1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/BinaryFormat/Dwarf.h"
82 #include "llvm/Config/llvm-config.h"
83 #include "llvm/IR/BasicBlock.h"
84 #include "llvm/IR/Constant.h"
85 #include "llvm/IR/Constants.h"
86 #include "llvm/IR/DebugInfoMetadata.h"
87 #include "llvm/IR/DerivedTypes.h"
88 #include "llvm/IR/Dominators.h"
89 #include "llvm/IR/GlobalValue.h"
90 #include "llvm/IR/IRBuilder.h"
91 #include "llvm/IR/InstrTypes.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/LoopUtils.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "loop-reduce"
131 
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137 
138 /// Limit the size of expression that SCEV-based salvaging will attempt to
139 /// translate into a DIExpression.
140 /// Choose a maximum size such that debuginfo is not excessively increased and
141 /// the salvaging is not too expensive for the compiler.
142 static const unsigned MaxSCEVSalvageExpressionSize = 64;
143 
144 // Cleanup congruent phis after LSR phi expansion.
145 static cl::opt<bool> EnablePhiElim(
146   "enable-lsr-phielim", cl::Hidden, cl::init(true),
147   cl::desc("Enable LSR phi elimination"));
148 
149 // The flag adds instruction count to solutions cost comparision.
150 static cl::opt<bool> InsnsCost(
151   "lsr-insns-cost", cl::Hidden, cl::init(true),
152   cl::desc("Add instruction count to a LSR cost model"));
153 
154 // Flag to choose how to narrow complex lsr solution
155 static cl::opt<bool> LSRExpNarrow(
156   "lsr-exp-narrow", cl::Hidden, cl::init(false),
157   cl::desc("Narrow LSR complex solution using"
158            " expectation of registers number"));
159 
160 // Flag to narrow search space by filtering non-optimal formulae with
161 // the same ScaledReg and Scale.
162 static cl::opt<bool> FilterSameScaledReg(
163     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
164     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
165              " with the same ScaledReg and Scale"));
166 
167 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
168   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
169    cl::desc("A flag that overrides the target's preferred addressing mode."),
170    cl::values(clEnumValN(TTI::AMK_None,
171                          "none",
172                          "Don't prefer any addressing mode"),
173               clEnumValN(TTI::AMK_PreIndexed,
174                          "preindexed",
175                          "Prefer pre-indexed addressing mode"),
176               clEnumValN(TTI::AMK_PostIndexed,
177                          "postindexed",
178                          "Prefer post-indexed addressing mode")));
179 
180 static cl::opt<unsigned> ComplexityLimit(
181   "lsr-complexity-limit", cl::Hidden,
182   cl::init(std::numeric_limits<uint16_t>::max()),
183   cl::desc("LSR search space complexity limit"));
184 
185 static cl::opt<unsigned> SetupCostDepthLimit(
186     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
187     cl::desc("The limit on recursion depth for LSRs setup cost"));
188 
189 #ifndef NDEBUG
190 // Stress test IV chain generation.
191 static cl::opt<bool> StressIVChain(
192   "stress-ivchain", cl::Hidden, cl::init(false),
193   cl::desc("Stress test LSR IV chains"));
194 #else
195 static bool StressIVChain = false;
196 #endif
197 
198 namespace {
199 
200 struct MemAccessTy {
201   /// Used in situations where the accessed memory type is unknown.
202   static const unsigned UnknownAddressSpace =
203       std::numeric_limits<unsigned>::max();
204 
205   Type *MemTy = nullptr;
206   unsigned AddrSpace = UnknownAddressSpace;
207 
208   MemAccessTy() = default;
209   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
210 
211   bool operator==(MemAccessTy Other) const {
212     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
213   }
214 
215   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
216 
217   static MemAccessTy getUnknown(LLVMContext &Ctx,
218                                 unsigned AS = UnknownAddressSpace) {
219     return MemAccessTy(Type::getVoidTy(Ctx), AS);
220   }
221 
222   Type *getType() { return MemTy; }
223 };
224 
225 /// This class holds data which is used to order reuse candidates.
226 class RegSortData {
227 public:
228   /// This represents the set of LSRUse indices which reference
229   /// a particular register.
230   SmallBitVector UsedByIndices;
231 
232   void print(raw_ostream &OS) const;
233   void dump() const;
234 };
235 
236 } // end anonymous namespace
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 void RegSortData::print(raw_ostream &OS) const {
240   OS << "[NumUses=" << UsedByIndices.count() << ']';
241 }
242 
243 LLVM_DUMP_METHOD void RegSortData::dump() const {
244   print(errs()); errs() << '\n';
245 }
246 #endif
247 
248 namespace {
249 
250 /// Map register candidates to information about how they are used.
251 class RegUseTracker {
252   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
253 
254   RegUsesTy RegUsesMap;
255   SmallVector<const SCEV *, 16> RegSequence;
256 
257 public:
258   void countRegister(const SCEV *Reg, size_t LUIdx);
259   void dropRegister(const SCEV *Reg, size_t LUIdx);
260   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
261 
262   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
263 
264   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
265 
266   void clear();
267 
268   using iterator = SmallVectorImpl<const SCEV *>::iterator;
269   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
270 
271   iterator begin() { return RegSequence.begin(); }
272   iterator end()   { return RegSequence.end(); }
273   const_iterator begin() const { return RegSequence.begin(); }
274   const_iterator end() const   { return RegSequence.end(); }
275 };
276 
277 } // end anonymous namespace
278 
279 void
280 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
281   std::pair<RegUsesTy::iterator, bool> Pair =
282     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
283   RegSortData &RSD = Pair.first->second;
284   if (Pair.second)
285     RegSequence.push_back(Reg);
286   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
287   RSD.UsedByIndices.set(LUIdx);
288 }
289 
290 void
291 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
292   RegUsesTy::iterator It = RegUsesMap.find(Reg);
293   assert(It != RegUsesMap.end());
294   RegSortData &RSD = It->second;
295   assert(RSD.UsedByIndices.size() > LUIdx);
296   RSD.UsedByIndices.reset(LUIdx);
297 }
298 
299 void
300 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
301   assert(LUIdx <= LastLUIdx);
302 
303   // Update RegUses. The data structure is not optimized for this purpose;
304   // we must iterate through it and update each of the bit vectors.
305   for (auto &Pair : RegUsesMap) {
306     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
307     if (LUIdx < UsedByIndices.size())
308       UsedByIndices[LUIdx] =
309         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
310     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
311   }
312 }
313 
314 bool
315 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
316   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
317   if (I == RegUsesMap.end())
318     return false;
319   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
320   int i = UsedByIndices.find_first();
321   if (i == -1) return false;
322   if ((size_t)i != LUIdx) return true;
323   return UsedByIndices.find_next(i) != -1;
324 }
325 
326 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
327   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
328   assert(I != RegUsesMap.end() && "Unknown register!");
329   return I->second.UsedByIndices;
330 }
331 
332 void RegUseTracker::clear() {
333   RegUsesMap.clear();
334   RegSequence.clear();
335 }
336 
337 namespace {
338 
339 /// This class holds information that describes a formula for computing
340 /// satisfying a use. It may include broken-out immediates and scaled registers.
341 struct Formula {
342   /// Global base address used for complex addressing.
343   GlobalValue *BaseGV = nullptr;
344 
345   /// Base offset for complex addressing.
346   int64_t BaseOffset = 0;
347 
348   /// Whether any complex addressing has a base register.
349   bool HasBaseReg = false;
350 
351   /// The scale of any complex addressing.
352   int64_t Scale = 0;
353 
354   /// The list of "base" registers for this use. When this is non-empty. The
355   /// canonical representation of a formula is
356   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
357   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
358   /// 3. The reg containing recurrent expr related with currect loop in the
359   /// formula should be put in the ScaledReg.
360   /// #1 enforces that the scaled register is always used when at least two
361   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
362   /// #2 enforces that 1 * reg is reg.
363   /// #3 ensures invariant regs with respect to current loop can be combined
364   /// together in LSR codegen.
365   /// This invariant can be temporarily broken while building a formula.
366   /// However, every formula inserted into the LSRInstance must be in canonical
367   /// form.
368   SmallVector<const SCEV *, 4> BaseRegs;
369 
370   /// The 'scaled' register for this use. This should be non-null when Scale is
371   /// not zero.
372   const SCEV *ScaledReg = nullptr;
373 
374   /// An additional constant offset which added near the use. This requires a
375   /// temporary register, but the offset itself can live in an add immediate
376   /// field rather than a register.
377   int64_t UnfoldedOffset = 0;
378 
379   Formula() = default;
380 
381   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
382 
383   bool isCanonical(const Loop &L) const;
384 
385   void canonicalize(const Loop &L);
386 
387   bool unscale();
388 
389   bool hasZeroEnd() const;
390 
391   size_t getNumRegs() const;
392   Type *getType() const;
393 
394   void deleteBaseReg(const SCEV *&S);
395 
396   bool referencesReg(const SCEV *S) const;
397   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
398                                   const RegUseTracker &RegUses) const;
399 
400   void print(raw_ostream &OS) const;
401   void dump() const;
402 };
403 
404 } // end anonymous namespace
405 
406 /// Recursion helper for initialMatch.
407 static void DoInitialMatch(const SCEV *S, Loop *L,
408                            SmallVectorImpl<const SCEV *> &Good,
409                            SmallVectorImpl<const SCEV *> &Bad,
410                            ScalarEvolution &SE) {
411   // Collect expressions which properly dominate the loop header.
412   if (SE.properlyDominates(S, L->getHeader())) {
413     Good.push_back(S);
414     return;
415   }
416 
417   // Look at add operands.
418   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
419     for (const SCEV *S : Add->operands())
420       DoInitialMatch(S, L, Good, Bad, SE);
421     return;
422   }
423 
424   // Look at addrec operands.
425   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
426     if (!AR->getStart()->isZero() && AR->isAffine()) {
427       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
428       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
429                                       AR->getStepRecurrence(SE),
430                                       // FIXME: AR->getNoWrapFlags()
431                                       AR->getLoop(), SCEV::FlagAnyWrap),
432                      L, Good, Bad, SE);
433       return;
434     }
435 
436   // Handle a multiplication by -1 (negation) if it didn't fold.
437   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
438     if (Mul->getOperand(0)->isAllOnesValue()) {
439       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
440       const SCEV *NewMul = SE.getMulExpr(Ops);
441 
442       SmallVector<const SCEV *, 4> MyGood;
443       SmallVector<const SCEV *, 4> MyBad;
444       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
445       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
446         SE.getEffectiveSCEVType(NewMul->getType())));
447       for (const SCEV *S : MyGood)
448         Good.push_back(SE.getMulExpr(NegOne, S));
449       for (const SCEV *S : MyBad)
450         Bad.push_back(SE.getMulExpr(NegOne, S));
451       return;
452     }
453 
454   // Ok, we can't do anything interesting. Just stuff the whole thing into a
455   // register and hope for the best.
456   Bad.push_back(S);
457 }
458 
459 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
460 /// all loop-invariant and loop-computable values in a single base register.
461 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
462   SmallVector<const SCEV *, 4> Good;
463   SmallVector<const SCEV *, 4> Bad;
464   DoInitialMatch(S, L, Good, Bad, SE);
465   if (!Good.empty()) {
466     const SCEV *Sum = SE.getAddExpr(Good);
467     if (!Sum->isZero())
468       BaseRegs.push_back(Sum);
469     HasBaseReg = true;
470   }
471   if (!Bad.empty()) {
472     const SCEV *Sum = SE.getAddExpr(Bad);
473     if (!Sum->isZero())
474       BaseRegs.push_back(Sum);
475     HasBaseReg = true;
476   }
477   canonicalize(*L);
478 }
479 
480 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
481   return SCEVExprContains(S, [&L](const SCEV *S) {
482     return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
483   });
484 }
485 
486 /// Check whether or not this formula satisfies the canonical
487 /// representation.
488 /// \see Formula::BaseRegs.
489 bool Formula::isCanonical(const Loop &L) const {
490   if (!ScaledReg)
491     return BaseRegs.size() <= 1;
492 
493   if (Scale != 1)
494     return true;
495 
496   if (Scale == 1 && BaseRegs.empty())
497     return false;
498 
499   if (containsAddRecDependentOnLoop(ScaledReg, L))
500     return true;
501 
502   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
503   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
504   // loop, we want to swap the reg in BaseRegs with ScaledReg.
505   return none_of(BaseRegs, [&L](const SCEV *S) {
506     return containsAddRecDependentOnLoop(S, L);
507   });
508 }
509 
510 /// Helper method to morph a formula into its canonical representation.
511 /// \see Formula::BaseRegs.
512 /// Every formula having more than one base register, must use the ScaledReg
513 /// field. Otherwise, we would have to do special cases everywhere in LSR
514 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
515 /// On the other hand, 1*reg should be canonicalized into reg.
516 void Formula::canonicalize(const Loop &L) {
517   if (isCanonical(L))
518     return;
519 
520   if (BaseRegs.empty()) {
521     // No base reg? Use scale reg with scale = 1 as such.
522     assert(ScaledReg && "Expected 1*reg => reg");
523     assert(Scale == 1 && "Expected 1*reg => reg");
524     BaseRegs.push_back(ScaledReg);
525     Scale = 0;
526     ScaledReg = nullptr;
527     return;
528   }
529 
530   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
531   if (!ScaledReg) {
532     ScaledReg = BaseRegs.pop_back_val();
533     Scale = 1;
534   }
535 
536   // If ScaledReg is an invariant with respect to L, find the reg from
537   // BaseRegs containing the recurrent expr related with Loop L. Swap the
538   // reg with ScaledReg.
539   if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
540     auto I = find_if(BaseRegs, [&L](const SCEV *S) {
541       return containsAddRecDependentOnLoop(S, L);
542     });
543     if (I != BaseRegs.end())
544       std::swap(ScaledReg, *I);
545   }
546   assert(isCanonical(L) && "Failed to canonicalize?");
547 }
548 
549 /// Get rid of the scale in the formula.
550 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
551 /// \return true if it was possible to get rid of the scale, false otherwise.
552 /// \note After this operation the formula may not be in the canonical form.
553 bool Formula::unscale() {
554   if (Scale != 1)
555     return false;
556   Scale = 0;
557   BaseRegs.push_back(ScaledReg);
558   ScaledReg = nullptr;
559   return true;
560 }
561 
562 bool Formula::hasZeroEnd() const {
563   if (UnfoldedOffset || BaseOffset)
564     return false;
565   if (BaseRegs.size() != 1 || ScaledReg)
566     return false;
567   return true;
568 }
569 
570 /// Return the total number of register operands used by this formula. This does
571 /// not include register uses implied by non-constant addrec strides.
572 size_t Formula::getNumRegs() const {
573   return !!ScaledReg + BaseRegs.size();
574 }
575 
576 /// Return the type of this formula, if it has one, or null otherwise. This type
577 /// is meaningless except for the bit size.
578 Type *Formula::getType() const {
579   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
580          ScaledReg ? ScaledReg->getType() :
581          BaseGV ? BaseGV->getType() :
582          nullptr;
583 }
584 
585 /// Delete the given base reg from the BaseRegs list.
586 void Formula::deleteBaseReg(const SCEV *&S) {
587   if (&S != &BaseRegs.back())
588     std::swap(S, BaseRegs.back());
589   BaseRegs.pop_back();
590 }
591 
592 /// Test if this formula references the given register.
593 bool Formula::referencesReg(const SCEV *S) const {
594   return S == ScaledReg || is_contained(BaseRegs, S);
595 }
596 
597 /// Test whether this formula uses registers which are used by uses other than
598 /// the use with the given index.
599 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
600                                          const RegUseTracker &RegUses) const {
601   if (ScaledReg)
602     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
603       return true;
604   for (const SCEV *BaseReg : BaseRegs)
605     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
606       return true;
607   return false;
608 }
609 
610 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
611 void Formula::print(raw_ostream &OS) const {
612   bool First = true;
613   if (BaseGV) {
614     if (!First) OS << " + "; else First = false;
615     BaseGV->printAsOperand(OS, /*PrintType=*/false);
616   }
617   if (BaseOffset != 0) {
618     if (!First) OS << " + "; else First = false;
619     OS << BaseOffset;
620   }
621   for (const SCEV *BaseReg : BaseRegs) {
622     if (!First) OS << " + "; else First = false;
623     OS << "reg(" << *BaseReg << ')';
624   }
625   if (HasBaseReg && BaseRegs.empty()) {
626     if (!First) OS << " + "; else First = false;
627     OS << "**error: HasBaseReg**";
628   } else if (!HasBaseReg && !BaseRegs.empty()) {
629     if (!First) OS << " + "; else First = false;
630     OS << "**error: !HasBaseReg**";
631   }
632   if (Scale != 0) {
633     if (!First) OS << " + "; else First = false;
634     OS << Scale << "*reg(";
635     if (ScaledReg)
636       OS << *ScaledReg;
637     else
638       OS << "<unknown>";
639     OS << ')';
640   }
641   if (UnfoldedOffset != 0) {
642     if (!First) OS << " + ";
643     OS << "imm(" << UnfoldedOffset << ')';
644   }
645 }
646 
647 LLVM_DUMP_METHOD void Formula::dump() const {
648   print(errs()); errs() << '\n';
649 }
650 #endif
651 
652 /// Return true if the given addrec can be sign-extended without changing its
653 /// value.
654 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
655   Type *WideTy =
656     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
657   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
658 }
659 
660 /// Return true if the given add can be sign-extended without changing its
661 /// value.
662 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
663   Type *WideTy =
664     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
665   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
666 }
667 
668 /// Return true if the given mul can be sign-extended without changing its
669 /// value.
670 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
671   Type *WideTy =
672     IntegerType::get(SE.getContext(),
673                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
674   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
675 }
676 
677 /// Return an expression for LHS /s RHS, if it can be determined and if the
678 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
679 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
680 /// the multiplication may overflow, which is useful when the result will be
681 /// used in a context where the most significant bits are ignored.
682 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
683                                 ScalarEvolution &SE,
684                                 bool IgnoreSignificantBits = false) {
685   // Handle the trivial case, which works for any SCEV type.
686   if (LHS == RHS)
687     return SE.getConstant(LHS->getType(), 1);
688 
689   // Handle a few RHS special cases.
690   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
691   if (RC) {
692     const APInt &RA = RC->getAPInt();
693     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
694     // some folding.
695     if (RA.isAllOnes()) {
696       if (LHS->getType()->isPointerTy())
697         return nullptr;
698       return SE.getMulExpr(LHS, RC);
699     }
700     // Handle x /s 1 as x.
701     if (RA == 1)
702       return LHS;
703   }
704 
705   // Check for a division of a constant by a constant.
706   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
707     if (!RC)
708       return nullptr;
709     const APInt &LA = C->getAPInt();
710     const APInt &RA = RC->getAPInt();
711     if (LA.srem(RA) != 0)
712       return nullptr;
713     return SE.getConstant(LA.sdiv(RA));
714   }
715 
716   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
717   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
718     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
719       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
720                                       IgnoreSignificantBits);
721       if (!Step) return nullptr;
722       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
723                                        IgnoreSignificantBits);
724       if (!Start) return nullptr;
725       // FlagNW is independent of the start value, step direction, and is
726       // preserved with smaller magnitude steps.
727       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
728       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
729     }
730     return nullptr;
731   }
732 
733   // Distribute the sdiv over add operands, if the add doesn't overflow.
734   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
735     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
736       SmallVector<const SCEV *, 8> Ops;
737       for (const SCEV *S : Add->operands()) {
738         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
739         if (!Op) return nullptr;
740         Ops.push_back(Op);
741       }
742       return SE.getAddExpr(Ops);
743     }
744     return nullptr;
745   }
746 
747   // Check for a multiply operand that we can pull RHS out of.
748   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
749     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
750       // Handle special case C1*X*Y /s C2*X*Y.
751       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
752         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
753           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
754           const SCEVConstant *RC =
755               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
756           if (LC && RC) {
757             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
758             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
759             if (LOps == ROps)
760               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
761           }
762         }
763       }
764 
765       SmallVector<const SCEV *, 4> Ops;
766       bool Found = false;
767       for (const SCEV *S : Mul->operands()) {
768         if (!Found)
769           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
770                                            IgnoreSignificantBits)) {
771             S = Q;
772             Found = true;
773           }
774         Ops.push_back(S);
775       }
776       return Found ? SE.getMulExpr(Ops) : nullptr;
777     }
778     return nullptr;
779   }
780 
781   // Otherwise we don't know.
782   return nullptr;
783 }
784 
785 /// If S involves the addition of a constant integer value, return that integer
786 /// value, and mutate S to point to a new SCEV with that value excluded.
787 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
788   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
789     if (C->getAPInt().getMinSignedBits() <= 64) {
790       S = SE.getConstant(C->getType(), 0);
791       return C->getValue()->getSExtValue();
792     }
793   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
794     SmallVector<const SCEV *, 8> NewOps(Add->operands());
795     int64_t Result = ExtractImmediate(NewOps.front(), SE);
796     if (Result != 0)
797       S = SE.getAddExpr(NewOps);
798     return Result;
799   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
800     SmallVector<const SCEV *, 8> NewOps(AR->operands());
801     int64_t Result = ExtractImmediate(NewOps.front(), SE);
802     if (Result != 0)
803       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
804                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
805                            SCEV::FlagAnyWrap);
806     return Result;
807   }
808   return 0;
809 }
810 
811 /// If S involves the addition of a GlobalValue address, return that symbol, and
812 /// mutate S to point to a new SCEV with that value excluded.
813 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
814   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
815     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
816       S = SE.getConstant(GV->getType(), 0);
817       return GV;
818     }
819   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
820     SmallVector<const SCEV *, 8> NewOps(Add->operands());
821     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
822     if (Result)
823       S = SE.getAddExpr(NewOps);
824     return Result;
825   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
826     SmallVector<const SCEV *, 8> NewOps(AR->operands());
827     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
828     if (Result)
829       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
830                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
831                            SCEV::FlagAnyWrap);
832     return Result;
833   }
834   return nullptr;
835 }
836 
837 /// Returns true if the specified instruction is using the specified value as an
838 /// address.
839 static bool isAddressUse(const TargetTransformInfo &TTI,
840                          Instruction *Inst, Value *OperandVal) {
841   bool isAddress = isa<LoadInst>(Inst);
842   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
843     if (SI->getPointerOperand() == OperandVal)
844       isAddress = true;
845   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
846     // Addressing modes can also be folded into prefetches and a variety
847     // of intrinsics.
848     switch (II->getIntrinsicID()) {
849     case Intrinsic::memset:
850     case Intrinsic::prefetch:
851     case Intrinsic::masked_load:
852       if (II->getArgOperand(0) == OperandVal)
853         isAddress = true;
854       break;
855     case Intrinsic::masked_store:
856       if (II->getArgOperand(1) == OperandVal)
857         isAddress = true;
858       break;
859     case Intrinsic::memmove:
860     case Intrinsic::memcpy:
861       if (II->getArgOperand(0) == OperandVal ||
862           II->getArgOperand(1) == OperandVal)
863         isAddress = true;
864       break;
865     default: {
866       MemIntrinsicInfo IntrInfo;
867       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
868         if (IntrInfo.PtrVal == OperandVal)
869           isAddress = true;
870       }
871     }
872     }
873   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
874     if (RMW->getPointerOperand() == OperandVal)
875       isAddress = true;
876   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
877     if (CmpX->getPointerOperand() == OperandVal)
878       isAddress = true;
879   }
880   return isAddress;
881 }
882 
883 /// Return the type of the memory being accessed.
884 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
885                                  Instruction *Inst, Value *OperandVal) {
886   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
887   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
888     AccessTy.MemTy = SI->getOperand(0)->getType();
889     AccessTy.AddrSpace = SI->getPointerAddressSpace();
890   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
891     AccessTy.AddrSpace = LI->getPointerAddressSpace();
892   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
893     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
894   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
895     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
896   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
897     switch (II->getIntrinsicID()) {
898     case Intrinsic::prefetch:
899     case Intrinsic::memset:
900       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
901       AccessTy.MemTy = OperandVal->getType();
902       break;
903     case Intrinsic::memmove:
904     case Intrinsic::memcpy:
905       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
906       AccessTy.MemTy = OperandVal->getType();
907       break;
908     case Intrinsic::masked_load:
909       AccessTy.AddrSpace =
910           II->getArgOperand(0)->getType()->getPointerAddressSpace();
911       break;
912     case Intrinsic::masked_store:
913       AccessTy.MemTy = II->getOperand(0)->getType();
914       AccessTy.AddrSpace =
915           II->getArgOperand(1)->getType()->getPointerAddressSpace();
916       break;
917     default: {
918       MemIntrinsicInfo IntrInfo;
919       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
920         AccessTy.AddrSpace
921           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
922       }
923 
924       break;
925     }
926     }
927   }
928 
929   // All pointers have the same requirements, so canonicalize them to an
930   // arbitrary pointer type to minimize variation.
931   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
932     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
933                                       PTy->getAddressSpace());
934 
935   return AccessTy;
936 }
937 
938 /// Return true if this AddRec is already a phi in its loop.
939 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
940   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
941     if (SE.isSCEVable(PN.getType()) &&
942         (SE.getEffectiveSCEVType(PN.getType()) ==
943          SE.getEffectiveSCEVType(AR->getType())) &&
944         SE.getSCEV(&PN) == AR)
945       return true;
946   }
947   return false;
948 }
949 
950 /// Check if expanding this expression is likely to incur significant cost. This
951 /// is tricky because SCEV doesn't track which expressions are actually computed
952 /// by the current IR.
953 ///
954 /// We currently allow expansion of IV increments that involve adds,
955 /// multiplication by constants, and AddRecs from existing phis.
956 ///
957 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
958 /// obvious multiple of the UDivExpr.
959 static bool isHighCostExpansion(const SCEV *S,
960                                 SmallPtrSetImpl<const SCEV*> &Processed,
961                                 ScalarEvolution &SE) {
962   // Zero/One operand expressions
963   switch (S->getSCEVType()) {
964   case scUnknown:
965   case scConstant:
966     return false;
967   case scTruncate:
968     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
969                                Processed, SE);
970   case scZeroExtend:
971     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
972                                Processed, SE);
973   case scSignExtend:
974     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
975                                Processed, SE);
976   default:
977     break;
978   }
979 
980   if (!Processed.insert(S).second)
981     return false;
982 
983   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
984     for (const SCEV *S : Add->operands()) {
985       if (isHighCostExpansion(S, Processed, SE))
986         return true;
987     }
988     return false;
989   }
990 
991   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
992     if (Mul->getNumOperands() == 2) {
993       // Multiplication by a constant is ok
994       if (isa<SCEVConstant>(Mul->getOperand(0)))
995         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
996 
997       // If we have the value of one operand, check if an existing
998       // multiplication already generates this expression.
999       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1000         Value *UVal = U->getValue();
1001         for (User *UR : UVal->users()) {
1002           // If U is a constant, it may be used by a ConstantExpr.
1003           Instruction *UI = dyn_cast<Instruction>(UR);
1004           if (UI && UI->getOpcode() == Instruction::Mul &&
1005               SE.isSCEVable(UI->getType())) {
1006             return SE.getSCEV(UI) == Mul;
1007           }
1008         }
1009       }
1010     }
1011   }
1012 
1013   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1014     if (isExistingPhi(AR, SE))
1015       return false;
1016   }
1017 
1018   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1019   return true;
1020 }
1021 
1022 namespace {
1023 
1024 class LSRUse;
1025 
1026 } // end anonymous namespace
1027 
1028 /// Check if the addressing mode defined by \p F is completely
1029 /// folded in \p LU at isel time.
1030 /// This includes address-mode folding and special icmp tricks.
1031 /// This function returns true if \p LU can accommodate what \p F
1032 /// defines and up to 1 base + 1 scaled + offset.
1033 /// In other words, if \p F has several base registers, this function may
1034 /// still return true. Therefore, users still need to account for
1035 /// additional base registers and/or unfolded offsets to derive an
1036 /// accurate cost model.
1037 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1038                                  const LSRUse &LU, const Formula &F);
1039 
1040 // Get the cost of the scaling factor used in F for LU.
1041 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1042                                             const LSRUse &LU, const Formula &F,
1043                                             const Loop &L);
1044 
1045 namespace {
1046 
1047 /// This class is used to measure and compare candidate formulae.
1048 class Cost {
1049   const Loop *L = nullptr;
1050   ScalarEvolution *SE = nullptr;
1051   const TargetTransformInfo *TTI = nullptr;
1052   TargetTransformInfo::LSRCost C;
1053   TTI::AddressingModeKind AMK = TTI::AMK_None;
1054 
1055 public:
1056   Cost() = delete;
1057   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1058        TTI::AddressingModeKind AMK) :
1059     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1060     C.Insns = 0;
1061     C.NumRegs = 0;
1062     C.AddRecCost = 0;
1063     C.NumIVMuls = 0;
1064     C.NumBaseAdds = 0;
1065     C.ImmCost = 0;
1066     C.SetupCost = 0;
1067     C.ScaleCost = 0;
1068   }
1069 
1070   bool isLess(const Cost &Other);
1071 
1072   void Lose();
1073 
1074 #ifndef NDEBUG
1075   // Once any of the metrics loses, they must all remain losers.
1076   bool isValid() {
1077     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1078              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1079       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1080            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1081   }
1082 #endif
1083 
1084   bool isLoser() {
1085     assert(isValid() && "invalid cost");
1086     return C.NumRegs == ~0u;
1087   }
1088 
1089   void RateFormula(const Formula &F,
1090                    SmallPtrSetImpl<const SCEV *> &Regs,
1091                    const DenseSet<const SCEV *> &VisitedRegs,
1092                    const LSRUse &LU,
1093                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1094 
1095   void print(raw_ostream &OS) const;
1096   void dump() const;
1097 
1098 private:
1099   void RateRegister(const Formula &F, const SCEV *Reg,
1100                     SmallPtrSetImpl<const SCEV *> &Regs);
1101   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1102                            SmallPtrSetImpl<const SCEV *> &Regs,
1103                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1104 };
1105 
1106 /// An operand value in an instruction which is to be replaced with some
1107 /// equivalent, possibly strength-reduced, replacement.
1108 struct LSRFixup {
1109   /// The instruction which will be updated.
1110   Instruction *UserInst = nullptr;
1111 
1112   /// The operand of the instruction which will be replaced. The operand may be
1113   /// used more than once; every instance will be replaced.
1114   Value *OperandValToReplace = nullptr;
1115 
1116   /// If this user is to use the post-incremented value of an induction
1117   /// variable, this set is non-empty and holds the loops associated with the
1118   /// induction variable.
1119   PostIncLoopSet PostIncLoops;
1120 
1121   /// A constant offset to be added to the LSRUse expression.  This allows
1122   /// multiple fixups to share the same LSRUse with different offsets, for
1123   /// example in an unrolled loop.
1124   int64_t Offset = 0;
1125 
1126   LSRFixup() = default;
1127 
1128   bool isUseFullyOutsideLoop(const Loop *L) const;
1129 
1130   void print(raw_ostream &OS) const;
1131   void dump() const;
1132 };
1133 
1134 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1135 /// SmallVectors of const SCEV*.
1136 struct UniquifierDenseMapInfo {
1137   static SmallVector<const SCEV *, 4> getEmptyKey() {
1138     SmallVector<const SCEV *, 4>  V;
1139     V.push_back(reinterpret_cast<const SCEV *>(-1));
1140     return V;
1141   }
1142 
1143   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1144     SmallVector<const SCEV *, 4> V;
1145     V.push_back(reinterpret_cast<const SCEV *>(-2));
1146     return V;
1147   }
1148 
1149   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1150     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1151   }
1152 
1153   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1154                       const SmallVector<const SCEV *, 4> &RHS) {
1155     return LHS == RHS;
1156   }
1157 };
1158 
1159 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1160 /// as uses invented by LSR itself. It includes information about what kinds of
1161 /// things can be folded into the user, information about the user itself, and
1162 /// information about how the use may be satisfied.  TODO: Represent multiple
1163 /// users of the same expression in common?
1164 class LSRUse {
1165   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1166 
1167 public:
1168   /// An enum for a kind of use, indicating what types of scaled and immediate
1169   /// operands it might support.
1170   enum KindType {
1171     Basic,   ///< A normal use, with no folding.
1172     Special, ///< A special case of basic, allowing -1 scales.
1173     Address, ///< An address use; folding according to TargetLowering
1174     ICmpZero ///< An equality icmp with both operands folded into one.
1175     // TODO: Add a generic icmp too?
1176   };
1177 
1178   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1179 
1180   KindType Kind;
1181   MemAccessTy AccessTy;
1182 
1183   /// The list of operands which are to be replaced.
1184   SmallVector<LSRFixup, 8> Fixups;
1185 
1186   /// Keep track of the min and max offsets of the fixups.
1187   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1188   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1189 
1190   /// This records whether all of the fixups using this LSRUse are outside of
1191   /// the loop, in which case some special-case heuristics may be used.
1192   bool AllFixupsOutsideLoop = true;
1193 
1194   /// RigidFormula is set to true to guarantee that this use will be associated
1195   /// with a single formula--the one that initially matched. Some SCEV
1196   /// expressions cannot be expanded. This allows LSR to consider the registers
1197   /// used by those expressions without the need to expand them later after
1198   /// changing the formula.
1199   bool RigidFormula = false;
1200 
1201   /// This records the widest use type for any fixup using this
1202   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1203   /// fixup widths to be equivalent, because the narrower one may be relying on
1204   /// the implicit truncation to truncate away bogus bits.
1205   Type *WidestFixupType = nullptr;
1206 
1207   /// A list of ways to build a value that can satisfy this user.  After the
1208   /// list is populated, one of these is selected heuristically and used to
1209   /// formulate a replacement for OperandValToReplace in UserInst.
1210   SmallVector<Formula, 12> Formulae;
1211 
1212   /// The set of register candidates used by all formulae in this LSRUse.
1213   SmallPtrSet<const SCEV *, 4> Regs;
1214 
1215   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1216 
1217   LSRFixup &getNewFixup() {
1218     Fixups.push_back(LSRFixup());
1219     return Fixups.back();
1220   }
1221 
1222   void pushFixup(LSRFixup &f) {
1223     Fixups.push_back(f);
1224     if (f.Offset > MaxOffset)
1225       MaxOffset = f.Offset;
1226     if (f.Offset < MinOffset)
1227       MinOffset = f.Offset;
1228   }
1229 
1230   bool HasFormulaWithSameRegs(const Formula &F) const;
1231   float getNotSelectedProbability(const SCEV *Reg) const;
1232   bool InsertFormula(const Formula &F, const Loop &L);
1233   void DeleteFormula(Formula &F);
1234   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1235 
1236   void print(raw_ostream &OS) const;
1237   void dump() const;
1238 };
1239 
1240 } // end anonymous namespace
1241 
1242 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1243                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1244                                  GlobalValue *BaseGV, int64_t BaseOffset,
1245                                  bool HasBaseReg, int64_t Scale,
1246                                  Instruction *Fixup = nullptr);
1247 
1248 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1249   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1250     return 1;
1251   if (Depth == 0)
1252     return 0;
1253   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1254     return getSetupCost(S->getStart(), Depth - 1);
1255   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1256     return getSetupCost(S->getOperand(), Depth - 1);
1257   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1258     return std::accumulate(S->op_begin(), S->op_end(), 0,
1259                            [&](unsigned i, const SCEV *Reg) {
1260                              return i + getSetupCost(Reg, Depth - 1);
1261                            });
1262   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1263     return getSetupCost(S->getLHS(), Depth - 1) +
1264            getSetupCost(S->getRHS(), Depth - 1);
1265   return 0;
1266 }
1267 
1268 /// Tally up interesting quantities from the given register.
1269 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1270                         SmallPtrSetImpl<const SCEV *> &Regs) {
1271   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1272     // If this is an addrec for another loop, it should be an invariant
1273     // with respect to L since L is the innermost loop (at least
1274     // for now LSR only handles innermost loops).
1275     if (AR->getLoop() != L) {
1276       // If the AddRec exists, consider it's register free and leave it alone.
1277       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1278         return;
1279 
1280       // It is bad to allow LSR for current loop to add induction variables
1281       // for its sibling loops.
1282       if (!AR->getLoop()->contains(L)) {
1283         Lose();
1284         return;
1285       }
1286 
1287       // Otherwise, it will be an invariant with respect to Loop L.
1288       ++C.NumRegs;
1289       return;
1290     }
1291 
1292     unsigned LoopCost = 1;
1293     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1294         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1295 
1296       // If the step size matches the base offset, we could use pre-indexed
1297       // addressing.
1298       if (AMK == TTI::AMK_PreIndexed) {
1299         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1300           if (Step->getAPInt() == F.BaseOffset)
1301             LoopCost = 0;
1302       } else if (AMK == TTI::AMK_PostIndexed) {
1303         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1304         if (isa<SCEVConstant>(LoopStep)) {
1305           const SCEV *LoopStart = AR->getStart();
1306           if (!isa<SCEVConstant>(LoopStart) &&
1307               SE->isLoopInvariant(LoopStart, L))
1308             LoopCost = 0;
1309         }
1310       }
1311     }
1312     C.AddRecCost += LoopCost;
1313 
1314     // Add the step value register, if it needs one.
1315     // TODO: The non-affine case isn't precisely modeled here.
1316     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1317       if (!Regs.count(AR->getOperand(1))) {
1318         RateRegister(F, AR->getOperand(1), Regs);
1319         if (isLoser())
1320           return;
1321       }
1322     }
1323   }
1324   ++C.NumRegs;
1325 
1326   // Rough heuristic; favor registers which don't require extra setup
1327   // instructions in the preheader.
1328   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1329   // Ensure we don't, even with the recusion limit, produce invalid costs.
1330   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1331 
1332   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1333                SE->hasComputableLoopEvolution(Reg, L);
1334 }
1335 
1336 /// Record this register in the set. If we haven't seen it before, rate
1337 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1338 /// one of those regs an instant loser.
1339 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1340                                SmallPtrSetImpl<const SCEV *> &Regs,
1341                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1342   if (LoserRegs && LoserRegs->count(Reg)) {
1343     Lose();
1344     return;
1345   }
1346   if (Regs.insert(Reg).second) {
1347     RateRegister(F, Reg, Regs);
1348     if (LoserRegs && isLoser())
1349       LoserRegs->insert(Reg);
1350   }
1351 }
1352 
1353 void Cost::RateFormula(const Formula &F,
1354                        SmallPtrSetImpl<const SCEV *> &Regs,
1355                        const DenseSet<const SCEV *> &VisitedRegs,
1356                        const LSRUse &LU,
1357                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1358   if (isLoser())
1359     return;
1360   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1361   // Tally up the registers.
1362   unsigned PrevAddRecCost = C.AddRecCost;
1363   unsigned PrevNumRegs = C.NumRegs;
1364   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1365   if (const SCEV *ScaledReg = F.ScaledReg) {
1366     if (VisitedRegs.count(ScaledReg)) {
1367       Lose();
1368       return;
1369     }
1370     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1371     if (isLoser())
1372       return;
1373   }
1374   for (const SCEV *BaseReg : F.BaseRegs) {
1375     if (VisitedRegs.count(BaseReg)) {
1376       Lose();
1377       return;
1378     }
1379     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1380     if (isLoser())
1381       return;
1382   }
1383 
1384   // Determine how many (unfolded) adds we'll need inside the loop.
1385   size_t NumBaseParts = F.getNumRegs();
1386   if (NumBaseParts > 1)
1387     // Do not count the base and a possible second register if the target
1388     // allows to fold 2 registers.
1389     C.NumBaseAdds +=
1390         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1391   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1392 
1393   // Accumulate non-free scaling amounts.
1394   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1395 
1396   // Tally up the non-zero immediates.
1397   for (const LSRFixup &Fixup : LU.Fixups) {
1398     int64_t O = Fixup.Offset;
1399     int64_t Offset = (uint64_t)O + F.BaseOffset;
1400     if (F.BaseGV)
1401       C.ImmCost += 64; // Handle symbolic values conservatively.
1402                      // TODO: This should probably be the pointer size.
1403     else if (Offset != 0)
1404       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1405 
1406     // Check with target if this offset with this instruction is
1407     // specifically not supported.
1408     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1409         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1410                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1411       C.NumBaseAdds++;
1412   }
1413 
1414   // If we don't count instruction cost exit here.
1415   if (!InsnsCost) {
1416     assert(isValid() && "invalid cost");
1417     return;
1418   }
1419 
1420   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1421   // additional instruction (at least fill).
1422   // TODO: Need distinguish register class?
1423   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1424                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1425   if (C.NumRegs > TTIRegNum) {
1426     // Cost already exceeded TTIRegNum, then only newly added register can add
1427     // new instructions.
1428     if (PrevNumRegs > TTIRegNum)
1429       C.Insns += (C.NumRegs - PrevNumRegs);
1430     else
1431       C.Insns += (C.NumRegs - TTIRegNum);
1432   }
1433 
1434   // If ICmpZero formula ends with not 0, it could not be replaced by
1435   // just add or sub. We'll need to compare final result of AddRec.
1436   // That means we'll need an additional instruction. But if the target can
1437   // macro-fuse a compare with a branch, don't count this extra instruction.
1438   // For -10 + {0, +, 1}:
1439   // i = i + 1;
1440   // cmp i, 10
1441   //
1442   // For {-10, +, 1}:
1443   // i = i + 1;
1444   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1445       !TTI->canMacroFuseCmp())
1446     C.Insns++;
1447   // Each new AddRec adds 1 instruction to calculation.
1448   C.Insns += (C.AddRecCost - PrevAddRecCost);
1449 
1450   // BaseAdds adds instructions for unfolded registers.
1451   if (LU.Kind != LSRUse::ICmpZero)
1452     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1453   assert(isValid() && "invalid cost");
1454 }
1455 
1456 /// Set this cost to a losing value.
1457 void Cost::Lose() {
1458   C.Insns = std::numeric_limits<unsigned>::max();
1459   C.NumRegs = std::numeric_limits<unsigned>::max();
1460   C.AddRecCost = std::numeric_limits<unsigned>::max();
1461   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1462   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1463   C.ImmCost = std::numeric_limits<unsigned>::max();
1464   C.SetupCost = std::numeric_limits<unsigned>::max();
1465   C.ScaleCost = std::numeric_limits<unsigned>::max();
1466 }
1467 
1468 /// Choose the lower cost.
1469 bool Cost::isLess(const Cost &Other) {
1470   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1471       C.Insns != Other.C.Insns)
1472     return C.Insns < Other.C.Insns;
1473   return TTI->isLSRCostLess(C, Other.C);
1474 }
1475 
1476 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1477 void Cost::print(raw_ostream &OS) const {
1478   if (InsnsCost)
1479     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1480   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1481   if (C.AddRecCost != 0)
1482     OS << ", with addrec cost " << C.AddRecCost;
1483   if (C.NumIVMuls != 0)
1484     OS << ", plus " << C.NumIVMuls << " IV mul"
1485        << (C.NumIVMuls == 1 ? "" : "s");
1486   if (C.NumBaseAdds != 0)
1487     OS << ", plus " << C.NumBaseAdds << " base add"
1488        << (C.NumBaseAdds == 1 ? "" : "s");
1489   if (C.ScaleCost != 0)
1490     OS << ", plus " << C.ScaleCost << " scale cost";
1491   if (C.ImmCost != 0)
1492     OS << ", plus " << C.ImmCost << " imm cost";
1493   if (C.SetupCost != 0)
1494     OS << ", plus " << C.SetupCost << " setup cost";
1495 }
1496 
1497 LLVM_DUMP_METHOD void Cost::dump() const {
1498   print(errs()); errs() << '\n';
1499 }
1500 #endif
1501 
1502 /// Test whether this fixup always uses its value outside of the given loop.
1503 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1504   // PHI nodes use their value in their incoming blocks.
1505   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1506     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1507       if (PN->getIncomingValue(i) == OperandValToReplace &&
1508           L->contains(PN->getIncomingBlock(i)))
1509         return false;
1510     return true;
1511   }
1512 
1513   return !L->contains(UserInst);
1514 }
1515 
1516 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1517 void LSRFixup::print(raw_ostream &OS) const {
1518   OS << "UserInst=";
1519   // Store is common and interesting enough to be worth special-casing.
1520   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1521     OS << "store ";
1522     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1523   } else if (UserInst->getType()->isVoidTy())
1524     OS << UserInst->getOpcodeName();
1525   else
1526     UserInst->printAsOperand(OS, /*PrintType=*/false);
1527 
1528   OS << ", OperandValToReplace=";
1529   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1530 
1531   for (const Loop *PIL : PostIncLoops) {
1532     OS << ", PostIncLoop=";
1533     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1534   }
1535 
1536   if (Offset != 0)
1537     OS << ", Offset=" << Offset;
1538 }
1539 
1540 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1541   print(errs()); errs() << '\n';
1542 }
1543 #endif
1544 
1545 /// Test whether this use as a formula which has the same registers as the given
1546 /// formula.
1547 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1548   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1549   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1550   // Unstable sort by host order ok, because this is only used for uniquifying.
1551   llvm::sort(Key);
1552   return Uniquifier.count(Key);
1553 }
1554 
1555 /// The function returns a probability of selecting formula without Reg.
1556 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1557   unsigned FNum = 0;
1558   for (const Formula &F : Formulae)
1559     if (F.referencesReg(Reg))
1560       FNum++;
1561   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1562 }
1563 
1564 /// If the given formula has not yet been inserted, add it to the list, and
1565 /// return true. Return false otherwise.  The formula must be in canonical form.
1566 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1567   assert(F.isCanonical(L) && "Invalid canonical representation");
1568 
1569   if (!Formulae.empty() && RigidFormula)
1570     return false;
1571 
1572   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1573   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1574   // Unstable sort by host order ok, because this is only used for uniquifying.
1575   llvm::sort(Key);
1576 
1577   if (!Uniquifier.insert(Key).second)
1578     return false;
1579 
1580   // Using a register to hold the value of 0 is not profitable.
1581   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1582          "Zero allocated in a scaled register!");
1583 #ifndef NDEBUG
1584   for (const SCEV *BaseReg : F.BaseRegs)
1585     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1586 #endif
1587 
1588   // Add the formula to the list.
1589   Formulae.push_back(F);
1590 
1591   // Record registers now being used by this use.
1592   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1593   if (F.ScaledReg)
1594     Regs.insert(F.ScaledReg);
1595 
1596   return true;
1597 }
1598 
1599 /// Remove the given formula from this use's list.
1600 void LSRUse::DeleteFormula(Formula &F) {
1601   if (&F != &Formulae.back())
1602     std::swap(F, Formulae.back());
1603   Formulae.pop_back();
1604 }
1605 
1606 /// Recompute the Regs field, and update RegUses.
1607 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1608   // Now that we've filtered out some formulae, recompute the Regs set.
1609   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1610   Regs.clear();
1611   for (const Formula &F : Formulae) {
1612     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1613     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1614   }
1615 
1616   // Update the RegTracker.
1617   for (const SCEV *S : OldRegs)
1618     if (!Regs.count(S))
1619       RegUses.dropRegister(S, LUIdx);
1620 }
1621 
1622 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1623 void LSRUse::print(raw_ostream &OS) const {
1624   OS << "LSR Use: Kind=";
1625   switch (Kind) {
1626   case Basic:    OS << "Basic"; break;
1627   case Special:  OS << "Special"; break;
1628   case ICmpZero: OS << "ICmpZero"; break;
1629   case Address:
1630     OS << "Address of ";
1631     if (AccessTy.MemTy->isPointerTy())
1632       OS << "pointer"; // the full pointer type could be really verbose
1633     else {
1634       OS << *AccessTy.MemTy;
1635     }
1636 
1637     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1638   }
1639 
1640   OS << ", Offsets={";
1641   bool NeedComma = false;
1642   for (const LSRFixup &Fixup : Fixups) {
1643     if (NeedComma) OS << ',';
1644     OS << Fixup.Offset;
1645     NeedComma = true;
1646   }
1647   OS << '}';
1648 
1649   if (AllFixupsOutsideLoop)
1650     OS << ", all-fixups-outside-loop";
1651 
1652   if (WidestFixupType)
1653     OS << ", widest fixup type: " << *WidestFixupType;
1654 }
1655 
1656 LLVM_DUMP_METHOD void LSRUse::dump() const {
1657   print(errs()); errs() << '\n';
1658 }
1659 #endif
1660 
1661 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1662                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1663                                  GlobalValue *BaseGV, int64_t BaseOffset,
1664                                  bool HasBaseReg, int64_t Scale,
1665                                  Instruction *Fixup/*= nullptr*/) {
1666   switch (Kind) {
1667   case LSRUse::Address:
1668     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1669                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1670 
1671   case LSRUse::ICmpZero:
1672     // There's not even a target hook for querying whether it would be legal to
1673     // fold a GV into an ICmp.
1674     if (BaseGV)
1675       return false;
1676 
1677     // ICmp only has two operands; don't allow more than two non-trivial parts.
1678     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1679       return false;
1680 
1681     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1682     // putting the scaled register in the other operand of the icmp.
1683     if (Scale != 0 && Scale != -1)
1684       return false;
1685 
1686     // If we have low-level target information, ask the target if it can fold an
1687     // integer immediate on an icmp.
1688     if (BaseOffset != 0) {
1689       // We have one of:
1690       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1691       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1692       // Offs is the ICmp immediate.
1693       if (Scale == 0)
1694         // The cast does the right thing with
1695         // std::numeric_limits<int64_t>::min().
1696         BaseOffset = -(uint64_t)BaseOffset;
1697       return TTI.isLegalICmpImmediate(BaseOffset);
1698     }
1699 
1700     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1701     return true;
1702 
1703   case LSRUse::Basic:
1704     // Only handle single-register values.
1705     return !BaseGV && Scale == 0 && BaseOffset == 0;
1706 
1707   case LSRUse::Special:
1708     // Special case Basic to handle -1 scales.
1709     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1710   }
1711 
1712   llvm_unreachable("Invalid LSRUse Kind!");
1713 }
1714 
1715 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1716                                  int64_t MinOffset, int64_t MaxOffset,
1717                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1718                                  GlobalValue *BaseGV, int64_t BaseOffset,
1719                                  bool HasBaseReg, int64_t Scale) {
1720   // Check for overflow.
1721   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1722       (MinOffset > 0))
1723     return false;
1724   MinOffset = (uint64_t)BaseOffset + MinOffset;
1725   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1726       (MaxOffset > 0))
1727     return false;
1728   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1729 
1730   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1731                               HasBaseReg, Scale) &&
1732          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1733                               HasBaseReg, Scale);
1734 }
1735 
1736 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1737                                  int64_t MinOffset, int64_t MaxOffset,
1738                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1739                                  const Formula &F, const Loop &L) {
1740   // For the purpose of isAMCompletelyFolded either having a canonical formula
1741   // or a scale not equal to zero is correct.
1742   // Problems may arise from non canonical formulae having a scale == 0.
1743   // Strictly speaking it would best to just rely on canonical formulae.
1744   // However, when we generate the scaled formulae, we first check that the
1745   // scaling factor is profitable before computing the actual ScaledReg for
1746   // compile time sake.
1747   assert((F.isCanonical(L) || F.Scale != 0));
1748   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1749                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1750 }
1751 
1752 /// Test whether we know how to expand the current formula.
1753 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1754                        int64_t MaxOffset, LSRUse::KindType Kind,
1755                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1756                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1757   // We know how to expand completely foldable formulae.
1758   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1759                               BaseOffset, HasBaseReg, Scale) ||
1760          // Or formulae that use a base register produced by a sum of base
1761          // registers.
1762          (Scale == 1 &&
1763           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1764                                BaseGV, BaseOffset, true, 0));
1765 }
1766 
1767 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1768                        int64_t MaxOffset, LSRUse::KindType Kind,
1769                        MemAccessTy AccessTy, const Formula &F) {
1770   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1771                     F.BaseOffset, F.HasBaseReg, F.Scale);
1772 }
1773 
1774 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1775                                  const LSRUse &LU, const Formula &F) {
1776   // Target may want to look at the user instructions.
1777   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1778     for (const LSRFixup &Fixup : LU.Fixups)
1779       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1780                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1781                                 F.Scale, Fixup.UserInst))
1782         return false;
1783     return true;
1784   }
1785 
1786   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1787                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1788                               F.Scale);
1789 }
1790 
1791 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1792                                             const LSRUse &LU, const Formula &F,
1793                                             const Loop &L) {
1794   if (!F.Scale)
1795     return 0;
1796 
1797   // If the use is not completely folded in that instruction, we will have to
1798   // pay an extra cost only for scale != 1.
1799   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1800                             LU.AccessTy, F, L))
1801     return F.Scale != 1;
1802 
1803   switch (LU.Kind) {
1804   case LSRUse::Address: {
1805     // Check the scaling factor cost with both the min and max offsets.
1806     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1807         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1808         F.Scale, LU.AccessTy.AddrSpace);
1809     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1810         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1811         F.Scale, LU.AccessTy.AddrSpace);
1812 
1813     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1814            "Legal addressing mode has an illegal cost!");
1815     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1816   }
1817   case LSRUse::ICmpZero:
1818   case LSRUse::Basic:
1819   case LSRUse::Special:
1820     // The use is completely folded, i.e., everything is folded into the
1821     // instruction.
1822     return 0;
1823   }
1824 
1825   llvm_unreachable("Invalid LSRUse Kind!");
1826 }
1827 
1828 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1829                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1830                              GlobalValue *BaseGV, int64_t BaseOffset,
1831                              bool HasBaseReg) {
1832   // Fast-path: zero is always foldable.
1833   if (BaseOffset == 0 && !BaseGV) return true;
1834 
1835   // Conservatively, create an address with an immediate and a
1836   // base and a scale.
1837   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1838 
1839   // Canonicalize a scale of 1 to a base register if the formula doesn't
1840   // already have a base register.
1841   if (!HasBaseReg && Scale == 1) {
1842     Scale = 0;
1843     HasBaseReg = true;
1844   }
1845 
1846   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1847                               HasBaseReg, Scale);
1848 }
1849 
1850 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1851                              ScalarEvolution &SE, int64_t MinOffset,
1852                              int64_t MaxOffset, LSRUse::KindType Kind,
1853                              MemAccessTy AccessTy, const SCEV *S,
1854                              bool HasBaseReg) {
1855   // Fast-path: zero is always foldable.
1856   if (S->isZero()) return true;
1857 
1858   // Conservatively, create an address with an immediate and a
1859   // base and a scale.
1860   int64_t BaseOffset = ExtractImmediate(S, SE);
1861   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1862 
1863   // If there's anything else involved, it's not foldable.
1864   if (!S->isZero()) return false;
1865 
1866   // Fast-path: zero is always foldable.
1867   if (BaseOffset == 0 && !BaseGV) return true;
1868 
1869   // Conservatively, create an address with an immediate and a
1870   // base and a scale.
1871   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1872 
1873   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1874                               BaseOffset, HasBaseReg, Scale);
1875 }
1876 
1877 namespace {
1878 
1879 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1880 /// an expression that computes the IV it uses from the IV used by the previous
1881 /// link in the Chain.
1882 ///
1883 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1884 /// original IVOperand. The head of the chain's IVOperand is only valid during
1885 /// chain collection, before LSR replaces IV users. During chain generation,
1886 /// IncExpr can be used to find the new IVOperand that computes the same
1887 /// expression.
1888 struct IVInc {
1889   Instruction *UserInst;
1890   Value* IVOperand;
1891   const SCEV *IncExpr;
1892 
1893   IVInc(Instruction *U, Value *O, const SCEV *E)
1894       : UserInst(U), IVOperand(O), IncExpr(E) {}
1895 };
1896 
1897 // The list of IV increments in program order.  We typically add the head of a
1898 // chain without finding subsequent links.
1899 struct IVChain {
1900   SmallVector<IVInc, 1> Incs;
1901   const SCEV *ExprBase = nullptr;
1902 
1903   IVChain() = default;
1904   IVChain(const IVInc &Head, const SCEV *Base)
1905       : Incs(1, Head), ExprBase(Base) {}
1906 
1907   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1908 
1909   // Return the first increment in the chain.
1910   const_iterator begin() const {
1911     assert(!Incs.empty());
1912     return std::next(Incs.begin());
1913   }
1914   const_iterator end() const {
1915     return Incs.end();
1916   }
1917 
1918   // Returns true if this chain contains any increments.
1919   bool hasIncs() const { return Incs.size() >= 2; }
1920 
1921   // Add an IVInc to the end of this chain.
1922   void add(const IVInc &X) { Incs.push_back(X); }
1923 
1924   // Returns the last UserInst in the chain.
1925   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1926 
1927   // Returns true if IncExpr can be profitably added to this chain.
1928   bool isProfitableIncrement(const SCEV *OperExpr,
1929                              const SCEV *IncExpr,
1930                              ScalarEvolution&);
1931 };
1932 
1933 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1934 /// between FarUsers that definitely cross IV increments and NearUsers that may
1935 /// be used between IV increments.
1936 struct ChainUsers {
1937   SmallPtrSet<Instruction*, 4> FarUsers;
1938   SmallPtrSet<Instruction*, 4> NearUsers;
1939 };
1940 
1941 /// This class holds state for the main loop strength reduction logic.
1942 class LSRInstance {
1943   IVUsers &IU;
1944   ScalarEvolution &SE;
1945   DominatorTree &DT;
1946   LoopInfo &LI;
1947   AssumptionCache &AC;
1948   TargetLibraryInfo &TLI;
1949   const TargetTransformInfo &TTI;
1950   Loop *const L;
1951   MemorySSAUpdater *MSSAU;
1952   TTI::AddressingModeKind AMK;
1953   bool Changed = false;
1954 
1955   /// This is the insert position that the current loop's induction variable
1956   /// increment should be placed. In simple loops, this is the latch block's
1957   /// terminator. But in more complicated cases, this is a position which will
1958   /// dominate all the in-loop post-increment users.
1959   Instruction *IVIncInsertPos = nullptr;
1960 
1961   /// Interesting factors between use strides.
1962   ///
1963   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1964   /// default, a SmallDenseSet, because we need to use the full range of
1965   /// int64_ts, and there's currently no good way of doing that with
1966   /// SmallDenseSet.
1967   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1968 
1969   /// Interesting use types, to facilitate truncation reuse.
1970   SmallSetVector<Type *, 4> Types;
1971 
1972   /// The list of interesting uses.
1973   mutable SmallVector<LSRUse, 16> Uses;
1974 
1975   /// Track which uses use which register candidates.
1976   RegUseTracker RegUses;
1977 
1978   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1979   // have more than a few IV increment chains in a loop. Missing a Chain falls
1980   // back to normal LSR behavior for those uses.
1981   static const unsigned MaxChains = 8;
1982 
1983   /// IV users can form a chain of IV increments.
1984   SmallVector<IVChain, MaxChains> IVChainVec;
1985 
1986   /// IV users that belong to profitable IVChains.
1987   SmallPtrSet<Use*, MaxChains> IVIncSet;
1988 
1989   /// Induction variables that were generated and inserted by the SCEV Expander.
1990   SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
1991 
1992   void OptimizeShadowIV();
1993   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1994   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1995   void OptimizeLoopTermCond();
1996 
1997   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1998                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1999   void FinalizeChain(IVChain &Chain);
2000   void CollectChains();
2001   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2002                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2003 
2004   void CollectInterestingTypesAndFactors();
2005   void CollectFixupsAndInitialFormulae();
2006 
2007   // Support for sharing of LSRUses between LSRFixups.
2008   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2009   UseMapTy UseMap;
2010 
2011   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2012                           LSRUse::KindType Kind, MemAccessTy AccessTy);
2013 
2014   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2015                                     MemAccessTy AccessTy);
2016 
2017   void DeleteUse(LSRUse &LU, size_t LUIdx);
2018 
2019   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2020 
2021   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2022   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2023   void CountRegisters(const Formula &F, size_t LUIdx);
2024   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2025 
2026   void CollectLoopInvariantFixupsAndFormulae();
2027 
2028   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2029                               unsigned Depth = 0);
2030 
2031   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2032                                   const Formula &Base, unsigned Depth,
2033                                   size_t Idx, bool IsScaledReg = false);
2034   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2035   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2036                                    const Formula &Base, size_t Idx,
2037                                    bool IsScaledReg = false);
2038   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2039   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2040                                    const Formula &Base,
2041                                    const SmallVectorImpl<int64_t> &Worklist,
2042                                    size_t Idx, bool IsScaledReg = false);
2043   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2044   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2045   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2046   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2047   void GenerateCrossUseConstantOffsets();
2048   void GenerateAllReuseFormulae();
2049 
2050   void FilterOutUndesirableDedicatedRegisters();
2051 
2052   size_t EstimateSearchSpaceComplexity() const;
2053   void NarrowSearchSpaceByDetectingSupersets();
2054   void NarrowSearchSpaceByCollapsingUnrolledCode();
2055   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2056   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2057   void NarrowSearchSpaceByFilterPostInc();
2058   void NarrowSearchSpaceByDeletingCostlyFormulas();
2059   void NarrowSearchSpaceByPickingWinnerRegs();
2060   void NarrowSearchSpaceUsingHeuristics();
2061 
2062   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2063                     Cost &SolutionCost,
2064                     SmallVectorImpl<const Formula *> &Workspace,
2065                     const Cost &CurCost,
2066                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2067                     DenseSet<const SCEV *> &VisitedRegs) const;
2068   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2069 
2070   BasicBlock::iterator
2071     HoistInsertPosition(BasicBlock::iterator IP,
2072                         const SmallVectorImpl<Instruction *> &Inputs) const;
2073   BasicBlock::iterator
2074     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2075                                   const LSRFixup &LF,
2076                                   const LSRUse &LU,
2077                                   SCEVExpander &Rewriter) const;
2078 
2079   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2080                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2081                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2082   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2083                      const Formula &F, SCEVExpander &Rewriter,
2084                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2085   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2086                SCEVExpander &Rewriter,
2087                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2088   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2089 
2090 public:
2091   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2092               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2093               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2094 
2095   bool getChanged() const { return Changed; }
2096   const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2097     return ScalarEvolutionIVs;
2098   }
2099 
2100   void print_factors_and_types(raw_ostream &OS) const;
2101   void print_fixups(raw_ostream &OS) const;
2102   void print_uses(raw_ostream &OS) const;
2103   void print(raw_ostream &OS) const;
2104   void dump() const;
2105 };
2106 
2107 } // end anonymous namespace
2108 
2109 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2110 /// the cast operation.
2111 void LSRInstance::OptimizeShadowIV() {
2112   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2113   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2114     return;
2115 
2116   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2117        UI != E; /* empty */) {
2118     IVUsers::const_iterator CandidateUI = UI;
2119     ++UI;
2120     Instruction *ShadowUse = CandidateUI->getUser();
2121     Type *DestTy = nullptr;
2122     bool IsSigned = false;
2123 
2124     /* If shadow use is a int->float cast then insert a second IV
2125        to eliminate this cast.
2126 
2127          for (unsigned i = 0; i < n; ++i)
2128            foo((double)i);
2129 
2130        is transformed into
2131 
2132          double d = 0.0;
2133          for (unsigned i = 0; i < n; ++i, ++d)
2134            foo(d);
2135     */
2136     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2137       IsSigned = false;
2138       DestTy = UCast->getDestTy();
2139     }
2140     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2141       IsSigned = true;
2142       DestTy = SCast->getDestTy();
2143     }
2144     if (!DestTy) continue;
2145 
2146     // If target does not support DestTy natively then do not apply
2147     // this transformation.
2148     if (!TTI.isTypeLegal(DestTy)) continue;
2149 
2150     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2151     if (!PH) continue;
2152     if (PH->getNumIncomingValues() != 2) continue;
2153 
2154     // If the calculation in integers overflows, the result in FP type will
2155     // differ. So we only can do this transformation if we are guaranteed to not
2156     // deal with overflowing values
2157     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2158     if (!AR) continue;
2159     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2160     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2161 
2162     Type *SrcTy = PH->getType();
2163     int Mantissa = DestTy->getFPMantissaWidth();
2164     if (Mantissa == -1) continue;
2165     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2166       continue;
2167 
2168     unsigned Entry, Latch;
2169     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2170       Entry = 0;
2171       Latch = 1;
2172     } else {
2173       Entry = 1;
2174       Latch = 0;
2175     }
2176 
2177     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2178     if (!Init) continue;
2179     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2180                                         (double)Init->getSExtValue() :
2181                                         (double)Init->getZExtValue());
2182 
2183     BinaryOperator *Incr =
2184       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2185     if (!Incr) continue;
2186     if (Incr->getOpcode() != Instruction::Add
2187         && Incr->getOpcode() != Instruction::Sub)
2188       continue;
2189 
2190     /* Initialize new IV, double d = 0.0 in above example. */
2191     ConstantInt *C = nullptr;
2192     if (Incr->getOperand(0) == PH)
2193       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2194     else if (Incr->getOperand(1) == PH)
2195       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2196     else
2197       continue;
2198 
2199     if (!C) continue;
2200 
2201     // Ignore negative constants, as the code below doesn't handle them
2202     // correctly. TODO: Remove this restriction.
2203     if (!C->getValue().isStrictlyPositive()) continue;
2204 
2205     /* Add new PHINode. */
2206     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2207 
2208     /* create new increment. '++d' in above example. */
2209     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2210     BinaryOperator *NewIncr =
2211       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2212                                Instruction::FAdd : Instruction::FSub,
2213                              NewPH, CFP, "IV.S.next.", Incr);
2214 
2215     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2216     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2217 
2218     /* Remove cast operation */
2219     ShadowUse->replaceAllUsesWith(NewPH);
2220     ShadowUse->eraseFromParent();
2221     Changed = true;
2222     break;
2223   }
2224 }
2225 
2226 /// If Cond has an operand that is an expression of an IV, set the IV user and
2227 /// stride information and return true, otherwise return false.
2228 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2229   for (IVStrideUse &U : IU)
2230     if (U.getUser() == Cond) {
2231       // NOTE: we could handle setcc instructions with multiple uses here, but
2232       // InstCombine does it as well for simple uses, it's not clear that it
2233       // occurs enough in real life to handle.
2234       CondUse = &U;
2235       return true;
2236     }
2237   return false;
2238 }
2239 
2240 /// Rewrite the loop's terminating condition if it uses a max computation.
2241 ///
2242 /// This is a narrow solution to a specific, but acute, problem. For loops
2243 /// like this:
2244 ///
2245 ///   i = 0;
2246 ///   do {
2247 ///     p[i] = 0.0;
2248 ///   } while (++i < n);
2249 ///
2250 /// the trip count isn't just 'n', because 'n' might not be positive. And
2251 /// unfortunately this can come up even for loops where the user didn't use
2252 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2253 /// will commonly be lowered like this:
2254 ///
2255 ///   if (n > 0) {
2256 ///     i = 0;
2257 ///     do {
2258 ///       p[i] = 0.0;
2259 ///     } while (++i < n);
2260 ///   }
2261 ///
2262 /// and then it's possible for subsequent optimization to obscure the if
2263 /// test in such a way that indvars can't find it.
2264 ///
2265 /// When indvars can't find the if test in loops like this, it creates a
2266 /// max expression, which allows it to give the loop a canonical
2267 /// induction variable:
2268 ///
2269 ///   i = 0;
2270 ///   max = n < 1 ? 1 : n;
2271 ///   do {
2272 ///     p[i] = 0.0;
2273 ///   } while (++i != max);
2274 ///
2275 /// Canonical induction variables are necessary because the loop passes
2276 /// are designed around them. The most obvious example of this is the
2277 /// LoopInfo analysis, which doesn't remember trip count values. It
2278 /// expects to be able to rediscover the trip count each time it is
2279 /// needed, and it does this using a simple analysis that only succeeds if
2280 /// the loop has a canonical induction variable.
2281 ///
2282 /// However, when it comes time to generate code, the maximum operation
2283 /// can be quite costly, especially if it's inside of an outer loop.
2284 ///
2285 /// This function solves this problem by detecting this type of loop and
2286 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2287 /// the instructions for the maximum computation.
2288 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2289   // Check that the loop matches the pattern we're looking for.
2290   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2291       Cond->getPredicate() != CmpInst::ICMP_NE)
2292     return Cond;
2293 
2294   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2295   if (!Sel || !Sel->hasOneUse()) return Cond;
2296 
2297   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2298   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2299     return Cond;
2300   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2301 
2302   // Add one to the backedge-taken count to get the trip count.
2303   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2304   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2305 
2306   // Check for a max calculation that matches the pattern. There's no check
2307   // for ICMP_ULE here because the comparison would be with zero, which
2308   // isn't interesting.
2309   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2310   const SCEVNAryExpr *Max = nullptr;
2311   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2312     Pred = ICmpInst::ICMP_SLE;
2313     Max = S;
2314   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2315     Pred = ICmpInst::ICMP_SLT;
2316     Max = S;
2317   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2318     Pred = ICmpInst::ICMP_ULT;
2319     Max = U;
2320   } else {
2321     // No match; bail.
2322     return Cond;
2323   }
2324 
2325   // To handle a max with more than two operands, this optimization would
2326   // require additional checking and setup.
2327   if (Max->getNumOperands() != 2)
2328     return Cond;
2329 
2330   const SCEV *MaxLHS = Max->getOperand(0);
2331   const SCEV *MaxRHS = Max->getOperand(1);
2332 
2333   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2334   // for a comparison with 1. For <= and >=, a comparison with zero.
2335   if (!MaxLHS ||
2336       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2337     return Cond;
2338 
2339   // Check the relevant induction variable for conformance to
2340   // the pattern.
2341   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2342   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2343   if (!AR || !AR->isAffine() ||
2344       AR->getStart() != One ||
2345       AR->getStepRecurrence(SE) != One)
2346     return Cond;
2347 
2348   assert(AR->getLoop() == L &&
2349          "Loop condition operand is an addrec in a different loop!");
2350 
2351   // Check the right operand of the select, and remember it, as it will
2352   // be used in the new comparison instruction.
2353   Value *NewRHS = nullptr;
2354   if (ICmpInst::isTrueWhenEqual(Pred)) {
2355     // Look for n+1, and grab n.
2356     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2357       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2358          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2359            NewRHS = BO->getOperand(0);
2360     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2361       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2362         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2363           NewRHS = BO->getOperand(0);
2364     if (!NewRHS)
2365       return Cond;
2366   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2367     NewRHS = Sel->getOperand(1);
2368   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2369     NewRHS = Sel->getOperand(2);
2370   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2371     NewRHS = SU->getValue();
2372   else
2373     // Max doesn't match expected pattern.
2374     return Cond;
2375 
2376   // Determine the new comparison opcode. It may be signed or unsigned,
2377   // and the original comparison may be either equality or inequality.
2378   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2379     Pred = CmpInst::getInversePredicate(Pred);
2380 
2381   // Ok, everything looks ok to change the condition into an SLT or SGE and
2382   // delete the max calculation.
2383   ICmpInst *NewCond =
2384     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2385 
2386   // Delete the max calculation instructions.
2387   NewCond->setDebugLoc(Cond->getDebugLoc());
2388   Cond->replaceAllUsesWith(NewCond);
2389   CondUse->setUser(NewCond);
2390   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2391   Cond->eraseFromParent();
2392   Sel->eraseFromParent();
2393   if (Cmp->use_empty())
2394     Cmp->eraseFromParent();
2395   return NewCond;
2396 }
2397 
2398 /// Change loop terminating condition to use the postinc iv when possible.
2399 void
2400 LSRInstance::OptimizeLoopTermCond() {
2401   SmallPtrSet<Instruction *, 4> PostIncs;
2402 
2403   // We need a different set of heuristics for rotated and non-rotated loops.
2404   // If a loop is rotated then the latch is also the backedge, so inserting
2405   // post-inc expressions just before the latch is ideal. To reduce live ranges
2406   // it also makes sense to rewrite terminating conditions to use post-inc
2407   // expressions.
2408   //
2409   // If the loop is not rotated then the latch is not a backedge; the latch
2410   // check is done in the loop head. Adding post-inc expressions before the
2411   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2412   // in the loop body. In this case we do *not* want to use post-inc expressions
2413   // in the latch check, and we want to insert post-inc expressions before
2414   // the backedge.
2415   BasicBlock *LatchBlock = L->getLoopLatch();
2416   SmallVector<BasicBlock*, 8> ExitingBlocks;
2417   L->getExitingBlocks(ExitingBlocks);
2418   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2419         return LatchBlock != BB;
2420       })) {
2421     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2422     IVIncInsertPos = LatchBlock->getTerminator();
2423     return;
2424   }
2425 
2426   // Otherwise treat this as a rotated loop.
2427   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2428     // Get the terminating condition for the loop if possible.  If we
2429     // can, we want to change it to use a post-incremented version of its
2430     // induction variable, to allow coalescing the live ranges for the IV into
2431     // one register value.
2432 
2433     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2434     if (!TermBr)
2435       continue;
2436     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2437     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2438       continue;
2439 
2440     // Search IVUsesByStride to find Cond's IVUse if there is one.
2441     IVStrideUse *CondUse = nullptr;
2442     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2443     if (!FindIVUserForCond(Cond, CondUse))
2444       continue;
2445 
2446     // If the trip count is computed in terms of a max (due to ScalarEvolution
2447     // being unable to find a sufficient guard, for example), change the loop
2448     // comparison to use SLT or ULT instead of NE.
2449     // One consequence of doing this now is that it disrupts the count-down
2450     // optimization. That's not always a bad thing though, because in such
2451     // cases it may still be worthwhile to avoid a max.
2452     Cond = OptimizeMax(Cond, CondUse);
2453 
2454     // If this exiting block dominates the latch block, it may also use
2455     // the post-inc value if it won't be shared with other uses.
2456     // Check for dominance.
2457     if (!DT.dominates(ExitingBlock, LatchBlock))
2458       continue;
2459 
2460     // Conservatively avoid trying to use the post-inc value in non-latch
2461     // exits if there may be pre-inc users in intervening blocks.
2462     if (LatchBlock != ExitingBlock)
2463       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2464         // Test if the use is reachable from the exiting block. This dominator
2465         // query is a conservative approximation of reachability.
2466         if (&*UI != CondUse &&
2467             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2468           // Conservatively assume there may be reuse if the quotient of their
2469           // strides could be a legal scale.
2470           const SCEV *A = IU.getStride(*CondUse, L);
2471           const SCEV *B = IU.getStride(*UI, L);
2472           if (!A || !B) continue;
2473           if (SE.getTypeSizeInBits(A->getType()) !=
2474               SE.getTypeSizeInBits(B->getType())) {
2475             if (SE.getTypeSizeInBits(A->getType()) >
2476                 SE.getTypeSizeInBits(B->getType()))
2477               B = SE.getSignExtendExpr(B, A->getType());
2478             else
2479               A = SE.getSignExtendExpr(A, B->getType());
2480           }
2481           if (const SCEVConstant *D =
2482                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2483             const ConstantInt *C = D->getValue();
2484             // Stride of one or negative one can have reuse with non-addresses.
2485             if (C->isOne() || C->isMinusOne())
2486               goto decline_post_inc;
2487             // Avoid weird situations.
2488             if (C->getValue().getMinSignedBits() >= 64 ||
2489                 C->getValue().isMinSignedValue())
2490               goto decline_post_inc;
2491             // Check for possible scaled-address reuse.
2492             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2493               MemAccessTy AccessTy = getAccessType(
2494                   TTI, UI->getUser(), UI->getOperandValToReplace());
2495               int64_t Scale = C->getSExtValue();
2496               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2497                                             /*BaseOffset=*/0,
2498                                             /*HasBaseReg=*/false, Scale,
2499                                             AccessTy.AddrSpace))
2500                 goto decline_post_inc;
2501               Scale = -Scale;
2502               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2503                                             /*BaseOffset=*/0,
2504                                             /*HasBaseReg=*/false, Scale,
2505                                             AccessTy.AddrSpace))
2506                 goto decline_post_inc;
2507             }
2508           }
2509         }
2510 
2511     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2512                       << *Cond << '\n');
2513 
2514     // It's possible for the setcc instruction to be anywhere in the loop, and
2515     // possible for it to have multiple users.  If it is not immediately before
2516     // the exiting block branch, move it.
2517     if (Cond->getNextNonDebugInstruction() != TermBr) {
2518       if (Cond->hasOneUse()) {
2519         Cond->moveBefore(TermBr);
2520       } else {
2521         // Clone the terminating condition and insert into the loopend.
2522         ICmpInst *OldCond = Cond;
2523         Cond = cast<ICmpInst>(Cond->clone());
2524         Cond->setName(L->getHeader()->getName() + ".termcond");
2525         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2526 
2527         // Clone the IVUse, as the old use still exists!
2528         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2529         TermBr->replaceUsesOfWith(OldCond, Cond);
2530       }
2531     }
2532 
2533     // If we get to here, we know that we can transform the setcc instruction to
2534     // use the post-incremented version of the IV, allowing us to coalesce the
2535     // live ranges for the IV correctly.
2536     CondUse->transformToPostInc(L);
2537     Changed = true;
2538 
2539     PostIncs.insert(Cond);
2540   decline_post_inc:;
2541   }
2542 
2543   // Determine an insertion point for the loop induction variable increment. It
2544   // must dominate all the post-inc comparisons we just set up, and it must
2545   // dominate the loop latch edge.
2546   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2547   for (Instruction *Inst : PostIncs) {
2548     BasicBlock *BB =
2549       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2550                                     Inst->getParent());
2551     if (BB == Inst->getParent())
2552       IVIncInsertPos = Inst;
2553     else if (BB != IVIncInsertPos->getParent())
2554       IVIncInsertPos = BB->getTerminator();
2555   }
2556 }
2557 
2558 /// Determine if the given use can accommodate a fixup at the given offset and
2559 /// other details. If so, update the use and return true.
2560 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2561                                      bool HasBaseReg, LSRUse::KindType Kind,
2562                                      MemAccessTy AccessTy) {
2563   int64_t NewMinOffset = LU.MinOffset;
2564   int64_t NewMaxOffset = LU.MaxOffset;
2565   MemAccessTy NewAccessTy = AccessTy;
2566 
2567   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2568   // something conservative, however this can pessimize in the case that one of
2569   // the uses will have all its uses outside the loop, for example.
2570   if (LU.Kind != Kind)
2571     return false;
2572 
2573   // Check for a mismatched access type, and fall back conservatively as needed.
2574   // TODO: Be less conservative when the type is similar and can use the same
2575   // addressing modes.
2576   if (Kind == LSRUse::Address) {
2577     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2578       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2579                                             AccessTy.AddrSpace);
2580     }
2581   }
2582 
2583   // Conservatively assume HasBaseReg is true for now.
2584   if (NewOffset < LU.MinOffset) {
2585     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2586                           LU.MaxOffset - NewOffset, HasBaseReg))
2587       return false;
2588     NewMinOffset = NewOffset;
2589   } else if (NewOffset > LU.MaxOffset) {
2590     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2591                           NewOffset - LU.MinOffset, HasBaseReg))
2592       return false;
2593     NewMaxOffset = NewOffset;
2594   }
2595 
2596   // Update the use.
2597   LU.MinOffset = NewMinOffset;
2598   LU.MaxOffset = NewMaxOffset;
2599   LU.AccessTy = NewAccessTy;
2600   return true;
2601 }
2602 
2603 /// Return an LSRUse index and an offset value for a fixup which needs the given
2604 /// expression, with the given kind and optional access type.  Either reuse an
2605 /// existing use or create a new one, as needed.
2606 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2607                                                LSRUse::KindType Kind,
2608                                                MemAccessTy AccessTy) {
2609   const SCEV *Copy = Expr;
2610   int64_t Offset = ExtractImmediate(Expr, SE);
2611 
2612   // Basic uses can't accept any offset, for example.
2613   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2614                         Offset, /*HasBaseReg=*/ true)) {
2615     Expr = Copy;
2616     Offset = 0;
2617   }
2618 
2619   std::pair<UseMapTy::iterator, bool> P =
2620     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2621   if (!P.second) {
2622     // A use already existed with this base.
2623     size_t LUIdx = P.first->second;
2624     LSRUse &LU = Uses[LUIdx];
2625     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2626       // Reuse this use.
2627       return std::make_pair(LUIdx, Offset);
2628   }
2629 
2630   // Create a new use.
2631   size_t LUIdx = Uses.size();
2632   P.first->second = LUIdx;
2633   Uses.push_back(LSRUse(Kind, AccessTy));
2634   LSRUse &LU = Uses[LUIdx];
2635 
2636   LU.MinOffset = Offset;
2637   LU.MaxOffset = Offset;
2638   return std::make_pair(LUIdx, Offset);
2639 }
2640 
2641 /// Delete the given use from the Uses list.
2642 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2643   if (&LU != &Uses.back())
2644     std::swap(LU, Uses.back());
2645   Uses.pop_back();
2646 
2647   // Update RegUses.
2648   RegUses.swapAndDropUse(LUIdx, Uses.size());
2649 }
2650 
2651 /// Look for a use distinct from OrigLU which is has a formula that has the same
2652 /// registers as the given formula.
2653 LSRUse *
2654 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2655                                        const LSRUse &OrigLU) {
2656   // Search all uses for the formula. This could be more clever.
2657   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2658     LSRUse &LU = Uses[LUIdx];
2659     // Check whether this use is close enough to OrigLU, to see whether it's
2660     // worthwhile looking through its formulae.
2661     // Ignore ICmpZero uses because they may contain formulae generated by
2662     // GenerateICmpZeroScales, in which case adding fixup offsets may
2663     // be invalid.
2664     if (&LU != &OrigLU &&
2665         LU.Kind != LSRUse::ICmpZero &&
2666         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2667         LU.WidestFixupType == OrigLU.WidestFixupType &&
2668         LU.HasFormulaWithSameRegs(OrigF)) {
2669       // Scan through this use's formulae.
2670       for (const Formula &F : LU.Formulae) {
2671         // Check to see if this formula has the same registers and symbols
2672         // as OrigF.
2673         if (F.BaseRegs == OrigF.BaseRegs &&
2674             F.ScaledReg == OrigF.ScaledReg &&
2675             F.BaseGV == OrigF.BaseGV &&
2676             F.Scale == OrigF.Scale &&
2677             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2678           if (F.BaseOffset == 0)
2679             return &LU;
2680           // This is the formula where all the registers and symbols matched;
2681           // there aren't going to be any others. Since we declined it, we
2682           // can skip the rest of the formulae and proceed to the next LSRUse.
2683           break;
2684         }
2685       }
2686     }
2687   }
2688 
2689   // Nothing looked good.
2690   return nullptr;
2691 }
2692 
2693 void LSRInstance::CollectInterestingTypesAndFactors() {
2694   SmallSetVector<const SCEV *, 4> Strides;
2695 
2696   // Collect interesting types and strides.
2697   SmallVector<const SCEV *, 4> Worklist;
2698   for (const IVStrideUse &U : IU) {
2699     const SCEV *Expr = IU.getExpr(U);
2700 
2701     // Collect interesting types.
2702     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2703 
2704     // Add strides for mentioned loops.
2705     Worklist.push_back(Expr);
2706     do {
2707       const SCEV *S = Worklist.pop_back_val();
2708       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2709         if (AR->getLoop() == L)
2710           Strides.insert(AR->getStepRecurrence(SE));
2711         Worklist.push_back(AR->getStart());
2712       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2713         Worklist.append(Add->op_begin(), Add->op_end());
2714       }
2715     } while (!Worklist.empty());
2716   }
2717 
2718   // Compute interesting factors from the set of interesting strides.
2719   for (SmallSetVector<const SCEV *, 4>::const_iterator
2720        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2721     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2722          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2723       const SCEV *OldStride = *I;
2724       const SCEV *NewStride = *NewStrideIter;
2725 
2726       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2727           SE.getTypeSizeInBits(NewStride->getType())) {
2728         if (SE.getTypeSizeInBits(OldStride->getType()) >
2729             SE.getTypeSizeInBits(NewStride->getType()))
2730           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2731         else
2732           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2733       }
2734       if (const SCEVConstant *Factor =
2735             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2736                                                         SE, true))) {
2737         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2738           Factors.insert(Factor->getAPInt().getSExtValue());
2739       } else if (const SCEVConstant *Factor =
2740                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2741                                                                NewStride,
2742                                                                SE, true))) {
2743         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2744           Factors.insert(Factor->getAPInt().getSExtValue());
2745       }
2746     }
2747 
2748   // If all uses use the same type, don't bother looking for truncation-based
2749   // reuse.
2750   if (Types.size() == 1)
2751     Types.clear();
2752 
2753   LLVM_DEBUG(print_factors_and_types(dbgs()));
2754 }
2755 
2756 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2757 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2758 /// IVStrideUses, we could partially skip this.
2759 static User::op_iterator
2760 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2761               Loop *L, ScalarEvolution &SE) {
2762   for(; OI != OE; ++OI) {
2763     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2764       if (!SE.isSCEVable(Oper->getType()))
2765         continue;
2766 
2767       if (const SCEVAddRecExpr *AR =
2768           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2769         if (AR->getLoop() == L)
2770           break;
2771       }
2772     }
2773   }
2774   return OI;
2775 }
2776 
2777 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2778 /// a convenient helper.
2779 static Value *getWideOperand(Value *Oper) {
2780   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2781     return Trunc->getOperand(0);
2782   return Oper;
2783 }
2784 
2785 /// Return true if we allow an IV chain to include both types.
2786 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2787   Type *LType = LVal->getType();
2788   Type *RType = RVal->getType();
2789   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2790                               // Different address spaces means (possibly)
2791                               // different types of the pointer implementation,
2792                               // e.g. i16 vs i32 so disallow that.
2793                               (LType->getPointerAddressSpace() ==
2794                                RType->getPointerAddressSpace()));
2795 }
2796 
2797 /// Return an approximation of this SCEV expression's "base", or NULL for any
2798 /// constant. Returning the expression itself is conservative. Returning a
2799 /// deeper subexpression is more precise and valid as long as it isn't less
2800 /// complex than another subexpression. For expressions involving multiple
2801 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2802 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2803 /// IVInc==b-a.
2804 ///
2805 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2806 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2807 static const SCEV *getExprBase(const SCEV *S) {
2808   switch (S->getSCEVType()) {
2809   default: // uncluding scUnknown.
2810     return S;
2811   case scConstant:
2812     return nullptr;
2813   case scTruncate:
2814     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2815   case scZeroExtend:
2816     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2817   case scSignExtend:
2818     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2819   case scAddExpr: {
2820     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2821     // there's nothing more complex.
2822     // FIXME: not sure if we want to recognize negation.
2823     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2824     for (const SCEV *SubExpr : reverse(Add->operands())) {
2825       if (SubExpr->getSCEVType() == scAddExpr)
2826         return getExprBase(SubExpr);
2827 
2828       if (SubExpr->getSCEVType() != scMulExpr)
2829         return SubExpr;
2830     }
2831     return S; // all operands are scaled, be conservative.
2832   }
2833   case scAddRecExpr:
2834     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2835   }
2836   llvm_unreachable("Unknown SCEV kind!");
2837 }
2838 
2839 /// Return true if the chain increment is profitable to expand into a loop
2840 /// invariant value, which may require its own register. A profitable chain
2841 /// increment will be an offset relative to the same base. We allow such offsets
2842 /// to potentially be used as chain increment as long as it's not obviously
2843 /// expensive to expand using real instructions.
2844 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2845                                     const SCEV *IncExpr,
2846                                     ScalarEvolution &SE) {
2847   // Aggressively form chains when -stress-ivchain.
2848   if (StressIVChain)
2849     return true;
2850 
2851   // Do not replace a constant offset from IV head with a nonconstant IV
2852   // increment.
2853   if (!isa<SCEVConstant>(IncExpr)) {
2854     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2855     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2856       return false;
2857   }
2858 
2859   SmallPtrSet<const SCEV*, 8> Processed;
2860   return !isHighCostExpansion(IncExpr, Processed, SE);
2861 }
2862 
2863 /// Return true if the number of registers needed for the chain is estimated to
2864 /// be less than the number required for the individual IV users. First prohibit
2865 /// any IV users that keep the IV live across increments (the Users set should
2866 /// be empty). Next count the number and type of increments in the chain.
2867 ///
2868 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2869 /// effectively use postinc addressing modes. Only consider it profitable it the
2870 /// increments can be computed in fewer registers when chained.
2871 ///
2872 /// TODO: Consider IVInc free if it's already used in another chains.
2873 static bool isProfitableChain(IVChain &Chain,
2874                               SmallPtrSetImpl<Instruction *> &Users,
2875                               ScalarEvolution &SE,
2876                               const TargetTransformInfo &TTI) {
2877   if (StressIVChain)
2878     return true;
2879 
2880   if (!Chain.hasIncs())
2881     return false;
2882 
2883   if (!Users.empty()) {
2884     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2885                for (Instruction *Inst
2886                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2887     return false;
2888   }
2889   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2890 
2891   // The chain itself may require a register, so intialize cost to 1.
2892   int cost = 1;
2893 
2894   // A complete chain likely eliminates the need for keeping the original IV in
2895   // a register. LSR does not currently know how to form a complete chain unless
2896   // the header phi already exists.
2897   if (isa<PHINode>(Chain.tailUserInst())
2898       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2899     --cost;
2900   }
2901   const SCEV *LastIncExpr = nullptr;
2902   unsigned NumConstIncrements = 0;
2903   unsigned NumVarIncrements = 0;
2904   unsigned NumReusedIncrements = 0;
2905 
2906   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2907     return true;
2908 
2909   for (const IVInc &Inc : Chain) {
2910     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2911       return true;
2912     if (Inc.IncExpr->isZero())
2913       continue;
2914 
2915     // Incrementing by zero or some constant is neutral. We assume constants can
2916     // be folded into an addressing mode or an add's immediate operand.
2917     if (isa<SCEVConstant>(Inc.IncExpr)) {
2918       ++NumConstIncrements;
2919       continue;
2920     }
2921 
2922     if (Inc.IncExpr == LastIncExpr)
2923       ++NumReusedIncrements;
2924     else
2925       ++NumVarIncrements;
2926 
2927     LastIncExpr = Inc.IncExpr;
2928   }
2929   // An IV chain with a single increment is handled by LSR's postinc
2930   // uses. However, a chain with multiple increments requires keeping the IV's
2931   // value live longer than it needs to be if chained.
2932   if (NumConstIncrements > 1)
2933     --cost;
2934 
2935   // Materializing increment expressions in the preheader that didn't exist in
2936   // the original code may cost a register. For example, sign-extended array
2937   // indices can produce ridiculous increments like this:
2938   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2939   cost += NumVarIncrements;
2940 
2941   // Reusing variable increments likely saves a register to hold the multiple of
2942   // the stride.
2943   cost -= NumReusedIncrements;
2944 
2945   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2946                     << "\n");
2947 
2948   return cost < 0;
2949 }
2950 
2951 /// Add this IV user to an existing chain or make it the head of a new chain.
2952 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2953                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2954   // When IVs are used as types of varying widths, they are generally converted
2955   // to a wider type with some uses remaining narrow under a (free) trunc.
2956   Value *const NextIV = getWideOperand(IVOper);
2957   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2958   const SCEV *const OperExprBase = getExprBase(OperExpr);
2959 
2960   // Visit all existing chains. Check if its IVOper can be computed as a
2961   // profitable loop invariant increment from the last link in the Chain.
2962   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2963   const SCEV *LastIncExpr = nullptr;
2964   for (; ChainIdx < NChains; ++ChainIdx) {
2965     IVChain &Chain = IVChainVec[ChainIdx];
2966 
2967     // Prune the solution space aggressively by checking that both IV operands
2968     // are expressions that operate on the same unscaled SCEVUnknown. This
2969     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2970     // first avoids creating extra SCEV expressions.
2971     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2972       continue;
2973 
2974     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2975     if (!isCompatibleIVType(PrevIV, NextIV))
2976       continue;
2977 
2978     // A phi node terminates a chain.
2979     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2980       continue;
2981 
2982     // The increment must be loop-invariant so it can be kept in a register.
2983     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2984     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2985     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2986       continue;
2987 
2988     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2989       LastIncExpr = IncExpr;
2990       break;
2991     }
2992   }
2993   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2994   // bother for phi nodes, because they must be last in the chain.
2995   if (ChainIdx == NChains) {
2996     if (isa<PHINode>(UserInst))
2997       return;
2998     if (NChains >= MaxChains && !StressIVChain) {
2999       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
3000       return;
3001     }
3002     LastIncExpr = OperExpr;
3003     // IVUsers may have skipped over sign/zero extensions. We don't currently
3004     // attempt to form chains involving extensions unless they can be hoisted
3005     // into this loop's AddRec.
3006     if (!isa<SCEVAddRecExpr>(LastIncExpr))
3007       return;
3008     ++NChains;
3009     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3010                                  OperExprBase));
3011     ChainUsersVec.resize(NChains);
3012     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3013                       << ") IV=" << *LastIncExpr << "\n");
3014   } else {
3015     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
3016                       << ") IV+" << *LastIncExpr << "\n");
3017     // Add this IV user to the end of the chain.
3018     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3019   }
3020   IVChain &Chain = IVChainVec[ChainIdx];
3021 
3022   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3023   // This chain's NearUsers become FarUsers.
3024   if (!LastIncExpr->isZero()) {
3025     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3026                                             NearUsers.end());
3027     NearUsers.clear();
3028   }
3029 
3030   // All other uses of IVOperand become near uses of the chain.
3031   // We currently ignore intermediate values within SCEV expressions, assuming
3032   // they will eventually be used be the current chain, or can be computed
3033   // from one of the chain increments. To be more precise we could
3034   // transitively follow its user and only add leaf IV users to the set.
3035   for (User *U : IVOper->users()) {
3036     Instruction *OtherUse = dyn_cast<Instruction>(U);
3037     if (!OtherUse)
3038       continue;
3039     // Uses in the chain will no longer be uses if the chain is formed.
3040     // Include the head of the chain in this iteration (not Chain.begin()).
3041     IVChain::const_iterator IncIter = Chain.Incs.begin();
3042     IVChain::const_iterator IncEnd = Chain.Incs.end();
3043     for( ; IncIter != IncEnd; ++IncIter) {
3044       if (IncIter->UserInst == OtherUse)
3045         break;
3046     }
3047     if (IncIter != IncEnd)
3048       continue;
3049 
3050     if (SE.isSCEVable(OtherUse->getType())
3051         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3052         && IU.isIVUserOrOperand(OtherUse)) {
3053       continue;
3054     }
3055     NearUsers.insert(OtherUse);
3056   }
3057 
3058   // Since this user is part of the chain, it's no longer considered a use
3059   // of the chain.
3060   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3061 }
3062 
3063 /// Populate the vector of Chains.
3064 ///
3065 /// This decreases ILP at the architecture level. Targets with ample registers,
3066 /// multiple memory ports, and no register renaming probably don't want
3067 /// this. However, such targets should probably disable LSR altogether.
3068 ///
3069 /// The job of LSR is to make a reasonable choice of induction variables across
3070 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3071 /// ILP *within the loop* if the target wants it.
3072 ///
3073 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3074 /// will not reorder memory operations, it will recognize this as a chain, but
3075 /// will generate redundant IV increments. Ideally this would be corrected later
3076 /// by a smart scheduler:
3077 ///        = A[i]
3078 ///        = A[i+x]
3079 /// A[i]   =
3080 /// A[i+x] =
3081 ///
3082 /// TODO: Walk the entire domtree within this loop, not just the path to the
3083 /// loop latch. This will discover chains on side paths, but requires
3084 /// maintaining multiple copies of the Chains state.
3085 void LSRInstance::CollectChains() {
3086   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3087   SmallVector<ChainUsers, 8> ChainUsersVec;
3088 
3089   SmallVector<BasicBlock *,8> LatchPath;
3090   BasicBlock *LoopHeader = L->getHeader();
3091   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3092        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3093     LatchPath.push_back(Rung->getBlock());
3094   }
3095   LatchPath.push_back(LoopHeader);
3096 
3097   // Walk the instruction stream from the loop header to the loop latch.
3098   for (BasicBlock *BB : reverse(LatchPath)) {
3099     for (Instruction &I : *BB) {
3100       // Skip instructions that weren't seen by IVUsers analysis.
3101       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3102         continue;
3103 
3104       // Ignore users that are part of a SCEV expression. This way we only
3105       // consider leaf IV Users. This effectively rediscovers a portion of
3106       // IVUsers analysis but in program order this time.
3107       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3108           continue;
3109 
3110       // Remove this instruction from any NearUsers set it may be in.
3111       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3112            ChainIdx < NChains; ++ChainIdx) {
3113         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3114       }
3115       // Search for operands that can be chained.
3116       SmallPtrSet<Instruction*, 4> UniqueOperands;
3117       User::op_iterator IVOpEnd = I.op_end();
3118       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3119       while (IVOpIter != IVOpEnd) {
3120         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3121         if (UniqueOperands.insert(IVOpInst).second)
3122           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3123         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3124       }
3125     } // Continue walking down the instructions.
3126   } // Continue walking down the domtree.
3127   // Visit phi backedges to determine if the chain can generate the IV postinc.
3128   for (PHINode &PN : L->getHeader()->phis()) {
3129     if (!SE.isSCEVable(PN.getType()))
3130       continue;
3131 
3132     Instruction *IncV =
3133         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3134     if (IncV)
3135       ChainInstruction(&PN, IncV, ChainUsersVec);
3136   }
3137   // Remove any unprofitable chains.
3138   unsigned ChainIdx = 0;
3139   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3140        UsersIdx < NChains; ++UsersIdx) {
3141     if (!isProfitableChain(IVChainVec[UsersIdx],
3142                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3143       continue;
3144     // Preserve the chain at UsesIdx.
3145     if (ChainIdx != UsersIdx)
3146       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3147     FinalizeChain(IVChainVec[ChainIdx]);
3148     ++ChainIdx;
3149   }
3150   IVChainVec.resize(ChainIdx);
3151 }
3152 
3153 void LSRInstance::FinalizeChain(IVChain &Chain) {
3154   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3155   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3156 
3157   for (const IVInc &Inc : Chain) {
3158     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3159     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3160     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3161     IVIncSet.insert(UseI);
3162   }
3163 }
3164 
3165 /// Return true if the IVInc can be folded into an addressing mode.
3166 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3167                              Value *Operand, const TargetTransformInfo &TTI) {
3168   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3169   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3170     return false;
3171 
3172   if (IncConst->getAPInt().getMinSignedBits() > 64)
3173     return false;
3174 
3175   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3176   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3177   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3178                         IncOffset, /*HasBaseReg=*/false))
3179     return false;
3180 
3181   return true;
3182 }
3183 
3184 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3185 /// user's operand from the previous IV user's operand.
3186 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3187                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3188   // Find the new IVOperand for the head of the chain. It may have been replaced
3189   // by LSR.
3190   const IVInc &Head = Chain.Incs[0];
3191   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3192   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3193   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3194                                              IVOpEnd, L, SE);
3195   Value *IVSrc = nullptr;
3196   while (IVOpIter != IVOpEnd) {
3197     IVSrc = getWideOperand(*IVOpIter);
3198 
3199     // If this operand computes the expression that the chain needs, we may use
3200     // it. (Check this after setting IVSrc which is used below.)
3201     //
3202     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3203     // narrow for the chain, so we can no longer use it. We do allow using a
3204     // wider phi, assuming the LSR checked for free truncation. In that case we
3205     // should already have a truncate on this operand such that
3206     // getSCEV(IVSrc) == IncExpr.
3207     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3208         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3209       break;
3210     }
3211     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3212   }
3213   if (IVOpIter == IVOpEnd) {
3214     // Gracefully give up on this chain.
3215     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3216     return;
3217   }
3218   assert(IVSrc && "Failed to find IV chain source");
3219 
3220   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3221   Type *IVTy = IVSrc->getType();
3222   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3223   const SCEV *LeftOverExpr = nullptr;
3224   for (const IVInc &Inc : Chain) {
3225     Instruction *InsertPt = Inc.UserInst;
3226     if (isa<PHINode>(InsertPt))
3227       InsertPt = L->getLoopLatch()->getTerminator();
3228 
3229     // IVOper will replace the current IV User's operand. IVSrc is the IV
3230     // value currently held in a register.
3231     Value *IVOper = IVSrc;
3232     if (!Inc.IncExpr->isZero()) {
3233       // IncExpr was the result of subtraction of two narrow values, so must
3234       // be signed.
3235       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3236       LeftOverExpr = LeftOverExpr ?
3237         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3238     }
3239     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3240       // Expand the IV increment.
3241       Rewriter.clearPostInc();
3242       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3243       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3244                                              SE.getUnknown(IncV));
3245       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3246 
3247       // If an IV increment can't be folded, use it as the next IV value.
3248       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3249         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3250         IVSrc = IVOper;
3251         LeftOverExpr = nullptr;
3252       }
3253     }
3254     Type *OperTy = Inc.IVOperand->getType();
3255     if (IVTy != OperTy) {
3256       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3257              "cannot extend a chained IV");
3258       IRBuilder<> Builder(InsertPt);
3259       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3260     }
3261     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3262     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3263       DeadInsts.emplace_back(OperandIsInstr);
3264   }
3265   // If LSR created a new, wider phi, we may also replace its postinc. We only
3266   // do this if we also found a wide value for the head of the chain.
3267   if (isa<PHINode>(Chain.tailUserInst())) {
3268     for (PHINode &Phi : L->getHeader()->phis()) {
3269       if (!isCompatibleIVType(&Phi, IVSrc))
3270         continue;
3271       Instruction *PostIncV = dyn_cast<Instruction>(
3272           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3273       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3274         continue;
3275       Value *IVOper = IVSrc;
3276       Type *PostIncTy = PostIncV->getType();
3277       if (IVTy != PostIncTy) {
3278         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3279         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3280         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3281         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3282       }
3283       Phi.replaceUsesOfWith(PostIncV, IVOper);
3284       DeadInsts.emplace_back(PostIncV);
3285     }
3286   }
3287 }
3288 
3289 void LSRInstance::CollectFixupsAndInitialFormulae() {
3290   BranchInst *ExitBranch = nullptr;
3291   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3292 
3293   for (const IVStrideUse &U : IU) {
3294     Instruction *UserInst = U.getUser();
3295     // Skip IV users that are part of profitable IV Chains.
3296     User::op_iterator UseI =
3297         find(UserInst->operands(), U.getOperandValToReplace());
3298     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3299     if (IVIncSet.count(UseI)) {
3300       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3301       continue;
3302     }
3303 
3304     LSRUse::KindType Kind = LSRUse::Basic;
3305     MemAccessTy AccessTy;
3306     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3307       Kind = LSRUse::Address;
3308       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3309     }
3310 
3311     const SCEV *S = IU.getExpr(U);
3312     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3313 
3314     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3315     // (N - i == 0), and this allows (N - i) to be the expression that we work
3316     // with rather than just N or i, so we can consider the register
3317     // requirements for both N and i at the same time. Limiting this code to
3318     // equality icmps is not a problem because all interesting loops use
3319     // equality icmps, thanks to IndVarSimplify.
3320     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3321       // If CI can be saved in some target, like replaced inside hardware loop
3322       // in PowerPC, no need to generate initial formulae for it.
3323       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3324         continue;
3325       if (CI->isEquality()) {
3326         // Swap the operands if needed to put the OperandValToReplace on the
3327         // left, for consistency.
3328         Value *NV = CI->getOperand(1);
3329         if (NV == U.getOperandValToReplace()) {
3330           CI->setOperand(1, CI->getOperand(0));
3331           CI->setOperand(0, NV);
3332           NV = CI->getOperand(1);
3333           Changed = true;
3334         }
3335 
3336         // x == y  -->  x - y == 0
3337         const SCEV *N = SE.getSCEV(NV);
3338         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) &&
3339             (!NV->getType()->isPointerTy() ||
3340              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3341           // S is normalized, so normalize N before folding it into S
3342           // to keep the result normalized.
3343           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3344           Kind = LSRUse::ICmpZero;
3345           S = SE.getMinusSCEV(N, S);
3346         }
3347 
3348         // -1 and the negations of all interesting strides (except the negation
3349         // of -1) are now also interesting.
3350         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3351           if (Factors[i] != -1)
3352             Factors.insert(-(uint64_t)Factors[i]);
3353         Factors.insert(-1);
3354       }
3355     }
3356 
3357     // Get or create an LSRUse.
3358     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3359     size_t LUIdx = P.first;
3360     int64_t Offset = P.second;
3361     LSRUse &LU = Uses[LUIdx];
3362 
3363     // Record the fixup.
3364     LSRFixup &LF = LU.getNewFixup();
3365     LF.UserInst = UserInst;
3366     LF.OperandValToReplace = U.getOperandValToReplace();
3367     LF.PostIncLoops = TmpPostIncLoops;
3368     LF.Offset = Offset;
3369     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3370 
3371     if (!LU.WidestFixupType ||
3372         SE.getTypeSizeInBits(LU.WidestFixupType) <
3373         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3374       LU.WidestFixupType = LF.OperandValToReplace->getType();
3375 
3376     // If this is the first use of this LSRUse, give it a formula.
3377     if (LU.Formulae.empty()) {
3378       InsertInitialFormula(S, LU, LUIdx);
3379       CountRegisters(LU.Formulae.back(), LUIdx);
3380     }
3381   }
3382 
3383   LLVM_DEBUG(print_fixups(dbgs()));
3384 }
3385 
3386 /// Insert a formula for the given expression into the given use, separating out
3387 /// loop-variant portions from loop-invariant and loop-computable portions.
3388 void
3389 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3390   // Mark uses whose expressions cannot be expanded.
3391   if (!isSafeToExpand(S, SE, /*CanonicalMode*/ false))
3392     LU.RigidFormula = true;
3393 
3394   Formula F;
3395   F.initialMatch(S, L, SE);
3396   bool Inserted = InsertFormula(LU, LUIdx, F);
3397   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3398 }
3399 
3400 /// Insert a simple single-register formula for the given expression into the
3401 /// given use.
3402 void
3403 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3404                                        LSRUse &LU, size_t LUIdx) {
3405   Formula F;
3406   F.BaseRegs.push_back(S);
3407   F.HasBaseReg = true;
3408   bool Inserted = InsertFormula(LU, LUIdx, F);
3409   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3410 }
3411 
3412 /// Note which registers are used by the given formula, updating RegUses.
3413 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3414   if (F.ScaledReg)
3415     RegUses.countRegister(F.ScaledReg, LUIdx);
3416   for (const SCEV *BaseReg : F.BaseRegs)
3417     RegUses.countRegister(BaseReg, LUIdx);
3418 }
3419 
3420 /// If the given formula has not yet been inserted, add it to the list, and
3421 /// return true. Return false otherwise.
3422 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3423   // Do not insert formula that we will not be able to expand.
3424   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3425          "Formula is illegal");
3426 
3427   if (!LU.InsertFormula(F, *L))
3428     return false;
3429 
3430   CountRegisters(F, LUIdx);
3431   return true;
3432 }
3433 
3434 /// Check for other uses of loop-invariant values which we're tracking. These
3435 /// other uses will pin these values in registers, making them less profitable
3436 /// for elimination.
3437 /// TODO: This currently misses non-constant addrec step registers.
3438 /// TODO: Should this give more weight to users inside the loop?
3439 void
3440 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3441   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3442   SmallPtrSet<const SCEV *, 32> Visited;
3443 
3444   while (!Worklist.empty()) {
3445     const SCEV *S = Worklist.pop_back_val();
3446 
3447     // Don't process the same SCEV twice
3448     if (!Visited.insert(S).second)
3449       continue;
3450 
3451     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3452       Worklist.append(N->op_begin(), N->op_end());
3453     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3454       Worklist.push_back(C->getOperand());
3455     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3456       Worklist.push_back(D->getLHS());
3457       Worklist.push_back(D->getRHS());
3458     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3459       const Value *V = US->getValue();
3460       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3461         // Look for instructions defined outside the loop.
3462         if (L->contains(Inst)) continue;
3463       } else if (isa<UndefValue>(V))
3464         // Undef doesn't have a live range, so it doesn't matter.
3465         continue;
3466       for (const Use &U : V->uses()) {
3467         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3468         // Ignore non-instructions.
3469         if (!UserInst)
3470           continue;
3471         // Don't bother if the instruction is an EHPad.
3472         if (UserInst->isEHPad())
3473           continue;
3474         // Ignore instructions in other functions (as can happen with
3475         // Constants).
3476         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3477           continue;
3478         // Ignore instructions not dominated by the loop.
3479         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3480           UserInst->getParent() :
3481           cast<PHINode>(UserInst)->getIncomingBlock(
3482             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3483         if (!DT.dominates(L->getHeader(), UseBB))
3484           continue;
3485         // Don't bother if the instruction is in a BB which ends in an EHPad.
3486         if (UseBB->getTerminator()->isEHPad())
3487           continue;
3488 
3489         // Ignore cases in which the currently-examined value could come from
3490         // a basic block terminated with an EHPad. This checks all incoming
3491         // blocks of the phi node since it is possible that the same incoming
3492         // value comes from multiple basic blocks, only some of which may end
3493         // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3494         // pass would try to insert instructions into an EHPad, hitting an
3495         // assertion.
3496         if (isa<PHINode>(UserInst)) {
3497           const auto *PhiNode = cast<PHINode>(UserInst);
3498           bool HasIncompatibleEHPTerminatedBlock = false;
3499           llvm::Value *ExpectedValue = U;
3500           for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3501             if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3502               if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3503                 HasIncompatibleEHPTerminatedBlock = true;
3504                 break;
3505               }
3506             }
3507           }
3508           if (HasIncompatibleEHPTerminatedBlock) {
3509             continue;
3510           }
3511         }
3512 
3513         // Don't bother rewriting PHIs in catchswitch blocks.
3514         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3515           continue;
3516         // Ignore uses which are part of other SCEV expressions, to avoid
3517         // analyzing them multiple times.
3518         if (SE.isSCEVable(UserInst->getType())) {
3519           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3520           // If the user is a no-op, look through to its uses.
3521           if (!isa<SCEVUnknown>(UserS))
3522             continue;
3523           if (UserS == US) {
3524             Worklist.push_back(
3525               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3526             continue;
3527           }
3528         }
3529         // Ignore icmp instructions which are already being analyzed.
3530         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3531           unsigned OtherIdx = !U.getOperandNo();
3532           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3533           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3534             continue;
3535         }
3536 
3537         std::pair<size_t, int64_t> P = getUse(
3538             S, LSRUse::Basic, MemAccessTy());
3539         size_t LUIdx = P.first;
3540         int64_t Offset = P.second;
3541         LSRUse &LU = Uses[LUIdx];
3542         LSRFixup &LF = LU.getNewFixup();
3543         LF.UserInst = const_cast<Instruction *>(UserInst);
3544         LF.OperandValToReplace = U;
3545         LF.Offset = Offset;
3546         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3547         if (!LU.WidestFixupType ||
3548             SE.getTypeSizeInBits(LU.WidestFixupType) <
3549             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3550           LU.WidestFixupType = LF.OperandValToReplace->getType();
3551         InsertSupplementalFormula(US, LU, LUIdx);
3552         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3553         break;
3554       }
3555     }
3556   }
3557 }
3558 
3559 /// Split S into subexpressions which can be pulled out into separate
3560 /// registers. If C is non-null, multiply each subexpression by C.
3561 ///
3562 /// Return remainder expression after factoring the subexpressions captured by
3563 /// Ops. If Ops is complete, return NULL.
3564 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3565                                    SmallVectorImpl<const SCEV *> &Ops,
3566                                    const Loop *L,
3567                                    ScalarEvolution &SE,
3568                                    unsigned Depth = 0) {
3569   // Arbitrarily cap recursion to protect compile time.
3570   if (Depth >= 3)
3571     return S;
3572 
3573   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3574     // Break out add operands.
3575     for (const SCEV *S : Add->operands()) {
3576       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3577       if (Remainder)
3578         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3579     }
3580     return nullptr;
3581   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3582     // Split a non-zero base out of an addrec.
3583     if (AR->getStart()->isZero() || !AR->isAffine())
3584       return S;
3585 
3586     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3587                                             C, Ops, L, SE, Depth+1);
3588     // Split the non-zero AddRec unless it is part of a nested recurrence that
3589     // does not pertain to this loop.
3590     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3591       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3592       Remainder = nullptr;
3593     }
3594     if (Remainder != AR->getStart()) {
3595       if (!Remainder)
3596         Remainder = SE.getConstant(AR->getType(), 0);
3597       return SE.getAddRecExpr(Remainder,
3598                               AR->getStepRecurrence(SE),
3599                               AR->getLoop(),
3600                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3601                               SCEV::FlagAnyWrap);
3602     }
3603   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3604     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3605     if (Mul->getNumOperands() != 2)
3606       return S;
3607     if (const SCEVConstant *Op0 =
3608         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3609       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3610       const SCEV *Remainder =
3611         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3612       if (Remainder)
3613         Ops.push_back(SE.getMulExpr(C, Remainder));
3614       return nullptr;
3615     }
3616   }
3617   return S;
3618 }
3619 
3620 /// Return true if the SCEV represents a value that may end up as a
3621 /// post-increment operation.
3622 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3623                               LSRUse &LU, const SCEV *S, const Loop *L,
3624                               ScalarEvolution &SE) {
3625   if (LU.Kind != LSRUse::Address ||
3626       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3627     return false;
3628   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3629   if (!AR)
3630     return false;
3631   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3632   if (!isa<SCEVConstant>(LoopStep))
3633     return false;
3634   // Check if a post-indexed load/store can be used.
3635   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3636       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3637     const SCEV *LoopStart = AR->getStart();
3638     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3639       return true;
3640   }
3641   return false;
3642 }
3643 
3644 /// Helper function for LSRInstance::GenerateReassociations.
3645 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3646                                              const Formula &Base,
3647                                              unsigned Depth, size_t Idx,
3648                                              bool IsScaledReg) {
3649   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3650   // Don't generate reassociations for the base register of a value that
3651   // may generate a post-increment operator. The reason is that the
3652   // reassociations cause extra base+register formula to be created,
3653   // and possibly chosen, but the post-increment is more efficient.
3654   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3655     return;
3656   SmallVector<const SCEV *, 8> AddOps;
3657   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3658   if (Remainder)
3659     AddOps.push_back(Remainder);
3660 
3661   if (AddOps.size() == 1)
3662     return;
3663 
3664   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3665                                                      JE = AddOps.end();
3666        J != JE; ++J) {
3667     // Loop-variant "unknown" values are uninteresting; we won't be able to
3668     // do anything meaningful with them.
3669     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3670       continue;
3671 
3672     // Don't pull a constant into a register if the constant could be folded
3673     // into an immediate field.
3674     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3675                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3676       continue;
3677 
3678     // Collect all operands except *J.
3679     SmallVector<const SCEV *, 8> InnerAddOps(
3680         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3681     InnerAddOps.append(std::next(J),
3682                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3683 
3684     // Don't leave just a constant behind in a register if the constant could
3685     // be folded into an immediate field.
3686     if (InnerAddOps.size() == 1 &&
3687         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3688                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3689       continue;
3690 
3691     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3692     if (InnerSum->isZero())
3693       continue;
3694     Formula F = Base;
3695 
3696     // Add the remaining pieces of the add back into the new formula.
3697     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3698     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3699         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3700                                 InnerSumSC->getValue()->getZExtValue())) {
3701       F.UnfoldedOffset =
3702           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3703       if (IsScaledReg)
3704         F.ScaledReg = nullptr;
3705       else
3706         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3707     } else if (IsScaledReg)
3708       F.ScaledReg = InnerSum;
3709     else
3710       F.BaseRegs[Idx] = InnerSum;
3711 
3712     // Add J as its own register, or an unfolded immediate.
3713     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3714     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3715         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3716                                 SC->getValue()->getZExtValue()))
3717       F.UnfoldedOffset =
3718           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3719     else
3720       F.BaseRegs.push_back(*J);
3721     // We may have changed the number of register in base regs, adjust the
3722     // formula accordingly.
3723     F.canonicalize(*L);
3724 
3725     if (InsertFormula(LU, LUIdx, F))
3726       // If that formula hadn't been seen before, recurse to find more like
3727       // it.
3728       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3729       // Because just Depth is not enough to bound compile time.
3730       // This means that every time AddOps.size() is greater 16^x we will add
3731       // x to Depth.
3732       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3733                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3734   }
3735 }
3736 
3737 /// Split out subexpressions from adds and the bases of addrecs.
3738 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3739                                          Formula Base, unsigned Depth) {
3740   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3741   // Arbitrarily cap recursion to protect compile time.
3742   if (Depth >= 3)
3743     return;
3744 
3745   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3746     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3747 
3748   if (Base.Scale == 1)
3749     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3750                                /* Idx */ -1, /* IsScaledReg */ true);
3751 }
3752 
3753 ///  Generate a formula consisting of all of the loop-dominating registers added
3754 /// into a single register.
3755 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3756                                        Formula Base) {
3757   // This method is only interesting on a plurality of registers.
3758   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3759       (Base.UnfoldedOffset != 0) <= 1)
3760     return;
3761 
3762   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3763   // processing the formula.
3764   Base.unscale();
3765   SmallVector<const SCEV *, 4> Ops;
3766   Formula NewBase = Base;
3767   NewBase.BaseRegs.clear();
3768   Type *CombinedIntegerType = nullptr;
3769   for (const SCEV *BaseReg : Base.BaseRegs) {
3770     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3771         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3772       if (!CombinedIntegerType)
3773         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3774       Ops.push_back(BaseReg);
3775     }
3776     else
3777       NewBase.BaseRegs.push_back(BaseReg);
3778   }
3779 
3780   // If no register is relevant, we're done.
3781   if (Ops.size() == 0)
3782     return;
3783 
3784   // Utility function for generating the required variants of the combined
3785   // registers.
3786   auto GenerateFormula = [&](const SCEV *Sum) {
3787     Formula F = NewBase;
3788 
3789     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3790     // opportunity to fold something. For now, just ignore such cases
3791     // rather than proceed with zero in a register.
3792     if (Sum->isZero())
3793       return;
3794 
3795     F.BaseRegs.push_back(Sum);
3796     F.canonicalize(*L);
3797     (void)InsertFormula(LU, LUIdx, F);
3798   };
3799 
3800   // If we collected at least two registers, generate a formula combining them.
3801   if (Ops.size() > 1) {
3802     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3803     GenerateFormula(SE.getAddExpr(OpsCopy));
3804   }
3805 
3806   // If we have an unfolded offset, generate a formula combining it with the
3807   // registers collected.
3808   if (NewBase.UnfoldedOffset) {
3809     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3810     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3811                                  true));
3812     NewBase.UnfoldedOffset = 0;
3813     GenerateFormula(SE.getAddExpr(Ops));
3814   }
3815 }
3816 
3817 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3818 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3819                                               const Formula &Base, size_t Idx,
3820                                               bool IsScaledReg) {
3821   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3822   GlobalValue *GV = ExtractSymbol(G, SE);
3823   if (G->isZero() || !GV)
3824     return;
3825   Formula F = Base;
3826   F.BaseGV = GV;
3827   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3828     return;
3829   if (IsScaledReg)
3830     F.ScaledReg = G;
3831   else
3832     F.BaseRegs[Idx] = G;
3833   (void)InsertFormula(LU, LUIdx, F);
3834 }
3835 
3836 /// Generate reuse formulae using symbolic offsets.
3837 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3838                                           Formula Base) {
3839   // We can't add a symbolic offset if the address already contains one.
3840   if (Base.BaseGV) return;
3841 
3842   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3843     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3844   if (Base.Scale == 1)
3845     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3846                                 /* IsScaledReg */ true);
3847 }
3848 
3849 /// Helper function for LSRInstance::GenerateConstantOffsets.
3850 void LSRInstance::GenerateConstantOffsetsImpl(
3851     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3852     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3853 
3854   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3855     Formula F = Base;
3856     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3857 
3858     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3859       // Add the offset to the base register.
3860       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3861       // If it cancelled out, drop the base register, otherwise update it.
3862       if (NewG->isZero()) {
3863         if (IsScaledReg) {
3864           F.Scale = 0;
3865           F.ScaledReg = nullptr;
3866         } else
3867           F.deleteBaseReg(F.BaseRegs[Idx]);
3868         F.canonicalize(*L);
3869       } else if (IsScaledReg)
3870         F.ScaledReg = NewG;
3871       else
3872         F.BaseRegs[Idx] = NewG;
3873 
3874       (void)InsertFormula(LU, LUIdx, F);
3875     }
3876   };
3877 
3878   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3879 
3880   // With constant offsets and constant steps, we can generate pre-inc
3881   // accesses by having the offset equal the step. So, for access #0 with a
3882   // step of 8, we generate a G - 8 base which would require the first access
3883   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3884   // for itself and hopefully becomes the base for other accesses. This means
3885   // means that a single pre-indexed access can be generated to become the new
3886   // base pointer for each iteration of the loop, resulting in no extra add/sub
3887   // instructions for pointer updating.
3888   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3889     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3890       if (auto *StepRec =
3891           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3892         const APInt &StepInt = StepRec->getAPInt();
3893         int64_t Step = StepInt.isNegative() ?
3894           StepInt.getSExtValue() : StepInt.getZExtValue();
3895 
3896         for (int64_t Offset : Worklist) {
3897           Offset -= Step;
3898           GenerateOffset(G, Offset);
3899         }
3900       }
3901     }
3902   }
3903   for (int64_t Offset : Worklist)
3904     GenerateOffset(G, Offset);
3905 
3906   int64_t Imm = ExtractImmediate(G, SE);
3907   if (G->isZero() || Imm == 0)
3908     return;
3909   Formula F = Base;
3910   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3911   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3912     return;
3913   if (IsScaledReg) {
3914     F.ScaledReg = G;
3915   } else {
3916     F.BaseRegs[Idx] = G;
3917     // We may generate non canonical Formula if G is a recurrent expr reg
3918     // related with current loop while F.ScaledReg is not.
3919     F.canonicalize(*L);
3920   }
3921   (void)InsertFormula(LU, LUIdx, F);
3922 }
3923 
3924 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3925 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3926                                           Formula Base) {
3927   // TODO: For now, just add the min and max offset, because it usually isn't
3928   // worthwhile looking at everything inbetween.
3929   SmallVector<int64_t, 2> Worklist;
3930   Worklist.push_back(LU.MinOffset);
3931   if (LU.MaxOffset != LU.MinOffset)
3932     Worklist.push_back(LU.MaxOffset);
3933 
3934   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3935     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3936   if (Base.Scale == 1)
3937     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3938                                 /* IsScaledReg */ true);
3939 }
3940 
3941 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3942 /// == y -> x*c == y*c.
3943 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3944                                          Formula Base) {
3945   if (LU.Kind != LSRUse::ICmpZero) return;
3946 
3947   // Determine the integer type for the base formula.
3948   Type *IntTy = Base.getType();
3949   if (!IntTy) return;
3950   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3951 
3952   // Don't do this if there is more than one offset.
3953   if (LU.MinOffset != LU.MaxOffset) return;
3954 
3955   // Check if transformation is valid. It is illegal to multiply pointer.
3956   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3957     return;
3958   for (const SCEV *BaseReg : Base.BaseRegs)
3959     if (BaseReg->getType()->isPointerTy())
3960       return;
3961   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3962 
3963   // Check each interesting stride.
3964   for (int64_t Factor : Factors) {
3965     // Check that Factor can be represented by IntTy
3966     if (!ConstantInt::isValueValidForType(IntTy, Factor))
3967       continue;
3968     // Check that the multiplication doesn't overflow.
3969     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3970       continue;
3971     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3972     assert(Factor != 0 && "Zero factor not expected!");
3973     if (NewBaseOffset / Factor != Base.BaseOffset)
3974       continue;
3975     // If the offset will be truncated at this use, check that it is in bounds.
3976     if (!IntTy->isPointerTy() &&
3977         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3978       continue;
3979 
3980     // Check that multiplying with the use offset doesn't overflow.
3981     int64_t Offset = LU.MinOffset;
3982     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3983       continue;
3984     Offset = (uint64_t)Offset * Factor;
3985     if (Offset / Factor != LU.MinOffset)
3986       continue;
3987     // If the offset will be truncated at this use, check that it is in bounds.
3988     if (!IntTy->isPointerTy() &&
3989         !ConstantInt::isValueValidForType(IntTy, Offset))
3990       continue;
3991 
3992     Formula F = Base;
3993     F.BaseOffset = NewBaseOffset;
3994 
3995     // Check that this scale is legal.
3996     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3997       continue;
3998 
3999     // Compensate for the use having MinOffset built into it.
4000     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4001 
4002     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4003 
4004     // Check that multiplying with each base register doesn't overflow.
4005     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4006       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4007       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4008         goto next;
4009     }
4010 
4011     // Check that multiplying with the scaled register doesn't overflow.
4012     if (F.ScaledReg) {
4013       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4014       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4015         continue;
4016     }
4017 
4018     // Check that multiplying with the unfolded offset doesn't overflow.
4019     if (F.UnfoldedOffset != 0) {
4020       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4021           Factor == -1)
4022         continue;
4023       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4024       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4025         continue;
4026       // If the offset will be truncated, check that it is in bounds.
4027       if (!IntTy->isPointerTy() &&
4028           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4029         continue;
4030     }
4031 
4032     // If we make it here and it's legal, add it.
4033     (void)InsertFormula(LU, LUIdx, F);
4034   next:;
4035   }
4036 }
4037 
4038 /// Generate stride factor reuse formulae by making use of scaled-offset address
4039 /// modes, for example.
4040 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4041   // Determine the integer type for the base formula.
4042   Type *IntTy = Base.getType();
4043   if (!IntTy) return;
4044 
4045   // If this Formula already has a scaled register, we can't add another one.
4046   // Try to unscale the formula to generate a better scale.
4047   if (Base.Scale != 0 && !Base.unscale())
4048     return;
4049 
4050   assert(Base.Scale == 0 && "unscale did not did its job!");
4051 
4052   // Check each interesting stride.
4053   for (int64_t Factor : Factors) {
4054     Base.Scale = Factor;
4055     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4056     // Check whether this scale is going to be legal.
4057     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4058                     Base)) {
4059       // As a special-case, handle special out-of-loop Basic users specially.
4060       // TODO: Reconsider this special case.
4061       if (LU.Kind == LSRUse::Basic &&
4062           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4063                      LU.AccessTy, Base) &&
4064           LU.AllFixupsOutsideLoop)
4065         LU.Kind = LSRUse::Special;
4066       else
4067         continue;
4068     }
4069     // For an ICmpZero, negating a solitary base register won't lead to
4070     // new solutions.
4071     if (LU.Kind == LSRUse::ICmpZero &&
4072         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4073       continue;
4074     // For each addrec base reg, if its loop is current loop, apply the scale.
4075     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4076       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4077       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4078         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4079         if (FactorS->isZero())
4080           continue;
4081         // Divide out the factor, ignoring high bits, since we'll be
4082         // scaling the value back up in the end.
4083         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4084           if (!Quotient->isZero()) {
4085             // TODO: This could be optimized to avoid all the copying.
4086             Formula F = Base;
4087             F.ScaledReg = Quotient;
4088             F.deleteBaseReg(F.BaseRegs[i]);
4089             // The canonical representation of 1*reg is reg, which is already in
4090             // Base. In that case, do not try to insert the formula, it will be
4091             // rejected anyway.
4092             if (F.Scale == 1 && (F.BaseRegs.empty() ||
4093                                  (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4094               continue;
4095             // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4096             // non canonical Formula with ScaledReg's loop not being L.
4097             if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4098               F.canonicalize(*L);
4099             (void)InsertFormula(LU, LUIdx, F);
4100           }
4101       }
4102     }
4103   }
4104 }
4105 
4106 /// Generate reuse formulae from different IV types.
4107 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4108   // Don't bother truncating symbolic values.
4109   if (Base.BaseGV) return;
4110 
4111   // Determine the integer type for the base formula.
4112   Type *DstTy = Base.getType();
4113   if (!DstTy) return;
4114   if (DstTy->isPointerTy())
4115     return;
4116 
4117   // It is invalid to extend a pointer type so exit early if ScaledReg or
4118   // any of the BaseRegs are pointers.
4119   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4120     return;
4121   if (any_of(Base.BaseRegs,
4122              [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4123     return;
4124 
4125   for (Type *SrcTy : Types) {
4126     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4127       Formula F = Base;
4128 
4129       // Sometimes SCEV is able to prove zero during ext transform. It may
4130       // happen if SCEV did not do all possible transforms while creating the
4131       // initial node (maybe due to depth limitations), but it can do them while
4132       // taking ext.
4133       if (F.ScaledReg) {
4134         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4135         if (NewScaledReg->isZero())
4136          continue;
4137         F.ScaledReg = NewScaledReg;
4138       }
4139       bool HasZeroBaseReg = false;
4140       for (const SCEV *&BaseReg : F.BaseRegs) {
4141         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4142         if (NewBaseReg->isZero()) {
4143           HasZeroBaseReg = true;
4144           break;
4145         }
4146         BaseReg = NewBaseReg;
4147       }
4148       if (HasZeroBaseReg)
4149         continue;
4150 
4151       // TODO: This assumes we've done basic processing on all uses and
4152       // have an idea what the register usage is.
4153       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4154         continue;
4155 
4156       F.canonicalize(*L);
4157       (void)InsertFormula(LU, LUIdx, F);
4158     }
4159   }
4160 }
4161 
4162 namespace {
4163 
4164 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4165 /// modifications so that the search phase doesn't have to worry about the data
4166 /// structures moving underneath it.
4167 struct WorkItem {
4168   size_t LUIdx;
4169   int64_t Imm;
4170   const SCEV *OrigReg;
4171 
4172   WorkItem(size_t LI, int64_t I, const SCEV *R)
4173       : LUIdx(LI), Imm(I), OrigReg(R) {}
4174 
4175   void print(raw_ostream &OS) const;
4176   void dump() const;
4177 };
4178 
4179 } // end anonymous namespace
4180 
4181 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4182 void WorkItem::print(raw_ostream &OS) const {
4183   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4184      << " , add offset " << Imm;
4185 }
4186 
4187 LLVM_DUMP_METHOD void WorkItem::dump() const {
4188   print(errs()); errs() << '\n';
4189 }
4190 #endif
4191 
4192 /// Look for registers which are a constant distance apart and try to form reuse
4193 /// opportunities between them.
4194 void LSRInstance::GenerateCrossUseConstantOffsets() {
4195   // Group the registers by their value without any added constant offset.
4196   using ImmMapTy = std::map<int64_t, const SCEV *>;
4197 
4198   DenseMap<const SCEV *, ImmMapTy> Map;
4199   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4200   SmallVector<const SCEV *, 8> Sequence;
4201   for (const SCEV *Use : RegUses) {
4202     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4203     int64_t Imm = ExtractImmediate(Reg, SE);
4204     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4205     if (Pair.second)
4206       Sequence.push_back(Reg);
4207     Pair.first->second.insert(std::make_pair(Imm, Use));
4208     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4209   }
4210 
4211   // Now examine each set of registers with the same base value. Build up
4212   // a list of work to do and do the work in a separate step so that we're
4213   // not adding formulae and register counts while we're searching.
4214   SmallVector<WorkItem, 32> WorkItems;
4215   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4216   for (const SCEV *Reg : Sequence) {
4217     const ImmMapTy &Imms = Map.find(Reg)->second;
4218 
4219     // It's not worthwhile looking for reuse if there's only one offset.
4220     if (Imms.size() == 1)
4221       continue;
4222 
4223     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4224                for (const auto &Entry
4225                     : Imms) dbgs()
4226                << ' ' << Entry.first;
4227                dbgs() << '\n');
4228 
4229     // Examine each offset.
4230     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4231          J != JE; ++J) {
4232       const SCEV *OrigReg = J->second;
4233 
4234       int64_t JImm = J->first;
4235       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4236 
4237       if (!isa<SCEVConstant>(OrigReg) &&
4238           UsedByIndicesMap[Reg].count() == 1) {
4239         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4240                           << '\n');
4241         continue;
4242       }
4243 
4244       // Conservatively examine offsets between this orig reg a few selected
4245       // other orig regs.
4246       int64_t First = Imms.begin()->first;
4247       int64_t Last = std::prev(Imms.end())->first;
4248       // Compute (First + Last)  / 2 without overflow using the fact that
4249       // First + Last = 2 * (First + Last) + (First ^ Last).
4250       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4251       // If the result is negative and First is odd and Last even (or vice versa),
4252       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4253       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4254       ImmMapTy::const_iterator OtherImms[] = {
4255           Imms.begin(), std::prev(Imms.end()),
4256          Imms.lower_bound(Avg)};
4257       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4258         ImmMapTy::const_iterator M = OtherImms[i];
4259         if (M == J || M == JE) continue;
4260 
4261         // Compute the difference between the two.
4262         int64_t Imm = (uint64_t)JImm - M->first;
4263         for (unsigned LUIdx : UsedByIndices.set_bits())
4264           // Make a memo of this use, offset, and register tuple.
4265           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4266             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4267       }
4268     }
4269   }
4270 
4271   Map.clear();
4272   Sequence.clear();
4273   UsedByIndicesMap.clear();
4274   UniqueItems.clear();
4275 
4276   // Now iterate through the worklist and add new formulae.
4277   for (const WorkItem &WI : WorkItems) {
4278     size_t LUIdx = WI.LUIdx;
4279     LSRUse &LU = Uses[LUIdx];
4280     int64_t Imm = WI.Imm;
4281     const SCEV *OrigReg = WI.OrigReg;
4282 
4283     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4284     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4285     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4286 
4287     // TODO: Use a more targeted data structure.
4288     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4289       Formula F = LU.Formulae[L];
4290       // FIXME: The code for the scaled and unscaled registers looks
4291       // very similar but slightly different. Investigate if they
4292       // could be merged. That way, we would not have to unscale the
4293       // Formula.
4294       F.unscale();
4295       // Use the immediate in the scaled register.
4296       if (F.ScaledReg == OrigReg) {
4297         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4298         // Don't create 50 + reg(-50).
4299         if (F.referencesReg(SE.getSCEV(
4300                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4301           continue;
4302         Formula NewF = F;
4303         NewF.BaseOffset = Offset;
4304         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4305                         NewF))
4306           continue;
4307         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4308 
4309         // If the new scale is a constant in a register, and adding the constant
4310         // value to the immediate would produce a value closer to zero than the
4311         // immediate itself, then the formula isn't worthwhile.
4312         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4313           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4314               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4315                   .ule(std::abs(NewF.BaseOffset)))
4316             continue;
4317 
4318         // OK, looks good.
4319         NewF.canonicalize(*this->L);
4320         (void)InsertFormula(LU, LUIdx, NewF);
4321       } else {
4322         // Use the immediate in a base register.
4323         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4324           const SCEV *BaseReg = F.BaseRegs[N];
4325           if (BaseReg != OrigReg)
4326             continue;
4327           Formula NewF = F;
4328           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4329           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4330                           LU.Kind, LU.AccessTy, NewF)) {
4331             if (AMK == TTI::AMK_PostIndexed &&
4332                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4333               continue;
4334             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4335               continue;
4336             NewF = F;
4337             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4338           }
4339           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4340 
4341           // If the new formula has a constant in a register, and adding the
4342           // constant value to the immediate would produce a value closer to
4343           // zero than the immediate itself, then the formula isn't worthwhile.
4344           for (const SCEV *NewReg : NewF.BaseRegs)
4345             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4346               if ((C->getAPInt() + NewF.BaseOffset)
4347                       .abs()
4348                       .slt(std::abs(NewF.BaseOffset)) &&
4349                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4350                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4351                 goto skip_formula;
4352 
4353           // Ok, looks good.
4354           NewF.canonicalize(*this->L);
4355           (void)InsertFormula(LU, LUIdx, NewF);
4356           break;
4357         skip_formula:;
4358         }
4359       }
4360     }
4361   }
4362 }
4363 
4364 /// Generate formulae for each use.
4365 void
4366 LSRInstance::GenerateAllReuseFormulae() {
4367   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4368   // queries are more precise.
4369   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4370     LSRUse &LU = Uses[LUIdx];
4371     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4372       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4373     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4374       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4375   }
4376   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4377     LSRUse &LU = Uses[LUIdx];
4378     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4379       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4380     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4381       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4382     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4383       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4384     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4385       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4386   }
4387   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4388     LSRUse &LU = Uses[LUIdx];
4389     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4390       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4391   }
4392 
4393   GenerateCrossUseConstantOffsets();
4394 
4395   LLVM_DEBUG(dbgs() << "\n"
4396                        "After generating reuse formulae:\n";
4397              print_uses(dbgs()));
4398 }
4399 
4400 /// If there are multiple formulae with the same set of registers used
4401 /// by other uses, pick the best one and delete the others.
4402 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4403   DenseSet<const SCEV *> VisitedRegs;
4404   SmallPtrSet<const SCEV *, 16> Regs;
4405   SmallPtrSet<const SCEV *, 16> LoserRegs;
4406 #ifndef NDEBUG
4407   bool ChangedFormulae = false;
4408 #endif
4409 
4410   // Collect the best formula for each unique set of shared registers. This
4411   // is reset for each use.
4412   using BestFormulaeTy =
4413       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4414 
4415   BestFormulaeTy BestFormulae;
4416 
4417   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4418     LSRUse &LU = Uses[LUIdx];
4419     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4420                dbgs() << '\n');
4421 
4422     bool Any = false;
4423     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4424          FIdx != NumForms; ++FIdx) {
4425       Formula &F = LU.Formulae[FIdx];
4426 
4427       // Some formulas are instant losers. For example, they may depend on
4428       // nonexistent AddRecs from other loops. These need to be filtered
4429       // immediately, otherwise heuristics could choose them over others leading
4430       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4431       // avoids the need to recompute this information across formulae using the
4432       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4433       // the corresponding bad register from the Regs set.
4434       Cost CostF(L, SE, TTI, AMK);
4435       Regs.clear();
4436       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4437       if (CostF.isLoser()) {
4438         // During initial formula generation, undesirable formulae are generated
4439         // by uses within other loops that have some non-trivial address mode or
4440         // use the postinc form of the IV. LSR needs to provide these formulae
4441         // as the basis of rediscovering the desired formula that uses an AddRec
4442         // corresponding to the existing phi. Once all formulae have been
4443         // generated, these initial losers may be pruned.
4444         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4445                    dbgs() << "\n");
4446       }
4447       else {
4448         SmallVector<const SCEV *, 4> Key;
4449         for (const SCEV *Reg : F.BaseRegs) {
4450           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4451             Key.push_back(Reg);
4452         }
4453         if (F.ScaledReg &&
4454             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4455           Key.push_back(F.ScaledReg);
4456         // Unstable sort by host order ok, because this is only used for
4457         // uniquifying.
4458         llvm::sort(Key);
4459 
4460         std::pair<BestFormulaeTy::const_iterator, bool> P =
4461           BestFormulae.insert(std::make_pair(Key, FIdx));
4462         if (P.second)
4463           continue;
4464 
4465         Formula &Best = LU.Formulae[P.first->second];
4466 
4467         Cost CostBest(L, SE, TTI, AMK);
4468         Regs.clear();
4469         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4470         if (CostF.isLess(CostBest))
4471           std::swap(F, Best);
4472         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4473                    dbgs() << "\n"
4474                              "    in favor of formula ";
4475                    Best.print(dbgs()); dbgs() << '\n');
4476       }
4477 #ifndef NDEBUG
4478       ChangedFormulae = true;
4479 #endif
4480       LU.DeleteFormula(F);
4481       --FIdx;
4482       --NumForms;
4483       Any = true;
4484     }
4485 
4486     // Now that we've filtered out some formulae, recompute the Regs set.
4487     if (Any)
4488       LU.RecomputeRegs(LUIdx, RegUses);
4489 
4490     // Reset this to prepare for the next use.
4491     BestFormulae.clear();
4492   }
4493 
4494   LLVM_DEBUG(if (ChangedFormulae) {
4495     dbgs() << "\n"
4496               "After filtering out undesirable candidates:\n";
4497     print_uses(dbgs());
4498   });
4499 }
4500 
4501 /// Estimate the worst-case number of solutions the solver might have to
4502 /// consider. It almost never considers this many solutions because it prune the
4503 /// search space, but the pruning isn't always sufficient.
4504 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4505   size_t Power = 1;
4506   for (const LSRUse &LU : Uses) {
4507     size_t FSize = LU.Formulae.size();
4508     if (FSize >= ComplexityLimit) {
4509       Power = ComplexityLimit;
4510       break;
4511     }
4512     Power *= FSize;
4513     if (Power >= ComplexityLimit)
4514       break;
4515   }
4516   return Power;
4517 }
4518 
4519 /// When one formula uses a superset of the registers of another formula, it
4520 /// won't help reduce register pressure (though it may not necessarily hurt
4521 /// register pressure); remove it to simplify the system.
4522 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4523   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4524     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4525 
4526     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4527                          "which use a superset of registers used by other "
4528                          "formulae.\n");
4529 
4530     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4531       LSRUse &LU = Uses[LUIdx];
4532       bool Any = false;
4533       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4534         Formula &F = LU.Formulae[i];
4535         // Look for a formula with a constant or GV in a register. If the use
4536         // also has a formula with that same value in an immediate field,
4537         // delete the one that uses a register.
4538         for (SmallVectorImpl<const SCEV *>::const_iterator
4539              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4540           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4541             Formula NewF = F;
4542             //FIXME: Formulas should store bitwidth to do wrapping properly.
4543             //       See PR41034.
4544             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4545             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4546                                 (I - F.BaseRegs.begin()));
4547             if (LU.HasFormulaWithSameRegs(NewF)) {
4548               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4549                          dbgs() << '\n');
4550               LU.DeleteFormula(F);
4551               --i;
4552               --e;
4553               Any = true;
4554               break;
4555             }
4556           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4557             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4558               if (!F.BaseGV) {
4559                 Formula NewF = F;
4560                 NewF.BaseGV = GV;
4561                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4562                                     (I - F.BaseRegs.begin()));
4563                 if (LU.HasFormulaWithSameRegs(NewF)) {
4564                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4565                              dbgs() << '\n');
4566                   LU.DeleteFormula(F);
4567                   --i;
4568                   --e;
4569                   Any = true;
4570                   break;
4571                 }
4572               }
4573           }
4574         }
4575       }
4576       if (Any)
4577         LU.RecomputeRegs(LUIdx, RegUses);
4578     }
4579 
4580     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4581   }
4582 }
4583 
4584 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4585 /// allocate a single register for them.
4586 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4587   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4588     return;
4589 
4590   LLVM_DEBUG(
4591       dbgs() << "The search space is too complex.\n"
4592                 "Narrowing the search space by assuming that uses separated "
4593                 "by a constant offset will use the same registers.\n");
4594 
4595   // This is especially useful for unrolled loops.
4596 
4597   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4598     LSRUse &LU = Uses[LUIdx];
4599     for (const Formula &F : LU.Formulae) {
4600       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4601         continue;
4602 
4603       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4604       if (!LUThatHas)
4605         continue;
4606 
4607       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4608                               LU.Kind, LU.AccessTy))
4609         continue;
4610 
4611       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4612 
4613       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4614 
4615       // Transfer the fixups of LU to LUThatHas.
4616       for (LSRFixup &Fixup : LU.Fixups) {
4617         Fixup.Offset += F.BaseOffset;
4618         LUThatHas->pushFixup(Fixup);
4619         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4620       }
4621 
4622       // Delete formulae from the new use which are no longer legal.
4623       bool Any = false;
4624       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4625         Formula &F = LUThatHas->Formulae[i];
4626         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4627                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4628           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4629           LUThatHas->DeleteFormula(F);
4630           --i;
4631           --e;
4632           Any = true;
4633         }
4634       }
4635 
4636       if (Any)
4637         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4638 
4639       // Delete the old use.
4640       DeleteUse(LU, LUIdx);
4641       --LUIdx;
4642       --NumUses;
4643       break;
4644     }
4645   }
4646 
4647   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4648 }
4649 
4650 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4651 /// we've done more filtering, as it may be able to find more formulae to
4652 /// eliminate.
4653 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4654   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4655     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4656 
4657     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4658                          "undesirable dedicated registers.\n");
4659 
4660     FilterOutUndesirableDedicatedRegisters();
4661 
4662     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4663   }
4664 }
4665 
4666 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4667 /// Pick the best one and delete the others.
4668 /// This narrowing heuristic is to keep as many formulae with different
4669 /// Scale and ScaledReg pair as possible while narrowing the search space.
4670 /// The benefit is that it is more likely to find out a better solution
4671 /// from a formulae set with more Scale and ScaledReg variations than
4672 /// a formulae set with the same Scale and ScaledReg. The picking winner
4673 /// reg heuristic will often keep the formulae with the same Scale and
4674 /// ScaledReg and filter others, and we want to avoid that if possible.
4675 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4676   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4677     return;
4678 
4679   LLVM_DEBUG(
4680       dbgs() << "The search space is too complex.\n"
4681                 "Narrowing the search space by choosing the best Formula "
4682                 "from the Formulae with the same Scale and ScaledReg.\n");
4683 
4684   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4685   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4686 
4687   BestFormulaeTy BestFormulae;
4688 #ifndef NDEBUG
4689   bool ChangedFormulae = false;
4690 #endif
4691   DenseSet<const SCEV *> VisitedRegs;
4692   SmallPtrSet<const SCEV *, 16> Regs;
4693 
4694   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4695     LSRUse &LU = Uses[LUIdx];
4696     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4697                dbgs() << '\n');
4698 
4699     // Return true if Formula FA is better than Formula FB.
4700     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4701       // First we will try to choose the Formula with fewer new registers.
4702       // For a register used by current Formula, the more the register is
4703       // shared among LSRUses, the less we increase the register number
4704       // counter of the formula.
4705       size_t FARegNum = 0;
4706       for (const SCEV *Reg : FA.BaseRegs) {
4707         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4708         FARegNum += (NumUses - UsedByIndices.count() + 1);
4709       }
4710       size_t FBRegNum = 0;
4711       for (const SCEV *Reg : FB.BaseRegs) {
4712         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4713         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4714       }
4715       if (FARegNum != FBRegNum)
4716         return FARegNum < FBRegNum;
4717 
4718       // If the new register numbers are the same, choose the Formula with
4719       // less Cost.
4720       Cost CostFA(L, SE, TTI, AMK);
4721       Cost CostFB(L, SE, TTI, AMK);
4722       Regs.clear();
4723       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4724       Regs.clear();
4725       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4726       return CostFA.isLess(CostFB);
4727     };
4728 
4729     bool Any = false;
4730     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4731          ++FIdx) {
4732       Formula &F = LU.Formulae[FIdx];
4733       if (!F.ScaledReg)
4734         continue;
4735       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4736       if (P.second)
4737         continue;
4738 
4739       Formula &Best = LU.Formulae[P.first->second];
4740       if (IsBetterThan(F, Best))
4741         std::swap(F, Best);
4742       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4743                  dbgs() << "\n"
4744                            "    in favor of formula ";
4745                  Best.print(dbgs()); dbgs() << '\n');
4746 #ifndef NDEBUG
4747       ChangedFormulae = true;
4748 #endif
4749       LU.DeleteFormula(F);
4750       --FIdx;
4751       --NumForms;
4752       Any = true;
4753     }
4754     if (Any)
4755       LU.RecomputeRegs(LUIdx, RegUses);
4756 
4757     // Reset this to prepare for the next use.
4758     BestFormulae.clear();
4759   }
4760 
4761   LLVM_DEBUG(if (ChangedFormulae) {
4762     dbgs() << "\n"
4763               "After filtering out undesirable candidates:\n";
4764     print_uses(dbgs());
4765   });
4766 }
4767 
4768 /// If we are over the complexity limit, filter out any post-inc prefering
4769 /// variables to only post-inc values.
4770 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4771   if (AMK != TTI::AMK_PostIndexed)
4772     return;
4773   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4774     return;
4775 
4776   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4777                        "Narrowing the search space by choosing the lowest "
4778                        "register Formula for PostInc Uses.\n");
4779 
4780   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4781     LSRUse &LU = Uses[LUIdx];
4782 
4783     if (LU.Kind != LSRUse::Address)
4784       continue;
4785     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4786         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4787       continue;
4788 
4789     size_t MinRegs = std::numeric_limits<size_t>::max();
4790     for (const Formula &F : LU.Formulae)
4791       MinRegs = std::min(F.getNumRegs(), MinRegs);
4792 
4793     bool Any = false;
4794     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4795          ++FIdx) {
4796       Formula &F = LU.Formulae[FIdx];
4797       if (F.getNumRegs() > MinRegs) {
4798         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4799                    dbgs() << "\n");
4800         LU.DeleteFormula(F);
4801         --FIdx;
4802         --NumForms;
4803         Any = true;
4804       }
4805     }
4806     if (Any)
4807       LU.RecomputeRegs(LUIdx, RegUses);
4808 
4809     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4810       break;
4811   }
4812 
4813   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4814 }
4815 
4816 /// The function delete formulas with high registers number expectation.
4817 /// Assuming we don't know the value of each formula (already delete
4818 /// all inefficient), generate probability of not selecting for each
4819 /// register.
4820 /// For example,
4821 /// Use1:
4822 ///  reg(a) + reg({0,+,1})
4823 ///  reg(a) + reg({-1,+,1}) + 1
4824 ///  reg({a,+,1})
4825 /// Use2:
4826 ///  reg(b) + reg({0,+,1})
4827 ///  reg(b) + reg({-1,+,1}) + 1
4828 ///  reg({b,+,1})
4829 /// Use3:
4830 ///  reg(c) + reg(b) + reg({0,+,1})
4831 ///  reg(c) + reg({b,+,1})
4832 ///
4833 /// Probability of not selecting
4834 ///                 Use1   Use2    Use3
4835 /// reg(a)         (1/3) *   1   *   1
4836 /// reg(b)           1   * (1/3) * (1/2)
4837 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4838 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4839 /// reg({a,+,1})   (2/3) *   1   *   1
4840 /// reg({b,+,1})     1   * (2/3) * (2/3)
4841 /// reg(c)           1   *   1   *   0
4842 ///
4843 /// Now count registers number mathematical expectation for each formula:
4844 /// Note that for each use we exclude probability if not selecting for the use.
4845 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4846 /// probabilty 1/3 of not selecting for Use1).
4847 /// Use1:
4848 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4849 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4850 ///  reg({a,+,1})                   1
4851 /// Use2:
4852 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4853 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4854 ///  reg({b,+,1})                   2/3
4855 /// Use3:
4856 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4857 ///  reg(c) + reg({b,+,1})          1 + 2/3
4858 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4859   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4860     return;
4861   // Ok, we have too many of formulae on our hands to conveniently handle.
4862   // Use a rough heuristic to thin out the list.
4863 
4864   // Set of Regs wich will be 100% used in final solution.
4865   // Used in each formula of a solution (in example above this is reg(c)).
4866   // We can skip them in calculations.
4867   SmallPtrSet<const SCEV *, 4> UniqRegs;
4868   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4869 
4870   // Map each register to probability of not selecting
4871   DenseMap <const SCEV *, float> RegNumMap;
4872   for (const SCEV *Reg : RegUses) {
4873     if (UniqRegs.count(Reg))
4874       continue;
4875     float PNotSel = 1;
4876     for (const LSRUse &LU : Uses) {
4877       if (!LU.Regs.count(Reg))
4878         continue;
4879       float P = LU.getNotSelectedProbability(Reg);
4880       if (P != 0.0)
4881         PNotSel *= P;
4882       else
4883         UniqRegs.insert(Reg);
4884     }
4885     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4886   }
4887 
4888   LLVM_DEBUG(
4889       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4890 
4891   // Delete formulas where registers number expectation is high.
4892   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4893     LSRUse &LU = Uses[LUIdx];
4894     // If nothing to delete - continue.
4895     if (LU.Formulae.size() < 2)
4896       continue;
4897     // This is temporary solution to test performance. Float should be
4898     // replaced with round independent type (based on integers) to avoid
4899     // different results for different target builds.
4900     float FMinRegNum = LU.Formulae[0].getNumRegs();
4901     float FMinARegNum = LU.Formulae[0].getNumRegs();
4902     size_t MinIdx = 0;
4903     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4904       Formula &F = LU.Formulae[i];
4905       float FRegNum = 0;
4906       float FARegNum = 0;
4907       for (const SCEV *BaseReg : F.BaseRegs) {
4908         if (UniqRegs.count(BaseReg))
4909           continue;
4910         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4911         if (isa<SCEVAddRecExpr>(BaseReg))
4912           FARegNum +=
4913               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4914       }
4915       if (const SCEV *ScaledReg = F.ScaledReg) {
4916         if (!UniqRegs.count(ScaledReg)) {
4917           FRegNum +=
4918               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4919           if (isa<SCEVAddRecExpr>(ScaledReg))
4920             FARegNum +=
4921                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4922         }
4923       }
4924       if (FMinRegNum > FRegNum ||
4925           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4926         FMinRegNum = FRegNum;
4927         FMinARegNum = FARegNum;
4928         MinIdx = i;
4929       }
4930     }
4931     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4932                dbgs() << " with min reg num " << FMinRegNum << '\n');
4933     if (MinIdx != 0)
4934       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4935     while (LU.Formulae.size() != 1) {
4936       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4937                  dbgs() << '\n');
4938       LU.Formulae.pop_back();
4939     }
4940     LU.RecomputeRegs(LUIdx, RegUses);
4941     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4942     Formula &F = LU.Formulae[0];
4943     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4944     // When we choose the formula, the regs become unique.
4945     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4946     if (F.ScaledReg)
4947       UniqRegs.insert(F.ScaledReg);
4948   }
4949   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4950 }
4951 
4952 /// Pick a register which seems likely to be profitable, and then in any use
4953 /// which has any reference to that register, delete all formulae which do not
4954 /// reference that register.
4955 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4956   // With all other options exhausted, loop until the system is simple
4957   // enough to handle.
4958   SmallPtrSet<const SCEV *, 4> Taken;
4959   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4960     // Ok, we have too many of formulae on our hands to conveniently handle.
4961     // Use a rough heuristic to thin out the list.
4962     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4963 
4964     // Pick the register which is used by the most LSRUses, which is likely
4965     // to be a good reuse register candidate.
4966     const SCEV *Best = nullptr;
4967     unsigned BestNum = 0;
4968     for (const SCEV *Reg : RegUses) {
4969       if (Taken.count(Reg))
4970         continue;
4971       if (!Best) {
4972         Best = Reg;
4973         BestNum = RegUses.getUsedByIndices(Reg).count();
4974       } else {
4975         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4976         if (Count > BestNum) {
4977           Best = Reg;
4978           BestNum = Count;
4979         }
4980       }
4981     }
4982     assert(Best && "Failed to find best LSRUse candidate");
4983 
4984     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4985                       << " will yield profitable reuse.\n");
4986     Taken.insert(Best);
4987 
4988     // In any use with formulae which references this register, delete formulae
4989     // which don't reference it.
4990     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4991       LSRUse &LU = Uses[LUIdx];
4992       if (!LU.Regs.count(Best)) continue;
4993 
4994       bool Any = false;
4995       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4996         Formula &F = LU.Formulae[i];
4997         if (!F.referencesReg(Best)) {
4998           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4999           LU.DeleteFormula(F);
5000           --e;
5001           --i;
5002           Any = true;
5003           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5004           continue;
5005         }
5006       }
5007 
5008       if (Any)
5009         LU.RecomputeRegs(LUIdx, RegUses);
5010     }
5011 
5012     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5013   }
5014 }
5015 
5016 /// If there are an extraordinary number of formulae to choose from, use some
5017 /// rough heuristics to prune down the number of formulae. This keeps the main
5018 /// solver from taking an extraordinary amount of time in some worst-case
5019 /// scenarios.
5020 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5021   NarrowSearchSpaceByDetectingSupersets();
5022   NarrowSearchSpaceByCollapsingUnrolledCode();
5023   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5024   if (FilterSameScaledReg)
5025     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5026   NarrowSearchSpaceByFilterPostInc();
5027   if (LSRExpNarrow)
5028     NarrowSearchSpaceByDeletingCostlyFormulas();
5029   else
5030     NarrowSearchSpaceByPickingWinnerRegs();
5031 }
5032 
5033 /// This is the recursive solver.
5034 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5035                                Cost &SolutionCost,
5036                                SmallVectorImpl<const Formula *> &Workspace,
5037                                const Cost &CurCost,
5038                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
5039                                DenseSet<const SCEV *> &VisitedRegs) const {
5040   // Some ideas:
5041   //  - prune more:
5042   //    - use more aggressive filtering
5043   //    - sort the formula so that the most profitable solutions are found first
5044   //    - sort the uses too
5045   //  - search faster:
5046   //    - don't compute a cost, and then compare. compare while computing a cost
5047   //      and bail early.
5048   //    - track register sets with SmallBitVector
5049 
5050   const LSRUse &LU = Uses[Workspace.size()];
5051 
5052   // If this use references any register that's already a part of the
5053   // in-progress solution, consider it a requirement that a formula must
5054   // reference that register in order to be considered. This prunes out
5055   // unprofitable searching.
5056   SmallSetVector<const SCEV *, 4> ReqRegs;
5057   for (const SCEV *S : CurRegs)
5058     if (LU.Regs.count(S))
5059       ReqRegs.insert(S);
5060 
5061   SmallPtrSet<const SCEV *, 16> NewRegs;
5062   Cost NewCost(L, SE, TTI, AMK);
5063   for (const Formula &F : LU.Formulae) {
5064     // Ignore formulae which may not be ideal in terms of register reuse of
5065     // ReqRegs.  The formula should use all required registers before
5066     // introducing new ones.
5067     // This can sometimes (notably when trying to favour postinc) lead to
5068     // sub-optimial decisions. There it is best left to the cost modelling to
5069     // get correct.
5070     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5071       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5072       for (const SCEV *Reg : ReqRegs) {
5073         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5074             is_contained(F.BaseRegs, Reg)) {
5075           --NumReqRegsToFind;
5076           if (NumReqRegsToFind == 0)
5077             break;
5078         }
5079       }
5080       if (NumReqRegsToFind != 0) {
5081         // If none of the formulae satisfied the required registers, then we could
5082         // clear ReqRegs and try again. Currently, we simply give up in this case.
5083         continue;
5084       }
5085     }
5086 
5087     // Evaluate the cost of the current formula. If it's already worse than
5088     // the current best, prune the search at that point.
5089     NewCost = CurCost;
5090     NewRegs = CurRegs;
5091     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5092     if (NewCost.isLess(SolutionCost)) {
5093       Workspace.push_back(&F);
5094       if (Workspace.size() != Uses.size()) {
5095         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5096                      NewRegs, VisitedRegs);
5097         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5098           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5099       } else {
5100         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5101                    dbgs() << ".\nRegs:\n";
5102                    for (const SCEV *S : NewRegs) dbgs()
5103                       << "- " << *S << "\n";
5104                    dbgs() << '\n');
5105 
5106         SolutionCost = NewCost;
5107         Solution = Workspace;
5108       }
5109       Workspace.pop_back();
5110     }
5111   }
5112 }
5113 
5114 /// Choose one formula from each use. Return the results in the given Solution
5115 /// vector.
5116 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5117   SmallVector<const Formula *, 8> Workspace;
5118   Cost SolutionCost(L, SE, TTI, AMK);
5119   SolutionCost.Lose();
5120   Cost CurCost(L, SE, TTI, AMK);
5121   SmallPtrSet<const SCEV *, 16> CurRegs;
5122   DenseSet<const SCEV *> VisitedRegs;
5123   Workspace.reserve(Uses.size());
5124 
5125   // SolveRecurse does all the work.
5126   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5127                CurRegs, VisitedRegs);
5128   if (Solution.empty()) {
5129     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5130     return;
5131   }
5132 
5133   // Ok, we've now made all our decisions.
5134   LLVM_DEBUG(dbgs() << "\n"
5135                        "The chosen solution requires ";
5136              SolutionCost.print(dbgs()); dbgs() << ":\n";
5137              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5138                dbgs() << "  ";
5139                Uses[i].print(dbgs());
5140                dbgs() << "\n"
5141                          "    ";
5142                Solution[i]->print(dbgs());
5143                dbgs() << '\n';
5144              });
5145 
5146   assert(Solution.size() == Uses.size() && "Malformed solution!");
5147 }
5148 
5149 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5150 /// we can go while still being dominated by the input positions. This helps
5151 /// canonicalize the insert position, which encourages sharing.
5152 BasicBlock::iterator
5153 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5154                                  const SmallVectorImpl<Instruction *> &Inputs)
5155                                                                          const {
5156   Instruction *Tentative = &*IP;
5157   while (true) {
5158     bool AllDominate = true;
5159     Instruction *BetterPos = nullptr;
5160     // Don't bother attempting to insert before a catchswitch, their basic block
5161     // cannot have other non-PHI instructions.
5162     if (isa<CatchSwitchInst>(Tentative))
5163       return IP;
5164 
5165     for (Instruction *Inst : Inputs) {
5166       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5167         AllDominate = false;
5168         break;
5169       }
5170       // Attempt to find an insert position in the middle of the block,
5171       // instead of at the end, so that it can be used for other expansions.
5172       if (Tentative->getParent() == Inst->getParent() &&
5173           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5174         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5175     }
5176     if (!AllDominate)
5177       break;
5178     if (BetterPos)
5179       IP = BetterPos->getIterator();
5180     else
5181       IP = Tentative->getIterator();
5182 
5183     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5184     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5185 
5186     BasicBlock *IDom;
5187     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5188       if (!Rung) return IP;
5189       Rung = Rung->getIDom();
5190       if (!Rung) return IP;
5191       IDom = Rung->getBlock();
5192 
5193       // Don't climb into a loop though.
5194       const Loop *IDomLoop = LI.getLoopFor(IDom);
5195       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5196       if (IDomDepth <= IPLoopDepth &&
5197           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5198         break;
5199     }
5200 
5201     Tentative = IDom->getTerminator();
5202   }
5203 
5204   return IP;
5205 }
5206 
5207 /// Determine an input position which will be dominated by the operands and
5208 /// which will dominate the result.
5209 BasicBlock::iterator
5210 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5211                                            const LSRFixup &LF,
5212                                            const LSRUse &LU,
5213                                            SCEVExpander &Rewriter) const {
5214   // Collect some instructions which must be dominated by the
5215   // expanding replacement. These must be dominated by any operands that
5216   // will be required in the expansion.
5217   SmallVector<Instruction *, 4> Inputs;
5218   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5219     Inputs.push_back(I);
5220   if (LU.Kind == LSRUse::ICmpZero)
5221     if (Instruction *I =
5222           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5223       Inputs.push_back(I);
5224   if (LF.PostIncLoops.count(L)) {
5225     if (LF.isUseFullyOutsideLoop(L))
5226       Inputs.push_back(L->getLoopLatch()->getTerminator());
5227     else
5228       Inputs.push_back(IVIncInsertPos);
5229   }
5230   // The expansion must also be dominated by the increment positions of any
5231   // loops it for which it is using post-inc mode.
5232   for (const Loop *PIL : LF.PostIncLoops) {
5233     if (PIL == L) continue;
5234 
5235     // Be dominated by the loop exit.
5236     SmallVector<BasicBlock *, 4> ExitingBlocks;
5237     PIL->getExitingBlocks(ExitingBlocks);
5238     if (!ExitingBlocks.empty()) {
5239       BasicBlock *BB = ExitingBlocks[0];
5240       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5241         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5242       Inputs.push_back(BB->getTerminator());
5243     }
5244   }
5245 
5246   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5247          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5248          "Insertion point must be a normal instruction");
5249 
5250   // Then, climb up the immediate dominator tree as far as we can go while
5251   // still being dominated by the input positions.
5252   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5253 
5254   // Don't insert instructions before PHI nodes.
5255   while (isa<PHINode>(IP)) ++IP;
5256 
5257   // Ignore landingpad instructions.
5258   while (IP->isEHPad()) ++IP;
5259 
5260   // Ignore debug intrinsics.
5261   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5262 
5263   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5264   // IP consistent across expansions and allows the previously inserted
5265   // instructions to be reused by subsequent expansion.
5266   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5267     ++IP;
5268 
5269   return IP;
5270 }
5271 
5272 /// Emit instructions for the leading candidate expression for this LSRUse (this
5273 /// is called "expanding").
5274 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5275                            const Formula &F, BasicBlock::iterator IP,
5276                            SCEVExpander &Rewriter,
5277                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5278   if (LU.RigidFormula)
5279     return LF.OperandValToReplace;
5280 
5281   // Determine an input position which will be dominated by the operands and
5282   // which will dominate the result.
5283   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5284   Rewriter.setInsertPoint(&*IP);
5285 
5286   // Inform the Rewriter if we have a post-increment use, so that it can
5287   // perform an advantageous expansion.
5288   Rewriter.setPostInc(LF.PostIncLoops);
5289 
5290   // This is the type that the user actually needs.
5291   Type *OpTy = LF.OperandValToReplace->getType();
5292   // This will be the type that we'll initially expand to.
5293   Type *Ty = F.getType();
5294   if (!Ty)
5295     // No type known; just expand directly to the ultimate type.
5296     Ty = OpTy;
5297   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5298     // Expand directly to the ultimate type if it's the right size.
5299     Ty = OpTy;
5300   // This is the type to do integer arithmetic in.
5301   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5302 
5303   // Build up a list of operands to add together to form the full base.
5304   SmallVector<const SCEV *, 8> Ops;
5305 
5306   // Expand the BaseRegs portion.
5307   for (const SCEV *Reg : F.BaseRegs) {
5308     assert(!Reg->isZero() && "Zero allocated in a base register!");
5309 
5310     // If we're expanding for a post-inc user, make the post-inc adjustment.
5311     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5312     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5313   }
5314 
5315   // Expand the ScaledReg portion.
5316   Value *ICmpScaledV = nullptr;
5317   if (F.Scale != 0) {
5318     const SCEV *ScaledS = F.ScaledReg;
5319 
5320     // If we're expanding for a post-inc user, make the post-inc adjustment.
5321     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5322     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5323 
5324     if (LU.Kind == LSRUse::ICmpZero) {
5325       // Expand ScaleReg as if it was part of the base regs.
5326       if (F.Scale == 1)
5327         Ops.push_back(
5328             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5329       else {
5330         // An interesting way of "folding" with an icmp is to use a negated
5331         // scale, which we'll implement by inserting it into the other operand
5332         // of the icmp.
5333         assert(F.Scale == -1 &&
5334                "The only scale supported by ICmpZero uses is -1!");
5335         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5336       }
5337     } else {
5338       // Otherwise just expand the scaled register and an explicit scale,
5339       // which is expected to be matched as part of the address.
5340 
5341       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5342       // Unless the addressing mode will not be folded.
5343       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5344           isAMCompletelyFolded(TTI, LU, F)) {
5345         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5346         Ops.clear();
5347         Ops.push_back(SE.getUnknown(FullV));
5348       }
5349       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5350       if (F.Scale != 1)
5351         ScaledS =
5352             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5353       Ops.push_back(ScaledS);
5354     }
5355   }
5356 
5357   // Expand the GV portion.
5358   if (F.BaseGV) {
5359     // Flush the operand list to suppress SCEVExpander hoisting.
5360     if (!Ops.empty()) {
5361       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5362       Ops.clear();
5363       Ops.push_back(SE.getUnknown(FullV));
5364     }
5365     Ops.push_back(SE.getUnknown(F.BaseGV));
5366   }
5367 
5368   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5369   // unfolded offsets. LSR assumes they both live next to their uses.
5370   if (!Ops.empty()) {
5371     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5372     Ops.clear();
5373     Ops.push_back(SE.getUnknown(FullV));
5374   }
5375 
5376   // Expand the immediate portion.
5377   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5378   if (Offset != 0) {
5379     if (LU.Kind == LSRUse::ICmpZero) {
5380       // The other interesting way of "folding" with an ICmpZero is to use a
5381       // negated immediate.
5382       if (!ICmpScaledV)
5383         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5384       else {
5385         Ops.push_back(SE.getUnknown(ICmpScaledV));
5386         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5387       }
5388     } else {
5389       // Just add the immediate values. These again are expected to be matched
5390       // as part of the address.
5391       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5392     }
5393   }
5394 
5395   // Expand the unfolded offset portion.
5396   int64_t UnfoldedOffset = F.UnfoldedOffset;
5397   if (UnfoldedOffset != 0) {
5398     // Just add the immediate values.
5399     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5400                                                        UnfoldedOffset)));
5401   }
5402 
5403   // Emit instructions summing all the operands.
5404   const SCEV *FullS = Ops.empty() ?
5405                       SE.getConstant(IntTy, 0) :
5406                       SE.getAddExpr(Ops);
5407   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5408 
5409   // We're done expanding now, so reset the rewriter.
5410   Rewriter.clearPostInc();
5411 
5412   // An ICmpZero Formula represents an ICmp which we're handling as a
5413   // comparison against zero. Now that we've expanded an expression for that
5414   // form, update the ICmp's other operand.
5415   if (LU.Kind == LSRUse::ICmpZero) {
5416     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5417     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5418       DeadInsts.emplace_back(OperandIsInstr);
5419     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5420                            "a scale at the same time!");
5421     if (F.Scale == -1) {
5422       if (ICmpScaledV->getType() != OpTy) {
5423         Instruction *Cast =
5424           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5425                                                    OpTy, false),
5426                            ICmpScaledV, OpTy, "tmp", CI);
5427         ICmpScaledV = Cast;
5428       }
5429       CI->setOperand(1, ICmpScaledV);
5430     } else {
5431       // A scale of 1 means that the scale has been expanded as part of the
5432       // base regs.
5433       assert((F.Scale == 0 || F.Scale == 1) &&
5434              "ICmp does not support folding a global value and "
5435              "a scale at the same time!");
5436       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5437                                            -(uint64_t)Offset);
5438       if (C->getType() != OpTy)
5439         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5440                                                           OpTy, false),
5441                                   C, OpTy);
5442 
5443       CI->setOperand(1, C);
5444     }
5445   }
5446 
5447   return FullV;
5448 }
5449 
5450 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5451 /// effectively happens in their predecessor blocks, so the expression may need
5452 /// to be expanded in multiple places.
5453 void LSRInstance::RewriteForPHI(
5454     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5455     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5456   DenseMap<BasicBlock *, Value *> Inserted;
5457   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5458     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5459       bool needUpdateFixups = false;
5460       BasicBlock *BB = PN->getIncomingBlock(i);
5461 
5462       // If this is a critical edge, split the edge so that we do not insert
5463       // the code on all predecessor/successor paths.  We do this unless this
5464       // is the canonical backedge for this loop, which complicates post-inc
5465       // users.
5466       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5467           !isa<IndirectBrInst>(BB->getTerminator()) &&
5468           !isa<CatchSwitchInst>(BB->getTerminator())) {
5469         BasicBlock *Parent = PN->getParent();
5470         Loop *PNLoop = LI.getLoopFor(Parent);
5471         if (!PNLoop || Parent != PNLoop->getHeader()) {
5472           // Split the critical edge.
5473           BasicBlock *NewBB = nullptr;
5474           if (!Parent->isLandingPad()) {
5475             NewBB =
5476                 SplitCriticalEdge(BB, Parent,
5477                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5478                                       .setMergeIdenticalEdges()
5479                                       .setKeepOneInputPHIs());
5480           } else {
5481             SmallVector<BasicBlock*, 2> NewBBs;
5482             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5483             NewBB = NewBBs[0];
5484           }
5485           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5486           // phi predecessors are identical. The simple thing to do is skip
5487           // splitting in this case rather than complicate the API.
5488           if (NewBB) {
5489             // If PN is outside of the loop and BB is in the loop, we want to
5490             // move the block to be immediately before the PHI block, not
5491             // immediately after BB.
5492             if (L->contains(BB) && !L->contains(PN))
5493               NewBB->moveBefore(PN->getParent());
5494 
5495             // Splitting the edge can reduce the number of PHI entries we have.
5496             e = PN->getNumIncomingValues();
5497             BB = NewBB;
5498             i = PN->getBasicBlockIndex(BB);
5499 
5500             needUpdateFixups = true;
5501           }
5502         }
5503       }
5504 
5505       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5506         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5507       if (!Pair.second)
5508         PN->setIncomingValue(i, Pair.first->second);
5509       else {
5510         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5511                               Rewriter, DeadInsts);
5512 
5513         // If this is reuse-by-noop-cast, insert the noop cast.
5514         Type *OpTy = LF.OperandValToReplace->getType();
5515         if (FullV->getType() != OpTy)
5516           FullV =
5517             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5518                                                      OpTy, false),
5519                              FullV, LF.OperandValToReplace->getType(),
5520                              "tmp", BB->getTerminator());
5521 
5522         PN->setIncomingValue(i, FullV);
5523         Pair.first->second = FullV;
5524       }
5525 
5526       // If LSR splits critical edge and phi node has other pending
5527       // fixup operands, we need to update those pending fixups. Otherwise
5528       // formulae will not be implemented completely and some instructions
5529       // will not be eliminated.
5530       if (needUpdateFixups) {
5531         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5532           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5533             // If fixup is supposed to rewrite some operand in the phi
5534             // that was just updated, it may be already moved to
5535             // another phi node. Such fixup requires update.
5536             if (Fixup.UserInst == PN) {
5537               // Check if the operand we try to replace still exists in the
5538               // original phi.
5539               bool foundInOriginalPHI = false;
5540               for (const auto &val : PN->incoming_values())
5541                 if (val == Fixup.OperandValToReplace) {
5542                   foundInOriginalPHI = true;
5543                   break;
5544                 }
5545 
5546               // If fixup operand found in original PHI - nothing to do.
5547               if (foundInOriginalPHI)
5548                 continue;
5549 
5550               // Otherwise it might be moved to another PHI and requires update.
5551               // If fixup operand not found in any of the incoming blocks that
5552               // means we have already rewritten it - nothing to do.
5553               for (const auto &Block : PN->blocks())
5554                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5555                      ++I) {
5556                   PHINode *NewPN = cast<PHINode>(I);
5557                   for (const auto &val : NewPN->incoming_values())
5558                     if (val == Fixup.OperandValToReplace)
5559                       Fixup.UserInst = NewPN;
5560                 }
5561             }
5562       }
5563     }
5564 }
5565 
5566 /// Emit instructions for the leading candidate expression for this LSRUse (this
5567 /// is called "expanding"), and update the UserInst to reference the newly
5568 /// expanded value.
5569 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5570                           const Formula &F, SCEVExpander &Rewriter,
5571                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5572   // First, find an insertion point that dominates UserInst. For PHI nodes,
5573   // find the nearest block which dominates all the relevant uses.
5574   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5575     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5576   } else {
5577     Value *FullV =
5578       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5579 
5580     // If this is reuse-by-noop-cast, insert the noop cast.
5581     Type *OpTy = LF.OperandValToReplace->getType();
5582     if (FullV->getType() != OpTy) {
5583       Instruction *Cast =
5584         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5585                          FullV, OpTy, "tmp", LF.UserInst);
5586       FullV = Cast;
5587     }
5588 
5589     // Update the user. ICmpZero is handled specially here (for now) because
5590     // Expand may have updated one of the operands of the icmp already, and
5591     // its new value may happen to be equal to LF.OperandValToReplace, in
5592     // which case doing replaceUsesOfWith leads to replacing both operands
5593     // with the same value. TODO: Reorganize this.
5594     if (LU.Kind == LSRUse::ICmpZero)
5595       LF.UserInst->setOperand(0, FullV);
5596     else
5597       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5598   }
5599 
5600   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5601     DeadInsts.emplace_back(OperandIsInstr);
5602 }
5603 
5604 // Check if there are any loop exit values which are only used once within the
5605 // loop which may potentially be optimized with a call to rewriteLoopExitValue.
5606 static bool LoopExitValHasSingleUse(Loop *L) {
5607   BasicBlock *ExitBB = L->getExitBlock();
5608   if (!ExitBB)
5609     return false;
5610 
5611   for (PHINode &ExitPhi : ExitBB->phis()) {
5612     if (ExitPhi.getNumIncomingValues() != 1)
5613       break;
5614 
5615     BasicBlock *Pred = ExitPhi.getIncomingBlock(0);
5616     Value *IVNext = ExitPhi.getIncomingValueForBlock(Pred);
5617     // One use would be the exit phi node, and there should be only one other
5618     // use for this to be considered.
5619     if (IVNext->getNumUses() == 2)
5620       return true;
5621   }
5622   return false;
5623 }
5624 
5625 /// Rewrite all the fixup locations with new values, following the chosen
5626 /// solution.
5627 void LSRInstance::ImplementSolution(
5628     const SmallVectorImpl<const Formula *> &Solution) {
5629   // Keep track of instructions we may have made dead, so that
5630   // we can remove them after we are done working.
5631   SmallVector<WeakTrackingVH, 16> DeadInsts;
5632 
5633   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5634                         false);
5635 #ifndef NDEBUG
5636   Rewriter.setDebugType(DEBUG_TYPE);
5637 #endif
5638   Rewriter.disableCanonicalMode();
5639   Rewriter.enableLSRMode();
5640   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5641 
5642   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5643   for (const IVChain &Chain : IVChainVec) {
5644     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5645       Rewriter.setChainedPhi(PN);
5646   }
5647 
5648   // Expand the new value definitions and update the users.
5649   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5650     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5651       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5652       Changed = true;
5653     }
5654 
5655   for (const IVChain &Chain : IVChainVec) {
5656     GenerateIVChain(Chain, Rewriter, DeadInsts);
5657     Changed = true;
5658   }
5659 
5660   for (const WeakVH &IV : Rewriter.getInsertedIVs())
5661     if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5662       ScalarEvolutionIVs.push_back(IV);
5663 
5664   // Clean up after ourselves. This must be done before deleting any
5665   // instructions.
5666   Rewriter.clear();
5667 
5668   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5669                                                                   &TLI, MSSAU);
5670 
5671   // In our cost analysis above, we assume that each addrec consumes exactly
5672   // one register, and arrange to have increments inserted just before the
5673   // latch to maximimize the chance this is true.  However, if we reused
5674   // existing IVs, we now need to move the increments to match our
5675   // expectations.  Otherwise, our cost modeling results in us having a
5676   // chosen a non-optimal result for the actual schedule.  (And yes, this
5677   // scheduling decision does impact later codegen.)
5678   for (PHINode &PN : L->getHeader()->phis()) {
5679     BinaryOperator *BO = nullptr;
5680     Value *Start = nullptr, *Step = nullptr;
5681     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5682       continue;
5683 
5684     switch (BO->getOpcode()) {
5685     case Instruction::Sub:
5686       if (BO->getOperand(0) != &PN)
5687         // sub is non-commutative - match handling elsewhere in LSR
5688         continue;
5689       break;
5690     case Instruction::Add:
5691       break;
5692     default:
5693       continue;
5694     };
5695 
5696     if (!isa<Constant>(Step))
5697       // If not a constant step, might increase register pressure
5698       // (We assume constants have been canonicalized to RHS)
5699       continue;
5700 
5701     if (BO->getParent() == IVIncInsertPos->getParent())
5702       // Only bother moving across blocks.  Isel can handle block local case.
5703       continue;
5704 
5705     // Can we legally schedule inc at the desired point?
5706     if (!llvm::all_of(BO->uses(),
5707                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5708       continue;
5709     BO->moveBefore(IVIncInsertPos);
5710     Changed = true;
5711   }
5712 
5713 
5714 }
5715 
5716 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5717                          DominatorTree &DT, LoopInfo &LI,
5718                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5719                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5720     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5721       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ?
5722         PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) {
5723   // If LoopSimplify form is not available, stay out of trouble.
5724   if (!L->isLoopSimplifyForm())
5725     return;
5726 
5727   // If there's no interesting work to be done, bail early.
5728   if (IU.empty()) return;
5729 
5730   // If there's too much analysis to be done, bail early. We won't be able to
5731   // model the problem anyway.
5732   unsigned NumUsers = 0;
5733   for (const IVStrideUse &U : IU) {
5734     if (++NumUsers > MaxIVUsers) {
5735       (void)U;
5736       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5737                         << "\n");
5738       return;
5739     }
5740     // Bail out if we have a PHI on an EHPad that gets a value from a
5741     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5742     // no good place to stick any instructions.
5743     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5744        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5745        if (isa<FuncletPadInst>(FirstNonPHI) ||
5746            isa<CatchSwitchInst>(FirstNonPHI))
5747          for (BasicBlock *PredBB : PN->blocks())
5748            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5749              return;
5750     }
5751   }
5752 
5753   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5754              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5755              dbgs() << ":\n");
5756 
5757   // First, perform some low-level loop optimizations.
5758   OptimizeShadowIV();
5759   OptimizeLoopTermCond();
5760 
5761   // If loop preparation eliminates all interesting IV users, bail.
5762   if (IU.empty()) return;
5763 
5764   // Skip nested loops until we can model them better with formulae.
5765   if (!L->isInnermost()) {
5766     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5767     return;
5768   }
5769 
5770   // Start collecting data and preparing for the solver.
5771   // If number of registers is not the major cost, we cannot benefit from the
5772   // current profitable chain optimization which is based on number of
5773   // registers.
5774   // FIXME: add profitable chain optimization for other kinds major cost, for
5775   // example number of instructions.
5776   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5777     CollectChains();
5778   CollectInterestingTypesAndFactors();
5779   CollectFixupsAndInitialFormulae();
5780   CollectLoopInvariantFixupsAndFormulae();
5781 
5782   if (Uses.empty())
5783     return;
5784 
5785   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5786              print_uses(dbgs()));
5787 
5788   // Now use the reuse data to generate a bunch of interesting ways
5789   // to formulate the values needed for the uses.
5790   GenerateAllReuseFormulae();
5791 
5792   FilterOutUndesirableDedicatedRegisters();
5793   NarrowSearchSpaceUsingHeuristics();
5794 
5795   SmallVector<const Formula *, 8> Solution;
5796   Solve(Solution);
5797 
5798   // Release memory that is no longer needed.
5799   Factors.clear();
5800   Types.clear();
5801   RegUses.clear();
5802 
5803   if (Solution.empty())
5804     return;
5805 
5806 #ifndef NDEBUG
5807   // Formulae should be legal.
5808   for (const LSRUse &LU : Uses) {
5809     for (const Formula &F : LU.Formulae)
5810       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5811                         F) && "Illegal formula generated!");
5812   };
5813 #endif
5814 
5815   // Now that we've decided what we want, make it so.
5816   ImplementSolution(Solution);
5817 }
5818 
5819 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5820 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5821   if (Factors.empty() && Types.empty()) return;
5822 
5823   OS << "LSR has identified the following interesting factors and types: ";
5824   bool First = true;
5825 
5826   for (int64_t Factor : Factors) {
5827     if (!First) OS << ", ";
5828     First = false;
5829     OS << '*' << Factor;
5830   }
5831 
5832   for (Type *Ty : Types) {
5833     if (!First) OS << ", ";
5834     First = false;
5835     OS << '(' << *Ty << ')';
5836   }
5837   OS << '\n';
5838 }
5839 
5840 void LSRInstance::print_fixups(raw_ostream &OS) const {
5841   OS << "LSR is examining the following fixup sites:\n";
5842   for (const LSRUse &LU : Uses)
5843     for (const LSRFixup &LF : LU.Fixups) {
5844       dbgs() << "  ";
5845       LF.print(OS);
5846       OS << '\n';
5847     }
5848 }
5849 
5850 void LSRInstance::print_uses(raw_ostream &OS) const {
5851   OS << "LSR is examining the following uses:\n";
5852   for (const LSRUse &LU : Uses) {
5853     dbgs() << "  ";
5854     LU.print(OS);
5855     OS << '\n';
5856     for (const Formula &F : LU.Formulae) {
5857       OS << "    ";
5858       F.print(OS);
5859       OS << '\n';
5860     }
5861   }
5862 }
5863 
5864 void LSRInstance::print(raw_ostream &OS) const {
5865   print_factors_and_types(OS);
5866   print_fixups(OS);
5867   print_uses(OS);
5868 }
5869 
5870 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5871   print(errs()); errs() << '\n';
5872 }
5873 #endif
5874 
5875 namespace {
5876 
5877 class LoopStrengthReduce : public LoopPass {
5878 public:
5879   static char ID; // Pass ID, replacement for typeid
5880 
5881   LoopStrengthReduce();
5882 
5883 private:
5884   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5885   void getAnalysisUsage(AnalysisUsage &AU) const override;
5886 };
5887 
5888 } // end anonymous namespace
5889 
5890 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5891   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5892 }
5893 
5894 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5895   // We split critical edges, so we change the CFG.  However, we do update
5896   // many analyses if they are around.
5897   AU.addPreservedID(LoopSimplifyID);
5898 
5899   AU.addRequired<LoopInfoWrapperPass>();
5900   AU.addPreserved<LoopInfoWrapperPass>();
5901   AU.addRequiredID(LoopSimplifyID);
5902   AU.addRequired<DominatorTreeWrapperPass>();
5903   AU.addPreserved<DominatorTreeWrapperPass>();
5904   AU.addRequired<ScalarEvolutionWrapperPass>();
5905   AU.addPreserved<ScalarEvolutionWrapperPass>();
5906   AU.addRequired<AssumptionCacheTracker>();
5907   AU.addRequired<TargetLibraryInfoWrapperPass>();
5908   // Requiring LoopSimplify a second time here prevents IVUsers from running
5909   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5910   AU.addRequiredID(LoopSimplifyID);
5911   AU.addRequired<IVUsersWrapperPass>();
5912   AU.addPreserved<IVUsersWrapperPass>();
5913   AU.addRequired<TargetTransformInfoWrapperPass>();
5914   AU.addPreserved<MemorySSAWrapperPass>();
5915 }
5916 
5917 namespace {
5918 
5919 /// Enables more convenient iteration over a DWARF expression vector.
5920 static iterator_range<llvm::DIExpression::expr_op_iterator>
5921 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
5922   llvm::DIExpression::expr_op_iterator Begin =
5923       llvm::DIExpression::expr_op_iterator(Expr.begin());
5924   llvm::DIExpression::expr_op_iterator End =
5925       llvm::DIExpression::expr_op_iterator(Expr.end());
5926   return {Begin, End};
5927 }
5928 
5929 struct SCEVDbgValueBuilder {
5930   SCEVDbgValueBuilder() = default;
5931   SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
5932 
5933   void clone(const SCEVDbgValueBuilder &Base) {
5934     LocationOps = Base.LocationOps;
5935     Expr = Base.Expr;
5936   }
5937 
5938   void clear() {
5939     LocationOps.clear();
5940     Expr.clear();
5941   }
5942 
5943   /// The DIExpression as we translate the SCEV.
5944   SmallVector<uint64_t, 6> Expr;
5945   /// The location ops of the DIExpression.
5946   SmallVector<Value *, 2> LocationOps;
5947 
5948   void pushOperator(uint64_t Op) { Expr.push_back(Op); }
5949   void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
5950 
5951   /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
5952   /// in the set of values referenced by the expression.
5953   void pushLocation(llvm::Value *V) {
5954     Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
5955     auto *It = std::find(LocationOps.begin(), LocationOps.end(), V);
5956     unsigned ArgIndex = 0;
5957     if (It != LocationOps.end()) {
5958       ArgIndex = std::distance(LocationOps.begin(), It);
5959     } else {
5960       ArgIndex = LocationOps.size();
5961       LocationOps.push_back(V);
5962     }
5963     Expr.push_back(ArgIndex);
5964   }
5965 
5966   void pushValue(const SCEVUnknown *U) {
5967     llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
5968     pushLocation(V);
5969   }
5970 
5971   bool pushConst(const SCEVConstant *C) {
5972     if (C->getAPInt().getMinSignedBits() > 64)
5973       return false;
5974     Expr.push_back(llvm::dwarf::DW_OP_consts);
5975     Expr.push_back(C->getAPInt().getSExtValue());
5976     return true;
5977   }
5978 
5979   // Iterating the expression as DWARF ops is convenient when updating
5980   // DWARF_OP_LLVM_args.
5981   iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
5982     return ToDwarfOpIter(Expr);
5983   }
5984 
5985   /// Several SCEV types are sequences of the same arithmetic operator applied
5986   /// to constants and values that may be extended or truncated.
5987   bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
5988                           uint64_t DwarfOp) {
5989     assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
5990            "Expected arithmetic SCEV type");
5991     bool Success = true;
5992     unsigned EmitOperator = 0;
5993     for (auto &Op : CommExpr->operands()) {
5994       Success &= pushSCEV(Op);
5995 
5996       if (EmitOperator >= 1)
5997         pushOperator(DwarfOp);
5998       ++EmitOperator;
5999     }
6000     return Success;
6001   }
6002 
6003   // TODO: Identify and omit noop casts.
6004   bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6005     const llvm::SCEV *Inner = C->getOperand(0);
6006     const llvm::Type *Type = C->getType();
6007     uint64_t ToWidth = Type->getIntegerBitWidth();
6008     bool Success = pushSCEV(Inner);
6009     uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6010                           IsSigned ? llvm::dwarf::DW_ATE_signed
6011                                    : llvm::dwarf::DW_ATE_unsigned};
6012     for (const auto &Op : CastOps)
6013       pushOperator(Op);
6014     return Success;
6015   }
6016 
6017   // TODO: MinMax - although these haven't been encountered in the test suite.
6018   bool pushSCEV(const llvm::SCEV *S) {
6019     bool Success = true;
6020     if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6021       Success &= pushConst(StartInt);
6022 
6023     } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6024       if (!U->getValue())
6025         return false;
6026       pushLocation(U->getValue());
6027 
6028     } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6029       Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6030 
6031     } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6032       Success &= pushSCEV(UDiv->getLHS());
6033       Success &= pushSCEV(UDiv->getRHS());
6034       pushOperator(llvm::dwarf::DW_OP_div);
6035 
6036     } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6037       // Assert if a new and unknown SCEVCastEXpr type is encountered.
6038       assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6039               isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6040              "Unexpected cast type in SCEV.");
6041       Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6042 
6043     } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6044       Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6045 
6046     } else if (isa<SCEVAddRecExpr>(S)) {
6047       // Nested SCEVAddRecExpr are generated by nested loops and are currently
6048       // unsupported.
6049       return false;
6050 
6051     } else {
6052       return false;
6053     }
6054     return Success;
6055   }
6056 
6057   /// Return true if the combination of arithmetic operator and underlying
6058   /// SCEV constant value is an identity function.
6059   bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6060     if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6061       if (C->getAPInt().getMinSignedBits() > 64)
6062         return false;
6063       int64_t I = C->getAPInt().getSExtValue();
6064       switch (Op) {
6065       case llvm::dwarf::DW_OP_plus:
6066       case llvm::dwarf::DW_OP_minus:
6067         return I == 0;
6068       case llvm::dwarf::DW_OP_mul:
6069       case llvm::dwarf::DW_OP_div:
6070         return I == 1;
6071       }
6072     }
6073     return false;
6074   }
6075 
6076   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6077   /// builder's expression stack. The stack should already contain an
6078   /// expression for the iteration count, so that it can be multiplied by
6079   /// the stride and added to the start.
6080   /// Components of the expression are omitted if they are an identity function.
6081   /// Chain (non-affine) SCEVs are not supported.
6082   bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6083     assert(SAR.isAffine() && "Expected affine SCEV");
6084     // TODO: Is this check needed?
6085     if (isa<SCEVAddRecExpr>(SAR.getStart()))
6086       return false;
6087 
6088     const SCEV *Start = SAR.getStart();
6089     const SCEV *Stride = SAR.getStepRecurrence(SE);
6090 
6091     // Skip pushing arithmetic noops.
6092     if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6093       if (!pushSCEV(Stride))
6094         return false;
6095       pushOperator(llvm::dwarf::DW_OP_mul);
6096     }
6097     if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6098       if (!pushSCEV(Start))
6099         return false;
6100       pushOperator(llvm::dwarf::DW_OP_plus);
6101     }
6102     return true;
6103   }
6104 
6105   /// Create an expression that is an offset from a value (usually the IV).
6106   void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6107     pushLocation(OffsetValue);
6108     DIExpression::appendOffset(Expr, Offset);
6109     LLVM_DEBUG(
6110         dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6111                << std::to_string(Offset) << "\n");
6112   }
6113 
6114   /// Combine a translation of the SCEV and the IV to create an expression that
6115   /// recovers a location's value.
6116   /// returns true if an expression was created.
6117   bool createIterCountExpr(const SCEV *S,
6118                            const SCEVDbgValueBuilder &IterationCount,
6119                            ScalarEvolution &SE) {
6120     // SCEVs for SSA values are most frquently of the form
6121     // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6122     // This is because %a is a PHI node that is not the IV. However, these
6123     // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6124     // so its not expected this point will be reached.
6125     if (!isa<SCEVAddRecExpr>(S))
6126       return false;
6127 
6128     LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6129                       << '\n');
6130 
6131     const auto *Rec = cast<SCEVAddRecExpr>(S);
6132     if (!Rec->isAffine())
6133       return false;
6134 
6135     if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6136       return false;
6137 
6138     // Initialise a new builder with the iteration count expression. In
6139     // combination with the value's SCEV this enables recovery.
6140     clone(IterationCount);
6141     if (!SCEVToValueExpr(*Rec, SE))
6142       return false;
6143 
6144     return true;
6145   }
6146 
6147   /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6148   /// builder's expression stack. The stack should already contain an
6149   /// expression for the iteration count, so that it can be multiplied by
6150   /// the stride and added to the start.
6151   /// Components of the expression are omitted if they are an identity function.
6152   bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6153                            ScalarEvolution &SE) {
6154     assert(SAR.isAffine() && "Expected affine SCEV");
6155     if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6156       LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6157                         << SAR << '\n');
6158       return false;
6159     }
6160     const SCEV *Start = SAR.getStart();
6161     const SCEV *Stride = SAR.getStepRecurrence(SE);
6162 
6163     // Skip pushing arithmetic noops.
6164     if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6165       if (!pushSCEV(Start))
6166         return false;
6167       pushOperator(llvm::dwarf::DW_OP_minus);
6168     }
6169     if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6170       if (!pushSCEV(Stride))
6171         return false;
6172       pushOperator(llvm::dwarf::DW_OP_div);
6173     }
6174     return true;
6175   }
6176 
6177   // Append the current expression and locations to a location list and an
6178   // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6179   // the locations already present in the destination list.
6180   void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6181                        SmallVectorImpl<Value *> &DestLocations) {
6182     assert(!DestLocations.empty() &&
6183            "Expected the locations vector to contain the IV");
6184     // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6185     // modified to account for the locations already in the destination vector.
6186     // All builders contain the IV as the first location op.
6187     assert(!LocationOps.empty() &&
6188            "Expected the location ops to contain the IV.");
6189     // DestIndexMap[n] contains the index in DestLocations for the nth
6190     // location in this SCEVDbgValueBuilder.
6191     SmallVector<uint64_t, 2> DestIndexMap;
6192     for (const auto &Op : LocationOps) {
6193       auto It = find(DestLocations, Op);
6194       if (It != DestLocations.end()) {
6195         // Location already exists in DestLocations, reuse existing ArgIndex.
6196         DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6197         continue;
6198       }
6199       // Location is not in DestLocations, add it.
6200       DestIndexMap.push_back(DestLocations.size());
6201       DestLocations.push_back(Op);
6202     }
6203 
6204     for (const auto &Op : expr_ops()) {
6205       if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6206         Op.appendToVector(DestExpr);
6207         continue;
6208       }
6209 
6210       DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6211       // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6212       // DestIndexMap[n] contains its new index in DestLocations.
6213       uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6214       DestExpr.push_back(NewIndex);
6215     }
6216   }
6217 };
6218 
6219 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6220 /// and DIExpression.
6221 struct DVIRecoveryRec {
6222   DVIRecoveryRec(DbgValueInst *DbgValue)
6223       : DVI(DbgValue), Expr(DbgValue->getExpression()),
6224         HadLocationArgList(false) {}
6225 
6226   DbgValueInst *DVI;
6227   DIExpression *Expr;
6228   bool HadLocationArgList;
6229   SmallVector<WeakVH, 2> LocationOps;
6230   SmallVector<const llvm::SCEV *, 2> SCEVs;
6231   SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6232 
6233   void clear() {
6234     for (auto &RE : RecoveryExprs)
6235       RE.reset();
6236     RecoveryExprs.clear();
6237   }
6238 
6239   ~DVIRecoveryRec() { clear(); }
6240 };
6241 } // namespace
6242 
6243 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6244 /// This helps in determining if a DIArglist is necessary or can be omitted from
6245 /// the dbg.value.
6246 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6247   auto expr_ops = ToDwarfOpIter(Expr);
6248   unsigned Count = 0;
6249   for (auto Op : expr_ops)
6250     if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6251       Count++;
6252   return Count;
6253 }
6254 
6255 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6256 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6257 /// because a DIArglist is not created for the first argument of the dbg.value.
6258 static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location,
6259                                   SmallVectorImpl<uint64_t> &Ops) {
6260   assert(
6261       numLLVMArgOps(Ops) == 0 &&
6262       "Expected expression that does not contain any DW_OP_llvm_arg operands.");
6263   DVI.setRawLocation(ValueAsMetadata::get(Location));
6264   DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6265 }
6266 
6267 /// Overwrite DVI with locations placed into a DIArglist.
6268 static void updateDVIWithLocations(DbgValueInst &DVI,
6269                                    SmallVectorImpl<Value *> &Locations,
6270                                    SmallVectorImpl<uint64_t> &Ops) {
6271   assert(numLLVMArgOps(Ops) != 0 &&
6272          "Expected expression that references DIArglist locations using "
6273          "DW_OP_llvm_arg operands.");
6274   SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6275   for (Value *V : Locations)
6276     MetadataLocs.push_back(ValueAsMetadata::get(V));
6277   auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6278   DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef));
6279   DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6280 }
6281 
6282 /// Write the new expression and new location ops for the dbg.value. If possible
6283 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6284 /// can be omitted if:
6285 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6286 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6287 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6288                                SmallVectorImpl<Value *> &NewLocationOps,
6289                                SmallVectorImpl<uint64_t> &NewExpr) {
6290   unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6291   if (NumLLVMArgs == 0) {
6292     // Location assumed to be on the stack.
6293     updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr);
6294   } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6295     // There is only a single DW_OP_llvm_arg at the start of the expression,
6296     // so it can be omitted along with DIArglist.
6297     assert(NewExpr[1] == 0 &&
6298            "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6299     llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6300     updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps);
6301   } else {
6302     // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6303     updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr);
6304   }
6305 
6306   // If the DIExpression was previously empty then add the stack terminator.
6307   // Non-empty expressions have only had elements inserted into them and so the
6308   // terminator should already be present e.g. stack_value or fragment.
6309   DIExpression *SalvageExpr = DVIRec.DVI->getExpression();
6310   if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6311     SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6312     DVIRec.DVI->setExpression(SalvageExpr);
6313   }
6314 }
6315 
6316 /// Cached location ops may be erased during LSR, in which case an undef is
6317 /// required when restoring from the cache. The type of that location is no
6318 /// longer available, so just use int8. The undef will be replaced by one or
6319 /// more locations later when a SCEVDbgValueBuilder selects alternative
6320 /// locations to use for the salvage.
6321 static Value *getValueOrUndef(WeakVH &VH, LLVMContext &C) {
6322   return (VH) ? VH : UndefValue::get(llvm::Type::getInt8Ty(C));
6323 }
6324 
6325 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6326 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6327   LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6328                     << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n');
6329   assert(DVIRec.Expr && "Expected an expression");
6330   DVIRec.DVI->setExpression(DVIRec.Expr);
6331 
6332   // Even a single location-op may be inside a DIArgList and referenced with
6333   // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6334   if (!DVIRec.HadLocationArgList) {
6335     assert(DVIRec.LocationOps.size() == 1 &&
6336            "Unexpected number of location ops.");
6337     // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6338     // this case was not present before, so force the location back to a single
6339     // uncontained Value.
6340     Value *CachedValue =
6341         getValueOrUndef(DVIRec.LocationOps[0], DVIRec.DVI->getContext());
6342     DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue));
6343   } else {
6344     SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6345     for (WeakVH VH : DVIRec.LocationOps) {
6346       Value *CachedValue = getValueOrUndef(VH, DVIRec.DVI->getContext());
6347       MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6348     }
6349     auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6350     DVIRec.DVI->setRawLocation(
6351         llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef));
6352   }
6353   LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n');
6354 }
6355 
6356 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6357                        llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6358                        const SCEV *SCEVInductionVar,
6359                        SCEVDbgValueBuilder IterCountExpr) {
6360   if (!DVIRec.DVI->isUndef())
6361     return false;
6362 
6363   // LSR may have caused several changes to the dbg.value in the failed salvage
6364   // attempt. So restore the DIExpression, the location ops and also the
6365   // location ops format, which is always DIArglist for multiple ops, but only
6366   // sometimes for a single op.
6367   restorePreTransformState(DVIRec);
6368 
6369   // LocationOpIndexMap[i] will store the post-LSR location index of
6370   // the non-optimised out location at pre-LSR index i.
6371   SmallVector<int64_t, 2> LocationOpIndexMap;
6372   LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6373   SmallVector<Value *, 2> NewLocationOps;
6374   NewLocationOps.push_back(LSRInductionVar);
6375 
6376   for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6377     WeakVH VH = DVIRec.LocationOps[i];
6378     // Place the locations not optimised out in the list first, avoiding
6379     // inserts later. The map is used to update the DIExpression's
6380     // DW_OP_LLVM_arg arguments as the expression is updated.
6381     if (VH && !isa<UndefValue>(VH)) {
6382       NewLocationOps.push_back(VH);
6383       LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6384       LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6385                         << " now at index " << LocationOpIndexMap[i] << "\n");
6386       continue;
6387     }
6388 
6389     // It's possible that a value referred to in the SCEV may have been
6390     // optimised out by LSR.
6391     if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6392         SE.containsUndefs(DVIRec.SCEVs[i])) {
6393       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6394                         << " refers to a location that is now undef or erased. "
6395                            "Salvage abandoned.\n");
6396       return false;
6397     }
6398 
6399     LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6400                       << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6401 
6402     DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6403     SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6404 
6405     // Create an offset-based salvage expression if possible, as it requires
6406     // less DWARF ops than an iteration count-based expression.
6407     if (Optional<APInt> Offset =
6408             SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6409       if (Offset->getMinSignedBits() <= 64)
6410         SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6411     } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6412                                                  SE))
6413       return false;
6414   }
6415 
6416   // Merge the DbgValueBuilder generated expressions and the original
6417   // DIExpression, place the result into an new vector.
6418   SmallVector<uint64_t, 3> NewExpr;
6419   if (DVIRec.Expr->getNumElements() == 0) {
6420     assert(DVIRec.RecoveryExprs.size() == 1 &&
6421            "Expected only a single recovery expression for an empty "
6422            "DIExpression.");
6423     assert(DVIRec.RecoveryExprs[0] &&
6424            "Expected a SCEVDbgSalvageBuilder for location 0");
6425     SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6426     B->appendToVectors(NewExpr, NewLocationOps);
6427   }
6428   for (const auto &Op : DVIRec.Expr->expr_ops()) {
6429     // Most Ops needn't be updated.
6430     if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6431       Op.appendToVector(NewExpr);
6432       continue;
6433     }
6434 
6435     uint64_t LocationArgIndex = Op.getArg(0);
6436     SCEVDbgValueBuilder *DbgBuilder =
6437         DVIRec.RecoveryExprs[LocationArgIndex].get();
6438     // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6439     // optimise it away. So just translate the argument to the updated
6440     // location index.
6441     if (!DbgBuilder) {
6442       NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6443       assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6444              "Expected a positive index for the location-op position.");
6445       NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6446       continue;
6447     }
6448     // The location has a recovery expression.
6449     DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6450   }
6451 
6452   UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6453   LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n");
6454   return true;
6455 }
6456 
6457 /// Obtain an expression for the iteration count, then attempt to salvage the
6458 /// dbg.value intrinsics.
6459 static void
6460 DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6461                           llvm::PHINode *LSRInductionVar,
6462                           SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6463   if (DVIToUpdate.empty())
6464     return;
6465 
6466   const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6467   assert(SCEVInductionVar &&
6468          "Anticipated a SCEV for the post-LSR induction variable");
6469 
6470   if (const SCEVAddRecExpr *IVAddRec =
6471           dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6472     if (!IVAddRec->isAffine())
6473       return;
6474 
6475     // Prevent translation using excessive resources.
6476     if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6477       return;
6478 
6479     // The iteration count is required to recover location values.
6480     SCEVDbgValueBuilder IterCountExpr;
6481     IterCountExpr.pushLocation(LSRInductionVar);
6482     if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6483       return;
6484 
6485     LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6486                       << '\n');
6487 
6488     for (auto &DVIRec : DVIToUpdate) {
6489       SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6490                  IterCountExpr);
6491     }
6492   }
6493 }
6494 
6495 /// Identify and cache salvageable DVI locations and expressions along with the
6496 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6497 /// cacheing and salvaging.
6498 static void DbgGatherSalvagableDVI(
6499     Loop *L, ScalarEvolution &SE,
6500     SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6501     SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6502   for (auto &B : L->getBlocks()) {
6503     for (auto &I : *B) {
6504       auto DVI = dyn_cast<DbgValueInst>(&I);
6505       if (!DVI)
6506         continue;
6507       // Ensure that if any location op is undef that the dbg.vlue is not
6508       // cached.
6509       if (DVI->isUndef())
6510         continue;
6511 
6512       // Check that the location op SCEVs are suitable for translation to
6513       // DIExpression.
6514       const auto &HasTranslatableLocationOps =
6515           [&](const DbgValueInst *DVI) -> bool {
6516         for (const auto LocOp : DVI->location_ops()) {
6517           if (!LocOp)
6518             return false;
6519 
6520           if (!SE.isSCEVable(LocOp->getType()))
6521             return false;
6522 
6523           const SCEV *S = SE.getSCEV(LocOp);
6524           if (SE.containsUndefs(S))
6525             return false;
6526         }
6527         return true;
6528       };
6529 
6530       if (!HasTranslatableLocationOps(DVI))
6531         continue;
6532 
6533       std::unique_ptr<DVIRecoveryRec> NewRec =
6534           std::make_unique<DVIRecoveryRec>(DVI);
6535       // Each location Op may need a SCEVDbgValueBuilder in order to recover it.
6536       // Pre-allocating a vector will enable quick lookups of the builder later
6537       // during the salvage.
6538       NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps());
6539       for (const auto LocOp : DVI->location_ops()) {
6540         NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6541         NewRec->LocationOps.push_back(LocOp);
6542         NewRec->HadLocationArgList = DVI->hasArgList();
6543       }
6544       SalvageableDVISCEVs.push_back(std::move(NewRec));
6545       DVIHandles.insert(DVI);
6546     }
6547   }
6548 }
6549 
6550 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6551 /// any PHi from the loop header is usable, but may have less chance of
6552 /// surviving subsequent transforms.
6553 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6554                                            const LSRInstance &LSR) {
6555 
6556   auto IsSuitableIV = [&](PHINode *P) {
6557     if (!SE.isSCEVable(P->getType()))
6558       return false;
6559     if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6560       return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6561     return false;
6562   };
6563 
6564   // For now, just pick the first IV that was generated and inserted by
6565   // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6566   // by subsequent transforms.
6567   for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6568     if (!IV)
6569       continue;
6570 
6571     // There should only be PHI node IVs.
6572     PHINode *P = cast<PHINode>(&*IV);
6573 
6574     if (IsSuitableIV(P))
6575       return P;
6576   }
6577 
6578   for (PHINode &P : L.getHeader()->phis()) {
6579     if (IsSuitableIV(&P))
6580       return &P;
6581   }
6582   return nullptr;
6583 }
6584 
6585 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6586                                DominatorTree &DT, LoopInfo &LI,
6587                                const TargetTransformInfo &TTI,
6588                                AssumptionCache &AC, TargetLibraryInfo &TLI,
6589                                MemorySSA *MSSA) {
6590 
6591   // Debug preservation - before we start removing anything identify which DVI
6592   // meet the salvageable criteria and store their DIExpression and SCEVs.
6593   SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6594   SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6595   DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6596 
6597   bool Changed = false;
6598   std::unique_ptr<MemorySSAUpdater> MSSAU;
6599   if (MSSA)
6600     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6601 
6602   // Run the main LSR transformation.
6603   const LSRInstance &Reducer =
6604       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6605   Changed |= Reducer.getChanged();
6606 
6607   // Remove any extra phis created by processing inner loops.
6608   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6609   if (EnablePhiElim && L->isLoopSimplifyForm()) {
6610     SmallVector<WeakTrackingVH, 16> DeadInsts;
6611     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6612     SCEVExpander Rewriter(SE, DL, "lsr", false);
6613 #ifndef NDEBUG
6614     Rewriter.setDebugType(DEBUG_TYPE);
6615 #endif
6616     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6617     if (numFolded) {
6618       Changed = true;
6619       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6620                                                            MSSAU.get());
6621       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6622     }
6623   }
6624   // LSR may at times remove all uses of an induction variable from a loop.
6625   // The only remaining use is the PHI in the exit block.
6626   // When this is the case, if the exit value of the IV can be calculated using
6627   // SCEV, we can replace the exit block PHI with the final value of the IV and
6628   // skip the updates in each loop iteration.
6629   if (L->isRecursivelyLCSSAForm(DT, LI) && LoopExitValHasSingleUse(L)) {
6630     SmallVector<WeakTrackingVH, 16> DeadInsts;
6631     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6632     SCEVExpander Rewriter(SE, DL, "lsr", false);
6633     int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6634                                          OnlyCheapRepl, DeadInsts);
6635     if (Rewrites) {
6636       Changed = true;
6637       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6638                                                            MSSAU.get());
6639       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6640     }
6641   }
6642 
6643   if (SalvageableDVIRecords.empty())
6644     return Changed;
6645 
6646   // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6647   // expressions composed using the derived iteration count.
6648   // TODO: Allow for multiple IV references for nested AddRecSCEVs
6649   for (auto &L : LI) {
6650     if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6651       DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
6652     else {
6653       LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
6654                            "could not be identified.\n");
6655     }
6656   }
6657 
6658   for (auto &Rec : SalvageableDVIRecords)
6659     Rec->clear();
6660   SalvageableDVIRecords.clear();
6661   DVIHandles.clear();
6662   return Changed;
6663 }
6664 
6665 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6666   if (skipLoop(L))
6667     return false;
6668 
6669   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6670   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6671   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6672   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6673   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6674       *L->getHeader()->getParent());
6675   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6676       *L->getHeader()->getParent());
6677   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6678       *L->getHeader()->getParent());
6679   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6680   MemorySSA *MSSA = nullptr;
6681   if (MSSAAnalysis)
6682     MSSA = &MSSAAnalysis->getMSSA();
6683   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
6684 }
6685 
6686 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6687                                               LoopStandardAnalysisResults &AR,
6688                                               LPMUpdater &) {
6689   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6690                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6691     return PreservedAnalyses::all();
6692 
6693   auto PA = getLoopPassPreservedAnalyses();
6694   if (AR.MSSA)
6695     PA.preserve<MemorySSAAnalysis>();
6696   return PA;
6697 }
6698 
6699 char LoopStrengthReduce::ID = 0;
6700 
6701 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6702                       "Loop Strength Reduction", false, false)
6703 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6704 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6705 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6706 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6707 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6708 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6709 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6710                     "Loop Strength Reduction", false, false)
6711 
6712 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6713