1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Config/llvm-config.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/DebugInfoMetadata.h"
85 #include "llvm/IR/DerivedTypes.h"
86 #include "llvm/IR/Dominators.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/Intrinsics.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/OperandTraits.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstdlib>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "loop-reduce"
131 
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137 
138 // Temporary flag to cleanup congruent phis after LSR phi expansion.
139 // It's currently disabled until we can determine whether it's truly useful or
140 // not. The flag should be removed after the v3.0 release.
141 // This is now needed for ivchains.
142 static cl::opt<bool> EnablePhiElim(
143   "enable-lsr-phielim", cl::Hidden, cl::init(true),
144   cl::desc("Enable LSR phi elimination"));
145 
146 // The flag adds instruction count to solutions cost comparision.
147 static cl::opt<bool> InsnsCost(
148   "lsr-insns-cost", cl::Hidden, cl::init(true),
149   cl::desc("Add instruction count to a LSR cost model"));
150 
151 // Flag to choose how to narrow complex lsr solution
152 static cl::opt<bool> LSRExpNarrow(
153   "lsr-exp-narrow", cl::Hidden, cl::init(false),
154   cl::desc("Narrow LSR complex solution using"
155            " expectation of registers number"));
156 
157 // Flag to narrow search space by filtering non-optimal formulae with
158 // the same ScaledReg and Scale.
159 static cl::opt<bool> FilterSameScaledReg(
160     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
161     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
162              " with the same ScaledReg and Scale"));
163 
164 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
165   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
166    cl::desc("A flag that overrides the target's preferred addressing mode."),
167    cl::values(clEnumValN(TTI::AMK_None,
168                          "none",
169                          "Don't prefer any addressing mode"),
170               clEnumValN(TTI::AMK_PreIndexed,
171                          "preindexed",
172                          "Prefer pre-indexed addressing mode"),
173               clEnumValN(TTI::AMK_PostIndexed,
174                          "postindexed",
175                          "Prefer post-indexed addressing mode")));
176 
177 static cl::opt<unsigned> ComplexityLimit(
178   "lsr-complexity-limit", cl::Hidden,
179   cl::init(std::numeric_limits<uint16_t>::max()),
180   cl::desc("LSR search space complexity limit"));
181 
182 static cl::opt<unsigned> SetupCostDepthLimit(
183     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
184     cl::desc("The limit on recursion depth for LSRs setup cost"));
185 
186 #ifndef NDEBUG
187 // Stress test IV chain generation.
188 static cl::opt<bool> StressIVChain(
189   "stress-ivchain", cl::Hidden, cl::init(false),
190   cl::desc("Stress test LSR IV chains"));
191 #else
192 static bool StressIVChain = false;
193 #endif
194 
195 namespace {
196 
197 struct MemAccessTy {
198   /// Used in situations where the accessed memory type is unknown.
199   static const unsigned UnknownAddressSpace =
200       std::numeric_limits<unsigned>::max();
201 
202   Type *MemTy = nullptr;
203   unsigned AddrSpace = UnknownAddressSpace;
204 
205   MemAccessTy() = default;
206   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
207 
208   bool operator==(MemAccessTy Other) const {
209     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
210   }
211 
212   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
213 
214   static MemAccessTy getUnknown(LLVMContext &Ctx,
215                                 unsigned AS = UnknownAddressSpace) {
216     return MemAccessTy(Type::getVoidTy(Ctx), AS);
217   }
218 
219   Type *getType() { return MemTy; }
220 };
221 
222 /// This class holds data which is used to order reuse candidates.
223 class RegSortData {
224 public:
225   /// This represents the set of LSRUse indices which reference
226   /// a particular register.
227   SmallBitVector UsedByIndices;
228 
229   void print(raw_ostream &OS) const;
230   void dump() const;
231 };
232 
233 } // end anonymous namespace
234 
235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
236 void RegSortData::print(raw_ostream &OS) const {
237   OS << "[NumUses=" << UsedByIndices.count() << ']';
238 }
239 
240 LLVM_DUMP_METHOD void RegSortData::dump() const {
241   print(errs()); errs() << '\n';
242 }
243 #endif
244 
245 namespace {
246 
247 /// Map register candidates to information about how they are used.
248 class RegUseTracker {
249   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
250 
251   RegUsesTy RegUsesMap;
252   SmallVector<const SCEV *, 16> RegSequence;
253 
254 public:
255   void countRegister(const SCEV *Reg, size_t LUIdx);
256   void dropRegister(const SCEV *Reg, size_t LUIdx);
257   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
258 
259   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
260 
261   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
262 
263   void clear();
264 
265   using iterator = SmallVectorImpl<const SCEV *>::iterator;
266   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
267 
268   iterator begin() { return RegSequence.begin(); }
269   iterator end()   { return RegSequence.end(); }
270   const_iterator begin() const { return RegSequence.begin(); }
271   const_iterator end() const   { return RegSequence.end(); }
272 };
273 
274 } // end anonymous namespace
275 
276 void
277 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
278   std::pair<RegUsesTy::iterator, bool> Pair =
279     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
280   RegSortData &RSD = Pair.first->second;
281   if (Pair.second)
282     RegSequence.push_back(Reg);
283   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
284   RSD.UsedByIndices.set(LUIdx);
285 }
286 
287 void
288 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
289   RegUsesTy::iterator It = RegUsesMap.find(Reg);
290   assert(It != RegUsesMap.end());
291   RegSortData &RSD = It->second;
292   assert(RSD.UsedByIndices.size() > LUIdx);
293   RSD.UsedByIndices.reset(LUIdx);
294 }
295 
296 void
297 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
298   assert(LUIdx <= LastLUIdx);
299 
300   // Update RegUses. The data structure is not optimized for this purpose;
301   // we must iterate through it and update each of the bit vectors.
302   for (auto &Pair : RegUsesMap) {
303     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
304     if (LUIdx < UsedByIndices.size())
305       UsedByIndices[LUIdx] =
306         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
307     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
308   }
309 }
310 
311 bool
312 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
313   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
314   if (I == RegUsesMap.end())
315     return false;
316   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
317   int i = UsedByIndices.find_first();
318   if (i == -1) return false;
319   if ((size_t)i != LUIdx) return true;
320   return UsedByIndices.find_next(i) != -1;
321 }
322 
323 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
324   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
325   assert(I != RegUsesMap.end() && "Unknown register!");
326   return I->second.UsedByIndices;
327 }
328 
329 void RegUseTracker::clear() {
330   RegUsesMap.clear();
331   RegSequence.clear();
332 }
333 
334 namespace {
335 
336 /// This class holds information that describes a formula for computing
337 /// satisfying a use. It may include broken-out immediates and scaled registers.
338 struct Formula {
339   /// Global base address used for complex addressing.
340   GlobalValue *BaseGV = nullptr;
341 
342   /// Base offset for complex addressing.
343   int64_t BaseOffset = 0;
344 
345   /// Whether any complex addressing has a base register.
346   bool HasBaseReg = false;
347 
348   /// The scale of any complex addressing.
349   int64_t Scale = 0;
350 
351   /// The list of "base" registers for this use. When this is non-empty. The
352   /// canonical representation of a formula is
353   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
354   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
355   /// 3. The reg containing recurrent expr related with currect loop in the
356   /// formula should be put in the ScaledReg.
357   /// #1 enforces that the scaled register is always used when at least two
358   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
359   /// #2 enforces that 1 * reg is reg.
360   /// #3 ensures invariant regs with respect to current loop can be combined
361   /// together in LSR codegen.
362   /// This invariant can be temporarily broken while building a formula.
363   /// However, every formula inserted into the LSRInstance must be in canonical
364   /// form.
365   SmallVector<const SCEV *, 4> BaseRegs;
366 
367   /// The 'scaled' register for this use. This should be non-null when Scale is
368   /// not zero.
369   const SCEV *ScaledReg = nullptr;
370 
371   /// An additional constant offset which added near the use. This requires a
372   /// temporary register, but the offset itself can live in an add immediate
373   /// field rather than a register.
374   int64_t UnfoldedOffset = 0;
375 
376   Formula() = default;
377 
378   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
379 
380   bool isCanonical(const Loop &L) const;
381 
382   void canonicalize(const Loop &L);
383 
384   bool unscale();
385 
386   bool hasZeroEnd() const;
387 
388   size_t getNumRegs() const;
389   Type *getType() const;
390 
391   void deleteBaseReg(const SCEV *&S);
392 
393   bool referencesReg(const SCEV *S) const;
394   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
395                                   const RegUseTracker &RegUses) const;
396 
397   void print(raw_ostream &OS) const;
398   void dump() const;
399 };
400 
401 } // end anonymous namespace
402 
403 /// Recursion helper for initialMatch.
404 static void DoInitialMatch(const SCEV *S, Loop *L,
405                            SmallVectorImpl<const SCEV *> &Good,
406                            SmallVectorImpl<const SCEV *> &Bad,
407                            ScalarEvolution &SE) {
408   // Collect expressions which properly dominate the loop header.
409   if (SE.properlyDominates(S, L->getHeader())) {
410     Good.push_back(S);
411     return;
412   }
413 
414   // Look at add operands.
415   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
416     for (const SCEV *S : Add->operands())
417       DoInitialMatch(S, L, Good, Bad, SE);
418     return;
419   }
420 
421   // Look at addrec operands.
422   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
423     if (!AR->getStart()->isZero() && AR->isAffine()) {
424       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
425       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
426                                       AR->getStepRecurrence(SE),
427                                       // FIXME: AR->getNoWrapFlags()
428                                       AR->getLoop(), SCEV::FlagAnyWrap),
429                      L, Good, Bad, SE);
430       return;
431     }
432 
433   // Handle a multiplication by -1 (negation) if it didn't fold.
434   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
435     if (Mul->getOperand(0)->isAllOnesValue()) {
436       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
437       const SCEV *NewMul = SE.getMulExpr(Ops);
438 
439       SmallVector<const SCEV *, 4> MyGood;
440       SmallVector<const SCEV *, 4> MyBad;
441       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
442       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
443         SE.getEffectiveSCEVType(NewMul->getType())));
444       for (const SCEV *S : MyGood)
445         Good.push_back(SE.getMulExpr(NegOne, S));
446       for (const SCEV *S : MyBad)
447         Bad.push_back(SE.getMulExpr(NegOne, S));
448       return;
449     }
450 
451   // Ok, we can't do anything interesting. Just stuff the whole thing into a
452   // register and hope for the best.
453   Bad.push_back(S);
454 }
455 
456 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
457 /// all loop-invariant and loop-computable values in a single base register.
458 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
459   SmallVector<const SCEV *, 4> Good;
460   SmallVector<const SCEV *, 4> Bad;
461   DoInitialMatch(S, L, Good, Bad, SE);
462   if (!Good.empty()) {
463     const SCEV *Sum = SE.getAddExpr(Good);
464     if (!Sum->isZero())
465       BaseRegs.push_back(Sum);
466     HasBaseReg = true;
467   }
468   if (!Bad.empty()) {
469     const SCEV *Sum = SE.getAddExpr(Bad);
470     if (!Sum->isZero())
471       BaseRegs.push_back(Sum);
472     HasBaseReg = true;
473   }
474   canonicalize(*L);
475 }
476 
477 /// Check whether or not this formula satisfies the canonical
478 /// representation.
479 /// \see Formula::BaseRegs.
480 bool Formula::isCanonical(const Loop &L) const {
481   if (!ScaledReg)
482     return BaseRegs.size() <= 1;
483 
484   if (Scale != 1)
485     return true;
486 
487   if (Scale == 1 && BaseRegs.empty())
488     return false;
489 
490   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
491   if (SAR && SAR->getLoop() == &L)
492     return true;
493 
494   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
495   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
496   // loop, we want to swap the reg in BaseRegs with ScaledReg.
497   auto I = find_if(BaseRegs, [&](const SCEV *S) {
498     return isa<const SCEVAddRecExpr>(S) &&
499            (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
500   });
501   return I == BaseRegs.end();
502 }
503 
504 /// Helper method to morph a formula into its canonical representation.
505 /// \see Formula::BaseRegs.
506 /// Every formula having more than one base register, must use the ScaledReg
507 /// field. Otherwise, we would have to do special cases everywhere in LSR
508 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
509 /// On the other hand, 1*reg should be canonicalized into reg.
510 void Formula::canonicalize(const Loop &L) {
511   if (isCanonical(L))
512     return;
513   // So far we did not need this case. This is easy to implement but it is
514   // useless to maintain dead code. Beside it could hurt compile time.
515   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
516 
517   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
518   if (!ScaledReg) {
519     ScaledReg = BaseRegs.pop_back_val();
520     Scale = 1;
521   }
522 
523   // If ScaledReg is an invariant with respect to L, find the reg from
524   // BaseRegs containing the recurrent expr related with Loop L. Swap the
525   // reg with ScaledReg.
526   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
527   if (!SAR || SAR->getLoop() != &L) {
528     auto I = find_if(BaseRegs, [&](const SCEV *S) {
529       return isa<const SCEVAddRecExpr>(S) &&
530              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
531     });
532     if (I != BaseRegs.end())
533       std::swap(ScaledReg, *I);
534   }
535 }
536 
537 /// Get rid of the scale in the formula.
538 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
539 /// \return true if it was possible to get rid of the scale, false otherwise.
540 /// \note After this operation the formula may not be in the canonical form.
541 bool Formula::unscale() {
542   if (Scale != 1)
543     return false;
544   Scale = 0;
545   BaseRegs.push_back(ScaledReg);
546   ScaledReg = nullptr;
547   return true;
548 }
549 
550 bool Formula::hasZeroEnd() const {
551   if (UnfoldedOffset || BaseOffset)
552     return false;
553   if (BaseRegs.size() != 1 || ScaledReg)
554     return false;
555   return true;
556 }
557 
558 /// Return the total number of register operands used by this formula. This does
559 /// not include register uses implied by non-constant addrec strides.
560 size_t Formula::getNumRegs() const {
561   return !!ScaledReg + BaseRegs.size();
562 }
563 
564 /// Return the type of this formula, if it has one, or null otherwise. This type
565 /// is meaningless except for the bit size.
566 Type *Formula::getType() const {
567   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
568          ScaledReg ? ScaledReg->getType() :
569          BaseGV ? BaseGV->getType() :
570          nullptr;
571 }
572 
573 /// Delete the given base reg from the BaseRegs list.
574 void Formula::deleteBaseReg(const SCEV *&S) {
575   if (&S != &BaseRegs.back())
576     std::swap(S, BaseRegs.back());
577   BaseRegs.pop_back();
578 }
579 
580 /// Test if this formula references the given register.
581 bool Formula::referencesReg(const SCEV *S) const {
582   return S == ScaledReg || is_contained(BaseRegs, S);
583 }
584 
585 /// Test whether this formula uses registers which are used by uses other than
586 /// the use with the given index.
587 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
588                                          const RegUseTracker &RegUses) const {
589   if (ScaledReg)
590     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
591       return true;
592   for (const SCEV *BaseReg : BaseRegs)
593     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
594       return true;
595   return false;
596 }
597 
598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
599 void Formula::print(raw_ostream &OS) const {
600   bool First = true;
601   if (BaseGV) {
602     if (!First) OS << " + "; else First = false;
603     BaseGV->printAsOperand(OS, /*PrintType=*/false);
604   }
605   if (BaseOffset != 0) {
606     if (!First) OS << " + "; else First = false;
607     OS << BaseOffset;
608   }
609   for (const SCEV *BaseReg : BaseRegs) {
610     if (!First) OS << " + "; else First = false;
611     OS << "reg(" << *BaseReg << ')';
612   }
613   if (HasBaseReg && BaseRegs.empty()) {
614     if (!First) OS << " + "; else First = false;
615     OS << "**error: HasBaseReg**";
616   } else if (!HasBaseReg && !BaseRegs.empty()) {
617     if (!First) OS << " + "; else First = false;
618     OS << "**error: !HasBaseReg**";
619   }
620   if (Scale != 0) {
621     if (!First) OS << " + "; else First = false;
622     OS << Scale << "*reg(";
623     if (ScaledReg)
624       OS << *ScaledReg;
625     else
626       OS << "<unknown>";
627     OS << ')';
628   }
629   if (UnfoldedOffset != 0) {
630     if (!First) OS << " + ";
631     OS << "imm(" << UnfoldedOffset << ')';
632   }
633 }
634 
635 LLVM_DUMP_METHOD void Formula::dump() const {
636   print(errs()); errs() << '\n';
637 }
638 #endif
639 
640 /// Return true if the given addrec can be sign-extended without changing its
641 /// value.
642 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
643   Type *WideTy =
644     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
645   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
646 }
647 
648 /// Return true if the given add can be sign-extended without changing its
649 /// value.
650 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
651   Type *WideTy =
652     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
653   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
654 }
655 
656 /// Return true if the given mul can be sign-extended without changing its
657 /// value.
658 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
659   Type *WideTy =
660     IntegerType::get(SE.getContext(),
661                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
662   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
663 }
664 
665 /// Return an expression for LHS /s RHS, if it can be determined and if the
666 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
667 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
668 /// the multiplication may overflow, which is useful when the result will be
669 /// used in a context where the most significant bits are ignored.
670 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
671                                 ScalarEvolution &SE,
672                                 bool IgnoreSignificantBits = false) {
673   // Handle the trivial case, which works for any SCEV type.
674   if (LHS == RHS)
675     return SE.getConstant(LHS->getType(), 1);
676 
677   // Handle a few RHS special cases.
678   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
679   if (RC) {
680     const APInt &RA = RC->getAPInt();
681     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
682     // some folding.
683     if (RA.isAllOnesValue())
684       return SE.getMulExpr(LHS, RC);
685     // Handle x /s 1 as x.
686     if (RA == 1)
687       return LHS;
688   }
689 
690   // Check for a division of a constant by a constant.
691   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
692     if (!RC)
693       return nullptr;
694     const APInt &LA = C->getAPInt();
695     const APInt &RA = RC->getAPInt();
696     if (LA.srem(RA) != 0)
697       return nullptr;
698     return SE.getConstant(LA.sdiv(RA));
699   }
700 
701   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
702   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
703     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
704       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
705                                       IgnoreSignificantBits);
706       if (!Step) return nullptr;
707       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
708                                        IgnoreSignificantBits);
709       if (!Start) return nullptr;
710       // FlagNW is independent of the start value, step direction, and is
711       // preserved with smaller magnitude steps.
712       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
713       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
714     }
715     return nullptr;
716   }
717 
718   // Distribute the sdiv over add operands, if the add doesn't overflow.
719   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
720     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
721       SmallVector<const SCEV *, 8> Ops;
722       for (const SCEV *S : Add->operands()) {
723         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
724         if (!Op) return nullptr;
725         Ops.push_back(Op);
726       }
727       return SE.getAddExpr(Ops);
728     }
729     return nullptr;
730   }
731 
732   // Check for a multiply operand that we can pull RHS out of.
733   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
734     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
735       SmallVector<const SCEV *, 4> Ops;
736       bool Found = false;
737       for (const SCEV *S : Mul->operands()) {
738         if (!Found)
739           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
740                                            IgnoreSignificantBits)) {
741             S = Q;
742             Found = true;
743           }
744         Ops.push_back(S);
745       }
746       return Found ? SE.getMulExpr(Ops) : nullptr;
747     }
748     return nullptr;
749   }
750 
751   // Otherwise we don't know.
752   return nullptr;
753 }
754 
755 /// If S involves the addition of a constant integer value, return that integer
756 /// value, and mutate S to point to a new SCEV with that value excluded.
757 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
758   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
759     if (C->getAPInt().getMinSignedBits() <= 64) {
760       S = SE.getConstant(C->getType(), 0);
761       return C->getValue()->getSExtValue();
762     }
763   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
764     SmallVector<const SCEV *, 8> NewOps(Add->operands());
765     int64_t Result = ExtractImmediate(NewOps.front(), SE);
766     if (Result != 0)
767       S = SE.getAddExpr(NewOps);
768     return Result;
769   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
770     SmallVector<const SCEV *, 8> NewOps(AR->operands());
771     int64_t Result = ExtractImmediate(NewOps.front(), SE);
772     if (Result != 0)
773       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
774                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
775                            SCEV::FlagAnyWrap);
776     return Result;
777   }
778   return 0;
779 }
780 
781 /// If S involves the addition of a GlobalValue address, return that symbol, and
782 /// mutate S to point to a new SCEV with that value excluded.
783 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
784   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
785     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
786       S = SE.getConstant(GV->getType(), 0);
787       return GV;
788     }
789   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
790     SmallVector<const SCEV *, 8> NewOps(Add->operands());
791     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
792     if (Result)
793       S = SE.getAddExpr(NewOps);
794     return Result;
795   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
796     SmallVector<const SCEV *, 8> NewOps(AR->operands());
797     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
798     if (Result)
799       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
800                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
801                            SCEV::FlagAnyWrap);
802     return Result;
803   }
804   return nullptr;
805 }
806 
807 /// Returns true if the specified instruction is using the specified value as an
808 /// address.
809 static bool isAddressUse(const TargetTransformInfo &TTI,
810                          Instruction *Inst, Value *OperandVal) {
811   bool isAddress = isa<LoadInst>(Inst);
812   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
813     if (SI->getPointerOperand() == OperandVal)
814       isAddress = true;
815   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
816     // Addressing modes can also be folded into prefetches and a variety
817     // of intrinsics.
818     switch (II->getIntrinsicID()) {
819     case Intrinsic::memset:
820     case Intrinsic::prefetch:
821     case Intrinsic::masked_load:
822       if (II->getArgOperand(0) == OperandVal)
823         isAddress = true;
824       break;
825     case Intrinsic::masked_store:
826       if (II->getArgOperand(1) == OperandVal)
827         isAddress = true;
828       break;
829     case Intrinsic::memmove:
830     case Intrinsic::memcpy:
831       if (II->getArgOperand(0) == OperandVal ||
832           II->getArgOperand(1) == OperandVal)
833         isAddress = true;
834       break;
835     default: {
836       MemIntrinsicInfo IntrInfo;
837       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
838         if (IntrInfo.PtrVal == OperandVal)
839           isAddress = true;
840       }
841     }
842     }
843   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
844     if (RMW->getPointerOperand() == OperandVal)
845       isAddress = true;
846   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
847     if (CmpX->getPointerOperand() == OperandVal)
848       isAddress = true;
849   }
850   return isAddress;
851 }
852 
853 /// Return the type of the memory being accessed.
854 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
855                                  Instruction *Inst, Value *OperandVal) {
856   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
857   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
858     AccessTy.MemTy = SI->getOperand(0)->getType();
859     AccessTy.AddrSpace = SI->getPointerAddressSpace();
860   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
861     AccessTy.AddrSpace = LI->getPointerAddressSpace();
862   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
863     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
864   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
865     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
866   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
867     switch (II->getIntrinsicID()) {
868     case Intrinsic::prefetch:
869     case Intrinsic::memset:
870       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
871       AccessTy.MemTy = OperandVal->getType();
872       break;
873     case Intrinsic::memmove:
874     case Intrinsic::memcpy:
875       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
876       AccessTy.MemTy = OperandVal->getType();
877       break;
878     case Intrinsic::masked_load:
879       AccessTy.AddrSpace =
880           II->getArgOperand(0)->getType()->getPointerAddressSpace();
881       break;
882     case Intrinsic::masked_store:
883       AccessTy.MemTy = II->getOperand(0)->getType();
884       AccessTy.AddrSpace =
885           II->getArgOperand(1)->getType()->getPointerAddressSpace();
886       break;
887     default: {
888       MemIntrinsicInfo IntrInfo;
889       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
890         AccessTy.AddrSpace
891           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
892       }
893 
894       break;
895     }
896     }
897   }
898 
899   // All pointers have the same requirements, so canonicalize them to an
900   // arbitrary pointer type to minimize variation.
901   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
902     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
903                                       PTy->getAddressSpace());
904 
905   return AccessTy;
906 }
907 
908 /// Return true if this AddRec is already a phi in its loop.
909 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
910   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
911     if (SE.isSCEVable(PN.getType()) &&
912         (SE.getEffectiveSCEVType(PN.getType()) ==
913          SE.getEffectiveSCEVType(AR->getType())) &&
914         SE.getSCEV(&PN) == AR)
915       return true;
916   }
917   return false;
918 }
919 
920 /// Check if expanding this expression is likely to incur significant cost. This
921 /// is tricky because SCEV doesn't track which expressions are actually computed
922 /// by the current IR.
923 ///
924 /// We currently allow expansion of IV increments that involve adds,
925 /// multiplication by constants, and AddRecs from existing phis.
926 ///
927 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
928 /// obvious multiple of the UDivExpr.
929 static bool isHighCostExpansion(const SCEV *S,
930                                 SmallPtrSetImpl<const SCEV*> &Processed,
931                                 ScalarEvolution &SE) {
932   // Zero/One operand expressions
933   switch (S->getSCEVType()) {
934   case scUnknown:
935   case scConstant:
936     return false;
937   case scTruncate:
938     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
939                                Processed, SE);
940   case scZeroExtend:
941     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
942                                Processed, SE);
943   case scSignExtend:
944     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
945                                Processed, SE);
946   default:
947     break;
948   }
949 
950   if (!Processed.insert(S).second)
951     return false;
952 
953   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
954     for (const SCEV *S : Add->operands()) {
955       if (isHighCostExpansion(S, Processed, SE))
956         return true;
957     }
958     return false;
959   }
960 
961   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
962     if (Mul->getNumOperands() == 2) {
963       // Multiplication by a constant is ok
964       if (isa<SCEVConstant>(Mul->getOperand(0)))
965         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
966 
967       // If we have the value of one operand, check if an existing
968       // multiplication already generates this expression.
969       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
970         Value *UVal = U->getValue();
971         for (User *UR : UVal->users()) {
972           // If U is a constant, it may be used by a ConstantExpr.
973           Instruction *UI = dyn_cast<Instruction>(UR);
974           if (UI && UI->getOpcode() == Instruction::Mul &&
975               SE.isSCEVable(UI->getType())) {
976             return SE.getSCEV(UI) == Mul;
977           }
978         }
979       }
980     }
981   }
982 
983   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
984     if (isExistingPhi(AR, SE))
985       return false;
986   }
987 
988   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
989   return true;
990 }
991 
992 namespace {
993 
994 class LSRUse;
995 
996 } // end anonymous namespace
997 
998 /// Check if the addressing mode defined by \p F is completely
999 /// folded in \p LU at isel time.
1000 /// This includes address-mode folding and special icmp tricks.
1001 /// This function returns true if \p LU can accommodate what \p F
1002 /// defines and up to 1 base + 1 scaled + offset.
1003 /// In other words, if \p F has several base registers, this function may
1004 /// still return true. Therefore, users still need to account for
1005 /// additional base registers and/or unfolded offsets to derive an
1006 /// accurate cost model.
1007 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1008                                  const LSRUse &LU, const Formula &F);
1009 
1010 // Get the cost of the scaling factor used in F for LU.
1011 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1012                                      const LSRUse &LU, const Formula &F,
1013                                      const Loop &L);
1014 
1015 namespace {
1016 
1017 /// This class is used to measure and compare candidate formulae.
1018 class Cost {
1019   const Loop *L = nullptr;
1020   ScalarEvolution *SE = nullptr;
1021   const TargetTransformInfo *TTI = nullptr;
1022   TargetTransformInfo::LSRCost C;
1023   TTI::AddressingModeKind AMK = TTI::AMK_None;
1024 
1025 public:
1026   Cost() = delete;
1027   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1028        TTI::AddressingModeKind AMK) :
1029     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1030     C.Insns = 0;
1031     C.NumRegs = 0;
1032     C.AddRecCost = 0;
1033     C.NumIVMuls = 0;
1034     C.NumBaseAdds = 0;
1035     C.ImmCost = 0;
1036     C.SetupCost = 0;
1037     C.ScaleCost = 0;
1038   }
1039 
1040   bool isLess(Cost &Other);
1041 
1042   void Lose();
1043 
1044 #ifndef NDEBUG
1045   // Once any of the metrics loses, they must all remain losers.
1046   bool isValid() {
1047     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1048              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1049       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1050            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1051   }
1052 #endif
1053 
1054   bool isLoser() {
1055     assert(isValid() && "invalid cost");
1056     return C.NumRegs == ~0u;
1057   }
1058 
1059   void RateFormula(const Formula &F,
1060                    SmallPtrSetImpl<const SCEV *> &Regs,
1061                    const DenseSet<const SCEV *> &VisitedRegs,
1062                    const LSRUse &LU,
1063                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1064 
1065   void print(raw_ostream &OS) const;
1066   void dump() const;
1067 
1068 private:
1069   void RateRegister(const Formula &F, const SCEV *Reg,
1070                     SmallPtrSetImpl<const SCEV *> &Regs);
1071   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1072                            SmallPtrSetImpl<const SCEV *> &Regs,
1073                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1074 };
1075 
1076 /// An operand value in an instruction which is to be replaced with some
1077 /// equivalent, possibly strength-reduced, replacement.
1078 struct LSRFixup {
1079   /// The instruction which will be updated.
1080   Instruction *UserInst = nullptr;
1081 
1082   /// The operand of the instruction which will be replaced. The operand may be
1083   /// used more than once; every instance will be replaced.
1084   Value *OperandValToReplace = nullptr;
1085 
1086   /// If this user is to use the post-incremented value of an induction
1087   /// variable, this set is non-empty and holds the loops associated with the
1088   /// induction variable.
1089   PostIncLoopSet PostIncLoops;
1090 
1091   /// A constant offset to be added to the LSRUse expression.  This allows
1092   /// multiple fixups to share the same LSRUse with different offsets, for
1093   /// example in an unrolled loop.
1094   int64_t Offset = 0;
1095 
1096   LSRFixup() = default;
1097 
1098   bool isUseFullyOutsideLoop(const Loop *L) const;
1099 
1100   void print(raw_ostream &OS) const;
1101   void dump() const;
1102 };
1103 
1104 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1105 /// SmallVectors of const SCEV*.
1106 struct UniquifierDenseMapInfo {
1107   static SmallVector<const SCEV *, 4> getEmptyKey() {
1108     SmallVector<const SCEV *, 4>  V;
1109     V.push_back(reinterpret_cast<const SCEV *>(-1));
1110     return V;
1111   }
1112 
1113   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1114     SmallVector<const SCEV *, 4> V;
1115     V.push_back(reinterpret_cast<const SCEV *>(-2));
1116     return V;
1117   }
1118 
1119   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1120     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1121   }
1122 
1123   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1124                       const SmallVector<const SCEV *, 4> &RHS) {
1125     return LHS == RHS;
1126   }
1127 };
1128 
1129 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1130 /// as uses invented by LSR itself. It includes information about what kinds of
1131 /// things can be folded into the user, information about the user itself, and
1132 /// information about how the use may be satisfied.  TODO: Represent multiple
1133 /// users of the same expression in common?
1134 class LSRUse {
1135   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1136 
1137 public:
1138   /// An enum for a kind of use, indicating what types of scaled and immediate
1139   /// operands it might support.
1140   enum KindType {
1141     Basic,   ///< A normal use, with no folding.
1142     Special, ///< A special case of basic, allowing -1 scales.
1143     Address, ///< An address use; folding according to TargetLowering
1144     ICmpZero ///< An equality icmp with both operands folded into one.
1145     // TODO: Add a generic icmp too?
1146   };
1147 
1148   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1149 
1150   KindType Kind;
1151   MemAccessTy AccessTy;
1152 
1153   /// The list of operands which are to be replaced.
1154   SmallVector<LSRFixup, 8> Fixups;
1155 
1156   /// Keep track of the min and max offsets of the fixups.
1157   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1158   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1159 
1160   /// This records whether all of the fixups using this LSRUse are outside of
1161   /// the loop, in which case some special-case heuristics may be used.
1162   bool AllFixupsOutsideLoop = true;
1163 
1164   /// RigidFormula is set to true to guarantee that this use will be associated
1165   /// with a single formula--the one that initially matched. Some SCEV
1166   /// expressions cannot be expanded. This allows LSR to consider the registers
1167   /// used by those expressions without the need to expand them later after
1168   /// changing the formula.
1169   bool RigidFormula = false;
1170 
1171   /// This records the widest use type for any fixup using this
1172   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1173   /// fixup widths to be equivalent, because the narrower one may be relying on
1174   /// the implicit truncation to truncate away bogus bits.
1175   Type *WidestFixupType = nullptr;
1176 
1177   /// A list of ways to build a value that can satisfy this user.  After the
1178   /// list is populated, one of these is selected heuristically and used to
1179   /// formulate a replacement for OperandValToReplace in UserInst.
1180   SmallVector<Formula, 12> Formulae;
1181 
1182   /// The set of register candidates used by all formulae in this LSRUse.
1183   SmallPtrSet<const SCEV *, 4> Regs;
1184 
1185   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1186 
1187   LSRFixup &getNewFixup() {
1188     Fixups.push_back(LSRFixup());
1189     return Fixups.back();
1190   }
1191 
1192   void pushFixup(LSRFixup &f) {
1193     Fixups.push_back(f);
1194     if (f.Offset > MaxOffset)
1195       MaxOffset = f.Offset;
1196     if (f.Offset < MinOffset)
1197       MinOffset = f.Offset;
1198   }
1199 
1200   bool HasFormulaWithSameRegs(const Formula &F) const;
1201   float getNotSelectedProbability(const SCEV *Reg) const;
1202   bool InsertFormula(const Formula &F, const Loop &L);
1203   void DeleteFormula(Formula &F);
1204   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1205 
1206   void print(raw_ostream &OS) const;
1207   void dump() const;
1208 };
1209 
1210 } // end anonymous namespace
1211 
1212 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1213                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1214                                  GlobalValue *BaseGV, int64_t BaseOffset,
1215                                  bool HasBaseReg, int64_t Scale,
1216                                  Instruction *Fixup = nullptr);
1217 
1218 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1219   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1220     return 1;
1221   if (Depth == 0)
1222     return 0;
1223   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1224     return getSetupCost(S->getStart(), Depth - 1);
1225   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1226     return getSetupCost(S->getOperand(), Depth - 1);
1227   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1228     return std::accumulate(S->op_begin(), S->op_end(), 0,
1229                            [&](unsigned i, const SCEV *Reg) {
1230                              return i + getSetupCost(Reg, Depth - 1);
1231                            });
1232   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1233     return getSetupCost(S->getLHS(), Depth - 1) +
1234            getSetupCost(S->getRHS(), Depth - 1);
1235   return 0;
1236 }
1237 
1238 /// Tally up interesting quantities from the given register.
1239 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1240                         SmallPtrSetImpl<const SCEV *> &Regs) {
1241   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1242     // If this is an addrec for another loop, it should be an invariant
1243     // with respect to L since L is the innermost loop (at least
1244     // for now LSR only handles innermost loops).
1245     if (AR->getLoop() != L) {
1246       // If the AddRec exists, consider it's register free and leave it alone.
1247       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1248         return;
1249 
1250       // It is bad to allow LSR for current loop to add induction variables
1251       // for its sibling loops.
1252       if (!AR->getLoop()->contains(L)) {
1253         Lose();
1254         return;
1255       }
1256 
1257       // Otherwise, it will be an invariant with respect to Loop L.
1258       ++C.NumRegs;
1259       return;
1260     }
1261 
1262     unsigned LoopCost = 1;
1263     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1264         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1265 
1266       // If the step size matches the base offset, we could use pre-indexed
1267       // addressing.
1268       if (AMK == TTI::AMK_PreIndexed) {
1269         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1270           if (Step->getAPInt() == F.BaseOffset)
1271             LoopCost = 0;
1272       } else if (AMK == TTI::AMK_PostIndexed) {
1273         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1274         if (isa<SCEVConstant>(LoopStep)) {
1275           const SCEV *LoopStart = AR->getStart();
1276           if (!isa<SCEVConstant>(LoopStart) &&
1277               SE->isLoopInvariant(LoopStart, L))
1278             LoopCost = 0;
1279         }
1280       }
1281     }
1282     C.AddRecCost += LoopCost;
1283 
1284     // Add the step value register, if it needs one.
1285     // TODO: The non-affine case isn't precisely modeled here.
1286     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1287       if (!Regs.count(AR->getOperand(1))) {
1288         RateRegister(F, AR->getOperand(1), Regs);
1289         if (isLoser())
1290           return;
1291       }
1292     }
1293   }
1294   ++C.NumRegs;
1295 
1296   // Rough heuristic; favor registers which don't require extra setup
1297   // instructions in the preheader.
1298   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1299   // Ensure we don't, even with the recusion limit, produce invalid costs.
1300   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1301 
1302   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1303                SE->hasComputableLoopEvolution(Reg, L);
1304 }
1305 
1306 /// Record this register in the set. If we haven't seen it before, rate
1307 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1308 /// one of those regs an instant loser.
1309 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1310                                SmallPtrSetImpl<const SCEV *> &Regs,
1311                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1312   if (LoserRegs && LoserRegs->count(Reg)) {
1313     Lose();
1314     return;
1315   }
1316   if (Regs.insert(Reg).second) {
1317     RateRegister(F, Reg, Regs);
1318     if (LoserRegs && isLoser())
1319       LoserRegs->insert(Reg);
1320   }
1321 }
1322 
1323 void Cost::RateFormula(const Formula &F,
1324                        SmallPtrSetImpl<const SCEV *> &Regs,
1325                        const DenseSet<const SCEV *> &VisitedRegs,
1326                        const LSRUse &LU,
1327                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1328   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1329   // Tally up the registers.
1330   unsigned PrevAddRecCost = C.AddRecCost;
1331   unsigned PrevNumRegs = C.NumRegs;
1332   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1333   if (const SCEV *ScaledReg = F.ScaledReg) {
1334     if (VisitedRegs.count(ScaledReg)) {
1335       Lose();
1336       return;
1337     }
1338     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1339     if (isLoser())
1340       return;
1341   }
1342   for (const SCEV *BaseReg : F.BaseRegs) {
1343     if (VisitedRegs.count(BaseReg)) {
1344       Lose();
1345       return;
1346     }
1347     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1348     if (isLoser())
1349       return;
1350   }
1351 
1352   // Determine how many (unfolded) adds we'll need inside the loop.
1353   size_t NumBaseParts = F.getNumRegs();
1354   if (NumBaseParts > 1)
1355     // Do not count the base and a possible second register if the target
1356     // allows to fold 2 registers.
1357     C.NumBaseAdds +=
1358         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1359   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1360 
1361   // Accumulate non-free scaling amounts.
1362   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1363 
1364   // Tally up the non-zero immediates.
1365   for (const LSRFixup &Fixup : LU.Fixups) {
1366     int64_t O = Fixup.Offset;
1367     int64_t Offset = (uint64_t)O + F.BaseOffset;
1368     if (F.BaseGV)
1369       C.ImmCost += 64; // Handle symbolic values conservatively.
1370                      // TODO: This should probably be the pointer size.
1371     else if (Offset != 0)
1372       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1373 
1374     // Check with target if this offset with this instruction is
1375     // specifically not supported.
1376     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1377         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1378                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1379       C.NumBaseAdds++;
1380   }
1381 
1382   // If we don't count instruction cost exit here.
1383   if (!InsnsCost) {
1384     assert(isValid() && "invalid cost");
1385     return;
1386   }
1387 
1388   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1389   // additional instruction (at least fill).
1390   // TODO: Need distinguish register class?
1391   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1392                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1393   if (C.NumRegs > TTIRegNum) {
1394     // Cost already exceeded TTIRegNum, then only newly added register can add
1395     // new instructions.
1396     if (PrevNumRegs > TTIRegNum)
1397       C.Insns += (C.NumRegs - PrevNumRegs);
1398     else
1399       C.Insns += (C.NumRegs - TTIRegNum);
1400   }
1401 
1402   // If ICmpZero formula ends with not 0, it could not be replaced by
1403   // just add or sub. We'll need to compare final result of AddRec.
1404   // That means we'll need an additional instruction. But if the target can
1405   // macro-fuse a compare with a branch, don't count this extra instruction.
1406   // For -10 + {0, +, 1}:
1407   // i = i + 1;
1408   // cmp i, 10
1409   //
1410   // For {-10, +, 1}:
1411   // i = i + 1;
1412   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1413       !TTI->canMacroFuseCmp())
1414     C.Insns++;
1415   // Each new AddRec adds 1 instruction to calculation.
1416   C.Insns += (C.AddRecCost - PrevAddRecCost);
1417 
1418   // BaseAdds adds instructions for unfolded registers.
1419   if (LU.Kind != LSRUse::ICmpZero)
1420     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1421   assert(isValid() && "invalid cost");
1422 }
1423 
1424 /// Set this cost to a losing value.
1425 void Cost::Lose() {
1426   C.Insns = std::numeric_limits<unsigned>::max();
1427   C.NumRegs = std::numeric_limits<unsigned>::max();
1428   C.AddRecCost = std::numeric_limits<unsigned>::max();
1429   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1430   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1431   C.ImmCost = std::numeric_limits<unsigned>::max();
1432   C.SetupCost = std::numeric_limits<unsigned>::max();
1433   C.ScaleCost = std::numeric_limits<unsigned>::max();
1434 }
1435 
1436 /// Choose the lower cost.
1437 bool Cost::isLess(Cost &Other) {
1438   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1439       C.Insns != Other.C.Insns)
1440     return C.Insns < Other.C.Insns;
1441   return TTI->isLSRCostLess(C, Other.C);
1442 }
1443 
1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1445 void Cost::print(raw_ostream &OS) const {
1446   if (InsnsCost)
1447     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1448   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1449   if (C.AddRecCost != 0)
1450     OS << ", with addrec cost " << C.AddRecCost;
1451   if (C.NumIVMuls != 0)
1452     OS << ", plus " << C.NumIVMuls << " IV mul"
1453        << (C.NumIVMuls == 1 ? "" : "s");
1454   if (C.NumBaseAdds != 0)
1455     OS << ", plus " << C.NumBaseAdds << " base add"
1456        << (C.NumBaseAdds == 1 ? "" : "s");
1457   if (C.ScaleCost != 0)
1458     OS << ", plus " << C.ScaleCost << " scale cost";
1459   if (C.ImmCost != 0)
1460     OS << ", plus " << C.ImmCost << " imm cost";
1461   if (C.SetupCost != 0)
1462     OS << ", plus " << C.SetupCost << " setup cost";
1463 }
1464 
1465 LLVM_DUMP_METHOD void Cost::dump() const {
1466   print(errs()); errs() << '\n';
1467 }
1468 #endif
1469 
1470 /// Test whether this fixup always uses its value outside of the given loop.
1471 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1472   // PHI nodes use their value in their incoming blocks.
1473   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1474     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1475       if (PN->getIncomingValue(i) == OperandValToReplace &&
1476           L->contains(PN->getIncomingBlock(i)))
1477         return false;
1478     return true;
1479   }
1480 
1481   return !L->contains(UserInst);
1482 }
1483 
1484 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1485 void LSRFixup::print(raw_ostream &OS) const {
1486   OS << "UserInst=";
1487   // Store is common and interesting enough to be worth special-casing.
1488   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1489     OS << "store ";
1490     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1491   } else if (UserInst->getType()->isVoidTy())
1492     OS << UserInst->getOpcodeName();
1493   else
1494     UserInst->printAsOperand(OS, /*PrintType=*/false);
1495 
1496   OS << ", OperandValToReplace=";
1497   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1498 
1499   for (const Loop *PIL : PostIncLoops) {
1500     OS << ", PostIncLoop=";
1501     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1502   }
1503 
1504   if (Offset != 0)
1505     OS << ", Offset=" << Offset;
1506 }
1507 
1508 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1509   print(errs()); errs() << '\n';
1510 }
1511 #endif
1512 
1513 /// Test whether this use as a formula which has the same registers as the given
1514 /// formula.
1515 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1516   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1517   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1518   // Unstable sort by host order ok, because this is only used for uniquifying.
1519   llvm::sort(Key);
1520   return Uniquifier.count(Key);
1521 }
1522 
1523 /// The function returns a probability of selecting formula without Reg.
1524 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1525   unsigned FNum = 0;
1526   for (const Formula &F : Formulae)
1527     if (F.referencesReg(Reg))
1528       FNum++;
1529   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1530 }
1531 
1532 /// If the given formula has not yet been inserted, add it to the list, and
1533 /// return true. Return false otherwise.  The formula must be in canonical form.
1534 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1535   assert(F.isCanonical(L) && "Invalid canonical representation");
1536 
1537   if (!Formulae.empty() && RigidFormula)
1538     return false;
1539 
1540   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1541   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1542   // Unstable sort by host order ok, because this is only used for uniquifying.
1543   llvm::sort(Key);
1544 
1545   if (!Uniquifier.insert(Key).second)
1546     return false;
1547 
1548   // Using a register to hold the value of 0 is not profitable.
1549   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1550          "Zero allocated in a scaled register!");
1551 #ifndef NDEBUG
1552   for (const SCEV *BaseReg : F.BaseRegs)
1553     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1554 #endif
1555 
1556   // Add the formula to the list.
1557   Formulae.push_back(F);
1558 
1559   // Record registers now being used by this use.
1560   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1561   if (F.ScaledReg)
1562     Regs.insert(F.ScaledReg);
1563 
1564   return true;
1565 }
1566 
1567 /// Remove the given formula from this use's list.
1568 void LSRUse::DeleteFormula(Formula &F) {
1569   if (&F != &Formulae.back())
1570     std::swap(F, Formulae.back());
1571   Formulae.pop_back();
1572 }
1573 
1574 /// Recompute the Regs field, and update RegUses.
1575 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1576   // Now that we've filtered out some formulae, recompute the Regs set.
1577   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1578   Regs.clear();
1579   for (const Formula &F : Formulae) {
1580     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1581     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1582   }
1583 
1584   // Update the RegTracker.
1585   for (const SCEV *S : OldRegs)
1586     if (!Regs.count(S))
1587       RegUses.dropRegister(S, LUIdx);
1588 }
1589 
1590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1591 void LSRUse::print(raw_ostream &OS) const {
1592   OS << "LSR Use: Kind=";
1593   switch (Kind) {
1594   case Basic:    OS << "Basic"; break;
1595   case Special:  OS << "Special"; break;
1596   case ICmpZero: OS << "ICmpZero"; break;
1597   case Address:
1598     OS << "Address of ";
1599     if (AccessTy.MemTy->isPointerTy())
1600       OS << "pointer"; // the full pointer type could be really verbose
1601     else {
1602       OS << *AccessTy.MemTy;
1603     }
1604 
1605     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1606   }
1607 
1608   OS << ", Offsets={";
1609   bool NeedComma = false;
1610   for (const LSRFixup &Fixup : Fixups) {
1611     if (NeedComma) OS << ',';
1612     OS << Fixup.Offset;
1613     NeedComma = true;
1614   }
1615   OS << '}';
1616 
1617   if (AllFixupsOutsideLoop)
1618     OS << ", all-fixups-outside-loop";
1619 
1620   if (WidestFixupType)
1621     OS << ", widest fixup type: " << *WidestFixupType;
1622 }
1623 
1624 LLVM_DUMP_METHOD void LSRUse::dump() const {
1625   print(errs()); errs() << '\n';
1626 }
1627 #endif
1628 
1629 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1630                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1631                                  GlobalValue *BaseGV, int64_t BaseOffset,
1632                                  bool HasBaseReg, int64_t Scale,
1633                                  Instruction *Fixup/*= nullptr*/) {
1634   switch (Kind) {
1635   case LSRUse::Address:
1636     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1637                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1638 
1639   case LSRUse::ICmpZero:
1640     // There's not even a target hook for querying whether it would be legal to
1641     // fold a GV into an ICmp.
1642     if (BaseGV)
1643       return false;
1644 
1645     // ICmp only has two operands; don't allow more than two non-trivial parts.
1646     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1647       return false;
1648 
1649     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1650     // putting the scaled register in the other operand of the icmp.
1651     if (Scale != 0 && Scale != -1)
1652       return false;
1653 
1654     // If we have low-level target information, ask the target if it can fold an
1655     // integer immediate on an icmp.
1656     if (BaseOffset != 0) {
1657       // We have one of:
1658       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1659       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1660       // Offs is the ICmp immediate.
1661       if (Scale == 0)
1662         // The cast does the right thing with
1663         // std::numeric_limits<int64_t>::min().
1664         BaseOffset = -(uint64_t)BaseOffset;
1665       return TTI.isLegalICmpImmediate(BaseOffset);
1666     }
1667 
1668     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1669     return true;
1670 
1671   case LSRUse::Basic:
1672     // Only handle single-register values.
1673     return !BaseGV && Scale == 0 && BaseOffset == 0;
1674 
1675   case LSRUse::Special:
1676     // Special case Basic to handle -1 scales.
1677     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1678   }
1679 
1680   llvm_unreachable("Invalid LSRUse Kind!");
1681 }
1682 
1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1684                                  int64_t MinOffset, int64_t MaxOffset,
1685                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1686                                  GlobalValue *BaseGV, int64_t BaseOffset,
1687                                  bool HasBaseReg, int64_t Scale) {
1688   // Check for overflow.
1689   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1690       (MinOffset > 0))
1691     return false;
1692   MinOffset = (uint64_t)BaseOffset + MinOffset;
1693   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1694       (MaxOffset > 0))
1695     return false;
1696   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1697 
1698   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1699                               HasBaseReg, Scale) &&
1700          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1701                               HasBaseReg, Scale);
1702 }
1703 
1704 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1705                                  int64_t MinOffset, int64_t MaxOffset,
1706                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1707                                  const Formula &F, const Loop &L) {
1708   // For the purpose of isAMCompletelyFolded either having a canonical formula
1709   // or a scale not equal to zero is correct.
1710   // Problems may arise from non canonical formulae having a scale == 0.
1711   // Strictly speaking it would best to just rely on canonical formulae.
1712   // However, when we generate the scaled formulae, we first check that the
1713   // scaling factor is profitable before computing the actual ScaledReg for
1714   // compile time sake.
1715   assert((F.isCanonical(L) || F.Scale != 0));
1716   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1717                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1718 }
1719 
1720 /// Test whether we know how to expand the current formula.
1721 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1722                        int64_t MaxOffset, LSRUse::KindType Kind,
1723                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1724                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1725   // We know how to expand completely foldable formulae.
1726   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1727                               BaseOffset, HasBaseReg, Scale) ||
1728          // Or formulae that use a base register produced by a sum of base
1729          // registers.
1730          (Scale == 1 &&
1731           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1732                                BaseGV, BaseOffset, true, 0));
1733 }
1734 
1735 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1736                        int64_t MaxOffset, LSRUse::KindType Kind,
1737                        MemAccessTy AccessTy, const Formula &F) {
1738   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1739                     F.BaseOffset, F.HasBaseReg, F.Scale);
1740 }
1741 
1742 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1743                                  const LSRUse &LU, const Formula &F) {
1744   // Target may want to look at the user instructions.
1745   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1746     for (const LSRFixup &Fixup : LU.Fixups)
1747       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1748                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1749                                 F.Scale, Fixup.UserInst))
1750         return false;
1751     return true;
1752   }
1753 
1754   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1755                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1756                               F.Scale);
1757 }
1758 
1759 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1760                                      const LSRUse &LU, const Formula &F,
1761                                      const Loop &L) {
1762   if (!F.Scale)
1763     return 0;
1764 
1765   // If the use is not completely folded in that instruction, we will have to
1766   // pay an extra cost only for scale != 1.
1767   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1768                             LU.AccessTy, F, L))
1769     return F.Scale != 1;
1770 
1771   switch (LU.Kind) {
1772   case LSRUse::Address: {
1773     // Check the scaling factor cost with both the min and max offsets.
1774     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1775         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1776         F.Scale, LU.AccessTy.AddrSpace);
1777     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1778         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1779         F.Scale, LU.AccessTy.AddrSpace);
1780 
1781     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1782            "Legal addressing mode has an illegal cost!");
1783     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1784   }
1785   case LSRUse::ICmpZero:
1786   case LSRUse::Basic:
1787   case LSRUse::Special:
1788     // The use is completely folded, i.e., everything is folded into the
1789     // instruction.
1790     return 0;
1791   }
1792 
1793   llvm_unreachable("Invalid LSRUse Kind!");
1794 }
1795 
1796 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1797                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1798                              GlobalValue *BaseGV, int64_t BaseOffset,
1799                              bool HasBaseReg) {
1800   // Fast-path: zero is always foldable.
1801   if (BaseOffset == 0 && !BaseGV) return true;
1802 
1803   // Conservatively, create an address with an immediate and a
1804   // base and a scale.
1805   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1806 
1807   // Canonicalize a scale of 1 to a base register if the formula doesn't
1808   // already have a base register.
1809   if (!HasBaseReg && Scale == 1) {
1810     Scale = 0;
1811     HasBaseReg = true;
1812   }
1813 
1814   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1815                               HasBaseReg, Scale);
1816 }
1817 
1818 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1819                              ScalarEvolution &SE, int64_t MinOffset,
1820                              int64_t MaxOffset, LSRUse::KindType Kind,
1821                              MemAccessTy AccessTy, const SCEV *S,
1822                              bool HasBaseReg) {
1823   // Fast-path: zero is always foldable.
1824   if (S->isZero()) return true;
1825 
1826   // Conservatively, create an address with an immediate and a
1827   // base and a scale.
1828   int64_t BaseOffset = ExtractImmediate(S, SE);
1829   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1830 
1831   // If there's anything else involved, it's not foldable.
1832   if (!S->isZero()) return false;
1833 
1834   // Fast-path: zero is always foldable.
1835   if (BaseOffset == 0 && !BaseGV) return true;
1836 
1837   // Conservatively, create an address with an immediate and a
1838   // base and a scale.
1839   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1840 
1841   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1842                               BaseOffset, HasBaseReg, Scale);
1843 }
1844 
1845 namespace {
1846 
1847 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1848 /// an expression that computes the IV it uses from the IV used by the previous
1849 /// link in the Chain.
1850 ///
1851 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1852 /// original IVOperand. The head of the chain's IVOperand is only valid during
1853 /// chain collection, before LSR replaces IV users. During chain generation,
1854 /// IncExpr can be used to find the new IVOperand that computes the same
1855 /// expression.
1856 struct IVInc {
1857   Instruction *UserInst;
1858   Value* IVOperand;
1859   const SCEV *IncExpr;
1860 
1861   IVInc(Instruction *U, Value *O, const SCEV *E)
1862       : UserInst(U), IVOperand(O), IncExpr(E) {}
1863 };
1864 
1865 // The list of IV increments in program order.  We typically add the head of a
1866 // chain without finding subsequent links.
1867 struct IVChain {
1868   SmallVector<IVInc, 1> Incs;
1869   const SCEV *ExprBase = nullptr;
1870 
1871   IVChain() = default;
1872   IVChain(const IVInc &Head, const SCEV *Base)
1873       : Incs(1, Head), ExprBase(Base) {}
1874 
1875   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1876 
1877   // Return the first increment in the chain.
1878   const_iterator begin() const {
1879     assert(!Incs.empty());
1880     return std::next(Incs.begin());
1881   }
1882   const_iterator end() const {
1883     return Incs.end();
1884   }
1885 
1886   // Returns true if this chain contains any increments.
1887   bool hasIncs() const { return Incs.size() >= 2; }
1888 
1889   // Add an IVInc to the end of this chain.
1890   void add(const IVInc &X) { Incs.push_back(X); }
1891 
1892   // Returns the last UserInst in the chain.
1893   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1894 
1895   // Returns true if IncExpr can be profitably added to this chain.
1896   bool isProfitableIncrement(const SCEV *OperExpr,
1897                              const SCEV *IncExpr,
1898                              ScalarEvolution&);
1899 };
1900 
1901 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1902 /// between FarUsers that definitely cross IV increments and NearUsers that may
1903 /// be used between IV increments.
1904 struct ChainUsers {
1905   SmallPtrSet<Instruction*, 4> FarUsers;
1906   SmallPtrSet<Instruction*, 4> NearUsers;
1907 };
1908 
1909 /// This class holds state for the main loop strength reduction logic.
1910 class LSRInstance {
1911   IVUsers &IU;
1912   ScalarEvolution &SE;
1913   DominatorTree &DT;
1914   LoopInfo &LI;
1915   AssumptionCache &AC;
1916   TargetLibraryInfo &TLI;
1917   const TargetTransformInfo &TTI;
1918   Loop *const L;
1919   MemorySSAUpdater *MSSAU;
1920   TTI::AddressingModeKind AMK;
1921   bool Changed = false;
1922 
1923   /// This is the insert position that the current loop's induction variable
1924   /// increment should be placed. In simple loops, this is the latch block's
1925   /// terminator. But in more complicated cases, this is a position which will
1926   /// dominate all the in-loop post-increment users.
1927   Instruction *IVIncInsertPos = nullptr;
1928 
1929   /// Interesting factors between use strides.
1930   ///
1931   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1932   /// default, a SmallDenseSet, because we need to use the full range of
1933   /// int64_ts, and there's currently no good way of doing that with
1934   /// SmallDenseSet.
1935   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1936 
1937   /// Interesting use types, to facilitate truncation reuse.
1938   SmallSetVector<Type *, 4> Types;
1939 
1940   /// The list of interesting uses.
1941   mutable SmallVector<LSRUse, 16> Uses;
1942 
1943   /// Track which uses use which register candidates.
1944   RegUseTracker RegUses;
1945 
1946   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1947   // have more than a few IV increment chains in a loop. Missing a Chain falls
1948   // back to normal LSR behavior for those uses.
1949   static const unsigned MaxChains = 8;
1950 
1951   /// IV users can form a chain of IV increments.
1952   SmallVector<IVChain, MaxChains> IVChainVec;
1953 
1954   /// IV users that belong to profitable IVChains.
1955   SmallPtrSet<Use*, MaxChains> IVIncSet;
1956 
1957   void OptimizeShadowIV();
1958   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1959   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1960   void OptimizeLoopTermCond();
1961 
1962   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1963                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1964   void FinalizeChain(IVChain &Chain);
1965   void CollectChains();
1966   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1967                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1968 
1969   void CollectInterestingTypesAndFactors();
1970   void CollectFixupsAndInitialFormulae();
1971 
1972   // Support for sharing of LSRUses between LSRFixups.
1973   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1974   UseMapTy UseMap;
1975 
1976   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1977                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1978 
1979   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1980                                     MemAccessTy AccessTy);
1981 
1982   void DeleteUse(LSRUse &LU, size_t LUIdx);
1983 
1984   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1985 
1986   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1987   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1988   void CountRegisters(const Formula &F, size_t LUIdx);
1989   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1990 
1991   void CollectLoopInvariantFixupsAndFormulae();
1992 
1993   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1994                               unsigned Depth = 0);
1995 
1996   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1997                                   const Formula &Base, unsigned Depth,
1998                                   size_t Idx, bool IsScaledReg = false);
1999   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2001                                    const Formula &Base, size_t Idx,
2002                                    bool IsScaledReg = false);
2003   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2004   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2005                                    const Formula &Base,
2006                                    const SmallVectorImpl<int64_t> &Worklist,
2007                                    size_t Idx, bool IsScaledReg = false);
2008   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2009   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2010   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2011   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2012   void GenerateCrossUseConstantOffsets();
2013   void GenerateAllReuseFormulae();
2014 
2015   void FilterOutUndesirableDedicatedRegisters();
2016 
2017   size_t EstimateSearchSpaceComplexity() const;
2018   void NarrowSearchSpaceByDetectingSupersets();
2019   void NarrowSearchSpaceByCollapsingUnrolledCode();
2020   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2021   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2022   void NarrowSearchSpaceByFilterPostInc();
2023   void NarrowSearchSpaceByDeletingCostlyFormulas();
2024   void NarrowSearchSpaceByPickingWinnerRegs();
2025   void NarrowSearchSpaceUsingHeuristics();
2026 
2027   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2028                     Cost &SolutionCost,
2029                     SmallVectorImpl<const Formula *> &Workspace,
2030                     const Cost &CurCost,
2031                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2032                     DenseSet<const SCEV *> &VisitedRegs) const;
2033   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2034 
2035   BasicBlock::iterator
2036     HoistInsertPosition(BasicBlock::iterator IP,
2037                         const SmallVectorImpl<Instruction *> &Inputs) const;
2038   BasicBlock::iterator
2039     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2040                                   const LSRFixup &LF,
2041                                   const LSRUse &LU,
2042                                   SCEVExpander &Rewriter) const;
2043 
2044   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2045                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2046                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2047   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2048                      const Formula &F, SCEVExpander &Rewriter,
2049                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2050   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2051                SCEVExpander &Rewriter,
2052                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2053   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2054 
2055 public:
2056   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2057               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2058               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2059 
2060   bool getChanged() const { return Changed; }
2061 
2062   void print_factors_and_types(raw_ostream &OS) const;
2063   void print_fixups(raw_ostream &OS) const;
2064   void print_uses(raw_ostream &OS) const;
2065   void print(raw_ostream &OS) const;
2066   void dump() const;
2067 };
2068 
2069 } // end anonymous namespace
2070 
2071 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2072 /// the cast operation.
2073 void LSRInstance::OptimizeShadowIV() {
2074   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2075   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2076     return;
2077 
2078   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2079        UI != E; /* empty */) {
2080     IVUsers::const_iterator CandidateUI = UI;
2081     ++UI;
2082     Instruction *ShadowUse = CandidateUI->getUser();
2083     Type *DestTy = nullptr;
2084     bool IsSigned = false;
2085 
2086     /* If shadow use is a int->float cast then insert a second IV
2087        to eliminate this cast.
2088 
2089          for (unsigned i = 0; i < n; ++i)
2090            foo((double)i);
2091 
2092        is transformed into
2093 
2094          double d = 0.0;
2095          for (unsigned i = 0; i < n; ++i, ++d)
2096            foo(d);
2097     */
2098     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2099       IsSigned = false;
2100       DestTy = UCast->getDestTy();
2101     }
2102     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2103       IsSigned = true;
2104       DestTy = SCast->getDestTy();
2105     }
2106     if (!DestTy) continue;
2107 
2108     // If target does not support DestTy natively then do not apply
2109     // this transformation.
2110     if (!TTI.isTypeLegal(DestTy)) continue;
2111 
2112     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2113     if (!PH) continue;
2114     if (PH->getNumIncomingValues() != 2) continue;
2115 
2116     // If the calculation in integers overflows, the result in FP type will
2117     // differ. So we only can do this transformation if we are guaranteed to not
2118     // deal with overflowing values
2119     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2120     if (!AR) continue;
2121     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2122     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2123 
2124     Type *SrcTy = PH->getType();
2125     int Mantissa = DestTy->getFPMantissaWidth();
2126     if (Mantissa == -1) continue;
2127     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2128       continue;
2129 
2130     unsigned Entry, Latch;
2131     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2132       Entry = 0;
2133       Latch = 1;
2134     } else {
2135       Entry = 1;
2136       Latch = 0;
2137     }
2138 
2139     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2140     if (!Init) continue;
2141     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2142                                         (double)Init->getSExtValue() :
2143                                         (double)Init->getZExtValue());
2144 
2145     BinaryOperator *Incr =
2146       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2147     if (!Incr) continue;
2148     if (Incr->getOpcode() != Instruction::Add
2149         && Incr->getOpcode() != Instruction::Sub)
2150       continue;
2151 
2152     /* Initialize new IV, double d = 0.0 in above example. */
2153     ConstantInt *C = nullptr;
2154     if (Incr->getOperand(0) == PH)
2155       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2156     else if (Incr->getOperand(1) == PH)
2157       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2158     else
2159       continue;
2160 
2161     if (!C) continue;
2162 
2163     // Ignore negative constants, as the code below doesn't handle them
2164     // correctly. TODO: Remove this restriction.
2165     if (!C->getValue().isStrictlyPositive()) continue;
2166 
2167     /* Add new PHINode. */
2168     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2169 
2170     /* create new increment. '++d' in above example. */
2171     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2172     BinaryOperator *NewIncr =
2173       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2174                                Instruction::FAdd : Instruction::FSub,
2175                              NewPH, CFP, "IV.S.next.", Incr);
2176 
2177     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2178     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2179 
2180     /* Remove cast operation */
2181     ShadowUse->replaceAllUsesWith(NewPH);
2182     ShadowUse->eraseFromParent();
2183     Changed = true;
2184     break;
2185   }
2186 }
2187 
2188 /// If Cond has an operand that is an expression of an IV, set the IV user and
2189 /// stride information and return true, otherwise return false.
2190 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2191   for (IVStrideUse &U : IU)
2192     if (U.getUser() == Cond) {
2193       // NOTE: we could handle setcc instructions with multiple uses here, but
2194       // InstCombine does it as well for simple uses, it's not clear that it
2195       // occurs enough in real life to handle.
2196       CondUse = &U;
2197       return true;
2198     }
2199   return false;
2200 }
2201 
2202 /// Rewrite the loop's terminating condition if it uses a max computation.
2203 ///
2204 /// This is a narrow solution to a specific, but acute, problem. For loops
2205 /// like this:
2206 ///
2207 ///   i = 0;
2208 ///   do {
2209 ///     p[i] = 0.0;
2210 ///   } while (++i < n);
2211 ///
2212 /// the trip count isn't just 'n', because 'n' might not be positive. And
2213 /// unfortunately this can come up even for loops where the user didn't use
2214 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2215 /// will commonly be lowered like this:
2216 ///
2217 ///   if (n > 0) {
2218 ///     i = 0;
2219 ///     do {
2220 ///       p[i] = 0.0;
2221 ///     } while (++i < n);
2222 ///   }
2223 ///
2224 /// and then it's possible for subsequent optimization to obscure the if
2225 /// test in such a way that indvars can't find it.
2226 ///
2227 /// When indvars can't find the if test in loops like this, it creates a
2228 /// max expression, which allows it to give the loop a canonical
2229 /// induction variable:
2230 ///
2231 ///   i = 0;
2232 ///   max = n < 1 ? 1 : n;
2233 ///   do {
2234 ///     p[i] = 0.0;
2235 ///   } while (++i != max);
2236 ///
2237 /// Canonical induction variables are necessary because the loop passes
2238 /// are designed around them. The most obvious example of this is the
2239 /// LoopInfo analysis, which doesn't remember trip count values. It
2240 /// expects to be able to rediscover the trip count each time it is
2241 /// needed, and it does this using a simple analysis that only succeeds if
2242 /// the loop has a canonical induction variable.
2243 ///
2244 /// However, when it comes time to generate code, the maximum operation
2245 /// can be quite costly, especially if it's inside of an outer loop.
2246 ///
2247 /// This function solves this problem by detecting this type of loop and
2248 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2249 /// the instructions for the maximum computation.
2250 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2251   // Check that the loop matches the pattern we're looking for.
2252   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2253       Cond->getPredicate() != CmpInst::ICMP_NE)
2254     return Cond;
2255 
2256   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2257   if (!Sel || !Sel->hasOneUse()) return Cond;
2258 
2259   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2260   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2261     return Cond;
2262   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2263 
2264   // Add one to the backedge-taken count to get the trip count.
2265   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2266   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2267 
2268   // Check for a max calculation that matches the pattern. There's no check
2269   // for ICMP_ULE here because the comparison would be with zero, which
2270   // isn't interesting.
2271   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2272   const SCEVNAryExpr *Max = nullptr;
2273   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2274     Pred = ICmpInst::ICMP_SLE;
2275     Max = S;
2276   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2277     Pred = ICmpInst::ICMP_SLT;
2278     Max = S;
2279   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2280     Pred = ICmpInst::ICMP_ULT;
2281     Max = U;
2282   } else {
2283     // No match; bail.
2284     return Cond;
2285   }
2286 
2287   // To handle a max with more than two operands, this optimization would
2288   // require additional checking and setup.
2289   if (Max->getNumOperands() != 2)
2290     return Cond;
2291 
2292   const SCEV *MaxLHS = Max->getOperand(0);
2293   const SCEV *MaxRHS = Max->getOperand(1);
2294 
2295   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2296   // for a comparison with 1. For <= and >=, a comparison with zero.
2297   if (!MaxLHS ||
2298       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2299     return Cond;
2300 
2301   // Check the relevant induction variable for conformance to
2302   // the pattern.
2303   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2304   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2305   if (!AR || !AR->isAffine() ||
2306       AR->getStart() != One ||
2307       AR->getStepRecurrence(SE) != One)
2308     return Cond;
2309 
2310   assert(AR->getLoop() == L &&
2311          "Loop condition operand is an addrec in a different loop!");
2312 
2313   // Check the right operand of the select, and remember it, as it will
2314   // be used in the new comparison instruction.
2315   Value *NewRHS = nullptr;
2316   if (ICmpInst::isTrueWhenEqual(Pred)) {
2317     // Look for n+1, and grab n.
2318     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2319       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2320          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2321            NewRHS = BO->getOperand(0);
2322     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2323       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2324         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2325           NewRHS = BO->getOperand(0);
2326     if (!NewRHS)
2327       return Cond;
2328   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2329     NewRHS = Sel->getOperand(1);
2330   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2331     NewRHS = Sel->getOperand(2);
2332   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2333     NewRHS = SU->getValue();
2334   else
2335     // Max doesn't match expected pattern.
2336     return Cond;
2337 
2338   // Determine the new comparison opcode. It may be signed or unsigned,
2339   // and the original comparison may be either equality or inequality.
2340   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2341     Pred = CmpInst::getInversePredicate(Pred);
2342 
2343   // Ok, everything looks ok to change the condition into an SLT or SGE and
2344   // delete the max calculation.
2345   ICmpInst *NewCond =
2346     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2347 
2348   // Delete the max calculation instructions.
2349   Cond->replaceAllUsesWith(NewCond);
2350   CondUse->setUser(NewCond);
2351   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2352   Cond->eraseFromParent();
2353   Sel->eraseFromParent();
2354   if (Cmp->use_empty())
2355     Cmp->eraseFromParent();
2356   return NewCond;
2357 }
2358 
2359 /// Change loop terminating condition to use the postinc iv when possible.
2360 void
2361 LSRInstance::OptimizeLoopTermCond() {
2362   SmallPtrSet<Instruction *, 4> PostIncs;
2363 
2364   // We need a different set of heuristics for rotated and non-rotated loops.
2365   // If a loop is rotated then the latch is also the backedge, so inserting
2366   // post-inc expressions just before the latch is ideal. To reduce live ranges
2367   // it also makes sense to rewrite terminating conditions to use post-inc
2368   // expressions.
2369   //
2370   // If the loop is not rotated then the latch is not a backedge; the latch
2371   // check is done in the loop head. Adding post-inc expressions before the
2372   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2373   // in the loop body. In this case we do *not* want to use post-inc expressions
2374   // in the latch check, and we want to insert post-inc expressions before
2375   // the backedge.
2376   BasicBlock *LatchBlock = L->getLoopLatch();
2377   SmallVector<BasicBlock*, 8> ExitingBlocks;
2378   L->getExitingBlocks(ExitingBlocks);
2379   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2380         return LatchBlock != BB;
2381       })) {
2382     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2383     IVIncInsertPos = LatchBlock->getTerminator();
2384     return;
2385   }
2386 
2387   // Otherwise treat this as a rotated loop.
2388   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2389     // Get the terminating condition for the loop if possible.  If we
2390     // can, we want to change it to use a post-incremented version of its
2391     // induction variable, to allow coalescing the live ranges for the IV into
2392     // one register value.
2393 
2394     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2395     if (!TermBr)
2396       continue;
2397     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2398     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2399       continue;
2400 
2401     // Search IVUsesByStride to find Cond's IVUse if there is one.
2402     IVStrideUse *CondUse = nullptr;
2403     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2404     if (!FindIVUserForCond(Cond, CondUse))
2405       continue;
2406 
2407     // If the trip count is computed in terms of a max (due to ScalarEvolution
2408     // being unable to find a sufficient guard, for example), change the loop
2409     // comparison to use SLT or ULT instead of NE.
2410     // One consequence of doing this now is that it disrupts the count-down
2411     // optimization. That's not always a bad thing though, because in such
2412     // cases it may still be worthwhile to avoid a max.
2413     Cond = OptimizeMax(Cond, CondUse);
2414 
2415     // If this exiting block dominates the latch block, it may also use
2416     // the post-inc value if it won't be shared with other uses.
2417     // Check for dominance.
2418     if (!DT.dominates(ExitingBlock, LatchBlock))
2419       continue;
2420 
2421     // Conservatively avoid trying to use the post-inc value in non-latch
2422     // exits if there may be pre-inc users in intervening blocks.
2423     if (LatchBlock != ExitingBlock)
2424       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2425         // Test if the use is reachable from the exiting block. This dominator
2426         // query is a conservative approximation of reachability.
2427         if (&*UI != CondUse &&
2428             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2429           // Conservatively assume there may be reuse if the quotient of their
2430           // strides could be a legal scale.
2431           const SCEV *A = IU.getStride(*CondUse, L);
2432           const SCEV *B = IU.getStride(*UI, L);
2433           if (!A || !B) continue;
2434           if (SE.getTypeSizeInBits(A->getType()) !=
2435               SE.getTypeSizeInBits(B->getType())) {
2436             if (SE.getTypeSizeInBits(A->getType()) >
2437                 SE.getTypeSizeInBits(B->getType()))
2438               B = SE.getSignExtendExpr(B, A->getType());
2439             else
2440               A = SE.getSignExtendExpr(A, B->getType());
2441           }
2442           if (const SCEVConstant *D =
2443                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2444             const ConstantInt *C = D->getValue();
2445             // Stride of one or negative one can have reuse with non-addresses.
2446             if (C->isOne() || C->isMinusOne())
2447               goto decline_post_inc;
2448             // Avoid weird situations.
2449             if (C->getValue().getMinSignedBits() >= 64 ||
2450                 C->getValue().isMinSignedValue())
2451               goto decline_post_inc;
2452             // Check for possible scaled-address reuse.
2453             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2454               MemAccessTy AccessTy = getAccessType(
2455                   TTI, UI->getUser(), UI->getOperandValToReplace());
2456               int64_t Scale = C->getSExtValue();
2457               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2458                                             /*BaseOffset=*/0,
2459                                             /*HasBaseReg=*/false, Scale,
2460                                             AccessTy.AddrSpace))
2461                 goto decline_post_inc;
2462               Scale = -Scale;
2463               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2464                                             /*BaseOffset=*/0,
2465                                             /*HasBaseReg=*/false, Scale,
2466                                             AccessTy.AddrSpace))
2467                 goto decline_post_inc;
2468             }
2469           }
2470         }
2471 
2472     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2473                       << *Cond << '\n');
2474 
2475     // It's possible for the setcc instruction to be anywhere in the loop, and
2476     // possible for it to have multiple users.  If it is not immediately before
2477     // the exiting block branch, move it.
2478     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2479       if (Cond->hasOneUse()) {
2480         Cond->moveBefore(TermBr);
2481       } else {
2482         // Clone the terminating condition and insert into the loopend.
2483         ICmpInst *OldCond = Cond;
2484         Cond = cast<ICmpInst>(Cond->clone());
2485         Cond->setName(L->getHeader()->getName() + ".termcond");
2486         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2487 
2488         // Clone the IVUse, as the old use still exists!
2489         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2490         TermBr->replaceUsesOfWith(OldCond, Cond);
2491       }
2492     }
2493 
2494     // If we get to here, we know that we can transform the setcc instruction to
2495     // use the post-incremented version of the IV, allowing us to coalesce the
2496     // live ranges for the IV correctly.
2497     CondUse->transformToPostInc(L);
2498     Changed = true;
2499 
2500     PostIncs.insert(Cond);
2501   decline_post_inc:;
2502   }
2503 
2504   // Determine an insertion point for the loop induction variable increment. It
2505   // must dominate all the post-inc comparisons we just set up, and it must
2506   // dominate the loop latch edge.
2507   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2508   for (Instruction *Inst : PostIncs) {
2509     BasicBlock *BB =
2510       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2511                                     Inst->getParent());
2512     if (BB == Inst->getParent())
2513       IVIncInsertPos = Inst;
2514     else if (BB != IVIncInsertPos->getParent())
2515       IVIncInsertPos = BB->getTerminator();
2516   }
2517 }
2518 
2519 /// Determine if the given use can accommodate a fixup at the given offset and
2520 /// other details. If so, update the use and return true.
2521 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2522                                      bool HasBaseReg, LSRUse::KindType Kind,
2523                                      MemAccessTy AccessTy) {
2524   int64_t NewMinOffset = LU.MinOffset;
2525   int64_t NewMaxOffset = LU.MaxOffset;
2526   MemAccessTy NewAccessTy = AccessTy;
2527 
2528   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2529   // something conservative, however this can pessimize in the case that one of
2530   // the uses will have all its uses outside the loop, for example.
2531   if (LU.Kind != Kind)
2532     return false;
2533 
2534   // Check for a mismatched access type, and fall back conservatively as needed.
2535   // TODO: Be less conservative when the type is similar and can use the same
2536   // addressing modes.
2537   if (Kind == LSRUse::Address) {
2538     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2539       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2540                                             AccessTy.AddrSpace);
2541     }
2542   }
2543 
2544   // Conservatively assume HasBaseReg is true for now.
2545   if (NewOffset < LU.MinOffset) {
2546     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2547                           LU.MaxOffset - NewOffset, HasBaseReg))
2548       return false;
2549     NewMinOffset = NewOffset;
2550   } else if (NewOffset > LU.MaxOffset) {
2551     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2552                           NewOffset - LU.MinOffset, HasBaseReg))
2553       return false;
2554     NewMaxOffset = NewOffset;
2555   }
2556 
2557   // Update the use.
2558   LU.MinOffset = NewMinOffset;
2559   LU.MaxOffset = NewMaxOffset;
2560   LU.AccessTy = NewAccessTy;
2561   return true;
2562 }
2563 
2564 /// Return an LSRUse index and an offset value for a fixup which needs the given
2565 /// expression, with the given kind and optional access type.  Either reuse an
2566 /// existing use or create a new one, as needed.
2567 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2568                                                LSRUse::KindType Kind,
2569                                                MemAccessTy AccessTy) {
2570   const SCEV *Copy = Expr;
2571   int64_t Offset = ExtractImmediate(Expr, SE);
2572 
2573   // Basic uses can't accept any offset, for example.
2574   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2575                         Offset, /*HasBaseReg=*/ true)) {
2576     Expr = Copy;
2577     Offset = 0;
2578   }
2579 
2580   std::pair<UseMapTy::iterator, bool> P =
2581     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2582   if (!P.second) {
2583     // A use already existed with this base.
2584     size_t LUIdx = P.first->second;
2585     LSRUse &LU = Uses[LUIdx];
2586     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2587       // Reuse this use.
2588       return std::make_pair(LUIdx, Offset);
2589   }
2590 
2591   // Create a new use.
2592   size_t LUIdx = Uses.size();
2593   P.first->second = LUIdx;
2594   Uses.push_back(LSRUse(Kind, AccessTy));
2595   LSRUse &LU = Uses[LUIdx];
2596 
2597   LU.MinOffset = Offset;
2598   LU.MaxOffset = Offset;
2599   return std::make_pair(LUIdx, Offset);
2600 }
2601 
2602 /// Delete the given use from the Uses list.
2603 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2604   if (&LU != &Uses.back())
2605     std::swap(LU, Uses.back());
2606   Uses.pop_back();
2607 
2608   // Update RegUses.
2609   RegUses.swapAndDropUse(LUIdx, Uses.size());
2610 }
2611 
2612 /// Look for a use distinct from OrigLU which is has a formula that has the same
2613 /// registers as the given formula.
2614 LSRUse *
2615 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2616                                        const LSRUse &OrigLU) {
2617   // Search all uses for the formula. This could be more clever.
2618   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2619     LSRUse &LU = Uses[LUIdx];
2620     // Check whether this use is close enough to OrigLU, to see whether it's
2621     // worthwhile looking through its formulae.
2622     // Ignore ICmpZero uses because they may contain formulae generated by
2623     // GenerateICmpZeroScales, in which case adding fixup offsets may
2624     // be invalid.
2625     if (&LU != &OrigLU &&
2626         LU.Kind != LSRUse::ICmpZero &&
2627         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2628         LU.WidestFixupType == OrigLU.WidestFixupType &&
2629         LU.HasFormulaWithSameRegs(OrigF)) {
2630       // Scan through this use's formulae.
2631       for (const Formula &F : LU.Formulae) {
2632         // Check to see if this formula has the same registers and symbols
2633         // as OrigF.
2634         if (F.BaseRegs == OrigF.BaseRegs &&
2635             F.ScaledReg == OrigF.ScaledReg &&
2636             F.BaseGV == OrigF.BaseGV &&
2637             F.Scale == OrigF.Scale &&
2638             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2639           if (F.BaseOffset == 0)
2640             return &LU;
2641           // This is the formula where all the registers and symbols matched;
2642           // there aren't going to be any others. Since we declined it, we
2643           // can skip the rest of the formulae and proceed to the next LSRUse.
2644           break;
2645         }
2646       }
2647     }
2648   }
2649 
2650   // Nothing looked good.
2651   return nullptr;
2652 }
2653 
2654 void LSRInstance::CollectInterestingTypesAndFactors() {
2655   SmallSetVector<const SCEV *, 4> Strides;
2656 
2657   // Collect interesting types and strides.
2658   SmallVector<const SCEV *, 4> Worklist;
2659   for (const IVStrideUse &U : IU) {
2660     const SCEV *Expr = IU.getExpr(U);
2661 
2662     // Collect interesting types.
2663     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2664 
2665     // Add strides for mentioned loops.
2666     Worklist.push_back(Expr);
2667     do {
2668       const SCEV *S = Worklist.pop_back_val();
2669       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2670         if (AR->getLoop() == L)
2671           Strides.insert(AR->getStepRecurrence(SE));
2672         Worklist.push_back(AR->getStart());
2673       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2674         Worklist.append(Add->op_begin(), Add->op_end());
2675       }
2676     } while (!Worklist.empty());
2677   }
2678 
2679   // Compute interesting factors from the set of interesting strides.
2680   for (SmallSetVector<const SCEV *, 4>::const_iterator
2681        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2682     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2683          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2684       const SCEV *OldStride = *I;
2685       const SCEV *NewStride = *NewStrideIter;
2686 
2687       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2688           SE.getTypeSizeInBits(NewStride->getType())) {
2689         if (SE.getTypeSizeInBits(OldStride->getType()) >
2690             SE.getTypeSizeInBits(NewStride->getType()))
2691           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2692         else
2693           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2694       }
2695       if (const SCEVConstant *Factor =
2696             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2697                                                         SE, true))) {
2698         if (Factor->getAPInt().getMinSignedBits() <= 64)
2699           Factors.insert(Factor->getAPInt().getSExtValue());
2700       } else if (const SCEVConstant *Factor =
2701                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2702                                                                NewStride,
2703                                                                SE, true))) {
2704         if (Factor->getAPInt().getMinSignedBits() <= 64)
2705           Factors.insert(Factor->getAPInt().getSExtValue());
2706       }
2707     }
2708 
2709   // If all uses use the same type, don't bother looking for truncation-based
2710   // reuse.
2711   if (Types.size() == 1)
2712     Types.clear();
2713 
2714   LLVM_DEBUG(print_factors_and_types(dbgs()));
2715 }
2716 
2717 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2718 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2719 /// IVStrideUses, we could partially skip this.
2720 static User::op_iterator
2721 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2722               Loop *L, ScalarEvolution &SE) {
2723   for(; OI != OE; ++OI) {
2724     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2725       if (!SE.isSCEVable(Oper->getType()))
2726         continue;
2727 
2728       if (const SCEVAddRecExpr *AR =
2729           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2730         if (AR->getLoop() == L)
2731           break;
2732       }
2733     }
2734   }
2735   return OI;
2736 }
2737 
2738 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2739 /// a convenient helper.
2740 static Value *getWideOperand(Value *Oper) {
2741   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2742     return Trunc->getOperand(0);
2743   return Oper;
2744 }
2745 
2746 /// Return true if we allow an IV chain to include both types.
2747 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2748   Type *LType = LVal->getType();
2749   Type *RType = RVal->getType();
2750   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2751                               // Different address spaces means (possibly)
2752                               // different types of the pointer implementation,
2753                               // e.g. i16 vs i32 so disallow that.
2754                               (LType->getPointerAddressSpace() ==
2755                                RType->getPointerAddressSpace()));
2756 }
2757 
2758 /// Return an approximation of this SCEV expression's "base", or NULL for any
2759 /// constant. Returning the expression itself is conservative. Returning a
2760 /// deeper subexpression is more precise and valid as long as it isn't less
2761 /// complex than another subexpression. For expressions involving multiple
2762 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2763 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2764 /// IVInc==b-a.
2765 ///
2766 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2767 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2768 static const SCEV *getExprBase(const SCEV *S) {
2769   switch (S->getSCEVType()) {
2770   default: // uncluding scUnknown.
2771     return S;
2772   case scConstant:
2773     return nullptr;
2774   case scTruncate:
2775     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2776   case scZeroExtend:
2777     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2778   case scSignExtend:
2779     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2780   case scAddExpr: {
2781     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2782     // there's nothing more complex.
2783     // FIXME: not sure if we want to recognize negation.
2784     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2785     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2786            E(Add->op_begin()); I != E; ++I) {
2787       const SCEV *SubExpr = *I;
2788       if (SubExpr->getSCEVType() == scAddExpr)
2789         return getExprBase(SubExpr);
2790 
2791       if (SubExpr->getSCEVType() != scMulExpr)
2792         return SubExpr;
2793     }
2794     return S; // all operands are scaled, be conservative.
2795   }
2796   case scAddRecExpr:
2797     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2798   }
2799   llvm_unreachable("Unknown SCEV kind!");
2800 }
2801 
2802 /// Return true if the chain increment is profitable to expand into a loop
2803 /// invariant value, which may require its own register. A profitable chain
2804 /// increment will be an offset relative to the same base. We allow such offsets
2805 /// to potentially be used as chain increment as long as it's not obviously
2806 /// expensive to expand using real instructions.
2807 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2808                                     const SCEV *IncExpr,
2809                                     ScalarEvolution &SE) {
2810   // Aggressively form chains when -stress-ivchain.
2811   if (StressIVChain)
2812     return true;
2813 
2814   // Do not replace a constant offset from IV head with a nonconstant IV
2815   // increment.
2816   if (!isa<SCEVConstant>(IncExpr)) {
2817     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2818     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2819       return false;
2820   }
2821 
2822   SmallPtrSet<const SCEV*, 8> Processed;
2823   return !isHighCostExpansion(IncExpr, Processed, SE);
2824 }
2825 
2826 /// Return true if the number of registers needed for the chain is estimated to
2827 /// be less than the number required for the individual IV users. First prohibit
2828 /// any IV users that keep the IV live across increments (the Users set should
2829 /// be empty). Next count the number and type of increments in the chain.
2830 ///
2831 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2832 /// effectively use postinc addressing modes. Only consider it profitable it the
2833 /// increments can be computed in fewer registers when chained.
2834 ///
2835 /// TODO: Consider IVInc free if it's already used in another chains.
2836 static bool isProfitableChain(IVChain &Chain,
2837                               SmallPtrSetImpl<Instruction *> &Users,
2838                               ScalarEvolution &SE,
2839                               const TargetTransformInfo &TTI) {
2840   if (StressIVChain)
2841     return true;
2842 
2843   if (!Chain.hasIncs())
2844     return false;
2845 
2846   if (!Users.empty()) {
2847     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2848                for (Instruction *Inst
2849                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2850     return false;
2851   }
2852   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2853 
2854   // The chain itself may require a register, so intialize cost to 1.
2855   int cost = 1;
2856 
2857   // A complete chain likely eliminates the need for keeping the original IV in
2858   // a register. LSR does not currently know how to form a complete chain unless
2859   // the header phi already exists.
2860   if (isa<PHINode>(Chain.tailUserInst())
2861       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2862     --cost;
2863   }
2864   const SCEV *LastIncExpr = nullptr;
2865   unsigned NumConstIncrements = 0;
2866   unsigned NumVarIncrements = 0;
2867   unsigned NumReusedIncrements = 0;
2868 
2869   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2870     return true;
2871 
2872   for (const IVInc &Inc : Chain) {
2873     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2874       return true;
2875     if (Inc.IncExpr->isZero())
2876       continue;
2877 
2878     // Incrementing by zero or some constant is neutral. We assume constants can
2879     // be folded into an addressing mode or an add's immediate operand.
2880     if (isa<SCEVConstant>(Inc.IncExpr)) {
2881       ++NumConstIncrements;
2882       continue;
2883     }
2884 
2885     if (Inc.IncExpr == LastIncExpr)
2886       ++NumReusedIncrements;
2887     else
2888       ++NumVarIncrements;
2889 
2890     LastIncExpr = Inc.IncExpr;
2891   }
2892   // An IV chain with a single increment is handled by LSR's postinc
2893   // uses. However, a chain with multiple increments requires keeping the IV's
2894   // value live longer than it needs to be if chained.
2895   if (NumConstIncrements > 1)
2896     --cost;
2897 
2898   // Materializing increment expressions in the preheader that didn't exist in
2899   // the original code may cost a register. For example, sign-extended array
2900   // indices can produce ridiculous increments like this:
2901   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2902   cost += NumVarIncrements;
2903 
2904   // Reusing variable increments likely saves a register to hold the multiple of
2905   // the stride.
2906   cost -= NumReusedIncrements;
2907 
2908   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2909                     << "\n");
2910 
2911   return cost < 0;
2912 }
2913 
2914 /// Add this IV user to an existing chain or make it the head of a new chain.
2915 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2916                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2917   // When IVs are used as types of varying widths, they are generally converted
2918   // to a wider type with some uses remaining narrow under a (free) trunc.
2919   Value *const NextIV = getWideOperand(IVOper);
2920   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2921   const SCEV *const OperExprBase = getExprBase(OperExpr);
2922 
2923   // Visit all existing chains. Check if its IVOper can be computed as a
2924   // profitable loop invariant increment from the last link in the Chain.
2925   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2926   const SCEV *LastIncExpr = nullptr;
2927   for (; ChainIdx < NChains; ++ChainIdx) {
2928     IVChain &Chain = IVChainVec[ChainIdx];
2929 
2930     // Prune the solution space aggressively by checking that both IV operands
2931     // are expressions that operate on the same unscaled SCEVUnknown. This
2932     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2933     // first avoids creating extra SCEV expressions.
2934     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2935       continue;
2936 
2937     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2938     if (!isCompatibleIVType(PrevIV, NextIV))
2939       continue;
2940 
2941     // A phi node terminates a chain.
2942     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2943       continue;
2944 
2945     // The increment must be loop-invariant so it can be kept in a register.
2946     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2947     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2948     if (!SE.isLoopInvariant(IncExpr, L))
2949       continue;
2950 
2951     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2952       LastIncExpr = IncExpr;
2953       break;
2954     }
2955   }
2956   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2957   // bother for phi nodes, because they must be last in the chain.
2958   if (ChainIdx == NChains) {
2959     if (isa<PHINode>(UserInst))
2960       return;
2961     if (NChains >= MaxChains && !StressIVChain) {
2962       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2963       return;
2964     }
2965     LastIncExpr = OperExpr;
2966     // IVUsers may have skipped over sign/zero extensions. We don't currently
2967     // attempt to form chains involving extensions unless they can be hoisted
2968     // into this loop's AddRec.
2969     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2970       return;
2971     ++NChains;
2972     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2973                                  OperExprBase));
2974     ChainUsersVec.resize(NChains);
2975     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2976                       << ") IV=" << *LastIncExpr << "\n");
2977   } else {
2978     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2979                       << ") IV+" << *LastIncExpr << "\n");
2980     // Add this IV user to the end of the chain.
2981     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2982   }
2983   IVChain &Chain = IVChainVec[ChainIdx];
2984 
2985   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2986   // This chain's NearUsers become FarUsers.
2987   if (!LastIncExpr->isZero()) {
2988     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2989                                             NearUsers.end());
2990     NearUsers.clear();
2991   }
2992 
2993   // All other uses of IVOperand become near uses of the chain.
2994   // We currently ignore intermediate values within SCEV expressions, assuming
2995   // they will eventually be used be the current chain, or can be computed
2996   // from one of the chain increments. To be more precise we could
2997   // transitively follow its user and only add leaf IV users to the set.
2998   for (User *U : IVOper->users()) {
2999     Instruction *OtherUse = dyn_cast<Instruction>(U);
3000     if (!OtherUse)
3001       continue;
3002     // Uses in the chain will no longer be uses if the chain is formed.
3003     // Include the head of the chain in this iteration (not Chain.begin()).
3004     IVChain::const_iterator IncIter = Chain.Incs.begin();
3005     IVChain::const_iterator IncEnd = Chain.Incs.end();
3006     for( ; IncIter != IncEnd; ++IncIter) {
3007       if (IncIter->UserInst == OtherUse)
3008         break;
3009     }
3010     if (IncIter != IncEnd)
3011       continue;
3012 
3013     if (SE.isSCEVable(OtherUse->getType())
3014         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3015         && IU.isIVUserOrOperand(OtherUse)) {
3016       continue;
3017     }
3018     NearUsers.insert(OtherUse);
3019   }
3020 
3021   // Since this user is part of the chain, it's no longer considered a use
3022   // of the chain.
3023   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3024 }
3025 
3026 /// Populate the vector of Chains.
3027 ///
3028 /// This decreases ILP at the architecture level. Targets with ample registers,
3029 /// multiple memory ports, and no register renaming probably don't want
3030 /// this. However, such targets should probably disable LSR altogether.
3031 ///
3032 /// The job of LSR is to make a reasonable choice of induction variables across
3033 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3034 /// ILP *within the loop* if the target wants it.
3035 ///
3036 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3037 /// will not reorder memory operations, it will recognize this as a chain, but
3038 /// will generate redundant IV increments. Ideally this would be corrected later
3039 /// by a smart scheduler:
3040 ///        = A[i]
3041 ///        = A[i+x]
3042 /// A[i]   =
3043 /// A[i+x] =
3044 ///
3045 /// TODO: Walk the entire domtree within this loop, not just the path to the
3046 /// loop latch. This will discover chains on side paths, but requires
3047 /// maintaining multiple copies of the Chains state.
3048 void LSRInstance::CollectChains() {
3049   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3050   SmallVector<ChainUsers, 8> ChainUsersVec;
3051 
3052   SmallVector<BasicBlock *,8> LatchPath;
3053   BasicBlock *LoopHeader = L->getHeader();
3054   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3055        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3056     LatchPath.push_back(Rung->getBlock());
3057   }
3058   LatchPath.push_back(LoopHeader);
3059 
3060   // Walk the instruction stream from the loop header to the loop latch.
3061   for (BasicBlock *BB : reverse(LatchPath)) {
3062     for (Instruction &I : *BB) {
3063       // Skip instructions that weren't seen by IVUsers analysis.
3064       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3065         continue;
3066 
3067       // Ignore users that are part of a SCEV expression. This way we only
3068       // consider leaf IV Users. This effectively rediscovers a portion of
3069       // IVUsers analysis but in program order this time.
3070       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3071           continue;
3072 
3073       // Remove this instruction from any NearUsers set it may be in.
3074       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3075            ChainIdx < NChains; ++ChainIdx) {
3076         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3077       }
3078       // Search for operands that can be chained.
3079       SmallPtrSet<Instruction*, 4> UniqueOperands;
3080       User::op_iterator IVOpEnd = I.op_end();
3081       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3082       while (IVOpIter != IVOpEnd) {
3083         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3084         if (UniqueOperands.insert(IVOpInst).second)
3085           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3086         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3087       }
3088     } // Continue walking down the instructions.
3089   } // Continue walking down the domtree.
3090   // Visit phi backedges to determine if the chain can generate the IV postinc.
3091   for (PHINode &PN : L->getHeader()->phis()) {
3092     if (!SE.isSCEVable(PN.getType()))
3093       continue;
3094 
3095     Instruction *IncV =
3096         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3097     if (IncV)
3098       ChainInstruction(&PN, IncV, ChainUsersVec);
3099   }
3100   // Remove any unprofitable chains.
3101   unsigned ChainIdx = 0;
3102   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3103        UsersIdx < NChains; ++UsersIdx) {
3104     if (!isProfitableChain(IVChainVec[UsersIdx],
3105                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3106       continue;
3107     // Preserve the chain at UsesIdx.
3108     if (ChainIdx != UsersIdx)
3109       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3110     FinalizeChain(IVChainVec[ChainIdx]);
3111     ++ChainIdx;
3112   }
3113   IVChainVec.resize(ChainIdx);
3114 }
3115 
3116 void LSRInstance::FinalizeChain(IVChain &Chain) {
3117   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3118   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3119 
3120   for (const IVInc &Inc : Chain) {
3121     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3122     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3123     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3124     IVIncSet.insert(UseI);
3125   }
3126 }
3127 
3128 /// Return true if the IVInc can be folded into an addressing mode.
3129 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3130                              Value *Operand, const TargetTransformInfo &TTI) {
3131   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3132   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3133     return false;
3134 
3135   if (IncConst->getAPInt().getMinSignedBits() > 64)
3136     return false;
3137 
3138   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3139   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3140   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3141                         IncOffset, /*HasBaseReg=*/false))
3142     return false;
3143 
3144   return true;
3145 }
3146 
3147 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3148 /// user's operand from the previous IV user's operand.
3149 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3150                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3151   // Find the new IVOperand for the head of the chain. It may have been replaced
3152   // by LSR.
3153   const IVInc &Head = Chain.Incs[0];
3154   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3155   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3156   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3157                                              IVOpEnd, L, SE);
3158   Value *IVSrc = nullptr;
3159   while (IVOpIter != IVOpEnd) {
3160     IVSrc = getWideOperand(*IVOpIter);
3161 
3162     // If this operand computes the expression that the chain needs, we may use
3163     // it. (Check this after setting IVSrc which is used below.)
3164     //
3165     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3166     // narrow for the chain, so we can no longer use it. We do allow using a
3167     // wider phi, assuming the LSR checked for free truncation. In that case we
3168     // should already have a truncate on this operand such that
3169     // getSCEV(IVSrc) == IncExpr.
3170     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3171         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3172       break;
3173     }
3174     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3175   }
3176   if (IVOpIter == IVOpEnd) {
3177     // Gracefully give up on this chain.
3178     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3179     return;
3180   }
3181   assert(IVSrc && "Failed to find IV chain source");
3182 
3183   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3184   Type *IVTy = IVSrc->getType();
3185   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3186   const SCEV *LeftOverExpr = nullptr;
3187   for (const IVInc &Inc : Chain) {
3188     Instruction *InsertPt = Inc.UserInst;
3189     if (isa<PHINode>(InsertPt))
3190       InsertPt = L->getLoopLatch()->getTerminator();
3191 
3192     // IVOper will replace the current IV User's operand. IVSrc is the IV
3193     // value currently held in a register.
3194     Value *IVOper = IVSrc;
3195     if (!Inc.IncExpr->isZero()) {
3196       // IncExpr was the result of subtraction of two narrow values, so must
3197       // be signed.
3198       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3199       LeftOverExpr = LeftOverExpr ?
3200         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3201     }
3202     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3203       // Expand the IV increment.
3204       Rewriter.clearPostInc();
3205       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3206       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3207                                              SE.getUnknown(IncV));
3208       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3209 
3210       // If an IV increment can't be folded, use it as the next IV value.
3211       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3212         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3213         IVSrc = IVOper;
3214         LeftOverExpr = nullptr;
3215       }
3216     }
3217     Type *OperTy = Inc.IVOperand->getType();
3218     if (IVTy != OperTy) {
3219       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3220              "cannot extend a chained IV");
3221       IRBuilder<> Builder(InsertPt);
3222       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3223     }
3224     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3225     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3226       DeadInsts.emplace_back(OperandIsInstr);
3227   }
3228   // If LSR created a new, wider phi, we may also replace its postinc. We only
3229   // do this if we also found a wide value for the head of the chain.
3230   if (isa<PHINode>(Chain.tailUserInst())) {
3231     for (PHINode &Phi : L->getHeader()->phis()) {
3232       if (!isCompatibleIVType(&Phi, IVSrc))
3233         continue;
3234       Instruction *PostIncV = dyn_cast<Instruction>(
3235           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3236       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3237         continue;
3238       Value *IVOper = IVSrc;
3239       Type *PostIncTy = PostIncV->getType();
3240       if (IVTy != PostIncTy) {
3241         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3242         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3243         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3244         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3245       }
3246       Phi.replaceUsesOfWith(PostIncV, IVOper);
3247       DeadInsts.emplace_back(PostIncV);
3248     }
3249   }
3250 }
3251 
3252 void LSRInstance::CollectFixupsAndInitialFormulae() {
3253   BranchInst *ExitBranch = nullptr;
3254   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3255 
3256   for (const IVStrideUse &U : IU) {
3257     Instruction *UserInst = U.getUser();
3258     // Skip IV users that are part of profitable IV Chains.
3259     User::op_iterator UseI =
3260         find(UserInst->operands(), U.getOperandValToReplace());
3261     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3262     if (IVIncSet.count(UseI)) {
3263       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3264       continue;
3265     }
3266 
3267     LSRUse::KindType Kind = LSRUse::Basic;
3268     MemAccessTy AccessTy;
3269     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3270       Kind = LSRUse::Address;
3271       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3272     }
3273 
3274     const SCEV *S = IU.getExpr(U);
3275     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3276 
3277     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3278     // (N - i == 0), and this allows (N - i) to be the expression that we work
3279     // with rather than just N or i, so we can consider the register
3280     // requirements for both N and i at the same time. Limiting this code to
3281     // equality icmps is not a problem because all interesting loops use
3282     // equality icmps, thanks to IndVarSimplify.
3283     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3284       // If CI can be saved in some target, like replaced inside hardware loop
3285       // in PowerPC, no need to generate initial formulae for it.
3286       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3287         continue;
3288       if (CI->isEquality()) {
3289         // Swap the operands if needed to put the OperandValToReplace on the
3290         // left, for consistency.
3291         Value *NV = CI->getOperand(1);
3292         if (NV == U.getOperandValToReplace()) {
3293           CI->setOperand(1, CI->getOperand(0));
3294           CI->setOperand(0, NV);
3295           NV = CI->getOperand(1);
3296           Changed = true;
3297         }
3298 
3299         // x == y  -->  x - y == 0
3300         const SCEV *N = SE.getSCEV(NV);
3301         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3302           // S is normalized, so normalize N before folding it into S
3303           // to keep the result normalized.
3304           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3305           Kind = LSRUse::ICmpZero;
3306           S = SE.getMinusSCEV(N, S);
3307         }
3308 
3309         // -1 and the negations of all interesting strides (except the negation
3310         // of -1) are now also interesting.
3311         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3312           if (Factors[i] != -1)
3313             Factors.insert(-(uint64_t)Factors[i]);
3314         Factors.insert(-1);
3315       }
3316     }
3317 
3318     // Get or create an LSRUse.
3319     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3320     size_t LUIdx = P.first;
3321     int64_t Offset = P.second;
3322     LSRUse &LU = Uses[LUIdx];
3323 
3324     // Record the fixup.
3325     LSRFixup &LF = LU.getNewFixup();
3326     LF.UserInst = UserInst;
3327     LF.OperandValToReplace = U.getOperandValToReplace();
3328     LF.PostIncLoops = TmpPostIncLoops;
3329     LF.Offset = Offset;
3330     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3331 
3332     if (!LU.WidestFixupType ||
3333         SE.getTypeSizeInBits(LU.WidestFixupType) <
3334         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3335       LU.WidestFixupType = LF.OperandValToReplace->getType();
3336 
3337     // If this is the first use of this LSRUse, give it a formula.
3338     if (LU.Formulae.empty()) {
3339       InsertInitialFormula(S, LU, LUIdx);
3340       CountRegisters(LU.Formulae.back(), LUIdx);
3341     }
3342   }
3343 
3344   LLVM_DEBUG(print_fixups(dbgs()));
3345 }
3346 
3347 /// Insert a formula for the given expression into the given use, separating out
3348 /// loop-variant portions from loop-invariant and loop-computable portions.
3349 void
3350 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3351   // Mark uses whose expressions cannot be expanded.
3352   if (!isSafeToExpand(S, SE))
3353     LU.RigidFormula = true;
3354 
3355   Formula F;
3356   F.initialMatch(S, L, SE);
3357   bool Inserted = InsertFormula(LU, LUIdx, F);
3358   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3359 }
3360 
3361 /// Insert a simple single-register formula for the given expression into the
3362 /// given use.
3363 void
3364 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3365                                        LSRUse &LU, size_t LUIdx) {
3366   Formula F;
3367   F.BaseRegs.push_back(S);
3368   F.HasBaseReg = true;
3369   bool Inserted = InsertFormula(LU, LUIdx, F);
3370   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3371 }
3372 
3373 /// Note which registers are used by the given formula, updating RegUses.
3374 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3375   if (F.ScaledReg)
3376     RegUses.countRegister(F.ScaledReg, LUIdx);
3377   for (const SCEV *BaseReg : F.BaseRegs)
3378     RegUses.countRegister(BaseReg, LUIdx);
3379 }
3380 
3381 /// If the given formula has not yet been inserted, add it to the list, and
3382 /// return true. Return false otherwise.
3383 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3384   // Do not insert formula that we will not be able to expand.
3385   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3386          "Formula is illegal");
3387 
3388   if (!LU.InsertFormula(F, *L))
3389     return false;
3390 
3391   CountRegisters(F, LUIdx);
3392   return true;
3393 }
3394 
3395 /// Check for other uses of loop-invariant values which we're tracking. These
3396 /// other uses will pin these values in registers, making them less profitable
3397 /// for elimination.
3398 /// TODO: This currently misses non-constant addrec step registers.
3399 /// TODO: Should this give more weight to users inside the loop?
3400 void
3401 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3402   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3403   SmallPtrSet<const SCEV *, 32> Visited;
3404 
3405   while (!Worklist.empty()) {
3406     const SCEV *S = Worklist.pop_back_val();
3407 
3408     // Don't process the same SCEV twice
3409     if (!Visited.insert(S).second)
3410       continue;
3411 
3412     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3413       Worklist.append(N->op_begin(), N->op_end());
3414     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3415       Worklist.push_back(C->getOperand());
3416     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3417       Worklist.push_back(D->getLHS());
3418       Worklist.push_back(D->getRHS());
3419     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3420       const Value *V = US->getValue();
3421       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3422         // Look for instructions defined outside the loop.
3423         if (L->contains(Inst)) continue;
3424       } else if (isa<UndefValue>(V))
3425         // Undef doesn't have a live range, so it doesn't matter.
3426         continue;
3427       for (const Use &U : V->uses()) {
3428         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3429         // Ignore non-instructions.
3430         if (!UserInst)
3431           continue;
3432         // Ignore instructions in other functions (as can happen with
3433         // Constants).
3434         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3435           continue;
3436         // Ignore instructions not dominated by the loop.
3437         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3438           UserInst->getParent() :
3439           cast<PHINode>(UserInst)->getIncomingBlock(
3440             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3441         if (!DT.dominates(L->getHeader(), UseBB))
3442           continue;
3443         // Don't bother if the instruction is in a BB which ends in an EHPad.
3444         if (UseBB->getTerminator()->isEHPad())
3445           continue;
3446         // Don't bother rewriting PHIs in catchswitch blocks.
3447         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3448           continue;
3449         // Ignore uses which are part of other SCEV expressions, to avoid
3450         // analyzing them multiple times.
3451         if (SE.isSCEVable(UserInst->getType())) {
3452           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3453           // If the user is a no-op, look through to its uses.
3454           if (!isa<SCEVUnknown>(UserS))
3455             continue;
3456           if (UserS == US) {
3457             Worklist.push_back(
3458               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3459             continue;
3460           }
3461         }
3462         // Ignore icmp instructions which are already being analyzed.
3463         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3464           unsigned OtherIdx = !U.getOperandNo();
3465           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3466           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3467             continue;
3468         }
3469 
3470         std::pair<size_t, int64_t> P = getUse(
3471             S, LSRUse::Basic, MemAccessTy());
3472         size_t LUIdx = P.first;
3473         int64_t Offset = P.second;
3474         LSRUse &LU = Uses[LUIdx];
3475         LSRFixup &LF = LU.getNewFixup();
3476         LF.UserInst = const_cast<Instruction *>(UserInst);
3477         LF.OperandValToReplace = U;
3478         LF.Offset = Offset;
3479         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3480         if (!LU.WidestFixupType ||
3481             SE.getTypeSizeInBits(LU.WidestFixupType) <
3482             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3483           LU.WidestFixupType = LF.OperandValToReplace->getType();
3484         InsertSupplementalFormula(US, LU, LUIdx);
3485         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3486         break;
3487       }
3488     }
3489   }
3490 }
3491 
3492 /// Split S into subexpressions which can be pulled out into separate
3493 /// registers. If C is non-null, multiply each subexpression by C.
3494 ///
3495 /// Return remainder expression after factoring the subexpressions captured by
3496 /// Ops. If Ops is complete, return NULL.
3497 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3498                                    SmallVectorImpl<const SCEV *> &Ops,
3499                                    const Loop *L,
3500                                    ScalarEvolution &SE,
3501                                    unsigned Depth = 0) {
3502   // Arbitrarily cap recursion to protect compile time.
3503   if (Depth >= 3)
3504     return S;
3505 
3506   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3507     // Break out add operands.
3508     for (const SCEV *S : Add->operands()) {
3509       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3510       if (Remainder)
3511         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3512     }
3513     return nullptr;
3514   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3515     // Split a non-zero base out of an addrec.
3516     if (AR->getStart()->isZero() || !AR->isAffine())
3517       return S;
3518 
3519     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3520                                             C, Ops, L, SE, Depth+1);
3521     // Split the non-zero AddRec unless it is part of a nested recurrence that
3522     // does not pertain to this loop.
3523     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3524       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3525       Remainder = nullptr;
3526     }
3527     if (Remainder != AR->getStart()) {
3528       if (!Remainder)
3529         Remainder = SE.getConstant(AR->getType(), 0);
3530       return SE.getAddRecExpr(Remainder,
3531                               AR->getStepRecurrence(SE),
3532                               AR->getLoop(),
3533                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3534                               SCEV::FlagAnyWrap);
3535     }
3536   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3537     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3538     if (Mul->getNumOperands() != 2)
3539       return S;
3540     if (const SCEVConstant *Op0 =
3541         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3542       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3543       const SCEV *Remainder =
3544         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3545       if (Remainder)
3546         Ops.push_back(SE.getMulExpr(C, Remainder));
3547       return nullptr;
3548     }
3549   }
3550   return S;
3551 }
3552 
3553 /// Return true if the SCEV represents a value that may end up as a
3554 /// post-increment operation.
3555 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3556                               LSRUse &LU, const SCEV *S, const Loop *L,
3557                               ScalarEvolution &SE) {
3558   if (LU.Kind != LSRUse::Address ||
3559       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3560     return false;
3561   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3562   if (!AR)
3563     return false;
3564   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3565   if (!isa<SCEVConstant>(LoopStep))
3566     return false;
3567   // Check if a post-indexed load/store can be used.
3568   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3569       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3570     const SCEV *LoopStart = AR->getStart();
3571     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3572       return true;
3573   }
3574   return false;
3575 }
3576 
3577 /// Helper function for LSRInstance::GenerateReassociations.
3578 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3579                                              const Formula &Base,
3580                                              unsigned Depth, size_t Idx,
3581                                              bool IsScaledReg) {
3582   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3583   // Don't generate reassociations for the base register of a value that
3584   // may generate a post-increment operator. The reason is that the
3585   // reassociations cause extra base+register formula to be created,
3586   // and possibly chosen, but the post-increment is more efficient.
3587   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3588     return;
3589   SmallVector<const SCEV *, 8> AddOps;
3590   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3591   if (Remainder)
3592     AddOps.push_back(Remainder);
3593 
3594   if (AddOps.size() == 1)
3595     return;
3596 
3597   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3598                                                      JE = AddOps.end();
3599        J != JE; ++J) {
3600     // Loop-variant "unknown" values are uninteresting; we won't be able to
3601     // do anything meaningful with them.
3602     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3603       continue;
3604 
3605     // Don't pull a constant into a register if the constant could be folded
3606     // into an immediate field.
3607     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3608                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3609       continue;
3610 
3611     // Collect all operands except *J.
3612     SmallVector<const SCEV *, 8> InnerAddOps(
3613         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3614     InnerAddOps.append(std::next(J),
3615                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3616 
3617     // Don't leave just a constant behind in a register if the constant could
3618     // be folded into an immediate field.
3619     if (InnerAddOps.size() == 1 &&
3620         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3621                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3622       continue;
3623 
3624     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3625     if (InnerSum->isZero())
3626       continue;
3627     Formula F = Base;
3628 
3629     // Add the remaining pieces of the add back into the new formula.
3630     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3631     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3632         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3633                                 InnerSumSC->getValue()->getZExtValue())) {
3634       F.UnfoldedOffset =
3635           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3636       if (IsScaledReg)
3637         F.ScaledReg = nullptr;
3638       else
3639         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3640     } else if (IsScaledReg)
3641       F.ScaledReg = InnerSum;
3642     else
3643       F.BaseRegs[Idx] = InnerSum;
3644 
3645     // Add J as its own register, or an unfolded immediate.
3646     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3647     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3648         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3649                                 SC->getValue()->getZExtValue()))
3650       F.UnfoldedOffset =
3651           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3652     else
3653       F.BaseRegs.push_back(*J);
3654     // We may have changed the number of register in base regs, adjust the
3655     // formula accordingly.
3656     F.canonicalize(*L);
3657 
3658     if (InsertFormula(LU, LUIdx, F))
3659       // If that formula hadn't been seen before, recurse to find more like
3660       // it.
3661       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3662       // Because just Depth is not enough to bound compile time.
3663       // This means that every time AddOps.size() is greater 16^x we will add
3664       // x to Depth.
3665       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3666                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3667   }
3668 }
3669 
3670 /// Split out subexpressions from adds and the bases of addrecs.
3671 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3672                                          Formula Base, unsigned Depth) {
3673   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3674   // Arbitrarily cap recursion to protect compile time.
3675   if (Depth >= 3)
3676     return;
3677 
3678   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3679     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3680 
3681   if (Base.Scale == 1)
3682     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3683                                /* Idx */ -1, /* IsScaledReg */ true);
3684 }
3685 
3686 ///  Generate a formula consisting of all of the loop-dominating registers added
3687 /// into a single register.
3688 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3689                                        Formula Base) {
3690   // This method is only interesting on a plurality of registers.
3691   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3692       (Base.UnfoldedOffset != 0) <= 1)
3693     return;
3694 
3695   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3696   // processing the formula.
3697   Base.unscale();
3698   SmallVector<const SCEV *, 4> Ops;
3699   Formula NewBase = Base;
3700   NewBase.BaseRegs.clear();
3701   Type *CombinedIntegerType = nullptr;
3702   for (const SCEV *BaseReg : Base.BaseRegs) {
3703     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3704         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3705       if (!CombinedIntegerType)
3706         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3707       Ops.push_back(BaseReg);
3708     }
3709     else
3710       NewBase.BaseRegs.push_back(BaseReg);
3711   }
3712 
3713   // If no register is relevant, we're done.
3714   if (Ops.size() == 0)
3715     return;
3716 
3717   // Utility function for generating the required variants of the combined
3718   // registers.
3719   auto GenerateFormula = [&](const SCEV *Sum) {
3720     Formula F = NewBase;
3721 
3722     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3723     // opportunity to fold something. For now, just ignore such cases
3724     // rather than proceed with zero in a register.
3725     if (Sum->isZero())
3726       return;
3727 
3728     F.BaseRegs.push_back(Sum);
3729     F.canonicalize(*L);
3730     (void)InsertFormula(LU, LUIdx, F);
3731   };
3732 
3733   // If we collected at least two registers, generate a formula combining them.
3734   if (Ops.size() > 1) {
3735     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3736     GenerateFormula(SE.getAddExpr(OpsCopy));
3737   }
3738 
3739   // If we have an unfolded offset, generate a formula combining it with the
3740   // registers collected.
3741   if (NewBase.UnfoldedOffset) {
3742     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3743     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3744                                  true));
3745     NewBase.UnfoldedOffset = 0;
3746     GenerateFormula(SE.getAddExpr(Ops));
3747   }
3748 }
3749 
3750 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3751 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3752                                               const Formula &Base, size_t Idx,
3753                                               bool IsScaledReg) {
3754   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3755   GlobalValue *GV = ExtractSymbol(G, SE);
3756   if (G->isZero() || !GV)
3757     return;
3758   Formula F = Base;
3759   F.BaseGV = GV;
3760   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3761     return;
3762   if (IsScaledReg)
3763     F.ScaledReg = G;
3764   else
3765     F.BaseRegs[Idx] = G;
3766   (void)InsertFormula(LU, LUIdx, F);
3767 }
3768 
3769 /// Generate reuse formulae using symbolic offsets.
3770 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3771                                           Formula Base) {
3772   // We can't add a symbolic offset if the address already contains one.
3773   if (Base.BaseGV) return;
3774 
3775   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3776     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3777   if (Base.Scale == 1)
3778     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3779                                 /* IsScaledReg */ true);
3780 }
3781 
3782 /// Helper function for LSRInstance::GenerateConstantOffsets.
3783 void LSRInstance::GenerateConstantOffsetsImpl(
3784     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3785     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3786 
3787   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3788     Formula F = Base;
3789     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3790 
3791     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3792                    LU.AccessTy, F)) {
3793       // Add the offset to the base register.
3794       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3795       // If it cancelled out, drop the base register, otherwise update it.
3796       if (NewG->isZero()) {
3797         if (IsScaledReg) {
3798           F.Scale = 0;
3799           F.ScaledReg = nullptr;
3800         } else
3801           F.deleteBaseReg(F.BaseRegs[Idx]);
3802         F.canonicalize(*L);
3803       } else if (IsScaledReg)
3804         F.ScaledReg = NewG;
3805       else
3806         F.BaseRegs[Idx] = NewG;
3807 
3808       (void)InsertFormula(LU, LUIdx, F);
3809     }
3810   };
3811 
3812   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3813 
3814   // With constant offsets and constant steps, we can generate pre-inc
3815   // accesses by having the offset equal the step. So, for access #0 with a
3816   // step of 8, we generate a G - 8 base which would require the first access
3817   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3818   // for itself and hopefully becomes the base for other accesses. This means
3819   // means that a single pre-indexed access can be generated to become the new
3820   // base pointer for each iteration of the loop, resulting in no extra add/sub
3821   // instructions for pointer updating.
3822   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3823     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3824       if (auto *StepRec =
3825           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3826         const APInt &StepInt = StepRec->getAPInt();
3827         int64_t Step = StepInt.isNegative() ?
3828           StepInt.getSExtValue() : StepInt.getZExtValue();
3829 
3830         for (int64_t Offset : Worklist) {
3831           Offset -= Step;
3832           GenerateOffset(G, Offset);
3833         }
3834       }
3835     }
3836   }
3837   for (int64_t Offset : Worklist)
3838     GenerateOffset(G, Offset);
3839 
3840   int64_t Imm = ExtractImmediate(G, SE);
3841   if (G->isZero() || Imm == 0)
3842     return;
3843   Formula F = Base;
3844   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3845   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3846     return;
3847   if (IsScaledReg) {
3848     F.ScaledReg = G;
3849   } else {
3850     F.BaseRegs[Idx] = G;
3851     // We may generate non canonical Formula if G is a recurrent expr reg
3852     // related with current loop while F.ScaledReg is not.
3853     F.canonicalize(*L);
3854   }
3855   (void)InsertFormula(LU, LUIdx, F);
3856 }
3857 
3858 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3859 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3860                                           Formula Base) {
3861   // TODO: For now, just add the min and max offset, because it usually isn't
3862   // worthwhile looking at everything inbetween.
3863   SmallVector<int64_t, 2> Worklist;
3864   Worklist.push_back(LU.MinOffset);
3865   if (LU.MaxOffset != LU.MinOffset)
3866     Worklist.push_back(LU.MaxOffset);
3867 
3868   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3869     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3870   if (Base.Scale == 1)
3871     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3872                                 /* IsScaledReg */ true);
3873 }
3874 
3875 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3876 /// == y -> x*c == y*c.
3877 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3878                                          Formula Base) {
3879   if (LU.Kind != LSRUse::ICmpZero) return;
3880 
3881   // Determine the integer type for the base formula.
3882   Type *IntTy = Base.getType();
3883   if (!IntTy) return;
3884   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3885 
3886   // Don't do this if there is more than one offset.
3887   if (LU.MinOffset != LU.MaxOffset) return;
3888 
3889   // Check if transformation is valid. It is illegal to multiply pointer.
3890   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3891     return;
3892   for (const SCEV *BaseReg : Base.BaseRegs)
3893     if (BaseReg->getType()->isPointerTy())
3894       return;
3895   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3896 
3897   // Check each interesting stride.
3898   for (int64_t Factor : Factors) {
3899     // Check that the multiplication doesn't overflow.
3900     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3901       continue;
3902     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3903     if (NewBaseOffset / Factor != Base.BaseOffset)
3904       continue;
3905     // If the offset will be truncated at this use, check that it is in bounds.
3906     if (!IntTy->isPointerTy() &&
3907         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3908       continue;
3909 
3910     // Check that multiplying with the use offset doesn't overflow.
3911     int64_t Offset = LU.MinOffset;
3912     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3913       continue;
3914     Offset = (uint64_t)Offset * Factor;
3915     if (Offset / Factor != LU.MinOffset)
3916       continue;
3917     // If the offset will be truncated at this use, check that it is in bounds.
3918     if (!IntTy->isPointerTy() &&
3919         !ConstantInt::isValueValidForType(IntTy, Offset))
3920       continue;
3921 
3922     Formula F = Base;
3923     F.BaseOffset = NewBaseOffset;
3924 
3925     // Check that this scale is legal.
3926     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3927       continue;
3928 
3929     // Compensate for the use having MinOffset built into it.
3930     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3931 
3932     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3933 
3934     // Check that multiplying with each base register doesn't overflow.
3935     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3936       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3937       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3938         goto next;
3939     }
3940 
3941     // Check that multiplying with the scaled register doesn't overflow.
3942     if (F.ScaledReg) {
3943       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3944       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3945         continue;
3946     }
3947 
3948     // Check that multiplying with the unfolded offset doesn't overflow.
3949     if (F.UnfoldedOffset != 0) {
3950       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3951           Factor == -1)
3952         continue;
3953       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3954       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3955         continue;
3956       // If the offset will be truncated, check that it is in bounds.
3957       if (!IntTy->isPointerTy() &&
3958           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3959         continue;
3960     }
3961 
3962     // If we make it here and it's legal, add it.
3963     (void)InsertFormula(LU, LUIdx, F);
3964   next:;
3965   }
3966 }
3967 
3968 /// Generate stride factor reuse formulae by making use of scaled-offset address
3969 /// modes, for example.
3970 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3971   // Determine the integer type for the base formula.
3972   Type *IntTy = Base.getType();
3973   if (!IntTy) return;
3974 
3975   // If this Formula already has a scaled register, we can't add another one.
3976   // Try to unscale the formula to generate a better scale.
3977   if (Base.Scale != 0 && !Base.unscale())
3978     return;
3979 
3980   assert(Base.Scale == 0 && "unscale did not did its job!");
3981 
3982   // Check each interesting stride.
3983   for (int64_t Factor : Factors) {
3984     Base.Scale = Factor;
3985     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3986     // Check whether this scale is going to be legal.
3987     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3988                     Base)) {
3989       // As a special-case, handle special out-of-loop Basic users specially.
3990       // TODO: Reconsider this special case.
3991       if (LU.Kind == LSRUse::Basic &&
3992           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3993                      LU.AccessTy, Base) &&
3994           LU.AllFixupsOutsideLoop)
3995         LU.Kind = LSRUse::Special;
3996       else
3997         continue;
3998     }
3999     // For an ICmpZero, negating a solitary base register won't lead to
4000     // new solutions.
4001     if (LU.Kind == LSRUse::ICmpZero &&
4002         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4003       continue;
4004     // For each addrec base reg, if its loop is current loop, apply the scale.
4005     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4006       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4007       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4008         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4009         if (FactorS->isZero())
4010           continue;
4011         // Divide out the factor, ignoring high bits, since we'll be
4012         // scaling the value back up in the end.
4013         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4014           // TODO: This could be optimized to avoid all the copying.
4015           Formula F = Base;
4016           F.ScaledReg = Quotient;
4017           F.deleteBaseReg(F.BaseRegs[i]);
4018           // The canonical representation of 1*reg is reg, which is already in
4019           // Base. In that case, do not try to insert the formula, it will be
4020           // rejected anyway.
4021           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4022                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4023             continue;
4024           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4025           // non canonical Formula with ScaledReg's loop not being L.
4026           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4027             F.canonicalize(*L);
4028           (void)InsertFormula(LU, LUIdx, F);
4029         }
4030       }
4031     }
4032   }
4033 }
4034 
4035 /// Generate reuse formulae from different IV types.
4036 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4037   // Don't bother truncating symbolic values.
4038   if (Base.BaseGV) return;
4039 
4040   // Determine the integer type for the base formula.
4041   Type *DstTy = Base.getType();
4042   if (!DstTy) return;
4043   DstTy = SE.getEffectiveSCEVType(DstTy);
4044 
4045   for (Type *SrcTy : Types) {
4046     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4047       Formula F = Base;
4048 
4049       // Sometimes SCEV is able to prove zero during ext transform. It may
4050       // happen if SCEV did not do all possible transforms while creating the
4051       // initial node (maybe due to depth limitations), but it can do them while
4052       // taking ext.
4053       if (F.ScaledReg) {
4054         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4055         if (NewScaledReg->isZero())
4056          continue;
4057         F.ScaledReg = NewScaledReg;
4058       }
4059       bool HasZeroBaseReg = false;
4060       for (const SCEV *&BaseReg : F.BaseRegs) {
4061         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4062         if (NewBaseReg->isZero()) {
4063           HasZeroBaseReg = true;
4064           break;
4065         }
4066         BaseReg = NewBaseReg;
4067       }
4068       if (HasZeroBaseReg)
4069         continue;
4070 
4071       // TODO: This assumes we've done basic processing on all uses and
4072       // have an idea what the register usage is.
4073       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4074         continue;
4075 
4076       F.canonicalize(*L);
4077       (void)InsertFormula(LU, LUIdx, F);
4078     }
4079   }
4080 }
4081 
4082 namespace {
4083 
4084 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4085 /// modifications so that the search phase doesn't have to worry about the data
4086 /// structures moving underneath it.
4087 struct WorkItem {
4088   size_t LUIdx;
4089   int64_t Imm;
4090   const SCEV *OrigReg;
4091 
4092   WorkItem(size_t LI, int64_t I, const SCEV *R)
4093       : LUIdx(LI), Imm(I), OrigReg(R) {}
4094 
4095   void print(raw_ostream &OS) const;
4096   void dump() const;
4097 };
4098 
4099 } // end anonymous namespace
4100 
4101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4102 void WorkItem::print(raw_ostream &OS) const {
4103   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4104      << " , add offset " << Imm;
4105 }
4106 
4107 LLVM_DUMP_METHOD void WorkItem::dump() const {
4108   print(errs()); errs() << '\n';
4109 }
4110 #endif
4111 
4112 /// Look for registers which are a constant distance apart and try to form reuse
4113 /// opportunities between them.
4114 void LSRInstance::GenerateCrossUseConstantOffsets() {
4115   // Group the registers by their value without any added constant offset.
4116   using ImmMapTy = std::map<int64_t, const SCEV *>;
4117 
4118   DenseMap<const SCEV *, ImmMapTy> Map;
4119   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4120   SmallVector<const SCEV *, 8> Sequence;
4121   for (const SCEV *Use : RegUses) {
4122     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4123     int64_t Imm = ExtractImmediate(Reg, SE);
4124     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4125     if (Pair.second)
4126       Sequence.push_back(Reg);
4127     Pair.first->second.insert(std::make_pair(Imm, Use));
4128     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4129   }
4130 
4131   // Now examine each set of registers with the same base value. Build up
4132   // a list of work to do and do the work in a separate step so that we're
4133   // not adding formulae and register counts while we're searching.
4134   SmallVector<WorkItem, 32> WorkItems;
4135   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4136   for (const SCEV *Reg : Sequence) {
4137     const ImmMapTy &Imms = Map.find(Reg)->second;
4138 
4139     // It's not worthwhile looking for reuse if there's only one offset.
4140     if (Imms.size() == 1)
4141       continue;
4142 
4143     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4144                for (const auto &Entry
4145                     : Imms) dbgs()
4146                << ' ' << Entry.first;
4147                dbgs() << '\n');
4148 
4149     // Examine each offset.
4150     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4151          J != JE; ++J) {
4152       const SCEV *OrigReg = J->second;
4153 
4154       int64_t JImm = J->first;
4155       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4156 
4157       if (!isa<SCEVConstant>(OrigReg) &&
4158           UsedByIndicesMap[Reg].count() == 1) {
4159         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4160                           << '\n');
4161         continue;
4162       }
4163 
4164       // Conservatively examine offsets between this orig reg a few selected
4165       // other orig regs.
4166       int64_t First = Imms.begin()->first;
4167       int64_t Last = std::prev(Imms.end())->first;
4168       // Compute (First + Last)  / 2 without overflow using the fact that
4169       // First + Last = 2 * (First + Last) + (First ^ Last).
4170       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4171       // If the result is negative and First is odd and Last even (or vice versa),
4172       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4173       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4174       ImmMapTy::const_iterator OtherImms[] = {
4175           Imms.begin(), std::prev(Imms.end()),
4176          Imms.lower_bound(Avg)};
4177       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4178         ImmMapTy::const_iterator M = OtherImms[i];
4179         if (M == J || M == JE) continue;
4180 
4181         // Compute the difference between the two.
4182         int64_t Imm = (uint64_t)JImm - M->first;
4183         for (unsigned LUIdx : UsedByIndices.set_bits())
4184           // Make a memo of this use, offset, and register tuple.
4185           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4186             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4187       }
4188     }
4189   }
4190 
4191   Map.clear();
4192   Sequence.clear();
4193   UsedByIndicesMap.clear();
4194   UniqueItems.clear();
4195 
4196   // Now iterate through the worklist and add new formulae.
4197   for (const WorkItem &WI : WorkItems) {
4198     size_t LUIdx = WI.LUIdx;
4199     LSRUse &LU = Uses[LUIdx];
4200     int64_t Imm = WI.Imm;
4201     const SCEV *OrigReg = WI.OrigReg;
4202 
4203     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4204     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4205     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4206 
4207     // TODO: Use a more targeted data structure.
4208     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4209       Formula F = LU.Formulae[L];
4210       // FIXME: The code for the scaled and unscaled registers looks
4211       // very similar but slightly different. Investigate if they
4212       // could be merged. That way, we would not have to unscale the
4213       // Formula.
4214       F.unscale();
4215       // Use the immediate in the scaled register.
4216       if (F.ScaledReg == OrigReg) {
4217         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4218         // Don't create 50 + reg(-50).
4219         if (F.referencesReg(SE.getSCEV(
4220                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4221           continue;
4222         Formula NewF = F;
4223         NewF.BaseOffset = Offset;
4224         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4225                         NewF))
4226           continue;
4227         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4228 
4229         // If the new scale is a constant in a register, and adding the constant
4230         // value to the immediate would produce a value closer to zero than the
4231         // immediate itself, then the formula isn't worthwhile.
4232         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4233           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4234               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4235                   .ule(std::abs(NewF.BaseOffset)))
4236             continue;
4237 
4238         // OK, looks good.
4239         NewF.canonicalize(*this->L);
4240         (void)InsertFormula(LU, LUIdx, NewF);
4241       } else {
4242         // Use the immediate in a base register.
4243         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4244           const SCEV *BaseReg = F.BaseRegs[N];
4245           if (BaseReg != OrigReg)
4246             continue;
4247           Formula NewF = F;
4248           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4249           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4250                           LU.Kind, LU.AccessTy, NewF)) {
4251             if (AMK == TTI::AMK_PostIndexed &&
4252                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4253               continue;
4254             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4255               continue;
4256             NewF = F;
4257             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4258           }
4259           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4260 
4261           // If the new formula has a constant in a register, and adding the
4262           // constant value to the immediate would produce a value closer to
4263           // zero than the immediate itself, then the formula isn't worthwhile.
4264           for (const SCEV *NewReg : NewF.BaseRegs)
4265             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4266               if ((C->getAPInt() + NewF.BaseOffset)
4267                       .abs()
4268                       .slt(std::abs(NewF.BaseOffset)) &&
4269                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4270                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4271                 goto skip_formula;
4272 
4273           // Ok, looks good.
4274           NewF.canonicalize(*this->L);
4275           (void)InsertFormula(LU, LUIdx, NewF);
4276           break;
4277         skip_formula:;
4278         }
4279       }
4280     }
4281   }
4282 }
4283 
4284 /// Generate formulae for each use.
4285 void
4286 LSRInstance::GenerateAllReuseFormulae() {
4287   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4288   // queries are more precise.
4289   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4290     LSRUse &LU = Uses[LUIdx];
4291     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4292       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4293     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4294       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4295   }
4296   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4297     LSRUse &LU = Uses[LUIdx];
4298     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4299       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4300     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4301       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4302     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4303       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4304     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4305       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4306   }
4307   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4308     LSRUse &LU = Uses[LUIdx];
4309     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4310       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4311   }
4312 
4313   GenerateCrossUseConstantOffsets();
4314 
4315   LLVM_DEBUG(dbgs() << "\n"
4316                        "After generating reuse formulae:\n";
4317              print_uses(dbgs()));
4318 }
4319 
4320 /// If there are multiple formulae with the same set of registers used
4321 /// by other uses, pick the best one and delete the others.
4322 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4323   DenseSet<const SCEV *> VisitedRegs;
4324   SmallPtrSet<const SCEV *, 16> Regs;
4325   SmallPtrSet<const SCEV *, 16> LoserRegs;
4326 #ifndef NDEBUG
4327   bool ChangedFormulae = false;
4328 #endif
4329 
4330   // Collect the best formula for each unique set of shared registers. This
4331   // is reset for each use.
4332   using BestFormulaeTy =
4333       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4334 
4335   BestFormulaeTy BestFormulae;
4336 
4337   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4338     LSRUse &LU = Uses[LUIdx];
4339     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4340                dbgs() << '\n');
4341 
4342     bool Any = false;
4343     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4344          FIdx != NumForms; ++FIdx) {
4345       Formula &F = LU.Formulae[FIdx];
4346 
4347       // Some formulas are instant losers. For example, they may depend on
4348       // nonexistent AddRecs from other loops. These need to be filtered
4349       // immediately, otherwise heuristics could choose them over others leading
4350       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4351       // avoids the need to recompute this information across formulae using the
4352       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4353       // the corresponding bad register from the Regs set.
4354       Cost CostF(L, SE, TTI, AMK);
4355       Regs.clear();
4356       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4357       if (CostF.isLoser()) {
4358         // During initial formula generation, undesirable formulae are generated
4359         // by uses within other loops that have some non-trivial address mode or
4360         // use the postinc form of the IV. LSR needs to provide these formulae
4361         // as the basis of rediscovering the desired formula that uses an AddRec
4362         // corresponding to the existing phi. Once all formulae have been
4363         // generated, these initial losers may be pruned.
4364         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4365                    dbgs() << "\n");
4366       }
4367       else {
4368         SmallVector<const SCEV *, 4> Key;
4369         for (const SCEV *Reg : F.BaseRegs) {
4370           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4371             Key.push_back(Reg);
4372         }
4373         if (F.ScaledReg &&
4374             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4375           Key.push_back(F.ScaledReg);
4376         // Unstable sort by host order ok, because this is only used for
4377         // uniquifying.
4378         llvm::sort(Key);
4379 
4380         std::pair<BestFormulaeTy::const_iterator, bool> P =
4381           BestFormulae.insert(std::make_pair(Key, FIdx));
4382         if (P.second)
4383           continue;
4384 
4385         Formula &Best = LU.Formulae[P.first->second];
4386 
4387         Cost CostBest(L, SE, TTI, AMK);
4388         Regs.clear();
4389         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4390         if (CostF.isLess(CostBest))
4391           std::swap(F, Best);
4392         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4393                    dbgs() << "\n"
4394                              "    in favor of formula ";
4395                    Best.print(dbgs()); dbgs() << '\n');
4396       }
4397 #ifndef NDEBUG
4398       ChangedFormulae = true;
4399 #endif
4400       LU.DeleteFormula(F);
4401       --FIdx;
4402       --NumForms;
4403       Any = true;
4404     }
4405 
4406     // Now that we've filtered out some formulae, recompute the Regs set.
4407     if (Any)
4408       LU.RecomputeRegs(LUIdx, RegUses);
4409 
4410     // Reset this to prepare for the next use.
4411     BestFormulae.clear();
4412   }
4413 
4414   LLVM_DEBUG(if (ChangedFormulae) {
4415     dbgs() << "\n"
4416               "After filtering out undesirable candidates:\n";
4417     print_uses(dbgs());
4418   });
4419 }
4420 
4421 /// Estimate the worst-case number of solutions the solver might have to
4422 /// consider. It almost never considers this many solutions because it prune the
4423 /// search space, but the pruning isn't always sufficient.
4424 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4425   size_t Power = 1;
4426   for (const LSRUse &LU : Uses) {
4427     size_t FSize = LU.Formulae.size();
4428     if (FSize >= ComplexityLimit) {
4429       Power = ComplexityLimit;
4430       break;
4431     }
4432     Power *= FSize;
4433     if (Power >= ComplexityLimit)
4434       break;
4435   }
4436   return Power;
4437 }
4438 
4439 /// When one formula uses a superset of the registers of another formula, it
4440 /// won't help reduce register pressure (though it may not necessarily hurt
4441 /// register pressure); remove it to simplify the system.
4442 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4443   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4444     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4445 
4446     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4447                          "which use a superset of registers used by other "
4448                          "formulae.\n");
4449 
4450     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4451       LSRUse &LU = Uses[LUIdx];
4452       bool Any = false;
4453       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4454         Formula &F = LU.Formulae[i];
4455         // Look for a formula with a constant or GV in a register. If the use
4456         // also has a formula with that same value in an immediate field,
4457         // delete the one that uses a register.
4458         for (SmallVectorImpl<const SCEV *>::const_iterator
4459              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4460           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4461             Formula NewF = F;
4462             //FIXME: Formulas should store bitwidth to do wrapping properly.
4463             //       See PR41034.
4464             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4465             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4466                                 (I - F.BaseRegs.begin()));
4467             if (LU.HasFormulaWithSameRegs(NewF)) {
4468               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4469                          dbgs() << '\n');
4470               LU.DeleteFormula(F);
4471               --i;
4472               --e;
4473               Any = true;
4474               break;
4475             }
4476           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4477             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4478               if (!F.BaseGV) {
4479                 Formula NewF = F;
4480                 NewF.BaseGV = GV;
4481                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4482                                     (I - F.BaseRegs.begin()));
4483                 if (LU.HasFormulaWithSameRegs(NewF)) {
4484                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4485                              dbgs() << '\n');
4486                   LU.DeleteFormula(F);
4487                   --i;
4488                   --e;
4489                   Any = true;
4490                   break;
4491                 }
4492               }
4493           }
4494         }
4495       }
4496       if (Any)
4497         LU.RecomputeRegs(LUIdx, RegUses);
4498     }
4499 
4500     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4501   }
4502 }
4503 
4504 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4505 /// allocate a single register for them.
4506 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4507   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4508     return;
4509 
4510   LLVM_DEBUG(
4511       dbgs() << "The search space is too complex.\n"
4512                 "Narrowing the search space by assuming that uses separated "
4513                 "by a constant offset will use the same registers.\n");
4514 
4515   // This is especially useful for unrolled loops.
4516 
4517   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4518     LSRUse &LU = Uses[LUIdx];
4519     for (const Formula &F : LU.Formulae) {
4520       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4521         continue;
4522 
4523       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4524       if (!LUThatHas)
4525         continue;
4526 
4527       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4528                               LU.Kind, LU.AccessTy))
4529         continue;
4530 
4531       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4532 
4533       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4534 
4535       // Transfer the fixups of LU to LUThatHas.
4536       for (LSRFixup &Fixup : LU.Fixups) {
4537         Fixup.Offset += F.BaseOffset;
4538         LUThatHas->pushFixup(Fixup);
4539         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4540       }
4541 
4542       // Delete formulae from the new use which are no longer legal.
4543       bool Any = false;
4544       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4545         Formula &F = LUThatHas->Formulae[i];
4546         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4547                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4548           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4549           LUThatHas->DeleteFormula(F);
4550           --i;
4551           --e;
4552           Any = true;
4553         }
4554       }
4555 
4556       if (Any)
4557         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4558 
4559       // Delete the old use.
4560       DeleteUse(LU, LUIdx);
4561       --LUIdx;
4562       --NumUses;
4563       break;
4564     }
4565   }
4566 
4567   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4568 }
4569 
4570 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4571 /// we've done more filtering, as it may be able to find more formulae to
4572 /// eliminate.
4573 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4574   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4575     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4576 
4577     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4578                          "undesirable dedicated registers.\n");
4579 
4580     FilterOutUndesirableDedicatedRegisters();
4581 
4582     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4583   }
4584 }
4585 
4586 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4587 /// Pick the best one and delete the others.
4588 /// This narrowing heuristic is to keep as many formulae with different
4589 /// Scale and ScaledReg pair as possible while narrowing the search space.
4590 /// The benefit is that it is more likely to find out a better solution
4591 /// from a formulae set with more Scale and ScaledReg variations than
4592 /// a formulae set with the same Scale and ScaledReg. The picking winner
4593 /// reg heuristic will often keep the formulae with the same Scale and
4594 /// ScaledReg and filter others, and we want to avoid that if possible.
4595 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4596   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4597     return;
4598 
4599   LLVM_DEBUG(
4600       dbgs() << "The search space is too complex.\n"
4601                 "Narrowing the search space by choosing the best Formula "
4602                 "from the Formulae with the same Scale and ScaledReg.\n");
4603 
4604   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4605   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4606 
4607   BestFormulaeTy BestFormulae;
4608 #ifndef NDEBUG
4609   bool ChangedFormulae = false;
4610 #endif
4611   DenseSet<const SCEV *> VisitedRegs;
4612   SmallPtrSet<const SCEV *, 16> Regs;
4613 
4614   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4615     LSRUse &LU = Uses[LUIdx];
4616     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4617                dbgs() << '\n');
4618 
4619     // Return true if Formula FA is better than Formula FB.
4620     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4621       // First we will try to choose the Formula with fewer new registers.
4622       // For a register used by current Formula, the more the register is
4623       // shared among LSRUses, the less we increase the register number
4624       // counter of the formula.
4625       size_t FARegNum = 0;
4626       for (const SCEV *Reg : FA.BaseRegs) {
4627         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4628         FARegNum += (NumUses - UsedByIndices.count() + 1);
4629       }
4630       size_t FBRegNum = 0;
4631       for (const SCEV *Reg : FB.BaseRegs) {
4632         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4633         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4634       }
4635       if (FARegNum != FBRegNum)
4636         return FARegNum < FBRegNum;
4637 
4638       // If the new register numbers are the same, choose the Formula with
4639       // less Cost.
4640       Cost CostFA(L, SE, TTI, AMK);
4641       Cost CostFB(L, SE, TTI, AMK);
4642       Regs.clear();
4643       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4644       Regs.clear();
4645       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4646       return CostFA.isLess(CostFB);
4647     };
4648 
4649     bool Any = false;
4650     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4651          ++FIdx) {
4652       Formula &F = LU.Formulae[FIdx];
4653       if (!F.ScaledReg)
4654         continue;
4655       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4656       if (P.second)
4657         continue;
4658 
4659       Formula &Best = LU.Formulae[P.first->second];
4660       if (IsBetterThan(F, Best))
4661         std::swap(F, Best);
4662       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4663                  dbgs() << "\n"
4664                            "    in favor of formula ";
4665                  Best.print(dbgs()); dbgs() << '\n');
4666 #ifndef NDEBUG
4667       ChangedFormulae = true;
4668 #endif
4669       LU.DeleteFormula(F);
4670       --FIdx;
4671       --NumForms;
4672       Any = true;
4673     }
4674     if (Any)
4675       LU.RecomputeRegs(LUIdx, RegUses);
4676 
4677     // Reset this to prepare for the next use.
4678     BestFormulae.clear();
4679   }
4680 
4681   LLVM_DEBUG(if (ChangedFormulae) {
4682     dbgs() << "\n"
4683               "After filtering out undesirable candidates:\n";
4684     print_uses(dbgs());
4685   });
4686 }
4687 
4688 /// If we are over the complexity limit, filter out any post-inc prefering
4689 /// variables to only post-inc values.
4690 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4691   if (AMK != TTI::AMK_PostIndexed)
4692     return;
4693   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4694     return;
4695 
4696   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4697                        "Narrowing the search space by choosing the lowest "
4698                        "register Formula for PostInc Uses.\n");
4699 
4700   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4701     LSRUse &LU = Uses[LUIdx];
4702 
4703     if (LU.Kind != LSRUse::Address)
4704       continue;
4705     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4706         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4707       continue;
4708 
4709     size_t MinRegs = std::numeric_limits<size_t>::max();
4710     for (const Formula &F : LU.Formulae)
4711       MinRegs = std::min(F.getNumRegs(), MinRegs);
4712 
4713     bool Any = false;
4714     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4715          ++FIdx) {
4716       Formula &F = LU.Formulae[FIdx];
4717       if (F.getNumRegs() > MinRegs) {
4718         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4719                    dbgs() << "\n");
4720         LU.DeleteFormula(F);
4721         --FIdx;
4722         --NumForms;
4723         Any = true;
4724       }
4725     }
4726     if (Any)
4727       LU.RecomputeRegs(LUIdx, RegUses);
4728 
4729     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4730       break;
4731   }
4732 
4733   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4734 }
4735 
4736 /// The function delete formulas with high registers number expectation.
4737 /// Assuming we don't know the value of each formula (already delete
4738 /// all inefficient), generate probability of not selecting for each
4739 /// register.
4740 /// For example,
4741 /// Use1:
4742 ///  reg(a) + reg({0,+,1})
4743 ///  reg(a) + reg({-1,+,1}) + 1
4744 ///  reg({a,+,1})
4745 /// Use2:
4746 ///  reg(b) + reg({0,+,1})
4747 ///  reg(b) + reg({-1,+,1}) + 1
4748 ///  reg({b,+,1})
4749 /// Use3:
4750 ///  reg(c) + reg(b) + reg({0,+,1})
4751 ///  reg(c) + reg({b,+,1})
4752 ///
4753 /// Probability of not selecting
4754 ///                 Use1   Use2    Use3
4755 /// reg(a)         (1/3) *   1   *   1
4756 /// reg(b)           1   * (1/3) * (1/2)
4757 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4758 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4759 /// reg({a,+,1})   (2/3) *   1   *   1
4760 /// reg({b,+,1})     1   * (2/3) * (2/3)
4761 /// reg(c)           1   *   1   *   0
4762 ///
4763 /// Now count registers number mathematical expectation for each formula:
4764 /// Note that for each use we exclude probability if not selecting for the use.
4765 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4766 /// probabilty 1/3 of not selecting for Use1).
4767 /// Use1:
4768 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4769 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4770 ///  reg({a,+,1})                   1
4771 /// Use2:
4772 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4773 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4774 ///  reg({b,+,1})                   2/3
4775 /// Use3:
4776 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4777 ///  reg(c) + reg({b,+,1})          1 + 2/3
4778 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4779   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4780     return;
4781   // Ok, we have too many of formulae on our hands to conveniently handle.
4782   // Use a rough heuristic to thin out the list.
4783 
4784   // Set of Regs wich will be 100% used in final solution.
4785   // Used in each formula of a solution (in example above this is reg(c)).
4786   // We can skip them in calculations.
4787   SmallPtrSet<const SCEV *, 4> UniqRegs;
4788   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4789 
4790   // Map each register to probability of not selecting
4791   DenseMap <const SCEV *, float> RegNumMap;
4792   for (const SCEV *Reg : RegUses) {
4793     if (UniqRegs.count(Reg))
4794       continue;
4795     float PNotSel = 1;
4796     for (const LSRUse &LU : Uses) {
4797       if (!LU.Regs.count(Reg))
4798         continue;
4799       float P = LU.getNotSelectedProbability(Reg);
4800       if (P != 0.0)
4801         PNotSel *= P;
4802       else
4803         UniqRegs.insert(Reg);
4804     }
4805     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4806   }
4807 
4808   LLVM_DEBUG(
4809       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4810 
4811   // Delete formulas where registers number expectation is high.
4812   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4813     LSRUse &LU = Uses[LUIdx];
4814     // If nothing to delete - continue.
4815     if (LU.Formulae.size() < 2)
4816       continue;
4817     // This is temporary solution to test performance. Float should be
4818     // replaced with round independent type (based on integers) to avoid
4819     // different results for different target builds.
4820     float FMinRegNum = LU.Formulae[0].getNumRegs();
4821     float FMinARegNum = LU.Formulae[0].getNumRegs();
4822     size_t MinIdx = 0;
4823     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4824       Formula &F = LU.Formulae[i];
4825       float FRegNum = 0;
4826       float FARegNum = 0;
4827       for (const SCEV *BaseReg : F.BaseRegs) {
4828         if (UniqRegs.count(BaseReg))
4829           continue;
4830         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4831         if (isa<SCEVAddRecExpr>(BaseReg))
4832           FARegNum +=
4833               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4834       }
4835       if (const SCEV *ScaledReg = F.ScaledReg) {
4836         if (!UniqRegs.count(ScaledReg)) {
4837           FRegNum +=
4838               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4839           if (isa<SCEVAddRecExpr>(ScaledReg))
4840             FARegNum +=
4841                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4842         }
4843       }
4844       if (FMinRegNum > FRegNum ||
4845           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4846         FMinRegNum = FRegNum;
4847         FMinARegNum = FARegNum;
4848         MinIdx = i;
4849       }
4850     }
4851     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4852                dbgs() << " with min reg num " << FMinRegNum << '\n');
4853     if (MinIdx != 0)
4854       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4855     while (LU.Formulae.size() != 1) {
4856       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4857                  dbgs() << '\n');
4858       LU.Formulae.pop_back();
4859     }
4860     LU.RecomputeRegs(LUIdx, RegUses);
4861     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4862     Formula &F = LU.Formulae[0];
4863     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4864     // When we choose the formula, the regs become unique.
4865     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4866     if (F.ScaledReg)
4867       UniqRegs.insert(F.ScaledReg);
4868   }
4869   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4870 }
4871 
4872 /// Pick a register which seems likely to be profitable, and then in any use
4873 /// which has any reference to that register, delete all formulae which do not
4874 /// reference that register.
4875 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4876   // With all other options exhausted, loop until the system is simple
4877   // enough to handle.
4878   SmallPtrSet<const SCEV *, 4> Taken;
4879   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4880     // Ok, we have too many of formulae on our hands to conveniently handle.
4881     // Use a rough heuristic to thin out the list.
4882     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4883 
4884     // Pick the register which is used by the most LSRUses, which is likely
4885     // to be a good reuse register candidate.
4886     const SCEV *Best = nullptr;
4887     unsigned BestNum = 0;
4888     for (const SCEV *Reg : RegUses) {
4889       if (Taken.count(Reg))
4890         continue;
4891       if (!Best) {
4892         Best = Reg;
4893         BestNum = RegUses.getUsedByIndices(Reg).count();
4894       } else {
4895         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4896         if (Count > BestNum) {
4897           Best = Reg;
4898           BestNum = Count;
4899         }
4900       }
4901     }
4902     assert(Best && "Failed to find best LSRUse candidate");
4903 
4904     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4905                       << " will yield profitable reuse.\n");
4906     Taken.insert(Best);
4907 
4908     // In any use with formulae which references this register, delete formulae
4909     // which don't reference it.
4910     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4911       LSRUse &LU = Uses[LUIdx];
4912       if (!LU.Regs.count(Best)) continue;
4913 
4914       bool Any = false;
4915       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4916         Formula &F = LU.Formulae[i];
4917         if (!F.referencesReg(Best)) {
4918           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4919           LU.DeleteFormula(F);
4920           --e;
4921           --i;
4922           Any = true;
4923           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4924           continue;
4925         }
4926       }
4927 
4928       if (Any)
4929         LU.RecomputeRegs(LUIdx, RegUses);
4930     }
4931 
4932     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4933   }
4934 }
4935 
4936 /// If there are an extraordinary number of formulae to choose from, use some
4937 /// rough heuristics to prune down the number of formulae. This keeps the main
4938 /// solver from taking an extraordinary amount of time in some worst-case
4939 /// scenarios.
4940 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4941   NarrowSearchSpaceByDetectingSupersets();
4942   NarrowSearchSpaceByCollapsingUnrolledCode();
4943   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4944   if (FilterSameScaledReg)
4945     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4946   NarrowSearchSpaceByFilterPostInc();
4947   if (LSRExpNarrow)
4948     NarrowSearchSpaceByDeletingCostlyFormulas();
4949   else
4950     NarrowSearchSpaceByPickingWinnerRegs();
4951 }
4952 
4953 /// This is the recursive solver.
4954 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4955                                Cost &SolutionCost,
4956                                SmallVectorImpl<const Formula *> &Workspace,
4957                                const Cost &CurCost,
4958                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4959                                DenseSet<const SCEV *> &VisitedRegs) const {
4960   // Some ideas:
4961   //  - prune more:
4962   //    - use more aggressive filtering
4963   //    - sort the formula so that the most profitable solutions are found first
4964   //    - sort the uses too
4965   //  - search faster:
4966   //    - don't compute a cost, and then compare. compare while computing a cost
4967   //      and bail early.
4968   //    - track register sets with SmallBitVector
4969 
4970   const LSRUse &LU = Uses[Workspace.size()];
4971 
4972   // If this use references any register that's already a part of the
4973   // in-progress solution, consider it a requirement that a formula must
4974   // reference that register in order to be considered. This prunes out
4975   // unprofitable searching.
4976   SmallSetVector<const SCEV *, 4> ReqRegs;
4977   for (const SCEV *S : CurRegs)
4978     if (LU.Regs.count(S))
4979       ReqRegs.insert(S);
4980 
4981   SmallPtrSet<const SCEV *, 16> NewRegs;
4982   Cost NewCost(L, SE, TTI, AMK);
4983   for (const Formula &F : LU.Formulae) {
4984     // Ignore formulae which may not be ideal in terms of register reuse of
4985     // ReqRegs.  The formula should use all required registers before
4986     // introducing new ones.
4987     // This can sometimes (notably when trying to favour postinc) lead to
4988     // sub-optimial decisions. There it is best left to the cost modelling to
4989     // get correct.
4990     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
4991       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4992       for (const SCEV *Reg : ReqRegs) {
4993         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4994             is_contained(F.BaseRegs, Reg)) {
4995           --NumReqRegsToFind;
4996           if (NumReqRegsToFind == 0)
4997             break;
4998         }
4999       }
5000       if (NumReqRegsToFind != 0) {
5001         // If none of the formulae satisfied the required registers, then we could
5002         // clear ReqRegs and try again. Currently, we simply give up in this case.
5003         continue;
5004       }
5005     }
5006 
5007     // Evaluate the cost of the current formula. If it's already worse than
5008     // the current best, prune the search at that point.
5009     NewCost = CurCost;
5010     NewRegs = CurRegs;
5011     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5012     if (NewCost.isLess(SolutionCost)) {
5013       Workspace.push_back(&F);
5014       if (Workspace.size() != Uses.size()) {
5015         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5016                      NewRegs, VisitedRegs);
5017         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5018           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5019       } else {
5020         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5021                    dbgs() << ".\nRegs:\n";
5022                    for (const SCEV *S : NewRegs) dbgs()
5023                       << "- " << *S << "\n";
5024                    dbgs() << '\n');
5025 
5026         SolutionCost = NewCost;
5027         Solution = Workspace;
5028       }
5029       Workspace.pop_back();
5030     }
5031   }
5032 }
5033 
5034 /// Choose one formula from each use. Return the results in the given Solution
5035 /// vector.
5036 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5037   SmallVector<const Formula *, 8> Workspace;
5038   Cost SolutionCost(L, SE, TTI, AMK);
5039   SolutionCost.Lose();
5040   Cost CurCost(L, SE, TTI, AMK);
5041   SmallPtrSet<const SCEV *, 16> CurRegs;
5042   DenseSet<const SCEV *> VisitedRegs;
5043   Workspace.reserve(Uses.size());
5044 
5045   // SolveRecurse does all the work.
5046   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5047                CurRegs, VisitedRegs);
5048   if (Solution.empty()) {
5049     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5050     return;
5051   }
5052 
5053   // Ok, we've now made all our decisions.
5054   LLVM_DEBUG(dbgs() << "\n"
5055                        "The chosen solution requires ";
5056              SolutionCost.print(dbgs()); dbgs() << ":\n";
5057              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5058                dbgs() << "  ";
5059                Uses[i].print(dbgs());
5060                dbgs() << "\n"
5061                          "    ";
5062                Solution[i]->print(dbgs());
5063                dbgs() << '\n';
5064              });
5065 
5066   assert(Solution.size() == Uses.size() && "Malformed solution!");
5067 }
5068 
5069 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5070 /// we can go while still being dominated by the input positions. This helps
5071 /// canonicalize the insert position, which encourages sharing.
5072 BasicBlock::iterator
5073 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5074                                  const SmallVectorImpl<Instruction *> &Inputs)
5075                                                                          const {
5076   Instruction *Tentative = &*IP;
5077   while (true) {
5078     bool AllDominate = true;
5079     Instruction *BetterPos = nullptr;
5080     // Don't bother attempting to insert before a catchswitch, their basic block
5081     // cannot have other non-PHI instructions.
5082     if (isa<CatchSwitchInst>(Tentative))
5083       return IP;
5084 
5085     for (Instruction *Inst : Inputs) {
5086       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5087         AllDominate = false;
5088         break;
5089       }
5090       // Attempt to find an insert position in the middle of the block,
5091       // instead of at the end, so that it can be used for other expansions.
5092       if (Tentative->getParent() == Inst->getParent() &&
5093           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5094         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5095     }
5096     if (!AllDominate)
5097       break;
5098     if (BetterPos)
5099       IP = BetterPos->getIterator();
5100     else
5101       IP = Tentative->getIterator();
5102 
5103     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5104     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5105 
5106     BasicBlock *IDom;
5107     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5108       if (!Rung) return IP;
5109       Rung = Rung->getIDom();
5110       if (!Rung) return IP;
5111       IDom = Rung->getBlock();
5112 
5113       // Don't climb into a loop though.
5114       const Loop *IDomLoop = LI.getLoopFor(IDom);
5115       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5116       if (IDomDepth <= IPLoopDepth &&
5117           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5118         break;
5119     }
5120 
5121     Tentative = IDom->getTerminator();
5122   }
5123 
5124   return IP;
5125 }
5126 
5127 /// Determine an input position which will be dominated by the operands and
5128 /// which will dominate the result.
5129 BasicBlock::iterator
5130 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5131                                            const LSRFixup &LF,
5132                                            const LSRUse &LU,
5133                                            SCEVExpander &Rewriter) const {
5134   // Collect some instructions which must be dominated by the
5135   // expanding replacement. These must be dominated by any operands that
5136   // will be required in the expansion.
5137   SmallVector<Instruction *, 4> Inputs;
5138   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5139     Inputs.push_back(I);
5140   if (LU.Kind == LSRUse::ICmpZero)
5141     if (Instruction *I =
5142           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5143       Inputs.push_back(I);
5144   if (LF.PostIncLoops.count(L)) {
5145     if (LF.isUseFullyOutsideLoop(L))
5146       Inputs.push_back(L->getLoopLatch()->getTerminator());
5147     else
5148       Inputs.push_back(IVIncInsertPos);
5149   }
5150   // The expansion must also be dominated by the increment positions of any
5151   // loops it for which it is using post-inc mode.
5152   for (const Loop *PIL : LF.PostIncLoops) {
5153     if (PIL == L) continue;
5154 
5155     // Be dominated by the loop exit.
5156     SmallVector<BasicBlock *, 4> ExitingBlocks;
5157     PIL->getExitingBlocks(ExitingBlocks);
5158     if (!ExitingBlocks.empty()) {
5159       BasicBlock *BB = ExitingBlocks[0];
5160       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5161         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5162       Inputs.push_back(BB->getTerminator());
5163     }
5164   }
5165 
5166   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5167          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5168          "Insertion point must be a normal instruction");
5169 
5170   // Then, climb up the immediate dominator tree as far as we can go while
5171   // still being dominated by the input positions.
5172   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5173 
5174   // Don't insert instructions before PHI nodes.
5175   while (isa<PHINode>(IP)) ++IP;
5176 
5177   // Ignore landingpad instructions.
5178   while (IP->isEHPad()) ++IP;
5179 
5180   // Ignore debug intrinsics.
5181   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5182 
5183   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5184   // IP consistent across expansions and allows the previously inserted
5185   // instructions to be reused by subsequent expansion.
5186   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5187     ++IP;
5188 
5189   return IP;
5190 }
5191 
5192 /// Emit instructions for the leading candidate expression for this LSRUse (this
5193 /// is called "expanding").
5194 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5195                            const Formula &F, BasicBlock::iterator IP,
5196                            SCEVExpander &Rewriter,
5197                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5198   if (LU.RigidFormula)
5199     return LF.OperandValToReplace;
5200 
5201   // Determine an input position which will be dominated by the operands and
5202   // which will dominate the result.
5203   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5204   Rewriter.setInsertPoint(&*IP);
5205 
5206   // Inform the Rewriter if we have a post-increment use, so that it can
5207   // perform an advantageous expansion.
5208   Rewriter.setPostInc(LF.PostIncLoops);
5209 
5210   // This is the type that the user actually needs.
5211   Type *OpTy = LF.OperandValToReplace->getType();
5212   // This will be the type that we'll initially expand to.
5213   Type *Ty = F.getType();
5214   if (!Ty)
5215     // No type known; just expand directly to the ultimate type.
5216     Ty = OpTy;
5217   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5218     // Expand directly to the ultimate type if it's the right size.
5219     Ty = OpTy;
5220   // This is the type to do integer arithmetic in.
5221   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5222 
5223   // Build up a list of operands to add together to form the full base.
5224   SmallVector<const SCEV *, 8> Ops;
5225 
5226   // Expand the BaseRegs portion.
5227   for (const SCEV *Reg : F.BaseRegs) {
5228     assert(!Reg->isZero() && "Zero allocated in a base register!");
5229 
5230     // If we're expanding for a post-inc user, make the post-inc adjustment.
5231     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5232     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5233   }
5234 
5235   // Expand the ScaledReg portion.
5236   Value *ICmpScaledV = nullptr;
5237   if (F.Scale != 0) {
5238     const SCEV *ScaledS = F.ScaledReg;
5239 
5240     // If we're expanding for a post-inc user, make the post-inc adjustment.
5241     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5242     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5243 
5244     if (LU.Kind == LSRUse::ICmpZero) {
5245       // Expand ScaleReg as if it was part of the base regs.
5246       if (F.Scale == 1)
5247         Ops.push_back(
5248             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5249       else {
5250         // An interesting way of "folding" with an icmp is to use a negated
5251         // scale, which we'll implement by inserting it into the other operand
5252         // of the icmp.
5253         assert(F.Scale == -1 &&
5254                "The only scale supported by ICmpZero uses is -1!");
5255         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5256       }
5257     } else {
5258       // Otherwise just expand the scaled register and an explicit scale,
5259       // which is expected to be matched as part of the address.
5260 
5261       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5262       // Unless the addressing mode will not be folded.
5263       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5264           isAMCompletelyFolded(TTI, LU, F)) {
5265         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5266         Ops.clear();
5267         Ops.push_back(SE.getUnknown(FullV));
5268       }
5269       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5270       if (F.Scale != 1)
5271         ScaledS =
5272             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5273       Ops.push_back(ScaledS);
5274     }
5275   }
5276 
5277   // Expand the GV portion.
5278   if (F.BaseGV) {
5279     // Flush the operand list to suppress SCEVExpander hoisting.
5280     if (!Ops.empty()) {
5281       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5282       Ops.clear();
5283       Ops.push_back(SE.getUnknown(FullV));
5284     }
5285     Ops.push_back(SE.getUnknown(F.BaseGV));
5286   }
5287 
5288   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5289   // unfolded offsets. LSR assumes they both live next to their uses.
5290   if (!Ops.empty()) {
5291     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5292     Ops.clear();
5293     Ops.push_back(SE.getUnknown(FullV));
5294   }
5295 
5296   // Expand the immediate portion.
5297   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5298   if (Offset != 0) {
5299     if (LU.Kind == LSRUse::ICmpZero) {
5300       // The other interesting way of "folding" with an ICmpZero is to use a
5301       // negated immediate.
5302       if (!ICmpScaledV)
5303         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5304       else {
5305         Ops.push_back(SE.getUnknown(ICmpScaledV));
5306         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5307       }
5308     } else {
5309       // Just add the immediate values. These again are expected to be matched
5310       // as part of the address.
5311       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5312     }
5313   }
5314 
5315   // Expand the unfolded offset portion.
5316   int64_t UnfoldedOffset = F.UnfoldedOffset;
5317   if (UnfoldedOffset != 0) {
5318     // Just add the immediate values.
5319     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5320                                                        UnfoldedOffset)));
5321   }
5322 
5323   // Emit instructions summing all the operands.
5324   const SCEV *FullS = Ops.empty() ?
5325                       SE.getConstant(IntTy, 0) :
5326                       SE.getAddExpr(Ops);
5327   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5328 
5329   // We're done expanding now, so reset the rewriter.
5330   Rewriter.clearPostInc();
5331 
5332   // An ICmpZero Formula represents an ICmp which we're handling as a
5333   // comparison against zero. Now that we've expanded an expression for that
5334   // form, update the ICmp's other operand.
5335   if (LU.Kind == LSRUse::ICmpZero) {
5336     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5337     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5338       DeadInsts.emplace_back(OperandIsInstr);
5339     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5340                            "a scale at the same time!");
5341     if (F.Scale == -1) {
5342       if (ICmpScaledV->getType() != OpTy) {
5343         Instruction *Cast =
5344           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5345                                                    OpTy, false),
5346                            ICmpScaledV, OpTy, "tmp", CI);
5347         ICmpScaledV = Cast;
5348       }
5349       CI->setOperand(1, ICmpScaledV);
5350     } else {
5351       // A scale of 1 means that the scale has been expanded as part of the
5352       // base regs.
5353       assert((F.Scale == 0 || F.Scale == 1) &&
5354              "ICmp does not support folding a global value and "
5355              "a scale at the same time!");
5356       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5357                                            -(uint64_t)Offset);
5358       if (C->getType() != OpTy)
5359         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5360                                                           OpTy, false),
5361                                   C, OpTy);
5362 
5363       CI->setOperand(1, C);
5364     }
5365   }
5366 
5367   return FullV;
5368 }
5369 
5370 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5371 /// effectively happens in their predecessor blocks, so the expression may need
5372 /// to be expanded in multiple places.
5373 void LSRInstance::RewriteForPHI(
5374     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5375     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5376   DenseMap<BasicBlock *, Value *> Inserted;
5377   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5378     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5379       bool needUpdateFixups = false;
5380       BasicBlock *BB = PN->getIncomingBlock(i);
5381 
5382       // If this is a critical edge, split the edge so that we do not insert
5383       // the code on all predecessor/successor paths.  We do this unless this
5384       // is the canonical backedge for this loop, which complicates post-inc
5385       // users.
5386       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5387           !isa<IndirectBrInst>(BB->getTerminator()) &&
5388           !isa<CatchSwitchInst>(BB->getTerminator())) {
5389         BasicBlock *Parent = PN->getParent();
5390         Loop *PNLoop = LI.getLoopFor(Parent);
5391         if (!PNLoop || Parent != PNLoop->getHeader()) {
5392           // Split the critical edge.
5393           BasicBlock *NewBB = nullptr;
5394           if (!Parent->isLandingPad()) {
5395             NewBB =
5396                 SplitCriticalEdge(BB, Parent,
5397                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5398                                       .setMergeIdenticalEdges()
5399                                       .setKeepOneInputPHIs());
5400           } else {
5401             SmallVector<BasicBlock*, 2> NewBBs;
5402             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5403             NewBB = NewBBs[0];
5404           }
5405           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5406           // phi predecessors are identical. The simple thing to do is skip
5407           // splitting in this case rather than complicate the API.
5408           if (NewBB) {
5409             // If PN is outside of the loop and BB is in the loop, we want to
5410             // move the block to be immediately before the PHI block, not
5411             // immediately after BB.
5412             if (L->contains(BB) && !L->contains(PN))
5413               NewBB->moveBefore(PN->getParent());
5414 
5415             // Splitting the edge can reduce the number of PHI entries we have.
5416             e = PN->getNumIncomingValues();
5417             BB = NewBB;
5418             i = PN->getBasicBlockIndex(BB);
5419 
5420             needUpdateFixups = true;
5421           }
5422         }
5423       }
5424 
5425       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5426         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5427       if (!Pair.second)
5428         PN->setIncomingValue(i, Pair.first->second);
5429       else {
5430         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5431                               Rewriter, DeadInsts);
5432 
5433         // If this is reuse-by-noop-cast, insert the noop cast.
5434         Type *OpTy = LF.OperandValToReplace->getType();
5435         if (FullV->getType() != OpTy)
5436           FullV =
5437             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5438                                                      OpTy, false),
5439                              FullV, LF.OperandValToReplace->getType(),
5440                              "tmp", BB->getTerminator());
5441 
5442         PN->setIncomingValue(i, FullV);
5443         Pair.first->second = FullV;
5444       }
5445 
5446       // If LSR splits critical edge and phi node has other pending
5447       // fixup operands, we need to update those pending fixups. Otherwise
5448       // formulae will not be implemented completely and some instructions
5449       // will not be eliminated.
5450       if (needUpdateFixups) {
5451         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5452           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5453             // If fixup is supposed to rewrite some operand in the phi
5454             // that was just updated, it may be already moved to
5455             // another phi node. Such fixup requires update.
5456             if (Fixup.UserInst == PN) {
5457               // Check if the operand we try to replace still exists in the
5458               // original phi.
5459               bool foundInOriginalPHI = false;
5460               for (const auto &val : PN->incoming_values())
5461                 if (val == Fixup.OperandValToReplace) {
5462                   foundInOriginalPHI = true;
5463                   break;
5464                 }
5465 
5466               // If fixup operand found in original PHI - nothing to do.
5467               if (foundInOriginalPHI)
5468                 continue;
5469 
5470               // Otherwise it might be moved to another PHI and requires update.
5471               // If fixup operand not found in any of the incoming blocks that
5472               // means we have already rewritten it - nothing to do.
5473               for (const auto &Block : PN->blocks())
5474                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5475                      ++I) {
5476                   PHINode *NewPN = cast<PHINode>(I);
5477                   for (const auto &val : NewPN->incoming_values())
5478                     if (val == Fixup.OperandValToReplace)
5479                       Fixup.UserInst = NewPN;
5480                 }
5481             }
5482       }
5483     }
5484 }
5485 
5486 /// Emit instructions for the leading candidate expression for this LSRUse (this
5487 /// is called "expanding"), and update the UserInst to reference the newly
5488 /// expanded value.
5489 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5490                           const Formula &F, SCEVExpander &Rewriter,
5491                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5492   // First, find an insertion point that dominates UserInst. For PHI nodes,
5493   // find the nearest block which dominates all the relevant uses.
5494   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5495     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5496   } else {
5497     Value *FullV =
5498       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5499 
5500     // If this is reuse-by-noop-cast, insert the noop cast.
5501     Type *OpTy = LF.OperandValToReplace->getType();
5502     if (FullV->getType() != OpTy) {
5503       Instruction *Cast =
5504         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5505                          FullV, OpTy, "tmp", LF.UserInst);
5506       FullV = Cast;
5507     }
5508 
5509     // Update the user. ICmpZero is handled specially here (for now) because
5510     // Expand may have updated one of the operands of the icmp already, and
5511     // its new value may happen to be equal to LF.OperandValToReplace, in
5512     // which case doing replaceUsesOfWith leads to replacing both operands
5513     // with the same value. TODO: Reorganize this.
5514     if (LU.Kind == LSRUse::ICmpZero)
5515       LF.UserInst->setOperand(0, FullV);
5516     else
5517       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5518   }
5519 
5520   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5521     DeadInsts.emplace_back(OperandIsInstr);
5522 }
5523 
5524 /// Rewrite all the fixup locations with new values, following the chosen
5525 /// solution.
5526 void LSRInstance::ImplementSolution(
5527     const SmallVectorImpl<const Formula *> &Solution) {
5528   // Keep track of instructions we may have made dead, so that
5529   // we can remove them after we are done working.
5530   SmallVector<WeakTrackingVH, 16> DeadInsts;
5531 
5532   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5533                         false);
5534 #ifndef NDEBUG
5535   Rewriter.setDebugType(DEBUG_TYPE);
5536 #endif
5537   Rewriter.disableCanonicalMode();
5538   Rewriter.enableLSRMode();
5539   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5540 
5541   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5542   for (const IVChain &Chain : IVChainVec) {
5543     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5544       Rewriter.setChainedPhi(PN);
5545   }
5546 
5547   // Expand the new value definitions and update the users.
5548   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5549     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5550       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5551       Changed = true;
5552     }
5553 
5554   for (const IVChain &Chain : IVChainVec) {
5555     GenerateIVChain(Chain, Rewriter, DeadInsts);
5556     Changed = true;
5557   }
5558   // Clean up after ourselves. This must be done before deleting any
5559   // instructions.
5560   Rewriter.clear();
5561 
5562   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5563                                                                   &TLI, MSSAU);
5564 }
5565 
5566 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5567                          DominatorTree &DT, LoopInfo &LI,
5568                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5569                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5570     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5571       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ?
5572         PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) {
5573   // If LoopSimplify form is not available, stay out of trouble.
5574   if (!L->isLoopSimplifyForm())
5575     return;
5576 
5577   // If there's no interesting work to be done, bail early.
5578   if (IU.empty()) return;
5579 
5580   // If there's too much analysis to be done, bail early. We won't be able to
5581   // model the problem anyway.
5582   unsigned NumUsers = 0;
5583   for (const IVStrideUse &U : IU) {
5584     if (++NumUsers > MaxIVUsers) {
5585       (void)U;
5586       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5587                         << "\n");
5588       return;
5589     }
5590     // Bail out if we have a PHI on an EHPad that gets a value from a
5591     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5592     // no good place to stick any instructions.
5593     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5594        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5595        if (isa<FuncletPadInst>(FirstNonPHI) ||
5596            isa<CatchSwitchInst>(FirstNonPHI))
5597          for (BasicBlock *PredBB : PN->blocks())
5598            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5599              return;
5600     }
5601   }
5602 
5603 #ifndef NDEBUG
5604   // All dominating loops must have preheaders, or SCEVExpander may not be able
5605   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5606   //
5607   // IVUsers analysis should only create users that are dominated by simple loop
5608   // headers. Since this loop should dominate all of its users, its user list
5609   // should be empty if this loop itself is not within a simple loop nest.
5610   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5611        Rung; Rung = Rung->getIDom()) {
5612     BasicBlock *BB = Rung->getBlock();
5613     const Loop *DomLoop = LI.getLoopFor(BB);
5614     if (DomLoop && DomLoop->getHeader() == BB) {
5615       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5616     }
5617   }
5618 #endif // DEBUG
5619 
5620   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5621              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5622              dbgs() << ":\n");
5623 
5624   // First, perform some low-level loop optimizations.
5625   OptimizeShadowIV();
5626   OptimizeLoopTermCond();
5627 
5628   // If loop preparation eliminates all interesting IV users, bail.
5629   if (IU.empty()) return;
5630 
5631   // Skip nested loops until we can model them better with formulae.
5632   if (!L->isInnermost()) {
5633     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5634     return;
5635   }
5636 
5637   // Start collecting data and preparing for the solver.
5638   // If number of registers is not the major cost, we cannot benefit from the
5639   // current profitable chain optimization which is based on number of
5640   // registers.
5641   // FIXME: add profitable chain optimization for other kinds major cost, for
5642   // example number of instructions.
5643   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5644     CollectChains();
5645   CollectInterestingTypesAndFactors();
5646   CollectFixupsAndInitialFormulae();
5647   CollectLoopInvariantFixupsAndFormulae();
5648 
5649   if (Uses.empty())
5650     return;
5651 
5652   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5653              print_uses(dbgs()));
5654 
5655   // Now use the reuse data to generate a bunch of interesting ways
5656   // to formulate the values needed for the uses.
5657   GenerateAllReuseFormulae();
5658 
5659   FilterOutUndesirableDedicatedRegisters();
5660   NarrowSearchSpaceUsingHeuristics();
5661 
5662   SmallVector<const Formula *, 8> Solution;
5663   Solve(Solution);
5664 
5665   // Release memory that is no longer needed.
5666   Factors.clear();
5667   Types.clear();
5668   RegUses.clear();
5669 
5670   if (Solution.empty())
5671     return;
5672 
5673 #ifndef NDEBUG
5674   // Formulae should be legal.
5675   for (const LSRUse &LU : Uses) {
5676     for (const Formula &F : LU.Formulae)
5677       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5678                         F) && "Illegal formula generated!");
5679   };
5680 #endif
5681 
5682   // Now that we've decided what we want, make it so.
5683   ImplementSolution(Solution);
5684 }
5685 
5686 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5687 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5688   if (Factors.empty() && Types.empty()) return;
5689 
5690   OS << "LSR has identified the following interesting factors and types: ";
5691   bool First = true;
5692 
5693   for (int64_t Factor : Factors) {
5694     if (!First) OS << ", ";
5695     First = false;
5696     OS << '*' << Factor;
5697   }
5698 
5699   for (Type *Ty : Types) {
5700     if (!First) OS << ", ";
5701     First = false;
5702     OS << '(' << *Ty << ')';
5703   }
5704   OS << '\n';
5705 }
5706 
5707 void LSRInstance::print_fixups(raw_ostream &OS) const {
5708   OS << "LSR is examining the following fixup sites:\n";
5709   for (const LSRUse &LU : Uses)
5710     for (const LSRFixup &LF : LU.Fixups) {
5711       dbgs() << "  ";
5712       LF.print(OS);
5713       OS << '\n';
5714     }
5715 }
5716 
5717 void LSRInstance::print_uses(raw_ostream &OS) const {
5718   OS << "LSR is examining the following uses:\n";
5719   for (const LSRUse &LU : Uses) {
5720     dbgs() << "  ";
5721     LU.print(OS);
5722     OS << '\n';
5723     for (const Formula &F : LU.Formulae) {
5724       OS << "    ";
5725       F.print(OS);
5726       OS << '\n';
5727     }
5728   }
5729 }
5730 
5731 void LSRInstance::print(raw_ostream &OS) const {
5732   print_factors_and_types(OS);
5733   print_fixups(OS);
5734   print_uses(OS);
5735 }
5736 
5737 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5738   print(errs()); errs() << '\n';
5739 }
5740 #endif
5741 
5742 namespace {
5743 
5744 class LoopStrengthReduce : public LoopPass {
5745 public:
5746   static char ID; // Pass ID, replacement for typeid
5747 
5748   LoopStrengthReduce();
5749 
5750 private:
5751   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5752   void getAnalysisUsage(AnalysisUsage &AU) const override;
5753 };
5754 
5755 } // end anonymous namespace
5756 
5757 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5758   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5759 }
5760 
5761 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5762   // We split critical edges, so we change the CFG.  However, we do update
5763   // many analyses if they are around.
5764   AU.addPreservedID(LoopSimplifyID);
5765 
5766   AU.addRequired<LoopInfoWrapperPass>();
5767   AU.addPreserved<LoopInfoWrapperPass>();
5768   AU.addRequiredID(LoopSimplifyID);
5769   AU.addRequired<DominatorTreeWrapperPass>();
5770   AU.addPreserved<DominatorTreeWrapperPass>();
5771   AU.addRequired<ScalarEvolutionWrapperPass>();
5772   AU.addPreserved<ScalarEvolutionWrapperPass>();
5773   AU.addRequired<AssumptionCacheTracker>();
5774   AU.addRequired<TargetLibraryInfoWrapperPass>();
5775   // Requiring LoopSimplify a second time here prevents IVUsers from running
5776   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5777   AU.addRequiredID(LoopSimplifyID);
5778   AU.addRequired<IVUsersWrapperPass>();
5779   AU.addPreserved<IVUsersWrapperPass>();
5780   AU.addRequired<TargetTransformInfoWrapperPass>();
5781   AU.addPreserved<MemorySSAWrapperPass>();
5782 }
5783 
5784 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t, DIExpression *>, 4>;
5785 using EqualValuesMap = DenseMap<DbgValueInst *, EqualValues>;
5786 
5787 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE,
5788                                  EqualValuesMap &DbgValueToEqualSet) {
5789   for (auto &B : L->getBlocks()) {
5790     for (auto &I : *B) {
5791       auto DVI = dyn_cast<DbgValueInst>(&I);
5792       if (!DVI)
5793         continue;
5794       auto V = DVI->getVariableLocation();
5795       if (!V || !SE.isSCEVable(V->getType()))
5796         continue;
5797       auto DbgValueSCEV = SE.getSCEV(V);
5798       EqualValues EqSet;
5799       for (PHINode &Phi : L->getHeader()->phis()) {
5800         if (V->getType() != Phi.getType())
5801           continue;
5802         if (!SE.isSCEVable(Phi.getType()))
5803           continue;
5804         auto PhiSCEV = SE.getSCEV(&Phi);
5805         Optional<APInt> Offset =
5806                 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV);
5807         if (Offset && Offset->getMinSignedBits() <= 64)
5808           EqSet.emplace_back(std::make_tuple(
5809               &Phi, Offset.getValue().getSExtValue(), DVI->getExpression()));
5810       }
5811       DbgValueToEqualSet[DVI] = std::move(EqSet);
5812     }
5813   }
5814 }
5815 
5816 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet) {
5817   for (auto A : DbgValueToEqualSet) {
5818     auto DVI = A.first;
5819     // Only update those that are now undef.
5820     if (!isa_and_nonnull<UndefValue>(DVI->getVariableLocation()))
5821       continue;
5822     for (auto EV : A.second) {
5823       auto V = std::get<WeakVH>(EV);
5824       if (!V)
5825         continue;
5826       auto DbgDIExpr = std::get<DIExpression *>(EV);
5827       auto Offset = std::get<int64_t>(EV);
5828       auto &Ctx = DVI->getContext();
5829       DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
5830       if (Offset) {
5831         SmallVector<uint64_t, 8> Ops;
5832         DIExpression::appendOffset(Ops, Offset);
5833         DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true);
5834       }
5835       DVI->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr));
5836       break;
5837     }
5838   }
5839 }
5840 
5841 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5842                                DominatorTree &DT, LoopInfo &LI,
5843                                const TargetTransformInfo &TTI,
5844                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5845                                MemorySSA *MSSA) {
5846 
5847   bool Changed = false;
5848   std::unique_ptr<MemorySSAUpdater> MSSAU;
5849   if (MSSA)
5850     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5851 
5852   // Run the main LSR transformation.
5853   Changed |=
5854       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5855 
5856   // Debug preservation - before we start removing anything create equivalence
5857   // sets for the llvm.dbg.value intrinsics.
5858   EqualValuesMap DbgValueToEqualSet;
5859   DbgGatherEqualValues(L, SE, DbgValueToEqualSet);
5860 
5861   // Remove any extra phis created by processing inner loops.
5862   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5863   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5864     SmallVector<WeakTrackingVH, 16> DeadInsts;
5865     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5866     SCEVExpander Rewriter(SE, DL, "lsr", false);
5867 #ifndef NDEBUG
5868     Rewriter.setDebugType(DEBUG_TYPE);
5869 #endif
5870     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5871     if (numFolded) {
5872       Changed = true;
5873       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5874                                                            MSSAU.get());
5875       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5876     }
5877   }
5878 
5879   DbgApplyEqualValues(DbgValueToEqualSet);
5880 
5881   return Changed;
5882 }
5883 
5884 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5885   if (skipLoop(L))
5886     return false;
5887 
5888   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5889   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5890   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5891   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5892   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5893       *L->getHeader()->getParent());
5894   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5895       *L->getHeader()->getParent());
5896   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5897       *L->getHeader()->getParent());
5898   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5899   MemorySSA *MSSA = nullptr;
5900   if (MSSAAnalysis)
5901     MSSA = &MSSAAnalysis->getMSSA();
5902   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5903 }
5904 
5905 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5906                                               LoopStandardAnalysisResults &AR,
5907                                               LPMUpdater &) {
5908   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5909                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5910     return PreservedAnalyses::all();
5911 
5912   auto PA = getLoopPassPreservedAnalyses();
5913   if (AR.MSSA)
5914     PA.preserve<MemorySSAAnalysis>();
5915   return PA;
5916 }
5917 
5918 char LoopStrengthReduce::ID = 0;
5919 
5920 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5921                       "Loop Strength Reduction", false, false)
5922 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5923 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5924 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5925 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5926 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5927 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5928 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5929                     "Loop Strength Reduction", false, false)
5930 
5931 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5932