1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 #define DEBUG_TYPE "loop-reduce" 82 83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 84 /// bail out. This threshold is far beyond the number of users that LSR can 85 /// conceivably solve, so it should not affect generated code, but catches the 86 /// worst cases before LSR burns too much compile time and stack space. 87 static const unsigned MaxIVUsers = 200; 88 89 // Temporary flag to cleanup congruent phis after LSR phi expansion. 90 // It's currently disabled until we can determine whether it's truly useful or 91 // not. The flag should be removed after the v3.0 release. 92 // This is now needed for ivchains. 93 static cl::opt<bool> EnablePhiElim( 94 "enable-lsr-phielim", cl::Hidden, cl::init(true), 95 cl::desc("Enable LSR phi elimination")); 96 97 #ifndef NDEBUG 98 // Stress test IV chain generation. 99 static cl::opt<bool> StressIVChain( 100 "stress-ivchain", cl::Hidden, cl::init(false), 101 cl::desc("Stress test LSR IV chains")); 102 #else 103 static bool StressIVChain = false; 104 #endif 105 106 namespace { 107 108 /// RegSortData - This class holds data which is used to order reuse candidates. 109 class RegSortData { 110 public: 111 /// UsedByIndices - This represents the set of LSRUse indices which reference 112 /// a particular register. 113 SmallBitVector UsedByIndices; 114 115 RegSortData() {} 116 117 void print(raw_ostream &OS) const; 118 void dump() const; 119 }; 120 121 } 122 123 void RegSortData::print(raw_ostream &OS) const { 124 OS << "[NumUses=" << UsedByIndices.count() << ']'; 125 } 126 127 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 128 void RegSortData::dump() const { 129 print(errs()); errs() << '\n'; 130 } 131 #endif 132 133 namespace { 134 135 /// RegUseTracker - Map register candidates to information about how they are 136 /// used. 137 class RegUseTracker { 138 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 139 140 RegUsesTy RegUsesMap; 141 SmallVector<const SCEV *, 16> RegSequence; 142 143 public: 144 void CountRegister(const SCEV *Reg, size_t LUIdx); 145 void DropRegister(const SCEV *Reg, size_t LUIdx); 146 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 147 148 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 149 150 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 151 152 void clear(); 153 154 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 155 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 156 iterator begin() { return RegSequence.begin(); } 157 iterator end() { return RegSequence.end(); } 158 const_iterator begin() const { return RegSequence.begin(); } 159 const_iterator end() const { return RegSequence.end(); } 160 }; 161 162 } 163 164 void 165 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 166 std::pair<RegUsesTy::iterator, bool> Pair = 167 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 168 RegSortData &RSD = Pair.first->second; 169 if (Pair.second) 170 RegSequence.push_back(Reg); 171 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 172 RSD.UsedByIndices.set(LUIdx); 173 } 174 175 void 176 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 177 RegUsesTy::iterator It = RegUsesMap.find(Reg); 178 assert(It != RegUsesMap.end()); 179 RegSortData &RSD = It->second; 180 assert(RSD.UsedByIndices.size() > LUIdx); 181 RSD.UsedByIndices.reset(LUIdx); 182 } 183 184 void 185 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 186 assert(LUIdx <= LastLUIdx); 187 188 // Update RegUses. The data structure is not optimized for this purpose; 189 // we must iterate through it and update each of the bit vectors. 190 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 191 I != E; ++I) { 192 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 193 if (LUIdx < UsedByIndices.size()) 194 UsedByIndices[LUIdx] = 195 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 196 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 197 } 198 } 199 200 bool 201 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 202 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 203 if (I == RegUsesMap.end()) 204 return false; 205 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 206 int i = UsedByIndices.find_first(); 207 if (i == -1) return false; 208 if ((size_t)i != LUIdx) return true; 209 return UsedByIndices.find_next(i) != -1; 210 } 211 212 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 213 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 214 assert(I != RegUsesMap.end() && "Unknown register!"); 215 return I->second.UsedByIndices; 216 } 217 218 void RegUseTracker::clear() { 219 RegUsesMap.clear(); 220 RegSequence.clear(); 221 } 222 223 namespace { 224 225 /// Formula - This class holds information that describes a formula for 226 /// computing satisfying a use. It may include broken-out immediates and scaled 227 /// registers. 228 struct Formula { 229 /// Global base address used for complex addressing. 230 GlobalValue *BaseGV; 231 232 /// Base offset for complex addressing. 233 int64_t BaseOffset; 234 235 /// Whether any complex addressing has a base register. 236 bool HasBaseReg; 237 238 /// The scale of any complex addressing. 239 int64_t Scale; 240 241 /// BaseRegs - The list of "base" registers for this use. When this is 242 /// non-empty. The canonical representation of a formula is 243 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 244 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 245 /// #1 enforces that the scaled register is always used when at least two 246 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 247 /// #2 enforces that 1 * reg is reg. 248 /// This invariant can be temporarly broken while building a formula. 249 /// However, every formula inserted into the LSRInstance must be in canonical 250 /// form. 251 SmallVector<const SCEV *, 4> BaseRegs; 252 253 /// ScaledReg - The 'scaled' register for this use. This should be non-null 254 /// when Scale is not zero. 255 const SCEV *ScaledReg; 256 257 /// UnfoldedOffset - An additional constant offset which added near the 258 /// use. This requires a temporary register, but the offset itself can 259 /// live in an add immediate field rather than a register. 260 int64_t UnfoldedOffset; 261 262 Formula() 263 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 264 ScaledReg(nullptr), UnfoldedOffset(0) {} 265 266 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 267 268 bool isCanonical() const; 269 270 void Canonicalize(); 271 272 bool Unscale(); 273 274 size_t getNumRegs() const; 275 Type *getType() const; 276 277 void DeleteBaseReg(const SCEV *&S); 278 279 bool referencesReg(const SCEV *S) const; 280 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 281 const RegUseTracker &RegUses) const; 282 283 void print(raw_ostream &OS) const; 284 void dump() const; 285 }; 286 287 } 288 289 /// DoInitialMatch - Recursion helper for InitialMatch. 290 static void DoInitialMatch(const SCEV *S, Loop *L, 291 SmallVectorImpl<const SCEV *> &Good, 292 SmallVectorImpl<const SCEV *> &Bad, 293 ScalarEvolution &SE) { 294 // Collect expressions which properly dominate the loop header. 295 if (SE.properlyDominates(S, L->getHeader())) { 296 Good.push_back(S); 297 return; 298 } 299 300 // Look at add operands. 301 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 302 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 303 I != E; ++I) 304 DoInitialMatch(*I, L, Good, Bad, SE); 305 return; 306 } 307 308 // Look at addrec operands. 309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 310 if (!AR->getStart()->isZero()) { 311 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 312 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 313 AR->getStepRecurrence(SE), 314 // FIXME: AR->getNoWrapFlags() 315 AR->getLoop(), SCEV::FlagAnyWrap), 316 L, Good, Bad, SE); 317 return; 318 } 319 320 // Handle a multiplication by -1 (negation) if it didn't fold. 321 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 322 if (Mul->getOperand(0)->isAllOnesValue()) { 323 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 324 const SCEV *NewMul = SE.getMulExpr(Ops); 325 326 SmallVector<const SCEV *, 4> MyGood; 327 SmallVector<const SCEV *, 4> MyBad; 328 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 329 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 330 SE.getEffectiveSCEVType(NewMul->getType()))); 331 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 332 E = MyGood.end(); I != E; ++I) 333 Good.push_back(SE.getMulExpr(NegOne, *I)); 334 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 335 E = MyBad.end(); I != E; ++I) 336 Bad.push_back(SE.getMulExpr(NegOne, *I)); 337 return; 338 } 339 340 // Ok, we can't do anything interesting. Just stuff the whole thing into a 341 // register and hope for the best. 342 Bad.push_back(S); 343 } 344 345 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 346 /// attempting to keep all loop-invariant and loop-computable values in a 347 /// single base register. 348 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 349 SmallVector<const SCEV *, 4> Good; 350 SmallVector<const SCEV *, 4> Bad; 351 DoInitialMatch(S, L, Good, Bad, SE); 352 if (!Good.empty()) { 353 const SCEV *Sum = SE.getAddExpr(Good); 354 if (!Sum->isZero()) 355 BaseRegs.push_back(Sum); 356 HasBaseReg = true; 357 } 358 if (!Bad.empty()) { 359 const SCEV *Sum = SE.getAddExpr(Bad); 360 if (!Sum->isZero()) 361 BaseRegs.push_back(Sum); 362 HasBaseReg = true; 363 } 364 Canonicalize(); 365 } 366 367 /// \brief Check whether or not this formula statisfies the canonical 368 /// representation. 369 /// \see Formula::BaseRegs. 370 bool Formula::isCanonical() const { 371 if (ScaledReg) 372 return Scale != 1 || !BaseRegs.empty(); 373 return BaseRegs.size() <= 1; 374 } 375 376 /// \brief Helper method to morph a formula into its canonical representation. 377 /// \see Formula::BaseRegs. 378 /// Every formula having more than one base register, must use the ScaledReg 379 /// field. Otherwise, we would have to do special cases everywhere in LSR 380 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 381 /// On the other hand, 1*reg should be canonicalized into reg. 382 void Formula::Canonicalize() { 383 if (isCanonical()) 384 return; 385 // So far we did not need this case. This is easy to implement but it is 386 // useless to maintain dead code. Beside it could hurt compile time. 387 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 388 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 389 ScaledReg = BaseRegs.back(); 390 BaseRegs.pop_back(); 391 Scale = 1; 392 size_t BaseRegsSize = BaseRegs.size(); 393 size_t Try = 0; 394 // If ScaledReg is an invariant, try to find a variant expression. 395 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 396 std::swap(ScaledReg, BaseRegs[Try++]); 397 } 398 399 /// \brief Get rid of the scale in the formula. 400 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 401 /// \return true if it was possible to get rid of the scale, false otherwise. 402 /// \note After this operation the formula may not be in the canonical form. 403 bool Formula::Unscale() { 404 if (Scale != 1) 405 return false; 406 Scale = 0; 407 BaseRegs.push_back(ScaledReg); 408 ScaledReg = nullptr; 409 return true; 410 } 411 412 /// getNumRegs - Return the total number of register operands used by this 413 /// formula. This does not include register uses implied by non-constant 414 /// addrec strides. 415 size_t Formula::getNumRegs() const { 416 return !!ScaledReg + BaseRegs.size(); 417 } 418 419 /// getType - Return the type of this formula, if it has one, or null 420 /// otherwise. This type is meaningless except for the bit size. 421 Type *Formula::getType() const { 422 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 423 ScaledReg ? ScaledReg->getType() : 424 BaseGV ? BaseGV->getType() : 425 nullptr; 426 } 427 428 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 429 void Formula::DeleteBaseReg(const SCEV *&S) { 430 if (&S != &BaseRegs.back()) 431 std::swap(S, BaseRegs.back()); 432 BaseRegs.pop_back(); 433 } 434 435 /// referencesReg - Test if this formula references the given register. 436 bool Formula::referencesReg(const SCEV *S) const { 437 return S == ScaledReg || 438 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 439 } 440 441 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 442 /// which are used by uses other than the use with the given index. 443 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 444 const RegUseTracker &RegUses) const { 445 if (ScaledReg) 446 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 447 return true; 448 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 449 E = BaseRegs.end(); I != E; ++I) 450 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 451 return true; 452 return false; 453 } 454 455 void Formula::print(raw_ostream &OS) const { 456 bool First = true; 457 if (BaseGV) { 458 if (!First) OS << " + "; else First = false; 459 BaseGV->printAsOperand(OS, /*PrintType=*/false); 460 } 461 if (BaseOffset != 0) { 462 if (!First) OS << " + "; else First = false; 463 OS << BaseOffset; 464 } 465 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 466 E = BaseRegs.end(); I != E; ++I) { 467 if (!First) OS << " + "; else First = false; 468 OS << "reg(" << **I << ')'; 469 } 470 if (HasBaseReg && BaseRegs.empty()) { 471 if (!First) OS << " + "; else First = false; 472 OS << "**error: HasBaseReg**"; 473 } else if (!HasBaseReg && !BaseRegs.empty()) { 474 if (!First) OS << " + "; else First = false; 475 OS << "**error: !HasBaseReg**"; 476 } 477 if (Scale != 0) { 478 if (!First) OS << " + "; else First = false; 479 OS << Scale << "*reg("; 480 if (ScaledReg) 481 OS << *ScaledReg; 482 else 483 OS << "<unknown>"; 484 OS << ')'; 485 } 486 if (UnfoldedOffset != 0) { 487 if (!First) OS << " + "; 488 OS << "imm(" << UnfoldedOffset << ')'; 489 } 490 } 491 492 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 493 void Formula::dump() const { 494 print(errs()); errs() << '\n'; 495 } 496 #endif 497 498 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 499 /// without changing its value. 500 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 501 Type *WideTy = 502 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 503 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 504 } 505 506 /// isAddSExtable - Return true if the given add can be sign-extended 507 /// without changing its value. 508 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 509 Type *WideTy = 510 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 511 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 512 } 513 514 /// isMulSExtable - Return true if the given mul can be sign-extended 515 /// without changing its value. 516 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 517 Type *WideTy = 518 IntegerType::get(SE.getContext(), 519 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 520 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 521 } 522 523 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 524 /// and if the remainder is known to be zero, or null otherwise. If 525 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 526 /// to Y, ignoring that the multiplication may overflow, which is useful when 527 /// the result will be used in a context where the most significant bits are 528 /// ignored. 529 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 530 ScalarEvolution &SE, 531 bool IgnoreSignificantBits = false) { 532 // Handle the trivial case, which works for any SCEV type. 533 if (LHS == RHS) 534 return SE.getConstant(LHS->getType(), 1); 535 536 // Handle a few RHS special cases. 537 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 538 if (RC) { 539 const APInt &RA = RC->getValue()->getValue(); 540 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 541 // some folding. 542 if (RA.isAllOnesValue()) 543 return SE.getMulExpr(LHS, RC); 544 // Handle x /s 1 as x. 545 if (RA == 1) 546 return LHS; 547 } 548 549 // Check for a division of a constant by a constant. 550 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 551 if (!RC) 552 return nullptr; 553 const APInt &LA = C->getValue()->getValue(); 554 const APInt &RA = RC->getValue()->getValue(); 555 if (LA.srem(RA) != 0) 556 return nullptr; 557 return SE.getConstant(LA.sdiv(RA)); 558 } 559 560 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 561 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 562 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 563 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 564 IgnoreSignificantBits); 565 if (!Step) return nullptr; 566 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 567 IgnoreSignificantBits); 568 if (!Start) return nullptr; 569 // FlagNW is independent of the start value, step direction, and is 570 // preserved with smaller magnitude steps. 571 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 572 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 573 } 574 return nullptr; 575 } 576 577 // Distribute the sdiv over add operands, if the add doesn't overflow. 578 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 579 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 580 SmallVector<const SCEV *, 8> Ops; 581 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 582 I != E; ++I) { 583 const SCEV *Op = getExactSDiv(*I, RHS, SE, 584 IgnoreSignificantBits); 585 if (!Op) return nullptr; 586 Ops.push_back(Op); 587 } 588 return SE.getAddExpr(Ops); 589 } 590 return nullptr; 591 } 592 593 // Check for a multiply operand that we can pull RHS out of. 594 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 595 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 596 SmallVector<const SCEV *, 4> Ops; 597 bool Found = false; 598 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 599 I != E; ++I) { 600 const SCEV *S = *I; 601 if (!Found) 602 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 603 IgnoreSignificantBits)) { 604 S = Q; 605 Found = true; 606 } 607 Ops.push_back(S); 608 } 609 return Found ? SE.getMulExpr(Ops) : nullptr; 610 } 611 return nullptr; 612 } 613 614 // Otherwise we don't know. 615 return nullptr; 616 } 617 618 /// ExtractImmediate - If S involves the addition of a constant integer value, 619 /// return that integer value, and mutate S to point to a new SCEV with that 620 /// value excluded. 621 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 622 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 623 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 624 S = SE.getConstant(C->getType(), 0); 625 return C->getValue()->getSExtValue(); 626 } 627 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 628 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 629 int64_t Result = ExtractImmediate(NewOps.front(), SE); 630 if (Result != 0) 631 S = SE.getAddExpr(NewOps); 632 return Result; 633 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 634 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 635 int64_t Result = ExtractImmediate(NewOps.front(), SE); 636 if (Result != 0) 637 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 638 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 639 SCEV::FlagAnyWrap); 640 return Result; 641 } 642 return 0; 643 } 644 645 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 646 /// return that symbol, and mutate S to point to a new SCEV with that 647 /// value excluded. 648 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 649 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 650 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 651 S = SE.getConstant(GV->getType(), 0); 652 return GV; 653 } 654 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 655 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 656 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 657 if (Result) 658 S = SE.getAddExpr(NewOps); 659 return Result; 660 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 661 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 662 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 663 if (Result) 664 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 665 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 666 SCEV::FlagAnyWrap); 667 return Result; 668 } 669 return nullptr; 670 } 671 672 /// isAddressUse - Returns true if the specified instruction is using the 673 /// specified value as an address. 674 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 675 bool isAddress = isa<LoadInst>(Inst); 676 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 677 if (SI->getOperand(1) == OperandVal) 678 isAddress = true; 679 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 680 // Addressing modes can also be folded into prefetches and a variety 681 // of intrinsics. 682 switch (II->getIntrinsicID()) { 683 default: break; 684 case Intrinsic::prefetch: 685 case Intrinsic::x86_sse_storeu_ps: 686 case Intrinsic::x86_sse2_storeu_pd: 687 case Intrinsic::x86_sse2_storeu_dq: 688 case Intrinsic::x86_sse2_storel_dq: 689 if (II->getArgOperand(0) == OperandVal) 690 isAddress = true; 691 break; 692 } 693 } 694 return isAddress; 695 } 696 697 /// getAccessType - Return the type of the memory being accessed. 698 static Type *getAccessType(const Instruction *Inst) { 699 Type *AccessTy = Inst->getType(); 700 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 701 AccessTy = SI->getOperand(0)->getType(); 702 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 703 // Addressing modes can also be folded into prefetches and a variety 704 // of intrinsics. 705 switch (II->getIntrinsicID()) { 706 default: break; 707 case Intrinsic::x86_sse_storeu_ps: 708 case Intrinsic::x86_sse2_storeu_pd: 709 case Intrinsic::x86_sse2_storeu_dq: 710 case Intrinsic::x86_sse2_storel_dq: 711 AccessTy = II->getArgOperand(0)->getType(); 712 break; 713 } 714 } 715 716 // All pointers have the same requirements, so canonicalize them to an 717 // arbitrary pointer type to minimize variation. 718 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 719 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 720 PTy->getAddressSpace()); 721 722 return AccessTy; 723 } 724 725 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 726 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 727 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 728 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 729 if (SE.isSCEVable(PN->getType()) && 730 (SE.getEffectiveSCEVType(PN->getType()) == 731 SE.getEffectiveSCEVType(AR->getType())) && 732 SE.getSCEV(PN) == AR) 733 return true; 734 } 735 return false; 736 } 737 738 /// Check if expanding this expression is likely to incur significant cost. This 739 /// is tricky because SCEV doesn't track which expressions are actually computed 740 /// by the current IR. 741 /// 742 /// We currently allow expansion of IV increments that involve adds, 743 /// multiplication by constants, and AddRecs from existing phis. 744 /// 745 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 746 /// obvious multiple of the UDivExpr. 747 static bool isHighCostExpansion(const SCEV *S, 748 SmallPtrSetImpl<const SCEV*> &Processed, 749 ScalarEvolution &SE) { 750 // Zero/One operand expressions 751 switch (S->getSCEVType()) { 752 case scUnknown: 753 case scConstant: 754 return false; 755 case scTruncate: 756 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 757 Processed, SE); 758 case scZeroExtend: 759 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 760 Processed, SE); 761 case scSignExtend: 762 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 763 Processed, SE); 764 } 765 766 if (!Processed.insert(S).second) 767 return false; 768 769 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 770 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 771 I != E; ++I) { 772 if (isHighCostExpansion(*I, Processed, SE)) 773 return true; 774 } 775 return false; 776 } 777 778 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 779 if (Mul->getNumOperands() == 2) { 780 // Multiplication by a constant is ok 781 if (isa<SCEVConstant>(Mul->getOperand(0))) 782 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 783 784 // If we have the value of one operand, check if an existing 785 // multiplication already generates this expression. 786 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 787 Value *UVal = U->getValue(); 788 for (User *UR : UVal->users()) { 789 // If U is a constant, it may be used by a ConstantExpr. 790 Instruction *UI = dyn_cast<Instruction>(UR); 791 if (UI && UI->getOpcode() == Instruction::Mul && 792 SE.isSCEVable(UI->getType())) { 793 return SE.getSCEV(UI) == Mul; 794 } 795 } 796 } 797 } 798 } 799 800 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 801 if (isExistingPhi(AR, SE)) 802 return false; 803 } 804 805 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 806 return true; 807 } 808 809 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 810 /// specified set are trivially dead, delete them and see if this makes any of 811 /// their operands subsequently dead. 812 static bool 813 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 814 bool Changed = false; 815 816 while (!DeadInsts.empty()) { 817 Value *V = DeadInsts.pop_back_val(); 818 Instruction *I = dyn_cast_or_null<Instruction>(V); 819 820 if (!I || !isInstructionTriviallyDead(I)) 821 continue; 822 823 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 824 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 825 *OI = nullptr; 826 if (U->use_empty()) 827 DeadInsts.push_back(U); 828 } 829 830 I->eraseFromParent(); 831 Changed = true; 832 } 833 834 return Changed; 835 } 836 837 namespace { 838 class LSRUse; 839 } 840 841 /// \brief Check if the addressing mode defined by \p F is completely 842 /// folded in \p LU at isel time. 843 /// This includes address-mode folding and special icmp tricks. 844 /// This function returns true if \p LU can accommodate what \p F 845 /// defines and up to 1 base + 1 scaled + offset. 846 /// In other words, if \p F has several base registers, this function may 847 /// still return true. Therefore, users still need to account for 848 /// additional base registers and/or unfolded offsets to derive an 849 /// accurate cost model. 850 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 851 const LSRUse &LU, const Formula &F); 852 // Get the cost of the scaling factor used in F for LU. 853 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 854 const LSRUse &LU, const Formula &F); 855 856 namespace { 857 858 /// Cost - This class is used to measure and compare candidate formulae. 859 class Cost { 860 /// TODO: Some of these could be merged. Also, a lexical ordering 861 /// isn't always optimal. 862 unsigned NumRegs; 863 unsigned AddRecCost; 864 unsigned NumIVMuls; 865 unsigned NumBaseAdds; 866 unsigned ImmCost; 867 unsigned SetupCost; 868 unsigned ScaleCost; 869 870 public: 871 Cost() 872 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 873 SetupCost(0), ScaleCost(0) {} 874 875 bool operator<(const Cost &Other) const; 876 877 void Lose(); 878 879 #ifndef NDEBUG 880 // Once any of the metrics loses, they must all remain losers. 881 bool isValid() { 882 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 883 | ImmCost | SetupCost | ScaleCost) != ~0u) 884 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 885 & ImmCost & SetupCost & ScaleCost) == ~0u); 886 } 887 #endif 888 889 bool isLoser() { 890 assert(isValid() && "invalid cost"); 891 return NumRegs == ~0u; 892 } 893 894 void RateFormula(const TargetTransformInfo &TTI, 895 const Formula &F, 896 SmallPtrSetImpl<const SCEV *> &Regs, 897 const DenseSet<const SCEV *> &VisitedRegs, 898 const Loop *L, 899 const SmallVectorImpl<int64_t> &Offsets, 900 ScalarEvolution &SE, DominatorTree &DT, 901 const LSRUse &LU, 902 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 903 904 void print(raw_ostream &OS) const; 905 void dump() const; 906 907 private: 908 void RateRegister(const SCEV *Reg, 909 SmallPtrSetImpl<const SCEV *> &Regs, 910 const Loop *L, 911 ScalarEvolution &SE, DominatorTree &DT); 912 void RatePrimaryRegister(const SCEV *Reg, 913 SmallPtrSetImpl<const SCEV *> &Regs, 914 const Loop *L, 915 ScalarEvolution &SE, DominatorTree &DT, 916 SmallPtrSetImpl<const SCEV *> *LoserRegs); 917 }; 918 919 } 920 921 /// RateRegister - Tally up interesting quantities from the given register. 922 void Cost::RateRegister(const SCEV *Reg, 923 SmallPtrSetImpl<const SCEV *> &Regs, 924 const Loop *L, 925 ScalarEvolution &SE, DominatorTree &DT) { 926 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 927 // If this is an addrec for another loop, don't second-guess its addrec phi 928 // nodes. LSR isn't currently smart enough to reason about more than one 929 // loop at a time. LSR has already run on inner loops, will not run on outer 930 // loops, and cannot be expected to change sibling loops. 931 if (AR->getLoop() != L) { 932 // If the AddRec exists, consider it's register free and leave it alone. 933 if (isExistingPhi(AR, SE)) 934 return; 935 936 // Otherwise, do not consider this formula at all. 937 Lose(); 938 return; 939 } 940 AddRecCost += 1; /// TODO: This should be a function of the stride. 941 942 // Add the step value register, if it needs one. 943 // TODO: The non-affine case isn't precisely modeled here. 944 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 945 if (!Regs.count(AR->getOperand(1))) { 946 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 947 if (isLoser()) 948 return; 949 } 950 } 951 } 952 ++NumRegs; 953 954 // Rough heuristic; favor registers which don't require extra setup 955 // instructions in the preheader. 956 if (!isa<SCEVUnknown>(Reg) && 957 !isa<SCEVConstant>(Reg) && 958 !(isa<SCEVAddRecExpr>(Reg) && 959 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 960 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 961 ++SetupCost; 962 963 NumIVMuls += isa<SCEVMulExpr>(Reg) && 964 SE.hasComputableLoopEvolution(Reg, L); 965 } 966 967 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 968 /// before, rate it. Optional LoserRegs provides a way to declare any formula 969 /// that refers to one of those regs an instant loser. 970 void Cost::RatePrimaryRegister(const SCEV *Reg, 971 SmallPtrSetImpl<const SCEV *> &Regs, 972 const Loop *L, 973 ScalarEvolution &SE, DominatorTree &DT, 974 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 975 if (LoserRegs && LoserRegs->count(Reg)) { 976 Lose(); 977 return; 978 } 979 if (Regs.insert(Reg).second) { 980 RateRegister(Reg, Regs, L, SE, DT); 981 if (LoserRegs && isLoser()) 982 LoserRegs->insert(Reg); 983 } 984 } 985 986 void Cost::RateFormula(const TargetTransformInfo &TTI, 987 const Formula &F, 988 SmallPtrSetImpl<const SCEV *> &Regs, 989 const DenseSet<const SCEV *> &VisitedRegs, 990 const Loop *L, 991 const SmallVectorImpl<int64_t> &Offsets, 992 ScalarEvolution &SE, DominatorTree &DT, 993 const LSRUse &LU, 994 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 995 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 996 // Tally up the registers. 997 if (const SCEV *ScaledReg = F.ScaledReg) { 998 if (VisitedRegs.count(ScaledReg)) { 999 Lose(); 1000 return; 1001 } 1002 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1003 if (isLoser()) 1004 return; 1005 } 1006 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 1007 E = F.BaseRegs.end(); I != E; ++I) { 1008 const SCEV *BaseReg = *I; 1009 if (VisitedRegs.count(BaseReg)) { 1010 Lose(); 1011 return; 1012 } 1013 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1014 if (isLoser()) 1015 return; 1016 } 1017 1018 // Determine how many (unfolded) adds we'll need inside the loop. 1019 size_t NumBaseParts = F.getNumRegs(); 1020 if (NumBaseParts > 1) 1021 // Do not count the base and a possible second register if the target 1022 // allows to fold 2 registers. 1023 NumBaseAdds += 1024 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1025 NumBaseAdds += (F.UnfoldedOffset != 0); 1026 1027 // Accumulate non-free scaling amounts. 1028 ScaleCost += getScalingFactorCost(TTI, LU, F); 1029 1030 // Tally up the non-zero immediates. 1031 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1032 E = Offsets.end(); I != E; ++I) { 1033 int64_t Offset = (uint64_t)*I + F.BaseOffset; 1034 if (F.BaseGV) 1035 ImmCost += 64; // Handle symbolic values conservatively. 1036 // TODO: This should probably be the pointer size. 1037 else if (Offset != 0) 1038 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1039 } 1040 assert(isValid() && "invalid cost"); 1041 } 1042 1043 /// Lose - Set this cost to a losing value. 1044 void Cost::Lose() { 1045 NumRegs = ~0u; 1046 AddRecCost = ~0u; 1047 NumIVMuls = ~0u; 1048 NumBaseAdds = ~0u; 1049 ImmCost = ~0u; 1050 SetupCost = ~0u; 1051 ScaleCost = ~0u; 1052 } 1053 1054 /// operator< - Choose the lower cost. 1055 bool Cost::operator<(const Cost &Other) const { 1056 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1057 ImmCost, SetupCost) < 1058 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1059 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1060 Other.SetupCost); 1061 } 1062 1063 void Cost::print(raw_ostream &OS) const { 1064 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1065 if (AddRecCost != 0) 1066 OS << ", with addrec cost " << AddRecCost; 1067 if (NumIVMuls != 0) 1068 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1069 if (NumBaseAdds != 0) 1070 OS << ", plus " << NumBaseAdds << " base add" 1071 << (NumBaseAdds == 1 ? "" : "s"); 1072 if (ScaleCost != 0) 1073 OS << ", plus " << ScaleCost << " scale cost"; 1074 if (ImmCost != 0) 1075 OS << ", plus " << ImmCost << " imm cost"; 1076 if (SetupCost != 0) 1077 OS << ", plus " << SetupCost << " setup cost"; 1078 } 1079 1080 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1081 void Cost::dump() const { 1082 print(errs()); errs() << '\n'; 1083 } 1084 #endif 1085 1086 namespace { 1087 1088 /// LSRFixup - An operand value in an instruction which is to be replaced 1089 /// with some equivalent, possibly strength-reduced, replacement. 1090 struct LSRFixup { 1091 /// UserInst - The instruction which will be updated. 1092 Instruction *UserInst; 1093 1094 /// OperandValToReplace - The operand of the instruction which will 1095 /// be replaced. The operand may be used more than once; every instance 1096 /// will be replaced. 1097 Value *OperandValToReplace; 1098 1099 /// PostIncLoops - If this user is to use the post-incremented value of an 1100 /// induction variable, this variable is non-null and holds the loop 1101 /// associated with the induction variable. 1102 PostIncLoopSet PostIncLoops; 1103 1104 /// LUIdx - The index of the LSRUse describing the expression which 1105 /// this fixup needs, minus an offset (below). 1106 size_t LUIdx; 1107 1108 /// Offset - A constant offset to be added to the LSRUse expression. 1109 /// This allows multiple fixups to share the same LSRUse with different 1110 /// offsets, for example in an unrolled loop. 1111 int64_t Offset; 1112 1113 bool isUseFullyOutsideLoop(const Loop *L) const; 1114 1115 LSRFixup(); 1116 1117 void print(raw_ostream &OS) const; 1118 void dump() const; 1119 }; 1120 1121 } 1122 1123 LSRFixup::LSRFixup() 1124 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1125 Offset(0) {} 1126 1127 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1128 /// value outside of the given loop. 1129 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1130 // PHI nodes use their value in their incoming blocks. 1131 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1132 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1133 if (PN->getIncomingValue(i) == OperandValToReplace && 1134 L->contains(PN->getIncomingBlock(i))) 1135 return false; 1136 return true; 1137 } 1138 1139 return !L->contains(UserInst); 1140 } 1141 1142 void LSRFixup::print(raw_ostream &OS) const { 1143 OS << "UserInst="; 1144 // Store is common and interesting enough to be worth special-casing. 1145 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1146 OS << "store "; 1147 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1148 } else if (UserInst->getType()->isVoidTy()) 1149 OS << UserInst->getOpcodeName(); 1150 else 1151 UserInst->printAsOperand(OS, /*PrintType=*/false); 1152 1153 OS << ", OperandValToReplace="; 1154 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1155 1156 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1157 E = PostIncLoops.end(); I != E; ++I) { 1158 OS << ", PostIncLoop="; 1159 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1160 } 1161 1162 if (LUIdx != ~size_t(0)) 1163 OS << ", LUIdx=" << LUIdx; 1164 1165 if (Offset != 0) 1166 OS << ", Offset=" << Offset; 1167 } 1168 1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1170 void LSRFixup::dump() const { 1171 print(errs()); errs() << '\n'; 1172 } 1173 #endif 1174 1175 namespace { 1176 1177 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1178 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1179 struct UniquifierDenseMapInfo { 1180 static SmallVector<const SCEV *, 4> getEmptyKey() { 1181 SmallVector<const SCEV *, 4> V; 1182 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1183 return V; 1184 } 1185 1186 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1187 SmallVector<const SCEV *, 4> V; 1188 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1189 return V; 1190 } 1191 1192 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1193 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1194 } 1195 1196 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1197 const SmallVector<const SCEV *, 4> &RHS) { 1198 return LHS == RHS; 1199 } 1200 }; 1201 1202 /// LSRUse - This class holds the state that LSR keeps for each use in 1203 /// IVUsers, as well as uses invented by LSR itself. It includes information 1204 /// about what kinds of things can be folded into the user, information about 1205 /// the user itself, and information about how the use may be satisfied. 1206 /// TODO: Represent multiple users of the same expression in common? 1207 class LSRUse { 1208 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1209 1210 public: 1211 /// KindType - An enum for a kind of use, indicating what types of 1212 /// scaled and immediate operands it might support. 1213 enum KindType { 1214 Basic, ///< A normal use, with no folding. 1215 Special, ///< A special case of basic, allowing -1 scales. 1216 Address, ///< An address use; folding according to TargetLowering 1217 ICmpZero ///< An equality icmp with both operands folded into one. 1218 // TODO: Add a generic icmp too? 1219 }; 1220 1221 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1222 1223 KindType Kind; 1224 Type *AccessTy; 1225 1226 SmallVector<int64_t, 8> Offsets; 1227 int64_t MinOffset; 1228 int64_t MaxOffset; 1229 1230 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1231 /// LSRUse are outside of the loop, in which case some special-case heuristics 1232 /// may be used. 1233 bool AllFixupsOutsideLoop; 1234 1235 /// RigidFormula is set to true to guarantee that this use will be associated 1236 /// with a single formula--the one that initially matched. Some SCEV 1237 /// expressions cannot be expanded. This allows LSR to consider the registers 1238 /// used by those expressions without the need to expand them later after 1239 /// changing the formula. 1240 bool RigidFormula; 1241 1242 /// WidestFixupType - This records the widest use type for any fixup using 1243 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1244 /// max fixup widths to be equivalent, because the narrower one may be relying 1245 /// on the implicit truncation to truncate away bogus bits. 1246 Type *WidestFixupType; 1247 1248 /// Formulae - A list of ways to build a value that can satisfy this user. 1249 /// After the list is populated, one of these is selected heuristically and 1250 /// used to formulate a replacement for OperandValToReplace in UserInst. 1251 SmallVector<Formula, 12> Formulae; 1252 1253 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1254 SmallPtrSet<const SCEV *, 4> Regs; 1255 1256 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1257 MinOffset(INT64_MAX), 1258 MaxOffset(INT64_MIN), 1259 AllFixupsOutsideLoop(true), 1260 RigidFormula(false), 1261 WidestFixupType(nullptr) {} 1262 1263 bool HasFormulaWithSameRegs(const Formula &F) const; 1264 bool InsertFormula(const Formula &F); 1265 void DeleteFormula(Formula &F); 1266 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1267 1268 void print(raw_ostream &OS) const; 1269 void dump() const; 1270 }; 1271 1272 } 1273 1274 /// HasFormula - Test whether this use as a formula which has the same 1275 /// registers as the given formula. 1276 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1277 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1278 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1279 // Unstable sort by host order ok, because this is only used for uniquifying. 1280 std::sort(Key.begin(), Key.end()); 1281 return Uniquifier.count(Key); 1282 } 1283 1284 /// InsertFormula - If the given formula has not yet been inserted, add it to 1285 /// the list, and return true. Return false otherwise. 1286 /// The formula must be in canonical form. 1287 bool LSRUse::InsertFormula(const Formula &F) { 1288 assert(F.isCanonical() && "Invalid canonical representation"); 1289 1290 if (!Formulae.empty() && RigidFormula) 1291 return false; 1292 1293 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1294 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1295 // Unstable sort by host order ok, because this is only used for uniquifying. 1296 std::sort(Key.begin(), Key.end()); 1297 1298 if (!Uniquifier.insert(Key).second) 1299 return false; 1300 1301 // Using a register to hold the value of 0 is not profitable. 1302 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1303 "Zero allocated in a scaled register!"); 1304 #ifndef NDEBUG 1305 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1306 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1307 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1308 #endif 1309 1310 // Add the formula to the list. 1311 Formulae.push_back(F); 1312 1313 // Record registers now being used by this use. 1314 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1315 if (F.ScaledReg) 1316 Regs.insert(F.ScaledReg); 1317 1318 return true; 1319 } 1320 1321 /// DeleteFormula - Remove the given formula from this use's list. 1322 void LSRUse::DeleteFormula(Formula &F) { 1323 if (&F != &Formulae.back()) 1324 std::swap(F, Formulae.back()); 1325 Formulae.pop_back(); 1326 } 1327 1328 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1329 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1330 // Now that we've filtered out some formulae, recompute the Regs set. 1331 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1332 Regs.clear(); 1333 for (const Formula &F : Formulae) { 1334 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1335 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1336 } 1337 1338 // Update the RegTracker. 1339 for (const SCEV *S : OldRegs) 1340 if (!Regs.count(S)) 1341 RegUses.DropRegister(S, LUIdx); 1342 } 1343 1344 void LSRUse::print(raw_ostream &OS) const { 1345 OS << "LSR Use: Kind="; 1346 switch (Kind) { 1347 case Basic: OS << "Basic"; break; 1348 case Special: OS << "Special"; break; 1349 case ICmpZero: OS << "ICmpZero"; break; 1350 case Address: 1351 OS << "Address of "; 1352 if (AccessTy->isPointerTy()) 1353 OS << "pointer"; // the full pointer type could be really verbose 1354 else 1355 OS << *AccessTy; 1356 } 1357 1358 OS << ", Offsets={"; 1359 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1360 E = Offsets.end(); I != E; ++I) { 1361 OS << *I; 1362 if (std::next(I) != E) 1363 OS << ','; 1364 } 1365 OS << '}'; 1366 1367 if (AllFixupsOutsideLoop) 1368 OS << ", all-fixups-outside-loop"; 1369 1370 if (WidestFixupType) 1371 OS << ", widest fixup type: " << *WidestFixupType; 1372 } 1373 1374 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1375 void LSRUse::dump() const { 1376 print(errs()); errs() << '\n'; 1377 } 1378 #endif 1379 1380 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1381 LSRUse::KindType Kind, Type *AccessTy, 1382 GlobalValue *BaseGV, int64_t BaseOffset, 1383 bool HasBaseReg, int64_t Scale) { 1384 switch (Kind) { 1385 case LSRUse::Address: 1386 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1387 1388 // Otherwise, just guess that reg+reg addressing is legal. 1389 //return ; 1390 1391 case LSRUse::ICmpZero: 1392 // There's not even a target hook for querying whether it would be legal to 1393 // fold a GV into an ICmp. 1394 if (BaseGV) 1395 return false; 1396 1397 // ICmp only has two operands; don't allow more than two non-trivial parts. 1398 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1399 return false; 1400 1401 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1402 // putting the scaled register in the other operand of the icmp. 1403 if (Scale != 0 && Scale != -1) 1404 return false; 1405 1406 // If we have low-level target information, ask the target if it can fold an 1407 // integer immediate on an icmp. 1408 if (BaseOffset != 0) { 1409 // We have one of: 1410 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1411 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1412 // Offs is the ICmp immediate. 1413 if (Scale == 0) 1414 // The cast does the right thing with INT64_MIN. 1415 BaseOffset = -(uint64_t)BaseOffset; 1416 return TTI.isLegalICmpImmediate(BaseOffset); 1417 } 1418 1419 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1420 return true; 1421 1422 case LSRUse::Basic: 1423 // Only handle single-register values. 1424 return !BaseGV && Scale == 0 && BaseOffset == 0; 1425 1426 case LSRUse::Special: 1427 // Special case Basic to handle -1 scales. 1428 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1429 } 1430 1431 llvm_unreachable("Invalid LSRUse Kind!"); 1432 } 1433 1434 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1435 int64_t MinOffset, int64_t MaxOffset, 1436 LSRUse::KindType Kind, Type *AccessTy, 1437 GlobalValue *BaseGV, int64_t BaseOffset, 1438 bool HasBaseReg, int64_t Scale) { 1439 // Check for overflow. 1440 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1441 (MinOffset > 0)) 1442 return false; 1443 MinOffset = (uint64_t)BaseOffset + MinOffset; 1444 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1445 (MaxOffset > 0)) 1446 return false; 1447 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1448 1449 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1450 HasBaseReg, Scale) && 1451 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1452 HasBaseReg, Scale); 1453 } 1454 1455 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1456 int64_t MinOffset, int64_t MaxOffset, 1457 LSRUse::KindType Kind, Type *AccessTy, 1458 const Formula &F) { 1459 // For the purpose of isAMCompletelyFolded either having a canonical formula 1460 // or a scale not equal to zero is correct. 1461 // Problems may arise from non canonical formulae having a scale == 0. 1462 // Strictly speaking it would best to just rely on canonical formulae. 1463 // However, when we generate the scaled formulae, we first check that the 1464 // scaling factor is profitable before computing the actual ScaledReg for 1465 // compile time sake. 1466 assert((F.isCanonical() || F.Scale != 0)); 1467 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1468 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1469 } 1470 1471 /// isLegalUse - Test whether we know how to expand the current formula. 1472 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1473 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1474 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1475 int64_t Scale) { 1476 // We know how to expand completely foldable formulae. 1477 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1478 BaseOffset, HasBaseReg, Scale) || 1479 // Or formulae that use a base register produced by a sum of base 1480 // registers. 1481 (Scale == 1 && 1482 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1483 BaseGV, BaseOffset, true, 0)); 1484 } 1485 1486 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1487 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1488 const Formula &F) { 1489 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1490 F.BaseOffset, F.HasBaseReg, F.Scale); 1491 } 1492 1493 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1494 const LSRUse &LU, const Formula &F) { 1495 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1496 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1497 F.Scale); 1498 } 1499 1500 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1501 const LSRUse &LU, const Formula &F) { 1502 if (!F.Scale) 1503 return 0; 1504 1505 // If the use is not completely folded in that instruction, we will have to 1506 // pay an extra cost only for scale != 1. 1507 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1508 LU.AccessTy, F)) 1509 return F.Scale != 1; 1510 1511 switch (LU.Kind) { 1512 case LSRUse::Address: { 1513 // Check the scaling factor cost with both the min and max offsets. 1514 int ScaleCostMinOffset = 1515 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1516 F.BaseOffset + LU.MinOffset, 1517 F.HasBaseReg, F.Scale); 1518 int ScaleCostMaxOffset = 1519 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1520 F.BaseOffset + LU.MaxOffset, 1521 F.HasBaseReg, F.Scale); 1522 1523 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1524 "Legal addressing mode has an illegal cost!"); 1525 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1526 } 1527 case LSRUse::ICmpZero: 1528 case LSRUse::Basic: 1529 case LSRUse::Special: 1530 // The use is completely folded, i.e., everything is folded into the 1531 // instruction. 1532 return 0; 1533 } 1534 1535 llvm_unreachable("Invalid LSRUse Kind!"); 1536 } 1537 1538 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1539 LSRUse::KindType Kind, Type *AccessTy, 1540 GlobalValue *BaseGV, int64_t BaseOffset, 1541 bool HasBaseReg) { 1542 // Fast-path: zero is always foldable. 1543 if (BaseOffset == 0 && !BaseGV) return true; 1544 1545 // Conservatively, create an address with an immediate and a 1546 // base and a scale. 1547 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1548 1549 // Canonicalize a scale of 1 to a base register if the formula doesn't 1550 // already have a base register. 1551 if (!HasBaseReg && Scale == 1) { 1552 Scale = 0; 1553 HasBaseReg = true; 1554 } 1555 1556 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1557 HasBaseReg, Scale); 1558 } 1559 1560 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1561 ScalarEvolution &SE, int64_t MinOffset, 1562 int64_t MaxOffset, LSRUse::KindType Kind, 1563 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1564 // Fast-path: zero is always foldable. 1565 if (S->isZero()) return true; 1566 1567 // Conservatively, create an address with an immediate and a 1568 // base and a scale. 1569 int64_t BaseOffset = ExtractImmediate(S, SE); 1570 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1571 1572 // If there's anything else involved, it's not foldable. 1573 if (!S->isZero()) return false; 1574 1575 // Fast-path: zero is always foldable. 1576 if (BaseOffset == 0 && !BaseGV) return true; 1577 1578 // Conservatively, create an address with an immediate and a 1579 // base and a scale. 1580 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1581 1582 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1583 BaseOffset, HasBaseReg, Scale); 1584 } 1585 1586 namespace { 1587 1588 /// IVInc - An individual increment in a Chain of IV increments. 1589 /// Relate an IV user to an expression that computes the IV it uses from the IV 1590 /// used by the previous link in the Chain. 1591 /// 1592 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1593 /// original IVOperand. The head of the chain's IVOperand is only valid during 1594 /// chain collection, before LSR replaces IV users. During chain generation, 1595 /// IncExpr can be used to find the new IVOperand that computes the same 1596 /// expression. 1597 struct IVInc { 1598 Instruction *UserInst; 1599 Value* IVOperand; 1600 const SCEV *IncExpr; 1601 1602 IVInc(Instruction *U, Value *O, const SCEV *E): 1603 UserInst(U), IVOperand(O), IncExpr(E) {} 1604 }; 1605 1606 // IVChain - The list of IV increments in program order. 1607 // We typically add the head of a chain without finding subsequent links. 1608 struct IVChain { 1609 SmallVector<IVInc,1> Incs; 1610 const SCEV *ExprBase; 1611 1612 IVChain() : ExprBase(nullptr) {} 1613 1614 IVChain(const IVInc &Head, const SCEV *Base) 1615 : Incs(1, Head), ExprBase(Base) {} 1616 1617 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1618 1619 // begin - return the first increment in the chain. 1620 const_iterator begin() const { 1621 assert(!Incs.empty()); 1622 return std::next(Incs.begin()); 1623 } 1624 const_iterator end() const { 1625 return Incs.end(); 1626 } 1627 1628 // hasIncs - Returns true if this chain contains any increments. 1629 bool hasIncs() const { return Incs.size() >= 2; } 1630 1631 // add - Add an IVInc to the end of this chain. 1632 void add(const IVInc &X) { Incs.push_back(X); } 1633 1634 // tailUserInst - Returns the last UserInst in the chain. 1635 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1636 1637 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1638 // this chain. 1639 bool isProfitableIncrement(const SCEV *OperExpr, 1640 const SCEV *IncExpr, 1641 ScalarEvolution&); 1642 }; 1643 1644 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1645 /// Distinguish between FarUsers that definitely cross IV increments and 1646 /// NearUsers that may be used between IV increments. 1647 struct ChainUsers { 1648 SmallPtrSet<Instruction*, 4> FarUsers; 1649 SmallPtrSet<Instruction*, 4> NearUsers; 1650 }; 1651 1652 /// LSRInstance - This class holds state for the main loop strength reduction 1653 /// logic. 1654 class LSRInstance { 1655 IVUsers &IU; 1656 ScalarEvolution &SE; 1657 DominatorTree &DT; 1658 LoopInfo &LI; 1659 const TargetTransformInfo &TTI; 1660 Loop *const L; 1661 bool Changed; 1662 1663 /// IVIncInsertPos - This is the insert position that the current loop's 1664 /// induction variable increment should be placed. In simple loops, this is 1665 /// the latch block's terminator. But in more complicated cases, this is a 1666 /// position which will dominate all the in-loop post-increment users. 1667 Instruction *IVIncInsertPos; 1668 1669 /// Factors - Interesting factors between use strides. 1670 SmallSetVector<int64_t, 8> Factors; 1671 1672 /// Types - Interesting use types, to facilitate truncation reuse. 1673 SmallSetVector<Type *, 4> Types; 1674 1675 /// Fixups - The list of operands which are to be replaced. 1676 SmallVector<LSRFixup, 16> Fixups; 1677 1678 /// Uses - The list of interesting uses. 1679 SmallVector<LSRUse, 16> Uses; 1680 1681 /// RegUses - Track which uses use which register candidates. 1682 RegUseTracker RegUses; 1683 1684 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1685 // have more than a few IV increment chains in a loop. Missing a Chain falls 1686 // back to normal LSR behavior for those uses. 1687 static const unsigned MaxChains = 8; 1688 1689 /// IVChainVec - IV users can form a chain of IV increments. 1690 SmallVector<IVChain, MaxChains> IVChainVec; 1691 1692 /// IVIncSet - IV users that belong to profitable IVChains. 1693 SmallPtrSet<Use*, MaxChains> IVIncSet; 1694 1695 void OptimizeShadowIV(); 1696 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1697 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1698 void OptimizeLoopTermCond(); 1699 1700 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1701 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1702 void FinalizeChain(IVChain &Chain); 1703 void CollectChains(); 1704 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1705 SmallVectorImpl<WeakVH> &DeadInsts); 1706 1707 void CollectInterestingTypesAndFactors(); 1708 void CollectFixupsAndInitialFormulae(); 1709 1710 LSRFixup &getNewFixup() { 1711 Fixups.push_back(LSRFixup()); 1712 return Fixups.back(); 1713 } 1714 1715 // Support for sharing of LSRUses between LSRFixups. 1716 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1717 UseMapTy UseMap; 1718 1719 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1720 LSRUse::KindType Kind, Type *AccessTy); 1721 1722 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1723 LSRUse::KindType Kind, 1724 Type *AccessTy); 1725 1726 void DeleteUse(LSRUse &LU, size_t LUIdx); 1727 1728 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1729 1730 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1731 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1732 void CountRegisters(const Formula &F, size_t LUIdx); 1733 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1734 1735 void CollectLoopInvariantFixupsAndFormulae(); 1736 1737 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1738 unsigned Depth = 0); 1739 1740 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1741 const Formula &Base, unsigned Depth, 1742 size_t Idx, bool IsScaledReg = false); 1743 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1744 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1745 const Formula &Base, size_t Idx, 1746 bool IsScaledReg = false); 1747 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1748 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1749 const Formula &Base, 1750 const SmallVectorImpl<int64_t> &Worklist, 1751 size_t Idx, bool IsScaledReg = false); 1752 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1753 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1754 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1755 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1756 void GenerateCrossUseConstantOffsets(); 1757 void GenerateAllReuseFormulae(); 1758 1759 void FilterOutUndesirableDedicatedRegisters(); 1760 1761 size_t EstimateSearchSpaceComplexity() const; 1762 void NarrowSearchSpaceByDetectingSupersets(); 1763 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1764 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1765 void NarrowSearchSpaceByPickingWinnerRegs(); 1766 void NarrowSearchSpaceUsingHeuristics(); 1767 1768 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1769 Cost &SolutionCost, 1770 SmallVectorImpl<const Formula *> &Workspace, 1771 const Cost &CurCost, 1772 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1773 DenseSet<const SCEV *> &VisitedRegs) const; 1774 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1775 1776 BasicBlock::iterator 1777 HoistInsertPosition(BasicBlock::iterator IP, 1778 const SmallVectorImpl<Instruction *> &Inputs) const; 1779 BasicBlock::iterator 1780 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1781 const LSRFixup &LF, 1782 const LSRUse &LU, 1783 SCEVExpander &Rewriter) const; 1784 1785 Value *Expand(const LSRFixup &LF, 1786 const Formula &F, 1787 BasicBlock::iterator IP, 1788 SCEVExpander &Rewriter, 1789 SmallVectorImpl<WeakVH> &DeadInsts) const; 1790 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1791 const Formula &F, 1792 SCEVExpander &Rewriter, 1793 SmallVectorImpl<WeakVH> &DeadInsts, 1794 Pass *P) const; 1795 void Rewrite(const LSRFixup &LF, 1796 const Formula &F, 1797 SCEVExpander &Rewriter, 1798 SmallVectorImpl<WeakVH> &DeadInsts, 1799 Pass *P) const; 1800 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1801 Pass *P); 1802 1803 public: 1804 LSRInstance(Loop *L, Pass *P); 1805 1806 bool getChanged() const { return Changed; } 1807 1808 void print_factors_and_types(raw_ostream &OS) const; 1809 void print_fixups(raw_ostream &OS) const; 1810 void print_uses(raw_ostream &OS) const; 1811 void print(raw_ostream &OS) const; 1812 void dump() const; 1813 }; 1814 1815 } 1816 1817 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1818 /// inside the loop then try to eliminate the cast operation. 1819 void LSRInstance::OptimizeShadowIV() { 1820 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1821 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1822 return; 1823 1824 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1825 UI != E; /* empty */) { 1826 IVUsers::const_iterator CandidateUI = UI; 1827 ++UI; 1828 Instruction *ShadowUse = CandidateUI->getUser(); 1829 Type *DestTy = nullptr; 1830 bool IsSigned = false; 1831 1832 /* If shadow use is a int->float cast then insert a second IV 1833 to eliminate this cast. 1834 1835 for (unsigned i = 0; i < n; ++i) 1836 foo((double)i); 1837 1838 is transformed into 1839 1840 double d = 0.0; 1841 for (unsigned i = 0; i < n; ++i, ++d) 1842 foo(d); 1843 */ 1844 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1845 IsSigned = false; 1846 DestTy = UCast->getDestTy(); 1847 } 1848 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1849 IsSigned = true; 1850 DestTy = SCast->getDestTy(); 1851 } 1852 if (!DestTy) continue; 1853 1854 // If target does not support DestTy natively then do not apply 1855 // this transformation. 1856 if (!TTI.isTypeLegal(DestTy)) continue; 1857 1858 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1859 if (!PH) continue; 1860 if (PH->getNumIncomingValues() != 2) continue; 1861 1862 Type *SrcTy = PH->getType(); 1863 int Mantissa = DestTy->getFPMantissaWidth(); 1864 if (Mantissa == -1) continue; 1865 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1866 continue; 1867 1868 unsigned Entry, Latch; 1869 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1870 Entry = 0; 1871 Latch = 1; 1872 } else { 1873 Entry = 1; 1874 Latch = 0; 1875 } 1876 1877 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1878 if (!Init) continue; 1879 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1880 (double)Init->getSExtValue() : 1881 (double)Init->getZExtValue()); 1882 1883 BinaryOperator *Incr = 1884 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1885 if (!Incr) continue; 1886 if (Incr->getOpcode() != Instruction::Add 1887 && Incr->getOpcode() != Instruction::Sub) 1888 continue; 1889 1890 /* Initialize new IV, double d = 0.0 in above example. */ 1891 ConstantInt *C = nullptr; 1892 if (Incr->getOperand(0) == PH) 1893 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1894 else if (Incr->getOperand(1) == PH) 1895 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1896 else 1897 continue; 1898 1899 if (!C) continue; 1900 1901 // Ignore negative constants, as the code below doesn't handle them 1902 // correctly. TODO: Remove this restriction. 1903 if (!C->getValue().isStrictlyPositive()) continue; 1904 1905 /* Add new PHINode. */ 1906 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1907 1908 /* create new increment. '++d' in above example. */ 1909 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1910 BinaryOperator *NewIncr = 1911 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1912 Instruction::FAdd : Instruction::FSub, 1913 NewPH, CFP, "IV.S.next.", Incr); 1914 1915 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1916 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1917 1918 /* Remove cast operation */ 1919 ShadowUse->replaceAllUsesWith(NewPH); 1920 ShadowUse->eraseFromParent(); 1921 Changed = true; 1922 break; 1923 } 1924 } 1925 1926 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1927 /// set the IV user and stride information and return true, otherwise return 1928 /// false. 1929 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1930 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1931 if (UI->getUser() == Cond) { 1932 // NOTE: we could handle setcc instructions with multiple uses here, but 1933 // InstCombine does it as well for simple uses, it's not clear that it 1934 // occurs enough in real life to handle. 1935 CondUse = UI; 1936 return true; 1937 } 1938 return false; 1939 } 1940 1941 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1942 /// a max computation. 1943 /// 1944 /// This is a narrow solution to a specific, but acute, problem. For loops 1945 /// like this: 1946 /// 1947 /// i = 0; 1948 /// do { 1949 /// p[i] = 0.0; 1950 /// } while (++i < n); 1951 /// 1952 /// the trip count isn't just 'n', because 'n' might not be positive. And 1953 /// unfortunately this can come up even for loops where the user didn't use 1954 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1955 /// will commonly be lowered like this: 1956 // 1957 /// if (n > 0) { 1958 /// i = 0; 1959 /// do { 1960 /// p[i] = 0.0; 1961 /// } while (++i < n); 1962 /// } 1963 /// 1964 /// and then it's possible for subsequent optimization to obscure the if 1965 /// test in such a way that indvars can't find it. 1966 /// 1967 /// When indvars can't find the if test in loops like this, it creates a 1968 /// max expression, which allows it to give the loop a canonical 1969 /// induction variable: 1970 /// 1971 /// i = 0; 1972 /// max = n < 1 ? 1 : n; 1973 /// do { 1974 /// p[i] = 0.0; 1975 /// } while (++i != max); 1976 /// 1977 /// Canonical induction variables are necessary because the loop passes 1978 /// are designed around them. The most obvious example of this is the 1979 /// LoopInfo analysis, which doesn't remember trip count values. It 1980 /// expects to be able to rediscover the trip count each time it is 1981 /// needed, and it does this using a simple analysis that only succeeds if 1982 /// the loop has a canonical induction variable. 1983 /// 1984 /// However, when it comes time to generate code, the maximum operation 1985 /// can be quite costly, especially if it's inside of an outer loop. 1986 /// 1987 /// This function solves this problem by detecting this type of loop and 1988 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1989 /// the instructions for the maximum computation. 1990 /// 1991 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1992 // Check that the loop matches the pattern we're looking for. 1993 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1994 Cond->getPredicate() != CmpInst::ICMP_NE) 1995 return Cond; 1996 1997 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1998 if (!Sel || !Sel->hasOneUse()) return Cond; 1999 2000 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2001 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2002 return Cond; 2003 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2004 2005 // Add one to the backedge-taken count to get the trip count. 2006 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2007 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2008 2009 // Check for a max calculation that matches the pattern. There's no check 2010 // for ICMP_ULE here because the comparison would be with zero, which 2011 // isn't interesting. 2012 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2013 const SCEVNAryExpr *Max = nullptr; 2014 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2015 Pred = ICmpInst::ICMP_SLE; 2016 Max = S; 2017 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2018 Pred = ICmpInst::ICMP_SLT; 2019 Max = S; 2020 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2021 Pred = ICmpInst::ICMP_ULT; 2022 Max = U; 2023 } else { 2024 // No match; bail. 2025 return Cond; 2026 } 2027 2028 // To handle a max with more than two operands, this optimization would 2029 // require additional checking and setup. 2030 if (Max->getNumOperands() != 2) 2031 return Cond; 2032 2033 const SCEV *MaxLHS = Max->getOperand(0); 2034 const SCEV *MaxRHS = Max->getOperand(1); 2035 2036 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2037 // for a comparison with 1. For <= and >=, a comparison with zero. 2038 if (!MaxLHS || 2039 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2040 return Cond; 2041 2042 // Check the relevant induction variable for conformance to 2043 // the pattern. 2044 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2045 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2046 if (!AR || !AR->isAffine() || 2047 AR->getStart() != One || 2048 AR->getStepRecurrence(SE) != One) 2049 return Cond; 2050 2051 assert(AR->getLoop() == L && 2052 "Loop condition operand is an addrec in a different loop!"); 2053 2054 // Check the right operand of the select, and remember it, as it will 2055 // be used in the new comparison instruction. 2056 Value *NewRHS = nullptr; 2057 if (ICmpInst::isTrueWhenEqual(Pred)) { 2058 // Look for n+1, and grab n. 2059 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2060 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2061 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2062 NewRHS = BO->getOperand(0); 2063 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2064 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2065 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2066 NewRHS = BO->getOperand(0); 2067 if (!NewRHS) 2068 return Cond; 2069 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2070 NewRHS = Sel->getOperand(1); 2071 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2072 NewRHS = Sel->getOperand(2); 2073 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2074 NewRHS = SU->getValue(); 2075 else 2076 // Max doesn't match expected pattern. 2077 return Cond; 2078 2079 // Determine the new comparison opcode. It may be signed or unsigned, 2080 // and the original comparison may be either equality or inequality. 2081 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2082 Pred = CmpInst::getInversePredicate(Pred); 2083 2084 // Ok, everything looks ok to change the condition into an SLT or SGE and 2085 // delete the max calculation. 2086 ICmpInst *NewCond = 2087 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2088 2089 // Delete the max calculation instructions. 2090 Cond->replaceAllUsesWith(NewCond); 2091 CondUse->setUser(NewCond); 2092 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2093 Cond->eraseFromParent(); 2094 Sel->eraseFromParent(); 2095 if (Cmp->use_empty()) 2096 Cmp->eraseFromParent(); 2097 return NewCond; 2098 } 2099 2100 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2101 /// postinc iv when possible. 2102 void 2103 LSRInstance::OptimizeLoopTermCond() { 2104 SmallPtrSet<Instruction *, 4> PostIncs; 2105 2106 BasicBlock *LatchBlock = L->getLoopLatch(); 2107 SmallVector<BasicBlock*, 8> ExitingBlocks; 2108 L->getExitingBlocks(ExitingBlocks); 2109 2110 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2111 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2112 2113 // Get the terminating condition for the loop if possible. If we 2114 // can, we want to change it to use a post-incremented version of its 2115 // induction variable, to allow coalescing the live ranges for the IV into 2116 // one register value. 2117 2118 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2119 if (!TermBr) 2120 continue; 2121 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2122 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2123 continue; 2124 2125 // Search IVUsesByStride to find Cond's IVUse if there is one. 2126 IVStrideUse *CondUse = nullptr; 2127 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2128 if (!FindIVUserForCond(Cond, CondUse)) 2129 continue; 2130 2131 // If the trip count is computed in terms of a max (due to ScalarEvolution 2132 // being unable to find a sufficient guard, for example), change the loop 2133 // comparison to use SLT or ULT instead of NE. 2134 // One consequence of doing this now is that it disrupts the count-down 2135 // optimization. That's not always a bad thing though, because in such 2136 // cases it may still be worthwhile to avoid a max. 2137 Cond = OptimizeMax(Cond, CondUse); 2138 2139 // If this exiting block dominates the latch block, it may also use 2140 // the post-inc value if it won't be shared with other uses. 2141 // Check for dominance. 2142 if (!DT.dominates(ExitingBlock, LatchBlock)) 2143 continue; 2144 2145 // Conservatively avoid trying to use the post-inc value in non-latch 2146 // exits if there may be pre-inc users in intervening blocks. 2147 if (LatchBlock != ExitingBlock) 2148 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2149 // Test if the use is reachable from the exiting block. This dominator 2150 // query is a conservative approximation of reachability. 2151 if (&*UI != CondUse && 2152 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2153 // Conservatively assume there may be reuse if the quotient of their 2154 // strides could be a legal scale. 2155 const SCEV *A = IU.getStride(*CondUse, L); 2156 const SCEV *B = IU.getStride(*UI, L); 2157 if (!A || !B) continue; 2158 if (SE.getTypeSizeInBits(A->getType()) != 2159 SE.getTypeSizeInBits(B->getType())) { 2160 if (SE.getTypeSizeInBits(A->getType()) > 2161 SE.getTypeSizeInBits(B->getType())) 2162 B = SE.getSignExtendExpr(B, A->getType()); 2163 else 2164 A = SE.getSignExtendExpr(A, B->getType()); 2165 } 2166 if (const SCEVConstant *D = 2167 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2168 const ConstantInt *C = D->getValue(); 2169 // Stride of one or negative one can have reuse with non-addresses. 2170 if (C->isOne() || C->isAllOnesValue()) 2171 goto decline_post_inc; 2172 // Avoid weird situations. 2173 if (C->getValue().getMinSignedBits() >= 64 || 2174 C->getValue().isMinSignedValue()) 2175 goto decline_post_inc; 2176 // Check for possible scaled-address reuse. 2177 Type *AccessTy = getAccessType(UI->getUser()); 2178 int64_t Scale = C->getSExtValue(); 2179 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2180 /*BaseOffset=*/ 0, 2181 /*HasBaseReg=*/ false, Scale)) 2182 goto decline_post_inc; 2183 Scale = -Scale; 2184 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2185 /*BaseOffset=*/ 0, 2186 /*HasBaseReg=*/ false, Scale)) 2187 goto decline_post_inc; 2188 } 2189 } 2190 2191 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2192 << *Cond << '\n'); 2193 2194 // It's possible for the setcc instruction to be anywhere in the loop, and 2195 // possible for it to have multiple users. If it is not immediately before 2196 // the exiting block branch, move it. 2197 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2198 if (Cond->hasOneUse()) { 2199 Cond->moveBefore(TermBr); 2200 } else { 2201 // Clone the terminating condition and insert into the loopend. 2202 ICmpInst *OldCond = Cond; 2203 Cond = cast<ICmpInst>(Cond->clone()); 2204 Cond->setName(L->getHeader()->getName() + ".termcond"); 2205 ExitingBlock->getInstList().insert(TermBr, Cond); 2206 2207 // Clone the IVUse, as the old use still exists! 2208 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2209 TermBr->replaceUsesOfWith(OldCond, Cond); 2210 } 2211 } 2212 2213 // If we get to here, we know that we can transform the setcc instruction to 2214 // use the post-incremented version of the IV, allowing us to coalesce the 2215 // live ranges for the IV correctly. 2216 CondUse->transformToPostInc(L); 2217 Changed = true; 2218 2219 PostIncs.insert(Cond); 2220 decline_post_inc:; 2221 } 2222 2223 // Determine an insertion point for the loop induction variable increment. It 2224 // must dominate all the post-inc comparisons we just set up, and it must 2225 // dominate the loop latch edge. 2226 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2227 for (Instruction *Inst : PostIncs) { 2228 BasicBlock *BB = 2229 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2230 Inst->getParent()); 2231 if (BB == Inst->getParent()) 2232 IVIncInsertPos = Inst; 2233 else if (BB != IVIncInsertPos->getParent()) 2234 IVIncInsertPos = BB->getTerminator(); 2235 } 2236 } 2237 2238 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2239 /// at the given offset and other details. If so, update the use and 2240 /// return true. 2241 bool 2242 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2243 LSRUse::KindType Kind, Type *AccessTy) { 2244 int64_t NewMinOffset = LU.MinOffset; 2245 int64_t NewMaxOffset = LU.MaxOffset; 2246 Type *NewAccessTy = AccessTy; 2247 2248 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2249 // something conservative, however this can pessimize in the case that one of 2250 // the uses will have all its uses outside the loop, for example. 2251 if (LU.Kind != Kind) 2252 return false; 2253 2254 // Check for a mismatched access type, and fall back conservatively as needed. 2255 // TODO: Be less conservative when the type is similar and can use the same 2256 // addressing modes. 2257 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2258 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2259 2260 // Conservatively assume HasBaseReg is true for now. 2261 if (NewOffset < LU.MinOffset) { 2262 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2263 LU.MaxOffset - NewOffset, HasBaseReg)) 2264 return false; 2265 NewMinOffset = NewOffset; 2266 } else if (NewOffset > LU.MaxOffset) { 2267 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2268 NewOffset - LU.MinOffset, HasBaseReg)) 2269 return false; 2270 NewMaxOffset = NewOffset; 2271 } 2272 2273 // Update the use. 2274 LU.MinOffset = NewMinOffset; 2275 LU.MaxOffset = NewMaxOffset; 2276 LU.AccessTy = NewAccessTy; 2277 if (NewOffset != LU.Offsets.back()) 2278 LU.Offsets.push_back(NewOffset); 2279 return true; 2280 } 2281 2282 /// getUse - Return an LSRUse index and an offset value for a fixup which 2283 /// needs the given expression, with the given kind and optional access type. 2284 /// Either reuse an existing use or create a new one, as needed. 2285 std::pair<size_t, int64_t> 2286 LSRInstance::getUse(const SCEV *&Expr, 2287 LSRUse::KindType Kind, Type *AccessTy) { 2288 const SCEV *Copy = Expr; 2289 int64_t Offset = ExtractImmediate(Expr, SE); 2290 2291 // Basic uses can't accept any offset, for example. 2292 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2293 Offset, /*HasBaseReg=*/ true)) { 2294 Expr = Copy; 2295 Offset = 0; 2296 } 2297 2298 std::pair<UseMapTy::iterator, bool> P = 2299 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2300 if (!P.second) { 2301 // A use already existed with this base. 2302 size_t LUIdx = P.first->second; 2303 LSRUse &LU = Uses[LUIdx]; 2304 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2305 // Reuse this use. 2306 return std::make_pair(LUIdx, Offset); 2307 } 2308 2309 // Create a new use. 2310 size_t LUIdx = Uses.size(); 2311 P.first->second = LUIdx; 2312 Uses.push_back(LSRUse(Kind, AccessTy)); 2313 LSRUse &LU = Uses[LUIdx]; 2314 2315 // We don't need to track redundant offsets, but we don't need to go out 2316 // of our way here to avoid them. 2317 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2318 LU.Offsets.push_back(Offset); 2319 2320 LU.MinOffset = Offset; 2321 LU.MaxOffset = Offset; 2322 return std::make_pair(LUIdx, Offset); 2323 } 2324 2325 /// DeleteUse - Delete the given use from the Uses list. 2326 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2327 if (&LU != &Uses.back()) 2328 std::swap(LU, Uses.back()); 2329 Uses.pop_back(); 2330 2331 // Update RegUses. 2332 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2333 } 2334 2335 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2336 /// a formula that has the same registers as the given formula. 2337 LSRUse * 2338 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2339 const LSRUse &OrigLU) { 2340 // Search all uses for the formula. This could be more clever. 2341 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2342 LSRUse &LU = Uses[LUIdx]; 2343 // Check whether this use is close enough to OrigLU, to see whether it's 2344 // worthwhile looking through its formulae. 2345 // Ignore ICmpZero uses because they may contain formulae generated by 2346 // GenerateICmpZeroScales, in which case adding fixup offsets may 2347 // be invalid. 2348 if (&LU != &OrigLU && 2349 LU.Kind != LSRUse::ICmpZero && 2350 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2351 LU.WidestFixupType == OrigLU.WidestFixupType && 2352 LU.HasFormulaWithSameRegs(OrigF)) { 2353 // Scan through this use's formulae. 2354 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2355 E = LU.Formulae.end(); I != E; ++I) { 2356 const Formula &F = *I; 2357 // Check to see if this formula has the same registers and symbols 2358 // as OrigF. 2359 if (F.BaseRegs == OrigF.BaseRegs && 2360 F.ScaledReg == OrigF.ScaledReg && 2361 F.BaseGV == OrigF.BaseGV && 2362 F.Scale == OrigF.Scale && 2363 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2364 if (F.BaseOffset == 0) 2365 return &LU; 2366 // This is the formula where all the registers and symbols matched; 2367 // there aren't going to be any others. Since we declined it, we 2368 // can skip the rest of the formulae and proceed to the next LSRUse. 2369 break; 2370 } 2371 } 2372 } 2373 } 2374 2375 // Nothing looked good. 2376 return nullptr; 2377 } 2378 2379 void LSRInstance::CollectInterestingTypesAndFactors() { 2380 SmallSetVector<const SCEV *, 4> Strides; 2381 2382 // Collect interesting types and strides. 2383 SmallVector<const SCEV *, 4> Worklist; 2384 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2385 const SCEV *Expr = IU.getExpr(*UI); 2386 2387 // Collect interesting types. 2388 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2389 2390 // Add strides for mentioned loops. 2391 Worklist.push_back(Expr); 2392 do { 2393 const SCEV *S = Worklist.pop_back_val(); 2394 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2395 if (AR->getLoop() == L) 2396 Strides.insert(AR->getStepRecurrence(SE)); 2397 Worklist.push_back(AR->getStart()); 2398 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2399 Worklist.append(Add->op_begin(), Add->op_end()); 2400 } 2401 } while (!Worklist.empty()); 2402 } 2403 2404 // Compute interesting factors from the set of interesting strides. 2405 for (SmallSetVector<const SCEV *, 4>::const_iterator 2406 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2407 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2408 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2409 const SCEV *OldStride = *I; 2410 const SCEV *NewStride = *NewStrideIter; 2411 2412 if (SE.getTypeSizeInBits(OldStride->getType()) != 2413 SE.getTypeSizeInBits(NewStride->getType())) { 2414 if (SE.getTypeSizeInBits(OldStride->getType()) > 2415 SE.getTypeSizeInBits(NewStride->getType())) 2416 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2417 else 2418 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2419 } 2420 if (const SCEVConstant *Factor = 2421 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2422 SE, true))) { 2423 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2424 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2425 } else if (const SCEVConstant *Factor = 2426 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2427 NewStride, 2428 SE, true))) { 2429 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2430 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2431 } 2432 } 2433 2434 // If all uses use the same type, don't bother looking for truncation-based 2435 // reuse. 2436 if (Types.size() == 1) 2437 Types.clear(); 2438 2439 DEBUG(print_factors_and_types(dbgs())); 2440 } 2441 2442 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2443 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2444 /// Instructions to IVStrideUses, we could partially skip this. 2445 static User::op_iterator 2446 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2447 Loop *L, ScalarEvolution &SE) { 2448 for(; OI != OE; ++OI) { 2449 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2450 if (!SE.isSCEVable(Oper->getType())) 2451 continue; 2452 2453 if (const SCEVAddRecExpr *AR = 2454 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2455 if (AR->getLoop() == L) 2456 break; 2457 } 2458 } 2459 } 2460 return OI; 2461 } 2462 2463 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2464 /// operands, so wrap it in a convenient helper. 2465 static Value *getWideOperand(Value *Oper) { 2466 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2467 return Trunc->getOperand(0); 2468 return Oper; 2469 } 2470 2471 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2472 /// types. 2473 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2474 Type *LType = LVal->getType(); 2475 Type *RType = RVal->getType(); 2476 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2477 } 2478 2479 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2480 /// NULL for any constant. Returning the expression itself is 2481 /// conservative. Returning a deeper subexpression is more precise and valid as 2482 /// long as it isn't less complex than another subexpression. For expressions 2483 /// involving multiple unscaled values, we need to return the pointer-type 2484 /// SCEVUnknown. This avoids forming chains across objects, such as: 2485 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2486 /// 2487 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2488 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2489 static const SCEV *getExprBase(const SCEV *S) { 2490 switch (S->getSCEVType()) { 2491 default: // uncluding scUnknown. 2492 return S; 2493 case scConstant: 2494 return nullptr; 2495 case scTruncate: 2496 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2497 case scZeroExtend: 2498 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2499 case scSignExtend: 2500 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2501 case scAddExpr: { 2502 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2503 // there's nothing more complex. 2504 // FIXME: not sure if we want to recognize negation. 2505 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2506 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2507 E(Add->op_begin()); I != E; ++I) { 2508 const SCEV *SubExpr = *I; 2509 if (SubExpr->getSCEVType() == scAddExpr) 2510 return getExprBase(SubExpr); 2511 2512 if (SubExpr->getSCEVType() != scMulExpr) 2513 return SubExpr; 2514 } 2515 return S; // all operands are scaled, be conservative. 2516 } 2517 case scAddRecExpr: 2518 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2519 } 2520 } 2521 2522 /// Return true if the chain increment is profitable to expand into a loop 2523 /// invariant value, which may require its own register. A profitable chain 2524 /// increment will be an offset relative to the same base. We allow such offsets 2525 /// to potentially be used as chain increment as long as it's not obviously 2526 /// expensive to expand using real instructions. 2527 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2528 const SCEV *IncExpr, 2529 ScalarEvolution &SE) { 2530 // Aggressively form chains when -stress-ivchain. 2531 if (StressIVChain) 2532 return true; 2533 2534 // Do not replace a constant offset from IV head with a nonconstant IV 2535 // increment. 2536 if (!isa<SCEVConstant>(IncExpr)) { 2537 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2538 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2539 return 0; 2540 } 2541 2542 SmallPtrSet<const SCEV*, 8> Processed; 2543 return !isHighCostExpansion(IncExpr, Processed, SE); 2544 } 2545 2546 /// Return true if the number of registers needed for the chain is estimated to 2547 /// be less than the number required for the individual IV users. First prohibit 2548 /// any IV users that keep the IV live across increments (the Users set should 2549 /// be empty). Next count the number and type of increments in the chain. 2550 /// 2551 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2552 /// effectively use postinc addressing modes. Only consider it profitable it the 2553 /// increments can be computed in fewer registers when chained. 2554 /// 2555 /// TODO: Consider IVInc free if it's already used in another chains. 2556 static bool 2557 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2558 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2559 if (StressIVChain) 2560 return true; 2561 2562 if (!Chain.hasIncs()) 2563 return false; 2564 2565 if (!Users.empty()) { 2566 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2567 for (Instruction *Inst : Users) { 2568 dbgs() << " " << *Inst << "\n"; 2569 }); 2570 return false; 2571 } 2572 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2573 2574 // The chain itself may require a register, so intialize cost to 1. 2575 int cost = 1; 2576 2577 // A complete chain likely eliminates the need for keeping the original IV in 2578 // a register. LSR does not currently know how to form a complete chain unless 2579 // the header phi already exists. 2580 if (isa<PHINode>(Chain.tailUserInst()) 2581 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2582 --cost; 2583 } 2584 const SCEV *LastIncExpr = nullptr; 2585 unsigned NumConstIncrements = 0; 2586 unsigned NumVarIncrements = 0; 2587 unsigned NumReusedIncrements = 0; 2588 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2589 I != E; ++I) { 2590 2591 if (I->IncExpr->isZero()) 2592 continue; 2593 2594 // Incrementing by zero or some constant is neutral. We assume constants can 2595 // be folded into an addressing mode or an add's immediate operand. 2596 if (isa<SCEVConstant>(I->IncExpr)) { 2597 ++NumConstIncrements; 2598 continue; 2599 } 2600 2601 if (I->IncExpr == LastIncExpr) 2602 ++NumReusedIncrements; 2603 else 2604 ++NumVarIncrements; 2605 2606 LastIncExpr = I->IncExpr; 2607 } 2608 // An IV chain with a single increment is handled by LSR's postinc 2609 // uses. However, a chain with multiple increments requires keeping the IV's 2610 // value live longer than it needs to be if chained. 2611 if (NumConstIncrements > 1) 2612 --cost; 2613 2614 // Materializing increment expressions in the preheader that didn't exist in 2615 // the original code may cost a register. For example, sign-extended array 2616 // indices can produce ridiculous increments like this: 2617 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2618 cost += NumVarIncrements; 2619 2620 // Reusing variable increments likely saves a register to hold the multiple of 2621 // the stride. 2622 cost -= NumReusedIncrements; 2623 2624 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2625 << "\n"); 2626 2627 return cost < 0; 2628 } 2629 2630 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2631 /// of a new chain. 2632 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2633 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2634 // When IVs are used as types of varying widths, they are generally converted 2635 // to a wider type with some uses remaining narrow under a (free) trunc. 2636 Value *const NextIV = getWideOperand(IVOper); 2637 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2638 const SCEV *const OperExprBase = getExprBase(OperExpr); 2639 2640 // Visit all existing chains. Check if its IVOper can be computed as a 2641 // profitable loop invariant increment from the last link in the Chain. 2642 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2643 const SCEV *LastIncExpr = nullptr; 2644 for (; ChainIdx < NChains; ++ChainIdx) { 2645 IVChain &Chain = IVChainVec[ChainIdx]; 2646 2647 // Prune the solution space aggressively by checking that both IV operands 2648 // are expressions that operate on the same unscaled SCEVUnknown. This 2649 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2650 // first avoids creating extra SCEV expressions. 2651 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2652 continue; 2653 2654 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2655 if (!isCompatibleIVType(PrevIV, NextIV)) 2656 continue; 2657 2658 // A phi node terminates a chain. 2659 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2660 continue; 2661 2662 // The increment must be loop-invariant so it can be kept in a register. 2663 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2664 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2665 if (!SE.isLoopInvariant(IncExpr, L)) 2666 continue; 2667 2668 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2669 LastIncExpr = IncExpr; 2670 break; 2671 } 2672 } 2673 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2674 // bother for phi nodes, because they must be last in the chain. 2675 if (ChainIdx == NChains) { 2676 if (isa<PHINode>(UserInst)) 2677 return; 2678 if (NChains >= MaxChains && !StressIVChain) { 2679 DEBUG(dbgs() << "IV Chain Limit\n"); 2680 return; 2681 } 2682 LastIncExpr = OperExpr; 2683 // IVUsers may have skipped over sign/zero extensions. We don't currently 2684 // attempt to form chains involving extensions unless they can be hoisted 2685 // into this loop's AddRec. 2686 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2687 return; 2688 ++NChains; 2689 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2690 OperExprBase)); 2691 ChainUsersVec.resize(NChains); 2692 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2693 << ") IV=" << *LastIncExpr << "\n"); 2694 } else { 2695 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2696 << ") IV+" << *LastIncExpr << "\n"); 2697 // Add this IV user to the end of the chain. 2698 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2699 } 2700 IVChain &Chain = IVChainVec[ChainIdx]; 2701 2702 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2703 // This chain's NearUsers become FarUsers. 2704 if (!LastIncExpr->isZero()) { 2705 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2706 NearUsers.end()); 2707 NearUsers.clear(); 2708 } 2709 2710 // All other uses of IVOperand become near uses of the chain. 2711 // We currently ignore intermediate values within SCEV expressions, assuming 2712 // they will eventually be used be the current chain, or can be computed 2713 // from one of the chain increments. To be more precise we could 2714 // transitively follow its user and only add leaf IV users to the set. 2715 for (User *U : IVOper->users()) { 2716 Instruction *OtherUse = dyn_cast<Instruction>(U); 2717 if (!OtherUse) 2718 continue; 2719 // Uses in the chain will no longer be uses if the chain is formed. 2720 // Include the head of the chain in this iteration (not Chain.begin()). 2721 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2722 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2723 for( ; IncIter != IncEnd; ++IncIter) { 2724 if (IncIter->UserInst == OtherUse) 2725 break; 2726 } 2727 if (IncIter != IncEnd) 2728 continue; 2729 2730 if (SE.isSCEVable(OtherUse->getType()) 2731 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2732 && IU.isIVUserOrOperand(OtherUse)) { 2733 continue; 2734 } 2735 NearUsers.insert(OtherUse); 2736 } 2737 2738 // Since this user is part of the chain, it's no longer considered a use 2739 // of the chain. 2740 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2741 } 2742 2743 /// CollectChains - Populate the vector of Chains. 2744 /// 2745 /// This decreases ILP at the architecture level. Targets with ample registers, 2746 /// multiple memory ports, and no register renaming probably don't want 2747 /// this. However, such targets should probably disable LSR altogether. 2748 /// 2749 /// The job of LSR is to make a reasonable choice of induction variables across 2750 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2751 /// ILP *within the loop* if the target wants it. 2752 /// 2753 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2754 /// will not reorder memory operations, it will recognize this as a chain, but 2755 /// will generate redundant IV increments. Ideally this would be corrected later 2756 /// by a smart scheduler: 2757 /// = A[i] 2758 /// = A[i+x] 2759 /// A[i] = 2760 /// A[i+x] = 2761 /// 2762 /// TODO: Walk the entire domtree within this loop, not just the path to the 2763 /// loop latch. This will discover chains on side paths, but requires 2764 /// maintaining multiple copies of the Chains state. 2765 void LSRInstance::CollectChains() { 2766 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2767 SmallVector<ChainUsers, 8> ChainUsersVec; 2768 2769 SmallVector<BasicBlock *,8> LatchPath; 2770 BasicBlock *LoopHeader = L->getHeader(); 2771 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2772 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2773 LatchPath.push_back(Rung->getBlock()); 2774 } 2775 LatchPath.push_back(LoopHeader); 2776 2777 // Walk the instruction stream from the loop header to the loop latch. 2778 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2779 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2780 BBIter != BBEnd; ++BBIter) { 2781 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2782 I != E; ++I) { 2783 // Skip instructions that weren't seen by IVUsers analysis. 2784 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2785 continue; 2786 2787 // Ignore users that are part of a SCEV expression. This way we only 2788 // consider leaf IV Users. This effectively rediscovers a portion of 2789 // IVUsers analysis but in program order this time. 2790 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2791 continue; 2792 2793 // Remove this instruction from any NearUsers set it may be in. 2794 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2795 ChainIdx < NChains; ++ChainIdx) { 2796 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2797 } 2798 // Search for operands that can be chained. 2799 SmallPtrSet<Instruction*, 4> UniqueOperands; 2800 User::op_iterator IVOpEnd = I->op_end(); 2801 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2802 while (IVOpIter != IVOpEnd) { 2803 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2804 if (UniqueOperands.insert(IVOpInst).second) 2805 ChainInstruction(I, IVOpInst, ChainUsersVec); 2806 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2807 } 2808 } // Continue walking down the instructions. 2809 } // Continue walking down the domtree. 2810 // Visit phi backedges to determine if the chain can generate the IV postinc. 2811 for (BasicBlock::iterator I = L->getHeader()->begin(); 2812 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2813 if (!SE.isSCEVable(PN->getType())) 2814 continue; 2815 2816 Instruction *IncV = 2817 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2818 if (IncV) 2819 ChainInstruction(PN, IncV, ChainUsersVec); 2820 } 2821 // Remove any unprofitable chains. 2822 unsigned ChainIdx = 0; 2823 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2824 UsersIdx < NChains; ++UsersIdx) { 2825 if (!isProfitableChain(IVChainVec[UsersIdx], 2826 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2827 continue; 2828 // Preserve the chain at UsesIdx. 2829 if (ChainIdx != UsersIdx) 2830 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2831 FinalizeChain(IVChainVec[ChainIdx]); 2832 ++ChainIdx; 2833 } 2834 IVChainVec.resize(ChainIdx); 2835 } 2836 2837 void LSRInstance::FinalizeChain(IVChain &Chain) { 2838 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2839 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2840 2841 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2842 I != E; ++I) { 2843 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2844 User::op_iterator UseI = 2845 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2846 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2847 IVIncSet.insert(UseI); 2848 } 2849 } 2850 2851 /// Return true if the IVInc can be folded into an addressing mode. 2852 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2853 Value *Operand, const TargetTransformInfo &TTI) { 2854 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2855 if (!IncConst || !isAddressUse(UserInst, Operand)) 2856 return false; 2857 2858 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2859 return false; 2860 2861 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2862 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2863 getAccessType(UserInst), /*BaseGV=*/ nullptr, 2864 IncOffset, /*HaseBaseReg=*/ false)) 2865 return false; 2866 2867 return true; 2868 } 2869 2870 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2871 /// materialize the IV user's operand from the previous IV user's operand. 2872 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2873 SmallVectorImpl<WeakVH> &DeadInsts) { 2874 // Find the new IVOperand for the head of the chain. It may have been replaced 2875 // by LSR. 2876 const IVInc &Head = Chain.Incs[0]; 2877 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2878 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2879 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2880 IVOpEnd, L, SE); 2881 Value *IVSrc = nullptr; 2882 while (IVOpIter != IVOpEnd) { 2883 IVSrc = getWideOperand(*IVOpIter); 2884 2885 // If this operand computes the expression that the chain needs, we may use 2886 // it. (Check this after setting IVSrc which is used below.) 2887 // 2888 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2889 // narrow for the chain, so we can no longer use it. We do allow using a 2890 // wider phi, assuming the LSR checked for free truncation. In that case we 2891 // should already have a truncate on this operand such that 2892 // getSCEV(IVSrc) == IncExpr. 2893 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2894 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2895 break; 2896 } 2897 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2898 } 2899 if (IVOpIter == IVOpEnd) { 2900 // Gracefully give up on this chain. 2901 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2902 return; 2903 } 2904 2905 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2906 Type *IVTy = IVSrc->getType(); 2907 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2908 const SCEV *LeftOverExpr = nullptr; 2909 for (IVChain::const_iterator IncI = Chain.begin(), 2910 IncE = Chain.end(); IncI != IncE; ++IncI) { 2911 2912 Instruction *InsertPt = IncI->UserInst; 2913 if (isa<PHINode>(InsertPt)) 2914 InsertPt = L->getLoopLatch()->getTerminator(); 2915 2916 // IVOper will replace the current IV User's operand. IVSrc is the IV 2917 // value currently held in a register. 2918 Value *IVOper = IVSrc; 2919 if (!IncI->IncExpr->isZero()) { 2920 // IncExpr was the result of subtraction of two narrow values, so must 2921 // be signed. 2922 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2923 LeftOverExpr = LeftOverExpr ? 2924 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2925 } 2926 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2927 // Expand the IV increment. 2928 Rewriter.clearPostInc(); 2929 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2930 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2931 SE.getUnknown(IncV)); 2932 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2933 2934 // If an IV increment can't be folded, use it as the next IV value. 2935 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2936 TTI)) { 2937 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2938 IVSrc = IVOper; 2939 LeftOverExpr = nullptr; 2940 } 2941 } 2942 Type *OperTy = IncI->IVOperand->getType(); 2943 if (IVTy != OperTy) { 2944 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2945 "cannot extend a chained IV"); 2946 IRBuilder<> Builder(InsertPt); 2947 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2948 } 2949 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2950 DeadInsts.push_back(IncI->IVOperand); 2951 } 2952 // If LSR created a new, wider phi, we may also replace its postinc. We only 2953 // do this if we also found a wide value for the head of the chain. 2954 if (isa<PHINode>(Chain.tailUserInst())) { 2955 for (BasicBlock::iterator I = L->getHeader()->begin(); 2956 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2957 if (!isCompatibleIVType(Phi, IVSrc)) 2958 continue; 2959 Instruction *PostIncV = dyn_cast<Instruction>( 2960 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2961 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2962 continue; 2963 Value *IVOper = IVSrc; 2964 Type *PostIncTy = PostIncV->getType(); 2965 if (IVTy != PostIncTy) { 2966 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2967 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2968 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2969 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2970 } 2971 Phi->replaceUsesOfWith(PostIncV, IVOper); 2972 DeadInsts.push_back(PostIncV); 2973 } 2974 } 2975 } 2976 2977 void LSRInstance::CollectFixupsAndInitialFormulae() { 2978 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2979 Instruction *UserInst = UI->getUser(); 2980 // Skip IV users that are part of profitable IV Chains. 2981 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2982 UI->getOperandValToReplace()); 2983 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2984 if (IVIncSet.count(UseI)) 2985 continue; 2986 2987 // Record the uses. 2988 LSRFixup &LF = getNewFixup(); 2989 LF.UserInst = UserInst; 2990 LF.OperandValToReplace = UI->getOperandValToReplace(); 2991 LF.PostIncLoops = UI->getPostIncLoops(); 2992 2993 LSRUse::KindType Kind = LSRUse::Basic; 2994 Type *AccessTy = nullptr; 2995 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2996 Kind = LSRUse::Address; 2997 AccessTy = getAccessType(LF.UserInst); 2998 } 2999 3000 const SCEV *S = IU.getExpr(*UI); 3001 3002 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3003 // (N - i == 0), and this allows (N - i) to be the expression that we work 3004 // with rather than just N or i, so we can consider the register 3005 // requirements for both N and i at the same time. Limiting this code to 3006 // equality icmps is not a problem because all interesting loops use 3007 // equality icmps, thanks to IndVarSimplify. 3008 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 3009 if (CI->isEquality()) { 3010 // Swap the operands if needed to put the OperandValToReplace on the 3011 // left, for consistency. 3012 Value *NV = CI->getOperand(1); 3013 if (NV == LF.OperandValToReplace) { 3014 CI->setOperand(1, CI->getOperand(0)); 3015 CI->setOperand(0, NV); 3016 NV = CI->getOperand(1); 3017 Changed = true; 3018 } 3019 3020 // x == y --> x - y == 0 3021 const SCEV *N = SE.getSCEV(NV); 3022 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3023 // S is normalized, so normalize N before folding it into S 3024 // to keep the result normalized. 3025 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3026 LF.PostIncLoops, SE, DT); 3027 Kind = LSRUse::ICmpZero; 3028 S = SE.getMinusSCEV(N, S); 3029 } 3030 3031 // -1 and the negations of all interesting strides (except the negation 3032 // of -1) are now also interesting. 3033 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3034 if (Factors[i] != -1) 3035 Factors.insert(-(uint64_t)Factors[i]); 3036 Factors.insert(-1); 3037 } 3038 3039 // Set up the initial formula for this use. 3040 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3041 LF.LUIdx = P.first; 3042 LF.Offset = P.second; 3043 LSRUse &LU = Uses[LF.LUIdx]; 3044 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3045 if (!LU.WidestFixupType || 3046 SE.getTypeSizeInBits(LU.WidestFixupType) < 3047 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3048 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3049 3050 // If this is the first use of this LSRUse, give it a formula. 3051 if (LU.Formulae.empty()) { 3052 InsertInitialFormula(S, LU, LF.LUIdx); 3053 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3054 } 3055 } 3056 3057 DEBUG(print_fixups(dbgs())); 3058 } 3059 3060 /// InsertInitialFormula - Insert a formula for the given expression into 3061 /// the given use, separating out loop-variant portions from loop-invariant 3062 /// and loop-computable portions. 3063 void 3064 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3065 // Mark uses whose expressions cannot be expanded. 3066 if (!isSafeToExpand(S, SE)) 3067 LU.RigidFormula = true; 3068 3069 Formula F; 3070 F.InitialMatch(S, L, SE); 3071 bool Inserted = InsertFormula(LU, LUIdx, F); 3072 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3073 } 3074 3075 /// InsertSupplementalFormula - Insert a simple single-register formula for 3076 /// the given expression into the given use. 3077 void 3078 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3079 LSRUse &LU, size_t LUIdx) { 3080 Formula F; 3081 F.BaseRegs.push_back(S); 3082 F.HasBaseReg = true; 3083 bool Inserted = InsertFormula(LU, LUIdx, F); 3084 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3085 } 3086 3087 /// CountRegisters - Note which registers are used by the given formula, 3088 /// updating RegUses. 3089 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3090 if (F.ScaledReg) 3091 RegUses.CountRegister(F.ScaledReg, LUIdx); 3092 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3093 E = F.BaseRegs.end(); I != E; ++I) 3094 RegUses.CountRegister(*I, LUIdx); 3095 } 3096 3097 /// InsertFormula - If the given formula has not yet been inserted, add it to 3098 /// the list, and return true. Return false otherwise. 3099 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3100 // Do not insert formula that we will not be able to expand. 3101 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3102 "Formula is illegal"); 3103 if (!LU.InsertFormula(F)) 3104 return false; 3105 3106 CountRegisters(F, LUIdx); 3107 return true; 3108 } 3109 3110 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3111 /// loop-invariant values which we're tracking. These other uses will pin these 3112 /// values in registers, making them less profitable for elimination. 3113 /// TODO: This currently misses non-constant addrec step registers. 3114 /// TODO: Should this give more weight to users inside the loop? 3115 void 3116 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3117 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3118 SmallPtrSet<const SCEV *, 32> Visited; 3119 3120 while (!Worklist.empty()) { 3121 const SCEV *S = Worklist.pop_back_val(); 3122 3123 // Don't process the same SCEV twice 3124 if (!Visited.insert(S).second) 3125 continue; 3126 3127 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3128 Worklist.append(N->op_begin(), N->op_end()); 3129 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3130 Worklist.push_back(C->getOperand()); 3131 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3132 Worklist.push_back(D->getLHS()); 3133 Worklist.push_back(D->getRHS()); 3134 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3135 const Value *V = US->getValue(); 3136 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3137 // Look for instructions defined outside the loop. 3138 if (L->contains(Inst)) continue; 3139 } else if (isa<UndefValue>(V)) 3140 // Undef doesn't have a live range, so it doesn't matter. 3141 continue; 3142 for (const Use &U : V->uses()) { 3143 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3144 // Ignore non-instructions. 3145 if (!UserInst) 3146 continue; 3147 // Ignore instructions in other functions (as can happen with 3148 // Constants). 3149 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3150 continue; 3151 // Ignore instructions not dominated by the loop. 3152 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3153 UserInst->getParent() : 3154 cast<PHINode>(UserInst)->getIncomingBlock( 3155 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3156 if (!DT.dominates(L->getHeader(), UseBB)) 3157 continue; 3158 // Ignore uses which are part of other SCEV expressions, to avoid 3159 // analyzing them multiple times. 3160 if (SE.isSCEVable(UserInst->getType())) { 3161 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3162 // If the user is a no-op, look through to its uses. 3163 if (!isa<SCEVUnknown>(UserS)) 3164 continue; 3165 if (UserS == US) { 3166 Worklist.push_back( 3167 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3168 continue; 3169 } 3170 } 3171 // Ignore icmp instructions which are already being analyzed. 3172 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3173 unsigned OtherIdx = !U.getOperandNo(); 3174 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3175 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3176 continue; 3177 } 3178 3179 LSRFixup &LF = getNewFixup(); 3180 LF.UserInst = const_cast<Instruction *>(UserInst); 3181 LF.OperandValToReplace = U; 3182 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); 3183 LF.LUIdx = P.first; 3184 LF.Offset = P.second; 3185 LSRUse &LU = Uses[LF.LUIdx]; 3186 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3187 if (!LU.WidestFixupType || 3188 SE.getTypeSizeInBits(LU.WidestFixupType) < 3189 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3190 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3191 InsertSupplementalFormula(US, LU, LF.LUIdx); 3192 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3193 break; 3194 } 3195 } 3196 } 3197 } 3198 3199 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3200 /// separate registers. If C is non-null, multiply each subexpression by C. 3201 /// 3202 /// Return remainder expression after factoring the subexpressions captured by 3203 /// Ops. If Ops is complete, return NULL. 3204 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3205 SmallVectorImpl<const SCEV *> &Ops, 3206 const Loop *L, 3207 ScalarEvolution &SE, 3208 unsigned Depth = 0) { 3209 // Arbitrarily cap recursion to protect compile time. 3210 if (Depth >= 3) 3211 return S; 3212 3213 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3214 // Break out add operands. 3215 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3216 I != E; ++I) { 3217 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3218 if (Remainder) 3219 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3220 } 3221 return nullptr; 3222 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3223 // Split a non-zero base out of an addrec. 3224 if (AR->getStart()->isZero()) 3225 return S; 3226 3227 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3228 C, Ops, L, SE, Depth+1); 3229 // Split the non-zero AddRec unless it is part of a nested recurrence that 3230 // does not pertain to this loop. 3231 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3232 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3233 Remainder = nullptr; 3234 } 3235 if (Remainder != AR->getStart()) { 3236 if (!Remainder) 3237 Remainder = SE.getConstant(AR->getType(), 0); 3238 return SE.getAddRecExpr(Remainder, 3239 AR->getStepRecurrence(SE), 3240 AR->getLoop(), 3241 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3242 SCEV::FlagAnyWrap); 3243 } 3244 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3245 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3246 if (Mul->getNumOperands() != 2) 3247 return S; 3248 if (const SCEVConstant *Op0 = 3249 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3250 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3251 const SCEV *Remainder = 3252 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3253 if (Remainder) 3254 Ops.push_back(SE.getMulExpr(C, Remainder)); 3255 return nullptr; 3256 } 3257 } 3258 return S; 3259 } 3260 3261 /// \brief Helper function for LSRInstance::GenerateReassociations. 3262 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3263 const Formula &Base, 3264 unsigned Depth, size_t Idx, 3265 bool IsScaledReg) { 3266 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3267 SmallVector<const SCEV *, 8> AddOps; 3268 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3269 if (Remainder) 3270 AddOps.push_back(Remainder); 3271 3272 if (AddOps.size() == 1) 3273 return; 3274 3275 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3276 JE = AddOps.end(); 3277 J != JE; ++J) { 3278 3279 // Loop-variant "unknown" values are uninteresting; we won't be able to 3280 // do anything meaningful with them. 3281 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3282 continue; 3283 3284 // Don't pull a constant into a register if the constant could be folded 3285 // into an immediate field. 3286 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3287 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3288 continue; 3289 3290 // Collect all operands except *J. 3291 SmallVector<const SCEV *, 8> InnerAddOps( 3292 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3293 InnerAddOps.append(std::next(J), 3294 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3295 3296 // Don't leave just a constant behind in a register if the constant could 3297 // be folded into an immediate field. 3298 if (InnerAddOps.size() == 1 && 3299 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3300 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3301 continue; 3302 3303 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3304 if (InnerSum->isZero()) 3305 continue; 3306 Formula F = Base; 3307 3308 // Add the remaining pieces of the add back into the new formula. 3309 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3310 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3311 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3312 InnerSumSC->getValue()->getZExtValue())) { 3313 F.UnfoldedOffset = 3314 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3315 if (IsScaledReg) 3316 F.ScaledReg = nullptr; 3317 else 3318 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3319 } else if (IsScaledReg) 3320 F.ScaledReg = InnerSum; 3321 else 3322 F.BaseRegs[Idx] = InnerSum; 3323 3324 // Add J as its own register, or an unfolded immediate. 3325 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3326 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3327 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3328 SC->getValue()->getZExtValue())) 3329 F.UnfoldedOffset = 3330 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3331 else 3332 F.BaseRegs.push_back(*J); 3333 // We may have changed the number of register in base regs, adjust the 3334 // formula accordingly. 3335 F.Canonicalize(); 3336 3337 if (InsertFormula(LU, LUIdx, F)) 3338 // If that formula hadn't been seen before, recurse to find more like 3339 // it. 3340 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3341 } 3342 } 3343 3344 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3345 /// addrecs. 3346 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3347 Formula Base, unsigned Depth) { 3348 assert(Base.isCanonical() && "Input must be in the canonical form"); 3349 // Arbitrarily cap recursion to protect compile time. 3350 if (Depth >= 3) 3351 return; 3352 3353 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3354 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3355 3356 if (Base.Scale == 1) 3357 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3358 /* Idx */ -1, /* IsScaledReg */ true); 3359 } 3360 3361 /// GenerateCombinations - Generate a formula consisting of all of the 3362 /// loop-dominating registers added into a single register. 3363 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3364 Formula Base) { 3365 // This method is only interesting on a plurality of registers. 3366 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3367 return; 3368 3369 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3370 // processing the formula. 3371 Base.Unscale(); 3372 Formula F = Base; 3373 F.BaseRegs.clear(); 3374 SmallVector<const SCEV *, 4> Ops; 3375 for (SmallVectorImpl<const SCEV *>::const_iterator 3376 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3377 const SCEV *BaseReg = *I; 3378 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3379 !SE.hasComputableLoopEvolution(BaseReg, L)) 3380 Ops.push_back(BaseReg); 3381 else 3382 F.BaseRegs.push_back(BaseReg); 3383 } 3384 if (Ops.size() > 1) { 3385 const SCEV *Sum = SE.getAddExpr(Ops); 3386 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3387 // opportunity to fold something. For now, just ignore such cases 3388 // rather than proceed with zero in a register. 3389 if (!Sum->isZero()) { 3390 F.BaseRegs.push_back(Sum); 3391 F.Canonicalize(); 3392 (void)InsertFormula(LU, LUIdx, F); 3393 } 3394 } 3395 } 3396 3397 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3398 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3399 const Formula &Base, size_t Idx, 3400 bool IsScaledReg) { 3401 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3402 GlobalValue *GV = ExtractSymbol(G, SE); 3403 if (G->isZero() || !GV) 3404 return; 3405 Formula F = Base; 3406 F.BaseGV = GV; 3407 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3408 return; 3409 if (IsScaledReg) 3410 F.ScaledReg = G; 3411 else 3412 F.BaseRegs[Idx] = G; 3413 (void)InsertFormula(LU, LUIdx, F); 3414 } 3415 3416 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3417 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3418 Formula Base) { 3419 // We can't add a symbolic offset if the address already contains one. 3420 if (Base.BaseGV) return; 3421 3422 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3423 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3424 if (Base.Scale == 1) 3425 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3426 /* IsScaledReg */ true); 3427 } 3428 3429 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3430 void LSRInstance::GenerateConstantOffsetsImpl( 3431 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3432 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3433 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3434 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3435 E = Worklist.end(); 3436 I != E; ++I) { 3437 Formula F = Base; 3438 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3439 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3440 LU.AccessTy, F)) { 3441 // Add the offset to the base register. 3442 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3443 // If it cancelled out, drop the base register, otherwise update it. 3444 if (NewG->isZero()) { 3445 if (IsScaledReg) { 3446 F.Scale = 0; 3447 F.ScaledReg = nullptr; 3448 } else 3449 F.DeleteBaseReg(F.BaseRegs[Idx]); 3450 F.Canonicalize(); 3451 } else if (IsScaledReg) 3452 F.ScaledReg = NewG; 3453 else 3454 F.BaseRegs[Idx] = NewG; 3455 3456 (void)InsertFormula(LU, LUIdx, F); 3457 } 3458 } 3459 3460 int64_t Imm = ExtractImmediate(G, SE); 3461 if (G->isZero() || Imm == 0) 3462 return; 3463 Formula F = Base; 3464 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3465 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3466 return; 3467 if (IsScaledReg) 3468 F.ScaledReg = G; 3469 else 3470 F.BaseRegs[Idx] = G; 3471 (void)InsertFormula(LU, LUIdx, F); 3472 } 3473 3474 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3475 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3476 Formula Base) { 3477 // TODO: For now, just add the min and max offset, because it usually isn't 3478 // worthwhile looking at everything inbetween. 3479 SmallVector<int64_t, 2> Worklist; 3480 Worklist.push_back(LU.MinOffset); 3481 if (LU.MaxOffset != LU.MinOffset) 3482 Worklist.push_back(LU.MaxOffset); 3483 3484 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3485 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3486 if (Base.Scale == 1) 3487 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3488 /* IsScaledReg */ true); 3489 } 3490 3491 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3492 /// the comparison. For example, x == y -> x*c == y*c. 3493 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3494 Formula Base) { 3495 if (LU.Kind != LSRUse::ICmpZero) return; 3496 3497 // Determine the integer type for the base formula. 3498 Type *IntTy = Base.getType(); 3499 if (!IntTy) return; 3500 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3501 3502 // Don't do this if there is more than one offset. 3503 if (LU.MinOffset != LU.MaxOffset) return; 3504 3505 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3506 3507 // Check each interesting stride. 3508 for (SmallSetVector<int64_t, 8>::const_iterator 3509 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3510 int64_t Factor = *I; 3511 3512 // Check that the multiplication doesn't overflow. 3513 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3514 continue; 3515 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3516 if (NewBaseOffset / Factor != Base.BaseOffset) 3517 continue; 3518 // If the offset will be truncated at this use, check that it is in bounds. 3519 if (!IntTy->isPointerTy() && 3520 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3521 continue; 3522 3523 // Check that multiplying with the use offset doesn't overflow. 3524 int64_t Offset = LU.MinOffset; 3525 if (Offset == INT64_MIN && Factor == -1) 3526 continue; 3527 Offset = (uint64_t)Offset * Factor; 3528 if (Offset / Factor != LU.MinOffset) 3529 continue; 3530 // If the offset will be truncated at this use, check that it is in bounds. 3531 if (!IntTy->isPointerTy() && 3532 !ConstantInt::isValueValidForType(IntTy, Offset)) 3533 continue; 3534 3535 Formula F = Base; 3536 F.BaseOffset = NewBaseOffset; 3537 3538 // Check that this scale is legal. 3539 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3540 continue; 3541 3542 // Compensate for the use having MinOffset built into it. 3543 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3544 3545 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3546 3547 // Check that multiplying with each base register doesn't overflow. 3548 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3549 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3550 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3551 goto next; 3552 } 3553 3554 // Check that multiplying with the scaled register doesn't overflow. 3555 if (F.ScaledReg) { 3556 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3557 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3558 continue; 3559 } 3560 3561 // Check that multiplying with the unfolded offset doesn't overflow. 3562 if (F.UnfoldedOffset != 0) { 3563 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3564 continue; 3565 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3566 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3567 continue; 3568 // If the offset will be truncated, check that it is in bounds. 3569 if (!IntTy->isPointerTy() && 3570 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3571 continue; 3572 } 3573 3574 // If we make it here and it's legal, add it. 3575 (void)InsertFormula(LU, LUIdx, F); 3576 next:; 3577 } 3578 } 3579 3580 /// GenerateScales - Generate stride factor reuse formulae by making use of 3581 /// scaled-offset address modes, for example. 3582 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3583 // Determine the integer type for the base formula. 3584 Type *IntTy = Base.getType(); 3585 if (!IntTy) return; 3586 3587 // If this Formula already has a scaled register, we can't add another one. 3588 // Try to unscale the formula to generate a better scale. 3589 if (Base.Scale != 0 && !Base.Unscale()) 3590 return; 3591 3592 assert(Base.Scale == 0 && "Unscale did not did its job!"); 3593 3594 // Check each interesting stride. 3595 for (SmallSetVector<int64_t, 8>::const_iterator 3596 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3597 int64_t Factor = *I; 3598 3599 Base.Scale = Factor; 3600 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3601 // Check whether this scale is going to be legal. 3602 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3603 Base)) { 3604 // As a special-case, handle special out-of-loop Basic users specially. 3605 // TODO: Reconsider this special case. 3606 if (LU.Kind == LSRUse::Basic && 3607 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3608 LU.AccessTy, Base) && 3609 LU.AllFixupsOutsideLoop) 3610 LU.Kind = LSRUse::Special; 3611 else 3612 continue; 3613 } 3614 // For an ICmpZero, negating a solitary base register won't lead to 3615 // new solutions. 3616 if (LU.Kind == LSRUse::ICmpZero && 3617 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3618 continue; 3619 // For each addrec base reg, apply the scale, if possible. 3620 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3621 if (const SCEVAddRecExpr *AR = 3622 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3623 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3624 if (FactorS->isZero()) 3625 continue; 3626 // Divide out the factor, ignoring high bits, since we'll be 3627 // scaling the value back up in the end. 3628 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3629 // TODO: This could be optimized to avoid all the copying. 3630 Formula F = Base; 3631 F.ScaledReg = Quotient; 3632 F.DeleteBaseReg(F.BaseRegs[i]); 3633 // The canonical representation of 1*reg is reg, which is already in 3634 // Base. In that case, do not try to insert the formula, it will be 3635 // rejected anyway. 3636 if (F.Scale == 1 && F.BaseRegs.empty()) 3637 continue; 3638 (void)InsertFormula(LU, LUIdx, F); 3639 } 3640 } 3641 } 3642 } 3643 3644 /// GenerateTruncates - Generate reuse formulae from different IV types. 3645 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3646 // Don't bother truncating symbolic values. 3647 if (Base.BaseGV) return; 3648 3649 // Determine the integer type for the base formula. 3650 Type *DstTy = Base.getType(); 3651 if (!DstTy) return; 3652 DstTy = SE.getEffectiveSCEVType(DstTy); 3653 3654 for (SmallSetVector<Type *, 4>::const_iterator 3655 I = Types.begin(), E = Types.end(); I != E; ++I) { 3656 Type *SrcTy = *I; 3657 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3658 Formula F = Base; 3659 3660 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3661 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3662 JE = F.BaseRegs.end(); J != JE; ++J) 3663 *J = SE.getAnyExtendExpr(*J, SrcTy); 3664 3665 // TODO: This assumes we've done basic processing on all uses and 3666 // have an idea what the register usage is. 3667 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3668 continue; 3669 3670 (void)InsertFormula(LU, LUIdx, F); 3671 } 3672 } 3673 } 3674 3675 namespace { 3676 3677 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3678 /// defer modifications so that the search phase doesn't have to worry about 3679 /// the data structures moving underneath it. 3680 struct WorkItem { 3681 size_t LUIdx; 3682 int64_t Imm; 3683 const SCEV *OrigReg; 3684 3685 WorkItem(size_t LI, int64_t I, const SCEV *R) 3686 : LUIdx(LI), Imm(I), OrigReg(R) {} 3687 3688 void print(raw_ostream &OS) const; 3689 void dump() const; 3690 }; 3691 3692 } 3693 3694 void WorkItem::print(raw_ostream &OS) const { 3695 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3696 << " , add offset " << Imm; 3697 } 3698 3699 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3700 void WorkItem::dump() const { 3701 print(errs()); errs() << '\n'; 3702 } 3703 #endif 3704 3705 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3706 /// distance apart and try to form reuse opportunities between them. 3707 void LSRInstance::GenerateCrossUseConstantOffsets() { 3708 // Group the registers by their value without any added constant offset. 3709 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3710 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3711 RegMapTy Map; 3712 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3713 SmallVector<const SCEV *, 8> Sequence; 3714 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3715 I != E; ++I) { 3716 const SCEV *Reg = *I; 3717 int64_t Imm = ExtractImmediate(Reg, SE); 3718 std::pair<RegMapTy::iterator, bool> Pair = 3719 Map.insert(std::make_pair(Reg, ImmMapTy())); 3720 if (Pair.second) 3721 Sequence.push_back(Reg); 3722 Pair.first->second.insert(std::make_pair(Imm, *I)); 3723 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3724 } 3725 3726 // Now examine each set of registers with the same base value. Build up 3727 // a list of work to do and do the work in a separate step so that we're 3728 // not adding formulae and register counts while we're searching. 3729 SmallVector<WorkItem, 32> WorkItems; 3730 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3731 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3732 E = Sequence.end(); I != E; ++I) { 3733 const SCEV *Reg = *I; 3734 const ImmMapTy &Imms = Map.find(Reg)->second; 3735 3736 // It's not worthwhile looking for reuse if there's only one offset. 3737 if (Imms.size() == 1) 3738 continue; 3739 3740 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3741 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3742 J != JE; ++J) 3743 dbgs() << ' ' << J->first; 3744 dbgs() << '\n'); 3745 3746 // Examine each offset. 3747 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3748 J != JE; ++J) { 3749 const SCEV *OrigReg = J->second; 3750 3751 int64_t JImm = J->first; 3752 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3753 3754 if (!isa<SCEVConstant>(OrigReg) && 3755 UsedByIndicesMap[Reg].count() == 1) { 3756 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3757 continue; 3758 } 3759 3760 // Conservatively examine offsets between this orig reg a few selected 3761 // other orig regs. 3762 ImmMapTy::const_iterator OtherImms[] = { 3763 Imms.begin(), std::prev(Imms.end()), 3764 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3765 2) 3766 }; 3767 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3768 ImmMapTy::const_iterator M = OtherImms[i]; 3769 if (M == J || M == JE) continue; 3770 3771 // Compute the difference between the two. 3772 int64_t Imm = (uint64_t)JImm - M->first; 3773 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3774 LUIdx = UsedByIndices.find_next(LUIdx)) 3775 // Make a memo of this use, offset, and register tuple. 3776 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3777 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3778 } 3779 } 3780 } 3781 3782 Map.clear(); 3783 Sequence.clear(); 3784 UsedByIndicesMap.clear(); 3785 UniqueItems.clear(); 3786 3787 // Now iterate through the worklist and add new formulae. 3788 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3789 E = WorkItems.end(); I != E; ++I) { 3790 const WorkItem &WI = *I; 3791 size_t LUIdx = WI.LUIdx; 3792 LSRUse &LU = Uses[LUIdx]; 3793 int64_t Imm = WI.Imm; 3794 const SCEV *OrigReg = WI.OrigReg; 3795 3796 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3797 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3798 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3799 3800 // TODO: Use a more targeted data structure. 3801 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3802 Formula F = LU.Formulae[L]; 3803 // FIXME: The code for the scaled and unscaled registers looks 3804 // very similar but slightly different. Investigate if they 3805 // could be merged. That way, we would not have to unscale the 3806 // Formula. 3807 F.Unscale(); 3808 // Use the immediate in the scaled register. 3809 if (F.ScaledReg == OrigReg) { 3810 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3811 // Don't create 50 + reg(-50). 3812 if (F.referencesReg(SE.getSCEV( 3813 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3814 continue; 3815 Formula NewF = F; 3816 NewF.BaseOffset = Offset; 3817 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3818 NewF)) 3819 continue; 3820 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3821 3822 // If the new scale is a constant in a register, and adding the constant 3823 // value to the immediate would produce a value closer to zero than the 3824 // immediate itself, then the formula isn't worthwhile. 3825 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3826 if (C->getValue()->isNegative() != 3827 (NewF.BaseOffset < 0) && 3828 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3829 .ule(std::abs(NewF.BaseOffset))) 3830 continue; 3831 3832 // OK, looks good. 3833 NewF.Canonicalize(); 3834 (void)InsertFormula(LU, LUIdx, NewF); 3835 } else { 3836 // Use the immediate in a base register. 3837 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3838 const SCEV *BaseReg = F.BaseRegs[N]; 3839 if (BaseReg != OrigReg) 3840 continue; 3841 Formula NewF = F; 3842 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3843 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3844 LU.Kind, LU.AccessTy, NewF)) { 3845 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3846 continue; 3847 NewF = F; 3848 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3849 } 3850 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3851 3852 // If the new formula has a constant in a register, and adding the 3853 // constant value to the immediate would produce a value closer to 3854 // zero than the immediate itself, then the formula isn't worthwhile. 3855 for (SmallVectorImpl<const SCEV *>::const_iterator 3856 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3857 J != JE; ++J) 3858 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3859 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3860 std::abs(NewF.BaseOffset)) && 3861 (C->getValue()->getValue() + 3862 NewF.BaseOffset).countTrailingZeros() >= 3863 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3864 goto skip_formula; 3865 3866 // Ok, looks good. 3867 NewF.Canonicalize(); 3868 (void)InsertFormula(LU, LUIdx, NewF); 3869 break; 3870 skip_formula:; 3871 } 3872 } 3873 } 3874 } 3875 } 3876 3877 /// GenerateAllReuseFormulae - Generate formulae for each use. 3878 void 3879 LSRInstance::GenerateAllReuseFormulae() { 3880 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3881 // queries are more precise. 3882 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3883 LSRUse &LU = Uses[LUIdx]; 3884 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3885 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3886 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3887 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3888 } 3889 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3890 LSRUse &LU = Uses[LUIdx]; 3891 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3892 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3893 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3894 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3895 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3896 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3897 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3898 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3899 } 3900 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3901 LSRUse &LU = Uses[LUIdx]; 3902 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3903 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3904 } 3905 3906 GenerateCrossUseConstantOffsets(); 3907 3908 DEBUG(dbgs() << "\n" 3909 "After generating reuse formulae:\n"; 3910 print_uses(dbgs())); 3911 } 3912 3913 /// If there are multiple formulae with the same set of registers used 3914 /// by other uses, pick the best one and delete the others. 3915 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3916 DenseSet<const SCEV *> VisitedRegs; 3917 SmallPtrSet<const SCEV *, 16> Regs; 3918 SmallPtrSet<const SCEV *, 16> LoserRegs; 3919 #ifndef NDEBUG 3920 bool ChangedFormulae = false; 3921 #endif 3922 3923 // Collect the best formula for each unique set of shared registers. This 3924 // is reset for each use. 3925 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3926 BestFormulaeTy; 3927 BestFormulaeTy BestFormulae; 3928 3929 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3930 LSRUse &LU = Uses[LUIdx]; 3931 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3932 3933 bool Any = false; 3934 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3935 FIdx != NumForms; ++FIdx) { 3936 Formula &F = LU.Formulae[FIdx]; 3937 3938 // Some formulas are instant losers. For example, they may depend on 3939 // nonexistent AddRecs from other loops. These need to be filtered 3940 // immediately, otherwise heuristics could choose them over others leading 3941 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3942 // avoids the need to recompute this information across formulae using the 3943 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3944 // the corresponding bad register from the Regs set. 3945 Cost CostF; 3946 Regs.clear(); 3947 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3948 &LoserRegs); 3949 if (CostF.isLoser()) { 3950 // During initial formula generation, undesirable formulae are generated 3951 // by uses within other loops that have some non-trivial address mode or 3952 // use the postinc form of the IV. LSR needs to provide these formulae 3953 // as the basis of rediscovering the desired formula that uses an AddRec 3954 // corresponding to the existing phi. Once all formulae have been 3955 // generated, these initial losers may be pruned. 3956 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3957 dbgs() << "\n"); 3958 } 3959 else { 3960 SmallVector<const SCEV *, 4> Key; 3961 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3962 JE = F.BaseRegs.end(); J != JE; ++J) { 3963 const SCEV *Reg = *J; 3964 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3965 Key.push_back(Reg); 3966 } 3967 if (F.ScaledReg && 3968 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3969 Key.push_back(F.ScaledReg); 3970 // Unstable sort by host order ok, because this is only used for 3971 // uniquifying. 3972 std::sort(Key.begin(), Key.end()); 3973 3974 std::pair<BestFormulaeTy::const_iterator, bool> P = 3975 BestFormulae.insert(std::make_pair(Key, FIdx)); 3976 if (P.second) 3977 continue; 3978 3979 Formula &Best = LU.Formulae[P.first->second]; 3980 3981 Cost CostBest; 3982 Regs.clear(); 3983 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3984 DT, LU); 3985 if (CostF < CostBest) 3986 std::swap(F, Best); 3987 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3988 dbgs() << "\n" 3989 " in favor of formula "; Best.print(dbgs()); 3990 dbgs() << '\n'); 3991 } 3992 #ifndef NDEBUG 3993 ChangedFormulae = true; 3994 #endif 3995 LU.DeleteFormula(F); 3996 --FIdx; 3997 --NumForms; 3998 Any = true; 3999 } 4000 4001 // Now that we've filtered out some formulae, recompute the Regs set. 4002 if (Any) 4003 LU.RecomputeRegs(LUIdx, RegUses); 4004 4005 // Reset this to prepare for the next use. 4006 BestFormulae.clear(); 4007 } 4008 4009 DEBUG(if (ChangedFormulae) { 4010 dbgs() << "\n" 4011 "After filtering out undesirable candidates:\n"; 4012 print_uses(dbgs()); 4013 }); 4014 } 4015 4016 // This is a rough guess that seems to work fairly well. 4017 static const size_t ComplexityLimit = UINT16_MAX; 4018 4019 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 4020 /// solutions the solver might have to consider. It almost never considers 4021 /// this many solutions because it prune the search space, but the pruning 4022 /// isn't always sufficient. 4023 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4024 size_t Power = 1; 4025 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4026 E = Uses.end(); I != E; ++I) { 4027 size_t FSize = I->Formulae.size(); 4028 if (FSize >= ComplexityLimit) { 4029 Power = ComplexityLimit; 4030 break; 4031 } 4032 Power *= FSize; 4033 if (Power >= ComplexityLimit) 4034 break; 4035 } 4036 return Power; 4037 } 4038 4039 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 4040 /// of the registers of another formula, it won't help reduce register 4041 /// pressure (though it may not necessarily hurt register pressure); remove 4042 /// it to simplify the system. 4043 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4044 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4045 DEBUG(dbgs() << "The search space is too complex.\n"); 4046 4047 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4048 "which use a superset of registers used by other " 4049 "formulae.\n"); 4050 4051 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4052 LSRUse &LU = Uses[LUIdx]; 4053 bool Any = false; 4054 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4055 Formula &F = LU.Formulae[i]; 4056 // Look for a formula with a constant or GV in a register. If the use 4057 // also has a formula with that same value in an immediate field, 4058 // delete the one that uses a register. 4059 for (SmallVectorImpl<const SCEV *>::const_iterator 4060 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4061 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4062 Formula NewF = F; 4063 NewF.BaseOffset += C->getValue()->getSExtValue(); 4064 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4065 (I - F.BaseRegs.begin())); 4066 if (LU.HasFormulaWithSameRegs(NewF)) { 4067 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4068 LU.DeleteFormula(F); 4069 --i; 4070 --e; 4071 Any = true; 4072 break; 4073 } 4074 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4075 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4076 if (!F.BaseGV) { 4077 Formula NewF = F; 4078 NewF.BaseGV = GV; 4079 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4080 (I - F.BaseRegs.begin())); 4081 if (LU.HasFormulaWithSameRegs(NewF)) { 4082 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4083 dbgs() << '\n'); 4084 LU.DeleteFormula(F); 4085 --i; 4086 --e; 4087 Any = true; 4088 break; 4089 } 4090 } 4091 } 4092 } 4093 } 4094 if (Any) 4095 LU.RecomputeRegs(LUIdx, RegUses); 4096 } 4097 4098 DEBUG(dbgs() << "After pre-selection:\n"; 4099 print_uses(dbgs())); 4100 } 4101 } 4102 4103 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 4104 /// for expressions like A, A+1, A+2, etc., allocate a single register for 4105 /// them. 4106 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4107 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4108 return; 4109 4110 DEBUG(dbgs() << "The search space is too complex.\n" 4111 "Narrowing the search space by assuming that uses separated " 4112 "by a constant offset will use the same registers.\n"); 4113 4114 // This is especially useful for unrolled loops. 4115 4116 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4117 LSRUse &LU = Uses[LUIdx]; 4118 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4119 E = LU.Formulae.end(); I != E; ++I) { 4120 const Formula &F = *I; 4121 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4122 continue; 4123 4124 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4125 if (!LUThatHas) 4126 continue; 4127 4128 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4129 LU.Kind, LU.AccessTy)) 4130 continue; 4131 4132 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4133 4134 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4135 4136 // Update the relocs to reference the new use. 4137 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 4138 E = Fixups.end(); I != E; ++I) { 4139 LSRFixup &Fixup = *I; 4140 if (Fixup.LUIdx == LUIdx) { 4141 Fixup.LUIdx = LUThatHas - &Uses.front(); 4142 Fixup.Offset += F.BaseOffset; 4143 // Add the new offset to LUThatHas' offset list. 4144 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4145 LUThatHas->Offsets.push_back(Fixup.Offset); 4146 if (Fixup.Offset > LUThatHas->MaxOffset) 4147 LUThatHas->MaxOffset = Fixup.Offset; 4148 if (Fixup.Offset < LUThatHas->MinOffset) 4149 LUThatHas->MinOffset = Fixup.Offset; 4150 } 4151 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4152 } 4153 if (Fixup.LUIdx == NumUses-1) 4154 Fixup.LUIdx = LUIdx; 4155 } 4156 4157 // Delete formulae from the new use which are no longer legal. 4158 bool Any = false; 4159 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4160 Formula &F = LUThatHas->Formulae[i]; 4161 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4162 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4163 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4164 dbgs() << '\n'); 4165 LUThatHas->DeleteFormula(F); 4166 --i; 4167 --e; 4168 Any = true; 4169 } 4170 } 4171 4172 if (Any) 4173 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4174 4175 // Delete the old use. 4176 DeleteUse(LU, LUIdx); 4177 --LUIdx; 4178 --NumUses; 4179 break; 4180 } 4181 } 4182 4183 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4184 } 4185 4186 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4187 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4188 /// we've done more filtering, as it may be able to find more formulae to 4189 /// eliminate. 4190 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4191 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4192 DEBUG(dbgs() << "The search space is too complex.\n"); 4193 4194 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4195 "undesirable dedicated registers.\n"); 4196 4197 FilterOutUndesirableDedicatedRegisters(); 4198 4199 DEBUG(dbgs() << "After pre-selection:\n"; 4200 print_uses(dbgs())); 4201 } 4202 } 4203 4204 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4205 /// to be profitable, and then in any use which has any reference to that 4206 /// register, delete all formulae which do not reference that register. 4207 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4208 // With all other options exhausted, loop until the system is simple 4209 // enough to handle. 4210 SmallPtrSet<const SCEV *, 4> Taken; 4211 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4212 // Ok, we have too many of formulae on our hands to conveniently handle. 4213 // Use a rough heuristic to thin out the list. 4214 DEBUG(dbgs() << "The search space is too complex.\n"); 4215 4216 // Pick the register which is used by the most LSRUses, which is likely 4217 // to be a good reuse register candidate. 4218 const SCEV *Best = nullptr; 4219 unsigned BestNum = 0; 4220 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4221 I != E; ++I) { 4222 const SCEV *Reg = *I; 4223 if (Taken.count(Reg)) 4224 continue; 4225 if (!Best) 4226 Best = Reg; 4227 else { 4228 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4229 if (Count > BestNum) { 4230 Best = Reg; 4231 BestNum = Count; 4232 } 4233 } 4234 } 4235 4236 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4237 << " will yield profitable reuse.\n"); 4238 Taken.insert(Best); 4239 4240 // In any use with formulae which references this register, delete formulae 4241 // which don't reference it. 4242 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4243 LSRUse &LU = Uses[LUIdx]; 4244 if (!LU.Regs.count(Best)) continue; 4245 4246 bool Any = false; 4247 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4248 Formula &F = LU.Formulae[i]; 4249 if (!F.referencesReg(Best)) { 4250 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4251 LU.DeleteFormula(F); 4252 --e; 4253 --i; 4254 Any = true; 4255 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4256 continue; 4257 } 4258 } 4259 4260 if (Any) 4261 LU.RecomputeRegs(LUIdx, RegUses); 4262 } 4263 4264 DEBUG(dbgs() << "After pre-selection:\n"; 4265 print_uses(dbgs())); 4266 } 4267 } 4268 4269 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4270 /// formulae to choose from, use some rough heuristics to prune down the number 4271 /// of formulae. This keeps the main solver from taking an extraordinary amount 4272 /// of time in some worst-case scenarios. 4273 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4274 NarrowSearchSpaceByDetectingSupersets(); 4275 NarrowSearchSpaceByCollapsingUnrolledCode(); 4276 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4277 NarrowSearchSpaceByPickingWinnerRegs(); 4278 } 4279 4280 /// SolveRecurse - This is the recursive solver. 4281 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4282 Cost &SolutionCost, 4283 SmallVectorImpl<const Formula *> &Workspace, 4284 const Cost &CurCost, 4285 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4286 DenseSet<const SCEV *> &VisitedRegs) const { 4287 // Some ideas: 4288 // - prune more: 4289 // - use more aggressive filtering 4290 // - sort the formula so that the most profitable solutions are found first 4291 // - sort the uses too 4292 // - search faster: 4293 // - don't compute a cost, and then compare. compare while computing a cost 4294 // and bail early. 4295 // - track register sets with SmallBitVector 4296 4297 const LSRUse &LU = Uses[Workspace.size()]; 4298 4299 // If this use references any register that's already a part of the 4300 // in-progress solution, consider it a requirement that a formula must 4301 // reference that register in order to be considered. This prunes out 4302 // unprofitable searching. 4303 SmallSetVector<const SCEV *, 4> ReqRegs; 4304 for (const SCEV *S : CurRegs) 4305 if (LU.Regs.count(S)) 4306 ReqRegs.insert(S); 4307 4308 SmallPtrSet<const SCEV *, 16> NewRegs; 4309 Cost NewCost; 4310 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4311 E = LU.Formulae.end(); I != E; ++I) { 4312 const Formula &F = *I; 4313 4314 // Ignore formulae which may not be ideal in terms of register reuse of 4315 // ReqRegs. The formula should use all required registers before 4316 // introducing new ones. 4317 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4318 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4319 JE = ReqRegs.end(); J != JE; ++J) { 4320 const SCEV *Reg = *J; 4321 if ((F.ScaledReg && F.ScaledReg == Reg) || 4322 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4323 F.BaseRegs.end()) { 4324 --NumReqRegsToFind; 4325 if (NumReqRegsToFind == 0) 4326 break; 4327 } 4328 } 4329 if (NumReqRegsToFind != 0) { 4330 // If none of the formulae satisfied the required registers, then we could 4331 // clear ReqRegs and try again. Currently, we simply give up in this case. 4332 continue; 4333 } 4334 4335 // Evaluate the cost of the current formula. If it's already worse than 4336 // the current best, prune the search at that point. 4337 NewCost = CurCost; 4338 NewRegs = CurRegs; 4339 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4340 LU); 4341 if (NewCost < SolutionCost) { 4342 Workspace.push_back(&F); 4343 if (Workspace.size() != Uses.size()) { 4344 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4345 NewRegs, VisitedRegs); 4346 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4347 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4348 } else { 4349 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4350 dbgs() << ".\n Regs:"; 4351 for (const SCEV *S : NewRegs) 4352 dbgs() << ' ' << *S; 4353 dbgs() << '\n'); 4354 4355 SolutionCost = NewCost; 4356 Solution = Workspace; 4357 } 4358 Workspace.pop_back(); 4359 } 4360 } 4361 } 4362 4363 /// Solve - Choose one formula from each use. Return the results in the given 4364 /// Solution vector. 4365 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4366 SmallVector<const Formula *, 8> Workspace; 4367 Cost SolutionCost; 4368 SolutionCost.Lose(); 4369 Cost CurCost; 4370 SmallPtrSet<const SCEV *, 16> CurRegs; 4371 DenseSet<const SCEV *> VisitedRegs; 4372 Workspace.reserve(Uses.size()); 4373 4374 // SolveRecurse does all the work. 4375 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4376 CurRegs, VisitedRegs); 4377 if (Solution.empty()) { 4378 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4379 return; 4380 } 4381 4382 // Ok, we've now made all our decisions. 4383 DEBUG(dbgs() << "\n" 4384 "The chosen solution requires "; SolutionCost.print(dbgs()); 4385 dbgs() << ":\n"; 4386 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4387 dbgs() << " "; 4388 Uses[i].print(dbgs()); 4389 dbgs() << "\n" 4390 " "; 4391 Solution[i]->print(dbgs()); 4392 dbgs() << '\n'; 4393 }); 4394 4395 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4396 } 4397 4398 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4399 /// the dominator tree far as we can go while still being dominated by the 4400 /// input positions. This helps canonicalize the insert position, which 4401 /// encourages sharing. 4402 BasicBlock::iterator 4403 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4404 const SmallVectorImpl<Instruction *> &Inputs) 4405 const { 4406 for (;;) { 4407 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4408 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4409 4410 BasicBlock *IDom; 4411 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4412 if (!Rung) return IP; 4413 Rung = Rung->getIDom(); 4414 if (!Rung) return IP; 4415 IDom = Rung->getBlock(); 4416 4417 // Don't climb into a loop though. 4418 const Loop *IDomLoop = LI.getLoopFor(IDom); 4419 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4420 if (IDomDepth <= IPLoopDepth && 4421 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4422 break; 4423 } 4424 4425 bool AllDominate = true; 4426 Instruction *BetterPos = nullptr; 4427 Instruction *Tentative = IDom->getTerminator(); 4428 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4429 E = Inputs.end(); I != E; ++I) { 4430 Instruction *Inst = *I; 4431 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4432 AllDominate = false; 4433 break; 4434 } 4435 // Attempt to find an insert position in the middle of the block, 4436 // instead of at the end, so that it can be used for other expansions. 4437 if (IDom == Inst->getParent() && 4438 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4439 BetterPos = std::next(BasicBlock::iterator(Inst)); 4440 } 4441 if (!AllDominate) 4442 break; 4443 if (BetterPos) 4444 IP = BetterPos; 4445 else 4446 IP = Tentative; 4447 } 4448 4449 return IP; 4450 } 4451 4452 /// AdjustInsertPositionForExpand - Determine an input position which will be 4453 /// dominated by the operands and which will dominate the result. 4454 BasicBlock::iterator 4455 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4456 const LSRFixup &LF, 4457 const LSRUse &LU, 4458 SCEVExpander &Rewriter) const { 4459 // Collect some instructions which must be dominated by the 4460 // expanding replacement. These must be dominated by any operands that 4461 // will be required in the expansion. 4462 SmallVector<Instruction *, 4> Inputs; 4463 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4464 Inputs.push_back(I); 4465 if (LU.Kind == LSRUse::ICmpZero) 4466 if (Instruction *I = 4467 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4468 Inputs.push_back(I); 4469 if (LF.PostIncLoops.count(L)) { 4470 if (LF.isUseFullyOutsideLoop(L)) 4471 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4472 else 4473 Inputs.push_back(IVIncInsertPos); 4474 } 4475 // The expansion must also be dominated by the increment positions of any 4476 // loops it for which it is using post-inc mode. 4477 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4478 E = LF.PostIncLoops.end(); I != E; ++I) { 4479 const Loop *PIL = *I; 4480 if (PIL == L) continue; 4481 4482 // Be dominated by the loop exit. 4483 SmallVector<BasicBlock *, 4> ExitingBlocks; 4484 PIL->getExitingBlocks(ExitingBlocks); 4485 if (!ExitingBlocks.empty()) { 4486 BasicBlock *BB = ExitingBlocks[0]; 4487 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4488 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4489 Inputs.push_back(BB->getTerminator()); 4490 } 4491 } 4492 4493 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4494 && !isa<DbgInfoIntrinsic>(LowestIP) && 4495 "Insertion point must be a normal instruction"); 4496 4497 // Then, climb up the immediate dominator tree as far as we can go while 4498 // still being dominated by the input positions. 4499 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4500 4501 // Don't insert instructions before PHI nodes. 4502 while (isa<PHINode>(IP)) ++IP; 4503 4504 // Ignore landingpad instructions. 4505 while (isa<LandingPadInst>(IP)) ++IP; 4506 4507 // Ignore debug intrinsics. 4508 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4509 4510 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4511 // IP consistent across expansions and allows the previously inserted 4512 // instructions to be reused by subsequent expansion. 4513 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4514 4515 return IP; 4516 } 4517 4518 /// Expand - Emit instructions for the leading candidate expression for this 4519 /// LSRUse (this is called "expanding"). 4520 Value *LSRInstance::Expand(const LSRFixup &LF, 4521 const Formula &F, 4522 BasicBlock::iterator IP, 4523 SCEVExpander &Rewriter, 4524 SmallVectorImpl<WeakVH> &DeadInsts) const { 4525 const LSRUse &LU = Uses[LF.LUIdx]; 4526 if (LU.RigidFormula) 4527 return LF.OperandValToReplace; 4528 4529 // Determine an input position which will be dominated by the operands and 4530 // which will dominate the result. 4531 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4532 4533 // Inform the Rewriter if we have a post-increment use, so that it can 4534 // perform an advantageous expansion. 4535 Rewriter.setPostInc(LF.PostIncLoops); 4536 4537 // This is the type that the user actually needs. 4538 Type *OpTy = LF.OperandValToReplace->getType(); 4539 // This will be the type that we'll initially expand to. 4540 Type *Ty = F.getType(); 4541 if (!Ty) 4542 // No type known; just expand directly to the ultimate type. 4543 Ty = OpTy; 4544 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4545 // Expand directly to the ultimate type if it's the right size. 4546 Ty = OpTy; 4547 // This is the type to do integer arithmetic in. 4548 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4549 4550 // Build up a list of operands to add together to form the full base. 4551 SmallVector<const SCEV *, 8> Ops; 4552 4553 // Expand the BaseRegs portion. 4554 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4555 E = F.BaseRegs.end(); I != E; ++I) { 4556 const SCEV *Reg = *I; 4557 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4558 4559 // If we're expanding for a post-inc user, make the post-inc adjustment. 4560 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4561 Reg = TransformForPostIncUse(Denormalize, Reg, 4562 LF.UserInst, LF.OperandValToReplace, 4563 Loops, SE, DT); 4564 4565 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); 4566 } 4567 4568 // Expand the ScaledReg portion. 4569 Value *ICmpScaledV = nullptr; 4570 if (F.Scale != 0) { 4571 const SCEV *ScaledS = F.ScaledReg; 4572 4573 // If we're expanding for a post-inc user, make the post-inc adjustment. 4574 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4575 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4576 LF.UserInst, LF.OperandValToReplace, 4577 Loops, SE, DT); 4578 4579 if (LU.Kind == LSRUse::ICmpZero) { 4580 // Expand ScaleReg as if it was part of the base regs. 4581 if (F.Scale == 1) 4582 Ops.push_back( 4583 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); 4584 else { 4585 // An interesting way of "folding" with an icmp is to use a negated 4586 // scale, which we'll implement by inserting it into the other operand 4587 // of the icmp. 4588 assert(F.Scale == -1 && 4589 "The only scale supported by ICmpZero uses is -1!"); 4590 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4591 } 4592 } else { 4593 // Otherwise just expand the scaled register and an explicit scale, 4594 // which is expected to be matched as part of the address. 4595 4596 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4597 // Unless the addressing mode will not be folded. 4598 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4599 isAMCompletelyFolded(TTI, LU, F)) { 4600 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4601 Ops.clear(); 4602 Ops.push_back(SE.getUnknown(FullV)); 4603 } 4604 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); 4605 if (F.Scale != 1) 4606 ScaledS = 4607 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4608 Ops.push_back(ScaledS); 4609 } 4610 } 4611 4612 // Expand the GV portion. 4613 if (F.BaseGV) { 4614 // Flush the operand list to suppress SCEVExpander hoisting. 4615 if (!Ops.empty()) { 4616 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4617 Ops.clear(); 4618 Ops.push_back(SE.getUnknown(FullV)); 4619 } 4620 Ops.push_back(SE.getUnknown(F.BaseGV)); 4621 } 4622 4623 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4624 // unfolded offsets. LSR assumes they both live next to their uses. 4625 if (!Ops.empty()) { 4626 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4627 Ops.clear(); 4628 Ops.push_back(SE.getUnknown(FullV)); 4629 } 4630 4631 // Expand the immediate portion. 4632 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4633 if (Offset != 0) { 4634 if (LU.Kind == LSRUse::ICmpZero) { 4635 // The other interesting way of "folding" with an ICmpZero is to use a 4636 // negated immediate. 4637 if (!ICmpScaledV) 4638 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4639 else { 4640 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4641 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4642 } 4643 } else { 4644 // Just add the immediate values. These again are expected to be matched 4645 // as part of the address. 4646 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4647 } 4648 } 4649 4650 // Expand the unfolded offset portion. 4651 int64_t UnfoldedOffset = F.UnfoldedOffset; 4652 if (UnfoldedOffset != 0) { 4653 // Just add the immediate values. 4654 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4655 UnfoldedOffset))); 4656 } 4657 4658 // Emit instructions summing all the operands. 4659 const SCEV *FullS = Ops.empty() ? 4660 SE.getConstant(IntTy, 0) : 4661 SE.getAddExpr(Ops); 4662 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4663 4664 // We're done expanding now, so reset the rewriter. 4665 Rewriter.clearPostInc(); 4666 4667 // An ICmpZero Formula represents an ICmp which we're handling as a 4668 // comparison against zero. Now that we've expanded an expression for that 4669 // form, update the ICmp's other operand. 4670 if (LU.Kind == LSRUse::ICmpZero) { 4671 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4672 DeadInsts.push_back(CI->getOperand(1)); 4673 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4674 "a scale at the same time!"); 4675 if (F.Scale == -1) { 4676 if (ICmpScaledV->getType() != OpTy) { 4677 Instruction *Cast = 4678 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4679 OpTy, false), 4680 ICmpScaledV, OpTy, "tmp", CI); 4681 ICmpScaledV = Cast; 4682 } 4683 CI->setOperand(1, ICmpScaledV); 4684 } else { 4685 // A scale of 1 means that the scale has been expanded as part of the 4686 // base regs. 4687 assert((F.Scale == 0 || F.Scale == 1) && 4688 "ICmp does not support folding a global value and " 4689 "a scale at the same time!"); 4690 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4691 -(uint64_t)Offset); 4692 if (C->getType() != OpTy) 4693 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4694 OpTy, false), 4695 C, OpTy); 4696 4697 CI->setOperand(1, C); 4698 } 4699 } 4700 4701 return FullV; 4702 } 4703 4704 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4705 /// of their operands effectively happens in their predecessor blocks, so the 4706 /// expression may need to be expanded in multiple places. 4707 void LSRInstance::RewriteForPHI(PHINode *PN, 4708 const LSRFixup &LF, 4709 const Formula &F, 4710 SCEVExpander &Rewriter, 4711 SmallVectorImpl<WeakVH> &DeadInsts, 4712 Pass *P) const { 4713 DenseMap<BasicBlock *, Value *> Inserted; 4714 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4715 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4716 BasicBlock *BB = PN->getIncomingBlock(i); 4717 4718 // If this is a critical edge, split the edge so that we do not insert 4719 // the code on all predecessor/successor paths. We do this unless this 4720 // is the canonical backedge for this loop, which complicates post-inc 4721 // users. 4722 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4723 !isa<IndirectBrInst>(BB->getTerminator())) { 4724 BasicBlock *Parent = PN->getParent(); 4725 Loop *PNLoop = LI.getLoopFor(Parent); 4726 if (!PNLoop || Parent != PNLoop->getHeader()) { 4727 // Split the critical edge. 4728 BasicBlock *NewBB = nullptr; 4729 if (!Parent->isLandingPad()) { 4730 NewBB = SplitCriticalEdge(BB, Parent, 4731 CriticalEdgeSplittingOptions(&DT, &LI) 4732 .setMergeIdenticalEdges() 4733 .setDontDeleteUselessPHIs()); 4734 } else { 4735 SmallVector<BasicBlock*, 2> NewBBs; 4736 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, 4737 /*AliasAnalysis*/ nullptr, &DT, &LI); 4738 NewBB = NewBBs[0]; 4739 } 4740 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4741 // phi predecessors are identical. The simple thing to do is skip 4742 // splitting in this case rather than complicate the API. 4743 if (NewBB) { 4744 // If PN is outside of the loop and BB is in the loop, we want to 4745 // move the block to be immediately before the PHI block, not 4746 // immediately after BB. 4747 if (L->contains(BB) && !L->contains(PN)) 4748 NewBB->moveBefore(PN->getParent()); 4749 4750 // Splitting the edge can reduce the number of PHI entries we have. 4751 e = PN->getNumIncomingValues(); 4752 BB = NewBB; 4753 i = PN->getBasicBlockIndex(BB); 4754 } 4755 } 4756 } 4757 4758 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4759 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4760 if (!Pair.second) 4761 PN->setIncomingValue(i, Pair.first->second); 4762 else { 4763 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4764 4765 // If this is reuse-by-noop-cast, insert the noop cast. 4766 Type *OpTy = LF.OperandValToReplace->getType(); 4767 if (FullV->getType() != OpTy) 4768 FullV = 4769 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4770 OpTy, false), 4771 FullV, LF.OperandValToReplace->getType(), 4772 "tmp", BB->getTerminator()); 4773 4774 PN->setIncomingValue(i, FullV); 4775 Pair.first->second = FullV; 4776 } 4777 } 4778 } 4779 4780 /// Rewrite - Emit instructions for the leading candidate expression for this 4781 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4782 /// the newly expanded value. 4783 void LSRInstance::Rewrite(const LSRFixup &LF, 4784 const Formula &F, 4785 SCEVExpander &Rewriter, 4786 SmallVectorImpl<WeakVH> &DeadInsts, 4787 Pass *P) const { 4788 // First, find an insertion point that dominates UserInst. For PHI nodes, 4789 // find the nearest block which dominates all the relevant uses. 4790 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4791 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4792 } else { 4793 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4794 4795 // If this is reuse-by-noop-cast, insert the noop cast. 4796 Type *OpTy = LF.OperandValToReplace->getType(); 4797 if (FullV->getType() != OpTy) { 4798 Instruction *Cast = 4799 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4800 FullV, OpTy, "tmp", LF.UserInst); 4801 FullV = Cast; 4802 } 4803 4804 // Update the user. ICmpZero is handled specially here (for now) because 4805 // Expand may have updated one of the operands of the icmp already, and 4806 // its new value may happen to be equal to LF.OperandValToReplace, in 4807 // which case doing replaceUsesOfWith leads to replacing both operands 4808 // with the same value. TODO: Reorganize this. 4809 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4810 LF.UserInst->setOperand(0, FullV); 4811 else 4812 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4813 } 4814 4815 DeadInsts.push_back(LF.OperandValToReplace); 4816 } 4817 4818 /// ImplementSolution - Rewrite all the fixup locations with new values, 4819 /// following the chosen solution. 4820 void 4821 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4822 Pass *P) { 4823 // Keep track of instructions we may have made dead, so that 4824 // we can remove them after we are done working. 4825 SmallVector<WeakVH, 16> DeadInsts; 4826 4827 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4828 "lsr"); 4829 #ifndef NDEBUG 4830 Rewriter.setDebugType(DEBUG_TYPE); 4831 #endif 4832 Rewriter.disableCanonicalMode(); 4833 Rewriter.enableLSRMode(); 4834 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4835 4836 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4837 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4838 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4839 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4840 Rewriter.setChainedPhi(PN); 4841 } 4842 4843 // Expand the new value definitions and update the users. 4844 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4845 E = Fixups.end(); I != E; ++I) { 4846 const LSRFixup &Fixup = *I; 4847 4848 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4849 4850 Changed = true; 4851 } 4852 4853 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4854 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4855 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4856 Changed = true; 4857 } 4858 // Clean up after ourselves. This must be done before deleting any 4859 // instructions. 4860 Rewriter.clear(); 4861 4862 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4863 } 4864 4865 LSRInstance::LSRInstance(Loop *L, Pass *P) 4866 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4867 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4868 LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), 4869 TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 4870 *L->getHeader()->getParent())), 4871 L(L), Changed(false), IVIncInsertPos(nullptr) { 4872 // If LoopSimplify form is not available, stay out of trouble. 4873 if (!L->isLoopSimplifyForm()) 4874 return; 4875 4876 // If there's no interesting work to be done, bail early. 4877 if (IU.empty()) return; 4878 4879 // If there's too much analysis to be done, bail early. We won't be able to 4880 // model the problem anyway. 4881 unsigned NumUsers = 0; 4882 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4883 if (++NumUsers > MaxIVUsers) { 4884 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4885 << "\n"); 4886 return; 4887 } 4888 } 4889 4890 #ifndef NDEBUG 4891 // All dominating loops must have preheaders, or SCEVExpander may not be able 4892 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4893 // 4894 // IVUsers analysis should only create users that are dominated by simple loop 4895 // headers. Since this loop should dominate all of its users, its user list 4896 // should be empty if this loop itself is not within a simple loop nest. 4897 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4898 Rung; Rung = Rung->getIDom()) { 4899 BasicBlock *BB = Rung->getBlock(); 4900 const Loop *DomLoop = LI.getLoopFor(BB); 4901 if (DomLoop && DomLoop->getHeader() == BB) { 4902 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4903 } 4904 } 4905 #endif // DEBUG 4906 4907 DEBUG(dbgs() << "\nLSR on loop "; 4908 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4909 dbgs() << ":\n"); 4910 4911 // First, perform some low-level loop optimizations. 4912 OptimizeShadowIV(); 4913 OptimizeLoopTermCond(); 4914 4915 // If loop preparation eliminates all interesting IV users, bail. 4916 if (IU.empty()) return; 4917 4918 // Skip nested loops until we can model them better with formulae. 4919 if (!L->empty()) { 4920 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4921 return; 4922 } 4923 4924 // Start collecting data and preparing for the solver. 4925 CollectChains(); 4926 CollectInterestingTypesAndFactors(); 4927 CollectFixupsAndInitialFormulae(); 4928 CollectLoopInvariantFixupsAndFormulae(); 4929 4930 assert(!Uses.empty() && "IVUsers reported at least one use"); 4931 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4932 print_uses(dbgs())); 4933 4934 // Now use the reuse data to generate a bunch of interesting ways 4935 // to formulate the values needed for the uses. 4936 GenerateAllReuseFormulae(); 4937 4938 FilterOutUndesirableDedicatedRegisters(); 4939 NarrowSearchSpaceUsingHeuristics(); 4940 4941 SmallVector<const Formula *, 8> Solution; 4942 Solve(Solution); 4943 4944 // Release memory that is no longer needed. 4945 Factors.clear(); 4946 Types.clear(); 4947 RegUses.clear(); 4948 4949 if (Solution.empty()) 4950 return; 4951 4952 #ifndef NDEBUG 4953 // Formulae should be legal. 4954 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4955 I != E; ++I) { 4956 const LSRUse &LU = *I; 4957 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4958 JE = LU.Formulae.end(); 4959 J != JE; ++J) 4960 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4961 *J) && "Illegal formula generated!"); 4962 }; 4963 #endif 4964 4965 // Now that we've decided what we want, make it so. 4966 ImplementSolution(Solution, P); 4967 } 4968 4969 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4970 if (Factors.empty() && Types.empty()) return; 4971 4972 OS << "LSR has identified the following interesting factors and types: "; 4973 bool First = true; 4974 4975 for (SmallSetVector<int64_t, 8>::const_iterator 4976 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4977 if (!First) OS << ", "; 4978 First = false; 4979 OS << '*' << *I; 4980 } 4981 4982 for (SmallSetVector<Type *, 4>::const_iterator 4983 I = Types.begin(), E = Types.end(); I != E; ++I) { 4984 if (!First) OS << ", "; 4985 First = false; 4986 OS << '(' << **I << ')'; 4987 } 4988 OS << '\n'; 4989 } 4990 4991 void LSRInstance::print_fixups(raw_ostream &OS) const { 4992 OS << "LSR is examining the following fixup sites:\n"; 4993 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4994 E = Fixups.end(); I != E; ++I) { 4995 dbgs() << " "; 4996 I->print(OS); 4997 OS << '\n'; 4998 } 4999 } 5000 5001 void LSRInstance::print_uses(raw_ostream &OS) const { 5002 OS << "LSR is examining the following uses:\n"; 5003 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 5004 E = Uses.end(); I != E; ++I) { 5005 const LSRUse &LU = *I; 5006 dbgs() << " "; 5007 LU.print(OS); 5008 OS << '\n'; 5009 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 5010 JE = LU.Formulae.end(); J != JE; ++J) { 5011 OS << " "; 5012 J->print(OS); 5013 OS << '\n'; 5014 } 5015 } 5016 } 5017 5018 void LSRInstance::print(raw_ostream &OS) const { 5019 print_factors_and_types(OS); 5020 print_fixups(OS); 5021 print_uses(OS); 5022 } 5023 5024 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5025 void LSRInstance::dump() const { 5026 print(errs()); errs() << '\n'; 5027 } 5028 #endif 5029 5030 namespace { 5031 5032 class LoopStrengthReduce : public LoopPass { 5033 public: 5034 static char ID; // Pass ID, replacement for typeid 5035 LoopStrengthReduce(); 5036 5037 private: 5038 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5039 void getAnalysisUsage(AnalysisUsage &AU) const override; 5040 }; 5041 5042 } 5043 5044 char LoopStrengthReduce::ID = 0; 5045 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5046 "Loop Strength Reduction", false, false) 5047 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5048 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5049 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5050 INITIALIZE_PASS_DEPENDENCY(IVUsers) 5051 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5052 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5053 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5054 "Loop Strength Reduction", false, false) 5055 5056 5057 Pass *llvm::createLoopStrengthReducePass() { 5058 return new LoopStrengthReduce(); 5059 } 5060 5061 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5062 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5063 } 5064 5065 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5066 // We split critical edges, so we change the CFG. However, we do update 5067 // many analyses if they are around. 5068 AU.addPreservedID(LoopSimplifyID); 5069 5070 AU.addRequired<LoopInfoWrapperPass>(); 5071 AU.addPreserved<LoopInfoWrapperPass>(); 5072 AU.addRequiredID(LoopSimplifyID); 5073 AU.addRequired<DominatorTreeWrapperPass>(); 5074 AU.addPreserved<DominatorTreeWrapperPass>(); 5075 AU.addRequired<ScalarEvolution>(); 5076 AU.addPreserved<ScalarEvolution>(); 5077 // Requiring LoopSimplify a second time here prevents IVUsers from running 5078 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5079 AU.addRequiredID(LoopSimplifyID); 5080 AU.addRequired<IVUsers>(); 5081 AU.addPreserved<IVUsers>(); 5082 AU.addRequired<TargetTransformInfoWrapperPass>(); 5083 } 5084 5085 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5086 if (skipOptnoneFunction(L)) 5087 return false; 5088 5089 bool Changed = false; 5090 5091 // Run the main LSR transformation. 5092 Changed |= LSRInstance(L, this).getChanged(); 5093 5094 // Remove any extra phis created by processing inner loops. 5095 Changed |= DeleteDeadPHIs(L->getHeader()); 5096 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5097 SmallVector<WeakVH, 16> DeadInsts; 5098 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5099 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr"); 5100 #ifndef NDEBUG 5101 Rewriter.setDebugType(DEBUG_TYPE); 5102 #endif 5103 unsigned numFolded = Rewriter.replaceCongruentIVs( 5104 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5105 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5106 *L->getHeader()->getParent())); 5107 if (numFolded) { 5108 Changed = true; 5109 DeleteTriviallyDeadInstructions(DeadInsts); 5110 DeleteDeadPHIs(L->getHeader()); 5111 } 5112 } 5113 return Changed; 5114 } 5115