 5047 // and bail early. 5048 // - track register sets with SmallBitVector 5049 5050 const LSRUse &LU = Uses[Workspace.size()]; 5051 5052 // If this use references any register that's already a part of the 5053 // in-progress solution, consider it a requirement that a formula must 5054 // reference that register in order to be considered. This prunes out 5055 // unprofitable searching. 5056 SmallSetVector<const SCEV *, 4> ReqRegs; 5057 for (const SCEV *S : CurRegs) 5058 if (LU.Regs.count(S)) 5059 ReqRegs.insert(S); 5060 5061 SmallPtrSet<const SCEV *, 16> NewRegs; 5062 Cost NewCost(L, SE, TTI, AMK); 5063 for (const Formula &F : LU.Formulae) { 5064 // Ignore formulae which may not be ideal in terms of register reuse of 5065 // ReqRegs. The formula should use all required registers before 5066 // introducing new ones. 5067 // This can sometimes (notably when trying to favour postinc) lead to 5068 // sub-optimial decisions. There it is best left to the cost modelling to 5069 // get correct. 5070 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5071 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5072 for (const SCEV *Reg : ReqRegs) { 5073 if ((F.ScaledReg && F.ScaledReg == Reg) || 5074 is_contained(F.BaseRegs, Reg)) { 5075 --NumReqRegsToFind; 5076 if (NumReqRegsToFind == 0) 5077 break; 5078 } 5079 } 5080 if (NumReqRegsToFind != 0) { 5081 // If none of the formulae satisfied the required registers, then we could 5082 // clear ReqRegs and try again. Currently, we simply give up in this case. 5083 continue; 5084 } 5085 } 5086 5087 // Evaluate the cost of the current formula. If it's already worse than 5088 // the current best, prune the search at that point. 5089 NewCost = CurCost; 5090 NewRegs = CurRegs; 5091 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5092 if (NewCost.isLess(SolutionCost)) { 5093 Workspace.push_back(&F); 5094 if (Workspace.size() != Uses.size()) { 5095 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5096 NewRegs, VisitedRegs); 5097 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5098 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5099 } else { 5100 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5101 dbgs() << ".\nRegs:\n"; 5102 for (const SCEV *S : NewRegs) dbgs() 5103 << "- " << *S << "\n"; 5104 dbgs() << '\n'); 5105 5106 SolutionCost = NewCost; 5107 Solution = Workspace; 5108 } 5109 Workspace.pop_back(); 5110 } 5111 } 5112 } 5113 5114 /// Choose one formula from each use. Return the results in the given Solution 5115 /// vector. 5116 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5117 SmallVector<const Formula *, 8> Workspace; 5118 Cost SolutionCost(L, SE, TTI, AMK); 5119 SolutionCost.Lose(); 5120 Cost CurCost(L, SE, TTI, AMK); 5121 SmallPtrSet<const SCEV *, 16> CurRegs; 5122 DenseSet<const SCEV *> VisitedRegs; 5123 Workspace.reserve(Uses.size()); 5124 5125 // SolveRecurse does all the work. 5126 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5127 CurRegs, VisitedRegs); 5128 if (Solution.empty()) { 5129 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5130 return; 5131 } 5132 5133 // Ok, we've now made all our decisions. 5134 LLVM_DEBUG(dbgs() << "\n" 5135 "The chosen solution requires "; 5136 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5137 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5138 dbgs() << " "; 5139 Uses[i].print(dbgs()); 5140 dbgs() << "\n" 5141 " "; 5142 Solution[i]->print(dbgs()); 5143 dbgs() << '\n'; 5144 }); 5145 5146 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5147 } 5148 5149 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5150 /// we can go while still being dominated by the input positions. This helps 5151 /// canonicalize the insert position, which encourages sharing. 5152 BasicBlock::iterator 5153 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5154 const SmallVectorImpl<Instruction *> &Inputs) 5155 const { 5156 Instruction *Tentative = &*IP; 5157 while (true) { 5158 bool AllDominate = true; 5159 Instruction *BetterPos = nullptr; 5160 // Don't bother attempting to insert before a catchswitch, their basic block 5161 // cannot have other non-PHI instructions. 5162 if (isa<CatchSwitchInst>(Tentative)) 5163 return IP; 5164 5165 for (Instruction *Inst : Inputs) { 5166 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5167 AllDominate = false; 5168 break; 5169 } 5170 // Attempt to find an insert position in the middle of the block, 5171 // instead of at the end, so that it can be used for other expansions. 5172 if (Tentative->getParent() == Inst->getParent() && 5173 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5174 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5175 } 5176 if (!AllDominate) 5177 break; 5178 if (BetterPos) 5179 IP = BetterPos->getIterator(); 5180 else 5181 IP = Tentative->getIterator(); 5182 5183 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5184 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5185 5186 BasicBlock *IDom; 5187 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5188 if (!Rung) return IP; 5189 Rung = Rung->getIDom(); 5190 if (!Rung) return IP; 5191 IDom = Rung->getBlock(); 5192 5193 // Don't climb into a loop though. 5194 const Loop *IDomLoop = LI.getLoopFor(IDom); 5195 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5196 if (IDomDepth <= IPLoopDepth && 5197 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5198 break; 5199 } 5200 5201 Tentative = IDom->getTerminator(); 5202 } 5203 5204 return IP; 5205 } 5206 5207 /// Determine an input position which will be dominated by the operands and 5208 /// which will dominate the result. 5209 BasicBlock::iterator 5210 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5211 const LSRFixup &LF, 5212 const LSRUse &LU, 5213 SCEVExpander &Rewriter) const { 5214 // Collect some instructions which must be dominated by the 5215 // expanding replacement. These must be dominated by any operands that 5216 // will be required in the expansion. 5217 SmallVector<Instruction *, 4> Inputs; 5218 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5219 Inputs.push_back(I); 5220 if (LU.Kind == LSRUse::ICmpZero) 5221 if (Instruction *I = 5222 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5223 Inputs.push_back(I); 5224 if (LF.PostIncLoops.count(L)) { 5225 if (LF.isUseFullyOutsideLoop(L)) 5226 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5227 else 5228 Inputs.push_back(IVIncInsertPos); 5229 } 5230 // The expansion must also be dominated by the increment positions of any 5231 // loops it for which it is using post-inc mode. 5232 for (const Loop *PIL : LF.PostIncLoops) { 5233 if (PIL == L) continue; 5234 5235 // Be dominated by the loop exit. 5236 SmallVector<BasicBlock *, 4> ExitingBlocks; 5237 PIL->getExitingBlocks(ExitingBlocks); 5238 if (!ExitingBlocks.empty()) { 5239 BasicBlock *BB = ExitingBlocks[0]; 5240 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5241 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5242 Inputs.push_back(BB->getTerminator()); 5243 } 5244 } 5245 5246 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5247 && !isa<DbgInfoIntrinsic>(LowestIP) && 5248 "Insertion point must be a normal instruction"); 5249 5250 // Then, climb up the immediate dominator tree as far as we can go while 5251 // still being dominated by the input positions. 5252 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5253 5254 // Don't insert instructions before PHI nodes. 5255 while (isa<PHINode>(IP)) ++IP; 5256 5257 // Ignore landingpad instructions. 5258 while (IP->isEHPad()) ++IP; 5259 5260 // Ignore debug intrinsics. 5261 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5262 5263 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5264 // IP consistent across expansions and allows the previously inserted 5265 // instructions to be reused by subsequent expansion. 5266 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5267 ++IP; 5268 5269 return IP; 5270 } 5271 5272 /// Emit instructions for the leading candidate expression for this LSRUse (this 5273 /// is called "expanding"). 5274 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5275 const Formula &F, BasicBlock::iterator IP, 5276 SCEVExpander &Rewriter, 5277 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5278 if (LU.RigidFormula) 5279 return LF.OperandValToReplace; 5280 5281 // Determine an input position which will be dominated by the operands and 5282 // which will dominate the result. 5283 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5284 Rewriter.setInsertPoint(&*IP); 5285 5286 // Inform the Rewriter if we have a post-increment use, so that it can 5287 // perform an advantageous expansion. 5288 Rewriter.setPostInc(LF.PostIncLoops); 5289 5290 // This is the type that the user actually needs. 5291 Type *OpTy = LF.OperandValToReplace->getType(); 5292 // This will be the type that we'll initially expand to. 5293 Type *Ty = F.getType(); 5294 if (!Ty) 5295 // No type known; just expand directly to the ultimate type. 5296 Ty = OpTy; 5297 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5298 // Expand directly to the ultimate type if it's the right size. 5299 Ty = OpTy; 5300 // This is the type to do integer arithmetic in. 5301 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5302 5303 // Build up a list of operands to add together to form the full base. 5304 SmallVector<const SCEV *, 8> Ops; 5305 5306 // Expand the BaseRegs portion. 5307 for (const SCEV *Reg : F.BaseRegs) { 5308 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5309 5310 // If we're expanding for a post-inc user, make the post-inc adjustment. 5311 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5312 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5313 } 5314 5315 // Expand the ScaledReg portion. 5316 Value *ICmpScaledV = nullptr; 5317 if (F.Scale != 0) { 5318 const SCEV *ScaledS = F.ScaledReg; 5319 5320 // If we're expanding for a post-inc user, make the post-inc adjustment. 5321 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5322 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5323 5324 if (LU.Kind == LSRUse::ICmpZero) { 5325 // Expand ScaleReg as if it was part of the base regs. 5326 if (F.Scale == 1) 5327 Ops.push_back( 5328 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5329 else { 5330 // An interesting way of "folding" with an icmp is to use a negated 5331 // scale, which we'll implement by inserting it into the other operand 5332 // of the icmp. 5333 assert(F.Scale == -1 && 5334 "The only scale supported by ICmpZero uses is -1!"); 5335 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5336 } 5337 } else { 5338 // Otherwise just expand the scaled register and an explicit scale, 5339 // which is expected to be matched as part of the address. 5340 5341 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5342 // Unless the addressing mode will not be folded. 5343 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5344 isAMCompletelyFolded(TTI, LU, F)) { 5345 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5346 Ops.clear(); 5347 Ops.push_back(SE.getUnknown(FullV)); 5348 } 5349 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5350 if (F.Scale != 1) 5351 ScaledS = 5352 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5353 Ops.push_back(ScaledS); 5354 } 5355 } 5356 5357 // Expand the GV portion. 5358 if (F.BaseGV) { 5359 // Flush the operand list to suppress SCEVExpander hoisting. 5360 if (!Ops.empty()) { 5361 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5362 Ops.clear(); 5363 Ops.push_back(SE.getUnknown(FullV)); 5364 } 5365 Ops.push_back(SE.getUnknown(F.BaseGV)); 5366 } 5367 5368 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5369 // unfolded offsets. LSR assumes they both live next to their uses. 5370 if (!Ops.empty()) { 5371 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5372 Ops.clear(); 5373 Ops.push_back(SE.getUnknown(FullV)); 5374 } 5375 5376 // Expand the immediate portion. 5377 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5378 if (Offset != 0) { 5379 if (LU.Kind == LSRUse::ICmpZero) { 5380 // The other interesting way of "folding" with an ICmpZero is to use a 5381 // negated immediate. 5382 if (!ICmpScaledV) 5383 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5384 else { 5385 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5386 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5387 } 5388 } else { 5389 // Just add the immediate values. These again are expected to be matched 5390 // as part of the address. 5391 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5392 } 5393 } 5394 5395 // Expand the unfolded offset portion. 5396 int64_t UnfoldedOffset = F.UnfoldedOffset; 5397 if (UnfoldedOffset != 0) { 5398 // Just add the immediate values. 5399 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5400 UnfoldedOffset))); 5401 } 5402 5403 // Emit instructions summing all the operands. 5404 const SCEV *FullS = Ops.empty() ? 5405 SE.getConstant(IntTy, 0) : 5406 SE.getAddExpr(Ops); 5407 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5408 5409 // We're done expanding now, so reset the rewriter. 5410 Rewriter.clearPostInc(); 5411 5412 // An ICmpZero Formula represents an ICmp which we're handling as a 5413 // comparison against zero. Now that we've expanded an expression for that 5414 // form, update the ICmp's other operand. 5415 if (LU.Kind == LSRUse::ICmpZero) { 5416 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5417 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5418 DeadInsts.emplace_back(OperandIsInstr); 5419 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5420 "a scale at the same time!"); 5421 if (F.Scale == -1) { 5422 if (ICmpScaledV->getType() != OpTy) { 5423 Instruction *Cast = 5424 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5425 OpTy, false), 5426 ICmpScaledV, OpTy, "tmp", CI); 5427 ICmpScaledV = Cast; 5428 } 5429 CI->setOperand(1, ICmpScaledV); 5430 } else { 5431 // A scale of 1 means that the scale has been expanded as part of the 5432 // base regs. 5433 assert((F.Scale == 0 || F.Scale == 1) && 5434 "ICmp does not support folding a global value and " 5435 "a scale at the same time!"); 5436 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5437 -(uint64_t)Offset); 5438 if (C->getType() != OpTy) 5439 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5440 OpTy, false), 5441 C, OpTy); 5442 5443 CI->setOperand(1, C); 5444 } 5445 } 5446 5447 return FullV; 5448 } 5449 5450 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5451 /// effectively happens in their predecessor blocks, so the expression may need 5452 /// to be expanded in multiple places. 5453 void LSRInstance::RewriteForPHI( 5454 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5455 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5456 DenseMap<BasicBlock *, Value *> Inserted; 5457 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5458 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5459 bool needUpdateFixups = false; 5460 BasicBlock *BB = PN->getIncomingBlock(i); 5461 5462 // If this is a critical edge, split the edge so that we do not insert 5463 // the code on all predecessor/successor paths. We do this unless this 5464 // is the canonical backedge for this loop, which complicates post-inc 5465 // users. 5466 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5467 !isa<IndirectBrInst>(BB->getTerminator()) && 5468 !isa<CatchSwitchInst>(BB->getTerminator())) { 5469 BasicBlock *Parent = PN->getParent(); 5470 Loop *PNLoop = LI.getLoopFor(Parent); 5471 if (!PNLoop || Parent != PNLoop->getHeader()) { 5472 // Split the critical edge. 5473 BasicBlock *NewBB = nullptr; 5474 if (!Parent->isLandingPad()) { 5475 NewBB = 5476 SplitCriticalEdge(BB, Parent, 5477 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5478 .setMergeIdenticalEdges() 5479 .setKeepOneInputPHIs()); 5480 } else { 5481 SmallVector<BasicBlock*, 2> NewBBs; 5482 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5483 NewBB = NewBBs[0]; 5484 } 5485 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5486 // phi predecessors are identical. The simple thing to do is skip 5487 // splitting in this case rather than complicate the API. 5488 if (NewBB) { 5489 // If PN is outside of the loop and BB is in the loop, we want to 5490 // move the block to be immediately before the PHI block, not 5491 // immediately after BB. 5492 if (L->contains(BB) && !L->contains(PN)) 5493 NewBB->moveBefore(PN->getParent()); 5494 5495 // Splitting the edge can reduce the number of PHI entries we have. 5496 e = PN->getNumIncomingValues(); 5497 BB = NewBB; 5498 i = PN->getBasicBlockIndex(BB); 5499 5500 needUpdateFixups = true; 5501 } 5502 } 5503 } 5504 5505 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5506 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5507 if (!Pair.second) 5508 PN->setIncomingValue(i, Pair.first->second); 5509 else { 5510 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5511 Rewriter, DeadInsts); 5512 5513 // If this is reuse-by-noop-cast, insert the noop cast. 5514 Type *OpTy = LF.OperandValToReplace->getType(); 5515 if (FullV->getType() != OpTy) 5516 FullV = 5517 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5518 OpTy, false), 5519 FullV, LF.OperandValToReplace->getType(), 5520 "tmp", BB->getTerminator()); 5521 5522 PN->setIncomingValue(i, FullV); 5523 Pair.first->second = FullV; 5524 } 5525 5526 // If LSR splits critical edge and phi node has other pending 5527 // fixup operands, we need to update those pending fixups. Otherwise 5528 // formulae will not be implemented completely and some instructions 5529 // will not be eliminated. 5530 if (needUpdateFixups) { 5531 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5532 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5533 // If fixup is supposed to rewrite some operand in the phi 5534 // that was just updated, it may be already moved to 5535 // another phi node. Such fixup requires update. 5536 if (Fixup.UserInst == PN) { 5537 // Check if the operand we try to replace still exists in the 5538 // original phi. 5539 bool foundInOriginalPHI = false; 5540 for (const auto &val : PN->incoming_values()) 5541 if (val == Fixup.OperandValToReplace) { 5542 foundInOriginalPHI = true; 5543 break; 5544 } 5545 5546 // If fixup operand found in original PHI - nothing to do. 5547 if (foundInOriginalPHI) 5548 continue; 5549 5550 // Otherwise it might be moved to another PHI and requires update. 5551 // If fixup operand not found in any of the incoming blocks that 5552 // means we have already rewritten it - nothing to do. 5553 for (const auto &Block : PN->blocks()) 5554 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5555 ++I) { 5556 PHINode *NewPN = cast<PHINode>(I); 5557 for (const auto &val : NewPN->incoming_values()) 5558 if (val == Fixup.OperandValToReplace) 5559 Fixup.UserInst = NewPN; 5560 } 5561 } 5562 } 5563 } 5564 } 5565 5566 /// Emit instructions for the leading candidate expression for this LSRUse (this 5567 /// is called "expanding"), and update the UserInst to reference the newly 5568 /// expanded value. 5569 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5570 const Formula &F, SCEVExpander &Rewriter, 5571 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5572 // First, find an insertion point that dominates UserInst. For PHI nodes, 5573 // find the nearest block which dominates all the relevant uses. 5574 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5575 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5576 } else { 5577 Value *FullV = 5578 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5579 5580 // If this is reuse-by-noop-cast, insert the noop cast. 5581 Type *OpTy = LF.OperandValToReplace->getType(); 5582 if (FullV->getType() != OpTy) { 5583 Instruction *Cast = 5584 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5585 FullV, OpTy, "tmp", LF.UserInst); 5586 FullV = Cast; 5587 } 5588 5589 // Update the user. ICmpZero is handled specially here (for now) because 5590 // Expand may have updated one of the operands of the icmp already, and 5591 // its new value may happen to be equal to LF.OperandValToReplace, in 5592 // which case doing replaceUsesOfWith leads to replacing both operands 5593 // with the same value. TODO: Reorganize this. 5594 if (LU.Kind == LSRUse::ICmpZero) 5595 LF.UserInst->setOperand(0, FullV); 5596 else 5597 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5598 } 5599 5600 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5601 DeadInsts.emplace_back(OperandIsInstr); 5602 } 5603 5604 // Check if there are any loop exit values which are only used once within the 5605 // loop which may potentially be optimized with a call to rewriteLoopExitValue. 5606 static bool LoopExitValHasSingleUse(Loop *L) { 5607 BasicBlock *ExitBB = L->getExitBlock(); 5608 if (!ExitBB) 5609 return false; 5610 5611 for (PHINode &ExitPhi : ExitBB->phis()) { 5612 if (ExitPhi.getNumIncomingValues() != 1) 5613 break; 5614 5615 BasicBlock *Pred = ExitPhi.getIncomingBlock(0); 5616 Value *IVNext = ExitPhi.getIncomingValueForBlock(Pred); 5617 // One use would be the exit phi node, and there should be only one other 5618 // use for this to be considered. 5619 if (IVNext->getNumUses() == 2) 5620 return true; 5621 } 5622 return false; 5623 } 5624 5625 /// Rewrite all the fixup locations with new values, following the chosen 5626 /// solution. 5627 void LSRInstance::ImplementSolution( 5628 const SmallVectorImpl<const Formula *> &Solution) { 5629 // Keep track of instructions we may have made dead, so that 5630 // we can remove them after we are done working. 5631 SmallVector<WeakTrackingVH, 16> DeadInsts; 5632 5633 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5634 false); 5635 #ifndef NDEBUG 5636 Rewriter.setDebugType(DEBUG_TYPE); 5637 #endif 5638 Rewriter.disableCanonicalMode(); 5639 Rewriter.enableLSRMode(); 5640 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5641 5642 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5643 for (const IVChain &Chain : IVChainVec) { 5644 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5645 Rewriter.setChainedPhi(PN); 5646 } 5647 5648 // Expand the new value definitions and update the users. 5649 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5650 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5651 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5652 Changed = true; 5653 } 5654 5655 for (const IVChain &Chain : IVChainVec) { 5656 GenerateIVChain(Chain, Rewriter, DeadInsts); 5657 Changed = true; 5658 } 5659 5660 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 5661 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 5662 ScalarEvolutionIVs.push_back(IV); 5663 5664 // Clean up after ourselves. This must be done before deleting any 5665 // instructions. 5666 Rewriter.clear(); 5667 5668 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5669 &TLI, MSSAU); 5670 5671 // In our cost analysis above, we assume that each addrec consumes exactly 5672 // one register, and arrange to have increments inserted just before the 5673 // latch to maximimize the chance this is true. However, if we reused 5674 // existing IVs, we now need to move the increments to match our 5675 // expectations. Otherwise, our cost modeling results in us having a 5676 // chosen a non-optimal result for the actual schedule. (And yes, this 5677 // scheduling decision does impact later codegen.) 5678 for (PHINode &PN : L->getHeader()->phis()) { 5679 BinaryOperator *BO = nullptr; 5680 Value *Start = nullptr, *Step = nullptr; 5681 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 5682 continue; 5683 5684 switch (BO->getOpcode()) { 5685 case Instruction::Sub: 5686 if (BO->getOperand(0) != &PN) 5687 // sub is non-commutative - match handling elsewhere in LSR 5688 continue; 5689 break; 5690 case Instruction::Add: 5691 break; 5692 default: 5693 continue; 5694 }; 5695 5696 if (!isa<Constant>(Step)) 5697 // If not a constant step, might increase register pressure 5698 // (We assume constants have been canonicalized to RHS) 5699 continue; 5700 5701 if (BO->getParent() == IVIncInsertPos->getParent()) 5702 // Only bother moving across blocks. Isel can handle block local case. 5703 continue; 5704 5705 // Can we legally schedule inc at the desired point? 5706 if (!llvm::all_of(BO->uses(), 5707 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 5708 continue; 5709 BO->moveBefore(IVIncInsertPos); 5710 Changed = true; 5711 } 5712 5713 5714 } 5715 5716 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5717 DominatorTree &DT, LoopInfo &LI, 5718 const TargetTransformInfo &TTI, AssumptionCache &AC, 5719 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5720 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5721 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5722 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5723 // If LoopSimplify form is not available, stay out of trouble. 5724 if (!L->isLoopSimplifyForm()) 5725 return; 5726 5727 // If there's no interesting work to be done, bail early. 5728 if (IU.empty()) return; 5729 5730 // If there's too much analysis to be done, bail early. We won't be able to 5731 // model the problem anyway. 5732 unsigned NumUsers = 0; 5733 for (const IVStrideUse &U : IU) { 5734 if (++NumUsers > MaxIVUsers) { 5735 (void)U; 5736 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5737 << "\n"); 5738 return; 5739 } 5740 // Bail out if we have a PHI on an EHPad that gets a value from a 5741 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5742 // no good place to stick any instructions. 5743 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5744 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5745 if (isa<FuncletPadInst>(FirstNonPHI) || 5746 isa<CatchSwitchInst>(FirstNonPHI)) 5747 for (BasicBlock *PredBB : PN->blocks()) 5748 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5749 return; 5750 } 5751 } 5752 5753 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5754 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5755 dbgs() << ":\n"); 5756 5757 // First, perform some low-level loop optimizations. 5758 OptimizeShadowIV(); 5759 OptimizeLoopTermCond(); 5760 5761 // If loop preparation eliminates all interesting IV users, bail. 5762 if (IU.empty()) return; 5763 5764 // Skip nested loops until we can model them better with formulae. 5765 if (!L->isInnermost()) { 5766 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5767 return; 5768 } 5769 5770 // Start collecting data and preparing for the solver. 5771 // If number of registers is not the major cost, we cannot benefit from the 5772 // current profitable chain optimization which is based on number of 5773 // registers. 5774 // FIXME: add profitable chain optimization for other kinds major cost, for 5775 // example number of instructions. 5776 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5777 CollectChains(); 5778 CollectInterestingTypesAndFactors(); 5779 CollectFixupsAndInitialFormulae(); 5780 CollectLoopInvariantFixupsAndFormulae(); 5781 5782 if (Uses.empty()) 5783 return; 5784 5785 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5786 print_uses(dbgs())); 5787 5788 // Now use the reuse data to generate a bunch of interesting ways 5789 // to formulate the values needed for the uses. 5790 GenerateAllReuseFormulae(); 5791 5792 FilterOutUndesirableDedicatedRegisters(); 5793 NarrowSearchSpaceUsingHeuristics(); 5794 5795 SmallVector<const Formula *, 8> Solution; 5796 Solve(Solution); 5797 5798 // Release memory that is no longer needed. 5799 Factors.clear(); 5800 Types.clear(); 5801 RegUses.clear(); 5802 5803 if (Solution.empty()) 5804 return; 5805 5806 #ifndef NDEBUG 5807 // Formulae should be legal. 5808 for (const LSRUse &LU : Uses) { 5809 for (const Formula &F : LU.Formulae) 5810 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5811 F) && "Illegal formula generated!"); 5812 }; 5813 #endif 5814 5815 // Now that we've decided what we want, make it so. 5816 ImplementSolution(Solution); 5817 } 5818 5819 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5820 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5821 if (Factors.empty() && Types.empty()) return; 5822 5823 OS << "LSR has identified the following interesting factors and types: "; 5824 bool First = true; 5825 5826 for (int64_t Factor : Factors) { 5827 if (!First) OS << ", "; 5828 First = false; 5829 OS << '*' << Factor; 5830 } 5831 5832 for (Type *Ty : Types) { 5833 if (!First) OS << ", "; 5834 First = false; 5835 OS << '(' << *Ty << ')'; 5836 } 5837 OS << '\n'; 5838 } 5839 5840 void LSRInstance::print_fixups(raw_ostream &OS) const { 5841 OS << "LSR is examining the following fixup sites:\n"; 5842 for (const LSRUse &LU : Uses) 5843 for (const LSRFixup &LF : LU.Fixups) { 5844 dbgs() << " "; 5845 LF.print(OS); 5846 OS << '\n'; 5847 } 5848 } 5849 5850 void LSRInstance::print_uses(raw_ostream &OS) const { 5851 OS << "LSR is examining the following uses:\n"; 5852 for (const LSRUse &LU : Uses) { 5853 dbgs() << " "; 5854 LU.print(OS); 5855 OS << '\n'; 5856 for (const Formula &F : LU.Formulae) { 5857 OS << " "; 5858 F.print(OS); 5859 OS << '\n'; 5860 } 5861 } 5862 } 5863 5864 void LSRInstance::print(raw_ostream &OS) const { 5865 print_factors_and_types(OS); 5866 print_fixups(OS); 5867 print_uses(OS); 5868 } 5869 5870 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5871 print(errs()); errs() << '\n'; 5872 } 5873 #endif 5874 5875 namespace { 5876 5877 class LoopStrengthReduce : public LoopPass { 5878 public: 5879 static char ID; // Pass ID, replacement for typeid 5880 5881 LoopStrengthReduce(); 5882 5883 private: 5884 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5885 void getAnalysisUsage(AnalysisUsage &AU) const override; 5886 }; 5887 5888 } // end anonymous namespace 5889 5890 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5891 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5892 } 5893 5894 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5895 // We split critical edges, so we change the CFG. However, we do update 5896 // many analyses if they are around. 5897 AU.addPreservedID(LoopSimplifyID); 5898 5899 AU.addRequired<LoopInfoWrapperPass>(); 5900 AU.addPreserved<LoopInfoWrapperPass>(); 5901 AU.addRequiredID(LoopSimplifyID); 5902 AU.addRequired<DominatorTreeWrapperPass>(); 5903 AU.addPreserved<DominatorTreeWrapperPass>(); 5904 AU.addRequired<ScalarEvolutionWrapperPass>(); 5905 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5906 AU.addRequired<AssumptionCacheTracker>(); 5907 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5908 // Requiring LoopSimplify a second time here prevents IVUsers from running 5909 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5910 AU.addRequiredID(LoopSimplifyID); 5911 AU.addRequired<IVUsersWrapperPass>(); 5912 AU.addPreserved<IVUsersWrapperPass>(); 5913 AU.addRequired<TargetTransformInfoWrapperPass>(); 5914 AU.addPreserved<MemorySSAWrapperPass>(); 5915 } 5916 5917 namespace { 5918 5919 /// Enables more convenient iteration over a DWARF expression vector. 5920 static iterator_range<llvm::DIExpression::expr_op_iterator> 5921 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 5922 llvm::DIExpression::expr_op_iterator Begin = 5923 llvm::DIExpression::expr_op_iterator(Expr.begin()); 5924 llvm::DIExpression::expr_op_iterator End = 5925 llvm::DIExpression::expr_op_iterator(Expr.end()); 5926 return {Begin, End}; 5927 } 5928 5929 struct SCEVDbgValueBuilder { 5930 SCEVDbgValueBuilder() = default; 5931 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 5932 5933 void clone(const SCEVDbgValueBuilder &Base) { 5934 LocationOps = Base.LocationOps; 5935 Expr = Base.Expr; 5936 } 5937 5938 void clear() { 5939 LocationOps.clear(); 5940 Expr.clear(); 5941 } 5942 5943 /// The DIExpression as we translate the SCEV. 5944 SmallVector<uint64_t, 6> Expr; 5945 /// The location ops of the DIExpression. 5946 SmallVector<Value *, 2> LocationOps; 5947 5948 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 5949 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 5950 5951 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 5952 /// in the set of values referenced by the expression. 5953 void pushLocation(llvm::Value *V) { 5954 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 5955 auto *It = std::find(LocationOps.begin(), LocationOps.end(), V); 5956 unsigned ArgIndex = 0; 5957 if (It != LocationOps.end()) { 5958 ArgIndex = std::distance(LocationOps.begin(), It); 5959 } else { 5960 ArgIndex = LocationOps.size(); 5961 LocationOps.push_back(V); 5962 } 5963 Expr.push_back(ArgIndex); 5964 } 5965 5966 void pushValue(const SCEVUnknown *U) { 5967 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 5968 pushLocation(V); 5969 } 5970 5971 bool pushConst(const SCEVConstant *C) { 5972 if (C->getAPInt().getMinSignedBits() > 64) 5973 return false; 5974 Expr.push_back(llvm::dwarf::DW_OP_consts); 5975 Expr.push_back(C->getAPInt().getSExtValue()); 5976 return true; 5977 } 5978 5979 // Iterating the expression as DWARF ops is convenient when updating 5980 // DWARF_OP_LLVM_args. 5981 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 5982 return ToDwarfOpIter(Expr); 5983 } 5984 5985 /// Several SCEV types are sequences of the same arithmetic operator applied 5986 /// to constants and values that may be extended or truncated. 5987 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 5988 uint64_t DwarfOp) { 5989 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 5990 "Expected arithmetic SCEV type"); 5991 bool Success = true; 5992 unsigned EmitOperator = 0; 5993 for (auto &Op : CommExpr->operands()) { 5994 Success &= pushSCEV(Op); 5995 5996 if (EmitOperator >= 1) 5997 pushOperator(DwarfOp); 5998 ++EmitOperator; 5999 } 6000 return Success; 6001 } 6002 6003 // TODO: Identify and omit noop casts. 6004 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6005 const llvm::SCEV *Inner = C->getOperand(0); 6006 const llvm::Type *Type = C->getType(); 6007 uint64_t ToWidth = Type->getIntegerBitWidth(); 6008 bool Success = pushSCEV(Inner); 6009 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6010 IsSigned ? llvm::dwarf::DW_ATE_signed 6011 : llvm::dwarf::DW_ATE_unsigned}; 6012 for (const auto &Op : CastOps) 6013 pushOperator(Op); 6014 return Success; 6015 } 6016 6017 // TODO: MinMax - although these haven't been encountered in the test suite. 6018 bool pushSCEV(const llvm::SCEV *S) { 6019 bool Success = true; 6020 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6021 Success &= pushConst(StartInt); 6022 6023 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6024 if (!U->getValue()) 6025 return false; 6026 pushLocation(U->getValue()); 6027 6028 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6029 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6030 6031 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6032 Success &= pushSCEV(UDiv->getLHS()); 6033 Success &= pushSCEV(UDiv->getRHS()); 6034 pushOperator(llvm::dwarf::DW_OP_div); 6035 6036 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6037 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6038 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6039 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6040 "Unexpected cast type in SCEV."); 6041 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6042 6043 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6044 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6045 6046 } else if (isa<SCEVAddRecExpr>(S)) { 6047 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6048 // unsupported. 6049 return false; 6050 6051 } else { 6052 return false; 6053 } 6054 return Success; 6055 } 6056 6057 /// Return true if the combination of arithmetic operator and underlying 6058 /// SCEV constant value is an identity function. 6059 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6060 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6061 if (C->getAPInt().getMinSignedBits() > 64) 6062 return false; 6063 int64_t I = C->getAPInt().getSExtValue(); 6064 switch (Op) { 6065 case llvm::dwarf::DW_OP_plus: 6066 case llvm::dwarf::DW_OP_minus: 6067 return I == 0; 6068 case llvm::dwarf::DW_OP_mul: 6069 case llvm::dwarf::DW_OP_div: 6070 return I == 1; 6071 } 6072 } 6073 return false; 6074 } 6075 6076 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6077 /// builder's expression stack. The stack should already contain an 6078 /// expression for the iteration count, so that it can be multiplied by 6079 /// the stride and added to the start. 6080 /// Components of the expression are omitted if they are an identity function. 6081 /// Chain (non-affine) SCEVs are not supported. 6082 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6083 assert(SAR.isAffine() && "Expected affine SCEV"); 6084 // TODO: Is this check needed? 6085 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6086 return false; 6087 6088 const SCEV *Start = SAR.getStart(); 6089 const SCEV *Stride = SAR.getStepRecurrence(SE); 6090 6091 // Skip pushing arithmetic noops. 6092 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6093 if (!pushSCEV(Stride)) 6094 return false; 6095 pushOperator(llvm::dwarf::DW_OP_mul); 6096 } 6097 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6098 if (!pushSCEV(Start)) 6099 return false; 6100 pushOperator(llvm::dwarf::DW_OP_plus); 6101 } 6102 return true; 6103 } 6104 6105 /// Create an expression that is an offset from a value (usually the IV). 6106 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6107 pushLocation(OffsetValue); 6108 DIExpression::appendOffset(Expr, Offset); 6109 LLVM_DEBUG( 6110 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6111 << std::to_string(Offset) << "\n"); 6112 } 6113 6114 /// Combine a translation of the SCEV and the IV to create an expression that 6115 /// recovers a location's value. 6116 /// returns true if an expression was created. 6117 bool createIterCountExpr(const SCEV *S, 6118 const SCEVDbgValueBuilder &IterationCount, 6119 ScalarEvolution &SE) { 6120 // SCEVs for SSA values are most frquently of the form 6121 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6122 // This is because %a is a PHI node that is not the IV. However, these 6123 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6124 // so its not expected this point will be reached. 6125 if (!isa<SCEVAddRecExpr>(S)) 6126 return false; 6127 6128 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6129 << '\n'); 6130 6131 const auto *Rec = cast<SCEVAddRecExpr>(S); 6132 if (!Rec->isAffine()) 6133 return false; 6134 6135 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6136 return false; 6137 6138 // Initialise a new builder with the iteration count expression. In 6139 // combination with the value's SCEV this enables recovery. 6140 clone(IterationCount); 6141 if (!SCEVToValueExpr(*Rec, SE)) 6142 return false; 6143 6144 return true; 6145 } 6146 6147 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6148 /// builder's expression stack. The stack should already contain an 6149 /// expression for the iteration count, so that it can be multiplied by 6150 /// the stride and added to the start. 6151 /// Components of the expression are omitted if they are an identity function. 6152 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6153 ScalarEvolution &SE) { 6154 assert(SAR.isAffine() && "Expected affine SCEV"); 6155 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6156 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6157 << SAR << '\n'); 6158 return false; 6159 } 6160 const SCEV *Start = SAR.getStart(); 6161 const SCEV *Stride = SAR.getStepRecurrence(SE); 6162 6163 // Skip pushing arithmetic noops. 6164 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6165 if (!pushSCEV(Start)) 6166 return false; 6167 pushOperator(llvm::dwarf::DW_OP_minus); 6168 } 6169 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6170 if (!pushSCEV(Stride)) 6171 return false; 6172 pushOperator(llvm::dwarf::DW_OP_div); 6173 } 6174 return true; 6175 } 6176 6177 // Append the current expression and locations to a location list and an 6178 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6179 // the locations already present in the destination list. 6180 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6181 SmallVectorImpl<Value *> &DestLocations) { 6182 assert(!DestLocations.empty() && 6183 "Expected the locations vector to contain the IV"); 6184 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6185 // modified to account for the locations already in the destination vector. 6186 // All builders contain the IV as the first location op. 6187 assert(!LocationOps.empty() && 6188 "Expected the location ops to contain the IV."); 6189 // DestIndexMap[n] contains the index in DestLocations for the nth 6190 // location in this SCEVDbgValueBuilder. 6191 SmallVector<uint64_t, 2> DestIndexMap; 6192 for (const auto &Op : LocationOps) { 6193 auto It = find(DestLocations, Op); 6194 if (It != DestLocations.end()) { 6195 // Location already exists in DestLocations, reuse existing ArgIndex. 6196 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6197 continue; 6198 } 6199 // Location is not in DestLocations, add it. 6200 DestIndexMap.push_back(DestLocations.size()); 6201 DestLocations.push_back(Op); 6202 } 6203 6204 for (const auto &Op : expr_ops()) { 6205 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6206 Op.appendToVector(DestExpr); 6207 continue; 6208 } 6209 6210 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6211 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6212 // DestIndexMap[n] contains its new index in DestLocations. 6213 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6214 DestExpr.push_back(NewIndex); 6215 } 6216 } 6217 }; 6218 6219 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6220 /// and DIExpression. 6221 struct DVIRecoveryRec { 6222 DVIRecoveryRec(DbgValueInst *DbgValue) 6223 : DVI(DbgValue), Expr(DbgValue->getExpression()), 6224 HadLocationArgList(false) {} 6225 6226 DbgValueInst *DVI; 6227 DIExpression *Expr; 6228 bool HadLocationArgList; 6229 SmallVector<WeakVH, 2> LocationOps; 6230 SmallVector<const llvm::SCEV *, 2> SCEVs; 6231 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6232 6233 void clear() { 6234 for (auto &RE : RecoveryExprs) 6235 RE.reset(); 6236 RecoveryExprs.clear(); 6237 } 6238 6239 ~DVIRecoveryRec() { clear(); } 6240 }; 6241 } // namespace 6242 6243 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6244 /// This helps in determining if a DIArglist is necessary or can be omitted from 6245 /// the dbg.value. 6246 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6247 auto expr_ops = ToDwarfOpIter(Expr); 6248 unsigned Count = 0; 6249 for (auto Op : expr_ops) 6250 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6251 Count++; 6252 return Count; 6253 } 6254 6255 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6256 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6257 /// because a DIArglist is not created for the first argument of the dbg.value. 6258 static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location, 6259 SmallVectorImpl<uint64_t> &Ops) { 6260 assert( 6261 numLLVMArgOps(Ops) == 0 && 6262 "Expected expression that does not contain any DW_OP_llvm_arg operands."); 6263 DVI.setRawLocation(ValueAsMetadata::get(Location)); 6264 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops)); 6265 } 6266 6267 /// Overwrite DVI with locations placed into a DIArglist. 6268 static void updateDVIWithLocations(DbgValueInst &DVI, 6269 SmallVectorImpl<Value *> &Locations, 6270 SmallVectorImpl<uint64_t> &Ops) { 6271 assert(numLLVMArgOps(Ops) != 0 && 6272 "Expected expression that references DIArglist locations using " 6273 "DW_OP_llvm_arg operands."); 6274 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6275 for (Value *V : Locations) 6276 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6277 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6278 DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef)); 6279 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops)); 6280 } 6281 6282 /// Write the new expression and new location ops for the dbg.value. If possible 6283 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6284 /// can be omitted if: 6285 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6286 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6287 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6288 SmallVectorImpl<Value *> &NewLocationOps, 6289 SmallVectorImpl<uint64_t> &NewExpr) { 6290 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6291 if (NumLLVMArgs == 0) { 6292 // Location assumed to be on the stack. 6293 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr); 6294 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6295 // There is only a single DW_OP_llvm_arg at the start of the expression, 6296 // so it can be omitted along with DIArglist. 6297 assert(NewExpr[1] == 0 && 6298 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6299 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6300 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps); 6301 } else { 6302 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6303 updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr); 6304 } 6305 6306 // If the DIExpression was previously empty then add the stack terminator. 6307 // Non-empty expressions have only had elements inserted into them and so the 6308 // terminator should already be present e.g. stack_value or fragment. 6309 DIExpression *SalvageExpr = DVIRec.DVI->getExpression(); 6310 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6311 SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6312 DVIRec.DVI->setExpression(SalvageExpr); 6313 } 6314 } 6315 6316 /// Cached location ops may be erased during LSR, in which case an undef is 6317 /// required when restoring from the cache. The type of that location is no 6318 /// longer available, so just use int8. The undef will be replaced by one or 6319 /// more locations later when a SCEVDbgValueBuilder selects alternative 6320 /// locations to use for the salvage. 6321 static Value *getValueOrUndef(WeakVH &VH, LLVMContext &C) { 6322 return (VH) ? VH : UndefValue::get(llvm::Type::getInt8Ty(C)); 6323 } 6324 6325 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6326 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6327 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6328 << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n'); 6329 assert(DVIRec.Expr && "Expected an expression"); 6330 DVIRec.DVI->setExpression(DVIRec.Expr); 6331 6332 // Even a single location-op may be inside a DIArgList and referenced with 6333 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6334 if (!DVIRec.HadLocationArgList) { 6335 assert(DVIRec.LocationOps.size() == 1 && 6336 "Unexpected number of location ops."); 6337 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6338 // this case was not present before, so force the location back to a single 6339 // uncontained Value. 6340 Value *CachedValue = 6341 getValueOrUndef(DVIRec.LocationOps[0], DVIRec.DVI->getContext()); 6342 DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue)); 6343 } else { 6344 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6345 for (WeakVH VH : DVIRec.LocationOps) { 6346 Value *CachedValue = getValueOrUndef(VH, DVIRec.DVI->getContext()); 6347 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6348 } 6349 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6350 DVIRec.DVI->setRawLocation( 6351 llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef)); 6352 } 6353 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n'); 6354 } 6355 6356 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6357 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6358 const SCEV *SCEVInductionVar, 6359 SCEVDbgValueBuilder IterCountExpr) { 6360 if (!DVIRec.DVI->isUndef()) 6361 return false; 6362 6363 // LSR may have caused several changes to the dbg.value in the failed salvage 6364 // attempt. So restore the DIExpression, the location ops and also the 6365 // location ops format, which is always DIArglist for multiple ops, but only 6366 // sometimes for a single op. 6367 restorePreTransformState(DVIRec); 6368 6369 // LocationOpIndexMap[i] will store the post-LSR location index of 6370 // the non-optimised out location at pre-LSR index i. 6371 SmallVector<int64_t, 2> LocationOpIndexMap; 6372 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6373 SmallVector<Value *, 2> NewLocationOps; 6374 NewLocationOps.push_back(LSRInductionVar); 6375 6376 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6377 WeakVH VH = DVIRec.LocationOps[i]; 6378 // Place the locations not optimised out in the list first, avoiding 6379 // inserts later. The map is used to update the DIExpression's 6380 // DW_OP_LLVM_arg arguments as the expression is updated. 6381 if (VH && !isa<UndefValue>(VH)) { 6382 NewLocationOps.push_back(VH); 6383 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6384 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6385 << " now at index " << LocationOpIndexMap[i] << "\n"); 6386 continue; 6387 } 6388 6389 // It's possible that a value referred to in the SCEV may have been 6390 // optimised out by LSR. 6391 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6392 SE.containsUndefs(DVIRec.SCEVs[i])) { 6393 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6394 << " refers to a location that is now undef or erased. " 6395 "Salvage abandoned.\n"); 6396 return false; 6397 } 6398 6399 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6400 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6401 6402 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6403 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6404 6405 // Create an offset-based salvage expression if possible, as it requires 6406 // less DWARF ops than an iteration count-based expression. 6407 if (Optional<APInt> Offset = 6408 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6409 if (Offset->getMinSignedBits() <= 64) 6410 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6411 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6412 SE)) 6413 return false; 6414 } 6415 6416 // Merge the DbgValueBuilder generated expressions and the original 6417 // DIExpression, place the result into an new vector. 6418 SmallVector<uint64_t, 3> NewExpr; 6419 if (DVIRec.Expr->getNumElements() == 0) { 6420 assert(DVIRec.RecoveryExprs.size() == 1 && 6421 "Expected only a single recovery expression for an empty " 6422 "DIExpression."); 6423 assert(DVIRec.RecoveryExprs[0] && 6424 "Expected a SCEVDbgSalvageBuilder for location 0"); 6425 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6426 B->appendToVectors(NewExpr, NewLocationOps); 6427 } 6428 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6429 // Most Ops needn't be updated. 6430 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6431 Op.appendToVector(NewExpr); 6432 continue; 6433 } 6434 6435 uint64_t LocationArgIndex = Op.getArg(0); 6436 SCEVDbgValueBuilder *DbgBuilder = 6437 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6438 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6439 // optimise it away. So just translate the argument to the updated 6440 // location index. 6441 if (!DbgBuilder) { 6442 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6443 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6444 "Expected a positive index for the location-op position."); 6445 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6446 continue; 6447 } 6448 // The location has a recovery expression. 6449 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6450 } 6451 6452 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6453 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n"); 6454 return true; 6455 } 6456 6457 /// Obtain an expression for the iteration count, then attempt to salvage the 6458 /// dbg.value intrinsics. 6459 static void 6460 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE, 6461 llvm::PHINode *LSRInductionVar, 6462 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6463 if (DVIToUpdate.empty()) 6464 return; 6465 6466 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6467 assert(SCEVInductionVar && 6468 "Anticipated a SCEV for the post-LSR induction variable"); 6469 6470 if (const SCEVAddRecExpr *IVAddRec = 6471 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6472 if (!IVAddRec->isAffine()) 6473 return; 6474 6475 // Prevent translation using excessive resources. 6476 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6477 return; 6478 6479 // The iteration count is required to recover location values. 6480 SCEVDbgValueBuilder IterCountExpr; 6481 IterCountExpr.pushLocation(LSRInductionVar); 6482 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6483 return; 6484 6485 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6486 << '\n'); 6487 6488 for (auto &DVIRec : DVIToUpdate) { 6489 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6490 IterCountExpr); 6491 } 6492 } 6493 } 6494 6495 /// Identify and cache salvageable DVI locations and expressions along with the 6496 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6497 /// cacheing and salvaging. 6498 static void DbgGatherSalvagableDVI( 6499 Loop *L, ScalarEvolution &SE, 6500 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6501 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6502 for (auto &B : L->getBlocks()) { 6503 for (auto &I : *B) { 6504 auto DVI = dyn_cast<DbgValueInst>(&I); 6505 if (!DVI) 6506 continue; 6507 // Ensure that if any location op is undef that the dbg.vlue is not 6508 // cached. 6509 if (DVI->isUndef()) 6510 continue; 6511 6512 // Check that the location op SCEVs are suitable for translation to 6513 // DIExpression. 6514 const auto &HasTranslatableLocationOps = 6515 [&](const DbgValueInst *DVI) -> bool { 6516 for (const auto LocOp : DVI->location_ops()) { 6517 if (!LocOp) 6518 return false; 6519 6520 if (!SE.isSCEVable(LocOp->getType())) 6521 return false; 6522 6523 const SCEV *S = SE.getSCEV(LocOp); 6524 if (SE.containsUndefs(S)) 6525 return false; 6526 } 6527 return true; 6528 }; 6529 6530 if (!HasTranslatableLocationOps(DVI)) 6531 continue; 6532 6533 std::unique_ptr<DVIRecoveryRec> NewRec = 6534 std::make_unique<DVIRecoveryRec>(DVI); 6535 // Each location Op may need a SCEVDbgValueBuilder in order to recover it. 6536 // Pre-allocating a vector will enable quick lookups of the builder later 6537 // during the salvage. 6538 NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps()); 6539 for (const auto LocOp : DVI->location_ops()) { 6540 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 6541 NewRec->LocationOps.push_back(LocOp); 6542 NewRec->HadLocationArgList = DVI->hasArgList(); 6543 } 6544 SalvageableDVISCEVs.push_back(std::move(NewRec)); 6545 DVIHandles.insert(DVI); 6546 } 6547 } 6548 } 6549 6550 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 6551 /// any PHi from the loop header is usable, but may have less chance of 6552 /// surviving subsequent transforms. 6553 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 6554 const LSRInstance &LSR) { 6555 6556 auto IsSuitableIV = [&](PHINode *P) { 6557 if (!SE.isSCEVable(P->getType())) 6558 return false; 6559 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 6560 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 6561 return false; 6562 }; 6563 6564 // For now, just pick the first IV that was generated and inserted by 6565 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 6566 // by subsequent transforms. 6567 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 6568 if (!IV) 6569 continue; 6570 6571 // There should only be PHI node IVs. 6572 PHINode *P = cast<PHINode>(&*IV); 6573 6574 if (IsSuitableIV(P)) 6575 return P; 6576 } 6577 6578 for (PHINode &P : L.getHeader()->phis()) { 6579 if (IsSuitableIV(&P)) 6580 return &P; 6581 } 6582 return nullptr; 6583 } 6584 6585 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6586 DominatorTree &DT, LoopInfo &LI, 6587 const TargetTransformInfo &TTI, 6588 AssumptionCache &AC, TargetLibraryInfo &TLI, 6589 MemorySSA *MSSA) { 6590 6591 // Debug preservation - before we start removing anything identify which DVI 6592 // meet the salvageable criteria and store their DIExpression and SCEVs. 6593 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 6594 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 6595 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 6596 6597 bool Changed = false; 6598 std::unique_ptr<MemorySSAUpdater> MSSAU; 6599 if (MSSA) 6600 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 6601 6602 // Run the main LSR transformation. 6603 const LSRInstance &Reducer = 6604 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 6605 Changed |= Reducer.getChanged(); 6606 6607 // Remove any extra phis created by processing inner loops. 6608 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6609 if (EnablePhiElim && L->isLoopSimplifyForm()) { 6610 SmallVector<WeakTrackingVH, 16> DeadInsts; 6611 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6612 SCEVExpander Rewriter(SE, DL, "lsr", false); 6613 #ifndef NDEBUG 6614 Rewriter.setDebugType(DEBUG_TYPE); 6615 #endif 6616 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 6617 if (numFolded) { 6618 Changed = true; 6619 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6620 MSSAU.get()); 6621 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6622 } 6623 } 6624 // LSR may at times remove all uses of an induction variable from a loop. 6625 // The only remaining use is the PHI in the exit block. 6626 // When this is the case, if the exit value of the IV can be calculated using 6627 // SCEV, we can replace the exit block PHI with the final value of the IV and 6628 // skip the updates in each loop iteration. 6629 if (L->isRecursivelyLCSSAForm(DT, LI) && LoopExitValHasSingleUse(L)) { 6630 SmallVector<WeakTrackingVH, 16> DeadInsts; 6631 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 6632 SCEVExpander Rewriter(SE, DL, "lsr", false); 6633 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 6634 OnlyCheapRepl, DeadInsts); 6635 if (Rewrites) { 6636 Changed = true; 6637 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 6638 MSSAU.get()); 6639 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 6640 } 6641 } 6642 6643 if (SalvageableDVIRecords.empty()) 6644 return Changed; 6645 6646 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 6647 // expressions composed using the derived iteration count. 6648 // TODO: Allow for multiple IV references for nested AddRecSCEVs 6649 for (auto &L : LI) { 6650 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 6651 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 6652 else { 6653 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 6654 "could not be identified.\n"); 6655 } 6656 } 6657 6658 for (auto &Rec : SalvageableDVIRecords) 6659 Rec->clear(); 6660 SalvageableDVIRecords.clear(); 6661 DVIHandles.clear(); 6662 return Changed; 6663 } 6664 6665 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 6666 if (skipLoop(L)) 6667 return false; 6668 6669 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 6670 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 6671 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 6672 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 6673 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 6674 *L->getHeader()->getParent()); 6675 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 6676 *L->getHeader()->getParent()); 6677 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 6678 *L->getHeader()->getParent()); 6679 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 6680 MemorySSA *MSSA = nullptr; 6681 if (MSSAAnalysis) 6682 MSSA = &MSSAAnalysis->getMSSA(); 6683 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 6684 } 6685 6686 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 6687 LoopStandardAnalysisResults &AR, 6688 LPMUpdater &) { 6689 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 6690 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 6691 return PreservedAnalyses::all(); 6692 6693 auto PA = getLoopPassPreservedAnalyses(); 6694 if (AR.MSSA) 6695 PA.preserve<MemorySSAAnalysis>(); 6696 return PA; 6697 } 6698 6699 char LoopStrengthReduce::ID = 0; 6700 6701 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 6702 "Loop Strength Reduction", false, false) 6703 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 6704 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 6705 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 6706 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 6707 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 6708 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 6709 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 6710 "Loop Strength Reduction", false, false) 6711 6712 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 6713