1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/ADT/DenseSet.h" 58 #include "llvm/ADT/Hashing.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SetVector.h" 61 #include "llvm/ADT/SmallBitVector.h" 62 #include "llvm/Analysis/IVUsers.h" 63 #include "llvm/Analysis/LoopPass.h" 64 #include "llvm/Analysis/ScalarEvolutionExpander.h" 65 #include "llvm/Analysis/TargetTransformInfo.h" 66 #include "llvm/IR/Constants.h" 67 #include "llvm/IR/DerivedTypes.h" 68 #include "llvm/IR/Dominators.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/ValueHandle.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include <algorithm> 79 using namespace llvm; 80 81 #define DEBUG_TYPE "loop-reduce" 82 83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 84 /// bail out. This threshold is far beyond the number of users that LSR can 85 /// conceivably solve, so it should not affect generated code, but catches the 86 /// worst cases before LSR burns too much compile time and stack space. 87 static const unsigned MaxIVUsers = 200; 88 89 // Temporary flag to cleanup congruent phis after LSR phi expansion. 90 // It's currently disabled until we can determine whether it's truly useful or 91 // not. The flag should be removed after the v3.0 release. 92 // This is now needed for ivchains. 93 static cl::opt<bool> EnablePhiElim( 94 "enable-lsr-phielim", cl::Hidden, cl::init(true), 95 cl::desc("Enable LSR phi elimination")); 96 97 #ifndef NDEBUG 98 // Stress test IV chain generation. 99 static cl::opt<bool> StressIVChain( 100 "stress-ivchain", cl::Hidden, cl::init(false), 101 cl::desc("Stress test LSR IV chains")); 102 #else 103 static bool StressIVChain = false; 104 #endif 105 106 namespace { 107 108 /// RegSortData - This class holds data which is used to order reuse candidates. 109 class RegSortData { 110 public: 111 /// UsedByIndices - This represents the set of LSRUse indices which reference 112 /// a particular register. 113 SmallBitVector UsedByIndices; 114 115 void print(raw_ostream &OS) const; 116 void dump() const; 117 }; 118 119 } 120 121 void RegSortData::print(raw_ostream &OS) const { 122 OS << "[NumUses=" << UsedByIndices.count() << ']'; 123 } 124 125 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 126 void RegSortData::dump() const { 127 print(errs()); errs() << '\n'; 128 } 129 #endif 130 131 namespace { 132 133 /// RegUseTracker - Map register candidates to information about how they are 134 /// used. 135 class RegUseTracker { 136 typedef DenseMap<const SCEV *, RegSortData> RegUsesTy; 137 138 RegUsesTy RegUsesMap; 139 SmallVector<const SCEV *, 16> RegSequence; 140 141 public: 142 void CountRegister(const SCEV *Reg, size_t LUIdx); 143 void DropRegister(const SCEV *Reg, size_t LUIdx); 144 void SwapAndDropUse(size_t LUIdx, size_t LastLUIdx); 145 146 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 147 148 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 149 150 void clear(); 151 152 typedef SmallVectorImpl<const SCEV *>::iterator iterator; 153 typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator; 154 iterator begin() { return RegSequence.begin(); } 155 iterator end() { return RegSequence.end(); } 156 const_iterator begin() const { return RegSequence.begin(); } 157 const_iterator end() const { return RegSequence.end(); } 158 }; 159 160 } 161 162 void 163 RegUseTracker::CountRegister(const SCEV *Reg, size_t LUIdx) { 164 std::pair<RegUsesTy::iterator, bool> Pair = 165 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 166 RegSortData &RSD = Pair.first->second; 167 if (Pair.second) 168 RegSequence.push_back(Reg); 169 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 170 RSD.UsedByIndices.set(LUIdx); 171 } 172 173 void 174 RegUseTracker::DropRegister(const SCEV *Reg, size_t LUIdx) { 175 RegUsesTy::iterator It = RegUsesMap.find(Reg); 176 assert(It != RegUsesMap.end()); 177 RegSortData &RSD = It->second; 178 assert(RSD.UsedByIndices.size() > LUIdx); 179 RSD.UsedByIndices.reset(LUIdx); 180 } 181 182 void 183 RegUseTracker::SwapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 184 assert(LUIdx <= LastLUIdx); 185 186 // Update RegUses. The data structure is not optimized for this purpose; 187 // we must iterate through it and update each of the bit vectors. 188 for (RegUsesTy::iterator I = RegUsesMap.begin(), E = RegUsesMap.end(); 189 I != E; ++I) { 190 SmallBitVector &UsedByIndices = I->second.UsedByIndices; 191 if (LUIdx < UsedByIndices.size()) 192 UsedByIndices[LUIdx] = 193 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0; 194 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 195 } 196 } 197 198 bool 199 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 200 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 201 if (I == RegUsesMap.end()) 202 return false; 203 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 204 int i = UsedByIndices.find_first(); 205 if (i == -1) return false; 206 if ((size_t)i != LUIdx) return true; 207 return UsedByIndices.find_next(i) != -1; 208 } 209 210 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 211 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 212 assert(I != RegUsesMap.end() && "Unknown register!"); 213 return I->second.UsedByIndices; 214 } 215 216 void RegUseTracker::clear() { 217 RegUsesMap.clear(); 218 RegSequence.clear(); 219 } 220 221 namespace { 222 223 /// Formula - This class holds information that describes a formula for 224 /// computing satisfying a use. It may include broken-out immediates and scaled 225 /// registers. 226 struct Formula { 227 /// Global base address used for complex addressing. 228 GlobalValue *BaseGV; 229 230 /// Base offset for complex addressing. 231 int64_t BaseOffset; 232 233 /// Whether any complex addressing has a base register. 234 bool HasBaseReg; 235 236 /// The scale of any complex addressing. 237 int64_t Scale; 238 239 /// BaseRegs - The list of "base" registers for this use. When this is 240 /// non-empty. The canonical representation of a formula is 241 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 242 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 243 /// #1 enforces that the scaled register is always used when at least two 244 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 245 /// #2 enforces that 1 * reg is reg. 246 /// This invariant can be temporarly broken while building a formula. 247 /// However, every formula inserted into the LSRInstance must be in canonical 248 /// form. 249 SmallVector<const SCEV *, 4> BaseRegs; 250 251 /// ScaledReg - The 'scaled' register for this use. This should be non-null 252 /// when Scale is not zero. 253 const SCEV *ScaledReg; 254 255 /// UnfoldedOffset - An additional constant offset which added near the 256 /// use. This requires a temporary register, but the offset itself can 257 /// live in an add immediate field rather than a register. 258 int64_t UnfoldedOffset; 259 260 Formula() 261 : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0), 262 ScaledReg(nullptr), UnfoldedOffset(0) {} 263 264 void InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 265 266 bool isCanonical() const; 267 268 void Canonicalize(); 269 270 bool Unscale(); 271 272 size_t getNumRegs() const; 273 Type *getType() const; 274 275 void DeleteBaseReg(const SCEV *&S); 276 277 bool referencesReg(const SCEV *S) const; 278 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 279 const RegUseTracker &RegUses) const; 280 281 void print(raw_ostream &OS) const; 282 void dump() const; 283 }; 284 285 } 286 287 /// DoInitialMatch - Recursion helper for InitialMatch. 288 static void DoInitialMatch(const SCEV *S, Loop *L, 289 SmallVectorImpl<const SCEV *> &Good, 290 SmallVectorImpl<const SCEV *> &Bad, 291 ScalarEvolution &SE) { 292 // Collect expressions which properly dominate the loop header. 293 if (SE.properlyDominates(S, L->getHeader())) { 294 Good.push_back(S); 295 return; 296 } 297 298 // Look at add operands. 299 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 300 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 301 I != E; ++I) 302 DoInitialMatch(*I, L, Good, Bad, SE); 303 return; 304 } 305 306 // Look at addrec operands. 307 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 308 if (!AR->getStart()->isZero()) { 309 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 310 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 311 AR->getStepRecurrence(SE), 312 // FIXME: AR->getNoWrapFlags() 313 AR->getLoop(), SCEV::FlagAnyWrap), 314 L, Good, Bad, SE); 315 return; 316 } 317 318 // Handle a multiplication by -1 (negation) if it didn't fold. 319 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 320 if (Mul->getOperand(0)->isAllOnesValue()) { 321 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 322 const SCEV *NewMul = SE.getMulExpr(Ops); 323 324 SmallVector<const SCEV *, 4> MyGood; 325 SmallVector<const SCEV *, 4> MyBad; 326 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 327 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 328 SE.getEffectiveSCEVType(NewMul->getType()))); 329 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyGood.begin(), 330 E = MyGood.end(); I != E; ++I) 331 Good.push_back(SE.getMulExpr(NegOne, *I)); 332 for (SmallVectorImpl<const SCEV *>::const_iterator I = MyBad.begin(), 333 E = MyBad.end(); I != E; ++I) 334 Bad.push_back(SE.getMulExpr(NegOne, *I)); 335 return; 336 } 337 338 // Ok, we can't do anything interesting. Just stuff the whole thing into a 339 // register and hope for the best. 340 Bad.push_back(S); 341 } 342 343 /// InitialMatch - Incorporate loop-variant parts of S into this Formula, 344 /// attempting to keep all loop-invariant and loop-computable values in a 345 /// single base register. 346 void Formula::InitialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 347 SmallVector<const SCEV *, 4> Good; 348 SmallVector<const SCEV *, 4> Bad; 349 DoInitialMatch(S, L, Good, Bad, SE); 350 if (!Good.empty()) { 351 const SCEV *Sum = SE.getAddExpr(Good); 352 if (!Sum->isZero()) 353 BaseRegs.push_back(Sum); 354 HasBaseReg = true; 355 } 356 if (!Bad.empty()) { 357 const SCEV *Sum = SE.getAddExpr(Bad); 358 if (!Sum->isZero()) 359 BaseRegs.push_back(Sum); 360 HasBaseReg = true; 361 } 362 Canonicalize(); 363 } 364 365 /// \brief Check whether or not this formula statisfies the canonical 366 /// representation. 367 /// \see Formula::BaseRegs. 368 bool Formula::isCanonical() const { 369 if (ScaledReg) 370 return Scale != 1 || !BaseRegs.empty(); 371 return BaseRegs.size() <= 1; 372 } 373 374 /// \brief Helper method to morph a formula into its canonical representation. 375 /// \see Formula::BaseRegs. 376 /// Every formula having more than one base register, must use the ScaledReg 377 /// field. Otherwise, we would have to do special cases everywhere in LSR 378 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 379 /// On the other hand, 1*reg should be canonicalized into reg. 380 void Formula::Canonicalize() { 381 if (isCanonical()) 382 return; 383 // So far we did not need this case. This is easy to implement but it is 384 // useless to maintain dead code. Beside it could hurt compile time. 385 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 386 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 387 ScaledReg = BaseRegs.back(); 388 BaseRegs.pop_back(); 389 Scale = 1; 390 size_t BaseRegsSize = BaseRegs.size(); 391 size_t Try = 0; 392 // If ScaledReg is an invariant, try to find a variant expression. 393 while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg)) 394 std::swap(ScaledReg, BaseRegs[Try++]); 395 } 396 397 /// \brief Get rid of the scale in the formula. 398 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 399 /// \return true if it was possible to get rid of the scale, false otherwise. 400 /// \note After this operation the formula may not be in the canonical form. 401 bool Formula::Unscale() { 402 if (Scale != 1) 403 return false; 404 Scale = 0; 405 BaseRegs.push_back(ScaledReg); 406 ScaledReg = nullptr; 407 return true; 408 } 409 410 /// getNumRegs - Return the total number of register operands used by this 411 /// formula. This does not include register uses implied by non-constant 412 /// addrec strides. 413 size_t Formula::getNumRegs() const { 414 return !!ScaledReg + BaseRegs.size(); 415 } 416 417 /// getType - Return the type of this formula, if it has one, or null 418 /// otherwise. This type is meaningless except for the bit size. 419 Type *Formula::getType() const { 420 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 421 ScaledReg ? ScaledReg->getType() : 422 BaseGV ? BaseGV->getType() : 423 nullptr; 424 } 425 426 /// DeleteBaseReg - Delete the given base reg from the BaseRegs list. 427 void Formula::DeleteBaseReg(const SCEV *&S) { 428 if (&S != &BaseRegs.back()) 429 std::swap(S, BaseRegs.back()); 430 BaseRegs.pop_back(); 431 } 432 433 /// referencesReg - Test if this formula references the given register. 434 bool Formula::referencesReg(const SCEV *S) const { 435 return S == ScaledReg || 436 std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end(); 437 } 438 439 /// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers 440 /// which are used by uses other than the use with the given index. 441 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 442 const RegUseTracker &RegUses) const { 443 if (ScaledReg) 444 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 445 return true; 446 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 447 E = BaseRegs.end(); I != E; ++I) 448 if (RegUses.isRegUsedByUsesOtherThan(*I, LUIdx)) 449 return true; 450 return false; 451 } 452 453 void Formula::print(raw_ostream &OS) const { 454 bool First = true; 455 if (BaseGV) { 456 if (!First) OS << " + "; else First = false; 457 BaseGV->printAsOperand(OS, /*PrintType=*/false); 458 } 459 if (BaseOffset != 0) { 460 if (!First) OS << " + "; else First = false; 461 OS << BaseOffset; 462 } 463 for (SmallVectorImpl<const SCEV *>::const_iterator I = BaseRegs.begin(), 464 E = BaseRegs.end(); I != E; ++I) { 465 if (!First) OS << " + "; else First = false; 466 OS << "reg(" << **I << ')'; 467 } 468 if (HasBaseReg && BaseRegs.empty()) { 469 if (!First) OS << " + "; else First = false; 470 OS << "**error: HasBaseReg**"; 471 } else if (!HasBaseReg && !BaseRegs.empty()) { 472 if (!First) OS << " + "; else First = false; 473 OS << "**error: !HasBaseReg**"; 474 } 475 if (Scale != 0) { 476 if (!First) OS << " + "; else First = false; 477 OS << Scale << "*reg("; 478 if (ScaledReg) 479 OS << *ScaledReg; 480 else 481 OS << "<unknown>"; 482 OS << ')'; 483 } 484 if (UnfoldedOffset != 0) { 485 if (!First) OS << " + "; 486 OS << "imm(" << UnfoldedOffset << ')'; 487 } 488 } 489 490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 491 void Formula::dump() const { 492 print(errs()); errs() << '\n'; 493 } 494 #endif 495 496 /// isAddRecSExtable - Return true if the given addrec can be sign-extended 497 /// without changing its value. 498 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 499 Type *WideTy = 500 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 501 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 502 } 503 504 /// isAddSExtable - Return true if the given add can be sign-extended 505 /// without changing its value. 506 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 507 Type *WideTy = 508 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 509 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 510 } 511 512 /// isMulSExtable - Return true if the given mul can be sign-extended 513 /// without changing its value. 514 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 515 Type *WideTy = 516 IntegerType::get(SE.getContext(), 517 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 518 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 519 } 520 521 /// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined 522 /// and if the remainder is known to be zero, or null otherwise. If 523 /// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified 524 /// to Y, ignoring that the multiplication may overflow, which is useful when 525 /// the result will be used in a context where the most significant bits are 526 /// ignored. 527 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 528 ScalarEvolution &SE, 529 bool IgnoreSignificantBits = false) { 530 // Handle the trivial case, which works for any SCEV type. 531 if (LHS == RHS) 532 return SE.getConstant(LHS->getType(), 1); 533 534 // Handle a few RHS special cases. 535 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 536 if (RC) { 537 const APInt &RA = RC->getValue()->getValue(); 538 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 539 // some folding. 540 if (RA.isAllOnesValue()) 541 return SE.getMulExpr(LHS, RC); 542 // Handle x /s 1 as x. 543 if (RA == 1) 544 return LHS; 545 } 546 547 // Check for a division of a constant by a constant. 548 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 549 if (!RC) 550 return nullptr; 551 const APInt &LA = C->getValue()->getValue(); 552 const APInt &RA = RC->getValue()->getValue(); 553 if (LA.srem(RA) != 0) 554 return nullptr; 555 return SE.getConstant(LA.sdiv(RA)); 556 } 557 558 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 559 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 560 if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) { 561 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 562 IgnoreSignificantBits); 563 if (!Step) return nullptr; 564 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 565 IgnoreSignificantBits); 566 if (!Start) return nullptr; 567 // FlagNW is independent of the start value, step direction, and is 568 // preserved with smaller magnitude steps. 569 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 570 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 571 } 572 return nullptr; 573 } 574 575 // Distribute the sdiv over add operands, if the add doesn't overflow. 576 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 577 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 578 SmallVector<const SCEV *, 8> Ops; 579 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 580 I != E; ++I) { 581 const SCEV *Op = getExactSDiv(*I, RHS, SE, 582 IgnoreSignificantBits); 583 if (!Op) return nullptr; 584 Ops.push_back(Op); 585 } 586 return SE.getAddExpr(Ops); 587 } 588 return nullptr; 589 } 590 591 // Check for a multiply operand that we can pull RHS out of. 592 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 593 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 594 SmallVector<const SCEV *, 4> Ops; 595 bool Found = false; 596 for (SCEVMulExpr::op_iterator I = Mul->op_begin(), E = Mul->op_end(); 597 I != E; ++I) { 598 const SCEV *S = *I; 599 if (!Found) 600 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 601 IgnoreSignificantBits)) { 602 S = Q; 603 Found = true; 604 } 605 Ops.push_back(S); 606 } 607 return Found ? SE.getMulExpr(Ops) : nullptr; 608 } 609 return nullptr; 610 } 611 612 // Otherwise we don't know. 613 return nullptr; 614 } 615 616 /// ExtractImmediate - If S involves the addition of a constant integer value, 617 /// return that integer value, and mutate S to point to a new SCEV with that 618 /// value excluded. 619 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 620 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 621 if (C->getValue()->getValue().getMinSignedBits() <= 64) { 622 S = SE.getConstant(C->getType(), 0); 623 return C->getValue()->getSExtValue(); 624 } 625 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 626 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 627 int64_t Result = ExtractImmediate(NewOps.front(), SE); 628 if (Result != 0) 629 S = SE.getAddExpr(NewOps); 630 return Result; 631 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 632 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 633 int64_t Result = ExtractImmediate(NewOps.front(), SE); 634 if (Result != 0) 635 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 636 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 637 SCEV::FlagAnyWrap); 638 return Result; 639 } 640 return 0; 641 } 642 643 /// ExtractSymbol - If S involves the addition of a GlobalValue address, 644 /// return that symbol, and mutate S to point to a new SCEV with that 645 /// value excluded. 646 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 647 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 648 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 649 S = SE.getConstant(GV->getType(), 0); 650 return GV; 651 } 652 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 653 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 654 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 655 if (Result) 656 S = SE.getAddExpr(NewOps); 657 return Result; 658 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 659 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 660 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 661 if (Result) 662 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 663 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 664 SCEV::FlagAnyWrap); 665 return Result; 666 } 667 return nullptr; 668 } 669 670 /// isAddressUse - Returns true if the specified instruction is using the 671 /// specified value as an address. 672 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 673 bool isAddress = isa<LoadInst>(Inst); 674 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 675 if (SI->getOperand(1) == OperandVal) 676 isAddress = true; 677 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 678 // Addressing modes can also be folded into prefetches and a variety 679 // of intrinsics. 680 switch (II->getIntrinsicID()) { 681 default: break; 682 case Intrinsic::prefetch: 683 case Intrinsic::x86_sse_storeu_ps: 684 case Intrinsic::x86_sse2_storeu_pd: 685 case Intrinsic::x86_sse2_storeu_dq: 686 case Intrinsic::x86_sse2_storel_dq: 687 if (II->getArgOperand(0) == OperandVal) 688 isAddress = true; 689 break; 690 } 691 } 692 return isAddress; 693 } 694 695 /// getAccessType - Return the type of the memory being accessed. 696 static Type *getAccessType(const Instruction *Inst) { 697 Type *AccessTy = Inst->getType(); 698 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 699 AccessTy = SI->getOperand(0)->getType(); 700 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 701 // Addressing modes can also be folded into prefetches and a variety 702 // of intrinsics. 703 switch (II->getIntrinsicID()) { 704 default: break; 705 case Intrinsic::x86_sse_storeu_ps: 706 case Intrinsic::x86_sse2_storeu_pd: 707 case Intrinsic::x86_sse2_storeu_dq: 708 case Intrinsic::x86_sse2_storel_dq: 709 AccessTy = II->getArgOperand(0)->getType(); 710 break; 711 } 712 } 713 714 // All pointers have the same requirements, so canonicalize them to an 715 // arbitrary pointer type to minimize variation. 716 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy)) 717 AccessTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 718 PTy->getAddressSpace()); 719 720 return AccessTy; 721 } 722 723 /// isExistingPhi - Return true if this AddRec is already a phi in its loop. 724 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 725 for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin(); 726 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 727 if (SE.isSCEVable(PN->getType()) && 728 (SE.getEffectiveSCEVType(PN->getType()) == 729 SE.getEffectiveSCEVType(AR->getType())) && 730 SE.getSCEV(PN) == AR) 731 return true; 732 } 733 return false; 734 } 735 736 /// Check if expanding this expression is likely to incur significant cost. This 737 /// is tricky because SCEV doesn't track which expressions are actually computed 738 /// by the current IR. 739 /// 740 /// We currently allow expansion of IV increments that involve adds, 741 /// multiplication by constants, and AddRecs from existing phis. 742 /// 743 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 744 /// obvious multiple of the UDivExpr. 745 static bool isHighCostExpansion(const SCEV *S, 746 SmallPtrSetImpl<const SCEV*> &Processed, 747 ScalarEvolution &SE) { 748 // Zero/One operand expressions 749 switch (S->getSCEVType()) { 750 case scUnknown: 751 case scConstant: 752 return false; 753 case scTruncate: 754 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 755 Processed, SE); 756 case scZeroExtend: 757 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 758 Processed, SE); 759 case scSignExtend: 760 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 761 Processed, SE); 762 } 763 764 if (!Processed.insert(S).second) 765 return false; 766 767 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 768 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 769 I != E; ++I) { 770 if (isHighCostExpansion(*I, Processed, SE)) 771 return true; 772 } 773 return false; 774 } 775 776 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 777 if (Mul->getNumOperands() == 2) { 778 // Multiplication by a constant is ok 779 if (isa<SCEVConstant>(Mul->getOperand(0))) 780 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 781 782 // If we have the value of one operand, check if an existing 783 // multiplication already generates this expression. 784 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 785 Value *UVal = U->getValue(); 786 for (User *UR : UVal->users()) { 787 // If U is a constant, it may be used by a ConstantExpr. 788 Instruction *UI = dyn_cast<Instruction>(UR); 789 if (UI && UI->getOpcode() == Instruction::Mul && 790 SE.isSCEVable(UI->getType())) { 791 return SE.getSCEV(UI) == Mul; 792 } 793 } 794 } 795 } 796 } 797 798 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 799 if (isExistingPhi(AR, SE)) 800 return false; 801 } 802 803 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 804 return true; 805 } 806 807 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 808 /// specified set are trivially dead, delete them and see if this makes any of 809 /// their operands subsequently dead. 810 static bool 811 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) { 812 bool Changed = false; 813 814 while (!DeadInsts.empty()) { 815 Value *V = DeadInsts.pop_back_val(); 816 Instruction *I = dyn_cast_or_null<Instruction>(V); 817 818 if (!I || !isInstructionTriviallyDead(I)) 819 continue; 820 821 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 822 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 823 *OI = nullptr; 824 if (U->use_empty()) 825 DeadInsts.push_back(U); 826 } 827 828 I->eraseFromParent(); 829 Changed = true; 830 } 831 832 return Changed; 833 } 834 835 namespace { 836 class LSRUse; 837 } 838 839 /// \brief Check if the addressing mode defined by \p F is completely 840 /// folded in \p LU at isel time. 841 /// This includes address-mode folding and special icmp tricks. 842 /// This function returns true if \p LU can accommodate what \p F 843 /// defines and up to 1 base + 1 scaled + offset. 844 /// In other words, if \p F has several base registers, this function may 845 /// still return true. Therefore, users still need to account for 846 /// additional base registers and/or unfolded offsets to derive an 847 /// accurate cost model. 848 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 849 const LSRUse &LU, const Formula &F); 850 // Get the cost of the scaling factor used in F for LU. 851 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 852 const LSRUse &LU, const Formula &F); 853 854 namespace { 855 856 /// Cost - This class is used to measure and compare candidate formulae. 857 class Cost { 858 /// TODO: Some of these could be merged. Also, a lexical ordering 859 /// isn't always optimal. 860 unsigned NumRegs; 861 unsigned AddRecCost; 862 unsigned NumIVMuls; 863 unsigned NumBaseAdds; 864 unsigned ImmCost; 865 unsigned SetupCost; 866 unsigned ScaleCost; 867 868 public: 869 Cost() 870 : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0), 871 SetupCost(0), ScaleCost(0) {} 872 873 bool operator<(const Cost &Other) const; 874 875 void Lose(); 876 877 #ifndef NDEBUG 878 // Once any of the metrics loses, they must all remain losers. 879 bool isValid() { 880 return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds 881 | ImmCost | SetupCost | ScaleCost) != ~0u) 882 || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds 883 & ImmCost & SetupCost & ScaleCost) == ~0u); 884 } 885 #endif 886 887 bool isLoser() { 888 assert(isValid() && "invalid cost"); 889 return NumRegs == ~0u; 890 } 891 892 void RateFormula(const TargetTransformInfo &TTI, 893 const Formula &F, 894 SmallPtrSetImpl<const SCEV *> &Regs, 895 const DenseSet<const SCEV *> &VisitedRegs, 896 const Loop *L, 897 const SmallVectorImpl<int64_t> &Offsets, 898 ScalarEvolution &SE, DominatorTree &DT, 899 const LSRUse &LU, 900 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 901 902 void print(raw_ostream &OS) const; 903 void dump() const; 904 905 private: 906 void RateRegister(const SCEV *Reg, 907 SmallPtrSetImpl<const SCEV *> &Regs, 908 const Loop *L, 909 ScalarEvolution &SE, DominatorTree &DT); 910 void RatePrimaryRegister(const SCEV *Reg, 911 SmallPtrSetImpl<const SCEV *> &Regs, 912 const Loop *L, 913 ScalarEvolution &SE, DominatorTree &DT, 914 SmallPtrSetImpl<const SCEV *> *LoserRegs); 915 }; 916 917 } 918 919 /// RateRegister - Tally up interesting quantities from the given register. 920 void Cost::RateRegister(const SCEV *Reg, 921 SmallPtrSetImpl<const SCEV *> &Regs, 922 const Loop *L, 923 ScalarEvolution &SE, DominatorTree &DT) { 924 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 925 // If this is an addrec for another loop, don't second-guess its addrec phi 926 // nodes. LSR isn't currently smart enough to reason about more than one 927 // loop at a time. LSR has already run on inner loops, will not run on outer 928 // loops, and cannot be expected to change sibling loops. 929 if (AR->getLoop() != L) { 930 // If the AddRec exists, consider it's register free and leave it alone. 931 if (isExistingPhi(AR, SE)) 932 return; 933 934 // Otherwise, do not consider this formula at all. 935 Lose(); 936 return; 937 } 938 AddRecCost += 1; /// TODO: This should be a function of the stride. 939 940 // Add the step value register, if it needs one. 941 // TODO: The non-affine case isn't precisely modeled here. 942 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 943 if (!Regs.count(AR->getOperand(1))) { 944 RateRegister(AR->getOperand(1), Regs, L, SE, DT); 945 if (isLoser()) 946 return; 947 } 948 } 949 } 950 ++NumRegs; 951 952 // Rough heuristic; favor registers which don't require extra setup 953 // instructions in the preheader. 954 if (!isa<SCEVUnknown>(Reg) && 955 !isa<SCEVConstant>(Reg) && 956 !(isa<SCEVAddRecExpr>(Reg) && 957 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 958 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 959 ++SetupCost; 960 961 NumIVMuls += isa<SCEVMulExpr>(Reg) && 962 SE.hasComputableLoopEvolution(Reg, L); 963 } 964 965 /// RatePrimaryRegister - Record this register in the set. If we haven't seen it 966 /// before, rate it. Optional LoserRegs provides a way to declare any formula 967 /// that refers to one of those regs an instant loser. 968 void Cost::RatePrimaryRegister(const SCEV *Reg, 969 SmallPtrSetImpl<const SCEV *> &Regs, 970 const Loop *L, 971 ScalarEvolution &SE, DominatorTree &DT, 972 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 973 if (LoserRegs && LoserRegs->count(Reg)) { 974 Lose(); 975 return; 976 } 977 if (Regs.insert(Reg).second) { 978 RateRegister(Reg, Regs, L, SE, DT); 979 if (LoserRegs && isLoser()) 980 LoserRegs->insert(Reg); 981 } 982 } 983 984 void Cost::RateFormula(const TargetTransformInfo &TTI, 985 const Formula &F, 986 SmallPtrSetImpl<const SCEV *> &Regs, 987 const DenseSet<const SCEV *> &VisitedRegs, 988 const Loop *L, 989 const SmallVectorImpl<int64_t> &Offsets, 990 ScalarEvolution &SE, DominatorTree &DT, 991 const LSRUse &LU, 992 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 993 assert(F.isCanonical() && "Cost is accurate only for canonical formula"); 994 // Tally up the registers. 995 if (const SCEV *ScaledReg = F.ScaledReg) { 996 if (VisitedRegs.count(ScaledReg)) { 997 Lose(); 998 return; 999 } 1000 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs); 1001 if (isLoser()) 1002 return; 1003 } 1004 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 1005 E = F.BaseRegs.end(); I != E; ++I) { 1006 const SCEV *BaseReg = *I; 1007 if (VisitedRegs.count(BaseReg)) { 1008 Lose(); 1009 return; 1010 } 1011 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs); 1012 if (isLoser()) 1013 return; 1014 } 1015 1016 // Determine how many (unfolded) adds we'll need inside the loop. 1017 size_t NumBaseParts = F.getNumRegs(); 1018 if (NumBaseParts > 1) 1019 // Do not count the base and a possible second register if the target 1020 // allows to fold 2 registers. 1021 NumBaseAdds += 1022 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1023 NumBaseAdds += (F.UnfoldedOffset != 0); 1024 1025 // Accumulate non-free scaling amounts. 1026 ScaleCost += getScalingFactorCost(TTI, LU, F); 1027 1028 // Tally up the non-zero immediates. 1029 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1030 E = Offsets.end(); I != E; ++I) { 1031 int64_t Offset = (uint64_t)*I + F.BaseOffset; 1032 if (F.BaseGV) 1033 ImmCost += 64; // Handle symbolic values conservatively. 1034 // TODO: This should probably be the pointer size. 1035 else if (Offset != 0) 1036 ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1037 } 1038 assert(isValid() && "invalid cost"); 1039 } 1040 1041 /// Lose - Set this cost to a losing value. 1042 void Cost::Lose() { 1043 NumRegs = ~0u; 1044 AddRecCost = ~0u; 1045 NumIVMuls = ~0u; 1046 NumBaseAdds = ~0u; 1047 ImmCost = ~0u; 1048 SetupCost = ~0u; 1049 ScaleCost = ~0u; 1050 } 1051 1052 /// operator< - Choose the lower cost. 1053 bool Cost::operator<(const Cost &Other) const { 1054 return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost, 1055 ImmCost, SetupCost) < 1056 std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls, 1057 Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost, 1058 Other.SetupCost); 1059 } 1060 1061 void Cost::print(raw_ostream &OS) const { 1062 OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s"); 1063 if (AddRecCost != 0) 1064 OS << ", with addrec cost " << AddRecCost; 1065 if (NumIVMuls != 0) 1066 OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s"); 1067 if (NumBaseAdds != 0) 1068 OS << ", plus " << NumBaseAdds << " base add" 1069 << (NumBaseAdds == 1 ? "" : "s"); 1070 if (ScaleCost != 0) 1071 OS << ", plus " << ScaleCost << " scale cost"; 1072 if (ImmCost != 0) 1073 OS << ", plus " << ImmCost << " imm cost"; 1074 if (SetupCost != 0) 1075 OS << ", plus " << SetupCost << " setup cost"; 1076 } 1077 1078 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1079 void Cost::dump() const { 1080 print(errs()); errs() << '\n'; 1081 } 1082 #endif 1083 1084 namespace { 1085 1086 /// LSRFixup - An operand value in an instruction which is to be replaced 1087 /// with some equivalent, possibly strength-reduced, replacement. 1088 struct LSRFixup { 1089 /// UserInst - The instruction which will be updated. 1090 Instruction *UserInst; 1091 1092 /// OperandValToReplace - The operand of the instruction which will 1093 /// be replaced. The operand may be used more than once; every instance 1094 /// will be replaced. 1095 Value *OperandValToReplace; 1096 1097 /// PostIncLoops - If this user is to use the post-incremented value of an 1098 /// induction variable, this variable is non-null and holds the loop 1099 /// associated with the induction variable. 1100 PostIncLoopSet PostIncLoops; 1101 1102 /// LUIdx - The index of the LSRUse describing the expression which 1103 /// this fixup needs, minus an offset (below). 1104 size_t LUIdx; 1105 1106 /// Offset - A constant offset to be added to the LSRUse expression. 1107 /// This allows multiple fixups to share the same LSRUse with different 1108 /// offsets, for example in an unrolled loop. 1109 int64_t Offset; 1110 1111 bool isUseFullyOutsideLoop(const Loop *L) const; 1112 1113 LSRFixup(); 1114 1115 void print(raw_ostream &OS) const; 1116 void dump() const; 1117 }; 1118 1119 } 1120 1121 LSRFixup::LSRFixup() 1122 : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)), 1123 Offset(0) {} 1124 1125 /// isUseFullyOutsideLoop - Test whether this fixup always uses its 1126 /// value outside of the given loop. 1127 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1128 // PHI nodes use their value in their incoming blocks. 1129 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1130 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1131 if (PN->getIncomingValue(i) == OperandValToReplace && 1132 L->contains(PN->getIncomingBlock(i))) 1133 return false; 1134 return true; 1135 } 1136 1137 return !L->contains(UserInst); 1138 } 1139 1140 void LSRFixup::print(raw_ostream &OS) const { 1141 OS << "UserInst="; 1142 // Store is common and interesting enough to be worth special-casing. 1143 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1144 OS << "store "; 1145 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1146 } else if (UserInst->getType()->isVoidTy()) 1147 OS << UserInst->getOpcodeName(); 1148 else 1149 UserInst->printAsOperand(OS, /*PrintType=*/false); 1150 1151 OS << ", OperandValToReplace="; 1152 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1153 1154 for (PostIncLoopSet::const_iterator I = PostIncLoops.begin(), 1155 E = PostIncLoops.end(); I != E; ++I) { 1156 OS << ", PostIncLoop="; 1157 (*I)->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1158 } 1159 1160 if (LUIdx != ~size_t(0)) 1161 OS << ", LUIdx=" << LUIdx; 1162 1163 if (Offset != 0) 1164 OS << ", Offset=" << Offset; 1165 } 1166 1167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1168 void LSRFixup::dump() const { 1169 print(errs()); errs() << '\n'; 1170 } 1171 #endif 1172 1173 namespace { 1174 1175 /// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding 1176 /// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*. 1177 struct UniquifierDenseMapInfo { 1178 static SmallVector<const SCEV *, 4> getEmptyKey() { 1179 SmallVector<const SCEV *, 4> V; 1180 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1181 return V; 1182 } 1183 1184 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1185 SmallVector<const SCEV *, 4> V; 1186 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1187 return V; 1188 } 1189 1190 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1191 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1192 } 1193 1194 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1195 const SmallVector<const SCEV *, 4> &RHS) { 1196 return LHS == RHS; 1197 } 1198 }; 1199 1200 /// LSRUse - This class holds the state that LSR keeps for each use in 1201 /// IVUsers, as well as uses invented by LSR itself. It includes information 1202 /// about what kinds of things can be folded into the user, information about 1203 /// the user itself, and information about how the use may be satisfied. 1204 /// TODO: Represent multiple users of the same expression in common? 1205 class LSRUse { 1206 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1207 1208 public: 1209 /// KindType - An enum for a kind of use, indicating what types of 1210 /// scaled and immediate operands it might support. 1211 enum KindType { 1212 Basic, ///< A normal use, with no folding. 1213 Special, ///< A special case of basic, allowing -1 scales. 1214 Address, ///< An address use; folding according to TargetLowering 1215 ICmpZero ///< An equality icmp with both operands folded into one. 1216 // TODO: Add a generic icmp too? 1217 }; 1218 1219 typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair; 1220 1221 KindType Kind; 1222 Type *AccessTy; 1223 1224 SmallVector<int64_t, 8> Offsets; 1225 int64_t MinOffset; 1226 int64_t MaxOffset; 1227 1228 /// AllFixupsOutsideLoop - This records whether all of the fixups using this 1229 /// LSRUse are outside of the loop, in which case some special-case heuristics 1230 /// may be used. 1231 bool AllFixupsOutsideLoop; 1232 1233 /// RigidFormula is set to true to guarantee that this use will be associated 1234 /// with a single formula--the one that initially matched. Some SCEV 1235 /// expressions cannot be expanded. This allows LSR to consider the registers 1236 /// used by those expressions without the need to expand them later after 1237 /// changing the formula. 1238 bool RigidFormula; 1239 1240 /// WidestFixupType - This records the widest use type for any fixup using 1241 /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different 1242 /// max fixup widths to be equivalent, because the narrower one may be relying 1243 /// on the implicit truncation to truncate away bogus bits. 1244 Type *WidestFixupType; 1245 1246 /// Formulae - A list of ways to build a value that can satisfy this user. 1247 /// After the list is populated, one of these is selected heuristically and 1248 /// used to formulate a replacement for OperandValToReplace in UserInst. 1249 SmallVector<Formula, 12> Formulae; 1250 1251 /// Regs - The set of register candidates used by all formulae in this LSRUse. 1252 SmallPtrSet<const SCEV *, 4> Regs; 1253 1254 LSRUse(KindType K, Type *T) : Kind(K), AccessTy(T), 1255 MinOffset(INT64_MAX), 1256 MaxOffset(INT64_MIN), 1257 AllFixupsOutsideLoop(true), 1258 RigidFormula(false), 1259 WidestFixupType(nullptr) {} 1260 1261 bool HasFormulaWithSameRegs(const Formula &F) const; 1262 bool InsertFormula(const Formula &F); 1263 void DeleteFormula(Formula &F); 1264 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1265 1266 void print(raw_ostream &OS) const; 1267 void dump() const; 1268 }; 1269 1270 } 1271 1272 /// HasFormula - Test whether this use as a formula which has the same 1273 /// registers as the given formula. 1274 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1275 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1276 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1277 // Unstable sort by host order ok, because this is only used for uniquifying. 1278 std::sort(Key.begin(), Key.end()); 1279 return Uniquifier.count(Key); 1280 } 1281 1282 /// InsertFormula - If the given formula has not yet been inserted, add it to 1283 /// the list, and return true. Return false otherwise. 1284 /// The formula must be in canonical form. 1285 bool LSRUse::InsertFormula(const Formula &F) { 1286 assert(F.isCanonical() && "Invalid canonical representation"); 1287 1288 if (!Formulae.empty() && RigidFormula) 1289 return false; 1290 1291 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1292 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1293 // Unstable sort by host order ok, because this is only used for uniquifying. 1294 std::sort(Key.begin(), Key.end()); 1295 1296 if (!Uniquifier.insert(Key).second) 1297 return false; 1298 1299 // Using a register to hold the value of 0 is not profitable. 1300 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1301 "Zero allocated in a scaled register!"); 1302 #ifndef NDEBUG 1303 for (SmallVectorImpl<const SCEV *>::const_iterator I = 1304 F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) 1305 assert(!(*I)->isZero() && "Zero allocated in a base register!"); 1306 #endif 1307 1308 // Add the formula to the list. 1309 Formulae.push_back(F); 1310 1311 // Record registers now being used by this use. 1312 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1313 if (F.ScaledReg) 1314 Regs.insert(F.ScaledReg); 1315 1316 return true; 1317 } 1318 1319 /// DeleteFormula - Remove the given formula from this use's list. 1320 void LSRUse::DeleteFormula(Formula &F) { 1321 if (&F != &Formulae.back()) 1322 std::swap(F, Formulae.back()); 1323 Formulae.pop_back(); 1324 } 1325 1326 /// RecomputeRegs - Recompute the Regs field, and update RegUses. 1327 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1328 // Now that we've filtered out some formulae, recompute the Regs set. 1329 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1330 Regs.clear(); 1331 for (const Formula &F : Formulae) { 1332 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1333 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1334 } 1335 1336 // Update the RegTracker. 1337 for (const SCEV *S : OldRegs) 1338 if (!Regs.count(S)) 1339 RegUses.DropRegister(S, LUIdx); 1340 } 1341 1342 void LSRUse::print(raw_ostream &OS) const { 1343 OS << "LSR Use: Kind="; 1344 switch (Kind) { 1345 case Basic: OS << "Basic"; break; 1346 case Special: OS << "Special"; break; 1347 case ICmpZero: OS << "ICmpZero"; break; 1348 case Address: 1349 OS << "Address of "; 1350 if (AccessTy->isPointerTy()) 1351 OS << "pointer"; // the full pointer type could be really verbose 1352 else 1353 OS << *AccessTy; 1354 } 1355 1356 OS << ", Offsets={"; 1357 for (SmallVectorImpl<int64_t>::const_iterator I = Offsets.begin(), 1358 E = Offsets.end(); I != E; ++I) { 1359 OS << *I; 1360 if (std::next(I) != E) 1361 OS << ','; 1362 } 1363 OS << '}'; 1364 1365 if (AllFixupsOutsideLoop) 1366 OS << ", all-fixups-outside-loop"; 1367 1368 if (WidestFixupType) 1369 OS << ", widest fixup type: " << *WidestFixupType; 1370 } 1371 1372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1373 void LSRUse::dump() const { 1374 print(errs()); errs() << '\n'; 1375 } 1376 #endif 1377 1378 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1379 LSRUse::KindType Kind, Type *AccessTy, 1380 GlobalValue *BaseGV, int64_t BaseOffset, 1381 bool HasBaseReg, int64_t Scale) { 1382 switch (Kind) { 1383 case LSRUse::Address: 1384 return TTI.isLegalAddressingMode(AccessTy, BaseGV, BaseOffset, HasBaseReg, Scale); 1385 1386 case LSRUse::ICmpZero: 1387 // There's not even a target hook for querying whether it would be legal to 1388 // fold a GV into an ICmp. 1389 if (BaseGV) 1390 return false; 1391 1392 // ICmp only has two operands; don't allow more than two non-trivial parts. 1393 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1394 return false; 1395 1396 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1397 // putting the scaled register in the other operand of the icmp. 1398 if (Scale != 0 && Scale != -1) 1399 return false; 1400 1401 // If we have low-level target information, ask the target if it can fold an 1402 // integer immediate on an icmp. 1403 if (BaseOffset != 0) { 1404 // We have one of: 1405 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1406 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1407 // Offs is the ICmp immediate. 1408 if (Scale == 0) 1409 // The cast does the right thing with INT64_MIN. 1410 BaseOffset = -(uint64_t)BaseOffset; 1411 return TTI.isLegalICmpImmediate(BaseOffset); 1412 } 1413 1414 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1415 return true; 1416 1417 case LSRUse::Basic: 1418 // Only handle single-register values. 1419 return !BaseGV && Scale == 0 && BaseOffset == 0; 1420 1421 case LSRUse::Special: 1422 // Special case Basic to handle -1 scales. 1423 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1424 } 1425 1426 llvm_unreachable("Invalid LSRUse Kind!"); 1427 } 1428 1429 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1430 int64_t MinOffset, int64_t MaxOffset, 1431 LSRUse::KindType Kind, Type *AccessTy, 1432 GlobalValue *BaseGV, int64_t BaseOffset, 1433 bool HasBaseReg, int64_t Scale) { 1434 // Check for overflow. 1435 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1436 (MinOffset > 0)) 1437 return false; 1438 MinOffset = (uint64_t)BaseOffset + MinOffset; 1439 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1440 (MaxOffset > 0)) 1441 return false; 1442 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1443 1444 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1445 HasBaseReg, Scale) && 1446 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1447 HasBaseReg, Scale); 1448 } 1449 1450 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1451 int64_t MinOffset, int64_t MaxOffset, 1452 LSRUse::KindType Kind, Type *AccessTy, 1453 const Formula &F) { 1454 // For the purpose of isAMCompletelyFolded either having a canonical formula 1455 // or a scale not equal to zero is correct. 1456 // Problems may arise from non canonical formulae having a scale == 0. 1457 // Strictly speaking it would best to just rely on canonical formulae. 1458 // However, when we generate the scaled formulae, we first check that the 1459 // scaling factor is profitable before computing the actual ScaledReg for 1460 // compile time sake. 1461 assert((F.isCanonical() || F.Scale != 0)); 1462 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1463 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1464 } 1465 1466 /// isLegalUse - Test whether we know how to expand the current formula. 1467 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1468 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1469 GlobalValue *BaseGV, int64_t BaseOffset, bool HasBaseReg, 1470 int64_t Scale) { 1471 // We know how to expand completely foldable formulae. 1472 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1473 BaseOffset, HasBaseReg, Scale) || 1474 // Or formulae that use a base register produced by a sum of base 1475 // registers. 1476 (Scale == 1 && 1477 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1478 BaseGV, BaseOffset, true, 0)); 1479 } 1480 1481 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1482 int64_t MaxOffset, LSRUse::KindType Kind, Type *AccessTy, 1483 const Formula &F) { 1484 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1485 F.BaseOffset, F.HasBaseReg, F.Scale); 1486 } 1487 1488 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1489 const LSRUse &LU, const Formula &F) { 1490 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1491 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1492 F.Scale); 1493 } 1494 1495 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1496 const LSRUse &LU, const Formula &F) { 1497 if (!F.Scale) 1498 return 0; 1499 1500 // If the use is not completely folded in that instruction, we will have to 1501 // pay an extra cost only for scale != 1. 1502 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1503 LU.AccessTy, F)) 1504 return F.Scale != 1; 1505 1506 switch (LU.Kind) { 1507 case LSRUse::Address: { 1508 // Check the scaling factor cost with both the min and max offsets. 1509 int ScaleCostMinOffset = 1510 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1511 F.BaseOffset + LU.MinOffset, 1512 F.HasBaseReg, F.Scale); 1513 int ScaleCostMaxOffset = 1514 TTI.getScalingFactorCost(LU.AccessTy, F.BaseGV, 1515 F.BaseOffset + LU.MaxOffset, 1516 F.HasBaseReg, F.Scale); 1517 1518 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1519 "Legal addressing mode has an illegal cost!"); 1520 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1521 } 1522 case LSRUse::ICmpZero: 1523 case LSRUse::Basic: 1524 case LSRUse::Special: 1525 // The use is completely folded, i.e., everything is folded into the 1526 // instruction. 1527 return 0; 1528 } 1529 1530 llvm_unreachable("Invalid LSRUse Kind!"); 1531 } 1532 1533 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1534 LSRUse::KindType Kind, Type *AccessTy, 1535 GlobalValue *BaseGV, int64_t BaseOffset, 1536 bool HasBaseReg) { 1537 // Fast-path: zero is always foldable. 1538 if (BaseOffset == 0 && !BaseGV) return true; 1539 1540 // Conservatively, create an address with an immediate and a 1541 // base and a scale. 1542 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1543 1544 // Canonicalize a scale of 1 to a base register if the formula doesn't 1545 // already have a base register. 1546 if (!HasBaseReg && Scale == 1) { 1547 Scale = 0; 1548 HasBaseReg = true; 1549 } 1550 1551 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1552 HasBaseReg, Scale); 1553 } 1554 1555 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1556 ScalarEvolution &SE, int64_t MinOffset, 1557 int64_t MaxOffset, LSRUse::KindType Kind, 1558 Type *AccessTy, const SCEV *S, bool HasBaseReg) { 1559 // Fast-path: zero is always foldable. 1560 if (S->isZero()) return true; 1561 1562 // Conservatively, create an address with an immediate and a 1563 // base and a scale. 1564 int64_t BaseOffset = ExtractImmediate(S, SE); 1565 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1566 1567 // If there's anything else involved, it's not foldable. 1568 if (!S->isZero()) return false; 1569 1570 // Fast-path: zero is always foldable. 1571 if (BaseOffset == 0 && !BaseGV) return true; 1572 1573 // Conservatively, create an address with an immediate and a 1574 // base and a scale. 1575 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1576 1577 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1578 BaseOffset, HasBaseReg, Scale); 1579 } 1580 1581 namespace { 1582 1583 /// IVInc - An individual increment in a Chain of IV increments. 1584 /// Relate an IV user to an expression that computes the IV it uses from the IV 1585 /// used by the previous link in the Chain. 1586 /// 1587 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1588 /// original IVOperand. The head of the chain's IVOperand is only valid during 1589 /// chain collection, before LSR replaces IV users. During chain generation, 1590 /// IncExpr can be used to find the new IVOperand that computes the same 1591 /// expression. 1592 struct IVInc { 1593 Instruction *UserInst; 1594 Value* IVOperand; 1595 const SCEV *IncExpr; 1596 1597 IVInc(Instruction *U, Value *O, const SCEV *E): 1598 UserInst(U), IVOperand(O), IncExpr(E) {} 1599 }; 1600 1601 // IVChain - The list of IV increments in program order. 1602 // We typically add the head of a chain without finding subsequent links. 1603 struct IVChain { 1604 SmallVector<IVInc,1> Incs; 1605 const SCEV *ExprBase; 1606 1607 IVChain() : ExprBase(nullptr) {} 1608 1609 IVChain(const IVInc &Head, const SCEV *Base) 1610 : Incs(1, Head), ExprBase(Base) {} 1611 1612 typedef SmallVectorImpl<IVInc>::const_iterator const_iterator; 1613 1614 // begin - return the first increment in the chain. 1615 const_iterator begin() const { 1616 assert(!Incs.empty()); 1617 return std::next(Incs.begin()); 1618 } 1619 const_iterator end() const { 1620 return Incs.end(); 1621 } 1622 1623 // hasIncs - Returns true if this chain contains any increments. 1624 bool hasIncs() const { return Incs.size() >= 2; } 1625 1626 // add - Add an IVInc to the end of this chain. 1627 void add(const IVInc &X) { Incs.push_back(X); } 1628 1629 // tailUserInst - Returns the last UserInst in the chain. 1630 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1631 1632 // isProfitableIncrement - Returns true if IncExpr can be profitably added to 1633 // this chain. 1634 bool isProfitableIncrement(const SCEV *OperExpr, 1635 const SCEV *IncExpr, 1636 ScalarEvolution&); 1637 }; 1638 1639 /// ChainUsers - Helper for CollectChains to track multiple IV increment uses. 1640 /// Distinguish between FarUsers that definitely cross IV increments and 1641 /// NearUsers that may be used between IV increments. 1642 struct ChainUsers { 1643 SmallPtrSet<Instruction*, 4> FarUsers; 1644 SmallPtrSet<Instruction*, 4> NearUsers; 1645 }; 1646 1647 /// LSRInstance - This class holds state for the main loop strength reduction 1648 /// logic. 1649 class LSRInstance { 1650 IVUsers &IU; 1651 ScalarEvolution &SE; 1652 DominatorTree &DT; 1653 LoopInfo &LI; 1654 const TargetTransformInfo &TTI; 1655 Loop *const L; 1656 bool Changed; 1657 1658 /// IVIncInsertPos - This is the insert position that the current loop's 1659 /// induction variable increment should be placed. In simple loops, this is 1660 /// the latch block's terminator. But in more complicated cases, this is a 1661 /// position which will dominate all the in-loop post-increment users. 1662 Instruction *IVIncInsertPos; 1663 1664 /// Factors - Interesting factors between use strides. 1665 SmallSetVector<int64_t, 8> Factors; 1666 1667 /// Types - Interesting use types, to facilitate truncation reuse. 1668 SmallSetVector<Type *, 4> Types; 1669 1670 /// Fixups - The list of operands which are to be replaced. 1671 SmallVector<LSRFixup, 16> Fixups; 1672 1673 /// Uses - The list of interesting uses. 1674 SmallVector<LSRUse, 16> Uses; 1675 1676 /// RegUses - Track which uses use which register candidates. 1677 RegUseTracker RegUses; 1678 1679 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1680 // have more than a few IV increment chains in a loop. Missing a Chain falls 1681 // back to normal LSR behavior for those uses. 1682 static const unsigned MaxChains = 8; 1683 1684 /// IVChainVec - IV users can form a chain of IV increments. 1685 SmallVector<IVChain, MaxChains> IVChainVec; 1686 1687 /// IVIncSet - IV users that belong to profitable IVChains. 1688 SmallPtrSet<Use*, MaxChains> IVIncSet; 1689 1690 void OptimizeShadowIV(); 1691 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1692 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1693 void OptimizeLoopTermCond(); 1694 1695 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1696 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1697 void FinalizeChain(IVChain &Chain); 1698 void CollectChains(); 1699 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1700 SmallVectorImpl<WeakVH> &DeadInsts); 1701 1702 void CollectInterestingTypesAndFactors(); 1703 void CollectFixupsAndInitialFormulae(); 1704 1705 LSRFixup &getNewFixup() { 1706 Fixups.push_back(LSRFixup()); 1707 return Fixups.back(); 1708 } 1709 1710 // Support for sharing of LSRUses between LSRFixups. 1711 typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy; 1712 UseMapTy UseMap; 1713 1714 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1715 LSRUse::KindType Kind, Type *AccessTy); 1716 1717 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, 1718 LSRUse::KindType Kind, 1719 Type *AccessTy); 1720 1721 void DeleteUse(LSRUse &LU, size_t LUIdx); 1722 1723 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1724 1725 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1726 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1727 void CountRegisters(const Formula &F, size_t LUIdx); 1728 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1729 1730 void CollectLoopInvariantFixupsAndFormulae(); 1731 1732 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1733 unsigned Depth = 0); 1734 1735 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1736 const Formula &Base, unsigned Depth, 1737 size_t Idx, bool IsScaledReg = false); 1738 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1739 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1740 const Formula &Base, size_t Idx, 1741 bool IsScaledReg = false); 1742 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1743 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1744 const Formula &Base, 1745 const SmallVectorImpl<int64_t> &Worklist, 1746 size_t Idx, bool IsScaledReg = false); 1747 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1748 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1749 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1750 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1751 void GenerateCrossUseConstantOffsets(); 1752 void GenerateAllReuseFormulae(); 1753 1754 void FilterOutUndesirableDedicatedRegisters(); 1755 1756 size_t EstimateSearchSpaceComplexity() const; 1757 void NarrowSearchSpaceByDetectingSupersets(); 1758 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1759 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1760 void NarrowSearchSpaceByPickingWinnerRegs(); 1761 void NarrowSearchSpaceUsingHeuristics(); 1762 1763 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1764 Cost &SolutionCost, 1765 SmallVectorImpl<const Formula *> &Workspace, 1766 const Cost &CurCost, 1767 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1768 DenseSet<const SCEV *> &VisitedRegs) const; 1769 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1770 1771 BasicBlock::iterator 1772 HoistInsertPosition(BasicBlock::iterator IP, 1773 const SmallVectorImpl<Instruction *> &Inputs) const; 1774 BasicBlock::iterator 1775 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1776 const LSRFixup &LF, 1777 const LSRUse &LU, 1778 SCEVExpander &Rewriter) const; 1779 1780 Value *Expand(const LSRFixup &LF, 1781 const Formula &F, 1782 BasicBlock::iterator IP, 1783 SCEVExpander &Rewriter, 1784 SmallVectorImpl<WeakVH> &DeadInsts) const; 1785 void RewriteForPHI(PHINode *PN, const LSRFixup &LF, 1786 const Formula &F, 1787 SCEVExpander &Rewriter, 1788 SmallVectorImpl<WeakVH> &DeadInsts, 1789 Pass *P) const; 1790 void Rewrite(const LSRFixup &LF, 1791 const Formula &F, 1792 SCEVExpander &Rewriter, 1793 SmallVectorImpl<WeakVH> &DeadInsts, 1794 Pass *P) const; 1795 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 1796 Pass *P); 1797 1798 public: 1799 LSRInstance(Loop *L, Pass *P); 1800 1801 bool getChanged() const { return Changed; } 1802 1803 void print_factors_and_types(raw_ostream &OS) const; 1804 void print_fixups(raw_ostream &OS) const; 1805 void print_uses(raw_ostream &OS) const; 1806 void print(raw_ostream &OS) const; 1807 void dump() const; 1808 }; 1809 1810 } 1811 1812 /// OptimizeShadowIV - If IV is used in a int-to-float cast 1813 /// inside the loop then try to eliminate the cast operation. 1814 void LSRInstance::OptimizeShadowIV() { 1815 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1816 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1817 return; 1818 1819 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 1820 UI != E; /* empty */) { 1821 IVUsers::const_iterator CandidateUI = UI; 1822 ++UI; 1823 Instruction *ShadowUse = CandidateUI->getUser(); 1824 Type *DestTy = nullptr; 1825 bool IsSigned = false; 1826 1827 /* If shadow use is a int->float cast then insert a second IV 1828 to eliminate this cast. 1829 1830 for (unsigned i = 0; i < n; ++i) 1831 foo((double)i); 1832 1833 is transformed into 1834 1835 double d = 0.0; 1836 for (unsigned i = 0; i < n; ++i, ++d) 1837 foo(d); 1838 */ 1839 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 1840 IsSigned = false; 1841 DestTy = UCast->getDestTy(); 1842 } 1843 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 1844 IsSigned = true; 1845 DestTy = SCast->getDestTy(); 1846 } 1847 if (!DestTy) continue; 1848 1849 // If target does not support DestTy natively then do not apply 1850 // this transformation. 1851 if (!TTI.isTypeLegal(DestTy)) continue; 1852 1853 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 1854 if (!PH) continue; 1855 if (PH->getNumIncomingValues() != 2) continue; 1856 1857 Type *SrcTy = PH->getType(); 1858 int Mantissa = DestTy->getFPMantissaWidth(); 1859 if (Mantissa == -1) continue; 1860 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 1861 continue; 1862 1863 unsigned Entry, Latch; 1864 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 1865 Entry = 0; 1866 Latch = 1; 1867 } else { 1868 Entry = 1; 1869 Latch = 0; 1870 } 1871 1872 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 1873 if (!Init) continue; 1874 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 1875 (double)Init->getSExtValue() : 1876 (double)Init->getZExtValue()); 1877 1878 BinaryOperator *Incr = 1879 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 1880 if (!Incr) continue; 1881 if (Incr->getOpcode() != Instruction::Add 1882 && Incr->getOpcode() != Instruction::Sub) 1883 continue; 1884 1885 /* Initialize new IV, double d = 0.0 in above example. */ 1886 ConstantInt *C = nullptr; 1887 if (Incr->getOperand(0) == PH) 1888 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 1889 else if (Incr->getOperand(1) == PH) 1890 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 1891 else 1892 continue; 1893 1894 if (!C) continue; 1895 1896 // Ignore negative constants, as the code below doesn't handle them 1897 // correctly. TODO: Remove this restriction. 1898 if (!C->getValue().isStrictlyPositive()) continue; 1899 1900 /* Add new PHINode. */ 1901 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 1902 1903 /* create new increment. '++d' in above example. */ 1904 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 1905 BinaryOperator *NewIncr = 1906 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 1907 Instruction::FAdd : Instruction::FSub, 1908 NewPH, CFP, "IV.S.next.", Incr); 1909 1910 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 1911 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 1912 1913 /* Remove cast operation */ 1914 ShadowUse->replaceAllUsesWith(NewPH); 1915 ShadowUse->eraseFromParent(); 1916 Changed = true; 1917 break; 1918 } 1919 } 1920 1921 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1922 /// set the IV user and stride information and return true, otherwise return 1923 /// false. 1924 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 1925 for (IVUsers::iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 1926 if (UI->getUser() == Cond) { 1927 // NOTE: we could handle setcc instructions with multiple uses here, but 1928 // InstCombine does it as well for simple uses, it's not clear that it 1929 // occurs enough in real life to handle. 1930 CondUse = UI; 1931 return true; 1932 } 1933 return false; 1934 } 1935 1936 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 1937 /// a max computation. 1938 /// 1939 /// This is a narrow solution to a specific, but acute, problem. For loops 1940 /// like this: 1941 /// 1942 /// i = 0; 1943 /// do { 1944 /// p[i] = 0.0; 1945 /// } while (++i < n); 1946 /// 1947 /// the trip count isn't just 'n', because 'n' might not be positive. And 1948 /// unfortunately this can come up even for loops where the user didn't use 1949 /// a C do-while loop. For example, seemingly well-behaved top-test loops 1950 /// will commonly be lowered like this: 1951 // 1952 /// if (n > 0) { 1953 /// i = 0; 1954 /// do { 1955 /// p[i] = 0.0; 1956 /// } while (++i < n); 1957 /// } 1958 /// 1959 /// and then it's possible for subsequent optimization to obscure the if 1960 /// test in such a way that indvars can't find it. 1961 /// 1962 /// When indvars can't find the if test in loops like this, it creates a 1963 /// max expression, which allows it to give the loop a canonical 1964 /// induction variable: 1965 /// 1966 /// i = 0; 1967 /// max = n < 1 ? 1 : n; 1968 /// do { 1969 /// p[i] = 0.0; 1970 /// } while (++i != max); 1971 /// 1972 /// Canonical induction variables are necessary because the loop passes 1973 /// are designed around them. The most obvious example of this is the 1974 /// LoopInfo analysis, which doesn't remember trip count values. It 1975 /// expects to be able to rediscover the trip count each time it is 1976 /// needed, and it does this using a simple analysis that only succeeds if 1977 /// the loop has a canonical induction variable. 1978 /// 1979 /// However, when it comes time to generate code, the maximum operation 1980 /// can be quite costly, especially if it's inside of an outer loop. 1981 /// 1982 /// This function solves this problem by detecting this type of loop and 1983 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 1984 /// the instructions for the maximum computation. 1985 /// 1986 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 1987 // Check that the loop matches the pattern we're looking for. 1988 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 1989 Cond->getPredicate() != CmpInst::ICMP_NE) 1990 return Cond; 1991 1992 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 1993 if (!Sel || !Sel->hasOneUse()) return Cond; 1994 1995 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 1996 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1997 return Cond; 1998 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 1999 2000 // Add one to the backedge-taken count to get the trip count. 2001 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2002 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2003 2004 // Check for a max calculation that matches the pattern. There's no check 2005 // for ICMP_ULE here because the comparison would be with zero, which 2006 // isn't interesting. 2007 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2008 const SCEVNAryExpr *Max = nullptr; 2009 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2010 Pred = ICmpInst::ICMP_SLE; 2011 Max = S; 2012 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2013 Pred = ICmpInst::ICMP_SLT; 2014 Max = S; 2015 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2016 Pred = ICmpInst::ICMP_ULT; 2017 Max = U; 2018 } else { 2019 // No match; bail. 2020 return Cond; 2021 } 2022 2023 // To handle a max with more than two operands, this optimization would 2024 // require additional checking and setup. 2025 if (Max->getNumOperands() != 2) 2026 return Cond; 2027 2028 const SCEV *MaxLHS = Max->getOperand(0); 2029 const SCEV *MaxRHS = Max->getOperand(1); 2030 2031 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2032 // for a comparison with 1. For <= and >=, a comparison with zero. 2033 if (!MaxLHS || 2034 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2035 return Cond; 2036 2037 // Check the relevant induction variable for conformance to 2038 // the pattern. 2039 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2040 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2041 if (!AR || !AR->isAffine() || 2042 AR->getStart() != One || 2043 AR->getStepRecurrence(SE) != One) 2044 return Cond; 2045 2046 assert(AR->getLoop() == L && 2047 "Loop condition operand is an addrec in a different loop!"); 2048 2049 // Check the right operand of the select, and remember it, as it will 2050 // be used in the new comparison instruction. 2051 Value *NewRHS = nullptr; 2052 if (ICmpInst::isTrueWhenEqual(Pred)) { 2053 // Look for n+1, and grab n. 2054 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2055 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2056 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2057 NewRHS = BO->getOperand(0); 2058 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2059 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2060 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2061 NewRHS = BO->getOperand(0); 2062 if (!NewRHS) 2063 return Cond; 2064 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2065 NewRHS = Sel->getOperand(1); 2066 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2067 NewRHS = Sel->getOperand(2); 2068 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2069 NewRHS = SU->getValue(); 2070 else 2071 // Max doesn't match expected pattern. 2072 return Cond; 2073 2074 // Determine the new comparison opcode. It may be signed or unsigned, 2075 // and the original comparison may be either equality or inequality. 2076 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2077 Pred = CmpInst::getInversePredicate(Pred); 2078 2079 // Ok, everything looks ok to change the condition into an SLT or SGE and 2080 // delete the max calculation. 2081 ICmpInst *NewCond = 2082 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2083 2084 // Delete the max calculation instructions. 2085 Cond->replaceAllUsesWith(NewCond); 2086 CondUse->setUser(NewCond); 2087 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2088 Cond->eraseFromParent(); 2089 Sel->eraseFromParent(); 2090 if (Cmp->use_empty()) 2091 Cmp->eraseFromParent(); 2092 return NewCond; 2093 } 2094 2095 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2096 /// postinc iv when possible. 2097 void 2098 LSRInstance::OptimizeLoopTermCond() { 2099 SmallPtrSet<Instruction *, 4> PostIncs; 2100 2101 BasicBlock *LatchBlock = L->getLoopLatch(); 2102 SmallVector<BasicBlock*, 8> ExitingBlocks; 2103 L->getExitingBlocks(ExitingBlocks); 2104 2105 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2106 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2107 2108 // Get the terminating condition for the loop if possible. If we 2109 // can, we want to change it to use a post-incremented version of its 2110 // induction variable, to allow coalescing the live ranges for the IV into 2111 // one register value. 2112 2113 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2114 if (!TermBr) 2115 continue; 2116 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2117 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2118 continue; 2119 2120 // Search IVUsesByStride to find Cond's IVUse if there is one. 2121 IVStrideUse *CondUse = nullptr; 2122 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2123 if (!FindIVUserForCond(Cond, CondUse)) 2124 continue; 2125 2126 // If the trip count is computed in terms of a max (due to ScalarEvolution 2127 // being unable to find a sufficient guard, for example), change the loop 2128 // comparison to use SLT or ULT instead of NE. 2129 // One consequence of doing this now is that it disrupts the count-down 2130 // optimization. That's not always a bad thing though, because in such 2131 // cases it may still be worthwhile to avoid a max. 2132 Cond = OptimizeMax(Cond, CondUse); 2133 2134 // If this exiting block dominates the latch block, it may also use 2135 // the post-inc value if it won't be shared with other uses. 2136 // Check for dominance. 2137 if (!DT.dominates(ExitingBlock, LatchBlock)) 2138 continue; 2139 2140 // Conservatively avoid trying to use the post-inc value in non-latch 2141 // exits if there may be pre-inc users in intervening blocks. 2142 if (LatchBlock != ExitingBlock) 2143 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2144 // Test if the use is reachable from the exiting block. This dominator 2145 // query is a conservative approximation of reachability. 2146 if (&*UI != CondUse && 2147 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2148 // Conservatively assume there may be reuse if the quotient of their 2149 // strides could be a legal scale. 2150 const SCEV *A = IU.getStride(*CondUse, L); 2151 const SCEV *B = IU.getStride(*UI, L); 2152 if (!A || !B) continue; 2153 if (SE.getTypeSizeInBits(A->getType()) != 2154 SE.getTypeSizeInBits(B->getType())) { 2155 if (SE.getTypeSizeInBits(A->getType()) > 2156 SE.getTypeSizeInBits(B->getType())) 2157 B = SE.getSignExtendExpr(B, A->getType()); 2158 else 2159 A = SE.getSignExtendExpr(A, B->getType()); 2160 } 2161 if (const SCEVConstant *D = 2162 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2163 const ConstantInt *C = D->getValue(); 2164 // Stride of one or negative one can have reuse with non-addresses. 2165 if (C->isOne() || C->isAllOnesValue()) 2166 goto decline_post_inc; 2167 // Avoid weird situations. 2168 if (C->getValue().getMinSignedBits() >= 64 || 2169 C->getValue().isMinSignedValue()) 2170 goto decline_post_inc; 2171 // Check for possible scaled-address reuse. 2172 Type *AccessTy = getAccessType(UI->getUser()); 2173 int64_t Scale = C->getSExtValue(); 2174 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2175 /*BaseOffset=*/ 0, 2176 /*HasBaseReg=*/ false, Scale)) 2177 goto decline_post_inc; 2178 Scale = -Scale; 2179 if (TTI.isLegalAddressingMode(AccessTy, /*BaseGV=*/ nullptr, 2180 /*BaseOffset=*/ 0, 2181 /*HasBaseReg=*/ false, Scale)) 2182 goto decline_post_inc; 2183 } 2184 } 2185 2186 DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2187 << *Cond << '\n'); 2188 2189 // It's possible for the setcc instruction to be anywhere in the loop, and 2190 // possible for it to have multiple users. If it is not immediately before 2191 // the exiting block branch, move it. 2192 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2193 if (Cond->hasOneUse()) { 2194 Cond->moveBefore(TermBr); 2195 } else { 2196 // Clone the terminating condition and insert into the loopend. 2197 ICmpInst *OldCond = Cond; 2198 Cond = cast<ICmpInst>(Cond->clone()); 2199 Cond->setName(L->getHeader()->getName() + ".termcond"); 2200 ExitingBlock->getInstList().insert(TermBr, Cond); 2201 2202 // Clone the IVUse, as the old use still exists! 2203 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2204 TermBr->replaceUsesOfWith(OldCond, Cond); 2205 } 2206 } 2207 2208 // If we get to here, we know that we can transform the setcc instruction to 2209 // use the post-incremented version of the IV, allowing us to coalesce the 2210 // live ranges for the IV correctly. 2211 CondUse->transformToPostInc(L); 2212 Changed = true; 2213 2214 PostIncs.insert(Cond); 2215 decline_post_inc:; 2216 } 2217 2218 // Determine an insertion point for the loop induction variable increment. It 2219 // must dominate all the post-inc comparisons we just set up, and it must 2220 // dominate the loop latch edge. 2221 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2222 for (Instruction *Inst : PostIncs) { 2223 BasicBlock *BB = 2224 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2225 Inst->getParent()); 2226 if (BB == Inst->getParent()) 2227 IVIncInsertPos = Inst; 2228 else if (BB != IVIncInsertPos->getParent()) 2229 IVIncInsertPos = BB->getTerminator(); 2230 } 2231 } 2232 2233 /// reconcileNewOffset - Determine if the given use can accommodate a fixup 2234 /// at the given offset and other details. If so, update the use and 2235 /// return true. 2236 bool 2237 LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 2238 LSRUse::KindType Kind, Type *AccessTy) { 2239 int64_t NewMinOffset = LU.MinOffset; 2240 int64_t NewMaxOffset = LU.MaxOffset; 2241 Type *NewAccessTy = AccessTy; 2242 2243 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2244 // something conservative, however this can pessimize in the case that one of 2245 // the uses will have all its uses outside the loop, for example. 2246 if (LU.Kind != Kind) 2247 return false; 2248 2249 // Check for a mismatched access type, and fall back conservatively as needed. 2250 // TODO: Be less conservative when the type is similar and can use the same 2251 // addressing modes. 2252 if (Kind == LSRUse::Address && AccessTy != LU.AccessTy) 2253 NewAccessTy = Type::getVoidTy(AccessTy->getContext()); 2254 2255 // Conservatively assume HasBaseReg is true for now. 2256 if (NewOffset < LU.MinOffset) { 2257 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2258 LU.MaxOffset - NewOffset, HasBaseReg)) 2259 return false; 2260 NewMinOffset = NewOffset; 2261 } else if (NewOffset > LU.MaxOffset) { 2262 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2263 NewOffset - LU.MinOffset, HasBaseReg)) 2264 return false; 2265 NewMaxOffset = NewOffset; 2266 } 2267 2268 // Update the use. 2269 LU.MinOffset = NewMinOffset; 2270 LU.MaxOffset = NewMaxOffset; 2271 LU.AccessTy = NewAccessTy; 2272 if (NewOffset != LU.Offsets.back()) 2273 LU.Offsets.push_back(NewOffset); 2274 return true; 2275 } 2276 2277 /// getUse - Return an LSRUse index and an offset value for a fixup which 2278 /// needs the given expression, with the given kind and optional access type. 2279 /// Either reuse an existing use or create a new one, as needed. 2280 std::pair<size_t, int64_t> 2281 LSRInstance::getUse(const SCEV *&Expr, 2282 LSRUse::KindType Kind, Type *AccessTy) { 2283 const SCEV *Copy = Expr; 2284 int64_t Offset = ExtractImmediate(Expr, SE); 2285 2286 // Basic uses can't accept any offset, for example. 2287 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2288 Offset, /*HasBaseReg=*/ true)) { 2289 Expr = Copy; 2290 Offset = 0; 2291 } 2292 2293 std::pair<UseMapTy::iterator, bool> P = 2294 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2295 if (!P.second) { 2296 // A use already existed with this base. 2297 size_t LUIdx = P.first->second; 2298 LSRUse &LU = Uses[LUIdx]; 2299 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2300 // Reuse this use. 2301 return std::make_pair(LUIdx, Offset); 2302 } 2303 2304 // Create a new use. 2305 size_t LUIdx = Uses.size(); 2306 P.first->second = LUIdx; 2307 Uses.push_back(LSRUse(Kind, AccessTy)); 2308 LSRUse &LU = Uses[LUIdx]; 2309 2310 // We don't need to track redundant offsets, but we don't need to go out 2311 // of our way here to avoid them. 2312 if (LU.Offsets.empty() || Offset != LU.Offsets.back()) 2313 LU.Offsets.push_back(Offset); 2314 2315 LU.MinOffset = Offset; 2316 LU.MaxOffset = Offset; 2317 return std::make_pair(LUIdx, Offset); 2318 } 2319 2320 /// DeleteUse - Delete the given use from the Uses list. 2321 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2322 if (&LU != &Uses.back()) 2323 std::swap(LU, Uses.back()); 2324 Uses.pop_back(); 2325 2326 // Update RegUses. 2327 RegUses.SwapAndDropUse(LUIdx, Uses.size()); 2328 } 2329 2330 /// FindUseWithFormula - Look for a use distinct from OrigLU which is has 2331 /// a formula that has the same registers as the given formula. 2332 LSRUse * 2333 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2334 const LSRUse &OrigLU) { 2335 // Search all uses for the formula. This could be more clever. 2336 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2337 LSRUse &LU = Uses[LUIdx]; 2338 // Check whether this use is close enough to OrigLU, to see whether it's 2339 // worthwhile looking through its formulae. 2340 // Ignore ICmpZero uses because they may contain formulae generated by 2341 // GenerateICmpZeroScales, in which case adding fixup offsets may 2342 // be invalid. 2343 if (&LU != &OrigLU && 2344 LU.Kind != LSRUse::ICmpZero && 2345 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2346 LU.WidestFixupType == OrigLU.WidestFixupType && 2347 LU.HasFormulaWithSameRegs(OrigF)) { 2348 // Scan through this use's formulae. 2349 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 2350 E = LU.Formulae.end(); I != E; ++I) { 2351 const Formula &F = *I; 2352 // Check to see if this formula has the same registers and symbols 2353 // as OrigF. 2354 if (F.BaseRegs == OrigF.BaseRegs && 2355 F.ScaledReg == OrigF.ScaledReg && 2356 F.BaseGV == OrigF.BaseGV && 2357 F.Scale == OrigF.Scale && 2358 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2359 if (F.BaseOffset == 0) 2360 return &LU; 2361 // This is the formula where all the registers and symbols matched; 2362 // there aren't going to be any others. Since we declined it, we 2363 // can skip the rest of the formulae and proceed to the next LSRUse. 2364 break; 2365 } 2366 } 2367 } 2368 } 2369 2370 // Nothing looked good. 2371 return nullptr; 2372 } 2373 2374 void LSRInstance::CollectInterestingTypesAndFactors() { 2375 SmallSetVector<const SCEV *, 4> Strides; 2376 2377 // Collect interesting types and strides. 2378 SmallVector<const SCEV *, 4> Worklist; 2379 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2380 const SCEV *Expr = IU.getExpr(*UI); 2381 2382 // Collect interesting types. 2383 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2384 2385 // Add strides for mentioned loops. 2386 Worklist.push_back(Expr); 2387 do { 2388 const SCEV *S = Worklist.pop_back_val(); 2389 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2390 if (AR->getLoop() == L) 2391 Strides.insert(AR->getStepRecurrence(SE)); 2392 Worklist.push_back(AR->getStart()); 2393 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2394 Worklist.append(Add->op_begin(), Add->op_end()); 2395 } 2396 } while (!Worklist.empty()); 2397 } 2398 2399 // Compute interesting factors from the set of interesting strides. 2400 for (SmallSetVector<const SCEV *, 4>::const_iterator 2401 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2402 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2403 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2404 const SCEV *OldStride = *I; 2405 const SCEV *NewStride = *NewStrideIter; 2406 2407 if (SE.getTypeSizeInBits(OldStride->getType()) != 2408 SE.getTypeSizeInBits(NewStride->getType())) { 2409 if (SE.getTypeSizeInBits(OldStride->getType()) > 2410 SE.getTypeSizeInBits(NewStride->getType())) 2411 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2412 else 2413 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2414 } 2415 if (const SCEVConstant *Factor = 2416 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2417 SE, true))) { 2418 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2419 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2420 } else if (const SCEVConstant *Factor = 2421 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2422 NewStride, 2423 SE, true))) { 2424 if (Factor->getValue()->getValue().getMinSignedBits() <= 64) 2425 Factors.insert(Factor->getValue()->getValue().getSExtValue()); 2426 } 2427 } 2428 2429 // If all uses use the same type, don't bother looking for truncation-based 2430 // reuse. 2431 if (Types.size() == 1) 2432 Types.clear(); 2433 2434 DEBUG(print_factors_and_types(dbgs())); 2435 } 2436 2437 /// findIVOperand - Helper for CollectChains that finds an IV operand (computed 2438 /// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped 2439 /// Instructions to IVStrideUses, we could partially skip this. 2440 static User::op_iterator 2441 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2442 Loop *L, ScalarEvolution &SE) { 2443 for(; OI != OE; ++OI) { 2444 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2445 if (!SE.isSCEVable(Oper->getType())) 2446 continue; 2447 2448 if (const SCEVAddRecExpr *AR = 2449 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2450 if (AR->getLoop() == L) 2451 break; 2452 } 2453 } 2454 } 2455 return OI; 2456 } 2457 2458 /// getWideOperand - IVChain logic must consistenctly peek base TruncInst 2459 /// operands, so wrap it in a convenient helper. 2460 static Value *getWideOperand(Value *Oper) { 2461 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2462 return Trunc->getOperand(0); 2463 return Oper; 2464 } 2465 2466 /// isCompatibleIVType - Return true if we allow an IV chain to include both 2467 /// types. 2468 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2469 Type *LType = LVal->getType(); 2470 Type *RType = RVal->getType(); 2471 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy()); 2472 } 2473 2474 /// getExprBase - Return an approximation of this SCEV expression's "base", or 2475 /// NULL for any constant. Returning the expression itself is 2476 /// conservative. Returning a deeper subexpression is more precise and valid as 2477 /// long as it isn't less complex than another subexpression. For expressions 2478 /// involving multiple unscaled values, we need to return the pointer-type 2479 /// SCEVUnknown. This avoids forming chains across objects, such as: 2480 /// PrevOper==a[i], IVOper==b[i], IVInc==b-a. 2481 /// 2482 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2483 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2484 static const SCEV *getExprBase(const SCEV *S) { 2485 switch (S->getSCEVType()) { 2486 default: // uncluding scUnknown. 2487 return S; 2488 case scConstant: 2489 return nullptr; 2490 case scTruncate: 2491 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2492 case scZeroExtend: 2493 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2494 case scSignExtend: 2495 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2496 case scAddExpr: { 2497 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2498 // there's nothing more complex. 2499 // FIXME: not sure if we want to recognize negation. 2500 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2501 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2502 E(Add->op_begin()); I != E; ++I) { 2503 const SCEV *SubExpr = *I; 2504 if (SubExpr->getSCEVType() == scAddExpr) 2505 return getExprBase(SubExpr); 2506 2507 if (SubExpr->getSCEVType() != scMulExpr) 2508 return SubExpr; 2509 } 2510 return S; // all operands are scaled, be conservative. 2511 } 2512 case scAddRecExpr: 2513 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2514 } 2515 } 2516 2517 /// Return true if the chain increment is profitable to expand into a loop 2518 /// invariant value, which may require its own register. A profitable chain 2519 /// increment will be an offset relative to the same base. We allow such offsets 2520 /// to potentially be used as chain increment as long as it's not obviously 2521 /// expensive to expand using real instructions. 2522 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2523 const SCEV *IncExpr, 2524 ScalarEvolution &SE) { 2525 // Aggressively form chains when -stress-ivchain. 2526 if (StressIVChain) 2527 return true; 2528 2529 // Do not replace a constant offset from IV head with a nonconstant IV 2530 // increment. 2531 if (!isa<SCEVConstant>(IncExpr)) { 2532 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2533 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2534 return 0; 2535 } 2536 2537 SmallPtrSet<const SCEV*, 8> Processed; 2538 return !isHighCostExpansion(IncExpr, Processed, SE); 2539 } 2540 2541 /// Return true if the number of registers needed for the chain is estimated to 2542 /// be less than the number required for the individual IV users. First prohibit 2543 /// any IV users that keep the IV live across increments (the Users set should 2544 /// be empty). Next count the number and type of increments in the chain. 2545 /// 2546 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2547 /// effectively use postinc addressing modes. Only consider it profitable it the 2548 /// increments can be computed in fewer registers when chained. 2549 /// 2550 /// TODO: Consider IVInc free if it's already used in another chains. 2551 static bool 2552 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2553 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2554 if (StressIVChain) 2555 return true; 2556 2557 if (!Chain.hasIncs()) 2558 return false; 2559 2560 if (!Users.empty()) { 2561 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2562 for (Instruction *Inst : Users) { 2563 dbgs() << " " << *Inst << "\n"; 2564 }); 2565 return false; 2566 } 2567 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2568 2569 // The chain itself may require a register, so intialize cost to 1. 2570 int cost = 1; 2571 2572 // A complete chain likely eliminates the need for keeping the original IV in 2573 // a register. LSR does not currently know how to form a complete chain unless 2574 // the header phi already exists. 2575 if (isa<PHINode>(Chain.tailUserInst()) 2576 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2577 --cost; 2578 } 2579 const SCEV *LastIncExpr = nullptr; 2580 unsigned NumConstIncrements = 0; 2581 unsigned NumVarIncrements = 0; 2582 unsigned NumReusedIncrements = 0; 2583 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2584 I != E; ++I) { 2585 2586 if (I->IncExpr->isZero()) 2587 continue; 2588 2589 // Incrementing by zero or some constant is neutral. We assume constants can 2590 // be folded into an addressing mode or an add's immediate operand. 2591 if (isa<SCEVConstant>(I->IncExpr)) { 2592 ++NumConstIncrements; 2593 continue; 2594 } 2595 2596 if (I->IncExpr == LastIncExpr) 2597 ++NumReusedIncrements; 2598 else 2599 ++NumVarIncrements; 2600 2601 LastIncExpr = I->IncExpr; 2602 } 2603 // An IV chain with a single increment is handled by LSR's postinc 2604 // uses. However, a chain with multiple increments requires keeping the IV's 2605 // value live longer than it needs to be if chained. 2606 if (NumConstIncrements > 1) 2607 --cost; 2608 2609 // Materializing increment expressions in the preheader that didn't exist in 2610 // the original code may cost a register. For example, sign-extended array 2611 // indices can produce ridiculous increments like this: 2612 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2613 cost += NumVarIncrements; 2614 2615 // Reusing variable increments likely saves a register to hold the multiple of 2616 // the stride. 2617 cost -= NumReusedIncrements; 2618 2619 DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2620 << "\n"); 2621 2622 return cost < 0; 2623 } 2624 2625 /// ChainInstruction - Add this IV user to an existing chain or make it the head 2626 /// of a new chain. 2627 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2628 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2629 // When IVs are used as types of varying widths, they are generally converted 2630 // to a wider type with some uses remaining narrow under a (free) trunc. 2631 Value *const NextIV = getWideOperand(IVOper); 2632 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2633 const SCEV *const OperExprBase = getExprBase(OperExpr); 2634 2635 // Visit all existing chains. Check if its IVOper can be computed as a 2636 // profitable loop invariant increment from the last link in the Chain. 2637 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2638 const SCEV *LastIncExpr = nullptr; 2639 for (; ChainIdx < NChains; ++ChainIdx) { 2640 IVChain &Chain = IVChainVec[ChainIdx]; 2641 2642 // Prune the solution space aggressively by checking that both IV operands 2643 // are expressions that operate on the same unscaled SCEVUnknown. This 2644 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2645 // first avoids creating extra SCEV expressions. 2646 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2647 continue; 2648 2649 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2650 if (!isCompatibleIVType(PrevIV, NextIV)) 2651 continue; 2652 2653 // A phi node terminates a chain. 2654 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2655 continue; 2656 2657 // The increment must be loop-invariant so it can be kept in a register. 2658 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2659 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2660 if (!SE.isLoopInvariant(IncExpr, L)) 2661 continue; 2662 2663 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2664 LastIncExpr = IncExpr; 2665 break; 2666 } 2667 } 2668 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2669 // bother for phi nodes, because they must be last in the chain. 2670 if (ChainIdx == NChains) { 2671 if (isa<PHINode>(UserInst)) 2672 return; 2673 if (NChains >= MaxChains && !StressIVChain) { 2674 DEBUG(dbgs() << "IV Chain Limit\n"); 2675 return; 2676 } 2677 LastIncExpr = OperExpr; 2678 // IVUsers may have skipped over sign/zero extensions. We don't currently 2679 // attempt to form chains involving extensions unless they can be hoisted 2680 // into this loop's AddRec. 2681 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2682 return; 2683 ++NChains; 2684 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2685 OperExprBase)); 2686 ChainUsersVec.resize(NChains); 2687 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2688 << ") IV=" << *LastIncExpr << "\n"); 2689 } else { 2690 DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2691 << ") IV+" << *LastIncExpr << "\n"); 2692 // Add this IV user to the end of the chain. 2693 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2694 } 2695 IVChain &Chain = IVChainVec[ChainIdx]; 2696 2697 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2698 // This chain's NearUsers become FarUsers. 2699 if (!LastIncExpr->isZero()) { 2700 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2701 NearUsers.end()); 2702 NearUsers.clear(); 2703 } 2704 2705 // All other uses of IVOperand become near uses of the chain. 2706 // We currently ignore intermediate values within SCEV expressions, assuming 2707 // they will eventually be used be the current chain, or can be computed 2708 // from one of the chain increments. To be more precise we could 2709 // transitively follow its user and only add leaf IV users to the set. 2710 for (User *U : IVOper->users()) { 2711 Instruction *OtherUse = dyn_cast<Instruction>(U); 2712 if (!OtherUse) 2713 continue; 2714 // Uses in the chain will no longer be uses if the chain is formed. 2715 // Include the head of the chain in this iteration (not Chain.begin()). 2716 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2717 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2718 for( ; IncIter != IncEnd; ++IncIter) { 2719 if (IncIter->UserInst == OtherUse) 2720 break; 2721 } 2722 if (IncIter != IncEnd) 2723 continue; 2724 2725 if (SE.isSCEVable(OtherUse->getType()) 2726 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2727 && IU.isIVUserOrOperand(OtherUse)) { 2728 continue; 2729 } 2730 NearUsers.insert(OtherUse); 2731 } 2732 2733 // Since this user is part of the chain, it's no longer considered a use 2734 // of the chain. 2735 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2736 } 2737 2738 /// CollectChains - Populate the vector of Chains. 2739 /// 2740 /// This decreases ILP at the architecture level. Targets with ample registers, 2741 /// multiple memory ports, and no register renaming probably don't want 2742 /// this. However, such targets should probably disable LSR altogether. 2743 /// 2744 /// The job of LSR is to make a reasonable choice of induction variables across 2745 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2746 /// ILP *within the loop* if the target wants it. 2747 /// 2748 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2749 /// will not reorder memory operations, it will recognize this as a chain, but 2750 /// will generate redundant IV increments. Ideally this would be corrected later 2751 /// by a smart scheduler: 2752 /// = A[i] 2753 /// = A[i+x] 2754 /// A[i] = 2755 /// A[i+x] = 2756 /// 2757 /// TODO: Walk the entire domtree within this loop, not just the path to the 2758 /// loop latch. This will discover chains on side paths, but requires 2759 /// maintaining multiple copies of the Chains state. 2760 void LSRInstance::CollectChains() { 2761 DEBUG(dbgs() << "Collecting IV Chains.\n"); 2762 SmallVector<ChainUsers, 8> ChainUsersVec; 2763 2764 SmallVector<BasicBlock *,8> LatchPath; 2765 BasicBlock *LoopHeader = L->getHeader(); 2766 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 2767 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 2768 LatchPath.push_back(Rung->getBlock()); 2769 } 2770 LatchPath.push_back(LoopHeader); 2771 2772 // Walk the instruction stream from the loop header to the loop latch. 2773 for (SmallVectorImpl<BasicBlock *>::reverse_iterator 2774 BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend(); 2775 BBIter != BBEnd; ++BBIter) { 2776 for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end(); 2777 I != E; ++I) { 2778 // Skip instructions that weren't seen by IVUsers analysis. 2779 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(I)) 2780 continue; 2781 2782 // Ignore users that are part of a SCEV expression. This way we only 2783 // consider leaf IV Users. This effectively rediscovers a portion of 2784 // IVUsers analysis but in program order this time. 2785 if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(I))) 2786 continue; 2787 2788 // Remove this instruction from any NearUsers set it may be in. 2789 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2790 ChainIdx < NChains; ++ChainIdx) { 2791 ChainUsersVec[ChainIdx].NearUsers.erase(I); 2792 } 2793 // Search for operands that can be chained. 2794 SmallPtrSet<Instruction*, 4> UniqueOperands; 2795 User::op_iterator IVOpEnd = I->op_end(); 2796 User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE); 2797 while (IVOpIter != IVOpEnd) { 2798 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 2799 if (UniqueOperands.insert(IVOpInst).second) 2800 ChainInstruction(I, IVOpInst, ChainUsersVec); 2801 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2802 } 2803 } // Continue walking down the instructions. 2804 } // Continue walking down the domtree. 2805 // Visit phi backedges to determine if the chain can generate the IV postinc. 2806 for (BasicBlock::iterator I = L->getHeader()->begin(); 2807 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 2808 if (!SE.isSCEVable(PN->getType())) 2809 continue; 2810 2811 Instruction *IncV = 2812 dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch())); 2813 if (IncV) 2814 ChainInstruction(PN, IncV, ChainUsersVec); 2815 } 2816 // Remove any unprofitable chains. 2817 unsigned ChainIdx = 0; 2818 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 2819 UsersIdx < NChains; ++UsersIdx) { 2820 if (!isProfitableChain(IVChainVec[UsersIdx], 2821 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 2822 continue; 2823 // Preserve the chain at UsesIdx. 2824 if (ChainIdx != UsersIdx) 2825 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 2826 FinalizeChain(IVChainVec[ChainIdx]); 2827 ++ChainIdx; 2828 } 2829 IVChainVec.resize(ChainIdx); 2830 } 2831 2832 void LSRInstance::FinalizeChain(IVChain &Chain) { 2833 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2834 DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 2835 2836 for (IVChain::const_iterator I = Chain.begin(), E = Chain.end(); 2837 I != E; ++I) { 2838 DEBUG(dbgs() << " Inc: " << *I->UserInst << "\n"); 2839 User::op_iterator UseI = 2840 std::find(I->UserInst->op_begin(), I->UserInst->op_end(), I->IVOperand); 2841 assert(UseI != I->UserInst->op_end() && "cannot find IV operand"); 2842 IVIncSet.insert(UseI); 2843 } 2844 } 2845 2846 /// Return true if the IVInc can be folded into an addressing mode. 2847 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 2848 Value *Operand, const TargetTransformInfo &TTI) { 2849 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 2850 if (!IncConst || !isAddressUse(UserInst, Operand)) 2851 return false; 2852 2853 if (IncConst->getValue()->getValue().getMinSignedBits() > 64) 2854 return false; 2855 2856 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 2857 if (!isAlwaysFoldable(TTI, LSRUse::Address, 2858 getAccessType(UserInst), /*BaseGV=*/ nullptr, 2859 IncOffset, /*HaseBaseReg=*/ false)) 2860 return false; 2861 2862 return true; 2863 } 2864 2865 /// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to 2866 /// materialize the IV user's operand from the previous IV user's operand. 2867 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 2868 SmallVectorImpl<WeakVH> &DeadInsts) { 2869 // Find the new IVOperand for the head of the chain. It may have been replaced 2870 // by LSR. 2871 const IVInc &Head = Chain.Incs[0]; 2872 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 2873 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 2874 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 2875 IVOpEnd, L, SE); 2876 Value *IVSrc = nullptr; 2877 while (IVOpIter != IVOpEnd) { 2878 IVSrc = getWideOperand(*IVOpIter); 2879 2880 // If this operand computes the expression that the chain needs, we may use 2881 // it. (Check this after setting IVSrc which is used below.) 2882 // 2883 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 2884 // narrow for the chain, so we can no longer use it. We do allow using a 2885 // wider phi, assuming the LSR checked for free truncation. In that case we 2886 // should already have a truncate on this operand such that 2887 // getSCEV(IVSrc) == IncExpr. 2888 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 2889 || SE.getSCEV(IVSrc) == Head.IncExpr) { 2890 break; 2891 } 2892 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 2893 } 2894 if (IVOpIter == IVOpEnd) { 2895 // Gracefully give up on this chain. 2896 DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 2897 return; 2898 } 2899 2900 DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 2901 Type *IVTy = IVSrc->getType(); 2902 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 2903 const SCEV *LeftOverExpr = nullptr; 2904 for (IVChain::const_iterator IncI = Chain.begin(), 2905 IncE = Chain.end(); IncI != IncE; ++IncI) { 2906 2907 Instruction *InsertPt = IncI->UserInst; 2908 if (isa<PHINode>(InsertPt)) 2909 InsertPt = L->getLoopLatch()->getTerminator(); 2910 2911 // IVOper will replace the current IV User's operand. IVSrc is the IV 2912 // value currently held in a register. 2913 Value *IVOper = IVSrc; 2914 if (!IncI->IncExpr->isZero()) { 2915 // IncExpr was the result of subtraction of two narrow values, so must 2916 // be signed. 2917 const SCEV *IncExpr = SE.getNoopOrSignExtend(IncI->IncExpr, IntTy); 2918 LeftOverExpr = LeftOverExpr ? 2919 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 2920 } 2921 if (LeftOverExpr && !LeftOverExpr->isZero()) { 2922 // Expand the IV increment. 2923 Rewriter.clearPostInc(); 2924 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 2925 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 2926 SE.getUnknown(IncV)); 2927 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 2928 2929 // If an IV increment can't be folded, use it as the next IV value. 2930 if (!canFoldIVIncExpr(LeftOverExpr, IncI->UserInst, IncI->IVOperand, 2931 TTI)) { 2932 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 2933 IVSrc = IVOper; 2934 LeftOverExpr = nullptr; 2935 } 2936 } 2937 Type *OperTy = IncI->IVOperand->getType(); 2938 if (IVTy != OperTy) { 2939 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 2940 "cannot extend a chained IV"); 2941 IRBuilder<> Builder(InsertPt); 2942 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 2943 } 2944 IncI->UserInst->replaceUsesOfWith(IncI->IVOperand, IVOper); 2945 DeadInsts.push_back(IncI->IVOperand); 2946 } 2947 // If LSR created a new, wider phi, we may also replace its postinc. We only 2948 // do this if we also found a wide value for the head of the chain. 2949 if (isa<PHINode>(Chain.tailUserInst())) { 2950 for (BasicBlock::iterator I = L->getHeader()->begin(); 2951 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 2952 if (!isCompatibleIVType(Phi, IVSrc)) 2953 continue; 2954 Instruction *PostIncV = dyn_cast<Instruction>( 2955 Phi->getIncomingValueForBlock(L->getLoopLatch())); 2956 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 2957 continue; 2958 Value *IVOper = IVSrc; 2959 Type *PostIncTy = PostIncV->getType(); 2960 if (IVTy != PostIncTy) { 2961 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 2962 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 2963 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 2964 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 2965 } 2966 Phi->replaceUsesOfWith(PostIncV, IVOper); 2967 DeadInsts.push_back(PostIncV); 2968 } 2969 } 2970 } 2971 2972 void LSRInstance::CollectFixupsAndInitialFormulae() { 2973 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 2974 Instruction *UserInst = UI->getUser(); 2975 // Skip IV users that are part of profitable IV Chains. 2976 User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(), 2977 UI->getOperandValToReplace()); 2978 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 2979 if (IVIncSet.count(UseI)) 2980 continue; 2981 2982 // Record the uses. 2983 LSRFixup &LF = getNewFixup(); 2984 LF.UserInst = UserInst; 2985 LF.OperandValToReplace = UI->getOperandValToReplace(); 2986 LF.PostIncLoops = UI->getPostIncLoops(); 2987 2988 LSRUse::KindType Kind = LSRUse::Basic; 2989 Type *AccessTy = nullptr; 2990 if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) { 2991 Kind = LSRUse::Address; 2992 AccessTy = getAccessType(LF.UserInst); 2993 } 2994 2995 const SCEV *S = IU.getExpr(*UI); 2996 2997 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 2998 // (N - i == 0), and this allows (N - i) to be the expression that we work 2999 // with rather than just N or i, so we can consider the register 3000 // requirements for both N and i at the same time. Limiting this code to 3001 // equality icmps is not a problem because all interesting loops use 3002 // equality icmps, thanks to IndVarSimplify. 3003 if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst)) 3004 if (CI->isEquality()) { 3005 // Swap the operands if needed to put the OperandValToReplace on the 3006 // left, for consistency. 3007 Value *NV = CI->getOperand(1); 3008 if (NV == LF.OperandValToReplace) { 3009 CI->setOperand(1, CI->getOperand(0)); 3010 CI->setOperand(0, NV); 3011 NV = CI->getOperand(1); 3012 Changed = true; 3013 } 3014 3015 // x == y --> x - y == 0 3016 const SCEV *N = SE.getSCEV(NV); 3017 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3018 // S is normalized, so normalize N before folding it into S 3019 // to keep the result normalized. 3020 N = TransformForPostIncUse(Normalize, N, CI, nullptr, 3021 LF.PostIncLoops, SE, DT); 3022 Kind = LSRUse::ICmpZero; 3023 S = SE.getMinusSCEV(N, S); 3024 } 3025 3026 // -1 and the negations of all interesting strides (except the negation 3027 // of -1) are now also interesting. 3028 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3029 if (Factors[i] != -1) 3030 Factors.insert(-(uint64_t)Factors[i]); 3031 Factors.insert(-1); 3032 } 3033 3034 // Set up the initial formula for this use. 3035 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3036 LF.LUIdx = P.first; 3037 LF.Offset = P.second; 3038 LSRUse &LU = Uses[LF.LUIdx]; 3039 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3040 if (!LU.WidestFixupType || 3041 SE.getTypeSizeInBits(LU.WidestFixupType) < 3042 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3043 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3044 3045 // If this is the first use of this LSRUse, give it a formula. 3046 if (LU.Formulae.empty()) { 3047 InsertInitialFormula(S, LU, LF.LUIdx); 3048 CountRegisters(LU.Formulae.back(), LF.LUIdx); 3049 } 3050 } 3051 3052 DEBUG(print_fixups(dbgs())); 3053 } 3054 3055 /// InsertInitialFormula - Insert a formula for the given expression into 3056 /// the given use, separating out loop-variant portions from loop-invariant 3057 /// and loop-computable portions. 3058 void 3059 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3060 // Mark uses whose expressions cannot be expanded. 3061 if (!isSafeToExpand(S, SE)) 3062 LU.RigidFormula = true; 3063 3064 Formula F; 3065 F.InitialMatch(S, L, SE); 3066 bool Inserted = InsertFormula(LU, LUIdx, F); 3067 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3068 } 3069 3070 /// InsertSupplementalFormula - Insert a simple single-register formula for 3071 /// the given expression into the given use. 3072 void 3073 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3074 LSRUse &LU, size_t LUIdx) { 3075 Formula F; 3076 F.BaseRegs.push_back(S); 3077 F.HasBaseReg = true; 3078 bool Inserted = InsertFormula(LU, LUIdx, F); 3079 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3080 } 3081 3082 /// CountRegisters - Note which registers are used by the given formula, 3083 /// updating RegUses. 3084 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3085 if (F.ScaledReg) 3086 RegUses.CountRegister(F.ScaledReg, LUIdx); 3087 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 3088 E = F.BaseRegs.end(); I != E; ++I) 3089 RegUses.CountRegister(*I, LUIdx); 3090 } 3091 3092 /// InsertFormula - If the given formula has not yet been inserted, add it to 3093 /// the list, and return true. Return false otherwise. 3094 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3095 // Do not insert formula that we will not be able to expand. 3096 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3097 "Formula is illegal"); 3098 if (!LU.InsertFormula(F)) 3099 return false; 3100 3101 CountRegisters(F, LUIdx); 3102 return true; 3103 } 3104 3105 /// CollectLoopInvariantFixupsAndFormulae - Check for other uses of 3106 /// loop-invariant values which we're tracking. These other uses will pin these 3107 /// values in registers, making them less profitable for elimination. 3108 /// TODO: This currently misses non-constant addrec step registers. 3109 /// TODO: Should this give more weight to users inside the loop? 3110 void 3111 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3112 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3113 SmallPtrSet<const SCEV *, 32> Visited; 3114 3115 while (!Worklist.empty()) { 3116 const SCEV *S = Worklist.pop_back_val(); 3117 3118 // Don't process the same SCEV twice 3119 if (!Visited.insert(S).second) 3120 continue; 3121 3122 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3123 Worklist.append(N->op_begin(), N->op_end()); 3124 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3125 Worklist.push_back(C->getOperand()); 3126 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3127 Worklist.push_back(D->getLHS()); 3128 Worklist.push_back(D->getRHS()); 3129 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3130 const Value *V = US->getValue(); 3131 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3132 // Look for instructions defined outside the loop. 3133 if (L->contains(Inst)) continue; 3134 } else if (isa<UndefValue>(V)) 3135 // Undef doesn't have a live range, so it doesn't matter. 3136 continue; 3137 for (const Use &U : V->uses()) { 3138 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3139 // Ignore non-instructions. 3140 if (!UserInst) 3141 continue; 3142 // Ignore instructions in other functions (as can happen with 3143 // Constants). 3144 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3145 continue; 3146 // Ignore instructions not dominated by the loop. 3147 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3148 UserInst->getParent() : 3149 cast<PHINode>(UserInst)->getIncomingBlock( 3150 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3151 if (!DT.dominates(L->getHeader(), UseBB)) 3152 continue; 3153 // Ignore uses which are part of other SCEV expressions, to avoid 3154 // analyzing them multiple times. 3155 if (SE.isSCEVable(UserInst->getType())) { 3156 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3157 // If the user is a no-op, look through to its uses. 3158 if (!isa<SCEVUnknown>(UserS)) 3159 continue; 3160 if (UserS == US) { 3161 Worklist.push_back( 3162 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3163 continue; 3164 } 3165 } 3166 // Ignore icmp instructions which are already being analyzed. 3167 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3168 unsigned OtherIdx = !U.getOperandNo(); 3169 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3170 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3171 continue; 3172 } 3173 3174 LSRFixup &LF = getNewFixup(); 3175 LF.UserInst = const_cast<Instruction *>(UserInst); 3176 LF.OperandValToReplace = U; 3177 std::pair<size_t, int64_t> P = getUse(S, LSRUse::Basic, nullptr); 3178 LF.LUIdx = P.first; 3179 LF.Offset = P.second; 3180 LSRUse &LU = Uses[LF.LUIdx]; 3181 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3182 if (!LU.WidestFixupType || 3183 SE.getTypeSizeInBits(LU.WidestFixupType) < 3184 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3185 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3186 InsertSupplementalFormula(US, LU, LF.LUIdx); 3187 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3188 break; 3189 } 3190 } 3191 } 3192 } 3193 3194 /// CollectSubexprs - Split S into subexpressions which can be pulled out into 3195 /// separate registers. If C is non-null, multiply each subexpression by C. 3196 /// 3197 /// Return remainder expression after factoring the subexpressions captured by 3198 /// Ops. If Ops is complete, return NULL. 3199 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3200 SmallVectorImpl<const SCEV *> &Ops, 3201 const Loop *L, 3202 ScalarEvolution &SE, 3203 unsigned Depth = 0) { 3204 // Arbitrarily cap recursion to protect compile time. 3205 if (Depth >= 3) 3206 return S; 3207 3208 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3209 // Break out add operands. 3210 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 3211 I != E; ++I) { 3212 const SCEV *Remainder = CollectSubexprs(*I, C, Ops, L, SE, Depth+1); 3213 if (Remainder) 3214 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3215 } 3216 return nullptr; 3217 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3218 // Split a non-zero base out of an addrec. 3219 if (AR->getStart()->isZero()) 3220 return S; 3221 3222 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3223 C, Ops, L, SE, Depth+1); 3224 // Split the non-zero AddRec unless it is part of a nested recurrence that 3225 // does not pertain to this loop. 3226 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3227 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3228 Remainder = nullptr; 3229 } 3230 if (Remainder != AR->getStart()) { 3231 if (!Remainder) 3232 Remainder = SE.getConstant(AR->getType(), 0); 3233 return SE.getAddRecExpr(Remainder, 3234 AR->getStepRecurrence(SE), 3235 AR->getLoop(), 3236 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3237 SCEV::FlagAnyWrap); 3238 } 3239 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3240 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3241 if (Mul->getNumOperands() != 2) 3242 return S; 3243 if (const SCEVConstant *Op0 = 3244 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3245 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3246 const SCEV *Remainder = 3247 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3248 if (Remainder) 3249 Ops.push_back(SE.getMulExpr(C, Remainder)); 3250 return nullptr; 3251 } 3252 } 3253 return S; 3254 } 3255 3256 /// \brief Helper function for LSRInstance::GenerateReassociations. 3257 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3258 const Formula &Base, 3259 unsigned Depth, size_t Idx, 3260 bool IsScaledReg) { 3261 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3262 SmallVector<const SCEV *, 8> AddOps; 3263 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3264 if (Remainder) 3265 AddOps.push_back(Remainder); 3266 3267 if (AddOps.size() == 1) 3268 return; 3269 3270 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3271 JE = AddOps.end(); 3272 J != JE; ++J) { 3273 3274 // Loop-variant "unknown" values are uninteresting; we won't be able to 3275 // do anything meaningful with them. 3276 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3277 continue; 3278 3279 // Don't pull a constant into a register if the constant could be folded 3280 // into an immediate field. 3281 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3282 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3283 continue; 3284 3285 // Collect all operands except *J. 3286 SmallVector<const SCEV *, 8> InnerAddOps( 3287 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3288 InnerAddOps.append(std::next(J), 3289 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3290 3291 // Don't leave just a constant behind in a register if the constant could 3292 // be folded into an immediate field. 3293 if (InnerAddOps.size() == 1 && 3294 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3295 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3296 continue; 3297 3298 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3299 if (InnerSum->isZero()) 3300 continue; 3301 Formula F = Base; 3302 3303 // Add the remaining pieces of the add back into the new formula. 3304 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3305 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3306 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3307 InnerSumSC->getValue()->getZExtValue())) { 3308 F.UnfoldedOffset = 3309 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3310 if (IsScaledReg) 3311 F.ScaledReg = nullptr; 3312 else 3313 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3314 } else if (IsScaledReg) 3315 F.ScaledReg = InnerSum; 3316 else 3317 F.BaseRegs[Idx] = InnerSum; 3318 3319 // Add J as its own register, or an unfolded immediate. 3320 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3321 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3322 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3323 SC->getValue()->getZExtValue())) 3324 F.UnfoldedOffset = 3325 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3326 else 3327 F.BaseRegs.push_back(*J); 3328 // We may have changed the number of register in base regs, adjust the 3329 // formula accordingly. 3330 F.Canonicalize(); 3331 3332 if (InsertFormula(LU, LUIdx, F)) 3333 // If that formula hadn't been seen before, recurse to find more like 3334 // it. 3335 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1); 3336 } 3337 } 3338 3339 /// GenerateReassociations - Split out subexpressions from adds and the bases of 3340 /// addrecs. 3341 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3342 Formula Base, unsigned Depth) { 3343 assert(Base.isCanonical() && "Input must be in the canonical form"); 3344 // Arbitrarily cap recursion to protect compile time. 3345 if (Depth >= 3) 3346 return; 3347 3348 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3349 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3350 3351 if (Base.Scale == 1) 3352 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3353 /* Idx */ -1, /* IsScaledReg */ true); 3354 } 3355 3356 /// GenerateCombinations - Generate a formula consisting of all of the 3357 /// loop-dominating registers added into a single register. 3358 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3359 Formula Base) { 3360 // This method is only interesting on a plurality of registers. 3361 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3362 return; 3363 3364 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3365 // processing the formula. 3366 Base.Unscale(); 3367 Formula F = Base; 3368 F.BaseRegs.clear(); 3369 SmallVector<const SCEV *, 4> Ops; 3370 for (SmallVectorImpl<const SCEV *>::const_iterator 3371 I = Base.BaseRegs.begin(), E = Base.BaseRegs.end(); I != E; ++I) { 3372 const SCEV *BaseReg = *I; 3373 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3374 !SE.hasComputableLoopEvolution(BaseReg, L)) 3375 Ops.push_back(BaseReg); 3376 else 3377 F.BaseRegs.push_back(BaseReg); 3378 } 3379 if (Ops.size() > 1) { 3380 const SCEV *Sum = SE.getAddExpr(Ops); 3381 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3382 // opportunity to fold something. For now, just ignore such cases 3383 // rather than proceed with zero in a register. 3384 if (!Sum->isZero()) { 3385 F.BaseRegs.push_back(Sum); 3386 F.Canonicalize(); 3387 (void)InsertFormula(LU, LUIdx, F); 3388 } 3389 } 3390 } 3391 3392 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets. 3393 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3394 const Formula &Base, size_t Idx, 3395 bool IsScaledReg) { 3396 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3397 GlobalValue *GV = ExtractSymbol(G, SE); 3398 if (G->isZero() || !GV) 3399 return; 3400 Formula F = Base; 3401 F.BaseGV = GV; 3402 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3403 return; 3404 if (IsScaledReg) 3405 F.ScaledReg = G; 3406 else 3407 F.BaseRegs[Idx] = G; 3408 (void)InsertFormula(LU, LUIdx, F); 3409 } 3410 3411 /// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets. 3412 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3413 Formula Base) { 3414 // We can't add a symbolic offset if the address already contains one. 3415 if (Base.BaseGV) return; 3416 3417 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3418 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3419 if (Base.Scale == 1) 3420 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3421 /* IsScaledReg */ true); 3422 } 3423 3424 /// \brief Helper function for LSRInstance::GenerateConstantOffsets. 3425 void LSRInstance::GenerateConstantOffsetsImpl( 3426 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3427 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3428 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3429 for (SmallVectorImpl<int64_t>::const_iterator I = Worklist.begin(), 3430 E = Worklist.end(); 3431 I != E; ++I) { 3432 Formula F = Base; 3433 F.BaseOffset = (uint64_t)Base.BaseOffset - *I; 3434 if (isLegalUse(TTI, LU.MinOffset - *I, LU.MaxOffset - *I, LU.Kind, 3435 LU.AccessTy, F)) { 3436 // Add the offset to the base register. 3437 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), *I), G); 3438 // If it cancelled out, drop the base register, otherwise update it. 3439 if (NewG->isZero()) { 3440 if (IsScaledReg) { 3441 F.Scale = 0; 3442 F.ScaledReg = nullptr; 3443 } else 3444 F.DeleteBaseReg(F.BaseRegs[Idx]); 3445 F.Canonicalize(); 3446 } else if (IsScaledReg) 3447 F.ScaledReg = NewG; 3448 else 3449 F.BaseRegs[Idx] = NewG; 3450 3451 (void)InsertFormula(LU, LUIdx, F); 3452 } 3453 } 3454 3455 int64_t Imm = ExtractImmediate(G, SE); 3456 if (G->isZero() || Imm == 0) 3457 return; 3458 Formula F = Base; 3459 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3460 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3461 return; 3462 if (IsScaledReg) 3463 F.ScaledReg = G; 3464 else 3465 F.BaseRegs[Idx] = G; 3466 (void)InsertFormula(LU, LUIdx, F); 3467 } 3468 3469 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3470 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3471 Formula Base) { 3472 // TODO: For now, just add the min and max offset, because it usually isn't 3473 // worthwhile looking at everything inbetween. 3474 SmallVector<int64_t, 2> Worklist; 3475 Worklist.push_back(LU.MinOffset); 3476 if (LU.MaxOffset != LU.MinOffset) 3477 Worklist.push_back(LU.MaxOffset); 3478 3479 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3480 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3481 if (Base.Scale == 1) 3482 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3483 /* IsScaledReg */ true); 3484 } 3485 3486 /// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up 3487 /// the comparison. For example, x == y -> x*c == y*c. 3488 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3489 Formula Base) { 3490 if (LU.Kind != LSRUse::ICmpZero) return; 3491 3492 // Determine the integer type for the base formula. 3493 Type *IntTy = Base.getType(); 3494 if (!IntTy) return; 3495 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3496 3497 // Don't do this if there is more than one offset. 3498 if (LU.MinOffset != LU.MaxOffset) return; 3499 3500 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3501 3502 // Check each interesting stride. 3503 for (SmallSetVector<int64_t, 8>::const_iterator 3504 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3505 int64_t Factor = *I; 3506 3507 // Check that the multiplication doesn't overflow. 3508 if (Base.BaseOffset == INT64_MIN && Factor == -1) 3509 continue; 3510 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3511 if (NewBaseOffset / Factor != Base.BaseOffset) 3512 continue; 3513 // If the offset will be truncated at this use, check that it is in bounds. 3514 if (!IntTy->isPointerTy() && 3515 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3516 continue; 3517 3518 // Check that multiplying with the use offset doesn't overflow. 3519 int64_t Offset = LU.MinOffset; 3520 if (Offset == INT64_MIN && Factor == -1) 3521 continue; 3522 Offset = (uint64_t)Offset * Factor; 3523 if (Offset / Factor != LU.MinOffset) 3524 continue; 3525 // If the offset will be truncated at this use, check that it is in bounds. 3526 if (!IntTy->isPointerTy() && 3527 !ConstantInt::isValueValidForType(IntTy, Offset)) 3528 continue; 3529 3530 Formula F = Base; 3531 F.BaseOffset = NewBaseOffset; 3532 3533 // Check that this scale is legal. 3534 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3535 continue; 3536 3537 // Compensate for the use having MinOffset built into it. 3538 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3539 3540 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3541 3542 // Check that multiplying with each base register doesn't overflow. 3543 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3544 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3545 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3546 goto next; 3547 } 3548 3549 // Check that multiplying with the scaled register doesn't overflow. 3550 if (F.ScaledReg) { 3551 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3552 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3553 continue; 3554 } 3555 3556 // Check that multiplying with the unfolded offset doesn't overflow. 3557 if (F.UnfoldedOffset != 0) { 3558 if (F.UnfoldedOffset == INT64_MIN && Factor == -1) 3559 continue; 3560 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3561 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3562 continue; 3563 // If the offset will be truncated, check that it is in bounds. 3564 if (!IntTy->isPointerTy() && 3565 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3566 continue; 3567 } 3568 3569 // If we make it here and it's legal, add it. 3570 (void)InsertFormula(LU, LUIdx, F); 3571 next:; 3572 } 3573 } 3574 3575 /// GenerateScales - Generate stride factor reuse formulae by making use of 3576 /// scaled-offset address modes, for example. 3577 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3578 // Determine the integer type for the base formula. 3579 Type *IntTy = Base.getType(); 3580 if (!IntTy) return; 3581 3582 // If this Formula already has a scaled register, we can't add another one. 3583 // Try to unscale the formula to generate a better scale. 3584 if (Base.Scale != 0 && !Base.Unscale()) 3585 return; 3586 3587 assert(Base.Scale == 0 && "Unscale did not did its job!"); 3588 3589 // Check each interesting stride. 3590 for (SmallSetVector<int64_t, 8>::const_iterator 3591 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 3592 int64_t Factor = *I; 3593 3594 Base.Scale = Factor; 3595 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3596 // Check whether this scale is going to be legal. 3597 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3598 Base)) { 3599 // As a special-case, handle special out-of-loop Basic users specially. 3600 // TODO: Reconsider this special case. 3601 if (LU.Kind == LSRUse::Basic && 3602 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3603 LU.AccessTy, Base) && 3604 LU.AllFixupsOutsideLoop) 3605 LU.Kind = LSRUse::Special; 3606 else 3607 continue; 3608 } 3609 // For an ICmpZero, negating a solitary base register won't lead to 3610 // new solutions. 3611 if (LU.Kind == LSRUse::ICmpZero && 3612 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3613 continue; 3614 // For each addrec base reg, apply the scale, if possible. 3615 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3616 if (const SCEVAddRecExpr *AR = 3617 dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) { 3618 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3619 if (FactorS->isZero()) 3620 continue; 3621 // Divide out the factor, ignoring high bits, since we'll be 3622 // scaling the value back up in the end. 3623 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3624 // TODO: This could be optimized to avoid all the copying. 3625 Formula F = Base; 3626 F.ScaledReg = Quotient; 3627 F.DeleteBaseReg(F.BaseRegs[i]); 3628 // The canonical representation of 1*reg is reg, which is already in 3629 // Base. In that case, do not try to insert the formula, it will be 3630 // rejected anyway. 3631 if (F.Scale == 1 && F.BaseRegs.empty()) 3632 continue; 3633 (void)InsertFormula(LU, LUIdx, F); 3634 } 3635 } 3636 } 3637 } 3638 3639 /// GenerateTruncates - Generate reuse formulae from different IV types. 3640 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3641 // Don't bother truncating symbolic values. 3642 if (Base.BaseGV) return; 3643 3644 // Determine the integer type for the base formula. 3645 Type *DstTy = Base.getType(); 3646 if (!DstTy) return; 3647 DstTy = SE.getEffectiveSCEVType(DstTy); 3648 3649 for (SmallSetVector<Type *, 4>::const_iterator 3650 I = Types.begin(), E = Types.end(); I != E; ++I) { 3651 Type *SrcTy = *I; 3652 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3653 Formula F = Base; 3654 3655 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, *I); 3656 for (SmallVectorImpl<const SCEV *>::iterator J = F.BaseRegs.begin(), 3657 JE = F.BaseRegs.end(); J != JE; ++J) 3658 *J = SE.getAnyExtendExpr(*J, SrcTy); 3659 3660 // TODO: This assumes we've done basic processing on all uses and 3661 // have an idea what the register usage is. 3662 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3663 continue; 3664 3665 (void)InsertFormula(LU, LUIdx, F); 3666 } 3667 } 3668 } 3669 3670 namespace { 3671 3672 /// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to 3673 /// defer modifications so that the search phase doesn't have to worry about 3674 /// the data structures moving underneath it. 3675 struct WorkItem { 3676 size_t LUIdx; 3677 int64_t Imm; 3678 const SCEV *OrigReg; 3679 3680 WorkItem(size_t LI, int64_t I, const SCEV *R) 3681 : LUIdx(LI), Imm(I), OrigReg(R) {} 3682 3683 void print(raw_ostream &OS) const; 3684 void dump() const; 3685 }; 3686 3687 } 3688 3689 void WorkItem::print(raw_ostream &OS) const { 3690 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3691 << " , add offset " << Imm; 3692 } 3693 3694 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3695 void WorkItem::dump() const { 3696 print(errs()); errs() << '\n'; 3697 } 3698 #endif 3699 3700 /// GenerateCrossUseConstantOffsets - Look for registers which are a constant 3701 /// distance apart and try to form reuse opportunities between them. 3702 void LSRInstance::GenerateCrossUseConstantOffsets() { 3703 // Group the registers by their value without any added constant offset. 3704 typedef std::map<int64_t, const SCEV *> ImmMapTy; 3705 typedef DenseMap<const SCEV *, ImmMapTy> RegMapTy; 3706 RegMapTy Map; 3707 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3708 SmallVector<const SCEV *, 8> Sequence; 3709 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 3710 I != E; ++I) { 3711 const SCEV *Reg = *I; 3712 int64_t Imm = ExtractImmediate(Reg, SE); 3713 std::pair<RegMapTy::iterator, bool> Pair = 3714 Map.insert(std::make_pair(Reg, ImmMapTy())); 3715 if (Pair.second) 3716 Sequence.push_back(Reg); 3717 Pair.first->second.insert(std::make_pair(Imm, *I)); 3718 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(*I); 3719 } 3720 3721 // Now examine each set of registers with the same base value. Build up 3722 // a list of work to do and do the work in a separate step so that we're 3723 // not adding formulae and register counts while we're searching. 3724 SmallVector<WorkItem, 32> WorkItems; 3725 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3726 for (SmallVectorImpl<const SCEV *>::const_iterator I = Sequence.begin(), 3727 E = Sequence.end(); I != E; ++I) { 3728 const SCEV *Reg = *I; 3729 const ImmMapTy &Imms = Map.find(Reg)->second; 3730 3731 // It's not worthwhile looking for reuse if there's only one offset. 3732 if (Imms.size() == 1) 3733 continue; 3734 3735 DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 3736 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3737 J != JE; ++J) 3738 dbgs() << ' ' << J->first; 3739 dbgs() << '\n'); 3740 3741 // Examine each offset. 3742 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 3743 J != JE; ++J) { 3744 const SCEV *OrigReg = J->second; 3745 3746 int64_t JImm = J->first; 3747 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 3748 3749 if (!isa<SCEVConstant>(OrigReg) && 3750 UsedByIndicesMap[Reg].count() == 1) { 3751 DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n'); 3752 continue; 3753 } 3754 3755 // Conservatively examine offsets between this orig reg a few selected 3756 // other orig regs. 3757 ImmMapTy::const_iterator OtherImms[] = { 3758 Imms.begin(), std::prev(Imms.end()), 3759 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 3760 2) 3761 }; 3762 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 3763 ImmMapTy::const_iterator M = OtherImms[i]; 3764 if (M == J || M == JE) continue; 3765 3766 // Compute the difference between the two. 3767 int64_t Imm = (uint64_t)JImm - M->first; 3768 for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1; 3769 LUIdx = UsedByIndices.find_next(LUIdx)) 3770 // Make a memo of this use, offset, and register tuple. 3771 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 3772 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 3773 } 3774 } 3775 } 3776 3777 Map.clear(); 3778 Sequence.clear(); 3779 UsedByIndicesMap.clear(); 3780 UniqueItems.clear(); 3781 3782 // Now iterate through the worklist and add new formulae. 3783 for (SmallVectorImpl<WorkItem>::const_iterator I = WorkItems.begin(), 3784 E = WorkItems.end(); I != E; ++I) { 3785 const WorkItem &WI = *I; 3786 size_t LUIdx = WI.LUIdx; 3787 LSRUse &LU = Uses[LUIdx]; 3788 int64_t Imm = WI.Imm; 3789 const SCEV *OrigReg = WI.OrigReg; 3790 3791 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 3792 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 3793 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 3794 3795 // TODO: Use a more targeted data structure. 3796 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 3797 Formula F = LU.Formulae[L]; 3798 // FIXME: The code for the scaled and unscaled registers looks 3799 // very similar but slightly different. Investigate if they 3800 // could be merged. That way, we would not have to unscale the 3801 // Formula. 3802 F.Unscale(); 3803 // Use the immediate in the scaled register. 3804 if (F.ScaledReg == OrigReg) { 3805 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 3806 // Don't create 50 + reg(-50). 3807 if (F.referencesReg(SE.getSCEV( 3808 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 3809 continue; 3810 Formula NewF = F; 3811 NewF.BaseOffset = Offset; 3812 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3813 NewF)) 3814 continue; 3815 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 3816 3817 // If the new scale is a constant in a register, and adding the constant 3818 // value to the immediate would produce a value closer to zero than the 3819 // immediate itself, then the formula isn't worthwhile. 3820 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 3821 if (C->getValue()->isNegative() != 3822 (NewF.BaseOffset < 0) && 3823 (C->getValue()->getValue().abs() * APInt(BitWidth, F.Scale)) 3824 .ule(std::abs(NewF.BaseOffset))) 3825 continue; 3826 3827 // OK, looks good. 3828 NewF.Canonicalize(); 3829 (void)InsertFormula(LU, LUIdx, NewF); 3830 } else { 3831 // Use the immediate in a base register. 3832 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 3833 const SCEV *BaseReg = F.BaseRegs[N]; 3834 if (BaseReg != OrigReg) 3835 continue; 3836 Formula NewF = F; 3837 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 3838 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 3839 LU.Kind, LU.AccessTy, NewF)) { 3840 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 3841 continue; 3842 NewF = F; 3843 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 3844 } 3845 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 3846 3847 // If the new formula has a constant in a register, and adding the 3848 // constant value to the immediate would produce a value closer to 3849 // zero than the immediate itself, then the formula isn't worthwhile. 3850 for (SmallVectorImpl<const SCEV *>::const_iterator 3851 J = NewF.BaseRegs.begin(), JE = NewF.BaseRegs.end(); 3852 J != JE; ++J) 3853 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*J)) 3854 if ((C->getValue()->getValue() + NewF.BaseOffset).abs().slt( 3855 std::abs(NewF.BaseOffset)) && 3856 (C->getValue()->getValue() + 3857 NewF.BaseOffset).countTrailingZeros() >= 3858 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 3859 goto skip_formula; 3860 3861 // Ok, looks good. 3862 NewF.Canonicalize(); 3863 (void)InsertFormula(LU, LUIdx, NewF); 3864 break; 3865 skip_formula:; 3866 } 3867 } 3868 } 3869 } 3870 } 3871 3872 /// GenerateAllReuseFormulae - Generate formulae for each use. 3873 void 3874 LSRInstance::GenerateAllReuseFormulae() { 3875 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 3876 // queries are more precise. 3877 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3878 LSRUse &LU = Uses[LUIdx]; 3879 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3880 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 3881 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3882 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 3883 } 3884 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3885 LSRUse &LU = Uses[LUIdx]; 3886 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3887 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 3888 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3889 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 3890 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3891 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 3892 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3893 GenerateScales(LU, LUIdx, LU.Formulae[i]); 3894 } 3895 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3896 LSRUse &LU = Uses[LUIdx]; 3897 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 3898 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 3899 } 3900 3901 GenerateCrossUseConstantOffsets(); 3902 3903 DEBUG(dbgs() << "\n" 3904 "After generating reuse formulae:\n"; 3905 print_uses(dbgs())); 3906 } 3907 3908 /// If there are multiple formulae with the same set of registers used 3909 /// by other uses, pick the best one and delete the others. 3910 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 3911 DenseSet<const SCEV *> VisitedRegs; 3912 SmallPtrSet<const SCEV *, 16> Regs; 3913 SmallPtrSet<const SCEV *, 16> LoserRegs; 3914 #ifndef NDEBUG 3915 bool ChangedFormulae = false; 3916 #endif 3917 3918 // Collect the best formula for each unique set of shared registers. This 3919 // is reset for each use. 3920 typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo> 3921 BestFormulaeTy; 3922 BestFormulaeTy BestFormulae; 3923 3924 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 3925 LSRUse &LU = Uses[LUIdx]; 3926 DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n'); 3927 3928 bool Any = false; 3929 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 3930 FIdx != NumForms; ++FIdx) { 3931 Formula &F = LU.Formulae[FIdx]; 3932 3933 // Some formulas are instant losers. For example, they may depend on 3934 // nonexistent AddRecs from other loops. These need to be filtered 3935 // immediately, otherwise heuristics could choose them over others leading 3936 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 3937 // avoids the need to recompute this information across formulae using the 3938 // same bad AddRec. Passing LoserRegs is also essential unless we remove 3939 // the corresponding bad register from the Regs set. 3940 Cost CostF; 3941 Regs.clear(); 3942 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU, 3943 &LoserRegs); 3944 if (CostF.isLoser()) { 3945 // During initial formula generation, undesirable formulae are generated 3946 // by uses within other loops that have some non-trivial address mode or 3947 // use the postinc form of the IV. LSR needs to provide these formulae 3948 // as the basis of rediscovering the desired formula that uses an AddRec 3949 // corresponding to the existing phi. Once all formulae have been 3950 // generated, these initial losers may be pruned. 3951 DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 3952 dbgs() << "\n"); 3953 } 3954 else { 3955 SmallVector<const SCEV *, 4> Key; 3956 for (SmallVectorImpl<const SCEV *>::const_iterator J = F.BaseRegs.begin(), 3957 JE = F.BaseRegs.end(); J != JE; ++J) { 3958 const SCEV *Reg = *J; 3959 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 3960 Key.push_back(Reg); 3961 } 3962 if (F.ScaledReg && 3963 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 3964 Key.push_back(F.ScaledReg); 3965 // Unstable sort by host order ok, because this is only used for 3966 // uniquifying. 3967 std::sort(Key.begin(), Key.end()); 3968 3969 std::pair<BestFormulaeTy::const_iterator, bool> P = 3970 BestFormulae.insert(std::make_pair(Key, FIdx)); 3971 if (P.second) 3972 continue; 3973 3974 Formula &Best = LU.Formulae[P.first->second]; 3975 3976 Cost CostBest; 3977 Regs.clear(); 3978 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE, 3979 DT, LU); 3980 if (CostF < CostBest) 3981 std::swap(F, Best); 3982 DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 3983 dbgs() << "\n" 3984 " in favor of formula "; Best.print(dbgs()); 3985 dbgs() << '\n'); 3986 } 3987 #ifndef NDEBUG 3988 ChangedFormulae = true; 3989 #endif 3990 LU.DeleteFormula(F); 3991 --FIdx; 3992 --NumForms; 3993 Any = true; 3994 } 3995 3996 // Now that we've filtered out some formulae, recompute the Regs set. 3997 if (Any) 3998 LU.RecomputeRegs(LUIdx, RegUses); 3999 4000 // Reset this to prepare for the next use. 4001 BestFormulae.clear(); 4002 } 4003 4004 DEBUG(if (ChangedFormulae) { 4005 dbgs() << "\n" 4006 "After filtering out undesirable candidates:\n"; 4007 print_uses(dbgs()); 4008 }); 4009 } 4010 4011 // This is a rough guess that seems to work fairly well. 4012 static const size_t ComplexityLimit = UINT16_MAX; 4013 4014 /// EstimateSearchSpaceComplexity - Estimate the worst-case number of 4015 /// solutions the solver might have to consider. It almost never considers 4016 /// this many solutions because it prune the search space, but the pruning 4017 /// isn't always sufficient. 4018 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4019 size_t Power = 1; 4020 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4021 E = Uses.end(); I != E; ++I) { 4022 size_t FSize = I->Formulae.size(); 4023 if (FSize >= ComplexityLimit) { 4024 Power = ComplexityLimit; 4025 break; 4026 } 4027 Power *= FSize; 4028 if (Power >= ComplexityLimit) 4029 break; 4030 } 4031 return Power; 4032 } 4033 4034 /// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset 4035 /// of the registers of another formula, it won't help reduce register 4036 /// pressure (though it may not necessarily hurt register pressure); remove 4037 /// it to simplify the system. 4038 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4039 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4040 DEBUG(dbgs() << "The search space is too complex.\n"); 4041 4042 DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4043 "which use a superset of registers used by other " 4044 "formulae.\n"); 4045 4046 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4047 LSRUse &LU = Uses[LUIdx]; 4048 bool Any = false; 4049 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4050 Formula &F = LU.Formulae[i]; 4051 // Look for a formula with a constant or GV in a register. If the use 4052 // also has a formula with that same value in an immediate field, 4053 // delete the one that uses a register. 4054 for (SmallVectorImpl<const SCEV *>::const_iterator 4055 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4056 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4057 Formula NewF = F; 4058 NewF.BaseOffset += C->getValue()->getSExtValue(); 4059 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4060 (I - F.BaseRegs.begin())); 4061 if (LU.HasFormulaWithSameRegs(NewF)) { 4062 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4063 LU.DeleteFormula(F); 4064 --i; 4065 --e; 4066 Any = true; 4067 break; 4068 } 4069 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4070 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4071 if (!F.BaseGV) { 4072 Formula NewF = F; 4073 NewF.BaseGV = GV; 4074 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4075 (I - F.BaseRegs.begin())); 4076 if (LU.HasFormulaWithSameRegs(NewF)) { 4077 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4078 dbgs() << '\n'); 4079 LU.DeleteFormula(F); 4080 --i; 4081 --e; 4082 Any = true; 4083 break; 4084 } 4085 } 4086 } 4087 } 4088 } 4089 if (Any) 4090 LU.RecomputeRegs(LUIdx, RegUses); 4091 } 4092 4093 DEBUG(dbgs() << "After pre-selection:\n"; 4094 print_uses(dbgs())); 4095 } 4096 } 4097 4098 /// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers 4099 /// for expressions like A, A+1, A+2, etc., allocate a single register for 4100 /// them. 4101 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4102 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4103 return; 4104 4105 DEBUG(dbgs() << "The search space is too complex.\n" 4106 "Narrowing the search space by assuming that uses separated " 4107 "by a constant offset will use the same registers.\n"); 4108 4109 // This is especially useful for unrolled loops. 4110 4111 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4112 LSRUse &LU = Uses[LUIdx]; 4113 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4114 E = LU.Formulae.end(); I != E; ++I) { 4115 const Formula &F = *I; 4116 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4117 continue; 4118 4119 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4120 if (!LUThatHas) 4121 continue; 4122 4123 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4124 LU.Kind, LU.AccessTy)) 4125 continue; 4126 4127 DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4128 4129 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4130 4131 // Update the relocs to reference the new use. 4132 for (SmallVectorImpl<LSRFixup>::iterator I = Fixups.begin(), 4133 E = Fixups.end(); I != E; ++I) { 4134 LSRFixup &Fixup = *I; 4135 if (Fixup.LUIdx == LUIdx) { 4136 Fixup.LUIdx = LUThatHas - &Uses.front(); 4137 Fixup.Offset += F.BaseOffset; 4138 // Add the new offset to LUThatHas' offset list. 4139 if (LUThatHas->Offsets.back() != Fixup.Offset) { 4140 LUThatHas->Offsets.push_back(Fixup.Offset); 4141 if (Fixup.Offset > LUThatHas->MaxOffset) 4142 LUThatHas->MaxOffset = Fixup.Offset; 4143 if (Fixup.Offset < LUThatHas->MinOffset) 4144 LUThatHas->MinOffset = Fixup.Offset; 4145 } 4146 DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4147 } 4148 if (Fixup.LUIdx == NumUses-1) 4149 Fixup.LUIdx = LUIdx; 4150 } 4151 4152 // Delete formulae from the new use which are no longer legal. 4153 bool Any = false; 4154 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4155 Formula &F = LUThatHas->Formulae[i]; 4156 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4157 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4158 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4159 dbgs() << '\n'); 4160 LUThatHas->DeleteFormula(F); 4161 --i; 4162 --e; 4163 Any = true; 4164 } 4165 } 4166 4167 if (Any) 4168 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4169 4170 // Delete the old use. 4171 DeleteUse(LU, LUIdx); 4172 --LUIdx; 4173 --NumUses; 4174 break; 4175 } 4176 } 4177 4178 DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4179 } 4180 4181 /// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call 4182 /// FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4183 /// we've done more filtering, as it may be able to find more formulae to 4184 /// eliminate. 4185 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4186 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4187 DEBUG(dbgs() << "The search space is too complex.\n"); 4188 4189 DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4190 "undesirable dedicated registers.\n"); 4191 4192 FilterOutUndesirableDedicatedRegisters(); 4193 4194 DEBUG(dbgs() << "After pre-selection:\n"; 4195 print_uses(dbgs())); 4196 } 4197 } 4198 4199 /// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely 4200 /// to be profitable, and then in any use which has any reference to that 4201 /// register, delete all formulae which do not reference that register. 4202 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4203 // With all other options exhausted, loop until the system is simple 4204 // enough to handle. 4205 SmallPtrSet<const SCEV *, 4> Taken; 4206 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4207 // Ok, we have too many of formulae on our hands to conveniently handle. 4208 // Use a rough heuristic to thin out the list. 4209 DEBUG(dbgs() << "The search space is too complex.\n"); 4210 4211 // Pick the register which is used by the most LSRUses, which is likely 4212 // to be a good reuse register candidate. 4213 const SCEV *Best = nullptr; 4214 unsigned BestNum = 0; 4215 for (RegUseTracker::const_iterator I = RegUses.begin(), E = RegUses.end(); 4216 I != E; ++I) { 4217 const SCEV *Reg = *I; 4218 if (Taken.count(Reg)) 4219 continue; 4220 if (!Best) 4221 Best = Reg; 4222 else { 4223 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4224 if (Count > BestNum) { 4225 Best = Reg; 4226 BestNum = Count; 4227 } 4228 } 4229 } 4230 4231 DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4232 << " will yield profitable reuse.\n"); 4233 Taken.insert(Best); 4234 4235 // In any use with formulae which references this register, delete formulae 4236 // which don't reference it. 4237 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4238 LSRUse &LU = Uses[LUIdx]; 4239 if (!LU.Regs.count(Best)) continue; 4240 4241 bool Any = false; 4242 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4243 Formula &F = LU.Formulae[i]; 4244 if (!F.referencesReg(Best)) { 4245 DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4246 LU.DeleteFormula(F); 4247 --e; 4248 --i; 4249 Any = true; 4250 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4251 continue; 4252 } 4253 } 4254 4255 if (Any) 4256 LU.RecomputeRegs(LUIdx, RegUses); 4257 } 4258 4259 DEBUG(dbgs() << "After pre-selection:\n"; 4260 print_uses(dbgs())); 4261 } 4262 } 4263 4264 /// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of 4265 /// formulae to choose from, use some rough heuristics to prune down the number 4266 /// of formulae. This keeps the main solver from taking an extraordinary amount 4267 /// of time in some worst-case scenarios. 4268 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4269 NarrowSearchSpaceByDetectingSupersets(); 4270 NarrowSearchSpaceByCollapsingUnrolledCode(); 4271 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4272 NarrowSearchSpaceByPickingWinnerRegs(); 4273 } 4274 4275 /// SolveRecurse - This is the recursive solver. 4276 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4277 Cost &SolutionCost, 4278 SmallVectorImpl<const Formula *> &Workspace, 4279 const Cost &CurCost, 4280 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4281 DenseSet<const SCEV *> &VisitedRegs) const { 4282 // Some ideas: 4283 // - prune more: 4284 // - use more aggressive filtering 4285 // - sort the formula so that the most profitable solutions are found first 4286 // - sort the uses too 4287 // - search faster: 4288 // - don't compute a cost, and then compare. compare while computing a cost 4289 // and bail early. 4290 // - track register sets with SmallBitVector 4291 4292 const LSRUse &LU = Uses[Workspace.size()]; 4293 4294 // If this use references any register that's already a part of the 4295 // in-progress solution, consider it a requirement that a formula must 4296 // reference that register in order to be considered. This prunes out 4297 // unprofitable searching. 4298 SmallSetVector<const SCEV *, 4> ReqRegs; 4299 for (const SCEV *S : CurRegs) 4300 if (LU.Regs.count(S)) 4301 ReqRegs.insert(S); 4302 4303 SmallPtrSet<const SCEV *, 16> NewRegs; 4304 Cost NewCost; 4305 for (SmallVectorImpl<Formula>::const_iterator I = LU.Formulae.begin(), 4306 E = LU.Formulae.end(); I != E; ++I) { 4307 const Formula &F = *I; 4308 4309 // Ignore formulae which may not be ideal in terms of register reuse of 4310 // ReqRegs. The formula should use all required registers before 4311 // introducing new ones. 4312 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4313 for (SmallSetVector<const SCEV *, 4>::const_iterator J = ReqRegs.begin(), 4314 JE = ReqRegs.end(); J != JE; ++J) { 4315 const SCEV *Reg = *J; 4316 if ((F.ScaledReg && F.ScaledReg == Reg) || 4317 std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) != 4318 F.BaseRegs.end()) { 4319 --NumReqRegsToFind; 4320 if (NumReqRegsToFind == 0) 4321 break; 4322 } 4323 } 4324 if (NumReqRegsToFind != 0) { 4325 // If none of the formulae satisfied the required registers, then we could 4326 // clear ReqRegs and try again. Currently, we simply give up in this case. 4327 continue; 4328 } 4329 4330 // Evaluate the cost of the current formula. If it's already worse than 4331 // the current best, prune the search at that point. 4332 NewCost = CurCost; 4333 NewRegs = CurRegs; 4334 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT, 4335 LU); 4336 if (NewCost < SolutionCost) { 4337 Workspace.push_back(&F); 4338 if (Workspace.size() != Uses.size()) { 4339 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4340 NewRegs, VisitedRegs); 4341 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4342 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4343 } else { 4344 DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4345 dbgs() << ".\n Regs:"; 4346 for (const SCEV *S : NewRegs) 4347 dbgs() << ' ' << *S; 4348 dbgs() << '\n'); 4349 4350 SolutionCost = NewCost; 4351 Solution = Workspace; 4352 } 4353 Workspace.pop_back(); 4354 } 4355 } 4356 } 4357 4358 /// Solve - Choose one formula from each use. Return the results in the given 4359 /// Solution vector. 4360 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4361 SmallVector<const Formula *, 8> Workspace; 4362 Cost SolutionCost; 4363 SolutionCost.Lose(); 4364 Cost CurCost; 4365 SmallPtrSet<const SCEV *, 16> CurRegs; 4366 DenseSet<const SCEV *> VisitedRegs; 4367 Workspace.reserve(Uses.size()); 4368 4369 // SolveRecurse does all the work. 4370 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4371 CurRegs, VisitedRegs); 4372 if (Solution.empty()) { 4373 DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4374 return; 4375 } 4376 4377 // Ok, we've now made all our decisions. 4378 DEBUG(dbgs() << "\n" 4379 "The chosen solution requires "; SolutionCost.print(dbgs()); 4380 dbgs() << ":\n"; 4381 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4382 dbgs() << " "; 4383 Uses[i].print(dbgs()); 4384 dbgs() << "\n" 4385 " "; 4386 Solution[i]->print(dbgs()); 4387 dbgs() << '\n'; 4388 }); 4389 4390 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4391 } 4392 4393 /// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up 4394 /// the dominator tree far as we can go while still being dominated by the 4395 /// input positions. This helps canonicalize the insert position, which 4396 /// encourages sharing. 4397 BasicBlock::iterator 4398 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4399 const SmallVectorImpl<Instruction *> &Inputs) 4400 const { 4401 for (;;) { 4402 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4403 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4404 4405 BasicBlock *IDom; 4406 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4407 if (!Rung) return IP; 4408 Rung = Rung->getIDom(); 4409 if (!Rung) return IP; 4410 IDom = Rung->getBlock(); 4411 4412 // Don't climb into a loop though. 4413 const Loop *IDomLoop = LI.getLoopFor(IDom); 4414 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4415 if (IDomDepth <= IPLoopDepth && 4416 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4417 break; 4418 } 4419 4420 bool AllDominate = true; 4421 Instruction *BetterPos = nullptr; 4422 Instruction *Tentative = IDom->getTerminator(); 4423 for (SmallVectorImpl<Instruction *>::const_iterator I = Inputs.begin(), 4424 E = Inputs.end(); I != E; ++I) { 4425 Instruction *Inst = *I; 4426 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4427 AllDominate = false; 4428 break; 4429 } 4430 // Attempt to find an insert position in the middle of the block, 4431 // instead of at the end, so that it can be used for other expansions. 4432 if (IDom == Inst->getParent() && 4433 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4434 BetterPos = std::next(BasicBlock::iterator(Inst)); 4435 } 4436 if (!AllDominate) 4437 break; 4438 if (BetterPos) 4439 IP = BetterPos; 4440 else 4441 IP = Tentative; 4442 } 4443 4444 return IP; 4445 } 4446 4447 /// AdjustInsertPositionForExpand - Determine an input position which will be 4448 /// dominated by the operands and which will dominate the result. 4449 BasicBlock::iterator 4450 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4451 const LSRFixup &LF, 4452 const LSRUse &LU, 4453 SCEVExpander &Rewriter) const { 4454 // Collect some instructions which must be dominated by the 4455 // expanding replacement. These must be dominated by any operands that 4456 // will be required in the expansion. 4457 SmallVector<Instruction *, 4> Inputs; 4458 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4459 Inputs.push_back(I); 4460 if (LU.Kind == LSRUse::ICmpZero) 4461 if (Instruction *I = 4462 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4463 Inputs.push_back(I); 4464 if (LF.PostIncLoops.count(L)) { 4465 if (LF.isUseFullyOutsideLoop(L)) 4466 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4467 else 4468 Inputs.push_back(IVIncInsertPos); 4469 } 4470 // The expansion must also be dominated by the increment positions of any 4471 // loops it for which it is using post-inc mode. 4472 for (PostIncLoopSet::const_iterator I = LF.PostIncLoops.begin(), 4473 E = LF.PostIncLoops.end(); I != E; ++I) { 4474 const Loop *PIL = *I; 4475 if (PIL == L) continue; 4476 4477 // Be dominated by the loop exit. 4478 SmallVector<BasicBlock *, 4> ExitingBlocks; 4479 PIL->getExitingBlocks(ExitingBlocks); 4480 if (!ExitingBlocks.empty()) { 4481 BasicBlock *BB = ExitingBlocks[0]; 4482 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4483 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4484 Inputs.push_back(BB->getTerminator()); 4485 } 4486 } 4487 4488 assert(!isa<PHINode>(LowestIP) && !isa<LandingPadInst>(LowestIP) 4489 && !isa<DbgInfoIntrinsic>(LowestIP) && 4490 "Insertion point must be a normal instruction"); 4491 4492 // Then, climb up the immediate dominator tree as far as we can go while 4493 // still being dominated by the input positions. 4494 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4495 4496 // Don't insert instructions before PHI nodes. 4497 while (isa<PHINode>(IP)) ++IP; 4498 4499 // Ignore landingpad instructions. 4500 while (isa<LandingPadInst>(IP)) ++IP; 4501 4502 // Ignore debug intrinsics. 4503 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4504 4505 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4506 // IP consistent across expansions and allows the previously inserted 4507 // instructions to be reused by subsequent expansion. 4508 while (Rewriter.isInsertedInstruction(IP) && IP != LowestIP) ++IP; 4509 4510 return IP; 4511 } 4512 4513 /// Expand - Emit instructions for the leading candidate expression for this 4514 /// LSRUse (this is called "expanding"). 4515 Value *LSRInstance::Expand(const LSRFixup &LF, 4516 const Formula &F, 4517 BasicBlock::iterator IP, 4518 SCEVExpander &Rewriter, 4519 SmallVectorImpl<WeakVH> &DeadInsts) const { 4520 const LSRUse &LU = Uses[LF.LUIdx]; 4521 if (LU.RigidFormula) 4522 return LF.OperandValToReplace; 4523 4524 // Determine an input position which will be dominated by the operands and 4525 // which will dominate the result. 4526 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 4527 4528 // Inform the Rewriter if we have a post-increment use, so that it can 4529 // perform an advantageous expansion. 4530 Rewriter.setPostInc(LF.PostIncLoops); 4531 4532 // This is the type that the user actually needs. 4533 Type *OpTy = LF.OperandValToReplace->getType(); 4534 // This will be the type that we'll initially expand to. 4535 Type *Ty = F.getType(); 4536 if (!Ty) 4537 // No type known; just expand directly to the ultimate type. 4538 Ty = OpTy; 4539 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 4540 // Expand directly to the ultimate type if it's the right size. 4541 Ty = OpTy; 4542 // This is the type to do integer arithmetic in. 4543 Type *IntTy = SE.getEffectiveSCEVType(Ty); 4544 4545 // Build up a list of operands to add together to form the full base. 4546 SmallVector<const SCEV *, 8> Ops; 4547 4548 // Expand the BaseRegs portion. 4549 for (SmallVectorImpl<const SCEV *>::const_iterator I = F.BaseRegs.begin(), 4550 E = F.BaseRegs.end(); I != E; ++I) { 4551 const SCEV *Reg = *I; 4552 assert(!Reg->isZero() && "Zero allocated in a base register!"); 4553 4554 // If we're expanding for a post-inc user, make the post-inc adjustment. 4555 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4556 Reg = TransformForPostIncUse(Denormalize, Reg, 4557 LF.UserInst, LF.OperandValToReplace, 4558 Loops, SE, DT); 4559 4560 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, IP))); 4561 } 4562 4563 // Expand the ScaledReg portion. 4564 Value *ICmpScaledV = nullptr; 4565 if (F.Scale != 0) { 4566 const SCEV *ScaledS = F.ScaledReg; 4567 4568 // If we're expanding for a post-inc user, make the post-inc adjustment. 4569 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 4570 ScaledS = TransformForPostIncUse(Denormalize, ScaledS, 4571 LF.UserInst, LF.OperandValToReplace, 4572 Loops, SE, DT); 4573 4574 if (LU.Kind == LSRUse::ICmpZero) { 4575 // Expand ScaleReg as if it was part of the base regs. 4576 if (F.Scale == 1) 4577 Ops.push_back( 4578 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP))); 4579 else { 4580 // An interesting way of "folding" with an icmp is to use a negated 4581 // scale, which we'll implement by inserting it into the other operand 4582 // of the icmp. 4583 assert(F.Scale == -1 && 4584 "The only scale supported by ICmpZero uses is -1!"); 4585 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, IP); 4586 } 4587 } else { 4588 // Otherwise just expand the scaled register and an explicit scale, 4589 // which is expected to be matched as part of the address. 4590 4591 // Flush the operand list to suppress SCEVExpander hoisting address modes. 4592 // Unless the addressing mode will not be folded. 4593 if (!Ops.empty() && LU.Kind == LSRUse::Address && 4594 isAMCompletelyFolded(TTI, LU, F)) { 4595 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4596 Ops.clear(); 4597 Ops.push_back(SE.getUnknown(FullV)); 4598 } 4599 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, IP)); 4600 if (F.Scale != 1) 4601 ScaledS = 4602 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 4603 Ops.push_back(ScaledS); 4604 } 4605 } 4606 4607 // Expand the GV portion. 4608 if (F.BaseGV) { 4609 // Flush the operand list to suppress SCEVExpander hoisting. 4610 if (!Ops.empty()) { 4611 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4612 Ops.clear(); 4613 Ops.push_back(SE.getUnknown(FullV)); 4614 } 4615 Ops.push_back(SE.getUnknown(F.BaseGV)); 4616 } 4617 4618 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 4619 // unfolded offsets. LSR assumes they both live next to their uses. 4620 if (!Ops.empty()) { 4621 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, IP); 4622 Ops.clear(); 4623 Ops.push_back(SE.getUnknown(FullV)); 4624 } 4625 4626 // Expand the immediate portion. 4627 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 4628 if (Offset != 0) { 4629 if (LU.Kind == LSRUse::ICmpZero) { 4630 // The other interesting way of "folding" with an ICmpZero is to use a 4631 // negated immediate. 4632 if (!ICmpScaledV) 4633 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 4634 else { 4635 Ops.push_back(SE.getUnknown(ICmpScaledV)); 4636 ICmpScaledV = ConstantInt::get(IntTy, Offset); 4637 } 4638 } else { 4639 // Just add the immediate values. These again are expected to be matched 4640 // as part of the address. 4641 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 4642 } 4643 } 4644 4645 // Expand the unfolded offset portion. 4646 int64_t UnfoldedOffset = F.UnfoldedOffset; 4647 if (UnfoldedOffset != 0) { 4648 // Just add the immediate values. 4649 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 4650 UnfoldedOffset))); 4651 } 4652 4653 // Emit instructions summing all the operands. 4654 const SCEV *FullS = Ops.empty() ? 4655 SE.getConstant(IntTy, 0) : 4656 SE.getAddExpr(Ops); 4657 Value *FullV = Rewriter.expandCodeFor(FullS, Ty, IP); 4658 4659 // We're done expanding now, so reset the rewriter. 4660 Rewriter.clearPostInc(); 4661 4662 // An ICmpZero Formula represents an ICmp which we're handling as a 4663 // comparison against zero. Now that we've expanded an expression for that 4664 // form, update the ICmp's other operand. 4665 if (LU.Kind == LSRUse::ICmpZero) { 4666 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 4667 DeadInsts.push_back(CI->getOperand(1)); 4668 assert(!F.BaseGV && "ICmp does not support folding a global value and " 4669 "a scale at the same time!"); 4670 if (F.Scale == -1) { 4671 if (ICmpScaledV->getType() != OpTy) { 4672 Instruction *Cast = 4673 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 4674 OpTy, false), 4675 ICmpScaledV, OpTy, "tmp", CI); 4676 ICmpScaledV = Cast; 4677 } 4678 CI->setOperand(1, ICmpScaledV); 4679 } else { 4680 // A scale of 1 means that the scale has been expanded as part of the 4681 // base regs. 4682 assert((F.Scale == 0 || F.Scale == 1) && 4683 "ICmp does not support folding a global value and " 4684 "a scale at the same time!"); 4685 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 4686 -(uint64_t)Offset); 4687 if (C->getType() != OpTy) 4688 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 4689 OpTy, false), 4690 C, OpTy); 4691 4692 CI->setOperand(1, C); 4693 } 4694 } 4695 4696 return FullV; 4697 } 4698 4699 /// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use 4700 /// of their operands effectively happens in their predecessor blocks, so the 4701 /// expression may need to be expanded in multiple places. 4702 void LSRInstance::RewriteForPHI(PHINode *PN, 4703 const LSRFixup &LF, 4704 const Formula &F, 4705 SCEVExpander &Rewriter, 4706 SmallVectorImpl<WeakVH> &DeadInsts, 4707 Pass *P) const { 4708 DenseMap<BasicBlock *, Value *> Inserted; 4709 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 4710 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 4711 BasicBlock *BB = PN->getIncomingBlock(i); 4712 4713 // If this is a critical edge, split the edge so that we do not insert 4714 // the code on all predecessor/successor paths. We do this unless this 4715 // is the canonical backedge for this loop, which complicates post-inc 4716 // users. 4717 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 4718 !isa<IndirectBrInst>(BB->getTerminator())) { 4719 BasicBlock *Parent = PN->getParent(); 4720 Loop *PNLoop = LI.getLoopFor(Parent); 4721 if (!PNLoop || Parent != PNLoop->getHeader()) { 4722 // Split the critical edge. 4723 BasicBlock *NewBB = nullptr; 4724 if (!Parent->isLandingPad()) { 4725 NewBB = SplitCriticalEdge(BB, Parent, 4726 CriticalEdgeSplittingOptions(&DT, &LI) 4727 .setMergeIdenticalEdges() 4728 .setDontDeleteUselessPHIs()); 4729 } else { 4730 SmallVector<BasicBlock*, 2> NewBBs; 4731 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, 4732 /*AliasAnalysis*/ nullptr, &DT, &LI); 4733 NewBB = NewBBs[0]; 4734 } 4735 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 4736 // phi predecessors are identical. The simple thing to do is skip 4737 // splitting in this case rather than complicate the API. 4738 if (NewBB) { 4739 // If PN is outside of the loop and BB is in the loop, we want to 4740 // move the block to be immediately before the PHI block, not 4741 // immediately after BB. 4742 if (L->contains(BB) && !L->contains(PN)) 4743 NewBB->moveBefore(PN->getParent()); 4744 4745 // Splitting the edge can reduce the number of PHI entries we have. 4746 e = PN->getNumIncomingValues(); 4747 BB = NewBB; 4748 i = PN->getBasicBlockIndex(BB); 4749 } 4750 } 4751 } 4752 4753 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 4754 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 4755 if (!Pair.second) 4756 PN->setIncomingValue(i, Pair.first->second); 4757 else { 4758 Value *FullV = Expand(LF, F, BB->getTerminator(), Rewriter, DeadInsts); 4759 4760 // If this is reuse-by-noop-cast, insert the noop cast. 4761 Type *OpTy = LF.OperandValToReplace->getType(); 4762 if (FullV->getType() != OpTy) 4763 FullV = 4764 CastInst::Create(CastInst::getCastOpcode(FullV, false, 4765 OpTy, false), 4766 FullV, LF.OperandValToReplace->getType(), 4767 "tmp", BB->getTerminator()); 4768 4769 PN->setIncomingValue(i, FullV); 4770 Pair.first->second = FullV; 4771 } 4772 } 4773 } 4774 4775 /// Rewrite - Emit instructions for the leading candidate expression for this 4776 /// LSRUse (this is called "expanding"), and update the UserInst to reference 4777 /// the newly expanded value. 4778 void LSRInstance::Rewrite(const LSRFixup &LF, 4779 const Formula &F, 4780 SCEVExpander &Rewriter, 4781 SmallVectorImpl<WeakVH> &DeadInsts, 4782 Pass *P) const { 4783 // First, find an insertion point that dominates UserInst. For PHI nodes, 4784 // find the nearest block which dominates all the relevant uses. 4785 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 4786 RewriteForPHI(PN, LF, F, Rewriter, DeadInsts, P); 4787 } else { 4788 Value *FullV = Expand(LF, F, LF.UserInst, Rewriter, DeadInsts); 4789 4790 // If this is reuse-by-noop-cast, insert the noop cast. 4791 Type *OpTy = LF.OperandValToReplace->getType(); 4792 if (FullV->getType() != OpTy) { 4793 Instruction *Cast = 4794 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 4795 FullV, OpTy, "tmp", LF.UserInst); 4796 FullV = Cast; 4797 } 4798 4799 // Update the user. ICmpZero is handled specially here (for now) because 4800 // Expand may have updated one of the operands of the icmp already, and 4801 // its new value may happen to be equal to LF.OperandValToReplace, in 4802 // which case doing replaceUsesOfWith leads to replacing both operands 4803 // with the same value. TODO: Reorganize this. 4804 if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero) 4805 LF.UserInst->setOperand(0, FullV); 4806 else 4807 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 4808 } 4809 4810 DeadInsts.push_back(LF.OperandValToReplace); 4811 } 4812 4813 /// ImplementSolution - Rewrite all the fixup locations with new values, 4814 /// following the chosen solution. 4815 void 4816 LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution, 4817 Pass *P) { 4818 // Keep track of instructions we may have made dead, so that 4819 // we can remove them after we are done working. 4820 SmallVector<WeakVH, 16> DeadInsts; 4821 4822 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 4823 "lsr"); 4824 #ifndef NDEBUG 4825 Rewriter.setDebugType(DEBUG_TYPE); 4826 #endif 4827 Rewriter.disableCanonicalMode(); 4828 Rewriter.enableLSRMode(); 4829 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 4830 4831 // Mark phi nodes that terminate chains so the expander tries to reuse them. 4832 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4833 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4834 if (PHINode *PN = dyn_cast<PHINode>(ChainI->tailUserInst())) 4835 Rewriter.setChainedPhi(PN); 4836 } 4837 4838 // Expand the new value definitions and update the users. 4839 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4840 E = Fixups.end(); I != E; ++I) { 4841 const LSRFixup &Fixup = *I; 4842 4843 Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts, P); 4844 4845 Changed = true; 4846 } 4847 4848 for (SmallVectorImpl<IVChain>::const_iterator ChainI = IVChainVec.begin(), 4849 ChainE = IVChainVec.end(); ChainI != ChainE; ++ChainI) { 4850 GenerateIVChain(*ChainI, Rewriter, DeadInsts); 4851 Changed = true; 4852 } 4853 // Clean up after ourselves. This must be done before deleting any 4854 // instructions. 4855 Rewriter.clear(); 4856 4857 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 4858 } 4859 4860 LSRInstance::LSRInstance(Loop *L, Pass *P) 4861 : IU(P->getAnalysis<IVUsers>()), SE(P->getAnalysis<ScalarEvolution>()), 4862 DT(P->getAnalysis<DominatorTreeWrapperPass>().getDomTree()), 4863 LI(P->getAnalysis<LoopInfoWrapperPass>().getLoopInfo()), 4864 TTI(P->getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 4865 *L->getHeader()->getParent())), 4866 L(L), Changed(false), IVIncInsertPos(nullptr) { 4867 // If LoopSimplify form is not available, stay out of trouble. 4868 if (!L->isLoopSimplifyForm()) 4869 return; 4870 4871 // If there's no interesting work to be done, bail early. 4872 if (IU.empty()) return; 4873 4874 // If there's too much analysis to be done, bail early. We won't be able to 4875 // model the problem anyway. 4876 unsigned NumUsers = 0; 4877 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) { 4878 if (++NumUsers > MaxIVUsers) { 4879 DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << *L 4880 << "\n"); 4881 return; 4882 } 4883 } 4884 4885 #ifndef NDEBUG 4886 // All dominating loops must have preheaders, or SCEVExpander may not be able 4887 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 4888 // 4889 // IVUsers analysis should only create users that are dominated by simple loop 4890 // headers. Since this loop should dominate all of its users, its user list 4891 // should be empty if this loop itself is not within a simple loop nest. 4892 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 4893 Rung; Rung = Rung->getIDom()) { 4894 BasicBlock *BB = Rung->getBlock(); 4895 const Loop *DomLoop = LI.getLoopFor(BB); 4896 if (DomLoop && DomLoop->getHeader() == BB) { 4897 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 4898 } 4899 } 4900 #endif // DEBUG 4901 4902 DEBUG(dbgs() << "\nLSR on loop "; 4903 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 4904 dbgs() << ":\n"); 4905 4906 // First, perform some low-level loop optimizations. 4907 OptimizeShadowIV(); 4908 OptimizeLoopTermCond(); 4909 4910 // If loop preparation eliminates all interesting IV users, bail. 4911 if (IU.empty()) return; 4912 4913 // Skip nested loops until we can model them better with formulae. 4914 if (!L->empty()) { 4915 DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 4916 return; 4917 } 4918 4919 // Start collecting data and preparing for the solver. 4920 CollectChains(); 4921 CollectInterestingTypesAndFactors(); 4922 CollectFixupsAndInitialFormulae(); 4923 CollectLoopInvariantFixupsAndFormulae(); 4924 4925 assert(!Uses.empty() && "IVUsers reported at least one use"); 4926 DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 4927 print_uses(dbgs())); 4928 4929 // Now use the reuse data to generate a bunch of interesting ways 4930 // to formulate the values needed for the uses. 4931 GenerateAllReuseFormulae(); 4932 4933 FilterOutUndesirableDedicatedRegisters(); 4934 NarrowSearchSpaceUsingHeuristics(); 4935 4936 SmallVector<const Formula *, 8> Solution; 4937 Solve(Solution); 4938 4939 // Release memory that is no longer needed. 4940 Factors.clear(); 4941 Types.clear(); 4942 RegUses.clear(); 4943 4944 if (Solution.empty()) 4945 return; 4946 4947 #ifndef NDEBUG 4948 // Formulae should be legal. 4949 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), E = Uses.end(); 4950 I != E; ++I) { 4951 const LSRUse &LU = *I; 4952 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 4953 JE = LU.Formulae.end(); 4954 J != JE; ++J) 4955 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4956 *J) && "Illegal formula generated!"); 4957 }; 4958 #endif 4959 4960 // Now that we've decided what we want, make it so. 4961 ImplementSolution(Solution, P); 4962 } 4963 4964 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 4965 if (Factors.empty() && Types.empty()) return; 4966 4967 OS << "LSR has identified the following interesting factors and types: "; 4968 bool First = true; 4969 4970 for (SmallSetVector<int64_t, 8>::const_iterator 4971 I = Factors.begin(), E = Factors.end(); I != E; ++I) { 4972 if (!First) OS << ", "; 4973 First = false; 4974 OS << '*' << *I; 4975 } 4976 4977 for (SmallSetVector<Type *, 4>::const_iterator 4978 I = Types.begin(), E = Types.end(); I != E; ++I) { 4979 if (!First) OS << ", "; 4980 First = false; 4981 OS << '(' << **I << ')'; 4982 } 4983 OS << '\n'; 4984 } 4985 4986 void LSRInstance::print_fixups(raw_ostream &OS) const { 4987 OS << "LSR is examining the following fixup sites:\n"; 4988 for (SmallVectorImpl<LSRFixup>::const_iterator I = Fixups.begin(), 4989 E = Fixups.end(); I != E; ++I) { 4990 dbgs() << " "; 4991 I->print(OS); 4992 OS << '\n'; 4993 } 4994 } 4995 4996 void LSRInstance::print_uses(raw_ostream &OS) const { 4997 OS << "LSR is examining the following uses:\n"; 4998 for (SmallVectorImpl<LSRUse>::const_iterator I = Uses.begin(), 4999 E = Uses.end(); I != E; ++I) { 5000 const LSRUse &LU = *I; 5001 dbgs() << " "; 5002 LU.print(OS); 5003 OS << '\n'; 5004 for (SmallVectorImpl<Formula>::const_iterator J = LU.Formulae.begin(), 5005 JE = LU.Formulae.end(); J != JE; ++J) { 5006 OS << " "; 5007 J->print(OS); 5008 OS << '\n'; 5009 } 5010 } 5011 } 5012 5013 void LSRInstance::print(raw_ostream &OS) const { 5014 print_factors_and_types(OS); 5015 print_fixups(OS); 5016 print_uses(OS); 5017 } 5018 5019 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5020 void LSRInstance::dump() const { 5021 print(errs()); errs() << '\n'; 5022 } 5023 #endif 5024 5025 namespace { 5026 5027 class LoopStrengthReduce : public LoopPass { 5028 public: 5029 static char ID; // Pass ID, replacement for typeid 5030 LoopStrengthReduce(); 5031 5032 private: 5033 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5034 void getAnalysisUsage(AnalysisUsage &AU) const override; 5035 }; 5036 5037 } 5038 5039 char LoopStrengthReduce::ID = 0; 5040 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5041 "Loop Strength Reduction", false, false) 5042 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5043 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5044 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 5045 INITIALIZE_PASS_DEPENDENCY(IVUsers) 5046 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5047 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5048 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5049 "Loop Strength Reduction", false, false) 5050 5051 5052 Pass *llvm::createLoopStrengthReducePass() { 5053 return new LoopStrengthReduce(); 5054 } 5055 5056 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5057 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5058 } 5059 5060 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5061 // We split critical edges, so we change the CFG. However, we do update 5062 // many analyses if they are around. 5063 AU.addPreservedID(LoopSimplifyID); 5064 5065 AU.addRequired<LoopInfoWrapperPass>(); 5066 AU.addPreserved<LoopInfoWrapperPass>(); 5067 AU.addRequiredID(LoopSimplifyID); 5068 AU.addRequired<DominatorTreeWrapperPass>(); 5069 AU.addPreserved<DominatorTreeWrapperPass>(); 5070 AU.addRequired<ScalarEvolution>(); 5071 AU.addPreserved<ScalarEvolution>(); 5072 // Requiring LoopSimplify a second time here prevents IVUsers from running 5073 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5074 AU.addRequiredID(LoopSimplifyID); 5075 AU.addRequired<IVUsers>(); 5076 AU.addPreserved<IVUsers>(); 5077 AU.addRequired<TargetTransformInfoWrapperPass>(); 5078 } 5079 5080 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5081 if (skipOptnoneFunction(L)) 5082 return false; 5083 5084 bool Changed = false; 5085 5086 // Run the main LSR transformation. 5087 Changed |= LSRInstance(L, this).getChanged(); 5088 5089 // Remove any extra phis created by processing inner loops. 5090 Changed |= DeleteDeadPHIs(L->getHeader()); 5091 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5092 SmallVector<WeakVH, 16> DeadInsts; 5093 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5094 SCEVExpander Rewriter(getAnalysis<ScalarEvolution>(), DL, "lsr"); 5095 #ifndef NDEBUG 5096 Rewriter.setDebugType(DEBUG_TYPE); 5097 #endif 5098 unsigned numFolded = Rewriter.replaceCongruentIVs( 5099 L, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), DeadInsts, 5100 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5101 *L->getHeader()->getParent())); 5102 if (numFolded) { 5103 Changed = true; 5104 DeleteTriviallyDeadInstructions(DeadInsts); 5105 DeleteDeadPHIs(L->getHeader()); 5106 } 5107 } 5108 return Changed; 5109 } 5110