1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/Analysis/IVUsers.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/LoopPass.h"
71 #include "llvm/Analysis/ScalarEvolution.h"
72 #include "llvm/Analysis/ScalarEvolutionExpander.h"
73 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
74 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
75 #include "llvm/Analysis/TargetTransformInfo.h"
76 #include "llvm/IR/BasicBlock.h"
77 #include "llvm/IR/Constant.h"
78 #include "llvm/IR/Constants.h"
79 #include "llvm/IR/DerivedTypes.h"
80 #include "llvm/IR/Dominators.h"
81 #include "llvm/IR/GlobalValue.h"
82 #include "llvm/IR/IRBuilder.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Module.h"
87 #include "llvm/IR/OperandTraits.h"
88 #include "llvm/IR/Operator.h"
89 #include "llvm/IR/Type.h"
90 #include "llvm/IR/Value.h"
91 #include "llvm/IR/ValueHandle.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/ErrorHandling.h"
98 #include "llvm/Support/MathExtras.h"
99 #include "llvm/Support/raw_ostream.h"
100 #include "llvm/Transforms/Scalar.h"
101 #include "llvm/Transforms/Scalar/LoopPassManager.h"
102 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
103 #include "llvm/Transforms/Utils/Local.h"
104 #include <algorithm>
105 #include <cassert>
106 #include <cstddef>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <map>
111 #include <tuple>
112 #include <utility>
113 
114 using namespace llvm;
115 
116 #define DEBUG_TYPE "loop-reduce"
117 
118 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
119 /// bail out. This threshold is far beyond the number of users that LSR can
120 /// conceivably solve, so it should not affect generated code, but catches the
121 /// worst cases before LSR burns too much compile time and stack space.
122 static const unsigned MaxIVUsers = 200;
123 
124 // Temporary flag to cleanup congruent phis after LSR phi expansion.
125 // It's currently disabled until we can determine whether it's truly useful or
126 // not. The flag should be removed after the v3.0 release.
127 // This is now needed for ivchains.
128 static cl::opt<bool> EnablePhiElim(
129   "enable-lsr-phielim", cl::Hidden, cl::init(true),
130   cl::desc("Enable LSR phi elimination"));
131 
132 #ifndef NDEBUG
133 // Stress test IV chain generation.
134 static cl::opt<bool> StressIVChain(
135   "stress-ivchain", cl::Hidden, cl::init(false),
136   cl::desc("Stress test LSR IV chains"));
137 #else
138 static bool StressIVChain = false;
139 #endif
140 
141 namespace {
142 
143 struct MemAccessTy {
144   /// Used in situations where the accessed memory type is unknown.
145   static const unsigned UnknownAddressSpace = ~0u;
146 
147   Type *MemTy;
148   unsigned AddrSpace;
149 
150   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
151 
152   MemAccessTy(Type *Ty, unsigned AS) :
153     MemTy(Ty), AddrSpace(AS) {}
154 
155   bool operator==(MemAccessTy Other) const {
156     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
157   }
158 
159   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
160 
161   static MemAccessTy getUnknown(LLVMContext &Ctx) {
162     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
163   }
164 };
165 
166 /// This class holds data which is used to order reuse candidates.
167 class RegSortData {
168 public:
169   /// This represents the set of LSRUse indices which reference
170   /// a particular register.
171   SmallBitVector UsedByIndices;
172 
173   void print(raw_ostream &OS) const;
174   void dump() const;
175 };
176 
177 } // end anonymous namespace
178 
179 void RegSortData::print(raw_ostream &OS) const {
180   OS << "[NumUses=" << UsedByIndices.count() << ']';
181 }
182 
183 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
184 LLVM_DUMP_METHOD void RegSortData::dump() const {
185   print(errs()); errs() << '\n';
186 }
187 #endif
188 
189 namespace {
190 
191 /// Map register candidates to information about how they are used.
192 class RegUseTracker {
193   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
194 
195   RegUsesTy RegUsesMap;
196   SmallVector<const SCEV *, 16> RegSequence;
197 
198 public:
199   void countRegister(const SCEV *Reg, size_t LUIdx);
200   void dropRegister(const SCEV *Reg, size_t LUIdx);
201   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
202 
203   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
204 
205   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
206 
207   void clear();
208 
209   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
210   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
211   iterator begin() { return RegSequence.begin(); }
212   iterator end()   { return RegSequence.end(); }
213   const_iterator begin() const { return RegSequence.begin(); }
214   const_iterator end() const   { return RegSequence.end(); }
215 };
216 
217 } // end anonymous namespace
218 
219 void
220 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
221   std::pair<RegUsesTy::iterator, bool> Pair =
222     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
223   RegSortData &RSD = Pair.first->second;
224   if (Pair.second)
225     RegSequence.push_back(Reg);
226   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
227   RSD.UsedByIndices.set(LUIdx);
228 }
229 
230 void
231 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
232   RegUsesTy::iterator It = RegUsesMap.find(Reg);
233   assert(It != RegUsesMap.end());
234   RegSortData &RSD = It->second;
235   assert(RSD.UsedByIndices.size() > LUIdx);
236   RSD.UsedByIndices.reset(LUIdx);
237 }
238 
239 void
240 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
241   assert(LUIdx <= LastLUIdx);
242 
243   // Update RegUses. The data structure is not optimized for this purpose;
244   // we must iterate through it and update each of the bit vectors.
245   for (auto &Pair : RegUsesMap) {
246     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
247     if (LUIdx < UsedByIndices.size())
248       UsedByIndices[LUIdx] =
249         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
250     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
251   }
252 }
253 
254 bool
255 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
256   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
257   if (I == RegUsesMap.end())
258     return false;
259   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
260   int i = UsedByIndices.find_first();
261   if (i == -1) return false;
262   if ((size_t)i != LUIdx) return true;
263   return UsedByIndices.find_next(i) != -1;
264 }
265 
266 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
267   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
268   assert(I != RegUsesMap.end() && "Unknown register!");
269   return I->second.UsedByIndices;
270 }
271 
272 void RegUseTracker::clear() {
273   RegUsesMap.clear();
274   RegSequence.clear();
275 }
276 
277 namespace {
278 
279 /// This class holds information that describes a formula for computing
280 /// satisfying a use. It may include broken-out immediates and scaled registers.
281 struct Formula {
282   /// Global base address used for complex addressing.
283   GlobalValue *BaseGV;
284 
285   /// Base offset for complex addressing.
286   int64_t BaseOffset;
287 
288   /// Whether any complex addressing has a base register.
289   bool HasBaseReg;
290 
291   /// The scale of any complex addressing.
292   int64_t Scale;
293 
294   /// The list of "base" registers for this use. When this is non-empty. The
295   /// canonical representation of a formula is
296   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
297   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
298   /// #1 enforces that the scaled register is always used when at least two
299   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
300   /// #2 enforces that 1 * reg is reg.
301   /// This invariant can be temporarly broken while building a formula.
302   /// However, every formula inserted into the LSRInstance must be in canonical
303   /// form.
304   SmallVector<const SCEV *, 4> BaseRegs;
305 
306   /// The 'scaled' register for this use. This should be non-null when Scale is
307   /// not zero.
308   const SCEV *ScaledReg;
309 
310   /// An additional constant offset which added near the use. This requires a
311   /// temporary register, but the offset itself can live in an add immediate
312   /// field rather than a register.
313   int64_t UnfoldedOffset;
314 
315   Formula()
316       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
317         ScaledReg(nullptr), UnfoldedOffset(0) {}
318 
319   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
320 
321   bool isCanonical() const;
322 
323   void canonicalize();
324 
325   bool unscale();
326 
327   size_t getNumRegs() const;
328   Type *getType() const;
329 
330   void deleteBaseReg(const SCEV *&S);
331 
332   bool referencesReg(const SCEV *S) const;
333   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
334                                   const RegUseTracker &RegUses) const;
335 
336   void print(raw_ostream &OS) const;
337   void dump() const;
338 };
339 
340 } // end anonymous namespace
341 
342 /// Recursion helper for initialMatch.
343 static void DoInitialMatch(const SCEV *S, Loop *L,
344                            SmallVectorImpl<const SCEV *> &Good,
345                            SmallVectorImpl<const SCEV *> &Bad,
346                            ScalarEvolution &SE) {
347   // Collect expressions which properly dominate the loop header.
348   if (SE.properlyDominates(S, L->getHeader())) {
349     Good.push_back(S);
350     return;
351   }
352 
353   // Look at add operands.
354   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
355     for (const SCEV *S : Add->operands())
356       DoInitialMatch(S, L, Good, Bad, SE);
357     return;
358   }
359 
360   // Look at addrec operands.
361   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
362     if (!AR->getStart()->isZero() && AR->isAffine()) {
363       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
364       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
365                                       AR->getStepRecurrence(SE),
366                                       // FIXME: AR->getNoWrapFlags()
367                                       AR->getLoop(), SCEV::FlagAnyWrap),
368                      L, Good, Bad, SE);
369       return;
370     }
371 
372   // Handle a multiplication by -1 (negation) if it didn't fold.
373   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
374     if (Mul->getOperand(0)->isAllOnesValue()) {
375       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
376       const SCEV *NewMul = SE.getMulExpr(Ops);
377 
378       SmallVector<const SCEV *, 4> MyGood;
379       SmallVector<const SCEV *, 4> MyBad;
380       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
381       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
382         SE.getEffectiveSCEVType(NewMul->getType())));
383       for (const SCEV *S : MyGood)
384         Good.push_back(SE.getMulExpr(NegOne, S));
385       for (const SCEV *S : MyBad)
386         Bad.push_back(SE.getMulExpr(NegOne, S));
387       return;
388     }
389 
390   // Ok, we can't do anything interesting. Just stuff the whole thing into a
391   // register and hope for the best.
392   Bad.push_back(S);
393 }
394 
395 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
396 /// all loop-invariant and loop-computable values in a single base register.
397 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
398   SmallVector<const SCEV *, 4> Good;
399   SmallVector<const SCEV *, 4> Bad;
400   DoInitialMatch(S, L, Good, Bad, SE);
401   if (!Good.empty()) {
402     const SCEV *Sum = SE.getAddExpr(Good);
403     if (!Sum->isZero())
404       BaseRegs.push_back(Sum);
405     HasBaseReg = true;
406   }
407   if (!Bad.empty()) {
408     const SCEV *Sum = SE.getAddExpr(Bad);
409     if (!Sum->isZero())
410       BaseRegs.push_back(Sum);
411     HasBaseReg = true;
412   }
413   canonicalize();
414 }
415 
416 /// \brief Check whether or not this formula statisfies the canonical
417 /// representation.
418 /// \see Formula::BaseRegs.
419 bool Formula::isCanonical() const {
420   if (ScaledReg)
421     return Scale != 1 || !BaseRegs.empty();
422   return BaseRegs.size() <= 1;
423 }
424 
425 /// \brief Helper method to morph a formula into its canonical representation.
426 /// \see Formula::BaseRegs.
427 /// Every formula having more than one base register, must use the ScaledReg
428 /// field. Otherwise, we would have to do special cases everywhere in LSR
429 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
430 /// On the other hand, 1*reg should be canonicalized into reg.
431 void Formula::canonicalize() {
432   if (isCanonical())
433     return;
434   // So far we did not need this case. This is easy to implement but it is
435   // useless to maintain dead code. Beside it could hurt compile time.
436   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
437   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
438   ScaledReg = BaseRegs.back();
439   BaseRegs.pop_back();
440   Scale = 1;
441   size_t BaseRegsSize = BaseRegs.size();
442   size_t Try = 0;
443   // If ScaledReg is an invariant, try to find a variant expression.
444   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
445     std::swap(ScaledReg, BaseRegs[Try++]);
446 }
447 
448 /// \brief Get rid of the scale in the formula.
449 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
450 /// \return true if it was possible to get rid of the scale, false otherwise.
451 /// \note After this operation the formula may not be in the canonical form.
452 bool Formula::unscale() {
453   if (Scale != 1)
454     return false;
455   Scale = 0;
456   BaseRegs.push_back(ScaledReg);
457   ScaledReg = nullptr;
458   return true;
459 }
460 
461 /// Return the total number of register operands used by this formula. This does
462 /// not include register uses implied by non-constant addrec strides.
463 size_t Formula::getNumRegs() const {
464   return !!ScaledReg + BaseRegs.size();
465 }
466 
467 /// Return the type of this formula, if it has one, or null otherwise. This type
468 /// is meaningless except for the bit size.
469 Type *Formula::getType() const {
470   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
471          ScaledReg ? ScaledReg->getType() :
472          BaseGV ? BaseGV->getType() :
473          nullptr;
474 }
475 
476 /// Delete the given base reg from the BaseRegs list.
477 void Formula::deleteBaseReg(const SCEV *&S) {
478   if (&S != &BaseRegs.back())
479     std::swap(S, BaseRegs.back());
480   BaseRegs.pop_back();
481 }
482 
483 /// Test if this formula references the given register.
484 bool Formula::referencesReg(const SCEV *S) const {
485   return S == ScaledReg || is_contained(BaseRegs, S);
486 }
487 
488 /// Test whether this formula uses registers which are used by uses other than
489 /// the use with the given index.
490 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
491                                          const RegUseTracker &RegUses) const {
492   if (ScaledReg)
493     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
494       return true;
495   for (const SCEV *BaseReg : BaseRegs)
496     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
497       return true;
498   return false;
499 }
500 
501 void Formula::print(raw_ostream &OS) const {
502   bool First = true;
503   if (BaseGV) {
504     if (!First) OS << " + "; else First = false;
505     BaseGV->printAsOperand(OS, /*PrintType=*/false);
506   }
507   if (BaseOffset != 0) {
508     if (!First) OS << " + "; else First = false;
509     OS << BaseOffset;
510   }
511   for (const SCEV *BaseReg : BaseRegs) {
512     if (!First) OS << " + "; else First = false;
513     OS << "reg(" << *BaseReg << ')';
514   }
515   if (HasBaseReg && BaseRegs.empty()) {
516     if (!First) OS << " + "; else First = false;
517     OS << "**error: HasBaseReg**";
518   } else if (!HasBaseReg && !BaseRegs.empty()) {
519     if (!First) OS << " + "; else First = false;
520     OS << "**error: !HasBaseReg**";
521   }
522   if (Scale != 0) {
523     if (!First) OS << " + "; else First = false;
524     OS << Scale << "*reg(";
525     if (ScaledReg)
526       OS << *ScaledReg;
527     else
528       OS << "<unknown>";
529     OS << ')';
530   }
531   if (UnfoldedOffset != 0) {
532     if (!First) OS << " + ";
533     OS << "imm(" << UnfoldedOffset << ')';
534   }
535 }
536 
537 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
538 LLVM_DUMP_METHOD void Formula::dump() const {
539   print(errs()); errs() << '\n';
540 }
541 #endif
542 
543 /// Return true if the given addrec can be sign-extended without changing its
544 /// value.
545 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
546   Type *WideTy =
547     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
548   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
549 }
550 
551 /// Return true if the given add can be sign-extended without changing its
552 /// value.
553 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
554   Type *WideTy =
555     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
556   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
557 }
558 
559 /// Return true if the given mul can be sign-extended without changing its
560 /// value.
561 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
562   Type *WideTy =
563     IntegerType::get(SE.getContext(),
564                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
565   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
566 }
567 
568 /// Return an expression for LHS /s RHS, if it can be determined and if the
569 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
570 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
571 /// the multiplication may overflow, which is useful when the result will be
572 /// used in a context where the most significant bits are ignored.
573 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
574                                 ScalarEvolution &SE,
575                                 bool IgnoreSignificantBits = false) {
576   // Handle the trivial case, which works for any SCEV type.
577   if (LHS == RHS)
578     return SE.getConstant(LHS->getType(), 1);
579 
580   // Handle a few RHS special cases.
581   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
582   if (RC) {
583     const APInt &RA = RC->getAPInt();
584     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
585     // some folding.
586     if (RA.isAllOnesValue())
587       return SE.getMulExpr(LHS, RC);
588     // Handle x /s 1 as x.
589     if (RA == 1)
590       return LHS;
591   }
592 
593   // Check for a division of a constant by a constant.
594   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
595     if (!RC)
596       return nullptr;
597     const APInt &LA = C->getAPInt();
598     const APInt &RA = RC->getAPInt();
599     if (LA.srem(RA) != 0)
600       return nullptr;
601     return SE.getConstant(LA.sdiv(RA));
602   }
603 
604   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
605   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
606     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
607       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
608                                       IgnoreSignificantBits);
609       if (!Step) return nullptr;
610       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
611                                        IgnoreSignificantBits);
612       if (!Start) return nullptr;
613       // FlagNW is independent of the start value, step direction, and is
614       // preserved with smaller magnitude steps.
615       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
616       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
617     }
618     return nullptr;
619   }
620 
621   // Distribute the sdiv over add operands, if the add doesn't overflow.
622   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
623     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
624       SmallVector<const SCEV *, 8> Ops;
625       for (const SCEV *S : Add->operands()) {
626         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
627         if (!Op) return nullptr;
628         Ops.push_back(Op);
629       }
630       return SE.getAddExpr(Ops);
631     }
632     return nullptr;
633   }
634 
635   // Check for a multiply operand that we can pull RHS out of.
636   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
637     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
638       SmallVector<const SCEV *, 4> Ops;
639       bool Found = false;
640       for (const SCEV *S : Mul->operands()) {
641         if (!Found)
642           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
643                                            IgnoreSignificantBits)) {
644             S = Q;
645             Found = true;
646           }
647         Ops.push_back(S);
648       }
649       return Found ? SE.getMulExpr(Ops) : nullptr;
650     }
651     return nullptr;
652   }
653 
654   // Otherwise we don't know.
655   return nullptr;
656 }
657 
658 /// If S involves the addition of a constant integer value, return that integer
659 /// value, and mutate S to point to a new SCEV with that value excluded.
660 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
661   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
662     if (C->getAPInt().getMinSignedBits() <= 64) {
663       S = SE.getConstant(C->getType(), 0);
664       return C->getValue()->getSExtValue();
665     }
666   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
667     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
668     int64_t Result = ExtractImmediate(NewOps.front(), SE);
669     if (Result != 0)
670       S = SE.getAddExpr(NewOps);
671     return Result;
672   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
673     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
674     int64_t Result = ExtractImmediate(NewOps.front(), SE);
675     if (Result != 0)
676       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
677                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
678                            SCEV::FlagAnyWrap);
679     return Result;
680   }
681   return 0;
682 }
683 
684 /// If S involves the addition of a GlobalValue address, return that symbol, and
685 /// mutate S to point to a new SCEV with that value excluded.
686 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
687   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
688     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
689       S = SE.getConstant(GV->getType(), 0);
690       return GV;
691     }
692   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
693     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
694     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
695     if (Result)
696       S = SE.getAddExpr(NewOps);
697     return Result;
698   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
699     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
700     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
701     if (Result)
702       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
703                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
704                            SCEV::FlagAnyWrap);
705     return Result;
706   }
707   return nullptr;
708 }
709 
710 /// Returns true if the specified instruction is using the specified value as an
711 /// address.
712 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
713   bool isAddress = isa<LoadInst>(Inst);
714   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
715     if (SI->getOperand(1) == OperandVal)
716       isAddress = true;
717   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
718     // Addressing modes can also be folded into prefetches and a variety
719     // of intrinsics.
720     switch (II->getIntrinsicID()) {
721       default: break;
722       case Intrinsic::prefetch:
723         if (II->getArgOperand(0) == OperandVal)
724           isAddress = true;
725         break;
726     }
727   }
728   return isAddress;
729 }
730 
731 /// Return the type of the memory being accessed.
732 static MemAccessTy getAccessType(const Instruction *Inst) {
733   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
734   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
735     AccessTy.MemTy = SI->getOperand(0)->getType();
736     AccessTy.AddrSpace = SI->getPointerAddressSpace();
737   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
738     AccessTy.AddrSpace = LI->getPointerAddressSpace();
739   }
740 
741   // All pointers have the same requirements, so canonicalize them to an
742   // arbitrary pointer type to minimize variation.
743   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
744     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
745                                       PTy->getAddressSpace());
746 
747   return AccessTy;
748 }
749 
750 /// Return true if this AddRec is already a phi in its loop.
751 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
752   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
753        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
754     if (SE.isSCEVable(PN->getType()) &&
755         (SE.getEffectiveSCEVType(PN->getType()) ==
756          SE.getEffectiveSCEVType(AR->getType())) &&
757         SE.getSCEV(PN) == AR)
758       return true;
759   }
760   return false;
761 }
762 
763 /// Check if expanding this expression is likely to incur significant cost. This
764 /// is tricky because SCEV doesn't track which expressions are actually computed
765 /// by the current IR.
766 ///
767 /// We currently allow expansion of IV increments that involve adds,
768 /// multiplication by constants, and AddRecs from existing phis.
769 ///
770 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
771 /// obvious multiple of the UDivExpr.
772 static bool isHighCostExpansion(const SCEV *S,
773                                 SmallPtrSetImpl<const SCEV*> &Processed,
774                                 ScalarEvolution &SE) {
775   // Zero/One operand expressions
776   switch (S->getSCEVType()) {
777   case scUnknown:
778   case scConstant:
779     return false;
780   case scTruncate:
781     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
782                                Processed, SE);
783   case scZeroExtend:
784     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
785                                Processed, SE);
786   case scSignExtend:
787     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
788                                Processed, SE);
789   }
790 
791   if (!Processed.insert(S).second)
792     return false;
793 
794   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
795     for (const SCEV *S : Add->operands()) {
796       if (isHighCostExpansion(S, Processed, SE))
797         return true;
798     }
799     return false;
800   }
801 
802   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
803     if (Mul->getNumOperands() == 2) {
804       // Multiplication by a constant is ok
805       if (isa<SCEVConstant>(Mul->getOperand(0)))
806         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
807 
808       // If we have the value of one operand, check if an existing
809       // multiplication already generates this expression.
810       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
811         Value *UVal = U->getValue();
812         for (User *UR : UVal->users()) {
813           // If U is a constant, it may be used by a ConstantExpr.
814           Instruction *UI = dyn_cast<Instruction>(UR);
815           if (UI && UI->getOpcode() == Instruction::Mul &&
816               SE.isSCEVable(UI->getType())) {
817             return SE.getSCEV(UI) == Mul;
818           }
819         }
820       }
821     }
822   }
823 
824   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
825     if (isExistingPhi(AR, SE))
826       return false;
827   }
828 
829   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
830   return true;
831 }
832 
833 /// If any of the instructions is the specified set are trivially dead, delete
834 /// them and see if this makes any of their operands subsequently dead.
835 static bool
836 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
837   bool Changed = false;
838 
839   while (!DeadInsts.empty()) {
840     Value *V = DeadInsts.pop_back_val();
841     Instruction *I = dyn_cast_or_null<Instruction>(V);
842 
843     if (!I || !isInstructionTriviallyDead(I))
844       continue;
845 
846     for (Use &O : I->operands())
847       if (Instruction *U = dyn_cast<Instruction>(O)) {
848         O = nullptr;
849         if (U->use_empty())
850           DeadInsts.emplace_back(U);
851       }
852 
853     I->eraseFromParent();
854     Changed = true;
855   }
856 
857   return Changed;
858 }
859 
860 namespace {
861 
862 class LSRUse;
863 
864 } // end anonymous namespace
865 
866 /// \brief Check if the addressing mode defined by \p F is completely
867 /// folded in \p LU at isel time.
868 /// This includes address-mode folding and special icmp tricks.
869 /// This function returns true if \p LU can accommodate what \p F
870 /// defines and up to 1 base + 1 scaled + offset.
871 /// In other words, if \p F has several base registers, this function may
872 /// still return true. Therefore, users still need to account for
873 /// additional base registers and/or unfolded offsets to derive an
874 /// accurate cost model.
875 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
876                                  const LSRUse &LU, const Formula &F);
877 // Get the cost of the scaling factor used in F for LU.
878 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
879                                      const LSRUse &LU, const Formula &F);
880 
881 namespace {
882 
883 /// This class is used to measure and compare candidate formulae.
884 class Cost {
885   /// TODO: Some of these could be merged. Also, a lexical ordering
886   /// isn't always optimal.
887   unsigned NumRegs;
888   unsigned AddRecCost;
889   unsigned NumIVMuls;
890   unsigned NumBaseAdds;
891   unsigned ImmCost;
892   unsigned SetupCost;
893   unsigned ScaleCost;
894 
895 public:
896   Cost()
897     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
898       SetupCost(0), ScaleCost(0) {}
899 
900   bool operator<(const Cost &Other) const;
901 
902   void Lose();
903 
904 #ifndef NDEBUG
905   // Once any of the metrics loses, they must all remain losers.
906   bool isValid() {
907     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
908              | ImmCost | SetupCost | ScaleCost) != ~0u)
909       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
910            & ImmCost & SetupCost & ScaleCost) == ~0u);
911   }
912 #endif
913 
914   bool isLoser() {
915     assert(isValid() && "invalid cost");
916     return NumRegs == ~0u;
917   }
918 
919   void RateFormula(const TargetTransformInfo &TTI,
920                    const Formula &F,
921                    SmallPtrSetImpl<const SCEV *> &Regs,
922                    const DenseSet<const SCEV *> &VisitedRegs,
923                    const Loop *L,
924                    ScalarEvolution &SE, DominatorTree &DT,
925                    const LSRUse &LU,
926                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
927 
928   void print(raw_ostream &OS) const;
929   void dump() const;
930 
931 private:
932   void RateRegister(const SCEV *Reg,
933                     SmallPtrSetImpl<const SCEV *> &Regs,
934                     const Loop *L,
935                     ScalarEvolution &SE, DominatorTree &DT);
936   void RatePrimaryRegister(const SCEV *Reg,
937                            SmallPtrSetImpl<const SCEV *> &Regs,
938                            const Loop *L,
939                            ScalarEvolution &SE, DominatorTree &DT,
940                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
941 };
942 
943 /// An operand value in an instruction which is to be replaced with some
944 /// equivalent, possibly strength-reduced, replacement.
945 struct LSRFixup {
946   /// The instruction which will be updated.
947   Instruction *UserInst;
948 
949   /// The operand of the instruction which will be replaced. The operand may be
950   /// used more than once; every instance will be replaced.
951   Value *OperandValToReplace;
952 
953   /// If this user is to use the post-incremented value of an induction
954   /// variable, this variable is non-null and holds the loop associated with the
955   /// induction variable.
956   PostIncLoopSet PostIncLoops;
957 
958   /// A constant offset to be added to the LSRUse expression.  This allows
959   /// multiple fixups to share the same LSRUse with different offsets, for
960   /// example in an unrolled loop.
961   int64_t Offset;
962 
963   bool isUseFullyOutsideLoop(const Loop *L) const;
964 
965   LSRFixup();
966 
967   void print(raw_ostream &OS) const;
968   void dump() const;
969 };
970 
971 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
972 /// SmallVectors of const SCEV*.
973 struct UniquifierDenseMapInfo {
974   static SmallVector<const SCEV *, 4> getEmptyKey() {
975     SmallVector<const SCEV *, 4>  V;
976     V.push_back(reinterpret_cast<const SCEV *>(-1));
977     return V;
978   }
979 
980   static SmallVector<const SCEV *, 4> getTombstoneKey() {
981     SmallVector<const SCEV *, 4> V;
982     V.push_back(reinterpret_cast<const SCEV *>(-2));
983     return V;
984   }
985 
986   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
987     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
988   }
989 
990   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
991                       const SmallVector<const SCEV *, 4> &RHS) {
992     return LHS == RHS;
993   }
994 };
995 
996 /// This class holds the state that LSR keeps for each use in IVUsers, as well
997 /// as uses invented by LSR itself. It includes information about what kinds of
998 /// things can be folded into the user, information about the user itself, and
999 /// information about how the use may be satisfied.  TODO: Represent multiple
1000 /// users of the same expression in common?
1001 class LSRUse {
1002   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1003 
1004 public:
1005   /// An enum for a kind of use, indicating what types of scaled and immediate
1006   /// operands it might support.
1007   enum KindType {
1008     Basic,   ///< A normal use, with no folding.
1009     Special, ///< A special case of basic, allowing -1 scales.
1010     Address, ///< An address use; folding according to TargetLowering
1011     ICmpZero ///< An equality icmp with both operands folded into one.
1012     // TODO: Add a generic icmp too?
1013   };
1014 
1015   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
1016 
1017   KindType Kind;
1018   MemAccessTy AccessTy;
1019 
1020   /// The list of operands which are to be replaced.
1021   SmallVector<LSRFixup, 8> Fixups;
1022 
1023   /// Keep track of the min and max offsets of the fixups.
1024   int64_t MinOffset;
1025   int64_t MaxOffset;
1026 
1027   /// This records whether all of the fixups using this LSRUse are outside of
1028   /// the loop, in which case some special-case heuristics may be used.
1029   bool AllFixupsOutsideLoop;
1030 
1031   /// RigidFormula is set to true to guarantee that this use will be associated
1032   /// with a single formula--the one that initially matched. Some SCEV
1033   /// expressions cannot be expanded. This allows LSR to consider the registers
1034   /// used by those expressions without the need to expand them later after
1035   /// changing the formula.
1036   bool RigidFormula;
1037 
1038   /// This records the widest use type for any fixup using this
1039   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1040   /// fixup widths to be equivalent, because the narrower one may be relying on
1041   /// the implicit truncation to truncate away bogus bits.
1042   Type *WidestFixupType;
1043 
1044   /// A list of ways to build a value that can satisfy this user.  After the
1045   /// list is populated, one of these is selected heuristically and used to
1046   /// formulate a replacement for OperandValToReplace in UserInst.
1047   SmallVector<Formula, 12> Formulae;
1048 
1049   /// The set of register candidates used by all formulae in this LSRUse.
1050   SmallPtrSet<const SCEV *, 4> Regs;
1051 
1052   LSRUse(KindType K, MemAccessTy AT)
1053       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
1054         AllFixupsOutsideLoop(true), RigidFormula(false),
1055         WidestFixupType(nullptr) {}
1056 
1057   LSRFixup &getNewFixup() {
1058     Fixups.push_back(LSRFixup());
1059     return Fixups.back();
1060   }
1061 
1062   void pushFixup(LSRFixup &f) {
1063     Fixups.push_back(f);
1064     if (f.Offset > MaxOffset)
1065       MaxOffset = f.Offset;
1066     if (f.Offset < MinOffset)
1067       MinOffset = f.Offset;
1068   }
1069 
1070   bool HasFormulaWithSameRegs(const Formula &F) const;
1071   bool InsertFormula(const Formula &F);
1072   void DeleteFormula(Formula &F);
1073   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1074 
1075   void print(raw_ostream &OS) const;
1076   void dump() const;
1077 };
1078 
1079 } // end anonymous namespace
1080 
1081 /// Tally up interesting quantities from the given register.
1082 void Cost::RateRegister(const SCEV *Reg,
1083                         SmallPtrSetImpl<const SCEV *> &Regs,
1084                         const Loop *L,
1085                         ScalarEvolution &SE, DominatorTree &DT) {
1086   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1087     // If this is an addrec for another loop, don't second-guess its addrec phi
1088     // nodes. LSR isn't currently smart enough to reason about more than one
1089     // loop at a time. LSR has already run on inner loops, will not run on outer
1090     // loops, and cannot be expected to change sibling loops.
1091     if (AR->getLoop() != L) {
1092       // If the AddRec exists, consider it's register free and leave it alone.
1093       if (isExistingPhi(AR, SE))
1094         return;
1095 
1096       // Otherwise, do not consider this formula at all.
1097       Lose();
1098       return;
1099     }
1100     AddRecCost += 1; /// TODO: This should be a function of the stride.
1101 
1102     // Add the step value register, if it needs one.
1103     // TODO: The non-affine case isn't precisely modeled here.
1104     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1105       if (!Regs.count(AR->getOperand(1))) {
1106         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1107         if (isLoser())
1108           return;
1109       }
1110     }
1111   }
1112   ++NumRegs;
1113 
1114   // Rough heuristic; favor registers which don't require extra setup
1115   // instructions in the preheader.
1116   if (!isa<SCEVUnknown>(Reg) &&
1117       !isa<SCEVConstant>(Reg) &&
1118       !(isa<SCEVAddRecExpr>(Reg) &&
1119         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1120          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1121     ++SetupCost;
1122 
1123   NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1124                SE.hasComputableLoopEvolution(Reg, L);
1125 }
1126 
1127 /// Record this register in the set. If we haven't seen it before, rate
1128 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1129 /// one of those regs an instant loser.
1130 void Cost::RatePrimaryRegister(const SCEV *Reg,
1131                                SmallPtrSetImpl<const SCEV *> &Regs,
1132                                const Loop *L,
1133                                ScalarEvolution &SE, DominatorTree &DT,
1134                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1135   if (LoserRegs && LoserRegs->count(Reg)) {
1136     Lose();
1137     return;
1138   }
1139   if (Regs.insert(Reg).second) {
1140     RateRegister(Reg, Regs, L, SE, DT);
1141     if (LoserRegs && isLoser())
1142       LoserRegs->insert(Reg);
1143   }
1144 }
1145 
1146 void Cost::RateFormula(const TargetTransformInfo &TTI,
1147                        const Formula &F,
1148                        SmallPtrSetImpl<const SCEV *> &Regs,
1149                        const DenseSet<const SCEV *> &VisitedRegs,
1150                        const Loop *L,
1151                        ScalarEvolution &SE, DominatorTree &DT,
1152                        const LSRUse &LU,
1153                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1154   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
1155   // Tally up the registers.
1156   if (const SCEV *ScaledReg = F.ScaledReg) {
1157     if (VisitedRegs.count(ScaledReg)) {
1158       Lose();
1159       return;
1160     }
1161     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1162     if (isLoser())
1163       return;
1164   }
1165   for (const SCEV *BaseReg : F.BaseRegs) {
1166     if (VisitedRegs.count(BaseReg)) {
1167       Lose();
1168       return;
1169     }
1170     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1171     if (isLoser())
1172       return;
1173   }
1174 
1175   // Determine how many (unfolded) adds we'll need inside the loop.
1176   size_t NumBaseParts = F.getNumRegs();
1177   if (NumBaseParts > 1)
1178     // Do not count the base and a possible second register if the target
1179     // allows to fold 2 registers.
1180     NumBaseAdds +=
1181         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1182   NumBaseAdds += (F.UnfoldedOffset != 0);
1183 
1184   // Accumulate non-free scaling amounts.
1185   ScaleCost += getScalingFactorCost(TTI, LU, F);
1186 
1187   // Tally up the non-zero immediates.
1188   for (const LSRFixup &Fixup : LU.Fixups) {
1189     int64_t O = Fixup.Offset;
1190     int64_t Offset = (uint64_t)O + F.BaseOffset;
1191     if (F.BaseGV)
1192       ImmCost += 64; // Handle symbolic values conservatively.
1193                      // TODO: This should probably be the pointer size.
1194     else if (Offset != 0)
1195       ImmCost += APInt(64, Offset, true).getMinSignedBits();
1196 
1197     // Check with target if this offset with this instruction is
1198     // specifically not supported.
1199     if ((isa<LoadInst>(Fixup.UserInst) || isa<StoreInst>(Fixup.UserInst)) &&
1200         !TTI.isFoldableMemAccessOffset(Fixup.UserInst, Offset))
1201       NumBaseAdds++;
1202   }
1203   assert(isValid() && "invalid cost");
1204 }
1205 
1206 /// Set this cost to a losing value.
1207 void Cost::Lose() {
1208   NumRegs = ~0u;
1209   AddRecCost = ~0u;
1210   NumIVMuls = ~0u;
1211   NumBaseAdds = ~0u;
1212   ImmCost = ~0u;
1213   SetupCost = ~0u;
1214   ScaleCost = ~0u;
1215 }
1216 
1217 /// Choose the lower cost.
1218 bool Cost::operator<(const Cost &Other) const {
1219   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
1220                   ImmCost, SetupCost) <
1221          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
1222                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
1223                   Other.SetupCost);
1224 }
1225 
1226 void Cost::print(raw_ostream &OS) const {
1227   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
1228   if (AddRecCost != 0)
1229     OS << ", with addrec cost " << AddRecCost;
1230   if (NumIVMuls != 0)
1231     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
1232   if (NumBaseAdds != 0)
1233     OS << ", plus " << NumBaseAdds << " base add"
1234        << (NumBaseAdds == 1 ? "" : "s");
1235   if (ScaleCost != 0)
1236     OS << ", plus " << ScaleCost << " scale cost";
1237   if (ImmCost != 0)
1238     OS << ", plus " << ImmCost << " imm cost";
1239   if (SetupCost != 0)
1240     OS << ", plus " << SetupCost << " setup cost";
1241 }
1242 
1243 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1244 LLVM_DUMP_METHOD void Cost::dump() const {
1245   print(errs()); errs() << '\n';
1246 }
1247 #endif
1248 
1249 LSRFixup::LSRFixup()
1250   : UserInst(nullptr), OperandValToReplace(nullptr),
1251     Offset(0) {}
1252 
1253 /// Test whether this fixup always uses its value outside of the given loop.
1254 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1255   // PHI nodes use their value in their incoming blocks.
1256   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1257     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1258       if (PN->getIncomingValue(i) == OperandValToReplace &&
1259           L->contains(PN->getIncomingBlock(i)))
1260         return false;
1261     return true;
1262   }
1263 
1264   return !L->contains(UserInst);
1265 }
1266 
1267 void LSRFixup::print(raw_ostream &OS) const {
1268   OS << "UserInst=";
1269   // Store is common and interesting enough to be worth special-casing.
1270   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1271     OS << "store ";
1272     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1273   } else if (UserInst->getType()->isVoidTy())
1274     OS << UserInst->getOpcodeName();
1275   else
1276     UserInst->printAsOperand(OS, /*PrintType=*/false);
1277 
1278   OS << ", OperandValToReplace=";
1279   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1280 
1281   for (const Loop *PIL : PostIncLoops) {
1282     OS << ", PostIncLoop=";
1283     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1284   }
1285 
1286   if (Offset != 0)
1287     OS << ", Offset=" << Offset;
1288 }
1289 
1290 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1291 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1292   print(errs()); errs() << '\n';
1293 }
1294 #endif
1295 
1296 /// Test whether this use as a formula which has the same registers as the given
1297 /// formula.
1298 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1299   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1300   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1301   // Unstable sort by host order ok, because this is only used for uniquifying.
1302   std::sort(Key.begin(), Key.end());
1303   return Uniquifier.count(Key);
1304 }
1305 
1306 /// If the given formula has not yet been inserted, add it to the list, and
1307 /// return true. Return false otherwise.  The formula must be in canonical form.
1308 bool LSRUse::InsertFormula(const Formula &F) {
1309   assert(F.isCanonical() && "Invalid canonical representation");
1310 
1311   if (!Formulae.empty() && RigidFormula)
1312     return false;
1313 
1314   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1315   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1316   // Unstable sort by host order ok, because this is only used for uniquifying.
1317   std::sort(Key.begin(), Key.end());
1318 
1319   if (!Uniquifier.insert(Key).second)
1320     return false;
1321 
1322   // Using a register to hold the value of 0 is not profitable.
1323   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1324          "Zero allocated in a scaled register!");
1325 #ifndef NDEBUG
1326   for (const SCEV *BaseReg : F.BaseRegs)
1327     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1328 #endif
1329 
1330   // Add the formula to the list.
1331   Formulae.push_back(F);
1332 
1333   // Record registers now being used by this use.
1334   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1335   if (F.ScaledReg)
1336     Regs.insert(F.ScaledReg);
1337 
1338   return true;
1339 }
1340 
1341 /// Remove the given formula from this use's list.
1342 void LSRUse::DeleteFormula(Formula &F) {
1343   if (&F != &Formulae.back())
1344     std::swap(F, Formulae.back());
1345   Formulae.pop_back();
1346 }
1347 
1348 /// Recompute the Regs field, and update RegUses.
1349 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1350   // Now that we've filtered out some formulae, recompute the Regs set.
1351   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1352   Regs.clear();
1353   for (const Formula &F : Formulae) {
1354     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1355     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1356   }
1357 
1358   // Update the RegTracker.
1359   for (const SCEV *S : OldRegs)
1360     if (!Regs.count(S))
1361       RegUses.dropRegister(S, LUIdx);
1362 }
1363 
1364 void LSRUse::print(raw_ostream &OS) const {
1365   OS << "LSR Use: Kind=";
1366   switch (Kind) {
1367   case Basic:    OS << "Basic"; break;
1368   case Special:  OS << "Special"; break;
1369   case ICmpZero: OS << "ICmpZero"; break;
1370   case Address:
1371     OS << "Address of ";
1372     if (AccessTy.MemTy->isPointerTy())
1373       OS << "pointer"; // the full pointer type could be really verbose
1374     else {
1375       OS << *AccessTy.MemTy;
1376     }
1377 
1378     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1379   }
1380 
1381   OS << ", Offsets={";
1382   bool NeedComma = false;
1383   for (const LSRFixup &Fixup : Fixups) {
1384     if (NeedComma) OS << ',';
1385     OS << Fixup.Offset;
1386     NeedComma = true;
1387   }
1388   OS << '}';
1389 
1390   if (AllFixupsOutsideLoop)
1391     OS << ", all-fixups-outside-loop";
1392 
1393   if (WidestFixupType)
1394     OS << ", widest fixup type: " << *WidestFixupType;
1395 }
1396 
1397 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1398 LLVM_DUMP_METHOD void LSRUse::dump() const {
1399   print(errs()); errs() << '\n';
1400 }
1401 #endif
1402 
1403 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1404                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1405                                  GlobalValue *BaseGV, int64_t BaseOffset,
1406                                  bool HasBaseReg, int64_t Scale) {
1407   switch (Kind) {
1408   case LSRUse::Address:
1409     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1410                                      HasBaseReg, Scale, AccessTy.AddrSpace);
1411 
1412   case LSRUse::ICmpZero:
1413     // There's not even a target hook for querying whether it would be legal to
1414     // fold a GV into an ICmp.
1415     if (BaseGV)
1416       return false;
1417 
1418     // ICmp only has two operands; don't allow more than two non-trivial parts.
1419     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1420       return false;
1421 
1422     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1423     // putting the scaled register in the other operand of the icmp.
1424     if (Scale != 0 && Scale != -1)
1425       return false;
1426 
1427     // If we have low-level target information, ask the target if it can fold an
1428     // integer immediate on an icmp.
1429     if (BaseOffset != 0) {
1430       // We have one of:
1431       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1432       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1433       // Offs is the ICmp immediate.
1434       if (Scale == 0)
1435         // The cast does the right thing with INT64_MIN.
1436         BaseOffset = -(uint64_t)BaseOffset;
1437       return TTI.isLegalICmpImmediate(BaseOffset);
1438     }
1439 
1440     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1441     return true;
1442 
1443   case LSRUse::Basic:
1444     // Only handle single-register values.
1445     return !BaseGV && Scale == 0 && BaseOffset == 0;
1446 
1447   case LSRUse::Special:
1448     // Special case Basic to handle -1 scales.
1449     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1450   }
1451 
1452   llvm_unreachable("Invalid LSRUse Kind!");
1453 }
1454 
1455 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1456                                  int64_t MinOffset, int64_t MaxOffset,
1457                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1458                                  GlobalValue *BaseGV, int64_t BaseOffset,
1459                                  bool HasBaseReg, int64_t Scale) {
1460   // Check for overflow.
1461   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1462       (MinOffset > 0))
1463     return false;
1464   MinOffset = (uint64_t)BaseOffset + MinOffset;
1465   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1466       (MaxOffset > 0))
1467     return false;
1468   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1469 
1470   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1471                               HasBaseReg, Scale) &&
1472          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1473                               HasBaseReg, Scale);
1474 }
1475 
1476 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1477                                  int64_t MinOffset, int64_t MaxOffset,
1478                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1479                                  const Formula &F) {
1480   // For the purpose of isAMCompletelyFolded either having a canonical formula
1481   // or a scale not equal to zero is correct.
1482   // Problems may arise from non canonical formulae having a scale == 0.
1483   // Strictly speaking it would best to just rely on canonical formulae.
1484   // However, when we generate the scaled formulae, we first check that the
1485   // scaling factor is profitable before computing the actual ScaledReg for
1486   // compile time sake.
1487   assert((F.isCanonical() || F.Scale != 0));
1488   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1489                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1490 }
1491 
1492 /// Test whether we know how to expand the current formula.
1493 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1494                        int64_t MaxOffset, LSRUse::KindType Kind,
1495                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1496                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1497   // We know how to expand completely foldable formulae.
1498   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1499                               BaseOffset, HasBaseReg, Scale) ||
1500          // Or formulae that use a base register produced by a sum of base
1501          // registers.
1502          (Scale == 1 &&
1503           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1504                                BaseGV, BaseOffset, true, 0));
1505 }
1506 
1507 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1508                        int64_t MaxOffset, LSRUse::KindType Kind,
1509                        MemAccessTy AccessTy, const Formula &F) {
1510   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1511                     F.BaseOffset, F.HasBaseReg, F.Scale);
1512 }
1513 
1514 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1515                                  const LSRUse &LU, const Formula &F) {
1516   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1517                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1518                               F.Scale);
1519 }
1520 
1521 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1522                                      const LSRUse &LU, const Formula &F) {
1523   if (!F.Scale)
1524     return 0;
1525 
1526   // If the use is not completely folded in that instruction, we will have to
1527   // pay an extra cost only for scale != 1.
1528   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1529                             LU.AccessTy, F))
1530     return F.Scale != 1;
1531 
1532   switch (LU.Kind) {
1533   case LSRUse::Address: {
1534     // Check the scaling factor cost with both the min and max offsets.
1535     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1536         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1537         F.Scale, LU.AccessTy.AddrSpace);
1538     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1539         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1540         F.Scale, LU.AccessTy.AddrSpace);
1541 
1542     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1543            "Legal addressing mode has an illegal cost!");
1544     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1545   }
1546   case LSRUse::ICmpZero:
1547   case LSRUse::Basic:
1548   case LSRUse::Special:
1549     // The use is completely folded, i.e., everything is folded into the
1550     // instruction.
1551     return 0;
1552   }
1553 
1554   llvm_unreachable("Invalid LSRUse Kind!");
1555 }
1556 
1557 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1558                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1559                              GlobalValue *BaseGV, int64_t BaseOffset,
1560                              bool HasBaseReg) {
1561   // Fast-path: zero is always foldable.
1562   if (BaseOffset == 0 && !BaseGV) return true;
1563 
1564   // Conservatively, create an address with an immediate and a
1565   // base and a scale.
1566   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1567 
1568   // Canonicalize a scale of 1 to a base register if the formula doesn't
1569   // already have a base register.
1570   if (!HasBaseReg && Scale == 1) {
1571     Scale = 0;
1572     HasBaseReg = true;
1573   }
1574 
1575   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1576                               HasBaseReg, Scale);
1577 }
1578 
1579 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1580                              ScalarEvolution &SE, int64_t MinOffset,
1581                              int64_t MaxOffset, LSRUse::KindType Kind,
1582                              MemAccessTy AccessTy, const SCEV *S,
1583                              bool HasBaseReg) {
1584   // Fast-path: zero is always foldable.
1585   if (S->isZero()) return true;
1586 
1587   // Conservatively, create an address with an immediate and a
1588   // base and a scale.
1589   int64_t BaseOffset = ExtractImmediate(S, SE);
1590   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1591 
1592   // If there's anything else involved, it's not foldable.
1593   if (!S->isZero()) return false;
1594 
1595   // Fast-path: zero is always foldable.
1596   if (BaseOffset == 0 && !BaseGV) return true;
1597 
1598   // Conservatively, create an address with an immediate and a
1599   // base and a scale.
1600   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1601 
1602   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1603                               BaseOffset, HasBaseReg, Scale);
1604 }
1605 
1606 namespace {
1607 
1608 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1609 /// an expression that computes the IV it uses from the IV used by the previous
1610 /// link in the Chain.
1611 ///
1612 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1613 /// original IVOperand. The head of the chain's IVOperand is only valid during
1614 /// chain collection, before LSR replaces IV users. During chain generation,
1615 /// IncExpr can be used to find the new IVOperand that computes the same
1616 /// expression.
1617 struct IVInc {
1618   Instruction *UserInst;
1619   Value* IVOperand;
1620   const SCEV *IncExpr;
1621 
1622   IVInc(Instruction *U, Value *O, const SCEV *E):
1623     UserInst(U), IVOperand(O), IncExpr(E) {}
1624 };
1625 
1626 // The list of IV increments in program order.  We typically add the head of a
1627 // chain without finding subsequent links.
1628 struct IVChain {
1629   SmallVector<IVInc,1> Incs;
1630   const SCEV *ExprBase;
1631 
1632   IVChain() : ExprBase(nullptr) {}
1633 
1634   IVChain(const IVInc &Head, const SCEV *Base)
1635     : Incs(1, Head), ExprBase(Base) {}
1636 
1637   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
1638 
1639   // Return the first increment in the chain.
1640   const_iterator begin() const {
1641     assert(!Incs.empty());
1642     return std::next(Incs.begin());
1643   }
1644   const_iterator end() const {
1645     return Incs.end();
1646   }
1647 
1648   // Returns true if this chain contains any increments.
1649   bool hasIncs() const { return Incs.size() >= 2; }
1650 
1651   // Add an IVInc to the end of this chain.
1652   void add(const IVInc &X) { Incs.push_back(X); }
1653 
1654   // Returns the last UserInst in the chain.
1655   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1656 
1657   // Returns true if IncExpr can be profitably added to this chain.
1658   bool isProfitableIncrement(const SCEV *OperExpr,
1659                              const SCEV *IncExpr,
1660                              ScalarEvolution&);
1661 };
1662 
1663 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1664 /// between FarUsers that definitely cross IV increments and NearUsers that may
1665 /// be used between IV increments.
1666 struct ChainUsers {
1667   SmallPtrSet<Instruction*, 4> FarUsers;
1668   SmallPtrSet<Instruction*, 4> NearUsers;
1669 };
1670 
1671 /// This class holds state for the main loop strength reduction logic.
1672 class LSRInstance {
1673   IVUsers &IU;
1674   ScalarEvolution &SE;
1675   DominatorTree &DT;
1676   LoopInfo &LI;
1677   const TargetTransformInfo &TTI;
1678   Loop *const L;
1679   bool Changed;
1680 
1681   /// This is the insert position that the current loop's induction variable
1682   /// increment should be placed. In simple loops, this is the latch block's
1683   /// terminator. But in more complicated cases, this is a position which will
1684   /// dominate all the in-loop post-increment users.
1685   Instruction *IVIncInsertPos;
1686 
1687   /// Interesting factors between use strides.
1688   ///
1689   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1690   /// default, a SmallDenseSet, because we need to use the full range of
1691   /// int64_ts, and there's currently no good way of doing that with
1692   /// SmallDenseSet.
1693   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1694 
1695   /// Interesting use types, to facilitate truncation reuse.
1696   SmallSetVector<Type *, 4> Types;
1697 
1698   /// The list of interesting uses.
1699   SmallVector<LSRUse, 16> Uses;
1700 
1701   /// Track which uses use which register candidates.
1702   RegUseTracker RegUses;
1703 
1704   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1705   // have more than a few IV increment chains in a loop. Missing a Chain falls
1706   // back to normal LSR behavior for those uses.
1707   static const unsigned MaxChains = 8;
1708 
1709   /// IV users can form a chain of IV increments.
1710   SmallVector<IVChain, MaxChains> IVChainVec;
1711 
1712   /// IV users that belong to profitable IVChains.
1713   SmallPtrSet<Use*, MaxChains> IVIncSet;
1714 
1715   void OptimizeShadowIV();
1716   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1717   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1718   void OptimizeLoopTermCond();
1719 
1720   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1721                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1722   void FinalizeChain(IVChain &Chain);
1723   void CollectChains();
1724   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1725                        SmallVectorImpl<WeakVH> &DeadInsts);
1726 
1727   void CollectInterestingTypesAndFactors();
1728   void CollectFixupsAndInitialFormulae();
1729 
1730   // Support for sharing of LSRUses between LSRFixups.
1731   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
1732   UseMapTy UseMap;
1733 
1734   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1735                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1736 
1737   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1738                                     MemAccessTy AccessTy);
1739 
1740   void DeleteUse(LSRUse &LU, size_t LUIdx);
1741 
1742   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1743 
1744   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1745   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1746   void CountRegisters(const Formula &F, size_t LUIdx);
1747   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1748 
1749   void CollectLoopInvariantFixupsAndFormulae();
1750 
1751   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1752                               unsigned Depth = 0);
1753 
1754   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1755                                   const Formula &Base, unsigned Depth,
1756                                   size_t Idx, bool IsScaledReg = false);
1757   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1758   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1759                                    const Formula &Base, size_t Idx,
1760                                    bool IsScaledReg = false);
1761   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1762   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1763                                    const Formula &Base,
1764                                    const SmallVectorImpl<int64_t> &Worklist,
1765                                    size_t Idx, bool IsScaledReg = false);
1766   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1767   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1768   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1769   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1770   void GenerateCrossUseConstantOffsets();
1771   void GenerateAllReuseFormulae();
1772 
1773   void FilterOutUndesirableDedicatedRegisters();
1774 
1775   size_t EstimateSearchSpaceComplexity() const;
1776   void NarrowSearchSpaceByDetectingSupersets();
1777   void NarrowSearchSpaceByCollapsingUnrolledCode();
1778   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1779   void NarrowSearchSpaceByPickingWinnerRegs();
1780   void NarrowSearchSpaceUsingHeuristics();
1781 
1782   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1783                     Cost &SolutionCost,
1784                     SmallVectorImpl<const Formula *> &Workspace,
1785                     const Cost &CurCost,
1786                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1787                     DenseSet<const SCEV *> &VisitedRegs) const;
1788   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1789 
1790   BasicBlock::iterator
1791     HoistInsertPosition(BasicBlock::iterator IP,
1792                         const SmallVectorImpl<Instruction *> &Inputs) const;
1793   BasicBlock::iterator
1794     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1795                                   const LSRFixup &LF,
1796                                   const LSRUse &LU,
1797                                   SCEVExpander &Rewriter) const;
1798 
1799   Value *Expand(const LSRUse &LU, const LSRFixup &LF,
1800                 const Formula &F,
1801                 BasicBlock::iterator IP,
1802                 SCEVExpander &Rewriter,
1803                 SmallVectorImpl<WeakVH> &DeadInsts) const;
1804   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1805                      const Formula &F,
1806                      SCEVExpander &Rewriter,
1807                      SmallVectorImpl<WeakVH> &DeadInsts) const;
1808   void Rewrite(const LSRUse &LU, const LSRFixup &LF,
1809                const Formula &F,
1810                SCEVExpander &Rewriter,
1811                SmallVectorImpl<WeakVH> &DeadInsts) const;
1812   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1813 
1814 public:
1815   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1816               LoopInfo &LI, const TargetTransformInfo &TTI);
1817 
1818   bool getChanged() const { return Changed; }
1819 
1820   void print_factors_and_types(raw_ostream &OS) const;
1821   void print_fixups(raw_ostream &OS) const;
1822   void print_uses(raw_ostream &OS) const;
1823   void print(raw_ostream &OS) const;
1824   void dump() const;
1825 };
1826 
1827 } // end anonymous namespace
1828 
1829 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1830 /// the cast operation.
1831 void LSRInstance::OptimizeShadowIV() {
1832   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1833   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1834     return;
1835 
1836   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1837        UI != E; /* empty */) {
1838     IVUsers::const_iterator CandidateUI = UI;
1839     ++UI;
1840     Instruction *ShadowUse = CandidateUI->getUser();
1841     Type *DestTy = nullptr;
1842     bool IsSigned = false;
1843 
1844     /* If shadow use is a int->float cast then insert a second IV
1845        to eliminate this cast.
1846 
1847          for (unsigned i = 0; i < n; ++i)
1848            foo((double)i);
1849 
1850        is transformed into
1851 
1852          double d = 0.0;
1853          for (unsigned i = 0; i < n; ++i, ++d)
1854            foo(d);
1855     */
1856     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
1857       IsSigned = false;
1858       DestTy = UCast->getDestTy();
1859     }
1860     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
1861       IsSigned = true;
1862       DestTy = SCast->getDestTy();
1863     }
1864     if (!DestTy) continue;
1865 
1866     // If target does not support DestTy natively then do not apply
1867     // this transformation.
1868     if (!TTI.isTypeLegal(DestTy)) continue;
1869 
1870     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
1871     if (!PH) continue;
1872     if (PH->getNumIncomingValues() != 2) continue;
1873 
1874     Type *SrcTy = PH->getType();
1875     int Mantissa = DestTy->getFPMantissaWidth();
1876     if (Mantissa == -1) continue;
1877     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
1878       continue;
1879 
1880     unsigned Entry, Latch;
1881     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
1882       Entry = 0;
1883       Latch = 1;
1884     } else {
1885       Entry = 1;
1886       Latch = 0;
1887     }
1888 
1889     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
1890     if (!Init) continue;
1891     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
1892                                         (double)Init->getSExtValue() :
1893                                         (double)Init->getZExtValue());
1894 
1895     BinaryOperator *Incr =
1896       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
1897     if (!Incr) continue;
1898     if (Incr->getOpcode() != Instruction::Add
1899         && Incr->getOpcode() != Instruction::Sub)
1900       continue;
1901 
1902     /* Initialize new IV, double d = 0.0 in above example. */
1903     ConstantInt *C = nullptr;
1904     if (Incr->getOperand(0) == PH)
1905       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
1906     else if (Incr->getOperand(1) == PH)
1907       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
1908     else
1909       continue;
1910 
1911     if (!C) continue;
1912 
1913     // Ignore negative constants, as the code below doesn't handle them
1914     // correctly. TODO: Remove this restriction.
1915     if (!C->getValue().isStrictlyPositive()) continue;
1916 
1917     /* Add new PHINode. */
1918     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
1919 
1920     /* create new increment. '++d' in above example. */
1921     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
1922     BinaryOperator *NewIncr =
1923       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
1924                                Instruction::FAdd : Instruction::FSub,
1925                              NewPH, CFP, "IV.S.next.", Incr);
1926 
1927     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
1928     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
1929 
1930     /* Remove cast operation */
1931     ShadowUse->replaceAllUsesWith(NewPH);
1932     ShadowUse->eraseFromParent();
1933     Changed = true;
1934     break;
1935   }
1936 }
1937 
1938 /// If Cond has an operand that is an expression of an IV, set the IV user and
1939 /// stride information and return true, otherwise return false.
1940 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
1941   for (IVStrideUse &U : IU)
1942     if (U.getUser() == Cond) {
1943       // NOTE: we could handle setcc instructions with multiple uses here, but
1944       // InstCombine does it as well for simple uses, it's not clear that it
1945       // occurs enough in real life to handle.
1946       CondUse = &U;
1947       return true;
1948     }
1949   return false;
1950 }
1951 
1952 /// Rewrite the loop's terminating condition if it uses a max computation.
1953 ///
1954 /// This is a narrow solution to a specific, but acute, problem. For loops
1955 /// like this:
1956 ///
1957 ///   i = 0;
1958 ///   do {
1959 ///     p[i] = 0.0;
1960 ///   } while (++i < n);
1961 ///
1962 /// the trip count isn't just 'n', because 'n' might not be positive. And
1963 /// unfortunately this can come up even for loops where the user didn't use
1964 /// a C do-while loop. For example, seemingly well-behaved top-test loops
1965 /// will commonly be lowered like this:
1966 //
1967 ///   if (n > 0) {
1968 ///     i = 0;
1969 ///     do {
1970 ///       p[i] = 0.0;
1971 ///     } while (++i < n);
1972 ///   }
1973 ///
1974 /// and then it's possible for subsequent optimization to obscure the if
1975 /// test in such a way that indvars can't find it.
1976 ///
1977 /// When indvars can't find the if test in loops like this, it creates a
1978 /// max expression, which allows it to give the loop a canonical
1979 /// induction variable:
1980 ///
1981 ///   i = 0;
1982 ///   max = n < 1 ? 1 : n;
1983 ///   do {
1984 ///     p[i] = 0.0;
1985 ///   } while (++i != max);
1986 ///
1987 /// Canonical induction variables are necessary because the loop passes
1988 /// are designed around them. The most obvious example of this is the
1989 /// LoopInfo analysis, which doesn't remember trip count values. It
1990 /// expects to be able to rediscover the trip count each time it is
1991 /// needed, and it does this using a simple analysis that only succeeds if
1992 /// the loop has a canonical induction variable.
1993 ///
1994 /// However, when it comes time to generate code, the maximum operation
1995 /// can be quite costly, especially if it's inside of an outer loop.
1996 ///
1997 /// This function solves this problem by detecting this type of loop and
1998 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
1999 /// the instructions for the maximum computation.
2000 ///
2001 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2002   // Check that the loop matches the pattern we're looking for.
2003   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2004       Cond->getPredicate() != CmpInst::ICMP_NE)
2005     return Cond;
2006 
2007   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2008   if (!Sel || !Sel->hasOneUse()) return Cond;
2009 
2010   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2011   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2012     return Cond;
2013   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2014 
2015   // Add one to the backedge-taken count to get the trip count.
2016   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2017   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2018 
2019   // Check for a max calculation that matches the pattern. There's no check
2020   // for ICMP_ULE here because the comparison would be with zero, which
2021   // isn't interesting.
2022   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2023   const SCEVNAryExpr *Max = nullptr;
2024   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2025     Pred = ICmpInst::ICMP_SLE;
2026     Max = S;
2027   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2028     Pred = ICmpInst::ICMP_SLT;
2029     Max = S;
2030   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2031     Pred = ICmpInst::ICMP_ULT;
2032     Max = U;
2033   } else {
2034     // No match; bail.
2035     return Cond;
2036   }
2037 
2038   // To handle a max with more than two operands, this optimization would
2039   // require additional checking and setup.
2040   if (Max->getNumOperands() != 2)
2041     return Cond;
2042 
2043   const SCEV *MaxLHS = Max->getOperand(0);
2044   const SCEV *MaxRHS = Max->getOperand(1);
2045 
2046   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2047   // for a comparison with 1. For <= and >=, a comparison with zero.
2048   if (!MaxLHS ||
2049       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2050     return Cond;
2051 
2052   // Check the relevant induction variable for conformance to
2053   // the pattern.
2054   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2055   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2056   if (!AR || !AR->isAffine() ||
2057       AR->getStart() != One ||
2058       AR->getStepRecurrence(SE) != One)
2059     return Cond;
2060 
2061   assert(AR->getLoop() == L &&
2062          "Loop condition operand is an addrec in a different loop!");
2063 
2064   // Check the right operand of the select, and remember it, as it will
2065   // be used in the new comparison instruction.
2066   Value *NewRHS = nullptr;
2067   if (ICmpInst::isTrueWhenEqual(Pred)) {
2068     // Look for n+1, and grab n.
2069     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2070       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2071          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2072            NewRHS = BO->getOperand(0);
2073     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2074       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2075         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2076           NewRHS = BO->getOperand(0);
2077     if (!NewRHS)
2078       return Cond;
2079   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2080     NewRHS = Sel->getOperand(1);
2081   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2082     NewRHS = Sel->getOperand(2);
2083   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2084     NewRHS = SU->getValue();
2085   else
2086     // Max doesn't match expected pattern.
2087     return Cond;
2088 
2089   // Determine the new comparison opcode. It may be signed or unsigned,
2090   // and the original comparison may be either equality or inequality.
2091   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2092     Pred = CmpInst::getInversePredicate(Pred);
2093 
2094   // Ok, everything looks ok to change the condition into an SLT or SGE and
2095   // delete the max calculation.
2096   ICmpInst *NewCond =
2097     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2098 
2099   // Delete the max calculation instructions.
2100   Cond->replaceAllUsesWith(NewCond);
2101   CondUse->setUser(NewCond);
2102   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2103   Cond->eraseFromParent();
2104   Sel->eraseFromParent();
2105   if (Cmp->use_empty())
2106     Cmp->eraseFromParent();
2107   return NewCond;
2108 }
2109 
2110 /// Change loop terminating condition to use the postinc iv when possible.
2111 void
2112 LSRInstance::OptimizeLoopTermCond() {
2113   SmallPtrSet<Instruction *, 4> PostIncs;
2114 
2115   // We need a different set of heuristics for rotated and non-rotated loops.
2116   // If a loop is rotated then the latch is also the backedge, so inserting
2117   // post-inc expressions just before the latch is ideal. To reduce live ranges
2118   // it also makes sense to rewrite terminating conditions to use post-inc
2119   // expressions.
2120   //
2121   // If the loop is not rotated then the latch is not a backedge; the latch
2122   // check is done in the loop head. Adding post-inc expressions before the
2123   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2124   // in the loop body. In this case we do *not* want to use post-inc expressions
2125   // in the latch check, and we want to insert post-inc expressions before
2126   // the backedge.
2127   BasicBlock *LatchBlock = L->getLoopLatch();
2128   SmallVector<BasicBlock*, 8> ExitingBlocks;
2129   L->getExitingBlocks(ExitingBlocks);
2130   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2131         return LatchBlock != BB;
2132       })) {
2133     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2134     IVIncInsertPos = LatchBlock->getTerminator();
2135     return;
2136   }
2137 
2138   // Otherwise treat this as a rotated loop.
2139   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2140 
2141     // Get the terminating condition for the loop if possible.  If we
2142     // can, we want to change it to use a post-incremented version of its
2143     // induction variable, to allow coalescing the live ranges for the IV into
2144     // one register value.
2145 
2146     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2147     if (!TermBr)
2148       continue;
2149     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2150     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2151       continue;
2152 
2153     // Search IVUsesByStride to find Cond's IVUse if there is one.
2154     IVStrideUse *CondUse = nullptr;
2155     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2156     if (!FindIVUserForCond(Cond, CondUse))
2157       continue;
2158 
2159     // If the trip count is computed in terms of a max (due to ScalarEvolution
2160     // being unable to find a sufficient guard, for example), change the loop
2161     // comparison to use SLT or ULT instead of NE.
2162     // One consequence of doing this now is that it disrupts the count-down
2163     // optimization. That's not always a bad thing though, because in such
2164     // cases it may still be worthwhile to avoid a max.
2165     Cond = OptimizeMax(Cond, CondUse);
2166 
2167     // If this exiting block dominates the latch block, it may also use
2168     // the post-inc value if it won't be shared with other uses.
2169     // Check for dominance.
2170     if (!DT.dominates(ExitingBlock, LatchBlock))
2171       continue;
2172 
2173     // Conservatively avoid trying to use the post-inc value in non-latch
2174     // exits if there may be pre-inc users in intervening blocks.
2175     if (LatchBlock != ExitingBlock)
2176       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2177         // Test if the use is reachable from the exiting block. This dominator
2178         // query is a conservative approximation of reachability.
2179         if (&*UI != CondUse &&
2180             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2181           // Conservatively assume there may be reuse if the quotient of their
2182           // strides could be a legal scale.
2183           const SCEV *A = IU.getStride(*CondUse, L);
2184           const SCEV *B = IU.getStride(*UI, L);
2185           if (!A || !B) continue;
2186           if (SE.getTypeSizeInBits(A->getType()) !=
2187               SE.getTypeSizeInBits(B->getType())) {
2188             if (SE.getTypeSizeInBits(A->getType()) >
2189                 SE.getTypeSizeInBits(B->getType()))
2190               B = SE.getSignExtendExpr(B, A->getType());
2191             else
2192               A = SE.getSignExtendExpr(A, B->getType());
2193           }
2194           if (const SCEVConstant *D =
2195                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2196             const ConstantInt *C = D->getValue();
2197             // Stride of one or negative one can have reuse with non-addresses.
2198             if (C->isOne() || C->isAllOnesValue())
2199               goto decline_post_inc;
2200             // Avoid weird situations.
2201             if (C->getValue().getMinSignedBits() >= 64 ||
2202                 C->getValue().isMinSignedValue())
2203               goto decline_post_inc;
2204             // Check for possible scaled-address reuse.
2205             MemAccessTy AccessTy = getAccessType(UI->getUser());
2206             int64_t Scale = C->getSExtValue();
2207             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2208                                           /*BaseOffset=*/0,
2209                                           /*HasBaseReg=*/false, Scale,
2210                                           AccessTy.AddrSpace))
2211               goto decline_post_inc;
2212             Scale = -Scale;
2213             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2214                                           /*BaseOffset=*/0,
2215                                           /*HasBaseReg=*/false, Scale,
2216                                           AccessTy.AddrSpace))
2217               goto decline_post_inc;
2218           }
2219         }
2220 
2221     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2222                  << *Cond << '\n');
2223 
2224     // It's possible for the setcc instruction to be anywhere in the loop, and
2225     // possible for it to have multiple users.  If it is not immediately before
2226     // the exiting block branch, move it.
2227     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2228       if (Cond->hasOneUse()) {
2229         Cond->moveBefore(TermBr);
2230       } else {
2231         // Clone the terminating condition and insert into the loopend.
2232         ICmpInst *OldCond = Cond;
2233         Cond = cast<ICmpInst>(Cond->clone());
2234         Cond->setName(L->getHeader()->getName() + ".termcond");
2235         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2236 
2237         // Clone the IVUse, as the old use still exists!
2238         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2239         TermBr->replaceUsesOfWith(OldCond, Cond);
2240       }
2241     }
2242 
2243     // If we get to here, we know that we can transform the setcc instruction to
2244     // use the post-incremented version of the IV, allowing us to coalesce the
2245     // live ranges for the IV correctly.
2246     CondUse->transformToPostInc(L);
2247     Changed = true;
2248 
2249     PostIncs.insert(Cond);
2250   decline_post_inc:;
2251   }
2252 
2253   // Determine an insertion point for the loop induction variable increment. It
2254   // must dominate all the post-inc comparisons we just set up, and it must
2255   // dominate the loop latch edge.
2256   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2257   for (Instruction *Inst : PostIncs) {
2258     BasicBlock *BB =
2259       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2260                                     Inst->getParent());
2261     if (BB == Inst->getParent())
2262       IVIncInsertPos = Inst;
2263     else if (BB != IVIncInsertPos->getParent())
2264       IVIncInsertPos = BB->getTerminator();
2265   }
2266 }
2267 
2268 /// Determine if the given use can accommodate a fixup at the given offset and
2269 /// other details. If so, update the use and return true.
2270 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2271                                      bool HasBaseReg, LSRUse::KindType Kind,
2272                                      MemAccessTy AccessTy) {
2273   int64_t NewMinOffset = LU.MinOffset;
2274   int64_t NewMaxOffset = LU.MaxOffset;
2275   MemAccessTy NewAccessTy = AccessTy;
2276 
2277   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2278   // something conservative, however this can pessimize in the case that one of
2279   // the uses will have all its uses outside the loop, for example.
2280   if (LU.Kind != Kind)
2281     return false;
2282 
2283   // Check for a mismatched access type, and fall back conservatively as needed.
2284   // TODO: Be less conservative when the type is similar and can use the same
2285   // addressing modes.
2286   if (Kind == LSRUse::Address) {
2287     if (AccessTy != LU.AccessTy)
2288       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
2289   }
2290 
2291   // Conservatively assume HasBaseReg is true for now.
2292   if (NewOffset < LU.MinOffset) {
2293     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2294                           LU.MaxOffset - NewOffset, HasBaseReg))
2295       return false;
2296     NewMinOffset = NewOffset;
2297   } else if (NewOffset > LU.MaxOffset) {
2298     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2299                           NewOffset - LU.MinOffset, HasBaseReg))
2300       return false;
2301     NewMaxOffset = NewOffset;
2302   }
2303 
2304   // Update the use.
2305   LU.MinOffset = NewMinOffset;
2306   LU.MaxOffset = NewMaxOffset;
2307   LU.AccessTy = NewAccessTy;
2308   return true;
2309 }
2310 
2311 /// Return an LSRUse index and an offset value for a fixup which needs the given
2312 /// expression, with the given kind and optional access type.  Either reuse an
2313 /// existing use or create a new one, as needed.
2314 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2315                                                LSRUse::KindType Kind,
2316                                                MemAccessTy AccessTy) {
2317   const SCEV *Copy = Expr;
2318   int64_t Offset = ExtractImmediate(Expr, SE);
2319 
2320   // Basic uses can't accept any offset, for example.
2321   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2322                         Offset, /*HasBaseReg=*/ true)) {
2323     Expr = Copy;
2324     Offset = 0;
2325   }
2326 
2327   std::pair<UseMapTy::iterator, bool> P =
2328     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2329   if (!P.second) {
2330     // A use already existed with this base.
2331     size_t LUIdx = P.first->second;
2332     LSRUse &LU = Uses[LUIdx];
2333     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2334       // Reuse this use.
2335       return std::make_pair(LUIdx, Offset);
2336   }
2337 
2338   // Create a new use.
2339   size_t LUIdx = Uses.size();
2340   P.first->second = LUIdx;
2341   Uses.push_back(LSRUse(Kind, AccessTy));
2342   LSRUse &LU = Uses[LUIdx];
2343 
2344   LU.MinOffset = Offset;
2345   LU.MaxOffset = Offset;
2346   return std::make_pair(LUIdx, Offset);
2347 }
2348 
2349 /// Delete the given use from the Uses list.
2350 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2351   if (&LU != &Uses.back())
2352     std::swap(LU, Uses.back());
2353   Uses.pop_back();
2354 
2355   // Update RegUses.
2356   RegUses.swapAndDropUse(LUIdx, Uses.size());
2357 }
2358 
2359 /// Look for a use distinct from OrigLU which is has a formula that has the same
2360 /// registers as the given formula.
2361 LSRUse *
2362 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2363                                        const LSRUse &OrigLU) {
2364   // Search all uses for the formula. This could be more clever.
2365   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2366     LSRUse &LU = Uses[LUIdx];
2367     // Check whether this use is close enough to OrigLU, to see whether it's
2368     // worthwhile looking through its formulae.
2369     // Ignore ICmpZero uses because they may contain formulae generated by
2370     // GenerateICmpZeroScales, in which case adding fixup offsets may
2371     // be invalid.
2372     if (&LU != &OrigLU &&
2373         LU.Kind != LSRUse::ICmpZero &&
2374         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2375         LU.WidestFixupType == OrigLU.WidestFixupType &&
2376         LU.HasFormulaWithSameRegs(OrigF)) {
2377       // Scan through this use's formulae.
2378       for (const Formula &F : LU.Formulae) {
2379         // Check to see if this formula has the same registers and symbols
2380         // as OrigF.
2381         if (F.BaseRegs == OrigF.BaseRegs &&
2382             F.ScaledReg == OrigF.ScaledReg &&
2383             F.BaseGV == OrigF.BaseGV &&
2384             F.Scale == OrigF.Scale &&
2385             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2386           if (F.BaseOffset == 0)
2387             return &LU;
2388           // This is the formula where all the registers and symbols matched;
2389           // there aren't going to be any others. Since we declined it, we
2390           // can skip the rest of the formulae and proceed to the next LSRUse.
2391           break;
2392         }
2393       }
2394     }
2395   }
2396 
2397   // Nothing looked good.
2398   return nullptr;
2399 }
2400 
2401 void LSRInstance::CollectInterestingTypesAndFactors() {
2402   SmallSetVector<const SCEV *, 4> Strides;
2403 
2404   // Collect interesting types and strides.
2405   SmallVector<const SCEV *, 4> Worklist;
2406   for (const IVStrideUse &U : IU) {
2407     const SCEV *Expr = IU.getExpr(U);
2408 
2409     // Collect interesting types.
2410     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2411 
2412     // Add strides for mentioned loops.
2413     Worklist.push_back(Expr);
2414     do {
2415       const SCEV *S = Worklist.pop_back_val();
2416       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2417         if (AR->getLoop() == L)
2418           Strides.insert(AR->getStepRecurrence(SE));
2419         Worklist.push_back(AR->getStart());
2420       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2421         Worklist.append(Add->op_begin(), Add->op_end());
2422       }
2423     } while (!Worklist.empty());
2424   }
2425 
2426   // Compute interesting factors from the set of interesting strides.
2427   for (SmallSetVector<const SCEV *, 4>::const_iterator
2428        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2429     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2430          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2431       const SCEV *OldStride = *I;
2432       const SCEV *NewStride = *NewStrideIter;
2433 
2434       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2435           SE.getTypeSizeInBits(NewStride->getType())) {
2436         if (SE.getTypeSizeInBits(OldStride->getType()) >
2437             SE.getTypeSizeInBits(NewStride->getType()))
2438           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2439         else
2440           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2441       }
2442       if (const SCEVConstant *Factor =
2443             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2444                                                         SE, true))) {
2445         if (Factor->getAPInt().getMinSignedBits() <= 64)
2446           Factors.insert(Factor->getAPInt().getSExtValue());
2447       } else if (const SCEVConstant *Factor =
2448                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2449                                                                NewStride,
2450                                                                SE, true))) {
2451         if (Factor->getAPInt().getMinSignedBits() <= 64)
2452           Factors.insert(Factor->getAPInt().getSExtValue());
2453       }
2454     }
2455 
2456   // If all uses use the same type, don't bother looking for truncation-based
2457   // reuse.
2458   if (Types.size() == 1)
2459     Types.clear();
2460 
2461   DEBUG(print_factors_and_types(dbgs()));
2462 }
2463 
2464 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2465 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2466 /// IVStrideUses, we could partially skip this.
2467 static User::op_iterator
2468 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2469               Loop *L, ScalarEvolution &SE) {
2470   for(; OI != OE; ++OI) {
2471     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2472       if (!SE.isSCEVable(Oper->getType()))
2473         continue;
2474 
2475       if (const SCEVAddRecExpr *AR =
2476           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2477         if (AR->getLoop() == L)
2478           break;
2479       }
2480     }
2481   }
2482   return OI;
2483 }
2484 
2485 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2486 /// a convenient helper.
2487 static Value *getWideOperand(Value *Oper) {
2488   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2489     return Trunc->getOperand(0);
2490   return Oper;
2491 }
2492 
2493 /// Return true if we allow an IV chain to include both types.
2494 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2495   Type *LType = LVal->getType();
2496   Type *RType = RVal->getType();
2497   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
2498 }
2499 
2500 /// Return an approximation of this SCEV expression's "base", or NULL for any
2501 /// constant. Returning the expression itself is conservative. Returning a
2502 /// deeper subexpression is more precise and valid as long as it isn't less
2503 /// complex than another subexpression. For expressions involving multiple
2504 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2505 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2506 /// IVInc==b-a.
2507 ///
2508 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2509 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2510 static const SCEV *getExprBase(const SCEV *S) {
2511   switch (S->getSCEVType()) {
2512   default: // uncluding scUnknown.
2513     return S;
2514   case scConstant:
2515     return nullptr;
2516   case scTruncate:
2517     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2518   case scZeroExtend:
2519     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2520   case scSignExtend:
2521     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2522   case scAddExpr: {
2523     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2524     // there's nothing more complex.
2525     // FIXME: not sure if we want to recognize negation.
2526     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2527     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2528            E(Add->op_begin()); I != E; ++I) {
2529       const SCEV *SubExpr = *I;
2530       if (SubExpr->getSCEVType() == scAddExpr)
2531         return getExprBase(SubExpr);
2532 
2533       if (SubExpr->getSCEVType() != scMulExpr)
2534         return SubExpr;
2535     }
2536     return S; // all operands are scaled, be conservative.
2537   }
2538   case scAddRecExpr:
2539     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2540   }
2541 }
2542 
2543 /// Return true if the chain increment is profitable to expand into a loop
2544 /// invariant value, which may require its own register. A profitable chain
2545 /// increment will be an offset relative to the same base. We allow such offsets
2546 /// to potentially be used as chain increment as long as it's not obviously
2547 /// expensive to expand using real instructions.
2548 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2549                                     const SCEV *IncExpr,
2550                                     ScalarEvolution &SE) {
2551   // Aggressively form chains when -stress-ivchain.
2552   if (StressIVChain)
2553     return true;
2554 
2555   // Do not replace a constant offset from IV head with a nonconstant IV
2556   // increment.
2557   if (!isa<SCEVConstant>(IncExpr)) {
2558     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2559     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2560       return false;
2561   }
2562 
2563   SmallPtrSet<const SCEV*, 8> Processed;
2564   return !isHighCostExpansion(IncExpr, Processed, SE);
2565 }
2566 
2567 /// Return true if the number of registers needed for the chain is estimated to
2568 /// be less than the number required for the individual IV users. First prohibit
2569 /// any IV users that keep the IV live across increments (the Users set should
2570 /// be empty). Next count the number and type of increments in the chain.
2571 ///
2572 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2573 /// effectively use postinc addressing modes. Only consider it profitable it the
2574 /// increments can be computed in fewer registers when chained.
2575 ///
2576 /// TODO: Consider IVInc free if it's already used in another chains.
2577 static bool
2578 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2579                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2580   if (StressIVChain)
2581     return true;
2582 
2583   if (!Chain.hasIncs())
2584     return false;
2585 
2586   if (!Users.empty()) {
2587     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2588           for (Instruction *Inst : Users) {
2589             dbgs() << "  " << *Inst << "\n";
2590           });
2591     return false;
2592   }
2593   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2594 
2595   // The chain itself may require a register, so intialize cost to 1.
2596   int cost = 1;
2597 
2598   // A complete chain likely eliminates the need for keeping the original IV in
2599   // a register. LSR does not currently know how to form a complete chain unless
2600   // the header phi already exists.
2601   if (isa<PHINode>(Chain.tailUserInst())
2602       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2603     --cost;
2604   }
2605   const SCEV *LastIncExpr = nullptr;
2606   unsigned NumConstIncrements = 0;
2607   unsigned NumVarIncrements = 0;
2608   unsigned NumReusedIncrements = 0;
2609   for (const IVInc &Inc : Chain) {
2610     if (Inc.IncExpr->isZero())
2611       continue;
2612 
2613     // Incrementing by zero or some constant is neutral. We assume constants can
2614     // be folded into an addressing mode or an add's immediate operand.
2615     if (isa<SCEVConstant>(Inc.IncExpr)) {
2616       ++NumConstIncrements;
2617       continue;
2618     }
2619 
2620     if (Inc.IncExpr == LastIncExpr)
2621       ++NumReusedIncrements;
2622     else
2623       ++NumVarIncrements;
2624 
2625     LastIncExpr = Inc.IncExpr;
2626   }
2627   // An IV chain with a single increment is handled by LSR's postinc
2628   // uses. However, a chain with multiple increments requires keeping the IV's
2629   // value live longer than it needs to be if chained.
2630   if (NumConstIncrements > 1)
2631     --cost;
2632 
2633   // Materializing increment expressions in the preheader that didn't exist in
2634   // the original code may cost a register. For example, sign-extended array
2635   // indices can produce ridiculous increments like this:
2636   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2637   cost += NumVarIncrements;
2638 
2639   // Reusing variable increments likely saves a register to hold the multiple of
2640   // the stride.
2641   cost -= NumReusedIncrements;
2642 
2643   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2644                << "\n");
2645 
2646   return cost < 0;
2647 }
2648 
2649 /// Add this IV user to an existing chain or make it the head of a new chain.
2650 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2651                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2652   // When IVs are used as types of varying widths, they are generally converted
2653   // to a wider type with some uses remaining narrow under a (free) trunc.
2654   Value *const NextIV = getWideOperand(IVOper);
2655   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2656   const SCEV *const OperExprBase = getExprBase(OperExpr);
2657 
2658   // Visit all existing chains. Check if its IVOper can be computed as a
2659   // profitable loop invariant increment from the last link in the Chain.
2660   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2661   const SCEV *LastIncExpr = nullptr;
2662   for (; ChainIdx < NChains; ++ChainIdx) {
2663     IVChain &Chain = IVChainVec[ChainIdx];
2664 
2665     // Prune the solution space aggressively by checking that both IV operands
2666     // are expressions that operate on the same unscaled SCEVUnknown. This
2667     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2668     // first avoids creating extra SCEV expressions.
2669     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2670       continue;
2671 
2672     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2673     if (!isCompatibleIVType(PrevIV, NextIV))
2674       continue;
2675 
2676     // A phi node terminates a chain.
2677     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2678       continue;
2679 
2680     // The increment must be loop-invariant so it can be kept in a register.
2681     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2682     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2683     if (!SE.isLoopInvariant(IncExpr, L))
2684       continue;
2685 
2686     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2687       LastIncExpr = IncExpr;
2688       break;
2689     }
2690   }
2691   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2692   // bother for phi nodes, because they must be last in the chain.
2693   if (ChainIdx == NChains) {
2694     if (isa<PHINode>(UserInst))
2695       return;
2696     if (NChains >= MaxChains && !StressIVChain) {
2697       DEBUG(dbgs() << "IV Chain Limit\n");
2698       return;
2699     }
2700     LastIncExpr = OperExpr;
2701     // IVUsers may have skipped over sign/zero extensions. We don't currently
2702     // attempt to form chains involving extensions unless they can be hoisted
2703     // into this loop's AddRec.
2704     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2705       return;
2706     ++NChains;
2707     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2708                                  OperExprBase));
2709     ChainUsersVec.resize(NChains);
2710     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2711                  << ") IV=" << *LastIncExpr << "\n");
2712   } else {
2713     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2714                  << ") IV+" << *LastIncExpr << "\n");
2715     // Add this IV user to the end of the chain.
2716     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2717   }
2718   IVChain &Chain = IVChainVec[ChainIdx];
2719 
2720   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2721   // This chain's NearUsers become FarUsers.
2722   if (!LastIncExpr->isZero()) {
2723     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2724                                             NearUsers.end());
2725     NearUsers.clear();
2726   }
2727 
2728   // All other uses of IVOperand become near uses of the chain.
2729   // We currently ignore intermediate values within SCEV expressions, assuming
2730   // they will eventually be used be the current chain, or can be computed
2731   // from one of the chain increments. To be more precise we could
2732   // transitively follow its user and only add leaf IV users to the set.
2733   for (User *U : IVOper->users()) {
2734     Instruction *OtherUse = dyn_cast<Instruction>(U);
2735     if (!OtherUse)
2736       continue;
2737     // Uses in the chain will no longer be uses if the chain is formed.
2738     // Include the head of the chain in this iteration (not Chain.begin()).
2739     IVChain::const_iterator IncIter = Chain.Incs.begin();
2740     IVChain::const_iterator IncEnd = Chain.Incs.end();
2741     for( ; IncIter != IncEnd; ++IncIter) {
2742       if (IncIter->UserInst == OtherUse)
2743         break;
2744     }
2745     if (IncIter != IncEnd)
2746       continue;
2747 
2748     if (SE.isSCEVable(OtherUse->getType())
2749         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2750         && IU.isIVUserOrOperand(OtherUse)) {
2751       continue;
2752     }
2753     NearUsers.insert(OtherUse);
2754   }
2755 
2756   // Since this user is part of the chain, it's no longer considered a use
2757   // of the chain.
2758   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2759 }
2760 
2761 /// Populate the vector of Chains.
2762 ///
2763 /// This decreases ILP at the architecture level. Targets with ample registers,
2764 /// multiple memory ports, and no register renaming probably don't want
2765 /// this. However, such targets should probably disable LSR altogether.
2766 ///
2767 /// The job of LSR is to make a reasonable choice of induction variables across
2768 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2769 /// ILP *within the loop* if the target wants it.
2770 ///
2771 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2772 /// will not reorder memory operations, it will recognize this as a chain, but
2773 /// will generate redundant IV increments. Ideally this would be corrected later
2774 /// by a smart scheduler:
2775 ///        = A[i]
2776 ///        = A[i+x]
2777 /// A[i]   =
2778 /// A[i+x] =
2779 ///
2780 /// TODO: Walk the entire domtree within this loop, not just the path to the
2781 /// loop latch. This will discover chains on side paths, but requires
2782 /// maintaining multiple copies of the Chains state.
2783 void LSRInstance::CollectChains() {
2784   DEBUG(dbgs() << "Collecting IV Chains.\n");
2785   SmallVector<ChainUsers, 8> ChainUsersVec;
2786 
2787   SmallVector<BasicBlock *,8> LatchPath;
2788   BasicBlock *LoopHeader = L->getHeader();
2789   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2790        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2791     LatchPath.push_back(Rung->getBlock());
2792   }
2793   LatchPath.push_back(LoopHeader);
2794 
2795   // Walk the instruction stream from the loop header to the loop latch.
2796   for (BasicBlock *BB : reverse(LatchPath)) {
2797     for (Instruction &I : *BB) {
2798       // Skip instructions that weren't seen by IVUsers analysis.
2799       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2800         continue;
2801 
2802       // Ignore users that are part of a SCEV expression. This way we only
2803       // consider leaf IV Users. This effectively rediscovers a portion of
2804       // IVUsers analysis but in program order this time.
2805       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2806         continue;
2807 
2808       // Remove this instruction from any NearUsers set it may be in.
2809       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2810            ChainIdx < NChains; ++ChainIdx) {
2811         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2812       }
2813       // Search for operands that can be chained.
2814       SmallPtrSet<Instruction*, 4> UniqueOperands;
2815       User::op_iterator IVOpEnd = I.op_end();
2816       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2817       while (IVOpIter != IVOpEnd) {
2818         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2819         if (UniqueOperands.insert(IVOpInst).second)
2820           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2821         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2822       }
2823     } // Continue walking down the instructions.
2824   } // Continue walking down the domtree.
2825   // Visit phi backedges to determine if the chain can generate the IV postinc.
2826   for (BasicBlock::iterator I = L->getHeader()->begin();
2827        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2828     if (!SE.isSCEVable(PN->getType()))
2829       continue;
2830 
2831     Instruction *IncV =
2832       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
2833     if (IncV)
2834       ChainInstruction(PN, IncV, ChainUsersVec);
2835   }
2836   // Remove any unprofitable chains.
2837   unsigned ChainIdx = 0;
2838   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
2839        UsersIdx < NChains; ++UsersIdx) {
2840     if (!isProfitableChain(IVChainVec[UsersIdx],
2841                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
2842       continue;
2843     // Preserve the chain at UsesIdx.
2844     if (ChainIdx != UsersIdx)
2845       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
2846     FinalizeChain(IVChainVec[ChainIdx]);
2847     ++ChainIdx;
2848   }
2849   IVChainVec.resize(ChainIdx);
2850 }
2851 
2852 void LSRInstance::FinalizeChain(IVChain &Chain) {
2853   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2854   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
2855 
2856   for (const IVInc &Inc : Chain) {
2857     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
2858     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
2859     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
2860     IVIncSet.insert(UseI);
2861   }
2862 }
2863 
2864 /// Return true if the IVInc can be folded into an addressing mode.
2865 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
2866                              Value *Operand, const TargetTransformInfo &TTI) {
2867   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
2868   if (!IncConst || !isAddressUse(UserInst, Operand))
2869     return false;
2870 
2871   if (IncConst->getAPInt().getMinSignedBits() > 64)
2872     return false;
2873 
2874   MemAccessTy AccessTy = getAccessType(UserInst);
2875   int64_t IncOffset = IncConst->getValue()->getSExtValue();
2876   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
2877                         IncOffset, /*HaseBaseReg=*/false))
2878     return false;
2879 
2880   return true;
2881 }
2882 
2883 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
2884 /// user's operand from the previous IV user's operand.
2885 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
2886                                   SmallVectorImpl<WeakVH> &DeadInsts) {
2887   // Find the new IVOperand for the head of the chain. It may have been replaced
2888   // by LSR.
2889   const IVInc &Head = Chain.Incs[0];
2890   User::op_iterator IVOpEnd = Head.UserInst->op_end();
2891   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
2892   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
2893                                              IVOpEnd, L, SE);
2894   Value *IVSrc = nullptr;
2895   while (IVOpIter != IVOpEnd) {
2896     IVSrc = getWideOperand(*IVOpIter);
2897 
2898     // If this operand computes the expression that the chain needs, we may use
2899     // it. (Check this after setting IVSrc which is used below.)
2900     //
2901     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
2902     // narrow for the chain, so we can no longer use it. We do allow using a
2903     // wider phi, assuming the LSR checked for free truncation. In that case we
2904     // should already have a truncate on this operand such that
2905     // getSCEV(IVSrc) == IncExpr.
2906     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
2907         || SE.getSCEV(IVSrc) == Head.IncExpr) {
2908       break;
2909     }
2910     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2911   }
2912   if (IVOpIter == IVOpEnd) {
2913     // Gracefully give up on this chain.
2914     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
2915     return;
2916   }
2917 
2918   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
2919   Type *IVTy = IVSrc->getType();
2920   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
2921   const SCEV *LeftOverExpr = nullptr;
2922   for (const IVInc &Inc : Chain) {
2923     Instruction *InsertPt = Inc.UserInst;
2924     if (isa<PHINode>(InsertPt))
2925       InsertPt = L->getLoopLatch()->getTerminator();
2926 
2927     // IVOper will replace the current IV User's operand. IVSrc is the IV
2928     // value currently held in a register.
2929     Value *IVOper = IVSrc;
2930     if (!Inc.IncExpr->isZero()) {
2931       // IncExpr was the result of subtraction of two narrow values, so must
2932       // be signed.
2933       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
2934       LeftOverExpr = LeftOverExpr ?
2935         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
2936     }
2937     if (LeftOverExpr && !LeftOverExpr->isZero()) {
2938       // Expand the IV increment.
2939       Rewriter.clearPostInc();
2940       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
2941       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
2942                                              SE.getUnknown(IncV));
2943       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
2944 
2945       // If an IV increment can't be folded, use it as the next IV value.
2946       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
2947         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
2948         IVSrc = IVOper;
2949         LeftOverExpr = nullptr;
2950       }
2951     }
2952     Type *OperTy = Inc.IVOperand->getType();
2953     if (IVTy != OperTy) {
2954       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
2955              "cannot extend a chained IV");
2956       IRBuilder<> Builder(InsertPt);
2957       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
2958     }
2959     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
2960     DeadInsts.emplace_back(Inc.IVOperand);
2961   }
2962   // If LSR created a new, wider phi, we may also replace its postinc. We only
2963   // do this if we also found a wide value for the head of the chain.
2964   if (isa<PHINode>(Chain.tailUserInst())) {
2965     for (BasicBlock::iterator I = L->getHeader()->begin();
2966          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
2967       if (!isCompatibleIVType(Phi, IVSrc))
2968         continue;
2969       Instruction *PostIncV = dyn_cast<Instruction>(
2970         Phi->getIncomingValueForBlock(L->getLoopLatch()));
2971       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
2972         continue;
2973       Value *IVOper = IVSrc;
2974       Type *PostIncTy = PostIncV->getType();
2975       if (IVTy != PostIncTy) {
2976         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
2977         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
2978         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
2979         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
2980       }
2981       Phi->replaceUsesOfWith(PostIncV, IVOper);
2982       DeadInsts.emplace_back(PostIncV);
2983     }
2984   }
2985 }
2986 
2987 void LSRInstance::CollectFixupsAndInitialFormulae() {
2988   for (const IVStrideUse &U : IU) {
2989     Instruction *UserInst = U.getUser();
2990     // Skip IV users that are part of profitable IV Chains.
2991     User::op_iterator UseI =
2992         find(UserInst->operands(), U.getOperandValToReplace());
2993     assert(UseI != UserInst->op_end() && "cannot find IV operand");
2994     if (IVIncSet.count(UseI)) {
2995       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
2996       continue;
2997     }
2998 
2999     LSRUse::KindType Kind = LSRUse::Basic;
3000     MemAccessTy AccessTy;
3001     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3002       Kind = LSRUse::Address;
3003       AccessTy = getAccessType(UserInst);
3004     }
3005 
3006     const SCEV *S = IU.getExpr(U);
3007     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3008 
3009     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3010     // (N - i == 0), and this allows (N - i) to be the expression that we work
3011     // with rather than just N or i, so we can consider the register
3012     // requirements for both N and i at the same time. Limiting this code to
3013     // equality icmps is not a problem because all interesting loops use
3014     // equality icmps, thanks to IndVarSimplify.
3015     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3016       if (CI->isEquality()) {
3017         // Swap the operands if needed to put the OperandValToReplace on the
3018         // left, for consistency.
3019         Value *NV = CI->getOperand(1);
3020         if (NV == U.getOperandValToReplace()) {
3021           CI->setOperand(1, CI->getOperand(0));
3022           CI->setOperand(0, NV);
3023           NV = CI->getOperand(1);
3024           Changed = true;
3025         }
3026 
3027         // x == y  -->  x - y == 0
3028         const SCEV *N = SE.getSCEV(NV);
3029         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3030           // S is normalized, so normalize N before folding it into S
3031           // to keep the result normalized.
3032           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
3033                                      TmpPostIncLoops, SE, DT);
3034           Kind = LSRUse::ICmpZero;
3035           S = SE.getMinusSCEV(N, S);
3036         }
3037 
3038         // -1 and the negations of all interesting strides (except the negation
3039         // of -1) are now also interesting.
3040         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3041           if (Factors[i] != -1)
3042             Factors.insert(-(uint64_t)Factors[i]);
3043         Factors.insert(-1);
3044       }
3045 
3046     // Get or create an LSRUse.
3047     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3048     size_t LUIdx = P.first;
3049     int64_t Offset = P.second;
3050     LSRUse &LU = Uses[LUIdx];
3051 
3052     // Record the fixup.
3053     LSRFixup &LF = LU.getNewFixup();
3054     LF.UserInst = UserInst;
3055     LF.OperandValToReplace = U.getOperandValToReplace();
3056     LF.PostIncLoops = TmpPostIncLoops;
3057     LF.Offset = Offset;
3058     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3059 
3060     if (!LU.WidestFixupType ||
3061         SE.getTypeSizeInBits(LU.WidestFixupType) <
3062         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3063       LU.WidestFixupType = LF.OperandValToReplace->getType();
3064 
3065     // If this is the first use of this LSRUse, give it a formula.
3066     if (LU.Formulae.empty()) {
3067       InsertInitialFormula(S, LU, LUIdx);
3068       CountRegisters(LU.Formulae.back(), LUIdx);
3069     }
3070   }
3071 
3072   DEBUG(print_fixups(dbgs()));
3073 }
3074 
3075 /// Insert a formula for the given expression into the given use, separating out
3076 /// loop-variant portions from loop-invariant and loop-computable portions.
3077 void
3078 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3079   // Mark uses whose expressions cannot be expanded.
3080   if (!isSafeToExpand(S, SE))
3081     LU.RigidFormula = true;
3082 
3083   Formula F;
3084   F.initialMatch(S, L, SE);
3085   bool Inserted = InsertFormula(LU, LUIdx, F);
3086   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3087 }
3088 
3089 /// Insert a simple single-register formula for the given expression into the
3090 /// given use.
3091 void
3092 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3093                                        LSRUse &LU, size_t LUIdx) {
3094   Formula F;
3095   F.BaseRegs.push_back(S);
3096   F.HasBaseReg = true;
3097   bool Inserted = InsertFormula(LU, LUIdx, F);
3098   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3099 }
3100 
3101 /// Note which registers are used by the given formula, updating RegUses.
3102 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3103   if (F.ScaledReg)
3104     RegUses.countRegister(F.ScaledReg, LUIdx);
3105   for (const SCEV *BaseReg : F.BaseRegs)
3106     RegUses.countRegister(BaseReg, LUIdx);
3107 }
3108 
3109 /// If the given formula has not yet been inserted, add it to the list, and
3110 /// return true. Return false otherwise.
3111 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3112   // Do not insert formula that we will not be able to expand.
3113   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3114          "Formula is illegal");
3115   if (!LU.InsertFormula(F))
3116     return false;
3117 
3118   CountRegisters(F, LUIdx);
3119   return true;
3120 }
3121 
3122 /// Check for other uses of loop-invariant values which we're tracking. These
3123 /// other uses will pin these values in registers, making them less profitable
3124 /// for elimination.
3125 /// TODO: This currently misses non-constant addrec step registers.
3126 /// TODO: Should this give more weight to users inside the loop?
3127 void
3128 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3129   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3130   SmallPtrSet<const SCEV *, 32> Visited;
3131 
3132   while (!Worklist.empty()) {
3133     const SCEV *S = Worklist.pop_back_val();
3134 
3135     // Don't process the same SCEV twice
3136     if (!Visited.insert(S).second)
3137       continue;
3138 
3139     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3140       Worklist.append(N->op_begin(), N->op_end());
3141     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3142       Worklist.push_back(C->getOperand());
3143     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3144       Worklist.push_back(D->getLHS());
3145       Worklist.push_back(D->getRHS());
3146     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3147       const Value *V = US->getValue();
3148       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3149         // Look for instructions defined outside the loop.
3150         if (L->contains(Inst)) continue;
3151       } else if (isa<UndefValue>(V))
3152         // Undef doesn't have a live range, so it doesn't matter.
3153         continue;
3154       for (const Use &U : V->uses()) {
3155         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3156         // Ignore non-instructions.
3157         if (!UserInst)
3158           continue;
3159         // Ignore instructions in other functions (as can happen with
3160         // Constants).
3161         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3162           continue;
3163         // Ignore instructions not dominated by the loop.
3164         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3165           UserInst->getParent() :
3166           cast<PHINode>(UserInst)->getIncomingBlock(
3167             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3168         if (!DT.dominates(L->getHeader(), UseBB))
3169           continue;
3170         // Don't bother if the instruction is in a BB which ends in an EHPad.
3171         if (UseBB->getTerminator()->isEHPad())
3172           continue;
3173         // Don't bother rewriting PHIs in catchswitch blocks.
3174         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3175           continue;
3176         // Ignore uses which are part of other SCEV expressions, to avoid
3177         // analyzing them multiple times.
3178         if (SE.isSCEVable(UserInst->getType())) {
3179           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3180           // If the user is a no-op, look through to its uses.
3181           if (!isa<SCEVUnknown>(UserS))
3182             continue;
3183           if (UserS == US) {
3184             Worklist.push_back(
3185               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3186             continue;
3187           }
3188         }
3189         // Ignore icmp instructions which are already being analyzed.
3190         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3191           unsigned OtherIdx = !U.getOperandNo();
3192           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3193           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3194             continue;
3195         }
3196 
3197         std::pair<size_t, int64_t> P = getUse(
3198             S, LSRUse::Basic, MemAccessTy());
3199         size_t LUIdx = P.first;
3200         int64_t Offset = P.second;
3201         LSRUse &LU = Uses[LUIdx];
3202         LSRFixup &LF = LU.getNewFixup();
3203         LF.UserInst = const_cast<Instruction *>(UserInst);
3204         LF.OperandValToReplace = U;
3205         LF.Offset = Offset;
3206         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3207         if (!LU.WidestFixupType ||
3208             SE.getTypeSizeInBits(LU.WidestFixupType) <
3209             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3210           LU.WidestFixupType = LF.OperandValToReplace->getType();
3211         InsertSupplementalFormula(US, LU, LUIdx);
3212         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3213         break;
3214       }
3215     }
3216   }
3217 }
3218 
3219 /// Split S into subexpressions which can be pulled out into separate
3220 /// registers. If C is non-null, multiply each subexpression by C.
3221 ///
3222 /// Return remainder expression after factoring the subexpressions captured by
3223 /// Ops. If Ops is complete, return NULL.
3224 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3225                                    SmallVectorImpl<const SCEV *> &Ops,
3226                                    const Loop *L,
3227                                    ScalarEvolution &SE,
3228                                    unsigned Depth = 0) {
3229   // Arbitrarily cap recursion to protect compile time.
3230   if (Depth >= 3)
3231     return S;
3232 
3233   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3234     // Break out add operands.
3235     for (const SCEV *S : Add->operands()) {
3236       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3237       if (Remainder)
3238         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3239     }
3240     return nullptr;
3241   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3242     // Split a non-zero base out of an addrec.
3243     if (AR->getStart()->isZero() || !AR->isAffine())
3244       return S;
3245 
3246     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3247                                             C, Ops, L, SE, Depth+1);
3248     // Split the non-zero AddRec unless it is part of a nested recurrence that
3249     // does not pertain to this loop.
3250     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3251       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3252       Remainder = nullptr;
3253     }
3254     if (Remainder != AR->getStart()) {
3255       if (!Remainder)
3256         Remainder = SE.getConstant(AR->getType(), 0);
3257       return SE.getAddRecExpr(Remainder,
3258                               AR->getStepRecurrence(SE),
3259                               AR->getLoop(),
3260                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3261                               SCEV::FlagAnyWrap);
3262     }
3263   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3264     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3265     if (Mul->getNumOperands() != 2)
3266       return S;
3267     if (const SCEVConstant *Op0 =
3268         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3269       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3270       const SCEV *Remainder =
3271         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3272       if (Remainder)
3273         Ops.push_back(SE.getMulExpr(C, Remainder));
3274       return nullptr;
3275     }
3276   }
3277   return S;
3278 }
3279 
3280 /// \brief Helper function for LSRInstance::GenerateReassociations.
3281 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3282                                              const Formula &Base,
3283                                              unsigned Depth, size_t Idx,
3284                                              bool IsScaledReg) {
3285   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3286   SmallVector<const SCEV *, 8> AddOps;
3287   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3288   if (Remainder)
3289     AddOps.push_back(Remainder);
3290 
3291   if (AddOps.size() == 1)
3292     return;
3293 
3294   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3295                                                      JE = AddOps.end();
3296        J != JE; ++J) {
3297 
3298     // Loop-variant "unknown" values are uninteresting; we won't be able to
3299     // do anything meaningful with them.
3300     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3301       continue;
3302 
3303     // Don't pull a constant into a register if the constant could be folded
3304     // into an immediate field.
3305     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3306                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3307       continue;
3308 
3309     // Collect all operands except *J.
3310     SmallVector<const SCEV *, 8> InnerAddOps(
3311         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3312     InnerAddOps.append(std::next(J),
3313                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3314 
3315     // Don't leave just a constant behind in a register if the constant could
3316     // be folded into an immediate field.
3317     if (InnerAddOps.size() == 1 &&
3318         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3319                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3320       continue;
3321 
3322     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3323     if (InnerSum->isZero())
3324       continue;
3325     Formula F = Base;
3326 
3327     // Add the remaining pieces of the add back into the new formula.
3328     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3329     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3330         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3331                                 InnerSumSC->getValue()->getZExtValue())) {
3332       F.UnfoldedOffset =
3333           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3334       if (IsScaledReg)
3335         F.ScaledReg = nullptr;
3336       else
3337         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3338     } else if (IsScaledReg)
3339       F.ScaledReg = InnerSum;
3340     else
3341       F.BaseRegs[Idx] = InnerSum;
3342 
3343     // Add J as its own register, or an unfolded immediate.
3344     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3345     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3346         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3347                                 SC->getValue()->getZExtValue()))
3348       F.UnfoldedOffset =
3349           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3350     else
3351       F.BaseRegs.push_back(*J);
3352     // We may have changed the number of register in base regs, adjust the
3353     // formula accordingly.
3354     F.canonicalize();
3355 
3356     if (InsertFormula(LU, LUIdx, F))
3357       // If that formula hadn't been seen before, recurse to find more like
3358       // it.
3359       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3360   }
3361 }
3362 
3363 /// Split out subexpressions from adds and the bases of addrecs.
3364 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3365                                          Formula Base, unsigned Depth) {
3366   assert(Base.isCanonical() && "Input must be in the canonical form");
3367   // Arbitrarily cap recursion to protect compile time.
3368   if (Depth >= 3)
3369     return;
3370 
3371   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3372     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3373 
3374   if (Base.Scale == 1)
3375     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3376                                /* Idx */ -1, /* IsScaledReg */ true);
3377 }
3378 
3379 ///  Generate a formula consisting of all of the loop-dominating registers added
3380 /// into a single register.
3381 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3382                                        Formula Base) {
3383   // This method is only interesting on a plurality of registers.
3384   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3385     return;
3386 
3387   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3388   // processing the formula.
3389   Base.unscale();
3390   Formula F = Base;
3391   F.BaseRegs.clear();
3392   SmallVector<const SCEV *, 4> Ops;
3393   for (const SCEV *BaseReg : Base.BaseRegs) {
3394     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3395         !SE.hasComputableLoopEvolution(BaseReg, L))
3396       Ops.push_back(BaseReg);
3397     else
3398       F.BaseRegs.push_back(BaseReg);
3399   }
3400   if (Ops.size() > 1) {
3401     const SCEV *Sum = SE.getAddExpr(Ops);
3402     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3403     // opportunity to fold something. For now, just ignore such cases
3404     // rather than proceed with zero in a register.
3405     if (!Sum->isZero()) {
3406       F.BaseRegs.push_back(Sum);
3407       F.canonicalize();
3408       (void)InsertFormula(LU, LUIdx, F);
3409     }
3410   }
3411 }
3412 
3413 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3414 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3415                                               const Formula &Base, size_t Idx,
3416                                               bool IsScaledReg) {
3417   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3418   GlobalValue *GV = ExtractSymbol(G, SE);
3419   if (G->isZero() || !GV)
3420     return;
3421   Formula F = Base;
3422   F.BaseGV = GV;
3423   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3424     return;
3425   if (IsScaledReg)
3426     F.ScaledReg = G;
3427   else
3428     F.BaseRegs[Idx] = G;
3429   (void)InsertFormula(LU, LUIdx, F);
3430 }
3431 
3432 /// Generate reuse formulae using symbolic offsets.
3433 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3434                                           Formula Base) {
3435   // We can't add a symbolic offset if the address already contains one.
3436   if (Base.BaseGV) return;
3437 
3438   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3439     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3440   if (Base.Scale == 1)
3441     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3442                                 /* IsScaledReg */ true);
3443 }
3444 
3445 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3446 void LSRInstance::GenerateConstantOffsetsImpl(
3447     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3448     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3449   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3450   for (int64_t Offset : Worklist) {
3451     Formula F = Base;
3452     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3453     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3454                    LU.AccessTy, F)) {
3455       // Add the offset to the base register.
3456       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3457       // If it cancelled out, drop the base register, otherwise update it.
3458       if (NewG->isZero()) {
3459         if (IsScaledReg) {
3460           F.Scale = 0;
3461           F.ScaledReg = nullptr;
3462         } else
3463           F.deleteBaseReg(F.BaseRegs[Idx]);
3464         F.canonicalize();
3465       } else if (IsScaledReg)
3466         F.ScaledReg = NewG;
3467       else
3468         F.BaseRegs[Idx] = NewG;
3469 
3470       (void)InsertFormula(LU, LUIdx, F);
3471     }
3472   }
3473 
3474   int64_t Imm = ExtractImmediate(G, SE);
3475   if (G->isZero() || Imm == 0)
3476     return;
3477   Formula F = Base;
3478   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3479   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3480     return;
3481   if (IsScaledReg)
3482     F.ScaledReg = G;
3483   else
3484     F.BaseRegs[Idx] = G;
3485   (void)InsertFormula(LU, LUIdx, F);
3486 }
3487 
3488 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3489 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3490                                           Formula Base) {
3491   // TODO: For now, just add the min and max offset, because it usually isn't
3492   // worthwhile looking at everything inbetween.
3493   SmallVector<int64_t, 2> Worklist;
3494   Worklist.push_back(LU.MinOffset);
3495   if (LU.MaxOffset != LU.MinOffset)
3496     Worklist.push_back(LU.MaxOffset);
3497 
3498   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3499     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3500   if (Base.Scale == 1)
3501     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3502                                 /* IsScaledReg */ true);
3503 }
3504 
3505 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3506 /// == y -> x*c == y*c.
3507 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3508                                          Formula Base) {
3509   if (LU.Kind != LSRUse::ICmpZero) return;
3510 
3511   // Determine the integer type for the base formula.
3512   Type *IntTy = Base.getType();
3513   if (!IntTy) return;
3514   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3515 
3516   // Don't do this if there is more than one offset.
3517   if (LU.MinOffset != LU.MaxOffset) return;
3518 
3519   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3520 
3521   // Check each interesting stride.
3522   for (int64_t Factor : Factors) {
3523     // Check that the multiplication doesn't overflow.
3524     if (Base.BaseOffset == INT64_MIN && Factor == -1)
3525       continue;
3526     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3527     if (NewBaseOffset / Factor != Base.BaseOffset)
3528       continue;
3529     // If the offset will be truncated at this use, check that it is in bounds.
3530     if (!IntTy->isPointerTy() &&
3531         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3532       continue;
3533 
3534     // Check that multiplying with the use offset doesn't overflow.
3535     int64_t Offset = LU.MinOffset;
3536     if (Offset == INT64_MIN && Factor == -1)
3537       continue;
3538     Offset = (uint64_t)Offset * Factor;
3539     if (Offset / Factor != LU.MinOffset)
3540       continue;
3541     // If the offset will be truncated at this use, check that it is in bounds.
3542     if (!IntTy->isPointerTy() &&
3543         !ConstantInt::isValueValidForType(IntTy, Offset))
3544       continue;
3545 
3546     Formula F = Base;
3547     F.BaseOffset = NewBaseOffset;
3548 
3549     // Check that this scale is legal.
3550     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3551       continue;
3552 
3553     // Compensate for the use having MinOffset built into it.
3554     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3555 
3556     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3557 
3558     // Check that multiplying with each base register doesn't overflow.
3559     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3560       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3561       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3562         goto next;
3563     }
3564 
3565     // Check that multiplying with the scaled register doesn't overflow.
3566     if (F.ScaledReg) {
3567       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3568       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3569         continue;
3570     }
3571 
3572     // Check that multiplying with the unfolded offset doesn't overflow.
3573     if (F.UnfoldedOffset != 0) {
3574       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
3575         continue;
3576       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3577       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3578         continue;
3579       // If the offset will be truncated, check that it is in bounds.
3580       if (!IntTy->isPointerTy() &&
3581           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3582         continue;
3583     }
3584 
3585     // If we make it here and it's legal, add it.
3586     (void)InsertFormula(LU, LUIdx, F);
3587   next:;
3588   }
3589 }
3590 
3591 /// Generate stride factor reuse formulae by making use of scaled-offset address
3592 /// modes, for example.
3593 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3594   // Determine the integer type for the base formula.
3595   Type *IntTy = Base.getType();
3596   if (!IntTy) return;
3597 
3598   // If this Formula already has a scaled register, we can't add another one.
3599   // Try to unscale the formula to generate a better scale.
3600   if (Base.Scale != 0 && !Base.unscale())
3601     return;
3602 
3603   assert(Base.Scale == 0 && "unscale did not did its job!");
3604 
3605   // Check each interesting stride.
3606   for (int64_t Factor : Factors) {
3607     Base.Scale = Factor;
3608     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3609     // Check whether this scale is going to be legal.
3610     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3611                     Base)) {
3612       // As a special-case, handle special out-of-loop Basic users specially.
3613       // TODO: Reconsider this special case.
3614       if (LU.Kind == LSRUse::Basic &&
3615           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3616                      LU.AccessTy, Base) &&
3617           LU.AllFixupsOutsideLoop)
3618         LU.Kind = LSRUse::Special;
3619       else
3620         continue;
3621     }
3622     // For an ICmpZero, negating a solitary base register won't lead to
3623     // new solutions.
3624     if (LU.Kind == LSRUse::ICmpZero &&
3625         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3626       continue;
3627     // For each addrec base reg, apply the scale, if possible.
3628     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3629       if (const SCEVAddRecExpr *AR =
3630             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
3631         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3632         if (FactorS->isZero())
3633           continue;
3634         // Divide out the factor, ignoring high bits, since we'll be
3635         // scaling the value back up in the end.
3636         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3637           // TODO: This could be optimized to avoid all the copying.
3638           Formula F = Base;
3639           F.ScaledReg = Quotient;
3640           F.deleteBaseReg(F.BaseRegs[i]);
3641           // The canonical representation of 1*reg is reg, which is already in
3642           // Base. In that case, do not try to insert the formula, it will be
3643           // rejected anyway.
3644           if (F.Scale == 1 && F.BaseRegs.empty())
3645             continue;
3646           (void)InsertFormula(LU, LUIdx, F);
3647         }
3648       }
3649   }
3650 }
3651 
3652 /// Generate reuse formulae from different IV types.
3653 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3654   // Don't bother truncating symbolic values.
3655   if (Base.BaseGV) return;
3656 
3657   // Determine the integer type for the base formula.
3658   Type *DstTy = Base.getType();
3659   if (!DstTy) return;
3660   DstTy = SE.getEffectiveSCEVType(DstTy);
3661 
3662   for (Type *SrcTy : Types) {
3663     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3664       Formula F = Base;
3665 
3666       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3667       for (const SCEV *&BaseReg : F.BaseRegs)
3668         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3669 
3670       // TODO: This assumes we've done basic processing on all uses and
3671       // have an idea what the register usage is.
3672       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3673         continue;
3674 
3675       (void)InsertFormula(LU, LUIdx, F);
3676     }
3677   }
3678 }
3679 
3680 namespace {
3681 
3682 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3683 /// modifications so that the search phase doesn't have to worry about the data
3684 /// structures moving underneath it.
3685 struct WorkItem {
3686   size_t LUIdx;
3687   int64_t Imm;
3688   const SCEV *OrigReg;
3689 
3690   WorkItem(size_t LI, int64_t I, const SCEV *R)
3691     : LUIdx(LI), Imm(I), OrigReg(R) {}
3692 
3693   void print(raw_ostream &OS) const;
3694   void dump() const;
3695 };
3696 
3697 } // end anonymous namespace
3698 
3699 void WorkItem::print(raw_ostream &OS) const {
3700   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3701      << " , add offset " << Imm;
3702 }
3703 
3704 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3705 LLVM_DUMP_METHOD void WorkItem::dump() const {
3706   print(errs()); errs() << '\n';
3707 }
3708 #endif
3709 
3710 /// Look for registers which are a constant distance apart and try to form reuse
3711 /// opportunities between them.
3712 void LSRInstance::GenerateCrossUseConstantOffsets() {
3713   // Group the registers by their value without any added constant offset.
3714   typedef std::map<int64_t, const SCEV *> ImmMapTy;
3715   DenseMap<const SCEV *, ImmMapTy> Map;
3716   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3717   SmallVector<const SCEV *, 8> Sequence;
3718   for (const SCEV *Use : RegUses) {
3719     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3720     int64_t Imm = ExtractImmediate(Reg, SE);
3721     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3722     if (Pair.second)
3723       Sequence.push_back(Reg);
3724     Pair.first->second.insert(std::make_pair(Imm, Use));
3725     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3726   }
3727 
3728   // Now examine each set of registers with the same base value. Build up
3729   // a list of work to do and do the work in a separate step so that we're
3730   // not adding formulae and register counts while we're searching.
3731   SmallVector<WorkItem, 32> WorkItems;
3732   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3733   for (const SCEV *Reg : Sequence) {
3734     const ImmMapTy &Imms = Map.find(Reg)->second;
3735 
3736     // It's not worthwhile looking for reuse if there's only one offset.
3737     if (Imms.size() == 1)
3738       continue;
3739 
3740     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3741           for (const auto &Entry : Imms)
3742             dbgs() << ' ' << Entry.first;
3743           dbgs() << '\n');
3744 
3745     // Examine each offset.
3746     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3747          J != JE; ++J) {
3748       const SCEV *OrigReg = J->second;
3749 
3750       int64_t JImm = J->first;
3751       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3752 
3753       if (!isa<SCEVConstant>(OrigReg) &&
3754           UsedByIndicesMap[Reg].count() == 1) {
3755         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3756         continue;
3757       }
3758 
3759       // Conservatively examine offsets between this orig reg a few selected
3760       // other orig regs.
3761       ImmMapTy::const_iterator OtherImms[] = {
3762         Imms.begin(), std::prev(Imms.end()),
3763         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3764                          2)
3765       };
3766       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3767         ImmMapTy::const_iterator M = OtherImms[i];
3768         if (M == J || M == JE) continue;
3769 
3770         // Compute the difference between the two.
3771         int64_t Imm = (uint64_t)JImm - M->first;
3772         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
3773              LUIdx = UsedByIndices.find_next(LUIdx))
3774           // Make a memo of this use, offset, and register tuple.
3775           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3776             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3777       }
3778     }
3779   }
3780 
3781   Map.clear();
3782   Sequence.clear();
3783   UsedByIndicesMap.clear();
3784   UniqueItems.clear();
3785 
3786   // Now iterate through the worklist and add new formulae.
3787   for (const WorkItem &WI : WorkItems) {
3788     size_t LUIdx = WI.LUIdx;
3789     LSRUse &LU = Uses[LUIdx];
3790     int64_t Imm = WI.Imm;
3791     const SCEV *OrigReg = WI.OrigReg;
3792 
3793     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3794     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3795     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3796 
3797     // TODO: Use a more targeted data structure.
3798     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3799       Formula F = LU.Formulae[L];
3800       // FIXME: The code for the scaled and unscaled registers looks
3801       // very similar but slightly different. Investigate if they
3802       // could be merged. That way, we would not have to unscale the
3803       // Formula.
3804       F.unscale();
3805       // Use the immediate in the scaled register.
3806       if (F.ScaledReg == OrigReg) {
3807         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3808         // Don't create 50 + reg(-50).
3809         if (F.referencesReg(SE.getSCEV(
3810                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3811           continue;
3812         Formula NewF = F;
3813         NewF.BaseOffset = Offset;
3814         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3815                         NewF))
3816           continue;
3817         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3818 
3819         // If the new scale is a constant in a register, and adding the constant
3820         // value to the immediate would produce a value closer to zero than the
3821         // immediate itself, then the formula isn't worthwhile.
3822         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
3823           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
3824               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
3825                   .ule(std::abs(NewF.BaseOffset)))
3826             continue;
3827 
3828         // OK, looks good.
3829         NewF.canonicalize();
3830         (void)InsertFormula(LU, LUIdx, NewF);
3831       } else {
3832         // Use the immediate in a base register.
3833         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
3834           const SCEV *BaseReg = F.BaseRegs[N];
3835           if (BaseReg != OrigReg)
3836             continue;
3837           Formula NewF = F;
3838           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
3839           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
3840                           LU.Kind, LU.AccessTy, NewF)) {
3841             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
3842               continue;
3843             NewF = F;
3844             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
3845           }
3846           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
3847 
3848           // If the new formula has a constant in a register, and adding the
3849           // constant value to the immediate would produce a value closer to
3850           // zero than the immediate itself, then the formula isn't worthwhile.
3851           for (const SCEV *NewReg : NewF.BaseRegs)
3852             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
3853               if ((C->getAPInt() + NewF.BaseOffset)
3854                       .abs()
3855                       .slt(std::abs(NewF.BaseOffset)) &&
3856                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
3857                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
3858                 goto skip_formula;
3859 
3860           // Ok, looks good.
3861           NewF.canonicalize();
3862           (void)InsertFormula(LU, LUIdx, NewF);
3863           break;
3864         skip_formula:;
3865         }
3866       }
3867     }
3868   }
3869 }
3870 
3871 /// Generate formulae for each use.
3872 void
3873 LSRInstance::GenerateAllReuseFormulae() {
3874   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
3875   // queries are more precise.
3876   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3877     LSRUse &LU = Uses[LUIdx];
3878     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3879       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
3880     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3881       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
3882   }
3883   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3884     LSRUse &LU = Uses[LUIdx];
3885     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3886       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
3887     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3888       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
3889     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3890       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
3891     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3892       GenerateScales(LU, LUIdx, LU.Formulae[i]);
3893   }
3894   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3895     LSRUse &LU = Uses[LUIdx];
3896     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
3897       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
3898   }
3899 
3900   GenerateCrossUseConstantOffsets();
3901 
3902   DEBUG(dbgs() << "\n"
3903                   "After generating reuse formulae:\n";
3904         print_uses(dbgs()));
3905 }
3906 
3907 /// If there are multiple formulae with the same set of registers used
3908 /// by other uses, pick the best one and delete the others.
3909 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
3910   DenseSet<const SCEV *> VisitedRegs;
3911   SmallPtrSet<const SCEV *, 16> Regs;
3912   SmallPtrSet<const SCEV *, 16> LoserRegs;
3913 #ifndef NDEBUG
3914   bool ChangedFormulae = false;
3915 #endif
3916 
3917   // Collect the best formula for each unique set of shared registers. This
3918   // is reset for each use.
3919   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
3920     BestFormulaeTy;
3921   BestFormulaeTy BestFormulae;
3922 
3923   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
3924     LSRUse &LU = Uses[LUIdx];
3925     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
3926 
3927     bool Any = false;
3928     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
3929          FIdx != NumForms; ++FIdx) {
3930       Formula &F = LU.Formulae[FIdx];
3931 
3932       // Some formulas are instant losers. For example, they may depend on
3933       // nonexistent AddRecs from other loops. These need to be filtered
3934       // immediately, otherwise heuristics could choose them over others leading
3935       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
3936       // avoids the need to recompute this information across formulae using the
3937       // same bad AddRec. Passing LoserRegs is also essential unless we remove
3938       // the corresponding bad register from the Regs set.
3939       Cost CostF;
3940       Regs.clear();
3941       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
3942       if (CostF.isLoser()) {
3943         // During initial formula generation, undesirable formulae are generated
3944         // by uses within other loops that have some non-trivial address mode or
3945         // use the postinc form of the IV. LSR needs to provide these formulae
3946         // as the basis of rediscovering the desired formula that uses an AddRec
3947         // corresponding to the existing phi. Once all formulae have been
3948         // generated, these initial losers may be pruned.
3949         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
3950               dbgs() << "\n");
3951       }
3952       else {
3953         SmallVector<const SCEV *, 4> Key;
3954         for (const SCEV *Reg : F.BaseRegs) {
3955           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
3956             Key.push_back(Reg);
3957         }
3958         if (F.ScaledReg &&
3959             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
3960           Key.push_back(F.ScaledReg);
3961         // Unstable sort by host order ok, because this is only used for
3962         // uniquifying.
3963         std::sort(Key.begin(), Key.end());
3964 
3965         std::pair<BestFormulaeTy::const_iterator, bool> P =
3966           BestFormulae.insert(std::make_pair(Key, FIdx));
3967         if (P.second)
3968           continue;
3969 
3970         Formula &Best = LU.Formulae[P.first->second];
3971 
3972         Cost CostBest;
3973         Regs.clear();
3974         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
3975         if (CostF < CostBest)
3976           std::swap(F, Best);
3977         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
3978               dbgs() << "\n"
3979                         "    in favor of formula "; Best.print(dbgs());
3980               dbgs() << '\n');
3981       }
3982 #ifndef NDEBUG
3983       ChangedFormulae = true;
3984 #endif
3985       LU.DeleteFormula(F);
3986       --FIdx;
3987       --NumForms;
3988       Any = true;
3989     }
3990 
3991     // Now that we've filtered out some formulae, recompute the Regs set.
3992     if (Any)
3993       LU.RecomputeRegs(LUIdx, RegUses);
3994 
3995     // Reset this to prepare for the next use.
3996     BestFormulae.clear();
3997   }
3998 
3999   DEBUG(if (ChangedFormulae) {
4000           dbgs() << "\n"
4001                     "After filtering out undesirable candidates:\n";
4002           print_uses(dbgs());
4003         });
4004 }
4005 
4006 // This is a rough guess that seems to work fairly well.
4007 static const size_t ComplexityLimit = UINT16_MAX;
4008 
4009 /// Estimate the worst-case number of solutions the solver might have to
4010 /// consider. It almost never considers this many solutions because it prune the
4011 /// search space, but the pruning isn't always sufficient.
4012 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4013   size_t Power = 1;
4014   for (const LSRUse &LU : Uses) {
4015     size_t FSize = LU.Formulae.size();
4016     if (FSize >= ComplexityLimit) {
4017       Power = ComplexityLimit;
4018       break;
4019     }
4020     Power *= FSize;
4021     if (Power >= ComplexityLimit)
4022       break;
4023   }
4024   return Power;
4025 }
4026 
4027 /// When one formula uses a superset of the registers of another formula, it
4028 /// won't help reduce register pressure (though it may not necessarily hurt
4029 /// register pressure); remove it to simplify the system.
4030 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4031   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4032     DEBUG(dbgs() << "The search space is too complex.\n");
4033 
4034     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4035                     "which use a superset of registers used by other "
4036                     "formulae.\n");
4037 
4038     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4039       LSRUse &LU = Uses[LUIdx];
4040       bool Any = false;
4041       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4042         Formula &F = LU.Formulae[i];
4043         // Look for a formula with a constant or GV in a register. If the use
4044         // also has a formula with that same value in an immediate field,
4045         // delete the one that uses a register.
4046         for (SmallVectorImpl<const SCEV *>::const_iterator
4047              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4048           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4049             Formula NewF = F;
4050             NewF.BaseOffset += C->getValue()->getSExtValue();
4051             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4052                                 (I - F.BaseRegs.begin()));
4053             if (LU.HasFormulaWithSameRegs(NewF)) {
4054               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4055               LU.DeleteFormula(F);
4056               --i;
4057               --e;
4058               Any = true;
4059               break;
4060             }
4061           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4062             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4063               if (!F.BaseGV) {
4064                 Formula NewF = F;
4065                 NewF.BaseGV = GV;
4066                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4067                                     (I - F.BaseRegs.begin()));
4068                 if (LU.HasFormulaWithSameRegs(NewF)) {
4069                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4070                         dbgs() << '\n');
4071                   LU.DeleteFormula(F);
4072                   --i;
4073                   --e;
4074                   Any = true;
4075                   break;
4076                 }
4077               }
4078           }
4079         }
4080       }
4081       if (Any)
4082         LU.RecomputeRegs(LUIdx, RegUses);
4083     }
4084 
4085     DEBUG(dbgs() << "After pre-selection:\n";
4086           print_uses(dbgs()));
4087   }
4088 }
4089 
4090 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4091 /// allocate a single register for them.
4092 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4093   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4094     return;
4095 
4096   DEBUG(dbgs() << "The search space is too complex.\n"
4097                   "Narrowing the search space by assuming that uses separated "
4098                   "by a constant offset will use the same registers.\n");
4099 
4100   // This is especially useful for unrolled loops.
4101 
4102   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4103     LSRUse &LU = Uses[LUIdx];
4104     for (const Formula &F : LU.Formulae) {
4105       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4106         continue;
4107 
4108       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4109       if (!LUThatHas)
4110         continue;
4111 
4112       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4113                               LU.Kind, LU.AccessTy))
4114         continue;
4115 
4116       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4117 
4118       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4119 
4120       // Transfer the fixups of LU to LUThatHas.
4121       for (LSRFixup &Fixup : LU.Fixups) {
4122         Fixup.Offset += F.BaseOffset;
4123         LUThatHas->pushFixup(Fixup);
4124         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4125       }
4126 
4127       // Delete formulae from the new use which are no longer legal.
4128       bool Any = false;
4129       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4130         Formula &F = LUThatHas->Formulae[i];
4131         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4132                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4133           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4134                 dbgs() << '\n');
4135           LUThatHas->DeleteFormula(F);
4136           --i;
4137           --e;
4138           Any = true;
4139         }
4140       }
4141 
4142       if (Any)
4143         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4144 
4145       // Delete the old use.
4146       DeleteUse(LU, LUIdx);
4147       --LUIdx;
4148       --NumUses;
4149       break;
4150     }
4151   }
4152 
4153   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4154 }
4155 
4156 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4157 /// we've done more filtering, as it may be able to find more formulae to
4158 /// eliminate.
4159 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4160   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4161     DEBUG(dbgs() << "The search space is too complex.\n");
4162 
4163     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4164                     "undesirable dedicated registers.\n");
4165 
4166     FilterOutUndesirableDedicatedRegisters();
4167 
4168     DEBUG(dbgs() << "After pre-selection:\n";
4169           print_uses(dbgs()));
4170   }
4171 }
4172 
4173 /// Pick a register which seems likely to be profitable, and then in any use
4174 /// which has any reference to that register, delete all formulae which do not
4175 /// reference that register.
4176 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4177   // With all other options exhausted, loop until the system is simple
4178   // enough to handle.
4179   SmallPtrSet<const SCEV *, 4> Taken;
4180   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4181     // Ok, we have too many of formulae on our hands to conveniently handle.
4182     // Use a rough heuristic to thin out the list.
4183     DEBUG(dbgs() << "The search space is too complex.\n");
4184 
4185     // Pick the register which is used by the most LSRUses, which is likely
4186     // to be a good reuse register candidate.
4187     const SCEV *Best = nullptr;
4188     unsigned BestNum = 0;
4189     for (const SCEV *Reg : RegUses) {
4190       if (Taken.count(Reg))
4191         continue;
4192       if (!Best) {
4193         Best = Reg;
4194         BestNum = RegUses.getUsedByIndices(Reg).count();
4195       } else {
4196         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4197         if (Count > BestNum) {
4198           Best = Reg;
4199           BestNum = Count;
4200         }
4201       }
4202     }
4203 
4204     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4205                  << " will yield profitable reuse.\n");
4206     Taken.insert(Best);
4207 
4208     // In any use with formulae which references this register, delete formulae
4209     // which don't reference it.
4210     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4211       LSRUse &LU = Uses[LUIdx];
4212       if (!LU.Regs.count(Best)) continue;
4213 
4214       bool Any = false;
4215       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4216         Formula &F = LU.Formulae[i];
4217         if (!F.referencesReg(Best)) {
4218           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4219           LU.DeleteFormula(F);
4220           --e;
4221           --i;
4222           Any = true;
4223           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4224           continue;
4225         }
4226       }
4227 
4228       if (Any)
4229         LU.RecomputeRegs(LUIdx, RegUses);
4230     }
4231 
4232     DEBUG(dbgs() << "After pre-selection:\n";
4233           print_uses(dbgs()));
4234   }
4235 }
4236 
4237 /// If there are an extraordinary number of formulae to choose from, use some
4238 /// rough heuristics to prune down the number of formulae. This keeps the main
4239 /// solver from taking an extraordinary amount of time in some worst-case
4240 /// scenarios.
4241 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4242   NarrowSearchSpaceByDetectingSupersets();
4243   NarrowSearchSpaceByCollapsingUnrolledCode();
4244   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4245   NarrowSearchSpaceByPickingWinnerRegs();
4246 }
4247 
4248 /// This is the recursive solver.
4249 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4250                                Cost &SolutionCost,
4251                                SmallVectorImpl<const Formula *> &Workspace,
4252                                const Cost &CurCost,
4253                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4254                                DenseSet<const SCEV *> &VisitedRegs) const {
4255   // Some ideas:
4256   //  - prune more:
4257   //    - use more aggressive filtering
4258   //    - sort the formula so that the most profitable solutions are found first
4259   //    - sort the uses too
4260   //  - search faster:
4261   //    - don't compute a cost, and then compare. compare while computing a cost
4262   //      and bail early.
4263   //    - track register sets with SmallBitVector
4264 
4265   const LSRUse &LU = Uses[Workspace.size()];
4266 
4267   // If this use references any register that's already a part of the
4268   // in-progress solution, consider it a requirement that a formula must
4269   // reference that register in order to be considered. This prunes out
4270   // unprofitable searching.
4271   SmallSetVector<const SCEV *, 4> ReqRegs;
4272   for (const SCEV *S : CurRegs)
4273     if (LU.Regs.count(S))
4274       ReqRegs.insert(S);
4275 
4276   SmallPtrSet<const SCEV *, 16> NewRegs;
4277   Cost NewCost;
4278   for (const Formula &F : LU.Formulae) {
4279     // Ignore formulae which may not be ideal in terms of register reuse of
4280     // ReqRegs.  The formula should use all required registers before
4281     // introducing new ones.
4282     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4283     for (const SCEV *Reg : ReqRegs) {
4284       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4285           is_contained(F.BaseRegs, Reg)) {
4286         --NumReqRegsToFind;
4287         if (NumReqRegsToFind == 0)
4288           break;
4289       }
4290     }
4291     if (NumReqRegsToFind != 0) {
4292       // If none of the formulae satisfied the required registers, then we could
4293       // clear ReqRegs and try again. Currently, we simply give up in this case.
4294       continue;
4295     }
4296 
4297     // Evaluate the cost of the current formula. If it's already worse than
4298     // the current best, prune the search at that point.
4299     NewCost = CurCost;
4300     NewRegs = CurRegs;
4301     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4302     if (NewCost < SolutionCost) {
4303       Workspace.push_back(&F);
4304       if (Workspace.size() != Uses.size()) {
4305         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4306                      NewRegs, VisitedRegs);
4307         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4308           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4309       } else {
4310         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4311               dbgs() << ".\n Regs:";
4312               for (const SCEV *S : NewRegs)
4313                 dbgs() << ' ' << *S;
4314               dbgs() << '\n');
4315 
4316         SolutionCost = NewCost;
4317         Solution = Workspace;
4318       }
4319       Workspace.pop_back();
4320     }
4321   }
4322 }
4323 
4324 /// Choose one formula from each use. Return the results in the given Solution
4325 /// vector.
4326 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4327   SmallVector<const Formula *, 8> Workspace;
4328   Cost SolutionCost;
4329   SolutionCost.Lose();
4330   Cost CurCost;
4331   SmallPtrSet<const SCEV *, 16> CurRegs;
4332   DenseSet<const SCEV *> VisitedRegs;
4333   Workspace.reserve(Uses.size());
4334 
4335   // SolveRecurse does all the work.
4336   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4337                CurRegs, VisitedRegs);
4338   if (Solution.empty()) {
4339     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4340     return;
4341   }
4342 
4343   // Ok, we've now made all our decisions.
4344   DEBUG(dbgs() << "\n"
4345                   "The chosen solution requires "; SolutionCost.print(dbgs());
4346         dbgs() << ":\n";
4347         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4348           dbgs() << "  ";
4349           Uses[i].print(dbgs());
4350           dbgs() << "\n"
4351                     "    ";
4352           Solution[i]->print(dbgs());
4353           dbgs() << '\n';
4354         });
4355 
4356   assert(Solution.size() == Uses.size() && "Malformed solution!");
4357 }
4358 
4359 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4360 /// we can go while still being dominated by the input positions. This helps
4361 /// canonicalize the insert position, which encourages sharing.
4362 BasicBlock::iterator
4363 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4364                                  const SmallVectorImpl<Instruction *> &Inputs)
4365                                                                          const {
4366   Instruction *Tentative = &*IP;
4367   while (true) {
4368     bool AllDominate = true;
4369     Instruction *BetterPos = nullptr;
4370     // Don't bother attempting to insert before a catchswitch, their basic block
4371     // cannot have other non-PHI instructions.
4372     if (isa<CatchSwitchInst>(Tentative))
4373       return IP;
4374 
4375     for (Instruction *Inst : Inputs) {
4376       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4377         AllDominate = false;
4378         break;
4379       }
4380       // Attempt to find an insert position in the middle of the block,
4381       // instead of at the end, so that it can be used for other expansions.
4382       if (Tentative->getParent() == Inst->getParent() &&
4383           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4384         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4385     }
4386     if (!AllDominate)
4387       break;
4388     if (BetterPos)
4389       IP = BetterPos->getIterator();
4390     else
4391       IP = Tentative->getIterator();
4392 
4393     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4394     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4395 
4396     BasicBlock *IDom;
4397     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4398       if (!Rung) return IP;
4399       Rung = Rung->getIDom();
4400       if (!Rung) return IP;
4401       IDom = Rung->getBlock();
4402 
4403       // Don't climb into a loop though.
4404       const Loop *IDomLoop = LI.getLoopFor(IDom);
4405       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4406       if (IDomDepth <= IPLoopDepth &&
4407           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4408         break;
4409     }
4410 
4411     Tentative = IDom->getTerminator();
4412   }
4413 
4414   return IP;
4415 }
4416 
4417 /// Determine an input position which will be dominated by the operands and
4418 /// which will dominate the result.
4419 BasicBlock::iterator
4420 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4421                                            const LSRFixup &LF,
4422                                            const LSRUse &LU,
4423                                            SCEVExpander &Rewriter) const {
4424   // Collect some instructions which must be dominated by the
4425   // expanding replacement. These must be dominated by any operands that
4426   // will be required in the expansion.
4427   SmallVector<Instruction *, 4> Inputs;
4428   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4429     Inputs.push_back(I);
4430   if (LU.Kind == LSRUse::ICmpZero)
4431     if (Instruction *I =
4432           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4433       Inputs.push_back(I);
4434   if (LF.PostIncLoops.count(L)) {
4435     if (LF.isUseFullyOutsideLoop(L))
4436       Inputs.push_back(L->getLoopLatch()->getTerminator());
4437     else
4438       Inputs.push_back(IVIncInsertPos);
4439   }
4440   // The expansion must also be dominated by the increment positions of any
4441   // loops it for which it is using post-inc mode.
4442   for (const Loop *PIL : LF.PostIncLoops) {
4443     if (PIL == L) continue;
4444 
4445     // Be dominated by the loop exit.
4446     SmallVector<BasicBlock *, 4> ExitingBlocks;
4447     PIL->getExitingBlocks(ExitingBlocks);
4448     if (!ExitingBlocks.empty()) {
4449       BasicBlock *BB = ExitingBlocks[0];
4450       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4451         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4452       Inputs.push_back(BB->getTerminator());
4453     }
4454   }
4455 
4456   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4457          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4458          "Insertion point must be a normal instruction");
4459 
4460   // Then, climb up the immediate dominator tree as far as we can go while
4461   // still being dominated by the input positions.
4462   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4463 
4464   // Don't insert instructions before PHI nodes.
4465   while (isa<PHINode>(IP)) ++IP;
4466 
4467   // Ignore landingpad instructions.
4468   while (IP->isEHPad()) ++IP;
4469 
4470   // Ignore debug intrinsics.
4471   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4472 
4473   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4474   // IP consistent across expansions and allows the previously inserted
4475   // instructions to be reused by subsequent expansion.
4476   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4477     ++IP;
4478 
4479   return IP;
4480 }
4481 
4482 /// Emit instructions for the leading candidate expression for this LSRUse (this
4483 /// is called "expanding").
4484 Value *LSRInstance::Expand(const LSRUse &LU,
4485                            const LSRFixup &LF,
4486                            const Formula &F,
4487                            BasicBlock::iterator IP,
4488                            SCEVExpander &Rewriter,
4489                            SmallVectorImpl<WeakVH> &DeadInsts) const {
4490   if (LU.RigidFormula)
4491     return LF.OperandValToReplace;
4492 
4493   // Determine an input position which will be dominated by the operands and
4494   // which will dominate the result.
4495   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4496   Rewriter.setInsertPoint(&*IP);
4497 
4498   // Inform the Rewriter if we have a post-increment use, so that it can
4499   // perform an advantageous expansion.
4500   Rewriter.setPostInc(LF.PostIncLoops);
4501 
4502   // This is the type that the user actually needs.
4503   Type *OpTy = LF.OperandValToReplace->getType();
4504   // This will be the type that we'll initially expand to.
4505   Type *Ty = F.getType();
4506   if (!Ty)
4507     // No type known; just expand directly to the ultimate type.
4508     Ty = OpTy;
4509   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4510     // Expand directly to the ultimate type if it's the right size.
4511     Ty = OpTy;
4512   // This is the type to do integer arithmetic in.
4513   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4514 
4515   // Build up a list of operands to add together to form the full base.
4516   SmallVector<const SCEV *, 8> Ops;
4517 
4518   // Expand the BaseRegs portion.
4519   for (const SCEV *Reg : F.BaseRegs) {
4520     assert(!Reg->isZero() && "Zero allocated in a base register!");
4521 
4522     // If we're expanding for a post-inc user, make the post-inc adjustment.
4523     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4524     Reg = TransformForPostIncUse(Denormalize, Reg,
4525                                  LF.UserInst, LF.OperandValToReplace,
4526                                  Loops, SE, DT);
4527 
4528     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4529   }
4530 
4531   // Expand the ScaledReg portion.
4532   Value *ICmpScaledV = nullptr;
4533   if (F.Scale != 0) {
4534     const SCEV *ScaledS = F.ScaledReg;
4535 
4536     // If we're expanding for a post-inc user, make the post-inc adjustment.
4537     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4538     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
4539                                      LF.UserInst, LF.OperandValToReplace,
4540                                      Loops, SE, DT);
4541 
4542     if (LU.Kind == LSRUse::ICmpZero) {
4543       // Expand ScaleReg as if it was part of the base regs.
4544       if (F.Scale == 1)
4545         Ops.push_back(
4546             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4547       else {
4548         // An interesting way of "folding" with an icmp is to use a negated
4549         // scale, which we'll implement by inserting it into the other operand
4550         // of the icmp.
4551         assert(F.Scale == -1 &&
4552                "The only scale supported by ICmpZero uses is -1!");
4553         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4554       }
4555     } else {
4556       // Otherwise just expand the scaled register and an explicit scale,
4557       // which is expected to be matched as part of the address.
4558 
4559       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4560       // Unless the addressing mode will not be folded.
4561       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4562           isAMCompletelyFolded(TTI, LU, F)) {
4563         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4564         Ops.clear();
4565         Ops.push_back(SE.getUnknown(FullV));
4566       }
4567       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4568       if (F.Scale != 1)
4569         ScaledS =
4570             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4571       Ops.push_back(ScaledS);
4572     }
4573   }
4574 
4575   // Expand the GV portion.
4576   if (F.BaseGV) {
4577     // Flush the operand list to suppress SCEVExpander hoisting.
4578     if (!Ops.empty()) {
4579       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4580       Ops.clear();
4581       Ops.push_back(SE.getUnknown(FullV));
4582     }
4583     Ops.push_back(SE.getUnknown(F.BaseGV));
4584   }
4585 
4586   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
4587   // unfolded offsets. LSR assumes they both live next to their uses.
4588   if (!Ops.empty()) {
4589     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4590     Ops.clear();
4591     Ops.push_back(SE.getUnknown(FullV));
4592   }
4593 
4594   // Expand the immediate portion.
4595   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
4596   if (Offset != 0) {
4597     if (LU.Kind == LSRUse::ICmpZero) {
4598       // The other interesting way of "folding" with an ICmpZero is to use a
4599       // negated immediate.
4600       if (!ICmpScaledV)
4601         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
4602       else {
4603         Ops.push_back(SE.getUnknown(ICmpScaledV));
4604         ICmpScaledV = ConstantInt::get(IntTy, Offset);
4605       }
4606     } else {
4607       // Just add the immediate values. These again are expected to be matched
4608       // as part of the address.
4609       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
4610     }
4611   }
4612 
4613   // Expand the unfolded offset portion.
4614   int64_t UnfoldedOffset = F.UnfoldedOffset;
4615   if (UnfoldedOffset != 0) {
4616     // Just add the immediate values.
4617     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
4618                                                        UnfoldedOffset)));
4619   }
4620 
4621   // Emit instructions summing all the operands.
4622   const SCEV *FullS = Ops.empty() ?
4623                       SE.getConstant(IntTy, 0) :
4624                       SE.getAddExpr(Ops);
4625   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
4626 
4627   // We're done expanding now, so reset the rewriter.
4628   Rewriter.clearPostInc();
4629 
4630   // An ICmpZero Formula represents an ICmp which we're handling as a
4631   // comparison against zero. Now that we've expanded an expression for that
4632   // form, update the ICmp's other operand.
4633   if (LU.Kind == LSRUse::ICmpZero) {
4634     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
4635     DeadInsts.emplace_back(CI->getOperand(1));
4636     assert(!F.BaseGV && "ICmp does not support folding a global value and "
4637                            "a scale at the same time!");
4638     if (F.Scale == -1) {
4639       if (ICmpScaledV->getType() != OpTy) {
4640         Instruction *Cast =
4641           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
4642                                                    OpTy, false),
4643                            ICmpScaledV, OpTy, "tmp", CI);
4644         ICmpScaledV = Cast;
4645       }
4646       CI->setOperand(1, ICmpScaledV);
4647     } else {
4648       // A scale of 1 means that the scale has been expanded as part of the
4649       // base regs.
4650       assert((F.Scale == 0 || F.Scale == 1) &&
4651              "ICmp does not support folding a global value and "
4652              "a scale at the same time!");
4653       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
4654                                            -(uint64_t)Offset);
4655       if (C->getType() != OpTy)
4656         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
4657                                                           OpTy, false),
4658                                   C, OpTy);
4659 
4660       CI->setOperand(1, C);
4661     }
4662   }
4663 
4664   return FullV;
4665 }
4666 
4667 /// Helper for Rewrite. PHI nodes are special because the use of their operands
4668 /// effectively happens in their predecessor blocks, so the expression may need
4669 /// to be expanded in multiple places.
4670 void LSRInstance::RewriteForPHI(PHINode *PN,
4671                                 const LSRUse &LU,
4672                                 const LSRFixup &LF,
4673                                 const Formula &F,
4674                                 SCEVExpander &Rewriter,
4675                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
4676   DenseMap<BasicBlock *, Value *> Inserted;
4677   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4678     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
4679       BasicBlock *BB = PN->getIncomingBlock(i);
4680 
4681       // If this is a critical edge, split the edge so that we do not insert
4682       // the code on all predecessor/successor paths.  We do this unless this
4683       // is the canonical backedge for this loop, which complicates post-inc
4684       // users.
4685       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
4686           !isa<IndirectBrInst>(BB->getTerminator()) &&
4687           !isa<CatchSwitchInst>(BB->getTerminator())) {
4688         BasicBlock *Parent = PN->getParent();
4689         Loop *PNLoop = LI.getLoopFor(Parent);
4690         if (!PNLoop || Parent != PNLoop->getHeader()) {
4691           // Split the critical edge.
4692           BasicBlock *NewBB = nullptr;
4693           if (!Parent->isLandingPad()) {
4694             NewBB = SplitCriticalEdge(BB, Parent,
4695                                       CriticalEdgeSplittingOptions(&DT, &LI)
4696                                           .setMergeIdenticalEdges()
4697                                           .setDontDeleteUselessPHIs());
4698           } else {
4699             SmallVector<BasicBlock*, 2> NewBBs;
4700             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
4701             NewBB = NewBBs[0];
4702           }
4703           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
4704           // phi predecessors are identical. The simple thing to do is skip
4705           // splitting in this case rather than complicate the API.
4706           if (NewBB) {
4707             // If PN is outside of the loop and BB is in the loop, we want to
4708             // move the block to be immediately before the PHI block, not
4709             // immediately after BB.
4710             if (L->contains(BB) && !L->contains(PN))
4711               NewBB->moveBefore(PN->getParent());
4712 
4713             // Splitting the edge can reduce the number of PHI entries we have.
4714             e = PN->getNumIncomingValues();
4715             BB = NewBB;
4716             i = PN->getBasicBlockIndex(BB);
4717           }
4718         }
4719       }
4720 
4721       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
4722         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
4723       if (!Pair.second)
4724         PN->setIncomingValue(i, Pair.first->second);
4725       else {
4726         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
4727                               Rewriter, DeadInsts);
4728 
4729         // If this is reuse-by-noop-cast, insert the noop cast.
4730         Type *OpTy = LF.OperandValToReplace->getType();
4731         if (FullV->getType() != OpTy)
4732           FullV =
4733             CastInst::Create(CastInst::getCastOpcode(FullV, false,
4734                                                      OpTy, false),
4735                              FullV, LF.OperandValToReplace->getType(),
4736                              "tmp", BB->getTerminator());
4737 
4738         PN->setIncomingValue(i, FullV);
4739         Pair.first->second = FullV;
4740       }
4741     }
4742 }
4743 
4744 /// Emit instructions for the leading candidate expression for this LSRUse (this
4745 /// is called "expanding"), and update the UserInst to reference the newly
4746 /// expanded value.
4747 void LSRInstance::Rewrite(const LSRUse &LU,
4748                           const LSRFixup &LF,
4749                           const Formula &F,
4750                           SCEVExpander &Rewriter,
4751                           SmallVectorImpl<WeakVH> &DeadInsts) const {
4752   // First, find an insertion point that dominates UserInst. For PHI nodes,
4753   // find the nearest block which dominates all the relevant uses.
4754   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
4755     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
4756   } else {
4757     Value *FullV =
4758       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
4759 
4760     // If this is reuse-by-noop-cast, insert the noop cast.
4761     Type *OpTy = LF.OperandValToReplace->getType();
4762     if (FullV->getType() != OpTy) {
4763       Instruction *Cast =
4764         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
4765                          FullV, OpTy, "tmp", LF.UserInst);
4766       FullV = Cast;
4767     }
4768 
4769     // Update the user. ICmpZero is handled specially here (for now) because
4770     // Expand may have updated one of the operands of the icmp already, and
4771     // its new value may happen to be equal to LF.OperandValToReplace, in
4772     // which case doing replaceUsesOfWith leads to replacing both operands
4773     // with the same value. TODO: Reorganize this.
4774     if (LU.Kind == LSRUse::ICmpZero)
4775       LF.UserInst->setOperand(0, FullV);
4776     else
4777       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
4778   }
4779 
4780   DeadInsts.emplace_back(LF.OperandValToReplace);
4781 }
4782 
4783 /// Rewrite all the fixup locations with new values, following the chosen
4784 /// solution.
4785 void LSRInstance::ImplementSolution(
4786     const SmallVectorImpl<const Formula *> &Solution) {
4787   // Keep track of instructions we may have made dead, so that
4788   // we can remove them after we are done working.
4789   SmallVector<WeakVH, 16> DeadInsts;
4790 
4791   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
4792                         "lsr");
4793 #ifndef NDEBUG
4794   Rewriter.setDebugType(DEBUG_TYPE);
4795 #endif
4796   Rewriter.disableCanonicalMode();
4797   Rewriter.enableLSRMode();
4798   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
4799 
4800   // Mark phi nodes that terminate chains so the expander tries to reuse them.
4801   for (const IVChain &Chain : IVChainVec) {
4802     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
4803       Rewriter.setChainedPhi(PN);
4804   }
4805 
4806   // Expand the new value definitions and update the users.
4807   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
4808     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
4809       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
4810       Changed = true;
4811     }
4812 
4813   for (const IVChain &Chain : IVChainVec) {
4814     GenerateIVChain(Chain, Rewriter, DeadInsts);
4815     Changed = true;
4816   }
4817   // Clean up after ourselves. This must be done before deleting any
4818   // instructions.
4819   Rewriter.clear();
4820 
4821   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
4822 }
4823 
4824 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
4825                          DominatorTree &DT, LoopInfo &LI,
4826                          const TargetTransformInfo &TTI)
4827     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
4828       IVIncInsertPos(nullptr) {
4829   // If LoopSimplify form is not available, stay out of trouble.
4830   if (!L->isLoopSimplifyForm())
4831     return;
4832 
4833   // If there's no interesting work to be done, bail early.
4834   if (IU.empty()) return;
4835 
4836   // If there's too much analysis to be done, bail early. We won't be able to
4837   // model the problem anyway.
4838   unsigned NumUsers = 0;
4839   for (const IVStrideUse &U : IU) {
4840     if (++NumUsers > MaxIVUsers) {
4841       (void)U;
4842       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
4843       return;
4844     }
4845     // Bail out if we have a PHI on an EHPad that gets a value from a
4846     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
4847     // no good place to stick any instructions.
4848     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
4849        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
4850        if (isa<FuncletPadInst>(FirstNonPHI) ||
4851            isa<CatchSwitchInst>(FirstNonPHI))
4852          for (BasicBlock *PredBB : PN->blocks())
4853            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
4854              return;
4855     }
4856   }
4857 
4858 #ifndef NDEBUG
4859   // All dominating loops must have preheaders, or SCEVExpander may not be able
4860   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
4861   //
4862   // IVUsers analysis should only create users that are dominated by simple loop
4863   // headers. Since this loop should dominate all of its users, its user list
4864   // should be empty if this loop itself is not within a simple loop nest.
4865   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
4866        Rung; Rung = Rung->getIDom()) {
4867     BasicBlock *BB = Rung->getBlock();
4868     const Loop *DomLoop = LI.getLoopFor(BB);
4869     if (DomLoop && DomLoop->getHeader() == BB) {
4870       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
4871     }
4872   }
4873 #endif // DEBUG
4874 
4875   DEBUG(dbgs() << "\nLSR on loop ";
4876         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
4877         dbgs() << ":\n");
4878 
4879   // First, perform some low-level loop optimizations.
4880   OptimizeShadowIV();
4881   OptimizeLoopTermCond();
4882 
4883   // If loop preparation eliminates all interesting IV users, bail.
4884   if (IU.empty()) return;
4885 
4886   // Skip nested loops until we can model them better with formulae.
4887   if (!L->empty()) {
4888     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
4889     return;
4890   }
4891 
4892   // Start collecting data and preparing for the solver.
4893   CollectChains();
4894   CollectInterestingTypesAndFactors();
4895   CollectFixupsAndInitialFormulae();
4896   CollectLoopInvariantFixupsAndFormulae();
4897 
4898   assert(!Uses.empty() && "IVUsers reported at least one use");
4899   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
4900         print_uses(dbgs()));
4901 
4902   // Now use the reuse data to generate a bunch of interesting ways
4903   // to formulate the values needed for the uses.
4904   GenerateAllReuseFormulae();
4905 
4906   FilterOutUndesirableDedicatedRegisters();
4907   NarrowSearchSpaceUsingHeuristics();
4908 
4909   SmallVector<const Formula *, 8> Solution;
4910   Solve(Solution);
4911 
4912   // Release memory that is no longer needed.
4913   Factors.clear();
4914   Types.clear();
4915   RegUses.clear();
4916 
4917   if (Solution.empty())
4918     return;
4919 
4920 #ifndef NDEBUG
4921   // Formulae should be legal.
4922   for (const LSRUse &LU : Uses) {
4923     for (const Formula &F : LU.Formulae)
4924       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4925                         F) && "Illegal formula generated!");
4926   };
4927 #endif
4928 
4929   // Now that we've decided what we want, make it so.
4930   ImplementSolution(Solution);
4931 }
4932 
4933 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
4934   if (Factors.empty() && Types.empty()) return;
4935 
4936   OS << "LSR has identified the following interesting factors and types: ";
4937   bool First = true;
4938 
4939   for (int64_t Factor : Factors) {
4940     if (!First) OS << ", ";
4941     First = false;
4942     OS << '*' << Factor;
4943   }
4944 
4945   for (Type *Ty : Types) {
4946     if (!First) OS << ", ";
4947     First = false;
4948     OS << '(' << *Ty << ')';
4949   }
4950   OS << '\n';
4951 }
4952 
4953 void LSRInstance::print_fixups(raw_ostream &OS) const {
4954   OS << "LSR is examining the following fixup sites:\n";
4955   for (const LSRUse &LU : Uses)
4956     for (const LSRFixup &LF : LU.Fixups) {
4957       dbgs() << "  ";
4958       LF.print(OS);
4959       OS << '\n';
4960     }
4961 }
4962 
4963 void LSRInstance::print_uses(raw_ostream &OS) const {
4964   OS << "LSR is examining the following uses:\n";
4965   for (const LSRUse &LU : Uses) {
4966     dbgs() << "  ";
4967     LU.print(OS);
4968     OS << '\n';
4969     for (const Formula &F : LU.Formulae) {
4970       OS << "    ";
4971       F.print(OS);
4972       OS << '\n';
4973     }
4974   }
4975 }
4976 
4977 void LSRInstance::print(raw_ostream &OS) const {
4978   print_factors_and_types(OS);
4979   print_fixups(OS);
4980   print_uses(OS);
4981 }
4982 
4983 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4984 LLVM_DUMP_METHOD void LSRInstance::dump() const {
4985   print(errs()); errs() << '\n';
4986 }
4987 #endif
4988 
4989 namespace {
4990 
4991 class LoopStrengthReduce : public LoopPass {
4992 public:
4993   static char ID; // Pass ID, replacement for typeid
4994 
4995   LoopStrengthReduce();
4996 
4997 private:
4998   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
4999   void getAnalysisUsage(AnalysisUsage &AU) const override;
5000 };
5001 
5002 } // end anonymous namespace
5003 
5004 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5005   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5006 }
5007 
5008 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5009   // We split critical edges, so we change the CFG.  However, we do update
5010   // many analyses if they are around.
5011   AU.addPreservedID(LoopSimplifyID);
5012 
5013   AU.addRequired<LoopInfoWrapperPass>();
5014   AU.addPreserved<LoopInfoWrapperPass>();
5015   AU.addRequiredID(LoopSimplifyID);
5016   AU.addRequired<DominatorTreeWrapperPass>();
5017   AU.addPreserved<DominatorTreeWrapperPass>();
5018   AU.addRequired<ScalarEvolutionWrapperPass>();
5019   AU.addPreserved<ScalarEvolutionWrapperPass>();
5020   // Requiring LoopSimplify a second time here prevents IVUsers from running
5021   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5022   AU.addRequiredID(LoopSimplifyID);
5023   AU.addRequired<IVUsersWrapperPass>();
5024   AU.addPreserved<IVUsersWrapperPass>();
5025   AU.addRequired<TargetTransformInfoWrapperPass>();
5026 }
5027 
5028 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5029                                DominatorTree &DT, LoopInfo &LI,
5030                                const TargetTransformInfo &TTI) {
5031   bool Changed = false;
5032 
5033   // Run the main LSR transformation.
5034   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5035 
5036   // Remove any extra phis created by processing inner loops.
5037   Changed |= DeleteDeadPHIs(L->getHeader());
5038   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5039     SmallVector<WeakVH, 16> DeadInsts;
5040     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5041     SCEVExpander Rewriter(SE, DL, "lsr");
5042 #ifndef NDEBUG
5043     Rewriter.setDebugType(DEBUG_TYPE);
5044 #endif
5045     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5046     if (numFolded) {
5047       Changed = true;
5048       DeleteTriviallyDeadInstructions(DeadInsts);
5049       DeleteDeadPHIs(L->getHeader());
5050     }
5051   }
5052   return Changed;
5053 }
5054 
5055 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5056   if (skipLoop(L))
5057     return false;
5058 
5059   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5060   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5061   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5062   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5063   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5064       *L->getHeader()->getParent());
5065   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5066 }
5067 
5068 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5069                                               LoopStandardAnalysisResults &AR,
5070                                               LPMUpdater &) {
5071   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5072                           AR.DT, AR.LI, AR.TTI))
5073     return PreservedAnalyses::all();
5074 
5075   return getLoopPassPreservedAnalyses();
5076 }
5077 
5078 char LoopStrengthReduce::ID = 0;
5079 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5080                       "Loop Strength Reduction", false, false)
5081 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5082 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5083 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5084 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5085 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5086 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5087 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5088                     "Loop Strength Reduction", false, false)
5089 
5090 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5091