1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using // it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should TargetLowering::AddrMode::BaseGV be changed to a ConstantExpr 41 // instead of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #define DEBUG_TYPE "loop-reduce" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Constants.h" 59 #include "llvm/Instructions.h" 60 #include "llvm/IntrinsicInst.h" 61 #include "llvm/DerivedTypes.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/Dominators.h" 64 #include "llvm/Analysis/LoopPass.h" 65 #include "llvm/Analysis/ScalarEvolutionExpander.h" 66 #include "llvm/Assembly/Writer.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/ADT/SmallBitVector.h" 70 #include "llvm/ADT/SetVector.h" 71 #include "llvm/ADT/DenseSet.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ValueHandle.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Target/TargetLowering.h" 77 #include <algorithm> 78 using namespace llvm; 79 80 static cl::opt<bool> EnableNested( 81 "enable-lsr-nested", cl::Hidden, cl::desc("Enable LSR on nested loops")); 82 83 static cl::opt<bool> EnableRetry( 84 "enable-lsr-retry", cl::Hidden, cl::desc("Enable LSR retry")); 85 86 // Temporary flag to cleanup congruent phis after LSR phi expansion. 87 // It's currently disabled until we can determine whether it's truly useful or 88 // not. The flag should be removed after the v3.0 release. 89 static cl::opt<bool> EnablePhiElim( 90 "enable-lsr-phielim", cl::Hidden, cl::desc("Enable LSR phi elimination")); 91 92 namespace { 93 94 /// RegSortData - This class holds data which is used to order reuse candidates. 95 class RegSortData { 96 public: 97 /// UsedByIndices - This represents the set of LSRUse indices which reference 98 /// a particular register. 99 SmallBitVector UsedByIndices; 100 101 RegSortData() {} 102 103 void print(raw_ostream &OS) const; 104 void dump() const; 105 }; 106 107 } 108 109 void RegSortData::print(raw_ostream &OS) const { 110 OS << "[NumUses=" << UsedByIndices.count() << ']'; 111 } 112 113 void RegSortData::dump() const { 114 print(errs()); errs() << '\n'; 115 } 116 117 namespace { 118 119 /// RegUseTracker - Map register candidates to information about how they are 120 /// used. 121 class RegUseTracker { 122 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 123 124 RegUsesTy RegUsesMap; 125 SmallVector<const SCEV *, 16> RegSequence; 126 127 public: 128 void CountRegister(const SCEV *Reg, size_t LUIdx); 129 void DropRegister(const SCEV *Reg, size_t LUIdx); 130 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 131 132 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 133 134 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 135 136 void clear(); 137 138 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 139 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 140 iterator begin() { return RegSequence.begin(); } 141 iterator end() { return RegSequence.end(); } 142 const_iterator begin() const { return RegSequence.begin(); } 143 const_iterator end() const { return RegSequence.end(); } 144 }; 145 146 } 147 148 void 149 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 150 std::pair<RegUsesTy::iterator, bool> Pair = 151 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 152 RegSortData &RSD = Pair.first->second; 153 if (Pair.second) 154 RegSequence.push_back(Reg); 155 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 156 RSD.UsedByIndices.set(LUIdx); 157 } 158 159 void 160 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 161 RegUsesTy::iterator It = RegUsesMap.find(Reg); 162 assert(It != RegUsesMap.end()); 163 RegSortData &RSD = It->second; 164 assert(RSD.UsedByIndices.size() > LUIdx); 165 RSD.UsedByIndices.reset(LUIdx); 166 } 167 168 void 169 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 170 assert(LUIdx <= LastLUIdx); 171 172 // Update RegUses. The data structure is not optimized for this purpose; 173 // we must iterate through it and update each of the bit vectors. 174 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 175 I != E; ++I) { 176 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 177 if (LUIdx < UsedByIndices.size()) 178 UsedByIndices[LUIdx] = 179 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 180 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 181 } 182 } 183 184 bool 185 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 186 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 187 if (I == RegUsesMap.end()) 188 return false; 189 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 190 int i = UsedByIndices.find_first(); 191 if (i == -1) return false; 192 if ((size_t)i != LUIdx) return true; 193 return UsedByIndices.find_next(i) != -1; 194 } 195 196 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 197 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 198 assert(I != RegUsesMap.end() && "Unknown register!"); 199 return I->second.UsedByIndices; 200 } 201 202 void RegUseTracker::clear() { 203 RegUsesMap.clear(); 204 RegSequence.clear(); 205 } 206 207 namespace { 208 209 /// Formula - This class holds information that describes a formula for 210 /// computing satisfying a use. It may include broken-out immediates and scaled 211 /// registers. 212 struct Formula { 213 /// AM - This is used to represent complex addressing, as well as other kinds 214 /// of interesting uses. 215 TargetLowering::AddrMode AM; 216 217 /// BaseRegs - The list of "base" registers for this use. When this is 218 /// non-empty, AM.HasBaseReg should be set to true. 219 SmallVector<const SCEV *, 2> BaseRegs; 220 221 /// ScaledReg - The 'scaled' register for this use. This should be non-null 222 /// when AM.Scale is not zero. 223 const SCEV *ScaledReg; 224 225 /// UnfoldedOffset - An additional constant offset which added near the 226 /// use. This requires a temporary register, but the offset itself can 227 /// live in an add immediate field rather than a register. 228 int64_t UnfoldedOffset; 229 230 Formula() : ScaledReg(0), UnfoldedOffset(0) {} 231 232 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 233 234 unsigned getNumRegs() const; 235 Type *getType() const; 236 237 void DeleteBaseReg(const SCEV *&S); 238 239 bool referencesReg(const SCEV *S) const; 240 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 241 const RegUseTracker &RegUses) const; 242 243 void print(raw_ostream &OS) const; 244 void dump() const; 245 }; 246 247 } 248 249 /// DoInitialMatch - Recursion helper for InitialMatch. 250 static void DoInitialMatch(const SCEV *S, Loop *L, 251 SmallVectorImpl<const SCEV *> &Good, 252 SmallVectorImpl<const SCEV *> &Bad, 253 ScalarEvolution &SE) { 254 // Collect expressions which properly dominate the loop header. 255 if (SE.properlyDominates(S, L->getHeader())) { 256 Good.push_back(S); 257 return; 258 } 259 260 // Look at add operands. 261 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 262 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 263 I != E; ++I) 264 DoInitialMatch(*I, L, Good, Bad, SE); 265 return; 266 } 267 268 // Look at addrec operands. 269 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 270 if (!AR->getStart()->isZero()) { 271 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 272 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 273 AR->getStepRecurrence(SE), 274 // FIXME: AR->getNoWrapFlags() 275 AR->getLoop(), SCEV::FlagAnyWrap), 276 L, Good, Bad, SE); 277 return; 278 } 279 280 // Handle a multiplication by -1 (negation) if it didn't fold. 281 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 282 if (Mul->getOperand(0)->isAllOnesValue()) { 283 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 284 const SCEV *NewMul = SE.getMulExpr(Ops); 285 286 SmallVector<const SCEV *, 4> MyGood; 287 SmallVector<const SCEV *, 4> MyBad; 288 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 289 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 290 SE.getEffectiveSCEVType(NewMul->getType()))); 291 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 292 E = MyGood.end(); I != E; ++I) 293 Good.push_back(SE.getMulExpr(NegOne, *I)); 294 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 295 E = MyBad.end(); I != E; ++I) 296 Bad.push_back(SE.getMulExpr(NegOne, *I)); 297 return; 298 } 299 300 // Ok, we can't do anything interesting. Just stuff the whole thing into a 301 // register and hope for the best. 302 Bad.push_back(S); 303 } 304 305 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 306 /// attempting to keep all loop-invariant and loop-computable values in a 307 /// single base register. 308 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 309 SmallVector<const SCEV *, 4> Good; 310 SmallVector<const SCEV *, 4> Bad; 311 DoInitialMatch(S, L, Good, Bad, SE); 312 if (!Good.empty()) { 313 const SCEV *Sum = SE.getAddExpr(Good); 314 if (!Sum->isZero()) 315 BaseRegs.push_back(Sum); 316 AM.HasBaseReg = true; 317 } 318 if (!Bad.empty()) { 319 const SCEV *Sum = SE.getAddExpr(Bad); 320 if (!Sum->isZero()) 321 BaseRegs.push_back(Sum); 322 AM.HasBaseReg = true; 323 } 324 } 325 326 /// getNumRegs - Return the total number of register operands used by this 327 /// formula. This does not include register uses implied by non-constant 328 /// addrec strides. 329 unsigned Formula::getNumRegs() const { 330 return !!ScaledReg + BaseRegs.size(); 331 } 332 333 /// getType - Return the type of this formula, if it has one, or null 334 /// otherwise. This type is meaningless except for the bit size. 335 Type *Formula::getType() const { 336 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 337 ScaledReg ? ScaledReg->getType() : 338 AM.BaseGV ? AM.BaseGV->getType() : 339 0; 340 } 341 342 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 343 void Formula::DeleteBaseReg(const SCEV *&S) { 344 if (&S != &BaseRegs.back()) 345 std::swap(S, BaseRegs.back()); 346 BaseRegs.pop_back(); 347 } 348 349 /// referencesReg - Test if this formula references the given register. 350 bool Formula::referencesReg(const SCEV *S) const { 351 return S == ScaledReg || 352 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 353 } 354 355 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 356 /// which are used by uses other than the use with the given index. 357 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 358 const RegUseTracker &RegUses) const { 359 if (ScaledReg) 360 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 361 return true; 362 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 363 E = BaseRegs.end(); I != E; ++I) 364 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 365 return true; 366 return false; 367 } 368 369 void Formula::print(raw_ostream &OS) const { 370 bool First = true; 371 if (AM.BaseGV) { 372 if (!First) OS << " + "; else First = false; 373 WriteAsOperand(OS, AM.BaseGV, /*PrintType=*/false); 374 } 375 if (AM.BaseOffs != 0) { 376 if (!First) OS << " + "; else First = false; 377 OS << AM.BaseOffs; 378 } 379 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 380 E = BaseRegs.end(); I != E; ++I) { 381 if (!First) OS << " + "; else First = false; 382 OS << "reg(" << **I << ')'; 383 } 384 if (AM.HasBaseReg && BaseRegs.empty()) { 385 if (!First) OS << " + "; else First = false; 386 OS << "**error: HasBaseReg**"; 387 } else if (!AM.HasBaseReg && !BaseRegs.empty()) { 388 if (!First) OS << " + "; else First = false; 389 OS << "**error: !HasBaseReg**"; 390 } 391 if (AM.Scale != 0) { 392 if (!First) OS << " + "; else First = false; 393 OS << AM.Scale << "*reg("; 394 if (ScaledReg) 395 OS << *ScaledReg; 396 else 397 OS << "<unknown>"; 398 OS << ')'; 399 } 400 if (UnfoldedOffset != 0) { 401 if (!First) OS << " + "; else First = false; 402 OS << "imm(" << UnfoldedOffset << ')'; 403 } 404 } 405 406 void Formula::dump() const { 407 print(errs()); errs() << '\n'; 408 } 409 410 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 411 /// without changing its value. 412 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 413 Type *WideTy = 414 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 415 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 416 } 417 418 /// isAddSExtable - Return true if the given add can be sign-extended 419 /// without changing its value. 420 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 421 Type *WideTy = 422 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 423 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 424 } 425 426 /// isMulSExtable - Return true if the given mul can be sign-extended 427 /// without changing its value. 428 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 429 Type *WideTy = 430 IntegerType::get(SE.getContext(), 431 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 432 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 433 } 434 435 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 436 /// and if the remainder is known to be zero, or null otherwise. If 437 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 438 /// to Y, ignoring that the multiplication may overflow, which is useful when 439 /// the result will be used in a context where the most significant bits are 440 /// ignored. 441 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 442 ScalarEvolution &SE, 443 bool IgnoreSignificantBits = false) { 444 // Handle the trivial case, which works for any SCEV type. 445 if (LHS == RHS) 446 return SE.getConstant(LHS->getType(), 1); 447 448 // Handle a few RHS special cases. 449 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 450 if (RC) { 451 const APInt &RA = RC->getValue()->getValue(); 452 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 453 // some folding. 454 if (RA.isAllOnesValue()) 455 return SE.getMulExpr(LHS, RC); 456 // Handle x /s 1 as x. 457 if (RA == 1) 458 return LHS; 459 } 460 461 // Check for a division of a constant by a constant. 462 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 463 if (!RC) 464 return 0; 465 const APInt &LA = C->getValue()->getValue(); 466 const APInt &RA = RC->getValue()->getValue(); 467 if (LA.srem(RA) != 0) 468 return 0; 469 return SE.getConstant(LA.sdiv(RA)); 470 } 471 472 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 473 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 474 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 475 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 476 IgnoreSignificantBits); 477 if (!Step) return 0; 478 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 479 IgnoreSignificantBits); 480 if (!Start) return 0; 481 // FlagNW is independent of the start value, step direction, and is 482 // preserved with smaller magnitude steps. 483 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 484 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 485 } 486 return 0; 487 } 488 489 // Distribute the sdiv over add operands, if the add doesn't overflow. 490 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 491 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 492 SmallVector<const SCEV *, 8> Ops; 493 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 494 I != E; ++I) { 495 const SCEV *Op = getExactSDiv(*I, RHS, SE, 496 IgnoreSignificantBits); 497 if (!Op) return 0; 498 Ops.push_back(Op); 499 } 500 return SE.getAddExpr(Ops); 501 } 502 return 0; 503 } 504 505 // Check for a multiply operand that we can pull RHS out of. 506 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 507 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 508 SmallVector<const SCEV *, 4> Ops; 509 bool Found = false; 510 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 511 I != E; ++I) { 512 const SCEV *S = *I; 513 if (!Found) 514 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 515 IgnoreSignificantBits)) { 516 S = Q; 517 Found = true; 518 } 519 Ops.push_back(S); 520 } 521 return Found ? SE.getMulExpr(Ops) : 0; 522 } 523 return 0; 524 } 525 526 // Otherwise we don't know. 527 return 0; 528 } 529 530 /// ExtractImmediate - If S involves the addition of a constant integer value, 531 /// return that integer value, and mutate S to point to a new SCEV with that 532 /// value excluded. 533 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 534 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 535 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 536 S = SE.getConstant(C->getType(), 0); 537 return C->getValue()->getSExtValue(); 538 } 539 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 540 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 541 int64_t Result = ExtractImmediate(NewOps.front(), SE); 542 if (Result != 0) 543 S = SE.getAddExpr(NewOps); 544 return Result; 545 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 546 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 547 int64_t Result = ExtractImmediate(NewOps.front(), SE); 548 if (Result != 0) 549 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 550 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 551 SCEV::FlagAnyWrap); 552 return Result; 553 } 554 return 0; 555 } 556 557 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 558 /// return that symbol, and mutate S to point to a new SCEV with that 559 /// value excluded. 560 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 561 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 562 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 563 S = SE.getConstant(GV->getType(), 0); 564 return GV; 565 } 566 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 567 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 568 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 569 if (Result) 570 S = SE.getAddExpr(NewOps); 571 return Result; 572 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 573 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 574 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 575 if (Result) 576 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 577 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 578 SCEV::FlagAnyWrap); 579 return Result; 580 } 581 return 0; 582 } 583 584 /// isAddressUse - Returns true if the specified instruction is using the 585 /// specified value as an address. 586 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 587 bool isAddress = isa<LoadInst>(Inst); 588 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 589 if (SI->getOperand(1) == OperandVal) 590 isAddress = true; 591 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 592 // Addressing modes can also be folded into prefetches and a variety 593 // of intrinsics. 594 switch (II->getIntrinsicID()) { 595 default: break; 596 case Intrinsic::prefetch: 597 case Intrinsic::x86_sse_storeu_ps: 598 case Intrinsic::x86_sse2_storeu_pd: 599 case Intrinsic::x86_sse2_storeu_dq: 600 case Intrinsic::x86_sse2_storel_dq: 601 if (II->getArgOperand(0) == OperandVal) 602 isAddress = true; 603 break; 604 } 605 } 606 return isAddress; 607 } 608 609 /// getAccessType - Return the type of the memory being accessed. 610 static Type *getAccessType(const Instruction *Inst) { 611 Type *AccessTy = Inst->getType(); 612 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 613 AccessTy = SI->getOperand(0)->getType(); 614 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 615 // Addressing modes can also be folded into prefetches and a variety 616 // of intrinsics. 617 switch (II->getIntrinsicID()) { 618 default: break; 619 case Intrinsic::x86_sse_storeu_ps: 620 case Intrinsic::x86_sse2_storeu_pd: 621 case Intrinsic::x86_sse2_storeu_dq: 622 case Intrinsic::x86_sse2_storel_dq: 623 AccessTy = II->getArgOperand(0)->getType(); 624 break; 625 } 626 } 627 628 // All pointers have the same requirements, so canonicalize them to an 629 // arbitrary pointer type to minimize variation. 630 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 631 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 632 PTy->getAddressSpace()); 633 634 return AccessTy; 635 } 636 637 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 638 /// specified set are trivially dead, delete them and see if this makes any of 639 /// their operands subsequently dead. 640 static bool 641 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 642 bool Changed = false; 643 644 while (!DeadInsts.empty()) { 645 Instruction *I = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()); 646 647 if (I == 0 || !isInstructionTriviallyDead(I)) 648 continue; 649 650 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 651 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 652 *OI = 0; 653 if (U->use_empty()) 654 DeadInsts.push_back(U); 655 } 656 657 I->eraseFromParent(); 658 Changed = true; 659 } 660 661 return Changed; 662 } 663 664 namespace { 665 666 /// Cost - This class is used to measure and compare candidate formulae. 667 class Cost { 668 /// TODO: Some of these could be merged. Also, a lexical ordering 669 /// isn't always optimal. 670 unsigned NumRegs; 671 unsigned AddRecCost; 672 unsigned NumIVMuls; 673 unsigned NumBaseAdds; 674 unsigned ImmCost; 675 unsigned SetupCost; 676 677 public: 678 Cost() 679 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 680 SetupCost(0) {} 681 682 bool operator<(const Cost &Other) const; 683 684 void Loose(); 685 686 #ifndef NDEBUG 687 // Once any of the metrics loses, they must all remain losers. 688 bool isValid() { 689 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 690 | ImmCost | SetupCost) != ~0u) 691 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 692 & ImmCost & SetupCost) == ~0u); 693 } 694 #endif 695 696 bool isLoser() { 697 assert(isValid() && "invalid cost"); 698 return NumRegs == ~0u; 699 } 700 701 void RateFormula(const Formula &F, 702 SmallPtrSet<const SCEV *, 16> &Regs, 703 const DenseSet<const SCEV *> &VisitedRegs, 704 const Loop *L, 705 const SmallVectorImpl<int64_t> &Offsets, 706 ScalarEvolution &SE, DominatorTree &DT); 707 708 void print(raw_ostream &OS) const; 709 void dump() const; 710 711 private: 712 void RateRegister(const SCEV *Reg, 713 SmallPtrSet<const SCEV *, 16> &Regs, 714 const Loop *L, 715 ScalarEvolution &SE, DominatorTree &DT); 716 void RatePrimaryRegister(const SCEV *Reg, 717 SmallPtrSet<const SCEV *, 16> &Regs, 718 const Loop *L, 719 ScalarEvolution &SE, DominatorTree &DT); 720 }; 721 722 } 723 724 /// RateRegister - Tally up interesting quantities from the given register. 725 void Cost::RateRegister(const SCEV *Reg, 726 SmallPtrSet<const SCEV *, 16> &Regs, 727 const Loop *L, 728 ScalarEvolution &SE, DominatorTree &DT) { 729 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 730 if (AR->getLoop() == L) 731 AddRecCost += 1; /// TODO: This should be a function of the stride. 732 733 // If this is an addrec for another loop, don't second-guess its addrec phi 734 // nodes. LSR isn't currently smart enough to reason about more than one 735 // loop at a time. LSR has either already run on inner loops, will not run 736 // on other loops, and cannot be expected to change sibling loops. If the 737 // AddRec exists, consider it's register free and leave it alone. Otherwise, 738 // do not consider this formula at all. 739 // FIXME: why do we need to generate such fomulae? 740 else if (!EnableNested || L->contains(AR->getLoop()) || 741 (!AR->getLoop()->contains(L) && 742 DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))) { 743 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 744 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 745 if (SE.isSCEVable(PN->getType()) && 746 (SE.getEffectiveSCEVType(PN->getType()) == 747 SE.getEffectiveSCEVType(AR->getType())) && 748 SE.getSCEV(PN) == AR) 749 return; 750 } 751 if (!EnableNested) { 752 Loose(); 753 return; 754 } 755 // If this isn't one of the addrecs that the loop already has, it 756 // would require a costly new phi and add. TODO: This isn't 757 // precisely modeled right now. 758 ++NumBaseAdds; 759 if (!Regs.count(AR->getStart())) { 760 RateRegister(AR->getStart(), Regs, L, SE, DT); 761 if (isLoser()) 762 return; 763 } 764 } 765 766 // Add the step value register, if it needs one. 767 // TODO: The non-affine case isn't precisely modeled here. 768 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 769 if (!Regs.count(AR->getOperand(1))) { 770 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 771 if (isLoser()) 772 return; 773 } 774 } 775 } 776 ++NumRegs; 777 778 // Rough heuristic; favor registers which don't require extra setup 779 // instructions in the preheader. 780 if (!isa<SCEVUnknown>(Reg) && 781 !isa<SCEVConstant>(Reg) && 782 !(isa<SCEVAddRecExpr>(Reg) && 783 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 784 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 785 ++SetupCost; 786 787 NumIVMuls += isa<SCEVMulExpr>(Reg) && 788 SE.hasComputableLoopEvolution(Reg, L); 789 } 790 791 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 792 /// before, rate it. 793 void Cost::RatePrimaryRegister(const SCEV *Reg, 794 SmallPtrSet<const SCEV *, 16> &Regs, 795 const Loop *L, 796 ScalarEvolution &SE, DominatorTree &DT) { 797 if (Regs.insert(Reg)) 798 RateRegister(Reg, Regs, L, SE, DT); 799 } 800 801 void Cost::RateFormula(const Formula &F, 802 SmallPtrSet<const SCEV *, 16> &Regs, 803 const DenseSet<const SCEV *> &VisitedRegs, 804 const Loop *L, 805 const SmallVectorImpl<int64_t> &Offsets, 806 ScalarEvolution &SE, DominatorTree &DT) { 807 // Tally up the registers. 808 if (const SCEV *ScaledReg = F.ScaledReg) { 809 if (VisitedRegs.count(ScaledReg)) { 810 Loose(); 811 return; 812 } 813 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT); 814 if (isLoser()) 815 return; 816 } 817 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 818 E = F.BaseRegs.end(); I != E; ++I) { 819 const SCEV *BaseReg = *I; 820 if (VisitedRegs.count(BaseReg)) { 821 Loose(); 822 return; 823 } 824 RatePrimaryRegister(BaseReg, Regs, L, SE, DT); 825 if (isLoser()) 826 return; 827 } 828 829 // Determine how many (unfolded) adds we'll need inside the loop. 830 size_t NumBaseParts = F.BaseRegs.size() + (F.UnfoldedOffset != 0); 831 if (NumBaseParts > 1) 832 NumBaseAdds += NumBaseParts - 1; 833 834 // Tally up the non-zero immediates. 835 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 836 E = Offsets.end(); I != E; ++I) { 837 int64_t Offset = (uint64_t)*I + F.AM.BaseOffs; 838 if (F.AM.BaseGV) 839 ImmCost += 64; // Handle symbolic values conservatively. 840 // TODO: This should probably be the pointer size. 841 else if (Offset != 0) 842 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 843 } 844 assert(isValid() && "invalid cost"); 845 } 846 847 /// Loose - Set this cost to a losing value. 848 void Cost::Loose() { 849 NumRegs = ~0u; 850 AddRecCost = ~0u; 851 NumIVMuls = ~0u; 852 NumBaseAdds = ~0u; 853 ImmCost = ~0u; 854 SetupCost = ~0u; 855 } 856 857 /// operator< - Choose the lower cost. 858 bool Cost::operator<(const Cost &Other) const { 859 if (NumRegs != Other.NumRegs) 860 return NumRegs < Other.NumRegs; 861 if (AddRecCost != Other.AddRecCost) 862 return AddRecCost < Other.AddRecCost; 863 if (NumIVMuls != Other.NumIVMuls) 864 return NumIVMuls < Other.NumIVMuls; 865 if (NumBaseAdds != Other.NumBaseAdds) 866 return NumBaseAdds < Other.NumBaseAdds; 867 if (ImmCost != Other.ImmCost) 868 return ImmCost < Other.ImmCost; 869 if (SetupCost != Other.SetupCost) 870 return SetupCost < Other.SetupCost; 871 return false; 872 } 873 874 void Cost::print(raw_ostream &OS) const { 875 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 876 if (AddRecCost != 0) 877 OS << ", with addrec cost " << AddRecCost; 878 if (NumIVMuls != 0) 879 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 880 if (NumBaseAdds != 0) 881 OS << ", plus " << NumBaseAdds << " base add" 882 << (NumBaseAdds == 1 ? "" : "s"); 883 if (ImmCost != 0) 884 OS << ", plus " << ImmCost << " imm cost"; 885 if (SetupCost != 0) 886 OS << ", plus " << SetupCost << " setup cost"; 887 } 888 889 void Cost::dump() const { 890 print(errs()); errs() << '\n'; 891 } 892 893 namespace { 894 895 /// LSRFixup - An operand value in an instruction which is to be replaced 896 /// with some equivalent, possibly strength-reduced, replacement. 897 struct LSRFixup { 898 /// UserInst - The instruction which will be updated. 899 Instruction *UserInst; 900 901 /// OperandValToReplace - The operand of the instruction which will 902 /// be replaced. The operand may be used more than once; every instance 903 /// will be replaced. 904 Value *OperandValToReplace; 905 906 /// PostIncLoops - If this user is to use the post-incremented value of an 907 /// induction variable, this variable is non-null and holds the loop 908 /// associated with the induction variable. 909 PostIncLoopSet PostIncLoops; 910 911 /// LUIdx - The index of the LSRUse describing the expression which 912 /// this fixup needs, minus an offset (below). 913 size_t LUIdx; 914 915 /// Offset - A constant offset to be added to the LSRUse expression. 916 /// This allows multiple fixups to share the same LSRUse with different 917 /// offsets, for example in an unrolled loop. 918 int64_t Offset; 919 920 bool isUseFullyOutsideLoop(const Loop *L) const; 921 922 LSRFixup(); 923 924 void print(raw_ostream &OS) const; 925 void dump() const; 926 }; 927 928 } 929 930 LSRFixup::LSRFixup() 931 : UserInst(0), OperandValToReplace(0), LUIdx(~size_t(0)), Offset(0) {} 932 933 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 934 /// value outside of the given loop. 935 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 936 // PHI nodes use their value in their incoming blocks. 937 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 938 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 939 if (PN->getIncomingValue(i) == OperandValToReplace && 940 L->contains(PN->getIncomingBlock(i))) 941 return false; 942 return true; 943 } 944 945 return !L->contains(UserInst); 946 } 947 948 void LSRFixup::print(raw_ostream &OS) const { 949 OS << "UserInst="; 950 // Store is common and interesting enough to be worth special-casing. 951 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 952 OS << "store "; 953 WriteAsOperand(OS, Store->getOperand(0), /*PrintType=*/false); 954 } else if (UserInst->getType()->isVoidTy()) 955 OS << UserInst->getOpcodeName(); 956 else 957 WriteAsOperand(OS, UserInst, /*PrintType=*/false); 958 959 OS << ", OperandValToReplace="; 960 WriteAsOperand(OS, OperandValToReplace, /*PrintType=*/false); 961 962 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 963 E = PostIncLoops.end(); I != E; ++I) { 964 OS << ", PostIncLoop="; 965 WriteAsOperand(OS, (*I)->getHeader(), /*PrintType=*/false); 966 } 967 968 if (LUIdx != ~size_t(0)) 969 OS << ", LUIdx=" << LUIdx; 970 971 if (Offset != 0) 972 OS << ", Offset=" << Offset; 973 } 974 975 void LSRFixup::dump() const { 976 print(errs()); errs() << '\n'; 977 } 978 979 namespace { 980 981 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 982 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 983 struct UniquifierDenseMapInfo { 984 static SmallVector<const SCEV *, 2> getEmptyKey() { 985 SmallVector<const SCEV *, 2> V; 986 V.push_back(reinterpret_cast<const SCEV *>(-1)); 987 return V; 988 } 989 990 static SmallVector<const SCEV *, 2> getTombstoneKey() { 991 SmallVector<const SCEV *, 2> V; 992 V.push_back(reinterpret_cast<const SCEV *>(-2)); 993 return V; 994 } 995 996 static unsigned getHashValue(const SmallVector<const SCEV *, 2> &V) { 997 unsigned Result = 0; 998 for (SmallVectorImpl<const SCEV *>::const_iterator I = V.begin(), 999 E = V.end(); I != E; ++I) 1000 Result ^= DenseMapInfo<const SCEV *>::getHashValue(*I); 1001 return Result; 1002 } 1003 1004 static bool isEqual(const SmallVector<const SCEV *, 2> &LHS, 1005 const SmallVector<const SCEV *, 2> &RHS) { 1006 return LHS == RHS; 1007 } 1008 }; 1009 1010 /// LSRUse - This class holds the state that LSR keeps for each use in 1011 /// IVUsers, as well as uses invented by LSR itself. It includes information 1012 /// about what kinds of things can be folded into the user, information about 1013 /// the user itself, and information about how the use may be satisfied. 1014 /// TODO: Represent multiple users of the same expression in common? 1015 class LSRUse { 1016 DenseSet<SmallVector<const SCEV *, 2>, UniquifierDenseMapInfo> Uniquifier; 1017 1018 public: 1019 /// KindType - An enum for a kind of use, indicating what types of 1020 /// scaled and immediate operands it might support. 1021 enum KindType { 1022 Basic, ///< A normal use, with no folding. 1023 Special, ///< A special case of basic, allowing -1 scales. 1024 Address, ///< An address use; folding according to TargetLowering 1025 ICmpZero ///< An equality icmp with both operands folded into one. 1026 // TODO: Add a generic icmp too? 1027 }; 1028 1029 KindType Kind; 1030 Type *AccessTy; 1031 1032 SmallVector<int64_t, 8> Offsets; 1033 int64_t MinOffset; 1034 int64_t MaxOffset; 1035 1036 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1037 /// LSRUse are outside of the loop, in which case some special-case heuristics 1038 /// may be used. 1039 bool AllFixupsOutsideLoop; 1040 1041 /// WidestFixupType - This records the widest use type for any fixup using 1042 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1043 /// max fixup widths to be equivalent, because the narrower one may be relying 1044 /// on the implicit truncation to truncate away bogus bits. 1045 Type *WidestFixupType; 1046 1047 /// Formulae - A list of ways to build a value that can satisfy this user. 1048 /// After the list is populated, one of these is selected heuristically and 1049 /// used to formulate a replacement for OperandValToReplace in UserInst. 1050 SmallVector<Formula, 12> Formulae; 1051 1052 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1053 SmallPtrSet<const SCEV *, 4> Regs; 1054 1055 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1056 MinOffset(INT64_MAX), 1057 MaxOffset(INT64_MIN), 1058 AllFixupsOutsideLoop(true), 1059 WidestFixupType(0) {} 1060 1061 bool HasFormulaWithSameRegs(const Formula &F) const; 1062 bool InsertFormula(const Formula &F); 1063 void DeleteFormula(Formula &F); 1064 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1065 1066 void print(raw_ostream &OS) const; 1067 void dump() const; 1068 }; 1069 1070 } 1071 1072 /// HasFormula - Test whether this use as a formula which has the same 1073 /// registers as the given formula. 1074 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1075 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1076 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1077 // Unstable sort by host order ok, because this is only used for uniquifying. 1078 std::sort(Key.begin(), Key.end()); 1079 return Uniquifier.count(Key); 1080 } 1081 1082 /// InsertFormula - If the given formula has not yet been inserted, add it to 1083 /// the list, and return true. Return false otherwise. 1084 bool LSRUse::InsertFormula(const Formula &F) { 1085 SmallVector<const SCEV *, 2> Key = F.BaseRegs; 1086 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1087 // Unstable sort by host order ok, because this is only used for uniquifying. 1088 std::sort(Key.begin(), Key.end()); 1089 1090 if (!Uniquifier.insert(Key).second) 1091 return false; 1092 1093 // Using a register to hold the value of 0 is not profitable. 1094 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1095 "Zero allocated in a scaled register!"); 1096 #ifndef NDEBUG 1097 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1098 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1099 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1100 #endif 1101 1102 // Add the formula to the list. 1103 Formulae.push_back(F); 1104 1105 // Record registers now being used by this use. 1106 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1107 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1108 1109 return true; 1110 } 1111 1112 /// DeleteFormula - Remove the given formula from this use's list. 1113 void LSRUse::DeleteFormula(Formula &F) { 1114 if (&F != &Formulae.back()) 1115 std::swap(F, Formulae.back()); 1116 Formulae.pop_back(); 1117 assert(!Formulae.empty() && "LSRUse has no formulae left!"); 1118 } 1119 1120 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1121 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1122 // Now that we've filtered out some formulae, recompute the Regs set. 1123 SmallPtrSet<const SCEV *, 4> OldRegs = Regs; 1124 Regs.clear(); 1125 for (SmallVectorImpl<Formula>::const_iterator I = Formulae.begin(), 1126 E = Formulae.end(); I != E; ++I) { 1127 const Formula &F = *I; 1128 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1129 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1130 } 1131 1132 // Update the RegTracker. 1133 for (SmallPtrSet<const SCEV *, 4>::iterator I = OldRegs.begin(), 1134 E = OldRegs.end(); I != E; ++I) 1135 if (!Regs.count(*I)) 1136 RegUses.DropRegister(*I, LUIdx); 1137 } 1138 1139 void LSRUse::print(raw_ostream &OS) const { 1140 OS << "LSR Use: Kind="; 1141 switch (Kind) { 1142 case Basic: OS << "Basic"; break; 1143 case Special: OS << "Special"; break; 1144 case ICmpZero: OS << "ICmpZero"; break; 1145 case Address: 1146 OS << "Address of "; 1147 if (AccessTy->isPointerTy()) 1148 OS << "pointer"; // the full pointer type could be really verbose 1149 else 1150 OS << *AccessTy; 1151 } 1152 1153 OS << ", Offsets={"; 1154 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1155 E = Offsets.end(); I != E; ++I) { 1156 OS << *I; 1157 if (llvm::next(I) != E) 1158 OS << ','; 1159 } 1160 OS << '}'; 1161 1162 if (AllFixupsOutsideLoop) 1163 OS << ", all-fixups-outside-loop"; 1164 1165 if (WidestFixupType) 1166 OS << ", widest fixup type: " << *WidestFixupType; 1167 } 1168 1169 void LSRUse::dump() const { 1170 print(errs()); errs() << '\n'; 1171 } 1172 1173 /// isLegalUse - Test whether the use described by AM is "legal", meaning it can 1174 /// be completely folded into the user instruction at isel time. This includes 1175 /// address-mode folding and special icmp tricks. 1176 static bool isLegalUse(const TargetLowering::AddrMode &AM, 1177 LSRUse::KindType Kind, Type *AccessTy, 1178 const TargetLowering *TLI) { 1179 switch (Kind) { 1180 case LSRUse::Address: 1181 // If we have low-level target information, ask the target if it can 1182 // completely fold this address. 1183 if (TLI) return TLI->isLegalAddressingMode(AM, AccessTy); 1184 1185 // Otherwise, just guess that reg+reg addressing is legal. 1186 return !AM.BaseGV && AM.BaseOffs == 0 && AM.Scale <= 1; 1187 1188 case LSRUse::ICmpZero: 1189 // There's not even a target hook for querying whether it would be legal to 1190 // fold a GV into an ICmp. 1191 if (AM.BaseGV) 1192 return false; 1193 1194 // ICmp only has two operands; don't allow more than two non-trivial parts. 1195 if (AM.Scale != 0 && AM.HasBaseReg && AM.BaseOffs != 0) 1196 return false; 1197 1198 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1199 // putting the scaled register in the other operand of the icmp. 1200 if (AM.Scale != 0 && AM.Scale != -1) 1201 return false; 1202 1203 // If we have low-level target information, ask the target if it can fold an 1204 // integer immediate on an icmp. 1205 if (AM.BaseOffs != 0) { 1206 if (TLI) return TLI->isLegalICmpImmediate(-(uint64_t)AM.BaseOffs); 1207 return false; 1208 } 1209 1210 return true; 1211 1212 case LSRUse::Basic: 1213 // Only handle single-register values. 1214 return !AM.BaseGV && AM.Scale == 0 && AM.BaseOffs == 0; 1215 1216 case LSRUse::Special: 1217 // Only handle -1 scales, or no scale. 1218 return AM.Scale == 0 || AM.Scale == -1; 1219 } 1220 1221 return false; 1222 } 1223 1224 static bool isLegalUse(TargetLowering::AddrMode AM, 1225 int64_t MinOffset, int64_t MaxOffset, 1226 LSRUse::KindType Kind, Type *AccessTy, 1227 const TargetLowering *TLI) { 1228 // Check for overflow. 1229 if (((int64_t)((uint64_t)AM.BaseOffs + MinOffset) > AM.BaseOffs) != 1230 (MinOffset > 0)) 1231 return false; 1232 AM.BaseOffs = (uint64_t)AM.BaseOffs + MinOffset; 1233 if (isLegalUse(AM, Kind, AccessTy, TLI)) { 1234 AM.BaseOffs = (uint64_t)AM.BaseOffs - MinOffset; 1235 // Check for overflow. 1236 if (((int64_t)((uint64_t)AM.BaseOffs + MaxOffset) > AM.BaseOffs) != 1237 (MaxOffset > 0)) 1238 return false; 1239 AM.BaseOffs = (uint64_t)AM.BaseOffs + MaxOffset; 1240 return isLegalUse(AM, Kind, AccessTy, TLI); 1241 } 1242 return false; 1243 } 1244 1245 static bool isAlwaysFoldable(int64_t BaseOffs, 1246 GlobalValue *BaseGV, 1247 bool HasBaseReg, 1248 LSRUse::KindType Kind, Type *AccessTy, 1249 const TargetLowering *TLI) { 1250 // Fast-path: zero is always foldable. 1251 if (BaseOffs == 0 && !BaseGV) return true; 1252 1253 // Conservatively, create an address with an immediate and a 1254 // base and a scale. 1255 TargetLowering::AddrMode AM; 1256 AM.BaseOffs = BaseOffs; 1257 AM.BaseGV = BaseGV; 1258 AM.HasBaseReg = HasBaseReg; 1259 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1260 1261 // Canonicalize a scale of 1 to a base register if the formula doesn't 1262 // already have a base register. 1263 if (!AM.HasBaseReg && AM.Scale == 1) { 1264 AM.Scale = 0; 1265 AM.HasBaseReg = true; 1266 } 1267 1268 return isLegalUse(AM, Kind, AccessTy, TLI); 1269 } 1270 1271 static bool isAlwaysFoldable(const SCEV *S, 1272 int64_t MinOffset, int64_t MaxOffset, 1273 bool HasBaseReg, 1274 LSRUse::KindType Kind, Type *AccessTy, 1275 const TargetLowering *TLI, 1276 ScalarEvolution &SE) { 1277 // Fast-path: zero is always foldable. 1278 if (S->isZero()) return true; 1279 1280 // Conservatively, create an address with an immediate and a 1281 // base and a scale. 1282 int64_t BaseOffs = ExtractImmediate(S, SE); 1283 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1284 1285 // If there's anything else involved, it's not foldable. 1286 if (!S->isZero()) return false; 1287 1288 // Fast-path: zero is always foldable. 1289 if (BaseOffs == 0 && !BaseGV) return true; 1290 1291 // Conservatively, create an address with an immediate and a 1292 // base and a scale. 1293 TargetLowering::AddrMode AM; 1294 AM.BaseOffs = BaseOffs; 1295 AM.BaseGV = BaseGV; 1296 AM.HasBaseReg = HasBaseReg; 1297 AM.Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1298 1299 return isLegalUse(AM, MinOffset, MaxOffset, Kind, AccessTy, TLI); 1300 } 1301 1302 namespace { 1303 1304 /// UseMapDenseMapInfo - A DenseMapInfo implementation for holding 1305 /// DenseMaps and DenseSets of pairs of const SCEV* and LSRUse::Kind. 1306 struct UseMapDenseMapInfo { 1307 static std::pair<const SCEV *, LSRUse::KindType> getEmptyKey() { 1308 return std::make_pair(reinterpret_cast<const SCEV *>(-1), LSRUse::Basic); 1309 } 1310 1311 static std::pair<const SCEV *, LSRUse::KindType> getTombstoneKey() { 1312 return std::make_pair(reinterpret_cast<const SCEV *>(-2), LSRUse::Basic); 1313 } 1314 1315 static unsigned 1316 getHashValue(const std::pair<const SCEV *, LSRUse::KindType> &V) { 1317 unsigned Result = DenseMapInfo<const SCEV *>::getHashValue(V.first); 1318 Result ^= DenseMapInfo<unsigned>::getHashValue(unsigned(V.second)); 1319 return Result; 1320 } 1321 1322 static bool isEqual(const std::pair<const SCEV *, LSRUse::KindType> &LHS, 1323 const std::pair<const SCEV *, LSRUse::KindType> &RHS) { 1324 return LHS == RHS; 1325 } 1326 }; 1327 1328 /// LSRInstance - This class holds state for the main loop strength reduction 1329 /// logic. 1330 class LSRInstance { 1331 IVUsers &IU; 1332 ScalarEvolution &SE; 1333 DominatorTree &DT; 1334 LoopInfo &LI; 1335 const TargetLowering *const TLI; 1336 Loop *const L; 1337 bool Changed; 1338 1339 /// IVIncInsertPos - This is the insert position that the current loop's 1340 /// induction variable increment should be placed. In simple loops, this is 1341 /// the latch block's terminator. But in more complicated cases, this is a 1342 /// position which will dominate all the in-loop post-increment users. 1343 Instruction *IVIncInsertPos; 1344 1345 /// Factors - Interesting factors between use strides. 1346 SmallSetVector<int64_t, 8> Factors; 1347 1348 /// Types - Interesting use types, to facilitate truncation reuse. 1349 SmallSetVector<Type *, 4> Types; 1350 1351 /// Fixups - The list of operands which are to be replaced. 1352 SmallVector<LSRFixup, 16> Fixups; 1353 1354 /// Uses - The list of interesting uses. 1355 SmallVector<LSRUse, 16> Uses; 1356 1357 /// RegUses - Track which uses use which register candidates. 1358 RegUseTracker RegUses; 1359 1360 void OptimizeShadowIV(); 1361 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1362 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1363 void OptimizeLoopTermCond(); 1364 1365 void CollectInterestingTypesAndFactors(); 1366 void CollectFixupsAndInitialFormulae(); 1367 1368 LSRFixup &getNewFixup() { 1369 Fixups.push_back(LSRFixup()); 1370 return Fixups.back(); 1371 } 1372 1373 // Support for sharing of LSRUses between LSRFixups. 1374 typedef DenseMap<std::pair<const SCEV *, LSRUse::KindType>, 1375 size_t, 1376 UseMapDenseMapInfo> UseMapTy; 1377 UseMapTy UseMap; 1378 1379 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1380 LSRUse::KindType Kind, Type *AccessTy); 1381 1382 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1383 LSRUse::KindType Kind, 1384 Type *AccessTy); 1385 1386 void DeleteUse(LSRUse &LU, size_t LUIdx); 1387 1388 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1389 1390 public: 1391 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1392 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1393 void CountRegisters(const Formula &F, size_t LUIdx); 1394 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1395 1396 void CollectLoopInvariantFixupsAndFormulae(); 1397 1398 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1399 unsigned Depth = 0); 1400 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1401 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1402 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1403 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1404 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1405 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1406 void GenerateCrossUseConstantOffsets(); 1407 void GenerateAllReuseFormulae(); 1408 1409 void FilterOutUndesirableDedicatedRegisters(); 1410 1411 size_t EstimateSearchSpaceComplexity() const; 1412 void NarrowSearchSpaceByDetectingSupersets(); 1413 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1414 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1415 void NarrowSearchSpaceByPickingWinnerRegs(); 1416 void NarrowSearchSpaceUsingHeuristics(); 1417 1418 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1419 Cost &SolutionCost, 1420 SmallVectorImpl<const Formula *> &Workspace, 1421 const Cost &CurCost, 1422 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1423 DenseSet<const SCEV *> &VisitedRegs) const; 1424 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1425 1426 BasicBlock::iterator 1427 HoistInsertPosition(BasicBlock::iterator IP, 1428 const SmallVectorImpl<Instruction *> &Inputs) const; 1429 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1430 const LSRFixup &LF, 1431 const LSRUse &LU) const; 1432 1433 Value *Expand(const LSRFixup &LF, 1434 const Formula &F, 1435 BasicBlock::iterator IP, 1436 SCEVExpander &Rewriter, 1437 SmallVectorImpl<WeakVH> &DeadInsts) const; 1438 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1439 const Formula &F, 1440 SCEVExpander &Rewriter, 1441 SmallVectorImpl<WeakVH> &DeadInsts, 1442 Pass *P) const; 1443 void Rewrite(const LSRFixup &LF, 1444 const Formula &F, 1445 SCEVExpander &Rewriter, 1446 SmallVectorImpl<WeakVH> &DeadInsts, 1447 Pass *P) const; 1448 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1449 Pass *P); 1450 1451 LSRInstance(const TargetLowering *tli, Loop *l, Pass *P); 1452 1453 bool getChanged() const { return Changed; } 1454 1455 void print_factors_and_types(raw_ostream &OS) const; 1456 void print_fixups(raw_ostream &OS) const; 1457 void print_uses(raw_ostream &OS) const; 1458 void print(raw_ostream &OS) const; 1459 void dump() const; 1460 }; 1461 1462 } 1463 1464 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1465 /// inside the loop then try to eliminate the cast operation. 1466 void LSRInstance::OptimizeShadowIV() { 1467 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1468 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1469 return; 1470 1471 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1472 UI != E; /* empty */) { 1473 IVUsers::const_iterator CandidateUI = UI; 1474 ++UI; 1475 Instruction *ShadowUse = CandidateUI->getUser(); 1476 Type *DestTy = NULL; 1477 bool IsSigned = false; 1478 1479 /* If shadow use is a int->float cast then insert a second IV 1480 to eliminate this cast. 1481 1482 for (unsigned i = 0; i < n; ++i) 1483 foo((double)i); 1484 1485 is transformed into 1486 1487 double d = 0.0; 1488 for (unsigned i = 0; i < n; ++i, ++d) 1489 foo(d); 1490 */ 1491 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1492 IsSigned = false; 1493 DestTy = UCast->getDestTy(); 1494 } 1495 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1496 IsSigned = true; 1497 DestTy = SCast->getDestTy(); 1498 } 1499 if (!DestTy) continue; 1500 1501 if (TLI) { 1502 // If target does not support DestTy natively then do not apply 1503 // this transformation. 1504 EVT DVT = TLI->getValueType(DestTy); 1505 if (!TLI->isTypeLegal(DVT)) continue; 1506 } 1507 1508 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1509 if (!PH) continue; 1510 if (PH->getNumIncomingValues() != 2) continue; 1511 1512 Type *SrcTy = PH->getType(); 1513 int Mantissa = DestTy->getFPMantissaWidth(); 1514 if (Mantissa == -1) continue; 1515 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1516 continue; 1517 1518 unsigned Entry, Latch; 1519 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1520 Entry = 0; 1521 Latch = 1; 1522 } else { 1523 Entry = 1; 1524 Latch = 0; 1525 } 1526 1527 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1528 if (!Init) continue; 1529 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1530 (double)Init->getSExtValue() : 1531 (double)Init->getZExtValue()); 1532 1533 BinaryOperator *Incr = 1534 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1535 if (!Incr) continue; 1536 if (Incr->getOpcode() != Instruction::Add 1537 && Incr->getOpcode() != Instruction::Sub) 1538 continue; 1539 1540 /* Initialize new IV, double d = 0.0 in above example. */ 1541 ConstantInt *C = NULL; 1542 if (Incr->getOperand(0) == PH) 1543 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1544 else if (Incr->getOperand(1) == PH) 1545 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1546 else 1547 continue; 1548 1549 if (!C) continue; 1550 1551 // Ignore negative constants, as the code below doesn't handle them 1552 // correctly. TODO: Remove this restriction. 1553 if (!C->getValue().isStrictlyPositive()) continue; 1554 1555 /* Add new PHINode. */ 1556 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1557 1558 /* create new increment. '++d' in above example. */ 1559 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1560 BinaryOperator *NewIncr = 1561 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1562 Instruction::FAdd : Instruction::FSub, 1563 NewPH, CFP, "IV.S.next.", Incr); 1564 1565 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1566 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1567 1568 /* Remove cast operation */ 1569 ShadowUse->replaceAllUsesWith(NewPH); 1570 ShadowUse->eraseFromParent(); 1571 Changed = true; 1572 break; 1573 } 1574 } 1575 1576 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1577 /// set the IV user and stride information and return true, otherwise return 1578 /// false. 1579 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1580 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1581 if (UI->getUser() == Cond) { 1582 // NOTE: we could handle setcc instructions with multiple uses here, but 1583 // InstCombine does it as well for simple uses, it's not clear that it 1584 // occurs enough in real life to handle. 1585 CondUse = UI; 1586 return true; 1587 } 1588 return false; 1589 } 1590 1591 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1592 /// a max computation. 1593 /// 1594 /// This is a narrow solution to a specific, but acute, problem. For loops 1595 /// like this: 1596 /// 1597 /// i = 0; 1598 /// do { 1599 /// p[i] = 0.0; 1600 /// } while (++i < n); 1601 /// 1602 /// the trip count isn't just 'n', because 'n' might not be positive. And 1603 /// unfortunately this can come up even for loops where the user didn't use 1604 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1605 /// will commonly be lowered like this: 1606 // 1607 /// if (n > 0) { 1608 /// i = 0; 1609 /// do { 1610 /// p[i] = 0.0; 1611 /// } while (++i < n); 1612 /// } 1613 /// 1614 /// and then it's possible for subsequent optimization to obscure the if 1615 /// test in such a way that indvars can't find it. 1616 /// 1617 /// When indvars can't find the if test in loops like this, it creates a 1618 /// max expression, which allows it to give the loop a canonical 1619 /// induction variable: 1620 /// 1621 /// i = 0; 1622 /// max = n < 1 ? 1 : n; 1623 /// do { 1624 /// p[i] = 0.0; 1625 /// } while (++i != max); 1626 /// 1627 /// Canonical induction variables are necessary because the loop passes 1628 /// are designed around them. The most obvious example of this is the 1629 /// LoopInfo analysis, which doesn't remember trip count values. It 1630 /// expects to be able to rediscover the trip count each time it is 1631 /// needed, and it does this using a simple analysis that only succeeds if 1632 /// the loop has a canonical induction variable. 1633 /// 1634 /// However, when it comes time to generate code, the maximum operation 1635 /// can be quite costly, especially if it's inside of an outer loop. 1636 /// 1637 /// This function solves this problem by detecting this type of loop and 1638 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1639 /// the instructions for the maximum computation. 1640 /// 1641 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1642 // Check that the loop matches the pattern we're looking for. 1643 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1644 Cond->getPredicate() != CmpInst::ICMP_NE) 1645 return Cond; 1646 1647 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1648 if (!Sel || !Sel->hasOneUse()) return Cond; 1649 1650 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1651 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1652 return Cond; 1653 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1654 1655 // Add one to the backedge-taken count to get the trip count. 1656 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 1657 if (IterationCount != SE.getSCEV(Sel)) return Cond; 1658 1659 // Check for a max calculation that matches the pattern. There's no check 1660 // for ICMP_ULE here because the comparison would be with zero, which 1661 // isn't interesting. 1662 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1663 const SCEVNAryExpr *Max = 0; 1664 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 1665 Pred = ICmpInst::ICMP_SLE; 1666 Max = S; 1667 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 1668 Pred = ICmpInst::ICMP_SLT; 1669 Max = S; 1670 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 1671 Pred = ICmpInst::ICMP_ULT; 1672 Max = U; 1673 } else { 1674 // No match; bail. 1675 return Cond; 1676 } 1677 1678 // To handle a max with more than two operands, this optimization would 1679 // require additional checking and setup. 1680 if (Max->getNumOperands() != 2) 1681 return Cond; 1682 1683 const SCEV *MaxLHS = Max->getOperand(0); 1684 const SCEV *MaxRHS = Max->getOperand(1); 1685 1686 // ScalarEvolution canonicalizes constants to the left. For < and >, look 1687 // for a comparison with 1. For <= and >=, a comparison with zero. 1688 if (!MaxLHS || 1689 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 1690 return Cond; 1691 1692 // Check the relevant induction variable for conformance to 1693 // the pattern. 1694 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 1695 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1696 if (!AR || !AR->isAffine() || 1697 AR->getStart() != One || 1698 AR->getStepRecurrence(SE) != One) 1699 return Cond; 1700 1701 assert(AR->getLoop() == L && 1702 "Loop condition operand is an addrec in a different loop!"); 1703 1704 // Check the right operand of the select, and remember it, as it will 1705 // be used in the new comparison instruction. 1706 Value *NewRHS = 0; 1707 if (ICmpInst::isTrueWhenEqual(Pred)) { 1708 // Look for n+1, and grab n. 1709 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 1710 if (isa<ConstantInt>(BO->getOperand(1)) && 1711 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1712 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1713 NewRHS = BO->getOperand(0); 1714 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 1715 if (isa<ConstantInt>(BO->getOperand(1)) && 1716 cast<ConstantInt>(BO->getOperand(1))->isOne() && 1717 SE.getSCEV(BO->getOperand(0)) == MaxRHS) 1718 NewRHS = BO->getOperand(0); 1719 if (!NewRHS) 1720 return Cond; 1721 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 1722 NewRHS = Sel->getOperand(1); 1723 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 1724 NewRHS = Sel->getOperand(2); 1725 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 1726 NewRHS = SU->getValue(); 1727 else 1728 // Max doesn't match expected pattern. 1729 return Cond; 1730 1731 // Determine the new comparison opcode. It may be signed or unsigned, 1732 // and the original comparison may be either equality or inequality. 1733 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 1734 Pred = CmpInst::getInversePredicate(Pred); 1735 1736 // Ok, everything looks ok to change the condition into an SLT or SGE and 1737 // delete the max calculation. 1738 ICmpInst *NewCond = 1739 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 1740 1741 // Delete the max calculation instructions. 1742 Cond->replaceAllUsesWith(NewCond); 1743 CondUse->setUser(NewCond); 1744 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 1745 Cond->eraseFromParent(); 1746 Sel->eraseFromParent(); 1747 if (Cmp->use_empty()) 1748 Cmp->eraseFromParent(); 1749 return NewCond; 1750 } 1751 1752 /// OptimizeLoopTermCond - Change loop terminating condition to use the 1753 /// postinc iv when possible. 1754 void 1755 LSRInstance::OptimizeLoopTermCond() { 1756 SmallPtrSet<Instruction *, 4> PostIncs; 1757 1758 BasicBlock *LatchBlock = L->getLoopLatch(); 1759 SmallVector<BasicBlock*, 8> ExitingBlocks; 1760 L->getExitingBlocks(ExitingBlocks); 1761 1762 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 1763 BasicBlock *ExitingBlock = ExitingBlocks[i]; 1764 1765 // Get the terminating condition for the loop if possible. If we 1766 // can, we want to change it to use a post-incremented version of its 1767 // induction variable, to allow coalescing the live ranges for the IV into 1768 // one register value. 1769 1770 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 1771 if (!TermBr) 1772 continue; 1773 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 1774 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 1775 continue; 1776 1777 // Search IVUsesByStride to find Cond's IVUse if there is one. 1778 IVStrideUse *CondUse = 0; 1779 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 1780 if (!FindIVUserForCond(Cond, CondUse)) 1781 continue; 1782 1783 // If the trip count is computed in terms of a max (due to ScalarEvolution 1784 // being unable to find a sufficient guard, for example), change the loop 1785 // comparison to use SLT or ULT instead of NE. 1786 // One consequence of doing this now is that it disrupts the count-down 1787 // optimization. That's not always a bad thing though, because in such 1788 // cases it may still be worthwhile to avoid a max. 1789 Cond = OptimizeMax(Cond, CondUse); 1790 1791 // If this exiting block dominates the latch block, it may also use 1792 // the post-inc value if it won't be shared with other uses. 1793 // Check for dominance. 1794 if (!DT.dominates(ExitingBlock, LatchBlock)) 1795 continue; 1796 1797 // Conservatively avoid trying to use the post-inc value in non-latch 1798 // exits if there may be pre-inc users in intervening blocks. 1799 if (LatchBlock != ExitingBlock) 1800 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1801 // Test if the use is reachable from the exiting block. This dominator 1802 // query is a conservative approximation of reachability. 1803 if (&*UI != CondUse && 1804 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 1805 // Conservatively assume there may be reuse if the quotient of their 1806 // strides could be a legal scale. 1807 const SCEV *A = IU.getStride(*CondUse, L); 1808 const SCEV *B = IU.getStride(*UI, L); 1809 if (!A || !B) continue; 1810 if (SE.getTypeSizeInBits(A->getType()) != 1811 SE.getTypeSizeInBits(B->getType())) { 1812 if (SE.getTypeSizeInBits(A->getType()) > 1813 SE.getTypeSizeInBits(B->getType())) 1814 B = SE.getSignExtendExpr(B, A->getType()); 1815 else 1816 A = SE.getSignExtendExpr(A, B->getType()); 1817 } 1818 if (const SCEVConstant *D = 1819 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 1820 const ConstantInt *C = D->getValue(); 1821 // Stride of one or negative one can have reuse with non-addresses. 1822 if (C->isOne() || C->isAllOnesValue()) 1823 goto decline_post_inc; 1824 // Avoid weird situations. 1825 if (C->getValue().getMinSignedBits() >= 64 || 1826 C->getValue().isMinSignedValue()) 1827 goto decline_post_inc; 1828 // Without TLI, assume that any stride might be valid, and so any 1829 // use might be shared. 1830 if (!TLI) 1831 goto decline_post_inc; 1832 // Check for possible scaled-address reuse. 1833 Type *AccessTy = getAccessType(UI->getUser()); 1834 TargetLowering::AddrMode AM; 1835 AM.Scale = C->getSExtValue(); 1836 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1837 goto decline_post_inc; 1838 AM.Scale = -AM.Scale; 1839 if (TLI->isLegalAddressingMode(AM, AccessTy)) 1840 goto decline_post_inc; 1841 } 1842 } 1843 1844 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 1845 << *Cond << '\n'); 1846 1847 // It's possible for the setcc instruction to be anywhere in the loop, and 1848 // possible for it to have multiple users. If it is not immediately before 1849 // the exiting block branch, move it. 1850 if (&*++BasicBlock::iterator(Cond) != TermBr) { 1851 if (Cond->hasOneUse()) { 1852 Cond->moveBefore(TermBr); 1853 } else { 1854 // Clone the terminating condition and insert into the loopend. 1855 ICmpInst *OldCond = Cond; 1856 Cond = cast<ICmpInst>(Cond->clone()); 1857 Cond->setName(L->getHeader()->getName() + ".termcond"); 1858 ExitingBlock->getInstList().insert(TermBr, Cond); 1859 1860 // Clone the IVUse, as the old use still exists! 1861 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 1862 TermBr->replaceUsesOfWith(OldCond, Cond); 1863 } 1864 } 1865 1866 // If we get to here, we know that we can transform the setcc instruction to 1867 // use the post-incremented version of the IV, allowing us to coalesce the 1868 // live ranges for the IV correctly. 1869 CondUse->transformToPostInc(L); 1870 Changed = true; 1871 1872 PostIncs.insert(Cond); 1873 decline_post_inc:; 1874 } 1875 1876 // Determine an insertion point for the loop induction variable increment. It 1877 // must dominate all the post-inc comparisons we just set up, and it must 1878 // dominate the loop latch edge. 1879 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 1880 for (SmallPtrSet<Instruction *, 4>::const_iterator I = PostIncs.begin(), 1881 E = PostIncs.end(); I != E; ++I) { 1882 BasicBlock *BB = 1883 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 1884 (*I)->getParent()); 1885 if (BB == (*I)->getParent()) 1886 IVIncInsertPos = *I; 1887 else if (BB != IVIncInsertPos->getParent()) 1888 IVIncInsertPos = BB->getTerminator(); 1889 } 1890 } 1891 1892 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 1893 /// at the given offset and other details. If so, update the use and 1894 /// return true. 1895 bool 1896 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1897 LSRUse::KindType Kind, Type *AccessTy) { 1898 int64_t NewMinOffset = LU.MinOffset; 1899 int64_t NewMaxOffset = LU.MaxOffset; 1900 Type *NewAccessTy = AccessTy; 1901 1902 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 1903 // something conservative, however this can pessimize in the case that one of 1904 // the uses will have all its uses outside the loop, for example. 1905 if (LU.Kind != Kind) 1906 return false; 1907 // Conservatively assume HasBaseReg is true for now. 1908 if (NewOffset < LU.MinOffset) { 1909 if (!isAlwaysFoldable(LU.MaxOffset - NewOffset, 0, HasBaseReg, 1910 Kind, AccessTy, TLI)) 1911 return false; 1912 NewMinOffset = NewOffset; 1913 } else if (NewOffset > LU.MaxOffset) { 1914 if (!isAlwaysFoldable(NewOffset - LU.MinOffset, 0, HasBaseReg, 1915 Kind, AccessTy, TLI)) 1916 return false; 1917 NewMaxOffset = NewOffset; 1918 } 1919 // Check for a mismatched access type, and fall back conservatively as needed. 1920 // TODO: Be less conservative when the type is similar and can use the same 1921 // addressing modes. 1922 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 1923 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 1924 1925 // Update the use. 1926 LU.MinOffset = NewMinOffset; 1927 LU.MaxOffset = NewMaxOffset; 1928 LU.AccessTy = NewAccessTy; 1929 if (NewOffset != LU.Offsets.back()) 1930 LU.Offsets.push_back(NewOffset); 1931 return true; 1932 } 1933 1934 /// getUse - Return an LSRUse index and an offset value for a fixup which 1935 /// needs the given expression, with the given kind and optional access type. 1936 /// Either reuse an existing use or create a new one, as needed. 1937 std::pair<size_t, int64_t> 1938 LSRInstance::getUse(const SCEV *&Expr, 1939 LSRUse::KindType Kind, Type *AccessTy) { 1940 const SCEV *Copy = Expr; 1941 int64_t Offset = ExtractImmediate(Expr, SE); 1942 1943 // Basic uses can't accept any offset, for example. 1944 if (!isAlwaysFoldable(Offset, 0, /*HasBaseReg=*/true, Kind, AccessTy, TLI)) { 1945 Expr = Copy; 1946 Offset = 0; 1947 } 1948 1949 std::pair<UseMapTy::iterator, bool> P = 1950 UseMap.insert(std::make_pair(std::make_pair(Expr, Kind), 0)); 1951 if (!P.second) { 1952 // A use already existed with this base. 1953 size_t LUIdx = P.first->second; 1954 LSRUse &LU = Uses[LUIdx]; 1955 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 1956 // Reuse this use. 1957 return std::make_pair(LUIdx, Offset); 1958 } 1959 1960 // Create a new use. 1961 size_t LUIdx = Uses.size(); 1962 P.first->second = LUIdx; 1963 Uses.push_back(LSRUse(Kind, AccessTy)); 1964 LSRUse &LU = Uses[LUIdx]; 1965 1966 // We don't need to track redundant offsets, but we don't need to go out 1967 // of our way here to avoid them. 1968 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 1969 LU.Offsets.push_back(Offset); 1970 1971 LU.MinOffset = Offset; 1972 LU.MaxOffset = Offset; 1973 return std::make_pair(LUIdx, Offset); 1974 } 1975 1976 /// DeleteUse - Delete the given use from the Uses list. 1977 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 1978 if (&LU != &Uses.back()) 1979 std::swap(LU, Uses.back()); 1980 Uses.pop_back(); 1981 1982 // Update RegUses. 1983 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 1984 } 1985 1986 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 1987 /// a formula that has the same registers as the given formula. 1988 LSRUse * 1989 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 1990 const LSRUse &OrigLU) { 1991 // Search all uses for the formula. This could be more clever. 1992 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 1993 LSRUse &LU = Uses[LUIdx]; 1994 // Check whether this use is close enough to OrigLU, to see whether it's 1995 // worthwhile looking through its formulae. 1996 // Ignore ICmpZero uses because they may contain formulae generated by 1997 // GenerateICmpZeroScales, in which case adding fixup offsets may 1998 // be invalid. 1999 if (&LU != &OrigLU && 2000 LU.Kind != LSRUse::ICmpZero && 2001 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2002 LU.WidestFixupType == OrigLU.WidestFixupType && 2003 LU.HasFormulaWithSameRegs(OrigF)) { 2004 // Scan through this use's formulae. 2005 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2006 E = LU.Formulae.end(); I != E; ++I) { 2007 const Formula &F = *I; 2008 // Check to see if this formula has the same registers and symbols 2009 // as OrigF. 2010 if (F.BaseRegs == OrigF.BaseRegs && 2011 F.ScaledReg == OrigF.ScaledReg && 2012 F.AM.BaseGV == OrigF.AM.BaseGV && 2013 F.AM.Scale == OrigF.AM.Scale && 2014 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2015 if (F.AM.BaseOffs == 0) 2016 return &LU; 2017 // This is the formula where all the registers and symbols matched; 2018 // there aren't going to be any others. Since we declined it, we 2019 // can skip the rest of the formulae and procede to the next LSRUse. 2020 break; 2021 } 2022 } 2023 } 2024 } 2025 2026 // Nothing looked good. 2027 return 0; 2028 } 2029 2030 void LSRInstance::CollectInterestingTypesAndFactors() { 2031 SmallSetVector<const SCEV *, 4> Strides; 2032 2033 // Collect interesting types and strides. 2034 SmallVector<const SCEV *, 4> Worklist; 2035 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2036 const SCEV *Expr = IU.getExpr(*UI); 2037 2038 // Collect interesting types. 2039 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2040 2041 // Add strides for mentioned loops. 2042 Worklist.push_back(Expr); 2043 do { 2044 const SCEV *S = Worklist.pop_back_val(); 2045 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2046 Strides.insert(AR->getStepRecurrence(SE)); 2047 Worklist.push_back(AR->getStart()); 2048 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2049 Worklist.append(Add->op_begin(), Add->op_end()); 2050 } 2051 } while (!Worklist.empty()); 2052 } 2053 2054 // Compute interesting factors from the set of interesting strides. 2055 for (SmallSetVector<const SCEV *, 4>::const_iterator 2056 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2057 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2058 llvm::next(I); NewStrideIter != E; ++NewStrideIter) { 2059 const SCEV *OldStride = *I; 2060 const SCEV *NewStride = *NewStrideIter; 2061 2062 if (SE.getTypeSizeInBits(OldStride->getType()) != 2063 SE.getTypeSizeInBits(NewStride->getType())) { 2064 if (SE.getTypeSizeInBits(OldStride->getType()) > 2065 SE.getTypeSizeInBits(NewStride->getType())) 2066 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2067 else 2068 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2069 } 2070 if (const SCEVConstant *Factor = 2071 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2072 SE, true))) { 2073 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2074 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2075 } else if (const SCEVConstant *Factor = 2076 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2077 NewStride, 2078 SE, true))) { 2079 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2080 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2081 } 2082 } 2083 2084 // If all uses use the same type, don't bother looking for truncation-based 2085 // reuse. 2086 if (Types.size() == 1) 2087 Types.clear(); 2088 2089 DEBUG(print_factors_and_types(dbgs())); 2090 } 2091 2092 void LSRInstance::CollectFixupsAndInitialFormulae() { 2093 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2094 // Record the uses. 2095 LSRFixup &LF = getNewFixup(); 2096 LF.UserInst = UI->getUser(); 2097 LF.OperandValToReplace = UI->getOperandValToReplace(); 2098 LF.PostIncLoops = UI->getPostIncLoops(); 2099 2100 LSRUse::KindType Kind = LSRUse::Basic; 2101 Type *AccessTy = 0; 2102 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2103 Kind = LSRUse::Address; 2104 AccessTy = getAccessType(LF.UserInst); 2105 } 2106 2107 const SCEV *S = IU.getExpr(*UI); 2108 2109 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2110 // (N - i == 0), and this allows (N - i) to be the expression that we work 2111 // with rather than just N or i, so we can consider the register 2112 // requirements for both N and i at the same time. Limiting this code to 2113 // equality icmps is not a problem because all interesting loops use 2114 // equality icmps, thanks to IndVarSimplify. 2115 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 2116 if (CI->isEquality()) { 2117 // Swap the operands if needed to put the OperandValToReplace on the 2118 // left, for consistency. 2119 Value *NV = CI->getOperand(1); 2120 if (NV == LF.OperandValToReplace) { 2121 CI->setOperand(1, CI->getOperand(0)); 2122 CI->setOperand(0, NV); 2123 NV = CI->getOperand(1); 2124 Changed = true; 2125 } 2126 2127 // x == y --> x - y == 0 2128 const SCEV *N = SE.getSCEV(NV); 2129 if (SE.isLoopInvariant(N, L)) { 2130 // S is normalized, so normalize N before folding it into S 2131 // to keep the result normalized. 2132 N = TransformForPostIncUse(Normalize, N, CI, 0, 2133 LF.PostIncLoops, SE, DT); 2134 Kind = LSRUse::ICmpZero; 2135 S = SE.getMinusSCEV(N, S); 2136 } 2137 2138 // -1 and the negations of all interesting strides (except the negation 2139 // of -1) are now also interesting. 2140 for (size_t i = 0, e = Factors.size(); i != e; ++i) 2141 if (Factors[i] != -1) 2142 Factors.insert(-(uint64_t)Factors[i]); 2143 Factors.insert(-1); 2144 } 2145 2146 // Set up the initial formula for this use. 2147 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 2148 LF.LUIdx = P.first; 2149 LF.Offset = P.second; 2150 LSRUse &LU = Uses[LF.LUIdx]; 2151 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2152 if (!LU.WidestFixupType || 2153 SE.getTypeSizeInBits(LU.WidestFixupType) < 2154 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2155 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2156 2157 // If this is the first use of this LSRUse, give it a formula. 2158 if (LU.Formulae.empty()) { 2159 InsertInitialFormula(S, LU, LF.LUIdx); 2160 CountRegisters(LU.Formulae.back(), LF.LUIdx); 2161 } 2162 } 2163 2164 DEBUG(print_fixups(dbgs())); 2165 } 2166 2167 /// InsertInitialFormula - Insert a formula for the given expression into 2168 /// the given use, separating out loop-variant portions from loop-invariant 2169 /// and loop-computable portions. 2170 void 2171 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 2172 Formula F; 2173 F.InitialMatch(S, L, SE); 2174 bool Inserted = InsertFormula(LU, LUIdx, F); 2175 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 2176 } 2177 2178 /// InsertSupplementalFormula - Insert a simple single-register formula for 2179 /// the given expression into the given use. 2180 void 2181 LSRInstance::InsertSupplementalFormula(const SCEV *S, 2182 LSRUse &LU, size_t LUIdx) { 2183 Formula F; 2184 F.BaseRegs.push_back(S); 2185 F.AM.HasBaseReg = true; 2186 bool Inserted = InsertFormula(LU, LUIdx, F); 2187 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 2188 } 2189 2190 /// CountRegisters - Note which registers are used by the given formula, 2191 /// updating RegUses. 2192 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 2193 if (F.ScaledReg) 2194 RegUses.CountRegister(F.ScaledReg, LUIdx); 2195 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 2196 E = F.BaseRegs.end(); I != E; ++I) 2197 RegUses.CountRegister(*I, LUIdx); 2198 } 2199 2200 /// InsertFormula - If the given formula has not yet been inserted, add it to 2201 /// the list, and return true. Return false otherwise. 2202 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 2203 if (!LU.InsertFormula(F)) 2204 return false; 2205 2206 CountRegisters(F, LUIdx); 2207 return true; 2208 } 2209 2210 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 2211 /// loop-invariant values which we're tracking. These other uses will pin these 2212 /// values in registers, making them less profitable for elimination. 2213 /// TODO: This currently misses non-constant addrec step registers. 2214 /// TODO: Should this give more weight to users inside the loop? 2215 void 2216 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 2217 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 2218 SmallPtrSet<const SCEV *, 8> Inserted; 2219 2220 while (!Worklist.empty()) { 2221 const SCEV *S = Worklist.pop_back_val(); 2222 2223 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 2224 Worklist.append(N->op_begin(), N->op_end()); 2225 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 2226 Worklist.push_back(C->getOperand()); 2227 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 2228 Worklist.push_back(D->getLHS()); 2229 Worklist.push_back(D->getRHS()); 2230 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 2231 if (!Inserted.insert(U)) continue; 2232 const Value *V = U->getValue(); 2233 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 2234 // Look for instructions defined outside the loop. 2235 if (L->contains(Inst)) continue; 2236 } else if (isa<UndefValue>(V)) 2237 // Undef doesn't have a live range, so it doesn't matter. 2238 continue; 2239 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 2240 UI != UE; ++UI) { 2241 const Instruction *UserInst = dyn_cast<Instruction>(*UI); 2242 // Ignore non-instructions. 2243 if (!UserInst) 2244 continue; 2245 // Ignore instructions in other functions (as can happen with 2246 // Constants). 2247 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 2248 continue; 2249 // Ignore instructions not dominated by the loop. 2250 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 2251 UserInst->getParent() : 2252 cast<PHINode>(UserInst)->getIncomingBlock( 2253 PHINode::getIncomingValueNumForOperand(UI.getOperandNo())); 2254 if (!DT.dominates(L->getHeader(), UseBB)) 2255 continue; 2256 // Ignore uses which are part of other SCEV expressions, to avoid 2257 // analyzing them multiple times. 2258 if (SE.isSCEVable(UserInst->getType())) { 2259 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 2260 // If the user is a no-op, look through to its uses. 2261 if (!isa<SCEVUnknown>(UserS)) 2262 continue; 2263 if (UserS == U) { 2264 Worklist.push_back( 2265 SE.getUnknown(const_cast<Instruction *>(UserInst))); 2266 continue; 2267 } 2268 } 2269 // Ignore icmp instructions which are already being analyzed. 2270 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 2271 unsigned OtherIdx = !UI.getOperandNo(); 2272 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 2273 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 2274 continue; 2275 } 2276 2277 LSRFixup &LF = getNewFixup(); 2278 LF.UserInst = const_cast<Instruction *>(UserInst); 2279 LF.OperandValToReplace = UI.getUse(); 2280 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, 0); 2281 LF.LUIdx = P.first; 2282 LF.Offset = P.second; 2283 LSRUse &LU = Uses[LF.LUIdx]; 2284 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 2285 if (!LU.WidestFixupType || 2286 SE.getTypeSizeInBits(LU.WidestFixupType) < 2287 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 2288 LU.WidestFixupType = LF.OperandValToReplace->getType(); 2289 InsertSupplementalFormula(U, LU, LF.LUIdx); 2290 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 2291 break; 2292 } 2293 } 2294 } 2295 } 2296 2297 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 2298 /// separate registers. If C is non-null, multiply each subexpression by C. 2299 static void CollectSubexprs(const SCEV *S, const SCEVConstant *C, 2300 SmallVectorImpl<const SCEV *> &Ops, 2301 const Loop *L, 2302 ScalarEvolution &SE) { 2303 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2304 // Break out add operands. 2305 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 2306 I != E; ++I) 2307 CollectSubexprs(*I, C, Ops, L, SE); 2308 return; 2309 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2310 // Split a non-zero base out of an addrec. 2311 if (!AR->getStart()->isZero()) { 2312 CollectSubexprs(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 2313 AR->getStepRecurrence(SE), 2314 AR->getLoop(), 2315 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 2316 SCEV::FlagAnyWrap), 2317 C, Ops, L, SE); 2318 CollectSubexprs(AR->getStart(), C, Ops, L, SE); 2319 return; 2320 } 2321 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 2322 // Break (C * (a + b + c)) into C*a + C*b + C*c. 2323 if (Mul->getNumOperands() == 2) 2324 if (const SCEVConstant *Op0 = 2325 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2326 CollectSubexprs(Mul->getOperand(1), 2327 C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0, 2328 Ops, L, SE); 2329 return; 2330 } 2331 } 2332 2333 // Otherwise use the value itself, optionally with a scale applied. 2334 Ops.push_back(C ? SE.getMulExpr(C, S) : S); 2335 } 2336 2337 /// GenerateReassociations - Split out subexpressions from adds and the bases of 2338 /// addrecs. 2339 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 2340 Formula Base, 2341 unsigned Depth) { 2342 // Arbitrarily cap recursion to protect compile time. 2343 if (Depth >= 3) return; 2344 2345 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2346 const SCEV *BaseReg = Base.BaseRegs[i]; 2347 2348 SmallVector<const SCEV *, 8> AddOps; 2349 CollectSubexprs(BaseReg, 0, AddOps, L, SE); 2350 2351 if (AddOps.size() == 1) continue; 2352 2353 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 2354 JE = AddOps.end(); J != JE; ++J) { 2355 2356 // Loop-variant "unknown" values are uninteresting; we won't be able to 2357 // do anything meaningful with them. 2358 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 2359 continue; 2360 2361 // Don't pull a constant into a register if the constant could be folded 2362 // into an immediate field. 2363 if (isAlwaysFoldable(*J, LU.MinOffset, LU.MaxOffset, 2364 Base.getNumRegs() > 1, 2365 LU.Kind, LU.AccessTy, TLI, SE)) 2366 continue; 2367 2368 // Collect all operands except *J. 2369 SmallVector<const SCEV *, 8> InnerAddOps 2370 (((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 2371 InnerAddOps.append 2372 (llvm::next(J), ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 2373 2374 // Don't leave just a constant behind in a register if the constant could 2375 // be folded into an immediate field. 2376 if (InnerAddOps.size() == 1 && 2377 isAlwaysFoldable(InnerAddOps[0], LU.MinOffset, LU.MaxOffset, 2378 Base.getNumRegs() > 1, 2379 LU.Kind, LU.AccessTy, TLI, SE)) 2380 continue; 2381 2382 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 2383 if (InnerSum->isZero()) 2384 continue; 2385 Formula F = Base; 2386 2387 // Add the remaining pieces of the add back into the new formula. 2388 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 2389 if (TLI && InnerSumSC && 2390 SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 2391 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2392 InnerSumSC->getValue()->getZExtValue())) { 2393 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2394 InnerSumSC->getValue()->getZExtValue(); 2395 F.BaseRegs.erase(F.BaseRegs.begin() + i); 2396 } else 2397 F.BaseRegs[i] = InnerSum; 2398 2399 // Add J as its own register, or an unfolded immediate. 2400 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 2401 if (TLI && SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 2402 TLI->isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 2403 SC->getValue()->getZExtValue())) 2404 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset + 2405 SC->getValue()->getZExtValue(); 2406 else 2407 F.BaseRegs.push_back(*J); 2408 2409 if (InsertFormula(LU, LUIdx, F)) 2410 // If that formula hadn't been seen before, recurse to find more like 2411 // it. 2412 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth+1); 2413 } 2414 } 2415 } 2416 2417 /// GenerateCombinations - Generate a formula consisting of all of the 2418 /// loop-dominating registers added into a single register. 2419 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 2420 Formula Base) { 2421 // This method is only interesting on a plurality of registers. 2422 if (Base.BaseRegs.size() <= 1) return; 2423 2424 Formula F = Base; 2425 F.BaseRegs.clear(); 2426 SmallVector<const SCEV *, 4> Ops; 2427 for (SmallVectorImpl<const SCEV *>::const_iterator 2428 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 2429 const SCEV *BaseReg = *I; 2430 if (SE.properlyDominates(BaseReg, L->getHeader()) && 2431 !SE.hasComputableLoopEvolution(BaseReg, L)) 2432 Ops.push_back(BaseReg); 2433 else 2434 F.BaseRegs.push_back(BaseReg); 2435 } 2436 if (Ops.size() > 1) { 2437 const SCEV *Sum = SE.getAddExpr(Ops); 2438 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 2439 // opportunity to fold something. For now, just ignore such cases 2440 // rather than proceed with zero in a register. 2441 if (!Sum->isZero()) { 2442 F.BaseRegs.push_back(Sum); 2443 (void)InsertFormula(LU, LUIdx, F); 2444 } 2445 } 2446 } 2447 2448 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 2449 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 2450 Formula Base) { 2451 // We can't add a symbolic offset if the address already contains one. 2452 if (Base.AM.BaseGV) return; 2453 2454 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2455 const SCEV *G = Base.BaseRegs[i]; 2456 GlobalValue *GV = ExtractSymbol(G, SE); 2457 if (G->isZero() || !GV) 2458 continue; 2459 Formula F = Base; 2460 F.AM.BaseGV = GV; 2461 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2462 LU.Kind, LU.AccessTy, TLI)) 2463 continue; 2464 F.BaseRegs[i] = G; 2465 (void)InsertFormula(LU, LUIdx, F); 2466 } 2467 } 2468 2469 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 2470 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 2471 Formula Base) { 2472 // TODO: For now, just add the min and max offset, because it usually isn't 2473 // worthwhile looking at everything inbetween. 2474 SmallVector<int64_t, 2> Worklist; 2475 Worklist.push_back(LU.MinOffset); 2476 if (LU.MaxOffset != LU.MinOffset) 2477 Worklist.push_back(LU.MaxOffset); 2478 2479 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 2480 const SCEV *G = Base.BaseRegs[i]; 2481 2482 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 2483 E = Worklist.end(); I != E; ++I) { 2484 Formula F = Base; 2485 F.AM.BaseOffs = (uint64_t)Base.AM.BaseOffs - *I; 2486 if (isLegalUse(F.AM, LU.MinOffset - *I, LU.MaxOffset - *I, 2487 LU.Kind, LU.AccessTy, TLI)) { 2488 // Add the offset to the base register. 2489 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 2490 // If it cancelled out, drop the base register, otherwise update it. 2491 if (NewG->isZero()) { 2492 std::swap(F.BaseRegs[i], F.BaseRegs.back()); 2493 F.BaseRegs.pop_back(); 2494 } else 2495 F.BaseRegs[i] = NewG; 2496 2497 (void)InsertFormula(LU, LUIdx, F); 2498 } 2499 } 2500 2501 int64_t Imm = ExtractImmediate(G, SE); 2502 if (G->isZero() || Imm == 0) 2503 continue; 2504 Formula F = Base; 2505 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Imm; 2506 if (!isLegalUse(F.AM, LU.MinOffset, LU.MaxOffset, 2507 LU.Kind, LU.AccessTy, TLI)) 2508 continue; 2509 F.BaseRegs[i] = G; 2510 (void)InsertFormula(LU, LUIdx, F); 2511 } 2512 } 2513 2514 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 2515 /// the comparison. For example, x == y -> x*c == y*c. 2516 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 2517 Formula Base) { 2518 if (LU.Kind != LSRUse::ICmpZero) return; 2519 2520 // Determine the integer type for the base formula. 2521 Type *IntTy = Base.getType(); 2522 if (!IntTy) return; 2523 if (SE.getTypeSizeInBits(IntTy) > 64) return; 2524 2525 // Don't do this if there is more than one offset. 2526 if (LU.MinOffset != LU.MaxOffset) return; 2527 2528 assert(!Base.AM.BaseGV && "ICmpZero use is not legal!"); 2529 2530 // Check each interesting stride. 2531 for (SmallSetVector<int64_t, 8>::const_iterator 2532 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2533 int64_t Factor = *I; 2534 2535 // Check that the multiplication doesn't overflow. 2536 if (Base.AM.BaseOffs == INT64_MIN && Factor == -1) 2537 continue; 2538 int64_t NewBaseOffs = (uint64_t)Base.AM.BaseOffs * Factor; 2539 if (NewBaseOffs / Factor != Base.AM.BaseOffs) 2540 continue; 2541 2542 // Check that multiplying with the use offset doesn't overflow. 2543 int64_t Offset = LU.MinOffset; 2544 if (Offset == INT64_MIN && Factor == -1) 2545 continue; 2546 Offset = (uint64_t)Offset * Factor; 2547 if (Offset / Factor != LU.MinOffset) 2548 continue; 2549 2550 Formula F = Base; 2551 F.AM.BaseOffs = NewBaseOffs; 2552 2553 // Check that this scale is legal. 2554 if (!isLegalUse(F.AM, Offset, Offset, LU.Kind, LU.AccessTy, TLI)) 2555 continue; 2556 2557 // Compensate for the use having MinOffset built into it. 2558 F.AM.BaseOffs = (uint64_t)F.AM.BaseOffs + Offset - LU.MinOffset; 2559 2560 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2561 2562 // Check that multiplying with each base register doesn't overflow. 2563 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 2564 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 2565 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 2566 goto next; 2567 } 2568 2569 // Check that multiplying with the scaled register doesn't overflow. 2570 if (F.ScaledReg) { 2571 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 2572 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 2573 continue; 2574 } 2575 2576 // Check that multiplying with the unfolded offset doesn't overflow. 2577 if (F.UnfoldedOffset != 0) { 2578 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 2579 continue; 2580 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 2581 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 2582 continue; 2583 } 2584 2585 // If we make it here and it's legal, add it. 2586 (void)InsertFormula(LU, LUIdx, F); 2587 next:; 2588 } 2589 } 2590 2591 /// GenerateScales - Generate stride factor reuse formulae by making use of 2592 /// scaled-offset address modes, for example. 2593 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 2594 // Determine the integer type for the base formula. 2595 Type *IntTy = Base.getType(); 2596 if (!IntTy) return; 2597 2598 // If this Formula already has a scaled register, we can't add another one. 2599 if (Base.AM.Scale != 0) return; 2600 2601 // Check each interesting stride. 2602 for (SmallSetVector<int64_t, 8>::const_iterator 2603 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 2604 int64_t Factor = *I; 2605 2606 Base.AM.Scale = Factor; 2607 Base.AM.HasBaseReg = Base.BaseRegs.size() > 1; 2608 // Check whether this scale is going to be legal. 2609 if (!isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2610 LU.Kind, LU.AccessTy, TLI)) { 2611 // As a special-case, handle special out-of-loop Basic users specially. 2612 // TODO: Reconsider this special case. 2613 if (LU.Kind == LSRUse::Basic && 2614 isLegalUse(Base.AM, LU.MinOffset, LU.MaxOffset, 2615 LSRUse::Special, LU.AccessTy, TLI) && 2616 LU.AllFixupsOutsideLoop) 2617 LU.Kind = LSRUse::Special; 2618 else 2619 continue; 2620 } 2621 // For an ICmpZero, negating a solitary base register won't lead to 2622 // new solutions. 2623 if (LU.Kind == LSRUse::ICmpZero && 2624 !Base.AM.HasBaseReg && Base.AM.BaseOffs == 0 && !Base.AM.BaseGV) 2625 continue; 2626 // For each addrec base reg, apply the scale, if possible. 2627 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 2628 if (const SCEVAddRecExpr *AR = 2629 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 2630 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 2631 if (FactorS->isZero()) 2632 continue; 2633 // Divide out the factor, ignoring high bits, since we'll be 2634 // scaling the value back up in the end. 2635 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 2636 // TODO: This could be optimized to avoid all the copying. 2637 Formula F = Base; 2638 F.ScaledReg = Quotient; 2639 F.DeleteBaseReg(F.BaseRegs[i]); 2640 (void)InsertFormula(LU, LUIdx, F); 2641 } 2642 } 2643 } 2644 } 2645 2646 /// GenerateTruncates - Generate reuse formulae from different IV types. 2647 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 2648 // This requires TargetLowering to tell us which truncates are free. 2649 if (!TLI) return; 2650 2651 // Don't bother truncating symbolic values. 2652 if (Base.AM.BaseGV) return; 2653 2654 // Determine the integer type for the base formula. 2655 Type *DstTy = Base.getType(); 2656 if (!DstTy) return; 2657 DstTy = SE.getEffectiveSCEVType(DstTy); 2658 2659 for (SmallSetVector<Type *, 4>::const_iterator 2660 I = Types.begin(), E = Types.end(); I != E; ++I) { 2661 Type *SrcTy = *I; 2662 if (SrcTy != DstTy && TLI->isTruncateFree(SrcTy, DstTy)) { 2663 Formula F = Base; 2664 2665 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 2666 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 2667 JE = F.BaseRegs.end(); J != JE; ++J) 2668 *J = SE.getAnyExtendExpr(*J, SrcTy); 2669 2670 // TODO: This assumes we've done basic processing on all uses and 2671 // have an idea what the register usage is. 2672 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 2673 continue; 2674 2675 (void)InsertFormula(LU, LUIdx, F); 2676 } 2677 } 2678 } 2679 2680 namespace { 2681 2682 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 2683 /// defer modifications so that the search phase doesn't have to worry about 2684 /// the data structures moving underneath it. 2685 struct WorkItem { 2686 size_t LUIdx; 2687 int64_t Imm; 2688 const SCEV *OrigReg; 2689 2690 WorkItem(size_t LI, int64_t I, const SCEV *R) 2691 : LUIdx(LI), Imm(I), OrigReg(R) {} 2692 2693 void print(raw_ostream &OS) const; 2694 void dump() const; 2695 }; 2696 2697 } 2698 2699 void WorkItem::print(raw_ostream &OS) const { 2700 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 2701 << " , add offset " << Imm; 2702 } 2703 2704 void WorkItem::dump() const { 2705 print(errs()); errs() << '\n'; 2706 } 2707 2708 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 2709 /// distance apart and try to form reuse opportunities between them. 2710 void LSRInstance::GenerateCrossUseConstantOffsets() { 2711 // Group the registers by their value without any added constant offset. 2712 typedef std::map<int64_t, const SCEV *> ImmMapTy; 2713 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 2714 RegMapTy Map; 2715 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 2716 SmallVector<const SCEV *, 8> Sequence; 2717 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 2718 I != E; ++I) { 2719 const SCEV *Reg = *I; 2720 int64_t Imm = ExtractImmediate(Reg, SE); 2721 std::pair<RegMapTy::iterator, bool> Pair = 2722 Map.insert(std::make_pair(Reg, ImmMapTy())); 2723 if (Pair.second) 2724 Sequence.push_back(Reg); 2725 Pair.first->second.insert(std::make_pair(Imm, *I)); 2726 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 2727 } 2728 2729 // Now examine each set of registers with the same base value. Build up 2730 // a list of work to do and do the work in a separate step so that we're 2731 // not adding formulae and register counts while we're searching. 2732 SmallVector<WorkItem, 32> WorkItems; 2733 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 2734 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 2735 E = Sequence.end(); I != E; ++I) { 2736 const SCEV *Reg = *I; 2737 const ImmMapTy &Imms = Map.find(Reg)->second; 2738 2739 // It's not worthwhile looking for reuse if there's only one offset. 2740 if (Imms.size() == 1) 2741 continue; 2742 2743 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 2744 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2745 J != JE; ++J) 2746 dbgs() << ' ' << J->first; 2747 dbgs() << '\n'); 2748 2749 // Examine each offset. 2750 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 2751 J != JE; ++J) { 2752 const SCEV *OrigReg = J->second; 2753 2754 int64_t JImm = J->first; 2755 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 2756 2757 if (!isa<SCEVConstant>(OrigReg) && 2758 UsedByIndicesMap[Reg].count() == 1) { 2759 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 2760 continue; 2761 } 2762 2763 // Conservatively examine offsets between this orig reg a few selected 2764 // other orig regs. 2765 ImmMapTy::const_iterator OtherImms[] = { 2766 Imms.begin(), prior(Imms.end()), 2767 Imms.lower_bound((Imms.begin()->first + prior(Imms.end())->first) / 2) 2768 }; 2769 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 2770 ImmMapTy::const_iterator M = OtherImms[i]; 2771 if (M == J || M == JE) continue; 2772 2773 // Compute the difference between the two. 2774 int64_t Imm = (uint64_t)JImm - M->first; 2775 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 2776 LUIdx = UsedByIndices.find_next(LUIdx)) 2777 // Make a memo of this use, offset, and register tuple. 2778 if (UniqueItems.insert(std::make_pair(LUIdx, Imm))) 2779 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 2780 } 2781 } 2782 } 2783 2784 Map.clear(); 2785 Sequence.clear(); 2786 UsedByIndicesMap.clear(); 2787 UniqueItems.clear(); 2788 2789 // Now iterate through the worklist and add new formulae. 2790 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 2791 E = WorkItems.end(); I != E; ++I) { 2792 const WorkItem &WI = *I; 2793 size_t LUIdx = WI.LUIdx; 2794 LSRUse &LU = Uses[LUIdx]; 2795 int64_t Imm = WI.Imm; 2796 const SCEV *OrigReg = WI.OrigReg; 2797 2798 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 2799 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 2800 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 2801 2802 // TODO: Use a more targeted data structure. 2803 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 2804 const Formula &F = LU.Formulae[L]; 2805 // Use the immediate in the scaled register. 2806 if (F.ScaledReg == OrigReg) { 2807 int64_t Offs = (uint64_t)F.AM.BaseOffs + 2808 Imm * (uint64_t)F.AM.Scale; 2809 // Don't create 50 + reg(-50). 2810 if (F.referencesReg(SE.getSCEV( 2811 ConstantInt::get(IntTy, -(uint64_t)Offs)))) 2812 continue; 2813 Formula NewF = F; 2814 NewF.AM.BaseOffs = Offs; 2815 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2816 LU.Kind, LU.AccessTy, TLI)) 2817 continue; 2818 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 2819 2820 // If the new scale is a constant in a register, and adding the constant 2821 // value to the immediate would produce a value closer to zero than the 2822 // immediate itself, then the formula isn't worthwhile. 2823 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 2824 if (C->getValue()->isNegative() != 2825 (NewF.AM.BaseOffs < 0) && 2826 (C->getValue()->getValue().abs() * APInt(BitWidth, F.AM.Scale)) 2827 .ule(abs64(NewF.AM.BaseOffs))) 2828 continue; 2829 2830 // OK, looks good. 2831 (void)InsertFormula(LU, LUIdx, NewF); 2832 } else { 2833 // Use the immediate in a base register. 2834 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 2835 const SCEV *BaseReg = F.BaseRegs[N]; 2836 if (BaseReg != OrigReg) 2837 continue; 2838 Formula NewF = F; 2839 NewF.AM.BaseOffs = (uint64_t)NewF.AM.BaseOffs + Imm; 2840 if (!isLegalUse(NewF.AM, LU.MinOffset, LU.MaxOffset, 2841 LU.Kind, LU.AccessTy, TLI)) { 2842 if (!TLI || 2843 !TLI->isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 2844 continue; 2845 NewF = F; 2846 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 2847 } 2848 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 2849 2850 // If the new formula has a constant in a register, and adding the 2851 // constant value to the immediate would produce a value closer to 2852 // zero than the immediate itself, then the formula isn't worthwhile. 2853 for (SmallVectorImpl<const SCEV *>::const_iterator 2854 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 2855 J != JE; ++J) 2856 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 2857 if ((C->getValue()->getValue() + NewF.AM.BaseOffs).abs().slt( 2858 abs64(NewF.AM.BaseOffs)) && 2859 (C->getValue()->getValue() + 2860 NewF.AM.BaseOffs).countTrailingZeros() >= 2861 CountTrailingZeros_64(NewF.AM.BaseOffs)) 2862 goto skip_formula; 2863 2864 // Ok, looks good. 2865 (void)InsertFormula(LU, LUIdx, NewF); 2866 break; 2867 skip_formula:; 2868 } 2869 } 2870 } 2871 } 2872 } 2873 2874 /// GenerateAllReuseFormulae - Generate formulae for each use. 2875 void 2876 LSRInstance::GenerateAllReuseFormulae() { 2877 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 2878 // queries are more precise. 2879 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2880 LSRUse &LU = Uses[LUIdx]; 2881 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2882 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 2883 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2884 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 2885 } 2886 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2887 LSRUse &LU = Uses[LUIdx]; 2888 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2889 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 2890 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2891 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 2892 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2893 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 2894 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2895 GenerateScales(LU, LUIdx, LU.Formulae[i]); 2896 } 2897 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2898 LSRUse &LU = Uses[LUIdx]; 2899 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 2900 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 2901 } 2902 2903 GenerateCrossUseConstantOffsets(); 2904 2905 DEBUG(dbgs() << "\n" 2906 "After generating reuse formulae:\n"; 2907 print_uses(dbgs())); 2908 } 2909 2910 /// If there are multiple formulae with the same set of registers used 2911 /// by other uses, pick the best one and delete the others. 2912 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 2913 DenseSet<const SCEV *> VisitedRegs; 2914 SmallPtrSet<const SCEV *, 16> Regs; 2915 #ifndef NDEBUG 2916 bool ChangedFormulae = false; 2917 #endif 2918 2919 // Collect the best formula for each unique set of shared registers. This 2920 // is reset for each use. 2921 typedef DenseMap<SmallVector<const SCEV *, 2>, size_t, UniquifierDenseMapInfo> 2922 BestFormulaeTy; 2923 BestFormulaeTy BestFormulae; 2924 2925 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2926 LSRUse &LU = Uses[LUIdx]; 2927 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 2928 2929 bool Any = false; 2930 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 2931 FIdx != NumForms; ++FIdx) { 2932 Formula &F = LU.Formulae[FIdx]; 2933 2934 SmallVector<const SCEV *, 2> Key; 2935 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 2936 JE = F.BaseRegs.end(); J != JE; ++J) { 2937 const SCEV *Reg = *J; 2938 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 2939 Key.push_back(Reg); 2940 } 2941 if (F.ScaledReg && 2942 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 2943 Key.push_back(F.ScaledReg); 2944 // Unstable sort by host order ok, because this is only used for 2945 // uniquifying. 2946 std::sort(Key.begin(), Key.end()); 2947 2948 std::pair<BestFormulaeTy::const_iterator, bool> P = 2949 BestFormulae.insert(std::make_pair(Key, FIdx)); 2950 if (!P.second) { 2951 Formula &Best = LU.Formulae[P.first->second]; 2952 2953 Cost CostF; 2954 CostF.RateFormula(F, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2955 Regs.clear(); 2956 Cost CostBest; 2957 CostBest.RateFormula(Best, Regs, VisitedRegs, L, LU.Offsets, SE, DT); 2958 Regs.clear(); 2959 if (CostF < CostBest) 2960 std::swap(F, Best); 2961 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 2962 dbgs() << "\n" 2963 " in favor of formula "; Best.print(dbgs()); 2964 dbgs() << '\n'); 2965 #ifndef NDEBUG 2966 ChangedFormulae = true; 2967 #endif 2968 LU.DeleteFormula(F); 2969 --FIdx; 2970 --NumForms; 2971 Any = true; 2972 continue; 2973 } 2974 } 2975 2976 // Now that we've filtered out some formulae, recompute the Regs set. 2977 if (Any) 2978 LU.RecomputeRegs(LUIdx, RegUses); 2979 2980 // Reset this to prepare for the next use. 2981 BestFormulae.clear(); 2982 } 2983 2984 DEBUG(if (ChangedFormulae) { 2985 dbgs() << "\n" 2986 "After filtering out undesirable candidates:\n"; 2987 print_uses(dbgs()); 2988 }); 2989 } 2990 2991 // This is a rough guess that seems to work fairly well. 2992 static const size_t ComplexityLimit = UINT16_MAX; 2993 2994 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 2995 /// solutions the solver might have to consider. It almost never considers 2996 /// this many solutions because it prune the search space, but the pruning 2997 /// isn't always sufficient. 2998 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 2999 size_t Power = 1; 3000 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3001 E = Uses.end(); I != E; ++I) { 3002 size_t FSize = I->Formulae.size(); 3003 if (FSize >= ComplexityLimit) { 3004 Power = ComplexityLimit; 3005 break; 3006 } 3007 Power *= FSize; 3008 if (Power >= ComplexityLimit) 3009 break; 3010 } 3011 return Power; 3012 } 3013 3014 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 3015 /// of the registers of another formula, it won't help reduce register 3016 /// pressure (though it may not necessarily hurt register pressure); remove 3017 /// it to simplify the system. 3018 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 3019 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3020 DEBUG(dbgs() << "The search space is too complex.\n"); 3021 3022 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 3023 "which use a superset of registers used by other " 3024 "formulae.\n"); 3025 3026 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3027 LSRUse &LU = Uses[LUIdx]; 3028 bool Any = false; 3029 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3030 Formula &F = LU.Formulae[i]; 3031 // Look for a formula with a constant or GV in a register. If the use 3032 // also has a formula with that same value in an immediate field, 3033 // delete the one that uses a register. 3034 for (SmallVectorImpl<const SCEV *>::const_iterator 3035 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 3036 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 3037 Formula NewF = F; 3038 NewF.AM.BaseOffs += C->getValue()->getSExtValue(); 3039 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3040 (I - F.BaseRegs.begin())); 3041 if (LU.HasFormulaWithSameRegs(NewF)) { 3042 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3043 LU.DeleteFormula(F); 3044 --i; 3045 --e; 3046 Any = true; 3047 break; 3048 } 3049 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 3050 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 3051 if (!F.AM.BaseGV) { 3052 Formula NewF = F; 3053 NewF.AM.BaseGV = GV; 3054 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 3055 (I - F.BaseRegs.begin())); 3056 if (LU.HasFormulaWithSameRegs(NewF)) { 3057 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3058 dbgs() << '\n'); 3059 LU.DeleteFormula(F); 3060 --i; 3061 --e; 3062 Any = true; 3063 break; 3064 } 3065 } 3066 } 3067 } 3068 } 3069 if (Any) 3070 LU.RecomputeRegs(LUIdx, RegUses); 3071 } 3072 3073 DEBUG(dbgs() << "After pre-selection:\n"; 3074 print_uses(dbgs())); 3075 } 3076 } 3077 3078 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 3079 /// for expressions like A, A+1, A+2, etc., allocate a single register for 3080 /// them. 3081 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 3082 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3083 DEBUG(dbgs() << "The search space is too complex.\n"); 3084 3085 DEBUG(dbgs() << "Narrowing the search space by assuming that uses " 3086 "separated by a constant offset will use the same " 3087 "registers.\n"); 3088 3089 // This is especially useful for unrolled loops. 3090 3091 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3092 LSRUse &LU = Uses[LUIdx]; 3093 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3094 E = LU.Formulae.end(); I != E; ++I) { 3095 const Formula &F = *I; 3096 if (F.AM.BaseOffs != 0 && F.AM.Scale == 0) { 3097 if (LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU)) { 3098 if (reconcileNewOffset(*LUThatHas, F.AM.BaseOffs, 3099 /*HasBaseReg=*/false, 3100 LU.Kind, LU.AccessTy)) { 3101 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); 3102 dbgs() << '\n'); 3103 3104 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 3105 3106 // Update the relocs to reference the new use. 3107 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 3108 E = Fixups.end(); I != E; ++I) { 3109 LSRFixup &Fixup = *I; 3110 if (Fixup.LUIdx == LUIdx) { 3111 Fixup.LUIdx = LUThatHas - &Uses.front(); 3112 Fixup.Offset += F.AM.BaseOffs; 3113 // Add the new offset to LUThatHas' offset list. 3114 if (LUThatHas->Offsets.back() != Fixup.Offset) { 3115 LUThatHas->Offsets.push_back(Fixup.Offset); 3116 if (Fixup.Offset > LUThatHas->MaxOffset) 3117 LUThatHas->MaxOffset = Fixup.Offset; 3118 if (Fixup.Offset < LUThatHas->MinOffset) 3119 LUThatHas->MinOffset = Fixup.Offset; 3120 } 3121 DEBUG(dbgs() << "New fixup has offset " 3122 << Fixup.Offset << '\n'); 3123 } 3124 if (Fixup.LUIdx == NumUses-1) 3125 Fixup.LUIdx = LUIdx; 3126 } 3127 3128 // Delete formulae from the new use which are no longer legal. 3129 bool Any = false; 3130 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 3131 Formula &F = LUThatHas->Formulae[i]; 3132 if (!isLegalUse(F.AM, 3133 LUThatHas->MinOffset, LUThatHas->MaxOffset, 3134 LUThatHas->Kind, LUThatHas->AccessTy, TLI)) { 3135 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 3136 dbgs() << '\n'); 3137 LUThatHas->DeleteFormula(F); 3138 --i; 3139 --e; 3140 Any = true; 3141 } 3142 } 3143 if (Any) 3144 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 3145 3146 // Delete the old use. 3147 DeleteUse(LU, LUIdx); 3148 --LUIdx; 3149 --NumUses; 3150 break; 3151 } 3152 } 3153 } 3154 } 3155 } 3156 3157 DEBUG(dbgs() << "After pre-selection:\n"; 3158 print_uses(dbgs())); 3159 } 3160 } 3161 3162 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 3163 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 3164 /// we've done more filtering, as it may be able to find more formulae to 3165 /// eliminate. 3166 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 3167 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3168 DEBUG(dbgs() << "The search space is too complex.\n"); 3169 3170 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 3171 "undesirable dedicated registers.\n"); 3172 3173 FilterOutUndesirableDedicatedRegisters(); 3174 3175 DEBUG(dbgs() << "After pre-selection:\n"; 3176 print_uses(dbgs())); 3177 } 3178 } 3179 3180 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 3181 /// to be profitable, and then in any use which has any reference to that 3182 /// register, delete all formulae which do not reference that register. 3183 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 3184 // With all other options exhausted, loop until the system is simple 3185 // enough to handle. 3186 SmallPtrSet<const SCEV *, 4> Taken; 3187 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 3188 // Ok, we have too many of formulae on our hands to conveniently handle. 3189 // Use a rough heuristic to thin out the list. 3190 DEBUG(dbgs() << "The search space is too complex.\n"); 3191 3192 // Pick the register which is used by the most LSRUses, which is likely 3193 // to be a good reuse register candidate. 3194 const SCEV *Best = 0; 3195 unsigned BestNum = 0; 3196 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3197 I != E; ++I) { 3198 const SCEV *Reg = *I; 3199 if (Taken.count(Reg)) 3200 continue; 3201 if (!Best) 3202 Best = Reg; 3203 else { 3204 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 3205 if (Count > BestNum) { 3206 Best = Reg; 3207 BestNum = Count; 3208 } 3209 } 3210 } 3211 3212 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 3213 << " will yield profitable reuse.\n"); 3214 Taken.insert(Best); 3215 3216 // In any use with formulae which references this register, delete formulae 3217 // which don't reference it. 3218 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3219 LSRUse &LU = Uses[LUIdx]; 3220 if (!LU.Regs.count(Best)) continue; 3221 3222 bool Any = false; 3223 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 3224 Formula &F = LU.Formulae[i]; 3225 if (!F.referencesReg(Best)) { 3226 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 3227 LU.DeleteFormula(F); 3228 --e; 3229 --i; 3230 Any = true; 3231 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 3232 continue; 3233 } 3234 } 3235 3236 if (Any) 3237 LU.RecomputeRegs(LUIdx, RegUses); 3238 } 3239 3240 DEBUG(dbgs() << "After pre-selection:\n"; 3241 print_uses(dbgs())); 3242 } 3243 } 3244 3245 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 3246 /// formulae to choose from, use some rough heuristics to prune down the number 3247 /// of formulae. This keeps the main solver from taking an extraordinary amount 3248 /// of time in some worst-case scenarios. 3249 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 3250 NarrowSearchSpaceByDetectingSupersets(); 3251 NarrowSearchSpaceByCollapsingUnrolledCode(); 3252 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 3253 NarrowSearchSpaceByPickingWinnerRegs(); 3254 } 3255 3256 /// SolveRecurse - This is the recursive solver. 3257 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 3258 Cost &SolutionCost, 3259 SmallVectorImpl<const Formula *> &Workspace, 3260 const Cost &CurCost, 3261 const SmallPtrSet<const SCEV *, 16> &CurRegs, 3262 DenseSet<const SCEV *> &VisitedRegs) const { 3263 // Some ideas: 3264 // - prune more: 3265 // - use more aggressive filtering 3266 // - sort the formula so that the most profitable solutions are found first 3267 // - sort the uses too 3268 // - search faster: 3269 // - don't compute a cost, and then compare. compare while computing a cost 3270 // and bail early. 3271 // - track register sets with SmallBitVector 3272 3273 const LSRUse &LU = Uses[Workspace.size()]; 3274 3275 // If this use references any register that's already a part of the 3276 // in-progress solution, consider it a requirement that a formula must 3277 // reference that register in order to be considered. This prunes out 3278 // unprofitable searching. 3279 SmallSetVector<const SCEV *, 4> ReqRegs; 3280 for (SmallPtrSet<const SCEV *, 16>::const_iterator I = CurRegs.begin(), 3281 E = CurRegs.end(); I != E; ++I) 3282 if (LU.Regs.count(*I)) 3283 ReqRegs.insert(*I); 3284 3285 bool AnySatisfiedReqRegs = false; 3286 SmallPtrSet<const SCEV *, 16> NewRegs; 3287 Cost NewCost; 3288 retry: 3289 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 3290 E = LU.Formulae.end(); I != E; ++I) { 3291 const Formula &F = *I; 3292 3293 // Ignore formulae which do not use any of the required registers. 3294 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 3295 JE = ReqRegs.end(); J != JE; ++J) { 3296 const SCEV *Reg = *J; 3297 if ((!F.ScaledReg || F.ScaledReg != Reg) && 3298 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) == 3299 F.BaseRegs.end()) 3300 goto skip; 3301 } 3302 AnySatisfiedReqRegs = true; 3303 3304 // Evaluate the cost of the current formula. If it's already worse than 3305 // the current best, prune the search at that point. 3306 NewCost = CurCost; 3307 NewRegs = CurRegs; 3308 NewCost.RateFormula(F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT); 3309 if (NewCost < SolutionCost) { 3310 Workspace.push_back(&F); 3311 if (Workspace.size() != Uses.size()) { 3312 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 3313 NewRegs, VisitedRegs); 3314 if (F.getNumRegs() == 1 && Workspace.size() == 1) 3315 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 3316 } else { 3317 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 3318 dbgs() << ". Regs:"; 3319 for (SmallPtrSet<const SCEV *, 16>::const_iterator 3320 I = NewRegs.begin(), E = NewRegs.end(); I != E; ++I) 3321 dbgs() << ' ' << **I; 3322 dbgs() << '\n'); 3323 3324 SolutionCost = NewCost; 3325 Solution = Workspace; 3326 } 3327 Workspace.pop_back(); 3328 } 3329 skip:; 3330 } 3331 3332 if (!EnableRetry && !AnySatisfiedReqRegs) 3333 return; 3334 3335 // If none of the formulae had all of the required registers, relax the 3336 // constraint so that we don't exclude all formulae. 3337 if (!AnySatisfiedReqRegs) { 3338 assert(!ReqRegs.empty() && "Solver failed even without required registers"); 3339 ReqRegs.clear(); 3340 goto retry; 3341 } 3342 } 3343 3344 /// Solve - Choose one formula from each use. Return the results in the given 3345 /// Solution vector. 3346 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 3347 SmallVector<const Formula *, 8> Workspace; 3348 Cost SolutionCost; 3349 SolutionCost.Loose(); 3350 Cost CurCost; 3351 SmallPtrSet<const SCEV *, 16> CurRegs; 3352 DenseSet<const SCEV *> VisitedRegs; 3353 Workspace.reserve(Uses.size()); 3354 3355 // SolveRecurse does all the work. 3356 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 3357 CurRegs, VisitedRegs); 3358 if (Solution.empty()) { 3359 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 3360 return; 3361 } 3362 3363 // Ok, we've now made all our decisions. 3364 DEBUG(dbgs() << "\n" 3365 "The chosen solution requires "; SolutionCost.print(dbgs()); 3366 dbgs() << ":\n"; 3367 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 3368 dbgs() << " "; 3369 Uses[i].print(dbgs()); 3370 dbgs() << "\n" 3371 " "; 3372 Solution[i]->print(dbgs()); 3373 dbgs() << '\n'; 3374 }); 3375 3376 assert(Solution.size() == Uses.size() && "Malformed solution!"); 3377 } 3378 3379 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 3380 /// the dominator tree far as we can go while still being dominated by the 3381 /// input positions. This helps canonicalize the insert position, which 3382 /// encourages sharing. 3383 BasicBlock::iterator 3384 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 3385 const SmallVectorImpl<Instruction *> &Inputs) 3386 const { 3387 for (;;) { 3388 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 3389 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 3390 3391 BasicBlock *IDom; 3392 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 3393 if (!Rung) return IP; 3394 Rung = Rung->getIDom(); 3395 if (!Rung) return IP; 3396 IDom = Rung->getBlock(); 3397 3398 // Don't climb into a loop though. 3399 const Loop *IDomLoop = LI.getLoopFor(IDom); 3400 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 3401 if (IDomDepth <= IPLoopDepth && 3402 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 3403 break; 3404 } 3405 3406 bool AllDominate = true; 3407 Instruction *BetterPos = 0; 3408 Instruction *Tentative = IDom->getTerminator(); 3409 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 3410 E = Inputs.end(); I != E; ++I) { 3411 Instruction *Inst = *I; 3412 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 3413 AllDominate = false; 3414 break; 3415 } 3416 // Attempt to find an insert position in the middle of the block, 3417 // instead of at the end, so that it can be used for other expansions. 3418 if (IDom == Inst->getParent() && 3419 (!BetterPos || DT.dominates(BetterPos, Inst))) 3420 BetterPos = llvm::next(BasicBlock::iterator(Inst)); 3421 } 3422 if (!AllDominate) 3423 break; 3424 if (BetterPos) 3425 IP = BetterPos; 3426 else 3427 IP = Tentative; 3428 } 3429 3430 return IP; 3431 } 3432 3433 /// AdjustInsertPositionForExpand - Determine an input position which will be 3434 /// dominated by the operands and which will dominate the result. 3435 BasicBlock::iterator 3436 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator IP, 3437 const LSRFixup &LF, 3438 const LSRUse &LU) const { 3439 // Collect some instructions which must be dominated by the 3440 // expanding replacement. These must be dominated by any operands that 3441 // will be required in the expansion. 3442 SmallVector<Instruction *, 4> Inputs; 3443 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 3444 Inputs.push_back(I); 3445 if (LU.Kind == LSRUse::ICmpZero) 3446 if (Instruction *I = 3447 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 3448 Inputs.push_back(I); 3449 if (LF.PostIncLoops.count(L)) { 3450 if (LF.isUseFullyOutsideLoop(L)) 3451 Inputs.push_back(L->getLoopLatch()->getTerminator()); 3452 else 3453 Inputs.push_back(IVIncInsertPos); 3454 } 3455 // The expansion must also be dominated by the increment positions of any 3456 // loops it for which it is using post-inc mode. 3457 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 3458 E = LF.PostIncLoops.end(); I != E; ++I) { 3459 const Loop *PIL = *I; 3460 if (PIL == L) continue; 3461 3462 // Be dominated by the loop exit. 3463 SmallVector<BasicBlock *, 4> ExitingBlocks; 3464 PIL->getExitingBlocks(ExitingBlocks); 3465 if (!ExitingBlocks.empty()) { 3466 BasicBlock *BB = ExitingBlocks[0]; 3467 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 3468 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 3469 Inputs.push_back(BB->getTerminator()); 3470 } 3471 } 3472 3473 // Then, climb up the immediate dominator tree as far as we can go while 3474 // still being dominated by the input positions. 3475 IP = HoistInsertPosition(IP, Inputs); 3476 3477 // Don't insert instructions before PHI nodes. 3478 while (isa<PHINode>(IP)) ++IP; 3479 3480 // Ignore landingpad instructions. 3481 while (isa<LandingPadInst>(IP)) ++IP; 3482 3483 // Ignore debug intrinsics. 3484 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 3485 3486 return IP; 3487 } 3488 3489 /// Expand - Emit instructions for the leading candidate expression for this 3490 /// LSRUse (this is called "expanding"). 3491 Value *LSRInstance::Expand(const LSRFixup &LF, 3492 const Formula &F, 3493 BasicBlock::iterator IP, 3494 SCEVExpander &Rewriter, 3495 SmallVectorImpl<WeakVH> &DeadInsts) const { 3496 const LSRUse &LU = Uses[LF.LUIdx]; 3497 3498 // Determine an input position which will be dominated by the operands and 3499 // which will dominate the result. 3500 IP = AdjustInsertPositionForExpand(IP, LF, LU); 3501 3502 // Inform the Rewriter if we have a post-increment use, so that it can 3503 // perform an advantageous expansion. 3504 Rewriter.setPostInc(LF.PostIncLoops); 3505 3506 // This is the type that the user actually needs. 3507 Type *OpTy = LF.OperandValToReplace->getType(); 3508 // This will be the type that we'll initially expand to. 3509 Type *Ty = F.getType(); 3510 if (!Ty) 3511 // No type known; just expand directly to the ultimate type. 3512 Ty = OpTy; 3513 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 3514 // Expand directly to the ultimate type if it's the right size. 3515 Ty = OpTy; 3516 // This is the type to do integer arithmetic in. 3517 Type *IntTy = SE.getEffectiveSCEVType(Ty); 3518 3519 // Build up a list of operands to add together to form the full base. 3520 SmallVector<const SCEV *, 8> Ops; 3521 3522 // Expand the BaseRegs portion. 3523 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3524 E = F.BaseRegs.end(); I != E; ++I) { 3525 const SCEV *Reg = *I; 3526 assert(!Reg->isZero() && "Zero allocated in a base register!"); 3527 3528 // If we're expanding for a post-inc user, make the post-inc adjustment. 3529 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3530 Reg = TransformForPostIncUse(Denormalize, Reg, 3531 LF.UserInst, LF.OperandValToReplace, 3532 Loops, SE, DT); 3533 3534 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, 0, IP))); 3535 } 3536 3537 // Flush the operand list to suppress SCEVExpander hoisting. 3538 if (!Ops.empty()) { 3539 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3540 Ops.clear(); 3541 Ops.push_back(SE.getUnknown(FullV)); 3542 } 3543 3544 // Expand the ScaledReg portion. 3545 Value *ICmpScaledV = 0; 3546 if (F.AM.Scale != 0) { 3547 const SCEV *ScaledS = F.ScaledReg; 3548 3549 // If we're expanding for a post-inc user, make the post-inc adjustment. 3550 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 3551 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 3552 LF.UserInst, LF.OperandValToReplace, 3553 Loops, SE, DT); 3554 3555 if (LU.Kind == LSRUse::ICmpZero) { 3556 // An interesting way of "folding" with an icmp is to use a negated 3557 // scale, which we'll implement by inserting it into the other operand 3558 // of the icmp. 3559 assert(F.AM.Scale == -1 && 3560 "The only scale supported by ICmpZero uses is -1!"); 3561 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, 0, IP); 3562 } else { 3563 // Otherwise just expand the scaled register and an explicit scale, 3564 // which is expected to be matched as part of the address. 3565 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, 0, IP)); 3566 ScaledS = SE.getMulExpr(ScaledS, 3567 SE.getConstant(ScaledS->getType(), F.AM.Scale)); 3568 Ops.push_back(ScaledS); 3569 3570 // Flush the operand list to suppress SCEVExpander hoisting. 3571 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3572 Ops.clear(); 3573 Ops.push_back(SE.getUnknown(FullV)); 3574 } 3575 } 3576 3577 // Expand the GV portion. 3578 if (F.AM.BaseGV) { 3579 Ops.push_back(SE.getUnknown(F.AM.BaseGV)); 3580 3581 // Flush the operand list to suppress SCEVExpander hoisting. 3582 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 3583 Ops.clear(); 3584 Ops.push_back(SE.getUnknown(FullV)); 3585 } 3586 3587 // Expand the immediate portion. 3588 int64_t Offset = (uint64_t)F.AM.BaseOffs + LF.Offset; 3589 if (Offset != 0) { 3590 if (LU.Kind == LSRUse::ICmpZero) { 3591 // The other interesting way of "folding" with an ICmpZero is to use a 3592 // negated immediate. 3593 if (!ICmpScaledV) 3594 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 3595 else { 3596 Ops.push_back(SE.getUnknown(ICmpScaledV)); 3597 ICmpScaledV = ConstantInt::get(IntTy, Offset); 3598 } 3599 } else { 3600 // Just add the immediate values. These again are expected to be matched 3601 // as part of the address. 3602 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 3603 } 3604 } 3605 3606 // Expand the unfolded offset portion. 3607 int64_t UnfoldedOffset = F.UnfoldedOffset; 3608 if (UnfoldedOffset != 0) { 3609 // Just add the immediate values. 3610 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 3611 UnfoldedOffset))); 3612 } 3613 3614 // Emit instructions summing all the operands. 3615 const SCEV *FullS = Ops.empty() ? 3616 SE.getConstant(IntTy, 0) : 3617 SE.getAddExpr(Ops); 3618 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 3619 3620 // We're done expanding now, so reset the rewriter. 3621 Rewriter.clearPostInc(); 3622 3623 // An ICmpZero Formula represents an ICmp which we're handling as a 3624 // comparison against zero. Now that we've expanded an expression for that 3625 // form, update the ICmp's other operand. 3626 if (LU.Kind == LSRUse::ICmpZero) { 3627 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 3628 DeadInsts.push_back(CI->getOperand(1)); 3629 assert(!F.AM.BaseGV && "ICmp does not support folding a global value and " 3630 "a scale at the same time!"); 3631 if (F.AM.Scale == -1) { 3632 if (ICmpScaledV->getType() != OpTy) { 3633 Instruction *Cast = 3634 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 3635 OpTy, false), 3636 ICmpScaledV, OpTy, "tmp", CI); 3637 ICmpScaledV = Cast; 3638 } 3639 CI->setOperand(1, ICmpScaledV); 3640 } else { 3641 assert(F.AM.Scale == 0 && 3642 "ICmp does not support folding a global value and " 3643 "a scale at the same time!"); 3644 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 3645 -(uint64_t)Offset); 3646 if (C->getType() != OpTy) 3647 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 3648 OpTy, false), 3649 C, OpTy); 3650 3651 CI->setOperand(1, C); 3652 } 3653 } 3654 3655 return FullV; 3656 } 3657 3658 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 3659 /// of their operands effectively happens in their predecessor blocks, so the 3660 /// expression may need to be expanded in multiple places. 3661 void LSRInstance::RewriteForPHI(PHINode *PN, 3662 const LSRFixup &LF, 3663 const Formula &F, 3664 SCEVExpander &Rewriter, 3665 SmallVectorImpl<WeakVH> &DeadInsts, 3666 Pass *P) const { 3667 DenseMap<BasicBlock *, Value *> Inserted; 3668 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 3669 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 3670 BasicBlock *BB = PN->getIncomingBlock(i); 3671 3672 // If this is a critical edge, split the edge so that we do not insert 3673 // the code on all predecessor/successor paths. We do this unless this 3674 // is the canonical backedge for this loop, which complicates post-inc 3675 // users. 3676 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 3677 !isa<IndirectBrInst>(BB->getTerminator())) { 3678 BasicBlock *Parent = PN->getParent(); 3679 Loop *PNLoop = LI.getLoopFor(Parent); 3680 if (!PNLoop || Parent != PNLoop->getHeader()) { 3681 // Split the critical edge. 3682 BasicBlock *NewBB = 0; 3683 if (!Parent->isLandingPad()) { 3684 NewBB = SplitCriticalEdge(BB, Parent, P, 3685 /*MergeIdenticalEdges=*/true, 3686 /*DontDeleteUselessPhis=*/true); 3687 } else { 3688 SmallVector<BasicBlock*, 2> NewBBs; 3689 SplitLandingPadPredecessors(Parent, BB, "", "", P, NewBBs); 3690 NewBB = NewBBs[0]; 3691 } 3692 3693 // If PN is outside of the loop and BB is in the loop, we want to 3694 // move the block to be immediately before the PHI block, not 3695 // immediately after BB. 3696 if (L->contains(BB) && !L->contains(PN)) 3697 NewBB->moveBefore(PN->getParent()); 3698 3699 // Splitting the edge can reduce the number of PHI entries we have. 3700 e = PN->getNumIncomingValues(); 3701 BB = NewBB; 3702 i = PN->getBasicBlockIndex(BB); 3703 } 3704 } 3705 3706 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 3707 Inserted.insert(std::make_pair(BB, static_cast<Value *>(0))); 3708 if (!Pair.second) 3709 PN->setIncomingValue(i, Pair.first->second); 3710 else { 3711 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 3712 3713 // If this is reuse-by-noop-cast, insert the noop cast. 3714 Type *OpTy = LF.OperandValToReplace->getType(); 3715 if (FullV->getType() != OpTy) 3716 FullV = 3717 CastInst::Create(CastInst::getCastOpcode(FullV, false, 3718 OpTy, false), 3719 FullV, LF.OperandValToReplace->getType(), 3720 "tmp", BB->getTerminator()); 3721 3722 PN->setIncomingValue(i, FullV); 3723 Pair.first->second = FullV; 3724 } 3725 } 3726 } 3727 3728 /// Rewrite - Emit instructions for the leading candidate expression for this 3729 /// LSRUse (this is called "expanding"), and update the UserInst to reference 3730 /// the newly expanded value. 3731 void LSRInstance::Rewrite(const LSRFixup &LF, 3732 const Formula &F, 3733 SCEVExpander &Rewriter, 3734 SmallVectorImpl<WeakVH> &DeadInsts, 3735 Pass *P) const { 3736 // First, find an insertion point that dominates UserInst. For PHI nodes, 3737 // find the nearest block which dominates all the relevant uses. 3738 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 3739 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 3740 } else { 3741 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 3742 3743 // If this is reuse-by-noop-cast, insert the noop cast. 3744 Type *OpTy = LF.OperandValToReplace->getType(); 3745 if (FullV->getType() != OpTy) { 3746 Instruction *Cast = 3747 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 3748 FullV, OpTy, "tmp", LF.UserInst); 3749 FullV = Cast; 3750 } 3751 3752 // Update the user. ICmpZero is handled specially here (for now) because 3753 // Expand may have updated one of the operands of the icmp already, and 3754 // its new value may happen to be equal to LF.OperandValToReplace, in 3755 // which case doing replaceUsesOfWith leads to replacing both operands 3756 // with the same value. TODO: Reorganize this. 3757 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 3758 LF.UserInst->setOperand(0, FullV); 3759 else 3760 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 3761 } 3762 3763 DeadInsts.push_back(LF.OperandValToReplace); 3764 } 3765 3766 /// ImplementSolution - Rewrite all the fixup locations with new values, 3767 /// following the chosen solution. 3768 void 3769 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 3770 Pass *P) { 3771 // Keep track of instructions we may have made dead, so that 3772 // we can remove them after we are done working. 3773 SmallVector<WeakVH, 16> DeadInsts; 3774 3775 SCEVExpander Rewriter(SE, "lsr"); 3776 Rewriter.disableCanonicalMode(); 3777 Rewriter.enableLSRMode(); 3778 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 3779 3780 // Expand the new value definitions and update the users. 3781 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3782 E = Fixups.end(); I != E; ++I) { 3783 const LSRFixup &Fixup = *I; 3784 3785 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 3786 3787 Changed = true; 3788 } 3789 3790 // Clean up after ourselves. This must be done before deleting any 3791 // instructions. 3792 Rewriter.clear(); 3793 3794 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 3795 } 3796 3797 LSRInstance::LSRInstance(const TargetLowering *tli, Loop *l, Pass *P) 3798 : IU(P->getAnalysis<IVUsers>()), 3799 SE(P->getAnalysis<ScalarEvolution>()), 3800 DT(P->getAnalysis<DominatorTree>()), 3801 LI(P->getAnalysis<LoopInfo>()), 3802 TLI(tli), L(l), Changed(false), IVIncInsertPos(0) { 3803 3804 // If LoopSimplify form is not available, stay out of trouble. 3805 if (!L->isLoopSimplifyForm()) return; 3806 3807 // If there's no interesting work to be done, bail early. 3808 if (IU.empty()) return; 3809 3810 DEBUG(dbgs() << "\nLSR on loop "; 3811 WriteAsOperand(dbgs(), L->getHeader(), /*PrintType=*/false); 3812 dbgs() << ":\n"); 3813 3814 // First, perform some low-level loop optimizations. 3815 OptimizeShadowIV(); 3816 OptimizeLoopTermCond(); 3817 3818 // If loop preparation eliminates all interesting IV users, bail. 3819 if (IU.empty()) return; 3820 3821 // Skip nested loops until we can model them better with formulae. 3822 if (!EnableNested && !L->empty()) { 3823 3824 if (EnablePhiElim) { 3825 // Remove any extra phis created by processing inner loops. 3826 SmallVector<WeakVH, 16> DeadInsts; 3827 SCEVExpander Rewriter(SE, "lsr"); 3828 Changed |= (bool)Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); 3829 Changed |= (bool)DeleteTriviallyDeadInstructions(DeadInsts); 3830 } 3831 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 3832 return; 3833 } 3834 3835 // Start collecting data and preparing for the solver. 3836 CollectInterestingTypesAndFactors(); 3837 CollectFixupsAndInitialFormulae(); 3838 CollectLoopInvariantFixupsAndFormulae(); 3839 3840 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 3841 print_uses(dbgs())); 3842 3843 // Now use the reuse data to generate a bunch of interesting ways 3844 // to formulate the values needed for the uses. 3845 GenerateAllReuseFormulae(); 3846 3847 FilterOutUndesirableDedicatedRegisters(); 3848 NarrowSearchSpaceUsingHeuristics(); 3849 3850 SmallVector<const Formula *, 8> Solution; 3851 Solve(Solution); 3852 3853 // Release memory that is no longer needed. 3854 Factors.clear(); 3855 Types.clear(); 3856 RegUses.clear(); 3857 3858 if (Solution.empty()) 3859 return; 3860 3861 #ifndef NDEBUG 3862 // Formulae should be legal. 3863 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3864 E = Uses.end(); I != E; ++I) { 3865 const LSRUse &LU = *I; 3866 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3867 JE = LU.Formulae.end(); J != JE; ++J) 3868 assert(isLegalUse(J->AM, LU.MinOffset, LU.MaxOffset, 3869 LU.Kind, LU.AccessTy, TLI) && 3870 "Illegal formula generated!"); 3871 }; 3872 #endif 3873 3874 // Now that we've decided what we want, make it so. 3875 ImplementSolution(Solution, P); 3876 3877 if (EnablePhiElim) { 3878 // Remove any extra phis created by processing inner loops. 3879 SmallVector<WeakVH, 16> DeadInsts; 3880 SCEVExpander Rewriter(SE, "lsr"); 3881 Changed |= (bool)Rewriter.replaceCongruentIVs(L, &DT, DeadInsts); 3882 Changed |= (bool)DeleteTriviallyDeadInstructions(DeadInsts); 3883 } 3884 } 3885 3886 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 3887 if (Factors.empty() && Types.empty()) return; 3888 3889 OS << "LSR has identified the following interesting factors and types: "; 3890 bool First = true; 3891 3892 for (SmallSetVector<int64_t, 8>::const_iterator 3893 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3894 if (!First) OS << ", "; 3895 First = false; 3896 OS << '*' << *I; 3897 } 3898 3899 for (SmallSetVector<Type *, 4>::const_iterator 3900 I = Types.begin(), E = Types.end(); I != E; ++I) { 3901 if (!First) OS << ", "; 3902 First = false; 3903 OS << '(' << **I << ')'; 3904 } 3905 OS << '\n'; 3906 } 3907 3908 void LSRInstance::print_fixups(raw_ostream &OS) const { 3909 OS << "LSR is examining the following fixup sites:\n"; 3910 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 3911 E = Fixups.end(); I != E; ++I) { 3912 dbgs() << " "; 3913 I->print(OS); 3914 OS << '\n'; 3915 } 3916 } 3917 3918 void LSRInstance::print_uses(raw_ostream &OS) const { 3919 OS << "LSR is examining the following uses:\n"; 3920 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 3921 E = Uses.end(); I != E; ++I) { 3922 const LSRUse &LU = *I; 3923 dbgs() << " "; 3924 LU.print(OS); 3925 OS << '\n'; 3926 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 3927 JE = LU.Formulae.end(); J != JE; ++J) { 3928 OS << " "; 3929 J->print(OS); 3930 OS << '\n'; 3931 } 3932 } 3933 } 3934 3935 void LSRInstance::print(raw_ostream &OS) const { 3936 print_factors_and_types(OS); 3937 print_fixups(OS); 3938 print_uses(OS); 3939 } 3940 3941 void LSRInstance::dump() const { 3942 print(errs()); errs() << '\n'; 3943 } 3944 3945 namespace { 3946 3947 class LoopStrengthReduce : public LoopPass { 3948 /// TLI - Keep a pointer of a TargetLowering to consult for determining 3949 /// transformation profitability. 3950 const TargetLowering *const TLI; 3951 3952 public: 3953 static char ID; // Pass ID, replacement for typeid 3954 explicit LoopStrengthReduce(const TargetLowering *tli = 0); 3955 3956 private: 3957 bool runOnLoop(Loop *L, LPPassManager &LPM); 3958 void getAnalysisUsage(AnalysisUsage &AU) const; 3959 }; 3960 3961 } 3962 3963 char LoopStrengthReduce::ID = 0; 3964 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 3965 "Loop Strength Reduction", false, false) 3966 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 3967 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 3968 INITIALIZE_PASS_DEPENDENCY(IVUsers) 3969 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 3970 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 3971 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 3972 "Loop Strength Reduction", false, false) 3973 3974 3975 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 3976 return new LoopStrengthReduce(TLI); 3977 } 3978 3979 LoopStrengthReduce::LoopStrengthReduce(const TargetLowering *tli) 3980 : LoopPass(ID), TLI(tli) { 3981 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 3982 } 3983 3984 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 3985 // We split critical edges, so we change the CFG. However, we do update 3986 // many analyses if they are around. 3987 AU.addPreservedID(LoopSimplifyID); 3988 3989 AU.addRequired<LoopInfo>(); 3990 AU.addPreserved<LoopInfo>(); 3991 AU.addRequiredID(LoopSimplifyID); 3992 AU.addRequired<DominatorTree>(); 3993 AU.addPreserved<DominatorTree>(); 3994 AU.addRequired<ScalarEvolution>(); 3995 AU.addPreserved<ScalarEvolution>(); 3996 // Requiring LoopSimplify a second time here prevents IVUsers from running 3997 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 3998 AU.addRequiredID(LoopSimplifyID); 3999 AU.addRequired<IVUsers>(); 4000 AU.addPreserved<IVUsers>(); 4001 } 4002 4003 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 4004 bool Changed = false; 4005 4006 // Run the main LSR transformation. 4007 Changed |= LSRInstance(TLI, L, this).getChanged(); 4008 4009 // At this point, it is worth checking to see if any recurrence PHIs are also 4010 // dead, so that we can remove them as well. 4011 Changed |= DeleteDeadPHIs(L->getHeader()); 4012 4013 return Changed; 4014 } 4015