1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
12 //
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
18 //
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
22 //
23 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 //   ...
25 //   %i.next = add %i, 1
26 //   %c = icmp eq %i.next, %n
27 //
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
34 //
35 // TODO: More sophistication in the way Formulae are generated and filtered.
36 //
37 // TODO: Handle multiple loops at a time.
38 //
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 //       of a GlobalValue?
41 //
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 //       smaller encoding (on x86 at least).
44 //
45 // TODO: When a negated register is used by an add (such as in a list of
46 //       multiple base registers, or as the increment expression in an addrec),
47 //       we may not actually need both reg and (-1 * reg) in registers; the
48 //       negation can be implemented by using a sub instead of an add. The
49 //       lack of support for taking this into consideration when making
50 //       register pressure decisions is partly worked around by the "Special"
51 //       use kind.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/iterator_range.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/IVUsers.h"
70 #include "llvm/Analysis/LoopAnalysisManager.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/LoopPass.h"
73 #include "llvm/Analysis/MemorySSA.h"
74 #include "llvm/Analysis/MemorySSAUpdater.h"
75 #include "llvm/Analysis/ScalarEvolution.h"
76 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
77 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
78 #include "llvm/Analysis/TargetLibraryInfo.h"
79 #include "llvm/Analysis/TargetTransformInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/Config/llvm-config.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/DebugInfoMetadata.h"
86 #include "llvm/IR/DerivedTypes.h"
87 #include "llvm/IR/Dominators.h"
88 #include "llvm/IR/GlobalValue.h"
89 #include "llvm/IR/IRBuilder.h"
90 #include "llvm/IR/InstrTypes.h"
91 #include "llvm/IR/Instruction.h"
92 #include "llvm/IR/Instructions.h"
93 #include "llvm/IR/IntrinsicInst.h"
94 #include "llvm/IR/Intrinsics.h"
95 #include "llvm/IR/Module.h"
96 #include "llvm/IR/OperandTraits.h"
97 #include "llvm/IR/Operator.h"
98 #include "llvm/IR/PassManager.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
118 #include <algorithm>
119 #include <cassert>
120 #include <cstddef>
121 #include <cstdint>
122 #include <cstdlib>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <utility>
128 
129 using namespace llvm;
130 
131 #define DEBUG_TYPE "loop-reduce"
132 
133 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
134 /// bail out. This threshold is far beyond the number of users that LSR can
135 /// conceivably solve, so it should not affect generated code, but catches the
136 /// worst cases before LSR burns too much compile time and stack space.
137 static const unsigned MaxIVUsers = 200;
138 
139 // Temporary flag to cleanup congruent phis after LSR phi expansion.
140 // It's currently disabled until we can determine whether it's truly useful or
141 // not. The flag should be removed after the v3.0 release.
142 // This is now needed for ivchains.
143 static cl::opt<bool> EnablePhiElim(
144   "enable-lsr-phielim", cl::Hidden, cl::init(true),
145   cl::desc("Enable LSR phi elimination"));
146 
147 // The flag adds instruction count to solutions cost comparision.
148 static cl::opt<bool> InsnsCost(
149   "lsr-insns-cost", cl::Hidden, cl::init(true),
150   cl::desc("Add instruction count to a LSR cost model"));
151 
152 // Flag to choose how to narrow complex lsr solution
153 static cl::opt<bool> LSRExpNarrow(
154   "lsr-exp-narrow", cl::Hidden, cl::init(false),
155   cl::desc("Narrow LSR complex solution using"
156            " expectation of registers number"));
157 
158 // Flag to narrow search space by filtering non-optimal formulae with
159 // the same ScaledReg and Scale.
160 static cl::opt<bool> FilterSameScaledReg(
161     "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
162     cl::desc("Narrow LSR search space by filtering non-optimal formulae"
163              " with the same ScaledReg and Scale"));
164 
165 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
166   "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
167    cl::desc("A flag that overrides the target's preferred addressing mode."),
168    cl::values(clEnumValN(TTI::AMK_None,
169                          "none",
170                          "Don't prefer any addressing mode"),
171               clEnumValN(TTI::AMK_PreIndexed,
172                          "preindexed",
173                          "Prefer pre-indexed addressing mode"),
174               clEnumValN(TTI::AMK_PostIndexed,
175                          "postindexed",
176                          "Prefer post-indexed addressing mode")));
177 
178 static cl::opt<unsigned> ComplexityLimit(
179   "lsr-complexity-limit", cl::Hidden,
180   cl::init(std::numeric_limits<uint16_t>::max()),
181   cl::desc("LSR search space complexity limit"));
182 
183 static cl::opt<unsigned> SetupCostDepthLimit(
184     "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
185     cl::desc("The limit on recursion depth for LSRs setup cost"));
186 
187 #ifndef NDEBUG
188 // Stress test IV chain generation.
189 static cl::opt<bool> StressIVChain(
190   "stress-ivchain", cl::Hidden, cl::init(false),
191   cl::desc("Stress test LSR IV chains"));
192 #else
193 static bool StressIVChain = false;
194 #endif
195 
196 namespace {
197 
198 struct MemAccessTy {
199   /// Used in situations where the accessed memory type is unknown.
200   static const unsigned UnknownAddressSpace =
201       std::numeric_limits<unsigned>::max();
202 
203   Type *MemTy = nullptr;
204   unsigned AddrSpace = UnknownAddressSpace;
205 
206   MemAccessTy() = default;
207   MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
208 
209   bool operator==(MemAccessTy Other) const {
210     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
211   }
212 
213   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
214 
215   static MemAccessTy getUnknown(LLVMContext &Ctx,
216                                 unsigned AS = UnknownAddressSpace) {
217     return MemAccessTy(Type::getVoidTy(Ctx), AS);
218   }
219 
220   Type *getType() { return MemTy; }
221 };
222 
223 /// This class holds data which is used to order reuse candidates.
224 class RegSortData {
225 public:
226   /// This represents the set of LSRUse indices which reference
227   /// a particular register.
228   SmallBitVector UsedByIndices;
229 
230   void print(raw_ostream &OS) const;
231   void dump() const;
232 };
233 
234 } // end anonymous namespace
235 
236 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
237 void RegSortData::print(raw_ostream &OS) const {
238   OS << "[NumUses=" << UsedByIndices.count() << ']';
239 }
240 
241 LLVM_DUMP_METHOD void RegSortData::dump() const {
242   print(errs()); errs() << '\n';
243 }
244 #endif
245 
246 namespace {
247 
248 /// Map register candidates to information about how they are used.
249 class RegUseTracker {
250   using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
251 
252   RegUsesTy RegUsesMap;
253   SmallVector<const SCEV *, 16> RegSequence;
254 
255 public:
256   void countRegister(const SCEV *Reg, size_t LUIdx);
257   void dropRegister(const SCEV *Reg, size_t LUIdx);
258   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
259 
260   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
261 
262   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
263 
264   void clear();
265 
266   using iterator = SmallVectorImpl<const SCEV *>::iterator;
267   using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
268 
269   iterator begin() { return RegSequence.begin(); }
270   iterator end()   { return RegSequence.end(); }
271   const_iterator begin() const { return RegSequence.begin(); }
272   const_iterator end() const   { return RegSequence.end(); }
273 };
274 
275 } // end anonymous namespace
276 
277 void
278 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
279   std::pair<RegUsesTy::iterator, bool> Pair =
280     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
281   RegSortData &RSD = Pair.first->second;
282   if (Pair.second)
283     RegSequence.push_back(Reg);
284   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
285   RSD.UsedByIndices.set(LUIdx);
286 }
287 
288 void
289 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
290   RegUsesTy::iterator It = RegUsesMap.find(Reg);
291   assert(It != RegUsesMap.end());
292   RegSortData &RSD = It->second;
293   assert(RSD.UsedByIndices.size() > LUIdx);
294   RSD.UsedByIndices.reset(LUIdx);
295 }
296 
297 void
298 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
299   assert(LUIdx <= LastLUIdx);
300 
301   // Update RegUses. The data structure is not optimized for this purpose;
302   // we must iterate through it and update each of the bit vectors.
303   for (auto &Pair : RegUsesMap) {
304     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
305     if (LUIdx < UsedByIndices.size())
306       UsedByIndices[LUIdx] =
307         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
308     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
309   }
310 }
311 
312 bool
313 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
314   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
315   if (I == RegUsesMap.end())
316     return false;
317   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
318   int i = UsedByIndices.find_first();
319   if (i == -1) return false;
320   if ((size_t)i != LUIdx) return true;
321   return UsedByIndices.find_next(i) != -1;
322 }
323 
324 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
325   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
326   assert(I != RegUsesMap.end() && "Unknown register!");
327   return I->second.UsedByIndices;
328 }
329 
330 void RegUseTracker::clear() {
331   RegUsesMap.clear();
332   RegSequence.clear();
333 }
334 
335 namespace {
336 
337 /// This class holds information that describes a formula for computing
338 /// satisfying a use. It may include broken-out immediates and scaled registers.
339 struct Formula {
340   /// Global base address used for complex addressing.
341   GlobalValue *BaseGV = nullptr;
342 
343   /// Base offset for complex addressing.
344   int64_t BaseOffset = 0;
345 
346   /// Whether any complex addressing has a base register.
347   bool HasBaseReg = false;
348 
349   /// The scale of any complex addressing.
350   int64_t Scale = 0;
351 
352   /// The list of "base" registers for this use. When this is non-empty. The
353   /// canonical representation of a formula is
354   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
355   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
356   /// 3. The reg containing recurrent expr related with currect loop in the
357   /// formula should be put in the ScaledReg.
358   /// #1 enforces that the scaled register is always used when at least two
359   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
360   /// #2 enforces that 1 * reg is reg.
361   /// #3 ensures invariant regs with respect to current loop can be combined
362   /// together in LSR codegen.
363   /// This invariant can be temporarily broken while building a formula.
364   /// However, every formula inserted into the LSRInstance must be in canonical
365   /// form.
366   SmallVector<const SCEV *, 4> BaseRegs;
367 
368   /// The 'scaled' register for this use. This should be non-null when Scale is
369   /// not zero.
370   const SCEV *ScaledReg = nullptr;
371 
372   /// An additional constant offset which added near the use. This requires a
373   /// temporary register, but the offset itself can live in an add immediate
374   /// field rather than a register.
375   int64_t UnfoldedOffset = 0;
376 
377   Formula() = default;
378 
379   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
380 
381   bool isCanonical(const Loop &L) const;
382 
383   void canonicalize(const Loop &L);
384 
385   bool unscale();
386 
387   bool hasZeroEnd() const;
388 
389   size_t getNumRegs() const;
390   Type *getType() const;
391 
392   void deleteBaseReg(const SCEV *&S);
393 
394   bool referencesReg(const SCEV *S) const;
395   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
396                                   const RegUseTracker &RegUses) const;
397 
398   void print(raw_ostream &OS) const;
399   void dump() const;
400 };
401 
402 } // end anonymous namespace
403 
404 /// Recursion helper for initialMatch.
405 static void DoInitialMatch(const SCEV *S, Loop *L,
406                            SmallVectorImpl<const SCEV *> &Good,
407                            SmallVectorImpl<const SCEV *> &Bad,
408                            ScalarEvolution &SE) {
409   // Collect expressions which properly dominate the loop header.
410   if (SE.properlyDominates(S, L->getHeader())) {
411     Good.push_back(S);
412     return;
413   }
414 
415   // Look at add operands.
416   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
417     for (const SCEV *S : Add->operands())
418       DoInitialMatch(S, L, Good, Bad, SE);
419     return;
420   }
421 
422   // Look at addrec operands.
423   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
424     if (!AR->getStart()->isZero() && AR->isAffine()) {
425       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
426       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
427                                       AR->getStepRecurrence(SE),
428                                       // FIXME: AR->getNoWrapFlags()
429                                       AR->getLoop(), SCEV::FlagAnyWrap),
430                      L, Good, Bad, SE);
431       return;
432     }
433 
434   // Handle a multiplication by -1 (negation) if it didn't fold.
435   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
436     if (Mul->getOperand(0)->isAllOnesValue()) {
437       SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
438       const SCEV *NewMul = SE.getMulExpr(Ops);
439 
440       SmallVector<const SCEV *, 4> MyGood;
441       SmallVector<const SCEV *, 4> MyBad;
442       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
443       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
444         SE.getEffectiveSCEVType(NewMul->getType())));
445       for (const SCEV *S : MyGood)
446         Good.push_back(SE.getMulExpr(NegOne, S));
447       for (const SCEV *S : MyBad)
448         Bad.push_back(SE.getMulExpr(NegOne, S));
449       return;
450     }
451 
452   // Ok, we can't do anything interesting. Just stuff the whole thing into a
453   // register and hope for the best.
454   Bad.push_back(S);
455 }
456 
457 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
458 /// all loop-invariant and loop-computable values in a single base register.
459 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
460   SmallVector<const SCEV *, 4> Good;
461   SmallVector<const SCEV *, 4> Bad;
462   DoInitialMatch(S, L, Good, Bad, SE);
463   if (!Good.empty()) {
464     const SCEV *Sum = SE.getAddExpr(Good);
465     if (!Sum->isZero())
466       BaseRegs.push_back(Sum);
467     HasBaseReg = true;
468   }
469   if (!Bad.empty()) {
470     const SCEV *Sum = SE.getAddExpr(Bad);
471     if (!Sum->isZero())
472       BaseRegs.push_back(Sum);
473     HasBaseReg = true;
474   }
475   canonicalize(*L);
476 }
477 
478 /// Check whether or not this formula satisfies the canonical
479 /// representation.
480 /// \see Formula::BaseRegs.
481 bool Formula::isCanonical(const Loop &L) const {
482   if (!ScaledReg)
483     return BaseRegs.size() <= 1;
484 
485   if (Scale != 1)
486     return true;
487 
488   if (Scale == 1 && BaseRegs.empty())
489     return false;
490 
491   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
492   if (SAR && SAR->getLoop() == &L)
493     return true;
494 
495   // If ScaledReg is not a recurrent expr, or it is but its loop is not current
496   // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
497   // loop, we want to swap the reg in BaseRegs with ScaledReg.
498   auto I = find_if(BaseRegs, [&](const SCEV *S) {
499     return isa<const SCEVAddRecExpr>(S) &&
500            (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
501   });
502   return I == BaseRegs.end();
503 }
504 
505 /// Helper method to morph a formula into its canonical representation.
506 /// \see Formula::BaseRegs.
507 /// Every formula having more than one base register, must use the ScaledReg
508 /// field. Otherwise, we would have to do special cases everywhere in LSR
509 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
510 /// On the other hand, 1*reg should be canonicalized into reg.
511 void Formula::canonicalize(const Loop &L) {
512   if (isCanonical(L))
513     return;
514   // So far we did not need this case. This is easy to implement but it is
515   // useless to maintain dead code. Beside it could hurt compile time.
516   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
517 
518   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
519   if (!ScaledReg) {
520     ScaledReg = BaseRegs.pop_back_val();
521     Scale = 1;
522   }
523 
524   // If ScaledReg is an invariant with respect to L, find the reg from
525   // BaseRegs containing the recurrent expr related with Loop L. Swap the
526   // reg with ScaledReg.
527   const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
528   if (!SAR || SAR->getLoop() != &L) {
529     auto I = find_if(BaseRegs, [&](const SCEV *S) {
530       return isa<const SCEVAddRecExpr>(S) &&
531              (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
532     });
533     if (I != BaseRegs.end())
534       std::swap(ScaledReg, *I);
535   }
536   assert(isCanonical(L) && "Failed to canonicalize?");
537 }
538 
539 /// Get rid of the scale in the formula.
540 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
541 /// \return true if it was possible to get rid of the scale, false otherwise.
542 /// \note After this operation the formula may not be in the canonical form.
543 bool Formula::unscale() {
544   if (Scale != 1)
545     return false;
546   Scale = 0;
547   BaseRegs.push_back(ScaledReg);
548   ScaledReg = nullptr;
549   return true;
550 }
551 
552 bool Formula::hasZeroEnd() const {
553   if (UnfoldedOffset || BaseOffset)
554     return false;
555   if (BaseRegs.size() != 1 || ScaledReg)
556     return false;
557   return true;
558 }
559 
560 /// Return the total number of register operands used by this formula. This does
561 /// not include register uses implied by non-constant addrec strides.
562 size_t Formula::getNumRegs() const {
563   return !!ScaledReg + BaseRegs.size();
564 }
565 
566 /// Return the type of this formula, if it has one, or null otherwise. This type
567 /// is meaningless except for the bit size.
568 Type *Formula::getType() const {
569   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
570          ScaledReg ? ScaledReg->getType() :
571          BaseGV ? BaseGV->getType() :
572          nullptr;
573 }
574 
575 /// Delete the given base reg from the BaseRegs list.
576 void Formula::deleteBaseReg(const SCEV *&S) {
577   if (&S != &BaseRegs.back())
578     std::swap(S, BaseRegs.back());
579   BaseRegs.pop_back();
580 }
581 
582 /// Test if this formula references the given register.
583 bool Formula::referencesReg(const SCEV *S) const {
584   return S == ScaledReg || is_contained(BaseRegs, S);
585 }
586 
587 /// Test whether this formula uses registers which are used by uses other than
588 /// the use with the given index.
589 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
590                                          const RegUseTracker &RegUses) const {
591   if (ScaledReg)
592     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
593       return true;
594   for (const SCEV *BaseReg : BaseRegs)
595     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
596       return true;
597   return false;
598 }
599 
600 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
601 void Formula::print(raw_ostream &OS) const {
602   bool First = true;
603   if (BaseGV) {
604     if (!First) OS << " + "; else First = false;
605     BaseGV->printAsOperand(OS, /*PrintType=*/false);
606   }
607   if (BaseOffset != 0) {
608     if (!First) OS << " + "; else First = false;
609     OS << BaseOffset;
610   }
611   for (const SCEV *BaseReg : BaseRegs) {
612     if (!First) OS << " + "; else First = false;
613     OS << "reg(" << *BaseReg << ')';
614   }
615   if (HasBaseReg && BaseRegs.empty()) {
616     if (!First) OS << " + "; else First = false;
617     OS << "**error: HasBaseReg**";
618   } else if (!HasBaseReg && !BaseRegs.empty()) {
619     if (!First) OS << " + "; else First = false;
620     OS << "**error: !HasBaseReg**";
621   }
622   if (Scale != 0) {
623     if (!First) OS << " + "; else First = false;
624     OS << Scale << "*reg(";
625     if (ScaledReg)
626       OS << *ScaledReg;
627     else
628       OS << "<unknown>";
629     OS << ')';
630   }
631   if (UnfoldedOffset != 0) {
632     if (!First) OS << " + ";
633     OS << "imm(" << UnfoldedOffset << ')';
634   }
635 }
636 
637 LLVM_DUMP_METHOD void Formula::dump() const {
638   print(errs()); errs() << '\n';
639 }
640 #endif
641 
642 /// Return true if the given addrec can be sign-extended without changing its
643 /// value.
644 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
645   Type *WideTy =
646     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
647   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
648 }
649 
650 /// Return true if the given add can be sign-extended without changing its
651 /// value.
652 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
653   Type *WideTy =
654     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
655   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
656 }
657 
658 /// Return true if the given mul can be sign-extended without changing its
659 /// value.
660 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
661   Type *WideTy =
662     IntegerType::get(SE.getContext(),
663                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
664   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
665 }
666 
667 /// Return an expression for LHS /s RHS, if it can be determined and if the
668 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
669 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
670 /// the multiplication may overflow, which is useful when the result will be
671 /// used in a context where the most significant bits are ignored.
672 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
673                                 ScalarEvolution &SE,
674                                 bool IgnoreSignificantBits = false) {
675   // Handle the trivial case, which works for any SCEV type.
676   if (LHS == RHS)
677     return SE.getConstant(LHS->getType(), 1);
678 
679   // Handle a few RHS special cases.
680   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
681   if (RC) {
682     const APInt &RA = RC->getAPInt();
683     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
684     // some folding.
685     if (RA.isAllOnesValue())
686       return SE.getMulExpr(LHS, RC);
687     // Handle x /s 1 as x.
688     if (RA == 1)
689       return LHS;
690   }
691 
692   // Check for a division of a constant by a constant.
693   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
694     if (!RC)
695       return nullptr;
696     const APInt &LA = C->getAPInt();
697     const APInt &RA = RC->getAPInt();
698     if (LA.srem(RA) != 0)
699       return nullptr;
700     return SE.getConstant(LA.sdiv(RA));
701   }
702 
703   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
704   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
705     if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
706       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
707                                       IgnoreSignificantBits);
708       if (!Step) return nullptr;
709       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
710                                        IgnoreSignificantBits);
711       if (!Start) return nullptr;
712       // FlagNW is independent of the start value, step direction, and is
713       // preserved with smaller magnitude steps.
714       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
715       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
716     }
717     return nullptr;
718   }
719 
720   // Distribute the sdiv over add operands, if the add doesn't overflow.
721   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
722     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
723       SmallVector<const SCEV *, 8> Ops;
724       for (const SCEV *S : Add->operands()) {
725         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
726         if (!Op) return nullptr;
727         Ops.push_back(Op);
728       }
729       return SE.getAddExpr(Ops);
730     }
731     return nullptr;
732   }
733 
734   // Check for a multiply operand that we can pull RHS out of.
735   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
736     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
737       // Handle special case C1*X*Y /s C2*X*Y.
738       if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
739         if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
740           const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
741           const SCEVConstant *RC =
742               dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
743           if (LC && RC) {
744             SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
745             SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
746             if (LOps == ROps)
747               return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
748           }
749         }
750       }
751 
752       SmallVector<const SCEV *, 4> Ops;
753       bool Found = false;
754       for (const SCEV *S : Mul->operands()) {
755         if (!Found)
756           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
757                                            IgnoreSignificantBits)) {
758             S = Q;
759             Found = true;
760           }
761         Ops.push_back(S);
762       }
763       return Found ? SE.getMulExpr(Ops) : nullptr;
764     }
765     return nullptr;
766   }
767 
768   // Otherwise we don't know.
769   return nullptr;
770 }
771 
772 /// If S involves the addition of a constant integer value, return that integer
773 /// value, and mutate S to point to a new SCEV with that value excluded.
774 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
775   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
776     if (C->getAPInt().getMinSignedBits() <= 64) {
777       S = SE.getConstant(C->getType(), 0);
778       return C->getValue()->getSExtValue();
779     }
780   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
781     SmallVector<const SCEV *, 8> NewOps(Add->operands());
782     int64_t Result = ExtractImmediate(NewOps.front(), SE);
783     if (Result != 0)
784       S = SE.getAddExpr(NewOps);
785     return Result;
786   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
787     SmallVector<const SCEV *, 8> NewOps(AR->operands());
788     int64_t Result = ExtractImmediate(NewOps.front(), SE);
789     if (Result != 0)
790       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
791                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
792                            SCEV::FlagAnyWrap);
793     return Result;
794   }
795   return 0;
796 }
797 
798 /// If S involves the addition of a GlobalValue address, return that symbol, and
799 /// mutate S to point to a new SCEV with that value excluded.
800 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
801   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
802     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
803       S = SE.getConstant(GV->getType(), 0);
804       return GV;
805     }
806   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
807     SmallVector<const SCEV *, 8> NewOps(Add->operands());
808     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
809     if (Result)
810       S = SE.getAddExpr(NewOps);
811     return Result;
812   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
813     SmallVector<const SCEV *, 8> NewOps(AR->operands());
814     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
815     if (Result)
816       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
817                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
818                            SCEV::FlagAnyWrap);
819     return Result;
820   }
821   return nullptr;
822 }
823 
824 /// Returns true if the specified instruction is using the specified value as an
825 /// address.
826 static bool isAddressUse(const TargetTransformInfo &TTI,
827                          Instruction *Inst, Value *OperandVal) {
828   bool isAddress = isa<LoadInst>(Inst);
829   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
830     if (SI->getPointerOperand() == OperandVal)
831       isAddress = true;
832   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
833     // Addressing modes can also be folded into prefetches and a variety
834     // of intrinsics.
835     switch (II->getIntrinsicID()) {
836     case Intrinsic::memset:
837     case Intrinsic::prefetch:
838     case Intrinsic::masked_load:
839       if (II->getArgOperand(0) == OperandVal)
840         isAddress = true;
841       break;
842     case Intrinsic::masked_store:
843       if (II->getArgOperand(1) == OperandVal)
844         isAddress = true;
845       break;
846     case Intrinsic::memmove:
847     case Intrinsic::memcpy:
848       if (II->getArgOperand(0) == OperandVal ||
849           II->getArgOperand(1) == OperandVal)
850         isAddress = true;
851       break;
852     default: {
853       MemIntrinsicInfo IntrInfo;
854       if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
855         if (IntrInfo.PtrVal == OperandVal)
856           isAddress = true;
857       }
858     }
859     }
860   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
861     if (RMW->getPointerOperand() == OperandVal)
862       isAddress = true;
863   } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
864     if (CmpX->getPointerOperand() == OperandVal)
865       isAddress = true;
866   }
867   return isAddress;
868 }
869 
870 /// Return the type of the memory being accessed.
871 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
872                                  Instruction *Inst, Value *OperandVal) {
873   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
874   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
875     AccessTy.MemTy = SI->getOperand(0)->getType();
876     AccessTy.AddrSpace = SI->getPointerAddressSpace();
877   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
878     AccessTy.AddrSpace = LI->getPointerAddressSpace();
879   } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
880     AccessTy.AddrSpace = RMW->getPointerAddressSpace();
881   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
882     AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
883   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
884     switch (II->getIntrinsicID()) {
885     case Intrinsic::prefetch:
886     case Intrinsic::memset:
887       AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
888       AccessTy.MemTy = OperandVal->getType();
889       break;
890     case Intrinsic::memmove:
891     case Intrinsic::memcpy:
892       AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
893       AccessTy.MemTy = OperandVal->getType();
894       break;
895     case Intrinsic::masked_load:
896       AccessTy.AddrSpace =
897           II->getArgOperand(0)->getType()->getPointerAddressSpace();
898       break;
899     case Intrinsic::masked_store:
900       AccessTy.MemTy = II->getOperand(0)->getType();
901       AccessTy.AddrSpace =
902           II->getArgOperand(1)->getType()->getPointerAddressSpace();
903       break;
904     default: {
905       MemIntrinsicInfo IntrInfo;
906       if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
907         AccessTy.AddrSpace
908           = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
909       }
910 
911       break;
912     }
913     }
914   }
915 
916   // All pointers have the same requirements, so canonicalize them to an
917   // arbitrary pointer type to minimize variation.
918   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
919     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
920                                       PTy->getAddressSpace());
921 
922   return AccessTy;
923 }
924 
925 /// Return true if this AddRec is already a phi in its loop.
926 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
927   for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
928     if (SE.isSCEVable(PN.getType()) &&
929         (SE.getEffectiveSCEVType(PN.getType()) ==
930          SE.getEffectiveSCEVType(AR->getType())) &&
931         SE.getSCEV(&PN) == AR)
932       return true;
933   }
934   return false;
935 }
936 
937 /// Check if expanding this expression is likely to incur significant cost. This
938 /// is tricky because SCEV doesn't track which expressions are actually computed
939 /// by the current IR.
940 ///
941 /// We currently allow expansion of IV increments that involve adds,
942 /// multiplication by constants, and AddRecs from existing phis.
943 ///
944 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
945 /// obvious multiple of the UDivExpr.
946 static bool isHighCostExpansion(const SCEV *S,
947                                 SmallPtrSetImpl<const SCEV*> &Processed,
948                                 ScalarEvolution &SE) {
949   // Zero/One operand expressions
950   switch (S->getSCEVType()) {
951   case scUnknown:
952   case scConstant:
953     return false;
954   case scTruncate:
955     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
956                                Processed, SE);
957   case scZeroExtend:
958     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
959                                Processed, SE);
960   case scSignExtend:
961     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
962                                Processed, SE);
963   default:
964     break;
965   }
966 
967   if (!Processed.insert(S).second)
968     return false;
969 
970   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
971     for (const SCEV *S : Add->operands()) {
972       if (isHighCostExpansion(S, Processed, SE))
973         return true;
974     }
975     return false;
976   }
977 
978   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
979     if (Mul->getNumOperands() == 2) {
980       // Multiplication by a constant is ok
981       if (isa<SCEVConstant>(Mul->getOperand(0)))
982         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
983 
984       // If we have the value of one operand, check if an existing
985       // multiplication already generates this expression.
986       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
987         Value *UVal = U->getValue();
988         for (User *UR : UVal->users()) {
989           // If U is a constant, it may be used by a ConstantExpr.
990           Instruction *UI = dyn_cast<Instruction>(UR);
991           if (UI && UI->getOpcode() == Instruction::Mul &&
992               SE.isSCEVable(UI->getType())) {
993             return SE.getSCEV(UI) == Mul;
994           }
995         }
996       }
997     }
998   }
999 
1000   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1001     if (isExistingPhi(AR, SE))
1002       return false;
1003   }
1004 
1005   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1006   return true;
1007 }
1008 
1009 namespace {
1010 
1011 class LSRUse;
1012 
1013 } // end anonymous namespace
1014 
1015 /// Check if the addressing mode defined by \p F is completely
1016 /// folded in \p LU at isel time.
1017 /// This includes address-mode folding and special icmp tricks.
1018 /// This function returns true if \p LU can accommodate what \p F
1019 /// defines and up to 1 base + 1 scaled + offset.
1020 /// In other words, if \p F has several base registers, this function may
1021 /// still return true. Therefore, users still need to account for
1022 /// additional base registers and/or unfolded offsets to derive an
1023 /// accurate cost model.
1024 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1025                                  const LSRUse &LU, const Formula &F);
1026 
1027 // Get the cost of the scaling factor used in F for LU.
1028 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1029                                             const LSRUse &LU, const Formula &F,
1030                                             const Loop &L);
1031 
1032 namespace {
1033 
1034 /// This class is used to measure and compare candidate formulae.
1035 class Cost {
1036   const Loop *L = nullptr;
1037   ScalarEvolution *SE = nullptr;
1038   const TargetTransformInfo *TTI = nullptr;
1039   TargetTransformInfo::LSRCost C;
1040   TTI::AddressingModeKind AMK = TTI::AMK_None;
1041 
1042 public:
1043   Cost() = delete;
1044   Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1045        TTI::AddressingModeKind AMK) :
1046     L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1047     C.Insns = 0;
1048     C.NumRegs = 0;
1049     C.AddRecCost = 0;
1050     C.NumIVMuls = 0;
1051     C.NumBaseAdds = 0;
1052     C.ImmCost = 0;
1053     C.SetupCost = 0;
1054     C.ScaleCost = 0;
1055   }
1056 
1057   bool isLess(Cost &Other);
1058 
1059   void Lose();
1060 
1061 #ifndef NDEBUG
1062   // Once any of the metrics loses, they must all remain losers.
1063   bool isValid() {
1064     return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1065              | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1066       || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1067            & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1068   }
1069 #endif
1070 
1071   bool isLoser() {
1072     assert(isValid() && "invalid cost");
1073     return C.NumRegs == ~0u;
1074   }
1075 
1076   void RateFormula(const Formula &F,
1077                    SmallPtrSetImpl<const SCEV *> &Regs,
1078                    const DenseSet<const SCEV *> &VisitedRegs,
1079                    const LSRUse &LU,
1080                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1081 
1082   void print(raw_ostream &OS) const;
1083   void dump() const;
1084 
1085 private:
1086   void RateRegister(const Formula &F, const SCEV *Reg,
1087                     SmallPtrSetImpl<const SCEV *> &Regs);
1088   void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1089                            SmallPtrSetImpl<const SCEV *> &Regs,
1090                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
1091 };
1092 
1093 /// An operand value in an instruction which is to be replaced with some
1094 /// equivalent, possibly strength-reduced, replacement.
1095 struct LSRFixup {
1096   /// The instruction which will be updated.
1097   Instruction *UserInst = nullptr;
1098 
1099   /// The operand of the instruction which will be replaced. The operand may be
1100   /// used more than once; every instance will be replaced.
1101   Value *OperandValToReplace = nullptr;
1102 
1103   /// If this user is to use the post-incremented value of an induction
1104   /// variable, this set is non-empty and holds the loops associated with the
1105   /// induction variable.
1106   PostIncLoopSet PostIncLoops;
1107 
1108   /// A constant offset to be added to the LSRUse expression.  This allows
1109   /// multiple fixups to share the same LSRUse with different offsets, for
1110   /// example in an unrolled loop.
1111   int64_t Offset = 0;
1112 
1113   LSRFixup() = default;
1114 
1115   bool isUseFullyOutsideLoop(const Loop *L) const;
1116 
1117   void print(raw_ostream &OS) const;
1118   void dump() const;
1119 };
1120 
1121 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1122 /// SmallVectors of const SCEV*.
1123 struct UniquifierDenseMapInfo {
1124   static SmallVector<const SCEV *, 4> getEmptyKey() {
1125     SmallVector<const SCEV *, 4>  V;
1126     V.push_back(reinterpret_cast<const SCEV *>(-1));
1127     return V;
1128   }
1129 
1130   static SmallVector<const SCEV *, 4> getTombstoneKey() {
1131     SmallVector<const SCEV *, 4> V;
1132     V.push_back(reinterpret_cast<const SCEV *>(-2));
1133     return V;
1134   }
1135 
1136   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1137     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1138   }
1139 
1140   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1141                       const SmallVector<const SCEV *, 4> &RHS) {
1142     return LHS == RHS;
1143   }
1144 };
1145 
1146 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1147 /// as uses invented by LSR itself. It includes information about what kinds of
1148 /// things can be folded into the user, information about the user itself, and
1149 /// information about how the use may be satisfied.  TODO: Represent multiple
1150 /// users of the same expression in common?
1151 class LSRUse {
1152   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1153 
1154 public:
1155   /// An enum for a kind of use, indicating what types of scaled and immediate
1156   /// operands it might support.
1157   enum KindType {
1158     Basic,   ///< A normal use, with no folding.
1159     Special, ///< A special case of basic, allowing -1 scales.
1160     Address, ///< An address use; folding according to TargetLowering
1161     ICmpZero ///< An equality icmp with both operands folded into one.
1162     // TODO: Add a generic icmp too?
1163   };
1164 
1165   using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1166 
1167   KindType Kind;
1168   MemAccessTy AccessTy;
1169 
1170   /// The list of operands which are to be replaced.
1171   SmallVector<LSRFixup, 8> Fixups;
1172 
1173   /// Keep track of the min and max offsets of the fixups.
1174   int64_t MinOffset = std::numeric_limits<int64_t>::max();
1175   int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1176 
1177   /// This records whether all of the fixups using this LSRUse are outside of
1178   /// the loop, in which case some special-case heuristics may be used.
1179   bool AllFixupsOutsideLoop = true;
1180 
1181   /// RigidFormula is set to true to guarantee that this use will be associated
1182   /// with a single formula--the one that initially matched. Some SCEV
1183   /// expressions cannot be expanded. This allows LSR to consider the registers
1184   /// used by those expressions without the need to expand them later after
1185   /// changing the formula.
1186   bool RigidFormula = false;
1187 
1188   /// This records the widest use type for any fixup using this
1189   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1190   /// fixup widths to be equivalent, because the narrower one may be relying on
1191   /// the implicit truncation to truncate away bogus bits.
1192   Type *WidestFixupType = nullptr;
1193 
1194   /// A list of ways to build a value that can satisfy this user.  After the
1195   /// list is populated, one of these is selected heuristically and used to
1196   /// formulate a replacement for OperandValToReplace in UserInst.
1197   SmallVector<Formula, 12> Formulae;
1198 
1199   /// The set of register candidates used by all formulae in this LSRUse.
1200   SmallPtrSet<const SCEV *, 4> Regs;
1201 
1202   LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1203 
1204   LSRFixup &getNewFixup() {
1205     Fixups.push_back(LSRFixup());
1206     return Fixups.back();
1207   }
1208 
1209   void pushFixup(LSRFixup &f) {
1210     Fixups.push_back(f);
1211     if (f.Offset > MaxOffset)
1212       MaxOffset = f.Offset;
1213     if (f.Offset < MinOffset)
1214       MinOffset = f.Offset;
1215   }
1216 
1217   bool HasFormulaWithSameRegs(const Formula &F) const;
1218   float getNotSelectedProbability(const SCEV *Reg) const;
1219   bool InsertFormula(const Formula &F, const Loop &L);
1220   void DeleteFormula(Formula &F);
1221   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1222 
1223   void print(raw_ostream &OS) const;
1224   void dump() const;
1225 };
1226 
1227 } // end anonymous namespace
1228 
1229 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1230                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1231                                  GlobalValue *BaseGV, int64_t BaseOffset,
1232                                  bool HasBaseReg, int64_t Scale,
1233                                  Instruction *Fixup = nullptr);
1234 
1235 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1236   if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1237     return 1;
1238   if (Depth == 0)
1239     return 0;
1240   if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1241     return getSetupCost(S->getStart(), Depth - 1);
1242   if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1243     return getSetupCost(S->getOperand(), Depth - 1);
1244   if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1245     return std::accumulate(S->op_begin(), S->op_end(), 0,
1246                            [&](unsigned i, const SCEV *Reg) {
1247                              return i + getSetupCost(Reg, Depth - 1);
1248                            });
1249   if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1250     return getSetupCost(S->getLHS(), Depth - 1) +
1251            getSetupCost(S->getRHS(), Depth - 1);
1252   return 0;
1253 }
1254 
1255 /// Tally up interesting quantities from the given register.
1256 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1257                         SmallPtrSetImpl<const SCEV *> &Regs) {
1258   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1259     // If this is an addrec for another loop, it should be an invariant
1260     // with respect to L since L is the innermost loop (at least
1261     // for now LSR only handles innermost loops).
1262     if (AR->getLoop() != L) {
1263       // If the AddRec exists, consider it's register free and leave it alone.
1264       if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1265         return;
1266 
1267       // It is bad to allow LSR for current loop to add induction variables
1268       // for its sibling loops.
1269       if (!AR->getLoop()->contains(L)) {
1270         Lose();
1271         return;
1272       }
1273 
1274       // Otherwise, it will be an invariant with respect to Loop L.
1275       ++C.NumRegs;
1276       return;
1277     }
1278 
1279     unsigned LoopCost = 1;
1280     if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1281         TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1282 
1283       // If the step size matches the base offset, we could use pre-indexed
1284       // addressing.
1285       if (AMK == TTI::AMK_PreIndexed) {
1286         if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1287           if (Step->getAPInt() == F.BaseOffset)
1288             LoopCost = 0;
1289       } else if (AMK == TTI::AMK_PostIndexed) {
1290         const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1291         if (isa<SCEVConstant>(LoopStep)) {
1292           const SCEV *LoopStart = AR->getStart();
1293           if (!isa<SCEVConstant>(LoopStart) &&
1294               SE->isLoopInvariant(LoopStart, L))
1295             LoopCost = 0;
1296         }
1297       }
1298     }
1299     C.AddRecCost += LoopCost;
1300 
1301     // Add the step value register, if it needs one.
1302     // TODO: The non-affine case isn't precisely modeled here.
1303     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1304       if (!Regs.count(AR->getOperand(1))) {
1305         RateRegister(F, AR->getOperand(1), Regs);
1306         if (isLoser())
1307           return;
1308       }
1309     }
1310   }
1311   ++C.NumRegs;
1312 
1313   // Rough heuristic; favor registers which don't require extra setup
1314   // instructions in the preheader.
1315   C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1316   // Ensure we don't, even with the recusion limit, produce invalid costs.
1317   C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1318 
1319   C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1320                SE->hasComputableLoopEvolution(Reg, L);
1321 }
1322 
1323 /// Record this register in the set. If we haven't seen it before, rate
1324 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1325 /// one of those regs an instant loser.
1326 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1327                                SmallPtrSetImpl<const SCEV *> &Regs,
1328                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1329   if (LoserRegs && LoserRegs->count(Reg)) {
1330     Lose();
1331     return;
1332   }
1333   if (Regs.insert(Reg).second) {
1334     RateRegister(F, Reg, Regs);
1335     if (LoserRegs && isLoser())
1336       LoserRegs->insert(Reg);
1337   }
1338 }
1339 
1340 void Cost::RateFormula(const Formula &F,
1341                        SmallPtrSetImpl<const SCEV *> &Regs,
1342                        const DenseSet<const SCEV *> &VisitedRegs,
1343                        const LSRUse &LU,
1344                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1345   assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1346   // Tally up the registers.
1347   unsigned PrevAddRecCost = C.AddRecCost;
1348   unsigned PrevNumRegs = C.NumRegs;
1349   unsigned PrevNumBaseAdds = C.NumBaseAdds;
1350   if (const SCEV *ScaledReg = F.ScaledReg) {
1351     if (VisitedRegs.count(ScaledReg)) {
1352       Lose();
1353       return;
1354     }
1355     RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1356     if (isLoser())
1357       return;
1358   }
1359   for (const SCEV *BaseReg : F.BaseRegs) {
1360     if (VisitedRegs.count(BaseReg)) {
1361       Lose();
1362       return;
1363     }
1364     RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1365     if (isLoser())
1366       return;
1367   }
1368 
1369   // Determine how many (unfolded) adds we'll need inside the loop.
1370   size_t NumBaseParts = F.getNumRegs();
1371   if (NumBaseParts > 1)
1372     // Do not count the base and a possible second register if the target
1373     // allows to fold 2 registers.
1374     C.NumBaseAdds +=
1375         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1376   C.NumBaseAdds += (F.UnfoldedOffset != 0);
1377 
1378   // Accumulate non-free scaling amounts.
1379   C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1380 
1381   // Tally up the non-zero immediates.
1382   for (const LSRFixup &Fixup : LU.Fixups) {
1383     int64_t O = Fixup.Offset;
1384     int64_t Offset = (uint64_t)O + F.BaseOffset;
1385     if (F.BaseGV)
1386       C.ImmCost += 64; // Handle symbolic values conservatively.
1387                      // TODO: This should probably be the pointer size.
1388     else if (Offset != 0)
1389       C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
1390 
1391     // Check with target if this offset with this instruction is
1392     // specifically not supported.
1393     if (LU.Kind == LSRUse::Address && Offset != 0 &&
1394         !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1395                               Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1396       C.NumBaseAdds++;
1397   }
1398 
1399   // If we don't count instruction cost exit here.
1400   if (!InsnsCost) {
1401     assert(isValid() && "invalid cost");
1402     return;
1403   }
1404 
1405   // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1406   // additional instruction (at least fill).
1407   // TODO: Need distinguish register class?
1408   unsigned TTIRegNum = TTI->getNumberOfRegisters(
1409                        TTI->getRegisterClassForType(false, F.getType())) - 1;
1410   if (C.NumRegs > TTIRegNum) {
1411     // Cost already exceeded TTIRegNum, then only newly added register can add
1412     // new instructions.
1413     if (PrevNumRegs > TTIRegNum)
1414       C.Insns += (C.NumRegs - PrevNumRegs);
1415     else
1416       C.Insns += (C.NumRegs - TTIRegNum);
1417   }
1418 
1419   // If ICmpZero formula ends with not 0, it could not be replaced by
1420   // just add or sub. We'll need to compare final result of AddRec.
1421   // That means we'll need an additional instruction. But if the target can
1422   // macro-fuse a compare with a branch, don't count this extra instruction.
1423   // For -10 + {0, +, 1}:
1424   // i = i + 1;
1425   // cmp i, 10
1426   //
1427   // For {-10, +, 1}:
1428   // i = i + 1;
1429   if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1430       !TTI->canMacroFuseCmp())
1431     C.Insns++;
1432   // Each new AddRec adds 1 instruction to calculation.
1433   C.Insns += (C.AddRecCost - PrevAddRecCost);
1434 
1435   // BaseAdds adds instructions for unfolded registers.
1436   if (LU.Kind != LSRUse::ICmpZero)
1437     C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1438   assert(isValid() && "invalid cost");
1439 }
1440 
1441 /// Set this cost to a losing value.
1442 void Cost::Lose() {
1443   C.Insns = std::numeric_limits<unsigned>::max();
1444   C.NumRegs = std::numeric_limits<unsigned>::max();
1445   C.AddRecCost = std::numeric_limits<unsigned>::max();
1446   C.NumIVMuls = std::numeric_limits<unsigned>::max();
1447   C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1448   C.ImmCost = std::numeric_limits<unsigned>::max();
1449   C.SetupCost = std::numeric_limits<unsigned>::max();
1450   C.ScaleCost = std::numeric_limits<unsigned>::max();
1451 }
1452 
1453 /// Choose the lower cost.
1454 bool Cost::isLess(Cost &Other) {
1455   if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1456       C.Insns != Other.C.Insns)
1457     return C.Insns < Other.C.Insns;
1458   return TTI->isLSRCostLess(C, Other.C);
1459 }
1460 
1461 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1462 void Cost::print(raw_ostream &OS) const {
1463   if (InsnsCost)
1464     OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1465   OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1466   if (C.AddRecCost != 0)
1467     OS << ", with addrec cost " << C.AddRecCost;
1468   if (C.NumIVMuls != 0)
1469     OS << ", plus " << C.NumIVMuls << " IV mul"
1470        << (C.NumIVMuls == 1 ? "" : "s");
1471   if (C.NumBaseAdds != 0)
1472     OS << ", plus " << C.NumBaseAdds << " base add"
1473        << (C.NumBaseAdds == 1 ? "" : "s");
1474   if (C.ScaleCost != 0)
1475     OS << ", plus " << C.ScaleCost << " scale cost";
1476   if (C.ImmCost != 0)
1477     OS << ", plus " << C.ImmCost << " imm cost";
1478   if (C.SetupCost != 0)
1479     OS << ", plus " << C.SetupCost << " setup cost";
1480 }
1481 
1482 LLVM_DUMP_METHOD void Cost::dump() const {
1483   print(errs()); errs() << '\n';
1484 }
1485 #endif
1486 
1487 /// Test whether this fixup always uses its value outside of the given loop.
1488 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1489   // PHI nodes use their value in their incoming blocks.
1490   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1491     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1492       if (PN->getIncomingValue(i) == OperandValToReplace &&
1493           L->contains(PN->getIncomingBlock(i)))
1494         return false;
1495     return true;
1496   }
1497 
1498   return !L->contains(UserInst);
1499 }
1500 
1501 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1502 void LSRFixup::print(raw_ostream &OS) const {
1503   OS << "UserInst=";
1504   // Store is common and interesting enough to be worth special-casing.
1505   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1506     OS << "store ";
1507     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1508   } else if (UserInst->getType()->isVoidTy())
1509     OS << UserInst->getOpcodeName();
1510   else
1511     UserInst->printAsOperand(OS, /*PrintType=*/false);
1512 
1513   OS << ", OperandValToReplace=";
1514   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1515 
1516   for (const Loop *PIL : PostIncLoops) {
1517     OS << ", PostIncLoop=";
1518     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1519   }
1520 
1521   if (Offset != 0)
1522     OS << ", Offset=" << Offset;
1523 }
1524 
1525 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1526   print(errs()); errs() << '\n';
1527 }
1528 #endif
1529 
1530 /// Test whether this use as a formula which has the same registers as the given
1531 /// formula.
1532 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1533   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1534   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1535   // Unstable sort by host order ok, because this is only used for uniquifying.
1536   llvm::sort(Key);
1537   return Uniquifier.count(Key);
1538 }
1539 
1540 /// The function returns a probability of selecting formula without Reg.
1541 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1542   unsigned FNum = 0;
1543   for (const Formula &F : Formulae)
1544     if (F.referencesReg(Reg))
1545       FNum++;
1546   return ((float)(Formulae.size() - FNum)) / Formulae.size();
1547 }
1548 
1549 /// If the given formula has not yet been inserted, add it to the list, and
1550 /// return true. Return false otherwise.  The formula must be in canonical form.
1551 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1552   assert(F.isCanonical(L) && "Invalid canonical representation");
1553 
1554   if (!Formulae.empty() && RigidFormula)
1555     return false;
1556 
1557   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1558   if (F.ScaledReg) Key.push_back(F.ScaledReg);
1559   // Unstable sort by host order ok, because this is only used for uniquifying.
1560   llvm::sort(Key);
1561 
1562   if (!Uniquifier.insert(Key).second)
1563     return false;
1564 
1565   // Using a register to hold the value of 0 is not profitable.
1566   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1567          "Zero allocated in a scaled register!");
1568 #ifndef NDEBUG
1569   for (const SCEV *BaseReg : F.BaseRegs)
1570     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1571 #endif
1572 
1573   // Add the formula to the list.
1574   Formulae.push_back(F);
1575 
1576   // Record registers now being used by this use.
1577   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1578   if (F.ScaledReg)
1579     Regs.insert(F.ScaledReg);
1580 
1581   return true;
1582 }
1583 
1584 /// Remove the given formula from this use's list.
1585 void LSRUse::DeleteFormula(Formula &F) {
1586   if (&F != &Formulae.back())
1587     std::swap(F, Formulae.back());
1588   Formulae.pop_back();
1589 }
1590 
1591 /// Recompute the Regs field, and update RegUses.
1592 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1593   // Now that we've filtered out some formulae, recompute the Regs set.
1594   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1595   Regs.clear();
1596   for (const Formula &F : Formulae) {
1597     if (F.ScaledReg) Regs.insert(F.ScaledReg);
1598     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1599   }
1600 
1601   // Update the RegTracker.
1602   for (const SCEV *S : OldRegs)
1603     if (!Regs.count(S))
1604       RegUses.dropRegister(S, LUIdx);
1605 }
1606 
1607 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1608 void LSRUse::print(raw_ostream &OS) const {
1609   OS << "LSR Use: Kind=";
1610   switch (Kind) {
1611   case Basic:    OS << "Basic"; break;
1612   case Special:  OS << "Special"; break;
1613   case ICmpZero: OS << "ICmpZero"; break;
1614   case Address:
1615     OS << "Address of ";
1616     if (AccessTy.MemTy->isPointerTy())
1617       OS << "pointer"; // the full pointer type could be really verbose
1618     else {
1619       OS << *AccessTy.MemTy;
1620     }
1621 
1622     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1623   }
1624 
1625   OS << ", Offsets={";
1626   bool NeedComma = false;
1627   for (const LSRFixup &Fixup : Fixups) {
1628     if (NeedComma) OS << ',';
1629     OS << Fixup.Offset;
1630     NeedComma = true;
1631   }
1632   OS << '}';
1633 
1634   if (AllFixupsOutsideLoop)
1635     OS << ", all-fixups-outside-loop";
1636 
1637   if (WidestFixupType)
1638     OS << ", widest fixup type: " << *WidestFixupType;
1639 }
1640 
1641 LLVM_DUMP_METHOD void LSRUse::dump() const {
1642   print(errs()); errs() << '\n';
1643 }
1644 #endif
1645 
1646 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1647                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1648                                  GlobalValue *BaseGV, int64_t BaseOffset,
1649                                  bool HasBaseReg, int64_t Scale,
1650                                  Instruction *Fixup/*= nullptr*/) {
1651   switch (Kind) {
1652   case LSRUse::Address:
1653     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1654                                      HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1655 
1656   case LSRUse::ICmpZero:
1657     // There's not even a target hook for querying whether it would be legal to
1658     // fold a GV into an ICmp.
1659     if (BaseGV)
1660       return false;
1661 
1662     // ICmp only has two operands; don't allow more than two non-trivial parts.
1663     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1664       return false;
1665 
1666     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1667     // putting the scaled register in the other operand of the icmp.
1668     if (Scale != 0 && Scale != -1)
1669       return false;
1670 
1671     // If we have low-level target information, ask the target if it can fold an
1672     // integer immediate on an icmp.
1673     if (BaseOffset != 0) {
1674       // We have one of:
1675       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1676       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1677       // Offs is the ICmp immediate.
1678       if (Scale == 0)
1679         // The cast does the right thing with
1680         // std::numeric_limits<int64_t>::min().
1681         BaseOffset = -(uint64_t)BaseOffset;
1682       return TTI.isLegalICmpImmediate(BaseOffset);
1683     }
1684 
1685     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1686     return true;
1687 
1688   case LSRUse::Basic:
1689     // Only handle single-register values.
1690     return !BaseGV && Scale == 0 && BaseOffset == 0;
1691 
1692   case LSRUse::Special:
1693     // Special case Basic to handle -1 scales.
1694     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1695   }
1696 
1697   llvm_unreachable("Invalid LSRUse Kind!");
1698 }
1699 
1700 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1701                                  int64_t MinOffset, int64_t MaxOffset,
1702                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1703                                  GlobalValue *BaseGV, int64_t BaseOffset,
1704                                  bool HasBaseReg, int64_t Scale) {
1705   // Check for overflow.
1706   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1707       (MinOffset > 0))
1708     return false;
1709   MinOffset = (uint64_t)BaseOffset + MinOffset;
1710   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1711       (MaxOffset > 0))
1712     return false;
1713   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1714 
1715   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1716                               HasBaseReg, Scale) &&
1717          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1718                               HasBaseReg, Scale);
1719 }
1720 
1721 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1722                                  int64_t MinOffset, int64_t MaxOffset,
1723                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
1724                                  const Formula &F, const Loop &L) {
1725   // For the purpose of isAMCompletelyFolded either having a canonical formula
1726   // or a scale not equal to zero is correct.
1727   // Problems may arise from non canonical formulae having a scale == 0.
1728   // Strictly speaking it would best to just rely on canonical formulae.
1729   // However, when we generate the scaled formulae, we first check that the
1730   // scaling factor is profitable before computing the actual ScaledReg for
1731   // compile time sake.
1732   assert((F.isCanonical(L) || F.Scale != 0));
1733   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1734                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1735 }
1736 
1737 /// Test whether we know how to expand the current formula.
1738 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1739                        int64_t MaxOffset, LSRUse::KindType Kind,
1740                        MemAccessTy AccessTy, GlobalValue *BaseGV,
1741                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1742   // We know how to expand completely foldable formulae.
1743   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1744                               BaseOffset, HasBaseReg, Scale) ||
1745          // Or formulae that use a base register produced by a sum of base
1746          // registers.
1747          (Scale == 1 &&
1748           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1749                                BaseGV, BaseOffset, true, 0));
1750 }
1751 
1752 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1753                        int64_t MaxOffset, LSRUse::KindType Kind,
1754                        MemAccessTy AccessTy, const Formula &F) {
1755   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1756                     F.BaseOffset, F.HasBaseReg, F.Scale);
1757 }
1758 
1759 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1760                                  const LSRUse &LU, const Formula &F) {
1761   // Target may want to look at the user instructions.
1762   if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1763     for (const LSRFixup &Fixup : LU.Fixups)
1764       if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1765                                 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1766                                 F.Scale, Fixup.UserInst))
1767         return false;
1768     return true;
1769   }
1770 
1771   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1772                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1773                               F.Scale);
1774 }
1775 
1776 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1777                                             const LSRUse &LU, const Formula &F,
1778                                             const Loop &L) {
1779   if (!F.Scale)
1780     return 0;
1781 
1782   // If the use is not completely folded in that instruction, we will have to
1783   // pay an extra cost only for scale != 1.
1784   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1785                             LU.AccessTy, F, L))
1786     return F.Scale != 1;
1787 
1788   switch (LU.Kind) {
1789   case LSRUse::Address: {
1790     // Check the scaling factor cost with both the min and max offsets.
1791     InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1792         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1793         F.Scale, LU.AccessTy.AddrSpace);
1794     InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1795         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1796         F.Scale, LU.AccessTy.AddrSpace);
1797 
1798     assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1799            "Legal addressing mode has an illegal cost!");
1800     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1801   }
1802   case LSRUse::ICmpZero:
1803   case LSRUse::Basic:
1804   case LSRUse::Special:
1805     // The use is completely folded, i.e., everything is folded into the
1806     // instruction.
1807     return 0;
1808   }
1809 
1810   llvm_unreachable("Invalid LSRUse Kind!");
1811 }
1812 
1813 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1814                              LSRUse::KindType Kind, MemAccessTy AccessTy,
1815                              GlobalValue *BaseGV, int64_t BaseOffset,
1816                              bool HasBaseReg) {
1817   // Fast-path: zero is always foldable.
1818   if (BaseOffset == 0 && !BaseGV) return true;
1819 
1820   // Conservatively, create an address with an immediate and a
1821   // base and a scale.
1822   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1823 
1824   // Canonicalize a scale of 1 to a base register if the formula doesn't
1825   // already have a base register.
1826   if (!HasBaseReg && Scale == 1) {
1827     Scale = 0;
1828     HasBaseReg = true;
1829   }
1830 
1831   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1832                               HasBaseReg, Scale);
1833 }
1834 
1835 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1836                              ScalarEvolution &SE, int64_t MinOffset,
1837                              int64_t MaxOffset, LSRUse::KindType Kind,
1838                              MemAccessTy AccessTy, const SCEV *S,
1839                              bool HasBaseReg) {
1840   // Fast-path: zero is always foldable.
1841   if (S->isZero()) return true;
1842 
1843   // Conservatively, create an address with an immediate and a
1844   // base and a scale.
1845   int64_t BaseOffset = ExtractImmediate(S, SE);
1846   GlobalValue *BaseGV = ExtractSymbol(S, SE);
1847 
1848   // If there's anything else involved, it's not foldable.
1849   if (!S->isZero()) return false;
1850 
1851   // Fast-path: zero is always foldable.
1852   if (BaseOffset == 0 && !BaseGV) return true;
1853 
1854   // Conservatively, create an address with an immediate and a
1855   // base and a scale.
1856   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1857 
1858   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1859                               BaseOffset, HasBaseReg, Scale);
1860 }
1861 
1862 namespace {
1863 
1864 /// An individual increment in a Chain of IV increments.  Relate an IV user to
1865 /// an expression that computes the IV it uses from the IV used by the previous
1866 /// link in the Chain.
1867 ///
1868 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1869 /// original IVOperand. The head of the chain's IVOperand is only valid during
1870 /// chain collection, before LSR replaces IV users. During chain generation,
1871 /// IncExpr can be used to find the new IVOperand that computes the same
1872 /// expression.
1873 struct IVInc {
1874   Instruction *UserInst;
1875   Value* IVOperand;
1876   const SCEV *IncExpr;
1877 
1878   IVInc(Instruction *U, Value *O, const SCEV *E)
1879       : UserInst(U), IVOperand(O), IncExpr(E) {}
1880 };
1881 
1882 // The list of IV increments in program order.  We typically add the head of a
1883 // chain without finding subsequent links.
1884 struct IVChain {
1885   SmallVector<IVInc, 1> Incs;
1886   const SCEV *ExprBase = nullptr;
1887 
1888   IVChain() = default;
1889   IVChain(const IVInc &Head, const SCEV *Base)
1890       : Incs(1, Head), ExprBase(Base) {}
1891 
1892   using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1893 
1894   // Return the first increment in the chain.
1895   const_iterator begin() const {
1896     assert(!Incs.empty());
1897     return std::next(Incs.begin());
1898   }
1899   const_iterator end() const {
1900     return Incs.end();
1901   }
1902 
1903   // Returns true if this chain contains any increments.
1904   bool hasIncs() const { return Incs.size() >= 2; }
1905 
1906   // Add an IVInc to the end of this chain.
1907   void add(const IVInc &X) { Incs.push_back(X); }
1908 
1909   // Returns the last UserInst in the chain.
1910   Instruction *tailUserInst() const { return Incs.back().UserInst; }
1911 
1912   // Returns true if IncExpr can be profitably added to this chain.
1913   bool isProfitableIncrement(const SCEV *OperExpr,
1914                              const SCEV *IncExpr,
1915                              ScalarEvolution&);
1916 };
1917 
1918 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
1919 /// between FarUsers that definitely cross IV increments and NearUsers that may
1920 /// be used between IV increments.
1921 struct ChainUsers {
1922   SmallPtrSet<Instruction*, 4> FarUsers;
1923   SmallPtrSet<Instruction*, 4> NearUsers;
1924 };
1925 
1926 /// This class holds state for the main loop strength reduction logic.
1927 class LSRInstance {
1928   IVUsers &IU;
1929   ScalarEvolution &SE;
1930   DominatorTree &DT;
1931   LoopInfo &LI;
1932   AssumptionCache &AC;
1933   TargetLibraryInfo &TLI;
1934   const TargetTransformInfo &TTI;
1935   Loop *const L;
1936   MemorySSAUpdater *MSSAU;
1937   TTI::AddressingModeKind AMK;
1938   bool Changed = false;
1939 
1940   /// This is the insert position that the current loop's induction variable
1941   /// increment should be placed. In simple loops, this is the latch block's
1942   /// terminator. But in more complicated cases, this is a position which will
1943   /// dominate all the in-loop post-increment users.
1944   Instruction *IVIncInsertPos = nullptr;
1945 
1946   /// Interesting factors between use strides.
1947   ///
1948   /// We explicitly use a SetVector which contains a SmallSet, instead of the
1949   /// default, a SmallDenseSet, because we need to use the full range of
1950   /// int64_ts, and there's currently no good way of doing that with
1951   /// SmallDenseSet.
1952   SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1953 
1954   /// Interesting use types, to facilitate truncation reuse.
1955   SmallSetVector<Type *, 4> Types;
1956 
1957   /// The list of interesting uses.
1958   mutable SmallVector<LSRUse, 16> Uses;
1959 
1960   /// Track which uses use which register candidates.
1961   RegUseTracker RegUses;
1962 
1963   // Limit the number of chains to avoid quadratic behavior. We don't expect to
1964   // have more than a few IV increment chains in a loop. Missing a Chain falls
1965   // back to normal LSR behavior for those uses.
1966   static const unsigned MaxChains = 8;
1967 
1968   /// IV users can form a chain of IV increments.
1969   SmallVector<IVChain, MaxChains> IVChainVec;
1970 
1971   /// IV users that belong to profitable IVChains.
1972   SmallPtrSet<Use*, MaxChains> IVIncSet;
1973 
1974   void OptimizeShadowIV();
1975   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
1976   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
1977   void OptimizeLoopTermCond();
1978 
1979   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
1980                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
1981   void FinalizeChain(IVChain &Chain);
1982   void CollectChains();
1983   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
1984                        SmallVectorImpl<WeakTrackingVH> &DeadInsts);
1985 
1986   void CollectInterestingTypesAndFactors();
1987   void CollectFixupsAndInitialFormulae();
1988 
1989   // Support for sharing of LSRUses between LSRFixups.
1990   using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
1991   UseMapTy UseMap;
1992 
1993   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
1994                           LSRUse::KindType Kind, MemAccessTy AccessTy);
1995 
1996   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
1997                                     MemAccessTy AccessTy);
1998 
1999   void DeleteUse(LSRUse &LU, size_t LUIdx);
2000 
2001   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2002 
2003   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2004   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2005   void CountRegisters(const Formula &F, size_t LUIdx);
2006   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2007 
2008   void CollectLoopInvariantFixupsAndFormulae();
2009 
2010   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2011                               unsigned Depth = 0);
2012 
2013   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2014                                   const Formula &Base, unsigned Depth,
2015                                   size_t Idx, bool IsScaledReg = false);
2016   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2017   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2018                                    const Formula &Base, size_t Idx,
2019                                    bool IsScaledReg = false);
2020   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2021   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2022                                    const Formula &Base,
2023                                    const SmallVectorImpl<int64_t> &Worklist,
2024                                    size_t Idx, bool IsScaledReg = false);
2025   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2026   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2027   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2028   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2029   void GenerateCrossUseConstantOffsets();
2030   void GenerateAllReuseFormulae();
2031 
2032   void FilterOutUndesirableDedicatedRegisters();
2033 
2034   size_t EstimateSearchSpaceComplexity() const;
2035   void NarrowSearchSpaceByDetectingSupersets();
2036   void NarrowSearchSpaceByCollapsingUnrolledCode();
2037   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2038   void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2039   void NarrowSearchSpaceByFilterPostInc();
2040   void NarrowSearchSpaceByDeletingCostlyFormulas();
2041   void NarrowSearchSpaceByPickingWinnerRegs();
2042   void NarrowSearchSpaceUsingHeuristics();
2043 
2044   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2045                     Cost &SolutionCost,
2046                     SmallVectorImpl<const Formula *> &Workspace,
2047                     const Cost &CurCost,
2048                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
2049                     DenseSet<const SCEV *> &VisitedRegs) const;
2050   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2051 
2052   BasicBlock::iterator
2053     HoistInsertPosition(BasicBlock::iterator IP,
2054                         const SmallVectorImpl<Instruction *> &Inputs) const;
2055   BasicBlock::iterator
2056     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2057                                   const LSRFixup &LF,
2058                                   const LSRUse &LU,
2059                                   SCEVExpander &Rewriter) const;
2060 
2061   Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2062                 BasicBlock::iterator IP, SCEVExpander &Rewriter,
2063                 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2064   void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2065                      const Formula &F, SCEVExpander &Rewriter,
2066                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2067   void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2068                SCEVExpander &Rewriter,
2069                SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2070   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2071 
2072 public:
2073   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2074               LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2075               TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2076 
2077   bool getChanged() const { return Changed; }
2078 
2079   void print_factors_and_types(raw_ostream &OS) const;
2080   void print_fixups(raw_ostream &OS) const;
2081   void print_uses(raw_ostream &OS) const;
2082   void print(raw_ostream &OS) const;
2083   void dump() const;
2084 };
2085 
2086 } // end anonymous namespace
2087 
2088 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2089 /// the cast operation.
2090 void LSRInstance::OptimizeShadowIV() {
2091   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2092   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2093     return;
2094 
2095   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2096        UI != E; /* empty */) {
2097     IVUsers::const_iterator CandidateUI = UI;
2098     ++UI;
2099     Instruction *ShadowUse = CandidateUI->getUser();
2100     Type *DestTy = nullptr;
2101     bool IsSigned = false;
2102 
2103     /* If shadow use is a int->float cast then insert a second IV
2104        to eliminate this cast.
2105 
2106          for (unsigned i = 0; i < n; ++i)
2107            foo((double)i);
2108 
2109        is transformed into
2110 
2111          double d = 0.0;
2112          for (unsigned i = 0; i < n; ++i, ++d)
2113            foo(d);
2114     */
2115     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2116       IsSigned = false;
2117       DestTy = UCast->getDestTy();
2118     }
2119     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2120       IsSigned = true;
2121       DestTy = SCast->getDestTy();
2122     }
2123     if (!DestTy) continue;
2124 
2125     // If target does not support DestTy natively then do not apply
2126     // this transformation.
2127     if (!TTI.isTypeLegal(DestTy)) continue;
2128 
2129     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2130     if (!PH) continue;
2131     if (PH->getNumIncomingValues() != 2) continue;
2132 
2133     // If the calculation in integers overflows, the result in FP type will
2134     // differ. So we only can do this transformation if we are guaranteed to not
2135     // deal with overflowing values
2136     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2137     if (!AR) continue;
2138     if (IsSigned && !AR->hasNoSignedWrap()) continue;
2139     if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2140 
2141     Type *SrcTy = PH->getType();
2142     int Mantissa = DestTy->getFPMantissaWidth();
2143     if (Mantissa == -1) continue;
2144     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2145       continue;
2146 
2147     unsigned Entry, Latch;
2148     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2149       Entry = 0;
2150       Latch = 1;
2151     } else {
2152       Entry = 1;
2153       Latch = 0;
2154     }
2155 
2156     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2157     if (!Init) continue;
2158     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2159                                         (double)Init->getSExtValue() :
2160                                         (double)Init->getZExtValue());
2161 
2162     BinaryOperator *Incr =
2163       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2164     if (!Incr) continue;
2165     if (Incr->getOpcode() != Instruction::Add
2166         && Incr->getOpcode() != Instruction::Sub)
2167       continue;
2168 
2169     /* Initialize new IV, double d = 0.0 in above example. */
2170     ConstantInt *C = nullptr;
2171     if (Incr->getOperand(0) == PH)
2172       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2173     else if (Incr->getOperand(1) == PH)
2174       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2175     else
2176       continue;
2177 
2178     if (!C) continue;
2179 
2180     // Ignore negative constants, as the code below doesn't handle them
2181     // correctly. TODO: Remove this restriction.
2182     if (!C->getValue().isStrictlyPositive()) continue;
2183 
2184     /* Add new PHINode. */
2185     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2186 
2187     /* create new increment. '++d' in above example. */
2188     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2189     BinaryOperator *NewIncr =
2190       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2191                                Instruction::FAdd : Instruction::FSub,
2192                              NewPH, CFP, "IV.S.next.", Incr);
2193 
2194     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2195     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2196 
2197     /* Remove cast operation */
2198     ShadowUse->replaceAllUsesWith(NewPH);
2199     ShadowUse->eraseFromParent();
2200     Changed = true;
2201     break;
2202   }
2203 }
2204 
2205 /// If Cond has an operand that is an expression of an IV, set the IV user and
2206 /// stride information and return true, otherwise return false.
2207 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2208   for (IVStrideUse &U : IU)
2209     if (U.getUser() == Cond) {
2210       // NOTE: we could handle setcc instructions with multiple uses here, but
2211       // InstCombine does it as well for simple uses, it's not clear that it
2212       // occurs enough in real life to handle.
2213       CondUse = &U;
2214       return true;
2215     }
2216   return false;
2217 }
2218 
2219 /// Rewrite the loop's terminating condition if it uses a max computation.
2220 ///
2221 /// This is a narrow solution to a specific, but acute, problem. For loops
2222 /// like this:
2223 ///
2224 ///   i = 0;
2225 ///   do {
2226 ///     p[i] = 0.0;
2227 ///   } while (++i < n);
2228 ///
2229 /// the trip count isn't just 'n', because 'n' might not be positive. And
2230 /// unfortunately this can come up even for loops where the user didn't use
2231 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2232 /// will commonly be lowered like this:
2233 ///
2234 ///   if (n > 0) {
2235 ///     i = 0;
2236 ///     do {
2237 ///       p[i] = 0.0;
2238 ///     } while (++i < n);
2239 ///   }
2240 ///
2241 /// and then it's possible for subsequent optimization to obscure the if
2242 /// test in such a way that indvars can't find it.
2243 ///
2244 /// When indvars can't find the if test in loops like this, it creates a
2245 /// max expression, which allows it to give the loop a canonical
2246 /// induction variable:
2247 ///
2248 ///   i = 0;
2249 ///   max = n < 1 ? 1 : n;
2250 ///   do {
2251 ///     p[i] = 0.0;
2252 ///   } while (++i != max);
2253 ///
2254 /// Canonical induction variables are necessary because the loop passes
2255 /// are designed around them. The most obvious example of this is the
2256 /// LoopInfo analysis, which doesn't remember trip count values. It
2257 /// expects to be able to rediscover the trip count each time it is
2258 /// needed, and it does this using a simple analysis that only succeeds if
2259 /// the loop has a canonical induction variable.
2260 ///
2261 /// However, when it comes time to generate code, the maximum operation
2262 /// can be quite costly, especially if it's inside of an outer loop.
2263 ///
2264 /// This function solves this problem by detecting this type of loop and
2265 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2266 /// the instructions for the maximum computation.
2267 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2268   // Check that the loop matches the pattern we're looking for.
2269   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2270       Cond->getPredicate() != CmpInst::ICMP_NE)
2271     return Cond;
2272 
2273   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2274   if (!Sel || !Sel->hasOneUse()) return Cond;
2275 
2276   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2277   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2278     return Cond;
2279   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2280 
2281   // Add one to the backedge-taken count to get the trip count.
2282   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2283   if (IterationCount != SE.getSCEV(Sel)) return Cond;
2284 
2285   // Check for a max calculation that matches the pattern. There's no check
2286   // for ICMP_ULE here because the comparison would be with zero, which
2287   // isn't interesting.
2288   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2289   const SCEVNAryExpr *Max = nullptr;
2290   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2291     Pred = ICmpInst::ICMP_SLE;
2292     Max = S;
2293   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2294     Pred = ICmpInst::ICMP_SLT;
2295     Max = S;
2296   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2297     Pred = ICmpInst::ICMP_ULT;
2298     Max = U;
2299   } else {
2300     // No match; bail.
2301     return Cond;
2302   }
2303 
2304   // To handle a max with more than two operands, this optimization would
2305   // require additional checking and setup.
2306   if (Max->getNumOperands() != 2)
2307     return Cond;
2308 
2309   const SCEV *MaxLHS = Max->getOperand(0);
2310   const SCEV *MaxRHS = Max->getOperand(1);
2311 
2312   // ScalarEvolution canonicalizes constants to the left. For < and >, look
2313   // for a comparison with 1. For <= and >=, a comparison with zero.
2314   if (!MaxLHS ||
2315       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2316     return Cond;
2317 
2318   // Check the relevant induction variable for conformance to
2319   // the pattern.
2320   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2321   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2322   if (!AR || !AR->isAffine() ||
2323       AR->getStart() != One ||
2324       AR->getStepRecurrence(SE) != One)
2325     return Cond;
2326 
2327   assert(AR->getLoop() == L &&
2328          "Loop condition operand is an addrec in a different loop!");
2329 
2330   // Check the right operand of the select, and remember it, as it will
2331   // be used in the new comparison instruction.
2332   Value *NewRHS = nullptr;
2333   if (ICmpInst::isTrueWhenEqual(Pred)) {
2334     // Look for n+1, and grab n.
2335     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2336       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2337          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2338            NewRHS = BO->getOperand(0);
2339     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2340       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2341         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2342           NewRHS = BO->getOperand(0);
2343     if (!NewRHS)
2344       return Cond;
2345   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2346     NewRHS = Sel->getOperand(1);
2347   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2348     NewRHS = Sel->getOperand(2);
2349   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2350     NewRHS = SU->getValue();
2351   else
2352     // Max doesn't match expected pattern.
2353     return Cond;
2354 
2355   // Determine the new comparison opcode. It may be signed or unsigned,
2356   // and the original comparison may be either equality or inequality.
2357   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2358     Pred = CmpInst::getInversePredicate(Pred);
2359 
2360   // Ok, everything looks ok to change the condition into an SLT or SGE and
2361   // delete the max calculation.
2362   ICmpInst *NewCond =
2363     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2364 
2365   // Delete the max calculation instructions.
2366   NewCond->setDebugLoc(Cond->getDebugLoc());
2367   Cond->replaceAllUsesWith(NewCond);
2368   CondUse->setUser(NewCond);
2369   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2370   Cond->eraseFromParent();
2371   Sel->eraseFromParent();
2372   if (Cmp->use_empty())
2373     Cmp->eraseFromParent();
2374   return NewCond;
2375 }
2376 
2377 /// Change loop terminating condition to use the postinc iv when possible.
2378 void
2379 LSRInstance::OptimizeLoopTermCond() {
2380   SmallPtrSet<Instruction *, 4> PostIncs;
2381 
2382   // We need a different set of heuristics for rotated and non-rotated loops.
2383   // If a loop is rotated then the latch is also the backedge, so inserting
2384   // post-inc expressions just before the latch is ideal. To reduce live ranges
2385   // it also makes sense to rewrite terminating conditions to use post-inc
2386   // expressions.
2387   //
2388   // If the loop is not rotated then the latch is not a backedge; the latch
2389   // check is done in the loop head. Adding post-inc expressions before the
2390   // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2391   // in the loop body. In this case we do *not* want to use post-inc expressions
2392   // in the latch check, and we want to insert post-inc expressions before
2393   // the backedge.
2394   BasicBlock *LatchBlock = L->getLoopLatch();
2395   SmallVector<BasicBlock*, 8> ExitingBlocks;
2396   L->getExitingBlocks(ExitingBlocks);
2397   if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
2398         return LatchBlock != BB;
2399       })) {
2400     // The backedge doesn't exit the loop; treat this as a head-tested loop.
2401     IVIncInsertPos = LatchBlock->getTerminator();
2402     return;
2403   }
2404 
2405   // Otherwise treat this as a rotated loop.
2406   for (BasicBlock *ExitingBlock : ExitingBlocks) {
2407     // Get the terminating condition for the loop if possible.  If we
2408     // can, we want to change it to use a post-incremented version of its
2409     // induction variable, to allow coalescing the live ranges for the IV into
2410     // one register value.
2411 
2412     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2413     if (!TermBr)
2414       continue;
2415     // FIXME: Overly conservative, termination condition could be an 'or' etc..
2416     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2417       continue;
2418 
2419     // Search IVUsesByStride to find Cond's IVUse if there is one.
2420     IVStrideUse *CondUse = nullptr;
2421     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2422     if (!FindIVUserForCond(Cond, CondUse))
2423       continue;
2424 
2425     // If the trip count is computed in terms of a max (due to ScalarEvolution
2426     // being unable to find a sufficient guard, for example), change the loop
2427     // comparison to use SLT or ULT instead of NE.
2428     // One consequence of doing this now is that it disrupts the count-down
2429     // optimization. That's not always a bad thing though, because in such
2430     // cases it may still be worthwhile to avoid a max.
2431     Cond = OptimizeMax(Cond, CondUse);
2432 
2433     // If this exiting block dominates the latch block, it may also use
2434     // the post-inc value if it won't be shared with other uses.
2435     // Check for dominance.
2436     if (!DT.dominates(ExitingBlock, LatchBlock))
2437       continue;
2438 
2439     // Conservatively avoid trying to use the post-inc value in non-latch
2440     // exits if there may be pre-inc users in intervening blocks.
2441     if (LatchBlock != ExitingBlock)
2442       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2443         // Test if the use is reachable from the exiting block. This dominator
2444         // query is a conservative approximation of reachability.
2445         if (&*UI != CondUse &&
2446             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2447           // Conservatively assume there may be reuse if the quotient of their
2448           // strides could be a legal scale.
2449           const SCEV *A = IU.getStride(*CondUse, L);
2450           const SCEV *B = IU.getStride(*UI, L);
2451           if (!A || !B) continue;
2452           if (SE.getTypeSizeInBits(A->getType()) !=
2453               SE.getTypeSizeInBits(B->getType())) {
2454             if (SE.getTypeSizeInBits(A->getType()) >
2455                 SE.getTypeSizeInBits(B->getType()))
2456               B = SE.getSignExtendExpr(B, A->getType());
2457             else
2458               A = SE.getSignExtendExpr(A, B->getType());
2459           }
2460           if (const SCEVConstant *D =
2461                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2462             const ConstantInt *C = D->getValue();
2463             // Stride of one or negative one can have reuse with non-addresses.
2464             if (C->isOne() || C->isMinusOne())
2465               goto decline_post_inc;
2466             // Avoid weird situations.
2467             if (C->getValue().getMinSignedBits() >= 64 ||
2468                 C->getValue().isMinSignedValue())
2469               goto decline_post_inc;
2470             // Check for possible scaled-address reuse.
2471             if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2472               MemAccessTy AccessTy = getAccessType(
2473                   TTI, UI->getUser(), UI->getOperandValToReplace());
2474               int64_t Scale = C->getSExtValue();
2475               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2476                                             /*BaseOffset=*/0,
2477                                             /*HasBaseReg=*/false, Scale,
2478                                             AccessTy.AddrSpace))
2479                 goto decline_post_inc;
2480               Scale = -Scale;
2481               if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2482                                             /*BaseOffset=*/0,
2483                                             /*HasBaseReg=*/false, Scale,
2484                                             AccessTy.AddrSpace))
2485                 goto decline_post_inc;
2486             }
2487           }
2488         }
2489 
2490     LLVM_DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
2491                       << *Cond << '\n');
2492 
2493     // It's possible for the setcc instruction to be anywhere in the loop, and
2494     // possible for it to have multiple users.  If it is not immediately before
2495     // the exiting block branch, move it.
2496     if (Cond->getNextNonDebugInstruction() != TermBr) {
2497       if (Cond->hasOneUse()) {
2498         Cond->moveBefore(TermBr);
2499       } else {
2500         // Clone the terminating condition and insert into the loopend.
2501         ICmpInst *OldCond = Cond;
2502         Cond = cast<ICmpInst>(Cond->clone());
2503         Cond->setName(L->getHeader()->getName() + ".termcond");
2504         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
2505 
2506         // Clone the IVUse, as the old use still exists!
2507         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2508         TermBr->replaceUsesOfWith(OldCond, Cond);
2509       }
2510     }
2511 
2512     // If we get to here, we know that we can transform the setcc instruction to
2513     // use the post-incremented version of the IV, allowing us to coalesce the
2514     // live ranges for the IV correctly.
2515     CondUse->transformToPostInc(L);
2516     Changed = true;
2517 
2518     PostIncs.insert(Cond);
2519   decline_post_inc:;
2520   }
2521 
2522   // Determine an insertion point for the loop induction variable increment. It
2523   // must dominate all the post-inc comparisons we just set up, and it must
2524   // dominate the loop latch edge.
2525   IVIncInsertPos = L->getLoopLatch()->getTerminator();
2526   for (Instruction *Inst : PostIncs) {
2527     BasicBlock *BB =
2528       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
2529                                     Inst->getParent());
2530     if (BB == Inst->getParent())
2531       IVIncInsertPos = Inst;
2532     else if (BB != IVIncInsertPos->getParent())
2533       IVIncInsertPos = BB->getTerminator();
2534   }
2535 }
2536 
2537 /// Determine if the given use can accommodate a fixup at the given offset and
2538 /// other details. If so, update the use and return true.
2539 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2540                                      bool HasBaseReg, LSRUse::KindType Kind,
2541                                      MemAccessTy AccessTy) {
2542   int64_t NewMinOffset = LU.MinOffset;
2543   int64_t NewMaxOffset = LU.MaxOffset;
2544   MemAccessTy NewAccessTy = AccessTy;
2545 
2546   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2547   // something conservative, however this can pessimize in the case that one of
2548   // the uses will have all its uses outside the loop, for example.
2549   if (LU.Kind != Kind)
2550     return false;
2551 
2552   // Check for a mismatched access type, and fall back conservatively as needed.
2553   // TODO: Be less conservative when the type is similar and can use the same
2554   // addressing modes.
2555   if (Kind == LSRUse::Address) {
2556     if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2557       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2558                                             AccessTy.AddrSpace);
2559     }
2560   }
2561 
2562   // Conservatively assume HasBaseReg is true for now.
2563   if (NewOffset < LU.MinOffset) {
2564     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2565                           LU.MaxOffset - NewOffset, HasBaseReg))
2566       return false;
2567     NewMinOffset = NewOffset;
2568   } else if (NewOffset > LU.MaxOffset) {
2569     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2570                           NewOffset - LU.MinOffset, HasBaseReg))
2571       return false;
2572     NewMaxOffset = NewOffset;
2573   }
2574 
2575   // Update the use.
2576   LU.MinOffset = NewMinOffset;
2577   LU.MaxOffset = NewMaxOffset;
2578   LU.AccessTy = NewAccessTy;
2579   return true;
2580 }
2581 
2582 /// Return an LSRUse index and an offset value for a fixup which needs the given
2583 /// expression, with the given kind and optional access type.  Either reuse an
2584 /// existing use or create a new one, as needed.
2585 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2586                                                LSRUse::KindType Kind,
2587                                                MemAccessTy AccessTy) {
2588   const SCEV *Copy = Expr;
2589   int64_t Offset = ExtractImmediate(Expr, SE);
2590 
2591   // Basic uses can't accept any offset, for example.
2592   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2593                         Offset, /*HasBaseReg=*/ true)) {
2594     Expr = Copy;
2595     Offset = 0;
2596   }
2597 
2598   std::pair<UseMapTy::iterator, bool> P =
2599     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2600   if (!P.second) {
2601     // A use already existed with this base.
2602     size_t LUIdx = P.first->second;
2603     LSRUse &LU = Uses[LUIdx];
2604     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2605       // Reuse this use.
2606       return std::make_pair(LUIdx, Offset);
2607   }
2608 
2609   // Create a new use.
2610   size_t LUIdx = Uses.size();
2611   P.first->second = LUIdx;
2612   Uses.push_back(LSRUse(Kind, AccessTy));
2613   LSRUse &LU = Uses[LUIdx];
2614 
2615   LU.MinOffset = Offset;
2616   LU.MaxOffset = Offset;
2617   return std::make_pair(LUIdx, Offset);
2618 }
2619 
2620 /// Delete the given use from the Uses list.
2621 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2622   if (&LU != &Uses.back())
2623     std::swap(LU, Uses.back());
2624   Uses.pop_back();
2625 
2626   // Update RegUses.
2627   RegUses.swapAndDropUse(LUIdx, Uses.size());
2628 }
2629 
2630 /// Look for a use distinct from OrigLU which is has a formula that has the same
2631 /// registers as the given formula.
2632 LSRUse *
2633 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2634                                        const LSRUse &OrigLU) {
2635   // Search all uses for the formula. This could be more clever.
2636   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2637     LSRUse &LU = Uses[LUIdx];
2638     // Check whether this use is close enough to OrigLU, to see whether it's
2639     // worthwhile looking through its formulae.
2640     // Ignore ICmpZero uses because they may contain formulae generated by
2641     // GenerateICmpZeroScales, in which case adding fixup offsets may
2642     // be invalid.
2643     if (&LU != &OrigLU &&
2644         LU.Kind != LSRUse::ICmpZero &&
2645         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2646         LU.WidestFixupType == OrigLU.WidestFixupType &&
2647         LU.HasFormulaWithSameRegs(OrigF)) {
2648       // Scan through this use's formulae.
2649       for (const Formula &F : LU.Formulae) {
2650         // Check to see if this formula has the same registers and symbols
2651         // as OrigF.
2652         if (F.BaseRegs == OrigF.BaseRegs &&
2653             F.ScaledReg == OrigF.ScaledReg &&
2654             F.BaseGV == OrigF.BaseGV &&
2655             F.Scale == OrigF.Scale &&
2656             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2657           if (F.BaseOffset == 0)
2658             return &LU;
2659           // This is the formula where all the registers and symbols matched;
2660           // there aren't going to be any others. Since we declined it, we
2661           // can skip the rest of the formulae and proceed to the next LSRUse.
2662           break;
2663         }
2664       }
2665     }
2666   }
2667 
2668   // Nothing looked good.
2669   return nullptr;
2670 }
2671 
2672 void LSRInstance::CollectInterestingTypesAndFactors() {
2673   SmallSetVector<const SCEV *, 4> Strides;
2674 
2675   // Collect interesting types and strides.
2676   SmallVector<const SCEV *, 4> Worklist;
2677   for (const IVStrideUse &U : IU) {
2678     const SCEV *Expr = IU.getExpr(U);
2679 
2680     // Collect interesting types.
2681     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2682 
2683     // Add strides for mentioned loops.
2684     Worklist.push_back(Expr);
2685     do {
2686       const SCEV *S = Worklist.pop_back_val();
2687       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2688         if (AR->getLoop() == L)
2689           Strides.insert(AR->getStepRecurrence(SE));
2690         Worklist.push_back(AR->getStart());
2691       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2692         Worklist.append(Add->op_begin(), Add->op_end());
2693       }
2694     } while (!Worklist.empty());
2695   }
2696 
2697   // Compute interesting factors from the set of interesting strides.
2698   for (SmallSetVector<const SCEV *, 4>::const_iterator
2699        I = Strides.begin(), E = Strides.end(); I != E; ++I)
2700     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2701          std::next(I); NewStrideIter != E; ++NewStrideIter) {
2702       const SCEV *OldStride = *I;
2703       const SCEV *NewStride = *NewStrideIter;
2704 
2705       if (SE.getTypeSizeInBits(OldStride->getType()) !=
2706           SE.getTypeSizeInBits(NewStride->getType())) {
2707         if (SE.getTypeSizeInBits(OldStride->getType()) >
2708             SE.getTypeSizeInBits(NewStride->getType()))
2709           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2710         else
2711           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2712       }
2713       if (const SCEVConstant *Factor =
2714             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2715                                                         SE, true))) {
2716         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2717           Factors.insert(Factor->getAPInt().getSExtValue());
2718       } else if (const SCEVConstant *Factor =
2719                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2720                                                                NewStride,
2721                                                                SE, true))) {
2722         if (Factor->getAPInt().getMinSignedBits() <= 64 && !Factor->isZero())
2723           Factors.insert(Factor->getAPInt().getSExtValue());
2724       }
2725     }
2726 
2727   // If all uses use the same type, don't bother looking for truncation-based
2728   // reuse.
2729   if (Types.size() == 1)
2730     Types.clear();
2731 
2732   LLVM_DEBUG(print_factors_and_types(dbgs()));
2733 }
2734 
2735 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2736 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2737 /// IVStrideUses, we could partially skip this.
2738 static User::op_iterator
2739 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2740               Loop *L, ScalarEvolution &SE) {
2741   for(; OI != OE; ++OI) {
2742     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2743       if (!SE.isSCEVable(Oper->getType()))
2744         continue;
2745 
2746       if (const SCEVAddRecExpr *AR =
2747           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2748         if (AR->getLoop() == L)
2749           break;
2750       }
2751     }
2752   }
2753   return OI;
2754 }
2755 
2756 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2757 /// a convenient helper.
2758 static Value *getWideOperand(Value *Oper) {
2759   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2760     return Trunc->getOperand(0);
2761   return Oper;
2762 }
2763 
2764 /// Return true if we allow an IV chain to include both types.
2765 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2766   Type *LType = LVal->getType();
2767   Type *RType = RVal->getType();
2768   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2769                               // Different address spaces means (possibly)
2770                               // different types of the pointer implementation,
2771                               // e.g. i16 vs i32 so disallow that.
2772                               (LType->getPointerAddressSpace() ==
2773                                RType->getPointerAddressSpace()));
2774 }
2775 
2776 /// Return an approximation of this SCEV expression's "base", or NULL for any
2777 /// constant. Returning the expression itself is conservative. Returning a
2778 /// deeper subexpression is more precise and valid as long as it isn't less
2779 /// complex than another subexpression. For expressions involving multiple
2780 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2781 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2782 /// IVInc==b-a.
2783 ///
2784 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2785 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2786 static const SCEV *getExprBase(const SCEV *S) {
2787   switch (S->getSCEVType()) {
2788   default: // uncluding scUnknown.
2789     return S;
2790   case scConstant:
2791     return nullptr;
2792   case scTruncate:
2793     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2794   case scZeroExtend:
2795     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2796   case scSignExtend:
2797     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2798   case scAddExpr: {
2799     // Skip over scaled operands (scMulExpr) to follow add operands as long as
2800     // there's nothing more complex.
2801     // FIXME: not sure if we want to recognize negation.
2802     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2803     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
2804            E(Add->op_begin()); I != E; ++I) {
2805       const SCEV *SubExpr = *I;
2806       if (SubExpr->getSCEVType() == scAddExpr)
2807         return getExprBase(SubExpr);
2808 
2809       if (SubExpr->getSCEVType() != scMulExpr)
2810         return SubExpr;
2811     }
2812     return S; // all operands are scaled, be conservative.
2813   }
2814   case scAddRecExpr:
2815     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2816   }
2817   llvm_unreachable("Unknown SCEV kind!");
2818 }
2819 
2820 /// Return true if the chain increment is profitable to expand into a loop
2821 /// invariant value, which may require its own register. A profitable chain
2822 /// increment will be an offset relative to the same base. We allow such offsets
2823 /// to potentially be used as chain increment as long as it's not obviously
2824 /// expensive to expand using real instructions.
2825 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2826                                     const SCEV *IncExpr,
2827                                     ScalarEvolution &SE) {
2828   // Aggressively form chains when -stress-ivchain.
2829   if (StressIVChain)
2830     return true;
2831 
2832   // Do not replace a constant offset from IV head with a nonconstant IV
2833   // increment.
2834   if (!isa<SCEVConstant>(IncExpr)) {
2835     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2836     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2837       return false;
2838   }
2839 
2840   SmallPtrSet<const SCEV*, 8> Processed;
2841   return !isHighCostExpansion(IncExpr, Processed, SE);
2842 }
2843 
2844 /// Return true if the number of registers needed for the chain is estimated to
2845 /// be less than the number required for the individual IV users. First prohibit
2846 /// any IV users that keep the IV live across increments (the Users set should
2847 /// be empty). Next count the number and type of increments in the chain.
2848 ///
2849 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2850 /// effectively use postinc addressing modes. Only consider it profitable it the
2851 /// increments can be computed in fewer registers when chained.
2852 ///
2853 /// TODO: Consider IVInc free if it's already used in another chains.
2854 static bool isProfitableChain(IVChain &Chain,
2855                               SmallPtrSetImpl<Instruction *> &Users,
2856                               ScalarEvolution &SE,
2857                               const TargetTransformInfo &TTI) {
2858   if (StressIVChain)
2859     return true;
2860 
2861   if (!Chain.hasIncs())
2862     return false;
2863 
2864   if (!Users.empty()) {
2865     LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
2866                for (Instruction *Inst
2867                     : Users) { dbgs() << "  " << *Inst << "\n"; });
2868     return false;
2869   }
2870   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
2871 
2872   // The chain itself may require a register, so intialize cost to 1.
2873   int cost = 1;
2874 
2875   // A complete chain likely eliminates the need for keeping the original IV in
2876   // a register. LSR does not currently know how to form a complete chain unless
2877   // the header phi already exists.
2878   if (isa<PHINode>(Chain.tailUserInst())
2879       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2880     --cost;
2881   }
2882   const SCEV *LastIncExpr = nullptr;
2883   unsigned NumConstIncrements = 0;
2884   unsigned NumVarIncrements = 0;
2885   unsigned NumReusedIncrements = 0;
2886 
2887   if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2888     return true;
2889 
2890   for (const IVInc &Inc : Chain) {
2891     if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2892       return true;
2893     if (Inc.IncExpr->isZero())
2894       continue;
2895 
2896     // Incrementing by zero or some constant is neutral. We assume constants can
2897     // be folded into an addressing mode or an add's immediate operand.
2898     if (isa<SCEVConstant>(Inc.IncExpr)) {
2899       ++NumConstIncrements;
2900       continue;
2901     }
2902 
2903     if (Inc.IncExpr == LastIncExpr)
2904       ++NumReusedIncrements;
2905     else
2906       ++NumVarIncrements;
2907 
2908     LastIncExpr = Inc.IncExpr;
2909   }
2910   // An IV chain with a single increment is handled by LSR's postinc
2911   // uses. However, a chain with multiple increments requires keeping the IV's
2912   // value live longer than it needs to be if chained.
2913   if (NumConstIncrements > 1)
2914     --cost;
2915 
2916   // Materializing increment expressions in the preheader that didn't exist in
2917   // the original code may cost a register. For example, sign-extended array
2918   // indices can produce ridiculous increments like this:
2919   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2920   cost += NumVarIncrements;
2921 
2922   // Reusing variable increments likely saves a register to hold the multiple of
2923   // the stride.
2924   cost -= NumReusedIncrements;
2925 
2926   LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
2927                     << "\n");
2928 
2929   return cost < 0;
2930 }
2931 
2932 /// Add this IV user to an existing chain or make it the head of a new chain.
2933 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2934                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2935   // When IVs are used as types of varying widths, they are generally converted
2936   // to a wider type with some uses remaining narrow under a (free) trunc.
2937   Value *const NextIV = getWideOperand(IVOper);
2938   const SCEV *const OperExpr = SE.getSCEV(NextIV);
2939   const SCEV *const OperExprBase = getExprBase(OperExpr);
2940 
2941   // Visit all existing chains. Check if its IVOper can be computed as a
2942   // profitable loop invariant increment from the last link in the Chain.
2943   unsigned ChainIdx = 0, NChains = IVChainVec.size();
2944   const SCEV *LastIncExpr = nullptr;
2945   for (; ChainIdx < NChains; ++ChainIdx) {
2946     IVChain &Chain = IVChainVec[ChainIdx];
2947 
2948     // Prune the solution space aggressively by checking that both IV operands
2949     // are expressions that operate on the same unscaled SCEVUnknown. This
2950     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2951     // first avoids creating extra SCEV expressions.
2952     if (!StressIVChain && Chain.ExprBase != OperExprBase)
2953       continue;
2954 
2955     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2956     if (!isCompatibleIVType(PrevIV, NextIV))
2957       continue;
2958 
2959     // A phi node terminates a chain.
2960     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2961       continue;
2962 
2963     // The increment must be loop-invariant so it can be kept in a register.
2964     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2965     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2966     if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2967       continue;
2968 
2969     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2970       LastIncExpr = IncExpr;
2971       break;
2972     }
2973   }
2974   // If we haven't found a chain, create a new one, unless we hit the max. Don't
2975   // bother for phi nodes, because they must be last in the chain.
2976   if (ChainIdx == NChains) {
2977     if (isa<PHINode>(UserInst))
2978       return;
2979     if (NChains >= MaxChains && !StressIVChain) {
2980       LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
2981       return;
2982     }
2983     LastIncExpr = OperExpr;
2984     // IVUsers may have skipped over sign/zero extensions. We don't currently
2985     // attempt to form chains involving extensions unless they can be hoisted
2986     // into this loop's AddRec.
2987     if (!isa<SCEVAddRecExpr>(LastIncExpr))
2988       return;
2989     ++NChains;
2990     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
2991                                  OperExprBase));
2992     ChainUsersVec.resize(NChains);
2993     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
2994                       << ") IV=" << *LastIncExpr << "\n");
2995   } else {
2996     LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
2997                       << ") IV+" << *LastIncExpr << "\n");
2998     // Add this IV user to the end of the chain.
2999     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3000   }
3001   IVChain &Chain = IVChainVec[ChainIdx];
3002 
3003   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3004   // This chain's NearUsers become FarUsers.
3005   if (!LastIncExpr->isZero()) {
3006     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3007                                             NearUsers.end());
3008     NearUsers.clear();
3009   }
3010 
3011   // All other uses of IVOperand become near uses of the chain.
3012   // We currently ignore intermediate values within SCEV expressions, assuming
3013   // they will eventually be used be the current chain, or can be computed
3014   // from one of the chain increments. To be more precise we could
3015   // transitively follow its user and only add leaf IV users to the set.
3016   for (User *U : IVOper->users()) {
3017     Instruction *OtherUse = dyn_cast<Instruction>(U);
3018     if (!OtherUse)
3019       continue;
3020     // Uses in the chain will no longer be uses if the chain is formed.
3021     // Include the head of the chain in this iteration (not Chain.begin()).
3022     IVChain::const_iterator IncIter = Chain.Incs.begin();
3023     IVChain::const_iterator IncEnd = Chain.Incs.end();
3024     for( ; IncIter != IncEnd; ++IncIter) {
3025       if (IncIter->UserInst == OtherUse)
3026         break;
3027     }
3028     if (IncIter != IncEnd)
3029       continue;
3030 
3031     if (SE.isSCEVable(OtherUse->getType())
3032         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3033         && IU.isIVUserOrOperand(OtherUse)) {
3034       continue;
3035     }
3036     NearUsers.insert(OtherUse);
3037   }
3038 
3039   // Since this user is part of the chain, it's no longer considered a use
3040   // of the chain.
3041   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3042 }
3043 
3044 /// Populate the vector of Chains.
3045 ///
3046 /// This decreases ILP at the architecture level. Targets with ample registers,
3047 /// multiple memory ports, and no register renaming probably don't want
3048 /// this. However, such targets should probably disable LSR altogether.
3049 ///
3050 /// The job of LSR is to make a reasonable choice of induction variables across
3051 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3052 /// ILP *within the loop* if the target wants it.
3053 ///
3054 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3055 /// will not reorder memory operations, it will recognize this as a chain, but
3056 /// will generate redundant IV increments. Ideally this would be corrected later
3057 /// by a smart scheduler:
3058 ///        = A[i]
3059 ///        = A[i+x]
3060 /// A[i]   =
3061 /// A[i+x] =
3062 ///
3063 /// TODO: Walk the entire domtree within this loop, not just the path to the
3064 /// loop latch. This will discover chains on side paths, but requires
3065 /// maintaining multiple copies of the Chains state.
3066 void LSRInstance::CollectChains() {
3067   LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3068   SmallVector<ChainUsers, 8> ChainUsersVec;
3069 
3070   SmallVector<BasicBlock *,8> LatchPath;
3071   BasicBlock *LoopHeader = L->getHeader();
3072   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3073        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3074     LatchPath.push_back(Rung->getBlock());
3075   }
3076   LatchPath.push_back(LoopHeader);
3077 
3078   // Walk the instruction stream from the loop header to the loop latch.
3079   for (BasicBlock *BB : reverse(LatchPath)) {
3080     for (Instruction &I : *BB) {
3081       // Skip instructions that weren't seen by IVUsers analysis.
3082       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3083         continue;
3084 
3085       // Ignore users that are part of a SCEV expression. This way we only
3086       // consider leaf IV Users. This effectively rediscovers a portion of
3087       // IVUsers analysis but in program order this time.
3088       if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3089           continue;
3090 
3091       // Remove this instruction from any NearUsers set it may be in.
3092       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3093            ChainIdx < NChains; ++ChainIdx) {
3094         ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3095       }
3096       // Search for operands that can be chained.
3097       SmallPtrSet<Instruction*, 4> UniqueOperands;
3098       User::op_iterator IVOpEnd = I.op_end();
3099       User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3100       while (IVOpIter != IVOpEnd) {
3101         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3102         if (UniqueOperands.insert(IVOpInst).second)
3103           ChainInstruction(&I, IVOpInst, ChainUsersVec);
3104         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3105       }
3106     } // Continue walking down the instructions.
3107   } // Continue walking down the domtree.
3108   // Visit phi backedges to determine if the chain can generate the IV postinc.
3109   for (PHINode &PN : L->getHeader()->phis()) {
3110     if (!SE.isSCEVable(PN.getType()))
3111       continue;
3112 
3113     Instruction *IncV =
3114         dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3115     if (IncV)
3116       ChainInstruction(&PN, IncV, ChainUsersVec);
3117   }
3118   // Remove any unprofitable chains.
3119   unsigned ChainIdx = 0;
3120   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3121        UsersIdx < NChains; ++UsersIdx) {
3122     if (!isProfitableChain(IVChainVec[UsersIdx],
3123                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3124       continue;
3125     // Preserve the chain at UsesIdx.
3126     if (ChainIdx != UsersIdx)
3127       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3128     FinalizeChain(IVChainVec[ChainIdx]);
3129     ++ChainIdx;
3130   }
3131   IVChainVec.resize(ChainIdx);
3132 }
3133 
3134 void LSRInstance::FinalizeChain(IVChain &Chain) {
3135   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3136   LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3137 
3138   for (const IVInc &Inc : Chain) {
3139     LLVM_DEBUG(dbgs() << "        Inc: " << *Inc.UserInst << "\n");
3140     auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3141     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3142     IVIncSet.insert(UseI);
3143   }
3144 }
3145 
3146 /// Return true if the IVInc can be folded into an addressing mode.
3147 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3148                              Value *Operand, const TargetTransformInfo &TTI) {
3149   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3150   if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3151     return false;
3152 
3153   if (IncConst->getAPInt().getMinSignedBits() > 64)
3154     return false;
3155 
3156   MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3157   int64_t IncOffset = IncConst->getValue()->getSExtValue();
3158   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3159                         IncOffset, /*HasBaseReg=*/false))
3160     return false;
3161 
3162   return true;
3163 }
3164 
3165 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3166 /// user's operand from the previous IV user's operand.
3167 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
3168                                   SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3169   // Find the new IVOperand for the head of the chain. It may have been replaced
3170   // by LSR.
3171   const IVInc &Head = Chain.Incs[0];
3172   User::op_iterator IVOpEnd = Head.UserInst->op_end();
3173   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3174   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3175                                              IVOpEnd, L, SE);
3176   Value *IVSrc = nullptr;
3177   while (IVOpIter != IVOpEnd) {
3178     IVSrc = getWideOperand(*IVOpIter);
3179 
3180     // If this operand computes the expression that the chain needs, we may use
3181     // it. (Check this after setting IVSrc which is used below.)
3182     //
3183     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3184     // narrow for the chain, so we can no longer use it. We do allow using a
3185     // wider phi, assuming the LSR checked for free truncation. In that case we
3186     // should already have a truncate on this operand such that
3187     // getSCEV(IVSrc) == IncExpr.
3188     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3189         || SE.getSCEV(IVSrc) == Head.IncExpr) {
3190       break;
3191     }
3192     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3193   }
3194   if (IVOpIter == IVOpEnd) {
3195     // Gracefully give up on this chain.
3196     LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3197     return;
3198   }
3199   assert(IVSrc && "Failed to find IV chain source");
3200 
3201   LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3202   Type *IVTy = IVSrc->getType();
3203   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3204   const SCEV *LeftOverExpr = nullptr;
3205   for (const IVInc &Inc : Chain) {
3206     Instruction *InsertPt = Inc.UserInst;
3207     if (isa<PHINode>(InsertPt))
3208       InsertPt = L->getLoopLatch()->getTerminator();
3209 
3210     // IVOper will replace the current IV User's operand. IVSrc is the IV
3211     // value currently held in a register.
3212     Value *IVOper = IVSrc;
3213     if (!Inc.IncExpr->isZero()) {
3214       // IncExpr was the result of subtraction of two narrow values, so must
3215       // be signed.
3216       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3217       LeftOverExpr = LeftOverExpr ?
3218         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3219     }
3220     if (LeftOverExpr && !LeftOverExpr->isZero()) {
3221       // Expand the IV increment.
3222       Rewriter.clearPostInc();
3223       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3224       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3225                                              SE.getUnknown(IncV));
3226       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3227 
3228       // If an IV increment can't be folded, use it as the next IV value.
3229       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3230         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3231         IVSrc = IVOper;
3232         LeftOverExpr = nullptr;
3233       }
3234     }
3235     Type *OperTy = Inc.IVOperand->getType();
3236     if (IVTy != OperTy) {
3237       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3238              "cannot extend a chained IV");
3239       IRBuilder<> Builder(InsertPt);
3240       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3241     }
3242     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3243     if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3244       DeadInsts.emplace_back(OperandIsInstr);
3245   }
3246   // If LSR created a new, wider phi, we may also replace its postinc. We only
3247   // do this if we also found a wide value for the head of the chain.
3248   if (isa<PHINode>(Chain.tailUserInst())) {
3249     for (PHINode &Phi : L->getHeader()->phis()) {
3250       if (!isCompatibleIVType(&Phi, IVSrc))
3251         continue;
3252       Instruction *PostIncV = dyn_cast<Instruction>(
3253           Phi.getIncomingValueForBlock(L->getLoopLatch()));
3254       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3255         continue;
3256       Value *IVOper = IVSrc;
3257       Type *PostIncTy = PostIncV->getType();
3258       if (IVTy != PostIncTy) {
3259         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3260         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3261         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3262         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3263       }
3264       Phi.replaceUsesOfWith(PostIncV, IVOper);
3265       DeadInsts.emplace_back(PostIncV);
3266     }
3267   }
3268 }
3269 
3270 void LSRInstance::CollectFixupsAndInitialFormulae() {
3271   BranchInst *ExitBranch = nullptr;
3272   bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3273 
3274   for (const IVStrideUse &U : IU) {
3275     Instruction *UserInst = U.getUser();
3276     // Skip IV users that are part of profitable IV Chains.
3277     User::op_iterator UseI =
3278         find(UserInst->operands(), U.getOperandValToReplace());
3279     assert(UseI != UserInst->op_end() && "cannot find IV operand");
3280     if (IVIncSet.count(UseI)) {
3281       LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3282       continue;
3283     }
3284 
3285     LSRUse::KindType Kind = LSRUse::Basic;
3286     MemAccessTy AccessTy;
3287     if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3288       Kind = LSRUse::Address;
3289       AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3290     }
3291 
3292     const SCEV *S = IU.getExpr(U);
3293     PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3294 
3295     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3296     // (N - i == 0), and this allows (N - i) to be the expression that we work
3297     // with rather than just N or i, so we can consider the register
3298     // requirements for both N and i at the same time. Limiting this code to
3299     // equality icmps is not a problem because all interesting loops use
3300     // equality icmps, thanks to IndVarSimplify.
3301     if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3302       // If CI can be saved in some target, like replaced inside hardware loop
3303       // in PowerPC, no need to generate initial formulae for it.
3304       if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3305         continue;
3306       if (CI->isEquality()) {
3307         // Swap the operands if needed to put the OperandValToReplace on the
3308         // left, for consistency.
3309         Value *NV = CI->getOperand(1);
3310         if (NV == U.getOperandValToReplace()) {
3311           CI->setOperand(1, CI->getOperand(0));
3312           CI->setOperand(0, NV);
3313           NV = CI->getOperand(1);
3314           Changed = true;
3315         }
3316 
3317         // x == y  -->  x - y == 0
3318         const SCEV *N = SE.getSCEV(NV);
3319         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE) &&
3320             (!NV->getType()->isPointerTy() ||
3321              SE.getPointerBase(N) == SE.getPointerBase(S))) {
3322           // S is normalized, so normalize N before folding it into S
3323           // to keep the result normalized.
3324           N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3325           Kind = LSRUse::ICmpZero;
3326           S = SE.getMinusSCEV(N, S);
3327         }
3328 
3329         // -1 and the negations of all interesting strides (except the negation
3330         // of -1) are now also interesting.
3331         for (size_t i = 0, e = Factors.size(); i != e; ++i)
3332           if (Factors[i] != -1)
3333             Factors.insert(-(uint64_t)Factors[i]);
3334         Factors.insert(-1);
3335       }
3336     }
3337 
3338     // Get or create an LSRUse.
3339     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3340     size_t LUIdx = P.first;
3341     int64_t Offset = P.second;
3342     LSRUse &LU = Uses[LUIdx];
3343 
3344     // Record the fixup.
3345     LSRFixup &LF = LU.getNewFixup();
3346     LF.UserInst = UserInst;
3347     LF.OperandValToReplace = U.getOperandValToReplace();
3348     LF.PostIncLoops = TmpPostIncLoops;
3349     LF.Offset = Offset;
3350     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3351 
3352     if (!LU.WidestFixupType ||
3353         SE.getTypeSizeInBits(LU.WidestFixupType) <
3354         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3355       LU.WidestFixupType = LF.OperandValToReplace->getType();
3356 
3357     // If this is the first use of this LSRUse, give it a formula.
3358     if (LU.Formulae.empty()) {
3359       InsertInitialFormula(S, LU, LUIdx);
3360       CountRegisters(LU.Formulae.back(), LUIdx);
3361     }
3362   }
3363 
3364   LLVM_DEBUG(print_fixups(dbgs()));
3365 }
3366 
3367 /// Insert a formula for the given expression into the given use, separating out
3368 /// loop-variant portions from loop-invariant and loop-computable portions.
3369 void
3370 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
3371   // Mark uses whose expressions cannot be expanded.
3372   if (!isSafeToExpand(S, SE))
3373     LU.RigidFormula = true;
3374 
3375   Formula F;
3376   F.initialMatch(S, L, SE);
3377   bool Inserted = InsertFormula(LU, LUIdx, F);
3378   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3379 }
3380 
3381 /// Insert a simple single-register formula for the given expression into the
3382 /// given use.
3383 void
3384 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3385                                        LSRUse &LU, size_t LUIdx) {
3386   Formula F;
3387   F.BaseRegs.push_back(S);
3388   F.HasBaseReg = true;
3389   bool Inserted = InsertFormula(LU, LUIdx, F);
3390   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3391 }
3392 
3393 /// Note which registers are used by the given formula, updating RegUses.
3394 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3395   if (F.ScaledReg)
3396     RegUses.countRegister(F.ScaledReg, LUIdx);
3397   for (const SCEV *BaseReg : F.BaseRegs)
3398     RegUses.countRegister(BaseReg, LUIdx);
3399 }
3400 
3401 /// If the given formula has not yet been inserted, add it to the list, and
3402 /// return true. Return false otherwise.
3403 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3404   // Do not insert formula that we will not be able to expand.
3405   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3406          "Formula is illegal");
3407 
3408   if (!LU.InsertFormula(F, *L))
3409     return false;
3410 
3411   CountRegisters(F, LUIdx);
3412   return true;
3413 }
3414 
3415 /// Check for other uses of loop-invariant values which we're tracking. These
3416 /// other uses will pin these values in registers, making them less profitable
3417 /// for elimination.
3418 /// TODO: This currently misses non-constant addrec step registers.
3419 /// TODO: Should this give more weight to users inside the loop?
3420 void
3421 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3422   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3423   SmallPtrSet<const SCEV *, 32> Visited;
3424 
3425   while (!Worklist.empty()) {
3426     const SCEV *S = Worklist.pop_back_val();
3427 
3428     // Don't process the same SCEV twice
3429     if (!Visited.insert(S).second)
3430       continue;
3431 
3432     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3433       Worklist.append(N->op_begin(), N->op_end());
3434     else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3435       Worklist.push_back(C->getOperand());
3436     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3437       Worklist.push_back(D->getLHS());
3438       Worklist.push_back(D->getRHS());
3439     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3440       const Value *V = US->getValue();
3441       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3442         // Look for instructions defined outside the loop.
3443         if (L->contains(Inst)) continue;
3444       } else if (isa<UndefValue>(V))
3445         // Undef doesn't have a live range, so it doesn't matter.
3446         continue;
3447       for (const Use &U : V->uses()) {
3448         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3449         // Ignore non-instructions.
3450         if (!UserInst)
3451           continue;
3452         // Don't bother if the instruction is an EHPad.
3453         if (UserInst->isEHPad())
3454           continue;
3455         // Ignore instructions in other functions (as can happen with
3456         // Constants).
3457         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3458           continue;
3459         // Ignore instructions not dominated by the loop.
3460         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3461           UserInst->getParent() :
3462           cast<PHINode>(UserInst)->getIncomingBlock(
3463             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3464         if (!DT.dominates(L->getHeader(), UseBB))
3465           continue;
3466         // Don't bother if the instruction is in a BB which ends in an EHPad.
3467         if (UseBB->getTerminator()->isEHPad())
3468           continue;
3469         // Don't bother rewriting PHIs in catchswitch blocks.
3470         if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3471           continue;
3472         // Ignore uses which are part of other SCEV expressions, to avoid
3473         // analyzing them multiple times.
3474         if (SE.isSCEVable(UserInst->getType())) {
3475           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3476           // If the user is a no-op, look through to its uses.
3477           if (!isa<SCEVUnknown>(UserS))
3478             continue;
3479           if (UserS == US) {
3480             Worklist.push_back(
3481               SE.getUnknown(const_cast<Instruction *>(UserInst)));
3482             continue;
3483           }
3484         }
3485         // Ignore icmp instructions which are already being analyzed.
3486         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3487           unsigned OtherIdx = !U.getOperandNo();
3488           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3489           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3490             continue;
3491         }
3492 
3493         std::pair<size_t, int64_t> P = getUse(
3494             S, LSRUse::Basic, MemAccessTy());
3495         size_t LUIdx = P.first;
3496         int64_t Offset = P.second;
3497         LSRUse &LU = Uses[LUIdx];
3498         LSRFixup &LF = LU.getNewFixup();
3499         LF.UserInst = const_cast<Instruction *>(UserInst);
3500         LF.OperandValToReplace = U;
3501         LF.Offset = Offset;
3502         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3503         if (!LU.WidestFixupType ||
3504             SE.getTypeSizeInBits(LU.WidestFixupType) <
3505             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3506           LU.WidestFixupType = LF.OperandValToReplace->getType();
3507         InsertSupplementalFormula(US, LU, LUIdx);
3508         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3509         break;
3510       }
3511     }
3512   }
3513 }
3514 
3515 /// Split S into subexpressions which can be pulled out into separate
3516 /// registers. If C is non-null, multiply each subexpression by C.
3517 ///
3518 /// Return remainder expression after factoring the subexpressions captured by
3519 /// Ops. If Ops is complete, return NULL.
3520 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3521                                    SmallVectorImpl<const SCEV *> &Ops,
3522                                    const Loop *L,
3523                                    ScalarEvolution &SE,
3524                                    unsigned Depth = 0) {
3525   // Arbitrarily cap recursion to protect compile time.
3526   if (Depth >= 3)
3527     return S;
3528 
3529   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3530     // Break out add operands.
3531     for (const SCEV *S : Add->operands()) {
3532       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3533       if (Remainder)
3534         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3535     }
3536     return nullptr;
3537   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3538     // Split a non-zero base out of an addrec.
3539     if (AR->getStart()->isZero() || !AR->isAffine())
3540       return S;
3541 
3542     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3543                                             C, Ops, L, SE, Depth+1);
3544     // Split the non-zero AddRec unless it is part of a nested recurrence that
3545     // does not pertain to this loop.
3546     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3547       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3548       Remainder = nullptr;
3549     }
3550     if (Remainder != AR->getStart()) {
3551       if (!Remainder)
3552         Remainder = SE.getConstant(AR->getType(), 0);
3553       return SE.getAddRecExpr(Remainder,
3554                               AR->getStepRecurrence(SE),
3555                               AR->getLoop(),
3556                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3557                               SCEV::FlagAnyWrap);
3558     }
3559   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3560     // Break (C * (a + b + c)) into C*a + C*b + C*c.
3561     if (Mul->getNumOperands() != 2)
3562       return S;
3563     if (const SCEVConstant *Op0 =
3564         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3565       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3566       const SCEV *Remainder =
3567         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3568       if (Remainder)
3569         Ops.push_back(SE.getMulExpr(C, Remainder));
3570       return nullptr;
3571     }
3572   }
3573   return S;
3574 }
3575 
3576 /// Return true if the SCEV represents a value that may end up as a
3577 /// post-increment operation.
3578 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3579                               LSRUse &LU, const SCEV *S, const Loop *L,
3580                               ScalarEvolution &SE) {
3581   if (LU.Kind != LSRUse::Address ||
3582       !LU.AccessTy.getType()->isIntOrIntVectorTy())
3583     return false;
3584   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3585   if (!AR)
3586     return false;
3587   const SCEV *LoopStep = AR->getStepRecurrence(SE);
3588   if (!isa<SCEVConstant>(LoopStep))
3589     return false;
3590   // Check if a post-indexed load/store can be used.
3591   if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3592       TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3593     const SCEV *LoopStart = AR->getStart();
3594     if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3595       return true;
3596   }
3597   return false;
3598 }
3599 
3600 /// Helper function for LSRInstance::GenerateReassociations.
3601 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3602                                              const Formula &Base,
3603                                              unsigned Depth, size_t Idx,
3604                                              bool IsScaledReg) {
3605   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3606   // Don't generate reassociations for the base register of a value that
3607   // may generate a post-increment operator. The reason is that the
3608   // reassociations cause extra base+register formula to be created,
3609   // and possibly chosen, but the post-increment is more efficient.
3610   if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3611     return;
3612   SmallVector<const SCEV *, 8> AddOps;
3613   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3614   if (Remainder)
3615     AddOps.push_back(Remainder);
3616 
3617   if (AddOps.size() == 1)
3618     return;
3619 
3620   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3621                                                      JE = AddOps.end();
3622        J != JE; ++J) {
3623     // Loop-variant "unknown" values are uninteresting; we won't be able to
3624     // do anything meaningful with them.
3625     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3626       continue;
3627 
3628     // Don't pull a constant into a register if the constant could be folded
3629     // into an immediate field.
3630     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3631                          LU.AccessTy, *J, Base.getNumRegs() > 1))
3632       continue;
3633 
3634     // Collect all operands except *J.
3635     SmallVector<const SCEV *, 8> InnerAddOps(
3636         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3637     InnerAddOps.append(std::next(J),
3638                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3639 
3640     // Don't leave just a constant behind in a register if the constant could
3641     // be folded into an immediate field.
3642     if (InnerAddOps.size() == 1 &&
3643         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3644                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3645       continue;
3646 
3647     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3648     if (InnerSum->isZero())
3649       continue;
3650     Formula F = Base;
3651 
3652     // Add the remaining pieces of the add back into the new formula.
3653     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3654     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3655         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3656                                 InnerSumSC->getValue()->getZExtValue())) {
3657       F.UnfoldedOffset =
3658           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3659       if (IsScaledReg)
3660         F.ScaledReg = nullptr;
3661       else
3662         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3663     } else if (IsScaledReg)
3664       F.ScaledReg = InnerSum;
3665     else
3666       F.BaseRegs[Idx] = InnerSum;
3667 
3668     // Add J as its own register, or an unfolded immediate.
3669     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3670     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3671         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3672                                 SC->getValue()->getZExtValue()))
3673       F.UnfoldedOffset =
3674           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3675     else
3676       F.BaseRegs.push_back(*J);
3677     // We may have changed the number of register in base regs, adjust the
3678     // formula accordingly.
3679     F.canonicalize(*L);
3680 
3681     if (InsertFormula(LU, LUIdx, F))
3682       // If that formula hadn't been seen before, recurse to find more like
3683       // it.
3684       // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3685       // Because just Depth is not enough to bound compile time.
3686       // This means that every time AddOps.size() is greater 16^x we will add
3687       // x to Depth.
3688       GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3689                              Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3690   }
3691 }
3692 
3693 /// Split out subexpressions from adds and the bases of addrecs.
3694 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3695                                          Formula Base, unsigned Depth) {
3696   assert(Base.isCanonical(*L) && "Input must be in the canonical form");
3697   // Arbitrarily cap recursion to protect compile time.
3698   if (Depth >= 3)
3699     return;
3700 
3701   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3702     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3703 
3704   if (Base.Scale == 1)
3705     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3706                                /* Idx */ -1, /* IsScaledReg */ true);
3707 }
3708 
3709 ///  Generate a formula consisting of all of the loop-dominating registers added
3710 /// into a single register.
3711 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3712                                        Formula Base) {
3713   // This method is only interesting on a plurality of registers.
3714   if (Base.BaseRegs.size() + (Base.Scale == 1) +
3715       (Base.UnfoldedOffset != 0) <= 1)
3716     return;
3717 
3718   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3719   // processing the formula.
3720   Base.unscale();
3721   SmallVector<const SCEV *, 4> Ops;
3722   Formula NewBase = Base;
3723   NewBase.BaseRegs.clear();
3724   Type *CombinedIntegerType = nullptr;
3725   for (const SCEV *BaseReg : Base.BaseRegs) {
3726     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3727         !SE.hasComputableLoopEvolution(BaseReg, L)) {
3728       if (!CombinedIntegerType)
3729         CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3730       Ops.push_back(BaseReg);
3731     }
3732     else
3733       NewBase.BaseRegs.push_back(BaseReg);
3734   }
3735 
3736   // If no register is relevant, we're done.
3737   if (Ops.size() == 0)
3738     return;
3739 
3740   // Utility function for generating the required variants of the combined
3741   // registers.
3742   auto GenerateFormula = [&](const SCEV *Sum) {
3743     Formula F = NewBase;
3744 
3745     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3746     // opportunity to fold something. For now, just ignore such cases
3747     // rather than proceed with zero in a register.
3748     if (Sum->isZero())
3749       return;
3750 
3751     F.BaseRegs.push_back(Sum);
3752     F.canonicalize(*L);
3753     (void)InsertFormula(LU, LUIdx, F);
3754   };
3755 
3756   // If we collected at least two registers, generate a formula combining them.
3757   if (Ops.size() > 1) {
3758     SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3759     GenerateFormula(SE.getAddExpr(OpsCopy));
3760   }
3761 
3762   // If we have an unfolded offset, generate a formula combining it with the
3763   // registers collected.
3764   if (NewBase.UnfoldedOffset) {
3765     assert(CombinedIntegerType && "Missing a type for the unfolded offset");
3766     Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3767                                  true));
3768     NewBase.UnfoldedOffset = 0;
3769     GenerateFormula(SE.getAddExpr(Ops));
3770   }
3771 }
3772 
3773 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
3774 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3775                                               const Formula &Base, size_t Idx,
3776                                               bool IsScaledReg) {
3777   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3778   GlobalValue *GV = ExtractSymbol(G, SE);
3779   if (G->isZero() || !GV)
3780     return;
3781   Formula F = Base;
3782   F.BaseGV = GV;
3783   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3784     return;
3785   if (IsScaledReg)
3786     F.ScaledReg = G;
3787   else
3788     F.BaseRegs[Idx] = G;
3789   (void)InsertFormula(LU, LUIdx, F);
3790 }
3791 
3792 /// Generate reuse formulae using symbolic offsets.
3793 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3794                                           Formula Base) {
3795   // We can't add a symbolic offset if the address already contains one.
3796   if (Base.BaseGV) return;
3797 
3798   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3799     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3800   if (Base.Scale == 1)
3801     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3802                                 /* IsScaledReg */ true);
3803 }
3804 
3805 /// Helper function for LSRInstance::GenerateConstantOffsets.
3806 void LSRInstance::GenerateConstantOffsetsImpl(
3807     LSRUse &LU, unsigned LUIdx, const Formula &Base,
3808     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3809 
3810   auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3811     Formula F = Base;
3812     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3813 
3814     if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3815       // Add the offset to the base register.
3816       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3817       // If it cancelled out, drop the base register, otherwise update it.
3818       if (NewG->isZero()) {
3819         if (IsScaledReg) {
3820           F.Scale = 0;
3821           F.ScaledReg = nullptr;
3822         } else
3823           F.deleteBaseReg(F.BaseRegs[Idx]);
3824         F.canonicalize(*L);
3825       } else if (IsScaledReg)
3826         F.ScaledReg = NewG;
3827       else
3828         F.BaseRegs[Idx] = NewG;
3829 
3830       (void)InsertFormula(LU, LUIdx, F);
3831     }
3832   };
3833 
3834   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3835 
3836   // With constant offsets and constant steps, we can generate pre-inc
3837   // accesses by having the offset equal the step. So, for access #0 with a
3838   // step of 8, we generate a G - 8 base which would require the first access
3839   // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3840   // for itself and hopefully becomes the base for other accesses. This means
3841   // means that a single pre-indexed access can be generated to become the new
3842   // base pointer for each iteration of the loop, resulting in no extra add/sub
3843   // instructions for pointer updating.
3844   if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3845     if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3846       if (auto *StepRec =
3847           dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3848         const APInt &StepInt = StepRec->getAPInt();
3849         int64_t Step = StepInt.isNegative() ?
3850           StepInt.getSExtValue() : StepInt.getZExtValue();
3851 
3852         for (int64_t Offset : Worklist) {
3853           Offset -= Step;
3854           GenerateOffset(G, Offset);
3855         }
3856       }
3857     }
3858   }
3859   for (int64_t Offset : Worklist)
3860     GenerateOffset(G, Offset);
3861 
3862   int64_t Imm = ExtractImmediate(G, SE);
3863   if (G->isZero() || Imm == 0)
3864     return;
3865   Formula F = Base;
3866   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3867   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3868     return;
3869   if (IsScaledReg) {
3870     F.ScaledReg = G;
3871   } else {
3872     F.BaseRegs[Idx] = G;
3873     // We may generate non canonical Formula if G is a recurrent expr reg
3874     // related with current loop while F.ScaledReg is not.
3875     F.canonicalize(*L);
3876   }
3877   (void)InsertFormula(LU, LUIdx, F);
3878 }
3879 
3880 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3881 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3882                                           Formula Base) {
3883   // TODO: For now, just add the min and max offset, because it usually isn't
3884   // worthwhile looking at everything inbetween.
3885   SmallVector<int64_t, 2> Worklist;
3886   Worklist.push_back(LU.MinOffset);
3887   if (LU.MaxOffset != LU.MinOffset)
3888     Worklist.push_back(LU.MaxOffset);
3889 
3890   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3891     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3892   if (Base.Scale == 1)
3893     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3894                                 /* IsScaledReg */ true);
3895 }
3896 
3897 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
3898 /// == y -> x*c == y*c.
3899 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3900                                          Formula Base) {
3901   if (LU.Kind != LSRUse::ICmpZero) return;
3902 
3903   // Determine the integer type for the base formula.
3904   Type *IntTy = Base.getType();
3905   if (!IntTy) return;
3906   if (SE.getTypeSizeInBits(IntTy) > 64) return;
3907 
3908   // Don't do this if there is more than one offset.
3909   if (LU.MinOffset != LU.MaxOffset) return;
3910 
3911   // Check if transformation is valid. It is illegal to multiply pointer.
3912   if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3913     return;
3914   for (const SCEV *BaseReg : Base.BaseRegs)
3915     if (BaseReg->getType()->isPointerTy())
3916       return;
3917   assert(!Base.BaseGV && "ICmpZero use is not legal!");
3918 
3919   // Check each interesting stride.
3920   for (int64_t Factor : Factors) {
3921     // Check that the multiplication doesn't overflow.
3922     if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
3923       continue;
3924     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
3925     assert(Factor != 0 && "Zero factor not expected!");
3926     if (NewBaseOffset / Factor != Base.BaseOffset)
3927       continue;
3928     // If the offset will be truncated at this use, check that it is in bounds.
3929     if (!IntTy->isPointerTy() &&
3930         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
3931       continue;
3932 
3933     // Check that multiplying with the use offset doesn't overflow.
3934     int64_t Offset = LU.MinOffset;
3935     if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
3936       continue;
3937     Offset = (uint64_t)Offset * Factor;
3938     if (Offset / Factor != LU.MinOffset)
3939       continue;
3940     // If the offset will be truncated at this use, check that it is in bounds.
3941     if (!IntTy->isPointerTy() &&
3942         !ConstantInt::isValueValidForType(IntTy, Offset))
3943       continue;
3944 
3945     Formula F = Base;
3946     F.BaseOffset = NewBaseOffset;
3947 
3948     // Check that this scale is legal.
3949     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
3950       continue;
3951 
3952     // Compensate for the use having MinOffset built into it.
3953     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
3954 
3955     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
3956 
3957     // Check that multiplying with each base register doesn't overflow.
3958     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
3959       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
3960       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
3961         goto next;
3962     }
3963 
3964     // Check that multiplying with the scaled register doesn't overflow.
3965     if (F.ScaledReg) {
3966       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
3967       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
3968         continue;
3969     }
3970 
3971     // Check that multiplying with the unfolded offset doesn't overflow.
3972     if (F.UnfoldedOffset != 0) {
3973       if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
3974           Factor == -1)
3975         continue;
3976       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
3977       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
3978         continue;
3979       // If the offset will be truncated, check that it is in bounds.
3980       if (!IntTy->isPointerTy() &&
3981           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
3982         continue;
3983     }
3984 
3985     // If we make it here and it's legal, add it.
3986     (void)InsertFormula(LU, LUIdx, F);
3987   next:;
3988   }
3989 }
3990 
3991 /// Generate stride factor reuse formulae by making use of scaled-offset address
3992 /// modes, for example.
3993 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
3994   // Determine the integer type for the base formula.
3995   Type *IntTy = Base.getType();
3996   if (!IntTy) return;
3997 
3998   // If this Formula already has a scaled register, we can't add another one.
3999   // Try to unscale the formula to generate a better scale.
4000   if (Base.Scale != 0 && !Base.unscale())
4001     return;
4002 
4003   assert(Base.Scale == 0 && "unscale did not did its job!");
4004 
4005   // Check each interesting stride.
4006   for (int64_t Factor : Factors) {
4007     Base.Scale = Factor;
4008     Base.HasBaseReg = Base.BaseRegs.size() > 1;
4009     // Check whether this scale is going to be legal.
4010     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4011                     Base)) {
4012       // As a special-case, handle special out-of-loop Basic users specially.
4013       // TODO: Reconsider this special case.
4014       if (LU.Kind == LSRUse::Basic &&
4015           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4016                      LU.AccessTy, Base) &&
4017           LU.AllFixupsOutsideLoop)
4018         LU.Kind = LSRUse::Special;
4019       else
4020         continue;
4021     }
4022     // For an ICmpZero, negating a solitary base register won't lead to
4023     // new solutions.
4024     if (LU.Kind == LSRUse::ICmpZero &&
4025         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4026       continue;
4027     // For each addrec base reg, if its loop is current loop, apply the scale.
4028     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4029       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4030       if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4031         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4032         if (FactorS->isZero())
4033           continue;
4034         // Divide out the factor, ignoring high bits, since we'll be
4035         // scaling the value back up in the end.
4036         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
4037           // TODO: This could be optimized to avoid all the copying.
4038           Formula F = Base;
4039           F.ScaledReg = Quotient;
4040           F.deleteBaseReg(F.BaseRegs[i]);
4041           // The canonical representation of 1*reg is reg, which is already in
4042           // Base. In that case, do not try to insert the formula, it will be
4043           // rejected anyway.
4044           if (F.Scale == 1 && (F.BaseRegs.empty() ||
4045                                (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4046             continue;
4047           // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4048           // non canonical Formula with ScaledReg's loop not being L.
4049           if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4050             F.canonicalize(*L);
4051           (void)InsertFormula(LU, LUIdx, F);
4052         }
4053       }
4054     }
4055   }
4056 }
4057 
4058 /// Generate reuse formulae from different IV types.
4059 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4060   // Don't bother truncating symbolic values.
4061   if (Base.BaseGV) return;
4062 
4063   // Determine the integer type for the base formula.
4064   Type *DstTy = Base.getType();
4065   if (!DstTy) return;
4066   DstTy = SE.getEffectiveSCEVType(DstTy);
4067 
4068   for (Type *SrcTy : Types) {
4069     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4070       Formula F = Base;
4071 
4072       // Sometimes SCEV is able to prove zero during ext transform. It may
4073       // happen if SCEV did not do all possible transforms while creating the
4074       // initial node (maybe due to depth limitations), but it can do them while
4075       // taking ext.
4076       if (F.ScaledReg) {
4077         const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4078         if (NewScaledReg->isZero())
4079          continue;
4080         F.ScaledReg = NewScaledReg;
4081       }
4082       bool HasZeroBaseReg = false;
4083       for (const SCEV *&BaseReg : F.BaseRegs) {
4084         const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4085         if (NewBaseReg->isZero()) {
4086           HasZeroBaseReg = true;
4087           break;
4088         }
4089         BaseReg = NewBaseReg;
4090       }
4091       if (HasZeroBaseReg)
4092         continue;
4093 
4094       // TODO: This assumes we've done basic processing on all uses and
4095       // have an idea what the register usage is.
4096       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4097         continue;
4098 
4099       F.canonicalize(*L);
4100       (void)InsertFormula(LU, LUIdx, F);
4101     }
4102   }
4103 }
4104 
4105 namespace {
4106 
4107 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4108 /// modifications so that the search phase doesn't have to worry about the data
4109 /// structures moving underneath it.
4110 struct WorkItem {
4111   size_t LUIdx;
4112   int64_t Imm;
4113   const SCEV *OrigReg;
4114 
4115   WorkItem(size_t LI, int64_t I, const SCEV *R)
4116       : LUIdx(LI), Imm(I), OrigReg(R) {}
4117 
4118   void print(raw_ostream &OS) const;
4119   void dump() const;
4120 };
4121 
4122 } // end anonymous namespace
4123 
4124 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4125 void WorkItem::print(raw_ostream &OS) const {
4126   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4127      << " , add offset " << Imm;
4128 }
4129 
4130 LLVM_DUMP_METHOD void WorkItem::dump() const {
4131   print(errs()); errs() << '\n';
4132 }
4133 #endif
4134 
4135 /// Look for registers which are a constant distance apart and try to form reuse
4136 /// opportunities between them.
4137 void LSRInstance::GenerateCrossUseConstantOffsets() {
4138   // Group the registers by their value without any added constant offset.
4139   using ImmMapTy = std::map<int64_t, const SCEV *>;
4140 
4141   DenseMap<const SCEV *, ImmMapTy> Map;
4142   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4143   SmallVector<const SCEV *, 8> Sequence;
4144   for (const SCEV *Use : RegUses) {
4145     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4146     int64_t Imm = ExtractImmediate(Reg, SE);
4147     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4148     if (Pair.second)
4149       Sequence.push_back(Reg);
4150     Pair.first->second.insert(std::make_pair(Imm, Use));
4151     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4152   }
4153 
4154   // Now examine each set of registers with the same base value. Build up
4155   // a list of work to do and do the work in a separate step so that we're
4156   // not adding formulae and register counts while we're searching.
4157   SmallVector<WorkItem, 32> WorkItems;
4158   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4159   for (const SCEV *Reg : Sequence) {
4160     const ImmMapTy &Imms = Map.find(Reg)->second;
4161 
4162     // It's not worthwhile looking for reuse if there's only one offset.
4163     if (Imms.size() == 1)
4164       continue;
4165 
4166     LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4167                for (const auto &Entry
4168                     : Imms) dbgs()
4169                << ' ' << Entry.first;
4170                dbgs() << '\n');
4171 
4172     // Examine each offset.
4173     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4174          J != JE; ++J) {
4175       const SCEV *OrigReg = J->second;
4176 
4177       int64_t JImm = J->first;
4178       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4179 
4180       if (!isa<SCEVConstant>(OrigReg) &&
4181           UsedByIndicesMap[Reg].count() == 1) {
4182         LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4183                           << '\n');
4184         continue;
4185       }
4186 
4187       // Conservatively examine offsets between this orig reg a few selected
4188       // other orig regs.
4189       int64_t First = Imms.begin()->first;
4190       int64_t Last = std::prev(Imms.end())->first;
4191       // Compute (First + Last)  / 2 without overflow using the fact that
4192       // First + Last = 2 * (First + Last) + (First ^ Last).
4193       int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4194       // If the result is negative and First is odd and Last even (or vice versa),
4195       // we rounded towards -inf. Add 1 in that case, to round towards 0.
4196       Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4197       ImmMapTy::const_iterator OtherImms[] = {
4198           Imms.begin(), std::prev(Imms.end()),
4199          Imms.lower_bound(Avg)};
4200       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
4201         ImmMapTy::const_iterator M = OtherImms[i];
4202         if (M == J || M == JE) continue;
4203 
4204         // Compute the difference between the two.
4205         int64_t Imm = (uint64_t)JImm - M->first;
4206         for (unsigned LUIdx : UsedByIndices.set_bits())
4207           // Make a memo of this use, offset, and register tuple.
4208           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4209             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4210       }
4211     }
4212   }
4213 
4214   Map.clear();
4215   Sequence.clear();
4216   UsedByIndicesMap.clear();
4217   UniqueItems.clear();
4218 
4219   // Now iterate through the worklist and add new formulae.
4220   for (const WorkItem &WI : WorkItems) {
4221     size_t LUIdx = WI.LUIdx;
4222     LSRUse &LU = Uses[LUIdx];
4223     int64_t Imm = WI.Imm;
4224     const SCEV *OrigReg = WI.OrigReg;
4225 
4226     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4227     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4228     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4229 
4230     // TODO: Use a more targeted data structure.
4231     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4232       Formula F = LU.Formulae[L];
4233       // FIXME: The code for the scaled and unscaled registers looks
4234       // very similar but slightly different. Investigate if they
4235       // could be merged. That way, we would not have to unscale the
4236       // Formula.
4237       F.unscale();
4238       // Use the immediate in the scaled register.
4239       if (F.ScaledReg == OrigReg) {
4240         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4241         // Don't create 50 + reg(-50).
4242         if (F.referencesReg(SE.getSCEV(
4243                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
4244           continue;
4245         Formula NewF = F;
4246         NewF.BaseOffset = Offset;
4247         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4248                         NewF))
4249           continue;
4250         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4251 
4252         // If the new scale is a constant in a register, and adding the constant
4253         // value to the immediate would produce a value closer to zero than the
4254         // immediate itself, then the formula isn't worthwhile.
4255         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4256           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4257               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4258                   .ule(std::abs(NewF.BaseOffset)))
4259             continue;
4260 
4261         // OK, looks good.
4262         NewF.canonicalize(*this->L);
4263         (void)InsertFormula(LU, LUIdx, NewF);
4264       } else {
4265         // Use the immediate in a base register.
4266         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4267           const SCEV *BaseReg = F.BaseRegs[N];
4268           if (BaseReg != OrigReg)
4269             continue;
4270           Formula NewF = F;
4271           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4272           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4273                           LU.Kind, LU.AccessTy, NewF)) {
4274             if (AMK == TTI::AMK_PostIndexed &&
4275                 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4276               continue;
4277             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4278               continue;
4279             NewF = F;
4280             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4281           }
4282           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4283 
4284           // If the new formula has a constant in a register, and adding the
4285           // constant value to the immediate would produce a value closer to
4286           // zero than the immediate itself, then the formula isn't worthwhile.
4287           for (const SCEV *NewReg : NewF.BaseRegs)
4288             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4289               if ((C->getAPInt() + NewF.BaseOffset)
4290                       .abs()
4291                       .slt(std::abs(NewF.BaseOffset)) &&
4292                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
4293                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
4294                 goto skip_formula;
4295 
4296           // Ok, looks good.
4297           NewF.canonicalize(*this->L);
4298           (void)InsertFormula(LU, LUIdx, NewF);
4299           break;
4300         skip_formula:;
4301         }
4302       }
4303     }
4304   }
4305 }
4306 
4307 /// Generate formulae for each use.
4308 void
4309 LSRInstance::GenerateAllReuseFormulae() {
4310   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4311   // queries are more precise.
4312   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4313     LSRUse &LU = Uses[LUIdx];
4314     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4315       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4316     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4317       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4318   }
4319   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4320     LSRUse &LU = Uses[LUIdx];
4321     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4322       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4323     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4324       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4325     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4326       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4327     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4328       GenerateScales(LU, LUIdx, LU.Formulae[i]);
4329   }
4330   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4331     LSRUse &LU = Uses[LUIdx];
4332     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4333       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4334   }
4335 
4336   GenerateCrossUseConstantOffsets();
4337 
4338   LLVM_DEBUG(dbgs() << "\n"
4339                        "After generating reuse formulae:\n";
4340              print_uses(dbgs()));
4341 }
4342 
4343 /// If there are multiple formulae with the same set of registers used
4344 /// by other uses, pick the best one and delete the others.
4345 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4346   DenseSet<const SCEV *> VisitedRegs;
4347   SmallPtrSet<const SCEV *, 16> Regs;
4348   SmallPtrSet<const SCEV *, 16> LoserRegs;
4349 #ifndef NDEBUG
4350   bool ChangedFormulae = false;
4351 #endif
4352 
4353   // Collect the best formula for each unique set of shared registers. This
4354   // is reset for each use.
4355   using BestFormulaeTy =
4356       DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4357 
4358   BestFormulaeTy BestFormulae;
4359 
4360   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4361     LSRUse &LU = Uses[LUIdx];
4362     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4363                dbgs() << '\n');
4364 
4365     bool Any = false;
4366     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4367          FIdx != NumForms; ++FIdx) {
4368       Formula &F = LU.Formulae[FIdx];
4369 
4370       // Some formulas are instant losers. For example, they may depend on
4371       // nonexistent AddRecs from other loops. These need to be filtered
4372       // immediately, otherwise heuristics could choose them over others leading
4373       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4374       // avoids the need to recompute this information across formulae using the
4375       // same bad AddRec. Passing LoserRegs is also essential unless we remove
4376       // the corresponding bad register from the Regs set.
4377       Cost CostF(L, SE, TTI, AMK);
4378       Regs.clear();
4379       CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4380       if (CostF.isLoser()) {
4381         // During initial formula generation, undesirable formulae are generated
4382         // by uses within other loops that have some non-trivial address mode or
4383         // use the postinc form of the IV. LSR needs to provide these formulae
4384         // as the basis of rediscovering the desired formula that uses an AddRec
4385         // corresponding to the existing phi. Once all formulae have been
4386         // generated, these initial losers may be pruned.
4387         LLVM_DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
4388                    dbgs() << "\n");
4389       }
4390       else {
4391         SmallVector<const SCEV *, 4> Key;
4392         for (const SCEV *Reg : F.BaseRegs) {
4393           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4394             Key.push_back(Reg);
4395         }
4396         if (F.ScaledReg &&
4397             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4398           Key.push_back(F.ScaledReg);
4399         // Unstable sort by host order ok, because this is only used for
4400         // uniquifying.
4401         llvm::sort(Key);
4402 
4403         std::pair<BestFormulaeTy::const_iterator, bool> P =
4404           BestFormulae.insert(std::make_pair(Key, FIdx));
4405         if (P.second)
4406           continue;
4407 
4408         Formula &Best = LU.Formulae[P.first->second];
4409 
4410         Cost CostBest(L, SE, TTI, AMK);
4411         Regs.clear();
4412         CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4413         if (CostF.isLess(CostBest))
4414           std::swap(F, Best);
4415         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4416                    dbgs() << "\n"
4417                              "    in favor of formula ";
4418                    Best.print(dbgs()); dbgs() << '\n');
4419       }
4420 #ifndef NDEBUG
4421       ChangedFormulae = true;
4422 #endif
4423       LU.DeleteFormula(F);
4424       --FIdx;
4425       --NumForms;
4426       Any = true;
4427     }
4428 
4429     // Now that we've filtered out some formulae, recompute the Regs set.
4430     if (Any)
4431       LU.RecomputeRegs(LUIdx, RegUses);
4432 
4433     // Reset this to prepare for the next use.
4434     BestFormulae.clear();
4435   }
4436 
4437   LLVM_DEBUG(if (ChangedFormulae) {
4438     dbgs() << "\n"
4439               "After filtering out undesirable candidates:\n";
4440     print_uses(dbgs());
4441   });
4442 }
4443 
4444 /// Estimate the worst-case number of solutions the solver might have to
4445 /// consider. It almost never considers this many solutions because it prune the
4446 /// search space, but the pruning isn't always sufficient.
4447 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4448   size_t Power = 1;
4449   for (const LSRUse &LU : Uses) {
4450     size_t FSize = LU.Formulae.size();
4451     if (FSize >= ComplexityLimit) {
4452       Power = ComplexityLimit;
4453       break;
4454     }
4455     Power *= FSize;
4456     if (Power >= ComplexityLimit)
4457       break;
4458   }
4459   return Power;
4460 }
4461 
4462 /// When one formula uses a superset of the registers of another formula, it
4463 /// won't help reduce register pressure (though it may not necessarily hurt
4464 /// register pressure); remove it to simplify the system.
4465 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4466   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4467     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4468 
4469     LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4470                          "which use a superset of registers used by other "
4471                          "formulae.\n");
4472 
4473     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4474       LSRUse &LU = Uses[LUIdx];
4475       bool Any = false;
4476       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4477         Formula &F = LU.Formulae[i];
4478         // Look for a formula with a constant or GV in a register. If the use
4479         // also has a formula with that same value in an immediate field,
4480         // delete the one that uses a register.
4481         for (SmallVectorImpl<const SCEV *>::const_iterator
4482              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4483           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4484             Formula NewF = F;
4485             //FIXME: Formulas should store bitwidth to do wrapping properly.
4486             //       See PR41034.
4487             NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4488             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4489                                 (I - F.BaseRegs.begin()));
4490             if (LU.HasFormulaWithSameRegs(NewF)) {
4491               LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4492                          dbgs() << '\n');
4493               LU.DeleteFormula(F);
4494               --i;
4495               --e;
4496               Any = true;
4497               break;
4498             }
4499           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4500             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4501               if (!F.BaseGV) {
4502                 Formula NewF = F;
4503                 NewF.BaseGV = GV;
4504                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4505                                     (I - F.BaseRegs.begin()));
4506                 if (LU.HasFormulaWithSameRegs(NewF)) {
4507                   LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
4508                              dbgs() << '\n');
4509                   LU.DeleteFormula(F);
4510                   --i;
4511                   --e;
4512                   Any = true;
4513                   break;
4514                 }
4515               }
4516           }
4517         }
4518       }
4519       if (Any)
4520         LU.RecomputeRegs(LUIdx, RegUses);
4521     }
4522 
4523     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4524   }
4525 }
4526 
4527 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4528 /// allocate a single register for them.
4529 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4530   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4531     return;
4532 
4533   LLVM_DEBUG(
4534       dbgs() << "The search space is too complex.\n"
4535                 "Narrowing the search space by assuming that uses separated "
4536                 "by a constant offset will use the same registers.\n");
4537 
4538   // This is especially useful for unrolled loops.
4539 
4540   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4541     LSRUse &LU = Uses[LUIdx];
4542     for (const Formula &F : LU.Formulae) {
4543       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4544         continue;
4545 
4546       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4547       if (!LUThatHas)
4548         continue;
4549 
4550       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4551                               LU.Kind, LU.AccessTy))
4552         continue;
4553 
4554       LLVM_DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4555 
4556       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4557 
4558       // Transfer the fixups of LU to LUThatHas.
4559       for (LSRFixup &Fixup : LU.Fixups) {
4560         Fixup.Offset += F.BaseOffset;
4561         LUThatHas->pushFixup(Fixup);
4562         LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4563       }
4564 
4565       // Delete formulae from the new use which are no longer legal.
4566       bool Any = false;
4567       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4568         Formula &F = LUThatHas->Formulae[i];
4569         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4570                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4571           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4572           LUThatHas->DeleteFormula(F);
4573           --i;
4574           --e;
4575           Any = true;
4576         }
4577       }
4578 
4579       if (Any)
4580         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4581 
4582       // Delete the old use.
4583       DeleteUse(LU, LUIdx);
4584       --LUIdx;
4585       --NumUses;
4586       break;
4587     }
4588   }
4589 
4590   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4591 }
4592 
4593 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4594 /// we've done more filtering, as it may be able to find more formulae to
4595 /// eliminate.
4596 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4597   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4598     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4599 
4600     LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
4601                          "undesirable dedicated registers.\n");
4602 
4603     FilterOutUndesirableDedicatedRegisters();
4604 
4605     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4606   }
4607 }
4608 
4609 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4610 /// Pick the best one and delete the others.
4611 /// This narrowing heuristic is to keep as many formulae with different
4612 /// Scale and ScaledReg pair as possible while narrowing the search space.
4613 /// The benefit is that it is more likely to find out a better solution
4614 /// from a formulae set with more Scale and ScaledReg variations than
4615 /// a formulae set with the same Scale and ScaledReg. The picking winner
4616 /// reg heuristic will often keep the formulae with the same Scale and
4617 /// ScaledReg and filter others, and we want to avoid that if possible.
4618 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4619   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4620     return;
4621 
4622   LLVM_DEBUG(
4623       dbgs() << "The search space is too complex.\n"
4624                 "Narrowing the search space by choosing the best Formula "
4625                 "from the Formulae with the same Scale and ScaledReg.\n");
4626 
4627   // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4628   using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4629 
4630   BestFormulaeTy BestFormulae;
4631 #ifndef NDEBUG
4632   bool ChangedFormulae = false;
4633 #endif
4634   DenseSet<const SCEV *> VisitedRegs;
4635   SmallPtrSet<const SCEV *, 16> Regs;
4636 
4637   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4638     LSRUse &LU = Uses[LUIdx];
4639     LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4640                dbgs() << '\n');
4641 
4642     // Return true if Formula FA is better than Formula FB.
4643     auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4644       // First we will try to choose the Formula with fewer new registers.
4645       // For a register used by current Formula, the more the register is
4646       // shared among LSRUses, the less we increase the register number
4647       // counter of the formula.
4648       size_t FARegNum = 0;
4649       for (const SCEV *Reg : FA.BaseRegs) {
4650         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4651         FARegNum += (NumUses - UsedByIndices.count() + 1);
4652       }
4653       size_t FBRegNum = 0;
4654       for (const SCEV *Reg : FB.BaseRegs) {
4655         const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4656         FBRegNum += (NumUses - UsedByIndices.count() + 1);
4657       }
4658       if (FARegNum != FBRegNum)
4659         return FARegNum < FBRegNum;
4660 
4661       // If the new register numbers are the same, choose the Formula with
4662       // less Cost.
4663       Cost CostFA(L, SE, TTI, AMK);
4664       Cost CostFB(L, SE, TTI, AMK);
4665       Regs.clear();
4666       CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4667       Regs.clear();
4668       CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4669       return CostFA.isLess(CostFB);
4670     };
4671 
4672     bool Any = false;
4673     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4674          ++FIdx) {
4675       Formula &F = LU.Formulae[FIdx];
4676       if (!F.ScaledReg)
4677         continue;
4678       auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4679       if (P.second)
4680         continue;
4681 
4682       Formula &Best = LU.Formulae[P.first->second];
4683       if (IsBetterThan(F, Best))
4684         std::swap(F, Best);
4685       LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4686                  dbgs() << "\n"
4687                            "    in favor of formula ";
4688                  Best.print(dbgs()); dbgs() << '\n');
4689 #ifndef NDEBUG
4690       ChangedFormulae = true;
4691 #endif
4692       LU.DeleteFormula(F);
4693       --FIdx;
4694       --NumForms;
4695       Any = true;
4696     }
4697     if (Any)
4698       LU.RecomputeRegs(LUIdx, RegUses);
4699 
4700     // Reset this to prepare for the next use.
4701     BestFormulae.clear();
4702   }
4703 
4704   LLVM_DEBUG(if (ChangedFormulae) {
4705     dbgs() << "\n"
4706               "After filtering out undesirable candidates:\n";
4707     print_uses(dbgs());
4708   });
4709 }
4710 
4711 /// If we are over the complexity limit, filter out any post-inc prefering
4712 /// variables to only post-inc values.
4713 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4714   if (AMK != TTI::AMK_PostIndexed)
4715     return;
4716   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4717     return;
4718 
4719   LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
4720                        "Narrowing the search space by choosing the lowest "
4721                        "register Formula for PostInc Uses.\n");
4722 
4723   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4724     LSRUse &LU = Uses[LUIdx];
4725 
4726     if (LU.Kind != LSRUse::Address)
4727       continue;
4728     if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4729         !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4730       continue;
4731 
4732     size_t MinRegs = std::numeric_limits<size_t>::max();
4733     for (const Formula &F : LU.Formulae)
4734       MinRegs = std::min(F.getNumRegs(), MinRegs);
4735 
4736     bool Any = false;
4737     for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4738          ++FIdx) {
4739       Formula &F = LU.Formulae[FIdx];
4740       if (F.getNumRegs() > MinRegs) {
4741         LLVM_DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
4742                    dbgs() << "\n");
4743         LU.DeleteFormula(F);
4744         --FIdx;
4745         --NumForms;
4746         Any = true;
4747       }
4748     }
4749     if (Any)
4750       LU.RecomputeRegs(LUIdx, RegUses);
4751 
4752     if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4753       break;
4754   }
4755 
4756   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4757 }
4758 
4759 /// The function delete formulas with high registers number expectation.
4760 /// Assuming we don't know the value of each formula (already delete
4761 /// all inefficient), generate probability of not selecting for each
4762 /// register.
4763 /// For example,
4764 /// Use1:
4765 ///  reg(a) + reg({0,+,1})
4766 ///  reg(a) + reg({-1,+,1}) + 1
4767 ///  reg({a,+,1})
4768 /// Use2:
4769 ///  reg(b) + reg({0,+,1})
4770 ///  reg(b) + reg({-1,+,1}) + 1
4771 ///  reg({b,+,1})
4772 /// Use3:
4773 ///  reg(c) + reg(b) + reg({0,+,1})
4774 ///  reg(c) + reg({b,+,1})
4775 ///
4776 /// Probability of not selecting
4777 ///                 Use1   Use2    Use3
4778 /// reg(a)         (1/3) *   1   *   1
4779 /// reg(b)           1   * (1/3) * (1/2)
4780 /// reg({0,+,1})   (2/3) * (2/3) * (1/2)
4781 /// reg({-1,+,1})  (2/3) * (2/3) *   1
4782 /// reg({a,+,1})   (2/3) *   1   *   1
4783 /// reg({b,+,1})     1   * (2/3) * (2/3)
4784 /// reg(c)           1   *   1   *   0
4785 ///
4786 /// Now count registers number mathematical expectation for each formula:
4787 /// Note that for each use we exclude probability if not selecting for the use.
4788 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4789 /// probabilty 1/3 of not selecting for Use1).
4790 /// Use1:
4791 ///  reg(a) + reg({0,+,1})          1 + 1/3       -- to be deleted
4792 ///  reg(a) + reg({-1,+,1}) + 1     1 + 4/9       -- to be deleted
4793 ///  reg({a,+,1})                   1
4794 /// Use2:
4795 ///  reg(b) + reg({0,+,1})          1/2 + 1/3     -- to be deleted
4796 ///  reg(b) + reg({-1,+,1}) + 1     1/2 + 2/3     -- to be deleted
4797 ///  reg({b,+,1})                   2/3
4798 /// Use3:
4799 ///  reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4800 ///  reg(c) + reg({b,+,1})          1 + 2/3
4801 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4802   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4803     return;
4804   // Ok, we have too many of formulae on our hands to conveniently handle.
4805   // Use a rough heuristic to thin out the list.
4806 
4807   // Set of Regs wich will be 100% used in final solution.
4808   // Used in each formula of a solution (in example above this is reg(c)).
4809   // We can skip them in calculations.
4810   SmallPtrSet<const SCEV *, 4> UniqRegs;
4811   LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4812 
4813   // Map each register to probability of not selecting
4814   DenseMap <const SCEV *, float> RegNumMap;
4815   for (const SCEV *Reg : RegUses) {
4816     if (UniqRegs.count(Reg))
4817       continue;
4818     float PNotSel = 1;
4819     for (const LSRUse &LU : Uses) {
4820       if (!LU.Regs.count(Reg))
4821         continue;
4822       float P = LU.getNotSelectedProbability(Reg);
4823       if (P != 0.0)
4824         PNotSel *= P;
4825       else
4826         UniqRegs.insert(Reg);
4827     }
4828     RegNumMap.insert(std::make_pair(Reg, PNotSel));
4829   }
4830 
4831   LLVM_DEBUG(
4832       dbgs() << "Narrowing the search space by deleting costly formulas\n");
4833 
4834   // Delete formulas where registers number expectation is high.
4835   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4836     LSRUse &LU = Uses[LUIdx];
4837     // If nothing to delete - continue.
4838     if (LU.Formulae.size() < 2)
4839       continue;
4840     // This is temporary solution to test performance. Float should be
4841     // replaced with round independent type (based on integers) to avoid
4842     // different results for different target builds.
4843     float FMinRegNum = LU.Formulae[0].getNumRegs();
4844     float FMinARegNum = LU.Formulae[0].getNumRegs();
4845     size_t MinIdx = 0;
4846     for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4847       Formula &F = LU.Formulae[i];
4848       float FRegNum = 0;
4849       float FARegNum = 0;
4850       for (const SCEV *BaseReg : F.BaseRegs) {
4851         if (UniqRegs.count(BaseReg))
4852           continue;
4853         FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4854         if (isa<SCEVAddRecExpr>(BaseReg))
4855           FARegNum +=
4856               RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4857       }
4858       if (const SCEV *ScaledReg = F.ScaledReg) {
4859         if (!UniqRegs.count(ScaledReg)) {
4860           FRegNum +=
4861               RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4862           if (isa<SCEVAddRecExpr>(ScaledReg))
4863             FARegNum +=
4864                 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4865         }
4866       }
4867       if (FMinRegNum > FRegNum ||
4868           (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4869         FMinRegNum = FRegNum;
4870         FMinARegNum = FARegNum;
4871         MinIdx = i;
4872       }
4873     }
4874     LLVM_DEBUG(dbgs() << "  The formula "; LU.Formulae[MinIdx].print(dbgs());
4875                dbgs() << " with min reg num " << FMinRegNum << '\n');
4876     if (MinIdx != 0)
4877       std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4878     while (LU.Formulae.size() != 1) {
4879       LLVM_DEBUG(dbgs() << "  Deleting "; LU.Formulae.back().print(dbgs());
4880                  dbgs() << '\n');
4881       LU.Formulae.pop_back();
4882     }
4883     LU.RecomputeRegs(LUIdx, RegUses);
4884     assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
4885     Formula &F = LU.Formulae[0];
4886     LLVM_DEBUG(dbgs() << "  Leaving only "; F.print(dbgs()); dbgs() << '\n');
4887     // When we choose the formula, the regs become unique.
4888     UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4889     if (F.ScaledReg)
4890       UniqRegs.insert(F.ScaledReg);
4891   }
4892   LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4893 }
4894 
4895 /// Pick a register which seems likely to be profitable, and then in any use
4896 /// which has any reference to that register, delete all formulae which do not
4897 /// reference that register.
4898 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
4899   // With all other options exhausted, loop until the system is simple
4900   // enough to handle.
4901   SmallPtrSet<const SCEV *, 4> Taken;
4902   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4903     // Ok, we have too many of formulae on our hands to conveniently handle.
4904     // Use a rough heuristic to thin out the list.
4905     LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4906 
4907     // Pick the register which is used by the most LSRUses, which is likely
4908     // to be a good reuse register candidate.
4909     const SCEV *Best = nullptr;
4910     unsigned BestNum = 0;
4911     for (const SCEV *Reg : RegUses) {
4912       if (Taken.count(Reg))
4913         continue;
4914       if (!Best) {
4915         Best = Reg;
4916         BestNum = RegUses.getUsedByIndices(Reg).count();
4917       } else {
4918         unsigned Count = RegUses.getUsedByIndices(Reg).count();
4919         if (Count > BestNum) {
4920           Best = Reg;
4921           BestNum = Count;
4922         }
4923       }
4924     }
4925     assert(Best && "Failed to find best LSRUse candidate");
4926 
4927     LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
4928                       << " will yield profitable reuse.\n");
4929     Taken.insert(Best);
4930 
4931     // In any use with formulae which references this register, delete formulae
4932     // which don't reference it.
4933     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4934       LSRUse &LU = Uses[LUIdx];
4935       if (!LU.Regs.count(Best)) continue;
4936 
4937       bool Any = false;
4938       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4939         Formula &F = LU.Formulae[i];
4940         if (!F.referencesReg(Best)) {
4941           LLVM_DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
4942           LU.DeleteFormula(F);
4943           --e;
4944           --i;
4945           Any = true;
4946           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
4947           continue;
4948         }
4949       }
4950 
4951       if (Any)
4952         LU.RecomputeRegs(LUIdx, RegUses);
4953     }
4954 
4955     LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4956   }
4957 }
4958 
4959 /// If there are an extraordinary number of formulae to choose from, use some
4960 /// rough heuristics to prune down the number of formulae. This keeps the main
4961 /// solver from taking an extraordinary amount of time in some worst-case
4962 /// scenarios.
4963 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
4964   NarrowSearchSpaceByDetectingSupersets();
4965   NarrowSearchSpaceByCollapsingUnrolledCode();
4966   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
4967   if (FilterSameScaledReg)
4968     NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
4969   NarrowSearchSpaceByFilterPostInc();
4970   if (LSRExpNarrow)
4971     NarrowSearchSpaceByDeletingCostlyFormulas();
4972   else
4973     NarrowSearchSpaceByPickingWinnerRegs();
4974 }
4975 
4976 /// This is the recursive solver.
4977 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
4978                                Cost &SolutionCost,
4979                                SmallVectorImpl<const Formula *> &Workspace,
4980                                const Cost &CurCost,
4981                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
4982                                DenseSet<const SCEV *> &VisitedRegs) const {
4983   // Some ideas:
4984   //  - prune more:
4985   //    - use more aggressive filtering
4986   //    - sort the formula so that the most profitable solutions are found first
4987   //    - sort the uses too
4988   //  - search faster:
4989   //    - don't compute a cost, and then compare. compare while computing a cost
4990   //      and bail early.
4991   //    - track register sets with SmallBitVector
4992 
4993   const LSRUse &LU = Uses[Workspace.size()];
4994 
4995   // If this use references any register that's already a part of the
4996   // in-progress solution, consider it a requirement that a formula must
4997   // reference that register in order to be considered. This prunes out
4998   // unprofitable searching.
4999   SmallSetVector<const SCEV *, 4> ReqRegs;
5000   for (const SCEV *S : CurRegs)
5001     if (LU.Regs.count(S))
5002       ReqRegs.insert(S);
5003 
5004   SmallPtrSet<const SCEV *, 16> NewRegs;
5005   Cost NewCost(L, SE, TTI, AMK);
5006   for (const Formula &F : LU.Formulae) {
5007     // Ignore formulae which may not be ideal in terms of register reuse of
5008     // ReqRegs.  The formula should use all required registers before
5009     // introducing new ones.
5010     // This can sometimes (notably when trying to favour postinc) lead to
5011     // sub-optimial decisions. There it is best left to the cost modelling to
5012     // get correct.
5013     if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5014       int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5015       for (const SCEV *Reg : ReqRegs) {
5016         if ((F.ScaledReg && F.ScaledReg == Reg) ||
5017             is_contained(F.BaseRegs, Reg)) {
5018           --NumReqRegsToFind;
5019           if (NumReqRegsToFind == 0)
5020             break;
5021         }
5022       }
5023       if (NumReqRegsToFind != 0) {
5024         // If none of the formulae satisfied the required registers, then we could
5025         // clear ReqRegs and try again. Currently, we simply give up in this case.
5026         continue;
5027       }
5028     }
5029 
5030     // Evaluate the cost of the current formula. If it's already worse than
5031     // the current best, prune the search at that point.
5032     NewCost = CurCost;
5033     NewRegs = CurRegs;
5034     NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5035     if (NewCost.isLess(SolutionCost)) {
5036       Workspace.push_back(&F);
5037       if (Workspace.size() != Uses.size()) {
5038         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5039                      NewRegs, VisitedRegs);
5040         if (F.getNumRegs() == 1 && Workspace.size() == 1)
5041           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5042       } else {
5043         LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5044                    dbgs() << ".\nRegs:\n";
5045                    for (const SCEV *S : NewRegs) dbgs()
5046                       << "- " << *S << "\n";
5047                    dbgs() << '\n');
5048 
5049         SolutionCost = NewCost;
5050         Solution = Workspace;
5051       }
5052       Workspace.pop_back();
5053     }
5054   }
5055 }
5056 
5057 /// Choose one formula from each use. Return the results in the given Solution
5058 /// vector.
5059 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5060   SmallVector<const Formula *, 8> Workspace;
5061   Cost SolutionCost(L, SE, TTI, AMK);
5062   SolutionCost.Lose();
5063   Cost CurCost(L, SE, TTI, AMK);
5064   SmallPtrSet<const SCEV *, 16> CurRegs;
5065   DenseSet<const SCEV *> VisitedRegs;
5066   Workspace.reserve(Uses.size());
5067 
5068   // SolveRecurse does all the work.
5069   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5070                CurRegs, VisitedRegs);
5071   if (Solution.empty()) {
5072     LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5073     return;
5074   }
5075 
5076   // Ok, we've now made all our decisions.
5077   LLVM_DEBUG(dbgs() << "\n"
5078                        "The chosen solution requires ";
5079              SolutionCost.print(dbgs()); dbgs() << ":\n";
5080              for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5081                dbgs() << "  ";
5082                Uses[i].print(dbgs());
5083                dbgs() << "\n"
5084                          "    ";
5085                Solution[i]->print(dbgs());
5086                dbgs() << '\n';
5087              });
5088 
5089   assert(Solution.size() == Uses.size() && "Malformed solution!");
5090 }
5091 
5092 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5093 /// we can go while still being dominated by the input positions. This helps
5094 /// canonicalize the insert position, which encourages sharing.
5095 BasicBlock::iterator
5096 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5097                                  const SmallVectorImpl<Instruction *> &Inputs)
5098                                                                          const {
5099   Instruction *Tentative = &*IP;
5100   while (true) {
5101     bool AllDominate = true;
5102     Instruction *BetterPos = nullptr;
5103     // Don't bother attempting to insert before a catchswitch, their basic block
5104     // cannot have other non-PHI instructions.
5105     if (isa<CatchSwitchInst>(Tentative))
5106       return IP;
5107 
5108     for (Instruction *Inst : Inputs) {
5109       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5110         AllDominate = false;
5111         break;
5112       }
5113       // Attempt to find an insert position in the middle of the block,
5114       // instead of at the end, so that it can be used for other expansions.
5115       if (Tentative->getParent() == Inst->getParent() &&
5116           (!BetterPos || !DT.dominates(Inst, BetterPos)))
5117         BetterPos = &*std::next(BasicBlock::iterator(Inst));
5118     }
5119     if (!AllDominate)
5120       break;
5121     if (BetterPos)
5122       IP = BetterPos->getIterator();
5123     else
5124       IP = Tentative->getIterator();
5125 
5126     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5127     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5128 
5129     BasicBlock *IDom;
5130     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5131       if (!Rung) return IP;
5132       Rung = Rung->getIDom();
5133       if (!Rung) return IP;
5134       IDom = Rung->getBlock();
5135 
5136       // Don't climb into a loop though.
5137       const Loop *IDomLoop = LI.getLoopFor(IDom);
5138       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5139       if (IDomDepth <= IPLoopDepth &&
5140           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5141         break;
5142     }
5143 
5144     Tentative = IDom->getTerminator();
5145   }
5146 
5147   return IP;
5148 }
5149 
5150 /// Determine an input position which will be dominated by the operands and
5151 /// which will dominate the result.
5152 BasicBlock::iterator
5153 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
5154                                            const LSRFixup &LF,
5155                                            const LSRUse &LU,
5156                                            SCEVExpander &Rewriter) const {
5157   // Collect some instructions which must be dominated by the
5158   // expanding replacement. These must be dominated by any operands that
5159   // will be required in the expansion.
5160   SmallVector<Instruction *, 4> Inputs;
5161   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5162     Inputs.push_back(I);
5163   if (LU.Kind == LSRUse::ICmpZero)
5164     if (Instruction *I =
5165           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5166       Inputs.push_back(I);
5167   if (LF.PostIncLoops.count(L)) {
5168     if (LF.isUseFullyOutsideLoop(L))
5169       Inputs.push_back(L->getLoopLatch()->getTerminator());
5170     else
5171       Inputs.push_back(IVIncInsertPos);
5172   }
5173   // The expansion must also be dominated by the increment positions of any
5174   // loops it for which it is using post-inc mode.
5175   for (const Loop *PIL : LF.PostIncLoops) {
5176     if (PIL == L) continue;
5177 
5178     // Be dominated by the loop exit.
5179     SmallVector<BasicBlock *, 4> ExitingBlocks;
5180     PIL->getExitingBlocks(ExitingBlocks);
5181     if (!ExitingBlocks.empty()) {
5182       BasicBlock *BB = ExitingBlocks[0];
5183       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5184         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5185       Inputs.push_back(BB->getTerminator());
5186     }
5187   }
5188 
5189   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5190          && !isa<DbgInfoIntrinsic>(LowestIP) &&
5191          "Insertion point must be a normal instruction");
5192 
5193   // Then, climb up the immediate dominator tree as far as we can go while
5194   // still being dominated by the input positions.
5195   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5196 
5197   // Don't insert instructions before PHI nodes.
5198   while (isa<PHINode>(IP)) ++IP;
5199 
5200   // Ignore landingpad instructions.
5201   while (IP->isEHPad()) ++IP;
5202 
5203   // Ignore debug intrinsics.
5204   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5205 
5206   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5207   // IP consistent across expansions and allows the previously inserted
5208   // instructions to be reused by subsequent expansion.
5209   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5210     ++IP;
5211 
5212   return IP;
5213 }
5214 
5215 /// Emit instructions for the leading candidate expression for this LSRUse (this
5216 /// is called "expanding").
5217 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5218                            const Formula &F, BasicBlock::iterator IP,
5219                            SCEVExpander &Rewriter,
5220                            SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5221   if (LU.RigidFormula)
5222     return LF.OperandValToReplace;
5223 
5224   // Determine an input position which will be dominated by the operands and
5225   // which will dominate the result.
5226   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
5227   Rewriter.setInsertPoint(&*IP);
5228 
5229   // Inform the Rewriter if we have a post-increment use, so that it can
5230   // perform an advantageous expansion.
5231   Rewriter.setPostInc(LF.PostIncLoops);
5232 
5233   // This is the type that the user actually needs.
5234   Type *OpTy = LF.OperandValToReplace->getType();
5235   // This will be the type that we'll initially expand to.
5236   Type *Ty = F.getType();
5237   if (!Ty)
5238     // No type known; just expand directly to the ultimate type.
5239     Ty = OpTy;
5240   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5241     // Expand directly to the ultimate type if it's the right size.
5242     Ty = OpTy;
5243   // This is the type to do integer arithmetic in.
5244   Type *IntTy = SE.getEffectiveSCEVType(Ty);
5245 
5246   // Build up a list of operands to add together to form the full base.
5247   SmallVector<const SCEV *, 8> Ops;
5248 
5249   // Expand the BaseRegs portion.
5250   for (const SCEV *Reg : F.BaseRegs) {
5251     assert(!Reg->isZero() && "Zero allocated in a base register!");
5252 
5253     // If we're expanding for a post-inc user, make the post-inc adjustment.
5254     Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5255     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5256   }
5257 
5258   // Expand the ScaledReg portion.
5259   Value *ICmpScaledV = nullptr;
5260   if (F.Scale != 0) {
5261     const SCEV *ScaledS = F.ScaledReg;
5262 
5263     // If we're expanding for a post-inc user, make the post-inc adjustment.
5264     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5265     ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5266 
5267     if (LU.Kind == LSRUse::ICmpZero) {
5268       // Expand ScaleReg as if it was part of the base regs.
5269       if (F.Scale == 1)
5270         Ops.push_back(
5271             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5272       else {
5273         // An interesting way of "folding" with an icmp is to use a negated
5274         // scale, which we'll implement by inserting it into the other operand
5275         // of the icmp.
5276         assert(F.Scale == -1 &&
5277                "The only scale supported by ICmpZero uses is -1!");
5278         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5279       }
5280     } else {
5281       // Otherwise just expand the scaled register and an explicit scale,
5282       // which is expected to be matched as part of the address.
5283 
5284       // Flush the operand list to suppress SCEVExpander hoisting address modes.
5285       // Unless the addressing mode will not be folded.
5286       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5287           isAMCompletelyFolded(TTI, LU, F)) {
5288         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5289         Ops.clear();
5290         Ops.push_back(SE.getUnknown(FullV));
5291       }
5292       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5293       if (F.Scale != 1)
5294         ScaledS =
5295             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5296       Ops.push_back(ScaledS);
5297     }
5298   }
5299 
5300   // Expand the GV portion.
5301   if (F.BaseGV) {
5302     // Flush the operand list to suppress SCEVExpander hoisting.
5303     if (!Ops.empty()) {
5304       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5305       Ops.clear();
5306       Ops.push_back(SE.getUnknown(FullV));
5307     }
5308     Ops.push_back(SE.getUnknown(F.BaseGV));
5309   }
5310 
5311   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5312   // unfolded offsets. LSR assumes they both live next to their uses.
5313   if (!Ops.empty()) {
5314     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5315     Ops.clear();
5316     Ops.push_back(SE.getUnknown(FullV));
5317   }
5318 
5319   // Expand the immediate portion.
5320   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5321   if (Offset != 0) {
5322     if (LU.Kind == LSRUse::ICmpZero) {
5323       // The other interesting way of "folding" with an ICmpZero is to use a
5324       // negated immediate.
5325       if (!ICmpScaledV)
5326         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5327       else {
5328         Ops.push_back(SE.getUnknown(ICmpScaledV));
5329         ICmpScaledV = ConstantInt::get(IntTy, Offset);
5330       }
5331     } else {
5332       // Just add the immediate values. These again are expected to be matched
5333       // as part of the address.
5334       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5335     }
5336   }
5337 
5338   // Expand the unfolded offset portion.
5339   int64_t UnfoldedOffset = F.UnfoldedOffset;
5340   if (UnfoldedOffset != 0) {
5341     // Just add the immediate values.
5342     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5343                                                        UnfoldedOffset)));
5344   }
5345 
5346   // Emit instructions summing all the operands.
5347   const SCEV *FullS = Ops.empty() ?
5348                       SE.getConstant(IntTy, 0) :
5349                       SE.getAddExpr(Ops);
5350   Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5351 
5352   // We're done expanding now, so reset the rewriter.
5353   Rewriter.clearPostInc();
5354 
5355   // An ICmpZero Formula represents an ICmp which we're handling as a
5356   // comparison against zero. Now that we've expanded an expression for that
5357   // form, update the ICmp's other operand.
5358   if (LU.Kind == LSRUse::ICmpZero) {
5359     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5360     if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5361       DeadInsts.emplace_back(OperandIsInstr);
5362     assert(!F.BaseGV && "ICmp does not support folding a global value and "
5363                            "a scale at the same time!");
5364     if (F.Scale == -1) {
5365       if (ICmpScaledV->getType() != OpTy) {
5366         Instruction *Cast =
5367           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5368                                                    OpTy, false),
5369                            ICmpScaledV, OpTy, "tmp", CI);
5370         ICmpScaledV = Cast;
5371       }
5372       CI->setOperand(1, ICmpScaledV);
5373     } else {
5374       // A scale of 1 means that the scale has been expanded as part of the
5375       // base regs.
5376       assert((F.Scale == 0 || F.Scale == 1) &&
5377              "ICmp does not support folding a global value and "
5378              "a scale at the same time!");
5379       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5380                                            -(uint64_t)Offset);
5381       if (C->getType() != OpTy)
5382         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5383                                                           OpTy, false),
5384                                   C, OpTy);
5385 
5386       CI->setOperand(1, C);
5387     }
5388   }
5389 
5390   return FullV;
5391 }
5392 
5393 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5394 /// effectively happens in their predecessor blocks, so the expression may need
5395 /// to be expanded in multiple places.
5396 void LSRInstance::RewriteForPHI(
5397     PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5398     SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5399   DenseMap<BasicBlock *, Value *> Inserted;
5400   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5401     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5402       bool needUpdateFixups = false;
5403       BasicBlock *BB = PN->getIncomingBlock(i);
5404 
5405       // If this is a critical edge, split the edge so that we do not insert
5406       // the code on all predecessor/successor paths.  We do this unless this
5407       // is the canonical backedge for this loop, which complicates post-inc
5408       // users.
5409       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5410           !isa<IndirectBrInst>(BB->getTerminator()) &&
5411           !isa<CatchSwitchInst>(BB->getTerminator())) {
5412         BasicBlock *Parent = PN->getParent();
5413         Loop *PNLoop = LI.getLoopFor(Parent);
5414         if (!PNLoop || Parent != PNLoop->getHeader()) {
5415           // Split the critical edge.
5416           BasicBlock *NewBB = nullptr;
5417           if (!Parent->isLandingPad()) {
5418             NewBB =
5419                 SplitCriticalEdge(BB, Parent,
5420                                   CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5421                                       .setMergeIdenticalEdges()
5422                                       .setKeepOneInputPHIs());
5423           } else {
5424             SmallVector<BasicBlock*, 2> NewBBs;
5425             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5426             NewBB = NewBBs[0];
5427           }
5428           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5429           // phi predecessors are identical. The simple thing to do is skip
5430           // splitting in this case rather than complicate the API.
5431           if (NewBB) {
5432             // If PN is outside of the loop and BB is in the loop, we want to
5433             // move the block to be immediately before the PHI block, not
5434             // immediately after BB.
5435             if (L->contains(BB) && !L->contains(PN))
5436               NewBB->moveBefore(PN->getParent());
5437 
5438             // Splitting the edge can reduce the number of PHI entries we have.
5439             e = PN->getNumIncomingValues();
5440             BB = NewBB;
5441             i = PN->getBasicBlockIndex(BB);
5442 
5443             needUpdateFixups = true;
5444           }
5445         }
5446       }
5447 
5448       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5449         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5450       if (!Pair.second)
5451         PN->setIncomingValue(i, Pair.first->second);
5452       else {
5453         Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(),
5454                               Rewriter, DeadInsts);
5455 
5456         // If this is reuse-by-noop-cast, insert the noop cast.
5457         Type *OpTy = LF.OperandValToReplace->getType();
5458         if (FullV->getType() != OpTy)
5459           FullV =
5460             CastInst::Create(CastInst::getCastOpcode(FullV, false,
5461                                                      OpTy, false),
5462                              FullV, LF.OperandValToReplace->getType(),
5463                              "tmp", BB->getTerminator());
5464 
5465         PN->setIncomingValue(i, FullV);
5466         Pair.first->second = FullV;
5467       }
5468 
5469       // If LSR splits critical edge and phi node has other pending
5470       // fixup operands, we need to update those pending fixups. Otherwise
5471       // formulae will not be implemented completely and some instructions
5472       // will not be eliminated.
5473       if (needUpdateFixups) {
5474         for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5475           for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5476             // If fixup is supposed to rewrite some operand in the phi
5477             // that was just updated, it may be already moved to
5478             // another phi node. Such fixup requires update.
5479             if (Fixup.UserInst == PN) {
5480               // Check if the operand we try to replace still exists in the
5481               // original phi.
5482               bool foundInOriginalPHI = false;
5483               for (const auto &val : PN->incoming_values())
5484                 if (val == Fixup.OperandValToReplace) {
5485                   foundInOriginalPHI = true;
5486                   break;
5487                 }
5488 
5489               // If fixup operand found in original PHI - nothing to do.
5490               if (foundInOriginalPHI)
5491                 continue;
5492 
5493               // Otherwise it might be moved to another PHI and requires update.
5494               // If fixup operand not found in any of the incoming blocks that
5495               // means we have already rewritten it - nothing to do.
5496               for (const auto &Block : PN->blocks())
5497                 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5498                      ++I) {
5499                   PHINode *NewPN = cast<PHINode>(I);
5500                   for (const auto &val : NewPN->incoming_values())
5501                     if (val == Fixup.OperandValToReplace)
5502                       Fixup.UserInst = NewPN;
5503                 }
5504             }
5505       }
5506     }
5507 }
5508 
5509 /// Emit instructions for the leading candidate expression for this LSRUse (this
5510 /// is called "expanding"), and update the UserInst to reference the newly
5511 /// expanded value.
5512 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5513                           const Formula &F, SCEVExpander &Rewriter,
5514                           SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5515   // First, find an insertion point that dominates UserInst. For PHI nodes,
5516   // find the nearest block which dominates all the relevant uses.
5517   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5518     RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts);
5519   } else {
5520     Value *FullV =
5521       Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
5522 
5523     // If this is reuse-by-noop-cast, insert the noop cast.
5524     Type *OpTy = LF.OperandValToReplace->getType();
5525     if (FullV->getType() != OpTy) {
5526       Instruction *Cast =
5527         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5528                          FullV, OpTy, "tmp", LF.UserInst);
5529       FullV = Cast;
5530     }
5531 
5532     // Update the user. ICmpZero is handled specially here (for now) because
5533     // Expand may have updated one of the operands of the icmp already, and
5534     // its new value may happen to be equal to LF.OperandValToReplace, in
5535     // which case doing replaceUsesOfWith leads to replacing both operands
5536     // with the same value. TODO: Reorganize this.
5537     if (LU.Kind == LSRUse::ICmpZero)
5538       LF.UserInst->setOperand(0, FullV);
5539     else
5540       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5541   }
5542 
5543   if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5544     DeadInsts.emplace_back(OperandIsInstr);
5545 }
5546 
5547 /// Rewrite all the fixup locations with new values, following the chosen
5548 /// solution.
5549 void LSRInstance::ImplementSolution(
5550     const SmallVectorImpl<const Formula *> &Solution) {
5551   // Keep track of instructions we may have made dead, so that
5552   // we can remove them after we are done working.
5553   SmallVector<WeakTrackingVH, 16> DeadInsts;
5554 
5555   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr",
5556                         false);
5557 #ifndef NDEBUG
5558   Rewriter.setDebugType(DEBUG_TYPE);
5559 #endif
5560   Rewriter.disableCanonicalMode();
5561   Rewriter.enableLSRMode();
5562   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
5563 
5564   // Mark phi nodes that terminate chains so the expander tries to reuse them.
5565   for (const IVChain &Chain : IVChainVec) {
5566     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5567       Rewriter.setChainedPhi(PN);
5568   }
5569 
5570   // Expand the new value definitions and update the users.
5571   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5572     for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5573       Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts);
5574       Changed = true;
5575     }
5576 
5577   for (const IVChain &Chain : IVChainVec) {
5578     GenerateIVChain(Chain, Rewriter, DeadInsts);
5579     Changed = true;
5580   }
5581   // Clean up after ourselves. This must be done before deleting any
5582   // instructions.
5583   Rewriter.clear();
5584 
5585   Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5586                                                                   &TLI, MSSAU);
5587 
5588   // In our cost analysis above, we assume that each addrec consumes exactly
5589   // one register, and arrange to have increments inserted just before the
5590   // latch to maximimize the chance this is true.  However, if we reused
5591   // existing IVs, we now need to move the increments to match our
5592   // expectations.  Otherwise, our cost modeling results in us having a
5593   // chosen a non-optimal result for the actual schedule.  (And yes, this
5594   // scheduling decision does impact later codegen.)
5595   for (PHINode &PN : L->getHeader()->phis()) {
5596     BinaryOperator *BO = nullptr;
5597     Value *Start = nullptr, *Step = nullptr;
5598     if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5599       continue;
5600 
5601     switch (BO->getOpcode()) {
5602     case Instruction::Sub:
5603       if (BO->getOperand(0) != &PN)
5604         // sub is non-commutative - match handling elsewhere in LSR
5605         continue;
5606       break;
5607     case Instruction::Add:
5608       break;
5609     default:
5610       continue;
5611     };
5612 
5613     if (!isa<Constant>(Step))
5614       // If not a constant step, might increase register pressure
5615       // (We assume constants have been canonicalized to RHS)
5616       continue;
5617 
5618     if (BO->getParent() == IVIncInsertPos->getParent())
5619       // Only bother moving across blocks.  Isel can handle block local case.
5620       continue;
5621 
5622     // Can we legally schedule inc at the desired point?
5623     if (!llvm::all_of(BO->uses(),
5624                       [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5625       continue;
5626     BO->moveBefore(IVIncInsertPos);
5627     Changed = true;
5628   }
5629 
5630 
5631 }
5632 
5633 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5634                          DominatorTree &DT, LoopInfo &LI,
5635                          const TargetTransformInfo &TTI, AssumptionCache &AC,
5636                          TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5637     : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5638       MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 ?
5639         PreferredAddresingMode : TTI.getPreferredAddressingMode(L, &SE)) {
5640   // If LoopSimplify form is not available, stay out of trouble.
5641   if (!L->isLoopSimplifyForm())
5642     return;
5643 
5644   // If there's no interesting work to be done, bail early.
5645   if (IU.empty()) return;
5646 
5647   // If there's too much analysis to be done, bail early. We won't be able to
5648   // model the problem anyway.
5649   unsigned NumUsers = 0;
5650   for (const IVStrideUse &U : IU) {
5651     if (++NumUsers > MaxIVUsers) {
5652       (void)U;
5653       LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
5654                         << "\n");
5655       return;
5656     }
5657     // Bail out if we have a PHI on an EHPad that gets a value from a
5658     // CatchSwitchInst.  Because the CatchSwitchInst cannot be split, there is
5659     // no good place to stick any instructions.
5660     if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5661        auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5662        if (isa<FuncletPadInst>(FirstNonPHI) ||
5663            isa<CatchSwitchInst>(FirstNonPHI))
5664          for (BasicBlock *PredBB : PN->blocks())
5665            if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5666              return;
5667     }
5668   }
5669 
5670 #ifndef NDEBUG
5671   // All dominating loops must have preheaders, or SCEVExpander may not be able
5672   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
5673   //
5674   // IVUsers analysis should only create users that are dominated by simple loop
5675   // headers. Since this loop should dominate all of its users, its user list
5676   // should be empty if this loop itself is not within a simple loop nest.
5677   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
5678        Rung; Rung = Rung->getIDom()) {
5679     BasicBlock *BB = Rung->getBlock();
5680     const Loop *DomLoop = LI.getLoopFor(BB);
5681     if (DomLoop && DomLoop->getHeader() == BB) {
5682       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
5683     }
5684   }
5685 #endif // DEBUG
5686 
5687   LLVM_DEBUG(dbgs() << "\nLSR on loop ";
5688              L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
5689              dbgs() << ":\n");
5690 
5691   // First, perform some low-level loop optimizations.
5692   OptimizeShadowIV();
5693   OptimizeLoopTermCond();
5694 
5695   // If loop preparation eliminates all interesting IV users, bail.
5696   if (IU.empty()) return;
5697 
5698   // Skip nested loops until we can model them better with formulae.
5699   if (!L->isInnermost()) {
5700     LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
5701     return;
5702   }
5703 
5704   // Start collecting data and preparing for the solver.
5705   // If number of registers is not the major cost, we cannot benefit from the
5706   // current profitable chain optimization which is based on number of
5707   // registers.
5708   // FIXME: add profitable chain optimization for other kinds major cost, for
5709   // example number of instructions.
5710   if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5711     CollectChains();
5712   CollectInterestingTypesAndFactors();
5713   CollectFixupsAndInitialFormulae();
5714   CollectLoopInvariantFixupsAndFormulae();
5715 
5716   if (Uses.empty())
5717     return;
5718 
5719   LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
5720              print_uses(dbgs()));
5721 
5722   // Now use the reuse data to generate a bunch of interesting ways
5723   // to formulate the values needed for the uses.
5724   GenerateAllReuseFormulae();
5725 
5726   FilterOutUndesirableDedicatedRegisters();
5727   NarrowSearchSpaceUsingHeuristics();
5728 
5729   SmallVector<const Formula *, 8> Solution;
5730   Solve(Solution);
5731 
5732   // Release memory that is no longer needed.
5733   Factors.clear();
5734   Types.clear();
5735   RegUses.clear();
5736 
5737   if (Solution.empty())
5738     return;
5739 
5740 #ifndef NDEBUG
5741   // Formulae should be legal.
5742   for (const LSRUse &LU : Uses) {
5743     for (const Formula &F : LU.Formulae)
5744       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
5745                         F) && "Illegal formula generated!");
5746   };
5747 #endif
5748 
5749   // Now that we've decided what we want, make it so.
5750   ImplementSolution(Solution);
5751 }
5752 
5753 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5754 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5755   if (Factors.empty() && Types.empty()) return;
5756 
5757   OS << "LSR has identified the following interesting factors and types: ";
5758   bool First = true;
5759 
5760   for (int64_t Factor : Factors) {
5761     if (!First) OS << ", ";
5762     First = false;
5763     OS << '*' << Factor;
5764   }
5765 
5766   for (Type *Ty : Types) {
5767     if (!First) OS << ", ";
5768     First = false;
5769     OS << '(' << *Ty << ')';
5770   }
5771   OS << '\n';
5772 }
5773 
5774 void LSRInstance::print_fixups(raw_ostream &OS) const {
5775   OS << "LSR is examining the following fixup sites:\n";
5776   for (const LSRUse &LU : Uses)
5777     for (const LSRFixup &LF : LU.Fixups) {
5778       dbgs() << "  ";
5779       LF.print(OS);
5780       OS << '\n';
5781     }
5782 }
5783 
5784 void LSRInstance::print_uses(raw_ostream &OS) const {
5785   OS << "LSR is examining the following uses:\n";
5786   for (const LSRUse &LU : Uses) {
5787     dbgs() << "  ";
5788     LU.print(OS);
5789     OS << '\n';
5790     for (const Formula &F : LU.Formulae) {
5791       OS << "    ";
5792       F.print(OS);
5793       OS << '\n';
5794     }
5795   }
5796 }
5797 
5798 void LSRInstance::print(raw_ostream &OS) const {
5799   print_factors_and_types(OS);
5800   print_fixups(OS);
5801   print_uses(OS);
5802 }
5803 
5804 LLVM_DUMP_METHOD void LSRInstance::dump() const {
5805   print(errs()); errs() << '\n';
5806 }
5807 #endif
5808 
5809 namespace {
5810 
5811 class LoopStrengthReduce : public LoopPass {
5812 public:
5813   static char ID; // Pass ID, replacement for typeid
5814 
5815   LoopStrengthReduce();
5816 
5817 private:
5818   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5819   void getAnalysisUsage(AnalysisUsage &AU) const override;
5820 };
5821 
5822 } // end anonymous namespace
5823 
5824 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5825   initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5826 }
5827 
5828 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5829   // We split critical edges, so we change the CFG.  However, we do update
5830   // many analyses if they are around.
5831   AU.addPreservedID(LoopSimplifyID);
5832 
5833   AU.addRequired<LoopInfoWrapperPass>();
5834   AU.addPreserved<LoopInfoWrapperPass>();
5835   AU.addRequiredID(LoopSimplifyID);
5836   AU.addRequired<DominatorTreeWrapperPass>();
5837   AU.addPreserved<DominatorTreeWrapperPass>();
5838   AU.addRequired<ScalarEvolutionWrapperPass>();
5839   AU.addPreserved<ScalarEvolutionWrapperPass>();
5840   AU.addRequired<AssumptionCacheTracker>();
5841   AU.addRequired<TargetLibraryInfoWrapperPass>();
5842   // Requiring LoopSimplify a second time here prevents IVUsers from running
5843   // twice, since LoopSimplify was invalidated by running ScalarEvolution.
5844   AU.addRequiredID(LoopSimplifyID);
5845   AU.addRequired<IVUsersWrapperPass>();
5846   AU.addPreserved<IVUsersWrapperPass>();
5847   AU.addRequired<TargetTransformInfoWrapperPass>();
5848   AU.addPreserved<MemorySSAWrapperPass>();
5849 }
5850 
5851 using EqualValues = SmallVector<std::tuple<WeakVH, int64_t>, 4>;
5852 using EqualValuesMap =
5853     DenseMap<DbgValueInst *, SmallVector<std::pair<unsigned, EqualValues>>>;
5854 using LocationMap =
5855     DenseMap<DbgValueInst *, std::pair<DIExpression *, Metadata *>>;
5856 
5857 static void DbgGatherEqualValues(Loop *L, ScalarEvolution &SE,
5858                                  EqualValuesMap &DbgValueToEqualSet,
5859                                  LocationMap &DbgValueToLocation) {
5860   for (auto &B : L->getBlocks()) {
5861     for (auto &I : *B) {
5862       auto DVI = dyn_cast<DbgValueInst>(&I);
5863       if (!DVI)
5864         continue;
5865       for (unsigned Idx = 0; Idx < DVI->getNumVariableLocationOps(); ++Idx) {
5866         // TODO: We can duplicate results if the same arg appears more than
5867         // once.
5868         Value *V = DVI->getVariableLocationOp(Idx);
5869         if (!V || !SE.isSCEVable(V->getType()))
5870           continue;
5871         auto DbgValueSCEV = SE.getSCEV(V);
5872         EqualValues EqSet;
5873         for (PHINode &Phi : L->getHeader()->phis()) {
5874           if (V->getType() != Phi.getType())
5875             continue;
5876           if (!SE.isSCEVable(Phi.getType()))
5877             continue;
5878           auto PhiSCEV = SE.getSCEV(&Phi);
5879           Optional<APInt> Offset =
5880               SE.computeConstantDifference(DbgValueSCEV, PhiSCEV);
5881           if (Offset && Offset->getMinSignedBits() <= 64)
5882             EqSet.emplace_back(
5883                 std::make_tuple(&Phi, Offset.getValue().getSExtValue()));
5884         }
5885         DbgValueToEqualSet[DVI].push_back({Idx, std::move(EqSet)});
5886         // If we fall back to using this raw location, at least one location op
5887         // must be dead. A DIArgList will automatically undef arguments when
5888         // they become unavailable, but a ValueAsMetadata will not; since we
5889         // know the value should be undef, we use the undef value directly here.
5890         Metadata *RawLocation =
5891             DVI->hasArgList() ? DVI->getRawLocation()
5892                               : ValueAsMetadata::get(UndefValue::get(
5893                                     DVI->getVariableLocationOp(0)->getType()));
5894         DbgValueToLocation[DVI] = {DVI->getExpression(), RawLocation};
5895       }
5896     }
5897   }
5898 }
5899 
5900 static void DbgApplyEqualValues(EqualValuesMap &DbgValueToEqualSet,
5901                                 LocationMap &DbgValueToLocation) {
5902   for (auto A : DbgValueToEqualSet) {
5903     auto *DVI = A.first;
5904     // Only update those that are now undef.
5905     if (!DVI->isUndef())
5906       continue;
5907     // The dbg.value may have had its value or expression changed during LSR by
5908     // a failed salvage attempt; refresh them from the map.
5909     auto *DbgDIExpr = DbgValueToLocation[DVI].first;
5910     DVI->setRawLocation(DbgValueToLocation[DVI].second);
5911     DVI->setExpression(DbgDIExpr);
5912     assert(DVI->isUndef() && "dbg.value with non-undef location should not "
5913                              "have been modified by LSR.");
5914     for (auto IdxEV : A.second) {
5915       unsigned Idx = IdxEV.first;
5916       for (auto EV : IdxEV.second) {
5917         auto EVHandle = std::get<WeakVH>(EV);
5918         if (!EVHandle)
5919           continue;
5920         int64_t Offset = std::get<int64_t>(EV);
5921         DVI->replaceVariableLocationOp(Idx, EVHandle);
5922         if (Offset) {
5923           SmallVector<uint64_t, 8> Ops;
5924           DIExpression::appendOffset(Ops, Offset);
5925           DbgDIExpr = DIExpression::appendOpsToArg(DbgDIExpr, Ops, Idx, true);
5926         }
5927         DVI->setExpression(DbgDIExpr);
5928         break;
5929       }
5930     }
5931   }
5932 }
5933 
5934 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5935                                DominatorTree &DT, LoopInfo &LI,
5936                                const TargetTransformInfo &TTI,
5937                                AssumptionCache &AC, TargetLibraryInfo &TLI,
5938                                MemorySSA *MSSA) {
5939 
5940   bool Changed = false;
5941   std::unique_ptr<MemorySSAUpdater> MSSAU;
5942   if (MSSA)
5943     MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
5944 
5945   // Run the main LSR transformation.
5946   Changed |=
5947       LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged();
5948 
5949   // Debug preservation - before we start removing anything create equivalence
5950   // sets for the llvm.dbg.value intrinsics.
5951   EqualValuesMap DbgValueToEqualSet;
5952   LocationMap DbgValueToLocation;
5953   DbgGatherEqualValues(L, SE, DbgValueToEqualSet, DbgValueToLocation);
5954 
5955   // Remove any extra phis created by processing inner loops.
5956   Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5957   if (EnablePhiElim && L->isLoopSimplifyForm()) {
5958     SmallVector<WeakTrackingVH, 16> DeadInsts;
5959     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
5960     SCEVExpander Rewriter(SE, DL, "lsr", false);
5961 #ifndef NDEBUG
5962     Rewriter.setDebugType(DEBUG_TYPE);
5963 #endif
5964     unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
5965     if (numFolded) {
5966       Changed = true;
5967       RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
5968                                                            MSSAU.get());
5969       DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
5970     }
5971   }
5972 
5973   DbgApplyEqualValues(DbgValueToEqualSet, DbgValueToLocation);
5974 
5975   return Changed;
5976 }
5977 
5978 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
5979   if (skipLoop(L))
5980     return false;
5981 
5982   auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
5983   auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5984   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5985   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5986   const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
5987       *L->getHeader()->getParent());
5988   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
5989       *L->getHeader()->getParent());
5990   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
5991       *L->getHeader()->getParent());
5992   auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
5993   MemorySSA *MSSA = nullptr;
5994   if (MSSAAnalysis)
5995     MSSA = &MSSAAnalysis->getMSSA();
5996   return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
5997 }
5998 
5999 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
6000                                               LoopStandardAnalysisResults &AR,
6001                                               LPMUpdater &) {
6002   if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
6003                           AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
6004     return PreservedAnalyses::all();
6005 
6006   auto PA = getLoopPassPreservedAnalyses();
6007   if (AR.MSSA)
6008     PA.preserve<MemorySSAAnalysis>();
6009   return PA;
6010 }
6011 
6012 char LoopStrengthReduce::ID = 0;
6013 
6014 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
6015                       "Loop Strength Reduction", false, false)
6016 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6017 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6018 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6019 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
6020 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6021 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6022 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
6023                     "Loop Strength Reduction", false, false)
6024 
6025 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }
6026