1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/Analysis/IVUsers.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/LoopPass.h" 71 #include "llvm/Analysis/ScalarEvolution.h" 72 #include "llvm/Analysis/ScalarEvolutionExpander.h" 73 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 74 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 75 #include "llvm/Analysis/TargetTransformInfo.h" 76 #include "llvm/IR/BasicBlock.h" 77 #include "llvm/IR/Constant.h" 78 #include "llvm/IR/Constants.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Dominators.h" 81 #include "llvm/IR/GlobalValue.h" 82 #include "llvm/IR/IRBuilder.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Module.h" 87 #include "llvm/IR/OperandTraits.h" 88 #include "llvm/IR/Operator.h" 89 #include "llvm/IR/Type.h" 90 #include "llvm/IR/Value.h" 91 #include "llvm/IR/ValueHandle.h" 92 #include "llvm/Pass.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/ErrorHandling.h" 98 #include "llvm/Support/MathExtras.h" 99 #include "llvm/Support/raw_ostream.h" 100 #include "llvm/Transforms/Scalar.h" 101 #include "llvm/Transforms/Scalar/LoopPassManager.h" 102 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 103 #include "llvm/Transforms/Utils/Local.h" 104 #include <algorithm> 105 #include <cassert> 106 #include <cstddef> 107 #include <cstdint> 108 #include <cstdlib> 109 #include <iterator> 110 #include <map> 111 #include <tuple> 112 #include <utility> 113 114 using namespace llvm; 115 116 #define DEBUG_TYPE "loop-reduce" 117 118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 119 /// bail out. This threshold is far beyond the number of users that LSR can 120 /// conceivably solve, so it should not affect generated code, but catches the 121 /// worst cases before LSR burns too much compile time and stack space. 122 static const unsigned MaxIVUsers = 200; 123 124 // Temporary flag to cleanup congruent phis after LSR phi expansion. 125 // It's currently disabled until we can determine whether it's truly useful or 126 // not. The flag should be removed after the v3.0 release. 127 // This is now needed for ivchains. 128 static cl::opt<bool> EnablePhiElim( 129 "enable-lsr-phielim", cl::Hidden, cl::init(true), 130 cl::desc("Enable LSR phi elimination")); 131 132 #ifndef NDEBUG 133 // Stress test IV chain generation. 134 static cl::opt<bool> StressIVChain( 135 "stress-ivchain", cl::Hidden, cl::init(false), 136 cl::desc("Stress test LSR IV chains")); 137 #else 138 static bool StressIVChain = false; 139 #endif 140 141 namespace { 142 143 struct MemAccessTy { 144 /// Used in situations where the accessed memory type is unknown. 145 static const unsigned UnknownAddressSpace = ~0u; 146 147 Type *MemTy; 148 unsigned AddrSpace; 149 150 MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {} 151 152 MemAccessTy(Type *Ty, unsigned AS) : 153 MemTy(Ty), AddrSpace(AS) {} 154 155 bool operator==(MemAccessTy Other) const { 156 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 157 } 158 159 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 160 161 static MemAccessTy getUnknown(LLVMContext &Ctx) { 162 return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace); 163 } 164 }; 165 166 /// This class holds data which is used to order reuse candidates. 167 class RegSortData { 168 public: 169 /// This represents the set of LSRUse indices which reference 170 /// a particular register. 171 SmallBitVector UsedByIndices; 172 173 void print(raw_ostream &OS) const; 174 void dump() const; 175 }; 176 177 } // end anonymous namespace 178 179 void RegSortData::print(raw_ostream &OS) const { 180 OS << "[NumUses=" << UsedByIndices.count() << ']'; 181 } 182 183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 184 LLVM_DUMP_METHOD void RegSortData::dump() const { 185 print(errs()); errs() << '\n'; 186 } 187 #endif 188 189 namespace { 190 191 /// Map register candidates to information about how they are used. 192 class RegUseTracker { 193 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 194 195 RegUsesTy RegUsesMap; 196 SmallVector<const SCEV *, 16> RegSequence; 197 198 public: 199 void countRegister(const SCEV *Reg, size_t LUIdx); 200 void dropRegister(const SCEV *Reg, size_t LUIdx); 201 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 202 203 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 204 205 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 206 207 void clear(); 208 209 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 210 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 211 iterator begin() { return RegSequence.begin(); } 212 iterator end() { return RegSequence.end(); } 213 const_iterator begin() const { return RegSequence.begin(); } 214 const_iterator end() const { return RegSequence.end(); } 215 }; 216 217 } // end anonymous namespace 218 219 void 220 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 221 std::pair<RegUsesTy::iterator, bool> Pair = 222 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 223 RegSortData &RSD = Pair.first->second; 224 if (Pair.second) 225 RegSequence.push_back(Reg); 226 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 227 RSD.UsedByIndices.set(LUIdx); 228 } 229 230 void 231 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 232 RegUsesTy::iterator It = RegUsesMap.find(Reg); 233 assert(It != RegUsesMap.end()); 234 RegSortData &RSD = It->second; 235 assert(RSD.UsedByIndices.size() > LUIdx); 236 RSD.UsedByIndices.reset(LUIdx); 237 } 238 239 void 240 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 241 assert(LUIdx <= LastLUIdx); 242 243 // Update RegUses. The data structure is not optimized for this purpose; 244 // we must iterate through it and update each of the bit vectors. 245 for (auto &Pair : RegUsesMap) { 246 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 247 if (LUIdx < UsedByIndices.size()) 248 UsedByIndices[LUIdx] = 249 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 250 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 251 } 252 } 253 254 bool 255 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 256 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 257 if (I == RegUsesMap.end()) 258 return false; 259 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 260 int i = UsedByIndices.find_first(); 261 if (i == -1) return false; 262 if ((size_t)i != LUIdx) return true; 263 return UsedByIndices.find_next(i) != -1; 264 } 265 266 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 267 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 268 assert(I != RegUsesMap.end() && "Unknown register!"); 269 return I->second.UsedByIndices; 270 } 271 272 void RegUseTracker::clear() { 273 RegUsesMap.clear(); 274 RegSequence.clear(); 275 } 276 277 namespace { 278 279 /// This class holds information that describes a formula for computing 280 /// satisfying a use. It may include broken-out immediates and scaled registers. 281 struct Formula { 282 /// Global base address used for complex addressing. 283 GlobalValue *BaseGV; 284 285 /// Base offset for complex addressing. 286 int64_t BaseOffset; 287 288 /// Whether any complex addressing has a base register. 289 bool HasBaseReg; 290 291 /// The scale of any complex addressing. 292 int64_t Scale; 293 294 /// The list of "base" registers for this use. When this is non-empty. The 295 /// canonical representation of a formula is 296 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 297 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 298 /// #1 enforces that the scaled register is always used when at least two 299 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 300 /// #2 enforces that 1 * reg is reg. 301 /// This invariant can be temporarly broken while building a formula. 302 /// However, every formula inserted into the LSRInstance must be in canonical 303 /// form. 304 SmallVector<const SCEV *, 4> BaseRegs; 305 306 /// The 'scaled' register for this use. This should be non-null when Scale is 307 /// not zero. 308 const SCEV *ScaledReg; 309 310 /// An additional constant offset which added near the use. This requires a 311 /// temporary register, but the offset itself can live in an add immediate 312 /// field rather than a register. 313 int64_t UnfoldedOffset; 314 315 Formula() 316 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 317 ScaledReg(nullptr), UnfoldedOffset(0) {} 318 319 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 320 321 bool isCanonical() const; 322 323 void canonicalize(); 324 325 bool unscale(); 326 327 size_t getNumRegs() const; 328 Type *getType() const; 329 330 void deleteBaseReg(const SCEV *&S); 331 332 bool referencesReg(const SCEV *S) const; 333 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 334 const RegUseTracker &RegUses) const; 335 336 void print(raw_ostream &OS) const; 337 void dump() const; 338 }; 339 340 } // end anonymous namespace 341 342 /// Recursion helper for initialMatch. 343 static void DoInitialMatch(const SCEV *S, Loop *L, 344 SmallVectorImpl<const SCEV *> &Good, 345 SmallVectorImpl<const SCEV *> &Bad, 346 ScalarEvolution &SE) { 347 // Collect expressions which properly dominate the loop header. 348 if (SE.properlyDominates(S, L->getHeader())) { 349 Good.push_back(S); 350 return; 351 } 352 353 // Look at add operands. 354 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 355 for (const SCEV *S : Add->operands()) 356 DoInitialMatch(S, L, Good, Bad, SE); 357 return; 358 } 359 360 // Look at addrec operands. 361 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 362 if (!AR->getStart()->isZero() && AR->isAffine()) { 363 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 364 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 365 AR->getStepRecurrence(SE), 366 // FIXME: AR->getNoWrapFlags() 367 AR->getLoop(), SCEV::FlagAnyWrap), 368 L, Good, Bad, SE); 369 return; 370 } 371 372 // Handle a multiplication by -1 (negation) if it didn't fold. 373 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 374 if (Mul->getOperand(0)->isAllOnesValue()) { 375 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 376 const SCEV *NewMul = SE.getMulExpr(Ops); 377 378 SmallVector<const SCEV *, 4> MyGood; 379 SmallVector<const SCEV *, 4> MyBad; 380 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 381 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 382 SE.getEffectiveSCEVType(NewMul->getType()))); 383 for (const SCEV *S : MyGood) 384 Good.push_back(SE.getMulExpr(NegOne, S)); 385 for (const SCEV *S : MyBad) 386 Bad.push_back(SE.getMulExpr(NegOne, S)); 387 return; 388 } 389 390 // Ok, we can't do anything interesting. Just stuff the whole thing into a 391 // register and hope for the best. 392 Bad.push_back(S); 393 } 394 395 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 396 /// all loop-invariant and loop-computable values in a single base register. 397 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 398 SmallVector<const SCEV *, 4> Good; 399 SmallVector<const SCEV *, 4> Bad; 400 DoInitialMatch(S, L, Good, Bad, SE); 401 if (!Good.empty()) { 402 const SCEV *Sum = SE.getAddExpr(Good); 403 if (!Sum->isZero()) 404 BaseRegs.push_back(Sum); 405 HasBaseReg = true; 406 } 407 if (!Bad.empty()) { 408 const SCEV *Sum = SE.getAddExpr(Bad); 409 if (!Sum->isZero()) 410 BaseRegs.push_back(Sum); 411 HasBaseReg = true; 412 } 413 canonicalize(); 414 } 415 416 /// \brief Check whether or not this formula statisfies the canonical 417 /// representation. 418 /// \see Formula::BaseRegs. 419 bool Formula::isCanonical() const { 420 if (ScaledReg) 421 return Scale != 1 || !BaseRegs.empty(); 422 return BaseRegs.size() <= 1; 423 } 424 425 /// \brief Helper method to morph a formula into its canonical representation. 426 /// \see Formula::BaseRegs. 427 /// Every formula having more than one base register, must use the ScaledReg 428 /// field. Otherwise, we would have to do special cases everywhere in LSR 429 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 430 /// On the other hand, 1*reg should be canonicalized into reg. 431 void Formula::canonicalize() { 432 if (isCanonical()) 433 return; 434 // So far we did not need this case. This is easy to implement but it is 435 // useless to maintain dead code. Beside it could hurt compile time. 436 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 437 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 438 ScaledReg = BaseRegs.back(); 439 BaseRegs.pop_back(); 440 Scale = 1; 441 size_t BaseRegsSize = BaseRegs.size(); 442 size_t Try = 0; 443 // If ScaledReg is an invariant, try to find a variant expression. 444 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 445 std::swap(ScaledReg, BaseRegs[Try++]); 446 } 447 448 /// \brief Get rid of the scale in the formula. 449 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 450 /// \return true if it was possible to get rid of the scale, false otherwise. 451 /// \note After this operation the formula may not be in the canonical form. 452 bool Formula::unscale() { 453 if (Scale != 1) 454 return false; 455 Scale = 0; 456 BaseRegs.push_back(ScaledReg); 457 ScaledReg = nullptr; 458 return true; 459 } 460 461 /// Return the total number of register operands used by this formula. This does 462 /// not include register uses implied by non-constant addrec strides. 463 size_t Formula::getNumRegs() const { 464 return !!ScaledReg + BaseRegs.size(); 465 } 466 467 /// Return the type of this formula, if it has one, or null otherwise. This type 468 /// is meaningless except for the bit size. 469 Type *Formula::getType() const { 470 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 471 ScaledReg ? ScaledReg->getType() : 472 BaseGV ? BaseGV->getType() : 473 nullptr; 474 } 475 476 /// Delete the given base reg from the BaseRegs list. 477 void Formula::deleteBaseReg(const SCEV *&S) { 478 if (&S != &BaseRegs.back()) 479 std::swap(S, BaseRegs.back()); 480 BaseRegs.pop_back(); 481 } 482 483 /// Test if this formula references the given register. 484 bool Formula::referencesReg(const SCEV *S) const { 485 return S == ScaledReg || is_contained(BaseRegs, S); 486 } 487 488 /// Test whether this formula uses registers which are used by uses other than 489 /// the use with the given index. 490 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 491 const RegUseTracker &RegUses) const { 492 if (ScaledReg) 493 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 494 return true; 495 for (const SCEV *BaseReg : BaseRegs) 496 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 497 return true; 498 return false; 499 } 500 501 void Formula::print(raw_ostream &OS) const { 502 bool First = true; 503 if (BaseGV) { 504 if (!First) OS << " + "; else First = false; 505 BaseGV->printAsOperand(OS, /*PrintType=*/false); 506 } 507 if (BaseOffset != 0) { 508 if (!First) OS << " + "; else First = false; 509 OS << BaseOffset; 510 } 511 for (const SCEV *BaseReg : BaseRegs) { 512 if (!First) OS << " + "; else First = false; 513 OS << "reg(" << *BaseReg << ')'; 514 } 515 if (HasBaseReg && BaseRegs.empty()) { 516 if (!First) OS << " + "; else First = false; 517 OS << "**error: HasBaseReg**"; 518 } else if (!HasBaseReg && !BaseRegs.empty()) { 519 if (!First) OS << " + "; else First = false; 520 OS << "**error: !HasBaseReg**"; 521 } 522 if (Scale != 0) { 523 if (!First) OS << " + "; else First = false; 524 OS << Scale << "*reg("; 525 if (ScaledReg) 526 OS << *ScaledReg; 527 else 528 OS << "<unknown>"; 529 OS << ')'; 530 } 531 if (UnfoldedOffset != 0) { 532 if (!First) OS << " + "; 533 OS << "imm(" << UnfoldedOffset << ')'; 534 } 535 } 536 537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 538 LLVM_DUMP_METHOD void Formula::dump() const { 539 print(errs()); errs() << '\n'; 540 } 541 #endif 542 543 /// Return true if the given addrec can be sign-extended without changing its 544 /// value. 545 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 546 Type *WideTy = 547 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 548 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 549 } 550 551 /// Return true if the given add can be sign-extended without changing its 552 /// value. 553 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 554 Type *WideTy = 555 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 556 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 557 } 558 559 /// Return true if the given mul can be sign-extended without changing its 560 /// value. 561 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 562 Type *WideTy = 563 IntegerType::get(SE.getContext(), 564 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 565 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 566 } 567 568 /// Return an expression for LHS /s RHS, if it can be determined and if the 569 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 570 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 571 /// the multiplication may overflow, which is useful when the result will be 572 /// used in a context where the most significant bits are ignored. 573 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 574 ScalarEvolution &SE, 575 bool IgnoreSignificantBits = false) { 576 // Handle the trivial case, which works for any SCEV type. 577 if (LHS == RHS) 578 return SE.getConstant(LHS->getType(), 1); 579 580 // Handle a few RHS special cases. 581 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 582 if (RC) { 583 const APInt &RA = RC->getAPInt(); 584 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 585 // some folding. 586 if (RA.isAllOnesValue()) 587 return SE.getMulExpr(LHS, RC); 588 // Handle x /s 1 as x. 589 if (RA == 1) 590 return LHS; 591 } 592 593 // Check for a division of a constant by a constant. 594 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 595 if (!RC) 596 return nullptr; 597 const APInt &LA = C->getAPInt(); 598 const APInt &RA = RC->getAPInt(); 599 if (LA.srem(RA) != 0) 600 return nullptr; 601 return SE.getConstant(LA.sdiv(RA)); 602 } 603 604 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 605 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 606 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 607 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 608 IgnoreSignificantBits); 609 if (!Step) return nullptr; 610 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 611 IgnoreSignificantBits); 612 if (!Start) return nullptr; 613 // FlagNW is independent of the start value, step direction, and is 614 // preserved with smaller magnitude steps. 615 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 616 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 617 } 618 return nullptr; 619 } 620 621 // Distribute the sdiv over add operands, if the add doesn't overflow. 622 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 623 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 624 SmallVector<const SCEV *, 8> Ops; 625 for (const SCEV *S : Add->operands()) { 626 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 627 if (!Op) return nullptr; 628 Ops.push_back(Op); 629 } 630 return SE.getAddExpr(Ops); 631 } 632 return nullptr; 633 } 634 635 // Check for a multiply operand that we can pull RHS out of. 636 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 637 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 638 SmallVector<const SCEV *, 4> Ops; 639 bool Found = false; 640 for (const SCEV *S : Mul->operands()) { 641 if (!Found) 642 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 643 IgnoreSignificantBits)) { 644 S = Q; 645 Found = true; 646 } 647 Ops.push_back(S); 648 } 649 return Found ? SE.getMulExpr(Ops) : nullptr; 650 } 651 return nullptr; 652 } 653 654 // Otherwise we don't know. 655 return nullptr; 656 } 657 658 /// If S involves the addition of a constant integer value, return that integer 659 /// value, and mutate S to point to a new SCEV with that value excluded. 660 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 661 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 662 if (C->getAPInt().getMinSignedBits() <= 64) { 663 S = SE.getConstant(C->getType(), 0); 664 return C->getValue()->getSExtValue(); 665 } 666 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 667 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 668 int64_t Result = ExtractImmediate(NewOps.front(), SE); 669 if (Result != 0) 670 S = SE.getAddExpr(NewOps); 671 return Result; 672 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 673 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 674 int64_t Result = ExtractImmediate(NewOps.front(), SE); 675 if (Result != 0) 676 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 677 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 678 SCEV::FlagAnyWrap); 679 return Result; 680 } 681 return 0; 682 } 683 684 /// If S involves the addition of a GlobalValue address, return that symbol, and 685 /// mutate S to point to a new SCEV with that value excluded. 686 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 687 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 688 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 689 S = SE.getConstant(GV->getType(), 0); 690 return GV; 691 } 692 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 693 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 694 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 695 if (Result) 696 S = SE.getAddExpr(NewOps); 697 return Result; 698 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 699 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 700 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 701 if (Result) 702 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 703 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 704 SCEV::FlagAnyWrap); 705 return Result; 706 } 707 return nullptr; 708 } 709 710 /// Returns true if the specified instruction is using the specified value as an 711 /// address. 712 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 713 bool isAddress = isa<LoadInst>(Inst); 714 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 715 if (SI->getOperand(1) == OperandVal) 716 isAddress = true; 717 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 718 // Addressing modes can also be folded into prefetches and a variety 719 // of intrinsics. 720 switch (II->getIntrinsicID()) { 721 default: break; 722 case Intrinsic::prefetch: 723 if (II->getArgOperand(0) == OperandVal) 724 isAddress = true; 725 break; 726 } 727 } 728 return isAddress; 729 } 730 731 /// Return the type of the memory being accessed. 732 static MemAccessTy getAccessType(const Instruction *Inst) { 733 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 734 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 735 AccessTy.MemTy = SI->getOperand(0)->getType(); 736 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 737 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 738 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 739 } 740 741 // All pointers have the same requirements, so canonicalize them to an 742 // arbitrary pointer type to minimize variation. 743 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 744 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 745 PTy->getAddressSpace()); 746 747 return AccessTy; 748 } 749 750 /// Return true if this AddRec is already a phi in its loop. 751 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 752 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 753 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 754 if (SE.isSCEVable(PN->getType()) && 755 (SE.getEffectiveSCEVType(PN->getType()) == 756 SE.getEffectiveSCEVType(AR->getType())) && 757 SE.getSCEV(PN) == AR) 758 return true; 759 } 760 return false; 761 } 762 763 /// Check if expanding this expression is likely to incur significant cost. This 764 /// is tricky because SCEV doesn't track which expressions are actually computed 765 /// by the current IR. 766 /// 767 /// We currently allow expansion of IV increments that involve adds, 768 /// multiplication by constants, and AddRecs from existing phis. 769 /// 770 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 771 /// obvious multiple of the UDivExpr. 772 static bool isHighCostExpansion(const SCEV *S, 773 SmallPtrSetImpl<const SCEV*> &Processed, 774 ScalarEvolution &SE) { 775 // Zero/One operand expressions 776 switch (S->getSCEVType()) { 777 case scUnknown: 778 case scConstant: 779 return false; 780 case scTruncate: 781 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 782 Processed, SE); 783 case scZeroExtend: 784 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 785 Processed, SE); 786 case scSignExtend: 787 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 788 Processed, SE); 789 } 790 791 if (!Processed.insert(S).second) 792 return false; 793 794 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 795 for (const SCEV *S : Add->operands()) { 796 if (isHighCostExpansion(S, Processed, SE)) 797 return true; 798 } 799 return false; 800 } 801 802 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 803 if (Mul->getNumOperands() == 2) { 804 // Multiplication by a constant is ok 805 if (isa<SCEVConstant>(Mul->getOperand(0))) 806 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 807 808 // If we have the value of one operand, check if an existing 809 // multiplication already generates this expression. 810 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 811 Value *UVal = U->getValue(); 812 for (User *UR : UVal->users()) { 813 // If U is a constant, it may be used by a ConstantExpr. 814 Instruction *UI = dyn_cast<Instruction>(UR); 815 if (UI && UI->getOpcode() == Instruction::Mul && 816 SE.isSCEVable(UI->getType())) { 817 return SE.getSCEV(UI) == Mul; 818 } 819 } 820 } 821 } 822 } 823 824 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 825 if (isExistingPhi(AR, SE)) 826 return false; 827 } 828 829 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 830 return true; 831 } 832 833 /// If any of the instructions is the specified set are trivially dead, delete 834 /// them and see if this makes any of their operands subsequently dead. 835 static bool 836 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 837 bool Changed = false; 838 839 while (!DeadInsts.empty()) { 840 Value *V = DeadInsts.pop_back_val(); 841 Instruction *I = dyn_cast_or_null<Instruction>(V); 842 843 if (!I || !isInstructionTriviallyDead(I)) 844 continue; 845 846 for (Use &O : I->operands()) 847 if (Instruction *U = dyn_cast<Instruction>(O)) { 848 O = nullptr; 849 if (U->use_empty()) 850 DeadInsts.emplace_back(U); 851 } 852 853 I->eraseFromParent(); 854 Changed = true; 855 } 856 857 return Changed; 858 } 859 860 namespace { 861 862 class LSRUse; 863 864 } // end anonymous namespace 865 866 /// \brief Check if the addressing mode defined by \p F is completely 867 /// folded in \p LU at isel time. 868 /// This includes address-mode folding and special icmp tricks. 869 /// This function returns true if \p LU can accommodate what \p F 870 /// defines and up to 1 base + 1 scaled + offset. 871 /// In other words, if \p F has several base registers, this function may 872 /// still return true. Therefore, users still need to account for 873 /// additional base registers and/or unfolded offsets to derive an 874 /// accurate cost model. 875 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 876 const LSRUse &LU, const Formula &F); 877 // Get the cost of the scaling factor used in F for LU. 878 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 879 const LSRUse &LU, const Formula &F); 880 881 namespace { 882 883 /// This class is used to measure and compare candidate formulae. 884 class Cost { 885 /// TODO: Some of these could be merged. Also, a lexical ordering 886 /// isn't always optimal. 887 unsigned NumRegs; 888 unsigned AddRecCost; 889 unsigned NumIVMuls; 890 unsigned NumBaseAdds; 891 unsigned ImmCost; 892 unsigned SetupCost; 893 unsigned ScaleCost; 894 895 public: 896 Cost() 897 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 898 SetupCost(0), ScaleCost(0) {} 899 900 bool operator<(const Cost &Other) const; 901 902 void Lose(); 903 904 #ifndef NDEBUG 905 // Once any of the metrics loses, they must all remain losers. 906 bool isValid() { 907 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 908 | ImmCost | SetupCost | ScaleCost) != ~0u) 909 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 910 & ImmCost & SetupCost & ScaleCost) == ~0u); 911 } 912 #endif 913 914 bool isLoser() { 915 assert(isValid() && "invalid cost"); 916 return NumRegs == ~0u; 917 } 918 919 void RateFormula(const TargetTransformInfo &TTI, 920 const Formula &F, 921 SmallPtrSetImpl<const SCEV *> &Regs, 922 const DenseSet<const SCEV *> &VisitedRegs, 923 const Loop *L, 924 ScalarEvolution &SE, DominatorTree &DT, 925 const LSRUse &LU, 926 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 927 928 void print(raw_ostream &OS) const; 929 void dump() const; 930 931 private: 932 void RateRegister(const SCEV *Reg, 933 SmallPtrSetImpl<const SCEV *> &Regs, 934 const Loop *L, 935 ScalarEvolution &SE, DominatorTree &DT); 936 void RatePrimaryRegister(const SCEV *Reg, 937 SmallPtrSetImpl<const SCEV *> &Regs, 938 const Loop *L, 939 ScalarEvolution &SE, DominatorTree &DT, 940 SmallPtrSetImpl<const SCEV *> *LoserRegs); 941 }; 942 943 /// An operand value in an instruction which is to be replaced with some 944 /// equivalent, possibly strength-reduced, replacement. 945 struct LSRFixup { 946 /// The instruction which will be updated. 947 Instruction *UserInst; 948 949 /// The operand of the instruction which will be replaced. The operand may be 950 /// used more than once; every instance will be replaced. 951 Value *OperandValToReplace; 952 953 /// If this user is to use the post-incremented value of an induction 954 /// variable, this variable is non-null and holds the loop associated with the 955 /// induction variable. 956 PostIncLoopSet PostIncLoops; 957 958 /// A constant offset to be added to the LSRUse expression. This allows 959 /// multiple fixups to share the same LSRUse with different offsets, for 960 /// example in an unrolled loop. 961 int64_t Offset; 962 963 bool isUseFullyOutsideLoop(const Loop *L) const; 964 965 LSRFixup(); 966 967 void print(raw_ostream &OS) const; 968 void dump() const; 969 }; 970 971 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 972 /// SmallVectors of const SCEV*. 973 struct UniquifierDenseMapInfo { 974 static SmallVector<const SCEV *, 4> getEmptyKey() { 975 SmallVector<const SCEV *, 4> V; 976 V.push_back(reinterpret_cast<const SCEV *>(-1)); 977 return V; 978 } 979 980 static SmallVector<const SCEV *, 4> getTombstoneKey() { 981 SmallVector<const SCEV *, 4> V; 982 V.push_back(reinterpret_cast<const SCEV *>(-2)); 983 return V; 984 } 985 986 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 987 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 988 } 989 990 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 991 const SmallVector<const SCEV *, 4> &RHS) { 992 return LHS == RHS; 993 } 994 }; 995 996 /// This class holds the state that LSR keeps for each use in IVUsers, as well 997 /// as uses invented by LSR itself. It includes information about what kinds of 998 /// things can be folded into the user, information about the user itself, and 999 /// information about how the use may be satisfied. TODO: Represent multiple 1000 /// users of the same expression in common? 1001 class LSRUse { 1002 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1003 1004 public: 1005 /// An enum for a kind of use, indicating what types of scaled and immediate 1006 /// operands it might support. 1007 enum KindType { 1008 Basic, ///< A normal use, with no folding. 1009 Special, ///< A special case of basic, allowing -1 scales. 1010 Address, ///< An address use; folding according to TargetLowering 1011 ICmpZero ///< An equality icmp with both operands folded into one. 1012 // TODO: Add a generic icmp too? 1013 }; 1014 1015 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1016 1017 KindType Kind; 1018 MemAccessTy AccessTy; 1019 1020 /// The list of operands which are to be replaced. 1021 SmallVector<LSRFixup, 8> Fixups; 1022 1023 /// Keep track of the min and max offsets of the fixups. 1024 int64_t MinOffset; 1025 int64_t MaxOffset; 1026 1027 /// This records whether all of the fixups using this LSRUse are outside of 1028 /// the loop, in which case some special-case heuristics may be used. 1029 bool AllFixupsOutsideLoop; 1030 1031 /// RigidFormula is set to true to guarantee that this use will be associated 1032 /// with a single formula--the one that initially matched. Some SCEV 1033 /// expressions cannot be expanded. This allows LSR to consider the registers 1034 /// used by those expressions without the need to expand them later after 1035 /// changing the formula. 1036 bool RigidFormula; 1037 1038 /// This records the widest use type for any fixup using this 1039 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1040 /// fixup widths to be equivalent, because the narrower one may be relying on 1041 /// the implicit truncation to truncate away bogus bits. 1042 Type *WidestFixupType; 1043 1044 /// A list of ways to build a value that can satisfy this user. After the 1045 /// list is populated, one of these is selected heuristically and used to 1046 /// formulate a replacement for OperandValToReplace in UserInst. 1047 SmallVector<Formula, 12> Formulae; 1048 1049 /// The set of register candidates used by all formulae in this LSRUse. 1050 SmallPtrSet<const SCEV *, 4> Regs; 1051 1052 LSRUse(KindType K, MemAccessTy AT) 1053 : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN), 1054 AllFixupsOutsideLoop(true), RigidFormula(false), 1055 WidestFixupType(nullptr) {} 1056 1057 LSRFixup &getNewFixup() { 1058 Fixups.push_back(LSRFixup()); 1059 return Fixups.back(); 1060 } 1061 1062 void pushFixup(LSRFixup &f) { 1063 Fixups.push_back(f); 1064 if (f.Offset > MaxOffset) 1065 MaxOffset = f.Offset; 1066 if (f.Offset < MinOffset) 1067 MinOffset = f.Offset; 1068 } 1069 1070 bool HasFormulaWithSameRegs(const Formula &F) const; 1071 bool InsertFormula(const Formula &F); 1072 void DeleteFormula(Formula &F); 1073 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1074 1075 void print(raw_ostream &OS) const; 1076 void dump() const; 1077 }; 1078 1079 } // end anonymous namespace 1080 1081 /// Tally up interesting quantities from the given register. 1082 void Cost::RateRegister(const SCEV *Reg, 1083 SmallPtrSetImpl<const SCEV *> &Regs, 1084 const Loop *L, 1085 ScalarEvolution &SE, DominatorTree &DT) { 1086 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1087 // If this is an addrec for another loop, don't second-guess its addrec phi 1088 // nodes. LSR isn't currently smart enough to reason about more than one 1089 // loop at a time. LSR has already run on inner loops, will not run on outer 1090 // loops, and cannot be expected to change sibling loops. 1091 if (AR->getLoop() != L) { 1092 // If the AddRec exists, consider it's register free and leave it alone. 1093 if (isExistingPhi(AR, SE)) 1094 return; 1095 1096 // Otherwise, do not consider this formula at all. 1097 Lose(); 1098 return; 1099 } 1100 AddRecCost += 1; /// TODO: This should be a function of the stride. 1101 1102 // Add the step value register, if it needs one. 1103 // TODO: The non-affine case isn't precisely modeled here. 1104 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1105 if (!Regs.count(AR->getOperand(1))) { 1106 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1107 if (isLoser()) 1108 return; 1109 } 1110 } 1111 } 1112 ++NumRegs; 1113 1114 // Rough heuristic; favor registers which don't require extra setup 1115 // instructions in the preheader. 1116 if (!isa<SCEVUnknown>(Reg) && 1117 !isa<SCEVConstant>(Reg) && 1118 !(isa<SCEVAddRecExpr>(Reg) && 1119 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1120 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1121 ++SetupCost; 1122 1123 NumIVMuls += isa<SCEVMulExpr>(Reg) && 1124 SE.hasComputableLoopEvolution(Reg, L); 1125 } 1126 1127 /// Record this register in the set. If we haven't seen it before, rate 1128 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1129 /// one of those regs an instant loser. 1130 void Cost::RatePrimaryRegister(const SCEV *Reg, 1131 SmallPtrSetImpl<const SCEV *> &Regs, 1132 const Loop *L, 1133 ScalarEvolution &SE, DominatorTree &DT, 1134 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1135 if (LoserRegs && LoserRegs->count(Reg)) { 1136 Lose(); 1137 return; 1138 } 1139 if (Regs.insert(Reg).second) { 1140 RateRegister(Reg, Regs, L, SE, DT); 1141 if (LoserRegs && isLoser()) 1142 LoserRegs->insert(Reg); 1143 } 1144 } 1145 1146 void Cost::RateFormula(const TargetTransformInfo &TTI, 1147 const Formula &F, 1148 SmallPtrSetImpl<const SCEV *> &Regs, 1149 const DenseSet<const SCEV *> &VisitedRegs, 1150 const Loop *L, 1151 ScalarEvolution &SE, DominatorTree &DT, 1152 const LSRUse &LU, 1153 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1154 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 1155 // Tally up the registers. 1156 if (const SCEV *ScaledReg = F.ScaledReg) { 1157 if (VisitedRegs.count(ScaledReg)) { 1158 Lose(); 1159 return; 1160 } 1161 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1162 if (isLoser()) 1163 return; 1164 } 1165 for (const SCEV *BaseReg : F.BaseRegs) { 1166 if (VisitedRegs.count(BaseReg)) { 1167 Lose(); 1168 return; 1169 } 1170 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1171 if (isLoser()) 1172 return; 1173 } 1174 1175 // Determine how many (unfolded) adds we'll need inside the loop. 1176 size_t NumBaseParts = F.getNumRegs(); 1177 if (NumBaseParts > 1) 1178 // Do not count the base and a possible second register if the target 1179 // allows to fold 2 registers. 1180 NumBaseAdds += 1181 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1182 NumBaseAdds += (F.UnfoldedOffset != 0); 1183 1184 // Accumulate non-free scaling amounts. 1185 ScaleCost += getScalingFactorCost(TTI, LU, F); 1186 1187 // Tally up the non-zero immediates. 1188 for (const LSRFixup &Fixup : LU.Fixups) { 1189 int64_t O = Fixup.Offset; 1190 int64_t Offset = (uint64_t)O + F.BaseOffset; 1191 if (F.BaseGV) 1192 ImmCost += 64; // Handle symbolic values conservatively. 1193 // TODO: This should probably be the pointer size. 1194 else if (Offset != 0) 1195 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1196 1197 // Check with target if this offset with this instruction is 1198 // specifically not supported. 1199 if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) && 1200 !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset)) 1201 NumBaseAdds++; 1202 } 1203 assert(isValid() && "invalid cost"); 1204 } 1205 1206 /// Set this cost to a losing value. 1207 void Cost::Lose() { 1208 NumRegs = ~0u; 1209 AddRecCost = ~0u; 1210 NumIVMuls = ~0u; 1211 NumBaseAdds = ~0u; 1212 ImmCost = ~0u; 1213 SetupCost = ~0u; 1214 ScaleCost = ~0u; 1215 } 1216 1217 /// Choose the lower cost. 1218 bool Cost::operator<(const Cost &Other) const { 1219 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1220 ImmCost, SetupCost) < 1221 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1222 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1223 Other.SetupCost); 1224 } 1225 1226 void Cost::print(raw_ostream &OS) const { 1227 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1228 if (AddRecCost != 0) 1229 OS << ", with addrec cost " << AddRecCost; 1230 if (NumIVMuls != 0) 1231 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1232 if (NumBaseAdds != 0) 1233 OS << ", plus " << NumBaseAdds << " base add" 1234 << (NumBaseAdds == 1 ? "" : "s"); 1235 if (ScaleCost != 0) 1236 OS << ", plus " << ScaleCost << " scale cost"; 1237 if (ImmCost != 0) 1238 OS << ", plus " << ImmCost << " imm cost"; 1239 if (SetupCost != 0) 1240 OS << ", plus " << SetupCost << " setup cost"; 1241 } 1242 1243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1244 LLVM_DUMP_METHOD void Cost::dump() const { 1245 print(errs()); errs() << '\n'; 1246 } 1247 #endif 1248 1249 LSRFixup::LSRFixup() 1250 : UserInst(nullptr), OperandValToReplace(nullptr), 1251 Offset(0) {} 1252 1253 /// Test whether this fixup always uses its value outside of the given loop. 1254 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1255 // PHI nodes use their value in their incoming blocks. 1256 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1257 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1258 if (PN->getIncomingValue(i) == OperandValToReplace && 1259 L->contains(PN->getIncomingBlock(i))) 1260 return false; 1261 return true; 1262 } 1263 1264 return !L->contains(UserInst); 1265 } 1266 1267 void LSRFixup::print(raw_ostream &OS) const { 1268 OS << "UserInst="; 1269 // Store is common and interesting enough to be worth special-casing. 1270 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1271 OS << "store "; 1272 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1273 } else if (UserInst->getType()->isVoidTy()) 1274 OS << UserInst->getOpcodeName(); 1275 else 1276 UserInst->printAsOperand(OS, /*PrintType=*/false); 1277 1278 OS << ", OperandValToReplace="; 1279 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1280 1281 for (const Loop *PIL : PostIncLoops) { 1282 OS << ", PostIncLoop="; 1283 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1284 } 1285 1286 if (Offset != 0) 1287 OS << ", Offset=" << Offset; 1288 } 1289 1290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1291 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1292 print(errs()); errs() << '\n'; 1293 } 1294 #endif 1295 1296 /// Test whether this use as a formula which has the same registers as the given 1297 /// formula. 1298 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1299 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1300 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1301 // Unstable sort by host order ok, because this is only used for uniquifying. 1302 std::sort(Key.begin(), Key.end()); 1303 return Uniquifier.count(Key); 1304 } 1305 1306 /// If the given formula has not yet been inserted, add it to the list, and 1307 /// return true. Return false otherwise. The formula must be in canonical form. 1308 bool LSRUse::InsertFormula(const Formula &F) { 1309 assert(F.isCanonical() && "Invalid canonical representation"); 1310 1311 if (!Formulae.empty() && RigidFormula) 1312 return false; 1313 1314 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1315 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1316 // Unstable sort by host order ok, because this is only used for uniquifying. 1317 std::sort(Key.begin(), Key.end()); 1318 1319 if (!Uniquifier.insert(Key).second) 1320 return false; 1321 1322 // Using a register to hold the value of 0 is not profitable. 1323 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1324 "Zero allocated in a scaled register!"); 1325 #ifndef NDEBUG 1326 for (const SCEV *BaseReg : F.BaseRegs) 1327 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1328 #endif 1329 1330 // Add the formula to the list. 1331 Formulae.push_back(F); 1332 1333 // Record registers now being used by this use. 1334 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1335 if (F.ScaledReg) 1336 Regs.insert(F.ScaledReg); 1337 1338 return true; 1339 } 1340 1341 /// Remove the given formula from this use's list. 1342 void LSRUse::DeleteFormula(Formula &F) { 1343 if (&F != &Formulae.back()) 1344 std::swap(F, Formulae.back()); 1345 Formulae.pop_back(); 1346 } 1347 1348 /// Recompute the Regs field, and update RegUses. 1349 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1350 // Now that we've filtered out some formulae, recompute the Regs set. 1351 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1352 Regs.clear(); 1353 for (const Formula &F : Formulae) { 1354 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1355 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1356 } 1357 1358 // Update the RegTracker. 1359 for (const SCEV *S : OldRegs) 1360 if (!Regs.count(S)) 1361 RegUses.dropRegister(S, LUIdx); 1362 } 1363 1364 void LSRUse::print(raw_ostream &OS) const { 1365 OS << "LSR Use: Kind="; 1366 switch (Kind) { 1367 case Basic: OS << "Basic"; break; 1368 case Special: OS << "Special"; break; 1369 case ICmpZero: OS << "ICmpZero"; break; 1370 case Address: 1371 OS << "Address of "; 1372 if (AccessTy.MemTy->isPointerTy()) 1373 OS << "pointer"; // the full pointer type could be really verbose 1374 else { 1375 OS << *AccessTy.MemTy; 1376 } 1377 1378 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1379 } 1380 1381 OS << ", Offsets={"; 1382 bool NeedComma = false; 1383 for (const LSRFixup &Fixup : Fixups) { 1384 if (NeedComma) OS << ','; 1385 OS << Fixup.Offset; 1386 NeedComma = true; 1387 } 1388 OS << '}'; 1389 1390 if (AllFixupsOutsideLoop) 1391 OS << ", all-fixups-outside-loop"; 1392 1393 if (WidestFixupType) 1394 OS << ", widest fixup type: " << *WidestFixupType; 1395 } 1396 1397 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1398 LLVM_DUMP_METHOD void LSRUse::dump() const { 1399 print(errs()); errs() << '\n'; 1400 } 1401 #endif 1402 1403 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1404 LSRUse::KindType Kind, MemAccessTy AccessTy, 1405 GlobalValue *BaseGV, int64_t BaseOffset, 1406 bool HasBaseReg, int64_t Scale) { 1407 switch (Kind) { 1408 case LSRUse::Address: 1409 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1410 HasBaseReg, Scale, AccessTy.AddrSpace); 1411 1412 case LSRUse::ICmpZero: 1413 // There's not even a target hook for querying whether it would be legal to 1414 // fold a GV into an ICmp. 1415 if (BaseGV) 1416 return false; 1417 1418 // ICmp only has two operands; don't allow more than two non-trivial parts. 1419 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1420 return false; 1421 1422 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1423 // putting the scaled register in the other operand of the icmp. 1424 if (Scale != 0 && Scale != -1) 1425 return false; 1426 1427 // If we have low-level target information, ask the target if it can fold an 1428 // integer immediate on an icmp. 1429 if (BaseOffset != 0) { 1430 // We have one of: 1431 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1432 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1433 // Offs is the ICmp immediate. 1434 if (Scale == 0) 1435 // The cast does the right thing with INT64_MIN. 1436 BaseOffset = -(uint64_t)BaseOffset; 1437 return TTI.isLegalICmpImmediate(BaseOffset); 1438 } 1439 1440 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1441 return true; 1442 1443 case LSRUse::Basic: 1444 // Only handle single-register values. 1445 return !BaseGV && Scale == 0 && BaseOffset == 0; 1446 1447 case LSRUse::Special: 1448 // Special case Basic to handle -1 scales. 1449 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1450 } 1451 1452 llvm_unreachable("Invalid LSRUse Kind!"); 1453 } 1454 1455 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1456 int64_t MinOffset, int64_t MaxOffset, 1457 LSRUse::KindType Kind, MemAccessTy AccessTy, 1458 GlobalValue *BaseGV, int64_t BaseOffset, 1459 bool HasBaseReg, int64_t Scale) { 1460 // Check for overflow. 1461 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1462 (MinOffset > 0)) 1463 return false; 1464 MinOffset = (uint64_t)BaseOffset + MinOffset; 1465 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1466 (MaxOffset > 0)) 1467 return false; 1468 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1469 1470 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1471 HasBaseReg, Scale) && 1472 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1473 HasBaseReg, Scale); 1474 } 1475 1476 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1477 int64_t MinOffset, int64_t MaxOffset, 1478 LSRUse::KindType Kind, MemAccessTy AccessTy, 1479 const Formula &F) { 1480 // For the purpose of isAMCompletelyFolded either having a canonical formula 1481 // or a scale not equal to zero is correct. 1482 // Problems may arise from non canonical formulae having a scale == 0. 1483 // Strictly speaking it would best to just rely on canonical formulae. 1484 // However, when we generate the scaled formulae, we first check that the 1485 // scaling factor is profitable before computing the actual ScaledReg for 1486 // compile time sake. 1487 assert((F.isCanonical() || F.Scale != 0)); 1488 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1489 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1490 } 1491 1492 /// Test whether we know how to expand the current formula. 1493 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1494 int64_t MaxOffset, LSRUse::KindType Kind, 1495 MemAccessTy AccessTy, GlobalValue *BaseGV, 1496 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1497 // We know how to expand completely foldable formulae. 1498 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1499 BaseOffset, HasBaseReg, Scale) || 1500 // Or formulae that use a base register produced by a sum of base 1501 // registers. 1502 (Scale == 1 && 1503 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1504 BaseGV, BaseOffset, true, 0)); 1505 } 1506 1507 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1508 int64_t MaxOffset, LSRUse::KindType Kind, 1509 MemAccessTy AccessTy, const Formula &F) { 1510 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1511 F.BaseOffset, F.HasBaseReg, F.Scale); 1512 } 1513 1514 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1515 const LSRUse &LU, const Formula &F) { 1516 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1517 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1518 F.Scale); 1519 } 1520 1521 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1522 const LSRUse &LU, const Formula &F) { 1523 if (!F.Scale) 1524 return 0; 1525 1526 // If the use is not completely folded in that instruction, we will have to 1527 // pay an extra cost only for scale != 1. 1528 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1529 LU.AccessTy, F)) 1530 return F.Scale != 1; 1531 1532 switch (LU.Kind) { 1533 case LSRUse::Address: { 1534 // Check the scaling factor cost with both the min and max offsets. 1535 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1536 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1537 F.Scale, LU.AccessTy.AddrSpace); 1538 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1539 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1540 F.Scale, LU.AccessTy.AddrSpace); 1541 1542 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1543 "Legal addressing mode has an illegal cost!"); 1544 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1545 } 1546 case LSRUse::ICmpZero: 1547 case LSRUse::Basic: 1548 case LSRUse::Special: 1549 // The use is completely folded, i.e., everything is folded into the 1550 // instruction. 1551 return 0; 1552 } 1553 1554 llvm_unreachable("Invalid LSRUse Kind!"); 1555 } 1556 1557 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1558 LSRUse::KindType Kind, MemAccessTy AccessTy, 1559 GlobalValue *BaseGV, int64_t BaseOffset, 1560 bool HasBaseReg) { 1561 // Fast-path: zero is always foldable. 1562 if (BaseOffset == 0 && !BaseGV) return true; 1563 1564 // Conservatively, create an address with an immediate and a 1565 // base and a scale. 1566 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1567 1568 // Canonicalize a scale of 1 to a base register if the formula doesn't 1569 // already have a base register. 1570 if (!HasBaseReg && Scale == 1) { 1571 Scale = 0; 1572 HasBaseReg = true; 1573 } 1574 1575 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1576 HasBaseReg, Scale); 1577 } 1578 1579 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1580 ScalarEvolution &SE, int64_t MinOffset, 1581 int64_t MaxOffset, LSRUse::KindType Kind, 1582 MemAccessTy AccessTy, const SCEV *S, 1583 bool HasBaseReg) { 1584 // Fast-path: zero is always foldable. 1585 if (S->isZero()) return true; 1586 1587 // Conservatively, create an address with an immediate and a 1588 // base and a scale. 1589 int64_t BaseOffset = ExtractImmediate(S, SE); 1590 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1591 1592 // If there's anything else involved, it's not foldable. 1593 if (!S->isZero()) return false; 1594 1595 // Fast-path: zero is always foldable. 1596 if (BaseOffset == 0 && !BaseGV) return true; 1597 1598 // Conservatively, create an address with an immediate and a 1599 // base and a scale. 1600 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1601 1602 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1603 BaseOffset, HasBaseReg, Scale); 1604 } 1605 1606 namespace { 1607 1608 /// An individual increment in a Chain of IV increments. Relate an IV user to 1609 /// an expression that computes the IV it uses from the IV used by the previous 1610 /// link in the Chain. 1611 /// 1612 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1613 /// original IVOperand. The head of the chain's IVOperand is only valid during 1614 /// chain collection, before LSR replaces IV users. During chain generation, 1615 /// IncExpr can be used to find the new IVOperand that computes the same 1616 /// expression. 1617 struct IVInc { 1618 Instruction *UserInst; 1619 Value* IVOperand; 1620 const SCEV *IncExpr; 1621 1622 IVInc(Instruction *U, Value *O, const SCEV *E): 1623 UserInst(U), IVOperand(O), IncExpr(E) {} 1624 }; 1625 1626 // The list of IV increments in program order. We typically add the head of a 1627 // chain without finding subsequent links. 1628 struct IVChain { 1629 SmallVector<IVInc,1> Incs; 1630 const SCEV *ExprBase; 1631 1632 IVChain() : ExprBase(nullptr) {} 1633 1634 IVChain(const IVInc &Head, const SCEV *Base) 1635 : Incs(1, Head), ExprBase(Base) {} 1636 1637 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1638 1639 // Return the first increment in the chain. 1640 const_iterator begin() const { 1641 assert(!Incs.empty()); 1642 return std::next(Incs.begin()); 1643 } 1644 const_iterator end() const { 1645 return Incs.end(); 1646 } 1647 1648 // Returns true if this chain contains any increments. 1649 bool hasIncs() const { return Incs.size() >= 2; } 1650 1651 // Add an IVInc to the end of this chain. 1652 void add(const IVInc &X) { Incs.push_back(X); } 1653 1654 // Returns the last UserInst in the chain. 1655 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1656 1657 // Returns true if IncExpr can be profitably added to this chain. 1658 bool isProfitableIncrement(const SCEV *OperExpr, 1659 const SCEV *IncExpr, 1660 ScalarEvolution&); 1661 }; 1662 1663 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1664 /// between FarUsers that definitely cross IV increments and NearUsers that may 1665 /// be used between IV increments. 1666 struct ChainUsers { 1667 SmallPtrSet<Instruction*, 4> FarUsers; 1668 SmallPtrSet<Instruction*, 4> NearUsers; 1669 }; 1670 1671 /// This class holds state for the main loop strength reduction logic. 1672 class LSRInstance { 1673 IVUsers &IU; 1674 ScalarEvolution &SE; 1675 DominatorTree &DT; 1676 LoopInfo &LI; 1677 const TargetTransformInfo &TTI; 1678 Loop *const L; 1679 bool Changed; 1680 1681 /// This is the insert position that the current loop's induction variable 1682 /// increment should be placed. In simple loops, this is the latch block's 1683 /// terminator. But in more complicated cases, this is a position which will 1684 /// dominate all the in-loop post-increment users. 1685 Instruction *IVIncInsertPos; 1686 1687 /// Interesting factors between use strides. 1688 /// 1689 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1690 /// default, a SmallDenseSet, because we need to use the full range of 1691 /// int64_ts, and there's currently no good way of doing that with 1692 /// SmallDenseSet. 1693 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1694 1695 /// Interesting use types, to facilitate truncation reuse. 1696 SmallSetVector<Type *, 4> Types; 1697 1698 /// The list of interesting uses. 1699 SmallVector<LSRUse, 16> Uses; 1700 1701 /// Track which uses use which register candidates. 1702 RegUseTracker RegUses; 1703 1704 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1705 // have more than a few IV increment chains in a loop. Missing a Chain falls 1706 // back to normal LSR behavior for those uses. 1707 static const unsigned MaxChains = 8; 1708 1709 /// IV users can form a chain of IV increments. 1710 SmallVector<IVChain, MaxChains> IVChainVec; 1711 1712 /// IV users that belong to profitable IVChains. 1713 SmallPtrSet<Use*, MaxChains> IVIncSet; 1714 1715 void OptimizeShadowIV(); 1716 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1717 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1718 void OptimizeLoopTermCond(); 1719 1720 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1721 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1722 void FinalizeChain(IVChain &Chain); 1723 void CollectChains(); 1724 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1725 SmallVectorImpl<WeakVH> &DeadInsts); 1726 1727 void CollectInterestingTypesAndFactors(); 1728 void CollectFixupsAndInitialFormulae(); 1729 1730 // Support for sharing of LSRUses between LSRFixups. 1731 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1732 UseMapTy UseMap; 1733 1734 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1735 LSRUse::KindType Kind, MemAccessTy AccessTy); 1736 1737 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1738 MemAccessTy AccessTy); 1739 1740 void DeleteUse(LSRUse &LU, size_t LUIdx); 1741 1742 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1743 1744 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1745 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1746 void CountRegisters(const Formula &F, size_t LUIdx); 1747 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1748 1749 void CollectLoopInvariantFixupsAndFormulae(); 1750 1751 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1752 unsigned Depth = 0); 1753 1754 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1755 const Formula &Base, unsigned Depth, 1756 size_t Idx, bool IsScaledReg = false); 1757 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1758 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1759 const Formula &Base, size_t Idx, 1760 bool IsScaledReg = false); 1761 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1762 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1763 const Formula &Base, 1764 const SmallVectorImpl<int64_t> &Worklist, 1765 size_t Idx, bool IsScaledReg = false); 1766 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1767 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1768 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1769 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1770 void GenerateCrossUseConstantOffsets(); 1771 void GenerateAllReuseFormulae(); 1772 1773 void FilterOutUndesirableDedicatedRegisters(); 1774 1775 size_t EstimateSearchSpaceComplexity() const; 1776 void NarrowSearchSpaceByDetectingSupersets(); 1777 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1778 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1779 void NarrowSearchSpaceByPickingWinnerRegs(); 1780 void NarrowSearchSpaceUsingHeuristics(); 1781 1782 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1783 Cost &SolutionCost, 1784 SmallVectorImpl<const Formula *> &Workspace, 1785 const Cost &CurCost, 1786 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1787 DenseSet<const SCEV *> &VisitedRegs) const; 1788 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1789 1790 BasicBlock::iterator 1791 HoistInsertPosition(BasicBlock::iterator IP, 1792 const SmallVectorImpl<Instruction *> &Inputs) const; 1793 BasicBlock::iterator 1794 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1795 const LSRFixup &LF, 1796 const LSRUse &LU, 1797 SCEVExpander &Rewriter) const; 1798 1799 Value *Expand(const LSRUse &LU, const LSRFixup &LF, 1800 const Formula &F, 1801 BasicBlock::iterator IP, 1802 SCEVExpander &Rewriter, 1803 SmallVectorImpl<WeakVH> &DeadInsts) const; 1804 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1805 const Formula &F, 1806 SCEVExpander &Rewriter, 1807 SmallVectorImpl<WeakVH> &DeadInsts) const; 1808 void Rewrite(const LSRUse &LU, const LSRFixup &LF, 1809 const Formula &F, 1810 SCEVExpander &Rewriter, 1811 SmallVectorImpl<WeakVH> &DeadInsts) const; 1812 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1813 1814 public: 1815 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1816 LoopInfo &LI, const TargetTransformInfo &TTI); 1817 1818 bool getChanged() const { return Changed; } 1819 1820 void print_factors_and_types(raw_ostream &OS) const; 1821 void print_fixups(raw_ostream &OS) const; 1822 void print_uses(raw_ostream &OS) const; 1823 void print(raw_ostream &OS) const; 1824 void dump() const; 1825 }; 1826 1827 } // end anonymous namespace 1828 1829 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1830 /// the cast operation. 1831 void LSRInstance::OptimizeShadowIV() { 1832 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1833 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1834 return; 1835 1836 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1837 UI != E; /* empty */) { 1838 IVUsers::const_iterator CandidateUI = UI; 1839 ++UI; 1840 Instruction *ShadowUse = CandidateUI->getUser(); 1841 Type *DestTy = nullptr; 1842 bool IsSigned = false; 1843 1844 /* If shadow use is a int->float cast then insert a second IV 1845 to eliminate this cast. 1846 1847 for (unsigned i = 0; i < n; ++i) 1848 foo((double)i); 1849 1850 is transformed into 1851 1852 double d = 0.0; 1853 for (unsigned i = 0; i < n; ++i, ++d) 1854 foo(d); 1855 */ 1856 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1857 IsSigned = false; 1858 DestTy = UCast->getDestTy(); 1859 } 1860 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1861 IsSigned = true; 1862 DestTy = SCast->getDestTy(); 1863 } 1864 if (!DestTy) continue; 1865 1866 // If target does not support DestTy natively then do not apply 1867 // this transformation. 1868 if (!TTI.isTypeLegal(DestTy)) continue; 1869 1870 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1871 if (!PH) continue; 1872 if (PH->getNumIncomingValues() != 2) continue; 1873 1874 Type *SrcTy = PH->getType(); 1875 int Mantissa = DestTy->getFPMantissaWidth(); 1876 if (Mantissa == -1) continue; 1877 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1878 continue; 1879 1880 unsigned Entry, Latch; 1881 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1882 Entry = 0; 1883 Latch = 1; 1884 } else { 1885 Entry = 1; 1886 Latch = 0; 1887 } 1888 1889 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1890 if (!Init) continue; 1891 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1892 (double)Init->getSExtValue() : 1893 (double)Init->getZExtValue()); 1894 1895 BinaryOperator *Incr = 1896 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1897 if (!Incr) continue; 1898 if (Incr->getOpcode() != Instruction::Add 1899 && Incr->getOpcode() != Instruction::Sub) 1900 continue; 1901 1902 /* Initialize new IV, double d = 0.0 in above example. */ 1903 ConstantInt *C = nullptr; 1904 if (Incr->getOperand(0) == PH) 1905 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1906 else if (Incr->getOperand(1) == PH) 1907 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1908 else 1909 continue; 1910 1911 if (!C) continue; 1912 1913 // Ignore negative constants, as the code below doesn't handle them 1914 // correctly. TODO: Remove this restriction. 1915 if (!C->getValue().isStrictlyPositive()) continue; 1916 1917 /* Add new PHINode. */ 1918 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1919 1920 /* create new increment. '++d' in above example. */ 1921 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1922 BinaryOperator *NewIncr = 1923 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1924 Instruction::FAdd : Instruction::FSub, 1925 NewPH, CFP, "IV.S.next.", Incr); 1926 1927 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1928 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1929 1930 /* Remove cast operation */ 1931 ShadowUse->replaceAllUsesWith(NewPH); 1932 ShadowUse->eraseFromParent(); 1933 Changed = true; 1934 break; 1935 } 1936 } 1937 1938 /// If Cond has an operand that is an expression of an IV, set the IV user and 1939 /// stride information and return true, otherwise return false. 1940 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1941 for (IVStrideUse &U : IU) 1942 if (U.getUser() == Cond) { 1943 // NOTE: we could handle setcc instructions with multiple uses here, but 1944 // InstCombine does it as well for simple uses, it's not clear that it 1945 // occurs enough in real life to handle. 1946 CondUse = &U; 1947 return true; 1948 } 1949 return false; 1950 } 1951 1952 /// Rewrite the loop's terminating condition if it uses a max computation. 1953 /// 1954 /// This is a narrow solution to a specific, but acute, problem. For loops 1955 /// like this: 1956 /// 1957 /// i = 0; 1958 /// do { 1959 /// p[i] = 0.0; 1960 /// } while (++i < n); 1961 /// 1962 /// the trip count isn't just 'n', because 'n' might not be positive. And 1963 /// unfortunately this can come up even for loops where the user didn't use 1964 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1965 /// will commonly be lowered like this: 1966 // 1967 /// if (n > 0) { 1968 /// i = 0; 1969 /// do { 1970 /// p[i] = 0.0; 1971 /// } while (++i < n); 1972 /// } 1973 /// 1974 /// and then it's possible for subsequent optimization to obscure the if 1975 /// test in such a way that indvars can't find it. 1976 /// 1977 /// When indvars can't find the if test in loops like this, it creates a 1978 /// max expression, which allows it to give the loop a canonical 1979 /// induction variable: 1980 /// 1981 /// i = 0; 1982 /// max = n < 1 ? 1 : n; 1983 /// do { 1984 /// p[i] = 0.0; 1985 /// } while (++i != max); 1986 /// 1987 /// Canonical induction variables are necessary because the loop passes 1988 /// are designed around them. The most obvious example of this is the 1989 /// LoopInfo analysis, which doesn't remember trip count values. It 1990 /// expects to be able to rediscover the trip count each time it is 1991 /// needed, and it does this using a simple analysis that only succeeds if 1992 /// the loop has a canonical induction variable. 1993 /// 1994 /// However, when it comes time to generate code, the maximum operation 1995 /// can be quite costly, especially if it's inside of an outer loop. 1996 /// 1997 /// This function solves this problem by detecting this type of loop and 1998 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1999 /// the instructions for the maximum computation. 2000 /// 2001 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2002 // Check that the loop matches the pattern we're looking for. 2003 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2004 Cond->getPredicate() != CmpInst::ICMP_NE) 2005 return Cond; 2006 2007 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2008 if (!Sel || !Sel->hasOneUse()) return Cond; 2009 2010 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2011 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2012 return Cond; 2013 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2014 2015 // Add one to the backedge-taken count to get the trip count. 2016 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2017 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2018 2019 // Check for a max calculation that matches the pattern. There's no check 2020 // for ICMP_ULE here because the comparison would be with zero, which 2021 // isn't interesting. 2022 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2023 const SCEVNAryExpr *Max = nullptr; 2024 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2025 Pred = ICmpInst::ICMP_SLE; 2026 Max = S; 2027 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2028 Pred = ICmpInst::ICMP_SLT; 2029 Max = S; 2030 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2031 Pred = ICmpInst::ICMP_ULT; 2032 Max = U; 2033 } else { 2034 // No match; bail. 2035 return Cond; 2036 } 2037 2038 // To handle a max with more than two operands, this optimization would 2039 // require additional checking and setup. 2040 if (Max->getNumOperands() != 2) 2041 return Cond; 2042 2043 const SCEV *MaxLHS = Max->getOperand(0); 2044 const SCEV *MaxRHS = Max->getOperand(1); 2045 2046 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2047 // for a comparison with 1. For <= and >=, a comparison with zero. 2048 if (!MaxLHS || 2049 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2050 return Cond; 2051 2052 // Check the relevant induction variable for conformance to 2053 // the pattern. 2054 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2055 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2056 if (!AR || !AR->isAffine() || 2057 AR->getStart() != One || 2058 AR->getStepRecurrence(SE) != One) 2059 return Cond; 2060 2061 assert(AR->getLoop() == L && 2062 "Loop condition operand is an addrec in a different loop!"); 2063 2064 // Check the right operand of the select, and remember it, as it will 2065 // be used in the new comparison instruction. 2066 Value *NewRHS = nullptr; 2067 if (ICmpInst::isTrueWhenEqual(Pred)) { 2068 // Look for n+1, and grab n. 2069 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2070 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2071 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2072 NewRHS = BO->getOperand(0); 2073 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2074 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2075 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2076 NewRHS = BO->getOperand(0); 2077 if (!NewRHS) 2078 return Cond; 2079 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2080 NewRHS = Sel->getOperand(1); 2081 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2082 NewRHS = Sel->getOperand(2); 2083 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2084 NewRHS = SU->getValue(); 2085 else 2086 // Max doesn't match expected pattern. 2087 return Cond; 2088 2089 // Determine the new comparison opcode. It may be signed or unsigned, 2090 // and the original comparison may be either equality or inequality. 2091 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2092 Pred = CmpInst::getInversePredicate(Pred); 2093 2094 // Ok, everything looks ok to change the condition into an SLT or SGE and 2095 // delete the max calculation. 2096 ICmpInst *NewCond = 2097 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2098 2099 // Delete the max calculation instructions. 2100 Cond->replaceAllUsesWith(NewCond); 2101 CondUse->setUser(NewCond); 2102 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2103 Cond->eraseFromParent(); 2104 Sel->eraseFromParent(); 2105 if (Cmp->use_empty()) 2106 Cmp->eraseFromParent(); 2107 return NewCond; 2108 } 2109 2110 /// Change loop terminating condition to use the postinc iv when possible. 2111 void 2112 LSRInstance::OptimizeLoopTermCond() { 2113 SmallPtrSet<Instruction *, 4> PostIncs; 2114 2115 // We need a different set of heuristics for rotated and non-rotated loops. 2116 // If a loop is rotated then the latch is also the backedge, so inserting 2117 // post-inc expressions just before the latch is ideal. To reduce live ranges 2118 // it also makes sense to rewrite terminating conditions to use post-inc 2119 // expressions. 2120 // 2121 // If the loop is not rotated then the latch is not a backedge; the latch 2122 // check is done in the loop head. Adding post-inc expressions before the 2123 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2124 // in the loop body. In this case we do *not* want to use post-inc expressions 2125 // in the latch check, and we want to insert post-inc expressions before 2126 // the backedge. 2127 BasicBlock *LatchBlock = L->getLoopLatch(); 2128 SmallVector<BasicBlock*, 8> ExitingBlocks; 2129 L->getExitingBlocks(ExitingBlocks); 2130 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2131 return LatchBlock != BB; 2132 })) { 2133 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2134 IVIncInsertPos = LatchBlock->getTerminator(); 2135 return; 2136 } 2137 2138 // Otherwise treat this as a rotated loop. 2139 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2140 2141 // Get the terminating condition for the loop if possible. If we 2142 // can, we want to change it to use a post-incremented version of its 2143 // induction variable, to allow coalescing the live ranges for the IV into 2144 // one register value. 2145 2146 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2147 if (!TermBr) 2148 continue; 2149 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2150 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2151 continue; 2152 2153 // Search IVUsesByStride to find Cond's IVUse if there is one. 2154 IVStrideUse *CondUse = nullptr; 2155 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2156 if (!FindIVUserForCond(Cond, CondUse)) 2157 continue; 2158 2159 // If the trip count is computed in terms of a max (due to ScalarEvolution 2160 // being unable to find a sufficient guard, for example), change the loop 2161 // comparison to use SLT or ULT instead of NE. 2162 // One consequence of doing this now is that it disrupts the count-down 2163 // optimization. That's not always a bad thing though, because in such 2164 // cases it may still be worthwhile to avoid a max. 2165 Cond = OptimizeMax(Cond, CondUse); 2166 2167 // If this exiting block dominates the latch block, it may also use 2168 // the post-inc value if it won't be shared with other uses. 2169 // Check for dominance. 2170 if (!DT.dominates(ExitingBlock, LatchBlock)) 2171 continue; 2172 2173 // Conservatively avoid trying to use the post-inc value in non-latch 2174 // exits if there may be pre-inc users in intervening blocks. 2175 if (LatchBlock != ExitingBlock) 2176 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2177 // Test if the use is reachable from the exiting block. This dominator 2178 // query is a conservative approximation of reachability. 2179 if (&*UI != CondUse && 2180 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2181 // Conservatively assume there may be reuse if the quotient of their 2182 // strides could be a legal scale. 2183 const SCEV *A = IU.getStride(*CondUse, L); 2184 const SCEV *B = IU.getStride(*UI, L); 2185 if (!A || !B) continue; 2186 if (SE.getTypeSizeInBits(A->getType()) != 2187 SE.getTypeSizeInBits(B->getType())) { 2188 if (SE.getTypeSizeInBits(A->getType()) > 2189 SE.getTypeSizeInBits(B->getType())) 2190 B = SE.getSignExtendExpr(B, A->getType()); 2191 else 2192 A = SE.getSignExtendExpr(A, B->getType()); 2193 } 2194 if (const SCEVConstant *D = 2195 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2196 const ConstantInt *C = D->getValue(); 2197 // Stride of one or negative one can have reuse with non-addresses. 2198 if (C->isOne() || C->isAllOnesValue()) 2199 goto decline_post_inc; 2200 // Avoid weird situations. 2201 if (C->getValue().getMinSignedBits() >= 64 || 2202 C->getValue().isMinSignedValue()) 2203 goto decline_post_inc; 2204 // Check for possible scaled-address reuse. 2205 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2206 int64_t Scale = C->getSExtValue(); 2207 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2208 /*BaseOffset=*/0, 2209 /*HasBaseReg=*/false, Scale, 2210 AccessTy.AddrSpace)) 2211 goto decline_post_inc; 2212 Scale = -Scale; 2213 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2214 /*BaseOffset=*/0, 2215 /*HasBaseReg=*/false, Scale, 2216 AccessTy.AddrSpace)) 2217 goto decline_post_inc; 2218 } 2219 } 2220 2221 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2222 << *Cond << '\n'); 2223 2224 // It's possible for the setcc instruction to be anywhere in the loop, and 2225 // possible for it to have multiple users. If it is not immediately before 2226 // the exiting block branch, move it. 2227 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2228 if (Cond->hasOneUse()) { 2229 Cond->moveBefore(TermBr); 2230 } else { 2231 // Clone the terminating condition and insert into the loopend. 2232 ICmpInst *OldCond = Cond; 2233 Cond = cast<ICmpInst>(Cond->clone()); 2234 Cond->setName(L->getHeader()->getName() + ".termcond"); 2235 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2236 2237 // Clone the IVUse, as the old use still exists! 2238 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2239 TermBr->replaceUsesOfWith(OldCond, Cond); 2240 } 2241 } 2242 2243 // If we get to here, we know that we can transform the setcc instruction to 2244 // use the post-incremented version of the IV, allowing us to coalesce the 2245 // live ranges for the IV correctly. 2246 CondUse->transformToPostInc(L); 2247 Changed = true; 2248 2249 PostIncs.insert(Cond); 2250 decline_post_inc:; 2251 } 2252 2253 // Determine an insertion point for the loop induction variable increment. It 2254 // must dominate all the post-inc comparisons we just set up, and it must 2255 // dominate the loop latch edge. 2256 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2257 for (Instruction *Inst : PostIncs) { 2258 BasicBlock *BB = 2259 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2260 Inst->getParent()); 2261 if (BB == Inst->getParent()) 2262 IVIncInsertPos = Inst; 2263 else if (BB != IVIncInsertPos->getParent()) 2264 IVIncInsertPos = BB->getTerminator(); 2265 } 2266 } 2267 2268 /// Determine if the given use can accommodate a fixup at the given offset and 2269 /// other details. If so, update the use and return true. 2270 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2271 bool HasBaseReg, LSRUse::KindType Kind, 2272 MemAccessTy AccessTy) { 2273 int64_t NewMinOffset = LU.MinOffset; 2274 int64_t NewMaxOffset = LU.MaxOffset; 2275 MemAccessTy NewAccessTy = AccessTy; 2276 2277 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2278 // something conservative, however this can pessimize in the case that one of 2279 // the uses will have all its uses outside the loop, for example. 2280 if (LU.Kind != Kind) 2281 return false; 2282 2283 // Check for a mismatched access type, and fall back conservatively as needed. 2284 // TODO: Be less conservative when the type is similar and can use the same 2285 // addressing modes. 2286 if (Kind == LSRUse::Address) { 2287 if (AccessTy != LU.AccessTy) 2288 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext()); 2289 } 2290 2291 // Conservatively assume HasBaseReg is true for now. 2292 if (NewOffset < LU.MinOffset) { 2293 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2294 LU.MaxOffset - NewOffset, HasBaseReg)) 2295 return false; 2296 NewMinOffset = NewOffset; 2297 } else if (NewOffset > LU.MaxOffset) { 2298 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2299 NewOffset - LU.MinOffset, HasBaseReg)) 2300 return false; 2301 NewMaxOffset = NewOffset; 2302 } 2303 2304 // Update the use. 2305 LU.MinOffset = NewMinOffset; 2306 LU.MaxOffset = NewMaxOffset; 2307 LU.AccessTy = NewAccessTy; 2308 return true; 2309 } 2310 2311 /// Return an LSRUse index and an offset value for a fixup which needs the given 2312 /// expression, with the given kind and optional access type. Either reuse an 2313 /// existing use or create a new one, as needed. 2314 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2315 LSRUse::KindType Kind, 2316 MemAccessTy AccessTy) { 2317 const SCEV *Copy = Expr; 2318 int64_t Offset = ExtractImmediate(Expr, SE); 2319 2320 // Basic uses can't accept any offset, for example. 2321 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2322 Offset, /*HasBaseReg=*/ true)) { 2323 Expr = Copy; 2324 Offset = 0; 2325 } 2326 2327 std::pair<UseMapTy::iterator, bool> P = 2328 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2329 if (!P.second) { 2330 // A use already existed with this base. 2331 size_t LUIdx = P.first->second; 2332 LSRUse &LU = Uses[LUIdx]; 2333 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2334 // Reuse this use. 2335 return std::make_pair(LUIdx, Offset); 2336 } 2337 2338 // Create a new use. 2339 size_t LUIdx = Uses.size(); 2340 P.first->second = LUIdx; 2341 Uses.push_back(LSRUse(Kind, AccessTy)); 2342 LSRUse &LU = Uses[LUIdx]; 2343 2344 LU.MinOffset = Offset; 2345 LU.MaxOffset = Offset; 2346 return std::make_pair(LUIdx, Offset); 2347 } 2348 2349 /// Delete the given use from the Uses list. 2350 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2351 if (&LU != &Uses.back()) 2352 std::swap(LU, Uses.back()); 2353 Uses.pop_back(); 2354 2355 // Update RegUses. 2356 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2357 } 2358 2359 /// Look for a use distinct from OrigLU which is has a formula that has the same 2360 /// registers as the given formula. 2361 LSRUse * 2362 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2363 const LSRUse &OrigLU) { 2364 // Search all uses for the formula. This could be more clever. 2365 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2366 LSRUse &LU = Uses[LUIdx]; 2367 // Check whether this use is close enough to OrigLU, to see whether it's 2368 // worthwhile looking through its formulae. 2369 // Ignore ICmpZero uses because they may contain formulae generated by 2370 // GenerateICmpZeroScales, in which case adding fixup offsets may 2371 // be invalid. 2372 if (&LU != &OrigLU && 2373 LU.Kind != LSRUse::ICmpZero && 2374 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2375 LU.WidestFixupType == OrigLU.WidestFixupType && 2376 LU.HasFormulaWithSameRegs(OrigF)) { 2377 // Scan through this use's formulae. 2378 for (const Formula &F : LU.Formulae) { 2379 // Check to see if this formula has the same registers and symbols 2380 // as OrigF. 2381 if (F.BaseRegs == OrigF.BaseRegs && 2382 F.ScaledReg == OrigF.ScaledReg && 2383 F.BaseGV == OrigF.BaseGV && 2384 F.Scale == OrigF.Scale && 2385 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2386 if (F.BaseOffset == 0) 2387 return &LU; 2388 // This is the formula where all the registers and symbols matched; 2389 // there aren't going to be any others. Since we declined it, we 2390 // can skip the rest of the formulae and proceed to the next LSRUse. 2391 break; 2392 } 2393 } 2394 } 2395 } 2396 2397 // Nothing looked good. 2398 return nullptr; 2399 } 2400 2401 void LSRInstance::CollectInterestingTypesAndFactors() { 2402 SmallSetVector<const SCEV *, 4> Strides; 2403 2404 // Collect interesting types and strides. 2405 SmallVector<const SCEV *, 4> Worklist; 2406 for (const IVStrideUse &U : IU) { 2407 const SCEV *Expr = IU.getExpr(U); 2408 2409 // Collect interesting types. 2410 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2411 2412 // Add strides for mentioned loops. 2413 Worklist.push_back(Expr); 2414 do { 2415 const SCEV *S = Worklist.pop_back_val(); 2416 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2417 if (AR->getLoop() == L) 2418 Strides.insert(AR->getStepRecurrence(SE)); 2419 Worklist.push_back(AR->getStart()); 2420 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2421 Worklist.append(Add->op_begin(), Add->op_end()); 2422 } 2423 } while (!Worklist.empty()); 2424 } 2425 2426 // Compute interesting factors from the set of interesting strides. 2427 for (SmallSetVector<const SCEV *, 4>::const_iterator 2428 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2429 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2430 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2431 const SCEV *OldStride = *I; 2432 const SCEV *NewStride = *NewStrideIter; 2433 2434 if (SE.getTypeSizeInBits(OldStride->getType()) != 2435 SE.getTypeSizeInBits(NewStride->getType())) { 2436 if (SE.getTypeSizeInBits(OldStride->getType()) > 2437 SE.getTypeSizeInBits(NewStride->getType())) 2438 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2439 else 2440 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2441 } 2442 if (const SCEVConstant *Factor = 2443 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2444 SE, true))) { 2445 if (Factor->getAPInt().getMinSignedBits() <= 64) 2446 Factors.insert(Factor->getAPInt().getSExtValue()); 2447 } else if (const SCEVConstant *Factor = 2448 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2449 NewStride, 2450 SE, true))) { 2451 if (Factor->getAPInt().getMinSignedBits() <= 64) 2452 Factors.insert(Factor->getAPInt().getSExtValue()); 2453 } 2454 } 2455 2456 // If all uses use the same type, don't bother looking for truncation-based 2457 // reuse. 2458 if (Types.size() == 1) 2459 Types.clear(); 2460 2461 DEBUG(print_factors_and_types(dbgs())); 2462 } 2463 2464 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2465 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2466 /// IVStrideUses, we could partially skip this. 2467 static User::op_iterator 2468 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2469 Loop *L, ScalarEvolution &SE) { 2470 for(; OI != OE; ++OI) { 2471 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2472 if (!SE.isSCEVable(Oper->getType())) 2473 continue; 2474 2475 if (const SCEVAddRecExpr *AR = 2476 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2477 if (AR->getLoop() == L) 2478 break; 2479 } 2480 } 2481 } 2482 return OI; 2483 } 2484 2485 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2486 /// a convenient helper. 2487 static Value *getWideOperand(Value *Oper) { 2488 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2489 return Trunc->getOperand(0); 2490 return Oper; 2491 } 2492 2493 /// Return true if we allow an IV chain to include both types. 2494 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2495 Type *LType = LVal->getType(); 2496 Type *RType = RVal->getType(); 2497 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2498 } 2499 2500 /// Return an approximation of this SCEV expression's "base", or NULL for any 2501 /// constant. Returning the expression itself is conservative. Returning a 2502 /// deeper subexpression is more precise and valid as long as it isn't less 2503 /// complex than another subexpression. For expressions involving multiple 2504 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2505 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2506 /// IVInc==b-a. 2507 /// 2508 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2509 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2510 static const SCEV *getExprBase(const SCEV *S) { 2511 switch (S->getSCEVType()) { 2512 default: // uncluding scUnknown. 2513 return S; 2514 case scConstant: 2515 return nullptr; 2516 case scTruncate: 2517 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2518 case scZeroExtend: 2519 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2520 case scSignExtend: 2521 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2522 case scAddExpr: { 2523 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2524 // there's nothing more complex. 2525 // FIXME: not sure if we want to recognize negation. 2526 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2527 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2528 E(Add->op_begin()); I != E; ++I) { 2529 const SCEV *SubExpr = *I; 2530 if (SubExpr->getSCEVType() == scAddExpr) 2531 return getExprBase(SubExpr); 2532 2533 if (SubExpr->getSCEVType() != scMulExpr) 2534 return SubExpr; 2535 } 2536 return S; // all operands are scaled, be conservative. 2537 } 2538 case scAddRecExpr: 2539 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2540 } 2541 } 2542 2543 /// Return true if the chain increment is profitable to expand into a loop 2544 /// invariant value, which may require its own register. A profitable chain 2545 /// increment will be an offset relative to the same base. We allow such offsets 2546 /// to potentially be used as chain increment as long as it's not obviously 2547 /// expensive to expand using real instructions. 2548 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2549 const SCEV *IncExpr, 2550 ScalarEvolution &SE) { 2551 // Aggressively form chains when -stress-ivchain. 2552 if (StressIVChain) 2553 return true; 2554 2555 // Do not replace a constant offset from IV head with a nonconstant IV 2556 // increment. 2557 if (!isa<SCEVConstant>(IncExpr)) { 2558 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2559 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2560 return false; 2561 } 2562 2563 SmallPtrSet<const SCEV*, 8> Processed; 2564 return !isHighCostExpansion(IncExpr, Processed, SE); 2565 } 2566 2567 /// Return true if the number of registers needed for the chain is estimated to 2568 /// be less than the number required for the individual IV users. First prohibit 2569 /// any IV users that keep the IV live across increments (the Users set should 2570 /// be empty). Next count the number and type of increments in the chain. 2571 /// 2572 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2573 /// effectively use postinc addressing modes. Only consider it profitable it the 2574 /// increments can be computed in fewer registers when chained. 2575 /// 2576 /// TODO: Consider IVInc free if it's already used in another chains. 2577 static bool 2578 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2579 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2580 if (StressIVChain) 2581 return true; 2582 2583 if (!Chain.hasIncs()) 2584 return false; 2585 2586 if (!Users.empty()) { 2587 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2588 for (Instruction *Inst : Users) { 2589 dbgs() << " " << *Inst << "\n"; 2590 }); 2591 return false; 2592 } 2593 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2594 2595 // The chain itself may require a register, so intialize cost to 1. 2596 int cost = 1; 2597 2598 // A complete chain likely eliminates the need for keeping the original IV in 2599 // a register. LSR does not currently know how to form a complete chain unless 2600 // the header phi already exists. 2601 if (isa<PHINode>(Chain.tailUserInst()) 2602 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2603 --cost; 2604 } 2605 const SCEV *LastIncExpr = nullptr; 2606 unsigned NumConstIncrements = 0; 2607 unsigned NumVarIncrements = 0; 2608 unsigned NumReusedIncrements = 0; 2609 for (const IVInc &Inc : Chain) { 2610 if (Inc.IncExpr->isZero()) 2611 continue; 2612 2613 // Incrementing by zero or some constant is neutral. We assume constants can 2614 // be folded into an addressing mode or an add's immediate operand. 2615 if (isa<SCEVConstant>(Inc.IncExpr)) { 2616 ++NumConstIncrements; 2617 continue; 2618 } 2619 2620 if (Inc.IncExpr == LastIncExpr) 2621 ++NumReusedIncrements; 2622 else 2623 ++NumVarIncrements; 2624 2625 LastIncExpr = Inc.IncExpr; 2626 } 2627 // An IV chain with a single increment is handled by LSR's postinc 2628 // uses. However, a chain with multiple increments requires keeping the IV's 2629 // value live longer than it needs to be if chained. 2630 if (NumConstIncrements > 1) 2631 --cost; 2632 2633 // Materializing increment expressions in the preheader that didn't exist in 2634 // the original code may cost a register. For example, sign-extended array 2635 // indices can produce ridiculous increments like this: 2636 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2637 cost += NumVarIncrements; 2638 2639 // Reusing variable increments likely saves a register to hold the multiple of 2640 // the stride. 2641 cost -= NumReusedIncrements; 2642 2643 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2644 << "\n"); 2645 2646 return cost < 0; 2647 } 2648 2649 /// Add this IV user to an existing chain or make it the head of a new chain. 2650 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2651 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2652 // When IVs are used as types of varying widths, they are generally converted 2653 // to a wider type with some uses remaining narrow under a (free) trunc. 2654 Value *const NextIV = getWideOperand(IVOper); 2655 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2656 const SCEV *const OperExprBase = getExprBase(OperExpr); 2657 2658 // Visit all existing chains. Check if its IVOper can be computed as a 2659 // profitable loop invariant increment from the last link in the Chain. 2660 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2661 const SCEV *LastIncExpr = nullptr; 2662 for (; ChainIdx < NChains; ++ChainIdx) { 2663 IVChain &Chain = IVChainVec[ChainIdx]; 2664 2665 // Prune the solution space aggressively by checking that both IV operands 2666 // are expressions that operate on the same unscaled SCEVUnknown. This 2667 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2668 // first avoids creating extra SCEV expressions. 2669 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2670 continue; 2671 2672 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2673 if (!isCompatibleIVType(PrevIV, NextIV)) 2674 continue; 2675 2676 // A phi node terminates a chain. 2677 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2678 continue; 2679 2680 // The increment must be loop-invariant so it can be kept in a register. 2681 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2682 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2683 if (!SE.isLoopInvariant(IncExpr, L)) 2684 continue; 2685 2686 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2687 LastIncExpr = IncExpr; 2688 break; 2689 } 2690 } 2691 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2692 // bother for phi nodes, because they must be last in the chain. 2693 if (ChainIdx == NChains) { 2694 if (isa<PHINode>(UserInst)) 2695 return; 2696 if (NChains >= MaxChains && !StressIVChain) { 2697 DEBUG(dbgs() << "IV Chain Limit\n"); 2698 return; 2699 } 2700 LastIncExpr = OperExpr; 2701 // IVUsers may have skipped over sign/zero extensions. We don't currently 2702 // attempt to form chains involving extensions unless they can be hoisted 2703 // into this loop's AddRec. 2704 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2705 return; 2706 ++NChains; 2707 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2708 OperExprBase)); 2709 ChainUsersVec.resize(NChains); 2710 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2711 << ") IV=" << *LastIncExpr << "\n"); 2712 } else { 2713 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2714 << ") IV+" << *LastIncExpr << "\n"); 2715 // Add this IV user to the end of the chain. 2716 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2717 } 2718 IVChain &Chain = IVChainVec[ChainIdx]; 2719 2720 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2721 // This chain's NearUsers become FarUsers. 2722 if (!LastIncExpr->isZero()) { 2723 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2724 NearUsers.end()); 2725 NearUsers.clear(); 2726 } 2727 2728 // All other uses of IVOperand become near uses of the chain. 2729 // We currently ignore intermediate values within SCEV expressions, assuming 2730 // they will eventually be used be the current chain, or can be computed 2731 // from one of the chain increments. To be more precise we could 2732 // transitively follow its user and only add leaf IV users to the set. 2733 for (User *U : IVOper->users()) { 2734 Instruction *OtherUse = dyn_cast<Instruction>(U); 2735 if (!OtherUse) 2736 continue; 2737 // Uses in the chain will no longer be uses if the chain is formed. 2738 // Include the head of the chain in this iteration (not Chain.begin()). 2739 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2740 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2741 for( ; IncIter != IncEnd; ++IncIter) { 2742 if (IncIter->UserInst == OtherUse) 2743 break; 2744 } 2745 if (IncIter != IncEnd) 2746 continue; 2747 2748 if (SE.isSCEVable(OtherUse->getType()) 2749 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2750 && IU.isIVUserOrOperand(OtherUse)) { 2751 continue; 2752 } 2753 NearUsers.insert(OtherUse); 2754 } 2755 2756 // Since this user is part of the chain, it's no longer considered a use 2757 // of the chain. 2758 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2759 } 2760 2761 /// Populate the vector of Chains. 2762 /// 2763 /// This decreases ILP at the architecture level. Targets with ample registers, 2764 /// multiple memory ports, and no register renaming probably don't want 2765 /// this. However, such targets should probably disable LSR altogether. 2766 /// 2767 /// The job of LSR is to make a reasonable choice of induction variables across 2768 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2769 /// ILP *within the loop* if the target wants it. 2770 /// 2771 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2772 /// will not reorder memory operations, it will recognize this as a chain, but 2773 /// will generate redundant IV increments. Ideally this would be corrected later 2774 /// by a smart scheduler: 2775 /// = A[i] 2776 /// = A[i+x] 2777 /// A[i] = 2778 /// A[i+x] = 2779 /// 2780 /// TODO: Walk the entire domtree within this loop, not just the path to the 2781 /// loop latch. This will discover chains on side paths, but requires 2782 /// maintaining multiple copies of the Chains state. 2783 void LSRInstance::CollectChains() { 2784 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2785 SmallVector<ChainUsers, 8> ChainUsersVec; 2786 2787 SmallVector<BasicBlock *,8> LatchPath; 2788 BasicBlock *LoopHeader = L->getHeader(); 2789 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2790 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2791 LatchPath.push_back(Rung->getBlock()); 2792 } 2793 LatchPath.push_back(LoopHeader); 2794 2795 // Walk the instruction stream from the loop header to the loop latch. 2796 for (BasicBlock *BB : reverse(LatchPath)) { 2797 for (Instruction &I : *BB) { 2798 // Skip instructions that weren't seen by IVUsers analysis. 2799 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2800 continue; 2801 2802 // Ignore users that are part of a SCEV expression. This way we only 2803 // consider leaf IV Users. This effectively rediscovers a portion of 2804 // IVUsers analysis but in program order this time. 2805 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2806 continue; 2807 2808 // Remove this instruction from any NearUsers set it may be in. 2809 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2810 ChainIdx < NChains; ++ChainIdx) { 2811 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2812 } 2813 // Search for operands that can be chained. 2814 SmallPtrSet<Instruction*, 4> UniqueOperands; 2815 User::op_iterator IVOpEnd = I.op_end(); 2816 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2817 while (IVOpIter != IVOpEnd) { 2818 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2819 if (UniqueOperands.insert(IVOpInst).second) 2820 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2821 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2822 } 2823 } // Continue walking down the instructions. 2824 } // Continue walking down the domtree. 2825 // Visit phi backedges to determine if the chain can generate the IV postinc. 2826 for (BasicBlock::iterator I = L->getHeader()->begin(); 2827 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2828 if (!SE.isSCEVable(PN->getType())) 2829 continue; 2830 2831 Instruction *IncV = 2832 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2833 if (IncV) 2834 ChainInstruction(PN, IncV, ChainUsersVec); 2835 } 2836 // Remove any unprofitable chains. 2837 unsigned ChainIdx = 0; 2838 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2839 UsersIdx < NChains; ++UsersIdx) { 2840 if (!isProfitableChain(IVChainVec[UsersIdx], 2841 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2842 continue; 2843 // Preserve the chain at UsesIdx. 2844 if (ChainIdx != UsersIdx) 2845 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2846 FinalizeChain(IVChainVec[ChainIdx]); 2847 ++ChainIdx; 2848 } 2849 IVChainVec.resize(ChainIdx); 2850 } 2851 2852 void LSRInstance::FinalizeChain(IVChain &Chain) { 2853 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2854 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2855 2856 for (const IVInc &Inc : Chain) { 2857 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 2858 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 2859 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 2860 IVIncSet.insert(UseI); 2861 } 2862 } 2863 2864 /// Return true if the IVInc can be folded into an addressing mode. 2865 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2866 Value *Operand, const TargetTransformInfo &TTI) { 2867 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2868 if (!IncConst || !isAddressUse(UserInst, Operand)) 2869 return false; 2870 2871 if (IncConst->getAPInt().getMinSignedBits() > 64) 2872 return false; 2873 2874 MemAccessTy AccessTy = getAccessType(UserInst); 2875 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2876 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 2877 IncOffset, /*HaseBaseReg=*/false)) 2878 return false; 2879 2880 return true; 2881 } 2882 2883 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 2884 /// user's operand from the previous IV user's operand. 2885 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2886 SmallVectorImpl<WeakVH> &DeadInsts) { 2887 // Find the new IVOperand for the head of the chain. It may have been replaced 2888 // by LSR. 2889 const IVInc &Head = Chain.Incs[0]; 2890 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2891 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2892 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2893 IVOpEnd, L, SE); 2894 Value *IVSrc = nullptr; 2895 while (IVOpIter != IVOpEnd) { 2896 IVSrc = getWideOperand(*IVOpIter); 2897 2898 // If this operand computes the expression that the chain needs, we may use 2899 // it. (Check this after setting IVSrc which is used below.) 2900 // 2901 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2902 // narrow for the chain, so we can no longer use it. We do allow using a 2903 // wider phi, assuming the LSR checked for free truncation. In that case we 2904 // should already have a truncate on this operand such that 2905 // getSCEV(IVSrc) == IncExpr. 2906 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2907 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2908 break; 2909 } 2910 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2911 } 2912 if (IVOpIter == IVOpEnd) { 2913 // Gracefully give up on this chain. 2914 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2915 return; 2916 } 2917 2918 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2919 Type *IVTy = IVSrc->getType(); 2920 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2921 const SCEV *LeftOverExpr = nullptr; 2922 for (const IVInc &Inc : Chain) { 2923 Instruction *InsertPt = Inc.UserInst; 2924 if (isa<PHINode>(InsertPt)) 2925 InsertPt = L->getLoopLatch()->getTerminator(); 2926 2927 // IVOper will replace the current IV User's operand. IVSrc is the IV 2928 // value currently held in a register. 2929 Value *IVOper = IVSrc; 2930 if (!Inc.IncExpr->isZero()) { 2931 // IncExpr was the result of subtraction of two narrow values, so must 2932 // be signed. 2933 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 2934 LeftOverExpr = LeftOverExpr ? 2935 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2936 } 2937 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2938 // Expand the IV increment. 2939 Rewriter.clearPostInc(); 2940 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2941 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2942 SE.getUnknown(IncV)); 2943 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2944 2945 // If an IV increment can't be folded, use it as the next IV value. 2946 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 2947 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2948 IVSrc = IVOper; 2949 LeftOverExpr = nullptr; 2950 } 2951 } 2952 Type *OperTy = Inc.IVOperand->getType(); 2953 if (IVTy != OperTy) { 2954 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2955 "cannot extend a chained IV"); 2956 IRBuilder<> Builder(InsertPt); 2957 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2958 } 2959 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 2960 DeadInsts.emplace_back(Inc.IVOperand); 2961 } 2962 // If LSR created a new, wider phi, we may also replace its postinc. We only 2963 // do this if we also found a wide value for the head of the chain. 2964 if (isa<PHINode>(Chain.tailUserInst())) { 2965 for (BasicBlock::iterator I = L->getHeader()->begin(); 2966 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2967 if (!isCompatibleIVType(Phi, IVSrc)) 2968 continue; 2969 Instruction *PostIncV = dyn_cast<Instruction>( 2970 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2971 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2972 continue; 2973 Value *IVOper = IVSrc; 2974 Type *PostIncTy = PostIncV->getType(); 2975 if (IVTy != PostIncTy) { 2976 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2977 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2978 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2979 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2980 } 2981 Phi->replaceUsesOfWith(PostIncV, IVOper); 2982 DeadInsts.emplace_back(PostIncV); 2983 } 2984 } 2985 } 2986 2987 void LSRInstance::CollectFixupsAndInitialFormulae() { 2988 for (const IVStrideUse &U : IU) { 2989 Instruction *UserInst = U.getUser(); 2990 // Skip IV users that are part of profitable IV Chains. 2991 User::op_iterator UseI = 2992 find(UserInst->operands(), U.getOperandValToReplace()); 2993 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2994 if (IVIncSet.count(UseI)) { 2995 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 2996 continue; 2997 } 2998 2999 LSRUse::KindType Kind = LSRUse::Basic; 3000 MemAccessTy AccessTy; 3001 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3002 Kind = LSRUse::Address; 3003 AccessTy = getAccessType(UserInst); 3004 } 3005 3006 const SCEV *S = IU.getExpr(U); 3007 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3008 3009 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3010 // (N - i == 0), and this allows (N - i) to be the expression that we work 3011 // with rather than just N or i, so we can consider the register 3012 // requirements for both N and i at the same time. Limiting this code to 3013 // equality icmps is not a problem because all interesting loops use 3014 // equality icmps, thanks to IndVarSimplify. 3015 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3016 if (CI->isEquality()) { 3017 // Swap the operands if needed to put the OperandValToReplace on the 3018 // left, for consistency. 3019 Value *NV = CI->getOperand(1); 3020 if (NV == U.getOperandValToReplace()) { 3021 CI->setOperand(1, CI->getOperand(0)); 3022 CI->setOperand(0, NV); 3023 NV = CI->getOperand(1); 3024 Changed = true; 3025 } 3026 3027 // x == y --> x - y == 0 3028 const SCEV *N = SE.getSCEV(NV); 3029 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3030 // S is normalized, so normalize N before folding it into S 3031 // to keep the result normalized. 3032 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3033 TmpPostIncLoops, SE, DT); 3034 Kind = LSRUse::ICmpZero; 3035 S = SE.getMinusSCEV(N, S); 3036 } 3037 3038 // -1 and the negations of all interesting strides (except the negation 3039 // of -1) are now also interesting. 3040 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3041 if (Factors[i] != -1) 3042 Factors.insert(-(uint64_t)Factors[i]); 3043 Factors.insert(-1); 3044 } 3045 3046 // Get or create an LSRUse. 3047 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3048 size_t LUIdx = P.first; 3049 int64_t Offset = P.second; 3050 LSRUse &LU = Uses[LUIdx]; 3051 3052 // Record the fixup. 3053 LSRFixup &LF = LU.getNewFixup(); 3054 LF.UserInst = UserInst; 3055 LF.OperandValToReplace = U.getOperandValToReplace(); 3056 LF.PostIncLoops = TmpPostIncLoops; 3057 LF.Offset = Offset; 3058 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3059 3060 if (!LU.WidestFixupType || 3061 SE.getTypeSizeInBits(LU.WidestFixupType) < 3062 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3063 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3064 3065 // If this is the first use of this LSRUse, give it a formula. 3066 if (LU.Formulae.empty()) { 3067 InsertInitialFormula(S, LU, LUIdx); 3068 CountRegisters(LU.Formulae.back(), LUIdx); 3069 } 3070 } 3071 3072 DEBUG(print_fixups(dbgs())); 3073 } 3074 3075 /// Insert a formula for the given expression into the given use, separating out 3076 /// loop-variant portions from loop-invariant and loop-computable portions. 3077 void 3078 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3079 // Mark uses whose expressions cannot be expanded. 3080 if (!isSafeToExpand(S, SE)) 3081 LU.RigidFormula = true; 3082 3083 Formula F; 3084 F.initialMatch(S, L, SE); 3085 bool Inserted = InsertFormula(LU, LUIdx, F); 3086 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3087 } 3088 3089 /// Insert a simple single-register formula for the given expression into the 3090 /// given use. 3091 void 3092 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3093 LSRUse &LU, size_t LUIdx) { 3094 Formula F; 3095 F.BaseRegs.push_back(S); 3096 F.HasBaseReg = true; 3097 bool Inserted = InsertFormula(LU, LUIdx, F); 3098 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3099 } 3100 3101 /// Note which registers are used by the given formula, updating RegUses. 3102 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3103 if (F.ScaledReg) 3104 RegUses.countRegister(F.ScaledReg, LUIdx); 3105 for (const SCEV *BaseReg : F.BaseRegs) 3106 RegUses.countRegister(BaseReg, LUIdx); 3107 } 3108 3109 /// If the given formula has not yet been inserted, add it to the list, and 3110 /// return true. Return false otherwise. 3111 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3112 // Do not insert formula that we will not be able to expand. 3113 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3114 "Formula is illegal"); 3115 if (!LU.InsertFormula(F)) 3116 return false; 3117 3118 CountRegisters(F, LUIdx); 3119 return true; 3120 } 3121 3122 /// Check for other uses of loop-invariant values which we're tracking. These 3123 /// other uses will pin these values in registers, making them less profitable 3124 /// for elimination. 3125 /// TODO: This currently misses non-constant addrec step registers. 3126 /// TODO: Should this give more weight to users inside the loop? 3127 void 3128 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3129 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3130 SmallPtrSet<const SCEV *, 32> Visited; 3131 3132 while (!Worklist.empty()) { 3133 const SCEV *S = Worklist.pop_back_val(); 3134 3135 // Don't process the same SCEV twice 3136 if (!Visited.insert(S).second) 3137 continue; 3138 3139 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3140 Worklist.append(N->op_begin(), N->op_end()); 3141 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3142 Worklist.push_back(C->getOperand()); 3143 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3144 Worklist.push_back(D->getLHS()); 3145 Worklist.push_back(D->getRHS()); 3146 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3147 const Value *V = US->getValue(); 3148 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3149 // Look for instructions defined outside the loop. 3150 if (L->contains(Inst)) continue; 3151 } else if (isa<UndefValue>(V)) 3152 // Undef doesn't have a live range, so it doesn't matter. 3153 continue; 3154 for (const Use &U : V->uses()) { 3155 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3156 // Ignore non-instructions. 3157 if (!UserInst) 3158 continue; 3159 // Ignore instructions in other functions (as can happen with 3160 // Constants). 3161 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3162 continue; 3163 // Ignore instructions not dominated by the loop. 3164 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3165 UserInst->getParent() : 3166 cast<PHINode>(UserInst)->getIncomingBlock( 3167 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3168 if (!DT.dominates(L->getHeader(), UseBB)) 3169 continue; 3170 // Don't bother if the instruction is in a BB which ends in an EHPad. 3171 if (UseBB->getTerminator()->isEHPad()) 3172 continue; 3173 // Don't bother rewriting PHIs in catchswitch blocks. 3174 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3175 continue; 3176 // Ignore uses which are part of other SCEV expressions, to avoid 3177 // analyzing them multiple times. 3178 if (SE.isSCEVable(UserInst->getType())) { 3179 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3180 // If the user is a no-op, look through to its uses. 3181 if (!isa<SCEVUnknown>(UserS)) 3182 continue; 3183 if (UserS == US) { 3184 Worklist.push_back( 3185 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3186 continue; 3187 } 3188 } 3189 // Ignore icmp instructions which are already being analyzed. 3190 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3191 unsigned OtherIdx = !U.getOperandNo(); 3192 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3193 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3194 continue; 3195 } 3196 3197 std::pair<size_t, int64_t> P = getUse( 3198 S, LSRUse::Basic, MemAccessTy()); 3199 size_t LUIdx = P.first; 3200 int64_t Offset = P.second; 3201 LSRUse &LU = Uses[LUIdx]; 3202 LSRFixup &LF = LU.getNewFixup(); 3203 LF.UserInst = const_cast<Instruction *>(UserInst); 3204 LF.OperandValToReplace = U; 3205 LF.Offset = Offset; 3206 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3207 if (!LU.WidestFixupType || 3208 SE.getTypeSizeInBits(LU.WidestFixupType) < 3209 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3210 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3211 InsertSupplementalFormula(US, LU, LUIdx); 3212 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3213 break; 3214 } 3215 } 3216 } 3217 } 3218 3219 /// Split S into subexpressions which can be pulled out into separate 3220 /// registers. If C is non-null, multiply each subexpression by C. 3221 /// 3222 /// Return remainder expression after factoring the subexpressions captured by 3223 /// Ops. If Ops is complete, return NULL. 3224 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3225 SmallVectorImpl<const SCEV *> &Ops, 3226 const Loop *L, 3227 ScalarEvolution &SE, 3228 unsigned Depth = 0) { 3229 // Arbitrarily cap recursion to protect compile time. 3230 if (Depth >= 3) 3231 return S; 3232 3233 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3234 // Break out add operands. 3235 for (const SCEV *S : Add->operands()) { 3236 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3237 if (Remainder) 3238 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3239 } 3240 return nullptr; 3241 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3242 // Split a non-zero base out of an addrec. 3243 if (AR->getStart()->isZero() || !AR->isAffine()) 3244 return S; 3245 3246 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3247 C, Ops, L, SE, Depth+1); 3248 // Split the non-zero AddRec unless it is part of a nested recurrence that 3249 // does not pertain to this loop. 3250 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3251 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3252 Remainder = nullptr; 3253 } 3254 if (Remainder != AR->getStart()) { 3255 if (!Remainder) 3256 Remainder = SE.getConstant(AR->getType(), 0); 3257 return SE.getAddRecExpr(Remainder, 3258 AR->getStepRecurrence(SE), 3259 AR->getLoop(), 3260 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3261 SCEV::FlagAnyWrap); 3262 } 3263 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3264 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3265 if (Mul->getNumOperands() != 2) 3266 return S; 3267 if (const SCEVConstant *Op0 = 3268 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3269 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3270 const SCEV *Remainder = 3271 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3272 if (Remainder) 3273 Ops.push_back(SE.getMulExpr(C, Remainder)); 3274 return nullptr; 3275 } 3276 } 3277 return S; 3278 } 3279 3280 /// \brief Helper function for LSRInstance::GenerateReassociations. 3281 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3282 const Formula &Base, 3283 unsigned Depth, size_t Idx, 3284 bool IsScaledReg) { 3285 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3286 SmallVector<const SCEV *, 8> AddOps; 3287 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3288 if (Remainder) 3289 AddOps.push_back(Remainder); 3290 3291 if (AddOps.size() == 1) 3292 return; 3293 3294 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3295 JE = AddOps.end(); 3296 J != JE; ++J) { 3297 3298 // Loop-variant "unknown" values are uninteresting; we won't be able to 3299 // do anything meaningful with them. 3300 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3301 continue; 3302 3303 // Don't pull a constant into a register if the constant could be folded 3304 // into an immediate field. 3305 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3306 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3307 continue; 3308 3309 // Collect all operands except *J. 3310 SmallVector<const SCEV *, 8> InnerAddOps( 3311 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3312 InnerAddOps.append(std::next(J), 3313 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3314 3315 // Don't leave just a constant behind in a register if the constant could 3316 // be folded into an immediate field. 3317 if (InnerAddOps.size() == 1 && 3318 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3319 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3320 continue; 3321 3322 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3323 if (InnerSum->isZero()) 3324 continue; 3325 Formula F = Base; 3326 3327 // Add the remaining pieces of the add back into the new formula. 3328 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3329 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3330 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3331 InnerSumSC->getValue()->getZExtValue())) { 3332 F.UnfoldedOffset = 3333 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3334 if (IsScaledReg) 3335 F.ScaledReg = nullptr; 3336 else 3337 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3338 } else if (IsScaledReg) 3339 F.ScaledReg = InnerSum; 3340 else 3341 F.BaseRegs[Idx] = InnerSum; 3342 3343 // Add J as its own register, or an unfolded immediate. 3344 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3345 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3346 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3347 SC->getValue()->getZExtValue())) 3348 F.UnfoldedOffset = 3349 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3350 else 3351 F.BaseRegs.push_back(*J); 3352 // We may have changed the number of register in base regs, adjust the 3353 // formula accordingly. 3354 F.canonicalize(); 3355 3356 if (InsertFormula(LU, LUIdx, F)) 3357 // If that formula hadn't been seen before, recurse to find more like 3358 // it. 3359 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3360 } 3361 } 3362 3363 /// Split out subexpressions from adds and the bases of addrecs. 3364 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3365 Formula Base, unsigned Depth) { 3366 assert(Base.isCanonical() && "Input must be in the canonical form"); 3367 // Arbitrarily cap recursion to protect compile time. 3368 if (Depth >= 3) 3369 return; 3370 3371 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3372 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3373 3374 if (Base.Scale == 1) 3375 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3376 /* Idx */ -1, /* IsScaledReg */ true); 3377 } 3378 3379 /// Generate a formula consisting of all of the loop-dominating registers added 3380 /// into a single register. 3381 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3382 Formula Base) { 3383 // This method is only interesting on a plurality of registers. 3384 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3385 return; 3386 3387 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3388 // processing the formula. 3389 Base.unscale(); 3390 Formula F = Base; 3391 F.BaseRegs.clear(); 3392 SmallVector<const SCEV *, 4> Ops; 3393 for (const SCEV *BaseReg : Base.BaseRegs) { 3394 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3395 !SE.hasComputableLoopEvolution(BaseReg, L)) 3396 Ops.push_back(BaseReg); 3397 else 3398 F.BaseRegs.push_back(BaseReg); 3399 } 3400 if (Ops.size() > 1) { 3401 const SCEV *Sum = SE.getAddExpr(Ops); 3402 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3403 // opportunity to fold something. For now, just ignore such cases 3404 // rather than proceed with zero in a register. 3405 if (!Sum->isZero()) { 3406 F.BaseRegs.push_back(Sum); 3407 F.canonicalize(); 3408 (void)InsertFormula(LU, LUIdx, F); 3409 } 3410 } 3411 } 3412 3413 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3414 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3415 const Formula &Base, size_t Idx, 3416 bool IsScaledReg) { 3417 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3418 GlobalValue *GV = ExtractSymbol(G, SE); 3419 if (G->isZero() || !GV) 3420 return; 3421 Formula F = Base; 3422 F.BaseGV = GV; 3423 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3424 return; 3425 if (IsScaledReg) 3426 F.ScaledReg = G; 3427 else 3428 F.BaseRegs[Idx] = G; 3429 (void)InsertFormula(LU, LUIdx, F); 3430 } 3431 3432 /// Generate reuse formulae using symbolic offsets. 3433 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3434 Formula Base) { 3435 // We can't add a symbolic offset if the address already contains one. 3436 if (Base.BaseGV) return; 3437 3438 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3439 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3440 if (Base.Scale == 1) 3441 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3442 /* IsScaledReg */ true); 3443 } 3444 3445 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3446 void LSRInstance::GenerateConstantOffsetsImpl( 3447 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3448 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3449 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3450 for (int64_t Offset : Worklist) { 3451 Formula F = Base; 3452 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3453 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3454 LU.AccessTy, F)) { 3455 // Add the offset to the base register. 3456 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3457 // If it cancelled out, drop the base register, otherwise update it. 3458 if (NewG->isZero()) { 3459 if (IsScaledReg) { 3460 F.Scale = 0; 3461 F.ScaledReg = nullptr; 3462 } else 3463 F.deleteBaseReg(F.BaseRegs[Idx]); 3464 F.canonicalize(); 3465 } else if (IsScaledReg) 3466 F.ScaledReg = NewG; 3467 else 3468 F.BaseRegs[Idx] = NewG; 3469 3470 (void)InsertFormula(LU, LUIdx, F); 3471 } 3472 } 3473 3474 int64_t Imm = ExtractImmediate(G, SE); 3475 if (G->isZero() || Imm == 0) 3476 return; 3477 Formula F = Base; 3478 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3479 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3480 return; 3481 if (IsScaledReg) 3482 F.ScaledReg = G; 3483 else 3484 F.BaseRegs[Idx] = G; 3485 (void)InsertFormula(LU, LUIdx, F); 3486 } 3487 3488 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3489 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3490 Formula Base) { 3491 // TODO: For now, just add the min and max offset, because it usually isn't 3492 // worthwhile looking at everything inbetween. 3493 SmallVector<int64_t, 2> Worklist; 3494 Worklist.push_back(LU.MinOffset); 3495 if (LU.MaxOffset != LU.MinOffset) 3496 Worklist.push_back(LU.MaxOffset); 3497 3498 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3499 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3500 if (Base.Scale == 1) 3501 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3502 /* IsScaledReg */ true); 3503 } 3504 3505 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3506 /// == y -> x*c == y*c. 3507 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3508 Formula Base) { 3509 if (LU.Kind != LSRUse::ICmpZero) return; 3510 3511 // Determine the integer type for the base formula. 3512 Type *IntTy = Base.getType(); 3513 if (!IntTy) return; 3514 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3515 3516 // Don't do this if there is more than one offset. 3517 if (LU.MinOffset != LU.MaxOffset) return; 3518 3519 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3520 3521 // Check each interesting stride. 3522 for (int64_t Factor : Factors) { 3523 // Check that the multiplication doesn't overflow. 3524 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3525 continue; 3526 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3527 if (NewBaseOffset / Factor != Base.BaseOffset) 3528 continue; 3529 // If the offset will be truncated at this use, check that it is in bounds. 3530 if (!IntTy->isPointerTy() && 3531 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3532 continue; 3533 3534 // Check that multiplying with the use offset doesn't overflow. 3535 int64_t Offset = LU.MinOffset; 3536 if (Offset == INT64_MIN && Factor == -1) 3537 continue; 3538 Offset = (uint64_t)Offset * Factor; 3539 if (Offset / Factor != LU.MinOffset) 3540 continue; 3541 // If the offset will be truncated at this use, check that it is in bounds. 3542 if (!IntTy->isPointerTy() && 3543 !ConstantInt::isValueValidForType(IntTy, Offset)) 3544 continue; 3545 3546 Formula F = Base; 3547 F.BaseOffset = NewBaseOffset; 3548 3549 // Check that this scale is legal. 3550 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3551 continue; 3552 3553 // Compensate for the use having MinOffset built into it. 3554 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3555 3556 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3557 3558 // Check that multiplying with each base register doesn't overflow. 3559 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3560 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3561 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3562 goto next; 3563 } 3564 3565 // Check that multiplying with the scaled register doesn't overflow. 3566 if (F.ScaledReg) { 3567 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3568 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3569 continue; 3570 } 3571 3572 // Check that multiplying with the unfolded offset doesn't overflow. 3573 if (F.UnfoldedOffset != 0) { 3574 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3575 continue; 3576 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3577 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3578 continue; 3579 // If the offset will be truncated, check that it is in bounds. 3580 if (!IntTy->isPointerTy() && 3581 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3582 continue; 3583 } 3584 3585 // If we make it here and it's legal, add it. 3586 (void)InsertFormula(LU, LUIdx, F); 3587 next:; 3588 } 3589 } 3590 3591 /// Generate stride factor reuse formulae by making use of scaled-offset address 3592 /// modes, for example. 3593 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3594 // Determine the integer type for the base formula. 3595 Type *IntTy = Base.getType(); 3596 if (!IntTy) return; 3597 3598 // If this Formula already has a scaled register, we can't add another one. 3599 // Try to unscale the formula to generate a better scale. 3600 if (Base.Scale != 0 && !Base.unscale()) 3601 return; 3602 3603 assert(Base.Scale == 0 && "unscale did not did its job!"); 3604 3605 // Check each interesting stride. 3606 for (int64_t Factor : Factors) { 3607 Base.Scale = Factor; 3608 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3609 // Check whether this scale is going to be legal. 3610 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3611 Base)) { 3612 // As a special-case, handle special out-of-loop Basic users specially. 3613 // TODO: Reconsider this special case. 3614 if (LU.Kind == LSRUse::Basic && 3615 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3616 LU.AccessTy, Base) && 3617 LU.AllFixupsOutsideLoop) 3618 LU.Kind = LSRUse::Special; 3619 else 3620 continue; 3621 } 3622 // For an ICmpZero, negating a solitary base register won't lead to 3623 // new solutions. 3624 if (LU.Kind == LSRUse::ICmpZero && 3625 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3626 continue; 3627 // For each addrec base reg, apply the scale, if possible. 3628 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3629 if (const SCEVAddRecExpr *AR = 3630 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3631 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3632 if (FactorS->isZero()) 3633 continue; 3634 // Divide out the factor, ignoring high bits, since we'll be 3635 // scaling the value back up in the end. 3636 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3637 // TODO: This could be optimized to avoid all the copying. 3638 Formula F = Base; 3639 F.ScaledReg = Quotient; 3640 F.deleteBaseReg(F.BaseRegs[i]); 3641 // The canonical representation of 1*reg is reg, which is already in 3642 // Base. In that case, do not try to insert the formula, it will be 3643 // rejected anyway. 3644 if (F.Scale == 1 && F.BaseRegs.empty()) 3645 continue; 3646 (void)InsertFormula(LU, LUIdx, F); 3647 } 3648 } 3649 } 3650 } 3651 3652 /// Generate reuse formulae from different IV types. 3653 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3654 // Don't bother truncating symbolic values. 3655 if (Base.BaseGV) return; 3656 3657 // Determine the integer type for the base formula. 3658 Type *DstTy = Base.getType(); 3659 if (!DstTy) return; 3660 DstTy = SE.getEffectiveSCEVType(DstTy); 3661 3662 for (Type *SrcTy : Types) { 3663 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3664 Formula F = Base; 3665 3666 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3667 for (const SCEV *&BaseReg : F.BaseRegs) 3668 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3669 3670 // TODO: This assumes we've done basic processing on all uses and 3671 // have an idea what the register usage is. 3672 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3673 continue; 3674 3675 (void)InsertFormula(LU, LUIdx, F); 3676 } 3677 } 3678 } 3679 3680 namespace { 3681 3682 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3683 /// modifications so that the search phase doesn't have to worry about the data 3684 /// structures moving underneath it. 3685 struct WorkItem { 3686 size_t LUIdx; 3687 int64_t Imm; 3688 const SCEV *OrigReg; 3689 3690 WorkItem(size_t LI, int64_t I, const SCEV *R) 3691 : LUIdx(LI), Imm(I), OrigReg(R) {} 3692 3693 void print(raw_ostream &OS) const; 3694 void dump() const; 3695 }; 3696 3697 } // end anonymous namespace 3698 3699 void WorkItem::print(raw_ostream &OS) const { 3700 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3701 << " , add offset " << Imm; 3702 } 3703 3704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3705 LLVM_DUMP_METHOD void WorkItem::dump() const { 3706 print(errs()); errs() << '\n'; 3707 } 3708 #endif 3709 3710 /// Look for registers which are a constant distance apart and try to form reuse 3711 /// opportunities between them. 3712 void LSRInstance::GenerateCrossUseConstantOffsets() { 3713 // Group the registers by their value without any added constant offset. 3714 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3715 DenseMap<const SCEV *, ImmMapTy> Map; 3716 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3717 SmallVector<const SCEV *, 8> Sequence; 3718 for (const SCEV *Use : RegUses) { 3719 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3720 int64_t Imm = ExtractImmediate(Reg, SE); 3721 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3722 if (Pair.second) 3723 Sequence.push_back(Reg); 3724 Pair.first->second.insert(std::make_pair(Imm, Use)); 3725 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3726 } 3727 3728 // Now examine each set of registers with the same base value. Build up 3729 // a list of work to do and do the work in a separate step so that we're 3730 // not adding formulae and register counts while we're searching. 3731 SmallVector<WorkItem, 32> WorkItems; 3732 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3733 for (const SCEV *Reg : Sequence) { 3734 const ImmMapTy &Imms = Map.find(Reg)->second; 3735 3736 // It's not worthwhile looking for reuse if there's only one offset. 3737 if (Imms.size() == 1) 3738 continue; 3739 3740 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3741 for (const auto &Entry : Imms) 3742 dbgs() << ' ' << Entry.first; 3743 dbgs() << '\n'); 3744 3745 // Examine each offset. 3746 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3747 J != JE; ++J) { 3748 const SCEV *OrigReg = J->second; 3749 3750 int64_t JImm = J->first; 3751 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3752 3753 if (!isa<SCEVConstant>(OrigReg) && 3754 UsedByIndicesMap[Reg].count() == 1) { 3755 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3756 continue; 3757 } 3758 3759 // Conservatively examine offsets between this orig reg a few selected 3760 // other orig regs. 3761 ImmMapTy::const_iterator OtherImms[] = { 3762 Imms.begin(), std::prev(Imms.end()), 3763 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3764 2) 3765 }; 3766 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3767 ImmMapTy::const_iterator M = OtherImms[i]; 3768 if (M == J || M == JE) continue; 3769 3770 // Compute the difference between the two. 3771 int64_t Imm = (uint64_t)JImm - M->first; 3772 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3773 LUIdx = UsedByIndices.find_next(LUIdx)) 3774 // Make a memo of this use, offset, and register tuple. 3775 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3776 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3777 } 3778 } 3779 } 3780 3781 Map.clear(); 3782 Sequence.clear(); 3783 UsedByIndicesMap.clear(); 3784 UniqueItems.clear(); 3785 3786 // Now iterate through the worklist and add new formulae. 3787 for (const WorkItem &WI : WorkItems) { 3788 size_t LUIdx = WI.LUIdx; 3789 LSRUse &LU = Uses[LUIdx]; 3790 int64_t Imm = WI.Imm; 3791 const SCEV *OrigReg = WI.OrigReg; 3792 3793 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3794 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3795 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3796 3797 // TODO: Use a more targeted data structure. 3798 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3799 Formula F = LU.Formulae[L]; 3800 // FIXME: The code for the scaled and unscaled registers looks 3801 // very similar but slightly different. Investigate if they 3802 // could be merged. That way, we would not have to unscale the 3803 // Formula. 3804 F.unscale(); 3805 // Use the immediate in the scaled register. 3806 if (F.ScaledReg == OrigReg) { 3807 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3808 // Don't create 50 + reg(-50). 3809 if (F.referencesReg(SE.getSCEV( 3810 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3811 continue; 3812 Formula NewF = F; 3813 NewF.BaseOffset = Offset; 3814 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3815 NewF)) 3816 continue; 3817 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3818 3819 // If the new scale is a constant in a register, and adding the constant 3820 // value to the immediate would produce a value closer to zero than the 3821 // immediate itself, then the formula isn't worthwhile. 3822 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3823 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 3824 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 3825 .ule(std::abs(NewF.BaseOffset))) 3826 continue; 3827 3828 // OK, looks good. 3829 NewF.canonicalize(); 3830 (void)InsertFormula(LU, LUIdx, NewF); 3831 } else { 3832 // Use the immediate in a base register. 3833 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3834 const SCEV *BaseReg = F.BaseRegs[N]; 3835 if (BaseReg != OrigReg) 3836 continue; 3837 Formula NewF = F; 3838 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3839 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3840 LU.Kind, LU.AccessTy, NewF)) { 3841 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3842 continue; 3843 NewF = F; 3844 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3845 } 3846 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3847 3848 // If the new formula has a constant in a register, and adding the 3849 // constant value to the immediate would produce a value closer to 3850 // zero than the immediate itself, then the formula isn't worthwhile. 3851 for (const SCEV *NewReg : NewF.BaseRegs) 3852 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 3853 if ((C->getAPInt() + NewF.BaseOffset) 3854 .abs() 3855 .slt(std::abs(NewF.BaseOffset)) && 3856 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 3857 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3858 goto skip_formula; 3859 3860 // Ok, looks good. 3861 NewF.canonicalize(); 3862 (void)InsertFormula(LU, LUIdx, NewF); 3863 break; 3864 skip_formula:; 3865 } 3866 } 3867 } 3868 } 3869 } 3870 3871 /// Generate formulae for each use. 3872 void 3873 LSRInstance::GenerateAllReuseFormulae() { 3874 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3875 // queries are more precise. 3876 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3877 LSRUse &LU = Uses[LUIdx]; 3878 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3879 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3880 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3881 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3882 } 3883 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3884 LSRUse &LU = Uses[LUIdx]; 3885 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3886 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3887 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3888 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3889 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3890 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3891 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3892 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3893 } 3894 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3895 LSRUse &LU = Uses[LUIdx]; 3896 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3897 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3898 } 3899 3900 GenerateCrossUseConstantOffsets(); 3901 3902 DEBUG(dbgs() << "\n" 3903 "After generating reuse formulae:\n"; 3904 print_uses(dbgs())); 3905 } 3906 3907 /// If there are multiple formulae with the same set of registers used 3908 /// by other uses, pick the best one and delete the others. 3909 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3910 DenseSet<const SCEV *> VisitedRegs; 3911 SmallPtrSet<const SCEV *, 16> Regs; 3912 SmallPtrSet<const SCEV *, 16> LoserRegs; 3913 #ifndef NDEBUG 3914 bool ChangedFormulae = false; 3915 #endif 3916 3917 // Collect the best formula for each unique set of shared registers. This 3918 // is reset for each use. 3919 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3920 BestFormulaeTy; 3921 BestFormulaeTy BestFormulae; 3922 3923 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3924 LSRUse &LU = Uses[LUIdx]; 3925 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3926 3927 bool Any = false; 3928 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3929 FIdx != NumForms; ++FIdx) { 3930 Formula &F = LU.Formulae[FIdx]; 3931 3932 // Some formulas are instant losers. For example, they may depend on 3933 // nonexistent AddRecs from other loops. These need to be filtered 3934 // immediately, otherwise heuristics could choose them over others leading 3935 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3936 // avoids the need to recompute this information across formulae using the 3937 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3938 // the corresponding bad register from the Regs set. 3939 Cost CostF; 3940 Regs.clear(); 3941 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 3942 if (CostF.isLoser()) { 3943 // During initial formula generation, undesirable formulae are generated 3944 // by uses within other loops that have some non-trivial address mode or 3945 // use the postinc form of the IV. LSR needs to provide these formulae 3946 // as the basis of rediscovering the desired formula that uses an AddRec 3947 // corresponding to the existing phi. Once all formulae have been 3948 // generated, these initial losers may be pruned. 3949 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3950 dbgs() << "\n"); 3951 } 3952 else { 3953 SmallVector<const SCEV *, 4> Key; 3954 for (const SCEV *Reg : F.BaseRegs) { 3955 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3956 Key.push_back(Reg); 3957 } 3958 if (F.ScaledReg && 3959 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3960 Key.push_back(F.ScaledReg); 3961 // Unstable sort by host order ok, because this is only used for 3962 // uniquifying. 3963 std::sort(Key.begin(), Key.end()); 3964 3965 std::pair<BestFormulaeTy::const_iterator, bool> P = 3966 BestFormulae.insert(std::make_pair(Key, FIdx)); 3967 if (P.second) 3968 continue; 3969 3970 Formula &Best = LU.Formulae[P.first->second]; 3971 3972 Cost CostBest; 3973 Regs.clear(); 3974 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 3975 if (CostF < CostBest) 3976 std::swap(F, Best); 3977 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3978 dbgs() << "\n" 3979 " in favor of formula "; Best.print(dbgs()); 3980 dbgs() << '\n'); 3981 } 3982 #ifndef NDEBUG 3983 ChangedFormulae = true; 3984 #endif 3985 LU.DeleteFormula(F); 3986 --FIdx; 3987 --NumForms; 3988 Any = true; 3989 } 3990 3991 // Now that we've filtered out some formulae, recompute the Regs set. 3992 if (Any) 3993 LU.RecomputeRegs(LUIdx, RegUses); 3994 3995 // Reset this to prepare for the next use. 3996 BestFormulae.clear(); 3997 } 3998 3999 DEBUG(if (ChangedFormulae) { 4000 dbgs() << "\n" 4001 "After filtering out undesirable candidates:\n"; 4002 print_uses(dbgs()); 4003 }); 4004 } 4005 4006 // This is a rough guess that seems to work fairly well. 4007 static const size_t ComplexityLimit = UINT16_MAX; 4008 4009 /// Estimate the worst-case number of solutions the solver might have to 4010 /// consider. It almost never considers this many solutions because it prune the 4011 /// search space, but the pruning isn't always sufficient. 4012 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4013 size_t Power = 1; 4014 for (const LSRUse &LU : Uses) { 4015 size_t FSize = LU.Formulae.size(); 4016 if (FSize >= ComplexityLimit) { 4017 Power = ComplexityLimit; 4018 break; 4019 } 4020 Power *= FSize; 4021 if (Power >= ComplexityLimit) 4022 break; 4023 } 4024 return Power; 4025 } 4026 4027 /// When one formula uses a superset of the registers of another formula, it 4028 /// won't help reduce register pressure (though it may not necessarily hurt 4029 /// register pressure); remove it to simplify the system. 4030 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4031 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4032 DEBUG(dbgs() << "The search space is too complex.\n"); 4033 4034 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4035 "which use a superset of registers used by other " 4036 "formulae.\n"); 4037 4038 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4039 LSRUse &LU = Uses[LUIdx]; 4040 bool Any = false; 4041 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4042 Formula &F = LU.Formulae[i]; 4043 // Look for a formula with a constant or GV in a register. If the use 4044 // also has a formula with that same value in an immediate field, 4045 // delete the one that uses a register. 4046 for (SmallVectorImpl<const SCEV *>::const_iterator 4047 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4048 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4049 Formula NewF = F; 4050 NewF.BaseOffset += C->getValue()->getSExtValue(); 4051 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4052 (I - F.BaseRegs.begin())); 4053 if (LU.HasFormulaWithSameRegs(NewF)) { 4054 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4055 LU.DeleteFormula(F); 4056 --i; 4057 --e; 4058 Any = true; 4059 break; 4060 } 4061 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4062 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4063 if (!F.BaseGV) { 4064 Formula NewF = F; 4065 NewF.BaseGV = GV; 4066 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4067 (I - F.BaseRegs.begin())); 4068 if (LU.HasFormulaWithSameRegs(NewF)) { 4069 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4070 dbgs() << '\n'); 4071 LU.DeleteFormula(F); 4072 --i; 4073 --e; 4074 Any = true; 4075 break; 4076 } 4077 } 4078 } 4079 } 4080 } 4081 if (Any) 4082 LU.RecomputeRegs(LUIdx, RegUses); 4083 } 4084 4085 DEBUG(dbgs() << "After pre-selection:\n"; 4086 print_uses(dbgs())); 4087 } 4088 } 4089 4090 /// When there are many registers for expressions like A, A+1, A+2, etc., 4091 /// allocate a single register for them. 4092 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4093 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4094 return; 4095 4096 DEBUG(dbgs() << "The search space is too complex.\n" 4097 "Narrowing the search space by assuming that uses separated " 4098 "by a constant offset will use the same registers.\n"); 4099 4100 // This is especially useful for unrolled loops. 4101 4102 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4103 LSRUse &LU = Uses[LUIdx]; 4104 for (const Formula &F : LU.Formulae) { 4105 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4106 continue; 4107 4108 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4109 if (!LUThatHas) 4110 continue; 4111 4112 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4113 LU.Kind, LU.AccessTy)) 4114 continue; 4115 4116 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4117 4118 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4119 4120 // Transfer the fixups of LU to LUThatHas. 4121 for (LSRFixup &Fixup : LU.Fixups) { 4122 Fixup.Offset += F.BaseOffset; 4123 LUThatHas->pushFixup(Fixup); 4124 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4125 } 4126 4127 // Delete formulae from the new use which are no longer legal. 4128 bool Any = false; 4129 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4130 Formula &F = LUThatHas->Formulae[i]; 4131 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4132 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4133 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4134 dbgs() << '\n'); 4135 LUThatHas->DeleteFormula(F); 4136 --i; 4137 --e; 4138 Any = true; 4139 } 4140 } 4141 4142 if (Any) 4143 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4144 4145 // Delete the old use. 4146 DeleteUse(LU, LUIdx); 4147 --LUIdx; 4148 --NumUses; 4149 break; 4150 } 4151 } 4152 4153 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4154 } 4155 4156 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4157 /// we've done more filtering, as it may be able to find more formulae to 4158 /// eliminate. 4159 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4160 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4161 DEBUG(dbgs() << "The search space is too complex.\n"); 4162 4163 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4164 "undesirable dedicated registers.\n"); 4165 4166 FilterOutUndesirableDedicatedRegisters(); 4167 4168 DEBUG(dbgs() << "After pre-selection:\n"; 4169 print_uses(dbgs())); 4170 } 4171 } 4172 4173 /// Pick a register which seems likely to be profitable, and then in any use 4174 /// which has any reference to that register, delete all formulae which do not 4175 /// reference that register. 4176 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4177 // With all other options exhausted, loop until the system is simple 4178 // enough to handle. 4179 SmallPtrSet<const SCEV *, 4> Taken; 4180 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4181 // Ok, we have too many of formulae on our hands to conveniently handle. 4182 // Use a rough heuristic to thin out the list. 4183 DEBUG(dbgs() << "The search space is too complex.\n"); 4184 4185 // Pick the register which is used by the most LSRUses, which is likely 4186 // to be a good reuse register candidate. 4187 const SCEV *Best = nullptr; 4188 unsigned BestNum = 0; 4189 for (const SCEV *Reg : RegUses) { 4190 if (Taken.count(Reg)) 4191 continue; 4192 if (!Best) { 4193 Best = Reg; 4194 BestNum = RegUses.getUsedByIndices(Reg).count(); 4195 } else { 4196 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4197 if (Count > BestNum) { 4198 Best = Reg; 4199 BestNum = Count; 4200 } 4201 } 4202 } 4203 4204 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4205 << " will yield profitable reuse.\n"); 4206 Taken.insert(Best); 4207 4208 // In any use with formulae which references this register, delete formulae 4209 // which don't reference it. 4210 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4211 LSRUse &LU = Uses[LUIdx]; 4212 if (!LU.Regs.count(Best)) continue; 4213 4214 bool Any = false; 4215 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4216 Formula &F = LU.Formulae[i]; 4217 if (!F.referencesReg(Best)) { 4218 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4219 LU.DeleteFormula(F); 4220 --e; 4221 --i; 4222 Any = true; 4223 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4224 continue; 4225 } 4226 } 4227 4228 if (Any) 4229 LU.RecomputeRegs(LUIdx, RegUses); 4230 } 4231 4232 DEBUG(dbgs() << "After pre-selection:\n"; 4233 print_uses(dbgs())); 4234 } 4235 } 4236 4237 /// If there are an extraordinary number of formulae to choose from, use some 4238 /// rough heuristics to prune down the number of formulae. This keeps the main 4239 /// solver from taking an extraordinary amount of time in some worst-case 4240 /// scenarios. 4241 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4242 NarrowSearchSpaceByDetectingSupersets(); 4243 NarrowSearchSpaceByCollapsingUnrolledCode(); 4244 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4245 NarrowSearchSpaceByPickingWinnerRegs(); 4246 } 4247 4248 /// This is the recursive solver. 4249 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4250 Cost &SolutionCost, 4251 SmallVectorImpl<const Formula *> &Workspace, 4252 const Cost &CurCost, 4253 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4254 DenseSet<const SCEV *> &VisitedRegs) const { 4255 // Some ideas: 4256 // - prune more: 4257 // - use more aggressive filtering 4258 // - sort the formula so that the most profitable solutions are found first 4259 // - sort the uses too 4260 // - search faster: 4261 // - don't compute a cost, and then compare. compare while computing a cost 4262 // and bail early. 4263 // - track register sets with SmallBitVector 4264 4265 const LSRUse &LU = Uses[Workspace.size()]; 4266 4267 // If this use references any register that's already a part of the 4268 // in-progress solution, consider it a requirement that a formula must 4269 // reference that register in order to be considered. This prunes out 4270 // unprofitable searching. 4271 SmallSetVector<const SCEV *, 4> ReqRegs; 4272 for (const SCEV *S : CurRegs) 4273 if (LU.Regs.count(S)) 4274 ReqRegs.insert(S); 4275 4276 SmallPtrSet<const SCEV *, 16> NewRegs; 4277 Cost NewCost; 4278 for (const Formula &F : LU.Formulae) { 4279 // Ignore formulae which may not be ideal in terms of register reuse of 4280 // ReqRegs. The formula should use all required registers before 4281 // introducing new ones. 4282 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4283 for (const SCEV *Reg : ReqRegs) { 4284 if ((F.ScaledReg && F.ScaledReg == Reg) || 4285 is_contained(F.BaseRegs, Reg)) { 4286 --NumReqRegsToFind; 4287 if (NumReqRegsToFind == 0) 4288 break; 4289 } 4290 } 4291 if (NumReqRegsToFind != 0) { 4292 // If none of the formulae satisfied the required registers, then we could 4293 // clear ReqRegs and try again. Currently, we simply give up in this case. 4294 continue; 4295 } 4296 4297 // Evaluate the cost of the current formula. If it's already worse than 4298 // the current best, prune the search at that point. 4299 NewCost = CurCost; 4300 NewRegs = CurRegs; 4301 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4302 if (NewCost < SolutionCost) { 4303 Workspace.push_back(&F); 4304 if (Workspace.size() != Uses.size()) { 4305 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4306 NewRegs, VisitedRegs); 4307 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4308 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4309 } else { 4310 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4311 dbgs() << ".\n Regs:"; 4312 for (const SCEV *S : NewRegs) 4313 dbgs() << ' ' << *S; 4314 dbgs() << '\n'); 4315 4316 SolutionCost = NewCost; 4317 Solution = Workspace; 4318 } 4319 Workspace.pop_back(); 4320 } 4321 } 4322 } 4323 4324 /// Choose one formula from each use. Return the results in the given Solution 4325 /// vector. 4326 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4327 SmallVector<const Formula *, 8> Workspace; 4328 Cost SolutionCost; 4329 SolutionCost.Lose(); 4330 Cost CurCost; 4331 SmallPtrSet<const SCEV *, 16> CurRegs; 4332 DenseSet<const SCEV *> VisitedRegs; 4333 Workspace.reserve(Uses.size()); 4334 4335 // SolveRecurse does all the work. 4336 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4337 CurRegs, VisitedRegs); 4338 if (Solution.empty()) { 4339 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4340 return; 4341 } 4342 4343 // Ok, we've now made all our decisions. 4344 DEBUG(dbgs() << "\n" 4345 "The chosen solution requires "; SolutionCost.print(dbgs()); 4346 dbgs() << ":\n"; 4347 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4348 dbgs() << " "; 4349 Uses[i].print(dbgs()); 4350 dbgs() << "\n" 4351 " "; 4352 Solution[i]->print(dbgs()); 4353 dbgs() << '\n'; 4354 }); 4355 4356 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4357 } 4358 4359 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4360 /// we can go while still being dominated by the input positions. This helps 4361 /// canonicalize the insert position, which encourages sharing. 4362 BasicBlock::iterator 4363 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4364 const SmallVectorImpl<Instruction *> &Inputs) 4365 const { 4366 Instruction *Tentative = &*IP; 4367 while (true) { 4368 bool AllDominate = true; 4369 Instruction *BetterPos = nullptr; 4370 // Don't bother attempting to insert before a catchswitch, their basic block 4371 // cannot have other non-PHI instructions. 4372 if (isa<CatchSwitchInst>(Tentative)) 4373 return IP; 4374 4375 for (Instruction *Inst : Inputs) { 4376 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4377 AllDominate = false; 4378 break; 4379 } 4380 // Attempt to find an insert position in the middle of the block, 4381 // instead of at the end, so that it can be used for other expansions. 4382 if (Tentative->getParent() == Inst->getParent() && 4383 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4384 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4385 } 4386 if (!AllDominate) 4387 break; 4388 if (BetterPos) 4389 IP = BetterPos->getIterator(); 4390 else 4391 IP = Tentative->getIterator(); 4392 4393 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4394 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4395 4396 BasicBlock *IDom; 4397 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4398 if (!Rung) return IP; 4399 Rung = Rung->getIDom(); 4400 if (!Rung) return IP; 4401 IDom = Rung->getBlock(); 4402 4403 // Don't climb into a loop though. 4404 const Loop *IDomLoop = LI.getLoopFor(IDom); 4405 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4406 if (IDomDepth <= IPLoopDepth && 4407 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4408 break; 4409 } 4410 4411 Tentative = IDom->getTerminator(); 4412 } 4413 4414 return IP; 4415 } 4416 4417 /// Determine an input position which will be dominated by the operands and 4418 /// which will dominate the result. 4419 BasicBlock::iterator 4420 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4421 const LSRFixup &LF, 4422 const LSRUse &LU, 4423 SCEVExpander &Rewriter) const { 4424 // Collect some instructions which must be dominated by the 4425 // expanding replacement. These must be dominated by any operands that 4426 // will be required in the expansion. 4427 SmallVector<Instruction *, 4> Inputs; 4428 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4429 Inputs.push_back(I); 4430 if (LU.Kind == LSRUse::ICmpZero) 4431 if (Instruction *I = 4432 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4433 Inputs.push_back(I); 4434 if (LF.PostIncLoops.count(L)) { 4435 if (LF.isUseFullyOutsideLoop(L)) 4436 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4437 else 4438 Inputs.push_back(IVIncInsertPos); 4439 } 4440 // The expansion must also be dominated by the increment positions of any 4441 // loops it for which it is using post-inc mode. 4442 for (const Loop *PIL : LF.PostIncLoops) { 4443 if (PIL == L) continue; 4444 4445 // Be dominated by the loop exit. 4446 SmallVector<BasicBlock *, 4> ExitingBlocks; 4447 PIL->getExitingBlocks(ExitingBlocks); 4448 if (!ExitingBlocks.empty()) { 4449 BasicBlock *BB = ExitingBlocks[0]; 4450 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4451 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4452 Inputs.push_back(BB->getTerminator()); 4453 } 4454 } 4455 4456 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4457 && !isa<DbgInfoIntrinsic>(LowestIP) && 4458 "Insertion point must be a normal instruction"); 4459 4460 // Then, climb up the immediate dominator tree as far as we can go while 4461 // still being dominated by the input positions. 4462 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4463 4464 // Don't insert instructions before PHI nodes. 4465 while (isa<PHINode>(IP)) ++IP; 4466 4467 // Ignore landingpad instructions. 4468 while (IP->isEHPad()) ++IP; 4469 4470 // Ignore debug intrinsics. 4471 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4472 4473 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4474 // IP consistent across expansions and allows the previously inserted 4475 // instructions to be reused by subsequent expansion. 4476 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4477 ++IP; 4478 4479 return IP; 4480 } 4481 4482 /// Emit instructions for the leading candidate expression for this LSRUse (this 4483 /// is called "expanding"). 4484 Value *LSRInstance::Expand(const LSRUse &LU, 4485 const LSRFixup &LF, 4486 const Formula &F, 4487 BasicBlock::iterator IP, 4488 SCEVExpander &Rewriter, 4489 SmallVectorImpl<WeakVH> &DeadInsts) const { 4490 if (LU.RigidFormula) 4491 return LF.OperandValToReplace; 4492 4493 // Determine an input position which will be dominated by the operands and 4494 // which will dominate the result. 4495 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4496 Rewriter.setInsertPoint(&*IP); 4497 4498 // Inform the Rewriter if we have a post-increment use, so that it can 4499 // perform an advantageous expansion. 4500 Rewriter.setPostInc(LF.PostIncLoops); 4501 4502 // This is the type that the user actually needs. 4503 Type *OpTy = LF.OperandValToReplace->getType(); 4504 // This will be the type that we'll initially expand to. 4505 Type *Ty = F.getType(); 4506 if (!Ty) 4507 // No type known; just expand directly to the ultimate type. 4508 Ty = OpTy; 4509 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4510 // Expand directly to the ultimate type if it's the right size. 4511 Ty = OpTy; 4512 // This is the type to do integer arithmetic in. 4513 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4514 4515 // Build up a list of operands to add together to form the full base. 4516 SmallVector<const SCEV *, 8> Ops; 4517 4518 // Expand the BaseRegs portion. 4519 for (const SCEV *Reg : F.BaseRegs) { 4520 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4521 4522 // If we're expanding for a post-inc user, make the post-inc adjustment. 4523 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4524 Reg = TransformForPostIncUse(Denormalize, Reg, 4525 LF.UserInst, LF.OperandValToReplace, 4526 Loops, SE, DT); 4527 4528 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4529 } 4530 4531 // Expand the ScaledReg portion. 4532 Value *ICmpScaledV = nullptr; 4533 if (F.Scale != 0) { 4534 const SCEV *ScaledS = F.ScaledReg; 4535 4536 // If we're expanding for a post-inc user, make the post-inc adjustment. 4537 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4538 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4539 LF.UserInst, LF.OperandValToReplace, 4540 Loops, SE, DT); 4541 4542 if (LU.Kind == LSRUse::ICmpZero) { 4543 // Expand ScaleReg as if it was part of the base regs. 4544 if (F.Scale == 1) 4545 Ops.push_back( 4546 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4547 else { 4548 // An interesting way of "folding" with an icmp is to use a negated 4549 // scale, which we'll implement by inserting it into the other operand 4550 // of the icmp. 4551 assert(F.Scale == -1 && 4552 "The only scale supported by ICmpZero uses is -1!"); 4553 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4554 } 4555 } else { 4556 // Otherwise just expand the scaled register and an explicit scale, 4557 // which is expected to be matched as part of the address. 4558 4559 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4560 // Unless the addressing mode will not be folded. 4561 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4562 isAMCompletelyFolded(TTI, LU, F)) { 4563 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4564 Ops.clear(); 4565 Ops.push_back(SE.getUnknown(FullV)); 4566 } 4567 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4568 if (F.Scale != 1) 4569 ScaledS = 4570 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4571 Ops.push_back(ScaledS); 4572 } 4573 } 4574 4575 // Expand the GV portion. 4576 if (F.BaseGV) { 4577 // Flush the operand list to suppress SCEVExpander hoisting. 4578 if (!Ops.empty()) { 4579 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4580 Ops.clear(); 4581 Ops.push_back(SE.getUnknown(FullV)); 4582 } 4583 Ops.push_back(SE.getUnknown(F.BaseGV)); 4584 } 4585 4586 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4587 // unfolded offsets. LSR assumes they both live next to their uses. 4588 if (!Ops.empty()) { 4589 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4590 Ops.clear(); 4591 Ops.push_back(SE.getUnknown(FullV)); 4592 } 4593 4594 // Expand the immediate portion. 4595 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4596 if (Offset != 0) { 4597 if (LU.Kind == LSRUse::ICmpZero) { 4598 // The other interesting way of "folding" with an ICmpZero is to use a 4599 // negated immediate. 4600 if (!ICmpScaledV) 4601 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4602 else { 4603 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4604 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4605 } 4606 } else { 4607 // Just add the immediate values. These again are expected to be matched 4608 // as part of the address. 4609 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4610 } 4611 } 4612 4613 // Expand the unfolded offset portion. 4614 int64_t UnfoldedOffset = F.UnfoldedOffset; 4615 if (UnfoldedOffset != 0) { 4616 // Just add the immediate values. 4617 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4618 UnfoldedOffset))); 4619 } 4620 4621 // Emit instructions summing all the operands. 4622 const SCEV *FullS = Ops.empty() ? 4623 SE.getConstant(IntTy, 0) : 4624 SE.getAddExpr(Ops); 4625 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 4626 4627 // We're done expanding now, so reset the rewriter. 4628 Rewriter.clearPostInc(); 4629 4630 // An ICmpZero Formula represents an ICmp which we're handling as a 4631 // comparison against zero. Now that we've expanded an expression for that 4632 // form, update the ICmp's other operand. 4633 if (LU.Kind == LSRUse::ICmpZero) { 4634 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4635 DeadInsts.emplace_back(CI->getOperand(1)); 4636 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4637 "a scale at the same time!"); 4638 if (F.Scale == -1) { 4639 if (ICmpScaledV->getType() != OpTy) { 4640 Instruction *Cast = 4641 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4642 OpTy, false), 4643 ICmpScaledV, OpTy, "tmp", CI); 4644 ICmpScaledV = Cast; 4645 } 4646 CI->setOperand(1, ICmpScaledV); 4647 } else { 4648 // A scale of 1 means that the scale has been expanded as part of the 4649 // base regs. 4650 assert((F.Scale == 0 || F.Scale == 1) && 4651 "ICmp does not support folding a global value and " 4652 "a scale at the same time!"); 4653 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4654 -(uint64_t)Offset); 4655 if (C->getType() != OpTy) 4656 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4657 OpTy, false), 4658 C, OpTy); 4659 4660 CI->setOperand(1, C); 4661 } 4662 } 4663 4664 return FullV; 4665 } 4666 4667 /// Helper for Rewrite. PHI nodes are special because the use of their operands 4668 /// effectively happens in their predecessor blocks, so the expression may need 4669 /// to be expanded in multiple places. 4670 void LSRInstance::RewriteForPHI(PHINode *PN, 4671 const LSRUse &LU, 4672 const LSRFixup &LF, 4673 const Formula &F, 4674 SCEVExpander &Rewriter, 4675 SmallVectorImpl<WeakVH> &DeadInsts) const { 4676 DenseMap<BasicBlock *, Value *> Inserted; 4677 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4678 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4679 BasicBlock *BB = PN->getIncomingBlock(i); 4680 4681 // If this is a critical edge, split the edge so that we do not insert 4682 // the code on all predecessor/successor paths. We do this unless this 4683 // is the canonical backedge for this loop, which complicates post-inc 4684 // users. 4685 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4686 !isa<IndirectBrInst>(BB->getTerminator()) && 4687 !isa<CatchSwitchInst>(BB->getTerminator())) { 4688 BasicBlock *Parent = PN->getParent(); 4689 Loop *PNLoop = LI.getLoopFor(Parent); 4690 if (!PNLoop || Parent != PNLoop->getHeader()) { 4691 // Split the critical edge. 4692 BasicBlock *NewBB = nullptr; 4693 if (!Parent->isLandingPad()) { 4694 NewBB = SplitCriticalEdge(BB, Parent, 4695 CriticalEdgeSplittingOptions(&DT, &LI) 4696 .setMergeIdenticalEdges() 4697 .setDontDeleteUselessPHIs()); 4698 } else { 4699 SmallVector<BasicBlock*, 2> NewBBs; 4700 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 4701 NewBB = NewBBs[0]; 4702 } 4703 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4704 // phi predecessors are identical. The simple thing to do is skip 4705 // splitting in this case rather than complicate the API. 4706 if (NewBB) { 4707 // If PN is outside of the loop and BB is in the loop, we want to 4708 // move the block to be immediately before the PHI block, not 4709 // immediately after BB. 4710 if (L->contains(BB) && !L->contains(PN)) 4711 NewBB->moveBefore(PN->getParent()); 4712 4713 // Splitting the edge can reduce the number of PHI entries we have. 4714 e = PN->getNumIncomingValues(); 4715 BB = NewBB; 4716 i = PN->getBasicBlockIndex(BB); 4717 } 4718 } 4719 } 4720 4721 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4722 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4723 if (!Pair.second) 4724 PN->setIncomingValue(i, Pair.first->second); 4725 else { 4726 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 4727 Rewriter, DeadInsts); 4728 4729 // If this is reuse-by-noop-cast, insert the noop cast. 4730 Type *OpTy = LF.OperandValToReplace->getType(); 4731 if (FullV->getType() != OpTy) 4732 FullV = 4733 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4734 OpTy, false), 4735 FullV, LF.OperandValToReplace->getType(), 4736 "tmp", BB->getTerminator()); 4737 4738 PN->setIncomingValue(i, FullV); 4739 Pair.first->second = FullV; 4740 } 4741 } 4742 } 4743 4744 /// Emit instructions for the leading candidate expression for this LSRUse (this 4745 /// is called "expanding"), and update the UserInst to reference the newly 4746 /// expanded value. 4747 void LSRInstance::Rewrite(const LSRUse &LU, 4748 const LSRFixup &LF, 4749 const Formula &F, 4750 SCEVExpander &Rewriter, 4751 SmallVectorImpl<WeakVH> &DeadInsts) const { 4752 // First, find an insertion point that dominates UserInst. For PHI nodes, 4753 // find the nearest block which dominates all the relevant uses. 4754 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4755 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 4756 } else { 4757 Value *FullV = 4758 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 4759 4760 // If this is reuse-by-noop-cast, insert the noop cast. 4761 Type *OpTy = LF.OperandValToReplace->getType(); 4762 if (FullV->getType() != OpTy) { 4763 Instruction *Cast = 4764 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4765 FullV, OpTy, "tmp", LF.UserInst); 4766 FullV = Cast; 4767 } 4768 4769 // Update the user. ICmpZero is handled specially here (for now) because 4770 // Expand may have updated one of the operands of the icmp already, and 4771 // its new value may happen to be equal to LF.OperandValToReplace, in 4772 // which case doing replaceUsesOfWith leads to replacing both operands 4773 // with the same value. TODO: Reorganize this. 4774 if (LU.Kind == LSRUse::ICmpZero) 4775 LF.UserInst->setOperand(0, FullV); 4776 else 4777 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4778 } 4779 4780 DeadInsts.emplace_back(LF.OperandValToReplace); 4781 } 4782 4783 /// Rewrite all the fixup locations with new values, following the chosen 4784 /// solution. 4785 void LSRInstance::ImplementSolution( 4786 const SmallVectorImpl<const Formula *> &Solution) { 4787 // Keep track of instructions we may have made dead, so that 4788 // we can remove them after we are done working. 4789 SmallVector<WeakVH, 16> DeadInsts; 4790 4791 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4792 "lsr"); 4793 #ifndef NDEBUG 4794 Rewriter.setDebugType(DEBUG_TYPE); 4795 #endif 4796 Rewriter.disableCanonicalMode(); 4797 Rewriter.enableLSRMode(); 4798 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4799 4800 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4801 for (const IVChain &Chain : IVChainVec) { 4802 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 4803 Rewriter.setChainedPhi(PN); 4804 } 4805 4806 // Expand the new value definitions and update the users. 4807 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 4808 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 4809 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 4810 Changed = true; 4811 } 4812 4813 for (const IVChain &Chain : IVChainVec) { 4814 GenerateIVChain(Chain, Rewriter, DeadInsts); 4815 Changed = true; 4816 } 4817 // Clean up after ourselves. This must be done before deleting any 4818 // instructions. 4819 Rewriter.clear(); 4820 4821 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4822 } 4823 4824 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 4825 DominatorTree &DT, LoopInfo &LI, 4826 const TargetTransformInfo &TTI) 4827 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false), 4828 IVIncInsertPos(nullptr) { 4829 // If LoopSimplify form is not available, stay out of trouble. 4830 if (!L->isLoopSimplifyForm()) 4831 return; 4832 4833 // If there's no interesting work to be done, bail early. 4834 if (IU.empty()) return; 4835 4836 // If there's too much analysis to be done, bail early. We won't be able to 4837 // model the problem anyway. 4838 unsigned NumUsers = 0; 4839 for (const IVStrideUse &U : IU) { 4840 if (++NumUsers > MaxIVUsers) { 4841 (void)U; 4842 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 4843 return; 4844 } 4845 // Bail out if we have a PHI on an EHPad that gets a value from a 4846 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 4847 // no good place to stick any instructions. 4848 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 4849 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 4850 if (isa<FuncletPadInst>(FirstNonPHI) || 4851 isa<CatchSwitchInst>(FirstNonPHI)) 4852 for (BasicBlock *PredBB : PN->blocks()) 4853 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 4854 return; 4855 } 4856 } 4857 4858 #ifndef NDEBUG 4859 // All dominating loops must have preheaders, or SCEVExpander may not be able 4860 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4861 // 4862 // IVUsers analysis should only create users that are dominated by simple loop 4863 // headers. Since this loop should dominate all of its users, its user list 4864 // should be empty if this loop itself is not within a simple loop nest. 4865 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4866 Rung; Rung = Rung->getIDom()) { 4867 BasicBlock *BB = Rung->getBlock(); 4868 const Loop *DomLoop = LI.getLoopFor(BB); 4869 if (DomLoop && DomLoop->getHeader() == BB) { 4870 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4871 } 4872 } 4873 #endif // DEBUG 4874 4875 DEBUG(dbgs() << "\nLSR on loop "; 4876 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4877 dbgs() << ":\n"); 4878 4879 // First, perform some low-level loop optimizations. 4880 OptimizeShadowIV(); 4881 OptimizeLoopTermCond(); 4882 4883 // If loop preparation eliminates all interesting IV users, bail. 4884 if (IU.empty()) return; 4885 4886 // Skip nested loops until we can model them better with formulae. 4887 if (!L->empty()) { 4888 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4889 return; 4890 } 4891 4892 // Start collecting data and preparing for the solver. 4893 CollectChains(); 4894 CollectInterestingTypesAndFactors(); 4895 CollectFixupsAndInitialFormulae(); 4896 CollectLoopInvariantFixupsAndFormulae(); 4897 4898 assert(!Uses.empty() && "IVUsers reported at least one use"); 4899 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4900 print_uses(dbgs())); 4901 4902 // Now use the reuse data to generate a bunch of interesting ways 4903 // to formulate the values needed for the uses. 4904 GenerateAllReuseFormulae(); 4905 4906 FilterOutUndesirableDedicatedRegisters(); 4907 NarrowSearchSpaceUsingHeuristics(); 4908 4909 SmallVector<const Formula *, 8> Solution; 4910 Solve(Solution); 4911 4912 // Release memory that is no longer needed. 4913 Factors.clear(); 4914 Types.clear(); 4915 RegUses.clear(); 4916 4917 if (Solution.empty()) 4918 return; 4919 4920 #ifndef NDEBUG 4921 // Formulae should be legal. 4922 for (const LSRUse &LU : Uses) { 4923 for (const Formula &F : LU.Formulae) 4924 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4925 F) && "Illegal formula generated!"); 4926 }; 4927 #endif 4928 4929 // Now that we've decided what we want, make it so. 4930 ImplementSolution(Solution); 4931 } 4932 4933 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4934 if (Factors.empty() && Types.empty()) return; 4935 4936 OS << "LSR has identified the following interesting factors and types: "; 4937 bool First = true; 4938 4939 for (int64_t Factor : Factors) { 4940 if (!First) OS << ", "; 4941 First = false; 4942 OS << '*' << Factor; 4943 } 4944 4945 for (Type *Ty : Types) { 4946 if (!First) OS << ", "; 4947 First = false; 4948 OS << '(' << *Ty << ')'; 4949 } 4950 OS << '\n'; 4951 } 4952 4953 void LSRInstance::print_fixups(raw_ostream &OS) const { 4954 OS << "LSR is examining the following fixup sites:\n"; 4955 for (const LSRUse &LU : Uses) 4956 for (const LSRFixup &LF : LU.Fixups) { 4957 dbgs() << " "; 4958 LF.print(OS); 4959 OS << '\n'; 4960 } 4961 } 4962 4963 void LSRInstance::print_uses(raw_ostream &OS) const { 4964 OS << "LSR is examining the following uses:\n"; 4965 for (const LSRUse &LU : Uses) { 4966 dbgs() << " "; 4967 LU.print(OS); 4968 OS << '\n'; 4969 for (const Formula &F : LU.Formulae) { 4970 OS << " "; 4971 F.print(OS); 4972 OS << '\n'; 4973 } 4974 } 4975 } 4976 4977 void LSRInstance::print(raw_ostream &OS) const { 4978 print_factors_and_types(OS); 4979 print_fixups(OS); 4980 print_uses(OS); 4981 } 4982 4983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4984 LLVM_DUMP_METHOD void LSRInstance::dump() const { 4985 print(errs()); errs() << '\n'; 4986 } 4987 #endif 4988 4989 namespace { 4990 4991 class LoopStrengthReduce : public LoopPass { 4992 public: 4993 static char ID; // Pass ID, replacement for typeid 4994 4995 LoopStrengthReduce(); 4996 4997 private: 4998 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 4999 void getAnalysisUsage(AnalysisUsage &AU) const override; 5000 }; 5001 5002 } // end anonymous namespace 5003 5004 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5005 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5006 } 5007 5008 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5009 // We split critical edges, so we change the CFG. However, we do update 5010 // many analyses if they are around. 5011 AU.addPreservedID(LoopSimplifyID); 5012 5013 AU.addRequired<LoopInfoWrapperPass>(); 5014 AU.addPreserved<LoopInfoWrapperPass>(); 5015 AU.addRequiredID(LoopSimplifyID); 5016 AU.addRequired<DominatorTreeWrapperPass>(); 5017 AU.addPreserved<DominatorTreeWrapperPass>(); 5018 AU.addRequired<ScalarEvolutionWrapperPass>(); 5019 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5020 // Requiring LoopSimplify a second time here prevents IVUsers from running 5021 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5022 AU.addRequiredID(LoopSimplifyID); 5023 AU.addRequired<IVUsersWrapperPass>(); 5024 AU.addPreserved<IVUsersWrapperPass>(); 5025 AU.addRequired<TargetTransformInfoWrapperPass>(); 5026 } 5027 5028 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5029 DominatorTree &DT, LoopInfo &LI, 5030 const TargetTransformInfo &TTI) { 5031 bool Changed = false; 5032 5033 // Run the main LSR transformation. 5034 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5035 5036 // Remove any extra phis created by processing inner loops. 5037 Changed |= DeleteDeadPHIs(L->getHeader()); 5038 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5039 SmallVector<WeakVH, 16> DeadInsts; 5040 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5041 SCEVExpander Rewriter(SE, DL, "lsr"); 5042 #ifndef NDEBUG 5043 Rewriter.setDebugType(DEBUG_TYPE); 5044 #endif 5045 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5046 if (numFolded) { 5047 Changed = true; 5048 DeleteTriviallyDeadInstructions(DeadInsts); 5049 DeleteDeadPHIs(L->getHeader()); 5050 } 5051 } 5052 return Changed; 5053 } 5054 5055 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5056 if (skipLoop(L)) 5057 return false; 5058 5059 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5060 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5061 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5062 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5063 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5064 *L->getHeader()->getParent()); 5065 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5066 } 5067 5068 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5069 LoopStandardAnalysisResults &AR, 5070 LPMUpdater &) { 5071 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5072 AR.DT, AR.LI, AR.TTI)) 5073 return PreservedAnalyses::all(); 5074 5075 return getLoopPassPreservedAnalyses(); 5076 } 5077 5078 char LoopStrengthReduce::ID = 0; 5079 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5080 "Loop Strength Reduction", false, false) 5081 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5082 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5083 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5084 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5085 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5086 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5087 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5088 "Loop Strength Reduction", false, false) 5089 5090 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5091