1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #define DEBUG_TYPE "loop-reduce" 23 #include "llvm/Transforms/Scalar.h" 24 #include "llvm/Constants.h" 25 #include "llvm/Instructions.h" 26 #include "llvm/IntrinsicInst.h" 27 #include "llvm/DerivedTypes.h" 28 #include "llvm/Analysis/IVUsers.h" 29 #include "llvm/Analysis/LoopPass.h" 30 #include "llvm/Analysis/ScalarEvolutionExpander.h" 31 #include "llvm/Transforms/Utils/AddrModeMatcher.h" 32 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/ValueHandle.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Target/TargetLowering.h" 40 #include <algorithm> 41 using namespace llvm; 42 43 STATISTIC(NumReduced , "Number of IV uses strength reduced"); 44 STATISTIC(NumInserted, "Number of PHIs inserted"); 45 STATISTIC(NumVariable, "Number of PHIs with variable strides"); 46 STATISTIC(NumEliminated, "Number of strides eliminated"); 47 STATISTIC(NumShadow, "Number of Shadow IVs optimized"); 48 STATISTIC(NumImmSunk, "Number of common expr immediates sunk into uses"); 49 STATISTIC(NumLoopCond, "Number of loop terminating conds optimized"); 50 STATISTIC(NumCountZero, "Number of count iv optimized to count toward zero"); 51 52 static cl::opt<bool> EnableFullLSRMode("enable-full-lsr", 53 cl::init(false), 54 cl::Hidden); 55 56 namespace { 57 58 struct BasedUser; 59 60 /// IVInfo - This structure keeps track of one IV expression inserted during 61 /// StrengthReduceStridedIVUsers. It contains the stride, the common base, as 62 /// well as the PHI node and increment value created for rewrite. 63 struct IVExpr { 64 const SCEV *Stride; 65 const SCEV *Base; 66 PHINode *PHI; 67 68 IVExpr(const SCEV *const stride, const SCEV *const base, PHINode *phi) 69 : Stride(stride), Base(base), PHI(phi) {} 70 }; 71 72 /// IVsOfOneStride - This structure keeps track of all IV expression inserted 73 /// during StrengthReduceStridedIVUsers for a particular stride of the IV. 74 struct IVsOfOneStride { 75 std::vector<IVExpr> IVs; 76 77 void addIV(const SCEV *const Stride, const SCEV *const Base, PHINode *PHI) { 78 IVs.push_back(IVExpr(Stride, Base, PHI)); 79 } 80 }; 81 82 class LoopStrengthReduce : public LoopPass { 83 IVUsers *IU; 84 ScalarEvolution *SE; 85 bool Changed; 86 87 /// IVsByStride - Keep track of all IVs that have been inserted for a 88 /// particular stride. 89 std::map<const SCEV *, IVsOfOneStride> IVsByStride; 90 91 /// DeadInsts - Keep track of instructions we may have made dead, so that 92 /// we can remove them after we are done working. 93 SmallVector<WeakVH, 16> DeadInsts; 94 95 /// TLI - Keep a pointer of a TargetLowering to consult for determining 96 /// transformation profitability. 97 const TargetLowering *TLI; 98 99 public: 100 static char ID; // Pass ID, replacement for typeid 101 explicit LoopStrengthReduce(const TargetLowering *tli = NULL) : 102 LoopPass(&ID), TLI(tli) {} 103 104 bool runOnLoop(Loop *L, LPPassManager &LPM); 105 106 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 107 // We split critical edges, so we change the CFG. However, we do update 108 // many analyses if they are around. 109 AU.addPreservedID(LoopSimplifyID); 110 AU.addPreserved("loops"); 111 AU.addPreserved("domfrontier"); 112 AU.addPreserved("domtree"); 113 114 AU.addRequiredID(LoopSimplifyID); 115 AU.addRequired<ScalarEvolution>(); 116 AU.addPreserved<ScalarEvolution>(); 117 AU.addRequired<IVUsers>(); 118 AU.addPreserved<IVUsers>(); 119 } 120 121 private: 122 void OptimizeIndvars(Loop *L); 123 124 /// OptimizeLoopTermCond - Change loop terminating condition to use the 125 /// postinc iv when possible. 126 void OptimizeLoopTermCond(Loop *L); 127 128 /// OptimizeShadowIV - If IV is used in a int-to-float cast 129 /// inside the loop then try to eliminate the cast opeation. 130 void OptimizeShadowIV(Loop *L); 131 132 /// OptimizeMax - Rewrite the loop's terminating condition 133 /// if it uses a max computation. 134 ICmpInst *OptimizeMax(Loop *L, ICmpInst *Cond, 135 IVStrideUse* &CondUse); 136 137 /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for 138 /// deciding when to exit the loop is used only for that purpose, try to 139 /// rearrange things so it counts down to a test against zero. 140 bool OptimizeLoopCountIV(Loop *L); 141 bool OptimizeLoopCountIVOfStride(const SCEV* &Stride, 142 IVStrideUse* &CondUse, Loop *L); 143 144 /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a 145 /// single stride of IV. All of the users may have different starting 146 /// values, and this may not be the only stride. 147 void StrengthReduceIVUsersOfStride(const SCEV *const &Stride, 148 IVUsersOfOneStride &Uses, 149 Loop *L); 150 void StrengthReduceIVUsers(Loop *L); 151 152 ICmpInst *ChangeCompareStride(Loop *L, ICmpInst *Cond, 153 IVStrideUse* &CondUse, 154 const SCEV* &CondStride, 155 bool PostPass = false); 156 157 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse, 158 const SCEV* &CondStride); 159 bool RequiresTypeConversion(const Type *Ty, const Type *NewTy); 160 const SCEV *CheckForIVReuse(bool, bool, bool, const SCEV *const&, 161 IVExpr&, const Type*, 162 const std::vector<BasedUser>& UsersToProcess); 163 bool ValidScale(bool, int64_t, 164 const std::vector<BasedUser>& UsersToProcess); 165 bool ValidOffset(bool, int64_t, int64_t, 166 const std::vector<BasedUser>& UsersToProcess); 167 const SCEV *CollectIVUsers(const SCEV *const &Stride, 168 IVUsersOfOneStride &Uses, 169 Loop *L, 170 bool &AllUsesAreAddresses, 171 bool &AllUsesAreOutsideLoop, 172 std::vector<BasedUser> &UsersToProcess); 173 bool StrideMightBeShared(const SCEV *Stride, Loop *L, bool CheckPreInc); 174 bool ShouldUseFullStrengthReductionMode( 175 const std::vector<BasedUser> &UsersToProcess, 176 const Loop *L, 177 bool AllUsesAreAddresses, 178 const SCEV *Stride); 179 void PrepareToStrengthReduceFully( 180 std::vector<BasedUser> &UsersToProcess, 181 const SCEV *Stride, 182 const SCEV *CommonExprs, 183 const Loop *L, 184 SCEVExpander &PreheaderRewriter); 185 void PrepareToStrengthReduceFromSmallerStride( 186 std::vector<BasedUser> &UsersToProcess, 187 Value *CommonBaseV, 188 const IVExpr &ReuseIV, 189 Instruction *PreInsertPt); 190 void PrepareToStrengthReduceWithNewPhi( 191 std::vector<BasedUser> &UsersToProcess, 192 const SCEV *Stride, 193 const SCEV *CommonExprs, 194 Value *CommonBaseV, 195 Instruction *IVIncInsertPt, 196 const Loop *L, 197 SCEVExpander &PreheaderRewriter); 198 199 void DeleteTriviallyDeadInstructions(); 200 }; 201 } 202 203 char LoopStrengthReduce::ID = 0; 204 static RegisterPass<LoopStrengthReduce> 205 X("loop-reduce", "Loop Strength Reduction"); 206 207 Pass *llvm::createLoopStrengthReducePass(const TargetLowering *TLI) { 208 return new LoopStrengthReduce(TLI); 209 } 210 211 /// DeleteTriviallyDeadInstructions - If any of the instructions is the 212 /// specified set are trivially dead, delete them and see if this makes any of 213 /// their operands subsequently dead. 214 void LoopStrengthReduce::DeleteTriviallyDeadInstructions() { 215 if (DeadInsts.empty()) return; 216 217 while (!DeadInsts.empty()) { 218 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 219 220 if (I == 0 || !isInstructionTriviallyDead(I)) 221 continue; 222 223 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) 224 if (Instruction *U = dyn_cast<Instruction>(*OI)) { 225 *OI = 0; 226 if (U->use_empty()) 227 DeadInsts.push_back(U); 228 } 229 230 I->eraseFromParent(); 231 Changed = true; 232 } 233 } 234 235 /// isAddressUse - Returns true if the specified instruction is using the 236 /// specified value as an address. 237 static bool isAddressUse(Instruction *Inst, Value *OperandVal) { 238 bool isAddress = isa<LoadInst>(Inst); 239 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 240 if (SI->getOperand(1) == OperandVal) 241 isAddress = true; 242 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 243 // Addressing modes can also be folded into prefetches and a variety 244 // of intrinsics. 245 switch (II->getIntrinsicID()) { 246 default: break; 247 case Intrinsic::prefetch: 248 case Intrinsic::x86_sse2_loadu_dq: 249 case Intrinsic::x86_sse2_loadu_pd: 250 case Intrinsic::x86_sse_loadu_ps: 251 case Intrinsic::x86_sse_storeu_ps: 252 case Intrinsic::x86_sse2_storeu_pd: 253 case Intrinsic::x86_sse2_storeu_dq: 254 case Intrinsic::x86_sse2_storel_dq: 255 if (II->getOperand(1) == OperandVal) 256 isAddress = true; 257 break; 258 } 259 } 260 return isAddress; 261 } 262 263 /// getAccessType - Return the type of the memory being accessed. 264 static const Type *getAccessType(const Instruction *Inst) { 265 const Type *AccessTy = Inst->getType(); 266 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) 267 AccessTy = SI->getOperand(0)->getType(); 268 else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 269 // Addressing modes can also be folded into prefetches and a variety 270 // of intrinsics. 271 switch (II->getIntrinsicID()) { 272 default: break; 273 case Intrinsic::x86_sse_storeu_ps: 274 case Intrinsic::x86_sse2_storeu_pd: 275 case Intrinsic::x86_sse2_storeu_dq: 276 case Intrinsic::x86_sse2_storel_dq: 277 AccessTy = II->getOperand(1)->getType(); 278 break; 279 } 280 } 281 return AccessTy; 282 } 283 284 namespace { 285 /// BasedUser - For a particular base value, keep information about how we've 286 /// partitioned the expression so far. 287 struct BasedUser { 288 /// Base - The Base value for the PHI node that needs to be inserted for 289 /// this use. As the use is processed, information gets moved from this 290 /// field to the Imm field (below). BasedUser values are sorted by this 291 /// field. 292 const SCEV *Base; 293 294 /// Inst - The instruction using the induction variable. 295 Instruction *Inst; 296 297 /// OperandValToReplace - The operand value of Inst to replace with the 298 /// EmittedBase. 299 Value *OperandValToReplace; 300 301 /// Imm - The immediate value that should be added to the base immediately 302 /// before Inst, because it will be folded into the imm field of the 303 /// instruction. This is also sometimes used for loop-variant values that 304 /// must be added inside the loop. 305 const SCEV *Imm; 306 307 /// Phi - The induction variable that performs the striding that 308 /// should be used for this user. 309 PHINode *Phi; 310 311 // isUseOfPostIncrementedValue - True if this should use the 312 // post-incremented version of this IV, not the preincremented version. 313 // This can only be set in special cases, such as the terminating setcc 314 // instruction for a loop and uses outside the loop that are dominated by 315 // the loop. 316 bool isUseOfPostIncrementedValue; 317 318 BasedUser(IVStrideUse &IVSU, ScalarEvolution *se) 319 : Base(IVSU.getOffset()), Inst(IVSU.getUser()), 320 OperandValToReplace(IVSU.getOperandValToReplace()), 321 Imm(se->getIntegerSCEV(0, Base->getType())), 322 isUseOfPostIncrementedValue(IVSU.isUseOfPostIncrementedValue()) {} 323 324 // Once we rewrite the code to insert the new IVs we want, update the 325 // operands of Inst to use the new expression 'NewBase', with 'Imm' added 326 // to it. 327 void RewriteInstructionToUseNewBase(const SCEV *const &NewBase, 328 Instruction *InsertPt, 329 SCEVExpander &Rewriter, Loop *L, Pass *P, 330 SmallVectorImpl<WeakVH> &DeadInsts, 331 ScalarEvolution *SE); 332 333 Value *InsertCodeForBaseAtPosition(const SCEV *const &NewBase, 334 const Type *Ty, 335 SCEVExpander &Rewriter, 336 Instruction *IP, 337 ScalarEvolution *SE); 338 void dump() const; 339 }; 340 } 341 342 void BasedUser::dump() const { 343 errs() << " Base=" << *Base; 344 errs() << " Imm=" << *Imm; 345 errs() << " Inst: " << *Inst; 346 } 347 348 Value *BasedUser::InsertCodeForBaseAtPosition(const SCEV *const &NewBase, 349 const Type *Ty, 350 SCEVExpander &Rewriter, 351 Instruction *IP, 352 ScalarEvolution *SE) { 353 Value *Base = Rewriter.expandCodeFor(NewBase, 0, IP); 354 355 // Wrap the base in a SCEVUnknown so that ScalarEvolution doesn't try to 356 // re-analyze it. 357 const SCEV *NewValSCEV = SE->getUnknown(Base); 358 359 // Always emit the immediate into the same block as the user. 360 NewValSCEV = SE->getAddExpr(NewValSCEV, Imm); 361 362 return Rewriter.expandCodeFor(NewValSCEV, Ty, IP); 363 } 364 365 366 // Once we rewrite the code to insert the new IVs we want, update the 367 // operands of Inst to use the new expression 'NewBase', with 'Imm' added 368 // to it. NewBasePt is the last instruction which contributes to the 369 // value of NewBase in the case that it's a diffferent instruction from 370 // the PHI that NewBase is computed from, or null otherwise. 371 // 372 void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase, 373 Instruction *NewBasePt, 374 SCEVExpander &Rewriter, Loop *L, Pass *P, 375 SmallVectorImpl<WeakVH> &DeadInsts, 376 ScalarEvolution *SE) { 377 if (!isa<PHINode>(Inst)) { 378 // By default, insert code at the user instruction. 379 BasicBlock::iterator InsertPt = Inst; 380 381 // However, if the Operand is itself an instruction, the (potentially 382 // complex) inserted code may be shared by many users. Because of this, we 383 // want to emit code for the computation of the operand right before its old 384 // computation. This is usually safe, because we obviously used to use the 385 // computation when it was computed in its current block. However, in some 386 // cases (e.g. use of a post-incremented induction variable) the NewBase 387 // value will be pinned to live somewhere after the original computation. 388 // In this case, we have to back off. 389 // 390 // If this is a use outside the loop (which means after, since it is based 391 // on a loop indvar) we use the post-incremented value, so that we don't 392 // artificially make the preinc value live out the bottom of the loop. 393 if (!isUseOfPostIncrementedValue && L->contains(Inst->getParent())) { 394 if (NewBasePt && isa<PHINode>(OperandValToReplace)) { 395 InsertPt = NewBasePt; 396 ++InsertPt; 397 } else if (Instruction *OpInst 398 = dyn_cast<Instruction>(OperandValToReplace)) { 399 InsertPt = OpInst; 400 while (isa<PHINode>(InsertPt)) ++InsertPt; 401 } 402 } 403 Value *NewVal = InsertCodeForBaseAtPosition(NewBase, 404 OperandValToReplace->getType(), 405 Rewriter, InsertPt, SE); 406 // Replace the use of the operand Value with the new Phi we just created. 407 Inst->replaceUsesOfWith(OperandValToReplace, NewVal); 408 409 DEBUG(errs() << " Replacing with "); 410 DEBUG(WriteAsOperand(errs(), NewVal, /*PrintType=*/false)); 411 DEBUG(errs() << ", which has value " << *NewBase << " plus IMM " 412 << *Imm << "\n"); 413 return; 414 } 415 416 // PHI nodes are more complex. We have to insert one copy of the NewBase+Imm 417 // expression into each operand block that uses it. Note that PHI nodes can 418 // have multiple entries for the same predecessor. We use a map to make sure 419 // that a PHI node only has a single Value* for each predecessor (which also 420 // prevents us from inserting duplicate code in some blocks). 421 DenseMap<BasicBlock*, Value*> InsertedCode; 422 PHINode *PN = cast<PHINode>(Inst); 423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 424 if (PN->getIncomingValue(i) == OperandValToReplace) { 425 // If the original expression is outside the loop, put the replacement 426 // code in the same place as the original expression, 427 // which need not be an immediate predecessor of this PHI. This way we 428 // need only one copy of it even if it is referenced multiple times in 429 // the PHI. We don't do this when the original expression is inside the 430 // loop because multiple copies sometimes do useful sinking of code in 431 // that case(?). 432 Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace); 433 BasicBlock *PHIPred = PN->getIncomingBlock(i); 434 if (L->contains(OldLoc->getParent())) { 435 // If this is a critical edge, split the edge so that we do not insert 436 // the code on all predecessor/successor paths. We do this unless this 437 // is the canonical backedge for this loop, as this can make some 438 // inserted code be in an illegal position. 439 if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 && 440 !isa<IndirectBrInst>(PHIPred->getTerminator()) && 441 (PN->getParent() != L->getHeader() || !L->contains(PHIPred))) { 442 443 // First step, split the critical edge. 444 BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(), 445 P, false); 446 447 // Next step: move the basic block. In particular, if the PHI node 448 // is outside of the loop, and PredTI is in the loop, we want to 449 // move the block to be immediately before the PHI block, not 450 // immediately after PredTI. 451 if (L->contains(PHIPred) && !L->contains(PN->getParent())) 452 NewBB->moveBefore(PN->getParent()); 453 454 // Splitting the edge can reduce the number of PHI entries we have. 455 e = PN->getNumIncomingValues(); 456 PHIPred = NewBB; 457 i = PN->getBasicBlockIndex(PHIPred); 458 } 459 } 460 Value *&Code = InsertedCode[PHIPred]; 461 if (!Code) { 462 // Insert the code into the end of the predecessor block. 463 Instruction *InsertPt = (L->contains(OldLoc->getParent())) ? 464 PHIPred->getTerminator() : 465 OldLoc->getParent()->getTerminator(); 466 Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(), 467 Rewriter, InsertPt, SE); 468 469 DEBUG(errs() << " Changing PHI use to "); 470 DEBUG(WriteAsOperand(errs(), Code, /*PrintType=*/false)); 471 DEBUG(errs() << ", which has value " << *NewBase << " plus IMM " 472 << *Imm << "\n"); 473 } 474 475 // Replace the use of the operand Value with the new Phi we just created. 476 PN->setIncomingValue(i, Code); 477 Rewriter.clear(); 478 } 479 } 480 481 // PHI node might have become a constant value after SplitCriticalEdge. 482 DeadInsts.push_back(Inst); 483 } 484 485 486 /// fitsInAddressMode - Return true if V can be subsumed within an addressing 487 /// mode, and does not need to be put in a register first. 488 static bool fitsInAddressMode(const SCEV *const &V, const Type *AccessTy, 489 const TargetLowering *TLI, bool HasBaseReg) { 490 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) { 491 int64_t VC = SC->getValue()->getSExtValue(); 492 if (TLI) { 493 TargetLowering::AddrMode AM; 494 AM.BaseOffs = VC; 495 AM.HasBaseReg = HasBaseReg; 496 return TLI->isLegalAddressingMode(AM, AccessTy); 497 } else { 498 // Defaults to PPC. PPC allows a sign-extended 16-bit immediate field. 499 return (VC > -(1 << 16) && VC < (1 << 16)-1); 500 } 501 } 502 503 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) 504 if (GlobalValue *GV = dyn_cast<GlobalValue>(SU->getValue())) { 505 if (TLI) { 506 TargetLowering::AddrMode AM; 507 AM.BaseGV = GV; 508 AM.HasBaseReg = HasBaseReg; 509 return TLI->isLegalAddressingMode(AM, AccessTy); 510 } else { 511 // Default: assume global addresses are not legal. 512 } 513 } 514 515 return false; 516 } 517 518 /// MoveLoopVariantsToImmediateField - Move any subexpressions from Val that are 519 /// loop varying to the Imm operand. 520 static void MoveLoopVariantsToImmediateField(const SCEV *&Val, const SCEV *&Imm, 521 Loop *L, ScalarEvolution *SE) { 522 if (Val->isLoopInvariant(L)) return; // Nothing to do. 523 524 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { 525 SmallVector<const SCEV *, 4> NewOps; 526 NewOps.reserve(SAE->getNumOperands()); 527 528 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) 529 if (!SAE->getOperand(i)->isLoopInvariant(L)) { 530 // If this is a loop-variant expression, it must stay in the immediate 531 // field of the expression. 532 Imm = SE->getAddExpr(Imm, SAE->getOperand(i)); 533 } else { 534 NewOps.push_back(SAE->getOperand(i)); 535 } 536 537 if (NewOps.empty()) 538 Val = SE->getIntegerSCEV(0, Val->getType()); 539 else 540 Val = SE->getAddExpr(NewOps); 541 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { 542 // Try to pull immediates out of the start value of nested addrec's. 543 const SCEV *Start = SARE->getStart(); 544 MoveLoopVariantsToImmediateField(Start, Imm, L, SE); 545 546 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); 547 Ops[0] = Start; 548 Val = SE->getAddRecExpr(Ops, SARE->getLoop()); 549 } else { 550 // Otherwise, all of Val is variant, move the whole thing over. 551 Imm = SE->getAddExpr(Imm, Val); 552 Val = SE->getIntegerSCEV(0, Val->getType()); 553 } 554 } 555 556 557 /// MoveImmediateValues - Look at Val, and pull out any additions of constants 558 /// that can fit into the immediate field of instructions in the target. 559 /// Accumulate these immediate values into the Imm value. 560 static void MoveImmediateValues(const TargetLowering *TLI, 561 const Type *AccessTy, 562 const SCEV *&Val, const SCEV *&Imm, 563 bool isAddress, Loop *L, 564 ScalarEvolution *SE) { 565 if (const SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val)) { 566 SmallVector<const SCEV *, 4> NewOps; 567 NewOps.reserve(SAE->getNumOperands()); 568 569 for (unsigned i = 0; i != SAE->getNumOperands(); ++i) { 570 const SCEV *NewOp = SAE->getOperand(i); 571 MoveImmediateValues(TLI, AccessTy, NewOp, Imm, isAddress, L, SE); 572 573 if (!NewOp->isLoopInvariant(L)) { 574 // If this is a loop-variant expression, it must stay in the immediate 575 // field of the expression. 576 Imm = SE->getAddExpr(Imm, NewOp); 577 } else { 578 NewOps.push_back(NewOp); 579 } 580 } 581 582 if (NewOps.empty()) 583 Val = SE->getIntegerSCEV(0, Val->getType()); 584 else 585 Val = SE->getAddExpr(NewOps); 586 return; 587 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Val)) { 588 // Try to pull immediates out of the start value of nested addrec's. 589 const SCEV *Start = SARE->getStart(); 590 MoveImmediateValues(TLI, AccessTy, Start, Imm, isAddress, L, SE); 591 592 if (Start != SARE->getStart()) { 593 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); 594 Ops[0] = Start; 595 Val = SE->getAddRecExpr(Ops, SARE->getLoop()); 596 } 597 return; 598 } else if (const SCEVMulExpr *SME = dyn_cast<SCEVMulExpr>(Val)) { 599 // Transform "8 * (4 + v)" -> "32 + 8*V" if "32" fits in the immed field. 600 if (isAddress && 601 fitsInAddressMode(SME->getOperand(0), AccessTy, TLI, false) && 602 SME->getNumOperands() == 2 && SME->isLoopInvariant(L)) { 603 604 const SCEV *SubImm = SE->getIntegerSCEV(0, Val->getType()); 605 const SCEV *NewOp = SME->getOperand(1); 606 MoveImmediateValues(TLI, AccessTy, NewOp, SubImm, isAddress, L, SE); 607 608 // If we extracted something out of the subexpressions, see if we can 609 // simplify this! 610 if (NewOp != SME->getOperand(1)) { 611 // Scale SubImm up by "8". If the result is a target constant, we are 612 // good. 613 SubImm = SE->getMulExpr(SubImm, SME->getOperand(0)); 614 if (fitsInAddressMode(SubImm, AccessTy, TLI, false)) { 615 // Accumulate the immediate. 616 Imm = SE->getAddExpr(Imm, SubImm); 617 618 // Update what is left of 'Val'. 619 Val = SE->getMulExpr(SME->getOperand(0), NewOp); 620 return; 621 } 622 } 623 } 624 } 625 626 // Loop-variant expressions must stay in the immediate field of the 627 // expression. 628 if ((isAddress && fitsInAddressMode(Val, AccessTy, TLI, false)) || 629 !Val->isLoopInvariant(L)) { 630 Imm = SE->getAddExpr(Imm, Val); 631 Val = SE->getIntegerSCEV(0, Val->getType()); 632 return; 633 } 634 635 // Otherwise, no immediates to move. 636 } 637 638 static void MoveImmediateValues(const TargetLowering *TLI, 639 Instruction *User, 640 const SCEV *&Val, const SCEV *&Imm, 641 bool isAddress, Loop *L, 642 ScalarEvolution *SE) { 643 const Type *AccessTy = getAccessType(User); 644 MoveImmediateValues(TLI, AccessTy, Val, Imm, isAddress, L, SE); 645 } 646 647 /// SeparateSubExprs - Decompose Expr into all of the subexpressions that are 648 /// added together. This is used to reassociate common addition subexprs 649 /// together for maximal sharing when rewriting bases. 650 static void SeparateSubExprs(SmallVector<const SCEV *, 16> &SubExprs, 651 const SCEV *Expr, 652 ScalarEvolution *SE) { 653 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(Expr)) { 654 for (unsigned j = 0, e = AE->getNumOperands(); j != e; ++j) 655 SeparateSubExprs(SubExprs, AE->getOperand(j), SE); 656 } else if (const SCEVAddRecExpr *SARE = dyn_cast<SCEVAddRecExpr>(Expr)) { 657 const SCEV *Zero = SE->getIntegerSCEV(0, Expr->getType()); 658 if (SARE->getOperand(0) == Zero) { 659 SubExprs.push_back(Expr); 660 } else { 661 // Compute the addrec with zero as its base. 662 SmallVector<const SCEV *, 4> Ops(SARE->op_begin(), SARE->op_end()); 663 Ops[0] = Zero; // Start with zero base. 664 SubExprs.push_back(SE->getAddRecExpr(Ops, SARE->getLoop())); 665 666 667 SeparateSubExprs(SubExprs, SARE->getOperand(0), SE); 668 } 669 } else if (!Expr->isZero()) { 670 // Do not add zero. 671 SubExprs.push_back(Expr); 672 } 673 } 674 675 // This is logically local to the following function, but C++ says we have 676 // to make it file scope. 677 struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; }; 678 679 /// RemoveCommonExpressionsFromUseBases - Look through all of the Bases of all 680 /// the Uses, removing any common subexpressions, except that if all such 681 /// subexpressions can be folded into an addressing mode for all uses inside 682 /// the loop (this case is referred to as "free" in comments herein) we do 683 /// not remove anything. This looks for things like (a+b+c) and 684 /// (a+c+d) and computes the common (a+c) subexpression. The common expression 685 /// is *removed* from the Bases and returned. 686 static const SCEV * 687 RemoveCommonExpressionsFromUseBases(std::vector<BasedUser> &Uses, 688 ScalarEvolution *SE, Loop *L, 689 const TargetLowering *TLI) { 690 unsigned NumUses = Uses.size(); 691 692 // Only one use? This is a very common case, so we handle it specially and 693 // cheaply. 694 const SCEV *Zero = SE->getIntegerSCEV(0, Uses[0].Base->getType()); 695 const SCEV *Result = Zero; 696 const SCEV *FreeResult = Zero; 697 if (NumUses == 1) { 698 // If the use is inside the loop, use its base, regardless of what it is: 699 // it is clearly shared across all the IV's. If the use is outside the loop 700 // (which means after it) we don't want to factor anything *into* the loop, 701 // so just use 0 as the base. 702 if (L->contains(Uses[0].Inst->getParent())) 703 std::swap(Result, Uses[0].Base); 704 return Result; 705 } 706 707 // To find common subexpressions, count how many of Uses use each expression. 708 // If any subexpressions are used Uses.size() times, they are common. 709 // Also track whether all uses of each expression can be moved into an 710 // an addressing mode "for free"; such expressions are left within the loop. 711 // struct SubExprUseData { unsigned Count; bool notAllUsesAreFree; }; 712 std::map<const SCEV *, SubExprUseData> SubExpressionUseData; 713 714 // UniqueSubExprs - Keep track of all of the subexpressions we see in the 715 // order we see them. 716 SmallVector<const SCEV *, 16> UniqueSubExprs; 717 718 SmallVector<const SCEV *, 16> SubExprs; 719 unsigned NumUsesInsideLoop = 0; 720 for (unsigned i = 0; i != NumUses; ++i) { 721 // If the user is outside the loop, just ignore it for base computation. 722 // Since the user is outside the loop, it must be *after* the loop (if it 723 // were before, it could not be based on the loop IV). We don't want users 724 // after the loop to affect base computation of values *inside* the loop, 725 // because we can always add their offsets to the result IV after the loop 726 // is done, ensuring we get good code inside the loop. 727 if (!L->contains(Uses[i].Inst->getParent())) 728 continue; 729 NumUsesInsideLoop++; 730 731 // If the base is zero (which is common), return zero now, there are no 732 // CSEs we can find. 733 if (Uses[i].Base == Zero) return Zero; 734 735 // If this use is as an address we may be able to put CSEs in the addressing 736 // mode rather than hoisting them. 737 bool isAddrUse = isAddressUse(Uses[i].Inst, Uses[i].OperandValToReplace); 738 // We may need the AccessTy below, but only when isAddrUse, so compute it 739 // only in that case. 740 const Type *AccessTy = 0; 741 if (isAddrUse) 742 AccessTy = getAccessType(Uses[i].Inst); 743 744 // Split the expression into subexprs. 745 SeparateSubExprs(SubExprs, Uses[i].Base, SE); 746 // Add one to SubExpressionUseData.Count for each subexpr present, and 747 // if the subexpr is not a valid immediate within an addressing mode use, 748 // set SubExpressionUseData.notAllUsesAreFree. We definitely want to 749 // hoist these out of the loop (if they are common to all uses). 750 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) { 751 if (++SubExpressionUseData[SubExprs[j]].Count == 1) 752 UniqueSubExprs.push_back(SubExprs[j]); 753 if (!isAddrUse || !fitsInAddressMode(SubExprs[j], AccessTy, TLI, false)) 754 SubExpressionUseData[SubExprs[j]].notAllUsesAreFree = true; 755 } 756 SubExprs.clear(); 757 } 758 759 // Now that we know how many times each is used, build Result. Iterate over 760 // UniqueSubexprs so that we have a stable ordering. 761 for (unsigned i = 0, e = UniqueSubExprs.size(); i != e; ++i) { 762 std::map<const SCEV *, SubExprUseData>::iterator I = 763 SubExpressionUseData.find(UniqueSubExprs[i]); 764 assert(I != SubExpressionUseData.end() && "Entry not found?"); 765 if (I->second.Count == NumUsesInsideLoop) { // Found CSE! 766 if (I->second.notAllUsesAreFree) 767 Result = SE->getAddExpr(Result, I->first); 768 else 769 FreeResult = SE->getAddExpr(FreeResult, I->first); 770 } else 771 // Remove non-cse's from SubExpressionUseData. 772 SubExpressionUseData.erase(I); 773 } 774 775 if (FreeResult != Zero) { 776 // We have some subexpressions that can be subsumed into addressing 777 // modes in every use inside the loop. However, it's possible that 778 // there are so many of them that the combined FreeResult cannot 779 // be subsumed, or that the target cannot handle both a FreeResult 780 // and a Result in the same instruction (for example because it would 781 // require too many registers). Check this. 782 for (unsigned i=0; i<NumUses; ++i) { 783 if (!L->contains(Uses[i].Inst->getParent())) 784 continue; 785 // We know this is an addressing mode use; if there are any uses that 786 // are not, FreeResult would be Zero. 787 const Type *AccessTy = getAccessType(Uses[i].Inst); 788 if (!fitsInAddressMode(FreeResult, AccessTy, TLI, Result!=Zero)) { 789 // FIXME: could split up FreeResult into pieces here, some hoisted 790 // and some not. There is no obvious advantage to this. 791 Result = SE->getAddExpr(Result, FreeResult); 792 FreeResult = Zero; 793 break; 794 } 795 } 796 } 797 798 // If we found no CSE's, return now. 799 if (Result == Zero) return Result; 800 801 // If we still have a FreeResult, remove its subexpressions from 802 // SubExpressionUseData. This means they will remain in the use Bases. 803 if (FreeResult != Zero) { 804 SeparateSubExprs(SubExprs, FreeResult, SE); 805 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) { 806 std::map<const SCEV *, SubExprUseData>::iterator I = 807 SubExpressionUseData.find(SubExprs[j]); 808 SubExpressionUseData.erase(I); 809 } 810 SubExprs.clear(); 811 } 812 813 // Otherwise, remove all of the CSE's we found from each of the base values. 814 for (unsigned i = 0; i != NumUses; ++i) { 815 // Uses outside the loop don't necessarily include the common base, but 816 // the final IV value coming into those uses does. Instead of trying to 817 // remove the pieces of the common base, which might not be there, 818 // subtract off the base to compensate for this. 819 if (!L->contains(Uses[i].Inst->getParent())) { 820 Uses[i].Base = SE->getMinusSCEV(Uses[i].Base, Result); 821 continue; 822 } 823 824 // Split the expression into subexprs. 825 SeparateSubExprs(SubExprs, Uses[i].Base, SE); 826 827 // Remove any common subexpressions. 828 for (unsigned j = 0, e = SubExprs.size(); j != e; ++j) 829 if (SubExpressionUseData.count(SubExprs[j])) { 830 SubExprs.erase(SubExprs.begin()+j); 831 --j; --e; 832 } 833 834 // Finally, add the non-shared expressions together. 835 if (SubExprs.empty()) 836 Uses[i].Base = Zero; 837 else 838 Uses[i].Base = SE->getAddExpr(SubExprs); 839 SubExprs.clear(); 840 } 841 842 return Result; 843 } 844 845 /// ValidScale - Check whether the given Scale is valid for all loads and 846 /// stores in UsersToProcess. 847 /// 848 bool LoopStrengthReduce::ValidScale(bool HasBaseReg, int64_t Scale, 849 const std::vector<BasedUser>& UsersToProcess) { 850 if (!TLI) 851 return true; 852 853 for (unsigned i = 0, e = UsersToProcess.size(); i!=e; ++i) { 854 // If this is a load or other access, pass the type of the access in. 855 const Type *AccessTy = 856 Type::getVoidTy(UsersToProcess[i].Inst->getContext()); 857 if (isAddressUse(UsersToProcess[i].Inst, 858 UsersToProcess[i].OperandValToReplace)) 859 AccessTy = getAccessType(UsersToProcess[i].Inst); 860 else if (isa<PHINode>(UsersToProcess[i].Inst)) 861 continue; 862 863 TargetLowering::AddrMode AM; 864 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) 865 AM.BaseOffs = SC->getValue()->getSExtValue(); 866 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); 867 AM.Scale = Scale; 868 869 // If load[imm+r*scale] is illegal, bail out. 870 if (!TLI->isLegalAddressingMode(AM, AccessTy)) 871 return false; 872 } 873 return true; 874 } 875 876 /// ValidOffset - Check whether the given Offset is valid for all loads and 877 /// stores in UsersToProcess. 878 /// 879 bool LoopStrengthReduce::ValidOffset(bool HasBaseReg, 880 int64_t Offset, 881 int64_t Scale, 882 const std::vector<BasedUser>& UsersToProcess) { 883 if (!TLI) 884 return true; 885 886 for (unsigned i=0, e = UsersToProcess.size(); i!=e; ++i) { 887 // If this is a load or other access, pass the type of the access in. 888 const Type *AccessTy = 889 Type::getVoidTy(UsersToProcess[i].Inst->getContext()); 890 if (isAddressUse(UsersToProcess[i].Inst, 891 UsersToProcess[i].OperandValToReplace)) 892 AccessTy = getAccessType(UsersToProcess[i].Inst); 893 else if (isa<PHINode>(UsersToProcess[i].Inst)) 894 continue; 895 896 TargetLowering::AddrMode AM; 897 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(UsersToProcess[i].Imm)) 898 AM.BaseOffs = SC->getValue()->getSExtValue(); 899 AM.BaseOffs = (uint64_t)AM.BaseOffs + (uint64_t)Offset; 900 AM.HasBaseReg = HasBaseReg || !UsersToProcess[i].Base->isZero(); 901 AM.Scale = Scale; 902 903 // If load[imm+r*scale] is illegal, bail out. 904 if (!TLI->isLegalAddressingMode(AM, AccessTy)) 905 return false; 906 } 907 return true; 908 } 909 910 /// RequiresTypeConversion - Returns true if converting Ty1 to Ty2 is not 911 /// a nop. 912 bool LoopStrengthReduce::RequiresTypeConversion(const Type *Ty1, 913 const Type *Ty2) { 914 if (Ty1 == Ty2) 915 return false; 916 Ty1 = SE->getEffectiveSCEVType(Ty1); 917 Ty2 = SE->getEffectiveSCEVType(Ty2); 918 if (Ty1 == Ty2) 919 return false; 920 if (Ty1->canLosslesslyBitCastTo(Ty2)) 921 return false; 922 if (TLI && TLI->isTruncateFree(Ty1, Ty2)) 923 return false; 924 return true; 925 } 926 927 /// CheckForIVReuse - Returns the multiple if the stride is the multiple 928 /// of a previous stride and it is a legal value for the target addressing 929 /// mode scale component and optional base reg. This allows the users of 930 /// this stride to be rewritten as prev iv * factor. It returns 0 if no 931 /// reuse is possible. Factors can be negative on same targets, e.g. ARM. 932 /// 933 /// If all uses are outside the loop, we don't require that all multiplies 934 /// be folded into the addressing mode, nor even that the factor be constant; 935 /// a multiply (executed once) outside the loop is better than another IV 936 /// within. Well, usually. 937 const SCEV *LoopStrengthReduce::CheckForIVReuse(bool HasBaseReg, 938 bool AllUsesAreAddresses, 939 bool AllUsesAreOutsideLoop, 940 const SCEV *const &Stride, 941 IVExpr &IV, const Type *Ty, 942 const std::vector<BasedUser>& UsersToProcess) { 943 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride)) { 944 int64_t SInt = SC->getValue()->getSExtValue(); 945 for (unsigned NewStride = 0, e = IU->StrideOrder.size(); 946 NewStride != e; ++NewStride) { 947 std::map<const SCEV *, IVsOfOneStride>::iterator SI = 948 IVsByStride.find(IU->StrideOrder[NewStride]); 949 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first)) 950 continue; 951 // The other stride has no uses, don't reuse it. 952 std::map<const SCEV *, IVUsersOfOneStride *>::iterator UI = 953 IU->IVUsesByStride.find(IU->StrideOrder[NewStride]); 954 if (UI->second->Users.empty()) 955 continue; 956 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 957 if (SI->first != Stride && 958 (unsigned(abs64(SInt)) < SSInt || (SInt % SSInt) != 0)) 959 continue; 960 int64_t Scale = SInt / SSInt; 961 // Check that this stride is valid for all the types used for loads and 962 // stores; if it can be used for some and not others, we might as well use 963 // the original stride everywhere, since we have to create the IV for it 964 // anyway. If the scale is 1, then we don't need to worry about folding 965 // multiplications. 966 if (Scale == 1 || 967 (AllUsesAreAddresses && 968 ValidScale(HasBaseReg, Scale, UsersToProcess))) { 969 // Prefer to reuse an IV with a base of zero. 970 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 971 IE = SI->second.IVs.end(); II != IE; ++II) 972 // Only reuse previous IV if it would not require a type conversion 973 // and if the base difference can be folded. 974 if (II->Base->isZero() && 975 !RequiresTypeConversion(II->Base->getType(), Ty)) { 976 IV = *II; 977 return SE->getIntegerSCEV(Scale, Stride->getType()); 978 } 979 // Otherwise, settle for an IV with a foldable base. 980 if (AllUsesAreAddresses) 981 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 982 IE = SI->second.IVs.end(); II != IE; ++II) 983 // Only reuse previous IV if it would not require a type conversion 984 // and if the base difference can be folded. 985 if (SE->getEffectiveSCEVType(II->Base->getType()) == 986 SE->getEffectiveSCEVType(Ty) && 987 isa<SCEVConstant>(II->Base)) { 988 int64_t Base = 989 cast<SCEVConstant>(II->Base)->getValue()->getSExtValue(); 990 if (Base > INT32_MIN && Base <= INT32_MAX && 991 ValidOffset(HasBaseReg, -Base * Scale, 992 Scale, UsersToProcess)) { 993 IV = *II; 994 return SE->getIntegerSCEV(Scale, Stride->getType()); 995 } 996 } 997 } 998 } 999 } else if (AllUsesAreOutsideLoop) { 1000 // Accept nonconstant strides here; it is really really right to substitute 1001 // an existing IV if we can. 1002 for (unsigned NewStride = 0, e = IU->StrideOrder.size(); 1003 NewStride != e; ++NewStride) { 1004 std::map<const SCEV *, IVsOfOneStride>::iterator SI = 1005 IVsByStride.find(IU->StrideOrder[NewStride]); 1006 if (SI == IVsByStride.end() || !isa<SCEVConstant>(SI->first)) 1007 continue; 1008 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 1009 if (SI->first != Stride && SSInt != 1) 1010 continue; 1011 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 1012 IE = SI->second.IVs.end(); II != IE; ++II) 1013 // Accept nonzero base here. 1014 // Only reuse previous IV if it would not require a type conversion. 1015 if (!RequiresTypeConversion(II->Base->getType(), Ty)) { 1016 IV = *II; 1017 return Stride; 1018 } 1019 } 1020 // Special case, old IV is -1*x and this one is x. Can treat this one as 1021 // -1*old. 1022 for (unsigned NewStride = 0, e = IU->StrideOrder.size(); 1023 NewStride != e; ++NewStride) { 1024 std::map<const SCEV *, IVsOfOneStride>::iterator SI = 1025 IVsByStride.find(IU->StrideOrder[NewStride]); 1026 if (SI == IVsByStride.end()) 1027 continue; 1028 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(SI->first)) 1029 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(ME->getOperand(0))) 1030 if (Stride == ME->getOperand(1) && 1031 SC->getValue()->getSExtValue() == -1LL) 1032 for (std::vector<IVExpr>::iterator II = SI->second.IVs.begin(), 1033 IE = SI->second.IVs.end(); II != IE; ++II) 1034 // Accept nonzero base here. 1035 // Only reuse previous IV if it would not require type conversion. 1036 if (!RequiresTypeConversion(II->Base->getType(), Ty)) { 1037 IV = *II; 1038 return SE->getIntegerSCEV(-1LL, Stride->getType()); 1039 } 1040 } 1041 } 1042 return SE->getIntegerSCEV(0, Stride->getType()); 1043 } 1044 1045 /// PartitionByIsUseOfPostIncrementedValue - Simple boolean predicate that 1046 /// returns true if Val's isUseOfPostIncrementedValue is true. 1047 static bool PartitionByIsUseOfPostIncrementedValue(const BasedUser &Val) { 1048 return Val.isUseOfPostIncrementedValue; 1049 } 1050 1051 /// isNonConstantNegative - Return true if the specified scev is negated, but 1052 /// not a constant. 1053 static bool isNonConstantNegative(const SCEV *const &Expr) { 1054 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Expr); 1055 if (!Mul) return false; 1056 1057 // If there is a constant factor, it will be first. 1058 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 1059 if (!SC) return false; 1060 1061 // Return true if the value is negative, this matches things like (-42 * V). 1062 return SC->getValue()->getValue().isNegative(); 1063 } 1064 1065 /// CollectIVUsers - Transform our list of users and offsets to a bit more 1066 /// complex table. In this new vector, each 'BasedUser' contains 'Base', the 1067 /// base of the strided accesses, as well as the old information from Uses. We 1068 /// progressively move information from the Base field to the Imm field, until 1069 /// we eventually have the full access expression to rewrite the use. 1070 const SCEV *LoopStrengthReduce::CollectIVUsers(const SCEV *const &Stride, 1071 IVUsersOfOneStride &Uses, 1072 Loop *L, 1073 bool &AllUsesAreAddresses, 1074 bool &AllUsesAreOutsideLoop, 1075 std::vector<BasedUser> &UsersToProcess) { 1076 // FIXME: Generalize to non-affine IV's. 1077 if (!Stride->isLoopInvariant(L)) 1078 return SE->getIntegerSCEV(0, Stride->getType()); 1079 1080 UsersToProcess.reserve(Uses.Users.size()); 1081 for (ilist<IVStrideUse>::iterator I = Uses.Users.begin(), 1082 E = Uses.Users.end(); I != E; ++I) { 1083 UsersToProcess.push_back(BasedUser(*I, SE)); 1084 1085 // Move any loop variant operands from the offset field to the immediate 1086 // field of the use, so that we don't try to use something before it is 1087 // computed. 1088 MoveLoopVariantsToImmediateField(UsersToProcess.back().Base, 1089 UsersToProcess.back().Imm, L, SE); 1090 assert(UsersToProcess.back().Base->isLoopInvariant(L) && 1091 "Base value is not loop invariant!"); 1092 } 1093 1094 // We now have a whole bunch of uses of like-strided induction variables, but 1095 // they might all have different bases. We want to emit one PHI node for this 1096 // stride which we fold as many common expressions (between the IVs) into as 1097 // possible. Start by identifying the common expressions in the base values 1098 // for the strides (e.g. if we have "A+C+B" and "A+B+D" as our bases, find 1099 // "A+B"), emit it to the preheader, then remove the expression from the 1100 // UsersToProcess base values. 1101 const SCEV *CommonExprs = 1102 RemoveCommonExpressionsFromUseBases(UsersToProcess, SE, L, TLI); 1103 1104 // Next, figure out what we can represent in the immediate fields of 1105 // instructions. If we can represent anything there, move it to the imm 1106 // fields of the BasedUsers. We do this so that it increases the commonality 1107 // of the remaining uses. 1108 unsigned NumPHI = 0; 1109 bool HasAddress = false; 1110 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { 1111 // If the user is not in the current loop, this means it is using the exit 1112 // value of the IV. Do not put anything in the base, make sure it's all in 1113 // the immediate field to allow as much factoring as possible. 1114 if (!L->contains(UsersToProcess[i].Inst->getParent())) { 1115 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, 1116 UsersToProcess[i].Base); 1117 UsersToProcess[i].Base = 1118 SE->getIntegerSCEV(0, UsersToProcess[i].Base->getType()); 1119 } else { 1120 // Not all uses are outside the loop. 1121 AllUsesAreOutsideLoop = false; 1122 1123 // Addressing modes can be folded into loads and stores. Be careful that 1124 // the store is through the expression, not of the expression though. 1125 bool isPHI = false; 1126 bool isAddress = isAddressUse(UsersToProcess[i].Inst, 1127 UsersToProcess[i].OperandValToReplace); 1128 if (isa<PHINode>(UsersToProcess[i].Inst)) { 1129 isPHI = true; 1130 ++NumPHI; 1131 } 1132 1133 if (isAddress) 1134 HasAddress = true; 1135 1136 // If this use isn't an address, then not all uses are addresses. 1137 if (!isAddress && !isPHI) 1138 AllUsesAreAddresses = false; 1139 1140 MoveImmediateValues(TLI, UsersToProcess[i].Inst, UsersToProcess[i].Base, 1141 UsersToProcess[i].Imm, isAddress, L, SE); 1142 } 1143 } 1144 1145 // If one of the use is a PHI node and all other uses are addresses, still 1146 // allow iv reuse. Essentially we are trading one constant multiplication 1147 // for one fewer iv. 1148 if (NumPHI > 1) 1149 AllUsesAreAddresses = false; 1150 1151 // There are no in-loop address uses. 1152 if (AllUsesAreAddresses && (!HasAddress && !AllUsesAreOutsideLoop)) 1153 AllUsesAreAddresses = false; 1154 1155 return CommonExprs; 1156 } 1157 1158 /// ShouldUseFullStrengthReductionMode - Test whether full strength-reduction 1159 /// is valid and profitable for the given set of users of a stride. In 1160 /// full strength-reduction mode, all addresses at the current stride are 1161 /// strength-reduced all the way down to pointer arithmetic. 1162 /// 1163 bool LoopStrengthReduce::ShouldUseFullStrengthReductionMode( 1164 const std::vector<BasedUser> &UsersToProcess, 1165 const Loop *L, 1166 bool AllUsesAreAddresses, 1167 const SCEV *Stride) { 1168 if (!EnableFullLSRMode) 1169 return false; 1170 1171 // The heuristics below aim to avoid increasing register pressure, but 1172 // fully strength-reducing all the addresses increases the number of 1173 // add instructions, so don't do this when optimizing for size. 1174 // TODO: If the loop is large, the savings due to simpler addresses 1175 // may oughtweight the costs of the extra increment instructions. 1176 if (L->getHeader()->getParent()->hasFnAttr(Attribute::OptimizeForSize)) 1177 return false; 1178 1179 // TODO: For now, don't do full strength reduction if there could 1180 // potentially be greater-stride multiples of the current stride 1181 // which could reuse the current stride IV. 1182 if (IU->StrideOrder.back() != Stride) 1183 return false; 1184 1185 // Iterate through the uses to find conditions that automatically rule out 1186 // full-lsr mode. 1187 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) { 1188 const SCEV *Base = UsersToProcess[i].Base; 1189 const SCEV *Imm = UsersToProcess[i].Imm; 1190 // If any users have a loop-variant component, they can't be fully 1191 // strength-reduced. 1192 if (Imm && !Imm->isLoopInvariant(L)) 1193 return false; 1194 // If there are to users with the same base and the difference between 1195 // the two Imm values can't be folded into the address, full 1196 // strength reduction would increase register pressure. 1197 do { 1198 const SCEV *CurImm = UsersToProcess[i].Imm; 1199 if ((CurImm || Imm) && CurImm != Imm) { 1200 if (!CurImm) CurImm = SE->getIntegerSCEV(0, Stride->getType()); 1201 if (!Imm) Imm = SE->getIntegerSCEV(0, Stride->getType()); 1202 const Instruction *Inst = UsersToProcess[i].Inst; 1203 const Type *AccessTy = getAccessType(Inst); 1204 const SCEV *Diff = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm); 1205 if (!Diff->isZero() && 1206 (!AllUsesAreAddresses || 1207 !fitsInAddressMode(Diff, AccessTy, TLI, /*HasBaseReg=*/true))) 1208 return false; 1209 } 1210 } while (++i != e && Base == UsersToProcess[i].Base); 1211 } 1212 1213 // If there's exactly one user in this stride, fully strength-reducing it 1214 // won't increase register pressure. If it's starting from a non-zero base, 1215 // it'll be simpler this way. 1216 if (UsersToProcess.size() == 1 && !UsersToProcess[0].Base->isZero()) 1217 return true; 1218 1219 // Otherwise, if there are any users in this stride that don't require 1220 // a register for their base, full strength-reduction will increase 1221 // register pressure. 1222 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1223 if (UsersToProcess[i].Base->isZero()) 1224 return false; 1225 1226 // Otherwise, go for it. 1227 return true; 1228 } 1229 1230 /// InsertAffinePhi Create and insert a PHI node for an induction variable 1231 /// with the specified start and step values in the specified loop. 1232 /// 1233 /// If NegateStride is true, the stride should be negated by using a 1234 /// subtract instead of an add. 1235 /// 1236 /// Return the created phi node. 1237 /// 1238 static PHINode *InsertAffinePhi(const SCEV *Start, const SCEV *Step, 1239 Instruction *IVIncInsertPt, 1240 const Loop *L, 1241 SCEVExpander &Rewriter) { 1242 assert(Start->isLoopInvariant(L) && "New PHI start is not loop invariant!"); 1243 assert(Step->isLoopInvariant(L) && "New PHI stride is not loop invariant!"); 1244 1245 BasicBlock *Header = L->getHeader(); 1246 BasicBlock *Preheader = L->getLoopPreheader(); 1247 BasicBlock *LatchBlock = L->getLoopLatch(); 1248 const Type *Ty = Start->getType(); 1249 Ty = Rewriter.SE.getEffectiveSCEVType(Ty); 1250 1251 PHINode *PN = PHINode::Create(Ty, "lsr.iv", Header->begin()); 1252 PN->addIncoming(Rewriter.expandCodeFor(Start, Ty, Preheader->getTerminator()), 1253 Preheader); 1254 1255 // If the stride is negative, insert a sub instead of an add for the 1256 // increment. 1257 bool isNegative = isNonConstantNegative(Step); 1258 const SCEV *IncAmount = Step; 1259 if (isNegative) 1260 IncAmount = Rewriter.SE.getNegativeSCEV(Step); 1261 1262 // Insert an add instruction right before the terminator corresponding 1263 // to the back-edge or just before the only use. The location is determined 1264 // by the caller and passed in as IVIncInsertPt. 1265 Value *StepV = Rewriter.expandCodeFor(IncAmount, Ty, 1266 Preheader->getTerminator()); 1267 Instruction *IncV; 1268 if (isNegative) { 1269 IncV = BinaryOperator::CreateSub(PN, StepV, "lsr.iv.next", 1270 IVIncInsertPt); 1271 } else { 1272 IncV = BinaryOperator::CreateAdd(PN, StepV, "lsr.iv.next", 1273 IVIncInsertPt); 1274 } 1275 if (!isa<ConstantInt>(StepV)) ++NumVariable; 1276 1277 PN->addIncoming(IncV, LatchBlock); 1278 1279 ++NumInserted; 1280 return PN; 1281 } 1282 1283 static void SortUsersToProcess(std::vector<BasedUser> &UsersToProcess) { 1284 // We want to emit code for users inside the loop first. To do this, we 1285 // rearrange BasedUser so that the entries at the end have 1286 // isUseOfPostIncrementedValue = false, because we pop off the end of the 1287 // vector (so we handle them first). 1288 std::partition(UsersToProcess.begin(), UsersToProcess.end(), 1289 PartitionByIsUseOfPostIncrementedValue); 1290 1291 // Sort this by base, so that things with the same base are handled 1292 // together. By partitioning first and stable-sorting later, we are 1293 // guaranteed that within each base we will pop off users from within the 1294 // loop before users outside of the loop with a particular base. 1295 // 1296 // We would like to use stable_sort here, but we can't. The problem is that 1297 // const SCEV *'s don't have a deterministic ordering w.r.t to each other, so 1298 // we don't have anything to do a '<' comparison on. Because we think the 1299 // number of uses is small, do a horrible bubble sort which just relies on 1300 // ==. 1301 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { 1302 // Get a base value. 1303 const SCEV *Base = UsersToProcess[i].Base; 1304 1305 // Compact everything with this base to be consecutive with this one. 1306 for (unsigned j = i+1; j != e; ++j) { 1307 if (UsersToProcess[j].Base == Base) { 1308 std::swap(UsersToProcess[i+1], UsersToProcess[j]); 1309 ++i; 1310 } 1311 } 1312 } 1313 } 1314 1315 /// PrepareToStrengthReduceFully - Prepare to fully strength-reduce 1316 /// UsersToProcess, meaning lowering addresses all the way down to direct 1317 /// pointer arithmetic. 1318 /// 1319 void 1320 LoopStrengthReduce::PrepareToStrengthReduceFully( 1321 std::vector<BasedUser> &UsersToProcess, 1322 const SCEV *Stride, 1323 const SCEV *CommonExprs, 1324 const Loop *L, 1325 SCEVExpander &PreheaderRewriter) { 1326 DEBUG(errs() << " Fully reducing all users\n"); 1327 1328 // Rewrite the UsersToProcess records, creating a separate PHI for each 1329 // unique Base value. 1330 Instruction *IVIncInsertPt = L->getLoopLatch()->getTerminator(); 1331 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ) { 1332 // TODO: The uses are grouped by base, but not sorted. We arbitrarily 1333 // pick the first Imm value here to start with, and adjust it for the 1334 // other uses. 1335 const SCEV *Imm = UsersToProcess[i].Imm; 1336 const SCEV *Base = UsersToProcess[i].Base; 1337 const SCEV *Start = SE->getAddExpr(CommonExprs, Base, Imm); 1338 PHINode *Phi = InsertAffinePhi(Start, Stride, IVIncInsertPt, L, 1339 PreheaderRewriter); 1340 // Loop over all the users with the same base. 1341 do { 1342 UsersToProcess[i].Base = SE->getIntegerSCEV(0, Stride->getType()); 1343 UsersToProcess[i].Imm = SE->getMinusSCEV(UsersToProcess[i].Imm, Imm); 1344 UsersToProcess[i].Phi = Phi; 1345 assert(UsersToProcess[i].Imm->isLoopInvariant(L) && 1346 "ShouldUseFullStrengthReductionMode should reject this!"); 1347 } while (++i != e && Base == UsersToProcess[i].Base); 1348 } 1349 } 1350 1351 /// FindIVIncInsertPt - Return the location to insert the increment instruction. 1352 /// If the only use if a use of postinc value, (must be the loop termination 1353 /// condition), then insert it just before the use. 1354 static Instruction *FindIVIncInsertPt(std::vector<BasedUser> &UsersToProcess, 1355 const Loop *L) { 1356 if (UsersToProcess.size() == 1 && 1357 UsersToProcess[0].isUseOfPostIncrementedValue && 1358 L->contains(UsersToProcess[0].Inst->getParent())) 1359 return UsersToProcess[0].Inst; 1360 return L->getLoopLatch()->getTerminator(); 1361 } 1362 1363 /// PrepareToStrengthReduceWithNewPhi - Insert a new induction variable for the 1364 /// given users to share. 1365 /// 1366 void 1367 LoopStrengthReduce::PrepareToStrengthReduceWithNewPhi( 1368 std::vector<BasedUser> &UsersToProcess, 1369 const SCEV *Stride, 1370 const SCEV *CommonExprs, 1371 Value *CommonBaseV, 1372 Instruction *IVIncInsertPt, 1373 const Loop *L, 1374 SCEVExpander &PreheaderRewriter) { 1375 DEBUG(errs() << " Inserting new PHI:\n"); 1376 1377 PHINode *Phi = InsertAffinePhi(SE->getUnknown(CommonBaseV), 1378 Stride, IVIncInsertPt, L, 1379 PreheaderRewriter); 1380 1381 // Remember this in case a later stride is multiple of this. 1382 IVsByStride[Stride].addIV(Stride, CommonExprs, Phi); 1383 1384 // All the users will share this new IV. 1385 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1386 UsersToProcess[i].Phi = Phi; 1387 1388 DEBUG(errs() << " IV="); 1389 DEBUG(WriteAsOperand(errs(), Phi, /*PrintType=*/false)); 1390 DEBUG(errs() << "\n"); 1391 } 1392 1393 /// PrepareToStrengthReduceFromSmallerStride - Prepare for the given users to 1394 /// reuse an induction variable with a stride that is a factor of the current 1395 /// induction variable. 1396 /// 1397 void 1398 LoopStrengthReduce::PrepareToStrengthReduceFromSmallerStride( 1399 std::vector<BasedUser> &UsersToProcess, 1400 Value *CommonBaseV, 1401 const IVExpr &ReuseIV, 1402 Instruction *PreInsertPt) { 1403 DEBUG(errs() << " Rewriting in terms of existing IV of STRIDE " 1404 << *ReuseIV.Stride << " and BASE " << *ReuseIV.Base << "\n"); 1405 1406 // All the users will share the reused IV. 1407 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1408 UsersToProcess[i].Phi = ReuseIV.PHI; 1409 1410 Constant *C = dyn_cast<Constant>(CommonBaseV); 1411 if (C && 1412 (!C->isNullValue() && 1413 !fitsInAddressMode(SE->getUnknown(CommonBaseV), CommonBaseV->getType(), 1414 TLI, false))) 1415 // We want the common base emitted into the preheader! This is just 1416 // using cast as a copy so BitCast (no-op cast) is appropriate 1417 CommonBaseV = new BitCastInst(CommonBaseV, CommonBaseV->getType(), 1418 "commonbase", PreInsertPt); 1419 } 1420 1421 static bool IsImmFoldedIntoAddrMode(GlobalValue *GV, int64_t Offset, 1422 const Type *AccessTy, 1423 std::vector<BasedUser> &UsersToProcess, 1424 const TargetLowering *TLI) { 1425 SmallVector<Instruction*, 16> AddrModeInsts; 1426 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) { 1427 if (UsersToProcess[i].isUseOfPostIncrementedValue) 1428 continue; 1429 ExtAddrMode AddrMode = 1430 AddressingModeMatcher::Match(UsersToProcess[i].OperandValToReplace, 1431 AccessTy, UsersToProcess[i].Inst, 1432 AddrModeInsts, *TLI); 1433 if (GV && GV != AddrMode.BaseGV) 1434 return false; 1435 if (Offset && !AddrMode.BaseOffs) 1436 // FIXME: How to accurate check it's immediate offset is folded. 1437 return false; 1438 AddrModeInsts.clear(); 1439 } 1440 return true; 1441 } 1442 1443 /// StrengthReduceIVUsersOfStride - Strength reduce all of the users of a single 1444 /// stride of IV. All of the users may have different starting values, and this 1445 /// may not be the only stride. 1446 void 1447 LoopStrengthReduce::StrengthReduceIVUsersOfStride(const SCEV *const &Stride, 1448 IVUsersOfOneStride &Uses, 1449 Loop *L) { 1450 // If all the users are moved to another stride, then there is nothing to do. 1451 if (Uses.Users.empty()) 1452 return; 1453 1454 // Keep track if every use in UsersToProcess is an address. If they all are, 1455 // we may be able to rewrite the entire collection of them in terms of a 1456 // smaller-stride IV. 1457 bool AllUsesAreAddresses = true; 1458 1459 // Keep track if every use of a single stride is outside the loop. If so, 1460 // we want to be more aggressive about reusing a smaller-stride IV; a 1461 // multiply outside the loop is better than another IV inside. Well, usually. 1462 bool AllUsesAreOutsideLoop = true; 1463 1464 // Transform our list of users and offsets to a bit more complex table. In 1465 // this new vector, each 'BasedUser' contains 'Base' the base of the 1466 // strided accessas well as the old information from Uses. We progressively 1467 // move information from the Base field to the Imm field, until we eventually 1468 // have the full access expression to rewrite the use. 1469 std::vector<BasedUser> UsersToProcess; 1470 const SCEV *CommonExprs = CollectIVUsers(Stride, Uses, L, AllUsesAreAddresses, 1471 AllUsesAreOutsideLoop, 1472 UsersToProcess); 1473 1474 // Sort the UsersToProcess array so that users with common bases are 1475 // next to each other. 1476 SortUsersToProcess(UsersToProcess); 1477 1478 // If we managed to find some expressions in common, we'll need to carry 1479 // their value in a register and add it in for each use. This will take up 1480 // a register operand, which potentially restricts what stride values are 1481 // valid. 1482 bool HaveCommonExprs = !CommonExprs->isZero(); 1483 const Type *ReplacedTy = CommonExprs->getType(); 1484 1485 // If all uses are addresses, consider sinking the immediate part of the 1486 // common expression back into uses if they can fit in the immediate fields. 1487 if (TLI && HaveCommonExprs && AllUsesAreAddresses) { 1488 const SCEV *NewCommon = CommonExprs; 1489 const SCEV *Imm = SE->getIntegerSCEV(0, ReplacedTy); 1490 MoveImmediateValues(TLI, Type::getVoidTy( 1491 L->getLoopPreheader()->getContext()), 1492 NewCommon, Imm, true, L, SE); 1493 if (!Imm->isZero()) { 1494 bool DoSink = true; 1495 1496 // If the immediate part of the common expression is a GV, check if it's 1497 // possible to fold it into the target addressing mode. 1498 GlobalValue *GV = 0; 1499 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(Imm)) 1500 GV = dyn_cast<GlobalValue>(SU->getValue()); 1501 int64_t Offset = 0; 1502 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Imm)) 1503 Offset = SC->getValue()->getSExtValue(); 1504 if (GV || Offset) 1505 // Pass VoidTy as the AccessTy to be conservative, because 1506 // there could be multiple access types among all the uses. 1507 DoSink = IsImmFoldedIntoAddrMode(GV, Offset, 1508 Type::getVoidTy(L->getLoopPreheader()->getContext()), 1509 UsersToProcess, TLI); 1510 1511 if (DoSink) { 1512 DEBUG(errs() << " Sinking " << *Imm << " back down into uses\n"); 1513 for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) 1514 UsersToProcess[i].Imm = SE->getAddExpr(UsersToProcess[i].Imm, Imm); 1515 CommonExprs = NewCommon; 1516 HaveCommonExprs = !CommonExprs->isZero(); 1517 ++NumImmSunk; 1518 } 1519 } 1520 } 1521 1522 // Now that we know what we need to do, insert the PHI node itself. 1523 // 1524 DEBUG(errs() << "LSR: Examining IVs of TYPE " << *ReplacedTy << " of STRIDE " 1525 << *Stride << ":\n" 1526 << " Common base: " << *CommonExprs << "\n"); 1527 1528 SCEVExpander Rewriter(*SE); 1529 SCEVExpander PreheaderRewriter(*SE); 1530 1531 BasicBlock *Preheader = L->getLoopPreheader(); 1532 Instruction *PreInsertPt = Preheader->getTerminator(); 1533 BasicBlock *LatchBlock = L->getLoopLatch(); 1534 Instruction *IVIncInsertPt = LatchBlock->getTerminator(); 1535 1536 Value *CommonBaseV = Constant::getNullValue(ReplacedTy); 1537 1538 const SCEV *RewriteFactor = SE->getIntegerSCEV(0, ReplacedTy); 1539 IVExpr ReuseIV(SE->getIntegerSCEV(0, 1540 Type::getInt32Ty(Preheader->getContext())), 1541 SE->getIntegerSCEV(0, 1542 Type::getInt32Ty(Preheader->getContext())), 1543 0); 1544 1545 // Choose a strength-reduction strategy and prepare for it by creating 1546 // the necessary PHIs and adjusting the bookkeeping. 1547 if (ShouldUseFullStrengthReductionMode(UsersToProcess, L, 1548 AllUsesAreAddresses, Stride)) { 1549 PrepareToStrengthReduceFully(UsersToProcess, Stride, CommonExprs, L, 1550 PreheaderRewriter); 1551 } else { 1552 // Emit the initial base value into the loop preheader. 1553 CommonBaseV = PreheaderRewriter.expandCodeFor(CommonExprs, ReplacedTy, 1554 PreInsertPt); 1555 1556 // If all uses are addresses, check if it is possible to reuse an IV. The 1557 // new IV must have a stride that is a multiple of the old stride; the 1558 // multiple must be a number that can be encoded in the scale field of the 1559 // target addressing mode; and we must have a valid instruction after this 1560 // substitution, including the immediate field, if any. 1561 RewriteFactor = CheckForIVReuse(HaveCommonExprs, AllUsesAreAddresses, 1562 AllUsesAreOutsideLoop, 1563 Stride, ReuseIV, ReplacedTy, 1564 UsersToProcess); 1565 if (!RewriteFactor->isZero()) 1566 PrepareToStrengthReduceFromSmallerStride(UsersToProcess, CommonBaseV, 1567 ReuseIV, PreInsertPt); 1568 else { 1569 IVIncInsertPt = FindIVIncInsertPt(UsersToProcess, L); 1570 PrepareToStrengthReduceWithNewPhi(UsersToProcess, Stride, CommonExprs, 1571 CommonBaseV, IVIncInsertPt, 1572 L, PreheaderRewriter); 1573 } 1574 } 1575 1576 // Process all the users now, replacing their strided uses with 1577 // strength-reduced forms. This outer loop handles all bases, the inner 1578 // loop handles all users of a particular base. 1579 while (!UsersToProcess.empty()) { 1580 const SCEV *Base = UsersToProcess.back().Base; 1581 Instruction *Inst = UsersToProcess.back().Inst; 1582 1583 // Emit the code for Base into the preheader. 1584 Value *BaseV = 0; 1585 if (!Base->isZero()) { 1586 BaseV = PreheaderRewriter.expandCodeFor(Base, 0, PreInsertPt); 1587 1588 DEBUG(errs() << " INSERTING code for BASE = " << *Base << ":"); 1589 if (BaseV->hasName()) 1590 DEBUG(errs() << " Result value name = %" << BaseV->getName()); 1591 DEBUG(errs() << "\n"); 1592 1593 // If BaseV is a non-zero constant, make sure that it gets inserted into 1594 // the preheader, instead of being forward substituted into the uses. We 1595 // do this by forcing a BitCast (noop cast) to be inserted into the 1596 // preheader in this case. 1597 if (!fitsInAddressMode(Base, getAccessType(Inst), TLI, false) && 1598 isa<Constant>(BaseV)) { 1599 // We want this constant emitted into the preheader! This is just 1600 // using cast as a copy so BitCast (no-op cast) is appropriate 1601 BaseV = new BitCastInst(BaseV, BaseV->getType(), "preheaderinsert", 1602 PreInsertPt); 1603 } 1604 } 1605 1606 // Emit the code to add the immediate offset to the Phi value, just before 1607 // the instructions that we identified as using this stride and base. 1608 do { 1609 // FIXME: Use emitted users to emit other users. 1610 BasedUser &User = UsersToProcess.back(); 1611 1612 DEBUG(errs() << " Examining "); 1613 if (User.isUseOfPostIncrementedValue) 1614 DEBUG(errs() << "postinc"); 1615 else 1616 DEBUG(errs() << "preinc"); 1617 DEBUG(errs() << " use "); 1618 DEBUG(WriteAsOperand(errs(), UsersToProcess.back().OperandValToReplace, 1619 /*PrintType=*/false)); 1620 DEBUG(errs() << " in Inst: " << *User.Inst); 1621 1622 // If this instruction wants to use the post-incremented value, move it 1623 // after the post-inc and use its value instead of the PHI. 1624 Value *RewriteOp = User.Phi; 1625 if (User.isUseOfPostIncrementedValue) { 1626 RewriteOp = User.Phi->getIncomingValueForBlock(LatchBlock); 1627 // If this user is in the loop, make sure it is the last thing in the 1628 // loop to ensure it is dominated by the increment. In case it's the 1629 // only use of the iv, the increment instruction is already before the 1630 // use. 1631 if (L->contains(User.Inst->getParent()) && User.Inst != IVIncInsertPt) 1632 User.Inst->moveBefore(IVIncInsertPt); 1633 } 1634 1635 const SCEV *RewriteExpr = SE->getUnknown(RewriteOp); 1636 1637 if (SE->getEffectiveSCEVType(RewriteOp->getType()) != 1638 SE->getEffectiveSCEVType(ReplacedTy)) { 1639 assert(SE->getTypeSizeInBits(RewriteOp->getType()) > 1640 SE->getTypeSizeInBits(ReplacedTy) && 1641 "Unexpected widening cast!"); 1642 RewriteExpr = SE->getTruncateExpr(RewriteExpr, ReplacedTy); 1643 } 1644 1645 // If we had to insert new instructions for RewriteOp, we have to 1646 // consider that they may not have been able to end up immediately 1647 // next to RewriteOp, because non-PHI instructions may never precede 1648 // PHI instructions in a block. In this case, remember where the last 1649 // instruction was inserted so that if we're replacing a different 1650 // PHI node, we can use the later point to expand the final 1651 // RewriteExpr. 1652 Instruction *NewBasePt = dyn_cast<Instruction>(RewriteOp); 1653 if (RewriteOp == User.Phi) NewBasePt = 0; 1654 1655 // Clear the SCEVExpander's expression map so that we are guaranteed 1656 // to have the code emitted where we expect it. 1657 Rewriter.clear(); 1658 1659 // If we are reusing the iv, then it must be multiplied by a constant 1660 // factor to take advantage of the addressing mode scale component. 1661 if (!RewriteFactor->isZero()) { 1662 // If we're reusing an IV with a nonzero base (currently this happens 1663 // only when all reuses are outside the loop) subtract that base here. 1664 // The base has been used to initialize the PHI node but we don't want 1665 // it here. 1666 if (!ReuseIV.Base->isZero()) { 1667 const SCEV *typedBase = ReuseIV.Base; 1668 if (SE->getEffectiveSCEVType(RewriteExpr->getType()) != 1669 SE->getEffectiveSCEVType(ReuseIV.Base->getType())) { 1670 // It's possible the original IV is a larger type than the new IV, 1671 // in which case we have to truncate the Base. We checked in 1672 // RequiresTypeConversion that this is valid. 1673 assert(SE->getTypeSizeInBits(RewriteExpr->getType()) < 1674 SE->getTypeSizeInBits(ReuseIV.Base->getType()) && 1675 "Unexpected lengthening conversion!"); 1676 typedBase = SE->getTruncateExpr(ReuseIV.Base, 1677 RewriteExpr->getType()); 1678 } 1679 RewriteExpr = SE->getMinusSCEV(RewriteExpr, typedBase); 1680 } 1681 1682 // Multiply old variable, with base removed, by new scale factor. 1683 RewriteExpr = SE->getMulExpr(RewriteFactor, 1684 RewriteExpr); 1685 1686 // The common base is emitted in the loop preheader. But since we 1687 // are reusing an IV, it has not been used to initialize the PHI node. 1688 // Add it to the expression used to rewrite the uses. 1689 // When this use is outside the loop, we earlier subtracted the 1690 // common base, and are adding it back here. Use the same expression 1691 // as before, rather than CommonBaseV, so DAGCombiner will zap it. 1692 if (!CommonExprs->isZero()) { 1693 if (L->contains(User.Inst->getParent())) 1694 RewriteExpr = SE->getAddExpr(RewriteExpr, 1695 SE->getUnknown(CommonBaseV)); 1696 else 1697 RewriteExpr = SE->getAddExpr(RewriteExpr, CommonExprs); 1698 } 1699 } 1700 1701 // Now that we know what we need to do, insert code before User for the 1702 // immediate and any loop-variant expressions. 1703 if (BaseV) 1704 // Add BaseV to the PHI value if needed. 1705 RewriteExpr = SE->getAddExpr(RewriteExpr, SE->getUnknown(BaseV)); 1706 1707 User.RewriteInstructionToUseNewBase(RewriteExpr, NewBasePt, 1708 Rewriter, L, this, 1709 DeadInsts, SE); 1710 1711 // Mark old value we replaced as possibly dead, so that it is eliminated 1712 // if we just replaced the last use of that value. 1713 DeadInsts.push_back(User.OperandValToReplace); 1714 1715 UsersToProcess.pop_back(); 1716 ++NumReduced; 1717 1718 // If there are any more users to process with the same base, process them 1719 // now. We sorted by base above, so we just have to check the last elt. 1720 } while (!UsersToProcess.empty() && UsersToProcess.back().Base == Base); 1721 // TODO: Next, find out which base index is the most common, pull it out. 1722 } 1723 1724 // IMPORTANT TODO: Figure out how to partition the IV's with this stride, but 1725 // different starting values, into different PHIs. 1726 } 1727 1728 void LoopStrengthReduce::StrengthReduceIVUsers(Loop *L) { 1729 // Note: this processes each stride/type pair individually. All users 1730 // passed into StrengthReduceIVUsersOfStride have the same type AND stride. 1731 // Also, note that we iterate over IVUsesByStride indirectly by using 1732 // StrideOrder. This extra layer of indirection makes the ordering of 1733 // strides deterministic - not dependent on map order. 1734 for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; ++Stride) { 1735 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 1736 IU->IVUsesByStride.find(IU->StrideOrder[Stride]); 1737 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 1738 // FIXME: Generalize to non-affine IV's. 1739 if (!SI->first->isLoopInvariant(L)) 1740 continue; 1741 StrengthReduceIVUsersOfStride(SI->first, *SI->second, L); 1742 } 1743 } 1744 1745 /// FindIVUserForCond - If Cond has an operand that is an expression of an IV, 1746 /// set the IV user and stride information and return true, otherwise return 1747 /// false. 1748 bool LoopStrengthReduce::FindIVUserForCond(ICmpInst *Cond, 1749 IVStrideUse *&CondUse, 1750 const SCEV* &CondStride) { 1751 for (unsigned Stride = 0, e = IU->StrideOrder.size(); 1752 Stride != e && !CondUse; ++Stride) { 1753 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 1754 IU->IVUsesByStride.find(IU->StrideOrder[Stride]); 1755 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 1756 1757 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), 1758 E = SI->second->Users.end(); UI != E; ++UI) 1759 if (UI->getUser() == Cond) { 1760 // NOTE: we could handle setcc instructions with multiple uses here, but 1761 // InstCombine does it as well for simple uses, it's not clear that it 1762 // occurs enough in real life to handle. 1763 CondUse = UI; 1764 CondStride = SI->first; 1765 return true; 1766 } 1767 } 1768 return false; 1769 } 1770 1771 namespace { 1772 // Constant strides come first which in turns are sorted by their absolute 1773 // values. If absolute values are the same, then positive strides comes first. 1774 // e.g. 1775 // 4, -1, X, 1, 2 ==> 1, -1, 2, 4, X 1776 struct StrideCompare { 1777 const ScalarEvolution *SE; 1778 explicit StrideCompare(const ScalarEvolution *se) : SE(se) {} 1779 1780 bool operator()(const SCEV *const &LHS, const SCEV *const &RHS) { 1781 const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS); 1782 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 1783 if (LHSC && RHSC) { 1784 int64_t LV = LHSC->getValue()->getSExtValue(); 1785 int64_t RV = RHSC->getValue()->getSExtValue(); 1786 uint64_t ALV = (LV < 0) ? -LV : LV; 1787 uint64_t ARV = (RV < 0) ? -RV : RV; 1788 if (ALV == ARV) { 1789 if (LV != RV) 1790 return LV > RV; 1791 } else { 1792 return ALV < ARV; 1793 } 1794 1795 // If it's the same value but different type, sort by bit width so 1796 // that we emit larger induction variables before smaller 1797 // ones, letting the smaller be re-written in terms of larger ones. 1798 return SE->getTypeSizeInBits(RHS->getType()) < 1799 SE->getTypeSizeInBits(LHS->getType()); 1800 } 1801 return LHSC && !RHSC; 1802 } 1803 }; 1804 } 1805 1806 /// ChangeCompareStride - If a loop termination compare instruction is the 1807 /// only use of its stride, and the compaison is against a constant value, 1808 /// try eliminate the stride by moving the compare instruction to another 1809 /// stride and change its constant operand accordingly. e.g. 1810 /// 1811 /// loop: 1812 /// ... 1813 /// v1 = v1 + 3 1814 /// v2 = v2 + 1 1815 /// if (v2 < 10) goto loop 1816 /// => 1817 /// loop: 1818 /// ... 1819 /// v1 = v1 + 3 1820 /// if (v1 < 30) goto loop 1821 ICmpInst *LoopStrengthReduce::ChangeCompareStride(Loop *L, ICmpInst *Cond, 1822 IVStrideUse* &CondUse, 1823 const SCEV* &CondStride, 1824 bool PostPass) { 1825 // If there's only one stride in the loop, there's nothing to do here. 1826 if (IU->StrideOrder.size() < 2) 1827 return Cond; 1828 // If there are other users of the condition's stride, don't bother 1829 // trying to change the condition because the stride will still 1830 // remain. 1831 std::map<const SCEV *, IVUsersOfOneStride *>::iterator I = 1832 IU->IVUsesByStride.find(CondStride); 1833 if (I == IU->IVUsesByStride.end()) 1834 return Cond; 1835 if (I->second->Users.size() > 1) { 1836 for (ilist<IVStrideUse>::iterator II = I->second->Users.begin(), 1837 EE = I->second->Users.end(); II != EE; ++II) { 1838 if (II->getUser() == Cond) 1839 continue; 1840 if (!isInstructionTriviallyDead(II->getUser())) 1841 return Cond; 1842 } 1843 } 1844 // Only handle constant strides for now. 1845 const SCEVConstant *SC = dyn_cast<SCEVConstant>(CondStride); 1846 if (!SC) return Cond; 1847 1848 ICmpInst::Predicate Predicate = Cond->getPredicate(); 1849 int64_t CmpSSInt = SC->getValue()->getSExtValue(); 1850 unsigned BitWidth = SE->getTypeSizeInBits(CondStride->getType()); 1851 uint64_t SignBit = 1ULL << (BitWidth-1); 1852 const Type *CmpTy = Cond->getOperand(0)->getType(); 1853 const Type *NewCmpTy = NULL; 1854 unsigned TyBits = SE->getTypeSizeInBits(CmpTy); 1855 unsigned NewTyBits = 0; 1856 const SCEV *NewStride = NULL; 1857 Value *NewCmpLHS = NULL; 1858 Value *NewCmpRHS = NULL; 1859 int64_t Scale = 1; 1860 const SCEV *NewOffset = SE->getIntegerSCEV(0, CmpTy); 1861 1862 if (ConstantInt *C = dyn_cast<ConstantInt>(Cond->getOperand(1))) { 1863 int64_t CmpVal = C->getValue().getSExtValue(); 1864 1865 // Check the relevant induction variable for conformance to 1866 // the pattern. 1867 const SCEV *IV = SE->getSCEV(Cond->getOperand(0)); 1868 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 1869 if (!AR || !AR->isAffine()) 1870 return Cond; 1871 1872 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 1873 // Check stride constant and the comparision constant signs to detect 1874 // overflow. 1875 if (StartC) { 1876 if ((StartC->getValue()->getSExtValue() < CmpVal && CmpSSInt < 0) || 1877 (StartC->getValue()->getSExtValue() > CmpVal && CmpSSInt > 0)) 1878 return Cond; 1879 } else { 1880 // More restrictive check for the other cases. 1881 if ((CmpVal & SignBit) != (CmpSSInt & SignBit)) 1882 return Cond; 1883 } 1884 1885 // Look for a suitable stride / iv as replacement. 1886 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { 1887 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 1888 IU->IVUsesByStride.find(IU->StrideOrder[i]); 1889 if (!isa<SCEVConstant>(SI->first) || SI->second->Users.empty()) 1890 continue; 1891 int64_t SSInt = cast<SCEVConstant>(SI->first)->getValue()->getSExtValue(); 1892 if (SSInt == CmpSSInt || 1893 abs64(SSInt) < abs64(CmpSSInt) || 1894 (SSInt % CmpSSInt) != 0) 1895 continue; 1896 1897 Scale = SSInt / CmpSSInt; 1898 int64_t NewCmpVal = CmpVal * Scale; 1899 1900 // If old icmp value fits in icmp immediate field, but the new one doesn't 1901 // try something else. 1902 if (TLI && 1903 TLI->isLegalICmpImmediate(CmpVal) && 1904 !TLI->isLegalICmpImmediate(NewCmpVal)) 1905 continue; 1906 1907 APInt Mul = APInt(BitWidth*2, CmpVal, true); 1908 Mul = Mul * APInt(BitWidth*2, Scale, true); 1909 // Check for overflow. 1910 if (!Mul.isSignedIntN(BitWidth)) 1911 continue; 1912 // Check for overflow in the stride's type too. 1913 if (!Mul.isSignedIntN(SE->getTypeSizeInBits(SI->first->getType()))) 1914 continue; 1915 1916 // Watch out for overflow. 1917 if (ICmpInst::isSigned(Predicate) && 1918 (CmpVal & SignBit) != (NewCmpVal & SignBit)) 1919 continue; 1920 1921 // Pick the best iv to use trying to avoid a cast. 1922 NewCmpLHS = NULL; 1923 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), 1924 E = SI->second->Users.end(); UI != E; ++UI) { 1925 Value *Op = UI->getOperandValToReplace(); 1926 1927 // If the IVStrideUse implies a cast, check for an actual cast which 1928 // can be used to find the original IV expression. 1929 if (SE->getEffectiveSCEVType(Op->getType()) != 1930 SE->getEffectiveSCEVType(SI->first->getType())) { 1931 CastInst *CI = dyn_cast<CastInst>(Op); 1932 // If it's not a simple cast, it's complicated. 1933 if (!CI) 1934 continue; 1935 // If it's a cast from a type other than the stride type, 1936 // it's complicated. 1937 if (CI->getOperand(0)->getType() != SI->first->getType()) 1938 continue; 1939 // Ok, we found the IV expression in the stride's type. 1940 Op = CI->getOperand(0); 1941 } 1942 1943 NewCmpLHS = Op; 1944 if (NewCmpLHS->getType() == CmpTy) 1945 break; 1946 } 1947 if (!NewCmpLHS) 1948 continue; 1949 1950 NewCmpTy = NewCmpLHS->getType(); 1951 NewTyBits = SE->getTypeSizeInBits(NewCmpTy); 1952 const Type *NewCmpIntTy = IntegerType::get(Cond->getContext(), NewTyBits); 1953 if (RequiresTypeConversion(NewCmpTy, CmpTy)) { 1954 // Check if it is possible to rewrite it using 1955 // an iv / stride of a smaller integer type. 1956 unsigned Bits = NewTyBits; 1957 if (ICmpInst::isSigned(Predicate)) 1958 --Bits; 1959 uint64_t Mask = (1ULL << Bits) - 1; 1960 if (((uint64_t)NewCmpVal & Mask) != (uint64_t)NewCmpVal) 1961 continue; 1962 } 1963 1964 // Don't rewrite if use offset is non-constant and the new type is 1965 // of a different type. 1966 // FIXME: too conservative? 1967 if (NewTyBits != TyBits && !isa<SCEVConstant>(CondUse->getOffset())) 1968 continue; 1969 1970 if (!PostPass) { 1971 bool AllUsesAreAddresses = true; 1972 bool AllUsesAreOutsideLoop = true; 1973 std::vector<BasedUser> UsersToProcess; 1974 const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L, 1975 AllUsesAreAddresses, 1976 AllUsesAreOutsideLoop, 1977 UsersToProcess); 1978 // Avoid rewriting the compare instruction with an iv of new stride 1979 // if it's likely the new stride uses will be rewritten using the 1980 // stride of the compare instruction. 1981 if (AllUsesAreAddresses && 1982 ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) 1983 continue; 1984 } 1985 1986 // Avoid rewriting the compare instruction with an iv which has 1987 // implicit extension or truncation built into it. 1988 // TODO: This is over-conservative. 1989 if (SE->getTypeSizeInBits(CondUse->getOffset()->getType()) != TyBits) 1990 continue; 1991 1992 // If scale is negative, use swapped predicate unless it's testing 1993 // for equality. 1994 if (Scale < 0 && !Cond->isEquality()) 1995 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1996 1997 NewStride = IU->StrideOrder[i]; 1998 if (!isa<PointerType>(NewCmpTy)) 1999 NewCmpRHS = ConstantInt::get(NewCmpTy, NewCmpVal); 2000 else { 2001 Constant *CI = ConstantInt::get(NewCmpIntTy, NewCmpVal); 2002 NewCmpRHS = ConstantExpr::getIntToPtr(CI, NewCmpTy); 2003 } 2004 NewOffset = TyBits == NewTyBits 2005 ? SE->getMulExpr(CondUse->getOffset(), 2006 SE->getConstant(CmpTy, Scale)) 2007 : SE->getConstant(NewCmpIntTy, 2008 cast<SCEVConstant>(CondUse->getOffset())->getValue() 2009 ->getSExtValue()*Scale); 2010 break; 2011 } 2012 } 2013 2014 // Forgo this transformation if it the increment happens to be 2015 // unfortunately positioned after the condition, and the condition 2016 // has multiple uses which prevent it from being moved immediately 2017 // before the branch. See 2018 // test/Transforms/LoopStrengthReduce/change-compare-stride-trickiness-*.ll 2019 // for an example of this situation. 2020 if (!Cond->hasOneUse()) { 2021 for (BasicBlock::iterator I = Cond, E = Cond->getParent()->end(); 2022 I != E; ++I) 2023 if (I == NewCmpLHS) 2024 return Cond; 2025 } 2026 2027 if (NewCmpRHS) { 2028 // Create a new compare instruction using new stride / iv. 2029 ICmpInst *OldCond = Cond; 2030 // Insert new compare instruction. 2031 Cond = new ICmpInst(OldCond, Predicate, NewCmpLHS, NewCmpRHS, 2032 L->getHeader()->getName() + ".termcond"); 2033 2034 DEBUG(errs() << " Change compare stride in Inst " << *OldCond); 2035 DEBUG(errs() << " to " << *Cond << '\n'); 2036 2037 // Remove the old compare instruction. The old indvar is probably dead too. 2038 DeadInsts.push_back(CondUse->getOperandValToReplace()); 2039 OldCond->replaceAllUsesWith(Cond); 2040 OldCond->eraseFromParent(); 2041 2042 IU->IVUsesByStride[NewStride]->addUser(NewOffset, Cond, NewCmpLHS); 2043 CondUse = &IU->IVUsesByStride[NewStride]->Users.back(); 2044 CondStride = NewStride; 2045 ++NumEliminated; 2046 Changed = true; 2047 } 2048 2049 return Cond; 2050 } 2051 2052 /// OptimizeMax - Rewrite the loop's terminating condition if it uses 2053 /// a max computation. 2054 /// 2055 /// This is a narrow solution to a specific, but acute, problem. For loops 2056 /// like this: 2057 /// 2058 /// i = 0; 2059 /// do { 2060 /// p[i] = 0.0; 2061 /// } while (++i < n); 2062 /// 2063 /// the trip count isn't just 'n', because 'n' might not be positive. And 2064 /// unfortunately this can come up even for loops where the user didn't use 2065 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2066 /// will commonly be lowered like this: 2067 // 2068 /// if (n > 0) { 2069 /// i = 0; 2070 /// do { 2071 /// p[i] = 0.0; 2072 /// } while (++i < n); 2073 /// } 2074 /// 2075 /// and then it's possible for subsequent optimization to obscure the if 2076 /// test in such a way that indvars can't find it. 2077 /// 2078 /// When indvars can't find the if test in loops like this, it creates a 2079 /// max expression, which allows it to give the loop a canonical 2080 /// induction variable: 2081 /// 2082 /// i = 0; 2083 /// max = n < 1 ? 1 : n; 2084 /// do { 2085 /// p[i] = 0.0; 2086 /// } while (++i != max); 2087 /// 2088 /// Canonical induction variables are necessary because the loop passes 2089 /// are designed around them. The most obvious example of this is the 2090 /// LoopInfo analysis, which doesn't remember trip count values. It 2091 /// expects to be able to rediscover the trip count each time it is 2092 /// needed, and it does this using a simple analyis that only succeeds if 2093 /// the loop has a canonical induction variable. 2094 /// 2095 /// However, when it comes time to generate code, the maximum operation 2096 /// can be quite costly, especially if it's inside of an outer loop. 2097 /// 2098 /// This function solves this problem by detecting this type of loop and 2099 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2100 /// the instructions for the maximum computation. 2101 /// 2102 ICmpInst *LoopStrengthReduce::OptimizeMax(Loop *L, ICmpInst *Cond, 2103 IVStrideUse* &CondUse) { 2104 // Check that the loop matches the pattern we're looking for. 2105 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2106 Cond->getPredicate() != CmpInst::ICMP_NE) 2107 return Cond; 2108 2109 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2110 if (!Sel || !Sel->hasOneUse()) return Cond; 2111 2112 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2113 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2114 return Cond; 2115 const SCEV *One = SE->getIntegerSCEV(1, BackedgeTakenCount->getType()); 2116 2117 // Add one to the backedge-taken count to get the trip count. 2118 const SCEV *IterationCount = SE->getAddExpr(BackedgeTakenCount, One); 2119 2120 // Check for a max calculation that matches the pattern. 2121 if (!isa<SCEVSMaxExpr>(IterationCount) && !isa<SCEVUMaxExpr>(IterationCount)) 2122 return Cond; 2123 const SCEVNAryExpr *Max = cast<SCEVNAryExpr>(IterationCount); 2124 if (Max != SE->getSCEV(Sel)) return Cond; 2125 2126 // To handle a max with more than two operands, this optimization would 2127 // require additional checking and setup. 2128 if (Max->getNumOperands() != 2) 2129 return Cond; 2130 2131 const SCEV *MaxLHS = Max->getOperand(0); 2132 const SCEV *MaxRHS = Max->getOperand(1); 2133 if (!MaxLHS || MaxLHS != One) return Cond; 2134 2135 // Check the relevant induction variable for conformance to 2136 // the pattern. 2137 const SCEV *IV = SE->getSCEV(Cond->getOperand(0)); 2138 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2139 if (!AR || !AR->isAffine() || 2140 AR->getStart() != One || 2141 AR->getStepRecurrence(*SE) != One) 2142 return Cond; 2143 2144 assert(AR->getLoop() == L && 2145 "Loop condition operand is an addrec in a different loop!"); 2146 2147 // Check the right operand of the select, and remember it, as it will 2148 // be used in the new comparison instruction. 2149 Value *NewRHS = 0; 2150 if (SE->getSCEV(Sel->getOperand(1)) == MaxRHS) 2151 NewRHS = Sel->getOperand(1); 2152 else if (SE->getSCEV(Sel->getOperand(2)) == MaxRHS) 2153 NewRHS = Sel->getOperand(2); 2154 if (!NewRHS) return Cond; 2155 2156 // Determine the new comparison opcode. It may be signed or unsigned, 2157 // and the original comparison may be either equality or inequality. 2158 CmpInst::Predicate Pred = 2159 isa<SCEVSMaxExpr>(Max) ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; 2160 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2161 Pred = CmpInst::getInversePredicate(Pred); 2162 2163 // Ok, everything looks ok to change the condition into an SLT or SGE and 2164 // delete the max calculation. 2165 ICmpInst *NewCond = 2166 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2167 2168 // Delete the max calculation instructions. 2169 Cond->replaceAllUsesWith(NewCond); 2170 CondUse->setUser(NewCond); 2171 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2172 Cond->eraseFromParent(); 2173 Sel->eraseFromParent(); 2174 if (Cmp->use_empty()) 2175 Cmp->eraseFromParent(); 2176 return NewCond; 2177 } 2178 2179 /// OptimizeShadowIV - If IV is used in a int-to-float cast 2180 /// inside the loop then try to eliminate the cast opeation. 2181 void LoopStrengthReduce::OptimizeShadowIV(Loop *L) { 2182 2183 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2184 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2185 return; 2186 2187 for (unsigned Stride = 0, e = IU->StrideOrder.size(); Stride != e; 2188 ++Stride) { 2189 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 2190 IU->IVUsesByStride.find(IU->StrideOrder[Stride]); 2191 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 2192 if (!isa<SCEVConstant>(SI->first)) 2193 continue; 2194 2195 for (ilist<IVStrideUse>::iterator UI = SI->second->Users.begin(), 2196 E = SI->second->Users.end(); UI != E; /* empty */) { 2197 ilist<IVStrideUse>::iterator CandidateUI = UI; 2198 ++UI; 2199 Instruction *ShadowUse = CandidateUI->getUser(); 2200 const Type *DestTy = NULL; 2201 2202 /* If shadow use is a int->float cast then insert a second IV 2203 to eliminate this cast. 2204 2205 for (unsigned i = 0; i < n; ++i) 2206 foo((double)i); 2207 2208 is transformed into 2209 2210 double d = 0.0; 2211 for (unsigned i = 0; i < n; ++i, ++d) 2212 foo(d); 2213 */ 2214 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) 2215 DestTy = UCast->getDestTy(); 2216 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) 2217 DestTy = SCast->getDestTy(); 2218 if (!DestTy) continue; 2219 2220 if (TLI) { 2221 // If target does not support DestTy natively then do not apply 2222 // this transformation. 2223 EVT DVT = TLI->getValueType(DestTy); 2224 if (!TLI->isTypeLegal(DVT)) continue; 2225 } 2226 2227 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2228 if (!PH) continue; 2229 if (PH->getNumIncomingValues() != 2) continue; 2230 2231 const Type *SrcTy = PH->getType(); 2232 int Mantissa = DestTy->getFPMantissaWidth(); 2233 if (Mantissa == -1) continue; 2234 if ((int)SE->getTypeSizeInBits(SrcTy) > Mantissa) 2235 continue; 2236 2237 unsigned Entry, Latch; 2238 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2239 Entry = 0; 2240 Latch = 1; 2241 } else { 2242 Entry = 1; 2243 Latch = 0; 2244 } 2245 2246 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2247 if (!Init) continue; 2248 Constant *NewInit = ConstantFP::get(DestTy, Init->getZExtValue()); 2249 2250 BinaryOperator *Incr = 2251 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2252 if (!Incr) continue; 2253 if (Incr->getOpcode() != Instruction::Add 2254 && Incr->getOpcode() != Instruction::Sub) 2255 continue; 2256 2257 /* Initialize new IV, double d = 0.0 in above example. */ 2258 ConstantInt *C = NULL; 2259 if (Incr->getOperand(0) == PH) 2260 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2261 else if (Incr->getOperand(1) == PH) 2262 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2263 else 2264 continue; 2265 2266 if (!C) continue; 2267 2268 // Ignore negative constants, as the code below doesn't handle them 2269 // correctly. TODO: Remove this restriction. 2270 if (!C->getValue().isStrictlyPositive()) continue; 2271 2272 /* Add new PHINode. */ 2273 PHINode *NewPH = PHINode::Create(DestTy, "IV.S.", PH); 2274 2275 /* create new increment. '++d' in above example. */ 2276 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2277 BinaryOperator *NewIncr = 2278 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2279 Instruction::FAdd : Instruction::FSub, 2280 NewPH, CFP, "IV.S.next.", Incr); 2281 2282 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2283 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2284 2285 /* Remove cast operation */ 2286 ShadowUse->replaceAllUsesWith(NewPH); 2287 ShadowUse->eraseFromParent(); 2288 NumShadow++; 2289 break; 2290 } 2291 } 2292 } 2293 2294 /// OptimizeIndvars - Now that IVUsesByStride is set up with all of the indvar 2295 /// uses in the loop, look to see if we can eliminate some, in favor of using 2296 /// common indvars for the different uses. 2297 void LoopStrengthReduce::OptimizeIndvars(Loop *L) { 2298 // TODO: implement optzns here. 2299 2300 OptimizeShadowIV(L); 2301 } 2302 2303 bool LoopStrengthReduce::StrideMightBeShared(const SCEV* Stride, Loop *L, 2304 bool CheckPreInc) { 2305 int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue(); 2306 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { 2307 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 2308 IU->IVUsesByStride.find(IU->StrideOrder[i]); 2309 const SCEV *Share = SI->first; 2310 if (!isa<SCEVConstant>(SI->first) || Share == Stride) 2311 continue; 2312 int64_t SSInt = cast<SCEVConstant>(Share)->getValue()->getSExtValue(); 2313 if (SSInt == SInt) 2314 return true; // This can definitely be reused. 2315 if (unsigned(abs64(SSInt)) < SInt || (SSInt % SInt) != 0) 2316 continue; 2317 int64_t Scale = SSInt / SInt; 2318 bool AllUsesAreAddresses = true; 2319 bool AllUsesAreOutsideLoop = true; 2320 std::vector<BasedUser> UsersToProcess; 2321 const SCEV *CommonExprs = CollectIVUsers(SI->first, *SI->second, L, 2322 AllUsesAreAddresses, 2323 AllUsesAreOutsideLoop, 2324 UsersToProcess); 2325 if (AllUsesAreAddresses && 2326 ValidScale(!CommonExprs->isZero(), Scale, UsersToProcess)) { 2327 if (!CheckPreInc) 2328 return true; 2329 // Any pre-inc iv use? 2330 IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[Share]; 2331 for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(), 2332 E = StrideUses.Users.end(); I != E; ++I) { 2333 if (!I->isUseOfPostIncrementedValue()) 2334 return true; 2335 } 2336 } 2337 } 2338 return false; 2339 } 2340 2341 /// isUsedByExitBranch - Return true if icmp is used by a loop terminating 2342 /// conditional branch or it's and / or with other conditions before being used 2343 /// as the condition. 2344 static bool isUsedByExitBranch(ICmpInst *Cond, Loop *L) { 2345 BasicBlock *CondBB = Cond->getParent(); 2346 if (!L->isLoopExiting(CondBB)) 2347 return false; 2348 BranchInst *TermBr = dyn_cast<BranchInst>(CondBB->getTerminator()); 2349 if (!TermBr || !TermBr->isConditional()) 2350 return false; 2351 2352 Value *User = *Cond->use_begin(); 2353 Instruction *UserInst = dyn_cast<Instruction>(User); 2354 while (UserInst && 2355 (UserInst->getOpcode() == Instruction::And || 2356 UserInst->getOpcode() == Instruction::Or)) { 2357 if (!UserInst->hasOneUse() || UserInst->getParent() != CondBB) 2358 return false; 2359 User = *User->use_begin(); 2360 UserInst = dyn_cast<Instruction>(User); 2361 } 2362 return User == TermBr; 2363 } 2364 2365 static bool ShouldCountToZero(ICmpInst *Cond, IVStrideUse* &CondUse, 2366 ScalarEvolution *SE, Loop *L, 2367 const TargetLowering *TLI = 0) { 2368 if (!L->contains(Cond->getParent())) 2369 return false; 2370 2371 if (!isa<SCEVConstant>(CondUse->getOffset())) 2372 return false; 2373 2374 // Handle only tests for equality for the moment. 2375 if (!Cond->isEquality() || !Cond->hasOneUse()) 2376 return false; 2377 if (!isUsedByExitBranch(Cond, L)) 2378 return false; 2379 2380 Value *CondOp0 = Cond->getOperand(0); 2381 const SCEV *IV = SE->getSCEV(CondOp0); 2382 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2383 if (!AR || !AR->isAffine()) 2384 return false; 2385 2386 const SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2387 if (!SC || SC->getValue()->getSExtValue() < 0) 2388 // If it's already counting down, don't do anything. 2389 return false; 2390 2391 // If the RHS of the comparison is not an loop invariant, the rewrite 2392 // cannot be done. Also bail out if it's already comparing against a zero. 2393 // If we are checking this before cmp stride optimization, check if it's 2394 // comparing against a already legal immediate. 2395 Value *RHS = Cond->getOperand(1); 2396 ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS); 2397 if (!L->isLoopInvariant(RHS) || 2398 (RHSC && RHSC->isZero()) || 2399 (RHSC && TLI && TLI->isLegalICmpImmediate(RHSC->getSExtValue()))) 2400 return false; 2401 2402 // Make sure the IV is only used for counting. Value may be preinc or 2403 // postinc; 2 uses in either case. 2404 if (!CondOp0->hasNUses(2)) 2405 return false; 2406 2407 return true; 2408 } 2409 2410 /// OptimizeLoopTermCond - Change loop terminating condition to use the 2411 /// postinc iv when possible. 2412 void LoopStrengthReduce::OptimizeLoopTermCond(Loop *L) { 2413 BasicBlock *LatchBlock = L->getLoopLatch(); 2414 bool LatchExit = L->isLoopExiting(LatchBlock); 2415 SmallVector<BasicBlock*, 8> ExitingBlocks; 2416 L->getExitingBlocks(ExitingBlocks); 2417 2418 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 2419 BasicBlock *ExitingBlock = ExitingBlocks[i]; 2420 2421 // Finally, get the terminating condition for the loop if possible. If we 2422 // can, we want to change it to use a post-incremented version of its 2423 // induction variable, to allow coalescing the live ranges for the IV into 2424 // one register value. 2425 2426 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2427 if (!TermBr) 2428 continue; 2429 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2430 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2431 continue; 2432 2433 // Search IVUsesByStride to find Cond's IVUse if there is one. 2434 IVStrideUse *CondUse = 0; 2435 const SCEV *CondStride = 0; 2436 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2437 if (!FindIVUserForCond(Cond, CondUse, CondStride)) 2438 continue; 2439 2440 // If the latch block is exiting and it's not a single block loop, it's 2441 // not safe to use postinc iv in other exiting blocks. FIXME: overly 2442 // conservative? How about icmp stride optimization? 2443 bool UsePostInc = !(e > 1 && LatchExit && ExitingBlock != LatchBlock); 2444 if (UsePostInc && ExitingBlock != LatchBlock) { 2445 if (!Cond->hasOneUse()) 2446 // See below, we don't want the condition to be cloned. 2447 UsePostInc = false; 2448 else { 2449 // If exiting block is the latch block, we know it's safe and profitable 2450 // to transform the icmp to use post-inc iv. Otherwise do so only if it 2451 // would not reuse another iv and its iv would be reused by other uses. 2452 // We are optimizing for the case where the icmp is the only use of the 2453 // iv. 2454 IVUsersOfOneStride &StrideUses = *IU->IVUsesByStride[CondStride]; 2455 for (ilist<IVStrideUse>::iterator I = StrideUses.Users.begin(), 2456 E = StrideUses.Users.end(); I != E; ++I) { 2457 if (I->getUser() == Cond) 2458 continue; 2459 if (!I->isUseOfPostIncrementedValue()) { 2460 UsePostInc = false; 2461 break; 2462 } 2463 } 2464 } 2465 2466 // If iv for the stride might be shared and any of the users use pre-inc 2467 // iv might be used, then it's not safe to use post-inc iv. 2468 if (UsePostInc && 2469 isa<SCEVConstant>(CondStride) && 2470 StrideMightBeShared(CondStride, L, true)) 2471 UsePostInc = false; 2472 } 2473 2474 // If the trip count is computed in terms of a max (due to ScalarEvolution 2475 // being unable to find a sufficient guard, for example), change the loop 2476 // comparison to use SLT or ULT instead of NE. 2477 Cond = OptimizeMax(L, Cond, CondUse); 2478 2479 // If possible, change stride and operands of the compare instruction to 2480 // eliminate one stride. However, avoid rewriting the compare instruction 2481 // with an iv of new stride if it's likely the new stride uses will be 2482 // rewritten using the stride of the compare instruction. 2483 if (ExitingBlock == LatchBlock && isa<SCEVConstant>(CondStride)) { 2484 // If the condition stride is a constant and it's the only use, we might 2485 // want to optimize it first by turning it to count toward zero. 2486 if (!StrideMightBeShared(CondStride, L, false) && 2487 !ShouldCountToZero(Cond, CondUse, SE, L, TLI)) 2488 Cond = ChangeCompareStride(L, Cond, CondUse, CondStride); 2489 } 2490 2491 if (!UsePostInc) 2492 continue; 2493 2494 DEBUG(errs() << " Change loop exiting icmp to use postinc iv: " 2495 << *Cond << '\n'); 2496 2497 // It's possible for the setcc instruction to be anywhere in the loop, and 2498 // possible for it to have multiple users. If it is not immediately before 2499 // the exiting block branch, move it. 2500 if (&*++BasicBlock::iterator(Cond) != (Instruction*)TermBr) { 2501 if (Cond->hasOneUse()) { // Condition has a single use, just move it. 2502 Cond->moveBefore(TermBr); 2503 } else { 2504 // Otherwise, clone the terminating condition and insert into the 2505 // loopend. 2506 Cond = cast<ICmpInst>(Cond->clone()); 2507 Cond->setName(L->getHeader()->getName() + ".termcond"); 2508 ExitingBlock->getInstList().insert(TermBr, Cond); 2509 2510 // Clone the IVUse, as the old use still exists! 2511 IU->IVUsesByStride[CondStride]->addUser(CondUse->getOffset(), Cond, 2512 CondUse->getOperandValToReplace()); 2513 CondUse = &IU->IVUsesByStride[CondStride]->Users.back(); 2514 } 2515 } 2516 2517 // If we get to here, we know that we can transform the setcc instruction to 2518 // use the post-incremented version of the IV, allowing us to coalesce the 2519 // live ranges for the IV correctly. 2520 CondUse->setOffset(SE->getMinusSCEV(CondUse->getOffset(), CondStride)); 2521 CondUse->setIsUseOfPostIncrementedValue(true); 2522 Changed = true; 2523 2524 ++NumLoopCond; 2525 } 2526 } 2527 2528 bool LoopStrengthReduce::OptimizeLoopCountIVOfStride(const SCEV* &Stride, 2529 IVStrideUse* &CondUse, 2530 Loop *L) { 2531 // If the only use is an icmp of a loop exiting conditional branch, then 2532 // attempt the optimization. 2533 BasedUser User = BasedUser(*CondUse, SE); 2534 assert(isa<ICmpInst>(User.Inst) && "Expecting an ICMPInst!"); 2535 ICmpInst *Cond = cast<ICmpInst>(User.Inst); 2536 2537 // Less strict check now that compare stride optimization is done. 2538 if (!ShouldCountToZero(Cond, CondUse, SE, L)) 2539 return false; 2540 2541 Value *CondOp0 = Cond->getOperand(0); 2542 PHINode *PHIExpr = dyn_cast<PHINode>(CondOp0); 2543 Instruction *Incr; 2544 if (!PHIExpr) { 2545 // Value tested is postinc. Find the phi node. 2546 Incr = dyn_cast<BinaryOperator>(CondOp0); 2547 // FIXME: Just use User.OperandValToReplace here? 2548 if (!Incr || Incr->getOpcode() != Instruction::Add) 2549 return false; 2550 2551 PHIExpr = dyn_cast<PHINode>(Incr->getOperand(0)); 2552 if (!PHIExpr) 2553 return false; 2554 // 1 use for preinc value, the increment. 2555 if (!PHIExpr->hasOneUse()) 2556 return false; 2557 } else { 2558 assert(isa<PHINode>(CondOp0) && 2559 "Unexpected loop exiting counting instruction sequence!"); 2560 PHIExpr = cast<PHINode>(CondOp0); 2561 // Value tested is preinc. Find the increment. 2562 // A CmpInst is not a BinaryOperator; we depend on this. 2563 Instruction::use_iterator UI = PHIExpr->use_begin(); 2564 Incr = dyn_cast<BinaryOperator>(UI); 2565 if (!Incr) 2566 Incr = dyn_cast<BinaryOperator>(++UI); 2567 // One use for postinc value, the phi. Unnecessarily conservative? 2568 if (!Incr || !Incr->hasOneUse() || Incr->getOpcode() != Instruction::Add) 2569 return false; 2570 } 2571 2572 // Replace the increment with a decrement. 2573 DEBUG(errs() << "LSR: Examining use "); 2574 DEBUG(WriteAsOperand(errs(), CondOp0, /*PrintType=*/false)); 2575 DEBUG(errs() << " in Inst: " << *Cond << '\n'); 2576 BinaryOperator *Decr = BinaryOperator::Create(Instruction::Sub, 2577 Incr->getOperand(0), Incr->getOperand(1), "tmp", Incr); 2578 Incr->replaceAllUsesWith(Decr); 2579 Incr->eraseFromParent(); 2580 2581 // Substitute endval-startval for the original startval, and 0 for the 2582 // original endval. Since we're only testing for equality this is OK even 2583 // if the computation wraps around. 2584 BasicBlock *Preheader = L->getLoopPreheader(); 2585 Instruction *PreInsertPt = Preheader->getTerminator(); 2586 unsigned InBlock = L->contains(PHIExpr->getIncomingBlock(0)) ? 1 : 0; 2587 Value *StartVal = PHIExpr->getIncomingValue(InBlock); 2588 Value *EndVal = Cond->getOperand(1); 2589 DEBUG(errs() << " Optimize loop counting iv to count down [" 2590 << *EndVal << " .. " << *StartVal << "]\n"); 2591 2592 // FIXME: check for case where both are constant. 2593 Constant* Zero = ConstantInt::get(Cond->getOperand(1)->getType(), 0); 2594 BinaryOperator *NewStartVal = BinaryOperator::Create(Instruction::Sub, 2595 EndVal, StartVal, "tmp", PreInsertPt); 2596 PHIExpr->setIncomingValue(InBlock, NewStartVal); 2597 Cond->setOperand(1, Zero); 2598 DEBUG(errs() << " New icmp: " << *Cond << "\n"); 2599 2600 int64_t SInt = cast<SCEVConstant>(Stride)->getValue()->getSExtValue(); 2601 const SCEV *NewStride = 0; 2602 bool Found = false; 2603 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { 2604 const SCEV *OldStride = IU->StrideOrder[i]; 2605 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OldStride)) 2606 if (SC->getValue()->getSExtValue() == -SInt) { 2607 Found = true; 2608 NewStride = OldStride; 2609 break; 2610 } 2611 } 2612 2613 if (!Found) 2614 NewStride = SE->getIntegerSCEV(-SInt, Stride->getType()); 2615 IU->AddUser(NewStride, CondUse->getOffset(), Cond, Cond->getOperand(0)); 2616 IU->IVUsesByStride[Stride]->removeUser(CondUse); 2617 2618 CondUse = &IU->IVUsesByStride[NewStride]->Users.back(); 2619 Stride = NewStride; 2620 2621 ++NumCountZero; 2622 2623 return true; 2624 } 2625 2626 /// OptimizeLoopCountIV - If, after all sharing of IVs, the IV used for deciding 2627 /// when to exit the loop is used only for that purpose, try to rearrange things 2628 /// so it counts down to a test against zero. 2629 bool LoopStrengthReduce::OptimizeLoopCountIV(Loop *L) { 2630 bool ThisChanged = false; 2631 for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) { 2632 const SCEV *Stride = IU->StrideOrder[i]; 2633 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI = 2634 IU->IVUsesByStride.find(Stride); 2635 assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 2636 // FIXME: Generalize to non-affine IV's. 2637 if (!SI->first->isLoopInvariant(L)) 2638 continue; 2639 // If stride is a constant and it has an icmpinst use, check if we can 2640 // optimize the loop to count down. 2641 if (isa<SCEVConstant>(Stride) && SI->second->Users.size() == 1) { 2642 Instruction *User = SI->second->Users.begin()->getUser(); 2643 if (!isa<ICmpInst>(User)) 2644 continue; 2645 const SCEV *CondStride = Stride; 2646 IVStrideUse *Use = &*SI->second->Users.begin(); 2647 if (!OptimizeLoopCountIVOfStride(CondStride, Use, L)) 2648 continue; 2649 ThisChanged = true; 2650 2651 // Now check if it's possible to reuse this iv for other stride uses. 2652 for (unsigned j = 0, ee = IU->StrideOrder.size(); j != ee; ++j) { 2653 const SCEV *SStride = IU->StrideOrder[j]; 2654 if (SStride == CondStride) 2655 continue; 2656 std::map<const SCEV *, IVUsersOfOneStride *>::iterator SII = 2657 IU->IVUsesByStride.find(SStride); 2658 assert(SII != IU->IVUsesByStride.end() && "Stride doesn't exist!"); 2659 // FIXME: Generalize to non-affine IV's. 2660 if (!SII->first->isLoopInvariant(L)) 2661 continue; 2662 // FIXME: Rewrite other stride using CondStride. 2663 } 2664 } 2665 } 2666 2667 Changed |= ThisChanged; 2668 return ThisChanged; 2669 } 2670 2671 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager &LPM) { 2672 IU = &getAnalysis<IVUsers>(); 2673 SE = &getAnalysis<ScalarEvolution>(); 2674 Changed = false; 2675 2676 // If LoopSimplify form is not available, stay out of trouble. 2677 if (!L->getLoopPreheader() || !L->getLoopLatch()) 2678 return false; 2679 2680 if (!IU->IVUsesByStride.empty()) { 2681 DEBUG(errs() << "\nLSR on \"" << L->getHeader()->getParent()->getName() 2682 << "\" "; 2683 L->dump()); 2684 2685 // Sort the StrideOrder so we process larger strides first. 2686 std::stable_sort(IU->StrideOrder.begin(), IU->StrideOrder.end(), 2687 StrideCompare(SE)); 2688 2689 // Optimize induction variables. Some indvar uses can be transformed to use 2690 // strides that will be needed for other purposes. A common example of this 2691 // is the exit test for the loop, which can often be rewritten to use the 2692 // computation of some other indvar to decide when to terminate the loop. 2693 OptimizeIndvars(L); 2694 2695 // Change loop terminating condition to use the postinc iv when possible 2696 // and optimize loop terminating compare. FIXME: Move this after 2697 // StrengthReduceIVUsersOfStride? 2698 OptimizeLoopTermCond(L); 2699 2700 // FIXME: We can shrink overlarge IV's here. e.g. if the code has 2701 // computation in i64 values and the target doesn't support i64, demote 2702 // the computation to 32-bit if safe. 2703 2704 // FIXME: Attempt to reuse values across multiple IV's. In particular, we 2705 // could have something like "for(i) { foo(i*8); bar(i*16) }", which should 2706 // be codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. 2707 // Need to be careful that IV's are all the same type. Only works for 2708 // intptr_t indvars. 2709 2710 // IVsByStride keeps IVs for one particular loop. 2711 assert(IVsByStride.empty() && "Stale entries in IVsByStride?"); 2712 2713 StrengthReduceIVUsers(L); 2714 2715 // After all sharing is done, see if we can adjust the loop to test against 2716 // zero instead of counting up to a maximum. This is usually faster. 2717 OptimizeLoopCountIV(L); 2718 2719 // We're done analyzing this loop; release all the state we built up for it. 2720 IVsByStride.clear(); 2721 2722 // Clean up after ourselves 2723 if (!DeadInsts.empty()) 2724 DeleteTriviallyDeadInstructions(); 2725 } 2726 2727 // At this point, it is worth checking to see if any recurrence PHIs are also 2728 // dead, so that we can remove them as well. 2729 DeleteDeadPHIs(L->getHeader()); 2730 2731 return Changed; 2732 } 2733