1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Config/llvm-config.h"
81 #include "llvm/IR/BasicBlock.h"
82 #include "llvm/IR/Constant.h"
83 #include "llvm/IR/Constants.h"
84 #include "llvm/IR/DebugInfoMetadata.h"
85 #include "llvm/IR/DerivedTypes.h"
86 #include "llvm/IR/Dominators.h"
87 #include "llvm/IR/GlobalValue.h"
88 #include "llvm/IR/IRBuilder.h"
89 #include "llvm/IR/InstrTypes.h"
90 #include "llvm/IR/Instruction.h"
91 #include "llvm/IR/Instructions.h"
92 #include "llvm/IR/IntrinsicInst.h"
93 #include "llvm/IR/Intrinsics.h"
94 #include "llvm/IR/Module.h"
95 #include "llvm/IR/OperandTraits.h"
96 #include "llvm/IR/Operator.h"
97 #include "llvm/IR/PassManager.h"
98 #include "llvm/IR/Type.h"
99 #include "llvm/IR/Use.h"
100 #include "llvm/IR/User.h"
101 #include "llvm/IR/Value.h"
102 #include "llvm/IR/ValueHandle.h"
103 #include "llvm/InitializePasses.h"
104 #include "llvm/Pass.h"
105 #include "llvm/Support/Casting.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MathExtras.h"
111 #include "llvm/Support/raw_ostream.h"
112 #include "llvm/Transforms/Scalar.h"
113 #include "llvm/Transforms/Utils.h"
114 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
115 #include "llvm/Transforms/Utils/Local.h"
116 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstdlib>
122 #include <iterator>
123 #include <limits>
124 #include <map>
125 #include <numeric>
126 #include <utility>
127 
128 using namespace llvm;
129 
130 #define DEBUG_TYPE "loop-reduce"
131 
132 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
133 /// bail out. This threshold is far beyond the number of users that LSR can
134 /// conceivably solve, so it should not affect generated code, but catches the
135 /// worst cases before LSR burns too much compile time and stack space.
136 static const unsigned MaxIVUsers = 200;
137 
138 // Temporary flag to cleanup congruent phis after LSR phi expansion.
139 // It's currently disabled until we can determine whether it's truly useful or
140 // not. The flag should be removed after the v3.0 release.
141 // This is now needed for ivchains.
142 static cl::opt<bool> EnablePhiElim(
143   "enable-lsr-phielim", cl::Hidden, cl::init(true),
144   cl::desc("Enable LSR phi elimination"));
145 
146 // The flag adds instruction count to solutions cost comparision.
147 static cl::opt<bool> InsnsCost(
148   "lsr-insns-cost", cl::Hidden, cl::init(true),
149   cl::desc("Add instruction count to a LSR cost model"));
150 
151 // Flag to choose how to narrow complex lsr solution
152 static cl::opt<bool> LSRExpNarrow(
153   "lsr-exp-narrow", cl::Hidden, cl::init(false),
154   cl::desc("Narrow LSR complex solution using"
155            " expectation of registers number"));
156 
157 // Flag to narrow search space by filtering non-optimal formulae with
158 // the same ScaledReg and Scale.
159 static cl::opt<bool> FilterSameScaledReg(
160     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
161     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
162              " with the same ScaledReg and Scale"));
163 
164 static cl::opt<bool> EnableBackedgeIndexing(
165   "lsr-backedge-indexing", cl::Hidden, cl::init(true),
166   cl::desc("Enable the generation of cross iteration indexed memops"));
167 
168 static cl::opt<unsigned> ComplexityLimit(
169   "lsr-complexity-limit", cl::Hidden,
170   cl::init(std::numeric_limits<uint16_t>::max()),
171   cl::desc("LSR search space complexity limit"));
172 
173 static cl::opt<unsigned> SetupCostDepthLimit(
174     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
175     cl::desc("The limit on recursion depth for LSRs setup cost"));
176 
177 #ifndef NDEBUG
178 // Stress test IV chain generation.
179 static cl::opt<bool> StressIVChain(
180   "stress-ivchain", cl::Hidden, cl::init(false),
181   cl::desc("Stress test LSR IV chains"));
182 #else
183 static bool StressIVChain = false;
184 #endif
185 
186 namespace {
187 
188 struct MemAccessTy {
189   /// Used in situations where the accessed memory type is unknown.
190   static const unsigned UnknownAddressSpace =
191       std::numeric_limits<unsigned>::max();
192 
193   Type *MemTy = nullptr;
194   unsigned AddrSpace = UnknownAddressSpace;
195 
196   MemAccessTy() = default;
197   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
198 
199   bool operator==(MemAccessTy Other) const {
200     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
201   }
202 
203   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
204 
205   static MemAccessTy getUnknown(LLVMContext &Ctx,
206                                 unsigned AS = UnknownAddressSpace) {
207     return MemAccessTy(Type::getVoidTy(Ctx), AS);
208   }
209 
210   Type *getType() { return MemTy; }
211 };
212 
213 /// This class holds data which is used to order reuse candidates.
214 class RegSortData {
215 public:
216   /// This represents the set of LSRUse indices which reference
217   /// a particular register.
218   SmallBitVector UsedByIndices;
219 
220   void print(raw_ostream &OS) const;
221   void dump() const;
222 };
223 
224 } // end anonymous namespace
225 
226 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
227 void RegSortData::print(raw_ostream &OS) const {
228   OS << "[NumUses=" << UsedByIndices.count() << ']';
229 }
230 
231 LLVM_DUMP_METHOD void RegSortData::dump() const {
232   print(errs()); errs() << '\n';
233 }
234 #endif
235 
236 namespace {
237 
238 /// Map register candidates to information about how they are used.
239 class RegUseTracker {
240   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
241 
242   RegUsesTy RegUsesMap;
243   SmallVector<const SCEV *, 16> RegSequence;
244 
245 public:
246   void countRegister(const SCEV *Reg, size_t LUIdx);
247   void dropRegister(const SCEV *Reg, size_t LUIdx);
248   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
249 
250   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
251 
252   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
253 
254   void clear();
255 
256   using iterator = SmallVectorImpl<const SCEV *>::iterator;
257   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
258 
259   iterator begin() { return RegSequence.begin(); }
260   iterator end()   { return RegSequence.end(); }
261   const_iterator begin() const { return RegSequence.begin(); }
262   const_iterator end() const   { return RegSequence.end(); }
263 };
264 
265 } // end anonymous namespace
266 
267 void
268 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
269   std::pair<RegUsesTy::iterator, bool> Pair =
270     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
271   RegSortData &RSD = Pair.first->second;
272   if (Pair.second)
273     RegSequence.push_back(Reg);
274   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
275   RSD.UsedByIndices.set(LUIdx);
276 }
277 
278 void
279 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
280   RegUsesTy::iterator It = RegUsesMap.find(Reg);
281   assert(It != RegUsesMap.end());
282   RegSortData &RSD = It->second;
283   assert(RSD.UsedByIndices.size() > LUIdx);
284   RSD.UsedByIndices.reset(LUIdx);
285 }
286 
287 void
288 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
289   assert(LUIdx <= LastLUIdx);
290 
291   // Update RegUses. The data structure is not optimized for this purpose;
292   // we must iterate through it and update each of the bit vectors.
293   for (auto &Pair : RegUsesMap) {
294     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
295     if (LUIdx < UsedByIndices.size())
296       UsedByIndices[LUIdx] =
297         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
298     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
299   }
300 }
301 
302 bool
303 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
304   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
305   if (I == RegUsesMap.end())
306     return false;
307   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
308   int i = UsedByIndices.find_first();
309   if (i == -1) return false;
310   if ((size_t)i != LUIdx) return true;
311   return UsedByIndices.find_next(i) != -1;
312 }
313 
314 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
315   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
316   assert(I != RegUsesMap.end() && "Unknown register!");
317   return I->second.UsedByIndices;
318 }
319 
320 void RegUseTracker::clear() {
321   RegUsesMap.clear();
322   RegSequence.clear();
323 }
324 
325 namespace {
326 
327 /// This class holds information that describes a formula for computing
328 /// satisfying a use. It may include broken-out immediates and scaled registers.
329 struct Formula {
330   /// Global base address used for complex addressing.
331   GlobalValue *BaseGV = nullptr;
332 
333   /// Base offset for complex addressing.
334   int64_t BaseOffset = 0;
335 
336   /// Whether any complex addressing has a base register.
337   bool HasBaseReg = false;
338 
339   /// The scale of any complex addressing.
340   int64_t Scale = 0;
341 
342   /// The list of "base" registers for this use. When this is non-empty. The
343   /// canonical representation of a formula is
344   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
345   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
346   /// 3. The reg containing recurrent expr related with currect loop in the
347   /// formula should be put in the ScaledReg.
348   /// #1 enforces that the scaled register is always used when at least two
349   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
350   /// #2 enforces that 1 * reg is reg.
351   /// #3 ensures invariant regs with respect to current loop can be combined
352   /// together in LSR codegen.
353   /// This invariant can be temporarily broken while building a formula.
354   /// However, every formula inserted into the LSRInstance must be in canonical
355   /// form.
356   SmallVector<const SCEV *, 4> BaseRegs;
357 
358   /// The 'scaled' register for this use. This should be non-null when Scale is
359   /// not zero.
360   const SCEV *ScaledReg = nullptr;
361 
362   /// An additional constant offset which added near the use. This requires a
363   /// temporary register, but the offset itself can live in an add immediate
364   /// field rather than a register.
365   int64_t UnfoldedOffset = 0;
366 
367   Formula() = default;
368 
369   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
370 
371   bool isCanonical(const Loop &L) const;
372 
373   void canonicalize(const Loop &L);
374 
375   bool unscale();
376 
377   bool hasZeroEnd() const;
378 
379   size_t getNumRegs() const;
380   Type *getType() const;
381 
382   void deleteBaseReg(const SCEV *&S);
383 
384   bool referencesReg(const SCEV *S) const;
385   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
386                                   const RegUseTracker &RegUses) const;
387 
388   void print(raw_ostream &OS) const;
389   void dump() const;
390 };
391 
392 } // end anonymous namespace
393 
394 /// Recursion helper for initialMatch.
395 static void DoInitialMatch(const SCEV *S, Loop *L,
396                            SmallVectorImpl<const SCEV *> &Good,
397                            SmallVectorImpl<const SCEV *> &Bad,
398                            ScalarEvolution &SE) {
399   // Collect expressions which properly dominate the loop header.
400   if (SE.properlyDominates(S, L->getHeader())) {
401     Good.push_back(S);
402     return;
403   }
404 
405   // Look at add operands.
406   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
407     for (const SCEV *S : Add->operands())
408       DoInitialMatch(S, L, Good, Bad, SE);
409     return;
410   }
411 
412   // Look at addrec operands.
413   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
414     if (!AR->getStart()->isZero() && AR->isAffine()) {
415       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
416       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
417                                       AR->getStepRecurrence(SE),
418                                       // FIXME: AR->getNoWrapFlags()
419                                       AR->getLoop(), SCEV::FlagAnyWrap),
420                      L, Good, Bad, SE);
421       return;
422     }
423 
424   // Handle a multiplication by -1 (negation) if it didn't fold.
425   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
426     if (Mul->getOperand(0)->isAllOnesValue()) {
427       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
428       const SCEV *NewMul = SE.getMulExpr(Ops);
429 
430       SmallVector<const SCEV *, 4> MyGood;
431       SmallVector<const SCEV *, 4> MyBad;
432       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
433       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
434         SE.getEffectiveSCEVType(NewMul->getType())));
435       for (const SCEV *S : MyGood)
436         Good.push_back(SE.getMulExpr(NegOne, S));
437       for (const SCEV *S : MyBad)
438         Bad.push_back(SE.getMulExpr(NegOne, S));
439       return;
440     }
441 
442   // Ok, we can't do anything interesting. Just stuff the whole thing into a
443   // register and hope for the best.
444   Bad.push_back(S);
445 }
446 
447 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
448 /// all loop-invariant and loop-computable values in a single base register.
449 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
450   SmallVector<const SCEV *, 4> Good;
451   SmallVector<const SCEV *, 4> Bad;
452   DoInitialMatch(S, L, Good, Bad, SE);
453   if (!Good.empty()) {
454     const SCEV *Sum = SE.getAddExpr(Good);
455     if (!Sum->isZero())
456       BaseRegs.push_back(Sum);
457     HasBaseReg = true;
458   }
459   if (!Bad.empty()) {
460     const SCEV *Sum = SE.getAddExpr(Bad);
461     if (!Sum->isZero())
462       BaseRegs.push_back(Sum);
463     HasBaseReg = true;
464   }
465   canonicalize(*L);
466 }
467 
468 /// Check whether or not this formula satisfies the canonical
469 /// representation.
470 /// \see Formula::BaseRegs.
471 bool Formula::isCanonical(const Loop &L) const {
472   if (!ScaledReg)
473     return BaseRegs.size() <= 1;
474 
475   if (Scale != 1)
476     return true;
477 
478   if (Scale == 1 && BaseRegs.empty())
479     return false;
480 
481   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
482   if (SAR && SAR->getLoop() == &L)
483     return true;
484 
485   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
486   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
487   // loop, we want to swap the reg in BaseRegs with ScaledReg.
488   auto I = find_if(BaseRegs, [&](const SCEV *S) {
489     return isa<const SCEVAddRecExpr>(S) &&
490            (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
491   });
492   return I == BaseRegs.end();
493 }
494 
495 /// Helper method to morph a formula into its canonical representation.
496 /// \see Formula::BaseRegs.
497 /// Every formula having more than one base register, must use the ScaledReg
498 /// field. Otherwise, we would have to do special cases everywhere in LSR
499 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
500 /// On the other hand, 1*reg should be canonicalized into reg.
501 void Formula::canonicalize(const Loop &L) {
502   if (isCanonical(L))
503     return;
504   // So far we did not need this case. This is easy to implement but it is
505   // useless to maintain dead code. Beside it could hurt compile time.
506   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
507 
508   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
509   if (!ScaledReg) {
510     ScaledReg = BaseRegs.pop_back_val();
511     Scale = 1;
512   }
513 
514   // If ScaledReg is an invariant with respect to L, find the reg from
515   // BaseRegs containing the recurrent expr related with Loop L. Swap the
516   // reg with ScaledReg.
517   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
518   if (!SAR || SAR->getLoop() != &L) {
519     auto I = find_if(BaseRegs, [&](const SCEV *S) {
520       return isa<const SCEVAddRecExpr>(S) &&
521              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
522     });
523     if (I != BaseRegs.end())
524       std::swap(ScaledReg, *I);
525   }
526 }
527 
528 /// Get rid of the scale in the formula.
529 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
530 /// \return true if it was possible to get rid of the scale, false otherwise.
531 /// \note After this operation the formula may not be in the canonical form.
532 bool Formula::unscale() {
533   if (Scale != 1)
534     return false;
535   Scale = 0;
536   BaseRegs.push_back(ScaledReg);
537   ScaledReg = nullptr;
538   return true;
539 }
540 
541 bool Formula::hasZeroEnd() const {
542   if (UnfoldedOffset || BaseOffset)
543     return false;
544   if (BaseRegs.size() != 1 || ScaledReg)
545     return false;
546   return true;
547 }
548 
549 /// Return the total number of register operands used by this formula. This does
550 /// not include register uses implied by non-constant addrec strides.
551 size_t Formula::getNumRegs() const {
552   return !!ScaledReg + BaseRegs.size();
553 }
554 
555 /// Return the type of this formula, if it has one, or null otherwise. This type
556 /// is meaningless except for the bit size.
557 Type *Formula::getType() const {
558   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
559          ScaledReg ? ScaledReg->getType() :
560          BaseGV ? BaseGV->getType() :
561          nullptr;
562 }
563 
564 /// Delete the given base reg from the BaseRegs list.
565 void Formula::deleteBaseReg(const SCEV *&S) {
566   if (&S != &BaseRegs.back())
567     std::swap(S, BaseRegs.back());
568   BaseRegs.pop_back();
569 }
570 
571 /// Test if this formula references the given register.
572 bool Formula::referencesReg(const SCEV *S) const {
573   return S == ScaledReg || is_contained(BaseRegs, S);
574 }
575 
576 /// Test whether this formula uses registers which are used by uses other than
577 /// the use with the given index.
578 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
579                                          const RegUseTracker &RegUses) const {
580   if (ScaledReg)
581     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
582       return true;
583   for (const SCEV *BaseReg : BaseRegs)
584     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
585       return true;
586   return false;
587 }
588 
589 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
590 void Formula::print(raw_ostream &OS) const {
591   bool First = true;
592   if (BaseGV) {
593     if (!First) OS << " + "; else First = false;
594     BaseGV->printAsOperand(OS, /*PrintType=*/false);
595   }
596   if (BaseOffset != 0) {
597     if (!First) OS << " + "; else First = false;
598     OS << BaseOffset;
599   }
600   for (const SCEV *BaseReg : BaseRegs) {
601     if (!First) OS << " + "; else First = false;
602     OS << "reg(" << *BaseReg << ')';
603   }
604   if (HasBaseReg && BaseRegs.empty()) {
605     if (!First) OS << " + "; else First = false;
606     OS << "**error: HasBaseReg**";
607   } else if (!HasBaseReg && !BaseRegs.empty()) {
608     if (!First) OS << " + "; else First = false;
609     OS << "**error: !HasBaseReg**";
610   }
611   if (Scale != 0) {
612     if (!First) OS << " + "; else First = false;
613     OS << Scale << "*reg(";
614     if (ScaledReg)
615       OS << *ScaledReg;
616     else
617       OS << "<unknown>";
618     OS << ')';
619   }
620   if (UnfoldedOffset != 0) {
621     if (!First) OS << " + ";
622     OS << "imm(" << UnfoldedOffset << ')';
623   }
624 }
625 
626 LLVM_DUMP_METHOD void Formula::dump() const {
627   print(errs()); errs() << '\n';
628 }
629 #endif
630 
631 /// Return true if the given addrec can be sign-extended without changing its
632 /// value.
633 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
634   Type *WideTy =
635     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
636   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
637 }
638 
639 /// Return true if the given add can be sign-extended without changing its
640 /// value.
641 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
642   Type *WideTy =
643     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
644   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
645 }
646 
647 /// Return true if the given mul can be sign-extended without changing its
648 /// value.
649 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
650   Type *WideTy =
651     IntegerType::get(SE.getContext(),
652                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
653   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
654 }
655 
656 /// Return an expression for LHS /s RHS, if it can be determined and if the
657 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
658 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
659 /// the multiplication may overflow, which is useful when the result will be
660 /// used in a context where the most significant bits are ignored.
661 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
662                                 ScalarEvolution &SE,
663                                 bool IgnoreSignificantBits = false) {
664   // Handle the trivial case, which works for any SCEV type.
665   if (LHS == RHS)
666     return SE.getConstant(LHS->getType(), 1);
667 
668   // Handle a few RHS special cases.
669   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
670   if (RC) {
671     const APInt &RA = RC->getAPInt();
672     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
673     // some folding.
674     if (RA.isAllOnesValue())
675       return SE.getMulExpr(LHS, RC);
676     // Handle x /s 1 as x.
677     if (RA == 1)
678       return LHS;
679   }
680 
681   // Check for a division of a constant by a constant.
682   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
683     if (!RC)
684       return nullptr;
685     const APInt &LA = C->getAPInt();
686     const APInt &RA = RC->getAPInt();
687     if (LA.srem(RA) != 0)
688       return nullptr;
689     return SE.getConstant(LA.sdiv(RA));
690   }
691 
692   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
693   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
694     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
695       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
696                                       IgnoreSignificantBits);
697       if (!Step) return nullptr;
698       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
699                                        IgnoreSignificantBits);
700       if (!Start) return nullptr;
701       // FlagNW is independent of the start value, step direction, and is
702       // preserved with smaller magnitude steps.
703       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
704       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
705     }
706     return nullptr;
707   }
708 
709   // Distribute the sdiv over add operands, if the add doesn't overflow.
710   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
711     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
712       SmallVector<const SCEV *, 8> Ops;
713       for (const SCEV *S : Add->operands()) {
714         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
715         if (!Op) return nullptr;
716         Ops.push_back(Op);
717       }
718       return SE.getAddExpr(Ops);
719     }
720     return nullptr;
721   }
722 
723   // Check for a multiply operand that we can pull RHS out of.
724   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
725     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
726       SmallVector<const SCEV *, 4> Ops;
727       bool Found = false;
728       for (const SCEV *S : Mul->operands()) {
729         if (!Found)
730           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
731                                            IgnoreSignificantBits)) {
732             S = Q;
733             Found = true;
734           }
735         Ops.push_back(S);
736       }
737       return Found ? SE.getMulExpr(Ops) : nullptr;
738     }
739     return nullptr;
740   }
741 
742   // Otherwise we don't know.
743   return nullptr;
744 }
745 
746 /// If S involves the addition of a constant integer value, return that integer
747 /// value, and mutate S to point to a new SCEV with that value excluded.
748 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
749   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
750     if (C->getAPInt().getMinSignedBits() <= 64) {
751       S = SE.getConstant(C->getType(), 0);
752       return C->getValue()->getSExtValue();
753     }
754   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
755     SmallVector<const SCEV *, 8> NewOps(Add->operands());
756     int64_t Result = ExtractImmediate(NewOps.front(), SE);
757     if (Result != 0)
758       S = SE.getAddExpr(NewOps);
759     return Result;
760   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
761     SmallVector<const SCEV *, 8> NewOps(AR->operands());
762     int64_t Result = ExtractImmediate(NewOps.front(), SE);
763     if (Result != 0)
764       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
765                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
766                            SCEV::FlagAnyWrap);
767     return Result;
768   }
769   return 0;
770 }
771 
772 /// If S involves the addition of a GlobalValue address, return that symbol, and
773 /// mutate S to point to a new SCEV with that value excluded.
774 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
775   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
776     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
777       S = SE.getConstant(GV->getType(), 0);
778       return GV;
779     }
780   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
781     SmallVector<const SCEV *, 8> NewOps(Add->operands());
782     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
783     if (Result)
784       S = SE.getAddExpr(NewOps);
785     return Result;
786   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
787     SmallVector<const SCEV *, 8> NewOps(AR->operands());
788     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
789     if (Result)
790       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
791                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
792                            SCEV::FlagAnyWrap);
793     return Result;
794   }
795   return nullptr;
796 }
797 
798 /// Returns true if the specified instruction is using the specified value as an
799 /// address.
800 static bool isAddressUse(const TargetTransformInfo &TTI,
801                          Instruction *Inst, Value *OperandVal) {
802   bool isAddress = isa<LoadInst>(Inst);
803   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
804     if (SI->getPointerOperand() == OperandVal)
805       isAddress = true;
806   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
807     // Addressing modes can also be folded into prefetches and a variety
808     // of intrinsics.
809     switch (II->getIntrinsicID()) {
810     case Intrinsic::memset:
811     case Intrinsic::prefetch:
812     case Intrinsic::masked_load:
813       if (II->getArgOperand(0) == OperandVal)
814         isAddress = true;
815       break;
816     case Intrinsic::masked_store:
817       if (II->getArgOperand(1) == OperandVal)
818         isAddress = true;
819       break;
820     case Intrinsic::memmove:
821     case Intrinsic::memcpy:
822       if (II->getArgOperand(0) == OperandVal ||
823           II->getArgOperand(1) == OperandVal)
824         isAddress = true;
825       break;
826     default: {
827       MemIntrinsicInfo IntrInfo;
828       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
829         if (IntrInfo.PtrVal == OperandVal)
830           isAddress = true;
831       }
832     }
833     }
834   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
835     if (RMW->getPointerOperand() == OperandVal)
836       isAddress = true;
837   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
838     if (CmpX->getPointerOperand() == OperandVal)
839       isAddress = true;
840   }
841   return isAddress;
842 }
843 
844 /// Return the type of the memory being accessed.
845 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
846                                  Instruction *Inst, Value *OperandVal) {
847   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
848   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
849     AccessTy.MemTy = SI->getOperand(0)->getType();
850     AccessTy.AddrSpace = SI->getPointerAddressSpace();
851   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
852     AccessTy.AddrSpace = LI->getPointerAddressSpace();
853   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
854     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
855   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
856     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
857   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
858     switch (II->getIntrinsicID()) {
859     case Intrinsic::prefetch:
860     case Intrinsic::memset:
861       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
862       AccessTy.MemTy = OperandVal->getType();
863       break;
864     case Intrinsic::memmove:
865     case Intrinsic::memcpy:
866       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
867       AccessTy.MemTy = OperandVal->getType();
868       break;
869     case Intrinsic::masked_load:
870       AccessTy.AddrSpace =
871           II->getArgOperand(0)->getType()->getPointerAddressSpace();
872       break;
873     case Intrinsic::masked_store:
874       AccessTy.MemTy = II->getOperand(0)->getType();
875       AccessTy.AddrSpace =
876           II->getArgOperand(1)->getType()->getPointerAddressSpace();
877       break;
878     default: {
879       MemIntrinsicInfo IntrInfo;
880       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
881         AccessTy.AddrSpace
882           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
883       }
884 
885       break;
886     }
887     }
888   }
889 
890   // All pointers have the same requirements, so canonicalize them to an
891   // arbitrary pointer type to minimize variation.
892   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
893     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
894                                       PTy->getAddressSpace());
895 
896   return AccessTy;
897 }
898 
899 /// Return true if this AddRec is already a phi in its loop.
900 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
901   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
902     if (SE.isSCEVable(PN.getType()) &&
903         (SE.getEffectiveSCEVType(PN.getType()) ==
904          SE.getEffectiveSCEVType(AR->getType())) &&
905         SE.getSCEV(&PN) == AR)
906       return true;
907   }
908   return false;
909 }
910 
911 /// Check if expanding this expression is likely to incur significant cost. This
912 /// is tricky because SCEV doesn't track which expressions are actually computed
913 /// by the current IR.
914 ///
915 /// We currently allow expansion of IV increments that involve adds,
916 /// multiplication by constants, and AddRecs from existing phis.
917 ///
918 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
919 /// obvious multiple of the UDivExpr.
920 static bool isHighCostExpansion(const SCEV *S,
921                                 SmallPtrSetImpl<const SCEV*> &Processed,
922                                 ScalarEvolution &SE) {
923   // Zero/One operand expressions
924   switch (S->getSCEVType()) {
925   case scUnknown:
926   case scConstant:
927     return false;
928   case scTruncate:
929     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
930                                Processed, SE);
931   case scZeroExtend:
932     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
933                                Processed, SE);
934   case scSignExtend:
935     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
936                                Processed, SE);
937   default:
938     break;
939   }
940 
941   if (!Processed.insert(S).second)
942     return false;
943 
944   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
945     for (const SCEV *S : Add->operands()) {
946       if (isHighCostExpansion(S, Processed, SE))
947         return true;
948     }
949     return false;
950   }
951 
952   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
953     if (Mul->getNumOperands() == 2) {
954       // Multiplication by a constant is ok
955       if (isa<SCEVConstant>(Mul->getOperand(0)))
956         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
957 
958       // If we have the value of one operand, check if an existing
959       // multiplication already generates this expression.
960       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
961         Value *UVal = U->getValue();
962         for (User *UR : UVal->users()) {
963           // If U is a constant, it may be used by a ConstantExpr.
964           Instruction *UI = dyn_cast<Instruction>(UR);
965           if (UI && UI->getOpcode() == Instruction::Mul &&
966               SE.isSCEVable(UI->getType())) {
967             return SE.getSCEV(UI) == Mul;
968           }
969         }
970       }
971     }
972   }
973 
974   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
975     if (isExistingPhi(AR, SE))
976       return false;
977   }
978 
979   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
980   return true;
981 }
982 
983 namespace {
984 
985 class LSRUse;
986 
987 } // end anonymous namespace
988 
989 /// Check if the addressing mode defined by \p F is completely
990 /// folded in \p LU at isel time.
991 /// This includes address-mode folding and special icmp tricks.
992 /// This function returns true if \p LU can accommodate what \p F
993 /// defines and up to 1 base + 1 scaled + offset.
994 /// In other words, if \p F has several base registers, this function may
995 /// still return true. Therefore, users still need to account for
996 /// additional base registers and/or unfolded offsets to derive an
997 /// accurate cost model.
998 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
999                                  const LSRUse &LU, const Formula &F);
1000 
1001 // Get the cost of the scaling factor used in F for LU.
1002 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1003                                      const LSRUse &LU, const Formula &F,
1004                                      const Loop &L);
1005 
1006 namespace {
1007 
1008 /// This class is used to measure and compare candidate formulae.
1009 class Cost {
1010   const Loop *L = nullptr;
1011   ScalarEvolution *SE = nullptr;
1012   const TargetTransformInfo *TTI = nullptr;
1013   TargetTransformInfo::LSRCost C;
1014 
1015 public:
1016   Cost() = delete;
1017   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) :
1018     L(L), SE(&SE), TTI(&TTI) {
1019     C.Insns = 0;
1020     C.NumRegs = 0;
1021     C.AddRecCost = 0;
1022     C.NumIVMuls = 0;
1023     C.NumBaseAdds = 0;
1024     C.ImmCost = 0;
1025     C.SetupCost = 0;
1026     C.ScaleCost = 0;
1027   }
1028 
1029   bool isLess(Cost &Other);
1030 
1031   void Lose();
1032 
1033 #ifndef NDEBUG
1034   // Once any of the metrics loses, they must all remain losers.
1035   bool isValid() {
1036     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1037              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1038       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1039            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1040   }
1041 #endif
1042 
1043   bool isLoser() {
1044     assert(isValid() && "invalid cost");
1045     return C.NumRegs == ~0u;
1046   }
1047 
1048   void RateFormula(const Formula &F,
1049                    SmallPtrSetImpl<const SCEV *> &Regs,
1050                    const DenseSet<const SCEV *> &VisitedRegs,
1051                    const LSRUse &LU,
1052                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1053 
1054   void print(raw_ostream &OS) const;
1055   void dump() const;
1056 
1057 private:
1058   void RateRegister(const Formula &F, const SCEV *Reg,
1059                     SmallPtrSetImpl<const SCEV *> &Regs);
1060   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1061                            SmallPtrSetImpl<const SCEV *> &Regs,
1062                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1063 };
1064 
1065 /// An operand value in an instruction which is to be replaced with some
1066 /// equivalent, possibly strength-reduced, replacement.
1067 struct LSRFixup {
1068   /// The instruction which will be updated.
1069   Instruction *UserInst = nullptr;
1070 
1071   /// The operand of the instruction which will be replaced. The operand may be
1072   /// used more than once; every instance will be replaced.
1073   Value *OperandValToReplace = nullptr;
1074 
1075   /// If this user is to use the post-incremented value of an induction
1076   /// variable, this set is non-empty and holds the loops associated with the
1077   /// induction variable.
1078   PostIncLoopSet PostIncLoops;
1079 
1080   /// A constant offset to be added to the LSRUse expression.  This allows
1081   /// multiple fixups to share the same LSRUse with different offsets, for
1082   /// example in an unrolled loop.
1083   int64_t Offset = 0;
1084 
1085   LSRFixup() = default;
1086 
1087   bool isUseFullyOutsideLoop(const Loop *L) const;
1088 
1089   void print(raw_ostream &OS) const;
1090   void dump() const;
1091 };
1092 
1093 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1094 /// SmallVectors of const SCEV*.
1095 struct UniquifierDenseMapInfo {
1096   static SmallVector<const SCEV *, 4> getEmptyKey() {
1097     SmallVector<const SCEV *, 4>  V;
1098     V.push_back(reinterpret_cast<const SCEV *>(-1));
1099     return V;
1100   }
1101 
1102   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1103     SmallVector<const SCEV *, 4> V;
1104     V.push_back(reinterpret_cast<const SCEV *>(-2));
1105     return V;
1106   }
1107 
1108   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1109     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1110   }
1111 
1112   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1113                       const SmallVector<const SCEV *, 4> &RHS) {
1114     return LHS == RHS;
1115   }
1116 };
1117 
1118 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1119 /// as uses invented by LSR itself. It includes information about what kinds of
1120 /// things can be folded into the user, information about the user itself, and
1121 /// information about how the use may be satisfied.  TODO: Represent multiple
1122 /// users of the same expression in common?
1123 class LSRUse {
1124   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1125 
1126 public:
1127   /// An enum for a kind of use, indicating what types of scaled and immediate
1128   /// operands it might support.
1129   enum KindType {
1130     Basic,   ///< A normal use, with no folding.
1131     Special, ///< A special case of basic, allowing -1 scales.
1132     Address, ///< An address use; folding according to TargetLowering
1133     ICmpZero ///< An equality icmp with both operands folded into one.
1134     // TODO: Add a generic icmp too?
1135   };
1136 
1137   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1138 
1139   KindType Kind;
1140   MemAccessTy AccessTy;
1141 
1142   /// The list of operands which are to be replaced.
1143   SmallVector<LSRFixup, 8> Fixups;
1144 
1145   /// Keep track of the min and max offsets of the fixups.
1146   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1147   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1148 
1149   /// This records whether all of the fixups using this LSRUse are outside of
1150   /// the loop, in which case some special-case heuristics may be used.
1151   bool AllFixupsOutsideLoop = true;
1152 
1153   /// RigidFormula is set to true to guarantee that this use will be associated
1154   /// with a single formula--the one that initially matched. Some SCEV
1155   /// expressions cannot be expanded. This allows LSR to consider the registers
1156   /// used by those expressions without the need to expand them later after
1157   /// changing the formula.
1158   bool RigidFormula = false;
1159 
1160   /// This records the widest use type for any fixup using this
1161   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1162   /// fixup widths to be equivalent, because the narrower one may be relying on
1163   /// the implicit truncation to truncate away bogus bits.
1164   Type *WidestFixupType = nullptr;
1165 
1166   /// A list of ways to build a value that can satisfy this user.  After the
1167   /// list is populated, one of these is selected heuristically and used to
1168   /// formulate a replacement for OperandValToReplace in UserInst.
1169   SmallVector<Formula, 12> Formulae;
1170 
1171   /// The set of register candidates used by all formulae in this LSRUse.
1172   SmallPtrSet<const SCEV *, 4> Regs;
1173 
1174   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1175 
1176   LSRFixup &getNewFixup() {
1177     Fixups.push_back(LSRFixup());
1178     return Fixups.back();
1179   }
1180 
1181   void pushFixup(LSRFixup &f) {
1182     Fixups.push_back(f);
1183     if (f.Offset > MaxOffset)
1184       MaxOffset = f.Offset;
1185     if (f.Offset < MinOffset)
1186       MinOffset = f.Offset;
1187   }
1188 
1189   bool HasFormulaWithSameRegs(const Formula &F) const;
1190   float getNotSelectedProbability(const SCEV *Reg) const;
1191   bool InsertFormula(const Formula &F, const Loop &L);
1192   void DeleteFormula(Formula &F);
1193   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1194 
1195   void print(raw_ostream &OS) const;
1196   void dump() const;
1197 };
1198 
1199 } // end anonymous namespace
1200 
1201 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1202                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1203                                  GlobalValue *BaseGV, int64_t BaseOffset,
1204                                  bool HasBaseReg, int64_t Scale,
1205                                  Instruction *Fixup = nullptr);
1206 
1207 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1208   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1209     return 1;
1210   if (Depth == 0)
1211     return 0;
1212   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1213     return getSetupCost(S->getStart(), Depth - 1);
1214   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1215     return getSetupCost(S->getOperand(), Depth - 1);
1216   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1217     return std::accumulate(S->op_begin(), S->op_end(), 0,
1218                            [&](unsigned i, const SCEV *Reg) {
1219                              return i + getSetupCost(Reg, Depth - 1);
1220                            });
1221   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1222     return getSetupCost(S->getLHS(), Depth - 1) +
1223            getSetupCost(S->getRHS(), Depth - 1);
1224   return 0;
1225 }
1226 
1227 /// Tally up interesting quantities from the given register.
1228 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1229                         SmallPtrSetImpl<const SCEV *> &Regs) {
1230   TTI::AddressingModeKind AMK = TTI->getPreferredAddressingMode(L, SE);
1231 
1232   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1233     // If this is an addrec for another loop, it should be an invariant
1234     // with respect to L since L is the innermost loop (at least
1235     // for now LSR only handles innermost loops).
1236     if (AR->getLoop() != L) {
1237       // If the AddRec exists, consider it's register free and leave it alone.
1238       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1239         return;
1240 
1241       // It is bad to allow LSR for current loop to add induction variables
1242       // for its sibling loops.
1243       if (!AR->getLoop()->contains(L)) {
1244         Lose();
1245         return;
1246       }
1247 
1248       // Otherwise, it will be an invariant with respect to Loop L.
1249       ++C.NumRegs;
1250       return;
1251     }
1252 
1253     unsigned LoopCost = 1;
1254     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1255         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1256 
1257       // If the step size matches the base offset, we could use pre-indexed
1258       // addressing.
1259       if (AMK == TTI::AMK_PreIndexed) {
1260         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1261           if (Step->getAPInt() == F.BaseOffset)
1262             LoopCost = 0;
1263       } else if (AMK == TTI::AMK_PostIndexed) {
1264         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1265         if (isa<SCEVConstant>(LoopStep)) {
1266           const SCEV *LoopStart = AR->getStart();
1267           if (!isa<SCEVConstant>(LoopStart) &&
1268               SE->isLoopInvariant(LoopStart, L))
1269             LoopCost = 0;
1270         }
1271       }
1272     }
1273     C.AddRecCost += LoopCost;
1274 
1275     // Add the step value register, if it needs one.
1276     // TODO: The non-affine case isn't precisely modeled here.
1277     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1278       if (!Regs.count(AR->getOperand(1))) {
1279         RateRegister(F, AR->getOperand(1), Regs);
1280         if (isLoser())
1281           return;
1282       }
1283     }
1284   }
1285   ++C.NumRegs;
1286 
1287   // Rough heuristic; favor registers which don't require extra setup
1288   // instructions in the preheader.
1289   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1290   // Ensure we don't, even with the recusion limit, produce invalid costs.
1291   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1292 
1293   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1294                SE->hasComputableLoopEvolution(Reg, L);
1295 }
1296 
1297 /// Record this register in the set. If we haven't seen it before, rate
1298 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1299 /// one of those regs an instant loser.
1300 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1301                                SmallPtrSetImpl<const SCEV *> &Regs,
1302                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1303   if (LoserRegs && LoserRegs->count(Reg)) {
1304     Lose();
1305     return;
1306   }
1307   if (Regs.insert(Reg).second) {
1308     RateRegister(F, Reg, Regs);
1309     if (LoserRegs && isLoser())
1310       LoserRegs->insert(Reg);
1311   }
1312 }
1313 
1314 void Cost::RateFormula(const Formula &F,
1315                        SmallPtrSetImpl<const SCEV *> &Regs,
1316                        const DenseSet<const SCEV *> &VisitedRegs,
1317                        const LSRUse &LU,
1318                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1319   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1320   // Tally up the registers.
1321   unsigned PrevAddRecCost = C.AddRecCost;
1322   unsigned PrevNumRegs = C.NumRegs;
1323   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1324   if (const SCEV *ScaledReg = F.ScaledReg) {
1325     if (VisitedRegs.count(ScaledReg)) {
1326       Lose();
1327       return;
1328     }
1329     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1330     if (isLoser())
1331       return;
1332   }
1333   for (const SCEV *BaseReg : F.BaseRegs) {
1334     if (VisitedRegs.count(BaseReg)) {
1335       Lose();
1336       return;
1337     }
1338     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1339     if (isLoser())
1340       return;
1341   }
1342 
1343   // Determine how many (unfolded) adds we'll need inside the loop.
1344   size_t NumBaseParts = F.getNumRegs();
1345   if (NumBaseParts > 1)
1346     // Do not count the base and a possible second register if the target
1347     // allows to fold 2 registers.
1348     C.NumBaseAdds +=
1349         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1350   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1351 
1352   // Accumulate non-free scaling amounts.
1353   C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L);
1354 
1355   // Tally up the non-zero immediates.
1356   for (const LSRFixup &Fixup : LU.Fixups) {
1357     int64_t O = Fixup.Offset;
1358     int64_t Offset = (uint64_t)O + F.BaseOffset;
1359     if (F.BaseGV)
1360       C.ImmCost += 64; // Handle symbolic values conservatively.
1361                      // TODO: This should probably be the pointer size.
1362     else if (Offset != 0)
1363       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1364 
1365     // Check with target if this offset with this instruction is
1366     // specifically not supported.
1367     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1368         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1369                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1370       C.NumBaseAdds++;
1371   }
1372 
1373   // If we don't count instruction cost exit here.
1374   if (!InsnsCost) {
1375     assert(isValid() && "invalid cost");
1376     return;
1377   }
1378 
1379   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1380   // additional instruction (at least fill).
1381   // TODO: Need distinguish register class?
1382   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1383                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1384   if (C.NumRegs > TTIRegNum) {
1385     // Cost already exceeded TTIRegNum, then only newly added register can add
1386     // new instructions.
1387     if (PrevNumRegs > TTIRegNum)
1388       C.Insns += (C.NumRegs - PrevNumRegs);
1389     else
1390       C.Insns += (C.NumRegs - TTIRegNum);
1391   }
1392 
1393   // If ICmpZero formula ends with not 0, it could not be replaced by
1394   // just add or sub. We'll need to compare final result of AddRec.
1395   // That means we'll need an additional instruction. But if the target can
1396   // macro-fuse a compare with a branch, don't count this extra instruction.
1397   // For -10 + {0, +, 1}:
1398   // i = i + 1;
1399   // cmp i, 10
1400   //
1401   // For {-10, +, 1}:
1402   // i = i + 1;
1403   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1404       !TTI->canMacroFuseCmp())
1405     C.Insns++;
1406   // Each new AddRec adds 1 instruction to calculation.
1407   C.Insns += (C.AddRecCost - PrevAddRecCost);
1408 
1409   // BaseAdds adds instructions for unfolded registers.
1410   if (LU.Kind != LSRUse::ICmpZero)
1411     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1412   assert(isValid() && "invalid cost");
1413 }
1414 
1415 /// Set this cost to a losing value.
1416 void Cost::Lose() {
1417   C.Insns = std::numeric_limits<unsigned>::max();
1418   C.NumRegs = std::numeric_limits<unsigned>::max();
1419   C.AddRecCost = std::numeric_limits<unsigned>::max();
1420   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1421   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1422   C.ImmCost = std::numeric_limits<unsigned>::max();
1423   C.SetupCost = std::numeric_limits<unsigned>::max();
1424   C.ScaleCost = std::numeric_limits<unsigned>::max();
1425 }
1426 
1427 /// Choose the lower cost.
1428 bool Cost::isLess(Cost &Other) {
1429   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1430       C.Insns != Other.C.Insns)
1431     return C.Insns < Other.C.Insns;
1432   return TTI->isLSRCostLess(C, Other.C);
1433 }
1434 
1435 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1436 void Cost::print(raw_ostream &OS) const {
1437   if (InsnsCost)
1438     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1439   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1440   if (C.AddRecCost != 0)
1441     OS << ", with addrec cost " << C.AddRecCost;
1442   if (C.NumIVMuls != 0)
1443     OS << ", plus " << C.NumIVMuls << " IV mul"
1444        << (C.NumIVMuls == 1 ? "" : "s");
1445   if (C.NumBaseAdds != 0)
1446     OS << ", plus " << C.NumBaseAdds << " base add"
1447        << (C.NumBaseAdds == 1 ? "" : "s");
1448   if (C.ScaleCost != 0)
1449     OS << ", plus " << C.ScaleCost << " scale cost";
1450   if (C.ImmCost != 0)
1451     OS << ", plus " << C.ImmCost << " imm cost";
1452   if (C.SetupCost != 0)
1453     OS << ", plus " << C.SetupCost << " setup cost";
1454 }
1455 
1456 LLVM_DUMP_METHOD void Cost::dump() const {
1457   print(errs()); errs() << '\n';
1458 }
1459 #endif
1460 
1461 /// Test whether this fixup always uses its value outside of the given loop.
1462 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1463   // PHI nodes use their value in their incoming blocks.
1464   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1465     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1466       if (PN->getIncomingValue(i) == OperandValToReplace &&
1467           L->contains(PN->getIncomingBlock(i)))
1468         return false;
1469     return true;
1470   }
1471 
1472   return !L->contains(UserInst);
1473 }
1474 
1475 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1476 void LSRFixup::print(raw_ostream &OS) const {
1477   OS << "UserInst=";
1478   // Store is common and interesting enough to be worth special-casing.
1479   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1480     OS << "store ";
1481     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1482   } else if (UserInst->getType()->isVoidTy())
1483     OS << UserInst->getOpcodeName();
1484   else
1485     UserInst->printAsOperand(OS, /*PrintType=*/false);
1486 
1487   OS << ", OperandValToReplace=";
1488   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1489 
1490   for (const Loop *PIL : PostIncLoops) {
1491     OS << ", PostIncLoop=";
1492     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1493   }
1494 
1495   if (Offset != 0)
1496     OS << ", Offset=" << Offset;
1497 }
1498 
1499 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1500   print(errs()); errs() << '\n';
1501 }
1502 #endif
1503 
1504 /// Test whether this use as a formula which has the same registers as the given
1505 /// formula.
1506 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1507   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1508   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1509   // Unstable sort by host order ok, because this is only used for uniquifying.
1510   llvm::sort(Key);
1511   return Uniquifier.count(Key);
1512 }
1513 
1514 /// The function returns a probability of selecting formula without Reg.
1515 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1516   unsigned FNum = 0;
1517   for (const Formula &F : Formulae)
1518     if (F.referencesReg(Reg))
1519       FNum++;
1520   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1521 }
1522 
1523 /// If the given formula has not yet been inserted, add it to the list, and
1524 /// return true. Return false otherwise.  The formula must be in canonical form.
1525 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1526   assert(F.isCanonical(L) && "Invalid canonical representation");
1527 
1528   if (!Formulae.empty() && RigidFormula)
1529     return false;
1530 
1531   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1532   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1533   // Unstable sort by host order ok, because this is only used for uniquifying.
1534   llvm::sort(Key);
1535 
1536   if (!Uniquifier.insert(Key).second)
1537     return false;
1538 
1539   // Using a register to hold the value of 0 is not profitable.
1540   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1541          "Zero allocated in a scaled register!");
1542 #ifndef NDEBUG
1543   for (const SCEV *BaseReg : F.BaseRegs)
1544     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1545 #endif
1546 
1547   // Add the formula to the list.
1548   Formulae.push_back(F);
1549 
1550   // Record registers now being used by this use.
1551   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1552   if (F.ScaledReg)
1553     Regs.insert(F.ScaledReg);
1554 
1555   return true;
1556 }
1557 
1558 /// Remove the given formula from this use's list.
1559 void LSRUse::DeleteFormula(Formula &F) {
1560   if (&F != &Formulae.back())
1561     std::swap(F, Formulae.back());
1562   Formulae.pop_back();
1563 }
1564 
1565 /// Recompute the Regs field, and update RegUses.
1566 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1567   // Now that we've filtered out some formulae, recompute the Regs set.
1568   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1569   Regs.clear();
1570   for (const Formula &F : Formulae) {
1571     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1572     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1573   }
1574 
1575   // Update the RegTracker.
1576   for (const SCEV *S : OldRegs)
1577     if (!Regs.count(S))
1578       RegUses.dropRegister(S, LUIdx);
1579 }
1580 
1581 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1582 void LSRUse::print(raw_ostream &OS) const {
1583   OS << "LSR Use: Kind=";
1584   switch (Kind) {
1585   case Basic:    OS << "Basic"; break;
1586   case Special:  OS << "Special"; break;
1587   case ICmpZero: OS << "ICmpZero"; break;
1588   case Address:
1589     OS << "Address of ";
1590     if (AccessTy.MemTy->isPointerTy())
1591       OS << "pointer"; // the full pointer type could be really verbose
1592     else {
1593       OS << *AccessTy.MemTy;
1594     }
1595 
1596     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1597   }
1598 
1599   OS << ", Offsets={";
1600   bool NeedComma = false;
1601   for (const LSRFixup &Fixup : Fixups) {
1602     if (NeedComma) OS << ',';
1603     OS << Fixup.Offset;
1604     NeedComma = true;
1605   }
1606   OS << '}';
1607 
1608   if (AllFixupsOutsideLoop)
1609     OS << ", all-fixups-outside-loop";
1610 
1611   if (WidestFixupType)
1612     OS << ", widest fixup type: " << *WidestFixupType;
1613 }
1614 
1615 LLVM_DUMP_METHOD void LSRUse::dump() const {
1616   print(errs()); errs() << '\n';
1617 }
1618 #endif
1619 
1620 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1621                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1622                                  GlobalValue *BaseGV, int64_t BaseOffset,
1623                                  bool HasBaseReg, int64_t Scale,
1624                                  Instruction *Fixup/*= nullptr*/) {
1625   switch (Kind) {
1626   case LSRUse::Address:
1627     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1628                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1629 
1630   case LSRUse::ICmpZero:
1631     // There's not even a target hook for querying whether it would be legal to
1632     // fold a GV into an ICmp.
1633     if (BaseGV)
1634       return false;
1635 
1636     // ICmp only has two operands; don't allow more than two non-trivial parts.
1637     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1638       return false;
1639 
1640     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1641     // putting the scaled register in the other operand of the icmp.
1642     if (Scale != 0 && Scale != -1)
1643       return false;
1644 
1645     // If we have low-level target information, ask the target if it can fold an
1646     // integer immediate on an icmp.
1647     if (BaseOffset != 0) {
1648       // We have one of:
1649       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1650       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1651       // Offs is the ICmp immediate.
1652       if (Scale == 0)
1653         // The cast does the right thing with
1654         // std::numeric_limits<int64_t>::min().
1655         BaseOffset = -(uint64_t)BaseOffset;
1656       return TTI.isLegalICmpImmediate(BaseOffset);
1657     }
1658 
1659     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1660     return true;
1661 
1662   case LSRUse::Basic:
1663     // Only handle single-register values.
1664     return !BaseGV && Scale == 0 && BaseOffset == 0;
1665 
1666   case LSRUse::Special:
1667     // Special case Basic to handle -1 scales.
1668     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1669   }
1670 
1671   llvm_unreachable("Invalid LSRUse Kind!");
1672 }
1673 
1674 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1675                                  int64_t MinOffset, int64_t MaxOffset,
1676                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1677                                  GlobalValue *BaseGV, int64_t BaseOffset,
1678                                  bool HasBaseReg, int64_t Scale) {
1679   // Check for overflow.
1680   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1681       (MinOffset > 0))
1682     return false;
1683   MinOffset = (uint64_t)BaseOffset + MinOffset;
1684   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1685       (MaxOffset > 0))
1686     return false;
1687   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1688 
1689   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1690                               HasBaseReg, Scale) &&
1691          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1692                               HasBaseReg, Scale);
1693 }
1694 
1695 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1696                                  int64_t MinOffset, int64_t MaxOffset,
1697                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1698                                  const Formula &F, const Loop &L) {
1699   // For the purpose of isAMCompletelyFolded either having a canonical formula
1700   // or a scale not equal to zero is correct.
1701   // Problems may arise from non canonical formulae having a scale == 0.
1702   // Strictly speaking it would best to just rely on canonical formulae.
1703   // However, when we generate the scaled formulae, we first check that the
1704   // scaling factor is profitable before computing the actual ScaledReg for
1705   // compile time sake.
1706   assert((F.isCanonical(L) || F.Scale != 0));
1707   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1708                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1709 }
1710 
1711 /// Test whether we know how to expand the current formula.
1712 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1713                        int64_t MaxOffset, LSRUse::KindType Kind,
1714                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1715                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1716   // We know how to expand completely foldable formulae.
1717   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1718                               BaseOffset, HasBaseReg, Scale) ||
1719          // Or formulae that use a base register produced by a sum of base
1720          // registers.
1721          (Scale == 1 &&
1722           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1723                                BaseGV, BaseOffset, true, 0));
1724 }
1725 
1726 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1727                        int64_t MaxOffset, LSRUse::KindType Kind,
1728                        MemAccessTy AccessTy, const Formula &F) {
1729   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1730                     F.BaseOffset, F.HasBaseReg, F.Scale);
1731 }
1732 
1733 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1734                                  const LSRUse &LU, const Formula &F) {
1735   // Target may want to look at the user instructions.
1736   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1737     for (const LSRFixup &Fixup : LU.Fixups)
1738       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1739                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1740                                 F.Scale, Fixup.UserInst))
1741         return false;
1742     return true;
1743   }
1744 
1745   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1746                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1747                               F.Scale);
1748 }
1749 
1750 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
1751                                      const LSRUse &LU, const Formula &F,
1752                                      const Loop &L) {
1753   if (!F.Scale)
1754     return 0;
1755 
1756   // If the use is not completely folded in that instruction, we will have to
1757   // pay an extra cost only for scale != 1.
1758   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1759                             LU.AccessTy, F, L))
1760     return F.Scale != 1;
1761 
1762   switch (LU.Kind) {
1763   case LSRUse::Address: {
1764     // Check the scaling factor cost with both the min and max offsets.
1765     int ScaleCostMinOffset = TTI.getScalingFactorCost(
1766         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1767         F.Scale, LU.AccessTy.AddrSpace);
1768     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
1769         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1770         F.Scale, LU.AccessTy.AddrSpace);
1771 
1772     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
1773            "Legal addressing mode has an illegal cost!");
1774     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1775   }
1776   case LSRUse::ICmpZero:
1777   case LSRUse::Basic:
1778   case LSRUse::Special:
1779     // The use is completely folded, i.e., everything is folded into the
1780     // instruction.
1781     return 0;
1782   }
1783 
1784   llvm_unreachable("Invalid LSRUse Kind!");
1785 }
1786 
1787 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1788                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1789                              GlobalValue *BaseGV, int64_t BaseOffset,
1790                              bool HasBaseReg) {
1791   // Fast-path: zero is always foldable.
1792   if (BaseOffset == 0 && !BaseGV) return true;
1793 
1794   // Conservatively, create an address with an immediate and a
1795   // base and a scale.
1796   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1797 
1798   // Canonicalize a scale of 1 to a base register if the formula doesn't
1799   // already have a base register.
1800   if (!HasBaseReg && Scale == 1) {
1801     Scale = 0;
1802     HasBaseReg = true;
1803   }
1804 
1805   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1806                               HasBaseReg, Scale);
1807 }
1808 
1809 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1810                              ScalarEvolution &SE, int64_t MinOffset,
1811                              int64_t MaxOffset, LSRUse::KindType Kind,
1812                              MemAccessTy AccessTy, const SCEV *S,
1813                              bool HasBaseReg) {
1814   // Fast-path: zero is always foldable.
1815   if (S->isZero()) return true;
1816 
1817   // Conservatively, create an address with an immediate and a
1818   // base and a scale.
1819   int64_t BaseOffset = ExtractImmediate(S, SE);
1820   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1821 
1822   // If there's anything else involved, it's not foldable.
1823   if (!S->isZero()) return false;
1824 
1825   // Fast-path: zero is always foldable.
1826   if (BaseOffset == 0 && !BaseGV) return true;
1827 
1828   // Conservatively, create an address with an immediate and a
1829   // base and a scale.
1830   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1831 
1832   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1833                               BaseOffset, HasBaseReg, Scale);
1834 }
1835 
1836 namespace {
1837 
1838 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1839 /// an expression that computes the IV it uses from the IV used by the previous
1840 /// link in the Chain.
1841 ///
1842 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1843 /// original IVOperand. The head of the chain's IVOperand is only valid during
1844 /// chain collection, before LSR replaces IV users. During chain generation,
1845 /// IncExpr can be used to find the new IVOperand that computes the same
1846 /// expression.
1847 struct IVInc {
1848   Instruction *UserInst;
1849   Value* IVOperand;
1850   const SCEV *IncExpr;
1851 
1852   IVInc(Instruction *U, Value *O, const SCEV *E)
1853       : UserInst(U), IVOperand(O), IncExpr(E) {}
1854 };
1855 
1856 // The list of IV increments in program order.  We typically add the head of a
1857 // chain without finding subsequent links.
1858 struct IVChain {
1859   SmallVector<IVInc, 1> Incs;
1860   const SCEV *ExprBase = nullptr;
1861 
1862   IVChain() = default;
1863   IVChain(const IVInc &Head, const SCEV *Base)
1864       : Incs(1, Head), ExprBase(Base) {}
1865 
1866   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1867 
1868   // Return the first increment in the chain.
1869   const_iterator begin() const {
1870     assert(!Incs.empty());
1871     return std::next(Incs.begin());
1872   }
1873   const_iterator end() const {
1874     return Incs.end();
1875   }
1876 
1877   // Returns true if this chain contains any increments.
1878   bool hasIncs() const { return Incs.size() >= 2; }
1879 
1880   // Add an IVInc to the end of this chain.
1881   void add(const IVInc &X) { Incs.push_back(X); }
1882 
1883   // Returns the last UserInst in the chain.
1884   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1885 
1886   // Returns true if IncExpr can be profitably added to this chain.
1887   bool isProfitableIncrement(const SCEV *OperExpr,
1888                              const SCEV *IncExpr,
1889                              ScalarEvolution&);
1890 };
1891 
1892 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1893 /// between FarUsers that definitely cross IV increments and NearUsers that may
1894 /// be used between IV increments.
1895 struct ChainUsers {
1896   SmallPtrSet<Instruction*, 4> FarUsers;
1897   SmallPtrSet<Instruction*, 4> NearUsers;
1898 };
1899 
1900 /// This class holds state for the main loop strength reduction logic.
1901 class LSRInstance {
1902   IVUsers &IU;
1903   ScalarEvolution &SE;
1904   DominatorTree &DT;
1905   LoopInfo &LI;
1906   AssumptionCache &AC;
1907   TargetLibraryInfo &TLI;
1908   const TargetTransformInfo &TTI;
1909   Loop *const L;
1910   MemorySSAUpdater *MSSAU;
1911   bool FavorBackedgeIndex = false;
1912   bool Changed = false;
1913 
1914   /// This is the insert position that the current loop's induction variable
1915   /// increment should be placed. In simple loops, this is the latch block's
1916   /// terminator. But in more complicated cases, this is a position which will
1917   /// dominate all the in-loop post-increment users.
1918   Instruction *IVIncInsertPos = nullptr;
1919 
1920   /// Interesting factors between use strides.
1921   ///
1922   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1923   /// default, a SmallDenseSet, because we need to use the full range of
1924   /// int64_ts, and there's currently no good way of doing that with
1925   /// SmallDenseSet.
1926   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1927 
1928   /// Interesting use types, to facilitate truncation reuse.
1929   SmallSetVector<Type *, 4> Types;
1930 
1931   /// The list of interesting uses.
1932   mutable SmallVector<LSRUse, 16> Uses;
1933 
1934   /// Track which uses use which register candidates.
1935   RegUseTracker RegUses;
1936 
1937   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1938   // have more than a few IV increment chains in a loop. Missing a Chain falls
1939   // back to normal LSR behavior for those uses.
1940   static const unsigned MaxChains = 8;
1941 
1942   /// IV users can form a chain of IV increments.
1943   SmallVector<IVChain, MaxChains> IVChainVec;
1944 
1945   /// IV users that belong to profitable IVChains.
1946   SmallPtrSet<Use*, MaxChains> IVIncSet;
1947 
1948   void OptimizeShadowIV();
1949   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1950   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1951   void OptimizeLoopTermCond();
1952 
1953   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1954                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1955   void FinalizeChain(IVChain &Chain);
1956   void CollectChains();
1957   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1958                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1959 
1960   void CollectInterestingTypesAndFactors();
1961   void CollectFixupsAndInitialFormulae();
1962 
1963   // Support for sharing of LSRUses between LSRFixups.
1964   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1965   UseMapTy UseMap;
1966 
1967   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1968                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1969 
1970   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1971                                     MemAccessTy AccessTy);
1972 
1973   void DeleteUse(LSRUse &LU, size_t LUIdx);
1974 
1975   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
1976 
1977   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1978   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
1979   void CountRegisters(const Formula &F, size_t LUIdx);
1980   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
1981 
1982   void CollectLoopInvariantFixupsAndFormulae();
1983 
1984   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
1985                               unsigned Depth = 0);
1986 
1987   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
1988                                   const Formula &Base, unsigned Depth,
1989                                   size_t Idx, bool IsScaledReg = false);
1990   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
1991   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1992                                    const Formula &Base, size_t Idx,
1993                                    bool IsScaledReg = false);
1994   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
1995   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
1996                                    const Formula &Base,
1997                                    const SmallVectorImpl<int64_t> &Worklist,
1998                                    size_t Idx, bool IsScaledReg = false);
1999   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2000   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2001   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2002   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2003   void GenerateCrossUseConstantOffsets();
2004   void GenerateAllReuseFormulae();
2005 
2006   void FilterOutUndesirableDedicatedRegisters();
2007 
2008   size_t EstimateSearchSpaceComplexity() const;
2009   void NarrowSearchSpaceByDetectingSupersets();
2010   void NarrowSearchSpaceByCollapsingUnrolledCode();
2011   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2012   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2013   void NarrowSearchSpaceByFilterPostInc();
2014   void NarrowSearchSpaceByDeletingCostlyFormulas();
2015   void NarrowSearchSpaceByPickingWinnerRegs();
2016   void NarrowSearchSpaceUsingHeuristics();
2017 
2018   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2019                     Cost &SolutionCost,
2020                     SmallVectorImpl<const Formula *> &Workspace,
2021                     const Cost &CurCost,
2022                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2023                     DenseSet<const SCEV *> &VisitedRegs) const;
2024   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2025 
2026   BasicBlock::iterator
2027     HoistInsertPosition(BasicBlock::iterator IP,
2028                         const SmallVectorImpl<Instruction *> &Inputs) const;
2029   BasicBlock::iterator
2030     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2031                                   const LSRFixup &LF,
2032                                   const LSRUse &LU,
2033                                   SCEVExpander &Rewriter) const;
2034 
2035   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2036                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2037                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2038   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2039                      const Formula &F, SCEVExpander &Rewriter,
2040                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2041   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2042                SCEVExpander &Rewriter,
2043                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2044   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2045 
2046 public:
2047   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2048               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2049               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2050 
2051   bool getChanged() const { return Changed; }
2052 
2053   void print_factors_and_types(raw_ostream &OS) const;
2054   void print_fixups(raw_ostream &OS) const;
2055   void print_uses(raw_ostream &OS) const;
2056   void print(raw_ostream &OS) const;
2057   void dump() const;
2058 };
2059 
2060 } // end anonymous namespace
2061 
2062 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2063 /// the cast operation.
2064 void LSRInstance::OptimizeShadowIV() {
2065   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2066   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2067     return;
2068 
2069   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2070        UI != E; /* empty */) {
2071     IVUsers::const_iterator CandidateUI = UI;
2072     ++UI;
2073     Instruction *ShadowUse = CandidateUI->getUser();
2074     Type *DestTy = nullptr;
2075     bool IsSigned = false;
2076 
2077     /* If shadow use is a int->float cast then insert a second IV
2078        to eliminate this cast.
2079 
2080          for (unsigned i = 0; i < n; ++i)
2081            foo((double)i);
2082 
2083        is transformed into
2084 
2085          double d = 0.0;
2086          for (unsigned i = 0; i < n; ++i, ++d)
2087            foo(d);
2088     */
2089     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2090       IsSigned = false;
2091       DestTy = UCast->getDestTy();
2092     }
2093     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2094       IsSigned = true;
2095       DestTy = SCast->getDestTy();
2096     }
2097     if (!DestTy) continue;
2098 
2099     // If target does not support DestTy natively then do not apply
2100     // this transformation.
2101     if (!TTI.isTypeLegal(DestTy)) continue;
2102 
2103     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2104     if (!PH) continue;
2105     if (PH->getNumIncomingValues() != 2) continue;
2106 
2107     // If the calculation in integers overflows, the result in FP type will
2108     // differ. So we only can do this transformation if we are guaranteed to not
2109     // deal with overflowing values
2110     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2111     if (!AR) continue;
2112     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2113     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2114 
2115     Type *SrcTy = PH->getType();
2116     int Mantissa = DestTy->getFPMantissaWidth();
2117     if (Mantissa == -1) continue;
2118     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2119       continue;
2120 
2121     unsigned Entry, Latch;
2122     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2123       Entry = 0;
2124       Latch = 1;
2125     } else {
2126       Entry = 1;
2127       Latch = 0;
2128     }
2129 
2130     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2131     if (!Init) continue;
2132     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2133                                         (double)Init->getSExtValue() :
2134                                         (double)Init->getZExtValue());
2135 
2136     BinaryOperator *Incr =
2137       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2138     if (!Incr) continue;
2139     if (Incr->getOpcode() != Instruction::Add
2140         && Incr->getOpcode() != Instruction::Sub)
2141       continue;
2142 
2143     /* Initialize new IV, double d = 0.0 in above example. */
2144     ConstantInt *C = nullptr;
2145     if (Incr->getOperand(0) == PH)
2146       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2147     else if (Incr->getOperand(1) == PH)
2148       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2149     else
2150       continue;
2151 
2152     if (!C) continue;
2153 
2154     // Ignore negative constants, as the code below doesn't handle them
2155     // correctly. TODO: Remove this restriction.
2156     if (!C->getValue().isStrictlyPositive()) continue;
2157 
2158     /* Add new PHINode. */
2159     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2160 
2161     /* create new increment. '++d' in above example. */
2162     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2163     BinaryOperator *NewIncr =
2164       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2165                                Instruction::FAdd : Instruction::FSub,
2166                              NewPH, CFP, "IV.S.next.", Incr);
2167 
2168     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2169     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2170 
2171     /* Remove cast operation */
2172     ShadowUse->replaceAllUsesWith(NewPH);
2173     ShadowUse->eraseFromParent();
2174     Changed = true;
2175     break;
2176   }
2177 }
2178 
2179 /// If Cond has an operand that is an expression of an IV, set the IV user and
2180 /// stride information and return true, otherwise return false.
2181 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2182   for (IVStrideUse &U : IU)
2183     if (U.getUser() == Cond) {
2184       // NOTE: we could handle setcc instructions with multiple uses here, but
2185       // InstCombine does it as well for simple uses, it's not clear that it
2186       // occurs enough in real life to handle.
2187       CondUse = &U;
2188       return true;
2189     }
2190   return false;
2191 }
2192 
2193 /// Rewrite the loop's terminating condition if it uses a max computation.
2194 ///
2195 /// This is a narrow solution to a specific, but acute, problem. For loops
2196 /// like this:
2197 ///
2198 ///   i = 0;
2199 ///   do {
2200 ///     p[i] = 0.0;
2201 ///   } while (++i < n);
2202 ///
2203 /// the trip count isn't just 'n', because 'n' might not be positive. And
2204 /// unfortunately this can come up even for loops where the user didn't use
2205 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2206 /// will commonly be lowered like this:
2207 ///
2208 ///   if (n > 0) {
2209 ///     i = 0;
2210 ///     do {
2211 ///       p[i] = 0.0;
2212 ///     } while (++i < n);
2213 ///   }
2214 ///
2215 /// and then it's possible for subsequent optimization to obscure the if
2216 /// test in such a way that indvars can't find it.
2217 ///
2218 /// When indvars can't find the if test in loops like this, it creates a
2219 /// max expression, which allows it to give the loop a canonical
2220 /// induction variable:
2221 ///
2222 ///   i = 0;
2223 ///   max = n < 1 ? 1 : n;
2224 ///   do {
2225 ///     p[i] = 0.0;
2226 ///   } while (++i != max);
2227 ///
2228 /// Canonical induction variables are necessary because the loop passes
2229 /// are designed around them. The most obvious example of this is the
2230 /// LoopInfo analysis, which doesn't remember trip count values. It
2231 /// expects to be able to rediscover the trip count each time it is
2232 /// needed, and it does this using a simple analysis that only succeeds if
2233 /// the loop has a canonical induction variable.
2234 ///
2235 /// However, when it comes time to generate code, the maximum operation
2236 /// can be quite costly, especially if it's inside of an outer loop.
2237 ///
2238 /// This function solves this problem by detecting this type of loop and
2239 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2240 /// the instructions for the maximum computation.
2241 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2242   // Check that the loop matches the pattern we're looking for.
2243   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2244       Cond->getPredicate() != CmpInst::ICMP_NE)
2245     return Cond;
2246 
2247   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2248   if (!Sel || !Sel->hasOneUse()) return Cond;
2249 
2250   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2251   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2252     return Cond;
2253   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2254 
2255   // Add one to the backedge-taken count to get the trip count.
2256   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2257   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2258 
2259   // Check for a max calculation that matches the pattern. There's no check
2260   // for ICMP_ULE here because the comparison would be with zero, which
2261   // isn't interesting.
2262   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2263   const SCEVNAryExpr *Max = nullptr;
2264   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2265     Pred = ICmpInst::ICMP_SLE;
2266     Max = S;
2267   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2268     Pred = ICmpInst::ICMP_SLT;
2269     Max = S;
2270   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2271     Pred = ICmpInst::ICMP_ULT;
2272     Max = U;
2273   } else {
2274     // No match; bail.
2275     return Cond;
2276   }
2277 
2278   // To handle a max with more than two operands, this optimization would
2279   // require additional checking and setup.
2280   if (Max->getNumOperands() != 2)
2281     return Cond;
2282 
2283   const SCEV *MaxLHS = Max->getOperand(0);
2284   const SCEV *MaxRHS = Max->getOperand(1);
2285 
2286   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2287   // for a comparison with 1. For <= and >=, a comparison with zero.
2288   if (!MaxLHS ||
2289       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2290     return Cond;
2291 
2292   // Check the relevant induction variable for conformance to
2293   // the pattern.
2294   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2295   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2296   if (!AR || !AR->isAffine() ||
2297       AR->getStart() != One ||
2298       AR->getStepRecurrence(SE) != One)
2299     return Cond;
2300 
2301   assert(AR->getLoop() == L &&
2302          "Loop condition operand is an addrec in a different loop!");
2303 
2304   // Check the right operand of the select, and remember it, as it will
2305   // be used in the new comparison instruction.
2306   Value *NewRHS = nullptr;
2307   if (ICmpInst::isTrueWhenEqual(Pred)) {
2308     // Look for n+1, and grab n.
2309     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2310       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2311          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2312            NewRHS = BO->getOperand(0);
2313     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2314       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2315         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2316           NewRHS = BO->getOperand(0);
2317     if (!NewRHS)
2318       return Cond;
2319   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2320     NewRHS = Sel->getOperand(1);
2321   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2322     NewRHS = Sel->getOperand(2);
2323   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2324     NewRHS = SU->getValue();
2325   else
2326     // Max doesn't match expected pattern.
2327     return Cond;
2328 
2329   // Determine the new comparison opcode. It may be signed or unsigned,
2330   // and the original comparison may be either equality or inequality.
2331   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2332     Pred = CmpInst::getInversePredicate(Pred);
2333 
2334   // Ok, everything looks ok to change the condition into an SLT or SGE and
2335   // delete the max calculation.
2336   ICmpInst *NewCond =
2337     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2338 
2339   // Delete the max calculation instructions.
2340   Cond->replaceAllUsesWith(NewCond);
2341   CondUse->setUser(NewCond);
2342   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2343   Cond->eraseFromParent();
2344   Sel->eraseFromParent();
2345   if (Cmp->use_empty())
2346     Cmp->eraseFromParent();
2347   return NewCond;
2348 }
2349 
2350 /// Change loop terminating condition to use the postinc iv when possible.
2351 void
2352 LSRInstance::OptimizeLoopTermCond() {
2353   SmallPtrSet<Instruction *, 4> PostIncs;
2354 
2355   // We need a different set of heuristics for rotated and non-rotated loops.
2356   // If a loop is rotated then the latch is also the backedge, so inserting
2357   // post-inc expressions just before the latch is ideal. To reduce live ranges
2358   // it also makes sense to rewrite terminating conditions to use post-inc
2359   // expressions.
2360   //
2361   // If the loop is not rotated then the latch is not a backedge; the latch
2362   // check is done in the loop head. Adding post-inc expressions before the
2363   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2364   // in the loop body. In this case we do *not* want to use post-inc expressions
2365   // in the latch check, and we want to insert post-inc expressions before
2366   // the backedge.
2367   BasicBlock *LatchBlock = L->getLoopLatch();
2368   SmallVector<BasicBlock*, 8> ExitingBlocks;
2369   L->getExitingBlocks(ExitingBlocks);
2370   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2371         return LatchBlock != BB;
2372       })) {
2373     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2374     IVIncInsertPos = LatchBlock->getTerminator();
2375     return;
2376   }
2377 
2378   // Otherwise treat this as a rotated loop.
2379   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2380     // Get the terminating condition for the loop if possible.  If we
2381     // can, we want to change it to use a post-incremented version of its
2382     // induction variable, to allow coalescing the live ranges for the IV into
2383     // one register value.
2384 
2385     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2386     if (!TermBr)
2387       continue;
2388     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2389     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2390       continue;
2391 
2392     // Search IVUsesByStride to find Cond's IVUse if there is one.
2393     IVStrideUse *CondUse = nullptr;
2394     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2395     if (!FindIVUserForCond(Cond, CondUse))
2396       continue;
2397 
2398     // If the trip count is computed in terms of a max (due to ScalarEvolution
2399     // being unable to find a sufficient guard, for example), change the loop
2400     // comparison to use SLT or ULT instead of NE.
2401     // One consequence of doing this now is that it disrupts the count-down
2402     // optimization. That's not always a bad thing though, because in such
2403     // cases it may still be worthwhile to avoid a max.
2404     Cond = OptimizeMax(Cond, CondUse);
2405 
2406     // If this exiting block dominates the latch block, it may also use
2407     // the post-inc value if it won't be shared with other uses.
2408     // Check for dominance.
2409     if (!DT.dominates(ExitingBlock, LatchBlock))
2410       continue;
2411 
2412     // Conservatively avoid trying to use the post-inc value in non-latch
2413     // exits if there may be pre-inc users in intervening blocks.
2414     if (LatchBlock != ExitingBlock)
2415       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2416         // Test if the use is reachable from the exiting block. This dominator
2417         // query is a conservative approximation of reachability.
2418         if (&*UI != CondUse &&
2419             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2420           // Conservatively assume there may be reuse if the quotient of their
2421           // strides could be a legal scale.
2422           const SCEV *A = IU.getStride(*CondUse, L);
2423           const SCEV *B = IU.getStride(*UI, L);
2424           if (!A || !B) continue;
2425           if (SE.getTypeSizeInBits(A->getType()) !=
2426               SE.getTypeSizeInBits(B->getType())) {
2427             if (SE.getTypeSizeInBits(A->getType()) >
2428                 SE.getTypeSizeInBits(B->getType()))
2429               B = SE.getSignExtendExpr(B, A->getType());
2430             else
2431               A = SE.getSignExtendExpr(A, B->getType());
2432           }
2433           if (const SCEVConstant *D =
2434                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2435             const ConstantInt *C = D->getValue();
2436             // Stride of one or negative one can have reuse with non-addresses.
2437             if (C->isOne() || C->isMinusOne())
2438               goto decline_post_inc;
2439             // Avoid weird situations.
2440             if (C->getValue().getMinSignedBits() >= 64 ||
2441                 C->getValue().isMinSignedValue())
2442               goto decline_post_inc;
2443             // Check for possible scaled-address reuse.
2444             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2445               MemAccessTy AccessTy = getAccessType(
2446                   TTI, UI->getUser(), UI->getOperandValToReplace());
2447               int64_t Scale = C->getSExtValue();
2448               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2449                                             /*BaseOffset=*/0,
2450                                             /*HasBaseReg=*/false, Scale,
2451                                             AccessTy.AddrSpace))
2452                 goto decline_post_inc;
2453               Scale = -Scale;
2454               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2455                                             /*BaseOffset=*/0,
2456                                             /*HasBaseReg=*/false, Scale,
2457                                             AccessTy.AddrSpace))
2458                 goto decline_post_inc;
2459             }
2460           }
2461         }
2462 
2463     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2464                       << *Cond << '\n');
2465 
2466     // It's possible for the setcc instruction to be anywhere in the loop, and
2467     // possible for it to have multiple users.  If it is not immediately before
2468     // the exiting block branch, move it.
2469     if (&*++BasicBlock::iterator(Cond) != TermBr) {
2470       if (Cond->hasOneUse()) {
2471         Cond->moveBefore(TermBr);
2472       } else {
2473         // Clone the terminating condition and insert into the loopend.
2474         ICmpInst *OldCond = Cond;
2475         Cond = cast<ICmpInst>(Cond->clone());
2476         Cond->setName(L->getHeader()->getName() + ".termcond");
2477         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2478 
2479         // Clone the IVUse, as the old use still exists!
2480         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2481         TermBr->replaceUsesOfWith(OldCond, Cond);
2482       }
2483     }
2484 
2485     // If we get to here, we know that we can transform the setcc instruction to
2486     // use the post-incremented version of the IV, allowing us to coalesce the
2487     // live ranges for the IV correctly.
2488     CondUse->transformToPostInc(L);
2489     Changed = true;
2490 
2491     PostIncs.insert(Cond);
2492   decline_post_inc:;
2493   }
2494 
2495   // Determine an insertion point for the loop induction variable increment. It
2496   // must dominate all the post-inc comparisons we just set up, and it must
2497   // dominate the loop latch edge.
2498   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2499   for (Instruction *Inst : PostIncs) {
2500     BasicBlock *BB =
2501       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2502                                     Inst->getParent());
2503     if (BB == Inst->getParent())
2504       IVIncInsertPos = Inst;
2505     else if (BB != IVIncInsertPos->getParent())
2506       IVIncInsertPos = BB->getTerminator();
2507   }
2508 }
2509 
2510 /// Determine if the given use can accommodate a fixup at the given offset and
2511 /// other details. If so, update the use and return true.
2512 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2513                                      bool HasBaseReg, LSRUse::KindType Kind,
2514                                      MemAccessTy AccessTy) {
2515   int64_t NewMinOffset = LU.MinOffset;
2516   int64_t NewMaxOffset = LU.MaxOffset;
2517   MemAccessTy NewAccessTy = AccessTy;
2518 
2519   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2520   // something conservative, however this can pessimize in the case that one of
2521   // the uses will have all its uses outside the loop, for example.
2522   if (LU.Kind != Kind)
2523     return false;
2524 
2525   // Check for a mismatched access type, and fall back conservatively as needed.
2526   // TODO: Be less conservative when the type is similar and can use the same
2527   // addressing modes.
2528   if (Kind == LSRUse::Address) {
2529     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2530       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2531                                             AccessTy.AddrSpace);
2532     }
2533   }
2534 
2535   // Conservatively assume HasBaseReg is true for now.
2536   if (NewOffset < LU.MinOffset) {
2537     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2538                           LU.MaxOffset - NewOffset, HasBaseReg))
2539       return false;
2540     NewMinOffset = NewOffset;
2541   } else if (NewOffset > LU.MaxOffset) {
2542     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2543                           NewOffset - LU.MinOffset, HasBaseReg))
2544       return false;
2545     NewMaxOffset = NewOffset;
2546   }
2547 
2548   // Update the use.
2549   LU.MinOffset = NewMinOffset;
2550   LU.MaxOffset = NewMaxOffset;
2551   LU.AccessTy = NewAccessTy;
2552   return true;
2553 }
2554 
2555 /// Return an LSRUse index and an offset value for a fixup which needs the given
2556 /// expression, with the given kind and optional access type.  Either reuse an
2557 /// existing use or create a new one, as needed.
2558 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2559                                                LSRUse::KindType Kind,
2560                                                MemAccessTy AccessTy) {
2561   const SCEV *Copy = Expr;
2562   int64_t Offset = ExtractImmediate(Expr, SE);
2563 
2564   // Basic uses can't accept any offset, for example.
2565   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2566                         Offset, /*HasBaseReg=*/ true)) {
2567     Expr = Copy;
2568     Offset = 0;
2569   }
2570 
2571   std::pair<UseMapTy::iterator, bool> P =
2572     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2573   if (!P.second) {
2574     // A use already existed with this base.
2575     size_t LUIdx = P.first->second;
2576     LSRUse &LU = Uses[LUIdx];
2577     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2578       // Reuse this use.
2579       return std::make_pair(LUIdx, Offset);
2580   }
2581 
2582   // Create a new use.
2583   size_t LUIdx = Uses.size();
2584   P.first->second = LUIdx;
2585   Uses.push_back(LSRUse(Kind, AccessTy));
2586   LSRUse &LU = Uses[LUIdx];
2587 
2588   LU.MinOffset = Offset;
2589   LU.MaxOffset = Offset;
2590   return std::make_pair(LUIdx, Offset);
2591 }
2592 
2593 /// Delete the given use from the Uses list.
2594 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2595   if (&LU != &Uses.back())
2596     std::swap(LU, Uses.back());
2597   Uses.pop_back();
2598 
2599   // Update RegUses.
2600   RegUses.swapAndDropUse(LUIdx, Uses.size());
2601 }
2602 
2603 /// Look for a use distinct from OrigLU which is has a formula that has the same
2604 /// registers as the given formula.
2605 LSRUse *
2606 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2607                                        const LSRUse &OrigLU) {
2608   // Search all uses for the formula. This could be more clever.
2609   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2610     LSRUse &LU = Uses[LUIdx];
2611     // Check whether this use is close enough to OrigLU, to see whether it's
2612     // worthwhile looking through its formulae.
2613     // Ignore ICmpZero uses because they may contain formulae generated by
2614     // GenerateICmpZeroScales, in which case adding fixup offsets may
2615     // be invalid.
2616     if (&LU != &OrigLU &&
2617         LU.Kind != LSRUse::ICmpZero &&
2618         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2619         LU.WidestFixupType == OrigLU.WidestFixupType &&
2620         LU.HasFormulaWithSameRegs(OrigF)) {
2621       // Scan through this use's formulae.
2622       for (const Formula &F : LU.Formulae) {
2623         // Check to see if this formula has the same registers and symbols
2624         // as OrigF.
2625         if (F.BaseRegs == OrigF.BaseRegs &&
2626             F.ScaledReg == OrigF.ScaledReg &&
2627             F.BaseGV == OrigF.BaseGV &&
2628             F.Scale == OrigF.Scale &&
2629             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2630           if (F.BaseOffset == 0)
2631             return &LU;
2632           // This is the formula where all the registers and symbols matched;
2633           // there aren't going to be any others. Since we declined it, we
2634           // can skip the rest of the formulae and proceed to the next LSRUse.
2635           break;
2636         }
2637       }
2638     }
2639   }
2640 
2641   // Nothing looked good.
2642   return nullptr;
2643 }
2644 
2645 void LSRInstance::CollectInterestingTypesAndFactors() {
2646   SmallSetVector<const SCEV *, 4> Strides;
2647 
2648   // Collect interesting types and strides.
2649   SmallVector<const SCEV *, 4> Worklist;
2650   for (const IVStrideUse &U : IU) {
2651     const SCEV *Expr = IU.getExpr(U);
2652 
2653     // Collect interesting types.
2654     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2655 
2656     // Add strides for mentioned loops.
2657     Worklist.push_back(Expr);
2658     do {
2659       const SCEV *S = Worklist.pop_back_val();
2660       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2661         if (AR->getLoop() == L)
2662           Strides.insert(AR->getStepRecurrence(SE));
2663         Worklist.push_back(AR->getStart());
2664       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2665         Worklist.append(Add->op_begin(), Add->op_end());
2666       }
2667     } while (!Worklist.empty());
2668   }
2669 
2670   // Compute interesting factors from the set of interesting strides.
2671   for (SmallSetVector<const SCEV *, 4>::const_iterator
2672        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2673     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2674          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2675       const SCEV *OldStride = *I;
2676       const SCEV *NewStride = *NewStrideIter;
2677 
2678       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2679           SE.getTypeSizeInBits(NewStride->getType())) {
2680         if (SE.getTypeSizeInBits(OldStride->getType()) >
2681             SE.getTypeSizeInBits(NewStride->getType()))
2682           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2683         else
2684           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2685       }
2686       if (const SCEVConstant *Factor =
2687             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2688                                                         SE, true))) {
2689         if (Factor->getAPInt().getMinSignedBits() <= 64)
2690           Factors.insert(Factor->getAPInt().getSExtValue());
2691       } else if (const SCEVConstant *Factor =
2692                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2693                                                                NewStride,
2694                                                                SE, true))) {
2695         if (Factor->getAPInt().getMinSignedBits() <= 64)
2696           Factors.insert(Factor->getAPInt().getSExtValue());
2697       }
2698     }
2699 
2700   // If all uses use the same type, don't bother looking for truncation-based
2701   // reuse.
2702   if (Types.size() == 1)
2703     Types.clear();
2704 
2705   LLVM_DEBUG(print_factors_and_types(dbgs()));
2706 }
2707 
2708 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2709 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2710 /// IVStrideUses, we could partially skip this.
2711 static User::op_iterator
2712 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2713               Loop *L, ScalarEvolution &SE) {
2714   for(; OI != OE; ++OI) {
2715     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2716       if (!SE.isSCEVable(Oper->getType()))
2717         continue;
2718 
2719       if (const SCEVAddRecExpr *AR =
2720           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2721         if (AR->getLoop() == L)
2722           break;
2723       }
2724     }
2725   }
2726   return OI;
2727 }
2728 
2729 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2730 /// a convenient helper.
2731 static Value *getWideOperand(Value *Oper) {
2732   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2733     return Trunc->getOperand(0);
2734   return Oper;
2735 }
2736 
2737 /// Return true if we allow an IV chain to include both types.
2738 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2739   Type *LType = LVal->getType();
2740   Type *RType = RVal->getType();
2741   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2742                               // Different address spaces means (possibly)
2743                               // different types of the pointer implementation,
2744                               // e.g. i16 vs i32 so disallow that.
2745                               (LType->getPointerAddressSpace() ==
2746                                RType->getPointerAddressSpace()));
2747 }
2748 
2749 /// Return an approximation of this SCEV expression's "base", or NULL for any
2750 /// constant. Returning the expression itself is conservative. Returning a
2751 /// deeper subexpression is more precise and valid as long as it isn't less
2752 /// complex than another subexpression. For expressions involving multiple
2753 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2754 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2755 /// IVInc==b-a.
2756 ///
2757 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2758 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2759 static const SCEV *getExprBase(const SCEV *S) {
2760   switch (S->getSCEVType()) {
2761   default: // uncluding scUnknown.
2762     return S;
2763   case scConstant:
2764     return nullptr;
2765   case scTruncate:
2766     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2767   case scZeroExtend:
2768     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2769   case scSignExtend:
2770     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2771   case scAddExpr: {
2772     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2773     // there's nothing more complex.
2774     // FIXME: not sure if we want to recognize negation.
2775     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2776     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2777            E(Add->op_begin()); I != E; ++I) {
2778       const SCEV *SubExpr = *I;
2779       if (SubExpr->getSCEVType() == scAddExpr)
2780         return getExprBase(SubExpr);
2781 
2782       if (SubExpr->getSCEVType() != scMulExpr)
2783         return SubExpr;
2784     }
2785     return S; // all operands are scaled, be conservative.
2786   }
2787   case scAddRecExpr:
2788     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2789   }
2790   llvm_unreachable("Unknown SCEV kind!");
2791 }
2792 
2793 /// Return true if the chain increment is profitable to expand into a loop
2794 /// invariant value, which may require its own register. A profitable chain
2795 /// increment will be an offset relative to the same base. We allow such offsets
2796 /// to potentially be used as chain increment as long as it's not obviously
2797 /// expensive to expand using real instructions.
2798 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2799                                     const SCEV *IncExpr,
2800                                     ScalarEvolution &SE) {
2801   // Aggressively form chains when -stress-ivchain.
2802   if (StressIVChain)
2803     return true;
2804 
2805   // Do not replace a constant offset from IV head with a nonconstant IV
2806   // increment.
2807   if (!isa<SCEVConstant>(IncExpr)) {
2808     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2809     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2810       return false;
2811   }
2812 
2813   SmallPtrSet<const SCEV*, 8> Processed;
2814   return !isHighCostExpansion(IncExpr, Processed, SE);
2815 }
2816 
2817 /// Return true if the number of registers needed for the chain is estimated to
2818 /// be less than the number required for the individual IV users. First prohibit
2819 /// any IV users that keep the IV live across increments (the Users set should
2820 /// be empty). Next count the number and type of increments in the chain.
2821 ///
2822 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2823 /// effectively use postinc addressing modes. Only consider it profitable it the
2824 /// increments can be computed in fewer registers when chained.
2825 ///
2826 /// TODO: Consider IVInc free if it's already used in another chains.
2827 static bool isProfitableChain(IVChain &Chain,
2828                               SmallPtrSetImpl<Instruction *> &Users,
2829                               ScalarEvolution &SE,
2830                               const TargetTransformInfo &TTI) {
2831   if (StressIVChain)
2832     return true;
2833 
2834   if (!Chain.hasIncs())
2835     return false;
2836 
2837   if (!Users.empty()) {
2838     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2839                for (Instruction *Inst
2840                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2841     return false;
2842   }
2843   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2844 
2845   // The chain itself may require a register, so intialize cost to 1.
2846   int cost = 1;
2847 
2848   // A complete chain likely eliminates the need for keeping the original IV in
2849   // a register. LSR does not currently know how to form a complete chain unless
2850   // the header phi already exists.
2851   if (isa<PHINode>(Chain.tailUserInst())
2852       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2853     --cost;
2854   }
2855   const SCEV *LastIncExpr = nullptr;
2856   unsigned NumConstIncrements = 0;
2857   unsigned NumVarIncrements = 0;
2858   unsigned NumReusedIncrements = 0;
2859 
2860   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2861     return true;
2862 
2863   for (const IVInc &Inc : Chain) {
2864     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2865       return true;
2866     if (Inc.IncExpr->isZero())
2867       continue;
2868 
2869     // Incrementing by zero or some constant is neutral. We assume constants can
2870     // be folded into an addressing mode or an add's immediate operand.
2871     if (isa<SCEVConstant>(Inc.IncExpr)) {
2872       ++NumConstIncrements;
2873       continue;
2874     }
2875 
2876     if (Inc.IncExpr == LastIncExpr)
2877       ++NumReusedIncrements;
2878     else
2879       ++NumVarIncrements;
2880 
2881     LastIncExpr = Inc.IncExpr;
2882   }
2883   // An IV chain with a single increment is handled by LSR's postinc
2884   // uses. However, a chain with multiple increments requires keeping the IV's
2885   // value live longer than it needs to be if chained.
2886   if (NumConstIncrements > 1)
2887     --cost;
2888 
2889   // Materializing increment expressions in the preheader that didn't exist in
2890   // the original code may cost a register. For example, sign-extended array
2891   // indices can produce ridiculous increments like this:
2892   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2893   cost += NumVarIncrements;
2894 
2895   // Reusing variable increments likely saves a register to hold the multiple of
2896   // the stride.
2897   cost -= NumReusedIncrements;
2898 
2899   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2900                     << "\n");
2901 
2902   return cost < 0;
2903 }
2904 
2905 /// Add this IV user to an existing chain or make it the head of a new chain.
2906 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2907                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2908   // When IVs are used as types of varying widths, they are generally converted
2909   // to a wider type with some uses remaining narrow under a (free) trunc.
2910   Value *const NextIV = getWideOperand(IVOper);
2911   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2912   const SCEV *const OperExprBase = getExprBase(OperExpr);
2913 
2914   // Visit all existing chains. Check if its IVOper can be computed as a
2915   // profitable loop invariant increment from the last link in the Chain.
2916   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2917   const SCEV *LastIncExpr = nullptr;
2918   for (; ChainIdx < NChains; ++ChainIdx) {
2919     IVChain &Chain = IVChainVec[ChainIdx];
2920 
2921     // Prune the solution space aggressively by checking that both IV operands
2922     // are expressions that operate on the same unscaled SCEVUnknown. This
2923     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2924     // first avoids creating extra SCEV expressions.
2925     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2926       continue;
2927 
2928     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2929     if (!isCompatibleIVType(PrevIV, NextIV))
2930       continue;
2931 
2932     // A phi node terminates a chain.
2933     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2934       continue;
2935 
2936     // The increment must be loop-invariant so it can be kept in a register.
2937     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2938     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2939     if (!SE.isLoopInvariant(IncExpr, L))
2940       continue;
2941 
2942     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2943       LastIncExpr = IncExpr;
2944       break;
2945     }
2946   }
2947   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2948   // bother for phi nodes, because they must be last in the chain.
2949   if (ChainIdx == NChains) {
2950     if (isa<PHINode>(UserInst))
2951       return;
2952     if (NChains >= MaxChains && !StressIVChain) {
2953       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2954       return;
2955     }
2956     LastIncExpr = OperExpr;
2957     // IVUsers may have skipped over sign/zero extensions. We don't currently
2958     // attempt to form chains involving extensions unless they can be hoisted
2959     // into this loop's AddRec.
2960     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2961       return;
2962     ++NChains;
2963     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2964                                  OperExprBase));
2965     ChainUsersVec.resize(NChains);
2966     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2967                       << ") IV=" << *LastIncExpr << "\n");
2968   } else {
2969     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2970                       << ") IV+" << *LastIncExpr << "\n");
2971     // Add this IV user to the end of the chain.
2972     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
2973   }
2974   IVChain &Chain = IVChainVec[ChainIdx];
2975 
2976   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
2977   // This chain's NearUsers become FarUsers.
2978   if (!LastIncExpr->isZero()) {
2979     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
2980                                             NearUsers.end());
2981     NearUsers.clear();
2982   }
2983 
2984   // All other uses of IVOperand become near uses of the chain.
2985   // We currently ignore intermediate values within SCEV expressions, assuming
2986   // they will eventually be used be the current chain, or can be computed
2987   // from one of the chain increments. To be more precise we could
2988   // transitively follow its user and only add leaf IV users to the set.
2989   for (User *U : IVOper->users()) {
2990     Instruction *OtherUse = dyn_cast<Instruction>(U);
2991     if (!OtherUse)
2992       continue;
2993     // Uses in the chain will no longer be uses if the chain is formed.
2994     // Include the head of the chain in this iteration (not Chain.begin()).
2995     IVChain::const_iterator IncIter = Chain.Incs.begin();
2996     IVChain::const_iterator IncEnd = Chain.Incs.end();
2997     for( ; IncIter != IncEnd; ++IncIter) {
2998       if (IncIter->UserInst == OtherUse)
2999         break;
3000     }
3001     if (IncIter != IncEnd)
3002       continue;
3003 
3004     if (SE.isSCEVable(OtherUse->getType())
3005         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3006         && IU.isIVUserOrOperand(OtherUse)) {
3007       continue;
3008     }
3009     NearUsers.insert(OtherUse);
3010   }
3011 
3012   // Since this user is part of the chain, it's no longer considered a use
3013   // of the chain.
3014   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3015 }
3016 
3017 /// Populate the vector of Chains.
3018 ///
3019 /// This decreases ILP at the architecture level. Targets with ample registers,
3020 /// multiple memory ports, and no register renaming probably don't want
3021 /// this. However, such targets should probably disable LSR altogether.
3022 ///
3023 /// The job of LSR is to make a reasonable choice of induction variables across
3024 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3025 /// ILP *within the loop* if the target wants it.
3026 ///
3027 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3028 /// will not reorder memory operations, it will recognize this as a chain, but
3029 /// will generate redundant IV increments. Ideally this would be corrected later
3030 /// by a smart scheduler:
3031 ///        = A[i]
3032 ///        = A[i+x]
3033 /// A[i]   =
3034 /// A[i+x] =
3035 ///
3036 /// TODO: Walk the entire domtree within this loop, not just the path to the
3037 /// loop latch. This will discover chains on side paths, but requires
3038 /// maintaining multiple copies of the Chains state.
3039 void LSRInstance::CollectChains() {
3040   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3041   SmallVector<ChainUsers, 8> ChainUsersVec;
3042 
3043   SmallVector<BasicBlock *,8> LatchPath;
3044   BasicBlock *LoopHeader = L->getHeader();
3045   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3046        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3047     LatchPath.push_back(Rung->getBlock());
3048   }
3049   LatchPath.push_back(LoopHeader);
3050 
3051   // Walk the instruction stream from the loop header to the loop latch.
3052   for (BasicBlock *BB : reverse(LatchPath)) {
3053     for (Instruction &I : *BB) {
3054       // Skip instructions that weren't seen by IVUsers analysis.
3055       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3056         continue;
3057 
3058       // Ignore users that are part of a SCEV expression. This way we only
3059       // consider leaf IV Users. This effectively rediscovers a portion of
3060       // IVUsers analysis but in program order this time.
3061       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3062           continue;
3063 
3064       // Remove this instruction from any NearUsers set it may be in.
3065       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3066            ChainIdx < NChains; ++ChainIdx) {
3067         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3068       }
3069       // Search for operands that can be chained.
3070       SmallPtrSet<Instruction*, 4> UniqueOperands;
3071       User::op_iterator IVOpEnd = I.op_end();
3072       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3073       while (IVOpIter != IVOpEnd) {
3074         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3075         if (UniqueOperands.insert(IVOpInst).second)
3076           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3077         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3078       }
3079     } // Continue walking down the instructions.
3080   } // Continue walking down the domtree.
3081   // Visit phi backedges to determine if the chain can generate the IV postinc.
3082   for (PHINode &PN : L->getHeader()->phis()) {
3083     if (!SE.isSCEVable(PN.getType()))
3084       continue;
3085 
3086     Instruction *IncV =
3087         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3088     if (IncV)
3089       ChainInstruction(&PN, IncV, ChainUsersVec);
3090   }
3091   // Remove any unprofitable chains.
3092   unsigned ChainIdx = 0;
3093   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3094        UsersIdx < NChains; ++UsersIdx) {
3095     if (!isProfitableChain(IVChainVec[UsersIdx],
3096                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3097       continue;
3098     // Preserve the chain at UsesIdx.
3099     if (ChainIdx != UsersIdx)
3100       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3101     FinalizeChain(IVChainVec[ChainIdx]);
3102     ++ChainIdx;
3103   }
3104   IVChainVec.resize(ChainIdx);
3105 }
3106 
3107 void LSRInstance::FinalizeChain(IVChain &Chain) {
3108   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3109   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3110 
3111   for (const IVInc &Inc : Chain) {
3112     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3113     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3114     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3115     IVIncSet.insert(UseI);
3116   }
3117 }
3118 
3119 /// Return true if the IVInc can be folded into an addressing mode.
3120 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3121                              Value *Operand, const TargetTransformInfo &TTI) {
3122   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3123   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3124     return false;
3125 
3126   if (IncConst->getAPInt().getMinSignedBits() > 64)
3127     return false;
3128 
3129   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3130   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3131   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3132                         IncOffset, /*HasBaseReg=*/false))
3133     return false;
3134 
3135   return true;
3136 }
3137 
3138 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3139 /// user's operand from the previous IV user's operand.
3140 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3141                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3142   // Find the new IVOperand for the head of the chain. It may have been replaced
3143   // by LSR.
3144   const IVInc &Head = Chain.Incs[0];
3145   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3146   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3147   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3148                                              IVOpEnd, L, SE);
3149   Value *IVSrc = nullptr;
3150   while (IVOpIter != IVOpEnd) {
3151     IVSrc = getWideOperand(*IVOpIter);
3152 
3153     // If this operand computes the expression that the chain needs, we may use
3154     // it. (Check this after setting IVSrc which is used below.)
3155     //
3156     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3157     // narrow for the chain, so we can no longer use it. We do allow using a
3158     // wider phi, assuming the LSR checked for free truncation. In that case we
3159     // should already have a truncate on this operand such that
3160     // getSCEV(IVSrc) == IncExpr.
3161     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3162         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3163       break;
3164     }
3165     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3166   }
3167   if (IVOpIter == IVOpEnd) {
3168     // Gracefully give up on this chain.
3169     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3170     return;
3171   }
3172   assert(IVSrc && "Failed to find IV chain source");
3173 
3174   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3175   Type *IVTy = IVSrc->getType();
3176   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3177   const SCEV *LeftOverExpr = nullptr;
3178   for (const IVInc &Inc : Chain) {
3179     Instruction *InsertPt = Inc.UserInst;
3180     if (isa<PHINode>(InsertPt))
3181       InsertPt = L->getLoopLatch()->getTerminator();
3182 
3183     // IVOper will replace the current IV User's operand. IVSrc is the IV
3184     // value currently held in a register.
3185     Value *IVOper = IVSrc;
3186     if (!Inc.IncExpr->isZero()) {
3187       // IncExpr was the result of subtraction of two narrow values, so must
3188       // be signed.
3189       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3190       LeftOverExpr = LeftOverExpr ?
3191         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3192     }
3193     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3194       // Expand the IV increment.
3195       Rewriter.clearPostInc();
3196       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3197       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3198                                              SE.getUnknown(IncV));
3199       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3200 
3201       // If an IV increment can't be folded, use it as the next IV value.
3202       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3203         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3204         IVSrc = IVOper;
3205         LeftOverExpr = nullptr;
3206       }
3207     }
3208     Type *OperTy = Inc.IVOperand->getType();
3209     if (IVTy != OperTy) {
3210       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3211              "cannot extend a chained IV");
3212       IRBuilder<> Builder(InsertPt);
3213       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3214     }
3215     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3216     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3217       DeadInsts.emplace_back(OperandIsInstr);
3218   }
3219   // If LSR created a new, wider phi, we may also replace its postinc. We only
3220   // do this if we also found a wide value for the head of the chain.
3221   if (isa<PHINode>(Chain.tailUserInst())) {
3222     for (PHINode &Phi : L->getHeader()->phis()) {
3223       if (!isCompatibleIVType(&Phi, IVSrc))
3224         continue;
3225       Instruction *PostIncV = dyn_cast<Instruction>(
3226           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3227       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3228         continue;
3229       Value *IVOper = IVSrc;
3230       Type *PostIncTy = PostIncV->getType();
3231       if (IVTy != PostIncTy) {
3232         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3233         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3234         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3235         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3236       }
3237       Phi.replaceUsesOfWith(PostIncV, IVOper);
3238       DeadInsts.emplace_back(PostIncV);
3239     }
3240   }
3241 }
3242 
3243 void LSRInstance::CollectFixupsAndInitialFormulae() {
3244   BranchInst *ExitBranch = nullptr;
3245   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3246 
3247   for (const IVStrideUse &U : IU) {
3248     Instruction *UserInst = U.getUser();
3249     // Skip IV users that are part of profitable IV Chains.
3250     User::op_iterator UseI =
3251         find(UserInst->operands(), U.getOperandValToReplace());
3252     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3253     if (IVIncSet.count(UseI)) {
3254       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3255       continue;
3256     }
3257 
3258     LSRUse::KindType Kind = LSRUse::Basic;
3259     MemAccessTy AccessTy;
3260     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3261       Kind = LSRUse::Address;
3262       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3263     }
3264 
3265     const SCEV *S = IU.getExpr(U);
3266     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3267 
3268     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3269     // (N - i == 0), and this allows (N - i) to be the expression that we work
3270     // with rather than just N or i, so we can consider the register
3271     // requirements for both N and i at the same time. Limiting this code to
3272     // equality icmps is not a problem because all interesting loops use
3273     // equality icmps, thanks to IndVarSimplify.
3274     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3275       // If CI can be saved in some target, like replaced inside hardware loop
3276       // in PowerPC, no need to generate initial formulae for it.
3277       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3278         continue;
3279       if (CI->isEquality()) {
3280         // Swap the operands if needed to put the OperandValToReplace on the
3281         // left, for consistency.
3282         Value *NV = CI->getOperand(1);
3283         if (NV == U.getOperandValToReplace()) {
3284           CI->setOperand(1, CI->getOperand(0));
3285           CI->setOperand(0, NV);
3286           NV = CI->getOperand(1);
3287           Changed = true;
3288         }
3289 
3290         // x == y  -->  x - y == 0
3291         const SCEV *N = SE.getSCEV(NV);
3292         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
3293           // S is normalized, so normalize N before folding it into S
3294           // to keep the result normalized.
3295           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3296           Kind = LSRUse::ICmpZero;
3297           S = SE.getMinusSCEV(N, S);
3298         }
3299 
3300         // -1 and the negations of all interesting strides (except the negation
3301         // of -1) are now also interesting.
3302         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3303           if (Factors[i] != -1)
3304             Factors.insert(-(uint64_t)Factors[i]);
3305         Factors.insert(-1);
3306       }
3307     }
3308 
3309     // Get or create an LSRUse.
3310     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3311     size_t LUIdx = P.first;
3312     int64_t Offset = P.second;
3313     LSRUse &LU = Uses[LUIdx];
3314 
3315     // Record the fixup.
3316     LSRFixup &LF = LU.getNewFixup();
3317     LF.UserInst = UserInst;
3318     LF.OperandValToReplace = U.getOperandValToReplace();
3319     LF.PostIncLoops = TmpPostIncLoops;
3320     LF.Offset = Offset;
3321     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3322 
3323     if (!LU.WidestFixupType ||
3324         SE.getTypeSizeInBits(LU.WidestFixupType) <
3325         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3326       LU.WidestFixupType = LF.OperandValToReplace->getType();
3327 
3328     // If this is the first use of this LSRUse, give it a formula.
3329     if (LU.Formulae.empty()) {
3330       InsertInitialFormula(S, LU, LUIdx);
3331       CountRegisters(LU.Formulae.back(), LUIdx);
3332     }
3333   }
3334 
3335   LLVM_DEBUG(print_fixups(dbgs()));
3336 }
3337 
3338 /// Insert a formula for the given expression into the given use, separating out
3339 /// loop-variant portions from loop-invariant and loop-computable portions.
3340 void
3341 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3342   // Mark uses whose expressions cannot be expanded.
3343   if (!isSafeToExpand(S, SE))
3344     LU.RigidFormula = true;
3345 
3346   Formula F;
3347   F.initialMatch(S, L, SE);
3348   bool Inserted = InsertFormula(LU, LUIdx, F);
3349   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3350 }
3351 
3352 /// Insert a simple single-register formula for the given expression into the
3353 /// given use.
3354 void
3355 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3356                                        LSRUse &LU, size_t LUIdx) {
3357   Formula F;
3358   F.BaseRegs.push_back(S);
3359   F.HasBaseReg = true;
3360   bool Inserted = InsertFormula(LU, LUIdx, F);
3361   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3362 }
3363 
3364 /// Note which registers are used by the given formula, updating RegUses.
3365 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3366   if (F.ScaledReg)
3367     RegUses.countRegister(F.ScaledReg, LUIdx);
3368   for (const SCEV *BaseReg : F.BaseRegs)
3369     RegUses.countRegister(BaseReg, LUIdx);
3370 }
3371 
3372 /// If the given formula has not yet been inserted, add it to the list, and
3373 /// return true. Return false otherwise.
3374 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3375   // Do not insert formula that we will not be able to expand.
3376   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3377          "Formula is illegal");
3378 
3379   if (!LU.InsertFormula(F, *L))
3380     return false;
3381 
3382   CountRegisters(F, LUIdx);
3383   return true;
3384 }
3385 
3386 /// Check for other uses of loop-invariant values which we're tracking. These
3387 /// other uses will pin these values in registers, making them less profitable
3388 /// for elimination.
3389 /// TODO: This currently misses non-constant addrec step registers.
3390 /// TODO: Should this give more weight to users inside the loop?
3391 void
3392 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3393   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3394   SmallPtrSet<const SCEV *, 32> Visited;
3395 
3396   while (!Worklist.empty()) {
3397     const SCEV *S = Worklist.pop_back_val();
3398 
3399     // Don't process the same SCEV twice
3400     if (!Visited.insert(S).second)
3401       continue;
3402 
3403     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3404       Worklist.append(N->op_begin(), N->op_end());
3405     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3406       Worklist.push_back(C->getOperand());
3407     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3408       Worklist.push_back(D->getLHS());
3409       Worklist.push_back(D->getRHS());
3410     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3411       const Value *V = US->getValue();
3412       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3413         // Look for instructions defined outside the loop.
3414         if (L->contains(Inst)) continue;
3415       } else if (isa<UndefValue>(V))
3416         // Undef doesn't have a live range, so it doesn't matter.
3417         continue;
3418       for (const Use &U : V->uses()) {
3419         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3420         // Ignore non-instructions.
3421         if (!UserInst)
3422           continue;
3423         // Ignore instructions in other functions (as can happen with
3424         // Constants).
3425         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3426           continue;
3427         // Ignore instructions not dominated by the loop.
3428         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3429           UserInst->getParent() :
3430           cast<PHINode>(UserInst)->getIncomingBlock(
3431             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3432         if (!DT.dominates(L->getHeader(), UseBB))
3433           continue;
3434         // Don't bother if the instruction is in a BB which ends in an EHPad.
3435         if (UseBB->getTerminator()->isEHPad())
3436           continue;
3437         // Don't bother rewriting PHIs in catchswitch blocks.
3438         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3439           continue;
3440         // Ignore uses which are part of other SCEV expressions, to avoid
3441         // analyzing them multiple times.
3442         if (SE.isSCEVable(UserInst->getType())) {
3443           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3444           // If the user is a no-op, look through to its uses.
3445           if (!isa<SCEVUnknown>(UserS))
3446             continue;
3447           if (UserS == US) {
3448             Worklist.push_back(
3449               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3450             continue;
3451           }
3452         }
3453         // Ignore icmp instructions which are already being analyzed.
3454         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3455           unsigned OtherIdx = !U.getOperandNo();
3456           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3457           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3458             continue;
3459         }
3460 
3461         std::pair<size_t, int64_t> P = getUse(
3462             S, LSRUse::Basic, MemAccessTy());
3463         size_t LUIdx = P.first;
3464         int64_t Offset = P.second;
3465         LSRUse &LU = Uses[LUIdx];
3466         LSRFixup &LF = LU.getNewFixup();
3467         LF.UserInst = const_cast<Instruction *>(UserInst);
3468         LF.OperandValToReplace = U;
3469         LF.Offset = Offset;
3470         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3471         if (!LU.WidestFixupType ||
3472             SE.getTypeSizeInBits(LU.WidestFixupType) <
3473             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3474           LU.WidestFixupType = LF.OperandValToReplace->getType();
3475         InsertSupplementalFormula(US, LU, LUIdx);
3476         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3477         break;
3478       }
3479     }
3480   }
3481 }
3482 
3483 /// Split S into subexpressions which can be pulled out into separate
3484 /// registers. If C is non-null, multiply each subexpression by C.
3485 ///
3486 /// Return remainder expression after factoring the subexpressions captured by
3487 /// Ops. If Ops is complete, return NULL.
3488 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3489                                    SmallVectorImpl<const SCEV *> &Ops,
3490                                    const Loop *L,
3491                                    ScalarEvolution &SE,
3492                                    unsigned Depth = 0) {
3493   // Arbitrarily cap recursion to protect compile time.
3494   if (Depth >= 3)
3495     return S;
3496 
3497   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3498     // Break out add operands.
3499     for (const SCEV *S : Add->operands()) {
3500       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3501       if (Remainder)
3502         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3503     }
3504     return nullptr;
3505   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3506     // Split a non-zero base out of an addrec.
3507     if (AR->getStart()->isZero() || !AR->isAffine())
3508       return S;
3509 
3510     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3511                                             C, Ops, L, SE, Depth+1);
3512     // Split the non-zero AddRec unless it is part of a nested recurrence that
3513     // does not pertain to this loop.
3514     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3515       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3516       Remainder = nullptr;
3517     }
3518     if (Remainder != AR->getStart()) {
3519       if (!Remainder)
3520         Remainder = SE.getConstant(AR->getType(), 0);
3521       return SE.getAddRecExpr(Remainder,
3522                               AR->getStepRecurrence(SE),
3523                               AR->getLoop(),
3524                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3525                               SCEV::FlagAnyWrap);
3526     }
3527   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3528     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3529     if (Mul->getNumOperands() != 2)
3530       return S;
3531     if (const SCEVConstant *Op0 =
3532         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3533       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3534       const SCEV *Remainder =
3535         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3536       if (Remainder)
3537         Ops.push_back(SE.getMulExpr(C, Remainder));
3538       return nullptr;
3539     }
3540   }
3541   return S;
3542 }
3543 
3544 /// Return true if the SCEV represents a value that may end up as a
3545 /// post-increment operation.
3546 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3547                               LSRUse &LU, const SCEV *S, const Loop *L,
3548                               ScalarEvolution &SE) {
3549   if (LU.Kind != LSRUse::Address ||
3550       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3551     return false;
3552   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3553   if (!AR)
3554     return false;
3555   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3556   if (!isa<SCEVConstant>(LoopStep))
3557     return false;
3558   // Check if a post-indexed load/store can be used.
3559   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3560       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3561     const SCEV *LoopStart = AR->getStart();
3562     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3563       return true;
3564   }
3565   return false;
3566 }
3567 
3568 /// Helper function for LSRInstance::GenerateReassociations.
3569 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3570                                              const Formula &Base,
3571                                              unsigned Depth, size_t Idx,
3572                                              bool IsScaledReg) {
3573   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3574   // Don't generate reassociations for the base register of a value that
3575   // may generate a post-increment operator. The reason is that the
3576   // reassociations cause extra base+register formula to be created,
3577   // and possibly chosen, but the post-increment is more efficient.
3578   TTI::AddressingModeKind AMK = TTI.getPreferredAddressingMode(L, &SE);
3579   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3580     return;
3581   SmallVector<const SCEV *, 8> AddOps;
3582   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3583   if (Remainder)
3584     AddOps.push_back(Remainder);
3585 
3586   if (AddOps.size() == 1)
3587     return;
3588 
3589   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3590                                                      JE = AddOps.end();
3591        J != JE; ++J) {
3592     // Loop-variant "unknown" values are uninteresting; we won't be able to
3593     // do anything meaningful with them.
3594     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3595       continue;
3596 
3597     // Don't pull a constant into a register if the constant could be folded
3598     // into an immediate field.
3599     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3600                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3601       continue;
3602 
3603     // Collect all operands except *J.
3604     SmallVector<const SCEV *, 8> InnerAddOps(
3605         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3606     InnerAddOps.append(std::next(J),
3607                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3608 
3609     // Don't leave just a constant behind in a register if the constant could
3610     // be folded into an immediate field.
3611     if (InnerAddOps.size() == 1 &&
3612         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3613                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3614       continue;
3615 
3616     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3617     if (InnerSum->isZero())
3618       continue;
3619     Formula F = Base;
3620 
3621     // Add the remaining pieces of the add back into the new formula.
3622     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3623     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3624         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3625                                 InnerSumSC->getValue()->getZExtValue())) {
3626       F.UnfoldedOffset =
3627           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3628       if (IsScaledReg)
3629         F.ScaledReg = nullptr;
3630       else
3631         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3632     } else if (IsScaledReg)
3633       F.ScaledReg = InnerSum;
3634     else
3635       F.BaseRegs[Idx] = InnerSum;
3636 
3637     // Add J as its own register, or an unfolded immediate.
3638     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3639     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3640         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3641                                 SC->getValue()->getZExtValue()))
3642       F.UnfoldedOffset =
3643           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3644     else
3645       F.BaseRegs.push_back(*J);
3646     // We may have changed the number of register in base regs, adjust the
3647     // formula accordingly.
3648     F.canonicalize(*L);
3649 
3650     if (InsertFormula(LU, LUIdx, F))
3651       // If that formula hadn't been seen before, recurse to find more like
3652       // it.
3653       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3654       // Because just Depth is not enough to bound compile time.
3655       // This means that every time AddOps.size() is greater 16^x we will add
3656       // x to Depth.
3657       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3658                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3659   }
3660 }
3661 
3662 /// Split out subexpressions from adds and the bases of addrecs.
3663 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3664                                          Formula Base, unsigned Depth) {
3665   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3666   // Arbitrarily cap recursion to protect compile time.
3667   if (Depth >= 3)
3668     return;
3669 
3670   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3671     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3672 
3673   if (Base.Scale == 1)
3674     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3675                                /* Idx */ -1, /* IsScaledReg */ true);
3676 }
3677 
3678 ///  Generate a formula consisting of all of the loop-dominating registers added
3679 /// into a single register.
3680 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3681                                        Formula Base) {
3682   // This method is only interesting on a plurality of registers.
3683   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3684       (Base.UnfoldedOffset != 0) <= 1)
3685     return;
3686 
3687   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3688   // processing the formula.
3689   Base.unscale();
3690   SmallVector<const SCEV *, 4> Ops;
3691   Formula NewBase = Base;
3692   NewBase.BaseRegs.clear();
3693   Type *CombinedIntegerType = nullptr;
3694   for (const SCEV *BaseReg : Base.BaseRegs) {
3695     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3696         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3697       if (!CombinedIntegerType)
3698         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3699       Ops.push_back(BaseReg);
3700     }
3701     else
3702       NewBase.BaseRegs.push_back(BaseReg);
3703   }
3704 
3705   // If no register is relevant, we're done.
3706   if (Ops.size() == 0)
3707     return;
3708 
3709   // Utility function for generating the required variants of the combined
3710   // registers.
3711   auto GenerateFormula = [&](const SCEV *Sum) {
3712     Formula F = NewBase;
3713 
3714     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3715     // opportunity to fold something. For now, just ignore such cases
3716     // rather than proceed with zero in a register.
3717     if (Sum->isZero())
3718       return;
3719 
3720     F.BaseRegs.push_back(Sum);
3721     F.canonicalize(*L);
3722     (void)InsertFormula(LU, LUIdx, F);
3723   };
3724 
3725   // If we collected at least two registers, generate a formula combining them.
3726   if (Ops.size() > 1) {
3727     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3728     GenerateFormula(SE.getAddExpr(OpsCopy));
3729   }
3730 
3731   // If we have an unfolded offset, generate a formula combining it with the
3732   // registers collected.
3733   if (NewBase.UnfoldedOffset) {
3734     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3735     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3736                                  true));
3737     NewBase.UnfoldedOffset = 0;
3738     GenerateFormula(SE.getAddExpr(Ops));
3739   }
3740 }
3741 
3742 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3743 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3744                                               const Formula &Base, size_t Idx,
3745                                               bool IsScaledReg) {
3746   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3747   GlobalValue *GV = ExtractSymbol(G, SE);
3748   if (G->isZero() || !GV)
3749     return;
3750   Formula F = Base;
3751   F.BaseGV = GV;
3752   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3753     return;
3754   if (IsScaledReg)
3755     F.ScaledReg = G;
3756   else
3757     F.BaseRegs[Idx] = G;
3758   (void)InsertFormula(LU, LUIdx, F);
3759 }
3760 
3761 /// Generate reuse formulae using symbolic offsets.
3762 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3763                                           Formula Base) {
3764   // We can't add a symbolic offset if the address already contains one.
3765   if (Base.BaseGV) return;
3766 
3767   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3768     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3769   if (Base.Scale == 1)
3770     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3771                                 /* IsScaledReg */ true);
3772 }
3773 
3774 /// Helper function for LSRInstance::GenerateConstantOffsets.
3775 void LSRInstance::GenerateConstantOffsetsImpl(
3776     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3777     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3778 
3779   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3780     Formula F = Base;
3781     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3782 
3783     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
3784                    LU.AccessTy, F)) {
3785       // Add the offset to the base register.
3786       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3787       // If it cancelled out, drop the base register, otherwise update it.
3788       if (NewG->isZero()) {
3789         if (IsScaledReg) {
3790           F.Scale = 0;
3791           F.ScaledReg = nullptr;
3792         } else
3793           F.deleteBaseReg(F.BaseRegs[Idx]);
3794         F.canonicalize(*L);
3795       } else if (IsScaledReg)
3796         F.ScaledReg = NewG;
3797       else
3798         F.BaseRegs[Idx] = NewG;
3799 
3800       (void)InsertFormula(LU, LUIdx, F);
3801     }
3802   };
3803 
3804   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3805 
3806   // With constant offsets and constant steps, we can generate pre-inc
3807   // accesses by having the offset equal the step. So, for access #0 with a
3808   // step of 8, we generate a G - 8 base which would require the first access
3809   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3810   // for itself and hopefully becomes the base for other accesses. This means
3811   // means that a single pre-indexed access can be generated to become the new
3812   // base pointer for each iteration of the loop, resulting in no extra add/sub
3813   // instructions for pointer updating.
3814   if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) {
3815     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3816       if (auto *StepRec =
3817           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3818         const APInt &StepInt = StepRec->getAPInt();
3819         int64_t Step = StepInt.isNegative() ?
3820           StepInt.getSExtValue() : StepInt.getZExtValue();
3821 
3822         for (int64_t Offset : Worklist) {
3823           Offset -= Step;
3824           GenerateOffset(G, Offset);
3825         }
3826       }
3827     }
3828   }
3829   for (int64_t Offset : Worklist)
3830     GenerateOffset(G, Offset);
3831 
3832   int64_t Imm = ExtractImmediate(G, SE);
3833   if (G->isZero() || Imm == 0)
3834     return;
3835   Formula F = Base;
3836   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3837   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3838     return;
3839   if (IsScaledReg) {
3840     F.ScaledReg = G;
3841   } else {
3842     F.BaseRegs[Idx] = G;
3843     // We may generate non canonical Formula if G is a recurrent expr reg
3844     // related with current loop while F.ScaledReg is not.
3845     F.canonicalize(*L);
3846   }
3847   (void)InsertFormula(LU, LUIdx, F);
3848 }
3849 
3850 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3851 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3852                                           Formula Base) {
3853   // TODO: For now, just add the min and max offset, because it usually isn't
3854   // worthwhile looking at everything inbetween.
3855   SmallVector<int64_t, 2> Worklist;
3856   Worklist.push_back(LU.MinOffset);
3857   if (LU.MaxOffset != LU.MinOffset)
3858     Worklist.push_back(LU.MaxOffset);
3859 
3860   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3861     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3862   if (Base.Scale == 1)
3863     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3864                                 /* IsScaledReg */ true);
3865 }
3866 
3867 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3868 /// == y -> x*c == y*c.
3869 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3870                                          Formula Base) {
3871   if (LU.Kind != LSRUse::ICmpZero) return;
3872 
3873   // Determine the integer type for the base formula.
3874   Type *IntTy = Base.getType();
3875   if (!IntTy) return;
3876   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3877 
3878   // Don't do this if there is more than one offset.
3879   if (LU.MinOffset != LU.MaxOffset) return;
3880 
3881   // Check if transformation is valid. It is illegal to multiply pointer.
3882   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3883     return;
3884   for (const SCEV *BaseReg : Base.BaseRegs)
3885     if (BaseReg->getType()->isPointerTy())
3886       return;
3887   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3888 
3889   // Check each interesting stride.
3890   for (int64_t Factor : Factors) {
3891     // Check that the multiplication doesn't overflow.
3892     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3893       continue;
3894     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3895     if (NewBaseOffset / Factor != Base.BaseOffset)
3896       continue;
3897     // If the offset will be truncated at this use, check that it is in bounds.
3898     if (!IntTy->isPointerTy() &&
3899         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3900       continue;
3901 
3902     // Check that multiplying with the use offset doesn't overflow.
3903     int64_t Offset = LU.MinOffset;
3904     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3905       continue;
3906     Offset = (uint64_t)Offset * Factor;
3907     if (Offset / Factor != LU.MinOffset)
3908       continue;
3909     // If the offset will be truncated at this use, check that it is in bounds.
3910     if (!IntTy->isPointerTy() &&
3911         !ConstantInt::isValueValidForType(IntTy, Offset))
3912       continue;
3913 
3914     Formula F = Base;
3915     F.BaseOffset = NewBaseOffset;
3916 
3917     // Check that this scale is legal.
3918     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3919       continue;
3920 
3921     // Compensate for the use having MinOffset built into it.
3922     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3923 
3924     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3925 
3926     // Check that multiplying with each base register doesn't overflow.
3927     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3928       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3929       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3930         goto next;
3931     }
3932 
3933     // Check that multiplying with the scaled register doesn't overflow.
3934     if (F.ScaledReg) {
3935       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3936       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3937         continue;
3938     }
3939 
3940     // Check that multiplying with the unfolded offset doesn't overflow.
3941     if (F.UnfoldedOffset != 0) {
3942       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3943           Factor == -1)
3944         continue;
3945       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3946       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3947         continue;
3948       // If the offset will be truncated, check that it is in bounds.
3949       if (!IntTy->isPointerTy() &&
3950           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3951         continue;
3952     }
3953 
3954     // If we make it here and it's legal, add it.
3955     (void)InsertFormula(LU, LUIdx, F);
3956   next:;
3957   }
3958 }
3959 
3960 /// Generate stride factor reuse formulae by making use of scaled-offset address
3961 /// modes, for example.
3962 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3963   // Determine the integer type for the base formula.
3964   Type *IntTy = Base.getType();
3965   if (!IntTy) return;
3966 
3967   // If this Formula already has a scaled register, we can't add another one.
3968   // Try to unscale the formula to generate a better scale.
3969   if (Base.Scale != 0 && !Base.unscale())
3970     return;
3971 
3972   assert(Base.Scale == 0 && "unscale did not did its job!");
3973 
3974   // Check each interesting stride.
3975   for (int64_t Factor : Factors) {
3976     Base.Scale = Factor;
3977     Base.HasBaseReg = Base.BaseRegs.size() > 1;
3978     // Check whether this scale is going to be legal.
3979     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
3980                     Base)) {
3981       // As a special-case, handle special out-of-loop Basic users specially.
3982       // TODO: Reconsider this special case.
3983       if (LU.Kind == LSRUse::Basic &&
3984           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
3985                      LU.AccessTy, Base) &&
3986           LU.AllFixupsOutsideLoop)
3987         LU.Kind = LSRUse::Special;
3988       else
3989         continue;
3990     }
3991     // For an ICmpZero, negating a solitary base register won't lead to
3992     // new solutions.
3993     if (LU.Kind == LSRUse::ICmpZero &&
3994         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
3995       continue;
3996     // For each addrec base reg, if its loop is current loop, apply the scale.
3997     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
3998       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
3999       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4000         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4001         if (FactorS->isZero())
4002           continue;
4003         // Divide out the factor, ignoring high bits, since we'll be
4004         // scaling the value back up in the end.
4005         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4006           // TODO: This could be optimized to avoid all the copying.
4007           Formula F = Base;
4008           F.ScaledReg = Quotient;
4009           F.deleteBaseReg(F.BaseRegs[i]);
4010           // The canonical representation of 1*reg is reg, which is already in
4011           // Base. In that case, do not try to insert the formula, it will be
4012           // rejected anyway.
4013           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4014                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4015             continue;
4016           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4017           // non canonical Formula with ScaledReg's loop not being L.
4018           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4019             F.canonicalize(*L);
4020           (void)InsertFormula(LU, LUIdx, F);
4021         }
4022       }
4023     }
4024   }
4025 }
4026 
4027 /// Generate reuse formulae from different IV types.
4028 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4029   // Don't bother truncating symbolic values.
4030   if (Base.BaseGV) return;
4031 
4032   // Determine the integer type for the base formula.
4033   Type *DstTy = Base.getType();
4034   if (!DstTy) return;
4035   DstTy = SE.getEffectiveSCEVType(DstTy);
4036 
4037   for (Type *SrcTy : Types) {
4038     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4039       Formula F = Base;
4040 
4041       // Sometimes SCEV is able to prove zero during ext transform. It may
4042       // happen if SCEV did not do all possible transforms while creating the
4043       // initial node (maybe due to depth limitations), but it can do them while
4044       // taking ext.
4045       if (F.ScaledReg) {
4046         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4047         if (NewScaledReg->isZero())
4048          continue;
4049         F.ScaledReg = NewScaledReg;
4050       }
4051       bool HasZeroBaseReg = false;
4052       for (const SCEV *&BaseReg : F.BaseRegs) {
4053         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4054         if (NewBaseReg->isZero()) {
4055           HasZeroBaseReg = true;
4056           break;
4057         }
4058         BaseReg = NewBaseReg;
4059       }
4060       if (HasZeroBaseReg)
4061         continue;
4062 
4063       // TODO: This assumes we've done basic processing on all uses and
4064       // have an idea what the register usage is.
4065       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4066         continue;
4067 
4068       F.canonicalize(*L);
4069       (void)InsertFormula(LU, LUIdx, F);
4070     }
4071   }
4072 }
4073 
4074 namespace {
4075 
4076 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4077 /// modifications so that the search phase doesn't have to worry about the data
4078 /// structures moving underneath it.
4079 struct WorkItem {
4080   size_t LUIdx;
4081   int64_t Imm;
4082   const SCEV *OrigReg;
4083 
4084   WorkItem(size_t LI, int64_t I, const SCEV *R)
4085       : LUIdx(LI), Imm(I), OrigReg(R) {}
4086 
4087   void print(raw_ostream &OS) const;
4088   void dump() const;
4089 };
4090 
4091 } // end anonymous namespace
4092 
4093 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4094 void WorkItem::print(raw_ostream &OS) const {
4095   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4096      << " , add offset " << Imm;
4097 }
4098 
4099 LLVM_DUMP_METHOD void WorkItem::dump() const {
4100   print(errs()); errs() << '\n';
4101 }
4102 #endif
4103 
4104 /// Look for registers which are a constant distance apart and try to form reuse
4105 /// opportunities between them.
4106 void LSRInstance::GenerateCrossUseConstantOffsets() {
4107   // Group the registers by their value without any added constant offset.
4108   using ImmMapTy = std::map<int64_t, const SCEV *>;
4109 
4110   DenseMap<const SCEV *, ImmMapTy> Map;
4111   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4112   SmallVector<const SCEV *, 8> Sequence;
4113   for (const SCEV *Use : RegUses) {
4114     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4115     int64_t Imm = ExtractImmediate(Reg, SE);
4116     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4117     if (Pair.second)
4118       Sequence.push_back(Reg);
4119     Pair.first->second.insert(std::make_pair(Imm, Use));
4120     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4121   }
4122 
4123   // Now examine each set of registers with the same base value. Build up
4124   // a list of work to do and do the work in a separate step so that we're
4125   // not adding formulae and register counts while we're searching.
4126   SmallVector<WorkItem, 32> WorkItems;
4127   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4128   for (const SCEV *Reg : Sequence) {
4129     const ImmMapTy &Imms = Map.find(Reg)->second;
4130 
4131     // It's not worthwhile looking for reuse if there's only one offset.
4132     if (Imms.size() == 1)
4133       continue;
4134 
4135     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4136                for (const auto &Entry
4137                     : Imms) dbgs()
4138                << ' ' << Entry.first;
4139                dbgs() << '\n');
4140 
4141     // Examine each offset.
4142     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4143          J != JE; ++J) {
4144       const SCEV *OrigReg = J->second;
4145 
4146       int64_t JImm = J->first;
4147       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4148 
4149       if (!isa<SCEVConstant>(OrigReg) &&
4150           UsedByIndicesMap[Reg].count() == 1) {
4151         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4152                           << '\n');
4153         continue;
4154       }
4155 
4156       // Conservatively examine offsets between this orig reg a few selected
4157       // other orig regs.
4158       int64_t First = Imms.begin()->first;
4159       int64_t Last = std::prev(Imms.end())->first;
4160       // Compute (First + Last)  / 2 without overflow using the fact that
4161       // First + Last = 2 * (First + Last) + (First ^ Last).
4162       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4163       // If the result is negative and First is odd and Last even (or vice versa),
4164       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4165       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4166       ImmMapTy::const_iterator OtherImms[] = {
4167           Imms.begin(), std::prev(Imms.end()),
4168          Imms.lower_bound(Avg)};
4169       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4170         ImmMapTy::const_iterator M = OtherImms[i];
4171         if (M == J || M == JE) continue;
4172 
4173         // Compute the difference between the two.
4174         int64_t Imm = (uint64_t)JImm - M->first;
4175         for (unsigned LUIdx : UsedByIndices.set_bits())
4176           // Make a memo of this use, offset, and register tuple.
4177           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4178             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4179       }
4180     }
4181   }
4182 
4183   Map.clear();
4184   Sequence.clear();
4185   UsedByIndicesMap.clear();
4186   UniqueItems.clear();
4187 
4188   // Now iterate through the worklist and add new formulae.
4189   for (const WorkItem &WI : WorkItems) {
4190     size_t LUIdx = WI.LUIdx;
4191     LSRUse &LU = Uses[LUIdx];
4192     int64_t Imm = WI.Imm;
4193     const SCEV *OrigReg = WI.OrigReg;
4194 
4195     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4196     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4197     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4198 
4199     // TODO: Use a more targeted data structure.
4200     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4201       Formula F = LU.Formulae[L];
4202       // FIXME: The code for the scaled and unscaled registers looks
4203       // very similar but slightly different. Investigate if they
4204       // could be merged. That way, we would not have to unscale the
4205       // Formula.
4206       F.unscale();
4207       // Use the immediate in the scaled register.
4208       if (F.ScaledReg == OrigReg) {
4209         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4210         // Don't create 50 + reg(-50).
4211         if (F.referencesReg(SE.getSCEV(
4212                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4213           continue;
4214         Formula NewF = F;
4215         NewF.BaseOffset = Offset;
4216         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4217                         NewF))
4218           continue;
4219         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4220 
4221         // If the new scale is a constant in a register, and adding the constant
4222         // value to the immediate would produce a value closer to zero than the
4223         // immediate itself, then the formula isn't worthwhile.
4224         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4225           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4226               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4227                   .ule(std::abs(NewF.BaseOffset)))
4228             continue;
4229 
4230         // OK, looks good.
4231         NewF.canonicalize(*this->L);
4232         (void)InsertFormula(LU, LUIdx, NewF);
4233       } else {
4234         // Use the immediate in a base register.
4235         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4236           const SCEV *BaseReg = F.BaseRegs[N];
4237           if (BaseReg != OrigReg)
4238             continue;
4239           Formula NewF = F;
4240           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4241           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4242                           LU.Kind, LU.AccessTy, NewF)) {
4243             if (TTI.getPreferredAddressingMode(this->L, &SE) ==
4244                     TTI::AMK_PostIndexed &&
4245                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4246               continue;
4247             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4248               continue;
4249             NewF = F;
4250             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4251           }
4252           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4253 
4254           // If the new formula has a constant in a register, and adding the
4255           // constant value to the immediate would produce a value closer to
4256           // zero than the immediate itself, then the formula isn't worthwhile.
4257           for (const SCEV *NewReg : NewF.BaseRegs)
4258             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4259               if ((C->getAPInt() + NewF.BaseOffset)
4260                       .abs()
4261                       .slt(std::abs(NewF.BaseOffset)) &&
4262                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4263                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4264                 goto skip_formula;
4265 
4266           // Ok, looks good.
4267           NewF.canonicalize(*this->L);
4268           (void)InsertFormula(LU, LUIdx, NewF);
4269           break;
4270         skip_formula:;
4271         }
4272       }
4273     }
4274   }
4275 }
4276 
4277 /// Generate formulae for each use.
4278 void
4279 LSRInstance::GenerateAllReuseFormulae() {
4280   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4281   // queries are more precise.
4282   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4283     LSRUse &LU = Uses[LUIdx];
4284     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4285       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4286     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4287       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4288   }
4289   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4290     LSRUse &LU = Uses[LUIdx];
4291     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4292       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4293     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4294       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4295     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4296       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4297     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4298       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4299   }
4300   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4301     LSRUse &LU = Uses[LUIdx];
4302     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4303       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4304   }
4305 
4306   GenerateCrossUseConstantOffsets();
4307 
4308   LLVM_DEBUG(dbgs() << "\n"
4309                        "After generating reuse formulae:\n";
4310              print_uses(dbgs()));
4311 }
4312 
4313 /// If there are multiple formulae with the same set of registers used
4314 /// by other uses, pick the best one and delete the others.
4315 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4316   DenseSet<const SCEV *> VisitedRegs;
4317   SmallPtrSet<const SCEV *, 16> Regs;
4318   SmallPtrSet<const SCEV *, 16> LoserRegs;
4319 #ifndef NDEBUG
4320   bool ChangedFormulae = false;
4321 #endif
4322 
4323   // Collect the best formula for each unique set of shared registers. This
4324   // is reset for each use.
4325   using BestFormulaeTy =
4326       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4327 
4328   BestFormulaeTy BestFormulae;
4329 
4330   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4331     LSRUse &LU = Uses[LUIdx];
4332     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4333                dbgs() << '\n');
4334 
4335     bool Any = false;
4336     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4337          FIdx != NumForms; ++FIdx) {
4338       Formula &F = LU.Formulae[FIdx];
4339 
4340       // Some formulas are instant losers. For example, they may depend on
4341       // nonexistent AddRecs from other loops. These need to be filtered
4342       // immediately, otherwise heuristics could choose them over others leading
4343       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4344       // avoids the need to recompute this information across formulae using the
4345       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4346       // the corresponding bad register from the Regs set.
4347       Cost CostF(L, SE, TTI);
4348       Regs.clear();
4349       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4350       if (CostF.isLoser()) {
4351         // During initial formula generation, undesirable formulae are generated
4352         // by uses within other loops that have some non-trivial address mode or
4353         // use the postinc form of the IV. LSR needs to provide these formulae
4354         // as the basis of rediscovering the desired formula that uses an AddRec
4355         // corresponding to the existing phi. Once all formulae have been
4356         // generated, these initial losers may be pruned.
4357         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4358                    dbgs() << "\n");
4359       }
4360       else {
4361         SmallVector<const SCEV *, 4> Key;
4362         for (const SCEV *Reg : F.BaseRegs) {
4363           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4364             Key.push_back(Reg);
4365         }
4366         if (F.ScaledReg &&
4367             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4368           Key.push_back(F.ScaledReg);
4369         // Unstable sort by host order ok, because this is only used for
4370         // uniquifying.
4371         llvm::sort(Key);
4372 
4373         std::pair<BestFormulaeTy::const_iterator, bool> P =
4374           BestFormulae.insert(std::make_pair(Key, FIdx));
4375         if (P.second)
4376           continue;
4377 
4378         Formula &Best = LU.Formulae[P.first->second];
4379 
4380         Cost CostBest(L, SE, TTI);
4381         Regs.clear();
4382         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4383         if (CostF.isLess(CostBest))
4384           std::swap(F, Best);
4385         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4386                    dbgs() << "\n"
4387                              "    in favor of formula ";
4388                    Best.print(dbgs()); dbgs() << '\n');
4389       }
4390 #ifndef NDEBUG
4391       ChangedFormulae = true;
4392 #endif
4393       LU.DeleteFormula(F);
4394       --FIdx;
4395       --NumForms;
4396       Any = true;
4397     }
4398 
4399     // Now that we've filtered out some formulae, recompute the Regs set.
4400     if (Any)
4401       LU.RecomputeRegs(LUIdx, RegUses);
4402 
4403     // Reset this to prepare for the next use.
4404     BestFormulae.clear();
4405   }
4406 
4407   LLVM_DEBUG(if (ChangedFormulae) {
4408     dbgs() << "\n"
4409               "After filtering out undesirable candidates:\n";
4410     print_uses(dbgs());
4411   });
4412 }
4413 
4414 /// Estimate the worst-case number of solutions the solver might have to
4415 /// consider. It almost never considers this many solutions because it prune the
4416 /// search space, but the pruning isn't always sufficient.
4417 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4418   size_t Power = 1;
4419   for (const LSRUse &LU : Uses) {
4420     size_t FSize = LU.Formulae.size();
4421     if (FSize >= ComplexityLimit) {
4422       Power = ComplexityLimit;
4423       break;
4424     }
4425     Power *= FSize;
4426     if (Power >= ComplexityLimit)
4427       break;
4428   }
4429   return Power;
4430 }
4431 
4432 /// When one formula uses a superset of the registers of another formula, it
4433 /// won't help reduce register pressure (though it may not necessarily hurt
4434 /// register pressure); remove it to simplify the system.
4435 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4436   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4437     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4438 
4439     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4440                          "which use a superset of registers used by other "
4441                          "formulae.\n");
4442 
4443     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4444       LSRUse &LU = Uses[LUIdx];
4445       bool Any = false;
4446       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4447         Formula &F = LU.Formulae[i];
4448         // Look for a formula with a constant or GV in a register. If the use
4449         // also has a formula with that same value in an immediate field,
4450         // delete the one that uses a register.
4451         for (SmallVectorImpl<const SCEV *>::const_iterator
4452              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4453           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4454             Formula NewF = F;
4455             //FIXME: Formulas should store bitwidth to do wrapping properly.
4456             //       See PR41034.
4457             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4458             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4459                                 (I - F.BaseRegs.begin()));
4460             if (LU.HasFormulaWithSameRegs(NewF)) {
4461               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4462                          dbgs() << '\n');
4463               LU.DeleteFormula(F);
4464               --i;
4465               --e;
4466               Any = true;
4467               break;
4468             }
4469           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4470             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4471               if (!F.BaseGV) {
4472                 Formula NewF = F;
4473                 NewF.BaseGV = GV;
4474                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4475                                     (I - F.BaseRegs.begin()));
4476                 if (LU.HasFormulaWithSameRegs(NewF)) {
4477                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4478                              dbgs() << '\n');
4479                   LU.DeleteFormula(F);
4480                   --i;
4481                   --e;
4482                   Any = true;
4483                   break;
4484                 }
4485               }
4486           }
4487         }
4488       }
4489       if (Any)
4490         LU.RecomputeRegs(LUIdx, RegUses);
4491     }
4492 
4493     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4494   }
4495 }
4496 
4497 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4498 /// allocate a single register for them.
4499 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4500   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4501     return;
4502 
4503   LLVM_DEBUG(
4504       dbgs() << "The search space is too complex.\n"
4505                 "Narrowing the search space by assuming that uses separated "
4506                 "by a constant offset will use the same registers.\n");
4507 
4508   // This is especially useful for unrolled loops.
4509 
4510   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4511     LSRUse &LU = Uses[LUIdx];
4512     for (const Formula &F : LU.Formulae) {
4513       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4514         continue;
4515 
4516       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4517       if (!LUThatHas)
4518         continue;
4519 
4520       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4521                               LU.Kind, LU.AccessTy))
4522         continue;
4523 
4524       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4525 
4526       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4527 
4528       // Transfer the fixups of LU to LUThatHas.
4529       for (LSRFixup &Fixup : LU.Fixups) {
4530         Fixup.Offset += F.BaseOffset;
4531         LUThatHas->pushFixup(Fixup);
4532         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4533       }
4534 
4535       // Delete formulae from the new use which are no longer legal.
4536       bool Any = false;
4537       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4538         Formula &F = LUThatHas->Formulae[i];
4539         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4540                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4541           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4542           LUThatHas->DeleteFormula(F);
4543           --i;
4544           --e;
4545           Any = true;
4546         }
4547       }
4548 
4549       if (Any)
4550         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4551 
4552       // Delete the old use.
4553       DeleteUse(LU, LUIdx);
4554       --LUIdx;
4555       --NumUses;
4556       break;
4557     }
4558   }
4559 
4560   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4561 }
4562 
4563 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4564 /// we've done more filtering, as it may be able to find more formulae to
4565 /// eliminate.
4566 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4567   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4568     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4569 
4570     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4571                          "undesirable dedicated registers.\n");
4572 
4573     FilterOutUndesirableDedicatedRegisters();
4574 
4575     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4576   }
4577 }
4578 
4579 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4580 /// Pick the best one and delete the others.
4581 /// This narrowing heuristic is to keep as many formulae with different
4582 /// Scale and ScaledReg pair as possible while narrowing the search space.
4583 /// The benefit is that it is more likely to find out a better solution
4584 /// from a formulae set with more Scale and ScaledReg variations than
4585 /// a formulae set with the same Scale and ScaledReg. The picking winner
4586 /// reg heuristic will often keep the formulae with the same Scale and
4587 /// ScaledReg and filter others, and we want to avoid that if possible.
4588 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4589   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4590     return;
4591 
4592   LLVM_DEBUG(
4593       dbgs() << "The search space is too complex.\n"
4594                 "Narrowing the search space by choosing the best Formula "
4595                 "from the Formulae with the same Scale and ScaledReg.\n");
4596 
4597   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4598   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4599 
4600   BestFormulaeTy BestFormulae;
4601 #ifndef NDEBUG
4602   bool ChangedFormulae = false;
4603 #endif
4604   DenseSet<const SCEV *> VisitedRegs;
4605   SmallPtrSet<const SCEV *, 16> Regs;
4606 
4607   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4608     LSRUse &LU = Uses[LUIdx];
4609     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4610                dbgs() << '\n');
4611 
4612     // Return true if Formula FA is better than Formula FB.
4613     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4614       // First we will try to choose the Formula with fewer new registers.
4615       // For a register used by current Formula, the more the register is
4616       // shared among LSRUses, the less we increase the register number
4617       // counter of the formula.
4618       size_t FARegNum = 0;
4619       for (const SCEV *Reg : FA.BaseRegs) {
4620         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4621         FARegNum += (NumUses - UsedByIndices.count() + 1);
4622       }
4623       size_t FBRegNum = 0;
4624       for (const SCEV *Reg : FB.BaseRegs) {
4625         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4626         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4627       }
4628       if (FARegNum != FBRegNum)
4629         return FARegNum < FBRegNum;
4630 
4631       // If the new register numbers are the same, choose the Formula with
4632       // less Cost.
4633       Cost CostFA(L, SE, TTI);
4634       Cost CostFB(L, SE, TTI);
4635       Regs.clear();
4636       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4637       Regs.clear();
4638       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4639       return CostFA.isLess(CostFB);
4640     };
4641 
4642     bool Any = false;
4643     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4644          ++FIdx) {
4645       Formula &F = LU.Formulae[FIdx];
4646       if (!F.ScaledReg)
4647         continue;
4648       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4649       if (P.second)
4650         continue;
4651 
4652       Formula &Best = LU.Formulae[P.first->second];
4653       if (IsBetterThan(F, Best))
4654         std::swap(F, Best);
4655       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4656                  dbgs() << "\n"
4657                            "    in favor of formula ";
4658                  Best.print(dbgs()); dbgs() << '\n');
4659 #ifndef NDEBUG
4660       ChangedFormulae = true;
4661 #endif
4662       LU.DeleteFormula(F);
4663       --FIdx;
4664       --NumForms;
4665       Any = true;
4666     }
4667     if (Any)
4668       LU.RecomputeRegs(LUIdx, RegUses);
4669 
4670     // Reset this to prepare for the next use.
4671     BestFormulae.clear();
4672   }
4673 
4674   LLVM_DEBUG(if (ChangedFormulae) {
4675     dbgs() << "\n"
4676               "After filtering out undesirable candidates:\n";
4677     print_uses(dbgs());
4678   });
4679 }
4680 
4681 /// If we are over the complexity limit, filter out any post-inc prefering
4682 /// variables to only post-inc values.
4683 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4684   if (TTI.getPreferredAddressingMode(L, &SE) != TTI::AMK_PostIndexed)
4685     return;
4686   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4687     return;
4688 
4689   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4690                        "Narrowing the search space by choosing the lowest "
4691                        "register Formula for PostInc Uses.\n");
4692 
4693   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4694     LSRUse &LU = Uses[LUIdx];
4695 
4696     if (LU.Kind != LSRUse::Address)
4697       continue;
4698     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4699         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4700       continue;
4701 
4702     size_t MinRegs = std::numeric_limits<size_t>::max();
4703     for (const Formula &F : LU.Formulae)
4704       MinRegs = std::min(F.getNumRegs(), MinRegs);
4705 
4706     bool Any = false;
4707     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4708          ++FIdx) {
4709       Formula &F = LU.Formulae[FIdx];
4710       if (F.getNumRegs() > MinRegs) {
4711         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4712                    dbgs() << "\n");
4713         LU.DeleteFormula(F);
4714         --FIdx;
4715         --NumForms;
4716         Any = true;
4717       }
4718     }
4719     if (Any)
4720       LU.RecomputeRegs(LUIdx, RegUses);
4721 
4722     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4723       break;
4724   }
4725 
4726   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4727 }
4728 
4729 /// The function delete formulas with high registers number expectation.
4730 /// Assuming we don't know the value of each formula (already delete
4731 /// all inefficient), generate probability of not selecting for each
4732 /// register.
4733 /// For example,
4734 /// Use1:
4735 ///  reg(a) + reg({0,+,1})
4736 ///  reg(a) + reg({-1,+,1}) + 1
4737 ///  reg({a,+,1})
4738 /// Use2:
4739 ///  reg(b) + reg({0,+,1})
4740 ///  reg(b) + reg({-1,+,1}) + 1
4741 ///  reg({b,+,1})
4742 /// Use3:
4743 ///  reg(c) + reg(b) + reg({0,+,1})
4744 ///  reg(c) + reg({b,+,1})
4745 ///
4746 /// Probability of not selecting
4747 ///                 Use1   Use2    Use3
4748 /// reg(a)         (1/3) *   1   *   1
4749 /// reg(b)           1   * (1/3) * (1/2)
4750 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4751 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4752 /// reg({a,+,1})   (2/3) *   1   *   1
4753 /// reg({b,+,1})     1   * (2/3) * (2/3)
4754 /// reg(c)           1   *   1   *   0
4755 ///
4756 /// Now count registers number mathematical expectation for each formula:
4757 /// Note that for each use we exclude probability if not selecting for the use.
4758 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4759 /// probabilty 1/3 of not selecting for Use1).
4760 /// Use1:
4761 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4762 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4763 ///  reg({a,+,1})                   1
4764 /// Use2:
4765 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4766 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4767 ///  reg({b,+,1})                   2/3
4768 /// Use3:
4769 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4770 ///  reg(c) + reg({b,+,1})          1 + 2/3
4771 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4772   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4773     return;
4774   // Ok, we have too many of formulae on our hands to conveniently handle.
4775   // Use a rough heuristic to thin out the list.
4776 
4777   // Set of Regs wich will be 100% used in final solution.
4778   // Used in each formula of a solution (in example above this is reg(c)).
4779   // We can skip them in calculations.
4780   SmallPtrSet<const SCEV *, 4> UniqRegs;
4781   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4782 
4783   // Map each register to probability of not selecting
4784   DenseMap <const SCEV *, float> RegNumMap;
4785   for (const SCEV *Reg : RegUses) {
4786     if (UniqRegs.count(Reg))
4787       continue;
4788     float PNotSel = 1;
4789     for (const LSRUse &LU : Uses) {
4790       if (!LU.Regs.count(Reg))
4791         continue;
4792       float P = LU.getNotSelectedProbability(Reg);
4793       if (P != 0.0)
4794         PNotSel *= P;
4795       else
4796         UniqRegs.insert(Reg);
4797     }
4798     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4799   }
4800 
4801   LLVM_DEBUG(
4802       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4803 
4804   // Delete formulas where registers number expectation is high.
4805   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4806     LSRUse &LU = Uses[LUIdx];
4807     // If nothing to delete - continue.
4808     if (LU.Formulae.size() < 2)
4809       continue;
4810     // This is temporary solution to test performance. Float should be
4811     // replaced with round independent type (based on integers) to avoid
4812     // different results for different target builds.
4813     float FMinRegNum = LU.Formulae[0].getNumRegs();
4814     float FMinARegNum = LU.Formulae[0].getNumRegs();
4815     size_t MinIdx = 0;
4816     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4817       Formula &F = LU.Formulae[i];
4818       float FRegNum = 0;
4819       float FARegNum = 0;
4820       for (const SCEV *BaseReg : F.BaseRegs) {
4821         if (UniqRegs.count(BaseReg))
4822           continue;
4823         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4824         if (isa<SCEVAddRecExpr>(BaseReg))
4825           FARegNum +=
4826               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4827       }
4828       if (const SCEV *ScaledReg = F.ScaledReg) {
4829         if (!UniqRegs.count(ScaledReg)) {
4830           FRegNum +=
4831               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4832           if (isa<SCEVAddRecExpr>(ScaledReg))
4833             FARegNum +=
4834                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4835         }
4836       }
4837       if (FMinRegNum > FRegNum ||
4838           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4839         FMinRegNum = FRegNum;
4840         FMinARegNum = FARegNum;
4841         MinIdx = i;
4842       }
4843     }
4844     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4845                dbgs() << " with min reg num " << FMinRegNum << '\n');
4846     if (MinIdx != 0)
4847       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4848     while (LU.Formulae.size() != 1) {
4849       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4850                  dbgs() << '\n');
4851       LU.Formulae.pop_back();
4852     }
4853     LU.RecomputeRegs(LUIdx, RegUses);
4854     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4855     Formula &F = LU.Formulae[0];
4856     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4857     // When we choose the formula, the regs become unique.
4858     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4859     if (F.ScaledReg)
4860       UniqRegs.insert(F.ScaledReg);
4861   }
4862   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4863 }
4864 
4865 /// Pick a register which seems likely to be profitable, and then in any use
4866 /// which has any reference to that register, delete all formulae which do not
4867 /// reference that register.
4868 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4869   // With all other options exhausted, loop until the system is simple
4870   // enough to handle.
4871   SmallPtrSet<const SCEV *, 4> Taken;
4872   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4873     // Ok, we have too many of formulae on our hands to conveniently handle.
4874     // Use a rough heuristic to thin out the list.
4875     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4876 
4877     // Pick the register which is used by the most LSRUses, which is likely
4878     // to be a good reuse register candidate.
4879     const SCEV *Best = nullptr;
4880     unsigned BestNum = 0;
4881     for (const SCEV *Reg : RegUses) {
4882       if (Taken.count(Reg))
4883         continue;
4884       if (!Best) {
4885         Best = Reg;
4886         BestNum = RegUses.getUsedByIndices(Reg).count();
4887       } else {
4888         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4889         if (Count > BestNum) {
4890           Best = Reg;
4891           BestNum = Count;
4892         }
4893       }
4894     }
4895     assert(Best && "Failed to find best LSRUse candidate");
4896 
4897     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4898                       << " will yield profitable reuse.\n");
4899     Taken.insert(Best);
4900 
4901     // In any use with formulae which references this register, delete formulae
4902     // which don't reference it.
4903     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4904       LSRUse &LU = Uses[LUIdx];
4905       if (!LU.Regs.count(Best)) continue;
4906 
4907       bool Any = false;
4908       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4909         Formula &F = LU.Formulae[i];
4910         if (!F.referencesReg(Best)) {
4911           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4912           LU.DeleteFormula(F);
4913           --e;
4914           --i;
4915           Any = true;
4916           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4917           continue;
4918         }
4919       }
4920 
4921       if (Any)
4922         LU.RecomputeRegs(LUIdx, RegUses);
4923     }
4924 
4925     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4926   }
4927 }
4928 
4929 /// If there are an extraordinary number of formulae to choose from, use some
4930 /// rough heuristics to prune down the number of formulae. This keeps the main
4931 /// solver from taking an extraordinary amount of time in some worst-case
4932 /// scenarios.
4933 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4934   NarrowSearchSpaceByDetectingSupersets();
4935   NarrowSearchSpaceByCollapsingUnrolledCode();
4936   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4937   if (FilterSameScaledReg)
4938     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4939   NarrowSearchSpaceByFilterPostInc();
4940   if (LSRExpNarrow)
4941     NarrowSearchSpaceByDeletingCostlyFormulas();
4942   else
4943     NarrowSearchSpaceByPickingWinnerRegs();
4944 }
4945 
4946 /// This is the recursive solver.
4947 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4948                                Cost &SolutionCost,
4949                                SmallVectorImpl<const Formula *> &Workspace,
4950                                const Cost &CurCost,
4951                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4952                                DenseSet<const SCEV *> &VisitedRegs) const {
4953   // Some ideas:
4954   //  - prune more:
4955   //    - use more aggressive filtering
4956   //    - sort the formula so that the most profitable solutions are found first
4957   //    - sort the uses too
4958   //  - search faster:
4959   //    - don't compute a cost, and then compare. compare while computing a cost
4960   //      and bail early.
4961   //    - track register sets with SmallBitVector
4962 
4963   const LSRUse &LU = Uses[Workspace.size()];
4964 
4965   // If this use references any register that's already a part of the
4966   // in-progress solution, consider it a requirement that a formula must
4967   // reference that register in order to be considered. This prunes out
4968   // unprofitable searching.
4969   SmallSetVector<const SCEV *, 4> ReqRegs;
4970   for (const SCEV *S : CurRegs)
4971     if (LU.Regs.count(S))
4972       ReqRegs.insert(S);
4973 
4974   SmallPtrSet<const SCEV *, 16> NewRegs;
4975   Cost NewCost(L, SE, TTI);
4976   for (const Formula &F : LU.Formulae) {
4977     // Ignore formulae which may not be ideal in terms of register reuse of
4978     // ReqRegs.  The formula should use all required registers before
4979     // introducing new ones.
4980     // This can sometimes (notably when trying to favour postinc) lead to
4981     // sub-optimial decisions. There it is best left to the cost modelling to
4982     // get correct.
4983     if (TTI.getPreferredAddressingMode(L, &SE) != TTI::AMK_PostIndexed ||
4984         LU.Kind != LSRUse::Address) {
4985       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
4986       for (const SCEV *Reg : ReqRegs) {
4987         if ((F.ScaledReg && F.ScaledReg == Reg) ||
4988             is_contained(F.BaseRegs, Reg)) {
4989           --NumReqRegsToFind;
4990           if (NumReqRegsToFind == 0)
4991             break;
4992         }
4993       }
4994       if (NumReqRegsToFind != 0) {
4995         // If none of the formulae satisfied the required registers, then we could
4996         // clear ReqRegs and try again. Currently, we simply give up in this case.
4997         continue;
4998       }
4999     }
5000 
5001     // Evaluate the cost of the current formula. If it's already worse than
5002     // the current best, prune the search at that point.
5003     NewCost = CurCost;
5004     NewRegs = CurRegs;
5005     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5006     if (NewCost.isLess(SolutionCost)) {
5007       Workspace.push_back(&F);
5008       if (Workspace.size() != Uses.size()) {
5009         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5010                      NewRegs, VisitedRegs);
5011         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5012           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5013       } else {
5014         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5015                    dbgs() << ".\nRegs:\n";
5016                    for (const SCEV *S : NewRegs) dbgs()
5017                       << "- " << *S << "\n";
5018                    dbgs() << '\n');
5019 
5020         SolutionCost = NewCost;
5021         Solution = Workspace;
5022       }
5023       Workspace.pop_back();
5024     }
5025   }
5026 }
5027 
5028 /// Choose one formula from each use. Return the results in the given Solution
5029 /// vector.
5030 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5031   SmallVector<const Formula *, 8> Workspace;
5032   Cost SolutionCost(L, SE, TTI);
5033   SolutionCost.Lose();
5034   Cost CurCost(L, SE, TTI);
5035   SmallPtrSet<const SCEV *, 16> CurRegs;
5036   DenseSet<const SCEV *> VisitedRegs;
5037   Workspace.reserve(Uses.size());
5038 
5039   // SolveRecurse does all the work.
5040   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5041                CurRegs, VisitedRegs);
5042   if (Solution.empty()) {
5043     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5044     return;
5045   }
5046 
5047   // Ok, we've now made all our decisions.
5048   LLVM_DEBUG(dbgs() << "\n"
5049                        "The chosen solution requires ";
5050              SolutionCost.print(dbgs()); dbgs() << ":\n";
5051              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5052                dbgs() << "  ";
5053                Uses[i].print(dbgs());
5054                dbgs() << "\n"
5055                          "    ";
5056                Solution[i]->print(dbgs());
5057                dbgs() << '\n';
5058              });
5059 
5060   assert(Solution.size() == Uses.size() && "Malformed solution!");
5061 }
5062 
5063 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5064 /// we can go while still being dominated by the input positions. This helps
5065 /// canonicalize the insert position, which encourages sharing.
5066 BasicBlock::iterator
5067 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5068                                  const SmallVectorImpl<Instruction *> &Inputs)
5069                                                                          const {
5070   Instruction *Tentative = &*IP;
5071   while (true) {
5072     bool AllDominate = true;
5073     Instruction *BetterPos = nullptr;
5074     // Don't bother attempting to insert before a catchswitch, their basic block
5075     // cannot have other non-PHI instructions.
5076     if (isa<CatchSwitchInst>(Tentative))
5077       return IP;
5078 
5079     for (Instruction *Inst : Inputs) {
5080       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5081         AllDominate = false;
5082         break;
5083       }
5084       // Attempt to find an insert position in the middle of the block,
5085       // instead of at the end, so that it can be used for other expansions.
5086       if (Tentative->getParent() == Inst->getParent() &&
5087           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5088         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5089     }
5090     if (!AllDominate)
5091       break;
5092     if (BetterPos)
5093       IP = BetterPos->getIterator();
5094     else
5095       IP = Tentative->getIterator();
5096 
5097     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5098     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5099 
5100     BasicBlock *IDom;
5101     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5102       if (!Rung) return IP;
5103       Rung = Rung->getIDom();
5104       if (!Rung) return IP;
5105       IDom = Rung->getBlock();
5106 
5107       // Don't climb into a loop though.
5108       const Loop *IDomLoop = LI.getLoopFor(IDom);
5109       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5110       if (IDomDepth <= IPLoopDepth &&
5111           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5112         break;
5113     }
5114 
5115     Tentative = IDom->getTerminator();
5116   }
5117 
5118   return IP;
5119 }
5120 
5121 /// Determine an input position which will be dominated by the operands and
5122 /// which will dominate the result.
5123 BasicBlock::iterator
5124 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5125                                            const LSRFixup &LF,
5126                                            const LSRUse &LU,
5127                                            SCEVExpander &Rewriter) const {
5128   // Collect some instructions which must be dominated by the
5129   // expanding replacement. These must be dominated by any operands that
5130   // will be required in the expansion.
5131   SmallVector<Instruction *, 4> Inputs;
5132   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5133     Inputs.push_back(I);
5134   if (LU.Kind == LSRUse::ICmpZero)
5135     if (Instruction *I =
5136           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5137       Inputs.push_back(I);
5138   if (LF.PostIncLoops.count(L)) {
5139     if (LF.isUseFullyOutsideLoop(L))
5140       Inputs.push_back(L->getLoopLatch()->getTerminator());
5141     else
5142       Inputs.push_back(IVIncInsertPos);
5143   }
5144   // The expansion must also be dominated by the increment positions of any
5145   // loops it for which it is using post-inc mode.
5146   for (const Loop *PIL : LF.PostIncLoops) {
5147     if (PIL == L) continue;
5148 
5149     // Be dominated by the loop exit.
5150     SmallVector<BasicBlock *, 4> ExitingBlocks;
5151     PIL->getExitingBlocks(ExitingBlocks);
5152     if (!ExitingBlocks.empty()) {
5153       BasicBlock *BB = ExitingBlocks[0];
5154       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5155         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5156       Inputs.push_back(BB->getTerminator());
5157     }
5158   }
5159 
5160   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5161          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5162          "Insertion point must be a normal instruction");
5163 
5164   // Then, climb up the immediate dominator tree as far as we can go while
5165   // still being dominated by the input positions.
5166   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5167 
5168   // Don't insert instructions before PHI nodes.
5169   while (isa<PHINode>(IP)) ++IP;
5170 
5171   // Ignore landingpad instructions.
5172   while (IP->isEHPad()) ++IP;
5173 
5174   // Ignore debug intrinsics.
5175   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5176 
5177   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5178   // IP consistent across expansions and allows the previously inserted
5179   // instructions to be reused by subsequent expansion.
5180   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5181     ++IP;
5182 
5183   return IP;
5184 }
5185 
5186 /// Emit instructions for the leading candidate expression for this LSRUse (this
5187 /// is called "expanding").
5188 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5189                            const Formula &F, BasicBlock::iterator IP,
5190                            SCEVExpander &Rewriter,
5191                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5192   if (LU.RigidFormula)
5193     return LF.OperandValToReplace;
5194 
5195   // Determine an input position which will be dominated by the operands and
5196   // which will dominate the result.
5197   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5198   Rewriter.setInsertPoint(&*IP);
5199 
5200   // Inform the Rewriter if we have a post-increment use, so that it can
5201   // perform an advantageous expansion.
5202   Rewriter.setPostInc(LF.PostIncLoops);
5203 
5204   // This is the type that the user actually needs.
5205   Type *OpTy = LF.OperandValToReplace->getType();
5206   // This will be the type that we'll initially expand to.
5207   Type *Ty = F.getType();
5208   if (!Ty)
5209     // No type known; just expand directly to the ultimate type.
5210     Ty = OpTy;
5211   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5212     // Expand directly to the ultimate type if it's the right size.
5213     Ty = OpTy;
5214   // This is the type to do integer arithmetic in.
5215   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5216 
5217   // Build up a list of operands to add together to form the full base.
5218   SmallVector<const SCEV *, 8> Ops;
5219 
5220   // Expand the BaseRegs portion.
5221   for (const SCEV *Reg : F.BaseRegs) {
5222     assert(!Reg->isZero() && "Zero allocated in a base register!");
5223 
5224     // If we're expanding for a post-inc user, make the post-inc adjustment.
5225     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5226     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5227   }
5228 
5229   // Expand the ScaledReg portion.
5230   Value *ICmpScaledV = nullptr;
5231   if (F.Scale != 0) {
5232     const SCEV *ScaledS = F.ScaledReg;
5233 
5234     // If we're expanding for a post-inc user, make the post-inc adjustment.
5235     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5236     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5237 
5238     if (LU.Kind == LSRUse::ICmpZero) {
5239       // Expand ScaleReg as if it was part of the base regs.
5240       if (F.Scale == 1)
5241         Ops.push_back(
5242             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5243       else {
5244         // An interesting way of "folding" with an icmp is to use a negated
5245         // scale, which we'll implement by inserting it into the other operand
5246         // of the icmp.
5247         assert(F.Scale == -1 &&
5248                "The only scale supported by ICmpZero uses is -1!");
5249         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5250       }
5251     } else {
5252       // Otherwise just expand the scaled register and an explicit scale,
5253       // which is expected to be matched as part of the address.
5254 
5255       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5256       // Unless the addressing mode will not be folded.
5257       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5258           isAMCompletelyFolded(TTI, LU, F)) {
5259         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5260         Ops.clear();
5261         Ops.push_back(SE.getUnknown(FullV));
5262       }
5263       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5264       if (F.Scale != 1)
5265         ScaledS =
5266             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5267       Ops.push_back(ScaledS);
5268     }
5269   }
5270 
5271   // Expand the GV portion.
5272   if (F.BaseGV) {
5273     // Flush the operand list to suppress SCEVExpander hoisting.
5274     if (!Ops.empty()) {
5275       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5276       Ops.clear();
5277       Ops.push_back(SE.getUnknown(FullV));
5278     }
5279     Ops.push_back(SE.getUnknown(F.BaseGV));
5280   }
5281 
5282   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5283   // unfolded offsets. LSR assumes they both live next to their uses.
5284   if (!Ops.empty()) {
5285     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5286     Ops.clear();
5287     Ops.push_back(SE.getUnknown(FullV));
5288   }
5289 
5290   // Expand the immediate portion.
5291   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5292   if (Offset != 0) {
5293     if (LU.Kind == LSRUse::ICmpZero) {
5294       // The other interesting way of "folding" with an ICmpZero is to use a
5295       // negated immediate.
5296       if (!ICmpScaledV)
5297         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5298       else {
5299         Ops.push_back(SE.getUnknown(ICmpScaledV));
5300         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5301       }
5302     } else {
5303       // Just add the immediate values. These again are expected to be matched
5304       // as part of the address.
5305       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5306     }
5307   }
5308 
5309   // Expand the unfolded offset portion.
5310   int64_t UnfoldedOffset = F.UnfoldedOffset;
5311   if (UnfoldedOffset != 0) {
5312     // Just add the immediate values.
5313     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5314                                                        UnfoldedOffset)));
5315   }
5316 
5317   // Emit instructions summing all the operands.
5318   const SCEV *FullS = Ops.empty() ?
5319                       SE.getConstant(IntTy, 0) :
5320                       SE.getAddExpr(Ops);
5321   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5322 
5323   // We're done expanding now, so reset the rewriter.
5324   Rewriter.clearPostInc();
5325 
5326   // An ICmpZero Formula represents an ICmp which we're handling as a
5327   // comparison against zero. Now that we've expanded an expression for that
5328   // form, update the ICmp's other operand.
5329   if (LU.Kind == LSRUse::ICmpZero) {
5330     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5331     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5332       DeadInsts.emplace_back(OperandIsInstr);
5333     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5334                            "a scale at the same time!");
5335     if (F.Scale == -1) {
5336       if (ICmpScaledV->getType() != OpTy) {
5337         Instruction *Cast =
5338           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5339                                                    OpTy, false),
5340                            ICmpScaledV, OpTy, "tmp", CI);
5341         ICmpScaledV = Cast;
5342       }
5343       CI->setOperand(1, ICmpScaledV);
5344     } else {
5345       // A scale of 1 means that the scale has been expanded as part of the
5346       // base regs.
5347       assert((F.Scale == 0 || F.Scale == 1) &&
5348              "ICmp does not support folding a global value and "
5349              "a scale at the same time!");
5350       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5351                                            -(uint64_t)Offset);
5352       if (C->getType() != OpTy)
5353         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5354                                                           OpTy, false),
5355                                   C, OpTy);
5356 
5357       CI->setOperand(1, C);
5358     }
5359   }
5360 
5361   return FullV;
5362 }
5363 
5364 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5365 /// effectively happens in their predecessor blocks, so the expression may need
5366 /// to be expanded in multiple places.
5367 void LSRInstance::RewriteForPHI(
5368     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5369     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5370   DenseMap<BasicBlock *, Value *> Inserted;
5371   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5372     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5373       bool needUpdateFixups = false;
5374       BasicBlock *BB = PN->getIncomingBlock(i);
5375 
5376       // If this is a critical edge, split the edge so that we do not insert
5377       // the code on all predecessor/successor paths.  We do this unless this
5378       // is the canonical backedge for this loop, which complicates post-inc
5379       // users.
5380       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5381           !isa<IndirectBrInst>(BB->getTerminator()) &&
5382           !isa<CatchSwitchInst>(BB->getTerminator())) {
5383         BasicBlock *Parent = PN->getParent();
5384         Loop *PNLoop = LI.getLoopFor(Parent);
5385         if (!PNLoop || Parent != PNLoop->getHeader()) {
5386           // Split the critical edge.
5387           BasicBlock *NewBB = nullptr;
5388           if (!Parent->isLandingPad()) {
5389             NewBB =
5390                 SplitCriticalEdge(BB, Parent,
5391                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5392                                       .setMergeIdenticalEdges()
5393                                       .setKeepOneInputPHIs());
5394           } else {
5395             SmallVector<BasicBlock*, 2> NewBBs;
5396             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5397             NewBB = NewBBs[0];
5398           }
5399           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5400           // phi predecessors are identical. The simple thing to do is skip
5401           // splitting in this case rather than complicate the API.
5402           if (NewBB) {
5403             // If PN is outside of the loop and BB is in the loop, we want to
5404             // move the block to be immediately before the PHI block, not
5405             // immediately after BB.
5406             if (L->contains(BB) && !L->contains(PN))
5407               NewBB->moveBefore(PN->getParent());
5408 
5409             // Splitting the edge can reduce the number of PHI entries we have.
5410             e = PN->getNumIncomingValues();
5411             BB = NewBB;
5412             i = PN->getBasicBlockIndex(BB);
5413 
5414             needUpdateFixups = true;
5415           }
5416         }
5417       }
5418 
5419       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5420         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5421       if (!Pair.second)
5422         PN->setIncomingValue(i, Pair.first->second);
5423       else {
5424         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5425                               Rewriter, DeadInsts);
5426 
5427         // If this is reuse-by-noop-cast, insert the noop cast.
5428         Type *OpTy = LF.OperandValToReplace->getType();
5429         if (FullV->getType() != OpTy)
5430           FullV =
5431             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5432                                                      OpTy, false),
5433                              FullV, LF.OperandValToReplace->getType(),
5434                              "tmp", BB->getTerminator());
5435 
5436         PN->setIncomingValue(i, FullV);
5437         Pair.first->second = FullV;
5438       }
5439 
5440       // If LSR splits critical edge and phi node has other pending
5441       // fixup operands, we need to update those pending fixups. Otherwise
5442       // formulae will not be implemented completely and some instructions
5443       // will not be eliminated.
5444       if (needUpdateFixups) {
5445         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5446           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5447             // If fixup is supposed to rewrite some operand in the phi
5448             // that was just updated, it may be already moved to
5449             // another phi node. Such fixup requires update.
5450             if (Fixup.UserInst == PN) {
5451               // Check if the operand we try to replace still exists in the
5452               // original phi.
5453               bool foundInOriginalPHI = false;
5454               for (const auto &val : PN->incoming_values())
5455                 if (val == Fixup.OperandValToReplace) {
5456                   foundInOriginalPHI = true;
5457                   break;
5458                 }
5459 
5460               // If fixup operand found in original PHI - nothing to do.
5461               if (foundInOriginalPHI)
5462                 continue;
5463 
5464               // Otherwise it might be moved to another PHI and requires update.
5465               // If fixup operand not found in any of the incoming blocks that
5466               // means we have already rewritten it - nothing to do.
5467               for (const auto &Block : PN->blocks())
5468                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5469                      ++I) {
5470                   PHINode *NewPN = cast<PHINode>(I);
5471                   for (const auto &val : NewPN->incoming_values())
5472                     if (val == Fixup.OperandValToReplace)
5473                       Fixup.UserInst = NewPN;
5474                 }
5475             }
5476       }
5477     }
5478 }
5479 
5480 /// Emit instructions for the leading candidate expression for this LSRUse (this
5481 /// is called "expanding"), and update the UserInst to reference the newly
5482 /// expanded value.
5483 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5484                           const Formula &F, SCEVExpander &Rewriter,
5485                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5486   // First, find an insertion point that dominates UserInst. For PHI nodes,
5487   // find the nearest block which dominates all the relevant uses.
5488   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5489     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5490   } else {
5491     Value *FullV =
5492       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5493 
5494     // If this is reuse-by-noop-cast, insert the noop cast.
5495     Type *OpTy = LF.OperandValToReplace->getType();
5496     if (FullV->getType() != OpTy) {
5497       Instruction *Cast =
5498         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5499                          FullV, OpTy, "tmp", LF.UserInst);
5500       FullV = Cast;
5501     }
5502 
5503     // Update the user. ICmpZero is handled specially here (for now) because
5504     // Expand may have updated one of the operands of the icmp already, and
5505     // its new value may happen to be equal to LF.OperandValToReplace, in
5506     // which case doing replaceUsesOfWith leads to replacing both operands
5507     // with the same value. TODO: Reorganize this.
5508     if (LU.Kind == LSRUse::ICmpZero)
5509       LF.UserInst->setOperand(0, FullV);
5510     else
5511       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5512   }
5513 
5514   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5515     DeadInsts.emplace_back(OperandIsInstr);
5516 }
5517 
5518 /// Rewrite all the fixup locations with new values, following the chosen
5519 /// solution.
5520 void LSRInstance::ImplementSolution(
5521     const SmallVectorImpl<const Formula *> &Solution) {
5522   // Keep track of instructions we may have made dead, so that
5523   // we can remove them after we are done working.
5524   SmallVector<WeakTrackingVH, 16> DeadInsts;
5525 
5526   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5527                         false);
5528 #ifndef NDEBUG
5529   Rewriter.setDebugType(DEBUG_TYPE);
5530 #endif
5531   Rewriter.disableCanonicalMode();
5532   Rewriter.enableLSRMode();
5533   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5534 
5535   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5536   for (const IVChain &Chain : IVChainVec) {
5537     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5538       Rewriter.setChainedPhi(PN);
5539   }
5540 
5541   // Expand the new value definitions and update the users.
5542   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5543     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5544       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5545       Changed = true;
5546     }
5547 
5548   for (const IVChain &Chain : IVChainVec) {
5549     GenerateIVChain(Chain, Rewriter, DeadInsts);
5550     Changed = true;
5551   }
5552   // Clean up after ourselves. This must be done before deleting any
5553   // instructions.
5554   Rewriter.clear();
5555 
5556   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5557                                                                   &TLI, MSSAU);
5558 }
5559 
5560 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5561                          DominatorTree &DT, LoopInfo &LI,
5562                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5563                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5564     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5565       MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing &&
5566                                        TTI.getPreferredAddressingMode(L, &SE) ==
5567                                            TTI::AMK_PreIndexed) {
5568   // If LoopSimplify form is not available, stay out of trouble.
5569   if (!L->isLoopSimplifyForm())
5570     return;
5571 
5572   // If there's no interesting work to be done, bail early.
5573   if (IU.empty()) return;
5574 
5575   // If there's too much analysis to be done, bail early. We won't be able to
5576   // model the problem anyway.
5577   unsigned NumUsers = 0;
5578   for (const IVStrideUse &U : IU) {
5579     if (++NumUsers > MaxIVUsers) {
5580       (void)U;
5581       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5582                         << "\n");
5583       return;
5584     }
5585     // Bail out if we have a PHI on an EHPad that gets a value from a
5586     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5587     // no good place to stick any instructions.
5588     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5589        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5590        if (isa<FuncletPadInst>(FirstNonPHI) ||
5591            isa<CatchSwitchInst>(FirstNonPHI))
5592          for (BasicBlock *PredBB : PN->blocks())
5593            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5594              return;
5595     }
5596   }
5597 
5598 #ifndef NDEBUG
5599   // All dominating loops must have preheaders, or SCEVExpander may not be able
5600   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5601   //
5602   // IVUsers analysis should only create users that are dominated by simple loop
5603   // headers. Since this loop should dominate all of its users, its user list
5604   // should be empty if this loop itself is not within a simple loop nest.
5605   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5606        Rung; Rung = Rung->getIDom()) {
5607     BasicBlock *BB = Rung->getBlock();
5608     const Loop *DomLoop = LI.getLoopFor(BB);
5609     if (DomLoop && DomLoop->getHeader() == BB) {
5610       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5611     }
5612   }
5613 #endif // DEBUG
5614 
5615   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5616              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5617              dbgs() << ":\n");
5618 
5619   // First, perform some low-level loop optimizations.
5620   OptimizeShadowIV();
5621   OptimizeLoopTermCond();
5622 
5623   // If loop preparation eliminates all interesting IV users, bail.
5624   if (IU.empty()) return;
5625 
5626   // Skip nested loops until we can model them better with formulae.
5627   if (!L->isInnermost()) {
5628     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5629     return;
5630   }
5631 
5632   // Start collecting data and preparing for the solver.
5633   // If number of registers is not the major cost, we cannot benefit from the
5634   // current profitable chain optimization which is based on number of
5635   // registers.
5636   // FIXME: add profitable chain optimization for other kinds major cost, for
5637   // example number of instructions.
5638   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5639     CollectChains();
5640   CollectInterestingTypesAndFactors();
5641   CollectFixupsAndInitialFormulae();
5642   CollectLoopInvariantFixupsAndFormulae();
5643 
5644   if (Uses.empty())
5645     return;
5646 
5647   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5648              print_uses(dbgs()));
5649 
5650   // Now use the reuse data to generate a bunch of interesting ways
5651   // to formulate the values needed for the uses.
5652   GenerateAllReuseFormulae();
5653 
5654   FilterOutUndesirableDedicatedRegisters();
5655   NarrowSearchSpaceUsingHeuristics();
5656 
5657   SmallVector<const Formula *, 8> Solution;
5658   Solve(Solution);
5659 
5660   // Release memory that is no longer needed.
5661   Factors.clear();
5662   Types.clear();
5663   RegUses.clear();
5664 
5665   if (Solution.empty())
5666     return;
5667 
5668 #ifndef NDEBUG
5669   // Formulae should be legal.
5670   for (const LSRUse &LU : Uses) {
5671     for (const Formula &F : LU.Formulae)
5672       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5673                         F) && "Illegal formula generated!");
5674   };
5675 #endif
5676 
5677   // Now that we've decided what we want, make it so.
5678   ImplementSolution(Solution);
5679 }
5680 
5681 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5682 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5683   if (Factors.empty() && Types.empty()) return;
5684 
5685   OS << "LSR has identified the following interesting factors and types: ";
5686   bool First = true;
5687 
5688   for (int64_t Factor : Factors) {
5689     if (!First) OS << ", ";
5690     First = false;
5691     OS << '*' << Factor;
5692   }
5693 
5694   for (Type *Ty : Types) {
5695     if (!First) OS << ", ";
5696     First = false;
5697     OS << '(' << *Ty << ')';
5698   }
5699   OS << '\n';
5700 }
5701 
5702 void LSRInstance::print_fixups(raw_ostream &OS) const {
5703   OS << "LSR is examining the following fixup sites:\n";
5704   for (const LSRUse &LU : Uses)
5705     for (const LSRFixup &LF : LU.Fixups) {
5706       dbgs() << "  ";
5707       LF.print(OS);
5708       OS << '\n';
5709     }
5710 }
5711 
5712 void LSRInstance::print_uses(raw_ostream &OS) const {
5713   OS << "LSR is examining the following uses:\n";
5714   for (const LSRUse &LU : Uses) {
5715     dbgs() << "  ";
5716     LU.print(OS);
5717     OS << '\n';
5718     for (const Formula &F : LU.Formulae) {
5719       OS << "    ";
5720       F.print(OS);
5721       OS << '\n';
5722     }
5723   }
5724 }
5725 
5726 void LSRInstance::print(raw_ostream &OS) const {
5727   print_factors_and_types(OS);
5728   print_fixups(OS);
5729   print_uses(OS);
5730 }
5731 
5732 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5733   print(errs()); errs() << '\n';
5734 }
5735 #endif
5736 
5737 namespace {
5738 
5739 class LoopStrengthReduce : public LoopPass {
5740 public:
5741   static char ID; // Pass ID, replacement for typeid
5742 
5743   LoopStrengthReduce();
5744 
5745 private:
5746   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5747   void getAnalysisUsage(AnalysisUsage &AU) const override;
5748 };
5749 
5750 } // end anonymous namespace
5751 
5752 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5753   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5754 }
5755 
5756 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5757   // We split critical edges, so we change the CFG.  However, we do update
5758   // many analyses if they are around.
5759   AU.addPreservedID(LoopSimplifyID);
5760 
5761   AU.addRequired<LoopInfoWrapperPass>();
5762   AU.addPreserved<LoopInfoWrapperPass>();
5763   AU.addRequiredID(LoopSimplifyID);
5764   AU.addRequired<DominatorTreeWrapperPass>();
5765   AU.addPreserved<DominatorTreeWrapperPass>();
5766   AU.addRequired<ScalarEvolutionWrapperPass>();
5767   AU.addPreserved<ScalarEvolutionWrapperPass>();
5768   AU.addRequired<AssumptionCacheTracker>();
5769   AU.addRequired<TargetLibraryInfoWrapperPass>();
5770   // Requiring LoopSimplify a second time here prevents IVUsers from running
5771   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5772   AU.addRequiredID(LoopSimplifyID);
5773   AU.addRequired<IVUsersWrapperPass>();
5774   AU.addPreserved<IVUsersWrapperPass>();
5775   AU.addRequired<TargetTransformInfoWrapperPass>();
5776   AU.addPreserved<MemorySSAWrapperPass>();
5777 }
5778 
5779 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t, DIExpression *>, 4>;
5780 using EqualValuesMap = DenseMap<DbgValueInst *, EqualValues>;
5781 
5782 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE,
5783                                  EqualValuesMap &DbgValueToEqualSet) {
5784   for (auto &B : L->getBlocks()) {
5785     for (auto &I : *B) {
5786       auto DVI = dyn_cast<DbgValueInst>(&I);
5787       if (!DVI)
5788         continue;
5789       auto V = DVI->getVariableLocation();
5790       if (!V || !SE.isSCEVable(V->getType()))
5791         continue;
5792       auto DbgValueSCEV = SE.getSCEV(V);
5793       EqualValues EqSet;
5794       for (PHINode &Phi : L->getHeader()->phis()) {
5795         if (V->getType() != Phi.getType())
5796           continue;
5797         if (!SE.isSCEVable(Phi.getType()))
5798           continue;
5799         auto PhiSCEV = SE.getSCEV(&Phi);
5800         Optional<APInt> Offset =
5801                 SE.computeConstantDifference(DbgValueSCEV, PhiSCEV);
5802         if (Offset && Offset->getMinSignedBits() <= 64)
5803           EqSet.emplace_back(std::make_tuple(
5804               &Phi, Offset.getValue().getSExtValue(), DVI->getExpression()));
5805       }
5806       DbgValueToEqualSet[DVI] = std::move(EqSet);
5807     }
5808   }
5809 }
5810 
5811 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet) {
5812   for (auto A : DbgValueToEqualSet) {
5813     auto DVI = A.first;
5814     // Only update those that are now undef.
5815     if (!isa_and_nonnull<UndefValue>(DVI->getVariableLocation()))
5816       continue;
5817     for (auto EV : A.second) {
5818       auto V = std::get<WeakVH>(EV);
5819       if (!V)
5820         continue;
5821       auto DbgDIExpr = std::get<DIExpression *>(EV);
5822       auto Offset = std::get<int64_t>(EV);
5823       auto &Ctx = DVI->getContext();
5824       DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
5825       if (Offset) {
5826         SmallVector<uint64_t, 8> Ops;
5827         DIExpression::appendOffset(Ops, Offset);
5828         DbgDIExpr = DIExpression::prependOpcodes(DbgDIExpr, Ops, true);
5829       }
5830       DVI->setOperand(2, MetadataAsValue::get(Ctx, DbgDIExpr));
5831       break;
5832     }
5833   }
5834 }
5835 
5836 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5837                                DominatorTree &DT, LoopInfo &LI,
5838                                const TargetTransformInfo &TTI,
5839                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5840                                MemorySSA *MSSA) {
5841 
5842   bool Changed = false;
5843   std::unique_ptr<MemorySSAUpdater> MSSAU;
5844   if (MSSA)
5845     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5846 
5847   // Run the main LSR transformation.
5848   Changed |=
5849       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5850 
5851   // Debug preservation - before we start removing anything create equivalence
5852   // sets for the llvm.dbg.value intrinsics.
5853   EqualValuesMap DbgValueToEqualSet;
5854   DbgGatherEqualValues(L, SE, DbgValueToEqualSet);
5855 
5856   // Remove any extra phis created by processing inner loops.
5857   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5858   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5859     SmallVector<WeakTrackingVH, 16> DeadInsts;
5860     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5861     SCEVExpander Rewriter(SE, DL, "lsr", false);
5862 #ifndef NDEBUG
5863     Rewriter.setDebugType(DEBUG_TYPE);
5864 #endif
5865     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5866     if (numFolded) {
5867       Changed = true;
5868       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5869                                                            MSSAU.get());
5870       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5871     }
5872   }
5873 
5874   DbgApplyEqualValues(DbgValueToEqualSet);
5875 
5876   return Changed;
5877 }
5878 
5879 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5880   if (skipLoop(L))
5881     return false;
5882 
5883   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5884   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5885   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5886   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5887   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5888       *L->getHeader()->getParent());
5889   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5890       *L->getHeader()->getParent());
5891   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5892       *L->getHeader()->getParent());
5893   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5894   MemorySSA *MSSA = nullptr;
5895   if (MSSAAnalysis)
5896     MSSA = &MSSAAnalysis->getMSSA();
5897   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5898 }
5899 
5900 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
5901                                               LoopStandardAnalysisResults &AR,
5902                                               LPMUpdater &) {
5903   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
5904                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
5905     return PreservedAnalyses::all();
5906 
5907   auto PA = getLoopPassPreservedAnalyses();
5908   if (AR.MSSA)
5909     PA.preserve<MemorySSAAnalysis>();
5910   return PA;
5911 }
5912 
5913 char LoopStrengthReduce::ID = 0;
5914 
5915 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
5916                       "Loop Strength Reduction", false, false)
5917 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
5918 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
5919 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
5920 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
5921 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
5922 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
5923 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
5924                     "Loop Strength Reduction", false, false)
5925 
5926 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
5927