1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/ScalarEvolution.h" 74 #include "llvm/Analysis/ScalarEvolutionExpander.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/IR/BasicBlock.h" 79 #include "llvm/IR/Constant.h" 80 #include "llvm/IR/Constants.h" 81 #include "llvm/IR/DerivedTypes.h" 82 #include "llvm/IR/Dominators.h" 83 #include "llvm/IR/GlobalValue.h" 84 #include "llvm/IR/IRBuilder.h" 85 #include "llvm/IR/InstrTypes.h" 86 #include "llvm/IR/Instruction.h" 87 #include "llvm/IR/Instructions.h" 88 #include "llvm/IR/IntrinsicInst.h" 89 #include "llvm/IR/Intrinsics.h" 90 #include "llvm/IR/Module.h" 91 #include "llvm/IR/OperandTraits.h" 92 #include "llvm/IR/Operator.h" 93 #include "llvm/IR/PassManager.h" 94 #include "llvm/IR/Type.h" 95 #include "llvm/IR/Use.h" 96 #include "llvm/IR/User.h" 97 #include "llvm/IR/Value.h" 98 #include "llvm/IR/ValueHandle.h" 99 #include "llvm/Pass.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MathExtras.h" 106 #include "llvm/Support/raw_ostream.h" 107 #include "llvm/Transforms/Scalar.h" 108 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 109 #include "llvm/Transforms/Utils/Local.h" 110 #include <algorithm> 111 #include <cassert> 112 #include <cstddef> 113 #include <cstdint> 114 #include <cstdlib> 115 #include <iterator> 116 #include <limits> 117 #include <map> 118 #include <utility> 119 120 using namespace llvm; 121 122 #define DEBUG_TYPE "loop-reduce" 123 124 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 125 /// bail out. This threshold is far beyond the number of users that LSR can 126 /// conceivably solve, so it should not affect generated code, but catches the 127 /// worst cases before LSR burns too much compile time and stack space. 128 static const unsigned MaxIVUsers = 200; 129 130 // Temporary flag to cleanup congruent phis after LSR phi expansion. 131 // It's currently disabled until we can determine whether it's truly useful or 132 // not. The flag should be removed after the v3.0 release. 133 // This is now needed for ivchains. 134 static cl::opt<bool> EnablePhiElim( 135 "enable-lsr-phielim", cl::Hidden, cl::init(true), 136 cl::desc("Enable LSR phi elimination")); 137 138 // The flag adds instruction count to solutions cost comparision. 139 static cl::opt<bool> InsnsCost( 140 "lsr-insns-cost", cl::Hidden, cl::init(true), 141 cl::desc("Add instruction count to a LSR cost model")); 142 143 // Flag to choose how to narrow complex lsr solution 144 static cl::opt<bool> LSRExpNarrow( 145 "lsr-exp-narrow", cl::Hidden, cl::init(false), 146 cl::desc("Narrow LSR complex solution using" 147 " expectation of registers number")); 148 149 // Flag to narrow search space by filtering non-optimal formulae with 150 // the same ScaledReg and Scale. 151 static cl::opt<bool> FilterSameScaledReg( 152 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 153 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 154 " with the same ScaledReg and Scale")); 155 156 #ifndef NDEBUG 157 // Stress test IV chain generation. 158 static cl::opt<bool> StressIVChain( 159 "stress-ivchain", cl::Hidden, cl::init(false), 160 cl::desc("Stress test LSR IV chains")); 161 #else 162 static bool StressIVChain = false; 163 #endif 164 165 namespace { 166 167 struct MemAccessTy { 168 /// Used in situations where the accessed memory type is unknown. 169 static const unsigned UnknownAddressSpace = 170 std::numeric_limits<unsigned>::max(); 171 172 Type *MemTy = nullptr; 173 unsigned AddrSpace = UnknownAddressSpace; 174 175 MemAccessTy() = default; 176 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 177 178 bool operator==(MemAccessTy Other) const { 179 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 180 } 181 182 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 183 184 static MemAccessTy getUnknown(LLVMContext &Ctx, 185 unsigned AS = UnknownAddressSpace) { 186 return MemAccessTy(Type::getVoidTy(Ctx), AS); 187 } 188 }; 189 190 /// This class holds data which is used to order reuse candidates. 191 class RegSortData { 192 public: 193 /// This represents the set of LSRUse indices which reference 194 /// a particular register. 195 SmallBitVector UsedByIndices; 196 197 void print(raw_ostream &OS) const; 198 void dump() const; 199 }; 200 201 } // end anonymous namespace 202 203 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 204 void RegSortData::print(raw_ostream &OS) const { 205 OS << "[NumUses=" << UsedByIndices.count() << ']'; 206 } 207 208 LLVM_DUMP_METHOD void RegSortData::dump() const { 209 print(errs()); errs() << '\n'; 210 } 211 #endif 212 213 namespace { 214 215 /// Map register candidates to information about how they are used. 216 class RegUseTracker { 217 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 218 219 RegUsesTy RegUsesMap; 220 SmallVector<const SCEV *, 16> RegSequence; 221 222 public: 223 void countRegister(const SCEV *Reg, size_t LUIdx); 224 void dropRegister(const SCEV *Reg, size_t LUIdx); 225 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 226 227 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 228 229 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 230 231 void clear(); 232 233 using iterator = SmallVectorImpl<const SCEV *>::iterator; 234 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 235 236 iterator begin() { return RegSequence.begin(); } 237 iterator end() { return RegSequence.end(); } 238 const_iterator begin() const { return RegSequence.begin(); } 239 const_iterator end() const { return RegSequence.end(); } 240 }; 241 242 } // end anonymous namespace 243 244 void 245 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 246 std::pair<RegUsesTy::iterator, bool> Pair = 247 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 248 RegSortData &RSD = Pair.first->second; 249 if (Pair.second) 250 RegSequence.push_back(Reg); 251 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 252 RSD.UsedByIndices.set(LUIdx); 253 } 254 255 void 256 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 257 RegUsesTy::iterator It = RegUsesMap.find(Reg); 258 assert(It != RegUsesMap.end()); 259 RegSortData &RSD = It->second; 260 assert(RSD.UsedByIndices.size() > LUIdx); 261 RSD.UsedByIndices.reset(LUIdx); 262 } 263 264 void 265 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 266 assert(LUIdx <= LastLUIdx); 267 268 // Update RegUses. The data structure is not optimized for this purpose; 269 // we must iterate through it and update each of the bit vectors. 270 for (auto &Pair : RegUsesMap) { 271 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 272 if (LUIdx < UsedByIndices.size()) 273 UsedByIndices[LUIdx] = 274 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 275 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 276 } 277 } 278 279 bool 280 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 281 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 282 if (I == RegUsesMap.end()) 283 return false; 284 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 285 int i = UsedByIndices.find_first(); 286 if (i == -1) return false; 287 if ((size_t)i != LUIdx) return true; 288 return UsedByIndices.find_next(i) != -1; 289 } 290 291 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 292 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 293 assert(I != RegUsesMap.end() && "Unknown register!"); 294 return I->second.UsedByIndices; 295 } 296 297 void RegUseTracker::clear() { 298 RegUsesMap.clear(); 299 RegSequence.clear(); 300 } 301 302 namespace { 303 304 /// This class holds information that describes a formula for computing 305 /// satisfying a use. It may include broken-out immediates and scaled registers. 306 struct Formula { 307 /// Global base address used for complex addressing. 308 GlobalValue *BaseGV = nullptr; 309 310 /// Base offset for complex addressing. 311 int64_t BaseOffset = 0; 312 313 /// Whether any complex addressing has a base register. 314 bool HasBaseReg = false; 315 316 /// The scale of any complex addressing. 317 int64_t Scale = 0; 318 319 /// The list of "base" registers for this use. When this is non-empty. The 320 /// canonical representation of a formula is 321 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 322 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 323 /// 3. The reg containing recurrent expr related with currect loop in the 324 /// formula should be put in the ScaledReg. 325 /// #1 enforces that the scaled register is always used when at least two 326 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 327 /// #2 enforces that 1 * reg is reg. 328 /// #3 ensures invariant regs with respect to current loop can be combined 329 /// together in LSR codegen. 330 /// This invariant can be temporarly broken while building a formula. 331 /// However, every formula inserted into the LSRInstance must be in canonical 332 /// form. 333 SmallVector<const SCEV *, 4> BaseRegs; 334 335 /// The 'scaled' register for this use. This should be non-null when Scale is 336 /// not zero. 337 const SCEV *ScaledReg = nullptr; 338 339 /// An additional constant offset which added near the use. This requires a 340 /// temporary register, but the offset itself can live in an add immediate 341 /// field rather than a register. 342 int64_t UnfoldedOffset = 0; 343 344 Formula() = default; 345 346 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 347 348 bool isCanonical(const Loop &L) const; 349 350 void canonicalize(const Loop &L); 351 352 bool unscale(); 353 354 bool hasZeroEnd() const; 355 356 size_t getNumRegs() const; 357 Type *getType() const; 358 359 void deleteBaseReg(const SCEV *&S); 360 361 bool referencesReg(const SCEV *S) const; 362 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 363 const RegUseTracker &RegUses) const; 364 365 void print(raw_ostream &OS) const; 366 void dump() const; 367 }; 368 369 } // end anonymous namespace 370 371 /// Recursion helper for initialMatch. 372 static void DoInitialMatch(const SCEV *S, Loop *L, 373 SmallVectorImpl<const SCEV *> &Good, 374 SmallVectorImpl<const SCEV *> &Bad, 375 ScalarEvolution &SE) { 376 // Collect expressions which properly dominate the loop header. 377 if (SE.properlyDominates(S, L->getHeader())) { 378 Good.push_back(S); 379 return; 380 } 381 382 // Look at add operands. 383 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 384 for (const SCEV *S : Add->operands()) 385 DoInitialMatch(S, L, Good, Bad, SE); 386 return; 387 } 388 389 // Look at addrec operands. 390 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 391 if (!AR->getStart()->isZero() && AR->isAffine()) { 392 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 393 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 394 AR->getStepRecurrence(SE), 395 // FIXME: AR->getNoWrapFlags() 396 AR->getLoop(), SCEV::FlagAnyWrap), 397 L, Good, Bad, SE); 398 return; 399 } 400 401 // Handle a multiplication by -1 (negation) if it didn't fold. 402 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 403 if (Mul->getOperand(0)->isAllOnesValue()) { 404 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 405 const SCEV *NewMul = SE.getMulExpr(Ops); 406 407 SmallVector<const SCEV *, 4> MyGood; 408 SmallVector<const SCEV *, 4> MyBad; 409 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 410 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 411 SE.getEffectiveSCEVType(NewMul->getType()))); 412 for (const SCEV *S : MyGood) 413 Good.push_back(SE.getMulExpr(NegOne, S)); 414 for (const SCEV *S : MyBad) 415 Bad.push_back(SE.getMulExpr(NegOne, S)); 416 return; 417 } 418 419 // Ok, we can't do anything interesting. Just stuff the whole thing into a 420 // register and hope for the best. 421 Bad.push_back(S); 422 } 423 424 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 425 /// all loop-invariant and loop-computable values in a single base register. 426 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 427 SmallVector<const SCEV *, 4> Good; 428 SmallVector<const SCEV *, 4> Bad; 429 DoInitialMatch(S, L, Good, Bad, SE); 430 if (!Good.empty()) { 431 const SCEV *Sum = SE.getAddExpr(Good); 432 if (!Sum->isZero()) 433 BaseRegs.push_back(Sum); 434 HasBaseReg = true; 435 } 436 if (!Bad.empty()) { 437 const SCEV *Sum = SE.getAddExpr(Bad); 438 if (!Sum->isZero()) 439 BaseRegs.push_back(Sum); 440 HasBaseReg = true; 441 } 442 canonicalize(*L); 443 } 444 445 /// \brief Check whether or not this formula statisfies the canonical 446 /// representation. 447 /// \see Formula::BaseRegs. 448 bool Formula::isCanonical(const Loop &L) const { 449 if (!ScaledReg) 450 return BaseRegs.size() <= 1; 451 452 if (Scale != 1) 453 return true; 454 455 if (Scale == 1 && BaseRegs.empty()) 456 return false; 457 458 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 459 if (SAR && SAR->getLoop() == &L) 460 return true; 461 462 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 463 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 464 // loop, we want to swap the reg in BaseRegs with ScaledReg. 465 auto I = 466 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 467 return isa<const SCEVAddRecExpr>(S) && 468 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 469 }); 470 return I == BaseRegs.end(); 471 } 472 473 /// \brief Helper method to morph a formula into its canonical representation. 474 /// \see Formula::BaseRegs. 475 /// Every formula having more than one base register, must use the ScaledReg 476 /// field. Otherwise, we would have to do special cases everywhere in LSR 477 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 478 /// On the other hand, 1*reg should be canonicalized into reg. 479 void Formula::canonicalize(const Loop &L) { 480 if (isCanonical(L)) 481 return; 482 // So far we did not need this case. This is easy to implement but it is 483 // useless to maintain dead code. Beside it could hurt compile time. 484 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 485 486 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 487 if (!ScaledReg) { 488 ScaledReg = BaseRegs.back(); 489 BaseRegs.pop_back(); 490 Scale = 1; 491 } 492 493 // If ScaledReg is an invariant with respect to L, find the reg from 494 // BaseRegs containing the recurrent expr related with Loop L. Swap the 495 // reg with ScaledReg. 496 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 497 if (!SAR || SAR->getLoop() != &L) { 498 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 499 [&](const SCEV *S) { 500 return isa<const SCEVAddRecExpr>(S) && 501 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 502 }); 503 if (I != BaseRegs.end()) 504 std::swap(ScaledReg, *I); 505 } 506 } 507 508 /// \brief Get rid of the scale in the formula. 509 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 510 /// \return true if it was possible to get rid of the scale, false otherwise. 511 /// \note After this operation the formula may not be in the canonical form. 512 bool Formula::unscale() { 513 if (Scale != 1) 514 return false; 515 Scale = 0; 516 BaseRegs.push_back(ScaledReg); 517 ScaledReg = nullptr; 518 return true; 519 } 520 521 bool Formula::hasZeroEnd() const { 522 if (UnfoldedOffset || BaseOffset) 523 return false; 524 if (BaseRegs.size() != 1 || ScaledReg) 525 return false; 526 return true; 527 } 528 529 /// Return the total number of register operands used by this formula. This does 530 /// not include register uses implied by non-constant addrec strides. 531 size_t Formula::getNumRegs() const { 532 return !!ScaledReg + BaseRegs.size(); 533 } 534 535 /// Return the type of this formula, if it has one, or null otherwise. This type 536 /// is meaningless except for the bit size. 537 Type *Formula::getType() const { 538 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 539 ScaledReg ? ScaledReg->getType() : 540 BaseGV ? BaseGV->getType() : 541 nullptr; 542 } 543 544 /// Delete the given base reg from the BaseRegs list. 545 void Formula::deleteBaseReg(const SCEV *&S) { 546 if (&S != &BaseRegs.back()) 547 std::swap(S, BaseRegs.back()); 548 BaseRegs.pop_back(); 549 } 550 551 /// Test if this formula references the given register. 552 bool Formula::referencesReg(const SCEV *S) const { 553 return S == ScaledReg || is_contained(BaseRegs, S); 554 } 555 556 /// Test whether this formula uses registers which are used by uses other than 557 /// the use with the given index. 558 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 559 const RegUseTracker &RegUses) const { 560 if (ScaledReg) 561 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 562 return true; 563 for (const SCEV *BaseReg : BaseRegs) 564 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 565 return true; 566 return false; 567 } 568 569 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 570 void Formula::print(raw_ostream &OS) const { 571 bool First = true; 572 if (BaseGV) { 573 if (!First) OS << " + "; else First = false; 574 BaseGV->printAsOperand(OS, /*PrintType=*/false); 575 } 576 if (BaseOffset != 0) { 577 if (!First) OS << " + "; else First = false; 578 OS << BaseOffset; 579 } 580 for (const SCEV *BaseReg : BaseRegs) { 581 if (!First) OS << " + "; else First = false; 582 OS << "reg(" << *BaseReg << ')'; 583 } 584 if (HasBaseReg && BaseRegs.empty()) { 585 if (!First) OS << " + "; else First = false; 586 OS << "**error: HasBaseReg**"; 587 } else if (!HasBaseReg && !BaseRegs.empty()) { 588 if (!First) OS << " + "; else First = false; 589 OS << "**error: !HasBaseReg**"; 590 } 591 if (Scale != 0) { 592 if (!First) OS << " + "; else First = false; 593 OS << Scale << "*reg("; 594 if (ScaledReg) 595 OS << *ScaledReg; 596 else 597 OS << "<unknown>"; 598 OS << ')'; 599 } 600 if (UnfoldedOffset != 0) { 601 if (!First) OS << " + "; 602 OS << "imm(" << UnfoldedOffset << ')'; 603 } 604 } 605 606 LLVM_DUMP_METHOD void Formula::dump() const { 607 print(errs()); errs() << '\n'; 608 } 609 #endif 610 611 /// Return true if the given addrec can be sign-extended without changing its 612 /// value. 613 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 614 Type *WideTy = 615 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 616 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 617 } 618 619 /// Return true if the given add can be sign-extended without changing its 620 /// value. 621 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 622 Type *WideTy = 623 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 624 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 625 } 626 627 /// Return true if the given mul can be sign-extended without changing its 628 /// value. 629 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 630 Type *WideTy = 631 IntegerType::get(SE.getContext(), 632 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 633 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 634 } 635 636 /// Return an expression for LHS /s RHS, if it can be determined and if the 637 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 638 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 639 /// the multiplication may overflow, which is useful when the result will be 640 /// used in a context where the most significant bits are ignored. 641 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 642 ScalarEvolution &SE, 643 bool IgnoreSignificantBits = false) { 644 // Handle the trivial case, which works for any SCEV type. 645 if (LHS == RHS) 646 return SE.getConstant(LHS->getType(), 1); 647 648 // Handle a few RHS special cases. 649 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 650 if (RC) { 651 const APInt &RA = RC->getAPInt(); 652 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 653 // some folding. 654 if (RA.isAllOnesValue()) 655 return SE.getMulExpr(LHS, RC); 656 // Handle x /s 1 as x. 657 if (RA == 1) 658 return LHS; 659 } 660 661 // Check for a division of a constant by a constant. 662 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 663 if (!RC) 664 return nullptr; 665 const APInt &LA = C->getAPInt(); 666 const APInt &RA = RC->getAPInt(); 667 if (LA.srem(RA) != 0) 668 return nullptr; 669 return SE.getConstant(LA.sdiv(RA)); 670 } 671 672 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 674 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 675 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 676 IgnoreSignificantBits); 677 if (!Step) return nullptr; 678 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 679 IgnoreSignificantBits); 680 if (!Start) return nullptr; 681 // FlagNW is independent of the start value, step direction, and is 682 // preserved with smaller magnitude steps. 683 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 684 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 685 } 686 return nullptr; 687 } 688 689 // Distribute the sdiv over add operands, if the add doesn't overflow. 690 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 691 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 692 SmallVector<const SCEV *, 8> Ops; 693 for (const SCEV *S : Add->operands()) { 694 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 695 if (!Op) return nullptr; 696 Ops.push_back(Op); 697 } 698 return SE.getAddExpr(Ops); 699 } 700 return nullptr; 701 } 702 703 // Check for a multiply operand that we can pull RHS out of. 704 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 705 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 706 SmallVector<const SCEV *, 4> Ops; 707 bool Found = false; 708 for (const SCEV *S : Mul->operands()) { 709 if (!Found) 710 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 711 IgnoreSignificantBits)) { 712 S = Q; 713 Found = true; 714 } 715 Ops.push_back(S); 716 } 717 return Found ? SE.getMulExpr(Ops) : nullptr; 718 } 719 return nullptr; 720 } 721 722 // Otherwise we don't know. 723 return nullptr; 724 } 725 726 /// If S involves the addition of a constant integer value, return that integer 727 /// value, and mutate S to point to a new SCEV with that value excluded. 728 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 729 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 730 if (C->getAPInt().getMinSignedBits() <= 64) { 731 S = SE.getConstant(C->getType(), 0); 732 return C->getValue()->getSExtValue(); 733 } 734 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 735 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 736 int64_t Result = ExtractImmediate(NewOps.front(), SE); 737 if (Result != 0) 738 S = SE.getAddExpr(NewOps); 739 return Result; 740 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 741 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 742 int64_t Result = ExtractImmediate(NewOps.front(), SE); 743 if (Result != 0) 744 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 745 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 746 SCEV::FlagAnyWrap); 747 return Result; 748 } 749 return 0; 750 } 751 752 /// If S involves the addition of a GlobalValue address, return that symbol, and 753 /// mutate S to point to a new SCEV with that value excluded. 754 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 755 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 756 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 757 S = SE.getConstant(GV->getType(), 0); 758 return GV; 759 } 760 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 761 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 762 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 763 if (Result) 764 S = SE.getAddExpr(NewOps); 765 return Result; 766 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 767 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 768 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 769 if (Result) 770 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 771 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 772 SCEV::FlagAnyWrap); 773 return Result; 774 } 775 return nullptr; 776 } 777 778 /// Returns true if the specified instruction is using the specified value as an 779 /// address. 780 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 781 bool isAddress = isa<LoadInst>(Inst); 782 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 783 if (SI->getPointerOperand() == OperandVal) 784 isAddress = true; 785 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 786 // Addressing modes can also be folded into prefetches and a variety 787 // of intrinsics. 788 switch (II->getIntrinsicID()) { 789 default: break; 790 case Intrinsic::memset: 791 case Intrinsic::prefetch: 792 if (II->getArgOperand(0) == OperandVal) 793 isAddress = true; 794 break; 795 case Intrinsic::memmove: 796 case Intrinsic::memcpy: 797 if (II->getArgOperand(0) == OperandVal || 798 II->getArgOperand(1) == OperandVal) 799 isAddress = true; 800 break; 801 } 802 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 803 if (RMW->getPointerOperand() == OperandVal) 804 isAddress = true; 805 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 806 if (CmpX->getPointerOperand() == OperandVal) 807 isAddress = true; 808 } 809 return isAddress; 810 } 811 812 /// Return the type of the memory being accessed. 813 static MemAccessTy getAccessType(const Instruction *Inst) { 814 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 815 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 816 AccessTy.MemTy = SI->getOperand(0)->getType(); 817 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 818 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 819 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 820 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 821 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 822 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 823 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 824 } 825 826 // All pointers have the same requirements, so canonicalize them to an 827 // arbitrary pointer type to minimize variation. 828 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 829 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 830 PTy->getAddressSpace()); 831 832 return AccessTy; 833 } 834 835 /// Return true if this AddRec is already a phi in its loop. 836 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 837 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 838 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 839 if (SE.isSCEVable(PN->getType()) && 840 (SE.getEffectiveSCEVType(PN->getType()) == 841 SE.getEffectiveSCEVType(AR->getType())) && 842 SE.getSCEV(PN) == AR) 843 return true; 844 } 845 return false; 846 } 847 848 /// Check if expanding this expression is likely to incur significant cost. This 849 /// is tricky because SCEV doesn't track which expressions are actually computed 850 /// by the current IR. 851 /// 852 /// We currently allow expansion of IV increments that involve adds, 853 /// multiplication by constants, and AddRecs from existing phis. 854 /// 855 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 856 /// obvious multiple of the UDivExpr. 857 static bool isHighCostExpansion(const SCEV *S, 858 SmallPtrSetImpl<const SCEV*> &Processed, 859 ScalarEvolution &SE) { 860 // Zero/One operand expressions 861 switch (S->getSCEVType()) { 862 case scUnknown: 863 case scConstant: 864 return false; 865 case scTruncate: 866 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 867 Processed, SE); 868 case scZeroExtend: 869 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 870 Processed, SE); 871 case scSignExtend: 872 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 873 Processed, SE); 874 } 875 876 if (!Processed.insert(S).second) 877 return false; 878 879 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 880 for (const SCEV *S : Add->operands()) { 881 if (isHighCostExpansion(S, Processed, SE)) 882 return true; 883 } 884 return false; 885 } 886 887 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 888 if (Mul->getNumOperands() == 2) { 889 // Multiplication by a constant is ok 890 if (isa<SCEVConstant>(Mul->getOperand(0))) 891 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 892 893 // If we have the value of one operand, check if an existing 894 // multiplication already generates this expression. 895 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 896 Value *UVal = U->getValue(); 897 for (User *UR : UVal->users()) { 898 // If U is a constant, it may be used by a ConstantExpr. 899 Instruction *UI = dyn_cast<Instruction>(UR); 900 if (UI && UI->getOpcode() == Instruction::Mul && 901 SE.isSCEVable(UI->getType())) { 902 return SE.getSCEV(UI) == Mul; 903 } 904 } 905 } 906 } 907 } 908 909 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 910 if (isExistingPhi(AR, SE)) 911 return false; 912 } 913 914 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 915 return true; 916 } 917 918 /// If any of the instructions is the specified set are trivially dead, delete 919 /// them and see if this makes any of their operands subsequently dead. 920 static bool 921 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 922 bool Changed = false; 923 924 while (!DeadInsts.empty()) { 925 Value *V = DeadInsts.pop_back_val(); 926 Instruction *I = dyn_cast_or_null<Instruction>(V); 927 928 if (!I || !isInstructionTriviallyDead(I)) 929 continue; 930 931 for (Use &O : I->operands()) 932 if (Instruction *U = dyn_cast<Instruction>(O)) { 933 O = nullptr; 934 if (U->use_empty()) 935 DeadInsts.emplace_back(U); 936 } 937 938 I->eraseFromParent(); 939 Changed = true; 940 } 941 942 return Changed; 943 } 944 945 namespace { 946 947 class LSRUse; 948 949 } // end anonymous namespace 950 951 /// \brief Check if the addressing mode defined by \p F is completely 952 /// folded in \p LU at isel time. 953 /// This includes address-mode folding and special icmp tricks. 954 /// This function returns true if \p LU can accommodate what \p F 955 /// defines and up to 1 base + 1 scaled + offset. 956 /// In other words, if \p F has several base registers, this function may 957 /// still return true. Therefore, users still need to account for 958 /// additional base registers and/or unfolded offsets to derive an 959 /// accurate cost model. 960 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 961 const LSRUse &LU, const Formula &F); 962 963 // Get the cost of the scaling factor used in F for LU. 964 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 965 const LSRUse &LU, const Formula &F, 966 const Loop &L); 967 968 namespace { 969 970 /// This class is used to measure and compare candidate formulae. 971 class Cost { 972 TargetTransformInfo::LSRCost C; 973 974 public: 975 Cost() { 976 C.Insns = 0; 977 C.NumRegs = 0; 978 C.AddRecCost = 0; 979 C.NumIVMuls = 0; 980 C.NumBaseAdds = 0; 981 C.ImmCost = 0; 982 C.SetupCost = 0; 983 C.ScaleCost = 0; 984 } 985 986 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 987 988 void Lose(); 989 990 #ifndef NDEBUG 991 // Once any of the metrics loses, they must all remain losers. 992 bool isValid() { 993 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 994 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 995 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 996 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 997 } 998 #endif 999 1000 bool isLoser() { 1001 assert(isValid() && "invalid cost"); 1002 return C.NumRegs == ~0u; 1003 } 1004 1005 void RateFormula(const TargetTransformInfo &TTI, 1006 const Formula &F, 1007 SmallPtrSetImpl<const SCEV *> &Regs, 1008 const DenseSet<const SCEV *> &VisitedRegs, 1009 const Loop *L, 1010 ScalarEvolution &SE, DominatorTree &DT, 1011 const LSRUse &LU, 1012 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1013 1014 void print(raw_ostream &OS) const; 1015 void dump() const; 1016 1017 private: 1018 void RateRegister(const SCEV *Reg, 1019 SmallPtrSetImpl<const SCEV *> &Regs, 1020 const Loop *L, 1021 ScalarEvolution &SE, DominatorTree &DT); 1022 void RatePrimaryRegister(const SCEV *Reg, 1023 SmallPtrSetImpl<const SCEV *> &Regs, 1024 const Loop *L, 1025 ScalarEvolution &SE, DominatorTree &DT, 1026 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1027 }; 1028 1029 /// An operand value in an instruction which is to be replaced with some 1030 /// equivalent, possibly strength-reduced, replacement. 1031 struct LSRFixup { 1032 /// The instruction which will be updated. 1033 Instruction *UserInst = nullptr; 1034 1035 /// The operand of the instruction which will be replaced. The operand may be 1036 /// used more than once; every instance will be replaced. 1037 Value *OperandValToReplace = nullptr; 1038 1039 /// If this user is to use the post-incremented value of an induction 1040 /// variable, this variable is non-null and holds the loop associated with the 1041 /// induction variable. 1042 PostIncLoopSet PostIncLoops; 1043 1044 /// A constant offset to be added to the LSRUse expression. This allows 1045 /// multiple fixups to share the same LSRUse with different offsets, for 1046 /// example in an unrolled loop. 1047 int64_t Offset = 0; 1048 1049 LSRFixup() = default; 1050 1051 bool isUseFullyOutsideLoop(const Loop *L) const; 1052 1053 void print(raw_ostream &OS) const; 1054 void dump() const; 1055 }; 1056 1057 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1058 /// SmallVectors of const SCEV*. 1059 struct UniquifierDenseMapInfo { 1060 static SmallVector<const SCEV *, 4> getEmptyKey() { 1061 SmallVector<const SCEV *, 4> V; 1062 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1063 return V; 1064 } 1065 1066 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1067 SmallVector<const SCEV *, 4> V; 1068 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1069 return V; 1070 } 1071 1072 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1073 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1074 } 1075 1076 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1077 const SmallVector<const SCEV *, 4> &RHS) { 1078 return LHS == RHS; 1079 } 1080 }; 1081 1082 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1083 /// as uses invented by LSR itself. It includes information about what kinds of 1084 /// things can be folded into the user, information about the user itself, and 1085 /// information about how the use may be satisfied. TODO: Represent multiple 1086 /// users of the same expression in common? 1087 class LSRUse { 1088 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1089 1090 public: 1091 /// An enum for a kind of use, indicating what types of scaled and immediate 1092 /// operands it might support. 1093 enum KindType { 1094 Basic, ///< A normal use, with no folding. 1095 Special, ///< A special case of basic, allowing -1 scales. 1096 Address, ///< An address use; folding according to TargetLowering 1097 ICmpZero ///< An equality icmp with both operands folded into one. 1098 // TODO: Add a generic icmp too? 1099 }; 1100 1101 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1102 1103 KindType Kind; 1104 MemAccessTy AccessTy; 1105 1106 /// The list of operands which are to be replaced. 1107 SmallVector<LSRFixup, 8> Fixups; 1108 1109 /// Keep track of the min and max offsets of the fixups. 1110 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1111 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1112 1113 /// This records whether all of the fixups using this LSRUse are outside of 1114 /// the loop, in which case some special-case heuristics may be used. 1115 bool AllFixupsOutsideLoop = true; 1116 1117 /// RigidFormula is set to true to guarantee that this use will be associated 1118 /// with a single formula--the one that initially matched. Some SCEV 1119 /// expressions cannot be expanded. This allows LSR to consider the registers 1120 /// used by those expressions without the need to expand them later after 1121 /// changing the formula. 1122 bool RigidFormula = false; 1123 1124 /// This records the widest use type for any fixup using this 1125 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1126 /// fixup widths to be equivalent, because the narrower one may be relying on 1127 /// the implicit truncation to truncate away bogus bits. 1128 Type *WidestFixupType = nullptr; 1129 1130 /// A list of ways to build a value that can satisfy this user. After the 1131 /// list is populated, one of these is selected heuristically and used to 1132 /// formulate a replacement for OperandValToReplace in UserInst. 1133 SmallVector<Formula, 12> Formulae; 1134 1135 /// The set of register candidates used by all formulae in this LSRUse. 1136 SmallPtrSet<const SCEV *, 4> Regs; 1137 1138 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1139 1140 LSRFixup &getNewFixup() { 1141 Fixups.push_back(LSRFixup()); 1142 return Fixups.back(); 1143 } 1144 1145 void pushFixup(LSRFixup &f) { 1146 Fixups.push_back(f); 1147 if (f.Offset > MaxOffset) 1148 MaxOffset = f.Offset; 1149 if (f.Offset < MinOffset) 1150 MinOffset = f.Offset; 1151 } 1152 1153 bool HasFormulaWithSameRegs(const Formula &F) const; 1154 float getNotSelectedProbability(const SCEV *Reg) const; 1155 bool InsertFormula(const Formula &F, const Loop &L); 1156 void DeleteFormula(Formula &F); 1157 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1158 1159 void print(raw_ostream &OS) const; 1160 void dump() const; 1161 }; 1162 1163 } // end anonymous namespace 1164 1165 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1166 LSRUse::KindType Kind, MemAccessTy AccessTy, 1167 GlobalValue *BaseGV, int64_t BaseOffset, 1168 bool HasBaseReg, int64_t Scale, 1169 Instruction *Fixup = nullptr); 1170 1171 /// Tally up interesting quantities from the given register. 1172 void Cost::RateRegister(const SCEV *Reg, 1173 SmallPtrSetImpl<const SCEV *> &Regs, 1174 const Loop *L, 1175 ScalarEvolution &SE, DominatorTree &DT) { 1176 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1177 // If this is an addrec for another loop, it should be an invariant 1178 // with respect to L since L is the innermost loop (at least 1179 // for now LSR only handles innermost loops). 1180 if (AR->getLoop() != L) { 1181 // If the AddRec exists, consider it's register free and leave it alone. 1182 if (isExistingPhi(AR, SE)) 1183 return; 1184 1185 // It is bad to allow LSR for current loop to add induction variables 1186 // for its sibling loops. 1187 if (!AR->getLoop()->contains(L)) { 1188 Lose(); 1189 return; 1190 } 1191 1192 // Otherwise, it will be an invariant with respect to Loop L. 1193 ++C.NumRegs; 1194 return; 1195 } 1196 C.AddRecCost += 1; /// TODO: This should be a function of the stride. 1197 1198 // Add the step value register, if it needs one. 1199 // TODO: The non-affine case isn't precisely modeled here. 1200 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1201 if (!Regs.count(AR->getOperand(1))) { 1202 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 1203 if (isLoser()) 1204 return; 1205 } 1206 } 1207 } 1208 ++C.NumRegs; 1209 1210 // Rough heuristic; favor registers which don't require extra setup 1211 // instructions in the preheader. 1212 if (!isa<SCEVUnknown>(Reg) && 1213 !isa<SCEVConstant>(Reg) && 1214 !(isa<SCEVAddRecExpr>(Reg) && 1215 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1216 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1217 ++C.SetupCost; 1218 1219 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1220 SE.hasComputableLoopEvolution(Reg, L); 1221 } 1222 1223 /// Record this register in the set. If we haven't seen it before, rate 1224 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1225 /// one of those regs an instant loser. 1226 void Cost::RatePrimaryRegister(const SCEV *Reg, 1227 SmallPtrSetImpl<const SCEV *> &Regs, 1228 const Loop *L, 1229 ScalarEvolution &SE, DominatorTree &DT, 1230 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1231 if (LoserRegs && LoserRegs->count(Reg)) { 1232 Lose(); 1233 return; 1234 } 1235 if (Regs.insert(Reg).second) { 1236 RateRegister(Reg, Regs, L, SE, DT); 1237 if (LoserRegs && isLoser()) 1238 LoserRegs->insert(Reg); 1239 } 1240 } 1241 1242 void Cost::RateFormula(const TargetTransformInfo &TTI, 1243 const Formula &F, 1244 SmallPtrSetImpl<const SCEV *> &Regs, 1245 const DenseSet<const SCEV *> &VisitedRegs, 1246 const Loop *L, 1247 ScalarEvolution &SE, DominatorTree &DT, 1248 const LSRUse &LU, 1249 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1250 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1251 // Tally up the registers. 1252 unsigned PrevAddRecCost = C.AddRecCost; 1253 unsigned PrevNumRegs = C.NumRegs; 1254 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1255 if (const SCEV *ScaledReg = F.ScaledReg) { 1256 if (VisitedRegs.count(ScaledReg)) { 1257 Lose(); 1258 return; 1259 } 1260 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1261 if (isLoser()) 1262 return; 1263 } 1264 for (const SCEV *BaseReg : F.BaseRegs) { 1265 if (VisitedRegs.count(BaseReg)) { 1266 Lose(); 1267 return; 1268 } 1269 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1270 if (isLoser()) 1271 return; 1272 } 1273 1274 // Determine how many (unfolded) adds we'll need inside the loop. 1275 size_t NumBaseParts = F.getNumRegs(); 1276 if (NumBaseParts > 1) 1277 // Do not count the base and a possible second register if the target 1278 // allows to fold 2 registers. 1279 C.NumBaseAdds += 1280 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1281 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1282 1283 // Accumulate non-free scaling amounts. 1284 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1285 1286 // Tally up the non-zero immediates. 1287 for (const LSRFixup &Fixup : LU.Fixups) { 1288 int64_t O = Fixup.Offset; 1289 int64_t Offset = (uint64_t)O + F.BaseOffset; 1290 if (F.BaseGV) 1291 C.ImmCost += 64; // Handle symbolic values conservatively. 1292 // TODO: This should probably be the pointer size. 1293 else if (Offset != 0) 1294 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1295 1296 // Check with target if this offset with this instruction is 1297 // specifically not supported. 1298 if (LU.Kind == LSRUse::Address && Offset != 0 && 1299 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1300 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1301 C.NumBaseAdds++; 1302 } 1303 1304 // If we don't count instruction cost exit here. 1305 if (!InsnsCost) { 1306 assert(isValid() && "invalid cost"); 1307 return; 1308 } 1309 1310 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1311 // additional instruction (at least fill). 1312 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1313 if (C.NumRegs > TTIRegNum) { 1314 // Cost already exceeded TTIRegNum, then only newly added register can add 1315 // new instructions. 1316 if (PrevNumRegs > TTIRegNum) 1317 C.Insns += (C.NumRegs - PrevNumRegs); 1318 else 1319 C.Insns += (C.NumRegs - TTIRegNum); 1320 } 1321 1322 // If ICmpZero formula ends with not 0, it could not be replaced by 1323 // just add or sub. We'll need to compare final result of AddRec. 1324 // That means we'll need an additional instruction. 1325 // For -10 + {0, +, 1}: 1326 // i = i + 1; 1327 // cmp i, 10 1328 // 1329 // For {-10, +, 1}: 1330 // i = i + 1; 1331 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd()) 1332 C.Insns++; 1333 // Each new AddRec adds 1 instruction to calculation. 1334 C.Insns += (C.AddRecCost - PrevAddRecCost); 1335 1336 // BaseAdds adds instructions for unfolded registers. 1337 if (LU.Kind != LSRUse::ICmpZero) 1338 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1339 assert(isValid() && "invalid cost"); 1340 } 1341 1342 /// Set this cost to a losing value. 1343 void Cost::Lose() { 1344 C.Insns = std::numeric_limits<unsigned>::max(); 1345 C.NumRegs = std::numeric_limits<unsigned>::max(); 1346 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1347 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1348 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1349 C.ImmCost = std::numeric_limits<unsigned>::max(); 1350 C.SetupCost = std::numeric_limits<unsigned>::max(); 1351 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1352 } 1353 1354 /// Choose the lower cost. 1355 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1356 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1357 C.Insns != Other.C.Insns) 1358 return C.Insns < Other.C.Insns; 1359 return TTI.isLSRCostLess(C, Other.C); 1360 } 1361 1362 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1363 void Cost::print(raw_ostream &OS) const { 1364 if (InsnsCost) 1365 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1366 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1367 if (C.AddRecCost != 0) 1368 OS << ", with addrec cost " << C.AddRecCost; 1369 if (C.NumIVMuls != 0) 1370 OS << ", plus " << C.NumIVMuls << " IV mul" 1371 << (C.NumIVMuls == 1 ? "" : "s"); 1372 if (C.NumBaseAdds != 0) 1373 OS << ", plus " << C.NumBaseAdds << " base add" 1374 << (C.NumBaseAdds == 1 ? "" : "s"); 1375 if (C.ScaleCost != 0) 1376 OS << ", plus " << C.ScaleCost << " scale cost"; 1377 if (C.ImmCost != 0) 1378 OS << ", plus " << C.ImmCost << " imm cost"; 1379 if (C.SetupCost != 0) 1380 OS << ", plus " << C.SetupCost << " setup cost"; 1381 } 1382 1383 LLVM_DUMP_METHOD void Cost::dump() const { 1384 print(errs()); errs() << '\n'; 1385 } 1386 #endif 1387 1388 /// Test whether this fixup always uses its value outside of the given loop. 1389 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1390 // PHI nodes use their value in their incoming blocks. 1391 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1392 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1393 if (PN->getIncomingValue(i) == OperandValToReplace && 1394 L->contains(PN->getIncomingBlock(i))) 1395 return false; 1396 return true; 1397 } 1398 1399 return !L->contains(UserInst); 1400 } 1401 1402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1403 void LSRFixup::print(raw_ostream &OS) const { 1404 OS << "UserInst="; 1405 // Store is common and interesting enough to be worth special-casing. 1406 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1407 OS << "store "; 1408 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1409 } else if (UserInst->getType()->isVoidTy()) 1410 OS << UserInst->getOpcodeName(); 1411 else 1412 UserInst->printAsOperand(OS, /*PrintType=*/false); 1413 1414 OS << ", OperandValToReplace="; 1415 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1416 1417 for (const Loop *PIL : PostIncLoops) { 1418 OS << ", PostIncLoop="; 1419 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1420 } 1421 1422 if (Offset != 0) 1423 OS << ", Offset=" << Offset; 1424 } 1425 1426 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1427 print(errs()); errs() << '\n'; 1428 } 1429 #endif 1430 1431 /// Test whether this use as a formula which has the same registers as the given 1432 /// formula. 1433 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1434 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1435 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1436 // Unstable sort by host order ok, because this is only used for uniquifying. 1437 std::sort(Key.begin(), Key.end()); 1438 return Uniquifier.count(Key); 1439 } 1440 1441 /// The function returns a probability of selecting formula without Reg. 1442 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1443 unsigned FNum = 0; 1444 for (const Formula &F : Formulae) 1445 if (F.referencesReg(Reg)) 1446 FNum++; 1447 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1448 } 1449 1450 /// If the given formula has not yet been inserted, add it to the list, and 1451 /// return true. Return false otherwise. The formula must be in canonical form. 1452 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1453 assert(F.isCanonical(L) && "Invalid canonical representation"); 1454 1455 if (!Formulae.empty() && RigidFormula) 1456 return false; 1457 1458 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1459 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1460 // Unstable sort by host order ok, because this is only used for uniquifying. 1461 std::sort(Key.begin(), Key.end()); 1462 1463 if (!Uniquifier.insert(Key).second) 1464 return false; 1465 1466 // Using a register to hold the value of 0 is not profitable. 1467 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1468 "Zero allocated in a scaled register!"); 1469 #ifndef NDEBUG 1470 for (const SCEV *BaseReg : F.BaseRegs) 1471 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1472 #endif 1473 1474 // Add the formula to the list. 1475 Formulae.push_back(F); 1476 1477 // Record registers now being used by this use. 1478 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1479 if (F.ScaledReg) 1480 Regs.insert(F.ScaledReg); 1481 1482 return true; 1483 } 1484 1485 /// Remove the given formula from this use's list. 1486 void LSRUse::DeleteFormula(Formula &F) { 1487 if (&F != &Formulae.back()) 1488 std::swap(F, Formulae.back()); 1489 Formulae.pop_back(); 1490 } 1491 1492 /// Recompute the Regs field, and update RegUses. 1493 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1494 // Now that we've filtered out some formulae, recompute the Regs set. 1495 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1496 Regs.clear(); 1497 for (const Formula &F : Formulae) { 1498 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1499 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1500 } 1501 1502 // Update the RegTracker. 1503 for (const SCEV *S : OldRegs) 1504 if (!Regs.count(S)) 1505 RegUses.dropRegister(S, LUIdx); 1506 } 1507 1508 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1509 void LSRUse::print(raw_ostream &OS) const { 1510 OS << "LSR Use: Kind="; 1511 switch (Kind) { 1512 case Basic: OS << "Basic"; break; 1513 case Special: OS << "Special"; break; 1514 case ICmpZero: OS << "ICmpZero"; break; 1515 case Address: 1516 OS << "Address of "; 1517 if (AccessTy.MemTy->isPointerTy()) 1518 OS << "pointer"; // the full pointer type could be really verbose 1519 else { 1520 OS << *AccessTy.MemTy; 1521 } 1522 1523 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1524 } 1525 1526 OS << ", Offsets={"; 1527 bool NeedComma = false; 1528 for (const LSRFixup &Fixup : Fixups) { 1529 if (NeedComma) OS << ','; 1530 OS << Fixup.Offset; 1531 NeedComma = true; 1532 } 1533 OS << '}'; 1534 1535 if (AllFixupsOutsideLoop) 1536 OS << ", all-fixups-outside-loop"; 1537 1538 if (WidestFixupType) 1539 OS << ", widest fixup type: " << *WidestFixupType; 1540 } 1541 1542 LLVM_DUMP_METHOD void LSRUse::dump() const { 1543 print(errs()); errs() << '\n'; 1544 } 1545 #endif 1546 1547 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1548 LSRUse::KindType Kind, MemAccessTy AccessTy, 1549 GlobalValue *BaseGV, int64_t BaseOffset, 1550 bool HasBaseReg, int64_t Scale, 1551 Instruction *Fixup/*= nullptr*/) { 1552 switch (Kind) { 1553 case LSRUse::Address: 1554 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1555 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1556 1557 case LSRUse::ICmpZero: 1558 // There's not even a target hook for querying whether it would be legal to 1559 // fold a GV into an ICmp. 1560 if (BaseGV) 1561 return false; 1562 1563 // ICmp only has two operands; don't allow more than two non-trivial parts. 1564 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1565 return false; 1566 1567 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1568 // putting the scaled register in the other operand of the icmp. 1569 if (Scale != 0 && Scale != -1) 1570 return false; 1571 1572 // If we have low-level target information, ask the target if it can fold an 1573 // integer immediate on an icmp. 1574 if (BaseOffset != 0) { 1575 // We have one of: 1576 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1577 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1578 // Offs is the ICmp immediate. 1579 if (Scale == 0) 1580 // The cast does the right thing with 1581 // std::numeric_limits<int64_t>::min(). 1582 BaseOffset = -(uint64_t)BaseOffset; 1583 return TTI.isLegalICmpImmediate(BaseOffset); 1584 } 1585 1586 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1587 return true; 1588 1589 case LSRUse::Basic: 1590 // Only handle single-register values. 1591 return !BaseGV && Scale == 0 && BaseOffset == 0; 1592 1593 case LSRUse::Special: 1594 // Special case Basic to handle -1 scales. 1595 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1596 } 1597 1598 llvm_unreachable("Invalid LSRUse Kind!"); 1599 } 1600 1601 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1602 int64_t MinOffset, int64_t MaxOffset, 1603 LSRUse::KindType Kind, MemAccessTy AccessTy, 1604 GlobalValue *BaseGV, int64_t BaseOffset, 1605 bool HasBaseReg, int64_t Scale) { 1606 // Check for overflow. 1607 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1608 (MinOffset > 0)) 1609 return false; 1610 MinOffset = (uint64_t)BaseOffset + MinOffset; 1611 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1612 (MaxOffset > 0)) 1613 return false; 1614 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1615 1616 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1617 HasBaseReg, Scale) && 1618 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1619 HasBaseReg, Scale); 1620 } 1621 1622 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1623 int64_t MinOffset, int64_t MaxOffset, 1624 LSRUse::KindType Kind, MemAccessTy AccessTy, 1625 const Formula &F, const Loop &L) { 1626 // For the purpose of isAMCompletelyFolded either having a canonical formula 1627 // or a scale not equal to zero is correct. 1628 // Problems may arise from non canonical formulae having a scale == 0. 1629 // Strictly speaking it would best to just rely on canonical formulae. 1630 // However, when we generate the scaled formulae, we first check that the 1631 // scaling factor is profitable before computing the actual ScaledReg for 1632 // compile time sake. 1633 assert((F.isCanonical(L) || F.Scale != 0)); 1634 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1635 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1636 } 1637 1638 /// Test whether we know how to expand the current formula. 1639 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1640 int64_t MaxOffset, LSRUse::KindType Kind, 1641 MemAccessTy AccessTy, GlobalValue *BaseGV, 1642 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1643 // We know how to expand completely foldable formulae. 1644 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1645 BaseOffset, HasBaseReg, Scale) || 1646 // Or formulae that use a base register produced by a sum of base 1647 // registers. 1648 (Scale == 1 && 1649 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1650 BaseGV, BaseOffset, true, 0)); 1651 } 1652 1653 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1654 int64_t MaxOffset, LSRUse::KindType Kind, 1655 MemAccessTy AccessTy, const Formula &F) { 1656 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1657 F.BaseOffset, F.HasBaseReg, F.Scale); 1658 } 1659 1660 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1661 const LSRUse &LU, const Formula &F) { 1662 // Target may want to look at the user instructions. 1663 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1664 for (const LSRFixup &Fixup : LU.Fixups) 1665 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1666 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1667 F.Scale, Fixup.UserInst)) 1668 return false; 1669 return true; 1670 } 1671 1672 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1673 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1674 F.Scale); 1675 } 1676 1677 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1678 const LSRUse &LU, const Formula &F, 1679 const Loop &L) { 1680 if (!F.Scale) 1681 return 0; 1682 1683 // If the use is not completely folded in that instruction, we will have to 1684 // pay an extra cost only for scale != 1. 1685 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1686 LU.AccessTy, F, L)) 1687 return F.Scale != 1; 1688 1689 switch (LU.Kind) { 1690 case LSRUse::Address: { 1691 // Check the scaling factor cost with both the min and max offsets. 1692 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1693 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1694 F.Scale, LU.AccessTy.AddrSpace); 1695 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1696 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1697 F.Scale, LU.AccessTy.AddrSpace); 1698 1699 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1700 "Legal addressing mode has an illegal cost!"); 1701 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1702 } 1703 case LSRUse::ICmpZero: 1704 case LSRUse::Basic: 1705 case LSRUse::Special: 1706 // The use is completely folded, i.e., everything is folded into the 1707 // instruction. 1708 return 0; 1709 } 1710 1711 llvm_unreachable("Invalid LSRUse Kind!"); 1712 } 1713 1714 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1715 LSRUse::KindType Kind, MemAccessTy AccessTy, 1716 GlobalValue *BaseGV, int64_t BaseOffset, 1717 bool HasBaseReg) { 1718 // Fast-path: zero is always foldable. 1719 if (BaseOffset == 0 && !BaseGV) return true; 1720 1721 // Conservatively, create an address with an immediate and a 1722 // base and a scale. 1723 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1724 1725 // Canonicalize a scale of 1 to a base register if the formula doesn't 1726 // already have a base register. 1727 if (!HasBaseReg && Scale == 1) { 1728 Scale = 0; 1729 HasBaseReg = true; 1730 } 1731 1732 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1733 HasBaseReg, Scale); 1734 } 1735 1736 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1737 ScalarEvolution &SE, int64_t MinOffset, 1738 int64_t MaxOffset, LSRUse::KindType Kind, 1739 MemAccessTy AccessTy, const SCEV *S, 1740 bool HasBaseReg) { 1741 // Fast-path: zero is always foldable. 1742 if (S->isZero()) return true; 1743 1744 // Conservatively, create an address with an immediate and a 1745 // base and a scale. 1746 int64_t BaseOffset = ExtractImmediate(S, SE); 1747 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1748 1749 // If there's anything else involved, it's not foldable. 1750 if (!S->isZero()) return false; 1751 1752 // Fast-path: zero is always foldable. 1753 if (BaseOffset == 0 && !BaseGV) return true; 1754 1755 // Conservatively, create an address with an immediate and a 1756 // base and a scale. 1757 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1758 1759 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1760 BaseOffset, HasBaseReg, Scale); 1761 } 1762 1763 namespace { 1764 1765 /// An individual increment in a Chain of IV increments. Relate an IV user to 1766 /// an expression that computes the IV it uses from the IV used by the previous 1767 /// link in the Chain. 1768 /// 1769 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1770 /// original IVOperand. The head of the chain's IVOperand is only valid during 1771 /// chain collection, before LSR replaces IV users. During chain generation, 1772 /// IncExpr can be used to find the new IVOperand that computes the same 1773 /// expression. 1774 struct IVInc { 1775 Instruction *UserInst; 1776 Value* IVOperand; 1777 const SCEV *IncExpr; 1778 1779 IVInc(Instruction *U, Value *O, const SCEV *E) 1780 : UserInst(U), IVOperand(O), IncExpr(E) {} 1781 }; 1782 1783 // The list of IV increments in program order. We typically add the head of a 1784 // chain without finding subsequent links. 1785 struct IVChain { 1786 SmallVector<IVInc, 1> Incs; 1787 const SCEV *ExprBase = nullptr; 1788 1789 IVChain() = default; 1790 IVChain(const IVInc &Head, const SCEV *Base) 1791 : Incs(1, Head), ExprBase(Base) {} 1792 1793 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1794 1795 // Return the first increment in the chain. 1796 const_iterator begin() const { 1797 assert(!Incs.empty()); 1798 return std::next(Incs.begin()); 1799 } 1800 const_iterator end() const { 1801 return Incs.end(); 1802 } 1803 1804 // Returns true if this chain contains any increments. 1805 bool hasIncs() const { return Incs.size() >= 2; } 1806 1807 // Add an IVInc to the end of this chain. 1808 void add(const IVInc &X) { Incs.push_back(X); } 1809 1810 // Returns the last UserInst in the chain. 1811 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1812 1813 // Returns true if IncExpr can be profitably added to this chain. 1814 bool isProfitableIncrement(const SCEV *OperExpr, 1815 const SCEV *IncExpr, 1816 ScalarEvolution&); 1817 }; 1818 1819 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1820 /// between FarUsers that definitely cross IV increments and NearUsers that may 1821 /// be used between IV increments. 1822 struct ChainUsers { 1823 SmallPtrSet<Instruction*, 4> FarUsers; 1824 SmallPtrSet<Instruction*, 4> NearUsers; 1825 }; 1826 1827 /// This class holds state for the main loop strength reduction logic. 1828 class LSRInstance { 1829 IVUsers &IU; 1830 ScalarEvolution &SE; 1831 DominatorTree &DT; 1832 LoopInfo &LI; 1833 const TargetTransformInfo &TTI; 1834 Loop *const L; 1835 bool Changed = false; 1836 1837 /// This is the insert position that the current loop's induction variable 1838 /// increment should be placed. In simple loops, this is the latch block's 1839 /// terminator. But in more complicated cases, this is a position which will 1840 /// dominate all the in-loop post-increment users. 1841 Instruction *IVIncInsertPos = nullptr; 1842 1843 /// Interesting factors between use strides. 1844 /// 1845 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1846 /// default, a SmallDenseSet, because we need to use the full range of 1847 /// int64_ts, and there's currently no good way of doing that with 1848 /// SmallDenseSet. 1849 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1850 1851 /// Interesting use types, to facilitate truncation reuse. 1852 SmallSetVector<Type *, 4> Types; 1853 1854 /// The list of interesting uses. 1855 SmallVector<LSRUse, 16> Uses; 1856 1857 /// Track which uses use which register candidates. 1858 RegUseTracker RegUses; 1859 1860 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1861 // have more than a few IV increment chains in a loop. Missing a Chain falls 1862 // back to normal LSR behavior for those uses. 1863 static const unsigned MaxChains = 8; 1864 1865 /// IV users can form a chain of IV increments. 1866 SmallVector<IVChain, MaxChains> IVChainVec; 1867 1868 /// IV users that belong to profitable IVChains. 1869 SmallPtrSet<Use*, MaxChains> IVIncSet; 1870 1871 void OptimizeShadowIV(); 1872 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1873 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1874 void OptimizeLoopTermCond(); 1875 1876 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1877 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1878 void FinalizeChain(IVChain &Chain); 1879 void CollectChains(); 1880 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1881 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1882 1883 void CollectInterestingTypesAndFactors(); 1884 void CollectFixupsAndInitialFormulae(); 1885 1886 // Support for sharing of LSRUses between LSRFixups. 1887 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1888 UseMapTy UseMap; 1889 1890 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1891 LSRUse::KindType Kind, MemAccessTy AccessTy); 1892 1893 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1894 MemAccessTy AccessTy); 1895 1896 void DeleteUse(LSRUse &LU, size_t LUIdx); 1897 1898 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1899 1900 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1901 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1902 void CountRegisters(const Formula &F, size_t LUIdx); 1903 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1904 1905 void CollectLoopInvariantFixupsAndFormulae(); 1906 1907 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1908 unsigned Depth = 0); 1909 1910 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1911 const Formula &Base, unsigned Depth, 1912 size_t Idx, bool IsScaledReg = false); 1913 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1914 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1915 const Formula &Base, size_t Idx, 1916 bool IsScaledReg = false); 1917 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1918 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1919 const Formula &Base, 1920 const SmallVectorImpl<int64_t> &Worklist, 1921 size_t Idx, bool IsScaledReg = false); 1922 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1923 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1924 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1925 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1926 void GenerateCrossUseConstantOffsets(); 1927 void GenerateAllReuseFormulae(); 1928 1929 void FilterOutUndesirableDedicatedRegisters(); 1930 1931 size_t EstimateSearchSpaceComplexity() const; 1932 void NarrowSearchSpaceByDetectingSupersets(); 1933 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1934 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1935 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1936 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1937 void NarrowSearchSpaceByPickingWinnerRegs(); 1938 void NarrowSearchSpaceUsingHeuristics(); 1939 1940 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1941 Cost &SolutionCost, 1942 SmallVectorImpl<const Formula *> &Workspace, 1943 const Cost &CurCost, 1944 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1945 DenseSet<const SCEV *> &VisitedRegs) const; 1946 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1947 1948 BasicBlock::iterator 1949 HoistInsertPosition(BasicBlock::iterator IP, 1950 const SmallVectorImpl<Instruction *> &Inputs) const; 1951 BasicBlock::iterator 1952 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1953 const LSRFixup &LF, 1954 const LSRUse &LU, 1955 SCEVExpander &Rewriter) const; 1956 1957 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1958 BasicBlock::iterator IP, SCEVExpander &Rewriter, 1959 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1960 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 1961 const Formula &F, SCEVExpander &Rewriter, 1962 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1963 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 1964 SCEVExpander &Rewriter, 1965 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 1966 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 1967 1968 public: 1969 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 1970 LoopInfo &LI, const TargetTransformInfo &TTI); 1971 1972 bool getChanged() const { return Changed; } 1973 1974 void print_factors_and_types(raw_ostream &OS) const; 1975 void print_fixups(raw_ostream &OS) const; 1976 void print_uses(raw_ostream &OS) const; 1977 void print(raw_ostream &OS) const; 1978 void dump() const; 1979 }; 1980 1981 } // end anonymous namespace 1982 1983 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 1984 /// the cast operation. 1985 void LSRInstance::OptimizeShadowIV() { 1986 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1987 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1988 return; 1989 1990 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1991 UI != E; /* empty */) { 1992 IVUsers::const_iterator CandidateUI = UI; 1993 ++UI; 1994 Instruction *ShadowUse = CandidateUI->getUser(); 1995 Type *DestTy = nullptr; 1996 bool IsSigned = false; 1997 1998 /* If shadow use is a int->float cast then insert a second IV 1999 to eliminate this cast. 2000 2001 for (unsigned i = 0; i < n; ++i) 2002 foo((double)i); 2003 2004 is transformed into 2005 2006 double d = 0.0; 2007 for (unsigned i = 0; i < n; ++i, ++d) 2008 foo(d); 2009 */ 2010 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2011 IsSigned = false; 2012 DestTy = UCast->getDestTy(); 2013 } 2014 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2015 IsSigned = true; 2016 DestTy = SCast->getDestTy(); 2017 } 2018 if (!DestTy) continue; 2019 2020 // If target does not support DestTy natively then do not apply 2021 // this transformation. 2022 if (!TTI.isTypeLegal(DestTy)) continue; 2023 2024 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2025 if (!PH) continue; 2026 if (PH->getNumIncomingValues() != 2) continue; 2027 2028 // If the calculation in integers overflows, the result in FP type will 2029 // differ. So we only can do this transformation if we are guaranteed to not 2030 // deal with overflowing values 2031 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2032 if (!AR) continue; 2033 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2034 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2035 2036 Type *SrcTy = PH->getType(); 2037 int Mantissa = DestTy->getFPMantissaWidth(); 2038 if (Mantissa == -1) continue; 2039 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2040 continue; 2041 2042 unsigned Entry, Latch; 2043 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2044 Entry = 0; 2045 Latch = 1; 2046 } else { 2047 Entry = 1; 2048 Latch = 0; 2049 } 2050 2051 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2052 if (!Init) continue; 2053 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2054 (double)Init->getSExtValue() : 2055 (double)Init->getZExtValue()); 2056 2057 BinaryOperator *Incr = 2058 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2059 if (!Incr) continue; 2060 if (Incr->getOpcode() != Instruction::Add 2061 && Incr->getOpcode() != Instruction::Sub) 2062 continue; 2063 2064 /* Initialize new IV, double d = 0.0 in above example. */ 2065 ConstantInt *C = nullptr; 2066 if (Incr->getOperand(0) == PH) 2067 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2068 else if (Incr->getOperand(1) == PH) 2069 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2070 else 2071 continue; 2072 2073 if (!C) continue; 2074 2075 // Ignore negative constants, as the code below doesn't handle them 2076 // correctly. TODO: Remove this restriction. 2077 if (!C->getValue().isStrictlyPositive()) continue; 2078 2079 /* Add new PHINode. */ 2080 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2081 2082 /* create new increment. '++d' in above example. */ 2083 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2084 BinaryOperator *NewIncr = 2085 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2086 Instruction::FAdd : Instruction::FSub, 2087 NewPH, CFP, "IV.S.next.", Incr); 2088 2089 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2090 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2091 2092 /* Remove cast operation */ 2093 ShadowUse->replaceAllUsesWith(NewPH); 2094 ShadowUse->eraseFromParent(); 2095 Changed = true; 2096 break; 2097 } 2098 } 2099 2100 /// If Cond has an operand that is an expression of an IV, set the IV user and 2101 /// stride information and return true, otherwise return false. 2102 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2103 for (IVStrideUse &U : IU) 2104 if (U.getUser() == Cond) { 2105 // NOTE: we could handle setcc instructions with multiple uses here, but 2106 // InstCombine does it as well for simple uses, it's not clear that it 2107 // occurs enough in real life to handle. 2108 CondUse = &U; 2109 return true; 2110 } 2111 return false; 2112 } 2113 2114 /// Rewrite the loop's terminating condition if it uses a max computation. 2115 /// 2116 /// This is a narrow solution to a specific, but acute, problem. For loops 2117 /// like this: 2118 /// 2119 /// i = 0; 2120 /// do { 2121 /// p[i] = 0.0; 2122 /// } while (++i < n); 2123 /// 2124 /// the trip count isn't just 'n', because 'n' might not be positive. And 2125 /// unfortunately this can come up even for loops where the user didn't use 2126 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2127 /// will commonly be lowered like this: 2128 /// 2129 /// if (n > 0) { 2130 /// i = 0; 2131 /// do { 2132 /// p[i] = 0.0; 2133 /// } while (++i < n); 2134 /// } 2135 /// 2136 /// and then it's possible for subsequent optimization to obscure the if 2137 /// test in such a way that indvars can't find it. 2138 /// 2139 /// When indvars can't find the if test in loops like this, it creates a 2140 /// max expression, which allows it to give the loop a canonical 2141 /// induction variable: 2142 /// 2143 /// i = 0; 2144 /// max = n < 1 ? 1 : n; 2145 /// do { 2146 /// p[i] = 0.0; 2147 /// } while (++i != max); 2148 /// 2149 /// Canonical induction variables are necessary because the loop passes 2150 /// are designed around them. The most obvious example of this is the 2151 /// LoopInfo analysis, which doesn't remember trip count values. It 2152 /// expects to be able to rediscover the trip count each time it is 2153 /// needed, and it does this using a simple analysis that only succeeds if 2154 /// the loop has a canonical induction variable. 2155 /// 2156 /// However, when it comes time to generate code, the maximum operation 2157 /// can be quite costly, especially if it's inside of an outer loop. 2158 /// 2159 /// This function solves this problem by detecting this type of loop and 2160 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2161 /// the instructions for the maximum computation. 2162 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2163 // Check that the loop matches the pattern we're looking for. 2164 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2165 Cond->getPredicate() != CmpInst::ICMP_NE) 2166 return Cond; 2167 2168 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2169 if (!Sel || !Sel->hasOneUse()) return Cond; 2170 2171 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2172 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2173 return Cond; 2174 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2175 2176 // Add one to the backedge-taken count to get the trip count. 2177 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2178 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2179 2180 // Check for a max calculation that matches the pattern. There's no check 2181 // for ICMP_ULE here because the comparison would be with zero, which 2182 // isn't interesting. 2183 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2184 const SCEVNAryExpr *Max = nullptr; 2185 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2186 Pred = ICmpInst::ICMP_SLE; 2187 Max = S; 2188 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2189 Pred = ICmpInst::ICMP_SLT; 2190 Max = S; 2191 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2192 Pred = ICmpInst::ICMP_ULT; 2193 Max = U; 2194 } else { 2195 // No match; bail. 2196 return Cond; 2197 } 2198 2199 // To handle a max with more than two operands, this optimization would 2200 // require additional checking and setup. 2201 if (Max->getNumOperands() != 2) 2202 return Cond; 2203 2204 const SCEV *MaxLHS = Max->getOperand(0); 2205 const SCEV *MaxRHS = Max->getOperand(1); 2206 2207 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2208 // for a comparison with 1. For <= and >=, a comparison with zero. 2209 if (!MaxLHS || 2210 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2211 return Cond; 2212 2213 // Check the relevant induction variable for conformance to 2214 // the pattern. 2215 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2216 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2217 if (!AR || !AR->isAffine() || 2218 AR->getStart() != One || 2219 AR->getStepRecurrence(SE) != One) 2220 return Cond; 2221 2222 assert(AR->getLoop() == L && 2223 "Loop condition operand is an addrec in a different loop!"); 2224 2225 // Check the right operand of the select, and remember it, as it will 2226 // be used in the new comparison instruction. 2227 Value *NewRHS = nullptr; 2228 if (ICmpInst::isTrueWhenEqual(Pred)) { 2229 // Look for n+1, and grab n. 2230 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2231 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2232 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2233 NewRHS = BO->getOperand(0); 2234 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2235 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2236 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2237 NewRHS = BO->getOperand(0); 2238 if (!NewRHS) 2239 return Cond; 2240 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2241 NewRHS = Sel->getOperand(1); 2242 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2243 NewRHS = Sel->getOperand(2); 2244 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2245 NewRHS = SU->getValue(); 2246 else 2247 // Max doesn't match expected pattern. 2248 return Cond; 2249 2250 // Determine the new comparison opcode. It may be signed or unsigned, 2251 // and the original comparison may be either equality or inequality. 2252 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2253 Pred = CmpInst::getInversePredicate(Pred); 2254 2255 // Ok, everything looks ok to change the condition into an SLT or SGE and 2256 // delete the max calculation. 2257 ICmpInst *NewCond = 2258 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2259 2260 // Delete the max calculation instructions. 2261 Cond->replaceAllUsesWith(NewCond); 2262 CondUse->setUser(NewCond); 2263 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2264 Cond->eraseFromParent(); 2265 Sel->eraseFromParent(); 2266 if (Cmp->use_empty()) 2267 Cmp->eraseFromParent(); 2268 return NewCond; 2269 } 2270 2271 /// Change loop terminating condition to use the postinc iv when possible. 2272 void 2273 LSRInstance::OptimizeLoopTermCond() { 2274 SmallPtrSet<Instruction *, 4> PostIncs; 2275 2276 // We need a different set of heuristics for rotated and non-rotated loops. 2277 // If a loop is rotated then the latch is also the backedge, so inserting 2278 // post-inc expressions just before the latch is ideal. To reduce live ranges 2279 // it also makes sense to rewrite terminating conditions to use post-inc 2280 // expressions. 2281 // 2282 // If the loop is not rotated then the latch is not a backedge; the latch 2283 // check is done in the loop head. Adding post-inc expressions before the 2284 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2285 // in the loop body. In this case we do *not* want to use post-inc expressions 2286 // in the latch check, and we want to insert post-inc expressions before 2287 // the backedge. 2288 BasicBlock *LatchBlock = L->getLoopLatch(); 2289 SmallVector<BasicBlock*, 8> ExitingBlocks; 2290 L->getExitingBlocks(ExitingBlocks); 2291 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2292 return LatchBlock != BB; 2293 })) { 2294 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2295 IVIncInsertPos = LatchBlock->getTerminator(); 2296 return; 2297 } 2298 2299 // Otherwise treat this as a rotated loop. 2300 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2301 // Get the terminating condition for the loop if possible. If we 2302 // can, we want to change it to use a post-incremented version of its 2303 // induction variable, to allow coalescing the live ranges for the IV into 2304 // one register value. 2305 2306 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2307 if (!TermBr) 2308 continue; 2309 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2310 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2311 continue; 2312 2313 // Search IVUsesByStride to find Cond's IVUse if there is one. 2314 IVStrideUse *CondUse = nullptr; 2315 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2316 if (!FindIVUserForCond(Cond, CondUse)) 2317 continue; 2318 2319 // If the trip count is computed in terms of a max (due to ScalarEvolution 2320 // being unable to find a sufficient guard, for example), change the loop 2321 // comparison to use SLT or ULT instead of NE. 2322 // One consequence of doing this now is that it disrupts the count-down 2323 // optimization. That's not always a bad thing though, because in such 2324 // cases it may still be worthwhile to avoid a max. 2325 Cond = OptimizeMax(Cond, CondUse); 2326 2327 // If this exiting block dominates the latch block, it may also use 2328 // the post-inc value if it won't be shared with other uses. 2329 // Check for dominance. 2330 if (!DT.dominates(ExitingBlock, LatchBlock)) 2331 continue; 2332 2333 // Conservatively avoid trying to use the post-inc value in non-latch 2334 // exits if there may be pre-inc users in intervening blocks. 2335 if (LatchBlock != ExitingBlock) 2336 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2337 // Test if the use is reachable from the exiting block. This dominator 2338 // query is a conservative approximation of reachability. 2339 if (&*UI != CondUse && 2340 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2341 // Conservatively assume there may be reuse if the quotient of their 2342 // strides could be a legal scale. 2343 const SCEV *A = IU.getStride(*CondUse, L); 2344 const SCEV *B = IU.getStride(*UI, L); 2345 if (!A || !B) continue; 2346 if (SE.getTypeSizeInBits(A->getType()) != 2347 SE.getTypeSizeInBits(B->getType())) { 2348 if (SE.getTypeSizeInBits(A->getType()) > 2349 SE.getTypeSizeInBits(B->getType())) 2350 B = SE.getSignExtendExpr(B, A->getType()); 2351 else 2352 A = SE.getSignExtendExpr(A, B->getType()); 2353 } 2354 if (const SCEVConstant *D = 2355 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2356 const ConstantInt *C = D->getValue(); 2357 // Stride of one or negative one can have reuse with non-addresses. 2358 if (C->isOne() || C->isMinusOne()) 2359 goto decline_post_inc; 2360 // Avoid weird situations. 2361 if (C->getValue().getMinSignedBits() >= 64 || 2362 C->getValue().isMinSignedValue()) 2363 goto decline_post_inc; 2364 // Check for possible scaled-address reuse. 2365 MemAccessTy AccessTy = getAccessType(UI->getUser()); 2366 int64_t Scale = C->getSExtValue(); 2367 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2368 /*BaseOffset=*/0, 2369 /*HasBaseReg=*/false, Scale, 2370 AccessTy.AddrSpace)) 2371 goto decline_post_inc; 2372 Scale = -Scale; 2373 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2374 /*BaseOffset=*/0, 2375 /*HasBaseReg=*/false, Scale, 2376 AccessTy.AddrSpace)) 2377 goto decline_post_inc; 2378 } 2379 } 2380 2381 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2382 << *Cond << '\n'); 2383 2384 // It's possible for the setcc instruction to be anywhere in the loop, and 2385 // possible for it to have multiple users. If it is not immediately before 2386 // the exiting block branch, move it. 2387 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2388 if (Cond->hasOneUse()) { 2389 Cond->moveBefore(TermBr); 2390 } else { 2391 // Clone the terminating condition and insert into the loopend. 2392 ICmpInst *OldCond = Cond; 2393 Cond = cast<ICmpInst>(Cond->clone()); 2394 Cond->setName(L->getHeader()->getName() + ".termcond"); 2395 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2396 2397 // Clone the IVUse, as the old use still exists! 2398 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2399 TermBr->replaceUsesOfWith(OldCond, Cond); 2400 } 2401 } 2402 2403 // If we get to here, we know that we can transform the setcc instruction to 2404 // use the post-incremented version of the IV, allowing us to coalesce the 2405 // live ranges for the IV correctly. 2406 CondUse->transformToPostInc(L); 2407 Changed = true; 2408 2409 PostIncs.insert(Cond); 2410 decline_post_inc:; 2411 } 2412 2413 // Determine an insertion point for the loop induction variable increment. It 2414 // must dominate all the post-inc comparisons we just set up, and it must 2415 // dominate the loop latch edge. 2416 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2417 for (Instruction *Inst : PostIncs) { 2418 BasicBlock *BB = 2419 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2420 Inst->getParent()); 2421 if (BB == Inst->getParent()) 2422 IVIncInsertPos = Inst; 2423 else if (BB != IVIncInsertPos->getParent()) 2424 IVIncInsertPos = BB->getTerminator(); 2425 } 2426 } 2427 2428 /// Determine if the given use can accommodate a fixup at the given offset and 2429 /// other details. If so, update the use and return true. 2430 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2431 bool HasBaseReg, LSRUse::KindType Kind, 2432 MemAccessTy AccessTy) { 2433 int64_t NewMinOffset = LU.MinOffset; 2434 int64_t NewMaxOffset = LU.MaxOffset; 2435 MemAccessTy NewAccessTy = AccessTy; 2436 2437 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2438 // something conservative, however this can pessimize in the case that one of 2439 // the uses will have all its uses outside the loop, for example. 2440 if (LU.Kind != Kind) 2441 return false; 2442 2443 // Check for a mismatched access type, and fall back conservatively as needed. 2444 // TODO: Be less conservative when the type is similar and can use the same 2445 // addressing modes. 2446 if (Kind == LSRUse::Address) { 2447 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2448 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2449 AccessTy.AddrSpace); 2450 } 2451 } 2452 2453 // Conservatively assume HasBaseReg is true for now. 2454 if (NewOffset < LU.MinOffset) { 2455 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2456 LU.MaxOffset - NewOffset, HasBaseReg)) 2457 return false; 2458 NewMinOffset = NewOffset; 2459 } else if (NewOffset > LU.MaxOffset) { 2460 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2461 NewOffset - LU.MinOffset, HasBaseReg)) 2462 return false; 2463 NewMaxOffset = NewOffset; 2464 } 2465 2466 // Update the use. 2467 LU.MinOffset = NewMinOffset; 2468 LU.MaxOffset = NewMaxOffset; 2469 LU.AccessTy = NewAccessTy; 2470 return true; 2471 } 2472 2473 /// Return an LSRUse index and an offset value for a fixup which needs the given 2474 /// expression, with the given kind and optional access type. Either reuse an 2475 /// existing use or create a new one, as needed. 2476 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2477 LSRUse::KindType Kind, 2478 MemAccessTy AccessTy) { 2479 const SCEV *Copy = Expr; 2480 int64_t Offset = ExtractImmediate(Expr, SE); 2481 2482 // Basic uses can't accept any offset, for example. 2483 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2484 Offset, /*HasBaseReg=*/ true)) { 2485 Expr = Copy; 2486 Offset = 0; 2487 } 2488 2489 std::pair<UseMapTy::iterator, bool> P = 2490 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2491 if (!P.second) { 2492 // A use already existed with this base. 2493 size_t LUIdx = P.first->second; 2494 LSRUse &LU = Uses[LUIdx]; 2495 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2496 // Reuse this use. 2497 return std::make_pair(LUIdx, Offset); 2498 } 2499 2500 // Create a new use. 2501 size_t LUIdx = Uses.size(); 2502 P.first->second = LUIdx; 2503 Uses.push_back(LSRUse(Kind, AccessTy)); 2504 LSRUse &LU = Uses[LUIdx]; 2505 2506 LU.MinOffset = Offset; 2507 LU.MaxOffset = Offset; 2508 return std::make_pair(LUIdx, Offset); 2509 } 2510 2511 /// Delete the given use from the Uses list. 2512 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2513 if (&LU != &Uses.back()) 2514 std::swap(LU, Uses.back()); 2515 Uses.pop_back(); 2516 2517 // Update RegUses. 2518 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2519 } 2520 2521 /// Look for a use distinct from OrigLU which is has a formula that has the same 2522 /// registers as the given formula. 2523 LSRUse * 2524 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2525 const LSRUse &OrigLU) { 2526 // Search all uses for the formula. This could be more clever. 2527 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2528 LSRUse &LU = Uses[LUIdx]; 2529 // Check whether this use is close enough to OrigLU, to see whether it's 2530 // worthwhile looking through its formulae. 2531 // Ignore ICmpZero uses because they may contain formulae generated by 2532 // GenerateICmpZeroScales, in which case adding fixup offsets may 2533 // be invalid. 2534 if (&LU != &OrigLU && 2535 LU.Kind != LSRUse::ICmpZero && 2536 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2537 LU.WidestFixupType == OrigLU.WidestFixupType && 2538 LU.HasFormulaWithSameRegs(OrigF)) { 2539 // Scan through this use's formulae. 2540 for (const Formula &F : LU.Formulae) { 2541 // Check to see if this formula has the same registers and symbols 2542 // as OrigF. 2543 if (F.BaseRegs == OrigF.BaseRegs && 2544 F.ScaledReg == OrigF.ScaledReg && 2545 F.BaseGV == OrigF.BaseGV && 2546 F.Scale == OrigF.Scale && 2547 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2548 if (F.BaseOffset == 0) 2549 return &LU; 2550 // This is the formula where all the registers and symbols matched; 2551 // there aren't going to be any others. Since we declined it, we 2552 // can skip the rest of the formulae and proceed to the next LSRUse. 2553 break; 2554 } 2555 } 2556 } 2557 } 2558 2559 // Nothing looked good. 2560 return nullptr; 2561 } 2562 2563 void LSRInstance::CollectInterestingTypesAndFactors() { 2564 SmallSetVector<const SCEV *, 4> Strides; 2565 2566 // Collect interesting types and strides. 2567 SmallVector<const SCEV *, 4> Worklist; 2568 for (const IVStrideUse &U : IU) { 2569 const SCEV *Expr = IU.getExpr(U); 2570 2571 // Collect interesting types. 2572 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2573 2574 // Add strides for mentioned loops. 2575 Worklist.push_back(Expr); 2576 do { 2577 const SCEV *S = Worklist.pop_back_val(); 2578 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2579 if (AR->getLoop() == L) 2580 Strides.insert(AR->getStepRecurrence(SE)); 2581 Worklist.push_back(AR->getStart()); 2582 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2583 Worklist.append(Add->op_begin(), Add->op_end()); 2584 } 2585 } while (!Worklist.empty()); 2586 } 2587 2588 // Compute interesting factors from the set of interesting strides. 2589 for (SmallSetVector<const SCEV *, 4>::const_iterator 2590 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2591 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2592 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2593 const SCEV *OldStride = *I; 2594 const SCEV *NewStride = *NewStrideIter; 2595 2596 if (SE.getTypeSizeInBits(OldStride->getType()) != 2597 SE.getTypeSizeInBits(NewStride->getType())) { 2598 if (SE.getTypeSizeInBits(OldStride->getType()) > 2599 SE.getTypeSizeInBits(NewStride->getType())) 2600 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2601 else 2602 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2603 } 2604 if (const SCEVConstant *Factor = 2605 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2606 SE, true))) { 2607 if (Factor->getAPInt().getMinSignedBits() <= 64) 2608 Factors.insert(Factor->getAPInt().getSExtValue()); 2609 } else if (const SCEVConstant *Factor = 2610 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2611 NewStride, 2612 SE, true))) { 2613 if (Factor->getAPInt().getMinSignedBits() <= 64) 2614 Factors.insert(Factor->getAPInt().getSExtValue()); 2615 } 2616 } 2617 2618 // If all uses use the same type, don't bother looking for truncation-based 2619 // reuse. 2620 if (Types.size() == 1) 2621 Types.clear(); 2622 2623 DEBUG(print_factors_and_types(dbgs())); 2624 } 2625 2626 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2627 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2628 /// IVStrideUses, we could partially skip this. 2629 static User::op_iterator 2630 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2631 Loop *L, ScalarEvolution &SE) { 2632 for(; OI != OE; ++OI) { 2633 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2634 if (!SE.isSCEVable(Oper->getType())) 2635 continue; 2636 2637 if (const SCEVAddRecExpr *AR = 2638 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2639 if (AR->getLoop() == L) 2640 break; 2641 } 2642 } 2643 } 2644 return OI; 2645 } 2646 2647 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2648 /// a convenient helper. 2649 static Value *getWideOperand(Value *Oper) { 2650 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2651 return Trunc->getOperand(0); 2652 return Oper; 2653 } 2654 2655 /// Return true if we allow an IV chain to include both types. 2656 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2657 Type *LType = LVal->getType(); 2658 Type *RType = RVal->getType(); 2659 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2660 // Different address spaces means (possibly) 2661 // different types of the pointer implementation, 2662 // e.g. i16 vs i32 so disallow that. 2663 (LType->getPointerAddressSpace() == 2664 RType->getPointerAddressSpace())); 2665 } 2666 2667 /// Return an approximation of this SCEV expression's "base", or NULL for any 2668 /// constant. Returning the expression itself is conservative. Returning a 2669 /// deeper subexpression is more precise and valid as long as it isn't less 2670 /// complex than another subexpression. For expressions involving multiple 2671 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2672 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2673 /// IVInc==b-a. 2674 /// 2675 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2676 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2677 static const SCEV *getExprBase(const SCEV *S) { 2678 switch (S->getSCEVType()) { 2679 default: // uncluding scUnknown. 2680 return S; 2681 case scConstant: 2682 return nullptr; 2683 case scTruncate: 2684 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2685 case scZeroExtend: 2686 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2687 case scSignExtend: 2688 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2689 case scAddExpr: { 2690 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2691 // there's nothing more complex. 2692 // FIXME: not sure if we want to recognize negation. 2693 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2694 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2695 E(Add->op_begin()); I != E; ++I) { 2696 const SCEV *SubExpr = *I; 2697 if (SubExpr->getSCEVType() == scAddExpr) 2698 return getExprBase(SubExpr); 2699 2700 if (SubExpr->getSCEVType() != scMulExpr) 2701 return SubExpr; 2702 } 2703 return S; // all operands are scaled, be conservative. 2704 } 2705 case scAddRecExpr: 2706 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2707 } 2708 } 2709 2710 /// Return true if the chain increment is profitable to expand into a loop 2711 /// invariant value, which may require its own register. A profitable chain 2712 /// increment will be an offset relative to the same base. We allow such offsets 2713 /// to potentially be used as chain increment as long as it's not obviously 2714 /// expensive to expand using real instructions. 2715 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2716 const SCEV *IncExpr, 2717 ScalarEvolution &SE) { 2718 // Aggressively form chains when -stress-ivchain. 2719 if (StressIVChain) 2720 return true; 2721 2722 // Do not replace a constant offset from IV head with a nonconstant IV 2723 // increment. 2724 if (!isa<SCEVConstant>(IncExpr)) { 2725 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2726 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2727 return false; 2728 } 2729 2730 SmallPtrSet<const SCEV*, 8> Processed; 2731 return !isHighCostExpansion(IncExpr, Processed, SE); 2732 } 2733 2734 /// Return true if the number of registers needed for the chain is estimated to 2735 /// be less than the number required for the individual IV users. First prohibit 2736 /// any IV users that keep the IV live across increments (the Users set should 2737 /// be empty). Next count the number and type of increments in the chain. 2738 /// 2739 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2740 /// effectively use postinc addressing modes. Only consider it profitable it the 2741 /// increments can be computed in fewer registers when chained. 2742 /// 2743 /// TODO: Consider IVInc free if it's already used in another chains. 2744 static bool 2745 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2746 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2747 if (StressIVChain) 2748 return true; 2749 2750 if (!Chain.hasIncs()) 2751 return false; 2752 2753 if (!Users.empty()) { 2754 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2755 for (Instruction *Inst : Users) { 2756 dbgs() << " " << *Inst << "\n"; 2757 }); 2758 return false; 2759 } 2760 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2761 2762 // The chain itself may require a register, so intialize cost to 1. 2763 int cost = 1; 2764 2765 // A complete chain likely eliminates the need for keeping the original IV in 2766 // a register. LSR does not currently know how to form a complete chain unless 2767 // the header phi already exists. 2768 if (isa<PHINode>(Chain.tailUserInst()) 2769 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2770 --cost; 2771 } 2772 const SCEV *LastIncExpr = nullptr; 2773 unsigned NumConstIncrements = 0; 2774 unsigned NumVarIncrements = 0; 2775 unsigned NumReusedIncrements = 0; 2776 for (const IVInc &Inc : Chain) { 2777 if (Inc.IncExpr->isZero()) 2778 continue; 2779 2780 // Incrementing by zero or some constant is neutral. We assume constants can 2781 // be folded into an addressing mode or an add's immediate operand. 2782 if (isa<SCEVConstant>(Inc.IncExpr)) { 2783 ++NumConstIncrements; 2784 continue; 2785 } 2786 2787 if (Inc.IncExpr == LastIncExpr) 2788 ++NumReusedIncrements; 2789 else 2790 ++NumVarIncrements; 2791 2792 LastIncExpr = Inc.IncExpr; 2793 } 2794 // An IV chain with a single increment is handled by LSR's postinc 2795 // uses. However, a chain with multiple increments requires keeping the IV's 2796 // value live longer than it needs to be if chained. 2797 if (NumConstIncrements > 1) 2798 --cost; 2799 2800 // Materializing increment expressions in the preheader that didn't exist in 2801 // the original code may cost a register. For example, sign-extended array 2802 // indices can produce ridiculous increments like this: 2803 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2804 cost += NumVarIncrements; 2805 2806 // Reusing variable increments likely saves a register to hold the multiple of 2807 // the stride. 2808 cost -= NumReusedIncrements; 2809 2810 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2811 << "\n"); 2812 2813 return cost < 0; 2814 } 2815 2816 /// Add this IV user to an existing chain or make it the head of a new chain. 2817 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2818 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2819 // When IVs are used as types of varying widths, they are generally converted 2820 // to a wider type with some uses remaining narrow under a (free) trunc. 2821 Value *const NextIV = getWideOperand(IVOper); 2822 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2823 const SCEV *const OperExprBase = getExprBase(OperExpr); 2824 2825 // Visit all existing chains. Check if its IVOper can be computed as a 2826 // profitable loop invariant increment from the last link in the Chain. 2827 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2828 const SCEV *LastIncExpr = nullptr; 2829 for (; ChainIdx < NChains; ++ChainIdx) { 2830 IVChain &Chain = IVChainVec[ChainIdx]; 2831 2832 // Prune the solution space aggressively by checking that both IV operands 2833 // are expressions that operate on the same unscaled SCEVUnknown. This 2834 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2835 // first avoids creating extra SCEV expressions. 2836 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2837 continue; 2838 2839 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2840 if (!isCompatibleIVType(PrevIV, NextIV)) 2841 continue; 2842 2843 // A phi node terminates a chain. 2844 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2845 continue; 2846 2847 // The increment must be loop-invariant so it can be kept in a register. 2848 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2849 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2850 if (!SE.isLoopInvariant(IncExpr, L)) 2851 continue; 2852 2853 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2854 LastIncExpr = IncExpr; 2855 break; 2856 } 2857 } 2858 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2859 // bother for phi nodes, because they must be last in the chain. 2860 if (ChainIdx == NChains) { 2861 if (isa<PHINode>(UserInst)) 2862 return; 2863 if (NChains >= MaxChains && !StressIVChain) { 2864 DEBUG(dbgs() << "IV Chain Limit\n"); 2865 return; 2866 } 2867 LastIncExpr = OperExpr; 2868 // IVUsers may have skipped over sign/zero extensions. We don't currently 2869 // attempt to form chains involving extensions unless they can be hoisted 2870 // into this loop's AddRec. 2871 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2872 return; 2873 ++NChains; 2874 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2875 OperExprBase)); 2876 ChainUsersVec.resize(NChains); 2877 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2878 << ") IV=" << *LastIncExpr << "\n"); 2879 } else { 2880 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2881 << ") IV+" << *LastIncExpr << "\n"); 2882 // Add this IV user to the end of the chain. 2883 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2884 } 2885 IVChain &Chain = IVChainVec[ChainIdx]; 2886 2887 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2888 // This chain's NearUsers become FarUsers. 2889 if (!LastIncExpr->isZero()) { 2890 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2891 NearUsers.end()); 2892 NearUsers.clear(); 2893 } 2894 2895 // All other uses of IVOperand become near uses of the chain. 2896 // We currently ignore intermediate values within SCEV expressions, assuming 2897 // they will eventually be used be the current chain, or can be computed 2898 // from one of the chain increments. To be more precise we could 2899 // transitively follow its user and only add leaf IV users to the set. 2900 for (User *U : IVOper->users()) { 2901 Instruction *OtherUse = dyn_cast<Instruction>(U); 2902 if (!OtherUse) 2903 continue; 2904 // Uses in the chain will no longer be uses if the chain is formed. 2905 // Include the head of the chain in this iteration (not Chain.begin()). 2906 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2907 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2908 for( ; IncIter != IncEnd; ++IncIter) { 2909 if (IncIter->UserInst == OtherUse) 2910 break; 2911 } 2912 if (IncIter != IncEnd) 2913 continue; 2914 2915 if (SE.isSCEVable(OtherUse->getType()) 2916 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2917 && IU.isIVUserOrOperand(OtherUse)) { 2918 continue; 2919 } 2920 NearUsers.insert(OtherUse); 2921 } 2922 2923 // Since this user is part of the chain, it's no longer considered a use 2924 // of the chain. 2925 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2926 } 2927 2928 /// Populate the vector of Chains. 2929 /// 2930 /// This decreases ILP at the architecture level. Targets with ample registers, 2931 /// multiple memory ports, and no register renaming probably don't want 2932 /// this. However, such targets should probably disable LSR altogether. 2933 /// 2934 /// The job of LSR is to make a reasonable choice of induction variables across 2935 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2936 /// ILP *within the loop* if the target wants it. 2937 /// 2938 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2939 /// will not reorder memory operations, it will recognize this as a chain, but 2940 /// will generate redundant IV increments. Ideally this would be corrected later 2941 /// by a smart scheduler: 2942 /// = A[i] 2943 /// = A[i+x] 2944 /// A[i] = 2945 /// A[i+x] = 2946 /// 2947 /// TODO: Walk the entire domtree within this loop, not just the path to the 2948 /// loop latch. This will discover chains on side paths, but requires 2949 /// maintaining multiple copies of the Chains state. 2950 void LSRInstance::CollectChains() { 2951 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2952 SmallVector<ChainUsers, 8> ChainUsersVec; 2953 2954 SmallVector<BasicBlock *,8> LatchPath; 2955 BasicBlock *LoopHeader = L->getHeader(); 2956 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2957 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2958 LatchPath.push_back(Rung->getBlock()); 2959 } 2960 LatchPath.push_back(LoopHeader); 2961 2962 // Walk the instruction stream from the loop header to the loop latch. 2963 for (BasicBlock *BB : reverse(LatchPath)) { 2964 for (Instruction &I : *BB) { 2965 // Skip instructions that weren't seen by IVUsers analysis. 2966 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 2967 continue; 2968 2969 // Ignore users that are part of a SCEV expression. This way we only 2970 // consider leaf IV Users. This effectively rediscovers a portion of 2971 // IVUsers analysis but in program order this time. 2972 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 2973 continue; 2974 2975 // Remove this instruction from any NearUsers set it may be in. 2976 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2977 ChainIdx < NChains; ++ChainIdx) { 2978 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 2979 } 2980 // Search for operands that can be chained. 2981 SmallPtrSet<Instruction*, 4> UniqueOperands; 2982 User::op_iterator IVOpEnd = I.op_end(); 2983 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 2984 while (IVOpIter != IVOpEnd) { 2985 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2986 if (UniqueOperands.insert(IVOpInst).second) 2987 ChainInstruction(&I, IVOpInst, ChainUsersVec); 2988 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2989 } 2990 } // Continue walking down the instructions. 2991 } // Continue walking down the domtree. 2992 // Visit phi backedges to determine if the chain can generate the IV postinc. 2993 for (BasicBlock::iterator I = L->getHeader()->begin(); 2994 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2995 if (!SE.isSCEVable(PN->getType())) 2996 continue; 2997 2998 Instruction *IncV = 2999 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 3000 if (IncV) 3001 ChainInstruction(PN, IncV, ChainUsersVec); 3002 } 3003 // Remove any unprofitable chains. 3004 unsigned ChainIdx = 0; 3005 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3006 UsersIdx < NChains; ++UsersIdx) { 3007 if (!isProfitableChain(IVChainVec[UsersIdx], 3008 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3009 continue; 3010 // Preserve the chain at UsesIdx. 3011 if (ChainIdx != UsersIdx) 3012 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3013 FinalizeChain(IVChainVec[ChainIdx]); 3014 ++ChainIdx; 3015 } 3016 IVChainVec.resize(ChainIdx); 3017 } 3018 3019 void LSRInstance::FinalizeChain(IVChain &Chain) { 3020 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3021 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3022 3023 for (const IVInc &Inc : Chain) { 3024 DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3025 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3026 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3027 IVIncSet.insert(UseI); 3028 } 3029 } 3030 3031 /// Return true if the IVInc can be folded into an addressing mode. 3032 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3033 Value *Operand, const TargetTransformInfo &TTI) { 3034 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3035 if (!IncConst || !isAddressUse(UserInst, Operand)) 3036 return false; 3037 3038 if (IncConst->getAPInt().getMinSignedBits() > 64) 3039 return false; 3040 3041 MemAccessTy AccessTy = getAccessType(UserInst); 3042 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3043 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3044 IncOffset, /*HaseBaseReg=*/false)) 3045 return false; 3046 3047 return true; 3048 } 3049 3050 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3051 /// user's operand from the previous IV user's operand. 3052 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3053 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3054 // Find the new IVOperand for the head of the chain. It may have been replaced 3055 // by LSR. 3056 const IVInc &Head = Chain.Incs[0]; 3057 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3058 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3059 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3060 IVOpEnd, L, SE); 3061 Value *IVSrc = nullptr; 3062 while (IVOpIter != IVOpEnd) { 3063 IVSrc = getWideOperand(*IVOpIter); 3064 3065 // If this operand computes the expression that the chain needs, we may use 3066 // it. (Check this after setting IVSrc which is used below.) 3067 // 3068 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3069 // narrow for the chain, so we can no longer use it. We do allow using a 3070 // wider phi, assuming the LSR checked for free truncation. In that case we 3071 // should already have a truncate on this operand such that 3072 // getSCEV(IVSrc) == IncExpr. 3073 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3074 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3075 break; 3076 } 3077 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3078 } 3079 if (IVOpIter == IVOpEnd) { 3080 // Gracefully give up on this chain. 3081 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3082 return; 3083 } 3084 3085 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3086 Type *IVTy = IVSrc->getType(); 3087 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3088 const SCEV *LeftOverExpr = nullptr; 3089 for (const IVInc &Inc : Chain) { 3090 Instruction *InsertPt = Inc.UserInst; 3091 if (isa<PHINode>(InsertPt)) 3092 InsertPt = L->getLoopLatch()->getTerminator(); 3093 3094 // IVOper will replace the current IV User's operand. IVSrc is the IV 3095 // value currently held in a register. 3096 Value *IVOper = IVSrc; 3097 if (!Inc.IncExpr->isZero()) { 3098 // IncExpr was the result of subtraction of two narrow values, so must 3099 // be signed. 3100 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3101 LeftOverExpr = LeftOverExpr ? 3102 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3103 } 3104 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3105 // Expand the IV increment. 3106 Rewriter.clearPostInc(); 3107 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3108 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3109 SE.getUnknown(IncV)); 3110 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3111 3112 // If an IV increment can't be folded, use it as the next IV value. 3113 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3114 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3115 IVSrc = IVOper; 3116 LeftOverExpr = nullptr; 3117 } 3118 } 3119 Type *OperTy = Inc.IVOperand->getType(); 3120 if (IVTy != OperTy) { 3121 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3122 "cannot extend a chained IV"); 3123 IRBuilder<> Builder(InsertPt); 3124 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3125 } 3126 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3127 DeadInsts.emplace_back(Inc.IVOperand); 3128 } 3129 // If LSR created a new, wider phi, we may also replace its postinc. We only 3130 // do this if we also found a wide value for the head of the chain. 3131 if (isa<PHINode>(Chain.tailUserInst())) { 3132 for (BasicBlock::iterator I = L->getHeader()->begin(); 3133 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 3134 if (!isCompatibleIVType(Phi, IVSrc)) 3135 continue; 3136 Instruction *PostIncV = dyn_cast<Instruction>( 3137 Phi->getIncomingValueForBlock(L->getLoopLatch())); 3138 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3139 continue; 3140 Value *IVOper = IVSrc; 3141 Type *PostIncTy = PostIncV->getType(); 3142 if (IVTy != PostIncTy) { 3143 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3144 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3145 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3146 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3147 } 3148 Phi->replaceUsesOfWith(PostIncV, IVOper); 3149 DeadInsts.emplace_back(PostIncV); 3150 } 3151 } 3152 } 3153 3154 void LSRInstance::CollectFixupsAndInitialFormulae() { 3155 for (const IVStrideUse &U : IU) { 3156 Instruction *UserInst = U.getUser(); 3157 // Skip IV users that are part of profitable IV Chains. 3158 User::op_iterator UseI = 3159 find(UserInst->operands(), U.getOperandValToReplace()); 3160 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3161 if (IVIncSet.count(UseI)) { 3162 DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3163 continue; 3164 } 3165 3166 LSRUse::KindType Kind = LSRUse::Basic; 3167 MemAccessTy AccessTy; 3168 if (isAddressUse(UserInst, U.getOperandValToReplace())) { 3169 Kind = LSRUse::Address; 3170 AccessTy = getAccessType(UserInst); 3171 } 3172 3173 const SCEV *S = IU.getExpr(U); 3174 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3175 3176 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3177 // (N - i == 0), and this allows (N - i) to be the expression that we work 3178 // with rather than just N or i, so we can consider the register 3179 // requirements for both N and i at the same time. Limiting this code to 3180 // equality icmps is not a problem because all interesting loops use 3181 // equality icmps, thanks to IndVarSimplify. 3182 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3183 if (CI->isEquality()) { 3184 // Swap the operands if needed to put the OperandValToReplace on the 3185 // left, for consistency. 3186 Value *NV = CI->getOperand(1); 3187 if (NV == U.getOperandValToReplace()) { 3188 CI->setOperand(1, CI->getOperand(0)); 3189 CI->setOperand(0, NV); 3190 NV = CI->getOperand(1); 3191 Changed = true; 3192 } 3193 3194 // x == y --> x - y == 0 3195 const SCEV *N = SE.getSCEV(NV); 3196 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3197 // S is normalized, so normalize N before folding it into S 3198 // to keep the result normalized. 3199 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3200 Kind = LSRUse::ICmpZero; 3201 S = SE.getMinusSCEV(N, S); 3202 } 3203 3204 // -1 and the negations of all interesting strides (except the negation 3205 // of -1) are now also interesting. 3206 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3207 if (Factors[i] != -1) 3208 Factors.insert(-(uint64_t)Factors[i]); 3209 Factors.insert(-1); 3210 } 3211 3212 // Get or create an LSRUse. 3213 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3214 size_t LUIdx = P.first; 3215 int64_t Offset = P.second; 3216 LSRUse &LU = Uses[LUIdx]; 3217 3218 // Record the fixup. 3219 LSRFixup &LF = LU.getNewFixup(); 3220 LF.UserInst = UserInst; 3221 LF.OperandValToReplace = U.getOperandValToReplace(); 3222 LF.PostIncLoops = TmpPostIncLoops; 3223 LF.Offset = Offset; 3224 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3225 3226 if (!LU.WidestFixupType || 3227 SE.getTypeSizeInBits(LU.WidestFixupType) < 3228 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3229 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3230 3231 // If this is the first use of this LSRUse, give it a formula. 3232 if (LU.Formulae.empty()) { 3233 InsertInitialFormula(S, LU, LUIdx); 3234 CountRegisters(LU.Formulae.back(), LUIdx); 3235 } 3236 } 3237 3238 DEBUG(print_fixups(dbgs())); 3239 } 3240 3241 /// Insert a formula for the given expression into the given use, separating out 3242 /// loop-variant portions from loop-invariant and loop-computable portions. 3243 void 3244 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3245 // Mark uses whose expressions cannot be expanded. 3246 if (!isSafeToExpand(S, SE)) 3247 LU.RigidFormula = true; 3248 3249 Formula F; 3250 F.initialMatch(S, L, SE); 3251 bool Inserted = InsertFormula(LU, LUIdx, F); 3252 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3253 } 3254 3255 /// Insert a simple single-register formula for the given expression into the 3256 /// given use. 3257 void 3258 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3259 LSRUse &LU, size_t LUIdx) { 3260 Formula F; 3261 F.BaseRegs.push_back(S); 3262 F.HasBaseReg = true; 3263 bool Inserted = InsertFormula(LU, LUIdx, F); 3264 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3265 } 3266 3267 /// Note which registers are used by the given formula, updating RegUses. 3268 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3269 if (F.ScaledReg) 3270 RegUses.countRegister(F.ScaledReg, LUIdx); 3271 for (const SCEV *BaseReg : F.BaseRegs) 3272 RegUses.countRegister(BaseReg, LUIdx); 3273 } 3274 3275 /// If the given formula has not yet been inserted, add it to the list, and 3276 /// return true. Return false otherwise. 3277 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3278 // Do not insert formula that we will not be able to expand. 3279 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3280 "Formula is illegal"); 3281 3282 if (!LU.InsertFormula(F, *L)) 3283 return false; 3284 3285 CountRegisters(F, LUIdx); 3286 return true; 3287 } 3288 3289 /// Check for other uses of loop-invariant values which we're tracking. These 3290 /// other uses will pin these values in registers, making them less profitable 3291 /// for elimination. 3292 /// TODO: This currently misses non-constant addrec step registers. 3293 /// TODO: Should this give more weight to users inside the loop? 3294 void 3295 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3296 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3297 SmallPtrSet<const SCEV *, 32> Visited; 3298 3299 while (!Worklist.empty()) { 3300 const SCEV *S = Worklist.pop_back_val(); 3301 3302 // Don't process the same SCEV twice 3303 if (!Visited.insert(S).second) 3304 continue; 3305 3306 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3307 Worklist.append(N->op_begin(), N->op_end()); 3308 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3309 Worklist.push_back(C->getOperand()); 3310 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3311 Worklist.push_back(D->getLHS()); 3312 Worklist.push_back(D->getRHS()); 3313 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3314 const Value *V = US->getValue(); 3315 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3316 // Look for instructions defined outside the loop. 3317 if (L->contains(Inst)) continue; 3318 } else if (isa<UndefValue>(V)) 3319 // Undef doesn't have a live range, so it doesn't matter. 3320 continue; 3321 for (const Use &U : V->uses()) { 3322 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3323 // Ignore non-instructions. 3324 if (!UserInst) 3325 continue; 3326 // Ignore instructions in other functions (as can happen with 3327 // Constants). 3328 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3329 continue; 3330 // Ignore instructions not dominated by the loop. 3331 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3332 UserInst->getParent() : 3333 cast<PHINode>(UserInst)->getIncomingBlock( 3334 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3335 if (!DT.dominates(L->getHeader(), UseBB)) 3336 continue; 3337 // Don't bother if the instruction is in a BB which ends in an EHPad. 3338 if (UseBB->getTerminator()->isEHPad()) 3339 continue; 3340 // Don't bother rewriting PHIs in catchswitch blocks. 3341 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3342 continue; 3343 // Ignore uses which are part of other SCEV expressions, to avoid 3344 // analyzing them multiple times. 3345 if (SE.isSCEVable(UserInst->getType())) { 3346 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3347 // If the user is a no-op, look through to its uses. 3348 if (!isa<SCEVUnknown>(UserS)) 3349 continue; 3350 if (UserS == US) { 3351 Worklist.push_back( 3352 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3353 continue; 3354 } 3355 } 3356 // Ignore icmp instructions which are already being analyzed. 3357 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3358 unsigned OtherIdx = !U.getOperandNo(); 3359 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3360 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3361 continue; 3362 } 3363 3364 std::pair<size_t, int64_t> P = getUse( 3365 S, LSRUse::Basic, MemAccessTy()); 3366 size_t LUIdx = P.first; 3367 int64_t Offset = P.second; 3368 LSRUse &LU = Uses[LUIdx]; 3369 LSRFixup &LF = LU.getNewFixup(); 3370 LF.UserInst = const_cast<Instruction *>(UserInst); 3371 LF.OperandValToReplace = U; 3372 LF.Offset = Offset; 3373 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3374 if (!LU.WidestFixupType || 3375 SE.getTypeSizeInBits(LU.WidestFixupType) < 3376 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3377 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3378 InsertSupplementalFormula(US, LU, LUIdx); 3379 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3380 break; 3381 } 3382 } 3383 } 3384 } 3385 3386 /// Split S into subexpressions which can be pulled out into separate 3387 /// registers. If C is non-null, multiply each subexpression by C. 3388 /// 3389 /// Return remainder expression after factoring the subexpressions captured by 3390 /// Ops. If Ops is complete, return NULL. 3391 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3392 SmallVectorImpl<const SCEV *> &Ops, 3393 const Loop *L, 3394 ScalarEvolution &SE, 3395 unsigned Depth = 0) { 3396 // Arbitrarily cap recursion to protect compile time. 3397 if (Depth >= 3) 3398 return S; 3399 3400 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3401 // Break out add operands. 3402 for (const SCEV *S : Add->operands()) { 3403 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3404 if (Remainder) 3405 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3406 } 3407 return nullptr; 3408 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3409 // Split a non-zero base out of an addrec. 3410 if (AR->getStart()->isZero() || !AR->isAffine()) 3411 return S; 3412 3413 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3414 C, Ops, L, SE, Depth+1); 3415 // Split the non-zero AddRec unless it is part of a nested recurrence that 3416 // does not pertain to this loop. 3417 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3418 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3419 Remainder = nullptr; 3420 } 3421 if (Remainder != AR->getStart()) { 3422 if (!Remainder) 3423 Remainder = SE.getConstant(AR->getType(), 0); 3424 return SE.getAddRecExpr(Remainder, 3425 AR->getStepRecurrence(SE), 3426 AR->getLoop(), 3427 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3428 SCEV::FlagAnyWrap); 3429 } 3430 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3431 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3432 if (Mul->getNumOperands() != 2) 3433 return S; 3434 if (const SCEVConstant *Op0 = 3435 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3436 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3437 const SCEV *Remainder = 3438 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3439 if (Remainder) 3440 Ops.push_back(SE.getMulExpr(C, Remainder)); 3441 return nullptr; 3442 } 3443 } 3444 return S; 3445 } 3446 3447 /// \brief Helper function for LSRInstance::GenerateReassociations. 3448 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3449 const Formula &Base, 3450 unsigned Depth, size_t Idx, 3451 bool IsScaledReg) { 3452 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3453 SmallVector<const SCEV *, 8> AddOps; 3454 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3455 if (Remainder) 3456 AddOps.push_back(Remainder); 3457 3458 if (AddOps.size() == 1) 3459 return; 3460 3461 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3462 JE = AddOps.end(); 3463 J != JE; ++J) { 3464 // Loop-variant "unknown" values are uninteresting; we won't be able to 3465 // do anything meaningful with them. 3466 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3467 continue; 3468 3469 // Don't pull a constant into a register if the constant could be folded 3470 // into an immediate field. 3471 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3472 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3473 continue; 3474 3475 // Collect all operands except *J. 3476 SmallVector<const SCEV *, 8> InnerAddOps( 3477 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3478 InnerAddOps.append(std::next(J), 3479 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3480 3481 // Don't leave just a constant behind in a register if the constant could 3482 // be folded into an immediate field. 3483 if (InnerAddOps.size() == 1 && 3484 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3485 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3486 continue; 3487 3488 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3489 if (InnerSum->isZero()) 3490 continue; 3491 Formula F = Base; 3492 3493 // Add the remaining pieces of the add back into the new formula. 3494 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3495 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3496 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3497 InnerSumSC->getValue()->getZExtValue())) { 3498 F.UnfoldedOffset = 3499 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3500 if (IsScaledReg) 3501 F.ScaledReg = nullptr; 3502 else 3503 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3504 } else if (IsScaledReg) 3505 F.ScaledReg = InnerSum; 3506 else 3507 F.BaseRegs[Idx] = InnerSum; 3508 3509 // Add J as its own register, or an unfolded immediate. 3510 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3511 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3512 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3513 SC->getValue()->getZExtValue())) 3514 F.UnfoldedOffset = 3515 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3516 else 3517 F.BaseRegs.push_back(*J); 3518 // We may have changed the number of register in base regs, adjust the 3519 // formula accordingly. 3520 F.canonicalize(*L); 3521 3522 if (InsertFormula(LU, LUIdx, F)) 3523 // If that formula hadn't been seen before, recurse to find more like 3524 // it. 3525 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3526 } 3527 } 3528 3529 /// Split out subexpressions from adds and the bases of addrecs. 3530 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3531 Formula Base, unsigned Depth) { 3532 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3533 // Arbitrarily cap recursion to protect compile time. 3534 if (Depth >= 3) 3535 return; 3536 3537 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3538 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3539 3540 if (Base.Scale == 1) 3541 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3542 /* Idx */ -1, /* IsScaledReg */ true); 3543 } 3544 3545 /// Generate a formula consisting of all of the loop-dominating registers added 3546 /// into a single register. 3547 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3548 Formula Base) { 3549 // This method is only interesting on a plurality of registers. 3550 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3551 return; 3552 3553 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3554 // processing the formula. 3555 Base.unscale(); 3556 Formula F = Base; 3557 F.BaseRegs.clear(); 3558 SmallVector<const SCEV *, 4> Ops; 3559 for (const SCEV *BaseReg : Base.BaseRegs) { 3560 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3561 !SE.hasComputableLoopEvolution(BaseReg, L)) 3562 Ops.push_back(BaseReg); 3563 else 3564 F.BaseRegs.push_back(BaseReg); 3565 } 3566 if (Ops.size() > 1) { 3567 const SCEV *Sum = SE.getAddExpr(Ops); 3568 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3569 // opportunity to fold something. For now, just ignore such cases 3570 // rather than proceed with zero in a register. 3571 if (!Sum->isZero()) { 3572 F.BaseRegs.push_back(Sum); 3573 F.canonicalize(*L); 3574 (void)InsertFormula(LU, LUIdx, F); 3575 } 3576 } 3577 } 3578 3579 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3580 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3581 const Formula &Base, size_t Idx, 3582 bool IsScaledReg) { 3583 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3584 GlobalValue *GV = ExtractSymbol(G, SE); 3585 if (G->isZero() || !GV) 3586 return; 3587 Formula F = Base; 3588 F.BaseGV = GV; 3589 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3590 return; 3591 if (IsScaledReg) 3592 F.ScaledReg = G; 3593 else 3594 F.BaseRegs[Idx] = G; 3595 (void)InsertFormula(LU, LUIdx, F); 3596 } 3597 3598 /// Generate reuse formulae using symbolic offsets. 3599 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3600 Formula Base) { 3601 // We can't add a symbolic offset if the address already contains one. 3602 if (Base.BaseGV) return; 3603 3604 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3605 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3606 if (Base.Scale == 1) 3607 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3608 /* IsScaledReg */ true); 3609 } 3610 3611 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3612 void LSRInstance::GenerateConstantOffsetsImpl( 3613 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3614 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3615 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3616 for (int64_t Offset : Worklist) { 3617 Formula F = Base; 3618 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3619 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3620 LU.AccessTy, F)) { 3621 // Add the offset to the base register. 3622 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3623 // If it cancelled out, drop the base register, otherwise update it. 3624 if (NewG->isZero()) { 3625 if (IsScaledReg) { 3626 F.Scale = 0; 3627 F.ScaledReg = nullptr; 3628 } else 3629 F.deleteBaseReg(F.BaseRegs[Idx]); 3630 F.canonicalize(*L); 3631 } else if (IsScaledReg) 3632 F.ScaledReg = NewG; 3633 else 3634 F.BaseRegs[Idx] = NewG; 3635 3636 (void)InsertFormula(LU, LUIdx, F); 3637 } 3638 } 3639 3640 int64_t Imm = ExtractImmediate(G, SE); 3641 if (G->isZero() || Imm == 0) 3642 return; 3643 Formula F = Base; 3644 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3645 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3646 return; 3647 if (IsScaledReg) 3648 F.ScaledReg = G; 3649 else 3650 F.BaseRegs[Idx] = G; 3651 (void)InsertFormula(LU, LUIdx, F); 3652 } 3653 3654 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3655 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3656 Formula Base) { 3657 // TODO: For now, just add the min and max offset, because it usually isn't 3658 // worthwhile looking at everything inbetween. 3659 SmallVector<int64_t, 2> Worklist; 3660 Worklist.push_back(LU.MinOffset); 3661 if (LU.MaxOffset != LU.MinOffset) 3662 Worklist.push_back(LU.MaxOffset); 3663 3664 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3665 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3666 if (Base.Scale == 1) 3667 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3668 /* IsScaledReg */ true); 3669 } 3670 3671 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3672 /// == y -> x*c == y*c. 3673 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3674 Formula Base) { 3675 if (LU.Kind != LSRUse::ICmpZero) return; 3676 3677 // Determine the integer type for the base formula. 3678 Type *IntTy = Base.getType(); 3679 if (!IntTy) return; 3680 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3681 3682 // Don't do this if there is more than one offset. 3683 if (LU.MinOffset != LU.MaxOffset) return; 3684 3685 // Check if transformation is valid. It is illegal to multiply pointer. 3686 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3687 return; 3688 for (const SCEV *BaseReg : Base.BaseRegs) 3689 if (BaseReg->getType()->isPointerTy()) 3690 return; 3691 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3692 3693 // Check each interesting stride. 3694 for (int64_t Factor : Factors) { 3695 // Check that the multiplication doesn't overflow. 3696 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3697 continue; 3698 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3699 if (NewBaseOffset / Factor != Base.BaseOffset) 3700 continue; 3701 // If the offset will be truncated at this use, check that it is in bounds. 3702 if (!IntTy->isPointerTy() && 3703 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3704 continue; 3705 3706 // Check that multiplying with the use offset doesn't overflow. 3707 int64_t Offset = LU.MinOffset; 3708 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3709 continue; 3710 Offset = (uint64_t)Offset * Factor; 3711 if (Offset / Factor != LU.MinOffset) 3712 continue; 3713 // If the offset will be truncated at this use, check that it is in bounds. 3714 if (!IntTy->isPointerTy() && 3715 !ConstantInt::isValueValidForType(IntTy, Offset)) 3716 continue; 3717 3718 Formula F = Base; 3719 F.BaseOffset = NewBaseOffset; 3720 3721 // Check that this scale is legal. 3722 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3723 continue; 3724 3725 // Compensate for the use having MinOffset built into it. 3726 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3727 3728 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3729 3730 // Check that multiplying with each base register doesn't overflow. 3731 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3732 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3733 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3734 goto next; 3735 } 3736 3737 // Check that multiplying with the scaled register doesn't overflow. 3738 if (F.ScaledReg) { 3739 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3740 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3741 continue; 3742 } 3743 3744 // Check that multiplying with the unfolded offset doesn't overflow. 3745 if (F.UnfoldedOffset != 0) { 3746 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3747 Factor == -1) 3748 continue; 3749 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3750 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3751 continue; 3752 // If the offset will be truncated, check that it is in bounds. 3753 if (!IntTy->isPointerTy() && 3754 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3755 continue; 3756 } 3757 3758 // If we make it here and it's legal, add it. 3759 (void)InsertFormula(LU, LUIdx, F); 3760 next:; 3761 } 3762 } 3763 3764 /// Generate stride factor reuse formulae by making use of scaled-offset address 3765 /// modes, for example. 3766 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3767 // Determine the integer type for the base formula. 3768 Type *IntTy = Base.getType(); 3769 if (!IntTy) return; 3770 3771 // If this Formula already has a scaled register, we can't add another one. 3772 // Try to unscale the formula to generate a better scale. 3773 if (Base.Scale != 0 && !Base.unscale()) 3774 return; 3775 3776 assert(Base.Scale == 0 && "unscale did not did its job!"); 3777 3778 // Check each interesting stride. 3779 for (int64_t Factor : Factors) { 3780 Base.Scale = Factor; 3781 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3782 // Check whether this scale is going to be legal. 3783 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3784 Base)) { 3785 // As a special-case, handle special out-of-loop Basic users specially. 3786 // TODO: Reconsider this special case. 3787 if (LU.Kind == LSRUse::Basic && 3788 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3789 LU.AccessTy, Base) && 3790 LU.AllFixupsOutsideLoop) 3791 LU.Kind = LSRUse::Special; 3792 else 3793 continue; 3794 } 3795 // For an ICmpZero, negating a solitary base register won't lead to 3796 // new solutions. 3797 if (LU.Kind == LSRUse::ICmpZero && 3798 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3799 continue; 3800 // For each addrec base reg, if its loop is current loop, apply the scale. 3801 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3802 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3803 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3804 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3805 if (FactorS->isZero()) 3806 continue; 3807 // Divide out the factor, ignoring high bits, since we'll be 3808 // scaling the value back up in the end. 3809 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3810 // TODO: This could be optimized to avoid all the copying. 3811 Formula F = Base; 3812 F.ScaledReg = Quotient; 3813 F.deleteBaseReg(F.BaseRegs[i]); 3814 // The canonical representation of 1*reg is reg, which is already in 3815 // Base. In that case, do not try to insert the formula, it will be 3816 // rejected anyway. 3817 if (F.Scale == 1 && (F.BaseRegs.empty() || 3818 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3819 continue; 3820 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3821 // non canonical Formula with ScaledReg's loop not being L. 3822 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3823 F.canonicalize(*L); 3824 (void)InsertFormula(LU, LUIdx, F); 3825 } 3826 } 3827 } 3828 } 3829 } 3830 3831 /// Generate reuse formulae from different IV types. 3832 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3833 // Don't bother truncating symbolic values. 3834 if (Base.BaseGV) return; 3835 3836 // Determine the integer type for the base formula. 3837 Type *DstTy = Base.getType(); 3838 if (!DstTy) return; 3839 DstTy = SE.getEffectiveSCEVType(DstTy); 3840 3841 for (Type *SrcTy : Types) { 3842 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3843 Formula F = Base; 3844 3845 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3846 for (const SCEV *&BaseReg : F.BaseRegs) 3847 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3848 3849 // TODO: This assumes we've done basic processing on all uses and 3850 // have an idea what the register usage is. 3851 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3852 continue; 3853 3854 F.canonicalize(*L); 3855 (void)InsertFormula(LU, LUIdx, F); 3856 } 3857 } 3858 } 3859 3860 namespace { 3861 3862 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3863 /// modifications so that the search phase doesn't have to worry about the data 3864 /// structures moving underneath it. 3865 struct WorkItem { 3866 size_t LUIdx; 3867 int64_t Imm; 3868 const SCEV *OrigReg; 3869 3870 WorkItem(size_t LI, int64_t I, const SCEV *R) 3871 : LUIdx(LI), Imm(I), OrigReg(R) {} 3872 3873 void print(raw_ostream &OS) const; 3874 void dump() const; 3875 }; 3876 3877 } // end anonymous namespace 3878 3879 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3880 void WorkItem::print(raw_ostream &OS) const { 3881 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3882 << " , add offset " << Imm; 3883 } 3884 3885 LLVM_DUMP_METHOD void WorkItem::dump() const { 3886 print(errs()); errs() << '\n'; 3887 } 3888 #endif 3889 3890 /// Look for registers which are a constant distance apart and try to form reuse 3891 /// opportunities between them. 3892 void LSRInstance::GenerateCrossUseConstantOffsets() { 3893 // Group the registers by their value without any added constant offset. 3894 using ImmMapTy = std::map<int64_t, const SCEV *>; 3895 3896 DenseMap<const SCEV *, ImmMapTy> Map; 3897 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3898 SmallVector<const SCEV *, 8> Sequence; 3899 for (const SCEV *Use : RegUses) { 3900 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3901 int64_t Imm = ExtractImmediate(Reg, SE); 3902 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3903 if (Pair.second) 3904 Sequence.push_back(Reg); 3905 Pair.first->second.insert(std::make_pair(Imm, Use)); 3906 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3907 } 3908 3909 // Now examine each set of registers with the same base value. Build up 3910 // a list of work to do and do the work in a separate step so that we're 3911 // not adding formulae and register counts while we're searching. 3912 SmallVector<WorkItem, 32> WorkItems; 3913 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3914 for (const SCEV *Reg : Sequence) { 3915 const ImmMapTy &Imms = Map.find(Reg)->second; 3916 3917 // It's not worthwhile looking for reuse if there's only one offset. 3918 if (Imms.size() == 1) 3919 continue; 3920 3921 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3922 for (const auto &Entry : Imms) 3923 dbgs() << ' ' << Entry.first; 3924 dbgs() << '\n'); 3925 3926 // Examine each offset. 3927 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3928 J != JE; ++J) { 3929 const SCEV *OrigReg = J->second; 3930 3931 int64_t JImm = J->first; 3932 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3933 3934 if (!isa<SCEVConstant>(OrigReg) && 3935 UsedByIndicesMap[Reg].count() == 1) { 3936 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3937 continue; 3938 } 3939 3940 // Conservatively examine offsets between this orig reg a few selected 3941 // other orig regs. 3942 ImmMapTy::const_iterator OtherImms[] = { 3943 Imms.begin(), std::prev(Imms.end()), 3944 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3945 2) 3946 }; 3947 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3948 ImmMapTy::const_iterator M = OtherImms[i]; 3949 if (M == J || M == JE) continue; 3950 3951 // Compute the difference between the two. 3952 int64_t Imm = (uint64_t)JImm - M->first; 3953 for (unsigned LUIdx : UsedByIndices.set_bits()) 3954 // Make a memo of this use, offset, and register tuple. 3955 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3956 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3957 } 3958 } 3959 } 3960 3961 Map.clear(); 3962 Sequence.clear(); 3963 UsedByIndicesMap.clear(); 3964 UniqueItems.clear(); 3965 3966 // Now iterate through the worklist and add new formulae. 3967 for (const WorkItem &WI : WorkItems) { 3968 size_t LUIdx = WI.LUIdx; 3969 LSRUse &LU = Uses[LUIdx]; 3970 int64_t Imm = WI.Imm; 3971 const SCEV *OrigReg = WI.OrigReg; 3972 3973 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3974 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3975 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3976 3977 // TODO: Use a more targeted data structure. 3978 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3979 Formula F = LU.Formulae[L]; 3980 // FIXME: The code for the scaled and unscaled registers looks 3981 // very similar but slightly different. Investigate if they 3982 // could be merged. That way, we would not have to unscale the 3983 // Formula. 3984 F.unscale(); 3985 // Use the immediate in the scaled register. 3986 if (F.ScaledReg == OrigReg) { 3987 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3988 // Don't create 50 + reg(-50). 3989 if (F.referencesReg(SE.getSCEV( 3990 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3991 continue; 3992 Formula NewF = F; 3993 NewF.BaseOffset = Offset; 3994 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3995 NewF)) 3996 continue; 3997 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3998 3999 // If the new scale is a constant in a register, and adding the constant 4000 // value to the immediate would produce a value closer to zero than the 4001 // immediate itself, then the formula isn't worthwhile. 4002 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4003 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4004 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4005 .ule(std::abs(NewF.BaseOffset))) 4006 continue; 4007 4008 // OK, looks good. 4009 NewF.canonicalize(*this->L); 4010 (void)InsertFormula(LU, LUIdx, NewF); 4011 } else { 4012 // Use the immediate in a base register. 4013 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4014 const SCEV *BaseReg = F.BaseRegs[N]; 4015 if (BaseReg != OrigReg) 4016 continue; 4017 Formula NewF = F; 4018 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4019 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4020 LU.Kind, LU.AccessTy, NewF)) { 4021 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4022 continue; 4023 NewF = F; 4024 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4025 } 4026 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4027 4028 // If the new formula has a constant in a register, and adding the 4029 // constant value to the immediate would produce a value closer to 4030 // zero than the immediate itself, then the formula isn't worthwhile. 4031 for (const SCEV *NewReg : NewF.BaseRegs) 4032 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4033 if ((C->getAPInt() + NewF.BaseOffset) 4034 .abs() 4035 .slt(std::abs(NewF.BaseOffset)) && 4036 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4037 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4038 goto skip_formula; 4039 4040 // Ok, looks good. 4041 NewF.canonicalize(*this->L); 4042 (void)InsertFormula(LU, LUIdx, NewF); 4043 break; 4044 skip_formula:; 4045 } 4046 } 4047 } 4048 } 4049 } 4050 4051 /// Generate formulae for each use. 4052 void 4053 LSRInstance::GenerateAllReuseFormulae() { 4054 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4055 // queries are more precise. 4056 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4057 LSRUse &LU = Uses[LUIdx]; 4058 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4059 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4060 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4061 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4062 } 4063 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4064 LSRUse &LU = Uses[LUIdx]; 4065 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4066 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4067 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4068 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4069 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4070 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4071 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4072 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4073 } 4074 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4075 LSRUse &LU = Uses[LUIdx]; 4076 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4077 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4078 } 4079 4080 GenerateCrossUseConstantOffsets(); 4081 4082 DEBUG(dbgs() << "\n" 4083 "After generating reuse formulae:\n"; 4084 print_uses(dbgs())); 4085 } 4086 4087 /// If there are multiple formulae with the same set of registers used 4088 /// by other uses, pick the best one and delete the others. 4089 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4090 DenseSet<const SCEV *> VisitedRegs; 4091 SmallPtrSet<const SCEV *, 16> Regs; 4092 SmallPtrSet<const SCEV *, 16> LoserRegs; 4093 #ifndef NDEBUG 4094 bool ChangedFormulae = false; 4095 #endif 4096 4097 // Collect the best formula for each unique set of shared registers. This 4098 // is reset for each use. 4099 using BestFormulaeTy = 4100 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4101 4102 BestFormulaeTy BestFormulae; 4103 4104 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4105 LSRUse &LU = Uses[LUIdx]; 4106 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4107 4108 bool Any = false; 4109 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4110 FIdx != NumForms; ++FIdx) { 4111 Formula &F = LU.Formulae[FIdx]; 4112 4113 // Some formulas are instant losers. For example, they may depend on 4114 // nonexistent AddRecs from other loops. These need to be filtered 4115 // immediately, otherwise heuristics could choose them over others leading 4116 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4117 // avoids the need to recompute this information across formulae using the 4118 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4119 // the corresponding bad register from the Regs set. 4120 Cost CostF; 4121 Regs.clear(); 4122 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4123 if (CostF.isLoser()) { 4124 // During initial formula generation, undesirable formulae are generated 4125 // by uses within other loops that have some non-trivial address mode or 4126 // use the postinc form of the IV. LSR needs to provide these formulae 4127 // as the basis of rediscovering the desired formula that uses an AddRec 4128 // corresponding to the existing phi. Once all formulae have been 4129 // generated, these initial losers may be pruned. 4130 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4131 dbgs() << "\n"); 4132 } 4133 else { 4134 SmallVector<const SCEV *, 4> Key; 4135 for (const SCEV *Reg : F.BaseRegs) { 4136 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4137 Key.push_back(Reg); 4138 } 4139 if (F.ScaledReg && 4140 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4141 Key.push_back(F.ScaledReg); 4142 // Unstable sort by host order ok, because this is only used for 4143 // uniquifying. 4144 std::sort(Key.begin(), Key.end()); 4145 4146 std::pair<BestFormulaeTy::const_iterator, bool> P = 4147 BestFormulae.insert(std::make_pair(Key, FIdx)); 4148 if (P.second) 4149 continue; 4150 4151 Formula &Best = LU.Formulae[P.first->second]; 4152 4153 Cost CostBest; 4154 Regs.clear(); 4155 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4156 if (CostF.isLess(CostBest, TTI)) 4157 std::swap(F, Best); 4158 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4159 dbgs() << "\n" 4160 " in favor of formula "; Best.print(dbgs()); 4161 dbgs() << '\n'); 4162 } 4163 #ifndef NDEBUG 4164 ChangedFormulae = true; 4165 #endif 4166 LU.DeleteFormula(F); 4167 --FIdx; 4168 --NumForms; 4169 Any = true; 4170 } 4171 4172 // Now that we've filtered out some formulae, recompute the Regs set. 4173 if (Any) 4174 LU.RecomputeRegs(LUIdx, RegUses); 4175 4176 // Reset this to prepare for the next use. 4177 BestFormulae.clear(); 4178 } 4179 4180 DEBUG(if (ChangedFormulae) { 4181 dbgs() << "\n" 4182 "After filtering out undesirable candidates:\n"; 4183 print_uses(dbgs()); 4184 }); 4185 } 4186 4187 // This is a rough guess that seems to work fairly well. 4188 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); 4189 4190 /// Estimate the worst-case number of solutions the solver might have to 4191 /// consider. It almost never considers this many solutions because it prune the 4192 /// search space, but the pruning isn't always sufficient. 4193 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4194 size_t Power = 1; 4195 for (const LSRUse &LU : Uses) { 4196 size_t FSize = LU.Formulae.size(); 4197 if (FSize >= ComplexityLimit) { 4198 Power = ComplexityLimit; 4199 break; 4200 } 4201 Power *= FSize; 4202 if (Power >= ComplexityLimit) 4203 break; 4204 } 4205 return Power; 4206 } 4207 4208 /// When one formula uses a superset of the registers of another formula, it 4209 /// won't help reduce register pressure (though it may not necessarily hurt 4210 /// register pressure); remove it to simplify the system. 4211 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4212 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4213 DEBUG(dbgs() << "The search space is too complex.\n"); 4214 4215 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4216 "which use a superset of registers used by other " 4217 "formulae.\n"); 4218 4219 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4220 LSRUse &LU = Uses[LUIdx]; 4221 bool Any = false; 4222 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4223 Formula &F = LU.Formulae[i]; 4224 // Look for a formula with a constant or GV in a register. If the use 4225 // also has a formula with that same value in an immediate field, 4226 // delete the one that uses a register. 4227 for (SmallVectorImpl<const SCEV *>::const_iterator 4228 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4229 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4230 Formula NewF = F; 4231 NewF.BaseOffset += C->getValue()->getSExtValue(); 4232 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4233 (I - F.BaseRegs.begin())); 4234 if (LU.HasFormulaWithSameRegs(NewF)) { 4235 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4236 LU.DeleteFormula(F); 4237 --i; 4238 --e; 4239 Any = true; 4240 break; 4241 } 4242 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4243 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4244 if (!F.BaseGV) { 4245 Formula NewF = F; 4246 NewF.BaseGV = GV; 4247 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4248 (I - F.BaseRegs.begin())); 4249 if (LU.HasFormulaWithSameRegs(NewF)) { 4250 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4251 dbgs() << '\n'); 4252 LU.DeleteFormula(F); 4253 --i; 4254 --e; 4255 Any = true; 4256 break; 4257 } 4258 } 4259 } 4260 } 4261 } 4262 if (Any) 4263 LU.RecomputeRegs(LUIdx, RegUses); 4264 } 4265 4266 DEBUG(dbgs() << "After pre-selection:\n"; 4267 print_uses(dbgs())); 4268 } 4269 } 4270 4271 /// When there are many registers for expressions like A, A+1, A+2, etc., 4272 /// allocate a single register for them. 4273 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4274 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4275 return; 4276 4277 DEBUG(dbgs() << "The search space is too complex.\n" 4278 "Narrowing the search space by assuming that uses separated " 4279 "by a constant offset will use the same registers.\n"); 4280 4281 // This is especially useful for unrolled loops. 4282 4283 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4284 LSRUse &LU = Uses[LUIdx]; 4285 for (const Formula &F : LU.Formulae) { 4286 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4287 continue; 4288 4289 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4290 if (!LUThatHas) 4291 continue; 4292 4293 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4294 LU.Kind, LU.AccessTy)) 4295 continue; 4296 4297 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4298 4299 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4300 4301 // Transfer the fixups of LU to LUThatHas. 4302 for (LSRFixup &Fixup : LU.Fixups) { 4303 Fixup.Offset += F.BaseOffset; 4304 LUThatHas->pushFixup(Fixup); 4305 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4306 } 4307 4308 // Delete formulae from the new use which are no longer legal. 4309 bool Any = false; 4310 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4311 Formula &F = LUThatHas->Formulae[i]; 4312 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4313 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4314 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4315 dbgs() << '\n'); 4316 LUThatHas->DeleteFormula(F); 4317 --i; 4318 --e; 4319 Any = true; 4320 } 4321 } 4322 4323 if (Any) 4324 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4325 4326 // Delete the old use. 4327 DeleteUse(LU, LUIdx); 4328 --LUIdx; 4329 --NumUses; 4330 break; 4331 } 4332 } 4333 4334 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4335 } 4336 4337 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4338 /// we've done more filtering, as it may be able to find more formulae to 4339 /// eliminate. 4340 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4341 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4342 DEBUG(dbgs() << "The search space is too complex.\n"); 4343 4344 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4345 "undesirable dedicated registers.\n"); 4346 4347 FilterOutUndesirableDedicatedRegisters(); 4348 4349 DEBUG(dbgs() << "After pre-selection:\n"; 4350 print_uses(dbgs())); 4351 } 4352 } 4353 4354 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4355 /// Pick the best one and delete the others. 4356 /// This narrowing heuristic is to keep as many formulae with different 4357 /// Scale and ScaledReg pair as possible while narrowing the search space. 4358 /// The benefit is that it is more likely to find out a better solution 4359 /// from a formulae set with more Scale and ScaledReg variations than 4360 /// a formulae set with the same Scale and ScaledReg. The picking winner 4361 /// reg heurstic will often keep the formulae with the same Scale and 4362 /// ScaledReg and filter others, and we want to avoid that if possible. 4363 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4364 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4365 return; 4366 4367 DEBUG(dbgs() << "The search space is too complex.\n" 4368 "Narrowing the search space by choosing the best Formula " 4369 "from the Formulae with the same Scale and ScaledReg.\n"); 4370 4371 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4372 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4373 4374 BestFormulaeTy BestFormulae; 4375 #ifndef NDEBUG 4376 bool ChangedFormulae = false; 4377 #endif 4378 DenseSet<const SCEV *> VisitedRegs; 4379 SmallPtrSet<const SCEV *, 16> Regs; 4380 4381 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4382 LSRUse &LU = Uses[LUIdx]; 4383 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 4384 4385 // Return true if Formula FA is better than Formula FB. 4386 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4387 // First we will try to choose the Formula with fewer new registers. 4388 // For a register used by current Formula, the more the register is 4389 // shared among LSRUses, the less we increase the register number 4390 // counter of the formula. 4391 size_t FARegNum = 0; 4392 for (const SCEV *Reg : FA.BaseRegs) { 4393 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4394 FARegNum += (NumUses - UsedByIndices.count() + 1); 4395 } 4396 size_t FBRegNum = 0; 4397 for (const SCEV *Reg : FB.BaseRegs) { 4398 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4399 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4400 } 4401 if (FARegNum != FBRegNum) 4402 return FARegNum < FBRegNum; 4403 4404 // If the new register numbers are the same, choose the Formula with 4405 // less Cost. 4406 Cost CostFA, CostFB; 4407 Regs.clear(); 4408 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4409 Regs.clear(); 4410 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4411 return CostFA.isLess(CostFB, TTI); 4412 }; 4413 4414 bool Any = false; 4415 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4416 ++FIdx) { 4417 Formula &F = LU.Formulae[FIdx]; 4418 if (!F.ScaledReg) 4419 continue; 4420 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4421 if (P.second) 4422 continue; 4423 4424 Formula &Best = LU.Formulae[P.first->second]; 4425 if (IsBetterThan(F, Best)) 4426 std::swap(F, Best); 4427 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4428 dbgs() << "\n" 4429 " in favor of formula "; 4430 Best.print(dbgs()); dbgs() << '\n'); 4431 #ifndef NDEBUG 4432 ChangedFormulae = true; 4433 #endif 4434 LU.DeleteFormula(F); 4435 --FIdx; 4436 --NumForms; 4437 Any = true; 4438 } 4439 if (Any) 4440 LU.RecomputeRegs(LUIdx, RegUses); 4441 4442 // Reset this to prepare for the next use. 4443 BestFormulae.clear(); 4444 } 4445 4446 DEBUG(if (ChangedFormulae) { 4447 dbgs() << "\n" 4448 "After filtering out undesirable candidates:\n"; 4449 print_uses(dbgs()); 4450 }); 4451 } 4452 4453 /// The function delete formulas with high registers number expectation. 4454 /// Assuming we don't know the value of each formula (already delete 4455 /// all inefficient), generate probability of not selecting for each 4456 /// register. 4457 /// For example, 4458 /// Use1: 4459 /// reg(a) + reg({0,+,1}) 4460 /// reg(a) + reg({-1,+,1}) + 1 4461 /// reg({a,+,1}) 4462 /// Use2: 4463 /// reg(b) + reg({0,+,1}) 4464 /// reg(b) + reg({-1,+,1}) + 1 4465 /// reg({b,+,1}) 4466 /// Use3: 4467 /// reg(c) + reg(b) + reg({0,+,1}) 4468 /// reg(c) + reg({b,+,1}) 4469 /// 4470 /// Probability of not selecting 4471 /// Use1 Use2 Use3 4472 /// reg(a) (1/3) * 1 * 1 4473 /// reg(b) 1 * (1/3) * (1/2) 4474 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4475 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4476 /// reg({a,+,1}) (2/3) * 1 * 1 4477 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4478 /// reg(c) 1 * 1 * 0 4479 /// 4480 /// Now count registers number mathematical expectation for each formula: 4481 /// Note that for each use we exclude probability if not selecting for the use. 4482 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4483 /// probabilty 1/3 of not selecting for Use1). 4484 /// Use1: 4485 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4486 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4487 /// reg({a,+,1}) 1 4488 /// Use2: 4489 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4490 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4491 /// reg({b,+,1}) 2/3 4492 /// Use3: 4493 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4494 /// reg(c) + reg({b,+,1}) 1 + 2/3 4495 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4496 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4497 return; 4498 // Ok, we have too many of formulae on our hands to conveniently handle. 4499 // Use a rough heuristic to thin out the list. 4500 4501 // Set of Regs wich will be 100% used in final solution. 4502 // Used in each formula of a solution (in example above this is reg(c)). 4503 // We can skip them in calculations. 4504 SmallPtrSet<const SCEV *, 4> UniqRegs; 4505 DEBUG(dbgs() << "The search space is too complex.\n"); 4506 4507 // Map each register to probability of not selecting 4508 DenseMap <const SCEV *, float> RegNumMap; 4509 for (const SCEV *Reg : RegUses) { 4510 if (UniqRegs.count(Reg)) 4511 continue; 4512 float PNotSel = 1; 4513 for (const LSRUse &LU : Uses) { 4514 if (!LU.Regs.count(Reg)) 4515 continue; 4516 float P = LU.getNotSelectedProbability(Reg); 4517 if (P != 0.0) 4518 PNotSel *= P; 4519 else 4520 UniqRegs.insert(Reg); 4521 } 4522 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4523 } 4524 4525 DEBUG(dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4526 4527 // Delete formulas where registers number expectation is high. 4528 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4529 LSRUse &LU = Uses[LUIdx]; 4530 // If nothing to delete - continue. 4531 if (LU.Formulae.size() < 2) 4532 continue; 4533 // This is temporary solution to test performance. Float should be 4534 // replaced with round independent type (based on integers) to avoid 4535 // different results for different target builds. 4536 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4537 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4538 size_t MinIdx = 0; 4539 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4540 Formula &F = LU.Formulae[i]; 4541 float FRegNum = 0; 4542 float FARegNum = 0; 4543 for (const SCEV *BaseReg : F.BaseRegs) { 4544 if (UniqRegs.count(BaseReg)) 4545 continue; 4546 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4547 if (isa<SCEVAddRecExpr>(BaseReg)) 4548 FARegNum += 4549 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4550 } 4551 if (const SCEV *ScaledReg = F.ScaledReg) { 4552 if (!UniqRegs.count(ScaledReg)) { 4553 FRegNum += 4554 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4555 if (isa<SCEVAddRecExpr>(ScaledReg)) 4556 FARegNum += 4557 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4558 } 4559 } 4560 if (FMinRegNum > FRegNum || 4561 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4562 FMinRegNum = FRegNum; 4563 FMinARegNum = FARegNum; 4564 MinIdx = i; 4565 } 4566 } 4567 DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4568 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4569 if (MinIdx != 0) 4570 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4571 while (LU.Formulae.size() != 1) { 4572 DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4573 dbgs() << '\n'); 4574 LU.Formulae.pop_back(); 4575 } 4576 LU.RecomputeRegs(LUIdx, RegUses); 4577 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4578 Formula &F = LU.Formulae[0]; 4579 DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4580 // When we choose the formula, the regs become unique. 4581 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4582 if (F.ScaledReg) 4583 UniqRegs.insert(F.ScaledReg); 4584 } 4585 DEBUG(dbgs() << "After pre-selection:\n"; 4586 print_uses(dbgs())); 4587 } 4588 4589 /// Pick a register which seems likely to be profitable, and then in any use 4590 /// which has any reference to that register, delete all formulae which do not 4591 /// reference that register. 4592 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4593 // With all other options exhausted, loop until the system is simple 4594 // enough to handle. 4595 SmallPtrSet<const SCEV *, 4> Taken; 4596 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4597 // Ok, we have too many of formulae on our hands to conveniently handle. 4598 // Use a rough heuristic to thin out the list. 4599 DEBUG(dbgs() << "The search space is too complex.\n"); 4600 4601 // Pick the register which is used by the most LSRUses, which is likely 4602 // to be a good reuse register candidate. 4603 const SCEV *Best = nullptr; 4604 unsigned BestNum = 0; 4605 for (const SCEV *Reg : RegUses) { 4606 if (Taken.count(Reg)) 4607 continue; 4608 if (!Best) { 4609 Best = Reg; 4610 BestNum = RegUses.getUsedByIndices(Reg).count(); 4611 } else { 4612 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4613 if (Count > BestNum) { 4614 Best = Reg; 4615 BestNum = Count; 4616 } 4617 } 4618 } 4619 4620 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4621 << " will yield profitable reuse.\n"); 4622 Taken.insert(Best); 4623 4624 // In any use with formulae which references this register, delete formulae 4625 // which don't reference it. 4626 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4627 LSRUse &LU = Uses[LUIdx]; 4628 if (!LU.Regs.count(Best)) continue; 4629 4630 bool Any = false; 4631 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4632 Formula &F = LU.Formulae[i]; 4633 if (!F.referencesReg(Best)) { 4634 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4635 LU.DeleteFormula(F); 4636 --e; 4637 --i; 4638 Any = true; 4639 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4640 continue; 4641 } 4642 } 4643 4644 if (Any) 4645 LU.RecomputeRegs(LUIdx, RegUses); 4646 } 4647 4648 DEBUG(dbgs() << "After pre-selection:\n"; 4649 print_uses(dbgs())); 4650 } 4651 } 4652 4653 /// If there are an extraordinary number of formulae to choose from, use some 4654 /// rough heuristics to prune down the number of formulae. This keeps the main 4655 /// solver from taking an extraordinary amount of time in some worst-case 4656 /// scenarios. 4657 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4658 NarrowSearchSpaceByDetectingSupersets(); 4659 NarrowSearchSpaceByCollapsingUnrolledCode(); 4660 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4661 if (FilterSameScaledReg) 4662 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4663 if (LSRExpNarrow) 4664 NarrowSearchSpaceByDeletingCostlyFormulas(); 4665 else 4666 NarrowSearchSpaceByPickingWinnerRegs(); 4667 } 4668 4669 /// This is the recursive solver. 4670 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4671 Cost &SolutionCost, 4672 SmallVectorImpl<const Formula *> &Workspace, 4673 const Cost &CurCost, 4674 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4675 DenseSet<const SCEV *> &VisitedRegs) const { 4676 // Some ideas: 4677 // - prune more: 4678 // - use more aggressive filtering 4679 // - sort the formula so that the most profitable solutions are found first 4680 // - sort the uses too 4681 // - search faster: 4682 // - don't compute a cost, and then compare. compare while computing a cost 4683 // and bail early. 4684 // - track register sets with SmallBitVector 4685 4686 const LSRUse &LU = Uses[Workspace.size()]; 4687 4688 // If this use references any register that's already a part of the 4689 // in-progress solution, consider it a requirement that a formula must 4690 // reference that register in order to be considered. This prunes out 4691 // unprofitable searching. 4692 SmallSetVector<const SCEV *, 4> ReqRegs; 4693 for (const SCEV *S : CurRegs) 4694 if (LU.Regs.count(S)) 4695 ReqRegs.insert(S); 4696 4697 SmallPtrSet<const SCEV *, 16> NewRegs; 4698 Cost NewCost; 4699 for (const Formula &F : LU.Formulae) { 4700 // Ignore formulae which may not be ideal in terms of register reuse of 4701 // ReqRegs. The formula should use all required registers before 4702 // introducing new ones. 4703 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4704 for (const SCEV *Reg : ReqRegs) { 4705 if ((F.ScaledReg && F.ScaledReg == Reg) || 4706 is_contained(F.BaseRegs, Reg)) { 4707 --NumReqRegsToFind; 4708 if (NumReqRegsToFind == 0) 4709 break; 4710 } 4711 } 4712 if (NumReqRegsToFind != 0) { 4713 // If none of the formulae satisfied the required registers, then we could 4714 // clear ReqRegs and try again. Currently, we simply give up in this case. 4715 continue; 4716 } 4717 4718 // Evaluate the cost of the current formula. If it's already worse than 4719 // the current best, prune the search at that point. 4720 NewCost = CurCost; 4721 NewRegs = CurRegs; 4722 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4723 if (NewCost.isLess(SolutionCost, TTI)) { 4724 Workspace.push_back(&F); 4725 if (Workspace.size() != Uses.size()) { 4726 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4727 NewRegs, VisitedRegs); 4728 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4729 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4730 } else { 4731 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4732 dbgs() << ".\n Regs:"; 4733 for (const SCEV *S : NewRegs) 4734 dbgs() << ' ' << *S; 4735 dbgs() << '\n'); 4736 4737 SolutionCost = NewCost; 4738 Solution = Workspace; 4739 } 4740 Workspace.pop_back(); 4741 } 4742 } 4743 } 4744 4745 /// Choose one formula from each use. Return the results in the given Solution 4746 /// vector. 4747 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4748 SmallVector<const Formula *, 8> Workspace; 4749 Cost SolutionCost; 4750 SolutionCost.Lose(); 4751 Cost CurCost; 4752 SmallPtrSet<const SCEV *, 16> CurRegs; 4753 DenseSet<const SCEV *> VisitedRegs; 4754 Workspace.reserve(Uses.size()); 4755 4756 // SolveRecurse does all the work. 4757 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4758 CurRegs, VisitedRegs); 4759 if (Solution.empty()) { 4760 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4761 return; 4762 } 4763 4764 // Ok, we've now made all our decisions. 4765 DEBUG(dbgs() << "\n" 4766 "The chosen solution requires "; SolutionCost.print(dbgs()); 4767 dbgs() << ":\n"; 4768 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4769 dbgs() << " "; 4770 Uses[i].print(dbgs()); 4771 dbgs() << "\n" 4772 " "; 4773 Solution[i]->print(dbgs()); 4774 dbgs() << '\n'; 4775 }); 4776 4777 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4778 } 4779 4780 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4781 /// we can go while still being dominated by the input positions. This helps 4782 /// canonicalize the insert position, which encourages sharing. 4783 BasicBlock::iterator 4784 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4785 const SmallVectorImpl<Instruction *> &Inputs) 4786 const { 4787 Instruction *Tentative = &*IP; 4788 while (true) { 4789 bool AllDominate = true; 4790 Instruction *BetterPos = nullptr; 4791 // Don't bother attempting to insert before a catchswitch, their basic block 4792 // cannot have other non-PHI instructions. 4793 if (isa<CatchSwitchInst>(Tentative)) 4794 return IP; 4795 4796 for (Instruction *Inst : Inputs) { 4797 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4798 AllDominate = false; 4799 break; 4800 } 4801 // Attempt to find an insert position in the middle of the block, 4802 // instead of at the end, so that it can be used for other expansions. 4803 if (Tentative->getParent() == Inst->getParent() && 4804 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4805 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4806 } 4807 if (!AllDominate) 4808 break; 4809 if (BetterPos) 4810 IP = BetterPos->getIterator(); 4811 else 4812 IP = Tentative->getIterator(); 4813 4814 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4815 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4816 4817 BasicBlock *IDom; 4818 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4819 if (!Rung) return IP; 4820 Rung = Rung->getIDom(); 4821 if (!Rung) return IP; 4822 IDom = Rung->getBlock(); 4823 4824 // Don't climb into a loop though. 4825 const Loop *IDomLoop = LI.getLoopFor(IDom); 4826 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4827 if (IDomDepth <= IPLoopDepth && 4828 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4829 break; 4830 } 4831 4832 Tentative = IDom->getTerminator(); 4833 } 4834 4835 return IP; 4836 } 4837 4838 /// Determine an input position which will be dominated by the operands and 4839 /// which will dominate the result. 4840 BasicBlock::iterator 4841 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4842 const LSRFixup &LF, 4843 const LSRUse &LU, 4844 SCEVExpander &Rewriter) const { 4845 // Collect some instructions which must be dominated by the 4846 // expanding replacement. These must be dominated by any operands that 4847 // will be required in the expansion. 4848 SmallVector<Instruction *, 4> Inputs; 4849 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4850 Inputs.push_back(I); 4851 if (LU.Kind == LSRUse::ICmpZero) 4852 if (Instruction *I = 4853 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4854 Inputs.push_back(I); 4855 if (LF.PostIncLoops.count(L)) { 4856 if (LF.isUseFullyOutsideLoop(L)) 4857 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4858 else 4859 Inputs.push_back(IVIncInsertPos); 4860 } 4861 // The expansion must also be dominated by the increment positions of any 4862 // loops it for which it is using post-inc mode. 4863 for (const Loop *PIL : LF.PostIncLoops) { 4864 if (PIL == L) continue; 4865 4866 // Be dominated by the loop exit. 4867 SmallVector<BasicBlock *, 4> ExitingBlocks; 4868 PIL->getExitingBlocks(ExitingBlocks); 4869 if (!ExitingBlocks.empty()) { 4870 BasicBlock *BB = ExitingBlocks[0]; 4871 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4872 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4873 Inputs.push_back(BB->getTerminator()); 4874 } 4875 } 4876 4877 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4878 && !isa<DbgInfoIntrinsic>(LowestIP) && 4879 "Insertion point must be a normal instruction"); 4880 4881 // Then, climb up the immediate dominator tree as far as we can go while 4882 // still being dominated by the input positions. 4883 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4884 4885 // Don't insert instructions before PHI nodes. 4886 while (isa<PHINode>(IP)) ++IP; 4887 4888 // Ignore landingpad instructions. 4889 while (IP->isEHPad()) ++IP; 4890 4891 // Ignore debug intrinsics. 4892 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4893 4894 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4895 // IP consistent across expansions and allows the previously inserted 4896 // instructions to be reused by subsequent expansion. 4897 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4898 ++IP; 4899 4900 return IP; 4901 } 4902 4903 /// Emit instructions for the leading candidate expression for this LSRUse (this 4904 /// is called "expanding"). 4905 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4906 const Formula &F, BasicBlock::iterator IP, 4907 SCEVExpander &Rewriter, 4908 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4909 if (LU.RigidFormula) 4910 return LF.OperandValToReplace; 4911 4912 // Determine an input position which will be dominated by the operands and 4913 // which will dominate the result. 4914 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4915 Rewriter.setInsertPoint(&*IP); 4916 4917 // Inform the Rewriter if we have a post-increment use, so that it can 4918 // perform an advantageous expansion. 4919 Rewriter.setPostInc(LF.PostIncLoops); 4920 4921 // This is the type that the user actually needs. 4922 Type *OpTy = LF.OperandValToReplace->getType(); 4923 // This will be the type that we'll initially expand to. 4924 Type *Ty = F.getType(); 4925 if (!Ty) 4926 // No type known; just expand directly to the ultimate type. 4927 Ty = OpTy; 4928 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4929 // Expand directly to the ultimate type if it's the right size. 4930 Ty = OpTy; 4931 // This is the type to do integer arithmetic in. 4932 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4933 4934 // Build up a list of operands to add together to form the full base. 4935 SmallVector<const SCEV *, 8> Ops; 4936 4937 // Expand the BaseRegs portion. 4938 for (const SCEV *Reg : F.BaseRegs) { 4939 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4940 4941 // If we're expanding for a post-inc user, make the post-inc adjustment. 4942 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 4943 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 4944 } 4945 4946 // Expand the ScaledReg portion. 4947 Value *ICmpScaledV = nullptr; 4948 if (F.Scale != 0) { 4949 const SCEV *ScaledS = F.ScaledReg; 4950 4951 // If we're expanding for a post-inc user, make the post-inc adjustment. 4952 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4953 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 4954 4955 if (LU.Kind == LSRUse::ICmpZero) { 4956 // Expand ScaleReg as if it was part of the base regs. 4957 if (F.Scale == 1) 4958 Ops.push_back( 4959 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 4960 else { 4961 // An interesting way of "folding" with an icmp is to use a negated 4962 // scale, which we'll implement by inserting it into the other operand 4963 // of the icmp. 4964 assert(F.Scale == -1 && 4965 "The only scale supported by ICmpZero uses is -1!"); 4966 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 4967 } 4968 } else { 4969 // Otherwise just expand the scaled register and an explicit scale, 4970 // which is expected to be matched as part of the address. 4971 4972 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4973 // Unless the addressing mode will not be folded. 4974 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4975 isAMCompletelyFolded(TTI, LU, F)) { 4976 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4977 Ops.clear(); 4978 Ops.push_back(SE.getUnknown(FullV)); 4979 } 4980 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 4981 if (F.Scale != 1) 4982 ScaledS = 4983 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4984 Ops.push_back(ScaledS); 4985 } 4986 } 4987 4988 // Expand the GV portion. 4989 if (F.BaseGV) { 4990 // Flush the operand list to suppress SCEVExpander hoisting. 4991 if (!Ops.empty()) { 4992 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 4993 Ops.clear(); 4994 Ops.push_back(SE.getUnknown(FullV)); 4995 } 4996 Ops.push_back(SE.getUnknown(F.BaseGV)); 4997 } 4998 4999 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5000 // unfolded offsets. LSR assumes they both live next to their uses. 5001 if (!Ops.empty()) { 5002 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5003 Ops.clear(); 5004 Ops.push_back(SE.getUnknown(FullV)); 5005 } 5006 5007 // Expand the immediate portion. 5008 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5009 if (Offset != 0) { 5010 if (LU.Kind == LSRUse::ICmpZero) { 5011 // The other interesting way of "folding" with an ICmpZero is to use a 5012 // negated immediate. 5013 if (!ICmpScaledV) 5014 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5015 else { 5016 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5017 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5018 } 5019 } else { 5020 // Just add the immediate values. These again are expected to be matched 5021 // as part of the address. 5022 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5023 } 5024 } 5025 5026 // Expand the unfolded offset portion. 5027 int64_t UnfoldedOffset = F.UnfoldedOffset; 5028 if (UnfoldedOffset != 0) { 5029 // Just add the immediate values. 5030 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5031 UnfoldedOffset))); 5032 } 5033 5034 // Emit instructions summing all the operands. 5035 const SCEV *FullS = Ops.empty() ? 5036 SE.getConstant(IntTy, 0) : 5037 SE.getAddExpr(Ops); 5038 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5039 5040 // We're done expanding now, so reset the rewriter. 5041 Rewriter.clearPostInc(); 5042 5043 // An ICmpZero Formula represents an ICmp which we're handling as a 5044 // comparison against zero. Now that we've expanded an expression for that 5045 // form, update the ICmp's other operand. 5046 if (LU.Kind == LSRUse::ICmpZero) { 5047 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5048 DeadInsts.emplace_back(CI->getOperand(1)); 5049 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5050 "a scale at the same time!"); 5051 if (F.Scale == -1) { 5052 if (ICmpScaledV->getType() != OpTy) { 5053 Instruction *Cast = 5054 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5055 OpTy, false), 5056 ICmpScaledV, OpTy, "tmp", CI); 5057 ICmpScaledV = Cast; 5058 } 5059 CI->setOperand(1, ICmpScaledV); 5060 } else { 5061 // A scale of 1 means that the scale has been expanded as part of the 5062 // base regs. 5063 assert((F.Scale == 0 || F.Scale == 1) && 5064 "ICmp does not support folding a global value and " 5065 "a scale at the same time!"); 5066 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5067 -(uint64_t)Offset); 5068 if (C->getType() != OpTy) 5069 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5070 OpTy, false), 5071 C, OpTy); 5072 5073 CI->setOperand(1, C); 5074 } 5075 } 5076 5077 return FullV; 5078 } 5079 5080 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5081 /// effectively happens in their predecessor blocks, so the expression may need 5082 /// to be expanded in multiple places. 5083 void LSRInstance::RewriteForPHI( 5084 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5085 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5086 DenseMap<BasicBlock *, Value *> Inserted; 5087 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5088 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5089 BasicBlock *BB = PN->getIncomingBlock(i); 5090 5091 // If this is a critical edge, split the edge so that we do not insert 5092 // the code on all predecessor/successor paths. We do this unless this 5093 // is the canonical backedge for this loop, which complicates post-inc 5094 // users. 5095 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5096 !isa<IndirectBrInst>(BB->getTerminator()) && 5097 !isa<CatchSwitchInst>(BB->getTerminator())) { 5098 BasicBlock *Parent = PN->getParent(); 5099 Loop *PNLoop = LI.getLoopFor(Parent); 5100 if (!PNLoop || Parent != PNLoop->getHeader()) { 5101 // Split the critical edge. 5102 BasicBlock *NewBB = nullptr; 5103 if (!Parent->isLandingPad()) { 5104 NewBB = SplitCriticalEdge(BB, Parent, 5105 CriticalEdgeSplittingOptions(&DT, &LI) 5106 .setMergeIdenticalEdges() 5107 .setDontDeleteUselessPHIs()); 5108 } else { 5109 SmallVector<BasicBlock*, 2> NewBBs; 5110 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5111 NewBB = NewBBs[0]; 5112 } 5113 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5114 // phi predecessors are identical. The simple thing to do is skip 5115 // splitting in this case rather than complicate the API. 5116 if (NewBB) { 5117 // If PN is outside of the loop and BB is in the loop, we want to 5118 // move the block to be immediately before the PHI block, not 5119 // immediately after BB. 5120 if (L->contains(BB) && !L->contains(PN)) 5121 NewBB->moveBefore(PN->getParent()); 5122 5123 // Splitting the edge can reduce the number of PHI entries we have. 5124 e = PN->getNumIncomingValues(); 5125 BB = NewBB; 5126 i = PN->getBasicBlockIndex(BB); 5127 } 5128 } 5129 } 5130 5131 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5132 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5133 if (!Pair.second) 5134 PN->setIncomingValue(i, Pair.first->second); 5135 else { 5136 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5137 Rewriter, DeadInsts); 5138 5139 // If this is reuse-by-noop-cast, insert the noop cast. 5140 Type *OpTy = LF.OperandValToReplace->getType(); 5141 if (FullV->getType() != OpTy) 5142 FullV = 5143 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5144 OpTy, false), 5145 FullV, LF.OperandValToReplace->getType(), 5146 "tmp", BB->getTerminator()); 5147 5148 PN->setIncomingValue(i, FullV); 5149 Pair.first->second = FullV; 5150 } 5151 } 5152 } 5153 5154 /// Emit instructions for the leading candidate expression for this LSRUse (this 5155 /// is called "expanding"), and update the UserInst to reference the newly 5156 /// expanded value. 5157 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5158 const Formula &F, SCEVExpander &Rewriter, 5159 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5160 // First, find an insertion point that dominates UserInst. For PHI nodes, 5161 // find the nearest block which dominates all the relevant uses. 5162 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5163 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5164 } else { 5165 Value *FullV = 5166 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5167 5168 // If this is reuse-by-noop-cast, insert the noop cast. 5169 Type *OpTy = LF.OperandValToReplace->getType(); 5170 if (FullV->getType() != OpTy) { 5171 Instruction *Cast = 5172 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5173 FullV, OpTy, "tmp", LF.UserInst); 5174 FullV = Cast; 5175 } 5176 5177 // Update the user. ICmpZero is handled specially here (for now) because 5178 // Expand may have updated one of the operands of the icmp already, and 5179 // its new value may happen to be equal to LF.OperandValToReplace, in 5180 // which case doing replaceUsesOfWith leads to replacing both operands 5181 // with the same value. TODO: Reorganize this. 5182 if (LU.Kind == LSRUse::ICmpZero) 5183 LF.UserInst->setOperand(0, FullV); 5184 else 5185 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5186 } 5187 5188 DeadInsts.emplace_back(LF.OperandValToReplace); 5189 } 5190 5191 /// Rewrite all the fixup locations with new values, following the chosen 5192 /// solution. 5193 void LSRInstance::ImplementSolution( 5194 const SmallVectorImpl<const Formula *> &Solution) { 5195 // Keep track of instructions we may have made dead, so that 5196 // we can remove them after we are done working. 5197 SmallVector<WeakTrackingVH, 16> DeadInsts; 5198 5199 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5200 "lsr"); 5201 #ifndef NDEBUG 5202 Rewriter.setDebugType(DEBUG_TYPE); 5203 #endif 5204 Rewriter.disableCanonicalMode(); 5205 Rewriter.enableLSRMode(); 5206 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5207 5208 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5209 for (const IVChain &Chain : IVChainVec) { 5210 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5211 Rewriter.setChainedPhi(PN); 5212 } 5213 5214 // Expand the new value definitions and update the users. 5215 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5216 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5217 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5218 Changed = true; 5219 } 5220 5221 for (const IVChain &Chain : IVChainVec) { 5222 GenerateIVChain(Chain, Rewriter, DeadInsts); 5223 Changed = true; 5224 } 5225 // Clean up after ourselves. This must be done before deleting any 5226 // instructions. 5227 Rewriter.clear(); 5228 5229 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5230 } 5231 5232 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5233 DominatorTree &DT, LoopInfo &LI, 5234 const TargetTransformInfo &TTI) 5235 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5236 // If LoopSimplify form is not available, stay out of trouble. 5237 if (!L->isLoopSimplifyForm()) 5238 return; 5239 5240 // If there's no interesting work to be done, bail early. 5241 if (IU.empty()) return; 5242 5243 // If there's too much analysis to be done, bail early. We won't be able to 5244 // model the problem anyway. 5245 unsigned NumUsers = 0; 5246 for (const IVStrideUse &U : IU) { 5247 if (++NumUsers > MaxIVUsers) { 5248 (void)U; 5249 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n"); 5250 return; 5251 } 5252 // Bail out if we have a PHI on an EHPad that gets a value from a 5253 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5254 // no good place to stick any instructions. 5255 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5256 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5257 if (isa<FuncletPadInst>(FirstNonPHI) || 5258 isa<CatchSwitchInst>(FirstNonPHI)) 5259 for (BasicBlock *PredBB : PN->blocks()) 5260 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5261 return; 5262 } 5263 } 5264 5265 #ifndef NDEBUG 5266 // All dominating loops must have preheaders, or SCEVExpander may not be able 5267 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5268 // 5269 // IVUsers analysis should only create users that are dominated by simple loop 5270 // headers. Since this loop should dominate all of its users, its user list 5271 // should be empty if this loop itself is not within a simple loop nest. 5272 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5273 Rung; Rung = Rung->getIDom()) { 5274 BasicBlock *BB = Rung->getBlock(); 5275 const Loop *DomLoop = LI.getLoopFor(BB); 5276 if (DomLoop && DomLoop->getHeader() == BB) { 5277 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5278 } 5279 } 5280 #endif // DEBUG 5281 5282 DEBUG(dbgs() << "\nLSR on loop "; 5283 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5284 dbgs() << ":\n"); 5285 5286 // First, perform some low-level loop optimizations. 5287 OptimizeShadowIV(); 5288 OptimizeLoopTermCond(); 5289 5290 // If loop preparation eliminates all interesting IV users, bail. 5291 if (IU.empty()) return; 5292 5293 // Skip nested loops until we can model them better with formulae. 5294 if (!L->empty()) { 5295 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5296 return; 5297 } 5298 5299 // Start collecting data and preparing for the solver. 5300 CollectChains(); 5301 CollectInterestingTypesAndFactors(); 5302 CollectFixupsAndInitialFormulae(); 5303 CollectLoopInvariantFixupsAndFormulae(); 5304 5305 assert(!Uses.empty() && "IVUsers reported at least one use"); 5306 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5307 print_uses(dbgs())); 5308 5309 // Now use the reuse data to generate a bunch of interesting ways 5310 // to formulate the values needed for the uses. 5311 GenerateAllReuseFormulae(); 5312 5313 FilterOutUndesirableDedicatedRegisters(); 5314 NarrowSearchSpaceUsingHeuristics(); 5315 5316 SmallVector<const Formula *, 8> Solution; 5317 Solve(Solution); 5318 5319 // Release memory that is no longer needed. 5320 Factors.clear(); 5321 Types.clear(); 5322 RegUses.clear(); 5323 5324 if (Solution.empty()) 5325 return; 5326 5327 #ifndef NDEBUG 5328 // Formulae should be legal. 5329 for (const LSRUse &LU : Uses) { 5330 for (const Formula &F : LU.Formulae) 5331 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5332 F) && "Illegal formula generated!"); 5333 }; 5334 #endif 5335 5336 // Now that we've decided what we want, make it so. 5337 ImplementSolution(Solution); 5338 } 5339 5340 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5341 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5342 if (Factors.empty() && Types.empty()) return; 5343 5344 OS << "LSR has identified the following interesting factors and types: "; 5345 bool First = true; 5346 5347 for (int64_t Factor : Factors) { 5348 if (!First) OS << ", "; 5349 First = false; 5350 OS << '*' << Factor; 5351 } 5352 5353 for (Type *Ty : Types) { 5354 if (!First) OS << ", "; 5355 First = false; 5356 OS << '(' << *Ty << ')'; 5357 } 5358 OS << '\n'; 5359 } 5360 5361 void LSRInstance::print_fixups(raw_ostream &OS) const { 5362 OS << "LSR is examining the following fixup sites:\n"; 5363 for (const LSRUse &LU : Uses) 5364 for (const LSRFixup &LF : LU.Fixups) { 5365 dbgs() << " "; 5366 LF.print(OS); 5367 OS << '\n'; 5368 } 5369 } 5370 5371 void LSRInstance::print_uses(raw_ostream &OS) const { 5372 OS << "LSR is examining the following uses:\n"; 5373 for (const LSRUse &LU : Uses) { 5374 dbgs() << " "; 5375 LU.print(OS); 5376 OS << '\n'; 5377 for (const Formula &F : LU.Formulae) { 5378 OS << " "; 5379 F.print(OS); 5380 OS << '\n'; 5381 } 5382 } 5383 } 5384 5385 void LSRInstance::print(raw_ostream &OS) const { 5386 print_factors_and_types(OS); 5387 print_fixups(OS); 5388 print_uses(OS); 5389 } 5390 5391 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5392 print(errs()); errs() << '\n'; 5393 } 5394 #endif 5395 5396 namespace { 5397 5398 class LoopStrengthReduce : public LoopPass { 5399 public: 5400 static char ID; // Pass ID, replacement for typeid 5401 5402 LoopStrengthReduce(); 5403 5404 private: 5405 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5406 void getAnalysisUsage(AnalysisUsage &AU) const override; 5407 }; 5408 5409 } // end anonymous namespace 5410 5411 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5412 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5413 } 5414 5415 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5416 // We split critical edges, so we change the CFG. However, we do update 5417 // many analyses if they are around. 5418 AU.addPreservedID(LoopSimplifyID); 5419 5420 AU.addRequired<LoopInfoWrapperPass>(); 5421 AU.addPreserved<LoopInfoWrapperPass>(); 5422 AU.addRequiredID(LoopSimplifyID); 5423 AU.addRequired<DominatorTreeWrapperPass>(); 5424 AU.addPreserved<DominatorTreeWrapperPass>(); 5425 AU.addRequired<ScalarEvolutionWrapperPass>(); 5426 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5427 // Requiring LoopSimplify a second time here prevents IVUsers from running 5428 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5429 AU.addRequiredID(LoopSimplifyID); 5430 AU.addRequired<IVUsersWrapperPass>(); 5431 AU.addPreserved<IVUsersWrapperPass>(); 5432 AU.addRequired<TargetTransformInfoWrapperPass>(); 5433 } 5434 5435 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5436 DominatorTree &DT, LoopInfo &LI, 5437 const TargetTransformInfo &TTI) { 5438 bool Changed = false; 5439 5440 // Run the main LSR transformation. 5441 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5442 5443 // Remove any extra phis created by processing inner loops. 5444 Changed |= DeleteDeadPHIs(L->getHeader()); 5445 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5446 SmallVector<WeakTrackingVH, 16> DeadInsts; 5447 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5448 SCEVExpander Rewriter(SE, DL, "lsr"); 5449 #ifndef NDEBUG 5450 Rewriter.setDebugType(DEBUG_TYPE); 5451 #endif 5452 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5453 if (numFolded) { 5454 Changed = true; 5455 DeleteTriviallyDeadInstructions(DeadInsts); 5456 DeleteDeadPHIs(L->getHeader()); 5457 } 5458 } 5459 return Changed; 5460 } 5461 5462 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5463 if (skipLoop(L)) 5464 return false; 5465 5466 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5467 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5468 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5469 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5470 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5471 *L->getHeader()->getParent()); 5472 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5473 } 5474 5475 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5476 LoopStandardAnalysisResults &AR, 5477 LPMUpdater &) { 5478 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5479 AR.DT, AR.LI, AR.TTI)) 5480 return PreservedAnalyses::all(); 5481 5482 return getLoopPassPreservedAnalyses(); 5483 } 5484 5485 char LoopStrengthReduce::ID = 0; 5486 5487 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5488 "Loop Strength Reduction", false, false) 5489 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5490 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5491 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5492 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5493 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5494 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5495 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5496 "Loop Strength Reduction", false, false) 5497 5498 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5499