1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Config/llvm-config.h" 81 #include "llvm/IR/BasicBlock.h" 82 #include "llvm/IR/Constant.h" 83 #include "llvm/IR/Constants.h" 84 #include "llvm/IR/DebugInfoMetadata.h" 85 #include "llvm/IR/DerivedTypes.h" 86 #include "llvm/IR/Dominators.h" 87 #include "llvm/IR/GlobalValue.h" 88 #include "llvm/IR/IRBuilder.h" 89 #include "llvm/IR/InstrTypes.h" 90 #include "llvm/IR/Instruction.h" 91 #include "llvm/IR/Instructions.h" 92 #include "llvm/IR/IntrinsicInst.h" 93 #include "llvm/IR/Intrinsics.h" 94 #include "llvm/IR/Module.h" 95 #include "llvm/IR/OperandTraits.h" 96 #include "llvm/IR/Operator.h" 97 #include "llvm/IR/PassManager.h" 98 #include "llvm/IR/Type.h" 99 #include "llvm/IR/Use.h" 100 #include "llvm/IR/User.h" 101 #include "llvm/IR/Value.h" 102 #include "llvm/IR/ValueHandle.h" 103 #include "llvm/InitializePasses.h" 104 #include "llvm/Pass.h" 105 #include "llvm/Support/Casting.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Transforms/Scalar.h" 113 #include "llvm/Transforms/Utils.h" 114 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstdlib> 122 #include <iterator> 123 #include <limits> 124 #include <map> 125 #include <numeric> 126 #include <utility> 127 128 using namespace llvm; 129 130 #define DEBUG_TYPE "loop-reduce" 131 132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 133 /// bail out. This threshold is far beyond the number of users that LSR can 134 /// conceivably solve, so it should not affect generated code, but catches the 135 /// worst cases before LSR burns too much compile time and stack space. 136 static const unsigned MaxIVUsers = 200; 137 138 // Temporary flag to cleanup congruent phis after LSR phi expansion. 139 // It's currently disabled until we can determine whether it's truly useful or 140 // not. The flag should be removed after the v3.0 release. 141 // This is now needed for ivchains. 142 static cl::opt<bool> EnablePhiElim( 143 "enable-lsr-phielim", cl::Hidden, cl::init(true), 144 cl::desc("Enable LSR phi elimination")); 145 146 // The flag adds instruction count to solutions cost comparision. 147 static cl::opt<bool> InsnsCost( 148 "lsr-insns-cost", cl::Hidden, cl::init(true), 149 cl::desc("Add instruction count to a LSR cost model")); 150 151 // Flag to choose how to narrow complex lsr solution 152 static cl::opt<bool> LSRExpNarrow( 153 "lsr-exp-narrow", cl::Hidden, cl::init(false), 154 cl::desc("Narrow LSR complex solution using" 155 " expectation of registers number")); 156 157 // Flag to narrow search space by filtering non-optimal formulae with 158 // the same ScaledReg and Scale. 159 static cl::opt<bool> FilterSameScaledReg( 160 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 161 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 162 " with the same ScaledReg and Scale")); 163 164 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 165 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 166 cl::desc("A flag that overrides the target's preferred addressing mode."), 167 cl::values(clEnumValN(TTI::AMK_None, 168 "none", 169 "Don't prefer any addressing mode"), 170 clEnumValN(TTI::AMK_PreIndexed, 171 "preindexed", 172 "Prefer pre-indexed addressing mode"), 173 clEnumValN(TTI::AMK_PostIndexed, 174 "postindexed", 175 "Prefer post-indexed addressing mode"))); 176 177 static cl::opt<unsigned> ComplexityLimit( 178 "lsr-complexity-limit", cl::Hidden, 179 cl::init(std::numeric_limits<uint16_t>::max()), 180 cl::desc("LSR search space complexity limit")); 181 182 static cl::opt<unsigned> SetupCostDepthLimit( 183 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 184 cl::desc("The limit on recursion depth for LSRs setup cost")); 185 186 #ifndef NDEBUG 187 // Stress test IV chain generation. 188 static cl::opt<bool> StressIVChain( 189 "stress-ivchain", cl::Hidden, cl::init(false), 190 cl::desc("Stress test LSR IV chains")); 191 #else 192 static bool StressIVChain = false; 193 #endif 194 195 namespace { 196 197 struct MemAccessTy { 198 /// Used in situations where the accessed memory type is unknown. 199 static const unsigned UnknownAddressSpace = 200 std::numeric_limits<unsigned>::max(); 201 202 Type *MemTy = nullptr; 203 unsigned AddrSpace = UnknownAddressSpace; 204 205 MemAccessTy() = default; 206 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 207 208 bool operator==(MemAccessTy Other) const { 209 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 210 } 211 212 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 213 214 static MemAccessTy getUnknown(LLVMContext &Ctx, 215 unsigned AS = UnknownAddressSpace) { 216 return MemAccessTy(Type::getVoidTy(Ctx), AS); 217 } 218 219 Type *getType() { return MemTy; } 220 }; 221 222 /// This class holds data which is used to order reuse candidates. 223 class RegSortData { 224 public: 225 /// This represents the set of LSRUse indices which reference 226 /// a particular register. 227 SmallBitVector UsedByIndices; 228 229 void print(raw_ostream &OS) const; 230 void dump() const; 231 }; 232 233 } // end anonymous namespace 234 235 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 236 void RegSortData::print(raw_ostream &OS) const { 237 OS << "[NumUses=" << UsedByIndices.count() << ']'; 238 } 239 240 LLVM_DUMP_METHOD void RegSortData::dump() const { 241 print(errs()); errs() << '\n'; 242 } 243 #endif 244 245 namespace { 246 247 /// Map register candidates to information about how they are used. 248 class RegUseTracker { 249 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 250 251 RegUsesTy RegUsesMap; 252 SmallVector<const SCEV *, 16> RegSequence; 253 254 public: 255 void countRegister(const SCEV *Reg, size_t LUIdx); 256 void dropRegister(const SCEV *Reg, size_t LUIdx); 257 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 258 259 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 260 261 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 262 263 void clear(); 264 265 using iterator = SmallVectorImpl<const SCEV *>::iterator; 266 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 267 268 iterator begin() { return RegSequence.begin(); } 269 iterator end() { return RegSequence.end(); } 270 const_iterator begin() const { return RegSequence.begin(); } 271 const_iterator end() const { return RegSequence.end(); } 272 }; 273 274 } // end anonymous namespace 275 276 void 277 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 278 std::pair<RegUsesTy::iterator, bool> Pair = 279 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 280 RegSortData &RSD = Pair.first->second; 281 if (Pair.second) 282 RegSequence.push_back(Reg); 283 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 284 RSD.UsedByIndices.set(LUIdx); 285 } 286 287 void 288 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 289 RegUsesTy::iterator It = RegUsesMap.find(Reg); 290 assert(It != RegUsesMap.end()); 291 RegSortData &RSD = It->second; 292 assert(RSD.UsedByIndices.size() > LUIdx); 293 RSD.UsedByIndices.reset(LUIdx); 294 } 295 296 void 297 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 298 assert(LUIdx <= LastLUIdx); 299 300 // Update RegUses. The data structure is not optimized for this purpose; 301 // we must iterate through it and update each of the bit vectors. 302 for (auto &Pair : RegUsesMap) { 303 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 304 if (LUIdx < UsedByIndices.size()) 305 UsedByIndices[LUIdx] = 306 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 307 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 308 } 309 } 310 311 bool 312 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 313 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 314 if (I == RegUsesMap.end()) 315 return false; 316 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 317 int i = UsedByIndices.find_first(); 318 if (i == -1) return false; 319 if ((size_t)i != LUIdx) return true; 320 return UsedByIndices.find_next(i) != -1; 321 } 322 323 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 324 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 325 assert(I != RegUsesMap.end() && "Unknown register!"); 326 return I->second.UsedByIndices; 327 } 328 329 void RegUseTracker::clear() { 330 RegUsesMap.clear(); 331 RegSequence.clear(); 332 } 333 334 namespace { 335 336 /// This class holds information that describes a formula for computing 337 /// satisfying a use. It may include broken-out immediates and scaled registers. 338 struct Formula { 339 /// Global base address used for complex addressing. 340 GlobalValue *BaseGV = nullptr; 341 342 /// Base offset for complex addressing. 343 int64_t BaseOffset = 0; 344 345 /// Whether any complex addressing has a base register. 346 bool HasBaseReg = false; 347 348 /// The scale of any complex addressing. 349 int64_t Scale = 0; 350 351 /// The list of "base" registers for this use. When this is non-empty. The 352 /// canonical representation of a formula is 353 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 354 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 355 /// 3. The reg containing recurrent expr related with currect loop in the 356 /// formula should be put in the ScaledReg. 357 /// #1 enforces that the scaled register is always used when at least two 358 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 359 /// #2 enforces that 1 * reg is reg. 360 /// #3 ensures invariant regs with respect to current loop can be combined 361 /// together in LSR codegen. 362 /// This invariant can be temporarily broken while building a formula. 363 /// However, every formula inserted into the LSRInstance must be in canonical 364 /// form. 365 SmallVector<const SCEV *, 4> BaseRegs; 366 367 /// The 'scaled' register for this use. This should be non-null when Scale is 368 /// not zero. 369 const SCEV *ScaledReg = nullptr; 370 371 /// An additional constant offset which added near the use. This requires a 372 /// temporary register, but the offset itself can live in an add immediate 373 /// field rather than a register. 374 int64_t UnfoldedOffset = 0; 375 376 Formula() = default; 377 378 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 379 380 bool isCanonical(const Loop &L) const; 381 382 void canonicalize(const Loop &L); 383 384 bool unscale(); 385 386 bool hasZeroEnd() const; 387 388 size_t getNumRegs() const; 389 Type *getType() const; 390 391 void deleteBaseReg(const SCEV *&S); 392 393 bool referencesReg(const SCEV *S) const; 394 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 395 const RegUseTracker &RegUses) const; 396 397 void print(raw_ostream &OS) const; 398 void dump() const; 399 }; 400 401 } // end anonymous namespace 402 403 /// Recursion helper for initialMatch. 404 static void DoInitialMatch(const SCEV *S, Loop *L, 405 SmallVectorImpl<const SCEV *> &Good, 406 SmallVectorImpl<const SCEV *> &Bad, 407 ScalarEvolution &SE) { 408 // Collect expressions which properly dominate the loop header. 409 if (SE.properlyDominates(S, L->getHeader())) { 410 Good.push_back(S); 411 return; 412 } 413 414 // Look at add operands. 415 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 416 for (const SCEV *S : Add->operands()) 417 DoInitialMatch(S, L, Good, Bad, SE); 418 return; 419 } 420 421 // Look at addrec operands. 422 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 423 if (!AR->getStart()->isZero() && AR->isAffine()) { 424 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 425 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 426 AR->getStepRecurrence(SE), 427 // FIXME: AR->getNoWrapFlags() 428 AR->getLoop(), SCEV::FlagAnyWrap), 429 L, Good, Bad, SE); 430 return; 431 } 432 433 // Handle a multiplication by -1 (negation) if it didn't fold. 434 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 435 if (Mul->getOperand(0)->isAllOnesValue()) { 436 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 437 const SCEV *NewMul = SE.getMulExpr(Ops); 438 439 SmallVector<const SCEV *, 4> MyGood; 440 SmallVector<const SCEV *, 4> MyBad; 441 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 442 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 443 SE.getEffectiveSCEVType(NewMul->getType()))); 444 for (const SCEV *S : MyGood) 445 Good.push_back(SE.getMulExpr(NegOne, S)); 446 for (const SCEV *S : MyBad) 447 Bad.push_back(SE.getMulExpr(NegOne, S)); 448 return; 449 } 450 451 // Ok, we can't do anything interesting. Just stuff the whole thing into a 452 // register and hope for the best. 453 Bad.push_back(S); 454 } 455 456 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 457 /// all loop-invariant and loop-computable values in a single base register. 458 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 459 SmallVector<const SCEV *, 4> Good; 460 SmallVector<const SCEV *, 4> Bad; 461 DoInitialMatch(S, L, Good, Bad, SE); 462 if (!Good.empty()) { 463 const SCEV *Sum = SE.getAddExpr(Good); 464 if (!Sum->isZero()) 465 BaseRegs.push_back(Sum); 466 HasBaseReg = true; 467 } 468 if (!Bad.empty()) { 469 const SCEV *Sum = SE.getAddExpr(Bad); 470 if (!Sum->isZero()) 471 BaseRegs.push_back(Sum); 472 HasBaseReg = true; 473 } 474 canonicalize(*L); 475 } 476 477 /// Check whether or not this formula satisfies the canonical 478 /// representation. 479 /// \see Formula::BaseRegs. 480 bool Formula::isCanonical(const Loop &L) const { 481 if (!ScaledReg) 482 return BaseRegs.size() <= 1; 483 484 if (Scale != 1) 485 return true; 486 487 if (Scale == 1 && BaseRegs.empty()) 488 return false; 489 490 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 491 if (SAR && SAR->getLoop() == &L) 492 return true; 493 494 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 495 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 496 // loop, we want to swap the reg in BaseRegs with ScaledReg. 497 auto I = find_if(BaseRegs, [&](const SCEV *S) { 498 return isa<const SCEVAddRecExpr>(S) && 499 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 500 }); 501 return I == BaseRegs.end(); 502 } 503 504 /// Helper method to morph a formula into its canonical representation. 505 /// \see Formula::BaseRegs. 506 /// Every formula having more than one base register, must use the ScaledReg 507 /// field. Otherwise, we would have to do special cases everywhere in LSR 508 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 509 /// On the other hand, 1*reg should be canonicalized into reg. 510 void Formula::canonicalize(const Loop &L) { 511 if (isCanonical(L)) 512 return; 513 // So far we did not need this case. This is easy to implement but it is 514 // useless to maintain dead code. Beside it could hurt compile time. 515 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 516 517 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 518 if (!ScaledReg) { 519 ScaledReg = BaseRegs.pop_back_val(); 520 Scale = 1; 521 } 522 523 // If ScaledReg is an invariant with respect to L, find the reg from 524 // BaseRegs containing the recurrent expr related with Loop L. Swap the 525 // reg with ScaledReg. 526 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 527 if (!SAR || SAR->getLoop() != &L) { 528 auto I = find_if(BaseRegs, [&](const SCEV *S) { 529 return isa<const SCEVAddRecExpr>(S) && 530 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 531 }); 532 if (I != BaseRegs.end()) 533 std::swap(ScaledReg, *I); 534 } 535 } 536 537 /// Get rid of the scale in the formula. 538 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 539 /// \return true if it was possible to get rid of the scale, false otherwise. 540 /// \note After this operation the formula may not be in the canonical form. 541 bool Formula::unscale() { 542 if (Scale != 1) 543 return false; 544 Scale = 0; 545 BaseRegs.push_back(ScaledReg); 546 ScaledReg = nullptr; 547 return true; 548 } 549 550 bool Formula::hasZeroEnd() const { 551 if (UnfoldedOffset || BaseOffset) 552 return false; 553 if (BaseRegs.size() != 1 || ScaledReg) 554 return false; 555 return true; 556 } 557 558 /// Return the total number of register operands used by this formula. This does 559 /// not include register uses implied by non-constant addrec strides. 560 size_t Formula::getNumRegs() const { 561 return !!ScaledReg + BaseRegs.size(); 562 } 563 564 /// Return the type of this formula, if it has one, or null otherwise. This type 565 /// is meaningless except for the bit size. 566 Type *Formula::getType() const { 567 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 568 ScaledReg ? ScaledReg->getType() : 569 BaseGV ? BaseGV->getType() : 570 nullptr; 571 } 572 573 /// Delete the given base reg from the BaseRegs list. 574 void Formula::deleteBaseReg(const SCEV *&S) { 575 if (&S != &BaseRegs.back()) 576 std::swap(S, BaseRegs.back()); 577 BaseRegs.pop_back(); 578 } 579 580 /// Test if this formula references the given register. 581 bool Formula::referencesReg(const SCEV *S) const { 582 return S == ScaledReg || is_contained(BaseRegs, S); 583 } 584 585 /// Test whether this formula uses registers which are used by uses other than 586 /// the use with the given index. 587 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 588 const RegUseTracker &RegUses) const { 589 if (ScaledReg) 590 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 591 return true; 592 for (const SCEV *BaseReg : BaseRegs) 593 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 594 return true; 595 return false; 596 } 597 598 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 599 void Formula::print(raw_ostream &OS) const { 600 bool First = true; 601 if (BaseGV) { 602 if (!First) OS << " + "; else First = false; 603 BaseGV->printAsOperand(OS, /*PrintType=*/false); 604 } 605 if (BaseOffset != 0) { 606 if (!First) OS << " + "; else First = false; 607 OS << BaseOffset; 608 } 609 for (const SCEV *BaseReg : BaseRegs) { 610 if (!First) OS << " + "; else First = false; 611 OS << "reg(" << *BaseReg << ')'; 612 } 613 if (HasBaseReg && BaseRegs.empty()) { 614 if (!First) OS << " + "; else First = false; 615 OS << "**error: HasBaseReg**"; 616 } else if (!HasBaseReg && !BaseRegs.empty()) { 617 if (!First) OS << " + "; else First = false; 618 OS << "**error: !HasBaseReg**"; 619 } 620 if (Scale != 0) { 621 if (!First) OS << " + "; else First = false; 622 OS << Scale << "*reg("; 623 if (ScaledReg) 624 OS << *ScaledReg; 625 else 626 OS << "<unknown>"; 627 OS << ')'; 628 } 629 if (UnfoldedOffset != 0) { 630 if (!First) OS << " + "; 631 OS << "imm(" << UnfoldedOffset << ')'; 632 } 633 } 634 635 LLVM_DUMP_METHOD void Formula::dump() const { 636 print(errs()); errs() << '\n'; 637 } 638 #endif 639 640 /// Return true if the given addrec can be sign-extended without changing its 641 /// value. 642 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 643 Type *WideTy = 644 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 645 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 646 } 647 648 /// Return true if the given add can be sign-extended without changing its 649 /// value. 650 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 651 Type *WideTy = 652 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 653 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 654 } 655 656 /// Return true if the given mul can be sign-extended without changing its 657 /// value. 658 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 659 Type *WideTy = 660 IntegerType::get(SE.getContext(), 661 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 662 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 663 } 664 665 /// Return an expression for LHS /s RHS, if it can be determined and if the 666 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 667 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 668 /// the multiplication may overflow, which is useful when the result will be 669 /// used in a context where the most significant bits are ignored. 670 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 671 ScalarEvolution &SE, 672 bool IgnoreSignificantBits = false) { 673 // Handle the trivial case, which works for any SCEV type. 674 if (LHS == RHS) 675 return SE.getConstant(LHS->getType(), 1); 676 677 // Handle a few RHS special cases. 678 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 679 if (RC) { 680 const APInt &RA = RC->getAPInt(); 681 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 682 // some folding. 683 if (RA.isAllOnesValue()) 684 return SE.getMulExpr(LHS, RC); 685 // Handle x /s 1 as x. 686 if (RA == 1) 687 return LHS; 688 } 689 690 // Check for a division of a constant by a constant. 691 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 692 if (!RC) 693 return nullptr; 694 const APInt &LA = C->getAPInt(); 695 const APInt &RA = RC->getAPInt(); 696 if (LA.srem(RA) != 0) 697 return nullptr; 698 return SE.getConstant(LA.sdiv(RA)); 699 } 700 701 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 702 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 703 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 704 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 705 IgnoreSignificantBits); 706 if (!Step) return nullptr; 707 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 708 IgnoreSignificantBits); 709 if (!Start) return nullptr; 710 // FlagNW is independent of the start value, step direction, and is 711 // preserved with smaller magnitude steps. 712 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 713 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 714 } 715 return nullptr; 716 } 717 718 // Distribute the sdiv over add operands, if the add doesn't overflow. 719 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 720 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 721 SmallVector<const SCEV *, 8> Ops; 722 for (const SCEV *S : Add->operands()) { 723 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 724 if (!Op) return nullptr; 725 Ops.push_back(Op); 726 } 727 return SE.getAddExpr(Ops); 728 } 729 return nullptr; 730 } 731 732 // Check for a multiply operand that we can pull RHS out of. 733 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 734 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 735 SmallVector<const SCEV *, 4> Ops; 736 bool Found = false; 737 for (const SCEV *S : Mul->operands()) { 738 if (!Found) 739 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 740 IgnoreSignificantBits)) { 741 S = Q; 742 Found = true; 743 } 744 Ops.push_back(S); 745 } 746 return Found ? SE.getMulExpr(Ops) : nullptr; 747 } 748 return nullptr; 749 } 750 751 // Otherwise we don't know. 752 return nullptr; 753 } 754 755 /// If S involves the addition of a constant integer value, return that integer 756 /// value, and mutate S to point to a new SCEV with that value excluded. 757 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 758 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 759 if (C->getAPInt().getMinSignedBits() <= 64) { 760 S = SE.getConstant(C->getType(), 0); 761 return C->getValue()->getSExtValue(); 762 } 763 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 764 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 765 int64_t Result = ExtractImmediate(NewOps.front(), SE); 766 if (Result != 0) 767 S = SE.getAddExpr(NewOps); 768 return Result; 769 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 770 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 771 int64_t Result = ExtractImmediate(NewOps.front(), SE); 772 if (Result != 0) 773 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 774 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 775 SCEV::FlagAnyWrap); 776 return Result; 777 } 778 return 0; 779 } 780 781 /// If S involves the addition of a GlobalValue address, return that symbol, and 782 /// mutate S to point to a new SCEV with that value excluded. 783 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 784 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 785 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 786 S = SE.getConstant(GV->getType(), 0); 787 return GV; 788 } 789 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 790 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 791 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 792 if (Result) 793 S = SE.getAddExpr(NewOps); 794 return Result; 795 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 796 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 797 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 798 if (Result) 799 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 800 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 801 SCEV::FlagAnyWrap); 802 return Result; 803 } 804 return nullptr; 805 } 806 807 /// Returns true if the specified instruction is using the specified value as an 808 /// address. 809 static bool isAddressUse(const TargetTransformInfo &TTI, 810 Instruction *Inst, Value *OperandVal) { 811 bool isAddress = isa<LoadInst>(Inst); 812 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 813 if (SI->getPointerOperand() == OperandVal) 814 isAddress = true; 815 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 816 // Addressing modes can also be folded into prefetches and a variety 817 // of intrinsics. 818 switch (II->getIntrinsicID()) { 819 case Intrinsic::memset: 820 case Intrinsic::prefetch: 821 case Intrinsic::masked_load: 822 if (II->getArgOperand(0) == OperandVal) 823 isAddress = true; 824 break; 825 case Intrinsic::masked_store: 826 if (II->getArgOperand(1) == OperandVal) 827 isAddress = true; 828 break; 829 case Intrinsic::memmove: 830 case Intrinsic::memcpy: 831 if (II->getArgOperand(0) == OperandVal || 832 II->getArgOperand(1) == OperandVal) 833 isAddress = true; 834 break; 835 default: { 836 MemIntrinsicInfo IntrInfo; 837 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 838 if (IntrInfo.PtrVal == OperandVal) 839 isAddress = true; 840 } 841 } 842 } 843 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 844 if (RMW->getPointerOperand() == OperandVal) 845 isAddress = true; 846 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 847 if (CmpX->getPointerOperand() == OperandVal) 848 isAddress = true; 849 } 850 return isAddress; 851 } 852 853 /// Return the type of the memory being accessed. 854 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 855 Instruction *Inst, Value *OperandVal) { 856 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 857 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 858 AccessTy.MemTy = SI->getOperand(0)->getType(); 859 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 860 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 861 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 862 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 863 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 864 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 865 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 866 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 867 switch (II->getIntrinsicID()) { 868 case Intrinsic::prefetch: 869 case Intrinsic::memset: 870 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 871 AccessTy.MemTy = OperandVal->getType(); 872 break; 873 case Intrinsic::memmove: 874 case Intrinsic::memcpy: 875 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 876 AccessTy.MemTy = OperandVal->getType(); 877 break; 878 case Intrinsic::masked_load: 879 AccessTy.AddrSpace = 880 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 881 break; 882 case Intrinsic::masked_store: 883 AccessTy.MemTy = II->getOperand(0)->getType(); 884 AccessTy.AddrSpace = 885 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 886 break; 887 default: { 888 MemIntrinsicInfo IntrInfo; 889 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 890 AccessTy.AddrSpace 891 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 892 } 893 894 break; 895 } 896 } 897 } 898 899 // All pointers have the same requirements, so canonicalize them to an 900 // arbitrary pointer type to minimize variation. 901 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 902 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 903 PTy->getAddressSpace()); 904 905 return AccessTy; 906 } 907 908 /// Return true if this AddRec is already a phi in its loop. 909 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 910 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 911 if (SE.isSCEVable(PN.getType()) && 912 (SE.getEffectiveSCEVType(PN.getType()) == 913 SE.getEffectiveSCEVType(AR->getType())) && 914 SE.getSCEV(&PN) == AR) 915 return true; 916 } 917 return false; 918 } 919 920 /// Check if expanding this expression is likely to incur significant cost. This 921 /// is tricky because SCEV doesn't track which expressions are actually computed 922 /// by the current IR. 923 /// 924 /// We currently allow expansion of IV increments that involve adds, 925 /// multiplication by constants, and AddRecs from existing phis. 926 /// 927 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 928 /// obvious multiple of the UDivExpr. 929 static bool isHighCostExpansion(const SCEV *S, 930 SmallPtrSetImpl<const SCEV*> &Processed, 931 ScalarEvolution &SE) { 932 // Zero/One operand expressions 933 switch (S->getSCEVType()) { 934 case scUnknown: 935 case scConstant: 936 return false; 937 case scTruncate: 938 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 939 Processed, SE); 940 case scZeroExtend: 941 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 942 Processed, SE); 943 case scSignExtend: 944 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 945 Processed, SE); 946 default: 947 break; 948 } 949 950 if (!Processed.insert(S).second) 951 return false; 952 953 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 954 for (const SCEV *S : Add->operands()) { 955 if (isHighCostExpansion(S, Processed, SE)) 956 return true; 957 } 958 return false; 959 } 960 961 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 962 if (Mul->getNumOperands() == 2) { 963 // Multiplication by a constant is ok 964 if (isa<SCEVConstant>(Mul->getOperand(0))) 965 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 966 967 // If we have the value of one operand, check if an existing 968 // multiplication already generates this expression. 969 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 970 Value *UVal = U->getValue(); 971 for (User *UR : UVal->users()) { 972 // If U is a constant, it may be used by a ConstantExpr. 973 Instruction *UI = dyn_cast<Instruction>(UR); 974 if (UI && UI->getOpcode() == Instruction::Mul && 975 SE.isSCEVable(UI->getType())) { 976 return SE.getSCEV(UI) == Mul; 977 } 978 } 979 } 980 } 981 } 982 983 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 984 if (isExistingPhi(AR, SE)) 985 return false; 986 } 987 988 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 989 return true; 990 } 991 992 namespace { 993 994 class LSRUse; 995 996 } // end anonymous namespace 997 998 /// Check if the addressing mode defined by \p F is completely 999 /// folded in \p LU at isel time. 1000 /// This includes address-mode folding and special icmp tricks. 1001 /// This function returns true if \p LU can accommodate what \p F 1002 /// defines and up to 1 base + 1 scaled + offset. 1003 /// In other words, if \p F has several base registers, this function may 1004 /// still return true. Therefore, users still need to account for 1005 /// additional base registers and/or unfolded offsets to derive an 1006 /// accurate cost model. 1007 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1008 const LSRUse &LU, const Formula &F); 1009 1010 // Get the cost of the scaling factor used in F for LU. 1011 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1012 const LSRUse &LU, const Formula &F, 1013 const Loop &L); 1014 1015 namespace { 1016 1017 /// This class is used to measure and compare candidate formulae. 1018 class Cost { 1019 const Loop *L = nullptr; 1020 ScalarEvolution *SE = nullptr; 1021 const TargetTransformInfo *TTI = nullptr; 1022 TargetTransformInfo::LSRCost C; 1023 TTI::AddressingModeKind AMK = TTI::AMK_None; 1024 1025 public: 1026 Cost() = delete; 1027 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1028 TTI::AddressingModeKind AMK) : 1029 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1030 C.Insns = 0; 1031 C.NumRegs = 0; 1032 C.AddRecCost = 0; 1033 C.NumIVMuls = 0; 1034 C.NumBaseAdds = 0; 1035 C.ImmCost = 0; 1036 C.SetupCost = 0; 1037 C.ScaleCost = 0; 1038 } 1039 1040 bool isLess(Cost &Other); 1041 1042 void Lose(); 1043 1044 #ifndef NDEBUG 1045 // Once any of the metrics loses, they must all remain losers. 1046 bool isValid() { 1047 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1048 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1049 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1050 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1051 } 1052 #endif 1053 1054 bool isLoser() { 1055 assert(isValid() && "invalid cost"); 1056 return C.NumRegs == ~0u; 1057 } 1058 1059 void RateFormula(const Formula &F, 1060 SmallPtrSetImpl<const SCEV *> &Regs, 1061 const DenseSet<const SCEV *> &VisitedRegs, 1062 const LSRUse &LU, 1063 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1064 1065 void print(raw_ostream &OS) const; 1066 void dump() const; 1067 1068 private: 1069 void RateRegister(const Formula &F, const SCEV *Reg, 1070 SmallPtrSetImpl<const SCEV *> &Regs); 1071 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1072 SmallPtrSetImpl<const SCEV *> &Regs, 1073 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1074 }; 1075 1076 /// An operand value in an instruction which is to be replaced with some 1077 /// equivalent, possibly strength-reduced, replacement. 1078 struct LSRFixup { 1079 /// The instruction which will be updated. 1080 Instruction *UserInst = nullptr; 1081 1082 /// The operand of the instruction which will be replaced. The operand may be 1083 /// used more than once; every instance will be replaced. 1084 Value *OperandValToReplace = nullptr; 1085 1086 /// If this user is to use the post-incremented value of an induction 1087 /// variable, this set is non-empty and holds the loops associated with the 1088 /// induction variable. 1089 PostIncLoopSet PostIncLoops; 1090 1091 /// A constant offset to be added to the LSRUse expression. This allows 1092 /// multiple fixups to share the same LSRUse with different offsets, for 1093 /// example in an unrolled loop. 1094 int64_t Offset = 0; 1095 1096 LSRFixup() = default; 1097 1098 bool isUseFullyOutsideLoop(const Loop *L) const; 1099 1100 void print(raw_ostream &OS) const; 1101 void dump() const; 1102 }; 1103 1104 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1105 /// SmallVectors of const SCEV*. 1106 struct UniquifierDenseMapInfo { 1107 static SmallVector<const SCEV *, 4> getEmptyKey() { 1108 SmallVector<const SCEV *, 4> V; 1109 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1110 return V; 1111 } 1112 1113 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1114 SmallVector<const SCEV *, 4> V; 1115 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1116 return V; 1117 } 1118 1119 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1120 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1121 } 1122 1123 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1124 const SmallVector<const SCEV *, 4> &RHS) { 1125 return LHS == RHS; 1126 } 1127 }; 1128 1129 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1130 /// as uses invented by LSR itself. It includes information about what kinds of 1131 /// things can be folded into the user, information about the user itself, and 1132 /// information about how the use may be satisfied. TODO: Represent multiple 1133 /// users of the same expression in common? 1134 class LSRUse { 1135 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1136 1137 public: 1138 /// An enum for a kind of use, indicating what types of scaled and immediate 1139 /// operands it might support. 1140 enum KindType { 1141 Basic, ///< A normal use, with no folding. 1142 Special, ///< A special case of basic, allowing -1 scales. 1143 Address, ///< An address use; folding according to TargetLowering 1144 ICmpZero ///< An equality icmp with both operands folded into one. 1145 // TODO: Add a generic icmp too? 1146 }; 1147 1148 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1149 1150 KindType Kind; 1151 MemAccessTy AccessTy; 1152 1153 /// The list of operands which are to be replaced. 1154 SmallVector<LSRFixup, 8> Fixups; 1155 1156 /// Keep track of the min and max offsets of the fixups. 1157 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1158 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1159 1160 /// This records whether all of the fixups using this LSRUse are outside of 1161 /// the loop, in which case some special-case heuristics may be used. 1162 bool AllFixupsOutsideLoop = true; 1163 1164 /// RigidFormula is set to true to guarantee that this use will be associated 1165 /// with a single formula--the one that initially matched. Some SCEV 1166 /// expressions cannot be expanded. This allows LSR to consider the registers 1167 /// used by those expressions without the need to expand them later after 1168 /// changing the formula. 1169 bool RigidFormula = false; 1170 1171 /// This records the widest use type for any fixup using this 1172 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1173 /// fixup widths to be equivalent, because the narrower one may be relying on 1174 /// the implicit truncation to truncate away bogus bits. 1175 Type *WidestFixupType = nullptr; 1176 1177 /// A list of ways to build a value that can satisfy this user. After the 1178 /// list is populated, one of these is selected heuristically and used to 1179 /// formulate a replacement for OperandValToReplace in UserInst. 1180 SmallVector<Formula, 12> Formulae; 1181 1182 /// The set of register candidates used by all formulae in this LSRUse. 1183 SmallPtrSet<const SCEV *, 4> Regs; 1184 1185 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1186 1187 LSRFixup &getNewFixup() { 1188 Fixups.push_back(LSRFixup()); 1189 return Fixups.back(); 1190 } 1191 1192 void pushFixup(LSRFixup &f) { 1193 Fixups.push_back(f); 1194 if (f.Offset > MaxOffset) 1195 MaxOffset = f.Offset; 1196 if (f.Offset < MinOffset) 1197 MinOffset = f.Offset; 1198 } 1199 1200 bool HasFormulaWithSameRegs(const Formula &F) const; 1201 float getNotSelectedProbability(const SCEV *Reg) const; 1202 bool InsertFormula(const Formula &F, const Loop &L); 1203 void DeleteFormula(Formula &F); 1204 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1205 1206 void print(raw_ostream &OS) const; 1207 void dump() const; 1208 }; 1209 1210 } // end anonymous namespace 1211 1212 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1213 LSRUse::KindType Kind, MemAccessTy AccessTy, 1214 GlobalValue *BaseGV, int64_t BaseOffset, 1215 bool HasBaseReg, int64_t Scale, 1216 Instruction *Fixup = nullptr); 1217 1218 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1219 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1220 return 1; 1221 if (Depth == 0) 1222 return 0; 1223 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1224 return getSetupCost(S->getStart(), Depth - 1); 1225 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1226 return getSetupCost(S->getOperand(), Depth - 1); 1227 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1228 return std::accumulate(S->op_begin(), S->op_end(), 0, 1229 [&](unsigned i, const SCEV *Reg) { 1230 return i + getSetupCost(Reg, Depth - 1); 1231 }); 1232 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1233 return getSetupCost(S->getLHS(), Depth - 1) + 1234 getSetupCost(S->getRHS(), Depth - 1); 1235 return 0; 1236 } 1237 1238 /// Tally up interesting quantities from the given register. 1239 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1240 SmallPtrSetImpl<const SCEV *> &Regs) { 1241 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1242 // If this is an addrec for another loop, it should be an invariant 1243 // with respect to L since L is the innermost loop (at least 1244 // for now LSR only handles innermost loops). 1245 if (AR->getLoop() != L) { 1246 // If the AddRec exists, consider it's register free and leave it alone. 1247 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1248 return; 1249 1250 // It is bad to allow LSR for current loop to add induction variables 1251 // for its sibling loops. 1252 if (!AR->getLoop()->contains(L)) { 1253 Lose(); 1254 return; 1255 } 1256 1257 // Otherwise, it will be an invariant with respect to Loop L. 1258 ++C.NumRegs; 1259 return; 1260 } 1261 1262 unsigned LoopCost = 1; 1263 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1264 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1265 1266 // If the step size matches the base offset, we could use pre-indexed 1267 // addressing. 1268 if (AMK == TTI::AMK_PreIndexed) { 1269 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1270 if (Step->getAPInt() == F.BaseOffset) 1271 LoopCost = 0; 1272 } else if (AMK == TTI::AMK_PostIndexed) { 1273 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1274 if (isa<SCEVConstant>(LoopStep)) { 1275 const SCEV *LoopStart = AR->getStart(); 1276 if (!isa<SCEVConstant>(LoopStart) && 1277 SE->isLoopInvariant(LoopStart, L)) 1278 LoopCost = 0; 1279 } 1280 } 1281 } 1282 C.AddRecCost += LoopCost; 1283 1284 // Add the step value register, if it needs one. 1285 // TODO: The non-affine case isn't precisely modeled here. 1286 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1287 if (!Regs.count(AR->getOperand(1))) { 1288 RateRegister(F, AR->getOperand(1), Regs); 1289 if (isLoser()) 1290 return; 1291 } 1292 } 1293 } 1294 ++C.NumRegs; 1295 1296 // Rough heuristic; favor registers which don't require extra setup 1297 // instructions in the preheader. 1298 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1299 // Ensure we don't, even with the recusion limit, produce invalid costs. 1300 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1301 1302 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1303 SE->hasComputableLoopEvolution(Reg, L); 1304 } 1305 1306 /// Record this register in the set. If we haven't seen it before, rate 1307 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1308 /// one of those regs an instant loser. 1309 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1310 SmallPtrSetImpl<const SCEV *> &Regs, 1311 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1312 if (LoserRegs && LoserRegs->count(Reg)) { 1313 Lose(); 1314 return; 1315 } 1316 if (Regs.insert(Reg).second) { 1317 RateRegister(F, Reg, Regs); 1318 if (LoserRegs && isLoser()) 1319 LoserRegs->insert(Reg); 1320 } 1321 } 1322 1323 void Cost::RateFormula(const Formula &F, 1324 SmallPtrSetImpl<const SCEV *> &Regs, 1325 const DenseSet<const SCEV *> &VisitedRegs, 1326 const LSRUse &LU, 1327 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1328 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1329 // Tally up the registers. 1330 unsigned PrevAddRecCost = C.AddRecCost; 1331 unsigned PrevNumRegs = C.NumRegs; 1332 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1333 if (const SCEV *ScaledReg = F.ScaledReg) { 1334 if (VisitedRegs.count(ScaledReg)) { 1335 Lose(); 1336 return; 1337 } 1338 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1339 if (isLoser()) 1340 return; 1341 } 1342 for (const SCEV *BaseReg : F.BaseRegs) { 1343 if (VisitedRegs.count(BaseReg)) { 1344 Lose(); 1345 return; 1346 } 1347 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1348 if (isLoser()) 1349 return; 1350 } 1351 1352 // Determine how many (unfolded) adds we'll need inside the loop. 1353 size_t NumBaseParts = F.getNumRegs(); 1354 if (NumBaseParts > 1) 1355 // Do not count the base and a possible second register if the target 1356 // allows to fold 2 registers. 1357 C.NumBaseAdds += 1358 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1359 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1360 1361 // Accumulate non-free scaling amounts. 1362 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1363 1364 // Tally up the non-zero immediates. 1365 for (const LSRFixup &Fixup : LU.Fixups) { 1366 int64_t O = Fixup.Offset; 1367 int64_t Offset = (uint64_t)O + F.BaseOffset; 1368 if (F.BaseGV) 1369 C.ImmCost += 64; // Handle symbolic values conservatively. 1370 // TODO: This should probably be the pointer size. 1371 else if (Offset != 0) 1372 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1373 1374 // Check with target if this offset with this instruction is 1375 // specifically not supported. 1376 if (LU.Kind == LSRUse::Address && Offset != 0 && 1377 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1378 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1379 C.NumBaseAdds++; 1380 } 1381 1382 // If we don't count instruction cost exit here. 1383 if (!InsnsCost) { 1384 assert(isValid() && "invalid cost"); 1385 return; 1386 } 1387 1388 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1389 // additional instruction (at least fill). 1390 // TODO: Need distinguish register class? 1391 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1392 TTI->getRegisterClassForType(false, F.getType())) - 1; 1393 if (C.NumRegs > TTIRegNum) { 1394 // Cost already exceeded TTIRegNum, then only newly added register can add 1395 // new instructions. 1396 if (PrevNumRegs > TTIRegNum) 1397 C.Insns += (C.NumRegs - PrevNumRegs); 1398 else 1399 C.Insns += (C.NumRegs - TTIRegNum); 1400 } 1401 1402 // If ICmpZero formula ends with not 0, it could not be replaced by 1403 // just add or sub. We'll need to compare final result of AddRec. 1404 // That means we'll need an additional instruction. But if the target can 1405 // macro-fuse a compare with a branch, don't count this extra instruction. 1406 // For -10 + {0, +, 1}: 1407 // i = i + 1; 1408 // cmp i, 10 1409 // 1410 // For {-10, +, 1}: 1411 // i = i + 1; 1412 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1413 !TTI->canMacroFuseCmp()) 1414 C.Insns++; 1415 // Each new AddRec adds 1 instruction to calculation. 1416 C.Insns += (C.AddRecCost - PrevAddRecCost); 1417 1418 // BaseAdds adds instructions for unfolded registers. 1419 if (LU.Kind != LSRUse::ICmpZero) 1420 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1421 assert(isValid() && "invalid cost"); 1422 } 1423 1424 /// Set this cost to a losing value. 1425 void Cost::Lose() { 1426 C.Insns = std::numeric_limits<unsigned>::max(); 1427 C.NumRegs = std::numeric_limits<unsigned>::max(); 1428 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1429 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1430 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1431 C.ImmCost = std::numeric_limits<unsigned>::max(); 1432 C.SetupCost = std::numeric_limits<unsigned>::max(); 1433 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1434 } 1435 1436 /// Choose the lower cost. 1437 bool Cost::isLess(Cost &Other) { 1438 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1439 C.Insns != Other.C.Insns) 1440 return C.Insns < Other.C.Insns; 1441 return TTI->isLSRCostLess(C, Other.C); 1442 } 1443 1444 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1445 void Cost::print(raw_ostream &OS) const { 1446 if (InsnsCost) 1447 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1448 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1449 if (C.AddRecCost != 0) 1450 OS << ", with addrec cost " << C.AddRecCost; 1451 if (C.NumIVMuls != 0) 1452 OS << ", plus " << C.NumIVMuls << " IV mul" 1453 << (C.NumIVMuls == 1 ? "" : "s"); 1454 if (C.NumBaseAdds != 0) 1455 OS << ", plus " << C.NumBaseAdds << " base add" 1456 << (C.NumBaseAdds == 1 ? "" : "s"); 1457 if (C.ScaleCost != 0) 1458 OS << ", plus " << C.ScaleCost << " scale cost"; 1459 if (C.ImmCost != 0) 1460 OS << ", plus " << C.ImmCost << " imm cost"; 1461 if (C.SetupCost != 0) 1462 OS << ", plus " << C.SetupCost << " setup cost"; 1463 } 1464 1465 LLVM_DUMP_METHOD void Cost::dump() const { 1466 print(errs()); errs() << '\n'; 1467 } 1468 #endif 1469 1470 /// Test whether this fixup always uses its value outside of the given loop. 1471 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1472 // PHI nodes use their value in their incoming blocks. 1473 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1474 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1475 if (PN->getIncomingValue(i) == OperandValToReplace && 1476 L->contains(PN->getIncomingBlock(i))) 1477 return false; 1478 return true; 1479 } 1480 1481 return !L->contains(UserInst); 1482 } 1483 1484 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1485 void LSRFixup::print(raw_ostream &OS) const { 1486 OS << "UserInst="; 1487 // Store is common and interesting enough to be worth special-casing. 1488 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1489 OS << "store "; 1490 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1491 } else if (UserInst->getType()->isVoidTy()) 1492 OS << UserInst->getOpcodeName(); 1493 else 1494 UserInst->printAsOperand(OS, /*PrintType=*/false); 1495 1496 OS << ", OperandValToReplace="; 1497 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1498 1499 for (const Loop *PIL : PostIncLoops) { 1500 OS << ", PostIncLoop="; 1501 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1502 } 1503 1504 if (Offset != 0) 1505 OS << ", Offset=" << Offset; 1506 } 1507 1508 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1509 print(errs()); errs() << '\n'; 1510 } 1511 #endif 1512 1513 /// Test whether this use as a formula which has the same registers as the given 1514 /// formula. 1515 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1516 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1517 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1518 // Unstable sort by host order ok, because this is only used for uniquifying. 1519 llvm::sort(Key); 1520 return Uniquifier.count(Key); 1521 } 1522 1523 /// The function returns a probability of selecting formula without Reg. 1524 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1525 unsigned FNum = 0; 1526 for (const Formula &F : Formulae) 1527 if (F.referencesReg(Reg)) 1528 FNum++; 1529 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1530 } 1531 1532 /// If the given formula has not yet been inserted, add it to the list, and 1533 /// return true. Return false otherwise. The formula must be in canonical form. 1534 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1535 assert(F.isCanonical(L) && "Invalid canonical representation"); 1536 1537 if (!Formulae.empty() && RigidFormula) 1538 return false; 1539 1540 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1541 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1542 // Unstable sort by host order ok, because this is only used for uniquifying. 1543 llvm::sort(Key); 1544 1545 if (!Uniquifier.insert(Key).second) 1546 return false; 1547 1548 // Using a register to hold the value of 0 is not profitable. 1549 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1550 "Zero allocated in a scaled register!"); 1551 #ifndef NDEBUG 1552 for (const SCEV *BaseReg : F.BaseRegs) 1553 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1554 #endif 1555 1556 // Add the formula to the list. 1557 Formulae.push_back(F); 1558 1559 // Record registers now being used by this use. 1560 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1561 if (F.ScaledReg) 1562 Regs.insert(F.ScaledReg); 1563 1564 return true; 1565 } 1566 1567 /// Remove the given formula from this use's list. 1568 void LSRUse::DeleteFormula(Formula &F) { 1569 if (&F != &Formulae.back()) 1570 std::swap(F, Formulae.back()); 1571 Formulae.pop_back(); 1572 } 1573 1574 /// Recompute the Regs field, and update RegUses. 1575 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1576 // Now that we've filtered out some formulae, recompute the Regs set. 1577 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1578 Regs.clear(); 1579 for (const Formula &F : Formulae) { 1580 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1581 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1582 } 1583 1584 // Update the RegTracker. 1585 for (const SCEV *S : OldRegs) 1586 if (!Regs.count(S)) 1587 RegUses.dropRegister(S, LUIdx); 1588 } 1589 1590 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1591 void LSRUse::print(raw_ostream &OS) const { 1592 OS << "LSR Use: Kind="; 1593 switch (Kind) { 1594 case Basic: OS << "Basic"; break; 1595 case Special: OS << "Special"; break; 1596 case ICmpZero: OS << "ICmpZero"; break; 1597 case Address: 1598 OS << "Address of "; 1599 if (AccessTy.MemTy->isPointerTy()) 1600 OS << "pointer"; // the full pointer type could be really verbose 1601 else { 1602 OS << *AccessTy.MemTy; 1603 } 1604 1605 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1606 } 1607 1608 OS << ", Offsets={"; 1609 bool NeedComma = false; 1610 for (const LSRFixup &Fixup : Fixups) { 1611 if (NeedComma) OS << ','; 1612 OS << Fixup.Offset; 1613 NeedComma = true; 1614 } 1615 OS << '}'; 1616 1617 if (AllFixupsOutsideLoop) 1618 OS << ", all-fixups-outside-loop"; 1619 1620 if (WidestFixupType) 1621 OS << ", widest fixup type: " << *WidestFixupType; 1622 } 1623 1624 LLVM_DUMP_METHOD void LSRUse::dump() const { 1625 print(errs()); errs() << '\n'; 1626 } 1627 #endif 1628 1629 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1630 LSRUse::KindType Kind, MemAccessTy AccessTy, 1631 GlobalValue *BaseGV, int64_t BaseOffset, 1632 bool HasBaseReg, int64_t Scale, 1633 Instruction *Fixup/*= nullptr*/) { 1634 switch (Kind) { 1635 case LSRUse::Address: 1636 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1637 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1638 1639 case LSRUse::ICmpZero: 1640 // There's not even a target hook for querying whether it would be legal to 1641 // fold a GV into an ICmp. 1642 if (BaseGV) 1643 return false; 1644 1645 // ICmp only has two operands; don't allow more than two non-trivial parts. 1646 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1647 return false; 1648 1649 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1650 // putting the scaled register in the other operand of the icmp. 1651 if (Scale != 0 && Scale != -1) 1652 return false; 1653 1654 // If we have low-level target information, ask the target if it can fold an 1655 // integer immediate on an icmp. 1656 if (BaseOffset != 0) { 1657 // We have one of: 1658 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1659 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1660 // Offs is the ICmp immediate. 1661 if (Scale == 0) 1662 // The cast does the right thing with 1663 // std::numeric_limits<int64_t>::min(). 1664 BaseOffset = -(uint64_t)BaseOffset; 1665 return TTI.isLegalICmpImmediate(BaseOffset); 1666 } 1667 1668 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1669 return true; 1670 1671 case LSRUse::Basic: 1672 // Only handle single-register values. 1673 return !BaseGV && Scale == 0 && BaseOffset == 0; 1674 1675 case LSRUse::Special: 1676 // Special case Basic to handle -1 scales. 1677 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1678 } 1679 1680 llvm_unreachable("Invalid LSRUse Kind!"); 1681 } 1682 1683 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1684 int64_t MinOffset, int64_t MaxOffset, 1685 LSRUse::KindType Kind, MemAccessTy AccessTy, 1686 GlobalValue *BaseGV, int64_t BaseOffset, 1687 bool HasBaseReg, int64_t Scale) { 1688 // Check for overflow. 1689 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1690 (MinOffset > 0)) 1691 return false; 1692 MinOffset = (uint64_t)BaseOffset + MinOffset; 1693 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1694 (MaxOffset > 0)) 1695 return false; 1696 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1697 1698 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1699 HasBaseReg, Scale) && 1700 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1701 HasBaseReg, Scale); 1702 } 1703 1704 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1705 int64_t MinOffset, int64_t MaxOffset, 1706 LSRUse::KindType Kind, MemAccessTy AccessTy, 1707 const Formula &F, const Loop &L) { 1708 // For the purpose of isAMCompletelyFolded either having a canonical formula 1709 // or a scale not equal to zero is correct. 1710 // Problems may arise from non canonical formulae having a scale == 0. 1711 // Strictly speaking it would best to just rely on canonical formulae. 1712 // However, when we generate the scaled formulae, we first check that the 1713 // scaling factor is profitable before computing the actual ScaledReg for 1714 // compile time sake. 1715 assert((F.isCanonical(L) || F.Scale != 0)); 1716 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1717 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1718 } 1719 1720 /// Test whether we know how to expand the current formula. 1721 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1722 int64_t MaxOffset, LSRUse::KindType Kind, 1723 MemAccessTy AccessTy, GlobalValue *BaseGV, 1724 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1725 // We know how to expand completely foldable formulae. 1726 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1727 BaseOffset, HasBaseReg, Scale) || 1728 // Or formulae that use a base register produced by a sum of base 1729 // registers. 1730 (Scale == 1 && 1731 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1732 BaseGV, BaseOffset, true, 0)); 1733 } 1734 1735 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1736 int64_t MaxOffset, LSRUse::KindType Kind, 1737 MemAccessTy AccessTy, const Formula &F) { 1738 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1739 F.BaseOffset, F.HasBaseReg, F.Scale); 1740 } 1741 1742 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1743 const LSRUse &LU, const Formula &F) { 1744 // Target may want to look at the user instructions. 1745 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1746 for (const LSRFixup &Fixup : LU.Fixups) 1747 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1748 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1749 F.Scale, Fixup.UserInst)) 1750 return false; 1751 return true; 1752 } 1753 1754 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1755 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1756 F.Scale); 1757 } 1758 1759 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1760 const LSRUse &LU, const Formula &F, 1761 const Loop &L) { 1762 if (!F.Scale) 1763 return 0; 1764 1765 // If the use is not completely folded in that instruction, we will have to 1766 // pay an extra cost only for scale != 1. 1767 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1768 LU.AccessTy, F, L)) 1769 return F.Scale != 1; 1770 1771 switch (LU.Kind) { 1772 case LSRUse::Address: { 1773 // Check the scaling factor cost with both the min and max offsets. 1774 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1775 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1776 F.Scale, LU.AccessTy.AddrSpace); 1777 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1778 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1779 F.Scale, LU.AccessTy.AddrSpace); 1780 1781 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1782 "Legal addressing mode has an illegal cost!"); 1783 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1784 } 1785 case LSRUse::ICmpZero: 1786 case LSRUse::Basic: 1787 case LSRUse::Special: 1788 // The use is completely folded, i.e., everything is folded into the 1789 // instruction. 1790 return 0; 1791 } 1792 1793 llvm_unreachable("Invalid LSRUse Kind!"); 1794 } 1795 1796 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1797 LSRUse::KindType Kind, MemAccessTy AccessTy, 1798 GlobalValue *BaseGV, int64_t BaseOffset, 1799 bool HasBaseReg) { 1800 // Fast-path: zero is always foldable. 1801 if (BaseOffset == 0 && !BaseGV) return true; 1802 1803 // Conservatively, create an address with an immediate and a 1804 // base and a scale. 1805 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1806 1807 // Canonicalize a scale of 1 to a base register if the formula doesn't 1808 // already have a base register. 1809 if (!HasBaseReg && Scale == 1) { 1810 Scale = 0; 1811 HasBaseReg = true; 1812 } 1813 1814 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1815 HasBaseReg, Scale); 1816 } 1817 1818 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1819 ScalarEvolution &SE, int64_t MinOffset, 1820 int64_t MaxOffset, LSRUse::KindType Kind, 1821 MemAccessTy AccessTy, const SCEV *S, 1822 bool HasBaseReg) { 1823 // Fast-path: zero is always foldable. 1824 if (S->isZero()) return true; 1825 1826 // Conservatively, create an address with an immediate and a 1827 // base and a scale. 1828 int64_t BaseOffset = ExtractImmediate(S, SE); 1829 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1830 1831 // If there's anything else involved, it's not foldable. 1832 if (!S->isZero()) return false; 1833 1834 // Fast-path: zero is always foldable. 1835 if (BaseOffset == 0 && !BaseGV) return true; 1836 1837 // Conservatively, create an address with an immediate and a 1838 // base and a scale. 1839 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1840 1841 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1842 BaseOffset, HasBaseReg, Scale); 1843 } 1844 1845 namespace { 1846 1847 /// An individual increment in a Chain of IV increments. Relate an IV user to 1848 /// an expression that computes the IV it uses from the IV used by the previous 1849 /// link in the Chain. 1850 /// 1851 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1852 /// original IVOperand. The head of the chain's IVOperand is only valid during 1853 /// chain collection, before LSR replaces IV users. During chain generation, 1854 /// IncExpr can be used to find the new IVOperand that computes the same 1855 /// expression. 1856 struct IVInc { 1857 Instruction *UserInst; 1858 Value* IVOperand; 1859 const SCEV *IncExpr; 1860 1861 IVInc(Instruction *U, Value *O, const SCEV *E) 1862 : UserInst(U), IVOperand(O), IncExpr(E) {} 1863 }; 1864 1865 // The list of IV increments in program order. We typically add the head of a 1866 // chain without finding subsequent links. 1867 struct IVChain { 1868 SmallVector<IVInc, 1> Incs; 1869 const SCEV *ExprBase = nullptr; 1870 1871 IVChain() = default; 1872 IVChain(const IVInc &Head, const SCEV *Base) 1873 : Incs(1, Head), ExprBase(Base) {} 1874 1875 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1876 1877 // Return the first increment in the chain. 1878 const_iterator begin() const { 1879 assert(!Incs.empty()); 1880 return std::next(Incs.begin()); 1881 } 1882 const_iterator end() const { 1883 return Incs.end(); 1884 } 1885 1886 // Returns true if this chain contains any increments. 1887 bool hasIncs() const { return Incs.size() >= 2; } 1888 1889 // Add an IVInc to the end of this chain. 1890 void add(const IVInc &X) { Incs.push_back(X); } 1891 1892 // Returns the last UserInst in the chain. 1893 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1894 1895 // Returns true if IncExpr can be profitably added to this chain. 1896 bool isProfitableIncrement(const SCEV *OperExpr, 1897 const SCEV *IncExpr, 1898 ScalarEvolution&); 1899 }; 1900 1901 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1902 /// between FarUsers that definitely cross IV increments and NearUsers that may 1903 /// be used between IV increments. 1904 struct ChainUsers { 1905 SmallPtrSet<Instruction*, 4> FarUsers; 1906 SmallPtrSet<Instruction*, 4> NearUsers; 1907 }; 1908 1909 /// This class holds state for the main loop strength reduction logic. 1910 class LSRInstance { 1911 IVUsers &IU; 1912 ScalarEvolution &SE; 1913 DominatorTree &DT; 1914 LoopInfo &LI; 1915 AssumptionCache &AC; 1916 TargetLibraryInfo &TLI; 1917 const TargetTransformInfo &TTI; 1918 Loop *const L; 1919 MemorySSAUpdater *MSSAU; 1920 TTI::AddressingModeKind AMK; 1921 bool Changed = false; 1922 1923 /// This is the insert position that the current loop's induction variable 1924 /// increment should be placed. In simple loops, this is the latch block's 1925 /// terminator. But in more complicated cases, this is a position which will 1926 /// dominate all the in-loop post-increment users. 1927 Instruction *IVIncInsertPos = nullptr; 1928 1929 /// Interesting factors between use strides. 1930 /// 1931 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1932 /// default, a SmallDenseSet, because we need to use the full range of 1933 /// int64_ts, and there's currently no good way of doing that with 1934 /// SmallDenseSet. 1935 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1936 1937 /// Interesting use types, to facilitate truncation reuse. 1938 SmallSetVector<Type *, 4> Types; 1939 1940 /// The list of interesting uses. 1941 mutable SmallVector<LSRUse, 16> Uses; 1942 1943 /// Track which uses use which register candidates. 1944 RegUseTracker RegUses; 1945 1946 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1947 // have more than a few IV increment chains in a loop. Missing a Chain falls 1948 // back to normal LSR behavior for those uses. 1949 static const unsigned MaxChains = 8; 1950 1951 /// IV users can form a chain of IV increments. 1952 SmallVector<IVChain, MaxChains> IVChainVec; 1953 1954 /// IV users that belong to profitable IVChains. 1955 SmallPtrSet<Use*, MaxChains> IVIncSet; 1956 1957 void OptimizeShadowIV(); 1958 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1959 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1960 void OptimizeLoopTermCond(); 1961 1962 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1963 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1964 void FinalizeChain(IVChain &Chain); 1965 void CollectChains(); 1966 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1967 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1968 1969 void CollectInterestingTypesAndFactors(); 1970 void CollectFixupsAndInitialFormulae(); 1971 1972 // Support for sharing of LSRUses between LSRFixups. 1973 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1974 UseMapTy UseMap; 1975 1976 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1977 LSRUse::KindType Kind, MemAccessTy AccessTy); 1978 1979 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1980 MemAccessTy AccessTy); 1981 1982 void DeleteUse(LSRUse &LU, size_t LUIdx); 1983 1984 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1985 1986 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1987 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1988 void CountRegisters(const Formula &F, size_t LUIdx); 1989 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1990 1991 void CollectLoopInvariantFixupsAndFormulae(); 1992 1993 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1994 unsigned Depth = 0); 1995 1996 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1997 const Formula &Base, unsigned Depth, 1998 size_t Idx, bool IsScaledReg = false); 1999 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2000 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2001 const Formula &Base, size_t Idx, 2002 bool IsScaledReg = false); 2003 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2004 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2005 const Formula &Base, 2006 const SmallVectorImpl<int64_t> &Worklist, 2007 size_t Idx, bool IsScaledReg = false); 2008 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2009 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2010 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2011 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2012 void GenerateCrossUseConstantOffsets(); 2013 void GenerateAllReuseFormulae(); 2014 2015 void FilterOutUndesirableDedicatedRegisters(); 2016 2017 size_t EstimateSearchSpaceComplexity() const; 2018 void NarrowSearchSpaceByDetectingSupersets(); 2019 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2020 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2021 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2022 void NarrowSearchSpaceByFilterPostInc(); 2023 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2024 void NarrowSearchSpaceByPickingWinnerRegs(); 2025 void NarrowSearchSpaceUsingHeuristics(); 2026 2027 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2028 Cost &SolutionCost, 2029 SmallVectorImpl<const Formula *> &Workspace, 2030 const Cost &CurCost, 2031 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2032 DenseSet<const SCEV *> &VisitedRegs) const; 2033 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2034 2035 BasicBlock::iterator 2036 HoistInsertPosition(BasicBlock::iterator IP, 2037 const SmallVectorImpl<Instruction *> &Inputs) const; 2038 BasicBlock::iterator 2039 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2040 const LSRFixup &LF, 2041 const LSRUse &LU, 2042 SCEVExpander &Rewriter) const; 2043 2044 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2045 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2046 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2047 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2048 const Formula &F, SCEVExpander &Rewriter, 2049 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2050 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2051 SCEVExpander &Rewriter, 2052 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2053 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2054 2055 public: 2056 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2057 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2058 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2059 2060 bool getChanged() const { return Changed; } 2061 2062 void print_factors_and_types(raw_ostream &OS) const; 2063 void print_fixups(raw_ostream &OS) const; 2064 void print_uses(raw_ostream &OS) const; 2065 void print(raw_ostream &OS) const; 2066 void dump() const; 2067 }; 2068 2069 } // end anonymous namespace 2070 2071 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2072 /// the cast operation. 2073 void LSRInstance::OptimizeShadowIV() { 2074 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2075 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2076 return; 2077 2078 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2079 UI != E; /* empty */) { 2080 IVUsers::const_iterator CandidateUI = UI; 2081 ++UI; 2082 Instruction *ShadowUse = CandidateUI->getUser(); 2083 Type *DestTy = nullptr; 2084 bool IsSigned = false; 2085 2086 /* If shadow use is a int->float cast then insert a second IV 2087 to eliminate this cast. 2088 2089 for (unsigned i = 0; i < n; ++i) 2090 foo((double)i); 2091 2092 is transformed into 2093 2094 double d = 0.0; 2095 for (unsigned i = 0; i < n; ++i, ++d) 2096 foo(d); 2097 */ 2098 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2099 IsSigned = false; 2100 DestTy = UCast->getDestTy(); 2101 } 2102 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2103 IsSigned = true; 2104 DestTy = SCast->getDestTy(); 2105 } 2106 if (!DestTy) continue; 2107 2108 // If target does not support DestTy natively then do not apply 2109 // this transformation. 2110 if (!TTI.isTypeLegal(DestTy)) continue; 2111 2112 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2113 if (!PH) continue; 2114 if (PH->getNumIncomingValues() != 2) continue; 2115 2116 // If the calculation in integers overflows, the result in FP type will 2117 // differ. So we only can do this transformation if we are guaranteed to not 2118 // deal with overflowing values 2119 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2120 if (!AR) continue; 2121 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2122 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2123 2124 Type *SrcTy = PH->getType(); 2125 int Mantissa = DestTy->getFPMantissaWidth(); 2126 if (Mantissa == -1) continue; 2127 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2128 continue; 2129 2130 unsigned Entry, Latch; 2131 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2132 Entry = 0; 2133 Latch = 1; 2134 } else { 2135 Entry = 1; 2136 Latch = 0; 2137 } 2138 2139 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2140 if (!Init) continue; 2141 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2142 (double)Init->getSExtValue() : 2143 (double)Init->getZExtValue()); 2144 2145 BinaryOperator *Incr = 2146 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2147 if (!Incr) continue; 2148 if (Incr->getOpcode() != Instruction::Add 2149 && Incr->getOpcode() != Instruction::Sub) 2150 continue; 2151 2152 /* Initialize new IV, double d = 0.0 in above example. */ 2153 ConstantInt *C = nullptr; 2154 if (Incr->getOperand(0) == PH) 2155 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2156 else if (Incr->getOperand(1) == PH) 2157 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2158 else 2159 continue; 2160 2161 if (!C) continue; 2162 2163 // Ignore negative constants, as the code below doesn't handle them 2164 // correctly. TODO: Remove this restriction. 2165 if (!C->getValue().isStrictlyPositive()) continue; 2166 2167 /* Add new PHINode. */ 2168 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2169 2170 /* create new increment. '++d' in above example. */ 2171 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2172 BinaryOperator *NewIncr = 2173 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2174 Instruction::FAdd : Instruction::FSub, 2175 NewPH, CFP, "IV.S.next.", Incr); 2176 2177 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2178 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2179 2180 /* Remove cast operation */ 2181 ShadowUse->replaceAllUsesWith(NewPH); 2182 ShadowUse->eraseFromParent(); 2183 Changed = true; 2184 break; 2185 } 2186 } 2187 2188 /// If Cond has an operand that is an expression of an IV, set the IV user and 2189 /// stride information and return true, otherwise return false. 2190 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2191 for (IVStrideUse &U : IU) 2192 if (U.getUser() == Cond) { 2193 // NOTE: we could handle setcc instructions with multiple uses here, but 2194 // InstCombine does it as well for simple uses, it's not clear that it 2195 // occurs enough in real life to handle. 2196 CondUse = &U; 2197 return true; 2198 } 2199 return false; 2200 } 2201 2202 /// Rewrite the loop's terminating condition if it uses a max computation. 2203 /// 2204 /// This is a narrow solution to a specific, but acute, problem. For loops 2205 /// like this: 2206 /// 2207 /// i = 0; 2208 /// do { 2209 /// p[i] = 0.0; 2210 /// } while (++i < n); 2211 /// 2212 /// the trip count isn't just 'n', because 'n' might not be positive. And 2213 /// unfortunately this can come up even for loops where the user didn't use 2214 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2215 /// will commonly be lowered like this: 2216 /// 2217 /// if (n > 0) { 2218 /// i = 0; 2219 /// do { 2220 /// p[i] = 0.0; 2221 /// } while (++i < n); 2222 /// } 2223 /// 2224 /// and then it's possible for subsequent optimization to obscure the if 2225 /// test in such a way that indvars can't find it. 2226 /// 2227 /// When indvars can't find the if test in loops like this, it creates a 2228 /// max expression, which allows it to give the loop a canonical 2229 /// induction variable: 2230 /// 2231 /// i = 0; 2232 /// max = n < 1 ? 1 : n; 2233 /// do { 2234 /// p[i] = 0.0; 2235 /// } while (++i != max); 2236 /// 2237 /// Canonical induction variables are necessary because the loop passes 2238 /// are designed around them. The most obvious example of this is the 2239 /// LoopInfo analysis, which doesn't remember trip count values. It 2240 /// expects to be able to rediscover the trip count each time it is 2241 /// needed, and it does this using a simple analysis that only succeeds if 2242 /// the loop has a canonical induction variable. 2243 /// 2244 /// However, when it comes time to generate code, the maximum operation 2245 /// can be quite costly, especially if it's inside of an outer loop. 2246 /// 2247 /// This function solves this problem by detecting this type of loop and 2248 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2249 /// the instructions for the maximum computation. 2250 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2251 // Check that the loop matches the pattern we're looking for. 2252 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2253 Cond->getPredicate() != CmpInst::ICMP_NE) 2254 return Cond; 2255 2256 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2257 if (!Sel || !Sel->hasOneUse()) return Cond; 2258 2259 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2260 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2261 return Cond; 2262 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2263 2264 // Add one to the backedge-taken count to get the trip count. 2265 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2266 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2267 2268 // Check for a max calculation that matches the pattern. There's no check 2269 // for ICMP_ULE here because the comparison would be with zero, which 2270 // isn't interesting. 2271 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2272 const SCEVNAryExpr *Max = nullptr; 2273 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2274 Pred = ICmpInst::ICMP_SLE; 2275 Max = S; 2276 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2277 Pred = ICmpInst::ICMP_SLT; 2278 Max = S; 2279 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2280 Pred = ICmpInst::ICMP_ULT; 2281 Max = U; 2282 } else { 2283 // No match; bail. 2284 return Cond; 2285 } 2286 2287 // To handle a max with more than two operands, this optimization would 2288 // require additional checking and setup. 2289 if (Max->getNumOperands() != 2) 2290 return Cond; 2291 2292 const SCEV *MaxLHS = Max->getOperand(0); 2293 const SCEV *MaxRHS = Max->getOperand(1); 2294 2295 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2296 // for a comparison with 1. For <= and >=, a comparison with zero. 2297 if (!MaxLHS || 2298 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2299 return Cond; 2300 2301 // Check the relevant induction variable for conformance to 2302 // the pattern. 2303 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2304 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2305 if (!AR || !AR->isAffine() || 2306 AR->getStart() != One || 2307 AR->getStepRecurrence(SE) != One) 2308 return Cond; 2309 2310 assert(AR->getLoop() == L && 2311 "Loop condition operand is an addrec in a different loop!"); 2312 2313 // Check the right operand of the select, and remember it, as it will 2314 // be used in the new comparison instruction. 2315 Value *NewRHS = nullptr; 2316 if (ICmpInst::isTrueWhenEqual(Pred)) { 2317 // Look for n+1, and grab n. 2318 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2319 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2320 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2321 NewRHS = BO->getOperand(0); 2322 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2323 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2324 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2325 NewRHS = BO->getOperand(0); 2326 if (!NewRHS) 2327 return Cond; 2328 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2329 NewRHS = Sel->getOperand(1); 2330 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2331 NewRHS = Sel->getOperand(2); 2332 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2333 NewRHS = SU->getValue(); 2334 else 2335 // Max doesn't match expected pattern. 2336 return Cond; 2337 2338 // Determine the new comparison opcode. It may be signed or unsigned, 2339 // and the original comparison may be either equality or inequality. 2340 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2341 Pred = CmpInst::getInversePredicate(Pred); 2342 2343 // Ok, everything looks ok to change the condition into an SLT or SGE and 2344 // delete the max calculation. 2345 ICmpInst *NewCond = 2346 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2347 2348 // Delete the max calculation instructions. 2349 Cond->replaceAllUsesWith(NewCond); 2350 CondUse->setUser(NewCond); 2351 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2352 Cond->eraseFromParent(); 2353 Sel->eraseFromParent(); 2354 if (Cmp->use_empty()) 2355 Cmp->eraseFromParent(); 2356 return NewCond; 2357 } 2358 2359 /// Change loop terminating condition to use the postinc iv when possible. 2360 void 2361 LSRInstance::OptimizeLoopTermCond() { 2362 SmallPtrSet<Instruction *, 4> PostIncs; 2363 2364 // We need a different set of heuristics for rotated and non-rotated loops. 2365 // If a loop is rotated then the latch is also the backedge, so inserting 2366 // post-inc expressions just before the latch is ideal. To reduce live ranges 2367 // it also makes sense to rewrite terminating conditions to use post-inc 2368 // expressions. 2369 // 2370 // If the loop is not rotated then the latch is not a backedge; the latch 2371 // check is done in the loop head. Adding post-inc expressions before the 2372 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2373 // in the loop body. In this case we do *not* want to use post-inc expressions 2374 // in the latch check, and we want to insert post-inc expressions before 2375 // the backedge. 2376 BasicBlock *LatchBlock = L->getLoopLatch(); 2377 SmallVector<BasicBlock*, 8> ExitingBlocks; 2378 L->getExitingBlocks(ExitingBlocks); 2379 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2380 return LatchBlock != BB; 2381 })) { 2382 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2383 IVIncInsertPos = LatchBlock->getTerminator(); 2384 return; 2385 } 2386 2387 // Otherwise treat this as a rotated loop. 2388 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2389 // Get the terminating condition for the loop if possible. If we 2390 // can, we want to change it to use a post-incremented version of its 2391 // induction variable, to allow coalescing the live ranges for the IV into 2392 // one register value. 2393 2394 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2395 if (!TermBr) 2396 continue; 2397 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2398 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2399 continue; 2400 2401 // Search IVUsesByStride to find Cond's IVUse if there is one. 2402 IVStrideUse *CondUse = nullptr; 2403 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2404 if (!FindIVUserForCond(Cond, CondUse)) 2405 continue; 2406 2407 // If the trip count is computed in terms of a max (due to ScalarEvolution 2408 // being unable to find a sufficient guard, for example), change the loop 2409 // comparison to use SLT or ULT instead of NE. 2410 // One consequence of doing this now is that it disrupts the count-down 2411 // optimization. That's not always a bad thing though, because in such 2412 // cases it may still be worthwhile to avoid a max. 2413 Cond = OptimizeMax(Cond, CondUse); 2414 2415 // If this exiting block dominates the latch block, it may also use 2416 // the post-inc value if it won't be shared with other uses. 2417 // Check for dominance. 2418 if (!DT.dominates(ExitingBlock, LatchBlock)) 2419 continue; 2420 2421 // Conservatively avoid trying to use the post-inc value in non-latch 2422 // exits if there may be pre-inc users in intervening blocks. 2423 if (LatchBlock != ExitingBlock) 2424 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2425 // Test if the use is reachable from the exiting block. This dominator 2426 // query is a conservative approximation of reachability. 2427 if (&*UI != CondUse && 2428 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2429 // Conservatively assume there may be reuse if the quotient of their 2430 // strides could be a legal scale. 2431 const SCEV *A = IU.getStride(*CondUse, L); 2432 const SCEV *B = IU.getStride(*UI, L); 2433 if (!A || !B) continue; 2434 if (SE.getTypeSizeInBits(A->getType()) != 2435 SE.getTypeSizeInBits(B->getType())) { 2436 if (SE.getTypeSizeInBits(A->getType()) > 2437 SE.getTypeSizeInBits(B->getType())) 2438 B = SE.getSignExtendExpr(B, A->getType()); 2439 else 2440 A = SE.getSignExtendExpr(A, B->getType()); 2441 } 2442 if (const SCEVConstant *D = 2443 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2444 const ConstantInt *C = D->getValue(); 2445 // Stride of one or negative one can have reuse with non-addresses. 2446 if (C->isOne() || C->isMinusOne()) 2447 goto decline_post_inc; 2448 // Avoid weird situations. 2449 if (C->getValue().getMinSignedBits() >= 64 || 2450 C->getValue().isMinSignedValue()) 2451 goto decline_post_inc; 2452 // Check for possible scaled-address reuse. 2453 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2454 MemAccessTy AccessTy = getAccessType( 2455 TTI, UI->getUser(), UI->getOperandValToReplace()); 2456 int64_t Scale = C->getSExtValue(); 2457 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2458 /*BaseOffset=*/0, 2459 /*HasBaseReg=*/false, Scale, 2460 AccessTy.AddrSpace)) 2461 goto decline_post_inc; 2462 Scale = -Scale; 2463 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2464 /*BaseOffset=*/0, 2465 /*HasBaseReg=*/false, Scale, 2466 AccessTy.AddrSpace)) 2467 goto decline_post_inc; 2468 } 2469 } 2470 } 2471 2472 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2473 << *Cond << '\n'); 2474 2475 // It's possible for the setcc instruction to be anywhere in the loop, and 2476 // possible for it to have multiple users. If it is not immediately before 2477 // the exiting block branch, move it. 2478 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2479 if (Cond->hasOneUse()) { 2480 Cond->moveBefore(TermBr); 2481 } else { 2482 // Clone the terminating condition and insert into the loopend. 2483 ICmpInst *OldCond = Cond; 2484 Cond = cast<ICmpInst>(Cond->clone()); 2485 Cond->setName(L->getHeader()->getName() + ".termcond"); 2486 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2487 2488 // Clone the IVUse, as the old use still exists! 2489 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2490 TermBr->replaceUsesOfWith(OldCond, Cond); 2491 } 2492 } 2493 2494 // If we get to here, we know that we can transform the setcc instruction to 2495 // use the post-incremented version of the IV, allowing us to coalesce the 2496 // live ranges for the IV correctly. 2497 CondUse->transformToPostInc(L); 2498 Changed = true; 2499 2500 PostIncs.insert(Cond); 2501 decline_post_inc:; 2502 } 2503 2504 // Determine an insertion point for the loop induction variable increment. It 2505 // must dominate all the post-inc comparisons we just set up, and it must 2506 // dominate the loop latch edge. 2507 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2508 for (Instruction *Inst : PostIncs) { 2509 BasicBlock *BB = 2510 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2511 Inst->getParent()); 2512 if (BB == Inst->getParent()) 2513 IVIncInsertPos = Inst; 2514 else if (BB != IVIncInsertPos->getParent()) 2515 IVIncInsertPos = BB->getTerminator(); 2516 } 2517 } 2518 2519 /// Determine if the given use can accommodate a fixup at the given offset and 2520 /// other details. If so, update the use and return true. 2521 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2522 bool HasBaseReg, LSRUse::KindType Kind, 2523 MemAccessTy AccessTy) { 2524 int64_t NewMinOffset = LU.MinOffset; 2525 int64_t NewMaxOffset = LU.MaxOffset; 2526 MemAccessTy NewAccessTy = AccessTy; 2527 2528 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2529 // something conservative, however this can pessimize in the case that one of 2530 // the uses will have all its uses outside the loop, for example. 2531 if (LU.Kind != Kind) 2532 return false; 2533 2534 // Check for a mismatched access type, and fall back conservatively as needed. 2535 // TODO: Be less conservative when the type is similar and can use the same 2536 // addressing modes. 2537 if (Kind == LSRUse::Address) { 2538 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2539 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2540 AccessTy.AddrSpace); 2541 } 2542 } 2543 2544 // Conservatively assume HasBaseReg is true for now. 2545 if (NewOffset < LU.MinOffset) { 2546 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2547 LU.MaxOffset - NewOffset, HasBaseReg)) 2548 return false; 2549 NewMinOffset = NewOffset; 2550 } else if (NewOffset > LU.MaxOffset) { 2551 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2552 NewOffset - LU.MinOffset, HasBaseReg)) 2553 return false; 2554 NewMaxOffset = NewOffset; 2555 } 2556 2557 // Update the use. 2558 LU.MinOffset = NewMinOffset; 2559 LU.MaxOffset = NewMaxOffset; 2560 LU.AccessTy = NewAccessTy; 2561 return true; 2562 } 2563 2564 /// Return an LSRUse index and an offset value for a fixup which needs the given 2565 /// expression, with the given kind and optional access type. Either reuse an 2566 /// existing use or create a new one, as needed. 2567 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2568 LSRUse::KindType Kind, 2569 MemAccessTy AccessTy) { 2570 const SCEV *Copy = Expr; 2571 int64_t Offset = ExtractImmediate(Expr, SE); 2572 2573 // Basic uses can't accept any offset, for example. 2574 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2575 Offset, /*HasBaseReg=*/ true)) { 2576 Expr = Copy; 2577 Offset = 0; 2578 } 2579 2580 std::pair<UseMapTy::iterator, bool> P = 2581 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2582 if (!P.second) { 2583 // A use already existed with this base. 2584 size_t LUIdx = P.first->second; 2585 LSRUse &LU = Uses[LUIdx]; 2586 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2587 // Reuse this use. 2588 return std::make_pair(LUIdx, Offset); 2589 } 2590 2591 // Create a new use. 2592 size_t LUIdx = Uses.size(); 2593 P.first->second = LUIdx; 2594 Uses.push_back(LSRUse(Kind, AccessTy)); 2595 LSRUse &LU = Uses[LUIdx]; 2596 2597 LU.MinOffset = Offset; 2598 LU.MaxOffset = Offset; 2599 return std::make_pair(LUIdx, Offset); 2600 } 2601 2602 /// Delete the given use from the Uses list. 2603 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2604 if (&LU != &Uses.back()) 2605 std::swap(LU, Uses.back()); 2606 Uses.pop_back(); 2607 2608 // Update RegUses. 2609 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2610 } 2611 2612 /// Look for a use distinct from OrigLU which is has a formula that has the same 2613 /// registers as the given formula. 2614 LSRUse * 2615 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2616 const LSRUse &OrigLU) { 2617 // Search all uses for the formula. This could be more clever. 2618 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2619 LSRUse &LU = Uses[LUIdx]; 2620 // Check whether this use is close enough to OrigLU, to see whether it's 2621 // worthwhile looking through its formulae. 2622 // Ignore ICmpZero uses because they may contain formulae generated by 2623 // GenerateICmpZeroScales, in which case adding fixup offsets may 2624 // be invalid. 2625 if (&LU != &OrigLU && 2626 LU.Kind != LSRUse::ICmpZero && 2627 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2628 LU.WidestFixupType == OrigLU.WidestFixupType && 2629 LU.HasFormulaWithSameRegs(OrigF)) { 2630 // Scan through this use's formulae. 2631 for (const Formula &F : LU.Formulae) { 2632 // Check to see if this formula has the same registers and symbols 2633 // as OrigF. 2634 if (F.BaseRegs == OrigF.BaseRegs && 2635 F.ScaledReg == OrigF.ScaledReg && 2636 F.BaseGV == OrigF.BaseGV && 2637 F.Scale == OrigF.Scale && 2638 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2639 if (F.BaseOffset == 0) 2640 return &LU; 2641 // This is the formula where all the registers and symbols matched; 2642 // there aren't going to be any others. Since we declined it, we 2643 // can skip the rest of the formulae and proceed to the next LSRUse. 2644 break; 2645 } 2646 } 2647 } 2648 } 2649 2650 // Nothing looked good. 2651 return nullptr; 2652 } 2653 2654 void LSRInstance::CollectInterestingTypesAndFactors() { 2655 SmallSetVector<const SCEV *, 4> Strides; 2656 2657 // Collect interesting types and strides. 2658 SmallVector<const SCEV *, 4> Worklist; 2659 for (const IVStrideUse &U : IU) { 2660 const SCEV *Expr = IU.getExpr(U); 2661 2662 // Collect interesting types. 2663 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2664 2665 // Add strides for mentioned loops. 2666 Worklist.push_back(Expr); 2667 do { 2668 const SCEV *S = Worklist.pop_back_val(); 2669 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2670 if (AR->getLoop() == L) 2671 Strides.insert(AR->getStepRecurrence(SE)); 2672 Worklist.push_back(AR->getStart()); 2673 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2674 Worklist.append(Add->op_begin(), Add->op_end()); 2675 } 2676 } while (!Worklist.empty()); 2677 } 2678 2679 // Compute interesting factors from the set of interesting strides. 2680 for (SmallSetVector<const SCEV *, 4>::const_iterator 2681 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2682 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2683 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2684 const SCEV *OldStride = *I; 2685 const SCEV *NewStride = *NewStrideIter; 2686 2687 if (SE.getTypeSizeInBits(OldStride->getType()) != 2688 SE.getTypeSizeInBits(NewStride->getType())) { 2689 if (SE.getTypeSizeInBits(OldStride->getType()) > 2690 SE.getTypeSizeInBits(NewStride->getType())) 2691 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2692 else 2693 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2694 } 2695 if (const SCEVConstant *Factor = 2696 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2697 SE, true))) { 2698 if (Factor->getAPInt().getMinSignedBits() <= 64) 2699 Factors.insert(Factor->getAPInt().getSExtValue()); 2700 } else if (const SCEVConstant *Factor = 2701 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2702 NewStride, 2703 SE, true))) { 2704 if (Factor->getAPInt().getMinSignedBits() <= 64) 2705 Factors.insert(Factor->getAPInt().getSExtValue()); 2706 } 2707 } 2708 2709 // If all uses use the same type, don't bother looking for truncation-based 2710 // reuse. 2711 if (Types.size() == 1) 2712 Types.clear(); 2713 2714 LLVM_DEBUG(print_factors_and_types(dbgs())); 2715 } 2716 2717 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2718 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2719 /// IVStrideUses, we could partially skip this. 2720 static User::op_iterator 2721 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2722 Loop *L, ScalarEvolution &SE) { 2723 for(; OI != OE; ++OI) { 2724 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2725 if (!SE.isSCEVable(Oper->getType())) 2726 continue; 2727 2728 if (const SCEVAddRecExpr *AR = 2729 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2730 if (AR->getLoop() == L) 2731 break; 2732 } 2733 } 2734 } 2735 return OI; 2736 } 2737 2738 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2739 /// a convenient helper. 2740 static Value *getWideOperand(Value *Oper) { 2741 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2742 return Trunc->getOperand(0); 2743 return Oper; 2744 } 2745 2746 /// Return true if we allow an IV chain to include both types. 2747 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2748 Type *LType = LVal->getType(); 2749 Type *RType = RVal->getType(); 2750 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2751 // Different address spaces means (possibly) 2752 // different types of the pointer implementation, 2753 // e.g. i16 vs i32 so disallow that. 2754 (LType->getPointerAddressSpace() == 2755 RType->getPointerAddressSpace())); 2756 } 2757 2758 /// Return an approximation of this SCEV expression's "base", or NULL for any 2759 /// constant. Returning the expression itself is conservative. Returning a 2760 /// deeper subexpression is more precise and valid as long as it isn't less 2761 /// complex than another subexpression. For expressions involving multiple 2762 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2763 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2764 /// IVInc==b-a. 2765 /// 2766 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2767 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2768 static const SCEV *getExprBase(const SCEV *S) { 2769 switch (S->getSCEVType()) { 2770 default: // uncluding scUnknown. 2771 return S; 2772 case scConstant: 2773 return nullptr; 2774 case scTruncate: 2775 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2776 case scZeroExtend: 2777 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2778 case scSignExtend: 2779 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2780 case scAddExpr: { 2781 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2782 // there's nothing more complex. 2783 // FIXME: not sure if we want to recognize negation. 2784 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2785 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2786 E(Add->op_begin()); I != E; ++I) { 2787 const SCEV *SubExpr = *I; 2788 if (SubExpr->getSCEVType() == scAddExpr) 2789 return getExprBase(SubExpr); 2790 2791 if (SubExpr->getSCEVType() != scMulExpr) 2792 return SubExpr; 2793 } 2794 return S; // all operands are scaled, be conservative. 2795 } 2796 case scAddRecExpr: 2797 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2798 } 2799 llvm_unreachable("Unknown SCEV kind!"); 2800 } 2801 2802 /// Return true if the chain increment is profitable to expand into a loop 2803 /// invariant value, which may require its own register. A profitable chain 2804 /// increment will be an offset relative to the same base. We allow such offsets 2805 /// to potentially be used as chain increment as long as it's not obviously 2806 /// expensive to expand using real instructions. 2807 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2808 const SCEV *IncExpr, 2809 ScalarEvolution &SE) { 2810 // Aggressively form chains when -stress-ivchain. 2811 if (StressIVChain) 2812 return true; 2813 2814 // Do not replace a constant offset from IV head with a nonconstant IV 2815 // increment. 2816 if (!isa<SCEVConstant>(IncExpr)) { 2817 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2818 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2819 return false; 2820 } 2821 2822 SmallPtrSet<const SCEV*, 8> Processed; 2823 return !isHighCostExpansion(IncExpr, Processed, SE); 2824 } 2825 2826 /// Return true if the number of registers needed for the chain is estimated to 2827 /// be less than the number required for the individual IV users. First prohibit 2828 /// any IV users that keep the IV live across increments (the Users set should 2829 /// be empty). Next count the number and type of increments in the chain. 2830 /// 2831 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2832 /// effectively use postinc addressing modes. Only consider it profitable it the 2833 /// increments can be computed in fewer registers when chained. 2834 /// 2835 /// TODO: Consider IVInc free if it's already used in another chains. 2836 static bool isProfitableChain(IVChain &Chain, 2837 SmallPtrSetImpl<Instruction *> &Users, 2838 ScalarEvolution &SE, 2839 const TargetTransformInfo &TTI) { 2840 if (StressIVChain) 2841 return true; 2842 2843 if (!Chain.hasIncs()) 2844 return false; 2845 2846 if (!Users.empty()) { 2847 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2848 for (Instruction *Inst 2849 : Users) { dbgs() << " " << *Inst << "\n"; }); 2850 return false; 2851 } 2852 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2853 2854 // The chain itself may require a register, so intialize cost to 1. 2855 int cost = 1; 2856 2857 // A complete chain likely eliminates the need for keeping the original IV in 2858 // a register. LSR does not currently know how to form a complete chain unless 2859 // the header phi already exists. 2860 if (isa<PHINode>(Chain.tailUserInst()) 2861 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2862 --cost; 2863 } 2864 const SCEV *LastIncExpr = nullptr; 2865 unsigned NumConstIncrements = 0; 2866 unsigned NumVarIncrements = 0; 2867 unsigned NumReusedIncrements = 0; 2868 2869 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2870 return true; 2871 2872 for (const IVInc &Inc : Chain) { 2873 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2874 return true; 2875 if (Inc.IncExpr->isZero()) 2876 continue; 2877 2878 // Incrementing by zero or some constant is neutral. We assume constants can 2879 // be folded into an addressing mode or an add's immediate operand. 2880 if (isa<SCEVConstant>(Inc.IncExpr)) { 2881 ++NumConstIncrements; 2882 continue; 2883 } 2884 2885 if (Inc.IncExpr == LastIncExpr) 2886 ++NumReusedIncrements; 2887 else 2888 ++NumVarIncrements; 2889 2890 LastIncExpr = Inc.IncExpr; 2891 } 2892 // An IV chain with a single increment is handled by LSR's postinc 2893 // uses. However, a chain with multiple increments requires keeping the IV's 2894 // value live longer than it needs to be if chained. 2895 if (NumConstIncrements > 1) 2896 --cost; 2897 2898 // Materializing increment expressions in the preheader that didn't exist in 2899 // the original code may cost a register. For example, sign-extended array 2900 // indices can produce ridiculous increments like this: 2901 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2902 cost += NumVarIncrements; 2903 2904 // Reusing variable increments likely saves a register to hold the multiple of 2905 // the stride. 2906 cost -= NumReusedIncrements; 2907 2908 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2909 << "\n"); 2910 2911 return cost < 0; 2912 } 2913 2914 /// Add this IV user to an existing chain or make it the head of a new chain. 2915 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2916 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2917 // When IVs are used as types of varying widths, they are generally converted 2918 // to a wider type with some uses remaining narrow under a (free) trunc. 2919 Value *const NextIV = getWideOperand(IVOper); 2920 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2921 const SCEV *const OperExprBase = getExprBase(OperExpr); 2922 2923 // Visit all existing chains. Check if its IVOper can be computed as a 2924 // profitable loop invariant increment from the last link in the Chain. 2925 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2926 const SCEV *LastIncExpr = nullptr; 2927 for (; ChainIdx < NChains; ++ChainIdx) { 2928 IVChain &Chain = IVChainVec[ChainIdx]; 2929 2930 // Prune the solution space aggressively by checking that both IV operands 2931 // are expressions that operate on the same unscaled SCEVUnknown. This 2932 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2933 // first avoids creating extra SCEV expressions. 2934 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2935 continue; 2936 2937 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2938 if (!isCompatibleIVType(PrevIV, NextIV)) 2939 continue; 2940 2941 // A phi node terminates a chain. 2942 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2943 continue; 2944 2945 // The increment must be loop-invariant so it can be kept in a register. 2946 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2947 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2948 if (!SE.isLoopInvariant(IncExpr, L)) 2949 continue; 2950 2951 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2952 LastIncExpr = IncExpr; 2953 break; 2954 } 2955 } 2956 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2957 // bother for phi nodes, because they must be last in the chain. 2958 if (ChainIdx == NChains) { 2959 if (isa<PHINode>(UserInst)) 2960 return; 2961 if (NChains >= MaxChains && !StressIVChain) { 2962 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2963 return; 2964 } 2965 LastIncExpr = OperExpr; 2966 // IVUsers may have skipped over sign/zero extensions. We don't currently 2967 // attempt to form chains involving extensions unless they can be hoisted 2968 // into this loop's AddRec. 2969 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2970 return; 2971 ++NChains; 2972 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2973 OperExprBase)); 2974 ChainUsersVec.resize(NChains); 2975 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2976 << ") IV=" << *LastIncExpr << "\n"); 2977 } else { 2978 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2979 << ") IV+" << *LastIncExpr << "\n"); 2980 // Add this IV user to the end of the chain. 2981 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2982 } 2983 IVChain &Chain = IVChainVec[ChainIdx]; 2984 2985 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2986 // This chain's NearUsers become FarUsers. 2987 if (!LastIncExpr->isZero()) { 2988 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2989 NearUsers.end()); 2990 NearUsers.clear(); 2991 } 2992 2993 // All other uses of IVOperand become near uses of the chain. 2994 // We currently ignore intermediate values within SCEV expressions, assuming 2995 // they will eventually be used be the current chain, or can be computed 2996 // from one of the chain increments. To be more precise we could 2997 // transitively follow its user and only add leaf IV users to the set. 2998 for (User *U : IVOper->users()) { 2999 Instruction *OtherUse = dyn_cast<Instruction>(U); 3000 if (!OtherUse) 3001 continue; 3002 // Uses in the chain will no longer be uses if the chain is formed. 3003 // Include the head of the chain in this iteration (not Chain.begin()). 3004 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3005 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3006 for( ; IncIter != IncEnd; ++IncIter) { 3007 if (IncIter->UserInst == OtherUse) 3008 break; 3009 } 3010 if (IncIter != IncEnd) 3011 continue; 3012 3013 if (SE.isSCEVable(OtherUse->getType()) 3014 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3015 && IU.isIVUserOrOperand(OtherUse)) { 3016 continue; 3017 } 3018 NearUsers.insert(OtherUse); 3019 } 3020 3021 // Since this user is part of the chain, it's no longer considered a use 3022 // of the chain. 3023 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3024 } 3025 3026 /// Populate the vector of Chains. 3027 /// 3028 /// This decreases ILP at the architecture level. Targets with ample registers, 3029 /// multiple memory ports, and no register renaming probably don't want 3030 /// this. However, such targets should probably disable LSR altogether. 3031 /// 3032 /// The job of LSR is to make a reasonable choice of induction variables across 3033 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3034 /// ILP *within the loop* if the target wants it. 3035 /// 3036 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3037 /// will not reorder memory operations, it will recognize this as a chain, but 3038 /// will generate redundant IV increments. Ideally this would be corrected later 3039 /// by a smart scheduler: 3040 /// = A[i] 3041 /// = A[i+x] 3042 /// A[i] = 3043 /// A[i+x] = 3044 /// 3045 /// TODO: Walk the entire domtree within this loop, not just the path to the 3046 /// loop latch. This will discover chains on side paths, but requires 3047 /// maintaining multiple copies of the Chains state. 3048 void LSRInstance::CollectChains() { 3049 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3050 SmallVector<ChainUsers, 8> ChainUsersVec; 3051 3052 SmallVector<BasicBlock *,8> LatchPath; 3053 BasicBlock *LoopHeader = L->getHeader(); 3054 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3055 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3056 LatchPath.push_back(Rung->getBlock()); 3057 } 3058 LatchPath.push_back(LoopHeader); 3059 3060 // Walk the instruction stream from the loop header to the loop latch. 3061 for (BasicBlock *BB : reverse(LatchPath)) { 3062 for (Instruction &I : *BB) { 3063 // Skip instructions that weren't seen by IVUsers analysis. 3064 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3065 continue; 3066 3067 // Ignore users that are part of a SCEV expression. This way we only 3068 // consider leaf IV Users. This effectively rediscovers a portion of 3069 // IVUsers analysis but in program order this time. 3070 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3071 continue; 3072 3073 // Remove this instruction from any NearUsers set it may be in. 3074 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3075 ChainIdx < NChains; ++ChainIdx) { 3076 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3077 } 3078 // Search for operands that can be chained. 3079 SmallPtrSet<Instruction*, 4> UniqueOperands; 3080 User::op_iterator IVOpEnd = I.op_end(); 3081 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3082 while (IVOpIter != IVOpEnd) { 3083 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3084 if (UniqueOperands.insert(IVOpInst).second) 3085 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3086 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3087 } 3088 } // Continue walking down the instructions. 3089 } // Continue walking down the domtree. 3090 // Visit phi backedges to determine if the chain can generate the IV postinc. 3091 for (PHINode &PN : L->getHeader()->phis()) { 3092 if (!SE.isSCEVable(PN.getType())) 3093 continue; 3094 3095 Instruction *IncV = 3096 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3097 if (IncV) 3098 ChainInstruction(&PN, IncV, ChainUsersVec); 3099 } 3100 // Remove any unprofitable chains. 3101 unsigned ChainIdx = 0; 3102 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3103 UsersIdx < NChains; ++UsersIdx) { 3104 if (!isProfitableChain(IVChainVec[UsersIdx], 3105 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3106 continue; 3107 // Preserve the chain at UsesIdx. 3108 if (ChainIdx != UsersIdx) 3109 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3110 FinalizeChain(IVChainVec[ChainIdx]); 3111 ++ChainIdx; 3112 } 3113 IVChainVec.resize(ChainIdx); 3114 } 3115 3116 void LSRInstance::FinalizeChain(IVChain &Chain) { 3117 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3118 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3119 3120 for (const IVInc &Inc : Chain) { 3121 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3122 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3123 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3124 IVIncSet.insert(UseI); 3125 } 3126 } 3127 3128 /// Return true if the IVInc can be folded into an addressing mode. 3129 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3130 Value *Operand, const TargetTransformInfo &TTI) { 3131 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3132 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3133 return false; 3134 3135 if (IncConst->getAPInt().getMinSignedBits() > 64) 3136 return false; 3137 3138 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3139 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3140 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3141 IncOffset, /*HasBaseReg=*/false)) 3142 return false; 3143 3144 return true; 3145 } 3146 3147 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3148 /// user's operand from the previous IV user's operand. 3149 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3150 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3151 // Find the new IVOperand for the head of the chain. It may have been replaced 3152 // by LSR. 3153 const IVInc &Head = Chain.Incs[0]; 3154 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3155 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3156 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3157 IVOpEnd, L, SE); 3158 Value *IVSrc = nullptr; 3159 while (IVOpIter != IVOpEnd) { 3160 IVSrc = getWideOperand(*IVOpIter); 3161 3162 // If this operand computes the expression that the chain needs, we may use 3163 // it. (Check this after setting IVSrc which is used below.) 3164 // 3165 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3166 // narrow for the chain, so we can no longer use it. We do allow using a 3167 // wider phi, assuming the LSR checked for free truncation. In that case we 3168 // should already have a truncate on this operand such that 3169 // getSCEV(IVSrc) == IncExpr. 3170 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3171 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3172 break; 3173 } 3174 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3175 } 3176 if (IVOpIter == IVOpEnd) { 3177 // Gracefully give up on this chain. 3178 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3179 return; 3180 } 3181 assert(IVSrc && "Failed to find IV chain source"); 3182 3183 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3184 Type *IVTy = IVSrc->getType(); 3185 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3186 const SCEV *LeftOverExpr = nullptr; 3187 for (const IVInc &Inc : Chain) { 3188 Instruction *InsertPt = Inc.UserInst; 3189 if (isa<PHINode>(InsertPt)) 3190 InsertPt = L->getLoopLatch()->getTerminator(); 3191 3192 // IVOper will replace the current IV User's operand. IVSrc is the IV 3193 // value currently held in a register. 3194 Value *IVOper = IVSrc; 3195 if (!Inc.IncExpr->isZero()) { 3196 // IncExpr was the result of subtraction of two narrow values, so must 3197 // be signed. 3198 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3199 LeftOverExpr = LeftOverExpr ? 3200 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3201 } 3202 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3203 // Expand the IV increment. 3204 Rewriter.clearPostInc(); 3205 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3206 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3207 SE.getUnknown(IncV)); 3208 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3209 3210 // If an IV increment can't be folded, use it as the next IV value. 3211 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3212 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3213 IVSrc = IVOper; 3214 LeftOverExpr = nullptr; 3215 } 3216 } 3217 Type *OperTy = Inc.IVOperand->getType(); 3218 if (IVTy != OperTy) { 3219 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3220 "cannot extend a chained IV"); 3221 IRBuilder<> Builder(InsertPt); 3222 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3223 } 3224 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3225 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3226 DeadInsts.emplace_back(OperandIsInstr); 3227 } 3228 // If LSR created a new, wider phi, we may also replace its postinc. We only 3229 // do this if we also found a wide value for the head of the chain. 3230 if (isa<PHINode>(Chain.tailUserInst())) { 3231 for (PHINode &Phi : L->getHeader()->phis()) { 3232 if (!isCompatibleIVType(&Phi, IVSrc)) 3233 continue; 3234 Instruction *PostIncV = dyn_cast<Instruction>( 3235 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3236 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3237 continue; 3238 Value *IVOper = IVSrc; 3239 Type *PostIncTy = PostIncV->getType(); 3240 if (IVTy != PostIncTy) { 3241 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3242 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3243 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3244 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3245 } 3246 Phi.replaceUsesOfWith(PostIncV, IVOper); 3247 DeadInsts.emplace_back(PostIncV); 3248 } 3249 } 3250 } 3251 3252 void LSRInstance::CollectFixupsAndInitialFormulae() { 3253 BranchInst *ExitBranch = nullptr; 3254 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3255 3256 for (const IVStrideUse &U : IU) { 3257 Instruction *UserInst = U.getUser(); 3258 // Skip IV users that are part of profitable IV Chains. 3259 User::op_iterator UseI = 3260 find(UserInst->operands(), U.getOperandValToReplace()); 3261 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3262 if (IVIncSet.count(UseI)) { 3263 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3264 continue; 3265 } 3266 3267 LSRUse::KindType Kind = LSRUse::Basic; 3268 MemAccessTy AccessTy; 3269 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3270 Kind = LSRUse::Address; 3271 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3272 } 3273 3274 const SCEV *S = IU.getExpr(U); 3275 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3276 3277 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3278 // (N - i == 0), and this allows (N - i) to be the expression that we work 3279 // with rather than just N or i, so we can consider the register 3280 // requirements for both N and i at the same time. Limiting this code to 3281 // equality icmps is not a problem because all interesting loops use 3282 // equality icmps, thanks to IndVarSimplify. 3283 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3284 // If CI can be saved in some target, like replaced inside hardware loop 3285 // in PowerPC, no need to generate initial formulae for it. 3286 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3287 continue; 3288 if (CI->isEquality()) { 3289 // Swap the operands if needed to put the OperandValToReplace on the 3290 // left, for consistency. 3291 Value *NV = CI->getOperand(1); 3292 if (NV == U.getOperandValToReplace()) { 3293 CI->setOperand(1, CI->getOperand(0)); 3294 CI->setOperand(0, NV); 3295 NV = CI->getOperand(1); 3296 Changed = true; 3297 } 3298 3299 // x == y --> x - y == 0 3300 const SCEV *N = SE.getSCEV(NV); 3301 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3302 // S is normalized, so normalize N before folding it into S 3303 // to keep the result normalized. 3304 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3305 Kind = LSRUse::ICmpZero; 3306 S = SE.getMinusSCEV(N, S); 3307 } 3308 3309 // -1 and the negations of all interesting strides (except the negation 3310 // of -1) are now also interesting. 3311 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3312 if (Factors[i] != -1) 3313 Factors.insert(-(uint64_t)Factors[i]); 3314 Factors.insert(-1); 3315 } 3316 } 3317 3318 // Get or create an LSRUse. 3319 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3320 size_t LUIdx = P.first; 3321 int64_t Offset = P.second; 3322 LSRUse &LU = Uses[LUIdx]; 3323 3324 // Record the fixup. 3325 LSRFixup &LF = LU.getNewFixup(); 3326 LF.UserInst = UserInst; 3327 LF.OperandValToReplace = U.getOperandValToReplace(); 3328 LF.PostIncLoops = TmpPostIncLoops; 3329 LF.Offset = Offset; 3330 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3331 3332 if (!LU.WidestFixupType || 3333 SE.getTypeSizeInBits(LU.WidestFixupType) < 3334 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3335 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3336 3337 // If this is the first use of this LSRUse, give it a formula. 3338 if (LU.Formulae.empty()) { 3339 InsertInitialFormula(S, LU, LUIdx); 3340 CountRegisters(LU.Formulae.back(), LUIdx); 3341 } 3342 } 3343 3344 LLVM_DEBUG(print_fixups(dbgs())); 3345 } 3346 3347 /// Insert a formula for the given expression into the given use, separating out 3348 /// loop-variant portions from loop-invariant and loop-computable portions. 3349 void 3350 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3351 // Mark uses whose expressions cannot be expanded. 3352 if (!isSafeToExpand(S, SE)) 3353 LU.RigidFormula = true; 3354 3355 Formula F; 3356 F.initialMatch(S, L, SE); 3357 bool Inserted = InsertFormula(LU, LUIdx, F); 3358 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3359 } 3360 3361 /// Insert a simple single-register formula for the given expression into the 3362 /// given use. 3363 void 3364 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3365 LSRUse &LU, size_t LUIdx) { 3366 Formula F; 3367 F.BaseRegs.push_back(S); 3368 F.HasBaseReg = true; 3369 bool Inserted = InsertFormula(LU, LUIdx, F); 3370 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3371 } 3372 3373 /// Note which registers are used by the given formula, updating RegUses. 3374 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3375 if (F.ScaledReg) 3376 RegUses.countRegister(F.ScaledReg, LUIdx); 3377 for (const SCEV *BaseReg : F.BaseRegs) 3378 RegUses.countRegister(BaseReg, LUIdx); 3379 } 3380 3381 /// If the given formula has not yet been inserted, add it to the list, and 3382 /// return true. Return false otherwise. 3383 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3384 // Do not insert formula that we will not be able to expand. 3385 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3386 "Formula is illegal"); 3387 3388 if (!LU.InsertFormula(F, *L)) 3389 return false; 3390 3391 CountRegisters(F, LUIdx); 3392 return true; 3393 } 3394 3395 /// Check for other uses of loop-invariant values which we're tracking. These 3396 /// other uses will pin these values in registers, making them less profitable 3397 /// for elimination. 3398 /// TODO: This currently misses non-constant addrec step registers. 3399 /// TODO: Should this give more weight to users inside the loop? 3400 void 3401 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3402 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3403 SmallPtrSet<const SCEV *, 32> Visited; 3404 3405 while (!Worklist.empty()) { 3406 const SCEV *S = Worklist.pop_back_val(); 3407 3408 // Don't process the same SCEV twice 3409 if (!Visited.insert(S).second) 3410 continue; 3411 3412 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3413 Worklist.append(N->op_begin(), N->op_end()); 3414 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3415 Worklist.push_back(C->getOperand()); 3416 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3417 Worklist.push_back(D->getLHS()); 3418 Worklist.push_back(D->getRHS()); 3419 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3420 const Value *V = US->getValue(); 3421 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3422 // Look for instructions defined outside the loop. 3423 if (L->contains(Inst)) continue; 3424 } else if (isa<UndefValue>(V)) 3425 // Undef doesn't have a live range, so it doesn't matter. 3426 continue; 3427 for (const Use &U : V->uses()) { 3428 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3429 // Ignore non-instructions. 3430 if (!UserInst) 3431 continue; 3432 // Ignore instructions in other functions (as can happen with 3433 // Constants). 3434 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3435 continue; 3436 // Ignore instructions not dominated by the loop. 3437 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3438 UserInst->getParent() : 3439 cast<PHINode>(UserInst)->getIncomingBlock( 3440 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3441 if (!DT.dominates(L->getHeader(), UseBB)) 3442 continue; 3443 // Don't bother if the instruction is in a BB which ends in an EHPad. 3444 if (UseBB->getTerminator()->isEHPad()) 3445 continue; 3446 // Don't bother rewriting PHIs in catchswitch blocks. 3447 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3448 continue; 3449 // Ignore uses which are part of other SCEV expressions, to avoid 3450 // analyzing them multiple times. 3451 if (SE.isSCEVable(UserInst->getType())) { 3452 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3453 // If the user is a no-op, look through to its uses. 3454 if (!isa<SCEVUnknown>(UserS)) 3455 continue; 3456 if (UserS == US) { 3457 Worklist.push_back( 3458 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3459 continue; 3460 } 3461 } 3462 // Ignore icmp instructions which are already being analyzed. 3463 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3464 unsigned OtherIdx = !U.getOperandNo(); 3465 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3466 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3467 continue; 3468 } 3469 3470 std::pair<size_t, int64_t> P = getUse( 3471 S, LSRUse::Basic, MemAccessTy()); 3472 size_t LUIdx = P.first; 3473 int64_t Offset = P.second; 3474 LSRUse &LU = Uses[LUIdx]; 3475 LSRFixup &LF = LU.getNewFixup(); 3476 LF.UserInst = const_cast<Instruction *>(UserInst); 3477 LF.OperandValToReplace = U; 3478 LF.Offset = Offset; 3479 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3480 if (!LU.WidestFixupType || 3481 SE.getTypeSizeInBits(LU.WidestFixupType) < 3482 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3483 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3484 InsertSupplementalFormula(US, LU, LUIdx); 3485 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3486 break; 3487 } 3488 } 3489 } 3490 } 3491 3492 /// Split S into subexpressions which can be pulled out into separate 3493 /// registers. If C is non-null, multiply each subexpression by C. 3494 /// 3495 /// Return remainder expression after factoring the subexpressions captured by 3496 /// Ops. If Ops is complete, return NULL. 3497 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3498 SmallVectorImpl<const SCEV *> &Ops, 3499 const Loop *L, 3500 ScalarEvolution &SE, 3501 unsigned Depth = 0) { 3502 // Arbitrarily cap recursion to protect compile time. 3503 if (Depth >= 3) 3504 return S; 3505 3506 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3507 // Break out add operands. 3508 for (const SCEV *S : Add->operands()) { 3509 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3510 if (Remainder) 3511 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3512 } 3513 return nullptr; 3514 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3515 // Split a non-zero base out of an addrec. 3516 if (AR->getStart()->isZero() || !AR->isAffine()) 3517 return S; 3518 3519 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3520 C, Ops, L, SE, Depth+1); 3521 // Split the non-zero AddRec unless it is part of a nested recurrence that 3522 // does not pertain to this loop. 3523 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3524 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3525 Remainder = nullptr; 3526 } 3527 if (Remainder != AR->getStart()) { 3528 if (!Remainder) 3529 Remainder = SE.getConstant(AR->getType(), 0); 3530 return SE.getAddRecExpr(Remainder, 3531 AR->getStepRecurrence(SE), 3532 AR->getLoop(), 3533 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3534 SCEV::FlagAnyWrap); 3535 } 3536 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3537 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3538 if (Mul->getNumOperands() != 2) 3539 return S; 3540 if (const SCEVConstant *Op0 = 3541 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3542 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3543 const SCEV *Remainder = 3544 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3545 if (Remainder) 3546 Ops.push_back(SE.getMulExpr(C, Remainder)); 3547 return nullptr; 3548 } 3549 } 3550 return S; 3551 } 3552 3553 /// Return true if the SCEV represents a value that may end up as a 3554 /// post-increment operation. 3555 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3556 LSRUse &LU, const SCEV *S, const Loop *L, 3557 ScalarEvolution &SE) { 3558 if (LU.Kind != LSRUse::Address || 3559 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3560 return false; 3561 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3562 if (!AR) 3563 return false; 3564 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3565 if (!isa<SCEVConstant>(LoopStep)) 3566 return false; 3567 // Check if a post-indexed load/store can be used. 3568 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3569 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3570 const SCEV *LoopStart = AR->getStart(); 3571 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3572 return true; 3573 } 3574 return false; 3575 } 3576 3577 /// Helper function for LSRInstance::GenerateReassociations. 3578 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3579 const Formula &Base, 3580 unsigned Depth, size_t Idx, 3581 bool IsScaledReg) { 3582 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3583 // Don't generate reassociations for the base register of a value that 3584 // may generate a post-increment operator. The reason is that the 3585 // reassociations cause extra base+register formula to be created, 3586 // and possibly chosen, but the post-increment is more efficient. 3587 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3588 return; 3589 SmallVector<const SCEV *, 8> AddOps; 3590 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3591 if (Remainder) 3592 AddOps.push_back(Remainder); 3593 3594 if (AddOps.size() == 1) 3595 return; 3596 3597 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3598 JE = AddOps.end(); 3599 J != JE; ++J) { 3600 // Loop-variant "unknown" values are uninteresting; we won't be able to 3601 // do anything meaningful with them. 3602 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3603 continue; 3604 3605 // Don't pull a constant into a register if the constant could be folded 3606 // into an immediate field. 3607 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3608 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3609 continue; 3610 3611 // Collect all operands except *J. 3612 SmallVector<const SCEV *, 8> InnerAddOps( 3613 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3614 InnerAddOps.append(std::next(J), 3615 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3616 3617 // Don't leave just a constant behind in a register if the constant could 3618 // be folded into an immediate field. 3619 if (InnerAddOps.size() == 1 && 3620 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3621 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3622 continue; 3623 3624 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3625 if (InnerSum->isZero()) 3626 continue; 3627 Formula F = Base; 3628 3629 // Add the remaining pieces of the add back into the new formula. 3630 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3631 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3632 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3633 InnerSumSC->getValue()->getZExtValue())) { 3634 F.UnfoldedOffset = 3635 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3636 if (IsScaledReg) 3637 F.ScaledReg = nullptr; 3638 else 3639 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3640 } else if (IsScaledReg) 3641 F.ScaledReg = InnerSum; 3642 else 3643 F.BaseRegs[Idx] = InnerSum; 3644 3645 // Add J as its own register, or an unfolded immediate. 3646 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3647 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3648 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3649 SC->getValue()->getZExtValue())) 3650 F.UnfoldedOffset = 3651 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3652 else 3653 F.BaseRegs.push_back(*J); 3654 // We may have changed the number of register in base regs, adjust the 3655 // formula accordingly. 3656 F.canonicalize(*L); 3657 3658 if (InsertFormula(LU, LUIdx, F)) 3659 // If that formula hadn't been seen before, recurse to find more like 3660 // it. 3661 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3662 // Because just Depth is not enough to bound compile time. 3663 // This means that every time AddOps.size() is greater 16^x we will add 3664 // x to Depth. 3665 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3666 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3667 } 3668 } 3669 3670 /// Split out subexpressions from adds and the bases of addrecs. 3671 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3672 Formula Base, unsigned Depth) { 3673 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3674 // Arbitrarily cap recursion to protect compile time. 3675 if (Depth >= 3) 3676 return; 3677 3678 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3679 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3680 3681 if (Base.Scale == 1) 3682 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3683 /* Idx */ -1, /* IsScaledReg */ true); 3684 } 3685 3686 /// Generate a formula consisting of all of the loop-dominating registers added 3687 /// into a single register. 3688 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3689 Formula Base) { 3690 // This method is only interesting on a plurality of registers. 3691 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3692 (Base.UnfoldedOffset != 0) <= 1) 3693 return; 3694 3695 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3696 // processing the formula. 3697 Base.unscale(); 3698 SmallVector<const SCEV *, 4> Ops; 3699 Formula NewBase = Base; 3700 NewBase.BaseRegs.clear(); 3701 Type *CombinedIntegerType = nullptr; 3702 for (const SCEV *BaseReg : Base.BaseRegs) { 3703 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3704 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3705 if (!CombinedIntegerType) 3706 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3707 Ops.push_back(BaseReg); 3708 } 3709 else 3710 NewBase.BaseRegs.push_back(BaseReg); 3711 } 3712 3713 // If no register is relevant, we're done. 3714 if (Ops.size() == 0) 3715 return; 3716 3717 // Utility function for generating the required variants of the combined 3718 // registers. 3719 auto GenerateFormula = [&](const SCEV *Sum) { 3720 Formula F = NewBase; 3721 3722 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3723 // opportunity to fold something. For now, just ignore such cases 3724 // rather than proceed with zero in a register. 3725 if (Sum->isZero()) 3726 return; 3727 3728 F.BaseRegs.push_back(Sum); 3729 F.canonicalize(*L); 3730 (void)InsertFormula(LU, LUIdx, F); 3731 }; 3732 3733 // If we collected at least two registers, generate a formula combining them. 3734 if (Ops.size() > 1) { 3735 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3736 GenerateFormula(SE.getAddExpr(OpsCopy)); 3737 } 3738 3739 // If we have an unfolded offset, generate a formula combining it with the 3740 // registers collected. 3741 if (NewBase.UnfoldedOffset) { 3742 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3743 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3744 true)); 3745 NewBase.UnfoldedOffset = 0; 3746 GenerateFormula(SE.getAddExpr(Ops)); 3747 } 3748 } 3749 3750 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3751 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3752 const Formula &Base, size_t Idx, 3753 bool IsScaledReg) { 3754 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3755 GlobalValue *GV = ExtractSymbol(G, SE); 3756 if (G->isZero() || !GV) 3757 return; 3758 Formula F = Base; 3759 F.BaseGV = GV; 3760 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3761 return; 3762 if (IsScaledReg) 3763 F.ScaledReg = G; 3764 else 3765 F.BaseRegs[Idx] = G; 3766 (void)InsertFormula(LU, LUIdx, F); 3767 } 3768 3769 /// Generate reuse formulae using symbolic offsets. 3770 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3771 Formula Base) { 3772 // We can't add a symbolic offset if the address already contains one. 3773 if (Base.BaseGV) return; 3774 3775 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3776 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3777 if (Base.Scale == 1) 3778 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3779 /* IsScaledReg */ true); 3780 } 3781 3782 /// Helper function for LSRInstance::GenerateConstantOffsets. 3783 void LSRInstance::GenerateConstantOffsetsImpl( 3784 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3785 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3786 3787 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3788 Formula F = Base; 3789 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3790 3791 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3792 LU.AccessTy, F)) { 3793 // Add the offset to the base register. 3794 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3795 // If it cancelled out, drop the base register, otherwise update it. 3796 if (NewG->isZero()) { 3797 if (IsScaledReg) { 3798 F.Scale = 0; 3799 F.ScaledReg = nullptr; 3800 } else 3801 F.deleteBaseReg(F.BaseRegs[Idx]); 3802 F.canonicalize(*L); 3803 } else if (IsScaledReg) 3804 F.ScaledReg = NewG; 3805 else 3806 F.BaseRegs[Idx] = NewG; 3807 3808 (void)InsertFormula(LU, LUIdx, F); 3809 } 3810 }; 3811 3812 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3813 3814 // With constant offsets and constant steps, we can generate pre-inc 3815 // accesses by having the offset equal the step. So, for access #0 with a 3816 // step of 8, we generate a G - 8 base which would require the first access 3817 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3818 // for itself and hopefully becomes the base for other accesses. This means 3819 // means that a single pre-indexed access can be generated to become the new 3820 // base pointer for each iteration of the loop, resulting in no extra add/sub 3821 // instructions for pointer updating. 3822 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 3823 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3824 if (auto *StepRec = 3825 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3826 const APInt &StepInt = StepRec->getAPInt(); 3827 int64_t Step = StepInt.isNegative() ? 3828 StepInt.getSExtValue() : StepInt.getZExtValue(); 3829 3830 for (int64_t Offset : Worklist) { 3831 Offset -= Step; 3832 GenerateOffset(G, Offset); 3833 } 3834 } 3835 } 3836 } 3837 for (int64_t Offset : Worklist) 3838 GenerateOffset(G, Offset); 3839 3840 int64_t Imm = ExtractImmediate(G, SE); 3841 if (G->isZero() || Imm == 0) 3842 return; 3843 Formula F = Base; 3844 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3845 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3846 return; 3847 if (IsScaledReg) { 3848 F.ScaledReg = G; 3849 } else { 3850 F.BaseRegs[Idx] = G; 3851 // We may generate non canonical Formula if G is a recurrent expr reg 3852 // related with current loop while F.ScaledReg is not. 3853 F.canonicalize(*L); 3854 } 3855 (void)InsertFormula(LU, LUIdx, F); 3856 } 3857 3858 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3859 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3860 Formula Base) { 3861 // TODO: For now, just add the min and max offset, because it usually isn't 3862 // worthwhile looking at everything inbetween. 3863 SmallVector<int64_t, 2> Worklist; 3864 Worklist.push_back(LU.MinOffset); 3865 if (LU.MaxOffset != LU.MinOffset) 3866 Worklist.push_back(LU.MaxOffset); 3867 3868 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3869 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3870 if (Base.Scale == 1) 3871 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3872 /* IsScaledReg */ true); 3873 } 3874 3875 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3876 /// == y -> x*c == y*c. 3877 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3878 Formula Base) { 3879 if (LU.Kind != LSRUse::ICmpZero) return; 3880 3881 // Determine the integer type for the base formula. 3882 Type *IntTy = Base.getType(); 3883 if (!IntTy) return; 3884 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3885 3886 // Don't do this if there is more than one offset. 3887 if (LU.MinOffset != LU.MaxOffset) return; 3888 3889 // Check if transformation is valid. It is illegal to multiply pointer. 3890 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3891 return; 3892 for (const SCEV *BaseReg : Base.BaseRegs) 3893 if (BaseReg->getType()->isPointerTy()) 3894 return; 3895 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3896 3897 // Check each interesting stride. 3898 for (int64_t Factor : Factors) { 3899 // Check that the multiplication doesn't overflow. 3900 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3901 continue; 3902 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3903 if (NewBaseOffset / Factor != Base.BaseOffset) 3904 continue; 3905 // If the offset will be truncated at this use, check that it is in bounds. 3906 if (!IntTy->isPointerTy() && 3907 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3908 continue; 3909 3910 // Check that multiplying with the use offset doesn't overflow. 3911 int64_t Offset = LU.MinOffset; 3912 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3913 continue; 3914 Offset = (uint64_t)Offset * Factor; 3915 if (Offset / Factor != LU.MinOffset) 3916 continue; 3917 // If the offset will be truncated at this use, check that it is in bounds. 3918 if (!IntTy->isPointerTy() && 3919 !ConstantInt::isValueValidForType(IntTy, Offset)) 3920 continue; 3921 3922 Formula F = Base; 3923 F.BaseOffset = NewBaseOffset; 3924 3925 // Check that this scale is legal. 3926 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3927 continue; 3928 3929 // Compensate for the use having MinOffset built into it. 3930 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3931 3932 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3933 3934 // Check that multiplying with each base register doesn't overflow. 3935 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3936 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3937 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3938 goto next; 3939 } 3940 3941 // Check that multiplying with the scaled register doesn't overflow. 3942 if (F.ScaledReg) { 3943 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3944 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3945 continue; 3946 } 3947 3948 // Check that multiplying with the unfolded offset doesn't overflow. 3949 if (F.UnfoldedOffset != 0) { 3950 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3951 Factor == -1) 3952 continue; 3953 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3954 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3955 continue; 3956 // If the offset will be truncated, check that it is in bounds. 3957 if (!IntTy->isPointerTy() && 3958 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3959 continue; 3960 } 3961 3962 // If we make it here and it's legal, add it. 3963 (void)InsertFormula(LU, LUIdx, F); 3964 next:; 3965 } 3966 } 3967 3968 /// Generate stride factor reuse formulae by making use of scaled-offset address 3969 /// modes, for example. 3970 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3971 // Determine the integer type for the base formula. 3972 Type *IntTy = Base.getType(); 3973 if (!IntTy) return; 3974 3975 // If this Formula already has a scaled register, we can't add another one. 3976 // Try to unscale the formula to generate a better scale. 3977 if (Base.Scale != 0 && !Base.unscale()) 3978 return; 3979 3980 assert(Base.Scale == 0 && "unscale did not did its job!"); 3981 3982 // Check each interesting stride. 3983 for (int64_t Factor : Factors) { 3984 Base.Scale = Factor; 3985 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3986 // Check whether this scale is going to be legal. 3987 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3988 Base)) { 3989 // As a special-case, handle special out-of-loop Basic users specially. 3990 // TODO: Reconsider this special case. 3991 if (LU.Kind == LSRUse::Basic && 3992 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3993 LU.AccessTy, Base) && 3994 LU.AllFixupsOutsideLoop) 3995 LU.Kind = LSRUse::Special; 3996 else 3997 continue; 3998 } 3999 // For an ICmpZero, negating a solitary base register won't lead to 4000 // new solutions. 4001 if (LU.Kind == LSRUse::ICmpZero && 4002 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 4003 continue; 4004 // For each addrec base reg, if its loop is current loop, apply the scale. 4005 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4006 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4007 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4008 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4009 if (FactorS->isZero()) 4010 continue; 4011 // Divide out the factor, ignoring high bits, since we'll be 4012 // scaling the value back up in the end. 4013 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4014 // TODO: This could be optimized to avoid all the copying. 4015 Formula F = Base; 4016 F.ScaledReg = Quotient; 4017 F.deleteBaseReg(F.BaseRegs[i]); 4018 // The canonical representation of 1*reg is reg, which is already in 4019 // Base. In that case, do not try to insert the formula, it will be 4020 // rejected anyway. 4021 if (F.Scale == 1 && (F.BaseRegs.empty() || 4022 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4023 continue; 4024 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4025 // non canonical Formula with ScaledReg's loop not being L. 4026 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4027 F.canonicalize(*L); 4028 (void)InsertFormula(LU, LUIdx, F); 4029 } 4030 } 4031 } 4032 } 4033 } 4034 4035 /// Generate reuse formulae from different IV types. 4036 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4037 // Don't bother truncating symbolic values. 4038 if (Base.BaseGV) return; 4039 4040 // Determine the integer type for the base formula. 4041 Type *DstTy = Base.getType(); 4042 if (!DstTy) return; 4043 DstTy = SE.getEffectiveSCEVType(DstTy); 4044 4045 for (Type *SrcTy : Types) { 4046 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4047 Formula F = Base; 4048 4049 // Sometimes SCEV is able to prove zero during ext transform. It may 4050 // happen if SCEV did not do all possible transforms while creating the 4051 // initial node (maybe due to depth limitations), but it can do them while 4052 // taking ext. 4053 if (F.ScaledReg) { 4054 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4055 if (NewScaledReg->isZero()) 4056 continue; 4057 F.ScaledReg = NewScaledReg; 4058 } 4059 bool HasZeroBaseReg = false; 4060 for (const SCEV *&BaseReg : F.BaseRegs) { 4061 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4062 if (NewBaseReg->isZero()) { 4063 HasZeroBaseReg = true; 4064 break; 4065 } 4066 BaseReg = NewBaseReg; 4067 } 4068 if (HasZeroBaseReg) 4069 continue; 4070 4071 // TODO: This assumes we've done basic processing on all uses and 4072 // have an idea what the register usage is. 4073 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4074 continue; 4075 4076 F.canonicalize(*L); 4077 (void)InsertFormula(LU, LUIdx, F); 4078 } 4079 } 4080 } 4081 4082 namespace { 4083 4084 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4085 /// modifications so that the search phase doesn't have to worry about the data 4086 /// structures moving underneath it. 4087 struct WorkItem { 4088 size_t LUIdx; 4089 int64_t Imm; 4090 const SCEV *OrigReg; 4091 4092 WorkItem(size_t LI, int64_t I, const SCEV *R) 4093 : LUIdx(LI), Imm(I), OrigReg(R) {} 4094 4095 void print(raw_ostream &OS) const; 4096 void dump() const; 4097 }; 4098 4099 } // end anonymous namespace 4100 4101 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4102 void WorkItem::print(raw_ostream &OS) const { 4103 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4104 << " , add offset " << Imm; 4105 } 4106 4107 LLVM_DUMP_METHOD void WorkItem::dump() const { 4108 print(errs()); errs() << '\n'; 4109 } 4110 #endif 4111 4112 /// Look for registers which are a constant distance apart and try to form reuse 4113 /// opportunities between them. 4114 void LSRInstance::GenerateCrossUseConstantOffsets() { 4115 // Group the registers by their value without any added constant offset. 4116 using ImmMapTy = std::map<int64_t, const SCEV *>; 4117 4118 DenseMap<const SCEV *, ImmMapTy> Map; 4119 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4120 SmallVector<const SCEV *, 8> Sequence; 4121 for (const SCEV *Use : RegUses) { 4122 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4123 int64_t Imm = ExtractImmediate(Reg, SE); 4124 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4125 if (Pair.second) 4126 Sequence.push_back(Reg); 4127 Pair.first->second.insert(std::make_pair(Imm, Use)); 4128 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4129 } 4130 4131 // Now examine each set of registers with the same base value. Build up 4132 // a list of work to do and do the work in a separate step so that we're 4133 // not adding formulae and register counts while we're searching. 4134 SmallVector<WorkItem, 32> WorkItems; 4135 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4136 for (const SCEV *Reg : Sequence) { 4137 const ImmMapTy &Imms = Map.find(Reg)->second; 4138 4139 // It's not worthwhile looking for reuse if there's only one offset. 4140 if (Imms.size() == 1) 4141 continue; 4142 4143 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4144 for (const auto &Entry 4145 : Imms) dbgs() 4146 << ' ' << Entry.first; 4147 dbgs() << '\n'); 4148 4149 // Examine each offset. 4150 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4151 J != JE; ++J) { 4152 const SCEV *OrigReg = J->second; 4153 4154 int64_t JImm = J->first; 4155 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4156 4157 if (!isa<SCEVConstant>(OrigReg) && 4158 UsedByIndicesMap[Reg].count() == 1) { 4159 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4160 << '\n'); 4161 continue; 4162 } 4163 4164 // Conservatively examine offsets between this orig reg a few selected 4165 // other orig regs. 4166 int64_t First = Imms.begin()->first; 4167 int64_t Last = std::prev(Imms.end())->first; 4168 // Compute (First + Last) / 2 without overflow using the fact that 4169 // First + Last = 2 * (First + Last) + (First ^ Last). 4170 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4171 // If the result is negative and First is odd and Last even (or vice versa), 4172 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4173 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4174 ImmMapTy::const_iterator OtherImms[] = { 4175 Imms.begin(), std::prev(Imms.end()), 4176 Imms.lower_bound(Avg)}; 4177 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4178 ImmMapTy::const_iterator M = OtherImms[i]; 4179 if (M == J || M == JE) continue; 4180 4181 // Compute the difference between the two. 4182 int64_t Imm = (uint64_t)JImm - M->first; 4183 for (unsigned LUIdx : UsedByIndices.set_bits()) 4184 // Make a memo of this use, offset, and register tuple. 4185 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4186 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4187 } 4188 } 4189 } 4190 4191 Map.clear(); 4192 Sequence.clear(); 4193 UsedByIndicesMap.clear(); 4194 UniqueItems.clear(); 4195 4196 // Now iterate through the worklist and add new formulae. 4197 for (const WorkItem &WI : WorkItems) { 4198 size_t LUIdx = WI.LUIdx; 4199 LSRUse &LU = Uses[LUIdx]; 4200 int64_t Imm = WI.Imm; 4201 const SCEV *OrigReg = WI.OrigReg; 4202 4203 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4204 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4205 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4206 4207 // TODO: Use a more targeted data structure. 4208 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4209 Formula F = LU.Formulae[L]; 4210 // FIXME: The code for the scaled and unscaled registers looks 4211 // very similar but slightly different. Investigate if they 4212 // could be merged. That way, we would not have to unscale the 4213 // Formula. 4214 F.unscale(); 4215 // Use the immediate in the scaled register. 4216 if (F.ScaledReg == OrigReg) { 4217 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4218 // Don't create 50 + reg(-50). 4219 if (F.referencesReg(SE.getSCEV( 4220 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4221 continue; 4222 Formula NewF = F; 4223 NewF.BaseOffset = Offset; 4224 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4225 NewF)) 4226 continue; 4227 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4228 4229 // If the new scale is a constant in a register, and adding the constant 4230 // value to the immediate would produce a value closer to zero than the 4231 // immediate itself, then the formula isn't worthwhile. 4232 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4233 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4234 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4235 .ule(std::abs(NewF.BaseOffset))) 4236 continue; 4237 4238 // OK, looks good. 4239 NewF.canonicalize(*this->L); 4240 (void)InsertFormula(LU, LUIdx, NewF); 4241 } else { 4242 // Use the immediate in a base register. 4243 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4244 const SCEV *BaseReg = F.BaseRegs[N]; 4245 if (BaseReg != OrigReg) 4246 continue; 4247 Formula NewF = F; 4248 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4249 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4250 LU.Kind, LU.AccessTy, NewF)) { 4251 if (AMK == TTI::AMK_PostIndexed && 4252 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4253 continue; 4254 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4255 continue; 4256 NewF = F; 4257 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4258 } 4259 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4260 4261 // If the new formula has a constant in a register, and adding the 4262 // constant value to the immediate would produce a value closer to 4263 // zero than the immediate itself, then the formula isn't worthwhile. 4264 for (const SCEV *NewReg : NewF.BaseRegs) 4265 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4266 if ((C->getAPInt() + NewF.BaseOffset) 4267 .abs() 4268 .slt(std::abs(NewF.BaseOffset)) && 4269 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4270 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4271 goto skip_formula; 4272 4273 // Ok, looks good. 4274 NewF.canonicalize(*this->L); 4275 (void)InsertFormula(LU, LUIdx, NewF); 4276 break; 4277 skip_formula:; 4278 } 4279 } 4280 } 4281 } 4282 } 4283 4284 /// Generate formulae for each use. 4285 void 4286 LSRInstance::GenerateAllReuseFormulae() { 4287 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4288 // queries are more precise. 4289 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4290 LSRUse &LU = Uses[LUIdx]; 4291 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4292 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4293 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4294 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4295 } 4296 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4297 LSRUse &LU = Uses[LUIdx]; 4298 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4299 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4300 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4301 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4302 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4303 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4304 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4305 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4306 } 4307 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4308 LSRUse &LU = Uses[LUIdx]; 4309 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4310 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4311 } 4312 4313 GenerateCrossUseConstantOffsets(); 4314 4315 LLVM_DEBUG(dbgs() << "\n" 4316 "After generating reuse formulae:\n"; 4317 print_uses(dbgs())); 4318 } 4319 4320 /// If there are multiple formulae with the same set of registers used 4321 /// by other uses, pick the best one and delete the others. 4322 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4323 DenseSet<const SCEV *> VisitedRegs; 4324 SmallPtrSet<const SCEV *, 16> Regs; 4325 SmallPtrSet<const SCEV *, 16> LoserRegs; 4326 #ifndef NDEBUG 4327 bool ChangedFormulae = false; 4328 #endif 4329 4330 // Collect the best formula for each unique set of shared registers. This 4331 // is reset for each use. 4332 using BestFormulaeTy = 4333 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4334 4335 BestFormulaeTy BestFormulae; 4336 4337 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4338 LSRUse &LU = Uses[LUIdx]; 4339 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4340 dbgs() << '\n'); 4341 4342 bool Any = false; 4343 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4344 FIdx != NumForms; ++FIdx) { 4345 Formula &F = LU.Formulae[FIdx]; 4346 4347 // Some formulas are instant losers. For example, they may depend on 4348 // nonexistent AddRecs from other loops. These need to be filtered 4349 // immediately, otherwise heuristics could choose them over others leading 4350 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4351 // avoids the need to recompute this information across formulae using the 4352 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4353 // the corresponding bad register from the Regs set. 4354 Cost CostF(L, SE, TTI, AMK); 4355 Regs.clear(); 4356 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4357 if (CostF.isLoser()) { 4358 // During initial formula generation, undesirable formulae are generated 4359 // by uses within other loops that have some non-trivial address mode or 4360 // use the postinc form of the IV. LSR needs to provide these formulae 4361 // as the basis of rediscovering the desired formula that uses an AddRec 4362 // corresponding to the existing phi. Once all formulae have been 4363 // generated, these initial losers may be pruned. 4364 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4365 dbgs() << "\n"); 4366 } 4367 else { 4368 SmallVector<const SCEV *, 4> Key; 4369 for (const SCEV *Reg : F.BaseRegs) { 4370 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4371 Key.push_back(Reg); 4372 } 4373 if (F.ScaledReg && 4374 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4375 Key.push_back(F.ScaledReg); 4376 // Unstable sort by host order ok, because this is only used for 4377 // uniquifying. 4378 llvm::sort(Key); 4379 4380 std::pair<BestFormulaeTy::const_iterator, bool> P = 4381 BestFormulae.insert(std::make_pair(Key, FIdx)); 4382 if (P.second) 4383 continue; 4384 4385 Formula &Best = LU.Formulae[P.first->second]; 4386 4387 Cost CostBest(L, SE, TTI, AMK); 4388 Regs.clear(); 4389 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4390 if (CostF.isLess(CostBest)) 4391 std::swap(F, Best); 4392 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4393 dbgs() << "\n" 4394 " in favor of formula "; 4395 Best.print(dbgs()); dbgs() << '\n'); 4396 } 4397 #ifndef NDEBUG 4398 ChangedFormulae = true; 4399 #endif 4400 LU.DeleteFormula(F); 4401 --FIdx; 4402 --NumForms; 4403 Any = true; 4404 } 4405 4406 // Now that we've filtered out some formulae, recompute the Regs set. 4407 if (Any) 4408 LU.RecomputeRegs(LUIdx, RegUses); 4409 4410 // Reset this to prepare for the next use. 4411 BestFormulae.clear(); 4412 } 4413 4414 LLVM_DEBUG(if (ChangedFormulae) { 4415 dbgs() << "\n" 4416 "After filtering out undesirable candidates:\n"; 4417 print_uses(dbgs()); 4418 }); 4419 } 4420 4421 /// Estimate the worst-case number of solutions the solver might have to 4422 /// consider. It almost never considers this many solutions because it prune the 4423 /// search space, but the pruning isn't always sufficient. 4424 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4425 size_t Power = 1; 4426 for (const LSRUse &LU : Uses) { 4427 size_t FSize = LU.Formulae.size(); 4428 if (FSize >= ComplexityLimit) { 4429 Power = ComplexityLimit; 4430 break; 4431 } 4432 Power *= FSize; 4433 if (Power >= ComplexityLimit) 4434 break; 4435 } 4436 return Power; 4437 } 4438 4439 /// When one formula uses a superset of the registers of another formula, it 4440 /// won't help reduce register pressure (though it may not necessarily hurt 4441 /// register pressure); remove it to simplify the system. 4442 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4443 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4444 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4445 4446 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4447 "which use a superset of registers used by other " 4448 "formulae.\n"); 4449 4450 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4451 LSRUse &LU = Uses[LUIdx]; 4452 bool Any = false; 4453 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4454 Formula &F = LU.Formulae[i]; 4455 // Look for a formula with a constant or GV in a register. If the use 4456 // also has a formula with that same value in an immediate field, 4457 // delete the one that uses a register. 4458 for (SmallVectorImpl<const SCEV *>::const_iterator 4459 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4460 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4461 Formula NewF = F; 4462 //FIXME: Formulas should store bitwidth to do wrapping properly. 4463 // See PR41034. 4464 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4465 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4466 (I - F.BaseRegs.begin())); 4467 if (LU.HasFormulaWithSameRegs(NewF)) { 4468 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4469 dbgs() << '\n'); 4470 LU.DeleteFormula(F); 4471 --i; 4472 --e; 4473 Any = true; 4474 break; 4475 } 4476 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4477 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4478 if (!F.BaseGV) { 4479 Formula NewF = F; 4480 NewF.BaseGV = GV; 4481 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4482 (I - F.BaseRegs.begin())); 4483 if (LU.HasFormulaWithSameRegs(NewF)) { 4484 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4485 dbgs() << '\n'); 4486 LU.DeleteFormula(F); 4487 --i; 4488 --e; 4489 Any = true; 4490 break; 4491 } 4492 } 4493 } 4494 } 4495 } 4496 if (Any) 4497 LU.RecomputeRegs(LUIdx, RegUses); 4498 } 4499 4500 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4501 } 4502 } 4503 4504 /// When there are many registers for expressions like A, A+1, A+2, etc., 4505 /// allocate a single register for them. 4506 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4507 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4508 return; 4509 4510 LLVM_DEBUG( 4511 dbgs() << "The search space is too complex.\n" 4512 "Narrowing the search space by assuming that uses separated " 4513 "by a constant offset will use the same registers.\n"); 4514 4515 // This is especially useful for unrolled loops. 4516 4517 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4518 LSRUse &LU = Uses[LUIdx]; 4519 for (const Formula &F : LU.Formulae) { 4520 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4521 continue; 4522 4523 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4524 if (!LUThatHas) 4525 continue; 4526 4527 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4528 LU.Kind, LU.AccessTy)) 4529 continue; 4530 4531 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4532 4533 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4534 4535 // Transfer the fixups of LU to LUThatHas. 4536 for (LSRFixup &Fixup : LU.Fixups) { 4537 Fixup.Offset += F.BaseOffset; 4538 LUThatHas->pushFixup(Fixup); 4539 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4540 } 4541 4542 // Delete formulae from the new use which are no longer legal. 4543 bool Any = false; 4544 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4545 Formula &F = LUThatHas->Formulae[i]; 4546 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4547 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4548 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4549 LUThatHas->DeleteFormula(F); 4550 --i; 4551 --e; 4552 Any = true; 4553 } 4554 } 4555 4556 if (Any) 4557 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4558 4559 // Delete the old use. 4560 DeleteUse(LU, LUIdx); 4561 --LUIdx; 4562 --NumUses; 4563 break; 4564 } 4565 } 4566 4567 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4568 } 4569 4570 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4571 /// we've done more filtering, as it may be able to find more formulae to 4572 /// eliminate. 4573 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4574 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4575 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4576 4577 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4578 "undesirable dedicated registers.\n"); 4579 4580 FilterOutUndesirableDedicatedRegisters(); 4581 4582 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4583 } 4584 } 4585 4586 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4587 /// Pick the best one and delete the others. 4588 /// This narrowing heuristic is to keep as many formulae with different 4589 /// Scale and ScaledReg pair as possible while narrowing the search space. 4590 /// The benefit is that it is more likely to find out a better solution 4591 /// from a formulae set with more Scale and ScaledReg variations than 4592 /// a formulae set with the same Scale and ScaledReg. The picking winner 4593 /// reg heuristic will often keep the formulae with the same Scale and 4594 /// ScaledReg and filter others, and we want to avoid that if possible. 4595 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4596 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4597 return; 4598 4599 LLVM_DEBUG( 4600 dbgs() << "The search space is too complex.\n" 4601 "Narrowing the search space by choosing the best Formula " 4602 "from the Formulae with the same Scale and ScaledReg.\n"); 4603 4604 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4605 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4606 4607 BestFormulaeTy BestFormulae; 4608 #ifndef NDEBUG 4609 bool ChangedFormulae = false; 4610 #endif 4611 DenseSet<const SCEV *> VisitedRegs; 4612 SmallPtrSet<const SCEV *, 16> Regs; 4613 4614 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4615 LSRUse &LU = Uses[LUIdx]; 4616 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4617 dbgs() << '\n'); 4618 4619 // Return true if Formula FA is better than Formula FB. 4620 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4621 // First we will try to choose the Formula with fewer new registers. 4622 // For a register used by current Formula, the more the register is 4623 // shared among LSRUses, the less we increase the register number 4624 // counter of the formula. 4625 size_t FARegNum = 0; 4626 for (const SCEV *Reg : FA.BaseRegs) { 4627 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4628 FARegNum += (NumUses - UsedByIndices.count() + 1); 4629 } 4630 size_t FBRegNum = 0; 4631 for (const SCEV *Reg : FB.BaseRegs) { 4632 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4633 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4634 } 4635 if (FARegNum != FBRegNum) 4636 return FARegNum < FBRegNum; 4637 4638 // If the new register numbers are the same, choose the Formula with 4639 // less Cost. 4640 Cost CostFA(L, SE, TTI, AMK); 4641 Cost CostFB(L, SE, TTI, AMK); 4642 Regs.clear(); 4643 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4644 Regs.clear(); 4645 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4646 return CostFA.isLess(CostFB); 4647 }; 4648 4649 bool Any = false; 4650 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4651 ++FIdx) { 4652 Formula &F = LU.Formulae[FIdx]; 4653 if (!F.ScaledReg) 4654 continue; 4655 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4656 if (P.second) 4657 continue; 4658 4659 Formula &Best = LU.Formulae[P.first->second]; 4660 if (IsBetterThan(F, Best)) 4661 std::swap(F, Best); 4662 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4663 dbgs() << "\n" 4664 " in favor of formula "; 4665 Best.print(dbgs()); dbgs() << '\n'); 4666 #ifndef NDEBUG 4667 ChangedFormulae = true; 4668 #endif 4669 LU.DeleteFormula(F); 4670 --FIdx; 4671 --NumForms; 4672 Any = true; 4673 } 4674 if (Any) 4675 LU.RecomputeRegs(LUIdx, RegUses); 4676 4677 // Reset this to prepare for the next use. 4678 BestFormulae.clear(); 4679 } 4680 4681 LLVM_DEBUG(if (ChangedFormulae) { 4682 dbgs() << "\n" 4683 "After filtering out undesirable candidates:\n"; 4684 print_uses(dbgs()); 4685 }); 4686 } 4687 4688 /// If we are over the complexity limit, filter out any post-inc prefering 4689 /// variables to only post-inc values. 4690 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4691 if (AMK != TTI::AMK_PostIndexed) 4692 return; 4693 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4694 return; 4695 4696 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4697 "Narrowing the search space by choosing the lowest " 4698 "register Formula for PostInc Uses.\n"); 4699 4700 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4701 LSRUse &LU = Uses[LUIdx]; 4702 4703 if (LU.Kind != LSRUse::Address) 4704 continue; 4705 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4706 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4707 continue; 4708 4709 size_t MinRegs = std::numeric_limits<size_t>::max(); 4710 for (const Formula &F : LU.Formulae) 4711 MinRegs = std::min(F.getNumRegs(), MinRegs); 4712 4713 bool Any = false; 4714 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4715 ++FIdx) { 4716 Formula &F = LU.Formulae[FIdx]; 4717 if (F.getNumRegs() > MinRegs) { 4718 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4719 dbgs() << "\n"); 4720 LU.DeleteFormula(F); 4721 --FIdx; 4722 --NumForms; 4723 Any = true; 4724 } 4725 } 4726 if (Any) 4727 LU.RecomputeRegs(LUIdx, RegUses); 4728 4729 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4730 break; 4731 } 4732 4733 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4734 } 4735 4736 /// The function delete formulas with high registers number expectation. 4737 /// Assuming we don't know the value of each formula (already delete 4738 /// all inefficient), generate probability of not selecting for each 4739 /// register. 4740 /// For example, 4741 /// Use1: 4742 /// reg(a) + reg({0,+,1}) 4743 /// reg(a) + reg({-1,+,1}) + 1 4744 /// reg({a,+,1}) 4745 /// Use2: 4746 /// reg(b) + reg({0,+,1}) 4747 /// reg(b) + reg({-1,+,1}) + 1 4748 /// reg({b,+,1}) 4749 /// Use3: 4750 /// reg(c) + reg(b) + reg({0,+,1}) 4751 /// reg(c) + reg({b,+,1}) 4752 /// 4753 /// Probability of not selecting 4754 /// Use1 Use2 Use3 4755 /// reg(a) (1/3) * 1 * 1 4756 /// reg(b) 1 * (1/3) * (1/2) 4757 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4758 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4759 /// reg({a,+,1}) (2/3) * 1 * 1 4760 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4761 /// reg(c) 1 * 1 * 0 4762 /// 4763 /// Now count registers number mathematical expectation for each formula: 4764 /// Note that for each use we exclude probability if not selecting for the use. 4765 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4766 /// probabilty 1/3 of not selecting for Use1). 4767 /// Use1: 4768 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4769 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4770 /// reg({a,+,1}) 1 4771 /// Use2: 4772 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4773 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4774 /// reg({b,+,1}) 2/3 4775 /// Use3: 4776 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4777 /// reg(c) + reg({b,+,1}) 1 + 2/3 4778 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4779 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4780 return; 4781 // Ok, we have too many of formulae on our hands to conveniently handle. 4782 // Use a rough heuristic to thin out the list. 4783 4784 // Set of Regs wich will be 100% used in final solution. 4785 // Used in each formula of a solution (in example above this is reg(c)). 4786 // We can skip them in calculations. 4787 SmallPtrSet<const SCEV *, 4> UniqRegs; 4788 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4789 4790 // Map each register to probability of not selecting 4791 DenseMap <const SCEV *, float> RegNumMap; 4792 for (const SCEV *Reg : RegUses) { 4793 if (UniqRegs.count(Reg)) 4794 continue; 4795 float PNotSel = 1; 4796 for (const LSRUse &LU : Uses) { 4797 if (!LU.Regs.count(Reg)) 4798 continue; 4799 float P = LU.getNotSelectedProbability(Reg); 4800 if (P != 0.0) 4801 PNotSel *= P; 4802 else 4803 UniqRegs.insert(Reg); 4804 } 4805 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4806 } 4807 4808 LLVM_DEBUG( 4809 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4810 4811 // Delete formulas where registers number expectation is high. 4812 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4813 LSRUse &LU = Uses[LUIdx]; 4814 // If nothing to delete - continue. 4815 if (LU.Formulae.size() < 2) 4816 continue; 4817 // This is temporary solution to test performance. Float should be 4818 // replaced with round independent type (based on integers) to avoid 4819 // different results for different target builds. 4820 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4821 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4822 size_t MinIdx = 0; 4823 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4824 Formula &F = LU.Formulae[i]; 4825 float FRegNum = 0; 4826 float FARegNum = 0; 4827 for (const SCEV *BaseReg : F.BaseRegs) { 4828 if (UniqRegs.count(BaseReg)) 4829 continue; 4830 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4831 if (isa<SCEVAddRecExpr>(BaseReg)) 4832 FARegNum += 4833 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4834 } 4835 if (const SCEV *ScaledReg = F.ScaledReg) { 4836 if (!UniqRegs.count(ScaledReg)) { 4837 FRegNum += 4838 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4839 if (isa<SCEVAddRecExpr>(ScaledReg)) 4840 FARegNum += 4841 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4842 } 4843 } 4844 if (FMinRegNum > FRegNum || 4845 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4846 FMinRegNum = FRegNum; 4847 FMinARegNum = FARegNum; 4848 MinIdx = i; 4849 } 4850 } 4851 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4852 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4853 if (MinIdx != 0) 4854 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4855 while (LU.Formulae.size() != 1) { 4856 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4857 dbgs() << '\n'); 4858 LU.Formulae.pop_back(); 4859 } 4860 LU.RecomputeRegs(LUIdx, RegUses); 4861 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4862 Formula &F = LU.Formulae[0]; 4863 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4864 // When we choose the formula, the regs become unique. 4865 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4866 if (F.ScaledReg) 4867 UniqRegs.insert(F.ScaledReg); 4868 } 4869 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4870 } 4871 4872 /// Pick a register which seems likely to be profitable, and then in any use 4873 /// which has any reference to that register, delete all formulae which do not 4874 /// reference that register. 4875 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4876 // With all other options exhausted, loop until the system is simple 4877 // enough to handle. 4878 SmallPtrSet<const SCEV *, 4> Taken; 4879 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4880 // Ok, we have too many of formulae on our hands to conveniently handle. 4881 // Use a rough heuristic to thin out the list. 4882 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4883 4884 // Pick the register which is used by the most LSRUses, which is likely 4885 // to be a good reuse register candidate. 4886 const SCEV *Best = nullptr; 4887 unsigned BestNum = 0; 4888 for (const SCEV *Reg : RegUses) { 4889 if (Taken.count(Reg)) 4890 continue; 4891 if (!Best) { 4892 Best = Reg; 4893 BestNum = RegUses.getUsedByIndices(Reg).count(); 4894 } else { 4895 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4896 if (Count > BestNum) { 4897 Best = Reg; 4898 BestNum = Count; 4899 } 4900 } 4901 } 4902 assert(Best && "Failed to find best LSRUse candidate"); 4903 4904 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4905 << " will yield profitable reuse.\n"); 4906 Taken.insert(Best); 4907 4908 // In any use with formulae which references this register, delete formulae 4909 // which don't reference it. 4910 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4911 LSRUse &LU = Uses[LUIdx]; 4912 if (!LU.Regs.count(Best)) continue; 4913 4914 bool Any = false; 4915 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4916 Formula &F = LU.Formulae[i]; 4917 if (!F.referencesReg(Best)) { 4918 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4919 LU.DeleteFormula(F); 4920 --e; 4921 --i; 4922 Any = true; 4923 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4924 continue; 4925 } 4926 } 4927 4928 if (Any) 4929 LU.RecomputeRegs(LUIdx, RegUses); 4930 } 4931 4932 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4933 } 4934 } 4935 4936 /// If there are an extraordinary number of formulae to choose from, use some 4937 /// rough heuristics to prune down the number of formulae. This keeps the main 4938 /// solver from taking an extraordinary amount of time in some worst-case 4939 /// scenarios. 4940 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4941 NarrowSearchSpaceByDetectingSupersets(); 4942 NarrowSearchSpaceByCollapsingUnrolledCode(); 4943 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4944 if (FilterSameScaledReg) 4945 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4946 NarrowSearchSpaceByFilterPostInc(); 4947 if (LSRExpNarrow) 4948 NarrowSearchSpaceByDeletingCostlyFormulas(); 4949 else 4950 NarrowSearchSpaceByPickingWinnerRegs(); 4951 } 4952 4953 /// This is the recursive solver. 4954 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4955 Cost &SolutionCost, 4956 SmallVectorImpl<const Formula *> &Workspace, 4957 const Cost &CurCost, 4958 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4959 DenseSet<const SCEV *> &VisitedRegs) const { 4960 // Some ideas: 4961 // - prune more: 4962 // - use more aggressive filtering 4963 // - sort the formula so that the most profitable solutions are found first 4964 // - sort the uses too 4965 // - search faster: 4966 // - don't compute a cost, and then compare. compare while computing a cost 4967 // and bail early. 4968 // - track register sets with SmallBitVector 4969 4970 const LSRUse &LU = Uses[Workspace.size()]; 4971 4972 // If this use references any register that's already a part of the 4973 // in-progress solution, consider it a requirement that a formula must 4974 // reference that register in order to be considered. This prunes out 4975 // unprofitable searching. 4976 SmallSetVector<const SCEV *, 4> ReqRegs; 4977 for (const SCEV *S : CurRegs) 4978 if (LU.Regs.count(S)) 4979 ReqRegs.insert(S); 4980 4981 SmallPtrSet<const SCEV *, 16> NewRegs; 4982 Cost NewCost(L, SE, TTI, AMK); 4983 for (const Formula &F : LU.Formulae) { 4984 // Ignore formulae which may not be ideal in terms of register reuse of 4985 // ReqRegs. The formula should use all required registers before 4986 // introducing new ones. 4987 // This can sometimes (notably when trying to favour postinc) lead to 4988 // sub-optimial decisions. There it is best left to the cost modelling to 4989 // get correct. 4990 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 4991 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4992 for (const SCEV *Reg : ReqRegs) { 4993 if ((F.ScaledReg && F.ScaledReg == Reg) || 4994 is_contained(F.BaseRegs, Reg)) { 4995 --NumReqRegsToFind; 4996 if (NumReqRegsToFind == 0) 4997 break; 4998 } 4999 } 5000 if (NumReqRegsToFind != 0) { 5001 // If none of the formulae satisfied the required registers, then we could 5002 // clear ReqRegs and try again. Currently, we simply give up in this case. 5003 continue; 5004 } 5005 } 5006 5007 // Evaluate the cost of the current formula. If it's already worse than 5008 // the current best, prune the search at that point. 5009 NewCost = CurCost; 5010 NewRegs = CurRegs; 5011 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5012 if (NewCost.isLess(SolutionCost)) { 5013 Workspace.push_back(&F); 5014 if (Workspace.size() != Uses.size()) { 5015 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5016 NewRegs, VisitedRegs); 5017 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5018 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5019 } else { 5020 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5021 dbgs() << ".\nRegs:\n"; 5022 for (const SCEV *S : NewRegs) dbgs() 5023 << "- " << *S << "\n"; 5024 dbgs() << '\n'); 5025 5026 SolutionCost = NewCost; 5027 Solution = Workspace; 5028 } 5029 Workspace.pop_back(); 5030 } 5031 } 5032 } 5033 5034 /// Choose one formula from each use. Return the results in the given Solution 5035 /// vector. 5036 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5037 SmallVector<const Formula *, 8> Workspace; 5038 Cost SolutionCost(L, SE, TTI, AMK); 5039 SolutionCost.Lose(); 5040 Cost CurCost(L, SE, TTI, AMK); 5041 SmallPtrSet<const SCEV *, 16> CurRegs; 5042 DenseSet<const SCEV *> VisitedRegs; 5043 Workspace.reserve(Uses.size()); 5044 5045 // SolveRecurse does all the work. 5046 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5047 CurRegs, VisitedRegs); 5048 if (Solution.empty()) { 5049 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5050 return; 5051 } 5052 5053 // Ok, we've now made all our decisions. 5054 LLVM_DEBUG(dbgs() << "\n" 5055 "The chosen solution requires "; 5056 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5057 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5058 dbgs() << " "; 5059 Uses[i].print(dbgs()); 5060 dbgs() << "\n" 5061 " "; 5062 Solution[i]->print(dbgs()); 5063 dbgs() << '\n'; 5064 }); 5065 5066 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5067 } 5068 5069 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5070 /// we can go while still being dominated by the input positions. This helps 5071 /// canonicalize the insert position, which encourages sharing. 5072 BasicBlock::iterator 5073 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5074 const SmallVectorImpl<Instruction *> &Inputs) 5075 const { 5076 Instruction *Tentative = &*IP; 5077 while (true) { 5078 bool AllDominate = true; 5079 Instruction *BetterPos = nullptr; 5080 // Don't bother attempting to insert before a catchswitch, their basic block 5081 // cannot have other non-PHI instructions. 5082 if (isa<CatchSwitchInst>(Tentative)) 5083 return IP; 5084 5085 for (Instruction *Inst : Inputs) { 5086 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5087 AllDominate = false; 5088 break; 5089 } 5090 // Attempt to find an insert position in the middle of the block, 5091 // instead of at the end, so that it can be used for other expansions. 5092 if (Tentative->getParent() == Inst->getParent() && 5093 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5094 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5095 } 5096 if (!AllDominate) 5097 break; 5098 if (BetterPos) 5099 IP = BetterPos->getIterator(); 5100 else 5101 IP = Tentative->getIterator(); 5102 5103 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5104 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5105 5106 BasicBlock *IDom; 5107 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5108 if (!Rung) return IP; 5109 Rung = Rung->getIDom(); 5110 if (!Rung) return IP; 5111 IDom = Rung->getBlock(); 5112 5113 // Don't climb into a loop though. 5114 const Loop *IDomLoop = LI.getLoopFor(IDom); 5115 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5116 if (IDomDepth <= IPLoopDepth && 5117 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5118 break; 5119 } 5120 5121 Tentative = IDom->getTerminator(); 5122 } 5123 5124 return IP; 5125 } 5126 5127 /// Determine an input position which will be dominated by the operands and 5128 /// which will dominate the result. 5129 BasicBlock::iterator 5130 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5131 const LSRFixup &LF, 5132 const LSRUse &LU, 5133 SCEVExpander &Rewriter) const { 5134 // Collect some instructions which must be dominated by the 5135 // expanding replacement. These must be dominated by any operands that 5136 // will be required in the expansion. 5137 SmallVector<Instruction *, 4> Inputs; 5138 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5139 Inputs.push_back(I); 5140 if (LU.Kind == LSRUse::ICmpZero) 5141 if (Instruction *I = 5142 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5143 Inputs.push_back(I); 5144 if (LF.PostIncLoops.count(L)) { 5145 if (LF.isUseFullyOutsideLoop(L)) 5146 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5147 else 5148 Inputs.push_back(IVIncInsertPos); 5149 } 5150 // The expansion must also be dominated by the increment positions of any 5151 // loops it for which it is using post-inc mode. 5152 for (const Loop *PIL : LF.PostIncLoops) { 5153 if (PIL == L) continue; 5154 5155 // Be dominated by the loop exit. 5156 SmallVector<BasicBlock *, 4> ExitingBlocks; 5157 PIL->getExitingBlocks(ExitingBlocks); 5158 if (!ExitingBlocks.empty()) { 5159 BasicBlock *BB = ExitingBlocks[0]; 5160 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5161 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5162 Inputs.push_back(BB->getTerminator()); 5163 } 5164 } 5165 5166 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5167 && !isa<DbgInfoIntrinsic>(LowestIP) && 5168 "Insertion point must be a normal instruction"); 5169 5170 // Then, climb up the immediate dominator tree as far as we can go while 5171 // still being dominated by the input positions. 5172 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5173 5174 // Don't insert instructions before PHI nodes. 5175 while (isa<PHINode>(IP)) ++IP; 5176 5177 // Ignore landingpad instructions. 5178 while (IP->isEHPad()) ++IP; 5179 5180 // Ignore debug intrinsics. 5181 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5182 5183 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5184 // IP consistent across expansions and allows the previously inserted 5185 // instructions to be reused by subsequent expansion. 5186 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5187 ++IP; 5188 5189 return IP; 5190 } 5191 5192 /// Emit instructions for the leading candidate expression for this LSRUse (this 5193 /// is called "expanding"). 5194 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5195 const Formula &F, BasicBlock::iterator IP, 5196 SCEVExpander &Rewriter, 5197 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5198 if (LU.RigidFormula) 5199 return LF.OperandValToReplace; 5200 5201 // Determine an input position which will be dominated by the operands and 5202 // which will dominate the result. 5203 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5204 Rewriter.setInsertPoint(&*IP); 5205 5206 // Inform the Rewriter if we have a post-increment use, so that it can 5207 // perform an advantageous expansion. 5208 Rewriter.setPostInc(LF.PostIncLoops); 5209 5210 // This is the type that the user actually needs. 5211 Type *OpTy = LF.OperandValToReplace->getType(); 5212 // This will be the type that we'll initially expand to. 5213 Type *Ty = F.getType(); 5214 if (!Ty) 5215 // No type known; just expand directly to the ultimate type. 5216 Ty = OpTy; 5217 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5218 // Expand directly to the ultimate type if it's the right size. 5219 Ty = OpTy; 5220 // This is the type to do integer arithmetic in. 5221 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5222 5223 // Build up a list of operands to add together to form the full base. 5224 SmallVector<const SCEV *, 8> Ops; 5225 5226 // Expand the BaseRegs portion. 5227 for (const SCEV *Reg : F.BaseRegs) { 5228 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5229 5230 // If we're expanding for a post-inc user, make the post-inc adjustment. 5231 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5232 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5233 } 5234 5235 // Expand the ScaledReg portion. 5236 Value *ICmpScaledV = nullptr; 5237 if (F.Scale != 0) { 5238 const SCEV *ScaledS = F.ScaledReg; 5239 5240 // If we're expanding for a post-inc user, make the post-inc adjustment. 5241 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5242 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5243 5244 if (LU.Kind == LSRUse::ICmpZero) { 5245 // Expand ScaleReg as if it was part of the base regs. 5246 if (F.Scale == 1) 5247 Ops.push_back( 5248 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5249 else { 5250 // An interesting way of "folding" with an icmp is to use a negated 5251 // scale, which we'll implement by inserting it into the other operand 5252 // of the icmp. 5253 assert(F.Scale == -1 && 5254 "The only scale supported by ICmpZero uses is -1!"); 5255 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5256 } 5257 } else { 5258 // Otherwise just expand the scaled register and an explicit scale, 5259 // which is expected to be matched as part of the address. 5260 5261 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5262 // Unless the addressing mode will not be folded. 5263 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5264 isAMCompletelyFolded(TTI, LU, F)) { 5265 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5266 Ops.clear(); 5267 Ops.push_back(SE.getUnknown(FullV)); 5268 } 5269 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5270 if (F.Scale != 1) 5271 ScaledS = 5272 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5273 Ops.push_back(ScaledS); 5274 } 5275 } 5276 5277 // Expand the GV portion. 5278 if (F.BaseGV) { 5279 // Flush the operand list to suppress SCEVExpander hoisting. 5280 if (!Ops.empty()) { 5281 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5282 Ops.clear(); 5283 Ops.push_back(SE.getUnknown(FullV)); 5284 } 5285 Ops.push_back(SE.getUnknown(F.BaseGV)); 5286 } 5287 5288 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5289 // unfolded offsets. LSR assumes they both live next to their uses. 5290 if (!Ops.empty()) { 5291 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5292 Ops.clear(); 5293 Ops.push_back(SE.getUnknown(FullV)); 5294 } 5295 5296 // Expand the immediate portion. 5297 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5298 if (Offset != 0) { 5299 if (LU.Kind == LSRUse::ICmpZero) { 5300 // The other interesting way of "folding" with an ICmpZero is to use a 5301 // negated immediate. 5302 if (!ICmpScaledV) 5303 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5304 else { 5305 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5306 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5307 } 5308 } else { 5309 // Just add the immediate values. These again are expected to be matched 5310 // as part of the address. 5311 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5312 } 5313 } 5314 5315 // Expand the unfolded offset portion. 5316 int64_t UnfoldedOffset = F.UnfoldedOffset; 5317 if (UnfoldedOffset != 0) { 5318 // Just add the immediate values. 5319 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5320 UnfoldedOffset))); 5321 } 5322 5323 // Emit instructions summing all the operands. 5324 const SCEV *FullS = Ops.empty() ? 5325 SE.getConstant(IntTy, 0) : 5326 SE.getAddExpr(Ops); 5327 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5328 5329 // We're done expanding now, so reset the rewriter. 5330 Rewriter.clearPostInc(); 5331 5332 // An ICmpZero Formula represents an ICmp which we're handling as a 5333 // comparison against zero. Now that we've expanded an expression for that 5334 // form, update the ICmp's other operand. 5335 if (LU.Kind == LSRUse::ICmpZero) { 5336 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5337 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5338 DeadInsts.emplace_back(OperandIsInstr); 5339 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5340 "a scale at the same time!"); 5341 if (F.Scale == -1) { 5342 if (ICmpScaledV->getType() != OpTy) { 5343 Instruction *Cast = 5344 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5345 OpTy, false), 5346 ICmpScaledV, OpTy, "tmp", CI); 5347 ICmpScaledV = Cast; 5348 } 5349 CI->setOperand(1, ICmpScaledV); 5350 } else { 5351 // A scale of 1 means that the scale has been expanded as part of the 5352 // base regs. 5353 assert((F.Scale == 0 || F.Scale == 1) && 5354 "ICmp does not support folding a global value and " 5355 "a scale at the same time!"); 5356 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5357 -(uint64_t)Offset); 5358 if (C->getType() != OpTy) 5359 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5360 OpTy, false), 5361 C, OpTy); 5362 5363 CI->setOperand(1, C); 5364 } 5365 } 5366 5367 return FullV; 5368 } 5369 5370 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5371 /// effectively happens in their predecessor blocks, so the expression may need 5372 /// to be expanded in multiple places. 5373 void LSRInstance::RewriteForPHI( 5374 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5375 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5376 DenseMap<BasicBlock *, Value *> Inserted; 5377 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5378 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5379 bool needUpdateFixups = false; 5380 BasicBlock *BB = PN->getIncomingBlock(i); 5381 5382 // If this is a critical edge, split the edge so that we do not insert 5383 // the code on all predecessor/successor paths. We do this unless this 5384 // is the canonical backedge for this loop, which complicates post-inc 5385 // users. 5386 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5387 !isa<IndirectBrInst>(BB->getTerminator()) && 5388 !isa<CatchSwitchInst>(BB->getTerminator())) { 5389 BasicBlock *Parent = PN->getParent(); 5390 Loop *PNLoop = LI.getLoopFor(Parent); 5391 if (!PNLoop || Parent != PNLoop->getHeader()) { 5392 // Split the critical edge. 5393 BasicBlock *NewBB = nullptr; 5394 if (!Parent->isLandingPad()) { 5395 NewBB = 5396 SplitCriticalEdge(BB, Parent, 5397 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5398 .setMergeIdenticalEdges() 5399 .setKeepOneInputPHIs()); 5400 } else { 5401 SmallVector<BasicBlock*, 2> NewBBs; 5402 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5403 NewBB = NewBBs[0]; 5404 } 5405 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5406 // phi predecessors are identical. The simple thing to do is skip 5407 // splitting in this case rather than complicate the API. 5408 if (NewBB) { 5409 // If PN is outside of the loop and BB is in the loop, we want to 5410 // move the block to be immediately before the PHI block, not 5411 // immediately after BB. 5412 if (L->contains(BB) && !L->contains(PN)) 5413 NewBB->moveBefore(PN->getParent()); 5414 5415 // Splitting the edge can reduce the number of PHI entries we have. 5416 e = PN->getNumIncomingValues(); 5417 BB = NewBB; 5418 i = PN->getBasicBlockIndex(BB); 5419 5420 needUpdateFixups = true; 5421 } 5422 } 5423 } 5424 5425 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5426 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5427 if (!Pair.second) 5428 PN->setIncomingValue(i, Pair.first->second); 5429 else { 5430 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5431 Rewriter, DeadInsts); 5432 5433 // If this is reuse-by-noop-cast, insert the noop cast. 5434 Type *OpTy = LF.OperandValToReplace->getType(); 5435 if (FullV->getType() != OpTy) 5436 FullV = 5437 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5438 OpTy, false), 5439 FullV, LF.OperandValToReplace->getType(), 5440 "tmp", BB->getTerminator()); 5441 5442 PN->setIncomingValue(i, FullV); 5443 Pair.first->second = FullV; 5444 } 5445 5446 // If LSR splits critical edge and phi node has other pending 5447 // fixup operands, we need to update those pending fixups. Otherwise 5448 // formulae will not be implemented completely and some instructions 5449 // will not be eliminated. 5450 if (needUpdateFixups) { 5451 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5452 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5453 // If fixup is supposed to rewrite some operand in the phi 5454 // that was just updated, it may be already moved to 5455 // another phi node. Such fixup requires update. 5456 if (Fixup.UserInst == PN) { 5457 // Check if the operand we try to replace still exists in the 5458 // original phi. 5459 bool foundInOriginalPHI = false; 5460 for (const auto &val : PN->incoming_values()) 5461 if (val == Fixup.OperandValToReplace) { 5462 foundInOriginalPHI = true; 5463 break; 5464 } 5465 5466 // If fixup operand found in original PHI - nothing to do. 5467 if (foundInOriginalPHI) 5468 continue; 5469 5470 // Otherwise it might be moved to another PHI and requires update. 5471 // If fixup operand not found in any of the incoming blocks that 5472 // means we have already rewritten it - nothing to do. 5473 for (const auto &Block : PN->blocks()) 5474 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5475 ++I) { 5476 PHINode *NewPN = cast<PHINode>(I); 5477 for (const auto &val : NewPN->incoming_values()) 5478 if (val == Fixup.OperandValToReplace) 5479 Fixup.UserInst = NewPN; 5480 } 5481 } 5482 } 5483 } 5484 } 5485 5486 /// Emit instructions for the leading candidate expression for this LSRUse (this 5487 /// is called "expanding"), and update the UserInst to reference the newly 5488 /// expanded value. 5489 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5490 const Formula &F, SCEVExpander &Rewriter, 5491 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5492 // First, find an insertion point that dominates UserInst. For PHI nodes, 5493 // find the nearest block which dominates all the relevant uses. 5494 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5495 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5496 } else { 5497 Value *FullV = 5498 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5499 5500 // If this is reuse-by-noop-cast, insert the noop cast. 5501 Type *OpTy = LF.OperandValToReplace->getType(); 5502 if (FullV->getType() != OpTy) { 5503 Instruction *Cast = 5504 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5505 FullV, OpTy, "tmp", LF.UserInst); 5506 FullV = Cast; 5507 } 5508 5509 // Update the user. ICmpZero is handled specially here (for now) because 5510 // Expand may have updated one of the operands of the icmp already, and 5511 // its new value may happen to be equal to LF.OperandValToReplace, in 5512 // which case doing replaceUsesOfWith leads to replacing both operands 5513 // with the same value. TODO: Reorganize this. 5514 if (LU.Kind == LSRUse::ICmpZero) 5515 LF.UserInst->setOperand(0, FullV); 5516 else 5517 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5518 } 5519 5520 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5521 DeadInsts.emplace_back(OperandIsInstr); 5522 } 5523 5524 /// Rewrite all the fixup locations with new values, following the chosen 5525 /// solution. 5526 void LSRInstance::ImplementSolution( 5527 const SmallVectorImpl<const Formula *> &Solution) { 5528 // Keep track of instructions we may have made dead, so that 5529 // we can remove them after we are done working. 5530 SmallVector<WeakTrackingVH, 16> DeadInsts; 5531 5532 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5533 false); 5534 #ifndef NDEBUG 5535 Rewriter.setDebugType(DEBUG_TYPE); 5536 #endif 5537 Rewriter.disableCanonicalMode(); 5538 Rewriter.enableLSRMode(); 5539 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5540 5541 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5542 for (const IVChain &Chain : IVChainVec) { 5543 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5544 Rewriter.setChainedPhi(PN); 5545 } 5546 5547 // Expand the new value definitions and update the users. 5548 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5549 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5550 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5551 Changed = true; 5552 } 5553 5554 for (const IVChain &Chain : IVChainVec) { 5555 GenerateIVChain(Chain, Rewriter, DeadInsts); 5556 Changed = true; 5557 } 5558 // Clean up after ourselves. This must be done before deleting any 5559 // instructions. 5560 Rewriter.clear(); 5561 5562 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5563 &TLI, MSSAU); 5564 } 5565 5566 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5567 DominatorTree &DT, LoopInfo &LI, 5568 const TargetTransformInfo &TTI, AssumptionCache &AC, 5569 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5570 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5571 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ? 5572 PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) { 5573 // If LoopSimplify form is not available, stay out of trouble. 5574 if (!L->isLoopSimplifyForm()) 5575 return; 5576 5577 // If there's no interesting work to be done, bail early. 5578 if (IU.empty()) return; 5579 5580 // If there's too much analysis to be done, bail early. We won't be able to 5581 // model the problem anyway. 5582 unsigned NumUsers = 0; 5583 for (const IVStrideUse &U : IU) { 5584 if (++NumUsers > MaxIVUsers) { 5585 (void)U; 5586 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5587 << "\n"); 5588 return; 5589 } 5590 // Bail out if we have a PHI on an EHPad that gets a value from a 5591 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5592 // no good place to stick any instructions. 5593 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5594 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5595 if (isa<FuncletPadInst>(FirstNonPHI) || 5596 isa<CatchSwitchInst>(FirstNonPHI)) 5597 for (BasicBlock *PredBB : PN->blocks()) 5598 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5599 return; 5600 } 5601 } 5602 5603 #ifndef NDEBUG 5604 // All dominating loops must have preheaders, or SCEVExpander may not be able 5605 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5606 // 5607 // IVUsers analysis should only create users that are dominated by simple loop 5608 // headers. Since this loop should dominate all of its users, its user list 5609 // should be empty if this loop itself is not within a simple loop nest. 5610 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5611 Rung; Rung = Rung->getIDom()) { 5612 BasicBlock *BB = Rung->getBlock(); 5613 const Loop *DomLoop = LI.getLoopFor(BB); 5614 if (DomLoop && DomLoop->getHeader() == BB) { 5615 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5616 } 5617 } 5618 #endif // DEBUG 5619 5620 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5621 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5622 dbgs() << ":\n"); 5623 5624 // First, perform some low-level loop optimizations. 5625 OptimizeShadowIV(); 5626 OptimizeLoopTermCond(); 5627 5628 // If loop preparation eliminates all interesting IV users, bail. 5629 if (IU.empty()) return; 5630 5631 // Skip nested loops until we can model them better with formulae. 5632 if (!L->isInnermost()) { 5633 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5634 return; 5635 } 5636 5637 // Start collecting data and preparing for the solver. 5638 // If number of registers is not the major cost, we cannot benefit from the 5639 // current profitable chain optimization which is based on number of 5640 // registers. 5641 // FIXME: add profitable chain optimization for other kinds major cost, for 5642 // example number of instructions. 5643 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5644 CollectChains(); 5645 CollectInterestingTypesAndFactors(); 5646 CollectFixupsAndInitialFormulae(); 5647 CollectLoopInvariantFixupsAndFormulae(); 5648 5649 if (Uses.empty()) 5650 return; 5651 5652 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5653 print_uses(dbgs())); 5654 5655 // Now use the reuse data to generate a bunch of interesting ways 5656 // to formulate the values needed for the uses. 5657 GenerateAllReuseFormulae(); 5658 5659 FilterOutUndesirableDedicatedRegisters(); 5660 NarrowSearchSpaceUsingHeuristics(); 5661 5662 SmallVector<const Formula *, 8> Solution; 5663 Solve(Solution); 5664 5665 // Release memory that is no longer needed. 5666 Factors.clear(); 5667 Types.clear(); 5668 RegUses.clear(); 5669 5670 if (Solution.empty()) 5671 return; 5672 5673 #ifndef NDEBUG 5674 // Formulae should be legal. 5675 for (const LSRUse &LU : Uses) { 5676 for (const Formula &F : LU.Formulae) 5677 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5678 F) && "Illegal formula generated!"); 5679 }; 5680 #endif 5681 5682 // Now that we've decided what we want, make it so. 5683 ImplementSolution(Solution); 5684 } 5685 5686 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5687 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5688 if (Factors.empty() && Types.empty()) return; 5689 5690 OS << "LSR has identified the following interesting factors and types: "; 5691 bool First = true; 5692 5693 for (int64_t Factor : Factors) { 5694 if (!First) OS << ", "; 5695 First = false; 5696 OS << '*' << Factor; 5697 } 5698 5699 for (Type *Ty : Types) { 5700 if (!First) OS << ", "; 5701 First = false; 5702 OS << '(' << *Ty << ')'; 5703 } 5704 OS << '\n'; 5705 } 5706 5707 void LSRInstance::print_fixups(raw_ostream &OS) const { 5708 OS << "LSR is examining the following fixup sites:\n"; 5709 for (const LSRUse &LU : Uses) 5710 for (const LSRFixup &LF : LU.Fixups) { 5711 dbgs() << " "; 5712 LF.print(OS); 5713 OS << '\n'; 5714 } 5715 } 5716 5717 void LSRInstance::print_uses(raw_ostream &OS) const { 5718 OS << "LSR is examining the following uses:\n"; 5719 for (const LSRUse &LU : Uses) { 5720 dbgs() << " "; 5721 LU.print(OS); 5722 OS << '\n'; 5723 for (const Formula &F : LU.Formulae) { 5724 OS << " "; 5725 F.print(OS); 5726 OS << '\n'; 5727 } 5728 } 5729 } 5730 5731 void LSRInstance::print(raw_ostream &OS) const { 5732 print_factors_and_types(OS); 5733 print_fixups(OS); 5734 print_uses(OS); 5735 } 5736 5737 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5738 print(errs()); errs() << '\n'; 5739 } 5740 #endif 5741 5742 namespace { 5743 5744 class LoopStrengthReduce : public LoopPass { 5745 public: 5746 static char ID; // Pass ID, replacement for typeid 5747 5748 LoopStrengthReduce(); 5749 5750 private: 5751 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5752 void getAnalysisUsage(AnalysisUsage &AU) const override; 5753 }; 5754 5755 } // end anonymous namespace 5756 5757 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5758 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5759 } 5760 5761 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5762 // We split critical edges, so we change the CFG. However, we do update 5763 // many analyses if they are around. 5764 AU.addPreservedID(LoopSimplifyID); 5765 5766 AU.addRequired<LoopInfoWrapperPass>(); 5767 AU.addPreserved<LoopInfoWrapperPass>(); 5768 AU.addRequiredID(LoopSimplifyID); 5769 AU.addRequired<DominatorTreeWrapperPass>(); 5770 AU.addPreserved<DominatorTreeWrapperPass>(); 5771 AU.addRequired<ScalarEvolutionWrapperPass>(); 5772 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5773 AU.addRequired<AssumptionCacheTracker>(); 5774 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5775 // Requiring LoopSimplify a second time here prevents IVUsers from running 5776 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5777 AU.addRequiredID(LoopSimplifyID); 5778 AU.addRequired<IVUsersWrapperPass>(); 5779 AU.addPreserved<IVUsersWrapperPass>(); 5780 AU.addRequired<TargetTransformInfoWrapperPass>(); 5781 AU.addPreserved<MemorySSAWrapperPass>(); 5782 } 5783 5784 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t, DIExpression *>, 4>; 5785 using EqualValuesMap = DenseMap<DbgValueInst *, EqualValues>; 5786 5787 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE, 5788 EqualValuesMap &DbgValueToEqualSet) { 5789 for (auto &B : L->getBlocks()) { 5790 for (auto &I : *B) { 5791 auto DVI = dyn_cast<DbgValueInst>(&I); 5792 if (!DVI) 5793 continue; 5794 auto V = DVI->getVariableLocation(); 5795 if (!V || !SE.isSCEVable(V->getType())) 5796 continue; 5797 auto DbgValueSCEV = SE.getSCEV(V); 5798 EqualValues EqSet; 5799 for (PHINode &Phi : L->getHeader()->phis()) { 5800 if (V->getType() != Phi.getType()) 5801 continue; 5802 if (!SE.isSCEVable(Phi.getType())) 5803 continue; 5804 auto PhiSCEV = SE.getSCEV(&Phi); 5805 Optional<APInt> Offset = 5806 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV); 5807 if (Offset && Offset->getMinSignedBits() <= 64) 5808 EqSet.emplace_back(std::make_tuple( 5809 &Phi, Offset.getValue().getSExtValue(), DVI->getExpression())); 5810 } 5811 DbgValueToEqualSet[DVI] = std::move(EqSet); 5812 } 5813 } 5814 } 5815 5816 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet) { 5817 for (auto A : DbgValueToEqualSet) { 5818 auto DVI = A.first; 5819 // Only update those that are now undef. 5820 if (!isa_and_nonnull<UndefValue>(DVI->getVariableLocation())) 5821 continue; 5822 for (auto EV : A.second) { 5823 auto V = std::get<WeakVH>(EV); 5824 if (!V) 5825 continue; 5826 auto DbgDIExpr = std::get<DIExpression *>(EV); 5827 auto Offset = std::get<int64_t>(EV); 5828 auto &Ctx = DVI->getContext(); 5829 DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V))); 5830 if (Offset) { 5831 SmallVector<uint64_t, 8> Ops; 5832 DIExpression::appendOffset(Ops, Offset); 5833 DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true); 5834 } 5835 DVI->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr)); 5836 break; 5837 } 5838 } 5839 } 5840 5841 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5842 DominatorTree &DT, LoopInfo &LI, 5843 const TargetTransformInfo &TTI, 5844 AssumptionCache &AC, TargetLibraryInfo &TLI, 5845 MemorySSA *MSSA) { 5846 5847 bool Changed = false; 5848 std::unique_ptr<MemorySSAUpdater> MSSAU; 5849 if (MSSA) 5850 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5851 5852 // Run the main LSR transformation. 5853 Changed |= 5854 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5855 5856 // Debug preservation - before we start removing anything create equivalence 5857 // sets for the llvm.dbg.value intrinsics. 5858 EqualValuesMap DbgValueToEqualSet; 5859 DbgGatherEqualValues(L, SE, DbgValueToEqualSet); 5860 5861 // Remove any extra phis created by processing inner loops. 5862 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5863 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5864 SmallVector<WeakTrackingVH, 16> DeadInsts; 5865 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5866 SCEVExpander Rewriter(SE, DL, "lsr", false); 5867 #ifndef NDEBUG 5868 Rewriter.setDebugType(DEBUG_TYPE); 5869 #endif 5870 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5871 if (numFolded) { 5872 Changed = true; 5873 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5874 MSSAU.get()); 5875 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5876 } 5877 } 5878 5879 DbgApplyEqualValues(DbgValueToEqualSet); 5880 5881 return Changed; 5882 } 5883 5884 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5885 if (skipLoop(L)) 5886 return false; 5887 5888 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5889 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5890 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5891 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5892 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5893 *L->getHeader()->getParent()); 5894 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5895 *L->getHeader()->getParent()); 5896 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5897 *L->getHeader()->getParent()); 5898 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5899 MemorySSA *MSSA = nullptr; 5900 if (MSSAAnalysis) 5901 MSSA = &MSSAAnalysis->getMSSA(); 5902 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5903 } 5904 5905 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5906 LoopStandardAnalysisResults &AR, 5907 LPMUpdater &) { 5908 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5909 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5910 return PreservedAnalyses::all(); 5911 5912 auto PA = getLoopPassPreservedAnalyses(); 5913 if (AR.MSSA) 5914 PA.preserve<MemorySSAAnalysis>(); 5915 return PA; 5916 } 5917 5918 char LoopStrengthReduce::ID = 0; 5919 5920 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5921 "Loop Strength Reduction", false, false) 5922 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5923 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5924 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5925 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5926 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5927 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5928 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5929 "Loop Strength Reduction", false, false) 5930 5931 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5932