1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into forms suitable for efficient execution
12 // on the target.
13 //
14 // This pass performs a strength reduction on array references inside loops that
15 // have as one or more of their components the loop induction variable, it
16 // rewrites expressions to take advantage of scaled-index addressing modes
17 // available on the target, and it performs a variety of other optimizations
18 // related to loop induction variables.
19 //
20 // Terminology note: this code has a lot of handling for "post-increment" or
21 // "post-inc" users. This is not talking about post-increment addressing modes;
22 // it is instead talking about code like this:
23 //
24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
25 //   ...
26 //   %i.next = add %i, 1
27 //   %c = icmp eq %i.next, %n
28 //
29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
30 // it's useful to think about these as the same register, with some uses using
31 // the value of the register before the add and some using it after. In this
32 // example, the icmp is a post-increment user, since it uses %i.next, which is
33 // the value of the induction variable after the increment. The other common
34 // case of post-increment users is users outside the loop.
35 //
36 // TODO: More sophistication in the way Formulae are generated and filtered.
37 //
38 // TODO: Handle multiple loops at a time.
39 //
40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
41 //       of a GlobalValue?
42 //
43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
44 //       smaller encoding (on x86 at least).
45 //
46 // TODO: When a negated register is used by an add (such as in a list of
47 //       multiple base registers, or as the increment expression in an addrec),
48 //       we may not actually need both reg and (-1 * reg) in registers; the
49 //       negation can be implemented by using a sub instead of an add. The
50 //       lack of support for taking this into consideration when making
51 //       register pressure decisions is partly worked around by the "Special"
52 //       use kind.
53 //
54 //===----------------------------------------------------------------------===//
55 
56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
57 #include "llvm/ADT/APInt.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/Hashing.h"
61 #include "llvm/ADT/PointerIntPair.h"
62 #include "llvm/ADT/STLExtras.h"
63 #include "llvm/ADT/SetVector.h"
64 #include "llvm/ADT/SmallBitVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/ScalarEvolution.h"
74 #include "llvm/Analysis/ScalarEvolutionExpander.h"
75 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
76 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
77 #include "llvm/Analysis/TargetTransformInfo.h"
78 #include "llvm/IR/BasicBlock.h"
79 #include "llvm/IR/Constant.h"
80 #include "llvm/IR/Constants.h"
81 #include "llvm/IR/DerivedTypes.h"
82 #include "llvm/IR/Dominators.h"
83 #include "llvm/IR/GlobalValue.h"
84 #include "llvm/IR/IRBuilder.h"
85 #include "llvm/IR/InstrTypes.h"
86 #include "llvm/IR/Instruction.h"
87 #include "llvm/IR/Instructions.h"
88 #include "llvm/IR/IntrinsicInst.h"
89 #include "llvm/IR/Intrinsics.h"
90 #include "llvm/IR/Module.h"
91 #include "llvm/IR/OperandTraits.h"
92 #include "llvm/IR/Operator.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Type.h"
95 #include "llvm/IR/Use.h"
96 #include "llvm/IR/User.h"
97 #include "llvm/IR/Value.h"
98 #include "llvm/IR/ValueHandle.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
109 #include "llvm/Transforms/Utils/Local.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstddef>
113 #include <cstdint>
114 #include <cstdlib>
115 #include <iterator>
116 #include <limits>
117 #include <map>
118 #include <utility>
119 
120 using namespace llvm;
121 
122 #define DEBUG_TYPE "loop-reduce"
123 
124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
125 /// bail out. This threshold is far beyond the number of users that LSR can
126 /// conceivably solve, so it should not affect generated code, but catches the
127 /// worst cases before LSR burns too much compile time and stack space.
128 static const unsigned MaxIVUsers = 200;
129 
130 // Temporary flag to cleanup congruent phis after LSR phi expansion.
131 // It's currently disabled until we can determine whether it's truly useful or
132 // not. The flag should be removed after the v3.0 release.
133 // This is now needed for ivchains.
134 static cl::opt<bool> EnablePhiElim(
135   "enable-lsr-phielim", cl::Hidden, cl::init(true),
136   cl::desc("Enable LSR phi elimination"));
137 
138 // The flag adds instruction count to solutions cost comparision.
139 static cl::opt<bool> InsnsCost(
140   "lsr-insns-cost", cl::Hidden, cl::init(true),
141   cl::desc("Add instruction count to a LSR cost model"));
142 
143 // Flag to choose how to narrow complex lsr solution
144 static cl::opt<bool> LSRExpNarrow(
145   "lsr-exp-narrow", cl::Hidden, cl::init(false),
146   cl::desc("Narrow LSR complex solution using"
147            " expectation of registers number"));
148 
149 // Flag to narrow search space by filtering non-optimal formulae with
150 // the same ScaledReg and Scale.
151 static cl::opt<bool> FilterSameScaledReg(
152     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
153     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
154              " with the same ScaledReg and Scale"));
155 
156 #ifndef NDEBUG
157 // Stress test IV chain generation.
158 static cl::opt<bool> StressIVChain(
159   "stress-ivchain", cl::Hidden, cl::init(false),
160   cl::desc("Stress test LSR IV chains"));
161 #else
162 static bool StressIVChain = false;
163 #endif
164 
165 namespace {
166 
167 struct MemAccessTy {
168   /// Used in situations where the accessed memory type is unknown.
169   static const unsigned UnknownAddressSpace =
170       std::numeric_limits<unsigned>::max();
171 
172   Type *MemTy = nullptr;
173   unsigned AddrSpace = UnknownAddressSpace;
174 
175   MemAccessTy() = default;
176   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
177 
178   bool operator==(MemAccessTy Other) const {
179     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
180   }
181 
182   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
183 
184   static MemAccessTy getUnknown(LLVMContext &Ctx,
185                                 unsigned AS = UnknownAddressSpace) {
186     return MemAccessTy(Type::getVoidTy(Ctx), AS);
187   }
188 };
189 
190 /// This class holds data which is used to order reuse candidates.
191 class RegSortData {
192 public:
193   /// This represents the set of LSRUse indices which reference
194   /// a particular register.
195   SmallBitVector UsedByIndices;
196 
197   void print(raw_ostream &OS) const;
198   void dump() const;
199 };
200 
201 } // end anonymous namespace
202 
203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
204 void RegSortData::print(raw_ostream &OS) const {
205   OS << "[NumUses=" << UsedByIndices.count() << ']';
206 }
207 
208 LLVM_DUMP_METHOD void RegSortData::dump() const {
209   print(errs()); errs() << '\n';
210 }
211 #endif
212 
213 namespace {
214 
215 /// Map register candidates to information about how they are used.
216 class RegUseTracker {
217   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
218 
219   RegUsesTy RegUsesMap;
220   SmallVector<const SCEV *, 16> RegSequence;
221 
222 public:
223   void countRegister(const SCEV *Reg, size_t LUIdx);
224   void dropRegister(const SCEV *Reg, size_t LUIdx);
225   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
226 
227   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
228 
229   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
230 
231   void clear();
232 
233   using iterator = SmallVectorImpl<const SCEV *>::iterator;
234   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
235 
236   iterator begin() { return RegSequence.begin(); }
237   iterator end()   { return RegSequence.end(); }
238   const_iterator begin() const { return RegSequence.begin(); }
239   const_iterator end() const   { return RegSequence.end(); }
240 };
241 
242 } // end anonymous namespace
243 
244 void
245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
246   std::pair<RegUsesTy::iterator, bool> Pair =
247     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
248   RegSortData &RSD = Pair.first->second;
249   if (Pair.second)
250     RegSequence.push_back(Reg);
251   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
252   RSD.UsedByIndices.set(LUIdx);
253 }
254 
255 void
256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
257   RegUsesTy::iterator It = RegUsesMap.find(Reg);
258   assert(It != RegUsesMap.end());
259   RegSortData &RSD = It->second;
260   assert(RSD.UsedByIndices.size() > LUIdx);
261   RSD.UsedByIndices.reset(LUIdx);
262 }
263 
264 void
265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
266   assert(LUIdx <= LastLUIdx);
267 
268   // Update RegUses. The data structure is not optimized for this purpose;
269   // we must iterate through it and update each of the bit vectors.
270   for (auto &Pair : RegUsesMap) {
271     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
272     if (LUIdx < UsedByIndices.size())
273       UsedByIndices[LUIdx] =
274         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
275     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
276   }
277 }
278 
279 bool
280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
281   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
282   if (I == RegUsesMap.end())
283     return false;
284   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
285   int i = UsedByIndices.find_first();
286   if (i == -1) return false;
287   if ((size_t)i != LUIdx) return true;
288   return UsedByIndices.find_next(i) != -1;
289 }
290 
291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
292   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
293   assert(I != RegUsesMap.end() && "Unknown register!");
294   return I->second.UsedByIndices;
295 }
296 
297 void RegUseTracker::clear() {
298   RegUsesMap.clear();
299   RegSequence.clear();
300 }
301 
302 namespace {
303 
304 /// This class holds information that describes a formula for computing
305 /// satisfying a use. It may include broken-out immediates and scaled registers.
306 struct Formula {
307   /// Global base address used for complex addressing.
308   GlobalValue *BaseGV = nullptr;
309 
310   /// Base offset for complex addressing.
311   int64_t BaseOffset = 0;
312 
313   /// Whether any complex addressing has a base register.
314   bool HasBaseReg = false;
315 
316   /// The scale of any complex addressing.
317   int64_t Scale = 0;
318 
319   /// The list of "base" registers for this use. When this is non-empty. The
320   /// canonical representation of a formula is
321   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
322   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
323   /// 3. The reg containing recurrent expr related with currect loop in the
324   /// formula should be put in the ScaledReg.
325   /// #1 enforces that the scaled register is always used when at least two
326   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
327   /// #2 enforces that 1 * reg is reg.
328   /// #3 ensures invariant regs with respect to current loop can be combined
329   /// together in LSR codegen.
330   /// This invariant can be temporarly broken while building a formula.
331   /// However, every formula inserted into the LSRInstance must be in canonical
332   /// form.
333   SmallVector<const SCEV *, 4> BaseRegs;
334 
335   /// The 'scaled' register for this use. This should be non-null when Scale is
336   /// not zero.
337   const SCEV *ScaledReg = nullptr;
338 
339   /// An additional constant offset which added near the use. This requires a
340   /// temporary register, but the offset itself can live in an add immediate
341   /// field rather than a register.
342   int64_t UnfoldedOffset = 0;
343 
344   Formula() = default;
345 
346   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
347 
348   bool isCanonical(const Loop &L) const;
349 
350   void canonicalize(const Loop &L);
351 
352   bool unscale();
353 
354   bool hasZeroEnd() const;
355 
356   size_t getNumRegs() const;
357   Type *getType() const;
358 
359   void deleteBaseReg(const SCEV *&S);
360 
361   bool referencesReg(const SCEV *S) const;
362   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
363                                   const RegUseTracker &RegUses) const;
364 
365   void print(raw_ostream &OS) const;
366   void dump() const;
367 };
368 
369 } // end anonymous namespace
370 
371 /// Recursion helper for initialMatch.
372 static void DoInitialMatch(const SCEV *S, Loop *L,
373                            SmallVectorImpl<const SCEV *> &Good,
374                            SmallVectorImpl<const SCEV *> &Bad,
375                            ScalarEvolution &SE) {
376   // Collect expressions which properly dominate the loop header.
377   if (SE.properlyDominates(S, L->getHeader())) {
378     Good.push_back(S);
379     return;
380   }
381 
382   // Look at add operands.
383   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
384     for (const SCEV *S : Add->operands())
385       DoInitialMatch(S, L, Good, Bad, SE);
386     return;
387   }
388 
389   // Look at addrec operands.
390   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
391     if (!AR->getStart()->isZero() && AR->isAffine()) {
392       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
393       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
394                                       AR->getStepRecurrence(SE),
395                                       // FIXME: AR->getNoWrapFlags()
396                                       AR->getLoop(), SCEV::FlagAnyWrap),
397                      L, Good, Bad, SE);
398       return;
399     }
400 
401   // Handle a multiplication by -1 (negation) if it didn't fold.
402   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
403     if (Mul->getOperand(0)->isAllOnesValue()) {
404       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
405       const SCEV *NewMul = SE.getMulExpr(Ops);
406 
407       SmallVector<const SCEV *, 4> MyGood;
408       SmallVector<const SCEV *, 4> MyBad;
409       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
410       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
411         SE.getEffectiveSCEVType(NewMul->getType())));
412       for (const SCEV *S : MyGood)
413         Good.push_back(SE.getMulExpr(NegOne, S));
414       for (const SCEV *S : MyBad)
415         Bad.push_back(SE.getMulExpr(NegOne, S));
416       return;
417     }
418 
419   // Ok, we can't do anything interesting. Just stuff the whole thing into a
420   // register and hope for the best.
421   Bad.push_back(S);
422 }
423 
424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
425 /// all loop-invariant and loop-computable values in a single base register.
426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
427   SmallVector<const SCEV *, 4> Good;
428   SmallVector<const SCEV *, 4> Bad;
429   DoInitialMatch(S, L, Good, Bad, SE);
430   if (!Good.empty()) {
431     const SCEV *Sum = SE.getAddExpr(Good);
432     if (!Sum->isZero())
433       BaseRegs.push_back(Sum);
434     HasBaseReg = true;
435   }
436   if (!Bad.empty()) {
437     const SCEV *Sum = SE.getAddExpr(Bad);
438     if (!Sum->isZero())
439       BaseRegs.push_back(Sum);
440     HasBaseReg = true;
441   }
442   canonicalize(*L);
443 }
444 
445 /// \brief Check whether or not this formula statisfies the canonical
446 /// representation.
447 /// \see Formula::BaseRegs.
448 bool Formula::isCanonical(const Loop &L) const {
449   if (!ScaledReg)
450     return BaseRegs.size() <= 1;
451 
452   if (Scale != 1)
453     return true;
454 
455   if (Scale == 1 && BaseRegs.empty())
456     return false;
457 
458   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
459   if (SAR && SAR->getLoop() == &L)
460     return true;
461 
462   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
463   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
464   // loop, we want to swap the reg in BaseRegs with ScaledReg.
465   auto I =
466       find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) {
467         return isa<const SCEVAddRecExpr>(S) &&
468                (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
469       });
470   return I == BaseRegs.end();
471 }
472 
473 /// \brief Helper method to morph a formula into its canonical representation.
474 /// \see Formula::BaseRegs.
475 /// Every formula having more than one base register, must use the ScaledReg
476 /// field. Otherwise, we would have to do special cases everywhere in LSR
477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
478 /// On the other hand, 1*reg should be canonicalized into reg.
479 void Formula::canonicalize(const Loop &L) {
480   if (isCanonical(L))
481     return;
482   // So far we did not need this case. This is easy to implement but it is
483   // useless to maintain dead code. Beside it could hurt compile time.
484   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
485 
486   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
487   if (!ScaledReg) {
488     ScaledReg = BaseRegs.back();
489     BaseRegs.pop_back();
490     Scale = 1;
491   }
492 
493   // If ScaledReg is an invariant with respect to L, find the reg from
494   // BaseRegs containing the recurrent expr related with Loop L. Swap the
495   // reg with ScaledReg.
496   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
497   if (!SAR || SAR->getLoop() != &L) {
498     auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()),
499                      [&](const SCEV *S) {
500                        return isa<const SCEVAddRecExpr>(S) &&
501                               (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
502                      });
503     if (I != BaseRegs.end())
504       std::swap(ScaledReg, *I);
505   }
506 }
507 
508 /// \brief Get rid of the scale in the formula.
509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
510 /// \return true if it was possible to get rid of the scale, false otherwise.
511 /// \note After this operation the formula may not be in the canonical form.
512 bool Formula::unscale() {
513   if (Scale != 1)
514     return false;
515   Scale = 0;
516   BaseRegs.push_back(ScaledReg);
517   ScaledReg = nullptr;
518   return true;
519 }
520 
521 bool Formula::hasZeroEnd() const {
522   if (UnfoldedOffset || BaseOffset)
523     return false;
524   if (BaseRegs.size() != 1 || ScaledReg)
525     return false;
526   return true;
527 }
528 
529 /// Return the total number of register operands used by this formula. This does
530 /// not include register uses implied by non-constant addrec strides.
531 size_t Formula::getNumRegs() const {
532   return !!ScaledReg + BaseRegs.size();
533 }
534 
535 /// Return the type of this formula, if it has one, or null otherwise. This type
536 /// is meaningless except for the bit size.
537 Type *Formula::getType() const {
538   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
539          ScaledReg ? ScaledReg->getType() :
540          BaseGV ? BaseGV->getType() :
541          nullptr;
542 }
543 
544 /// Delete the given base reg from the BaseRegs list.
545 void Formula::deleteBaseReg(const SCEV *&S) {
546   if (&S != &BaseRegs.back())
547     std::swap(S, BaseRegs.back());
548   BaseRegs.pop_back();
549 }
550 
551 /// Test if this formula references the given register.
552 bool Formula::referencesReg(const SCEV *S) const {
553   return S == ScaledReg || is_contained(BaseRegs, S);
554 }
555 
556 /// Test whether this formula uses registers which are used by uses other than
557 /// the use with the given index.
558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
559                                          const RegUseTracker &RegUses) const {
560   if (ScaledReg)
561     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
562       return true;
563   for (const SCEV *BaseReg : BaseRegs)
564     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
565       return true;
566   return false;
567 }
568 
569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
570 void Formula::print(raw_ostream &OS) const {
571   bool First = true;
572   if (BaseGV) {
573     if (!First) OS << " + "; else First = false;
574     BaseGV->printAsOperand(OS, /*PrintType=*/false);
575   }
576   if (BaseOffset != 0) {
577     if (!First) OS << " + "; else First = false;
578     OS << BaseOffset;
579   }
580   for (const SCEV *BaseReg : BaseRegs) {
581     if (!First) OS << " + "; else First = false;
582     OS << "reg(" << *BaseReg << ')';
583   }
584   if (HasBaseReg && BaseRegs.empty()) {
585     if (!First) OS << " + "; else First = false;
586     OS << "**error: HasBaseReg**";
587   } else if (!HasBaseReg && !BaseRegs.empty()) {
588     if (!First) OS << " + "; else First = false;
589     OS << "**error: !HasBaseReg**";
590   }
591   if (Scale != 0) {
592     if (!First) OS << " + "; else First = false;
593     OS << Scale << "*reg(";
594     if (ScaledReg)
595       OS << *ScaledReg;
596     else
597       OS << "<unknown>";
598     OS << ')';
599   }
600   if (UnfoldedOffset != 0) {
601     if (!First) OS << " + ";
602     OS << "imm(" << UnfoldedOffset << ')';
603   }
604 }
605 
606 LLVM_DUMP_METHOD void Formula::dump() const {
607   print(errs()); errs() << '\n';
608 }
609 #endif
610 
611 /// Return true if the given addrec can be sign-extended without changing its
612 /// value.
613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
614   Type *WideTy =
615     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
616   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
617 }
618 
619 /// Return true if the given add can be sign-extended without changing its
620 /// value.
621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
622   Type *WideTy =
623     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
624   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
625 }
626 
627 /// Return true if the given mul can be sign-extended without changing its
628 /// value.
629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
630   Type *WideTy =
631     IntegerType::get(SE.getContext(),
632                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
633   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
634 }
635 
636 /// Return an expression for LHS /s RHS, if it can be determined and if the
637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
639 /// the multiplication may overflow, which is useful when the result will be
640 /// used in a context where the most significant bits are ignored.
641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
642                                 ScalarEvolution &SE,
643                                 bool IgnoreSignificantBits = false) {
644   // Handle the trivial case, which works for any SCEV type.
645   if (LHS == RHS)
646     return SE.getConstant(LHS->getType(), 1);
647 
648   // Handle a few RHS special cases.
649   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
650   if (RC) {
651     const APInt &RA = RC->getAPInt();
652     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
653     // some folding.
654     if (RA.isAllOnesValue())
655       return SE.getMulExpr(LHS, RC);
656     // Handle x /s 1 as x.
657     if (RA == 1)
658       return LHS;
659   }
660 
661   // Check for a division of a constant by a constant.
662   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
663     if (!RC)
664       return nullptr;
665     const APInt &LA = C->getAPInt();
666     const APInt &RA = RC->getAPInt();
667     if (LA.srem(RA) != 0)
668       return nullptr;
669     return SE.getConstant(LA.sdiv(RA));
670   }
671 
672   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
673   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
674     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
675       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
676                                       IgnoreSignificantBits);
677       if (!Step) return nullptr;
678       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
679                                        IgnoreSignificantBits);
680       if (!Start) return nullptr;
681       // FlagNW is independent of the start value, step direction, and is
682       // preserved with smaller magnitude steps.
683       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
684       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
685     }
686     return nullptr;
687   }
688 
689   // Distribute the sdiv over add operands, if the add doesn't overflow.
690   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
691     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
692       SmallVector<const SCEV *, 8> Ops;
693       for (const SCEV *S : Add->operands()) {
694         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
695         if (!Op) return nullptr;
696         Ops.push_back(Op);
697       }
698       return SE.getAddExpr(Ops);
699     }
700     return nullptr;
701   }
702 
703   // Check for a multiply operand that we can pull RHS out of.
704   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
705     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
706       SmallVector<const SCEV *, 4> Ops;
707       bool Found = false;
708       for (const SCEV *S : Mul->operands()) {
709         if (!Found)
710           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
711                                            IgnoreSignificantBits)) {
712             S = Q;
713             Found = true;
714           }
715         Ops.push_back(S);
716       }
717       return Found ? SE.getMulExpr(Ops) : nullptr;
718     }
719     return nullptr;
720   }
721 
722   // Otherwise we don't know.
723   return nullptr;
724 }
725 
726 /// If S involves the addition of a constant integer value, return that integer
727 /// value, and mutate S to point to a new SCEV with that value excluded.
728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
729   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
730     if (C->getAPInt().getMinSignedBits() <= 64) {
731       S = SE.getConstant(C->getType(), 0);
732       return C->getValue()->getSExtValue();
733     }
734   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
735     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
736     int64_t Result = ExtractImmediate(NewOps.front(), SE);
737     if (Result != 0)
738       S = SE.getAddExpr(NewOps);
739     return Result;
740   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
741     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
742     int64_t Result = ExtractImmediate(NewOps.front(), SE);
743     if (Result != 0)
744       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
745                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
746                            SCEV::FlagAnyWrap);
747     return Result;
748   }
749   return 0;
750 }
751 
752 /// If S involves the addition of a GlobalValue address, return that symbol, and
753 /// mutate S to point to a new SCEV with that value excluded.
754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
755   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
756     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
757       S = SE.getConstant(GV->getType(), 0);
758       return GV;
759     }
760   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
762     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
763     if (Result)
764       S = SE.getAddExpr(NewOps);
765     return Result;
766   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
767     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
768     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
769     if (Result)
770       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
771                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
772                            SCEV::FlagAnyWrap);
773     return Result;
774   }
775   return nullptr;
776 }
777 
778 /// Returns true if the specified instruction is using the specified value as an
779 /// address.
780 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
781   bool isAddress = isa<LoadInst>(Inst);
782   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
783     if (SI->getPointerOperand() == OperandVal)
784       isAddress = true;
785   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
786     // Addressing modes can also be folded into prefetches and a variety
787     // of intrinsics.
788     switch (II->getIntrinsicID()) {
789       default: break;
790       case Intrinsic::memset:
791       case Intrinsic::prefetch:
792         if (II->getArgOperand(0) == OperandVal)
793           isAddress = true;
794         break;
795       case Intrinsic::memmove:
796       case Intrinsic::memcpy:
797         if (II->getArgOperand(0) == OperandVal ||
798             II->getArgOperand(1) == OperandVal)
799           isAddress = true;
800         break;
801     }
802   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
803     if (RMW->getPointerOperand() == OperandVal)
804       isAddress = true;
805   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
806     if (CmpX->getPointerOperand() == OperandVal)
807       isAddress = true;
808   }
809   return isAddress;
810 }
811 
812 /// Return the type of the memory being accessed.
813 static MemAccessTy getAccessType(const Instruction *Inst) {
814   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
815   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
816     AccessTy.MemTy = SI->getOperand(0)->getType();
817     AccessTy.AddrSpace = SI->getPointerAddressSpace();
818   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
819     AccessTy.AddrSpace = LI->getPointerAddressSpace();
820   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
821     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
822   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
823     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
824   }
825 
826   // All pointers have the same requirements, so canonicalize them to an
827   // arbitrary pointer type to minimize variation.
828   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
829     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
830                                       PTy->getAddressSpace());
831 
832   return AccessTy;
833 }
834 
835 /// Return true if this AddRec is already a phi in its loop.
836 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
837   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
838        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
839     if (SE.isSCEVable(PN->getType()) &&
840         (SE.getEffectiveSCEVType(PN->getType()) ==
841          SE.getEffectiveSCEVType(AR->getType())) &&
842         SE.getSCEV(PN) == AR)
843       return true;
844   }
845   return false;
846 }
847 
848 /// Check if expanding this expression is likely to incur significant cost. This
849 /// is tricky because SCEV doesn't track which expressions are actually computed
850 /// by the current IR.
851 ///
852 /// We currently allow expansion of IV increments that involve adds,
853 /// multiplication by constants, and AddRecs from existing phis.
854 ///
855 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
856 /// obvious multiple of the UDivExpr.
857 static bool isHighCostExpansion(const SCEV *S,
858                                 SmallPtrSetImpl<const SCEV*> &Processed,
859                                 ScalarEvolution &SE) {
860   // Zero/One operand expressions
861   switch (S->getSCEVType()) {
862   case scUnknown:
863   case scConstant:
864     return false;
865   case scTruncate:
866     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
867                                Processed, SE);
868   case scZeroExtend:
869     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
870                                Processed, SE);
871   case scSignExtend:
872     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
873                                Processed, SE);
874   }
875 
876   if (!Processed.insert(S).second)
877     return false;
878 
879   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
880     for (const SCEV *S : Add->operands()) {
881       if (isHighCostExpansion(S, Processed, SE))
882         return true;
883     }
884     return false;
885   }
886 
887   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
888     if (Mul->getNumOperands() == 2) {
889       // Multiplication by a constant is ok
890       if (isa<SCEVConstant>(Mul->getOperand(0)))
891         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
892 
893       // If we have the value of one operand, check if an existing
894       // multiplication already generates this expression.
895       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
896         Value *UVal = U->getValue();
897         for (User *UR : UVal->users()) {
898           // If U is a constant, it may be used by a ConstantExpr.
899           Instruction *UI = dyn_cast<Instruction>(UR);
900           if (UI && UI->getOpcode() == Instruction::Mul &&
901               SE.isSCEVable(UI->getType())) {
902             return SE.getSCEV(UI) == Mul;
903           }
904         }
905       }
906     }
907   }
908 
909   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
910     if (isExistingPhi(AR, SE))
911       return false;
912   }
913 
914   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
915   return true;
916 }
917 
918 /// If any of the instructions is the specified set are trivially dead, delete
919 /// them and see if this makes any of their operands subsequently dead.
920 static bool
921 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
922   bool Changed = false;
923 
924   while (!DeadInsts.empty()) {
925     Value *V = DeadInsts.pop_back_val();
926     Instruction *I = dyn_cast_or_null<Instruction>(V);
927 
928     if (!I || !isInstructionTriviallyDead(I))
929       continue;
930 
931     for (Use &O : I->operands())
932       if (Instruction *U = dyn_cast<Instruction>(O)) {
933         O = nullptr;
934         if (U->use_empty())
935           DeadInsts.emplace_back(U);
936       }
937 
938     I->eraseFromParent();
939     Changed = true;
940   }
941 
942   return Changed;
943 }
944 
945 namespace {
946 
947 class LSRUse;
948 
949 } // end anonymous namespace
950 
951 /// \brief Check if the addressing mode defined by \p F is completely
952 /// folded in \p LU at isel time.
953 /// This includes address-mode folding and special icmp tricks.
954 /// This function returns true if \p LU can accommodate what \p F
955 /// defines and up to 1 base + 1 scaled + offset.
956 /// In other words, if \p F has several base registers, this function may
957 /// still return true. Therefore, users still need to account for
958 /// additional base registers and/or unfolded offsets to derive an
959 /// accurate cost model.
960 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
961                                  const LSRUse &LU, const Formula &F);
962 
963 // Get the cost of the scaling factor used in F for LU.
964 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
965                                      const LSRUse &LU, const Formula &F,
966                                      const Loop &L);
967 
968 namespace {
969 
970 /// This class is used to measure and compare candidate formulae.
971 class Cost {
972   TargetTransformInfo::LSRCost C;
973 
974 public:
975   Cost() {
976     C.Insns = 0;
977     C.NumRegs = 0;
978     C.AddRecCost = 0;
979     C.NumIVMuls = 0;
980     C.NumBaseAdds = 0;
981     C.ImmCost = 0;
982     C.SetupCost = 0;
983     C.ScaleCost = 0;
984   }
985 
986   bool isLess(Cost &Other, const TargetTransformInfo &TTI);
987 
988   void Lose();
989 
990 #ifndef NDEBUG
991   // Once any of the metrics loses, they must all remain losers.
992   bool isValid() {
993     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
994              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
995       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
996            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
997   }
998 #endif
999 
1000   bool isLoser() {
1001     assert(isValid() && "invalid cost");
1002     return C.NumRegs == ~0u;
1003   }
1004 
1005   void RateFormula(const TargetTransformInfo &TTI,
1006                    const Formula &F,
1007                    SmallPtrSetImpl<const SCEV *> &Regs,
1008                    const DenseSet<const SCEV *> &VisitedRegs,
1009                    const Loop *L,
1010                    ScalarEvolution &SE, DominatorTree &DT,
1011                    const LSRUse &LU,
1012                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1013 
1014   void print(raw_ostream &OS) const;
1015   void dump() const;
1016 
1017 private:
1018   void RateRegister(const SCEV *Reg,
1019                     SmallPtrSetImpl<const SCEV *> &Regs,
1020                     const Loop *L,
1021                     ScalarEvolution &SE, DominatorTree &DT);
1022   void RatePrimaryRegister(const SCEV *Reg,
1023                            SmallPtrSetImpl<const SCEV *> &Regs,
1024                            const Loop *L,
1025                            ScalarEvolution &SE, DominatorTree &DT,
1026                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1027 };
1028 
1029 /// An operand value in an instruction which is to be replaced with some
1030 /// equivalent, possibly strength-reduced, replacement.
1031 struct LSRFixup {
1032   /// The instruction which will be updated.
1033   Instruction *UserInst = nullptr;
1034 
1035   /// The operand of the instruction which will be replaced. The operand may be
1036   /// used more than once; every instance will be replaced.
1037   Value *OperandValToReplace = nullptr;
1038 
1039   /// If this user is to use the post-incremented value of an induction
1040   /// variable, this variable is non-null and holds the loop associated with the
1041   /// induction variable.
1042   PostIncLoopSet PostIncLoops;
1043 
1044   /// A constant offset to be added to the LSRUse expression.  This allows
1045   /// multiple fixups to share the same LSRUse with different offsets, for
1046   /// example in an unrolled loop.
1047   int64_t Offset = 0;
1048 
1049   LSRFixup() = default;
1050 
1051   bool isUseFullyOutsideLoop(const Loop *L) const;
1052 
1053   void print(raw_ostream &OS) const;
1054   void dump() const;
1055 };
1056 
1057 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1058 /// SmallVectors of const SCEV*.
1059 struct UniquifierDenseMapInfo {
1060   static SmallVector<const SCEV *, 4> getEmptyKey() {
1061     SmallVector<const SCEV *, 4>  V;
1062     V.push_back(reinterpret_cast<const SCEV *>(-1));
1063     return V;
1064   }
1065 
1066   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1067     SmallVector<const SCEV *, 4> V;
1068     V.push_back(reinterpret_cast<const SCEV *>(-2));
1069     return V;
1070   }
1071 
1072   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1073     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1074   }
1075 
1076   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1077                       const SmallVector<const SCEV *, 4> &RHS) {
1078     return LHS == RHS;
1079   }
1080 };
1081 
1082 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1083 /// as uses invented by LSR itself. It includes information about what kinds of
1084 /// things can be folded into the user, information about the user itself, and
1085 /// information about how the use may be satisfied.  TODO: Represent multiple
1086 /// users of the same expression in common?
1087 class LSRUse {
1088   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1089 
1090 public:
1091   /// An enum for a kind of use, indicating what types of scaled and immediate
1092   /// operands it might support.
1093   enum KindType {
1094     Basic,   ///< A normal use, with no folding.
1095     Special, ///< A special case of basic, allowing -1 scales.
1096     Address, ///< An address use; folding according to TargetLowering
1097     ICmpZero ///< An equality icmp with both operands folded into one.
1098     // TODO: Add a generic icmp too?
1099   };
1100 
1101   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1102 
1103   KindType Kind;
1104   MemAccessTy AccessTy;
1105 
1106   /// The list of operands which are to be replaced.
1107   SmallVector<LSRFixup, 8> Fixups;
1108 
1109   /// Keep track of the min and max offsets of the fixups.
1110   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1111   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1112 
1113   /// This records whether all of the fixups using this LSRUse are outside of
1114   /// the loop, in which case some special-case heuristics may be used.
1115   bool AllFixupsOutsideLoop = true;
1116 
1117   /// RigidFormula is set to true to guarantee that this use will be associated
1118   /// with a single formula--the one that initially matched. Some SCEV
1119   /// expressions cannot be expanded. This allows LSR to consider the registers
1120   /// used by those expressions without the need to expand them later after
1121   /// changing the formula.
1122   bool RigidFormula = false;
1123 
1124   /// This records the widest use type for any fixup using this
1125   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1126   /// fixup widths to be equivalent, because the narrower one may be relying on
1127   /// the implicit truncation to truncate away bogus bits.
1128   Type *WidestFixupType = nullptr;
1129 
1130   /// A list of ways to build a value that can satisfy this user.  After the
1131   /// list is populated, one of these is selected heuristically and used to
1132   /// formulate a replacement for OperandValToReplace in UserInst.
1133   SmallVector<Formula, 12> Formulae;
1134 
1135   /// The set of register candidates used by all formulae in this LSRUse.
1136   SmallPtrSet<const SCEV *, 4> Regs;
1137 
1138   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1139 
1140   LSRFixup &getNewFixup() {
1141     Fixups.push_back(LSRFixup());
1142     return Fixups.back();
1143   }
1144 
1145   void pushFixup(LSRFixup &f) {
1146     Fixups.push_back(f);
1147     if (f.Offset > MaxOffset)
1148       MaxOffset = f.Offset;
1149     if (f.Offset < MinOffset)
1150       MinOffset = f.Offset;
1151   }
1152 
1153   bool HasFormulaWithSameRegs(const Formula &F) const;
1154   float getNotSelectedProbability(const SCEV *Reg) const;
1155   bool InsertFormula(const Formula &F, const Loop &L);
1156   void DeleteFormula(Formula &F);
1157   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1158 
1159   void print(raw_ostream &OS) const;
1160   void dump() const;
1161 };
1162 
1163 } // end anonymous namespace
1164 
1165 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1166                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1167                                  GlobalValue *BaseGV, int64_t BaseOffset,
1168                                  bool HasBaseReg, int64_t Scale,
1169                                  Instruction *Fixup = nullptr);
1170 
1171 /// Tally up interesting quantities from the given register.
1172 void Cost::RateRegister(const SCEV *Reg,
1173                         SmallPtrSetImpl<const SCEV *> &Regs,
1174                         const Loop *L,
1175                         ScalarEvolution &SE, DominatorTree &DT) {
1176   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1177     // If this is an addrec for another loop, it should be an invariant
1178     // with respect to L since L is the innermost loop (at least
1179     // for now LSR only handles innermost loops).
1180     if (AR->getLoop() != L) {
1181       // If the AddRec exists, consider it's register free and leave it alone.
1182       if (isExistingPhi(AR, SE))
1183         return;
1184 
1185       // It is bad to allow LSR for current loop to add induction variables
1186       // for its sibling loops.
1187       if (!AR->getLoop()->contains(L)) {
1188         Lose();
1189         return;
1190       }
1191 
1192       // Otherwise, it will be an invariant with respect to Loop L.
1193       ++C.NumRegs;
1194       return;
1195     }
1196     C.AddRecCost += 1; /// TODO: This should be a function of the stride.
1197 
1198     // Add the step value register, if it needs one.
1199     // TODO: The non-affine case isn't precisely modeled here.
1200     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1201       if (!Regs.count(AR->getOperand(1))) {
1202         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
1203         if (isLoser())
1204           return;
1205       }
1206     }
1207   }
1208   ++C.NumRegs;
1209 
1210   // Rough heuristic; favor registers which don't require extra setup
1211   // instructions in the preheader.
1212   if (!isa<SCEVUnknown>(Reg) &&
1213       !isa<SCEVConstant>(Reg) &&
1214       !(isa<SCEVAddRecExpr>(Reg) &&
1215         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
1216          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
1217     ++C.SetupCost;
1218 
1219   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1220                SE.hasComputableLoopEvolution(Reg, L);
1221 }
1222 
1223 /// Record this register in the set. If we haven't seen it before, rate
1224 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1225 /// one of those regs an instant loser.
1226 void Cost::RatePrimaryRegister(const SCEV *Reg,
1227                                SmallPtrSetImpl<const SCEV *> &Regs,
1228                                const Loop *L,
1229                                ScalarEvolution &SE, DominatorTree &DT,
1230                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1231   if (LoserRegs && LoserRegs->count(Reg)) {
1232     Lose();
1233     return;
1234   }
1235   if (Regs.insert(Reg).second) {
1236     RateRegister(Reg, Regs, L, SE, DT);
1237     if (LoserRegs && isLoser())
1238       LoserRegs->insert(Reg);
1239   }
1240 }
1241 
1242 void Cost::RateFormula(const TargetTransformInfo &TTI,
1243                        const Formula &F,
1244                        SmallPtrSetImpl<const SCEV *> &Regs,
1245                        const DenseSet<const SCEV *> &VisitedRegs,
1246                        const Loop *L,
1247                        ScalarEvolution &SE, DominatorTree &DT,
1248                        const LSRUse &LU,
1249                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1250   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1251   // Tally up the registers.
1252   unsigned PrevAddRecCost = C.AddRecCost;
1253   unsigned PrevNumRegs = C.NumRegs;
1254   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1255   if (const SCEV *ScaledReg = F.ScaledReg) {
1256     if (VisitedRegs.count(ScaledReg)) {
1257       Lose();
1258       return;
1259     }
1260     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
1261     if (isLoser())
1262       return;
1263   }
1264   for (const SCEV *BaseReg : F.BaseRegs) {
1265     if (VisitedRegs.count(BaseReg)) {
1266       Lose();
1267       return;
1268     }
1269     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
1270     if (isLoser())
1271       return;
1272   }
1273 
1274   // Determine how many (unfolded) adds we'll need inside the loop.
1275   size_t NumBaseParts = F.getNumRegs();
1276   if (NumBaseParts > 1)
1277     // Do not count the base and a possible second register if the target
1278     // allows to fold 2 registers.
1279     C.NumBaseAdds +=
1280         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
1281   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1282 
1283   // Accumulate non-free scaling amounts.
1284   C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L);
1285 
1286   // Tally up the non-zero immediates.
1287   for (const LSRFixup &Fixup : LU.Fixups) {
1288     int64_t O = Fixup.Offset;
1289     int64_t Offset = (uint64_t)O + F.BaseOffset;
1290     if (F.BaseGV)
1291       C.ImmCost += 64; // Handle symbolic values conservatively.
1292                      // TODO: This should probably be the pointer size.
1293     else if (Offset != 0)
1294       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1295 
1296     // Check with target if this offset with this instruction is
1297     // specifically not supported.
1298     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1299         !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1300                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1301       C.NumBaseAdds++;
1302   }
1303 
1304   // If we don't count instruction cost exit here.
1305   if (!InsnsCost) {
1306     assert(isValid() && "invalid cost");
1307     return;
1308   }
1309 
1310   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1311   // additional instruction (at least fill).
1312   unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1;
1313   if (C.NumRegs > TTIRegNum) {
1314     // Cost already exceeded TTIRegNum, then only newly added register can add
1315     // new instructions.
1316     if (PrevNumRegs > TTIRegNum)
1317       C.Insns += (C.NumRegs - PrevNumRegs);
1318     else
1319       C.Insns += (C.NumRegs - TTIRegNum);
1320   }
1321 
1322   // If ICmpZero formula ends with not 0, it could not be replaced by
1323   // just add or sub. We'll need to compare final result of AddRec.
1324   // That means we'll need an additional instruction.
1325   // For -10 + {0, +, 1}:
1326   // i = i + 1;
1327   // cmp i, 10
1328   //
1329   // For {-10, +, 1}:
1330   // i = i + 1;
1331   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd())
1332     C.Insns++;
1333   // Each new AddRec adds 1 instruction to calculation.
1334   C.Insns += (C.AddRecCost - PrevAddRecCost);
1335 
1336   // BaseAdds adds instructions for unfolded registers.
1337   if (LU.Kind != LSRUse::ICmpZero)
1338     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1339   assert(isValid() && "invalid cost");
1340 }
1341 
1342 /// Set this cost to a losing value.
1343 void Cost::Lose() {
1344   C.Insns = std::numeric_limits<unsigned>::max();
1345   C.NumRegs = std::numeric_limits<unsigned>::max();
1346   C.AddRecCost = std::numeric_limits<unsigned>::max();
1347   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1348   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1349   C.ImmCost = std::numeric_limits<unsigned>::max();
1350   C.SetupCost = std::numeric_limits<unsigned>::max();
1351   C.ScaleCost = std::numeric_limits<unsigned>::max();
1352 }
1353 
1354 /// Choose the lower cost.
1355 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) {
1356   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1357       C.Insns != Other.C.Insns)
1358     return C.Insns < Other.C.Insns;
1359   return TTI.isLSRCostLess(C, Other.C);
1360 }
1361 
1362 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1363 void Cost::print(raw_ostream &OS) const {
1364   if (InsnsCost)
1365     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1366   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1367   if (C.AddRecCost != 0)
1368     OS << ", with addrec cost " << C.AddRecCost;
1369   if (C.NumIVMuls != 0)
1370     OS << ", plus " << C.NumIVMuls << " IV mul"
1371        << (C.NumIVMuls == 1 ? "" : "s");
1372   if (C.NumBaseAdds != 0)
1373     OS << ", plus " << C.NumBaseAdds << " base add"
1374        << (C.NumBaseAdds == 1 ? "" : "s");
1375   if (C.ScaleCost != 0)
1376     OS << ", plus " << C.ScaleCost << " scale cost";
1377   if (C.ImmCost != 0)
1378     OS << ", plus " << C.ImmCost << " imm cost";
1379   if (C.SetupCost != 0)
1380     OS << ", plus " << C.SetupCost << " setup cost";
1381 }
1382 
1383 LLVM_DUMP_METHOD void Cost::dump() const {
1384   print(errs()); errs() << '\n';
1385 }
1386 #endif
1387 
1388 /// Test whether this fixup always uses its value outside of the given loop.
1389 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1390   // PHI nodes use their value in their incoming blocks.
1391   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1392     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1393       if (PN->getIncomingValue(i) == OperandValToReplace &&
1394           L->contains(PN->getIncomingBlock(i)))
1395         return false;
1396     return true;
1397   }
1398 
1399   return !L->contains(UserInst);
1400 }
1401 
1402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1403 void LSRFixup::print(raw_ostream &OS) const {
1404   OS << "UserInst=";
1405   // Store is common and interesting enough to be worth special-casing.
1406   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1407     OS << "store ";
1408     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1409   } else if (UserInst->getType()->isVoidTy())
1410     OS << UserInst->getOpcodeName();
1411   else
1412     UserInst->printAsOperand(OS, /*PrintType=*/false);
1413 
1414   OS << ", OperandValToReplace=";
1415   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1416 
1417   for (const Loop *PIL : PostIncLoops) {
1418     OS << ", PostIncLoop=";
1419     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1420   }
1421 
1422   if (Offset != 0)
1423     OS << ", Offset=" << Offset;
1424 }
1425 
1426 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1427   print(errs()); errs() << '\n';
1428 }
1429 #endif
1430 
1431 /// Test whether this use as a formula which has the same registers as the given
1432 /// formula.
1433 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1434   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1435   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1436   // Unstable sort by host order ok, because this is only used for uniquifying.
1437   std::sort(Key.begin(), Key.end());
1438   return Uniquifier.count(Key);
1439 }
1440 
1441 /// The function returns a probability of selecting formula without Reg.
1442 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1443   unsigned FNum = 0;
1444   for (const Formula &F : Formulae)
1445     if (F.referencesReg(Reg))
1446       FNum++;
1447   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1448 }
1449 
1450 /// If the given formula has not yet been inserted, add it to the list, and
1451 /// return true. Return false otherwise.  The formula must be in canonical form.
1452 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1453   assert(F.isCanonical(L) && "Invalid canonical representation");
1454 
1455   if (!Formulae.empty() && RigidFormula)
1456     return false;
1457 
1458   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1459   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1460   // Unstable sort by host order ok, because this is only used for uniquifying.
1461   std::sort(Key.begin(), Key.end());
1462 
1463   if (!Uniquifier.insert(Key).second)
1464     return false;
1465 
1466   // Using a register to hold the value of 0 is not profitable.
1467   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1468          "Zero allocated in a scaled register!");
1469 #ifndef NDEBUG
1470   for (const SCEV *BaseReg : F.BaseRegs)
1471     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1472 #endif
1473 
1474   // Add the formula to the list.
1475   Formulae.push_back(F);
1476 
1477   // Record registers now being used by this use.
1478   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1479   if (F.ScaledReg)
1480     Regs.insert(F.ScaledReg);
1481 
1482   return true;
1483 }
1484 
1485 /// Remove the given formula from this use's list.
1486 void LSRUse::DeleteFormula(Formula &F) {
1487   if (&F != &Formulae.back())
1488     std::swap(F, Formulae.back());
1489   Formulae.pop_back();
1490 }
1491 
1492 /// Recompute the Regs field, and update RegUses.
1493 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1494   // Now that we've filtered out some formulae, recompute the Regs set.
1495   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1496   Regs.clear();
1497   for (const Formula &F : Formulae) {
1498     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1499     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1500   }
1501 
1502   // Update the RegTracker.
1503   for (const SCEV *S : OldRegs)
1504     if (!Regs.count(S))
1505       RegUses.dropRegister(S, LUIdx);
1506 }
1507 
1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1509 void LSRUse::print(raw_ostream &OS) const {
1510   OS << "LSR Use: Kind=";
1511   switch (Kind) {
1512   case Basic:    OS << "Basic"; break;
1513   case Special:  OS << "Special"; break;
1514   case ICmpZero: OS << "ICmpZero"; break;
1515   case Address:
1516     OS << "Address of ";
1517     if (AccessTy.MemTy->isPointerTy())
1518       OS << "pointer"; // the full pointer type could be really verbose
1519     else {
1520       OS << *AccessTy.MemTy;
1521     }
1522 
1523     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1524   }
1525 
1526   OS << ", Offsets={";
1527   bool NeedComma = false;
1528   for (const LSRFixup &Fixup : Fixups) {
1529     if (NeedComma) OS << ',';
1530     OS << Fixup.Offset;
1531     NeedComma = true;
1532   }
1533   OS << '}';
1534 
1535   if (AllFixupsOutsideLoop)
1536     OS << ", all-fixups-outside-loop";
1537 
1538   if (WidestFixupType)
1539     OS << ", widest fixup type: " << *WidestFixupType;
1540 }
1541 
1542 LLVM_DUMP_METHOD void LSRUse::dump() const {
1543   print(errs()); errs() << '\n';
1544 }
1545 #endif
1546 
1547 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1548                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1549                                  GlobalValue *BaseGV, int64_t BaseOffset,
1550                                  bool HasBaseReg, int64_t Scale,
1551                                  Instruction *Fixup/*= nullptr*/) {
1552   switch (Kind) {
1553   case LSRUse::Address:
1554     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1555                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1556 
1557   case LSRUse::ICmpZero:
1558     // There's not even a target hook for querying whether it would be legal to
1559     // fold a GV into an ICmp.
1560     if (BaseGV)
1561       return false;
1562 
1563     // ICmp only has two operands; don't allow more than two non-trivial parts.
1564     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1565       return false;
1566 
1567     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1568     // putting the scaled register in the other operand of the icmp.
1569     if (Scale != 0 && Scale != -1)
1570       return false;
1571 
1572     // If we have low-level target information, ask the target if it can fold an
1573     // integer immediate on an icmp.
1574     if (BaseOffset != 0) {
1575       // We have one of:
1576       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1577       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1578       // Offs is the ICmp immediate.
1579       if (Scale == 0)
1580         // The cast does the right thing with
1581         // std::numeric_limits<int64_t>::min().
1582         BaseOffset = -(uint64_t)BaseOffset;
1583       return TTI.isLegalICmpImmediate(BaseOffset);
1584     }
1585 
1586     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1587     return true;
1588 
1589   case LSRUse::Basic:
1590     // Only handle single-register values.
1591     return !BaseGV && Scale == 0 && BaseOffset == 0;
1592 
1593   case LSRUse::Special:
1594     // Special case Basic to handle -1 scales.
1595     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1596   }
1597 
1598   llvm_unreachable("Invalid LSRUse Kind!");
1599 }
1600 
1601 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1602                                  int64_t MinOffset, int64_t MaxOffset,
1603                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1604                                  GlobalValue *BaseGV, int64_t BaseOffset,
1605                                  bool HasBaseReg, int64_t Scale) {
1606   // Check for overflow.
1607   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1608       (MinOffset > 0))
1609     return false;
1610   MinOffset = (uint64_t)BaseOffset + MinOffset;
1611   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1612       (MaxOffset > 0))
1613     return false;
1614   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1615 
1616   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1617                               HasBaseReg, Scale) &&
1618          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1619                               HasBaseReg, Scale);
1620 }
1621 
1622 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1623                                  int64_t MinOffset, int64_t MaxOffset,
1624                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1625                                  const Formula &F, const Loop &L) {
1626   // For the purpose of isAMCompletelyFolded either having a canonical formula
1627   // or a scale not equal to zero is correct.
1628   // Problems may arise from non canonical formulae having a scale == 0.
1629   // Strictly speaking it would best to just rely on canonical formulae.
1630   // However, when we generate the scaled formulae, we first check that the
1631   // scaling factor is profitable before computing the actual ScaledReg for
1632   // compile time sake.
1633   assert((F.isCanonical(L) || F.Scale != 0));
1634   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1635                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1636 }
1637 
1638 /// Test whether we know how to expand the current formula.
1639 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1640                        int64_t MaxOffset, LSRUse::KindType Kind,
1641                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1642                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1643   // We know how to expand completely foldable formulae.
1644   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1645                               BaseOffset, HasBaseReg, Scale) ||
1646          // Or formulae that use a base register produced by a sum of base
1647          // registers.
1648          (Scale == 1 &&
1649           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1650                                BaseGV, BaseOffset, true, 0));
1651 }
1652 
1653 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1654                        int64_t MaxOffset, LSRUse::KindType Kind,
1655                        MemAccessTy AccessTy, const Formula &F) {
1656   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1657                     F.BaseOffset, F.HasBaseReg, F.Scale);
1658 }
1659 
1660 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1661                                  const LSRUse &LU, const Formula &F) {
1662   // Target may want to look at the user instructions.
1663   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1664     for (const LSRFixup &Fixup : LU.Fixups)
1665       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1666                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1667                                 F.Scale, Fixup.UserInst))
1668         return false;
1669     return true;
1670   }
1671 
1672   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1673                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1674                               F.Scale);
1675 }
1676 
1677 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1678                                      const LSRUse &LU, const Formula &F,
1679                                      const Loop &L) {
1680   if (!F.Scale)
1681     return 0;
1682 
1683   // If the use is not completely folded in that instruction, we will have to
1684   // pay an extra cost only for scale != 1.
1685   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1686                             LU.AccessTy, F, L))
1687     return F.Scale != 1;
1688 
1689   switch (LU.Kind) {
1690   case LSRUse::Address: {
1691     // Check the scaling factor cost with both the min and max offsets.
1692     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1693         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1694         F.Scale, LU.AccessTy.AddrSpace);
1695     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1696         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1697         F.Scale, LU.AccessTy.AddrSpace);
1698 
1699     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1700            "Legal addressing mode has an illegal cost!");
1701     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1702   }
1703   case LSRUse::ICmpZero:
1704   case LSRUse::Basic:
1705   case LSRUse::Special:
1706     // The use is completely folded, i.e., everything is folded into the
1707     // instruction.
1708     return 0;
1709   }
1710 
1711   llvm_unreachable("Invalid LSRUse Kind!");
1712 }
1713 
1714 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1715                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1716                              GlobalValue *BaseGV, int64_t BaseOffset,
1717                              bool HasBaseReg) {
1718   // Fast-path: zero is always foldable.
1719   if (BaseOffset == 0 && !BaseGV) return true;
1720 
1721   // Conservatively, create an address with an immediate and a
1722   // base and a scale.
1723   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1724 
1725   // Canonicalize a scale of 1 to a base register if the formula doesn't
1726   // already have a base register.
1727   if (!HasBaseReg && Scale == 1) {
1728     Scale = 0;
1729     HasBaseReg = true;
1730   }
1731 
1732   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1733                               HasBaseReg, Scale);
1734 }
1735 
1736 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1737                              ScalarEvolution &SE, int64_t MinOffset,
1738                              int64_t MaxOffset, LSRUse::KindType Kind,
1739                              MemAccessTy AccessTy, const SCEV *S,
1740                              bool HasBaseReg) {
1741   // Fast-path: zero is always foldable.
1742   if (S->isZero()) return true;
1743 
1744   // Conservatively, create an address with an immediate and a
1745   // base and a scale.
1746   int64_t BaseOffset = ExtractImmediate(S, SE);
1747   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1748 
1749   // If there's anything else involved, it's not foldable.
1750   if (!S->isZero()) return false;
1751 
1752   // Fast-path: zero is always foldable.
1753   if (BaseOffset == 0 && !BaseGV) return true;
1754 
1755   // Conservatively, create an address with an immediate and a
1756   // base and a scale.
1757   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1758 
1759   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1760                               BaseOffset, HasBaseReg, Scale);
1761 }
1762 
1763 namespace {
1764 
1765 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1766 /// an expression that computes the IV it uses from the IV used by the previous
1767 /// link in the Chain.
1768 ///
1769 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1770 /// original IVOperand. The head of the chain's IVOperand is only valid during
1771 /// chain collection, before LSR replaces IV users. During chain generation,
1772 /// IncExpr can be used to find the new IVOperand that computes the same
1773 /// expression.
1774 struct IVInc {
1775   Instruction *UserInst;
1776   Value* IVOperand;
1777   const SCEV *IncExpr;
1778 
1779   IVInc(Instruction *U, Value *O, const SCEV *E)
1780       : UserInst(U), IVOperand(O), IncExpr(E) {}
1781 };
1782 
1783 // The list of IV increments in program order.  We typically add the head of a
1784 // chain without finding subsequent links.
1785 struct IVChain {
1786   SmallVector<IVInc, 1> Incs;
1787   const SCEV *ExprBase = nullptr;
1788 
1789   IVChain() = default;
1790   IVChain(const IVInc &Head, const SCEV *Base)
1791       : Incs(1, Head), ExprBase(Base) {}
1792 
1793   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1794 
1795   // Return the first increment in the chain.
1796   const_iterator begin() const {
1797     assert(!Incs.empty());
1798     return std::next(Incs.begin());
1799   }
1800   const_iterator end() const {
1801     return Incs.end();
1802   }
1803 
1804   // Returns true if this chain contains any increments.
1805   bool hasIncs() const { return Incs.size() >= 2; }
1806 
1807   // Add an IVInc to the end of this chain.
1808   void add(const IVInc &X) { Incs.push_back(X); }
1809 
1810   // Returns the last UserInst in the chain.
1811   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1812 
1813   // Returns true if IncExpr can be profitably added to this chain.
1814   bool isProfitableIncrement(const SCEV *OperExpr,
1815                              const SCEV *IncExpr,
1816                              ScalarEvolution&);
1817 };
1818 
1819 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1820 /// between FarUsers that definitely cross IV increments and NearUsers that may
1821 /// be used between IV increments.
1822 struct ChainUsers {
1823   SmallPtrSet<Instruction*, 4> FarUsers;
1824   SmallPtrSet<Instruction*, 4> NearUsers;
1825 };
1826 
1827 /// This class holds state for the main loop strength reduction logic.
1828 class LSRInstance {
1829   IVUsers &IU;
1830   ScalarEvolution &SE;
1831   DominatorTree &DT;
1832   LoopInfo &LI;
1833   const TargetTransformInfo &TTI;
1834   Loop *const L;
1835   bool Changed = false;
1836 
1837   /// This is the insert position that the current loop's induction variable
1838   /// increment should be placed. In simple loops, this is the latch block's
1839   /// terminator. But in more complicated cases, this is a position which will
1840   /// dominate all the in-loop post-increment users.
1841   Instruction *IVIncInsertPos = nullptr;
1842 
1843   /// Interesting factors between use strides.
1844   ///
1845   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1846   /// default, a SmallDenseSet, because we need to use the full range of
1847   /// int64_ts, and there's currently no good way of doing that with
1848   /// SmallDenseSet.
1849   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1850 
1851   /// Interesting use types, to facilitate truncation reuse.
1852   SmallSetVector<Type *, 4> Types;
1853 
1854   /// The list of interesting uses.
1855   SmallVector<LSRUse, 16> Uses;
1856 
1857   /// Track which uses use which register candidates.
1858   RegUseTracker RegUses;
1859 
1860   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1861   // have more than a few IV increment chains in a loop. Missing a Chain falls
1862   // back to normal LSR behavior for those uses.
1863   static const unsigned MaxChains = 8;
1864 
1865   /// IV users can form a chain of IV increments.
1866   SmallVector<IVChain, MaxChains> IVChainVec;
1867 
1868   /// IV users that belong to profitable IVChains.
1869   SmallPtrSet<Use*, MaxChains> IVIncSet;
1870 
1871   void OptimizeShadowIV();
1872   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1873   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1874   void OptimizeLoopTermCond();
1875 
1876   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1877                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1878   void FinalizeChain(IVChain &Chain);
1879   void CollectChains();
1880   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1881                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1882 
1883   void CollectInterestingTypesAndFactors();
1884   void CollectFixupsAndInitialFormulae();
1885 
1886   // Support for sharing of LSRUses between LSRFixups.
1887   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1888   UseMapTy UseMap;
1889 
1890   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1891                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1892 
1893   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1894                                     MemAccessTy AccessTy);
1895 
1896   void DeleteUse(LSRUse &LU, size_t LUIdx);
1897 
1898   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1899 
1900   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1901   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1902   void CountRegisters(const Formula &F, size_t LUIdx);
1903   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1904 
1905   void CollectLoopInvariantFixupsAndFormulae();
1906 
1907   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1908                               unsigned Depth = 0);
1909 
1910   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1911                                   const Formula &Base, unsigned Depth,
1912                                   size_t Idx, bool IsScaledReg = false);
1913   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1914   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1915                                    const Formula &Base, size_t Idx,
1916                                    bool IsScaledReg = false);
1917   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1918   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1919                                    const Formula &Base,
1920                                    const SmallVectorImpl<int64_t> &Worklist,
1921                                    size_t Idx, bool IsScaledReg = false);
1922   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1923   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1924   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
1925   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
1926   void GenerateCrossUseConstantOffsets();
1927   void GenerateAllReuseFormulae();
1928 
1929   void FilterOutUndesirableDedicatedRegisters();
1930 
1931   size_t EstimateSearchSpaceComplexity() const;
1932   void NarrowSearchSpaceByDetectingSupersets();
1933   void NarrowSearchSpaceByCollapsingUnrolledCode();
1934   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
1935   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
1936   void NarrowSearchSpaceByDeletingCostlyFormulas();
1937   void NarrowSearchSpaceByPickingWinnerRegs();
1938   void NarrowSearchSpaceUsingHeuristics();
1939 
1940   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
1941                     Cost &SolutionCost,
1942                     SmallVectorImpl<const Formula *> &Workspace,
1943                     const Cost &CurCost,
1944                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
1945                     DenseSet<const SCEV *> &VisitedRegs) const;
1946   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
1947 
1948   BasicBlock::iterator
1949     HoistInsertPosition(BasicBlock::iterator IP,
1950                         const SmallVectorImpl<Instruction *> &Inputs) const;
1951   BasicBlock::iterator
1952     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
1953                                   const LSRFixup &LF,
1954                                   const LSRUse &LU,
1955                                   SCEVExpander &Rewriter) const;
1956 
1957   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1958                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
1959                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1960   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
1961                      const Formula &F, SCEVExpander &Rewriter,
1962                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1963   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
1964                SCEVExpander &Rewriter,
1965                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
1966   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
1967 
1968 public:
1969   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
1970               LoopInfo &LI, const TargetTransformInfo &TTI);
1971 
1972   bool getChanged() const { return Changed; }
1973 
1974   void print_factors_and_types(raw_ostream &OS) const;
1975   void print_fixups(raw_ostream &OS) const;
1976   void print_uses(raw_ostream &OS) const;
1977   void print(raw_ostream &OS) const;
1978   void dump() const;
1979 };
1980 
1981 } // end anonymous namespace
1982 
1983 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
1984 /// the cast operation.
1985 void LSRInstance::OptimizeShadowIV() {
1986   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
1987   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1988     return;
1989 
1990   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
1991        UI != E; /* empty */) {
1992     IVUsers::const_iterator CandidateUI = UI;
1993     ++UI;
1994     Instruction *ShadowUse = CandidateUI->getUser();
1995     Type *DestTy = nullptr;
1996     bool IsSigned = false;
1997 
1998     /* If shadow use is a int->float cast then insert a second IV
1999        to eliminate this cast.
2000 
2001          for (unsigned i = 0; i < n; ++i)
2002            foo((double)i);
2003 
2004        is transformed into
2005 
2006          double d = 0.0;
2007          for (unsigned i = 0; i < n; ++i, ++d)
2008            foo(d);
2009     */
2010     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2011       IsSigned = false;
2012       DestTy = UCast->getDestTy();
2013     }
2014     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2015       IsSigned = true;
2016       DestTy = SCast->getDestTy();
2017     }
2018     if (!DestTy) continue;
2019 
2020     // If target does not support DestTy natively then do not apply
2021     // this transformation.
2022     if (!TTI.isTypeLegal(DestTy)) continue;
2023 
2024     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2025     if (!PH) continue;
2026     if (PH->getNumIncomingValues() != 2) continue;
2027 
2028     // If the calculation in integers overflows, the result in FP type will
2029     // differ. So we only can do this transformation if we are guaranteed to not
2030     // deal with overflowing values
2031     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2032     if (!AR) continue;
2033     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2034     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2035 
2036     Type *SrcTy = PH->getType();
2037     int Mantissa = DestTy->getFPMantissaWidth();
2038     if (Mantissa == -1) continue;
2039     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2040       continue;
2041 
2042     unsigned Entry, Latch;
2043     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2044       Entry = 0;
2045       Latch = 1;
2046     } else {
2047       Entry = 1;
2048       Latch = 0;
2049     }
2050 
2051     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2052     if (!Init) continue;
2053     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2054                                         (double)Init->getSExtValue() :
2055                                         (double)Init->getZExtValue());
2056 
2057     BinaryOperator *Incr =
2058       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2059     if (!Incr) continue;
2060     if (Incr->getOpcode() != Instruction::Add
2061         && Incr->getOpcode() != Instruction::Sub)
2062       continue;
2063 
2064     /* Initialize new IV, double d = 0.0 in above example. */
2065     ConstantInt *C = nullptr;
2066     if (Incr->getOperand(0) == PH)
2067       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2068     else if (Incr->getOperand(1) == PH)
2069       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2070     else
2071       continue;
2072 
2073     if (!C) continue;
2074 
2075     // Ignore negative constants, as the code below doesn't handle them
2076     // correctly. TODO: Remove this restriction.
2077     if (!C->getValue().isStrictlyPositive()) continue;
2078 
2079     /* Add new PHINode. */
2080     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2081 
2082     /* create new increment. '++d' in above example. */
2083     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2084     BinaryOperator *NewIncr =
2085       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2086                                Instruction::FAdd : Instruction::FSub,
2087                              NewPH, CFP, "IV.S.next.", Incr);
2088 
2089     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2090     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2091 
2092     /* Remove cast operation */
2093     ShadowUse->replaceAllUsesWith(NewPH);
2094     ShadowUse->eraseFromParent();
2095     Changed = true;
2096     break;
2097   }
2098 }
2099 
2100 /// If Cond has an operand that is an expression of an IV, set the IV user and
2101 /// stride information and return true, otherwise return false.
2102 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2103   for (IVStrideUse &U : IU)
2104     if (U.getUser() == Cond) {
2105       // NOTE: we could handle setcc instructions with multiple uses here, but
2106       // InstCombine does it as well for simple uses, it's not clear that it
2107       // occurs enough in real life to handle.
2108       CondUse = &U;
2109       return true;
2110     }
2111   return false;
2112 }
2113 
2114 /// Rewrite the loop's terminating condition if it uses a max computation.
2115 ///
2116 /// This is a narrow solution to a specific, but acute, problem. For loops
2117 /// like this:
2118 ///
2119 ///   i = 0;
2120 ///   do {
2121 ///     p[i] = 0.0;
2122 ///   } while (++i < n);
2123 ///
2124 /// the trip count isn't just 'n', because 'n' might not be positive. And
2125 /// unfortunately this can come up even for loops where the user didn't use
2126 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2127 /// will commonly be lowered like this:
2128 ///
2129 ///   if (n > 0) {
2130 ///     i = 0;
2131 ///     do {
2132 ///       p[i] = 0.0;
2133 ///     } while (++i < n);
2134 ///   }
2135 ///
2136 /// and then it's possible for subsequent optimization to obscure the if
2137 /// test in such a way that indvars can't find it.
2138 ///
2139 /// When indvars can't find the if test in loops like this, it creates a
2140 /// max expression, which allows it to give the loop a canonical
2141 /// induction variable:
2142 ///
2143 ///   i = 0;
2144 ///   max = n < 1 ? 1 : n;
2145 ///   do {
2146 ///     p[i] = 0.0;
2147 ///   } while (++i != max);
2148 ///
2149 /// Canonical induction variables are necessary because the loop passes
2150 /// are designed around them. The most obvious example of this is the
2151 /// LoopInfo analysis, which doesn't remember trip count values. It
2152 /// expects to be able to rediscover the trip count each time it is
2153 /// needed, and it does this using a simple analysis that only succeeds if
2154 /// the loop has a canonical induction variable.
2155 ///
2156 /// However, when it comes time to generate code, the maximum operation
2157 /// can be quite costly, especially if it's inside of an outer loop.
2158 ///
2159 /// This function solves this problem by detecting this type of loop and
2160 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2161 /// the instructions for the maximum computation.
2162 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2163   // Check that the loop matches the pattern we're looking for.
2164   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2165       Cond->getPredicate() != CmpInst::ICMP_NE)
2166     return Cond;
2167 
2168   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2169   if (!Sel || !Sel->hasOneUse()) return Cond;
2170 
2171   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2172   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2173     return Cond;
2174   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2175 
2176   // Add one to the backedge-taken count to get the trip count.
2177   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2178   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2179 
2180   // Check for a max calculation that matches the pattern. There's no check
2181   // for ICMP_ULE here because the comparison would be with zero, which
2182   // isn't interesting.
2183   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2184   const SCEVNAryExpr *Max = nullptr;
2185   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2186     Pred = ICmpInst::ICMP_SLE;
2187     Max = S;
2188   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2189     Pred = ICmpInst::ICMP_SLT;
2190     Max = S;
2191   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2192     Pred = ICmpInst::ICMP_ULT;
2193     Max = U;
2194   } else {
2195     // No match; bail.
2196     return Cond;
2197   }
2198 
2199   // To handle a max with more than two operands, this optimization would
2200   // require additional checking and setup.
2201   if (Max->getNumOperands() != 2)
2202     return Cond;
2203 
2204   const SCEV *MaxLHS = Max->getOperand(0);
2205   const SCEV *MaxRHS = Max->getOperand(1);
2206 
2207   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2208   // for a comparison with 1. For <= and >=, a comparison with zero.
2209   if (!MaxLHS ||
2210       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2211     return Cond;
2212 
2213   // Check the relevant induction variable for conformance to
2214   // the pattern.
2215   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2216   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2217   if (!AR || !AR->isAffine() ||
2218       AR->getStart() != One ||
2219       AR->getStepRecurrence(SE) != One)
2220     return Cond;
2221 
2222   assert(AR->getLoop() == L &&
2223          "Loop condition operand is an addrec in a different loop!");
2224 
2225   // Check the right operand of the select, and remember it, as it will
2226   // be used in the new comparison instruction.
2227   Value *NewRHS = nullptr;
2228   if (ICmpInst::isTrueWhenEqual(Pred)) {
2229     // Look for n+1, and grab n.
2230     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2231       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2232          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2233            NewRHS = BO->getOperand(0);
2234     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2235       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2236         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2237           NewRHS = BO->getOperand(0);
2238     if (!NewRHS)
2239       return Cond;
2240   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2241     NewRHS = Sel->getOperand(1);
2242   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2243     NewRHS = Sel->getOperand(2);
2244   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2245     NewRHS = SU->getValue();
2246   else
2247     // Max doesn't match expected pattern.
2248     return Cond;
2249 
2250   // Determine the new comparison opcode. It may be signed or unsigned,
2251   // and the original comparison may be either equality or inequality.
2252   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2253     Pred = CmpInst::getInversePredicate(Pred);
2254 
2255   // Ok, everything looks ok to change the condition into an SLT or SGE and
2256   // delete the max calculation.
2257   ICmpInst *NewCond =
2258     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2259 
2260   // Delete the max calculation instructions.
2261   Cond->replaceAllUsesWith(NewCond);
2262   CondUse->setUser(NewCond);
2263   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2264   Cond->eraseFromParent();
2265   Sel->eraseFromParent();
2266   if (Cmp->use_empty())
2267     Cmp->eraseFromParent();
2268   return NewCond;
2269 }
2270 
2271 /// Change loop terminating condition to use the postinc iv when possible.
2272 void
2273 LSRInstance::OptimizeLoopTermCond() {
2274   SmallPtrSet<Instruction *, 4> PostIncs;
2275 
2276   // We need a different set of heuristics for rotated and non-rotated loops.
2277   // If a loop is rotated then the latch is also the backedge, so inserting
2278   // post-inc expressions just before the latch is ideal. To reduce live ranges
2279   // it also makes sense to rewrite terminating conditions to use post-inc
2280   // expressions.
2281   //
2282   // If the loop is not rotated then the latch is not a backedge; the latch
2283   // check is done in the loop head. Adding post-inc expressions before the
2284   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2285   // in the loop body. In this case we do *not* want to use post-inc expressions
2286   // in the latch check, and we want to insert post-inc expressions before
2287   // the backedge.
2288   BasicBlock *LatchBlock = L->getLoopLatch();
2289   SmallVector<BasicBlock*, 8> ExitingBlocks;
2290   L->getExitingBlocks(ExitingBlocks);
2291   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2292         return LatchBlock != BB;
2293       })) {
2294     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2295     IVIncInsertPos = LatchBlock->getTerminator();
2296     return;
2297   }
2298 
2299   // Otherwise treat this as a rotated loop.
2300   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2301     // Get the terminating condition for the loop if possible.  If we
2302     // can, we want to change it to use a post-incremented version of its
2303     // induction variable, to allow coalescing the live ranges for the IV into
2304     // one register value.
2305 
2306     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2307     if (!TermBr)
2308       continue;
2309     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2310     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2311       continue;
2312 
2313     // Search IVUsesByStride to find Cond's IVUse if there is one.
2314     IVStrideUse *CondUse = nullptr;
2315     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2316     if (!FindIVUserForCond(Cond, CondUse))
2317       continue;
2318 
2319     // If the trip count is computed in terms of a max (due to ScalarEvolution
2320     // being unable to find a sufficient guard, for example), change the loop
2321     // comparison to use SLT or ULT instead of NE.
2322     // One consequence of doing this now is that it disrupts the count-down
2323     // optimization. That's not always a bad thing though, because in such
2324     // cases it may still be worthwhile to avoid a max.
2325     Cond = OptimizeMax(Cond, CondUse);
2326 
2327     // If this exiting block dominates the latch block, it may also use
2328     // the post-inc value if it won't be shared with other uses.
2329     // Check for dominance.
2330     if (!DT.dominates(ExitingBlock, LatchBlock))
2331       continue;
2332 
2333     // Conservatively avoid trying to use the post-inc value in non-latch
2334     // exits if there may be pre-inc users in intervening blocks.
2335     if (LatchBlock != ExitingBlock)
2336       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2337         // Test if the use is reachable from the exiting block. This dominator
2338         // query is a conservative approximation of reachability.
2339         if (&*UI != CondUse &&
2340             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2341           // Conservatively assume there may be reuse if the quotient of their
2342           // strides could be a legal scale.
2343           const SCEV *A = IU.getStride(*CondUse, L);
2344           const SCEV *B = IU.getStride(*UI, L);
2345           if (!A || !B) continue;
2346           if (SE.getTypeSizeInBits(A->getType()) !=
2347               SE.getTypeSizeInBits(B->getType())) {
2348             if (SE.getTypeSizeInBits(A->getType()) >
2349                 SE.getTypeSizeInBits(B->getType()))
2350               B = SE.getSignExtendExpr(B, A->getType());
2351             else
2352               A = SE.getSignExtendExpr(A, B->getType());
2353           }
2354           if (const SCEVConstant *D =
2355                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2356             const ConstantInt *C = D->getValue();
2357             // Stride of one or negative one can have reuse with non-addresses.
2358             if (C->isOne() || C->isMinusOne())
2359               goto decline_post_inc;
2360             // Avoid weird situations.
2361             if (C->getValue().getMinSignedBits() >= 64 ||
2362                 C->getValue().isMinSignedValue())
2363               goto decline_post_inc;
2364             // Check for possible scaled-address reuse.
2365             MemAccessTy AccessTy = getAccessType(UI->getUser());
2366             int64_t Scale = C->getSExtValue();
2367             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2368                                           /*BaseOffset=*/0,
2369                                           /*HasBaseReg=*/false, Scale,
2370                                           AccessTy.AddrSpace))
2371               goto decline_post_inc;
2372             Scale = -Scale;
2373             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2374                                           /*BaseOffset=*/0,
2375                                           /*HasBaseReg=*/false, Scale,
2376                                           AccessTy.AddrSpace))
2377               goto decline_post_inc;
2378           }
2379         }
2380 
2381     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2382                  << *Cond << '\n');
2383 
2384     // It's possible for the setcc instruction to be anywhere in the loop, and
2385     // possible for it to have multiple users.  If it is not immediately before
2386     // the exiting block branch, move it.
2387     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2388       if (Cond->hasOneUse()) {
2389         Cond->moveBefore(TermBr);
2390       } else {
2391         // Clone the terminating condition and insert into the loopend.
2392         ICmpInst *OldCond = Cond;
2393         Cond = cast<ICmpInst>(Cond->clone());
2394         Cond->setName(L->getHeader()->getName() + ".termcond");
2395         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2396 
2397         // Clone the IVUse, as the old use still exists!
2398         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2399         TermBr->replaceUsesOfWith(OldCond, Cond);
2400       }
2401     }
2402 
2403     // If we get to here, we know that we can transform the setcc instruction to
2404     // use the post-incremented version of the IV, allowing us to coalesce the
2405     // live ranges for the IV correctly.
2406     CondUse->transformToPostInc(L);
2407     Changed = true;
2408 
2409     PostIncs.insert(Cond);
2410   decline_post_inc:;
2411   }
2412 
2413   // Determine an insertion point for the loop induction variable increment. It
2414   // must dominate all the post-inc comparisons we just set up, and it must
2415   // dominate the loop latch edge.
2416   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2417   for (Instruction *Inst : PostIncs) {
2418     BasicBlock *BB =
2419       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2420                                     Inst->getParent());
2421     if (BB == Inst->getParent())
2422       IVIncInsertPos = Inst;
2423     else if (BB != IVIncInsertPos->getParent())
2424       IVIncInsertPos = BB->getTerminator();
2425   }
2426 }
2427 
2428 /// Determine if the given use can accommodate a fixup at the given offset and
2429 /// other details. If so, update the use and return true.
2430 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2431                                      bool HasBaseReg, LSRUse::KindType Kind,
2432                                      MemAccessTy AccessTy) {
2433   int64_t NewMinOffset = LU.MinOffset;
2434   int64_t NewMaxOffset = LU.MaxOffset;
2435   MemAccessTy NewAccessTy = AccessTy;
2436 
2437   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2438   // something conservative, however this can pessimize in the case that one of
2439   // the uses will have all its uses outside the loop, for example.
2440   if (LU.Kind != Kind)
2441     return false;
2442 
2443   // Check for a mismatched access type, and fall back conservatively as needed.
2444   // TODO: Be less conservative when the type is similar and can use the same
2445   // addressing modes.
2446   if (Kind == LSRUse::Address) {
2447     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2448       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2449                                             AccessTy.AddrSpace);
2450     }
2451   }
2452 
2453   // Conservatively assume HasBaseReg is true for now.
2454   if (NewOffset < LU.MinOffset) {
2455     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2456                           LU.MaxOffset - NewOffset, HasBaseReg))
2457       return false;
2458     NewMinOffset = NewOffset;
2459   } else if (NewOffset > LU.MaxOffset) {
2460     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2461                           NewOffset - LU.MinOffset, HasBaseReg))
2462       return false;
2463     NewMaxOffset = NewOffset;
2464   }
2465 
2466   // Update the use.
2467   LU.MinOffset = NewMinOffset;
2468   LU.MaxOffset = NewMaxOffset;
2469   LU.AccessTy = NewAccessTy;
2470   return true;
2471 }
2472 
2473 /// Return an LSRUse index and an offset value for a fixup which needs the given
2474 /// expression, with the given kind and optional access type.  Either reuse an
2475 /// existing use or create a new one, as needed.
2476 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2477                                                LSRUse::KindType Kind,
2478                                                MemAccessTy AccessTy) {
2479   const SCEV *Copy = Expr;
2480   int64_t Offset = ExtractImmediate(Expr, SE);
2481 
2482   // Basic uses can't accept any offset, for example.
2483   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2484                         Offset, /*HasBaseReg=*/ true)) {
2485     Expr = Copy;
2486     Offset = 0;
2487   }
2488 
2489   std::pair<UseMapTy::iterator, bool> P =
2490     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2491   if (!P.second) {
2492     // A use already existed with this base.
2493     size_t LUIdx = P.first->second;
2494     LSRUse &LU = Uses[LUIdx];
2495     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2496       // Reuse this use.
2497       return std::make_pair(LUIdx, Offset);
2498   }
2499 
2500   // Create a new use.
2501   size_t LUIdx = Uses.size();
2502   P.first->second = LUIdx;
2503   Uses.push_back(LSRUse(Kind, AccessTy));
2504   LSRUse &LU = Uses[LUIdx];
2505 
2506   LU.MinOffset = Offset;
2507   LU.MaxOffset = Offset;
2508   return std::make_pair(LUIdx, Offset);
2509 }
2510 
2511 /// Delete the given use from the Uses list.
2512 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2513   if (&LU != &Uses.back())
2514     std::swap(LU, Uses.back());
2515   Uses.pop_back();
2516 
2517   // Update RegUses.
2518   RegUses.swapAndDropUse(LUIdx, Uses.size());
2519 }
2520 
2521 /// Look for a use distinct from OrigLU which is has a formula that has the same
2522 /// registers as the given formula.
2523 LSRUse *
2524 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2525                                        const LSRUse &OrigLU) {
2526   // Search all uses for the formula. This could be more clever.
2527   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2528     LSRUse &LU = Uses[LUIdx];
2529     // Check whether this use is close enough to OrigLU, to see whether it's
2530     // worthwhile looking through its formulae.
2531     // Ignore ICmpZero uses because they may contain formulae generated by
2532     // GenerateICmpZeroScales, in which case adding fixup offsets may
2533     // be invalid.
2534     if (&LU != &OrigLU &&
2535         LU.Kind != LSRUse::ICmpZero &&
2536         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2537         LU.WidestFixupType == OrigLU.WidestFixupType &&
2538         LU.HasFormulaWithSameRegs(OrigF)) {
2539       // Scan through this use's formulae.
2540       for (const Formula &F : LU.Formulae) {
2541         // Check to see if this formula has the same registers and symbols
2542         // as OrigF.
2543         if (F.BaseRegs == OrigF.BaseRegs &&
2544             F.ScaledReg == OrigF.ScaledReg &&
2545             F.BaseGV == OrigF.BaseGV &&
2546             F.Scale == OrigF.Scale &&
2547             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2548           if (F.BaseOffset == 0)
2549             return &LU;
2550           // This is the formula where all the registers and symbols matched;
2551           // there aren't going to be any others. Since we declined it, we
2552           // can skip the rest of the formulae and proceed to the next LSRUse.
2553           break;
2554         }
2555       }
2556     }
2557   }
2558 
2559   // Nothing looked good.
2560   return nullptr;
2561 }
2562 
2563 void LSRInstance::CollectInterestingTypesAndFactors() {
2564   SmallSetVector<const SCEV *, 4> Strides;
2565 
2566   // Collect interesting types and strides.
2567   SmallVector<const SCEV *, 4> Worklist;
2568   for (const IVStrideUse &U : IU) {
2569     const SCEV *Expr = IU.getExpr(U);
2570 
2571     // Collect interesting types.
2572     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2573 
2574     // Add strides for mentioned loops.
2575     Worklist.push_back(Expr);
2576     do {
2577       const SCEV *S = Worklist.pop_back_val();
2578       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2579         if (AR->getLoop() == L)
2580           Strides.insert(AR->getStepRecurrence(SE));
2581         Worklist.push_back(AR->getStart());
2582       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2583         Worklist.append(Add->op_begin(), Add->op_end());
2584       }
2585     } while (!Worklist.empty());
2586   }
2587 
2588   // Compute interesting factors from the set of interesting strides.
2589   for (SmallSetVector<const SCEV *, 4>::const_iterator
2590        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2591     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2592          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2593       const SCEV *OldStride = *I;
2594       const SCEV *NewStride = *NewStrideIter;
2595 
2596       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2597           SE.getTypeSizeInBits(NewStride->getType())) {
2598         if (SE.getTypeSizeInBits(OldStride->getType()) >
2599             SE.getTypeSizeInBits(NewStride->getType()))
2600           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2601         else
2602           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2603       }
2604       if (const SCEVConstant *Factor =
2605             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2606                                                         SE, true))) {
2607         if (Factor->getAPInt().getMinSignedBits() <= 64)
2608           Factors.insert(Factor->getAPInt().getSExtValue());
2609       } else if (const SCEVConstant *Factor =
2610                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2611                                                                NewStride,
2612                                                                SE, true))) {
2613         if (Factor->getAPInt().getMinSignedBits() <= 64)
2614           Factors.insert(Factor->getAPInt().getSExtValue());
2615       }
2616     }
2617 
2618   // If all uses use the same type, don't bother looking for truncation-based
2619   // reuse.
2620   if (Types.size() == 1)
2621     Types.clear();
2622 
2623   DEBUG(print_factors_and_types(dbgs()));
2624 }
2625 
2626 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2627 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2628 /// IVStrideUses, we could partially skip this.
2629 static User::op_iterator
2630 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2631               Loop *L, ScalarEvolution &SE) {
2632   for(; OI != OE; ++OI) {
2633     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2634       if (!SE.isSCEVable(Oper->getType()))
2635         continue;
2636 
2637       if (const SCEVAddRecExpr *AR =
2638           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2639         if (AR->getLoop() == L)
2640           break;
2641       }
2642     }
2643   }
2644   return OI;
2645 }
2646 
2647 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
2648 /// a convenient helper.
2649 static Value *getWideOperand(Value *Oper) {
2650   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2651     return Trunc->getOperand(0);
2652   return Oper;
2653 }
2654 
2655 /// Return true if we allow an IV chain to include both types.
2656 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2657   Type *LType = LVal->getType();
2658   Type *RType = RVal->getType();
2659   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2660                               // Different address spaces means (possibly)
2661                               // different types of the pointer implementation,
2662                               // e.g. i16 vs i32 so disallow that.
2663                               (LType->getPointerAddressSpace() ==
2664                                RType->getPointerAddressSpace()));
2665 }
2666 
2667 /// Return an approximation of this SCEV expression's "base", or NULL for any
2668 /// constant. Returning the expression itself is conservative. Returning a
2669 /// deeper subexpression is more precise and valid as long as it isn't less
2670 /// complex than another subexpression. For expressions involving multiple
2671 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2672 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2673 /// IVInc==b-a.
2674 ///
2675 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2676 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2677 static const SCEV *getExprBase(const SCEV *S) {
2678   switch (S->getSCEVType()) {
2679   default: // uncluding scUnknown.
2680     return S;
2681   case scConstant:
2682     return nullptr;
2683   case scTruncate:
2684     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2685   case scZeroExtend:
2686     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2687   case scSignExtend:
2688     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2689   case scAddExpr: {
2690     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2691     // there's nothing more complex.
2692     // FIXME: not sure if we want to recognize negation.
2693     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2694     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2695            E(Add->op_begin()); I != E; ++I) {
2696       const SCEV *SubExpr = *I;
2697       if (SubExpr->getSCEVType() == scAddExpr)
2698         return getExprBase(SubExpr);
2699 
2700       if (SubExpr->getSCEVType() != scMulExpr)
2701         return SubExpr;
2702     }
2703     return S; // all operands are scaled, be conservative.
2704   }
2705   case scAddRecExpr:
2706     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2707   }
2708 }
2709 
2710 /// Return true if the chain increment is profitable to expand into a loop
2711 /// invariant value, which may require its own register. A profitable chain
2712 /// increment will be an offset relative to the same base. We allow such offsets
2713 /// to potentially be used as chain increment as long as it's not obviously
2714 /// expensive to expand using real instructions.
2715 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2716                                     const SCEV *IncExpr,
2717                                     ScalarEvolution &SE) {
2718   // Aggressively form chains when -stress-ivchain.
2719   if (StressIVChain)
2720     return true;
2721 
2722   // Do not replace a constant offset from IV head with a nonconstant IV
2723   // increment.
2724   if (!isa<SCEVConstant>(IncExpr)) {
2725     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2726     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2727       return false;
2728   }
2729 
2730   SmallPtrSet<const SCEV*, 8> Processed;
2731   return !isHighCostExpansion(IncExpr, Processed, SE);
2732 }
2733 
2734 /// Return true if the number of registers needed for the chain is estimated to
2735 /// be less than the number required for the individual IV users. First prohibit
2736 /// any IV users that keep the IV live across increments (the Users set should
2737 /// be empty). Next count the number and type of increments in the chain.
2738 ///
2739 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2740 /// effectively use postinc addressing modes. Only consider it profitable it the
2741 /// increments can be computed in fewer registers when chained.
2742 ///
2743 /// TODO: Consider IVInc free if it's already used in another chains.
2744 static bool
2745 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
2746                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
2747   if (StressIVChain)
2748     return true;
2749 
2750   if (!Chain.hasIncs())
2751     return false;
2752 
2753   if (!Users.empty()) {
2754     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2755           for (Instruction *Inst : Users) {
2756             dbgs() << "  " << *Inst << "\n";
2757           });
2758     return false;
2759   }
2760   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2761 
2762   // The chain itself may require a register, so intialize cost to 1.
2763   int cost = 1;
2764 
2765   // A complete chain likely eliminates the need for keeping the original IV in
2766   // a register. LSR does not currently know how to form a complete chain unless
2767   // the header phi already exists.
2768   if (isa<PHINode>(Chain.tailUserInst())
2769       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2770     --cost;
2771   }
2772   const SCEV *LastIncExpr = nullptr;
2773   unsigned NumConstIncrements = 0;
2774   unsigned NumVarIncrements = 0;
2775   unsigned NumReusedIncrements = 0;
2776   for (const IVInc &Inc : Chain) {
2777     if (Inc.IncExpr->isZero())
2778       continue;
2779 
2780     // Incrementing by zero or some constant is neutral. We assume constants can
2781     // be folded into an addressing mode or an add's immediate operand.
2782     if (isa<SCEVConstant>(Inc.IncExpr)) {
2783       ++NumConstIncrements;
2784       continue;
2785     }
2786 
2787     if (Inc.IncExpr == LastIncExpr)
2788       ++NumReusedIncrements;
2789     else
2790       ++NumVarIncrements;
2791 
2792     LastIncExpr = Inc.IncExpr;
2793   }
2794   // An IV chain with a single increment is handled by LSR's postinc
2795   // uses. However, a chain with multiple increments requires keeping the IV's
2796   // value live longer than it needs to be if chained.
2797   if (NumConstIncrements > 1)
2798     --cost;
2799 
2800   // Materializing increment expressions in the preheader that didn't exist in
2801   // the original code may cost a register. For example, sign-extended array
2802   // indices can produce ridiculous increments like this:
2803   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2804   cost += NumVarIncrements;
2805 
2806   // Reusing variable increments likely saves a register to hold the multiple of
2807   // the stride.
2808   cost -= NumReusedIncrements;
2809 
2810   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2811                << "\n");
2812 
2813   return cost < 0;
2814 }
2815 
2816 /// Add this IV user to an existing chain or make it the head of a new chain.
2817 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2818                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2819   // When IVs are used as types of varying widths, they are generally converted
2820   // to a wider type with some uses remaining narrow under a (free) trunc.
2821   Value *const NextIV = getWideOperand(IVOper);
2822   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2823   const SCEV *const OperExprBase = getExprBase(OperExpr);
2824 
2825   // Visit all existing chains. Check if its IVOper can be computed as a
2826   // profitable loop invariant increment from the last link in the Chain.
2827   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2828   const SCEV *LastIncExpr = nullptr;
2829   for (; ChainIdx < NChains; ++ChainIdx) {
2830     IVChain &Chain = IVChainVec[ChainIdx];
2831 
2832     // Prune the solution space aggressively by checking that both IV operands
2833     // are expressions that operate on the same unscaled SCEVUnknown. This
2834     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2835     // first avoids creating extra SCEV expressions.
2836     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2837       continue;
2838 
2839     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2840     if (!isCompatibleIVType(PrevIV, NextIV))
2841       continue;
2842 
2843     // A phi node terminates a chain.
2844     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2845       continue;
2846 
2847     // The increment must be loop-invariant so it can be kept in a register.
2848     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2849     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2850     if (!SE.isLoopInvariant(IncExpr, L))
2851       continue;
2852 
2853     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2854       LastIncExpr = IncExpr;
2855       break;
2856     }
2857   }
2858   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2859   // bother for phi nodes, because they must be last in the chain.
2860   if (ChainIdx == NChains) {
2861     if (isa<PHINode>(UserInst))
2862       return;
2863     if (NChains >= MaxChains && !StressIVChain) {
2864       DEBUG(dbgs() << "IV Chain Limit\n");
2865       return;
2866     }
2867     LastIncExpr = OperExpr;
2868     // IVUsers may have skipped over sign/zero extensions. We don't currently
2869     // attempt to form chains involving extensions unless they can be hoisted
2870     // into this loop's AddRec.
2871     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2872       return;
2873     ++NChains;
2874     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2875                                  OperExprBase));
2876     ChainUsersVec.resize(NChains);
2877     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2878                  << ") IV=" << *LastIncExpr << "\n");
2879   } else {
2880     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2881                  << ") IV+" << *LastIncExpr << "\n");
2882     // Add this IV user to the end of the chain.
2883     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2884   }
2885   IVChain &Chain = IVChainVec[ChainIdx];
2886 
2887   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2888   // This chain's NearUsers become FarUsers.
2889   if (!LastIncExpr->isZero()) {
2890     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2891                                             NearUsers.end());
2892     NearUsers.clear();
2893   }
2894 
2895   // All other uses of IVOperand become near uses of the chain.
2896   // We currently ignore intermediate values within SCEV expressions, assuming
2897   // they will eventually be used be the current chain, or can be computed
2898   // from one of the chain increments. To be more precise we could
2899   // transitively follow its user and only add leaf IV users to the set.
2900   for (User *U : IVOper->users()) {
2901     Instruction *OtherUse = dyn_cast<Instruction>(U);
2902     if (!OtherUse)
2903       continue;
2904     // Uses in the chain will no longer be uses if the chain is formed.
2905     // Include the head of the chain in this iteration (not Chain.begin()).
2906     IVChain::const_iterator IncIter = Chain.Incs.begin();
2907     IVChain::const_iterator IncEnd = Chain.Incs.end();
2908     for( ; IncIter != IncEnd; ++IncIter) {
2909       if (IncIter->UserInst == OtherUse)
2910         break;
2911     }
2912     if (IncIter != IncEnd)
2913       continue;
2914 
2915     if (SE.isSCEVable(OtherUse->getType())
2916         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
2917         && IU.isIVUserOrOperand(OtherUse)) {
2918       continue;
2919     }
2920     NearUsers.insert(OtherUse);
2921   }
2922 
2923   // Since this user is part of the chain, it's no longer considered a use
2924   // of the chain.
2925   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
2926 }
2927 
2928 /// Populate the vector of Chains.
2929 ///
2930 /// This decreases ILP at the architecture level. Targets with ample registers,
2931 /// multiple memory ports, and no register renaming probably don't want
2932 /// this. However, such targets should probably disable LSR altogether.
2933 ///
2934 /// The job of LSR is to make a reasonable choice of induction variables across
2935 /// the loop. Subsequent passes can easily "unchain" computation exposing more
2936 /// ILP *within the loop* if the target wants it.
2937 ///
2938 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
2939 /// will not reorder memory operations, it will recognize this as a chain, but
2940 /// will generate redundant IV increments. Ideally this would be corrected later
2941 /// by a smart scheduler:
2942 ///        = A[i]
2943 ///        = A[i+x]
2944 /// A[i]   =
2945 /// A[i+x] =
2946 ///
2947 /// TODO: Walk the entire domtree within this loop, not just the path to the
2948 /// loop latch. This will discover chains on side paths, but requires
2949 /// maintaining multiple copies of the Chains state.
2950 void LSRInstance::CollectChains() {
2951   DEBUG(dbgs() << "Collecting IV Chains.\n");
2952   SmallVector<ChainUsers, 8> ChainUsersVec;
2953 
2954   SmallVector<BasicBlock *,8> LatchPath;
2955   BasicBlock *LoopHeader = L->getHeader();
2956   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
2957        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
2958     LatchPath.push_back(Rung->getBlock());
2959   }
2960   LatchPath.push_back(LoopHeader);
2961 
2962   // Walk the instruction stream from the loop header to the loop latch.
2963   for (BasicBlock *BB : reverse(LatchPath)) {
2964     for (Instruction &I : *BB) {
2965       // Skip instructions that weren't seen by IVUsers analysis.
2966       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
2967         continue;
2968 
2969       // Ignore users that are part of a SCEV expression. This way we only
2970       // consider leaf IV Users. This effectively rediscovers a portion of
2971       // IVUsers analysis but in program order this time.
2972       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
2973         continue;
2974 
2975       // Remove this instruction from any NearUsers set it may be in.
2976       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
2977            ChainIdx < NChains; ++ChainIdx) {
2978         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
2979       }
2980       // Search for operands that can be chained.
2981       SmallPtrSet<Instruction*, 4> UniqueOperands;
2982       User::op_iterator IVOpEnd = I.op_end();
2983       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
2984       while (IVOpIter != IVOpEnd) {
2985         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
2986         if (UniqueOperands.insert(IVOpInst).second)
2987           ChainInstruction(&I, IVOpInst, ChainUsersVec);
2988         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
2989       }
2990     } // Continue walking down the instructions.
2991   } // Continue walking down the domtree.
2992   // Visit phi backedges to determine if the chain can generate the IV postinc.
2993   for (BasicBlock::iterator I = L->getHeader()->begin();
2994        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2995     if (!SE.isSCEVable(PN->getType()))
2996       continue;
2997 
2998     Instruction *IncV =
2999       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
3000     if (IncV)
3001       ChainInstruction(PN, IncV, ChainUsersVec);
3002   }
3003   // Remove any unprofitable chains.
3004   unsigned ChainIdx = 0;
3005   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3006        UsersIdx < NChains; ++UsersIdx) {
3007     if (!isProfitableChain(IVChainVec[UsersIdx],
3008                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3009       continue;
3010     // Preserve the chain at UsesIdx.
3011     if (ChainIdx != UsersIdx)
3012       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3013     FinalizeChain(IVChainVec[ChainIdx]);
3014     ++ChainIdx;
3015   }
3016   IVChainVec.resize(ChainIdx);
3017 }
3018 
3019 void LSRInstance::FinalizeChain(IVChain &Chain) {
3020   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3021   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3022 
3023   for (const IVInc &Inc : Chain) {
3024     DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3025     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3026     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3027     IVIncSet.insert(UseI);
3028   }
3029 }
3030 
3031 /// Return true if the IVInc can be folded into an addressing mode.
3032 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3033                              Value *Operand, const TargetTransformInfo &TTI) {
3034   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3035   if (!IncConst || !isAddressUse(UserInst, Operand))
3036     return false;
3037 
3038   if (IncConst->getAPInt().getMinSignedBits() > 64)
3039     return false;
3040 
3041   MemAccessTy AccessTy = getAccessType(UserInst);
3042   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3043   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3044                         IncOffset, /*HaseBaseReg=*/false))
3045     return false;
3046 
3047   return true;
3048 }
3049 
3050 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3051 /// user's operand from the previous IV user's operand.
3052 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3053                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3054   // Find the new IVOperand for the head of the chain. It may have been replaced
3055   // by LSR.
3056   const IVInc &Head = Chain.Incs[0];
3057   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3058   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3059   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3060                                              IVOpEnd, L, SE);
3061   Value *IVSrc = nullptr;
3062   while (IVOpIter != IVOpEnd) {
3063     IVSrc = getWideOperand(*IVOpIter);
3064 
3065     // If this operand computes the expression that the chain needs, we may use
3066     // it. (Check this after setting IVSrc which is used below.)
3067     //
3068     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3069     // narrow for the chain, so we can no longer use it. We do allow using a
3070     // wider phi, assuming the LSR checked for free truncation. In that case we
3071     // should already have a truncate on this operand such that
3072     // getSCEV(IVSrc) == IncExpr.
3073     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3074         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3075       break;
3076     }
3077     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3078   }
3079   if (IVOpIter == IVOpEnd) {
3080     // Gracefully give up on this chain.
3081     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3082     return;
3083   }
3084 
3085   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3086   Type *IVTy = IVSrc->getType();
3087   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3088   const SCEV *LeftOverExpr = nullptr;
3089   for (const IVInc &Inc : Chain) {
3090     Instruction *InsertPt = Inc.UserInst;
3091     if (isa<PHINode>(InsertPt))
3092       InsertPt = L->getLoopLatch()->getTerminator();
3093 
3094     // IVOper will replace the current IV User's operand. IVSrc is the IV
3095     // value currently held in a register.
3096     Value *IVOper = IVSrc;
3097     if (!Inc.IncExpr->isZero()) {
3098       // IncExpr was the result of subtraction of two narrow values, so must
3099       // be signed.
3100       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3101       LeftOverExpr = LeftOverExpr ?
3102         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3103     }
3104     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3105       // Expand the IV increment.
3106       Rewriter.clearPostInc();
3107       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3108       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3109                                              SE.getUnknown(IncV));
3110       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3111 
3112       // If an IV increment can't be folded, use it as the next IV value.
3113       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3114         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3115         IVSrc = IVOper;
3116         LeftOverExpr = nullptr;
3117       }
3118     }
3119     Type *OperTy = Inc.IVOperand->getType();
3120     if (IVTy != OperTy) {
3121       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3122              "cannot extend a chained IV");
3123       IRBuilder<> Builder(InsertPt);
3124       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3125     }
3126     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3127     DeadInsts.emplace_back(Inc.IVOperand);
3128   }
3129   // If LSR created a new, wider phi, we may also replace its postinc. We only
3130   // do this if we also found a wide value for the head of the chain.
3131   if (isa<PHINode>(Chain.tailUserInst())) {
3132     for (BasicBlock::iterator I = L->getHeader()->begin();
3133          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
3134       if (!isCompatibleIVType(Phi, IVSrc))
3135         continue;
3136       Instruction *PostIncV = dyn_cast<Instruction>(
3137         Phi->getIncomingValueForBlock(L->getLoopLatch()));
3138       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3139         continue;
3140       Value *IVOper = IVSrc;
3141       Type *PostIncTy = PostIncV->getType();
3142       if (IVTy != PostIncTy) {
3143         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3144         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3145         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3146         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3147       }
3148       Phi->replaceUsesOfWith(PostIncV, IVOper);
3149       DeadInsts.emplace_back(PostIncV);
3150     }
3151   }
3152 }
3153 
3154 void LSRInstance::CollectFixupsAndInitialFormulae() {
3155   for (const IVStrideUse &U : IU) {
3156     Instruction *UserInst = U.getUser();
3157     // Skip IV users that are part of profitable IV Chains.
3158     User::op_iterator UseI =
3159         find(UserInst->operands(), U.getOperandValToReplace());
3160     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3161     if (IVIncSet.count(UseI)) {
3162       DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3163       continue;
3164     }
3165 
3166     LSRUse::KindType Kind = LSRUse::Basic;
3167     MemAccessTy AccessTy;
3168     if (isAddressUse(UserInst, U.getOperandValToReplace())) {
3169       Kind = LSRUse::Address;
3170       AccessTy = getAccessType(UserInst);
3171     }
3172 
3173     const SCEV *S = IU.getExpr(U);
3174     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3175 
3176     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3177     // (N - i == 0), and this allows (N - i) to be the expression that we work
3178     // with rather than just N or i, so we can consider the register
3179     // requirements for both N and i at the same time. Limiting this code to
3180     // equality icmps is not a problem because all interesting loops use
3181     // equality icmps, thanks to IndVarSimplify.
3182     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst))
3183       if (CI->isEquality()) {
3184         // Swap the operands if needed to put the OperandValToReplace on the
3185         // left, for consistency.
3186         Value *NV = CI->getOperand(1);
3187         if (NV == U.getOperandValToReplace()) {
3188           CI->setOperand(1, CI->getOperand(0));
3189           CI->setOperand(0, NV);
3190           NV = CI->getOperand(1);
3191           Changed = true;
3192         }
3193 
3194         // x == y  -->  x - y == 0
3195         const SCEV *N = SE.getSCEV(NV);
3196         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3197           // S is normalized, so normalize N before folding it into S
3198           // to keep the result normalized.
3199           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3200           Kind = LSRUse::ICmpZero;
3201           S = SE.getMinusSCEV(N, S);
3202         }
3203 
3204         // -1 and the negations of all interesting strides (except the negation
3205         // of -1) are now also interesting.
3206         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3207           if (Factors[i] != -1)
3208             Factors.insert(-(uint64_t)Factors[i]);
3209         Factors.insert(-1);
3210       }
3211 
3212     // Get or create an LSRUse.
3213     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3214     size_t LUIdx = P.first;
3215     int64_t Offset = P.second;
3216     LSRUse &LU = Uses[LUIdx];
3217 
3218     // Record the fixup.
3219     LSRFixup &LF = LU.getNewFixup();
3220     LF.UserInst = UserInst;
3221     LF.OperandValToReplace = U.getOperandValToReplace();
3222     LF.PostIncLoops = TmpPostIncLoops;
3223     LF.Offset = Offset;
3224     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3225 
3226     if (!LU.WidestFixupType ||
3227         SE.getTypeSizeInBits(LU.WidestFixupType) <
3228         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3229       LU.WidestFixupType = LF.OperandValToReplace->getType();
3230 
3231     // If this is the first use of this LSRUse, give it a formula.
3232     if (LU.Formulae.empty()) {
3233       InsertInitialFormula(S, LU, LUIdx);
3234       CountRegisters(LU.Formulae.back(), LUIdx);
3235     }
3236   }
3237 
3238   DEBUG(print_fixups(dbgs()));
3239 }
3240 
3241 /// Insert a formula for the given expression into the given use, separating out
3242 /// loop-variant portions from loop-invariant and loop-computable portions.
3243 void
3244 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3245   // Mark uses whose expressions cannot be expanded.
3246   if (!isSafeToExpand(S, SE))
3247     LU.RigidFormula = true;
3248 
3249   Formula F;
3250   F.initialMatch(S, L, SE);
3251   bool Inserted = InsertFormula(LU, LUIdx, F);
3252   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3253 }
3254 
3255 /// Insert a simple single-register formula for the given expression into the
3256 /// given use.
3257 void
3258 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3259                                        LSRUse &LU, size_t LUIdx) {
3260   Formula F;
3261   F.BaseRegs.push_back(S);
3262   F.HasBaseReg = true;
3263   bool Inserted = InsertFormula(LU, LUIdx, F);
3264   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3265 }
3266 
3267 /// Note which registers are used by the given formula, updating RegUses.
3268 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3269   if (F.ScaledReg)
3270     RegUses.countRegister(F.ScaledReg, LUIdx);
3271   for (const SCEV *BaseReg : F.BaseRegs)
3272     RegUses.countRegister(BaseReg, LUIdx);
3273 }
3274 
3275 /// If the given formula has not yet been inserted, add it to the list, and
3276 /// return true. Return false otherwise.
3277 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3278   // Do not insert formula that we will not be able to expand.
3279   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3280          "Formula is illegal");
3281 
3282   if (!LU.InsertFormula(F, *L))
3283     return false;
3284 
3285   CountRegisters(F, LUIdx);
3286   return true;
3287 }
3288 
3289 /// Check for other uses of loop-invariant values which we're tracking. These
3290 /// other uses will pin these values in registers, making them less profitable
3291 /// for elimination.
3292 /// TODO: This currently misses non-constant addrec step registers.
3293 /// TODO: Should this give more weight to users inside the loop?
3294 void
3295 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3296   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3297   SmallPtrSet<const SCEV *, 32> Visited;
3298 
3299   while (!Worklist.empty()) {
3300     const SCEV *S = Worklist.pop_back_val();
3301 
3302     // Don't process the same SCEV twice
3303     if (!Visited.insert(S).second)
3304       continue;
3305 
3306     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3307       Worklist.append(N->op_begin(), N->op_end());
3308     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
3309       Worklist.push_back(C->getOperand());
3310     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3311       Worklist.push_back(D->getLHS());
3312       Worklist.push_back(D->getRHS());
3313     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3314       const Value *V = US->getValue();
3315       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3316         // Look for instructions defined outside the loop.
3317         if (L->contains(Inst)) continue;
3318       } else if (isa<UndefValue>(V))
3319         // Undef doesn't have a live range, so it doesn't matter.
3320         continue;
3321       for (const Use &U : V->uses()) {
3322         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3323         // Ignore non-instructions.
3324         if (!UserInst)
3325           continue;
3326         // Ignore instructions in other functions (as can happen with
3327         // Constants).
3328         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3329           continue;
3330         // Ignore instructions not dominated by the loop.
3331         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3332           UserInst->getParent() :
3333           cast<PHINode>(UserInst)->getIncomingBlock(
3334             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3335         if (!DT.dominates(L->getHeader(), UseBB))
3336           continue;
3337         // Don't bother if the instruction is in a BB which ends in an EHPad.
3338         if (UseBB->getTerminator()->isEHPad())
3339           continue;
3340         // Don't bother rewriting PHIs in catchswitch blocks.
3341         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3342           continue;
3343         // Ignore uses which are part of other SCEV expressions, to avoid
3344         // analyzing them multiple times.
3345         if (SE.isSCEVable(UserInst->getType())) {
3346           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3347           // If the user is a no-op, look through to its uses.
3348           if (!isa<SCEVUnknown>(UserS))
3349             continue;
3350           if (UserS == US) {
3351             Worklist.push_back(
3352               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3353             continue;
3354           }
3355         }
3356         // Ignore icmp instructions which are already being analyzed.
3357         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3358           unsigned OtherIdx = !U.getOperandNo();
3359           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3360           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3361             continue;
3362         }
3363 
3364         std::pair<size_t, int64_t> P = getUse(
3365             S, LSRUse::Basic, MemAccessTy());
3366         size_t LUIdx = P.first;
3367         int64_t Offset = P.second;
3368         LSRUse &LU = Uses[LUIdx];
3369         LSRFixup &LF = LU.getNewFixup();
3370         LF.UserInst = const_cast<Instruction *>(UserInst);
3371         LF.OperandValToReplace = U;
3372         LF.Offset = Offset;
3373         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3374         if (!LU.WidestFixupType ||
3375             SE.getTypeSizeInBits(LU.WidestFixupType) <
3376             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3377           LU.WidestFixupType = LF.OperandValToReplace->getType();
3378         InsertSupplementalFormula(US, LU, LUIdx);
3379         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3380         break;
3381       }
3382     }
3383   }
3384 }
3385 
3386 /// Split S into subexpressions which can be pulled out into separate
3387 /// registers. If C is non-null, multiply each subexpression by C.
3388 ///
3389 /// Return remainder expression after factoring the subexpressions captured by
3390 /// Ops. If Ops is complete, return NULL.
3391 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3392                                    SmallVectorImpl<const SCEV *> &Ops,
3393                                    const Loop *L,
3394                                    ScalarEvolution &SE,
3395                                    unsigned Depth = 0) {
3396   // Arbitrarily cap recursion to protect compile time.
3397   if (Depth >= 3)
3398     return S;
3399 
3400   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3401     // Break out add operands.
3402     for (const SCEV *S : Add->operands()) {
3403       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3404       if (Remainder)
3405         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3406     }
3407     return nullptr;
3408   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3409     // Split a non-zero base out of an addrec.
3410     if (AR->getStart()->isZero() || !AR->isAffine())
3411       return S;
3412 
3413     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3414                                             C, Ops, L, SE, Depth+1);
3415     // Split the non-zero AddRec unless it is part of a nested recurrence that
3416     // does not pertain to this loop.
3417     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3418       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3419       Remainder = nullptr;
3420     }
3421     if (Remainder != AR->getStart()) {
3422       if (!Remainder)
3423         Remainder = SE.getConstant(AR->getType(), 0);
3424       return SE.getAddRecExpr(Remainder,
3425                               AR->getStepRecurrence(SE),
3426                               AR->getLoop(),
3427                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3428                               SCEV::FlagAnyWrap);
3429     }
3430   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3431     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3432     if (Mul->getNumOperands() != 2)
3433       return S;
3434     if (const SCEVConstant *Op0 =
3435         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3436       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3437       const SCEV *Remainder =
3438         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3439       if (Remainder)
3440         Ops.push_back(SE.getMulExpr(C, Remainder));
3441       return nullptr;
3442     }
3443   }
3444   return S;
3445 }
3446 
3447 /// \brief Helper function for LSRInstance::GenerateReassociations.
3448 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3449                                              const Formula &Base,
3450                                              unsigned Depth, size_t Idx,
3451                                              bool IsScaledReg) {
3452   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3453   SmallVector<const SCEV *, 8> AddOps;
3454   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3455   if (Remainder)
3456     AddOps.push_back(Remainder);
3457 
3458   if (AddOps.size() == 1)
3459     return;
3460 
3461   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3462                                                      JE = AddOps.end();
3463        J != JE; ++J) {
3464     // Loop-variant "unknown" values are uninteresting; we won't be able to
3465     // do anything meaningful with them.
3466     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3467       continue;
3468 
3469     // Don't pull a constant into a register if the constant could be folded
3470     // into an immediate field.
3471     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3472                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3473       continue;
3474 
3475     // Collect all operands except *J.
3476     SmallVector<const SCEV *, 8> InnerAddOps(
3477         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3478     InnerAddOps.append(std::next(J),
3479                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3480 
3481     // Don't leave just a constant behind in a register if the constant could
3482     // be folded into an immediate field.
3483     if (InnerAddOps.size() == 1 &&
3484         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3485                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3486       continue;
3487 
3488     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3489     if (InnerSum->isZero())
3490       continue;
3491     Formula F = Base;
3492 
3493     // Add the remaining pieces of the add back into the new formula.
3494     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3495     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3496         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3497                                 InnerSumSC->getValue()->getZExtValue())) {
3498       F.UnfoldedOffset =
3499           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3500       if (IsScaledReg)
3501         F.ScaledReg = nullptr;
3502       else
3503         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3504     } else if (IsScaledReg)
3505       F.ScaledReg = InnerSum;
3506     else
3507       F.BaseRegs[Idx] = InnerSum;
3508 
3509     // Add J as its own register, or an unfolded immediate.
3510     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3511     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3512         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3513                                 SC->getValue()->getZExtValue()))
3514       F.UnfoldedOffset =
3515           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3516     else
3517       F.BaseRegs.push_back(*J);
3518     // We may have changed the number of register in base regs, adjust the
3519     // formula accordingly.
3520     F.canonicalize(*L);
3521 
3522     if (InsertFormula(LU, LUIdx, F))
3523       // If that formula hadn't been seen before, recurse to find more like
3524       // it.
3525       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
3526   }
3527 }
3528 
3529 /// Split out subexpressions from adds and the bases of addrecs.
3530 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3531                                          Formula Base, unsigned Depth) {
3532   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3533   // Arbitrarily cap recursion to protect compile time.
3534   if (Depth >= 3)
3535     return;
3536 
3537   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3538     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3539 
3540   if (Base.Scale == 1)
3541     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3542                                /* Idx */ -1, /* IsScaledReg */ true);
3543 }
3544 
3545 ///  Generate a formula consisting of all of the loop-dominating registers added
3546 /// into a single register.
3547 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3548                                        Formula Base) {
3549   // This method is only interesting on a plurality of registers.
3550   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
3551     return;
3552 
3553   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3554   // processing the formula.
3555   Base.unscale();
3556   Formula F = Base;
3557   F.BaseRegs.clear();
3558   SmallVector<const SCEV *, 4> Ops;
3559   for (const SCEV *BaseReg : Base.BaseRegs) {
3560     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3561         !SE.hasComputableLoopEvolution(BaseReg, L))
3562       Ops.push_back(BaseReg);
3563     else
3564       F.BaseRegs.push_back(BaseReg);
3565   }
3566   if (Ops.size() > 1) {
3567     const SCEV *Sum = SE.getAddExpr(Ops);
3568     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3569     // opportunity to fold something. For now, just ignore such cases
3570     // rather than proceed with zero in a register.
3571     if (!Sum->isZero()) {
3572       F.BaseRegs.push_back(Sum);
3573       F.canonicalize(*L);
3574       (void)InsertFormula(LU, LUIdx, F);
3575     }
3576   }
3577 }
3578 
3579 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
3580 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3581                                               const Formula &Base, size_t Idx,
3582                                               bool IsScaledReg) {
3583   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3584   GlobalValue *GV = ExtractSymbol(G, SE);
3585   if (G->isZero() || !GV)
3586     return;
3587   Formula F = Base;
3588   F.BaseGV = GV;
3589   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3590     return;
3591   if (IsScaledReg)
3592     F.ScaledReg = G;
3593   else
3594     F.BaseRegs[Idx] = G;
3595   (void)InsertFormula(LU, LUIdx, F);
3596 }
3597 
3598 /// Generate reuse formulae using symbolic offsets.
3599 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3600                                           Formula Base) {
3601   // We can't add a symbolic offset if the address already contains one.
3602   if (Base.BaseGV) return;
3603 
3604   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3605     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3606   if (Base.Scale == 1)
3607     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3608                                 /* IsScaledReg */ true);
3609 }
3610 
3611 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
3612 void LSRInstance::GenerateConstantOffsetsImpl(
3613     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3614     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3615   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3616   for (int64_t Offset : Worklist) {
3617     Formula F = Base;
3618     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3619     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3620                    LU.AccessTy, F)) {
3621       // Add the offset to the base register.
3622       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3623       // If it cancelled out, drop the base register, otherwise update it.
3624       if (NewG->isZero()) {
3625         if (IsScaledReg) {
3626           F.Scale = 0;
3627           F.ScaledReg = nullptr;
3628         } else
3629           F.deleteBaseReg(F.BaseRegs[Idx]);
3630         F.canonicalize(*L);
3631       } else if (IsScaledReg)
3632         F.ScaledReg = NewG;
3633       else
3634         F.BaseRegs[Idx] = NewG;
3635 
3636       (void)InsertFormula(LU, LUIdx, F);
3637     }
3638   }
3639 
3640   int64_t Imm = ExtractImmediate(G, SE);
3641   if (G->isZero() || Imm == 0)
3642     return;
3643   Formula F = Base;
3644   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3645   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3646     return;
3647   if (IsScaledReg)
3648     F.ScaledReg = G;
3649   else
3650     F.BaseRegs[Idx] = G;
3651   (void)InsertFormula(LU, LUIdx, F);
3652 }
3653 
3654 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3655 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3656                                           Formula Base) {
3657   // TODO: For now, just add the min and max offset, because it usually isn't
3658   // worthwhile looking at everything inbetween.
3659   SmallVector<int64_t, 2> Worklist;
3660   Worklist.push_back(LU.MinOffset);
3661   if (LU.MaxOffset != LU.MinOffset)
3662     Worklist.push_back(LU.MaxOffset);
3663 
3664   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3665     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3666   if (Base.Scale == 1)
3667     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3668                                 /* IsScaledReg */ true);
3669 }
3670 
3671 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3672 /// == y -> x*c == y*c.
3673 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3674                                          Formula Base) {
3675   if (LU.Kind != LSRUse::ICmpZero) return;
3676 
3677   // Determine the integer type for the base formula.
3678   Type *IntTy = Base.getType();
3679   if (!IntTy) return;
3680   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3681 
3682   // Don't do this if there is more than one offset.
3683   if (LU.MinOffset != LU.MaxOffset) return;
3684 
3685   // Check if transformation is valid. It is illegal to multiply pointer.
3686   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3687     return;
3688   for (const SCEV *BaseReg : Base.BaseRegs)
3689     if (BaseReg->getType()->isPointerTy())
3690       return;
3691   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3692 
3693   // Check each interesting stride.
3694   for (int64_t Factor : Factors) {
3695     // Check that the multiplication doesn't overflow.
3696     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3697       continue;
3698     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3699     if (NewBaseOffset / Factor != Base.BaseOffset)
3700       continue;
3701     // If the offset will be truncated at this use, check that it is in bounds.
3702     if (!IntTy->isPointerTy() &&
3703         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3704       continue;
3705 
3706     // Check that multiplying with the use offset doesn't overflow.
3707     int64_t Offset = LU.MinOffset;
3708     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3709       continue;
3710     Offset = (uint64_t)Offset * Factor;
3711     if (Offset / Factor != LU.MinOffset)
3712       continue;
3713     // If the offset will be truncated at this use, check that it is in bounds.
3714     if (!IntTy->isPointerTy() &&
3715         !ConstantInt::isValueValidForType(IntTy, Offset))
3716       continue;
3717 
3718     Formula F = Base;
3719     F.BaseOffset = NewBaseOffset;
3720 
3721     // Check that this scale is legal.
3722     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3723       continue;
3724 
3725     // Compensate for the use having MinOffset built into it.
3726     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3727 
3728     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3729 
3730     // Check that multiplying with each base register doesn't overflow.
3731     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3732       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3733       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3734         goto next;
3735     }
3736 
3737     // Check that multiplying with the scaled register doesn't overflow.
3738     if (F.ScaledReg) {
3739       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3740       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3741         continue;
3742     }
3743 
3744     // Check that multiplying with the unfolded offset doesn't overflow.
3745     if (F.UnfoldedOffset != 0) {
3746       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3747           Factor == -1)
3748         continue;
3749       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3750       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3751         continue;
3752       // If the offset will be truncated, check that it is in bounds.
3753       if (!IntTy->isPointerTy() &&
3754           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3755         continue;
3756     }
3757 
3758     // If we make it here and it's legal, add it.
3759     (void)InsertFormula(LU, LUIdx, F);
3760   next:;
3761   }
3762 }
3763 
3764 /// Generate stride factor reuse formulae by making use of scaled-offset address
3765 /// modes, for example.
3766 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3767   // Determine the integer type for the base formula.
3768   Type *IntTy = Base.getType();
3769   if (!IntTy) return;
3770 
3771   // If this Formula already has a scaled register, we can't add another one.
3772   // Try to unscale the formula to generate a better scale.
3773   if (Base.Scale != 0 && !Base.unscale())
3774     return;
3775 
3776   assert(Base.Scale == 0 && "unscale did not did its job!");
3777 
3778   // Check each interesting stride.
3779   for (int64_t Factor : Factors) {
3780     Base.Scale = Factor;
3781     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3782     // Check whether this scale is going to be legal.
3783     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3784                     Base)) {
3785       // As a special-case, handle special out-of-loop Basic users specially.
3786       // TODO: Reconsider this special case.
3787       if (LU.Kind == LSRUse::Basic &&
3788           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3789                      LU.AccessTy, Base) &&
3790           LU.AllFixupsOutsideLoop)
3791         LU.Kind = LSRUse::Special;
3792       else
3793         continue;
3794     }
3795     // For an ICmpZero, negating a solitary base register won't lead to
3796     // new solutions.
3797     if (LU.Kind == LSRUse::ICmpZero &&
3798         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3799       continue;
3800     // For each addrec base reg, if its loop is current loop, apply the scale.
3801     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3802       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3803       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
3804         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3805         if (FactorS->isZero())
3806           continue;
3807         // Divide out the factor, ignoring high bits, since we'll be
3808         // scaling the value back up in the end.
3809         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
3810           // TODO: This could be optimized to avoid all the copying.
3811           Formula F = Base;
3812           F.ScaledReg = Quotient;
3813           F.deleteBaseReg(F.BaseRegs[i]);
3814           // The canonical representation of 1*reg is reg, which is already in
3815           // Base. In that case, do not try to insert the formula, it will be
3816           // rejected anyway.
3817           if (F.Scale == 1 && (F.BaseRegs.empty() ||
3818                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
3819             continue;
3820           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
3821           // non canonical Formula with ScaledReg's loop not being L.
3822           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
3823             F.canonicalize(*L);
3824           (void)InsertFormula(LU, LUIdx, F);
3825         }
3826       }
3827     }
3828   }
3829 }
3830 
3831 /// Generate reuse formulae from different IV types.
3832 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
3833   // Don't bother truncating symbolic values.
3834   if (Base.BaseGV) return;
3835 
3836   // Determine the integer type for the base formula.
3837   Type *DstTy = Base.getType();
3838   if (!DstTy) return;
3839   DstTy = SE.getEffectiveSCEVType(DstTy);
3840 
3841   for (Type *SrcTy : Types) {
3842     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
3843       Formula F = Base;
3844 
3845       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
3846       for (const SCEV *&BaseReg : F.BaseRegs)
3847         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
3848 
3849       // TODO: This assumes we've done basic processing on all uses and
3850       // have an idea what the register usage is.
3851       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
3852         continue;
3853 
3854       F.canonicalize(*L);
3855       (void)InsertFormula(LU, LUIdx, F);
3856     }
3857   }
3858 }
3859 
3860 namespace {
3861 
3862 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
3863 /// modifications so that the search phase doesn't have to worry about the data
3864 /// structures moving underneath it.
3865 struct WorkItem {
3866   size_t LUIdx;
3867   int64_t Imm;
3868   const SCEV *OrigReg;
3869 
3870   WorkItem(size_t LI, int64_t I, const SCEV *R)
3871       : LUIdx(LI), Imm(I), OrigReg(R) {}
3872 
3873   void print(raw_ostream &OS) const;
3874   void dump() const;
3875 };
3876 
3877 } // end anonymous namespace
3878 
3879 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
3880 void WorkItem::print(raw_ostream &OS) const {
3881   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
3882      << " , add offset " << Imm;
3883 }
3884 
3885 LLVM_DUMP_METHOD void WorkItem::dump() const {
3886   print(errs()); errs() << '\n';
3887 }
3888 #endif
3889 
3890 /// Look for registers which are a constant distance apart and try to form reuse
3891 /// opportunities between them.
3892 void LSRInstance::GenerateCrossUseConstantOffsets() {
3893   // Group the registers by their value without any added constant offset.
3894   using ImmMapTy = std::map<int64_t, const SCEV *>;
3895 
3896   DenseMap<const SCEV *, ImmMapTy> Map;
3897   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
3898   SmallVector<const SCEV *, 8> Sequence;
3899   for (const SCEV *Use : RegUses) {
3900     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
3901     int64_t Imm = ExtractImmediate(Reg, SE);
3902     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
3903     if (Pair.second)
3904       Sequence.push_back(Reg);
3905     Pair.first->second.insert(std::make_pair(Imm, Use));
3906     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
3907   }
3908 
3909   // Now examine each set of registers with the same base value. Build up
3910   // a list of work to do and do the work in a separate step so that we're
3911   // not adding formulae and register counts while we're searching.
3912   SmallVector<WorkItem, 32> WorkItems;
3913   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
3914   for (const SCEV *Reg : Sequence) {
3915     const ImmMapTy &Imms = Map.find(Reg)->second;
3916 
3917     // It's not worthwhile looking for reuse if there's only one offset.
3918     if (Imms.size() == 1)
3919       continue;
3920 
3921     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
3922           for (const auto &Entry : Imms)
3923             dbgs() << ' ' << Entry.first;
3924           dbgs() << '\n');
3925 
3926     // Examine each offset.
3927     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
3928          J != JE; ++J) {
3929       const SCEV *OrigReg = J->second;
3930 
3931       int64_t JImm = J->first;
3932       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
3933 
3934       if (!isa<SCEVConstant>(OrigReg) &&
3935           UsedByIndicesMap[Reg].count() == 1) {
3936         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
3937         continue;
3938       }
3939 
3940       // Conservatively examine offsets between this orig reg a few selected
3941       // other orig regs.
3942       ImmMapTy::const_iterator OtherImms[] = {
3943         Imms.begin(), std::prev(Imms.end()),
3944         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
3945                          2)
3946       };
3947       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
3948         ImmMapTy::const_iterator M = OtherImms[i];
3949         if (M == J || M == JE) continue;
3950 
3951         // Compute the difference between the two.
3952         int64_t Imm = (uint64_t)JImm - M->first;
3953         for (unsigned LUIdx : UsedByIndices.set_bits())
3954           // Make a memo of this use, offset, and register tuple.
3955           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
3956             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
3957       }
3958     }
3959   }
3960 
3961   Map.clear();
3962   Sequence.clear();
3963   UsedByIndicesMap.clear();
3964   UniqueItems.clear();
3965 
3966   // Now iterate through the worklist and add new formulae.
3967   for (const WorkItem &WI : WorkItems) {
3968     size_t LUIdx = WI.LUIdx;
3969     LSRUse &LU = Uses[LUIdx];
3970     int64_t Imm = WI.Imm;
3971     const SCEV *OrigReg = WI.OrigReg;
3972 
3973     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
3974     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
3975     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
3976 
3977     // TODO: Use a more targeted data structure.
3978     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
3979       Formula F = LU.Formulae[L];
3980       // FIXME: The code for the scaled and unscaled registers looks
3981       // very similar but slightly different. Investigate if they
3982       // could be merged. That way, we would not have to unscale the
3983       // Formula.
3984       F.unscale();
3985       // Use the immediate in the scaled register.
3986       if (F.ScaledReg == OrigReg) {
3987         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
3988         // Don't create 50 + reg(-50).
3989         if (F.referencesReg(SE.getSCEV(
3990                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
3991           continue;
3992         Formula NewF = F;
3993         NewF.BaseOffset = Offset;
3994         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3995                         NewF))
3996           continue;
3997         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
3998 
3999         // If the new scale is a constant in a register, and adding the constant
4000         // value to the immediate would produce a value closer to zero than the
4001         // immediate itself, then the formula isn't worthwhile.
4002         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4003           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4004               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4005                   .ule(std::abs(NewF.BaseOffset)))
4006             continue;
4007 
4008         // OK, looks good.
4009         NewF.canonicalize(*this->L);
4010         (void)InsertFormula(LU, LUIdx, NewF);
4011       } else {
4012         // Use the immediate in a base register.
4013         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4014           const SCEV *BaseReg = F.BaseRegs[N];
4015           if (BaseReg != OrigReg)
4016             continue;
4017           Formula NewF = F;
4018           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4019           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4020                           LU.Kind, LU.AccessTy, NewF)) {
4021             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4022               continue;
4023             NewF = F;
4024             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4025           }
4026           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4027 
4028           // If the new formula has a constant in a register, and adding the
4029           // constant value to the immediate would produce a value closer to
4030           // zero than the immediate itself, then the formula isn't worthwhile.
4031           for (const SCEV *NewReg : NewF.BaseRegs)
4032             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4033               if ((C->getAPInt() + NewF.BaseOffset)
4034                       .abs()
4035                       .slt(std::abs(NewF.BaseOffset)) &&
4036                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4037                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4038                 goto skip_formula;
4039 
4040           // Ok, looks good.
4041           NewF.canonicalize(*this->L);
4042           (void)InsertFormula(LU, LUIdx, NewF);
4043           break;
4044         skip_formula:;
4045         }
4046       }
4047     }
4048   }
4049 }
4050 
4051 /// Generate formulae for each use.
4052 void
4053 LSRInstance::GenerateAllReuseFormulae() {
4054   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4055   // queries are more precise.
4056   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4057     LSRUse &LU = Uses[LUIdx];
4058     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4059       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4060     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4061       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4062   }
4063   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4064     LSRUse &LU = Uses[LUIdx];
4065     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4066       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4067     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4068       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4069     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4070       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4071     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4072       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4073   }
4074   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4075     LSRUse &LU = Uses[LUIdx];
4076     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4077       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4078   }
4079 
4080   GenerateCrossUseConstantOffsets();
4081 
4082   DEBUG(dbgs() << "\n"
4083                   "After generating reuse formulae:\n";
4084         print_uses(dbgs()));
4085 }
4086 
4087 /// If there are multiple formulae with the same set of registers used
4088 /// by other uses, pick the best one and delete the others.
4089 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4090   DenseSet<const SCEV *> VisitedRegs;
4091   SmallPtrSet<const SCEV *, 16> Regs;
4092   SmallPtrSet<const SCEV *, 16> LoserRegs;
4093 #ifndef NDEBUG
4094   bool ChangedFormulae = false;
4095 #endif
4096 
4097   // Collect the best formula for each unique set of shared registers. This
4098   // is reset for each use.
4099   using BestFormulaeTy =
4100       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4101 
4102   BestFormulaeTy BestFormulae;
4103 
4104   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4105     LSRUse &LU = Uses[LUIdx];
4106     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4107 
4108     bool Any = false;
4109     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4110          FIdx != NumForms; ++FIdx) {
4111       Formula &F = LU.Formulae[FIdx];
4112 
4113       // Some formulas are instant losers. For example, they may depend on
4114       // nonexistent AddRecs from other loops. These need to be filtered
4115       // immediately, otherwise heuristics could choose them over others leading
4116       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4117       // avoids the need to recompute this information across formulae using the
4118       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4119       // the corresponding bad register from the Regs set.
4120       Cost CostF;
4121       Regs.clear();
4122       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs);
4123       if (CostF.isLoser()) {
4124         // During initial formula generation, undesirable formulae are generated
4125         // by uses within other loops that have some non-trivial address mode or
4126         // use the postinc form of the IV. LSR needs to provide these formulae
4127         // as the basis of rediscovering the desired formula that uses an AddRec
4128         // corresponding to the existing phi. Once all formulae have been
4129         // generated, these initial losers may be pruned.
4130         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4131               dbgs() << "\n");
4132       }
4133       else {
4134         SmallVector<const SCEV *, 4> Key;
4135         for (const SCEV *Reg : F.BaseRegs) {
4136           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4137             Key.push_back(Reg);
4138         }
4139         if (F.ScaledReg &&
4140             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4141           Key.push_back(F.ScaledReg);
4142         // Unstable sort by host order ok, because this is only used for
4143         // uniquifying.
4144         std::sort(Key.begin(), Key.end());
4145 
4146         std::pair<BestFormulaeTy::const_iterator, bool> P =
4147           BestFormulae.insert(std::make_pair(Key, FIdx));
4148         if (P.second)
4149           continue;
4150 
4151         Formula &Best = LU.Formulae[P.first->second];
4152 
4153         Cost CostBest;
4154         Regs.clear();
4155         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU);
4156         if (CostF.isLess(CostBest, TTI))
4157           std::swap(F, Best);
4158         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4159               dbgs() << "\n"
4160                         "    in favor of formula "; Best.print(dbgs());
4161               dbgs() << '\n');
4162       }
4163 #ifndef NDEBUG
4164       ChangedFormulae = true;
4165 #endif
4166       LU.DeleteFormula(F);
4167       --FIdx;
4168       --NumForms;
4169       Any = true;
4170     }
4171 
4172     // Now that we've filtered out some formulae, recompute the Regs set.
4173     if (Any)
4174       LU.RecomputeRegs(LUIdx, RegUses);
4175 
4176     // Reset this to prepare for the next use.
4177     BestFormulae.clear();
4178   }
4179 
4180   DEBUG(if (ChangedFormulae) {
4181           dbgs() << "\n"
4182                     "After filtering out undesirable candidates:\n";
4183           print_uses(dbgs());
4184         });
4185 }
4186 
4187 // This is a rough guess that seems to work fairly well.
4188 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max();
4189 
4190 /// Estimate the worst-case number of solutions the solver might have to
4191 /// consider. It almost never considers this many solutions because it prune the
4192 /// search space, but the pruning isn't always sufficient.
4193 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4194   size_t Power = 1;
4195   for (const LSRUse &LU : Uses) {
4196     size_t FSize = LU.Formulae.size();
4197     if (FSize >= ComplexityLimit) {
4198       Power = ComplexityLimit;
4199       break;
4200     }
4201     Power *= FSize;
4202     if (Power >= ComplexityLimit)
4203       break;
4204   }
4205   return Power;
4206 }
4207 
4208 /// When one formula uses a superset of the registers of another formula, it
4209 /// won't help reduce register pressure (though it may not necessarily hurt
4210 /// register pressure); remove it to simplify the system.
4211 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4212   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4213     DEBUG(dbgs() << "The search space is too complex.\n");
4214 
4215     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4216                     "which use a superset of registers used by other "
4217                     "formulae.\n");
4218 
4219     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4220       LSRUse &LU = Uses[LUIdx];
4221       bool Any = false;
4222       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4223         Formula &F = LU.Formulae[i];
4224         // Look for a formula with a constant or GV in a register. If the use
4225         // also has a formula with that same value in an immediate field,
4226         // delete the one that uses a register.
4227         for (SmallVectorImpl<const SCEV *>::const_iterator
4228              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4229           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4230             Formula NewF = F;
4231             NewF.BaseOffset += C->getValue()->getSExtValue();
4232             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4233                                 (I - F.BaseRegs.begin()));
4234             if (LU.HasFormulaWithSameRegs(NewF)) {
4235               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4236               LU.DeleteFormula(F);
4237               --i;
4238               --e;
4239               Any = true;
4240               break;
4241             }
4242           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4243             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4244               if (!F.BaseGV) {
4245                 Formula NewF = F;
4246                 NewF.BaseGV = GV;
4247                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4248                                     (I - F.BaseRegs.begin()));
4249                 if (LU.HasFormulaWithSameRegs(NewF)) {
4250                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4251                         dbgs() << '\n');
4252                   LU.DeleteFormula(F);
4253                   --i;
4254                   --e;
4255                   Any = true;
4256                   break;
4257                 }
4258               }
4259           }
4260         }
4261       }
4262       if (Any)
4263         LU.RecomputeRegs(LUIdx, RegUses);
4264     }
4265 
4266     DEBUG(dbgs() << "After pre-selection:\n";
4267           print_uses(dbgs()));
4268   }
4269 }
4270 
4271 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4272 /// allocate a single register for them.
4273 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4274   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4275     return;
4276 
4277   DEBUG(dbgs() << "The search space is too complex.\n"
4278                   "Narrowing the search space by assuming that uses separated "
4279                   "by a constant offset will use the same registers.\n");
4280 
4281   // This is especially useful for unrolled loops.
4282 
4283   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4284     LSRUse &LU = Uses[LUIdx];
4285     for (const Formula &F : LU.Formulae) {
4286       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4287         continue;
4288 
4289       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4290       if (!LUThatHas)
4291         continue;
4292 
4293       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4294                               LU.Kind, LU.AccessTy))
4295         continue;
4296 
4297       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4298 
4299       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4300 
4301       // Transfer the fixups of LU to LUThatHas.
4302       for (LSRFixup &Fixup : LU.Fixups) {
4303         Fixup.Offset += F.BaseOffset;
4304         LUThatHas->pushFixup(Fixup);
4305         DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4306       }
4307 
4308       // Delete formulae from the new use which are no longer legal.
4309       bool Any = false;
4310       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4311         Formula &F = LUThatHas->Formulae[i];
4312         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4313                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4314           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4315                 dbgs() << '\n');
4316           LUThatHas->DeleteFormula(F);
4317           --i;
4318           --e;
4319           Any = true;
4320         }
4321       }
4322 
4323       if (Any)
4324         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4325 
4326       // Delete the old use.
4327       DeleteUse(LU, LUIdx);
4328       --LUIdx;
4329       --NumUses;
4330       break;
4331     }
4332   }
4333 
4334   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4335 }
4336 
4337 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4338 /// we've done more filtering, as it may be able to find more formulae to
4339 /// eliminate.
4340 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4341   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4342     DEBUG(dbgs() << "The search space is too complex.\n");
4343 
4344     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4345                     "undesirable dedicated registers.\n");
4346 
4347     FilterOutUndesirableDedicatedRegisters();
4348 
4349     DEBUG(dbgs() << "After pre-selection:\n";
4350           print_uses(dbgs()));
4351   }
4352 }
4353 
4354 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4355 /// Pick the best one and delete the others.
4356 /// This narrowing heuristic is to keep as many formulae with different
4357 /// Scale and ScaledReg pair as possible while narrowing the search space.
4358 /// The benefit is that it is more likely to find out a better solution
4359 /// from a formulae set with more Scale and ScaledReg variations than
4360 /// a formulae set with the same Scale and ScaledReg. The picking winner
4361 /// reg heurstic will often keep the formulae with the same Scale and
4362 /// ScaledReg and filter others, and we want to avoid that if possible.
4363 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4364   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4365     return;
4366 
4367   DEBUG(dbgs() << "The search space is too complex.\n"
4368                   "Narrowing the search space by choosing the best Formula "
4369                   "from the Formulae with the same Scale and ScaledReg.\n");
4370 
4371   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4372   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4373 
4374   BestFormulaeTy BestFormulae;
4375 #ifndef NDEBUG
4376   bool ChangedFormulae = false;
4377 #endif
4378   DenseSet<const SCEV *> VisitedRegs;
4379   SmallPtrSet<const SCEV *, 16> Regs;
4380 
4381   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4382     LSRUse &LU = Uses[LUIdx];
4383     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
4384 
4385     // Return true if Formula FA is better than Formula FB.
4386     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4387       // First we will try to choose the Formula with fewer new registers.
4388       // For a register used by current Formula, the more the register is
4389       // shared among LSRUses, the less we increase the register number
4390       // counter of the formula.
4391       size_t FARegNum = 0;
4392       for (const SCEV *Reg : FA.BaseRegs) {
4393         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4394         FARegNum += (NumUses - UsedByIndices.count() + 1);
4395       }
4396       size_t FBRegNum = 0;
4397       for (const SCEV *Reg : FB.BaseRegs) {
4398         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4399         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4400       }
4401       if (FARegNum != FBRegNum)
4402         return FARegNum < FBRegNum;
4403 
4404       // If the new register numbers are the same, choose the Formula with
4405       // less Cost.
4406       Cost CostFA, CostFB;
4407       Regs.clear();
4408       CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU);
4409       Regs.clear();
4410       CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU);
4411       return CostFA.isLess(CostFB, TTI);
4412     };
4413 
4414     bool Any = false;
4415     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4416          ++FIdx) {
4417       Formula &F = LU.Formulae[FIdx];
4418       if (!F.ScaledReg)
4419         continue;
4420       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4421       if (P.second)
4422         continue;
4423 
4424       Formula &Best = LU.Formulae[P.first->second];
4425       if (IsBetterThan(F, Best))
4426         std::swap(F, Best);
4427       DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4428             dbgs() << "\n"
4429                       "    in favor of formula ";
4430             Best.print(dbgs()); dbgs() << '\n');
4431 #ifndef NDEBUG
4432       ChangedFormulae = true;
4433 #endif
4434       LU.DeleteFormula(F);
4435       --FIdx;
4436       --NumForms;
4437       Any = true;
4438     }
4439     if (Any)
4440       LU.RecomputeRegs(LUIdx, RegUses);
4441 
4442     // Reset this to prepare for the next use.
4443     BestFormulae.clear();
4444   }
4445 
4446   DEBUG(if (ChangedFormulae) {
4447     dbgs() << "\n"
4448               "After filtering out undesirable candidates:\n";
4449     print_uses(dbgs());
4450   });
4451 }
4452 
4453 /// The function delete formulas with high registers number expectation.
4454 /// Assuming we don't know the value of each formula (already delete
4455 /// all inefficient), generate probability of not selecting for each
4456 /// register.
4457 /// For example,
4458 /// Use1:
4459 ///  reg(a) + reg({0,+,1})
4460 ///  reg(a) + reg({-1,+,1}) + 1
4461 ///  reg({a,+,1})
4462 /// Use2:
4463 ///  reg(b) + reg({0,+,1})
4464 ///  reg(b) + reg({-1,+,1}) + 1
4465 ///  reg({b,+,1})
4466 /// Use3:
4467 ///  reg(c) + reg(b) + reg({0,+,1})
4468 ///  reg(c) + reg({b,+,1})
4469 ///
4470 /// Probability of not selecting
4471 ///                 Use1   Use2    Use3
4472 /// reg(a)         (1/3) *   1   *   1
4473 /// reg(b)           1   * (1/3) * (1/2)
4474 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4475 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4476 /// reg({a,+,1})   (2/3) *   1   *   1
4477 /// reg({b,+,1})     1   * (2/3) * (2/3)
4478 /// reg(c)           1   *   1   *   0
4479 ///
4480 /// Now count registers number mathematical expectation for each formula:
4481 /// Note that for each use we exclude probability if not selecting for the use.
4482 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4483 /// probabilty 1/3 of not selecting for Use1).
4484 /// Use1:
4485 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4486 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4487 ///  reg({a,+,1})                   1
4488 /// Use2:
4489 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4490 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4491 ///  reg({b,+,1})                   2/3
4492 /// Use3:
4493 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4494 ///  reg(c) + reg({b,+,1})          1 + 2/3
4495 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4496   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4497     return;
4498   // Ok, we have too many of formulae on our hands to conveniently handle.
4499   // Use a rough heuristic to thin out the list.
4500 
4501   // Set of Regs wich will be 100% used in final solution.
4502   // Used in each formula of a solution (in example above this is reg(c)).
4503   // We can skip them in calculations.
4504   SmallPtrSet<const SCEV *, 4> UniqRegs;
4505   DEBUG(dbgs() << "The search space is too complex.\n");
4506 
4507   // Map each register to probability of not selecting
4508   DenseMap <const SCEV *, float> RegNumMap;
4509   for (const SCEV *Reg : RegUses) {
4510     if (UniqRegs.count(Reg))
4511       continue;
4512     float PNotSel = 1;
4513     for (const LSRUse &LU : Uses) {
4514       if (!LU.Regs.count(Reg))
4515         continue;
4516       float P = LU.getNotSelectedProbability(Reg);
4517       if (P != 0.0)
4518         PNotSel *= P;
4519       else
4520         UniqRegs.insert(Reg);
4521     }
4522     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4523   }
4524 
4525   DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n");
4526 
4527   // Delete formulas where registers number expectation is high.
4528   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4529     LSRUse &LU = Uses[LUIdx];
4530     // If nothing to delete - continue.
4531     if (LU.Formulae.size() < 2)
4532       continue;
4533     // This is temporary solution to test performance. Float should be
4534     // replaced with round independent type (based on integers) to avoid
4535     // different results for different target builds.
4536     float FMinRegNum = LU.Formulae[0].getNumRegs();
4537     float FMinARegNum = LU.Formulae[0].getNumRegs();
4538     size_t MinIdx = 0;
4539     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4540       Formula &F = LU.Formulae[i];
4541       float FRegNum = 0;
4542       float FARegNum = 0;
4543       for (const SCEV *BaseReg : F.BaseRegs) {
4544         if (UniqRegs.count(BaseReg))
4545           continue;
4546         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4547         if (isa<SCEVAddRecExpr>(BaseReg))
4548           FARegNum +=
4549               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4550       }
4551       if (const SCEV *ScaledReg = F.ScaledReg) {
4552         if (!UniqRegs.count(ScaledReg)) {
4553           FRegNum +=
4554               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4555           if (isa<SCEVAddRecExpr>(ScaledReg))
4556             FARegNum +=
4557                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4558         }
4559       }
4560       if (FMinRegNum > FRegNum ||
4561           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4562         FMinRegNum = FRegNum;
4563         FMinARegNum = FARegNum;
4564         MinIdx = i;
4565       }
4566     }
4567     DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4568           dbgs() << " with min reg num " << FMinRegNum << '\n');
4569     if (MinIdx != 0)
4570       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4571     while (LU.Formulae.size() != 1) {
4572       DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4573             dbgs() << '\n');
4574       LU.Formulae.pop_back();
4575     }
4576     LU.RecomputeRegs(LUIdx, RegUses);
4577     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4578     Formula &F = LU.Formulae[0];
4579     DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4580     // When we choose the formula, the regs become unique.
4581     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4582     if (F.ScaledReg)
4583       UniqRegs.insert(F.ScaledReg);
4584   }
4585   DEBUG(dbgs() << "After pre-selection:\n";
4586   print_uses(dbgs()));
4587 }
4588 
4589 /// Pick a register which seems likely to be profitable, and then in any use
4590 /// which has any reference to that register, delete all formulae which do not
4591 /// reference that register.
4592 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4593   // With all other options exhausted, loop until the system is simple
4594   // enough to handle.
4595   SmallPtrSet<const SCEV *, 4> Taken;
4596   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4597     // Ok, we have too many of formulae on our hands to conveniently handle.
4598     // Use a rough heuristic to thin out the list.
4599     DEBUG(dbgs() << "The search space is too complex.\n");
4600 
4601     // Pick the register which is used by the most LSRUses, which is likely
4602     // to be a good reuse register candidate.
4603     const SCEV *Best = nullptr;
4604     unsigned BestNum = 0;
4605     for (const SCEV *Reg : RegUses) {
4606       if (Taken.count(Reg))
4607         continue;
4608       if (!Best) {
4609         Best = Reg;
4610         BestNum = RegUses.getUsedByIndices(Reg).count();
4611       } else {
4612         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4613         if (Count > BestNum) {
4614           Best = Reg;
4615           BestNum = Count;
4616         }
4617       }
4618     }
4619 
4620     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4621                  << " will yield profitable reuse.\n");
4622     Taken.insert(Best);
4623 
4624     // In any use with formulae which references this register, delete formulae
4625     // which don't reference it.
4626     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4627       LSRUse &LU = Uses[LUIdx];
4628       if (!LU.Regs.count(Best)) continue;
4629 
4630       bool Any = false;
4631       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4632         Formula &F = LU.Formulae[i];
4633         if (!F.referencesReg(Best)) {
4634           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4635           LU.DeleteFormula(F);
4636           --e;
4637           --i;
4638           Any = true;
4639           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4640           continue;
4641         }
4642       }
4643 
4644       if (Any)
4645         LU.RecomputeRegs(LUIdx, RegUses);
4646     }
4647 
4648     DEBUG(dbgs() << "After pre-selection:\n";
4649           print_uses(dbgs()));
4650   }
4651 }
4652 
4653 /// If there are an extraordinary number of formulae to choose from, use some
4654 /// rough heuristics to prune down the number of formulae. This keeps the main
4655 /// solver from taking an extraordinary amount of time in some worst-case
4656 /// scenarios.
4657 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4658   NarrowSearchSpaceByDetectingSupersets();
4659   NarrowSearchSpaceByCollapsingUnrolledCode();
4660   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4661   if (FilterSameScaledReg)
4662     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4663   if (LSRExpNarrow)
4664     NarrowSearchSpaceByDeletingCostlyFormulas();
4665   else
4666     NarrowSearchSpaceByPickingWinnerRegs();
4667 }
4668 
4669 /// This is the recursive solver.
4670 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4671                                Cost &SolutionCost,
4672                                SmallVectorImpl<const Formula *> &Workspace,
4673                                const Cost &CurCost,
4674                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4675                                DenseSet<const SCEV *> &VisitedRegs) const {
4676   // Some ideas:
4677   //  - prune more:
4678   //    - use more aggressive filtering
4679   //    - sort the formula so that the most profitable solutions are found first
4680   //    - sort the uses too
4681   //  - search faster:
4682   //    - don't compute a cost, and then compare. compare while computing a cost
4683   //      and bail early.
4684   //    - track register sets with SmallBitVector
4685 
4686   const LSRUse &LU = Uses[Workspace.size()];
4687 
4688   // If this use references any register that's already a part of the
4689   // in-progress solution, consider it a requirement that a formula must
4690   // reference that register in order to be considered. This prunes out
4691   // unprofitable searching.
4692   SmallSetVector<const SCEV *, 4> ReqRegs;
4693   for (const SCEV *S : CurRegs)
4694     if (LU.Regs.count(S))
4695       ReqRegs.insert(S);
4696 
4697   SmallPtrSet<const SCEV *, 16> NewRegs;
4698   Cost NewCost;
4699   for (const Formula &F : LU.Formulae) {
4700     // Ignore formulae which may not be ideal in terms of register reuse of
4701     // ReqRegs.  The formula should use all required registers before
4702     // introducing new ones.
4703     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4704     for (const SCEV *Reg : ReqRegs) {
4705       if ((F.ScaledReg && F.ScaledReg == Reg) ||
4706           is_contained(F.BaseRegs, Reg)) {
4707         --NumReqRegsToFind;
4708         if (NumReqRegsToFind == 0)
4709           break;
4710       }
4711     }
4712     if (NumReqRegsToFind != 0) {
4713       // If none of the formulae satisfied the required registers, then we could
4714       // clear ReqRegs and try again. Currently, we simply give up in this case.
4715       continue;
4716     }
4717 
4718     // Evaluate the cost of the current formula. If it's already worse than
4719     // the current best, prune the search at that point.
4720     NewCost = CurCost;
4721     NewRegs = CurRegs;
4722     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU);
4723     if (NewCost.isLess(SolutionCost, TTI)) {
4724       Workspace.push_back(&F);
4725       if (Workspace.size() != Uses.size()) {
4726         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
4727                      NewRegs, VisitedRegs);
4728         if (F.getNumRegs() == 1 && Workspace.size() == 1)
4729           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
4730       } else {
4731         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
4732               dbgs() << ".\n Regs:";
4733               for (const SCEV *S : NewRegs)
4734                 dbgs() << ' ' << *S;
4735               dbgs() << '\n');
4736 
4737         SolutionCost = NewCost;
4738         Solution = Workspace;
4739       }
4740       Workspace.pop_back();
4741     }
4742   }
4743 }
4744 
4745 /// Choose one formula from each use. Return the results in the given Solution
4746 /// vector.
4747 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
4748   SmallVector<const Formula *, 8> Workspace;
4749   Cost SolutionCost;
4750   SolutionCost.Lose();
4751   Cost CurCost;
4752   SmallPtrSet<const SCEV *, 16> CurRegs;
4753   DenseSet<const SCEV *> VisitedRegs;
4754   Workspace.reserve(Uses.size());
4755 
4756   // SolveRecurse does all the work.
4757   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
4758                CurRegs, VisitedRegs);
4759   if (Solution.empty()) {
4760     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
4761     return;
4762   }
4763 
4764   // Ok, we've now made all our decisions.
4765   DEBUG(dbgs() << "\n"
4766                   "The chosen solution requires "; SolutionCost.print(dbgs());
4767         dbgs() << ":\n";
4768         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
4769           dbgs() << "  ";
4770           Uses[i].print(dbgs());
4771           dbgs() << "\n"
4772                     "    ";
4773           Solution[i]->print(dbgs());
4774           dbgs() << '\n';
4775         });
4776 
4777   assert(Solution.size() == Uses.size() && "Malformed solution!");
4778 }
4779 
4780 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
4781 /// we can go while still being dominated by the input positions. This helps
4782 /// canonicalize the insert position, which encourages sharing.
4783 BasicBlock::iterator
4784 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
4785                                  const SmallVectorImpl<Instruction *> &Inputs)
4786                                                                          const {
4787   Instruction *Tentative = &*IP;
4788   while (true) {
4789     bool AllDominate = true;
4790     Instruction *BetterPos = nullptr;
4791     // Don't bother attempting to insert before a catchswitch, their basic block
4792     // cannot have other non-PHI instructions.
4793     if (isa<CatchSwitchInst>(Tentative))
4794       return IP;
4795 
4796     for (Instruction *Inst : Inputs) {
4797       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
4798         AllDominate = false;
4799         break;
4800       }
4801       // Attempt to find an insert position in the middle of the block,
4802       // instead of at the end, so that it can be used for other expansions.
4803       if (Tentative->getParent() == Inst->getParent() &&
4804           (!BetterPos || !DT.dominates(Inst, BetterPos)))
4805         BetterPos = &*std::next(BasicBlock::iterator(Inst));
4806     }
4807     if (!AllDominate)
4808       break;
4809     if (BetterPos)
4810       IP = BetterPos->getIterator();
4811     else
4812       IP = Tentative->getIterator();
4813 
4814     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
4815     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
4816 
4817     BasicBlock *IDom;
4818     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
4819       if (!Rung) return IP;
4820       Rung = Rung->getIDom();
4821       if (!Rung) return IP;
4822       IDom = Rung->getBlock();
4823 
4824       // Don't climb into a loop though.
4825       const Loop *IDomLoop = LI.getLoopFor(IDom);
4826       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
4827       if (IDomDepth <= IPLoopDepth &&
4828           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
4829         break;
4830     }
4831 
4832     Tentative = IDom->getTerminator();
4833   }
4834 
4835   return IP;
4836 }
4837 
4838 /// Determine an input position which will be dominated by the operands and
4839 /// which will dominate the result.
4840 BasicBlock::iterator
4841 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
4842                                            const LSRFixup &LF,
4843                                            const LSRUse &LU,
4844                                            SCEVExpander &Rewriter) const {
4845   // Collect some instructions which must be dominated by the
4846   // expanding replacement. These must be dominated by any operands that
4847   // will be required in the expansion.
4848   SmallVector<Instruction *, 4> Inputs;
4849   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
4850     Inputs.push_back(I);
4851   if (LU.Kind == LSRUse::ICmpZero)
4852     if (Instruction *I =
4853           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
4854       Inputs.push_back(I);
4855   if (LF.PostIncLoops.count(L)) {
4856     if (LF.isUseFullyOutsideLoop(L))
4857       Inputs.push_back(L->getLoopLatch()->getTerminator());
4858     else
4859       Inputs.push_back(IVIncInsertPos);
4860   }
4861   // The expansion must also be dominated by the increment positions of any
4862   // loops it for which it is using post-inc mode.
4863   for (const Loop *PIL : LF.PostIncLoops) {
4864     if (PIL == L) continue;
4865 
4866     // Be dominated by the loop exit.
4867     SmallVector<BasicBlock *, 4> ExitingBlocks;
4868     PIL->getExitingBlocks(ExitingBlocks);
4869     if (!ExitingBlocks.empty()) {
4870       BasicBlock *BB = ExitingBlocks[0];
4871       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
4872         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
4873       Inputs.push_back(BB->getTerminator());
4874     }
4875   }
4876 
4877   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
4878          && !isa<DbgInfoIntrinsic>(LowestIP) &&
4879          "Insertion point must be a normal instruction");
4880 
4881   // Then, climb up the immediate dominator tree as far as we can go while
4882   // still being dominated by the input positions.
4883   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
4884 
4885   // Don't insert instructions before PHI nodes.
4886   while (isa<PHINode>(IP)) ++IP;
4887 
4888   // Ignore landingpad instructions.
4889   while (IP->isEHPad()) ++IP;
4890 
4891   // Ignore debug intrinsics.
4892   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
4893 
4894   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
4895   // IP consistent across expansions and allows the previously inserted
4896   // instructions to be reused by subsequent expansion.
4897   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
4898     ++IP;
4899 
4900   return IP;
4901 }
4902 
4903 /// Emit instructions for the leading candidate expression for this LSRUse (this
4904 /// is called "expanding").
4905 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
4906                            const Formula &F, BasicBlock::iterator IP,
4907                            SCEVExpander &Rewriter,
4908                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
4909   if (LU.RigidFormula)
4910     return LF.OperandValToReplace;
4911 
4912   // Determine an input position which will be dominated by the operands and
4913   // which will dominate the result.
4914   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
4915   Rewriter.setInsertPoint(&*IP);
4916 
4917   // Inform the Rewriter if we have a post-increment use, so that it can
4918   // perform an advantageous expansion.
4919   Rewriter.setPostInc(LF.PostIncLoops);
4920 
4921   // This is the type that the user actually needs.
4922   Type *OpTy = LF.OperandValToReplace->getType();
4923   // This will be the type that we'll initially expand to.
4924   Type *Ty = F.getType();
4925   if (!Ty)
4926     // No type known; just expand directly to the ultimate type.
4927     Ty = OpTy;
4928   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
4929     // Expand directly to the ultimate type if it's the right size.
4930     Ty = OpTy;
4931   // This is the type to do integer arithmetic in.
4932   Type *IntTy = SE.getEffectiveSCEVType(Ty);
4933 
4934   // Build up a list of operands to add together to form the full base.
4935   SmallVector<const SCEV *, 8> Ops;
4936 
4937   // Expand the BaseRegs portion.
4938   for (const SCEV *Reg : F.BaseRegs) {
4939     assert(!Reg->isZero() && "Zero allocated in a base register!");
4940 
4941     // If we're expanding for a post-inc user, make the post-inc adjustment.
4942     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
4943     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
4944   }
4945 
4946   // Expand the ScaledReg portion.
4947   Value *ICmpScaledV = nullptr;
4948   if (F.Scale != 0) {
4949     const SCEV *ScaledS = F.ScaledReg;
4950 
4951     // If we're expanding for a post-inc user, make the post-inc adjustment.
4952     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
4953     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
4954 
4955     if (LU.Kind == LSRUse::ICmpZero) {
4956       // Expand ScaleReg as if it was part of the base regs.
4957       if (F.Scale == 1)
4958         Ops.push_back(
4959             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
4960       else {
4961         // An interesting way of "folding" with an icmp is to use a negated
4962         // scale, which we'll implement by inserting it into the other operand
4963         // of the icmp.
4964         assert(F.Scale == -1 &&
4965                "The only scale supported by ICmpZero uses is -1!");
4966         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
4967       }
4968     } else {
4969       // Otherwise just expand the scaled register and an explicit scale,
4970       // which is expected to be matched as part of the address.
4971 
4972       // Flush the operand list to suppress SCEVExpander hoisting address modes.
4973       // Unless the addressing mode will not be folded.
4974       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
4975           isAMCompletelyFolded(TTI, LU, F)) {
4976         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4977         Ops.clear();
4978         Ops.push_back(SE.getUnknown(FullV));
4979       }
4980       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
4981       if (F.Scale != 1)
4982         ScaledS =
4983             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
4984       Ops.push_back(ScaledS);
4985     }
4986   }
4987 
4988   // Expand the GV portion.
4989   if (F.BaseGV) {
4990     // Flush the operand list to suppress SCEVExpander hoisting.
4991     if (!Ops.empty()) {
4992       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
4993       Ops.clear();
4994       Ops.push_back(SE.getUnknown(FullV));
4995     }
4996     Ops.push_back(SE.getUnknown(F.BaseGV));
4997   }
4998 
4999   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5000   // unfolded offsets. LSR assumes they both live next to their uses.
5001   if (!Ops.empty()) {
5002     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5003     Ops.clear();
5004     Ops.push_back(SE.getUnknown(FullV));
5005   }
5006 
5007   // Expand the immediate portion.
5008   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5009   if (Offset != 0) {
5010     if (LU.Kind == LSRUse::ICmpZero) {
5011       // The other interesting way of "folding" with an ICmpZero is to use a
5012       // negated immediate.
5013       if (!ICmpScaledV)
5014         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5015       else {
5016         Ops.push_back(SE.getUnknown(ICmpScaledV));
5017         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5018       }
5019     } else {
5020       // Just add the immediate values. These again are expected to be matched
5021       // as part of the address.
5022       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5023     }
5024   }
5025 
5026   // Expand the unfolded offset portion.
5027   int64_t UnfoldedOffset = F.UnfoldedOffset;
5028   if (UnfoldedOffset != 0) {
5029     // Just add the immediate values.
5030     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5031                                                        UnfoldedOffset)));
5032   }
5033 
5034   // Emit instructions summing all the operands.
5035   const SCEV *FullS = Ops.empty() ?
5036                       SE.getConstant(IntTy, 0) :
5037                       SE.getAddExpr(Ops);
5038   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5039 
5040   // We're done expanding now, so reset the rewriter.
5041   Rewriter.clearPostInc();
5042 
5043   // An ICmpZero Formula represents an ICmp which we're handling as a
5044   // comparison against zero. Now that we've expanded an expression for that
5045   // form, update the ICmp's other operand.
5046   if (LU.Kind == LSRUse::ICmpZero) {
5047     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5048     DeadInsts.emplace_back(CI->getOperand(1));
5049     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5050                            "a scale at the same time!");
5051     if (F.Scale == -1) {
5052       if (ICmpScaledV->getType() != OpTy) {
5053         Instruction *Cast =
5054           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5055                                                    OpTy, false),
5056                            ICmpScaledV, OpTy, "tmp", CI);
5057         ICmpScaledV = Cast;
5058       }
5059       CI->setOperand(1, ICmpScaledV);
5060     } else {
5061       // A scale of 1 means that the scale has been expanded as part of the
5062       // base regs.
5063       assert((F.Scale == 0 || F.Scale == 1) &&
5064              "ICmp does not support folding a global value and "
5065              "a scale at the same time!");
5066       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5067                                            -(uint64_t)Offset);
5068       if (C->getType() != OpTy)
5069         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5070                                                           OpTy, false),
5071                                   C, OpTy);
5072 
5073       CI->setOperand(1, C);
5074     }
5075   }
5076 
5077   return FullV;
5078 }
5079 
5080 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5081 /// effectively happens in their predecessor blocks, so the expression may need
5082 /// to be expanded in multiple places.
5083 void LSRInstance::RewriteForPHI(
5084     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5085     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5086   DenseMap<BasicBlock *, Value *> Inserted;
5087   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5088     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5089       BasicBlock *BB = PN->getIncomingBlock(i);
5090 
5091       // If this is a critical edge, split the edge so that we do not insert
5092       // the code on all predecessor/successor paths.  We do this unless this
5093       // is the canonical backedge for this loop, which complicates post-inc
5094       // users.
5095       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5096           !isa<IndirectBrInst>(BB->getTerminator()) &&
5097           !isa<CatchSwitchInst>(BB->getTerminator())) {
5098         BasicBlock *Parent = PN->getParent();
5099         Loop *PNLoop = LI.getLoopFor(Parent);
5100         if (!PNLoop || Parent != PNLoop->getHeader()) {
5101           // Split the critical edge.
5102           BasicBlock *NewBB = nullptr;
5103           if (!Parent->isLandingPad()) {
5104             NewBB = SplitCriticalEdge(BB, Parent,
5105                                       CriticalEdgeSplittingOptions(&DT, &LI)
5106                                           .setMergeIdenticalEdges()
5107                                           .setDontDeleteUselessPHIs());
5108           } else {
5109             SmallVector<BasicBlock*, 2> NewBBs;
5110             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5111             NewBB = NewBBs[0];
5112           }
5113           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5114           // phi predecessors are identical. The simple thing to do is skip
5115           // splitting in this case rather than complicate the API.
5116           if (NewBB) {
5117             // If PN is outside of the loop and BB is in the loop, we want to
5118             // move the block to be immediately before the PHI block, not
5119             // immediately after BB.
5120             if (L->contains(BB) && !L->contains(PN))
5121               NewBB->moveBefore(PN->getParent());
5122 
5123             // Splitting the edge can reduce the number of PHI entries we have.
5124             e = PN->getNumIncomingValues();
5125             BB = NewBB;
5126             i = PN->getBasicBlockIndex(BB);
5127           }
5128         }
5129       }
5130 
5131       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5132         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5133       if (!Pair.second)
5134         PN->setIncomingValue(i, Pair.first->second);
5135       else {
5136         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5137                               Rewriter, DeadInsts);
5138 
5139         // If this is reuse-by-noop-cast, insert the noop cast.
5140         Type *OpTy = LF.OperandValToReplace->getType();
5141         if (FullV->getType() != OpTy)
5142           FullV =
5143             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5144                                                      OpTy, false),
5145                              FullV, LF.OperandValToReplace->getType(),
5146                              "tmp", BB->getTerminator());
5147 
5148         PN->setIncomingValue(i, FullV);
5149         Pair.first->second = FullV;
5150       }
5151     }
5152 }
5153 
5154 /// Emit instructions for the leading candidate expression for this LSRUse (this
5155 /// is called "expanding"), and update the UserInst to reference the newly
5156 /// expanded value.
5157 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5158                           const Formula &F, SCEVExpander &Rewriter,
5159                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5160   // First, find an insertion point that dominates UserInst. For PHI nodes,
5161   // find the nearest block which dominates all the relevant uses.
5162   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5163     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5164   } else {
5165     Value *FullV =
5166       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5167 
5168     // If this is reuse-by-noop-cast, insert the noop cast.
5169     Type *OpTy = LF.OperandValToReplace->getType();
5170     if (FullV->getType() != OpTy) {
5171       Instruction *Cast =
5172         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5173                          FullV, OpTy, "tmp", LF.UserInst);
5174       FullV = Cast;
5175     }
5176 
5177     // Update the user. ICmpZero is handled specially here (for now) because
5178     // Expand may have updated one of the operands of the icmp already, and
5179     // its new value may happen to be equal to LF.OperandValToReplace, in
5180     // which case doing replaceUsesOfWith leads to replacing both operands
5181     // with the same value. TODO: Reorganize this.
5182     if (LU.Kind == LSRUse::ICmpZero)
5183       LF.UserInst->setOperand(0, FullV);
5184     else
5185       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5186   }
5187 
5188   DeadInsts.emplace_back(LF.OperandValToReplace);
5189 }
5190 
5191 /// Rewrite all the fixup locations with new values, following the chosen
5192 /// solution.
5193 void LSRInstance::ImplementSolution(
5194     const SmallVectorImpl<const Formula *> &Solution) {
5195   // Keep track of instructions we may have made dead, so that
5196   // we can remove them after we are done working.
5197   SmallVector<WeakTrackingVH, 16> DeadInsts;
5198 
5199   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
5200                         "lsr");
5201 #ifndef NDEBUG
5202   Rewriter.setDebugType(DEBUG_TYPE);
5203 #endif
5204   Rewriter.disableCanonicalMode();
5205   Rewriter.enableLSRMode();
5206   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5207 
5208   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5209   for (const IVChain &Chain : IVChainVec) {
5210     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5211       Rewriter.setChainedPhi(PN);
5212   }
5213 
5214   // Expand the new value definitions and update the users.
5215   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5216     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5217       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5218       Changed = true;
5219     }
5220 
5221   for (const IVChain &Chain : IVChainVec) {
5222     GenerateIVChain(Chain, Rewriter, DeadInsts);
5223     Changed = true;
5224   }
5225   // Clean up after ourselves. This must be done before deleting any
5226   // instructions.
5227   Rewriter.clear();
5228 
5229   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
5230 }
5231 
5232 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5233                          DominatorTree &DT, LoopInfo &LI,
5234                          const TargetTransformInfo &TTI)
5235     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) {
5236   // If LoopSimplify form is not available, stay out of trouble.
5237   if (!L->isLoopSimplifyForm())
5238     return;
5239 
5240   // If there's no interesting work to be done, bail early.
5241   if (IU.empty()) return;
5242 
5243   // If there's too much analysis to be done, bail early. We won't be able to
5244   // model the problem anyway.
5245   unsigned NumUsers = 0;
5246   for (const IVStrideUse &U : IU) {
5247     if (++NumUsers > MaxIVUsers) {
5248       (void)U;
5249       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
5250       return;
5251     }
5252     // Bail out if we have a PHI on an EHPad that gets a value from a
5253     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5254     // no good place to stick any instructions.
5255     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5256        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5257        if (isa<FuncletPadInst>(FirstNonPHI) ||
5258            isa<CatchSwitchInst>(FirstNonPHI))
5259          for (BasicBlock *PredBB : PN->blocks())
5260            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5261              return;
5262     }
5263   }
5264 
5265 #ifndef NDEBUG
5266   // All dominating loops must have preheaders, or SCEVExpander may not be able
5267   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5268   //
5269   // IVUsers analysis should only create users that are dominated by simple loop
5270   // headers. Since this loop should dominate all of its users, its user list
5271   // should be empty if this loop itself is not within a simple loop nest.
5272   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5273        Rung; Rung = Rung->getIDom()) {
5274     BasicBlock *BB = Rung->getBlock();
5275     const Loop *DomLoop = LI.getLoopFor(BB);
5276     if (DomLoop && DomLoop->getHeader() == BB) {
5277       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5278     }
5279   }
5280 #endif // DEBUG
5281 
5282   DEBUG(dbgs() << "\nLSR on loop ";
5283         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5284         dbgs() << ":\n");
5285 
5286   // First, perform some low-level loop optimizations.
5287   OptimizeShadowIV();
5288   OptimizeLoopTermCond();
5289 
5290   // If loop preparation eliminates all interesting IV users, bail.
5291   if (IU.empty()) return;
5292 
5293   // Skip nested loops until we can model them better with formulae.
5294   if (!L->empty()) {
5295     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5296     return;
5297   }
5298 
5299   // Start collecting data and preparing for the solver.
5300   CollectChains();
5301   CollectInterestingTypesAndFactors();
5302   CollectFixupsAndInitialFormulae();
5303   CollectLoopInvariantFixupsAndFormulae();
5304 
5305   assert(!Uses.empty() && "IVUsers reported at least one use");
5306   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5307         print_uses(dbgs()));
5308 
5309   // Now use the reuse data to generate a bunch of interesting ways
5310   // to formulate the values needed for the uses.
5311   GenerateAllReuseFormulae();
5312 
5313   FilterOutUndesirableDedicatedRegisters();
5314   NarrowSearchSpaceUsingHeuristics();
5315 
5316   SmallVector<const Formula *, 8> Solution;
5317   Solve(Solution);
5318 
5319   // Release memory that is no longer needed.
5320   Factors.clear();
5321   Types.clear();
5322   RegUses.clear();
5323 
5324   if (Solution.empty())
5325     return;
5326 
5327 #ifndef NDEBUG
5328   // Formulae should be legal.
5329   for (const LSRUse &LU : Uses) {
5330     for (const Formula &F : LU.Formulae)
5331       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5332                         F) && "Illegal formula generated!");
5333   };
5334 #endif
5335 
5336   // Now that we've decided what we want, make it so.
5337   ImplementSolution(Solution);
5338 }
5339 
5340 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5341 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5342   if (Factors.empty() && Types.empty()) return;
5343 
5344   OS << "LSR has identified the following interesting factors and types: ";
5345   bool First = true;
5346 
5347   for (int64_t Factor : Factors) {
5348     if (!First) OS << ", ";
5349     First = false;
5350     OS << '*' << Factor;
5351   }
5352 
5353   for (Type *Ty : Types) {
5354     if (!First) OS << ", ";
5355     First = false;
5356     OS << '(' << *Ty << ')';
5357   }
5358   OS << '\n';
5359 }
5360 
5361 void LSRInstance::print_fixups(raw_ostream &OS) const {
5362   OS << "LSR is examining the following fixup sites:\n";
5363   for (const LSRUse &LU : Uses)
5364     for (const LSRFixup &LF : LU.Fixups) {
5365       dbgs() << "  ";
5366       LF.print(OS);
5367       OS << '\n';
5368     }
5369 }
5370 
5371 void LSRInstance::print_uses(raw_ostream &OS) const {
5372   OS << "LSR is examining the following uses:\n";
5373   for (const LSRUse &LU : Uses) {
5374     dbgs() << "  ";
5375     LU.print(OS);
5376     OS << '\n';
5377     for (const Formula &F : LU.Formulae) {
5378       OS << "    ";
5379       F.print(OS);
5380       OS << '\n';
5381     }
5382   }
5383 }
5384 
5385 void LSRInstance::print(raw_ostream &OS) const {
5386   print_factors_and_types(OS);
5387   print_fixups(OS);
5388   print_uses(OS);
5389 }
5390 
5391 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5392   print(errs()); errs() << '\n';
5393 }
5394 #endif
5395 
5396 namespace {
5397 
5398 class LoopStrengthReduce : public LoopPass {
5399 public:
5400   static char ID; // Pass ID, replacement for typeid
5401 
5402   LoopStrengthReduce();
5403 
5404 private:
5405   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5406   void getAnalysisUsage(AnalysisUsage &AU) const override;
5407 };
5408 
5409 } // end anonymous namespace
5410 
5411 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5412   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5413 }
5414 
5415 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5416   // We split critical edges, so we change the CFG.  However, we do update
5417   // many analyses if they are around.
5418   AU.addPreservedID(LoopSimplifyID);
5419 
5420   AU.addRequired<LoopInfoWrapperPass>();
5421   AU.addPreserved<LoopInfoWrapperPass>();
5422   AU.addRequiredID(LoopSimplifyID);
5423   AU.addRequired<DominatorTreeWrapperPass>();
5424   AU.addPreserved<DominatorTreeWrapperPass>();
5425   AU.addRequired<ScalarEvolutionWrapperPass>();
5426   AU.addPreserved<ScalarEvolutionWrapperPass>();
5427   // Requiring LoopSimplify a second time here prevents IVUsers from running
5428   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5429   AU.addRequiredID(LoopSimplifyID);
5430   AU.addRequired<IVUsersWrapperPass>();
5431   AU.addPreserved<IVUsersWrapperPass>();
5432   AU.addRequired<TargetTransformInfoWrapperPass>();
5433 }
5434 
5435 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5436                                DominatorTree &DT, LoopInfo &LI,
5437                                const TargetTransformInfo &TTI) {
5438   bool Changed = false;
5439 
5440   // Run the main LSR transformation.
5441   Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged();
5442 
5443   // Remove any extra phis created by processing inner loops.
5444   Changed |= DeleteDeadPHIs(L->getHeader());
5445   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5446     SmallVector<WeakTrackingVH, 16> DeadInsts;
5447     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5448     SCEVExpander Rewriter(SE, DL, "lsr");
5449 #ifndef NDEBUG
5450     Rewriter.setDebugType(DEBUG_TYPE);
5451 #endif
5452     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5453     if (numFolded) {
5454       Changed = true;
5455       DeleteTriviallyDeadInstructions(DeadInsts);
5456       DeleteDeadPHIs(L->getHeader());
5457     }
5458   }
5459   return Changed;
5460 }
5461 
5462 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5463   if (skipLoop(L))
5464     return false;
5465 
5466   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5467   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5468   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5469   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5470   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5471       *L->getHeader()->getParent());
5472   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI);
5473 }
5474 
5475 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5476                                               LoopStandardAnalysisResults &AR,
5477                                               LPMUpdater &) {
5478   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5479                           AR.DT, AR.LI, AR.TTI))
5480     return PreservedAnalyses::all();
5481 
5482   return getLoopPassPreservedAnalyses();
5483 }
5484 
5485 char LoopStrengthReduce::ID = 0;
5486 
5487 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5488                       "Loop Strength Reduction", false, false)
5489 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5490 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5491 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5492 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5493 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5494 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5495 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5496                     "Loop Strength Reduction", false, false)
5497 
5498 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5499