1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into forms suitable for efficient execution 12 // on the target. 13 // 14 // This pass performs a strength reduction on array references inside loops that 15 // have as one or more of their components the loop induction variable, it 16 // rewrites expressions to take advantage of scaled-index addressing modes 17 // available on the target, and it performs a variety of other optimizations 18 // related to loop induction variables. 19 // 20 // Terminology note: this code has a lot of handling for "post-increment" or 21 // "post-inc" users. This is not talking about post-increment addressing modes; 22 // it is instead talking about code like this: 23 // 24 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 25 // ... 26 // %i.next = add %i, 1 27 // %c = icmp eq %i.next, %n 28 // 29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 30 // it's useful to think about these as the same register, with some uses using 31 // the value of the register before the add and some using it after. In this 32 // example, the icmp is a post-increment user, since it uses %i.next, which is 33 // the value of the induction variable after the increment. The other common 34 // case of post-increment users is users outside the loop. 35 // 36 // TODO: More sophistication in the way Formulae are generated and filtered. 37 // 38 // TODO: Handle multiple loops at a time. 39 // 40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 41 // of a GlobalValue? 42 // 43 // TODO: When truncation is free, truncate ICmp users' operands to make it a 44 // smaller encoding (on x86 at least). 45 // 46 // TODO: When a negated register is used by an add (such as in a list of 47 // multiple base registers, or as the increment expression in an addrec), 48 // we may not actually need both reg and (-1 * reg) in registers; the 49 // negation can be implemented by using a sub instead of an add. The 50 // lack of support for taking this into consideration when making 51 // register pressure decisions is partly worked around by the "Special" 52 // use kind. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 57 #include "llvm/ADT/APInt.h" 58 #include "llvm/ADT/DenseMap.h" 59 #include "llvm/ADT/DenseSet.h" 60 #include "llvm/ADT/Hashing.h" 61 #include "llvm/ADT/PointerIntPair.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SetVector.h" 64 #include "llvm/ADT/SmallBitVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/SmallVector.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/ScalarEvolution.h" 74 #include "llvm/Analysis/ScalarEvolutionExpander.h" 75 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 76 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 77 #include "llvm/Analysis/TargetTransformInfo.h" 78 #include "llvm/Analysis/Utils/Local.h" 79 #include "llvm/Config/llvm-config.h" 80 #include "llvm/IR/BasicBlock.h" 81 #include "llvm/IR/Constant.h" 82 #include "llvm/IR/Constants.h" 83 #include "llvm/IR/DerivedTypes.h" 84 #include "llvm/IR/Dominators.h" 85 #include "llvm/IR/GlobalValue.h" 86 #include "llvm/IR/IRBuilder.h" 87 #include "llvm/IR/InstrTypes.h" 88 #include "llvm/IR/Instruction.h" 89 #include "llvm/IR/Instructions.h" 90 #include "llvm/IR/IntrinsicInst.h" 91 #include "llvm/IR/Intrinsics.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/OperandTraits.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PassManager.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/Use.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/IR/ValueHandle.h" 101 #include "llvm/Pass.h" 102 #include "llvm/Support/Casting.h" 103 #include "llvm/Support/CommandLine.h" 104 #include "llvm/Support/Compiler.h" 105 #include "llvm/Support/Debug.h" 106 #include "llvm/Support/ErrorHandling.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Transforms/Scalar.h" 110 #include "llvm/Transforms/Utils.h" 111 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstdlib> 117 #include <iterator> 118 #include <limits> 119 #include <map> 120 #include <utility> 121 122 using namespace llvm; 123 124 #define DEBUG_TYPE "loop-reduce" 125 126 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for 127 /// bail out. This threshold is far beyond the number of users that LSR can 128 /// conceivably solve, so it should not affect generated code, but catches the 129 /// worst cases before LSR burns too much compile time and stack space. 130 static const unsigned MaxIVUsers = 200; 131 132 // Temporary flag to cleanup congruent phis after LSR phi expansion. 133 // It's currently disabled until we can determine whether it's truly useful or 134 // not. The flag should be removed after the v3.0 release. 135 // This is now needed for ivchains. 136 static cl::opt<bool> EnablePhiElim( 137 "enable-lsr-phielim", cl::Hidden, cl::init(true), 138 cl::desc("Enable LSR phi elimination")); 139 140 // The flag adds instruction count to solutions cost comparision. 141 static cl::opt<bool> InsnsCost( 142 "lsr-insns-cost", cl::Hidden, cl::init(true), 143 cl::desc("Add instruction count to a LSR cost model")); 144 145 // Flag to choose how to narrow complex lsr solution 146 static cl::opt<bool> LSRExpNarrow( 147 "lsr-exp-narrow", cl::Hidden, cl::init(false), 148 cl::desc("Narrow LSR complex solution using" 149 " expectation of registers number")); 150 151 // Flag to narrow search space by filtering non-optimal formulae with 152 // the same ScaledReg and Scale. 153 static cl::opt<bool> FilterSameScaledReg( 154 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 155 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 156 " with the same ScaledReg and Scale")); 157 158 #ifndef NDEBUG 159 // Stress test IV chain generation. 160 static cl::opt<bool> StressIVChain( 161 "stress-ivchain", cl::Hidden, cl::init(false), 162 cl::desc("Stress test LSR IV chains")); 163 #else 164 static bool StressIVChain = false; 165 #endif 166 167 namespace { 168 169 struct MemAccessTy { 170 /// Used in situations where the accessed memory type is unknown. 171 static const unsigned UnknownAddressSpace = 172 std::numeric_limits<unsigned>::max(); 173 174 Type *MemTy = nullptr; 175 unsigned AddrSpace = UnknownAddressSpace; 176 177 MemAccessTy() = default; 178 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 179 180 bool operator==(MemAccessTy Other) const { 181 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 182 } 183 184 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 185 186 static MemAccessTy getUnknown(LLVMContext &Ctx, 187 unsigned AS = UnknownAddressSpace) { 188 return MemAccessTy(Type::getVoidTy(Ctx), AS); 189 } 190 191 Type *getType() { return MemTy; } 192 }; 193 194 /// This class holds data which is used to order reuse candidates. 195 class RegSortData { 196 public: 197 /// This represents the set of LSRUse indices which reference 198 /// a particular register. 199 SmallBitVector UsedByIndices; 200 201 void print(raw_ostream &OS) const; 202 void dump() const; 203 }; 204 205 } // end anonymous namespace 206 207 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 208 void RegSortData::print(raw_ostream &OS) const { 209 OS << "[NumUses=" << UsedByIndices.count() << ']'; 210 } 211 212 LLVM_DUMP_METHOD void RegSortData::dump() const { 213 print(errs()); errs() << '\n'; 214 } 215 #endif 216 217 namespace { 218 219 /// Map register candidates to information about how they are used. 220 class RegUseTracker { 221 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 222 223 RegUsesTy RegUsesMap; 224 SmallVector<const SCEV *, 16> RegSequence; 225 226 public: 227 void countRegister(const SCEV *Reg, size_t LUIdx); 228 void dropRegister(const SCEV *Reg, size_t LUIdx); 229 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 230 231 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 232 233 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 234 235 void clear(); 236 237 using iterator = SmallVectorImpl<const SCEV *>::iterator; 238 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 239 240 iterator begin() { return RegSequence.begin(); } 241 iterator end() { return RegSequence.end(); } 242 const_iterator begin() const { return RegSequence.begin(); } 243 const_iterator end() const { return RegSequence.end(); } 244 }; 245 246 } // end anonymous namespace 247 248 void 249 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 250 std::pair<RegUsesTy::iterator, bool> Pair = 251 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 252 RegSortData &RSD = Pair.first->second; 253 if (Pair.second) 254 RegSequence.push_back(Reg); 255 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 256 RSD.UsedByIndices.set(LUIdx); 257 } 258 259 void 260 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 261 RegUsesTy::iterator It = RegUsesMap.find(Reg); 262 assert(It != RegUsesMap.end()); 263 RegSortData &RSD = It->second; 264 assert(RSD.UsedByIndices.size() > LUIdx); 265 RSD.UsedByIndices.reset(LUIdx); 266 } 267 268 void 269 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 270 assert(LUIdx <= LastLUIdx); 271 272 // Update RegUses. The data structure is not optimized for this purpose; 273 // we must iterate through it and update each of the bit vectors. 274 for (auto &Pair : RegUsesMap) { 275 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 276 if (LUIdx < UsedByIndices.size()) 277 UsedByIndices[LUIdx] = 278 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 279 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 280 } 281 } 282 283 bool 284 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 285 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 286 if (I == RegUsesMap.end()) 287 return false; 288 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 289 int i = UsedByIndices.find_first(); 290 if (i == -1) return false; 291 if ((size_t)i != LUIdx) return true; 292 return UsedByIndices.find_next(i) != -1; 293 } 294 295 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 296 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 297 assert(I != RegUsesMap.end() && "Unknown register!"); 298 return I->second.UsedByIndices; 299 } 300 301 void RegUseTracker::clear() { 302 RegUsesMap.clear(); 303 RegSequence.clear(); 304 } 305 306 namespace { 307 308 /// This class holds information that describes a formula for computing 309 /// satisfying a use. It may include broken-out immediates and scaled registers. 310 struct Formula { 311 /// Global base address used for complex addressing. 312 GlobalValue *BaseGV = nullptr; 313 314 /// Base offset for complex addressing. 315 int64_t BaseOffset = 0; 316 317 /// Whether any complex addressing has a base register. 318 bool HasBaseReg = false; 319 320 /// The scale of any complex addressing. 321 int64_t Scale = 0; 322 323 /// The list of "base" registers for this use. When this is non-empty. The 324 /// canonical representation of a formula is 325 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 326 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 327 /// 3. The reg containing recurrent expr related with currect loop in the 328 /// formula should be put in the ScaledReg. 329 /// #1 enforces that the scaled register is always used when at least two 330 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 331 /// #2 enforces that 1 * reg is reg. 332 /// #3 ensures invariant regs with respect to current loop can be combined 333 /// together in LSR codegen. 334 /// This invariant can be temporarly broken while building a formula. 335 /// However, every formula inserted into the LSRInstance must be in canonical 336 /// form. 337 SmallVector<const SCEV *, 4> BaseRegs; 338 339 /// The 'scaled' register for this use. This should be non-null when Scale is 340 /// not zero. 341 const SCEV *ScaledReg = nullptr; 342 343 /// An additional constant offset which added near the use. This requires a 344 /// temporary register, but the offset itself can live in an add immediate 345 /// field rather than a register. 346 int64_t UnfoldedOffset = 0; 347 348 Formula() = default; 349 350 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 351 352 bool isCanonical(const Loop &L) const; 353 354 void canonicalize(const Loop &L); 355 356 bool unscale(); 357 358 bool hasZeroEnd() const; 359 360 size_t getNumRegs() const; 361 Type *getType() const; 362 363 void deleteBaseReg(const SCEV *&S); 364 365 bool referencesReg(const SCEV *S) const; 366 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 367 const RegUseTracker &RegUses) const; 368 369 void print(raw_ostream &OS) const; 370 void dump() const; 371 }; 372 373 } // end anonymous namespace 374 375 /// Recursion helper for initialMatch. 376 static void DoInitialMatch(const SCEV *S, Loop *L, 377 SmallVectorImpl<const SCEV *> &Good, 378 SmallVectorImpl<const SCEV *> &Bad, 379 ScalarEvolution &SE) { 380 // Collect expressions which properly dominate the loop header. 381 if (SE.properlyDominates(S, L->getHeader())) { 382 Good.push_back(S); 383 return; 384 } 385 386 // Look at add operands. 387 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 388 for (const SCEV *S : Add->operands()) 389 DoInitialMatch(S, L, Good, Bad, SE); 390 return; 391 } 392 393 // Look at addrec operands. 394 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 395 if (!AR->getStart()->isZero() && AR->isAffine()) { 396 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 397 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 398 AR->getStepRecurrence(SE), 399 // FIXME: AR->getNoWrapFlags() 400 AR->getLoop(), SCEV::FlagAnyWrap), 401 L, Good, Bad, SE); 402 return; 403 } 404 405 // Handle a multiplication by -1 (negation) if it didn't fold. 406 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 407 if (Mul->getOperand(0)->isAllOnesValue()) { 408 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 409 const SCEV *NewMul = SE.getMulExpr(Ops); 410 411 SmallVector<const SCEV *, 4> MyGood; 412 SmallVector<const SCEV *, 4> MyBad; 413 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 414 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 415 SE.getEffectiveSCEVType(NewMul->getType()))); 416 for (const SCEV *S : MyGood) 417 Good.push_back(SE.getMulExpr(NegOne, S)); 418 for (const SCEV *S : MyBad) 419 Bad.push_back(SE.getMulExpr(NegOne, S)); 420 return; 421 } 422 423 // Ok, we can't do anything interesting. Just stuff the whole thing into a 424 // register and hope for the best. 425 Bad.push_back(S); 426 } 427 428 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 429 /// all loop-invariant and loop-computable values in a single base register. 430 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 431 SmallVector<const SCEV *, 4> Good; 432 SmallVector<const SCEV *, 4> Bad; 433 DoInitialMatch(S, L, Good, Bad, SE); 434 if (!Good.empty()) { 435 const SCEV *Sum = SE.getAddExpr(Good); 436 if (!Sum->isZero()) 437 BaseRegs.push_back(Sum); 438 HasBaseReg = true; 439 } 440 if (!Bad.empty()) { 441 const SCEV *Sum = SE.getAddExpr(Bad); 442 if (!Sum->isZero()) 443 BaseRegs.push_back(Sum); 444 HasBaseReg = true; 445 } 446 canonicalize(*L); 447 } 448 449 /// Check whether or not this formula satisfies the canonical 450 /// representation. 451 /// \see Formula::BaseRegs. 452 bool Formula::isCanonical(const Loop &L) const { 453 if (!ScaledReg) 454 return BaseRegs.size() <= 1; 455 456 if (Scale != 1) 457 return true; 458 459 if (Scale == 1 && BaseRegs.empty()) 460 return false; 461 462 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 463 if (SAR && SAR->getLoop() == &L) 464 return true; 465 466 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 467 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 468 // loop, we want to swap the reg in BaseRegs with ScaledReg. 469 auto I = 470 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 471 return isa<const SCEVAddRecExpr>(S) && 472 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 473 }); 474 return I == BaseRegs.end(); 475 } 476 477 /// Helper method to morph a formula into its canonical representation. 478 /// \see Formula::BaseRegs. 479 /// Every formula having more than one base register, must use the ScaledReg 480 /// field. Otherwise, we would have to do special cases everywhere in LSR 481 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 482 /// On the other hand, 1*reg should be canonicalized into reg. 483 void Formula::canonicalize(const Loop &L) { 484 if (isCanonical(L)) 485 return; 486 // So far we did not need this case. This is easy to implement but it is 487 // useless to maintain dead code. Beside it could hurt compile time. 488 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 489 490 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 491 if (!ScaledReg) { 492 ScaledReg = BaseRegs.back(); 493 BaseRegs.pop_back(); 494 Scale = 1; 495 } 496 497 // If ScaledReg is an invariant with respect to L, find the reg from 498 // BaseRegs containing the recurrent expr related with Loop L. Swap the 499 // reg with ScaledReg. 500 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 501 if (!SAR || SAR->getLoop() != &L) { 502 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 503 [&](const SCEV *S) { 504 return isa<const SCEVAddRecExpr>(S) && 505 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 506 }); 507 if (I != BaseRegs.end()) 508 std::swap(ScaledReg, *I); 509 } 510 } 511 512 /// Get rid of the scale in the formula. 513 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 514 /// \return true if it was possible to get rid of the scale, false otherwise. 515 /// \note After this operation the formula may not be in the canonical form. 516 bool Formula::unscale() { 517 if (Scale != 1) 518 return false; 519 Scale = 0; 520 BaseRegs.push_back(ScaledReg); 521 ScaledReg = nullptr; 522 return true; 523 } 524 525 bool Formula::hasZeroEnd() const { 526 if (UnfoldedOffset || BaseOffset) 527 return false; 528 if (BaseRegs.size() != 1 || ScaledReg) 529 return false; 530 return true; 531 } 532 533 /// Return the total number of register operands used by this formula. This does 534 /// not include register uses implied by non-constant addrec strides. 535 size_t Formula::getNumRegs() const { 536 return !!ScaledReg + BaseRegs.size(); 537 } 538 539 /// Return the type of this formula, if it has one, or null otherwise. This type 540 /// is meaningless except for the bit size. 541 Type *Formula::getType() const { 542 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 543 ScaledReg ? ScaledReg->getType() : 544 BaseGV ? BaseGV->getType() : 545 nullptr; 546 } 547 548 /// Delete the given base reg from the BaseRegs list. 549 void Formula::deleteBaseReg(const SCEV *&S) { 550 if (&S != &BaseRegs.back()) 551 std::swap(S, BaseRegs.back()); 552 BaseRegs.pop_back(); 553 } 554 555 /// Test if this formula references the given register. 556 bool Formula::referencesReg(const SCEV *S) const { 557 return S == ScaledReg || is_contained(BaseRegs, S); 558 } 559 560 /// Test whether this formula uses registers which are used by uses other than 561 /// the use with the given index. 562 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 563 const RegUseTracker &RegUses) const { 564 if (ScaledReg) 565 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 566 return true; 567 for (const SCEV *BaseReg : BaseRegs) 568 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 569 return true; 570 return false; 571 } 572 573 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 574 void Formula::print(raw_ostream &OS) const { 575 bool First = true; 576 if (BaseGV) { 577 if (!First) OS << " + "; else First = false; 578 BaseGV->printAsOperand(OS, /*PrintType=*/false); 579 } 580 if (BaseOffset != 0) { 581 if (!First) OS << " + "; else First = false; 582 OS << BaseOffset; 583 } 584 for (const SCEV *BaseReg : BaseRegs) { 585 if (!First) OS << " + "; else First = false; 586 OS << "reg(" << *BaseReg << ')'; 587 } 588 if (HasBaseReg && BaseRegs.empty()) { 589 if (!First) OS << " + "; else First = false; 590 OS << "**error: HasBaseReg**"; 591 } else if (!HasBaseReg && !BaseRegs.empty()) { 592 if (!First) OS << " + "; else First = false; 593 OS << "**error: !HasBaseReg**"; 594 } 595 if (Scale != 0) { 596 if (!First) OS << " + "; else First = false; 597 OS << Scale << "*reg("; 598 if (ScaledReg) 599 OS << *ScaledReg; 600 else 601 OS << "<unknown>"; 602 OS << ')'; 603 } 604 if (UnfoldedOffset != 0) { 605 if (!First) OS << " + "; 606 OS << "imm(" << UnfoldedOffset << ')'; 607 } 608 } 609 610 LLVM_DUMP_METHOD void Formula::dump() const { 611 print(errs()); errs() << '\n'; 612 } 613 #endif 614 615 /// Return true if the given addrec can be sign-extended without changing its 616 /// value. 617 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 618 Type *WideTy = 619 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 620 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 621 } 622 623 /// Return true if the given add can be sign-extended without changing its 624 /// value. 625 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 626 Type *WideTy = 627 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 628 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 629 } 630 631 /// Return true if the given mul can be sign-extended without changing its 632 /// value. 633 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 634 Type *WideTy = 635 IntegerType::get(SE.getContext(), 636 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 637 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 638 } 639 640 /// Return an expression for LHS /s RHS, if it can be determined and if the 641 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 642 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 643 /// the multiplication may overflow, which is useful when the result will be 644 /// used in a context where the most significant bits are ignored. 645 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 646 ScalarEvolution &SE, 647 bool IgnoreSignificantBits = false) { 648 // Handle the trivial case, which works for any SCEV type. 649 if (LHS == RHS) 650 return SE.getConstant(LHS->getType(), 1); 651 652 // Handle a few RHS special cases. 653 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 654 if (RC) { 655 const APInt &RA = RC->getAPInt(); 656 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 657 // some folding. 658 if (RA.isAllOnesValue()) 659 return SE.getMulExpr(LHS, RC); 660 // Handle x /s 1 as x. 661 if (RA == 1) 662 return LHS; 663 } 664 665 // Check for a division of a constant by a constant. 666 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 667 if (!RC) 668 return nullptr; 669 const APInt &LA = C->getAPInt(); 670 const APInt &RA = RC->getAPInt(); 671 if (LA.srem(RA) != 0) 672 return nullptr; 673 return SE.getConstant(LA.sdiv(RA)); 674 } 675 676 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 677 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 678 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 679 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 680 IgnoreSignificantBits); 681 if (!Step) return nullptr; 682 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 683 IgnoreSignificantBits); 684 if (!Start) return nullptr; 685 // FlagNW is independent of the start value, step direction, and is 686 // preserved with smaller magnitude steps. 687 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 688 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 689 } 690 return nullptr; 691 } 692 693 // Distribute the sdiv over add operands, if the add doesn't overflow. 694 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 695 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 696 SmallVector<const SCEV *, 8> Ops; 697 for (const SCEV *S : Add->operands()) { 698 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 699 if (!Op) return nullptr; 700 Ops.push_back(Op); 701 } 702 return SE.getAddExpr(Ops); 703 } 704 return nullptr; 705 } 706 707 // Check for a multiply operand that we can pull RHS out of. 708 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 709 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 710 SmallVector<const SCEV *, 4> Ops; 711 bool Found = false; 712 for (const SCEV *S : Mul->operands()) { 713 if (!Found) 714 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 715 IgnoreSignificantBits)) { 716 S = Q; 717 Found = true; 718 } 719 Ops.push_back(S); 720 } 721 return Found ? SE.getMulExpr(Ops) : nullptr; 722 } 723 return nullptr; 724 } 725 726 // Otherwise we don't know. 727 return nullptr; 728 } 729 730 /// If S involves the addition of a constant integer value, return that integer 731 /// value, and mutate S to point to a new SCEV with that value excluded. 732 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 733 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 734 if (C->getAPInt().getMinSignedBits() <= 64) { 735 S = SE.getConstant(C->getType(), 0); 736 return C->getValue()->getSExtValue(); 737 } 738 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 739 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 740 int64_t Result = ExtractImmediate(NewOps.front(), SE); 741 if (Result != 0) 742 S = SE.getAddExpr(NewOps); 743 return Result; 744 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 745 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 746 int64_t Result = ExtractImmediate(NewOps.front(), SE); 747 if (Result != 0) 748 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 749 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 750 SCEV::FlagAnyWrap); 751 return Result; 752 } 753 return 0; 754 } 755 756 /// If S involves the addition of a GlobalValue address, return that symbol, and 757 /// mutate S to point to a new SCEV with that value excluded. 758 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 759 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 760 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 761 S = SE.getConstant(GV->getType(), 0); 762 return GV; 763 } 764 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 765 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 766 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 767 if (Result) 768 S = SE.getAddExpr(NewOps); 769 return Result; 770 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 771 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 772 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 773 if (Result) 774 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 775 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 776 SCEV::FlagAnyWrap); 777 return Result; 778 } 779 return nullptr; 780 } 781 782 /// Returns true if the specified instruction is using the specified value as an 783 /// address. 784 static bool isAddressUse(const TargetTransformInfo &TTI, 785 Instruction *Inst, Value *OperandVal) { 786 bool isAddress = isa<LoadInst>(Inst); 787 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 788 if (SI->getPointerOperand() == OperandVal) 789 isAddress = true; 790 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 791 // Addressing modes can also be folded into prefetches and a variety 792 // of intrinsics. 793 switch (II->getIntrinsicID()) { 794 case Intrinsic::memset: 795 case Intrinsic::prefetch: 796 if (II->getArgOperand(0) == OperandVal) 797 isAddress = true; 798 break; 799 case Intrinsic::memmove: 800 case Intrinsic::memcpy: 801 if (II->getArgOperand(0) == OperandVal || 802 II->getArgOperand(1) == OperandVal) 803 isAddress = true; 804 break; 805 default: { 806 MemIntrinsicInfo IntrInfo; 807 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 808 if (IntrInfo.PtrVal == OperandVal) 809 isAddress = true; 810 } 811 } 812 } 813 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 814 if (RMW->getPointerOperand() == OperandVal) 815 isAddress = true; 816 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 817 if (CmpX->getPointerOperand() == OperandVal) 818 isAddress = true; 819 } 820 return isAddress; 821 } 822 823 /// Return the type of the memory being accessed. 824 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 825 Instruction *Inst) { 826 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 827 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 828 AccessTy.MemTy = SI->getOperand(0)->getType(); 829 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 830 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 831 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 832 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 833 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 834 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 835 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 836 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 837 switch (II->getIntrinsicID()) { 838 case Intrinsic::prefetch: 839 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 840 break; 841 default: { 842 MemIntrinsicInfo IntrInfo; 843 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 844 AccessTy.AddrSpace 845 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 846 } 847 848 break; 849 } 850 } 851 } 852 853 // All pointers have the same requirements, so canonicalize them to an 854 // arbitrary pointer type to minimize variation. 855 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 856 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 857 PTy->getAddressSpace()); 858 859 return AccessTy; 860 } 861 862 /// Return true if this AddRec is already a phi in its loop. 863 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 864 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 865 if (SE.isSCEVable(PN.getType()) && 866 (SE.getEffectiveSCEVType(PN.getType()) == 867 SE.getEffectiveSCEVType(AR->getType())) && 868 SE.getSCEV(&PN) == AR) 869 return true; 870 } 871 return false; 872 } 873 874 /// Check if expanding this expression is likely to incur significant cost. This 875 /// is tricky because SCEV doesn't track which expressions are actually computed 876 /// by the current IR. 877 /// 878 /// We currently allow expansion of IV increments that involve adds, 879 /// multiplication by constants, and AddRecs from existing phis. 880 /// 881 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 882 /// obvious multiple of the UDivExpr. 883 static bool isHighCostExpansion(const SCEV *S, 884 SmallPtrSetImpl<const SCEV*> &Processed, 885 ScalarEvolution &SE) { 886 // Zero/One operand expressions 887 switch (S->getSCEVType()) { 888 case scUnknown: 889 case scConstant: 890 return false; 891 case scTruncate: 892 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 893 Processed, SE); 894 case scZeroExtend: 895 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 896 Processed, SE); 897 case scSignExtend: 898 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 899 Processed, SE); 900 } 901 902 if (!Processed.insert(S).second) 903 return false; 904 905 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 906 for (const SCEV *S : Add->operands()) { 907 if (isHighCostExpansion(S, Processed, SE)) 908 return true; 909 } 910 return false; 911 } 912 913 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 914 if (Mul->getNumOperands() == 2) { 915 // Multiplication by a constant is ok 916 if (isa<SCEVConstant>(Mul->getOperand(0))) 917 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 918 919 // If we have the value of one operand, check if an existing 920 // multiplication already generates this expression. 921 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 922 Value *UVal = U->getValue(); 923 for (User *UR : UVal->users()) { 924 // If U is a constant, it may be used by a ConstantExpr. 925 Instruction *UI = dyn_cast<Instruction>(UR); 926 if (UI && UI->getOpcode() == Instruction::Mul && 927 SE.isSCEVable(UI->getType())) { 928 return SE.getSCEV(UI) == Mul; 929 } 930 } 931 } 932 } 933 } 934 935 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 936 if (isExistingPhi(AR, SE)) 937 return false; 938 } 939 940 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 941 return true; 942 } 943 944 /// If any of the instructions in the specified set are trivially dead, delete 945 /// them and see if this makes any of their operands subsequently dead. 946 static bool 947 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 948 bool Changed = false; 949 950 while (!DeadInsts.empty()) { 951 Value *V = DeadInsts.pop_back_val(); 952 Instruction *I = dyn_cast_or_null<Instruction>(V); 953 954 if (!I || !isInstructionTriviallyDead(I)) 955 continue; 956 957 for (Use &O : I->operands()) 958 if (Instruction *U = dyn_cast<Instruction>(O)) { 959 O = nullptr; 960 if (U->use_empty()) 961 DeadInsts.emplace_back(U); 962 } 963 964 I->eraseFromParent(); 965 Changed = true; 966 } 967 968 return Changed; 969 } 970 971 namespace { 972 973 class LSRUse; 974 975 } // end anonymous namespace 976 977 /// Check if the addressing mode defined by \p F is completely 978 /// folded in \p LU at isel time. 979 /// This includes address-mode folding and special icmp tricks. 980 /// This function returns true if \p LU can accommodate what \p F 981 /// defines and up to 1 base + 1 scaled + offset. 982 /// In other words, if \p F has several base registers, this function may 983 /// still return true. Therefore, users still need to account for 984 /// additional base registers and/or unfolded offsets to derive an 985 /// accurate cost model. 986 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 987 const LSRUse &LU, const Formula &F); 988 989 // Get the cost of the scaling factor used in F for LU. 990 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 991 const LSRUse &LU, const Formula &F, 992 const Loop &L); 993 994 namespace { 995 996 /// This class is used to measure and compare candidate formulae. 997 class Cost { 998 TargetTransformInfo::LSRCost C; 999 1000 public: 1001 Cost() { 1002 C.Insns = 0; 1003 C.NumRegs = 0; 1004 C.AddRecCost = 0; 1005 C.NumIVMuls = 0; 1006 C.NumBaseAdds = 0; 1007 C.ImmCost = 0; 1008 C.SetupCost = 0; 1009 C.ScaleCost = 0; 1010 } 1011 1012 bool isLess(Cost &Other, const TargetTransformInfo &TTI); 1013 1014 void Lose(); 1015 1016 #ifndef NDEBUG 1017 // Once any of the metrics loses, they must all remain losers. 1018 bool isValid() { 1019 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1020 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1021 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1022 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1023 } 1024 #endif 1025 1026 bool isLoser() { 1027 assert(isValid() && "invalid cost"); 1028 return C.NumRegs == ~0u; 1029 } 1030 1031 void RateFormula(const TargetTransformInfo &TTI, 1032 const Formula &F, 1033 SmallPtrSetImpl<const SCEV *> &Regs, 1034 const DenseSet<const SCEV *> &VisitedRegs, 1035 const Loop *L, 1036 ScalarEvolution &SE, DominatorTree &DT, 1037 const LSRUse &LU, 1038 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1039 1040 void print(raw_ostream &OS) const; 1041 void dump() const; 1042 1043 private: 1044 void RateRegister(const SCEV *Reg, 1045 SmallPtrSetImpl<const SCEV *> &Regs, 1046 const Loop *L, 1047 ScalarEvolution &SE, DominatorTree &DT, 1048 const TargetTransformInfo &TTI); 1049 void RatePrimaryRegister(const SCEV *Reg, 1050 SmallPtrSetImpl<const SCEV *> &Regs, 1051 const Loop *L, 1052 ScalarEvolution &SE, DominatorTree &DT, 1053 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1054 const TargetTransformInfo &TTI); 1055 }; 1056 1057 /// An operand value in an instruction which is to be replaced with some 1058 /// equivalent, possibly strength-reduced, replacement. 1059 struct LSRFixup { 1060 /// The instruction which will be updated. 1061 Instruction *UserInst = nullptr; 1062 1063 /// The operand of the instruction which will be replaced. The operand may be 1064 /// used more than once; every instance will be replaced. 1065 Value *OperandValToReplace = nullptr; 1066 1067 /// If this user is to use the post-incremented value of an induction 1068 /// variable, this set is non-empty and holds the loops associated with the 1069 /// induction variable. 1070 PostIncLoopSet PostIncLoops; 1071 1072 /// A constant offset to be added to the LSRUse expression. This allows 1073 /// multiple fixups to share the same LSRUse with different offsets, for 1074 /// example in an unrolled loop. 1075 int64_t Offset = 0; 1076 1077 LSRFixup() = default; 1078 1079 bool isUseFullyOutsideLoop(const Loop *L) const; 1080 1081 void print(raw_ostream &OS) const; 1082 void dump() const; 1083 }; 1084 1085 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1086 /// SmallVectors of const SCEV*. 1087 struct UniquifierDenseMapInfo { 1088 static SmallVector<const SCEV *, 4> getEmptyKey() { 1089 SmallVector<const SCEV *, 4> V; 1090 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1091 return V; 1092 } 1093 1094 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1095 SmallVector<const SCEV *, 4> V; 1096 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1097 return V; 1098 } 1099 1100 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1101 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1102 } 1103 1104 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1105 const SmallVector<const SCEV *, 4> &RHS) { 1106 return LHS == RHS; 1107 } 1108 }; 1109 1110 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1111 /// as uses invented by LSR itself. It includes information about what kinds of 1112 /// things can be folded into the user, information about the user itself, and 1113 /// information about how the use may be satisfied. TODO: Represent multiple 1114 /// users of the same expression in common? 1115 class LSRUse { 1116 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1117 1118 public: 1119 /// An enum for a kind of use, indicating what types of scaled and immediate 1120 /// operands it might support. 1121 enum KindType { 1122 Basic, ///< A normal use, with no folding. 1123 Special, ///< A special case of basic, allowing -1 scales. 1124 Address, ///< An address use; folding according to TargetLowering 1125 ICmpZero ///< An equality icmp with both operands folded into one. 1126 // TODO: Add a generic icmp too? 1127 }; 1128 1129 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1130 1131 KindType Kind; 1132 MemAccessTy AccessTy; 1133 1134 /// The list of operands which are to be replaced. 1135 SmallVector<LSRFixup, 8> Fixups; 1136 1137 /// Keep track of the min and max offsets of the fixups. 1138 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1139 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1140 1141 /// This records whether all of the fixups using this LSRUse are outside of 1142 /// the loop, in which case some special-case heuristics may be used. 1143 bool AllFixupsOutsideLoop = true; 1144 1145 /// RigidFormula is set to true to guarantee that this use will be associated 1146 /// with a single formula--the one that initially matched. Some SCEV 1147 /// expressions cannot be expanded. This allows LSR to consider the registers 1148 /// used by those expressions without the need to expand them later after 1149 /// changing the formula. 1150 bool RigidFormula = false; 1151 1152 /// This records the widest use type for any fixup using this 1153 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1154 /// fixup widths to be equivalent, because the narrower one may be relying on 1155 /// the implicit truncation to truncate away bogus bits. 1156 Type *WidestFixupType = nullptr; 1157 1158 /// A list of ways to build a value that can satisfy this user. After the 1159 /// list is populated, one of these is selected heuristically and used to 1160 /// formulate a replacement for OperandValToReplace in UserInst. 1161 SmallVector<Formula, 12> Formulae; 1162 1163 /// The set of register candidates used by all formulae in this LSRUse. 1164 SmallPtrSet<const SCEV *, 4> Regs; 1165 1166 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1167 1168 LSRFixup &getNewFixup() { 1169 Fixups.push_back(LSRFixup()); 1170 return Fixups.back(); 1171 } 1172 1173 void pushFixup(LSRFixup &f) { 1174 Fixups.push_back(f); 1175 if (f.Offset > MaxOffset) 1176 MaxOffset = f.Offset; 1177 if (f.Offset < MinOffset) 1178 MinOffset = f.Offset; 1179 } 1180 1181 bool HasFormulaWithSameRegs(const Formula &F) const; 1182 float getNotSelectedProbability(const SCEV *Reg) const; 1183 bool InsertFormula(const Formula &F, const Loop &L); 1184 void DeleteFormula(Formula &F); 1185 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1186 1187 void print(raw_ostream &OS) const; 1188 void dump() const; 1189 }; 1190 1191 } // end anonymous namespace 1192 1193 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1194 LSRUse::KindType Kind, MemAccessTy AccessTy, 1195 GlobalValue *BaseGV, int64_t BaseOffset, 1196 bool HasBaseReg, int64_t Scale, 1197 Instruction *Fixup = nullptr); 1198 1199 /// Tally up interesting quantities from the given register. 1200 void Cost::RateRegister(const SCEV *Reg, 1201 SmallPtrSetImpl<const SCEV *> &Regs, 1202 const Loop *L, 1203 ScalarEvolution &SE, DominatorTree &DT, 1204 const TargetTransformInfo &TTI) { 1205 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1206 // If this is an addrec for another loop, it should be an invariant 1207 // with respect to L since L is the innermost loop (at least 1208 // for now LSR only handles innermost loops). 1209 if (AR->getLoop() != L) { 1210 // If the AddRec exists, consider it's register free and leave it alone. 1211 if (isExistingPhi(AR, SE)) 1212 return; 1213 1214 // It is bad to allow LSR for current loop to add induction variables 1215 // for its sibling loops. 1216 if (!AR->getLoop()->contains(L)) { 1217 Lose(); 1218 return; 1219 } 1220 1221 // Otherwise, it will be an invariant with respect to Loop L. 1222 ++C.NumRegs; 1223 return; 1224 } 1225 1226 unsigned LoopCost = 1; 1227 if (TTI.shouldFavorPostInc()) { 1228 const SCEV *LoopStep = AR->getStepRecurrence(SE); 1229 if (isa<SCEVConstant>(LoopStep)) { 1230 // Check if a post-indexed load/store can be used. 1231 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 1232 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 1233 const SCEV *LoopStart = AR->getStart(); 1234 if (!isa<SCEVConstant>(LoopStart) && 1235 SE.isLoopInvariant(LoopStart, L)) 1236 LoopCost = 0; 1237 } 1238 } 1239 } 1240 C.AddRecCost += LoopCost; 1241 1242 // Add the step value register, if it needs one. 1243 // TODO: The non-affine case isn't precisely modeled here. 1244 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1245 if (!Regs.count(AR->getOperand(1))) { 1246 RateRegister(AR->getOperand(1), Regs, L, SE, DT, TTI); 1247 if (isLoser()) 1248 return; 1249 } 1250 } 1251 } 1252 ++C.NumRegs; 1253 1254 // Rough heuristic; favor registers which don't require extra setup 1255 // instructions in the preheader. 1256 if (!isa<SCEVUnknown>(Reg) && 1257 !isa<SCEVConstant>(Reg) && 1258 !(isa<SCEVAddRecExpr>(Reg) && 1259 (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) || 1260 isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart())))) 1261 ++C.SetupCost; 1262 1263 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1264 SE.hasComputableLoopEvolution(Reg, L); 1265 } 1266 1267 /// Record this register in the set. If we haven't seen it before, rate 1268 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1269 /// one of those regs an instant loser. 1270 void Cost::RatePrimaryRegister(const SCEV *Reg, 1271 SmallPtrSetImpl<const SCEV *> &Regs, 1272 const Loop *L, 1273 ScalarEvolution &SE, DominatorTree &DT, 1274 SmallPtrSetImpl<const SCEV *> *LoserRegs, 1275 const TargetTransformInfo &TTI) { 1276 if (LoserRegs && LoserRegs->count(Reg)) { 1277 Lose(); 1278 return; 1279 } 1280 if (Regs.insert(Reg).second) { 1281 RateRegister(Reg, Regs, L, SE, DT, TTI); 1282 if (LoserRegs && isLoser()) 1283 LoserRegs->insert(Reg); 1284 } 1285 } 1286 1287 void Cost::RateFormula(const TargetTransformInfo &TTI, 1288 const Formula &F, 1289 SmallPtrSetImpl<const SCEV *> &Regs, 1290 const DenseSet<const SCEV *> &VisitedRegs, 1291 const Loop *L, 1292 ScalarEvolution &SE, DominatorTree &DT, 1293 const LSRUse &LU, 1294 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1295 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1296 // Tally up the registers. 1297 unsigned PrevAddRecCost = C.AddRecCost; 1298 unsigned PrevNumRegs = C.NumRegs; 1299 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1300 if (const SCEV *ScaledReg = F.ScaledReg) { 1301 if (VisitedRegs.count(ScaledReg)) { 1302 Lose(); 1303 return; 1304 } 1305 RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs, TTI); 1306 if (isLoser()) 1307 return; 1308 } 1309 for (const SCEV *BaseReg : F.BaseRegs) { 1310 if (VisitedRegs.count(BaseReg)) { 1311 Lose(); 1312 return; 1313 } 1314 RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs, TTI); 1315 if (isLoser()) 1316 return; 1317 } 1318 1319 // Determine how many (unfolded) adds we'll need inside the loop. 1320 size_t NumBaseParts = F.getNumRegs(); 1321 if (NumBaseParts > 1) 1322 // Do not count the base and a possible second register if the target 1323 // allows to fold 2 registers. 1324 C.NumBaseAdds += 1325 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F))); 1326 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1327 1328 // Accumulate non-free scaling amounts. 1329 C.ScaleCost += getScalingFactorCost(TTI, LU, F, *L); 1330 1331 // Tally up the non-zero immediates. 1332 for (const LSRFixup &Fixup : LU.Fixups) { 1333 int64_t O = Fixup.Offset; 1334 int64_t Offset = (uint64_t)O + F.BaseOffset; 1335 if (F.BaseGV) 1336 C.ImmCost += 64; // Handle symbolic values conservatively. 1337 // TODO: This should probably be the pointer size. 1338 else if (Offset != 0) 1339 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1340 1341 // Check with target if this offset with this instruction is 1342 // specifically not supported. 1343 if (LU.Kind == LSRUse::Address && Offset != 0 && 1344 !isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1345 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1346 C.NumBaseAdds++; 1347 } 1348 1349 // If we don't count instruction cost exit here. 1350 if (!InsnsCost) { 1351 assert(isValid() && "invalid cost"); 1352 return; 1353 } 1354 1355 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1356 // additional instruction (at least fill). 1357 unsigned TTIRegNum = TTI.getNumberOfRegisters(false) - 1; 1358 if (C.NumRegs > TTIRegNum) { 1359 // Cost already exceeded TTIRegNum, then only newly added register can add 1360 // new instructions. 1361 if (PrevNumRegs > TTIRegNum) 1362 C.Insns += (C.NumRegs - PrevNumRegs); 1363 else 1364 C.Insns += (C.NumRegs - TTIRegNum); 1365 } 1366 1367 // If ICmpZero formula ends with not 0, it could not be replaced by 1368 // just add or sub. We'll need to compare final result of AddRec. 1369 // That means we'll need an additional instruction. But if the target can 1370 // macro-fuse a compare with a branch, don't count this extra instruction. 1371 // For -10 + {0, +, 1}: 1372 // i = i + 1; 1373 // cmp i, 10 1374 // 1375 // For {-10, +, 1}: 1376 // i = i + 1; 1377 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && !TTI.canMacroFuseCmp()) 1378 C.Insns++; 1379 // Each new AddRec adds 1 instruction to calculation. 1380 C.Insns += (C.AddRecCost - PrevAddRecCost); 1381 1382 // BaseAdds adds instructions for unfolded registers. 1383 if (LU.Kind != LSRUse::ICmpZero) 1384 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1385 assert(isValid() && "invalid cost"); 1386 } 1387 1388 /// Set this cost to a losing value. 1389 void Cost::Lose() { 1390 C.Insns = std::numeric_limits<unsigned>::max(); 1391 C.NumRegs = std::numeric_limits<unsigned>::max(); 1392 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1393 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1394 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1395 C.ImmCost = std::numeric_limits<unsigned>::max(); 1396 C.SetupCost = std::numeric_limits<unsigned>::max(); 1397 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1398 } 1399 1400 /// Choose the lower cost. 1401 bool Cost::isLess(Cost &Other, const TargetTransformInfo &TTI) { 1402 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1403 C.Insns != Other.C.Insns) 1404 return C.Insns < Other.C.Insns; 1405 return TTI.isLSRCostLess(C, Other.C); 1406 } 1407 1408 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1409 void Cost::print(raw_ostream &OS) const { 1410 if (InsnsCost) 1411 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1412 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1413 if (C.AddRecCost != 0) 1414 OS << ", with addrec cost " << C.AddRecCost; 1415 if (C.NumIVMuls != 0) 1416 OS << ", plus " << C.NumIVMuls << " IV mul" 1417 << (C.NumIVMuls == 1 ? "" : "s"); 1418 if (C.NumBaseAdds != 0) 1419 OS << ", plus " << C.NumBaseAdds << " base add" 1420 << (C.NumBaseAdds == 1 ? "" : "s"); 1421 if (C.ScaleCost != 0) 1422 OS << ", plus " << C.ScaleCost << " scale cost"; 1423 if (C.ImmCost != 0) 1424 OS << ", plus " << C.ImmCost << " imm cost"; 1425 if (C.SetupCost != 0) 1426 OS << ", plus " << C.SetupCost << " setup cost"; 1427 } 1428 1429 LLVM_DUMP_METHOD void Cost::dump() const { 1430 print(errs()); errs() << '\n'; 1431 } 1432 #endif 1433 1434 /// Test whether this fixup always uses its value outside of the given loop. 1435 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1436 // PHI nodes use their value in their incoming blocks. 1437 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1438 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1439 if (PN->getIncomingValue(i) == OperandValToReplace && 1440 L->contains(PN->getIncomingBlock(i))) 1441 return false; 1442 return true; 1443 } 1444 1445 return !L->contains(UserInst); 1446 } 1447 1448 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1449 void LSRFixup::print(raw_ostream &OS) const { 1450 OS << "UserInst="; 1451 // Store is common and interesting enough to be worth special-casing. 1452 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1453 OS << "store "; 1454 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1455 } else if (UserInst->getType()->isVoidTy()) 1456 OS << UserInst->getOpcodeName(); 1457 else 1458 UserInst->printAsOperand(OS, /*PrintType=*/false); 1459 1460 OS << ", OperandValToReplace="; 1461 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1462 1463 for (const Loop *PIL : PostIncLoops) { 1464 OS << ", PostIncLoop="; 1465 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1466 } 1467 1468 if (Offset != 0) 1469 OS << ", Offset=" << Offset; 1470 } 1471 1472 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1473 print(errs()); errs() << '\n'; 1474 } 1475 #endif 1476 1477 /// Test whether this use as a formula which has the same registers as the given 1478 /// formula. 1479 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1480 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1481 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1482 // Unstable sort by host order ok, because this is only used for uniquifying. 1483 llvm::sort(Key.begin(), Key.end()); 1484 return Uniquifier.count(Key); 1485 } 1486 1487 /// The function returns a probability of selecting formula without Reg. 1488 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1489 unsigned FNum = 0; 1490 for (const Formula &F : Formulae) 1491 if (F.referencesReg(Reg)) 1492 FNum++; 1493 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1494 } 1495 1496 /// If the given formula has not yet been inserted, add it to the list, and 1497 /// return true. Return false otherwise. The formula must be in canonical form. 1498 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1499 assert(F.isCanonical(L) && "Invalid canonical representation"); 1500 1501 if (!Formulae.empty() && RigidFormula) 1502 return false; 1503 1504 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1505 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1506 // Unstable sort by host order ok, because this is only used for uniquifying. 1507 llvm::sort(Key.begin(), Key.end()); 1508 1509 if (!Uniquifier.insert(Key).second) 1510 return false; 1511 1512 // Using a register to hold the value of 0 is not profitable. 1513 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1514 "Zero allocated in a scaled register!"); 1515 #ifndef NDEBUG 1516 for (const SCEV *BaseReg : F.BaseRegs) 1517 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1518 #endif 1519 1520 // Add the formula to the list. 1521 Formulae.push_back(F); 1522 1523 // Record registers now being used by this use. 1524 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1525 if (F.ScaledReg) 1526 Regs.insert(F.ScaledReg); 1527 1528 return true; 1529 } 1530 1531 /// Remove the given formula from this use's list. 1532 void LSRUse::DeleteFormula(Formula &F) { 1533 if (&F != &Formulae.back()) 1534 std::swap(F, Formulae.back()); 1535 Formulae.pop_back(); 1536 } 1537 1538 /// Recompute the Regs field, and update RegUses. 1539 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1540 // Now that we've filtered out some formulae, recompute the Regs set. 1541 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1542 Regs.clear(); 1543 for (const Formula &F : Formulae) { 1544 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1545 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1546 } 1547 1548 // Update the RegTracker. 1549 for (const SCEV *S : OldRegs) 1550 if (!Regs.count(S)) 1551 RegUses.dropRegister(S, LUIdx); 1552 } 1553 1554 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1555 void LSRUse::print(raw_ostream &OS) const { 1556 OS << "LSR Use: Kind="; 1557 switch (Kind) { 1558 case Basic: OS << "Basic"; break; 1559 case Special: OS << "Special"; break; 1560 case ICmpZero: OS << "ICmpZero"; break; 1561 case Address: 1562 OS << "Address of "; 1563 if (AccessTy.MemTy->isPointerTy()) 1564 OS << "pointer"; // the full pointer type could be really verbose 1565 else { 1566 OS << *AccessTy.MemTy; 1567 } 1568 1569 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1570 } 1571 1572 OS << ", Offsets={"; 1573 bool NeedComma = false; 1574 for (const LSRFixup &Fixup : Fixups) { 1575 if (NeedComma) OS << ','; 1576 OS << Fixup.Offset; 1577 NeedComma = true; 1578 } 1579 OS << '}'; 1580 1581 if (AllFixupsOutsideLoop) 1582 OS << ", all-fixups-outside-loop"; 1583 1584 if (WidestFixupType) 1585 OS << ", widest fixup type: " << *WidestFixupType; 1586 } 1587 1588 LLVM_DUMP_METHOD void LSRUse::dump() const { 1589 print(errs()); errs() << '\n'; 1590 } 1591 #endif 1592 1593 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1594 LSRUse::KindType Kind, MemAccessTy AccessTy, 1595 GlobalValue *BaseGV, int64_t BaseOffset, 1596 bool HasBaseReg, int64_t Scale, 1597 Instruction *Fixup/*= nullptr*/) { 1598 switch (Kind) { 1599 case LSRUse::Address: 1600 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1601 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1602 1603 case LSRUse::ICmpZero: 1604 // There's not even a target hook for querying whether it would be legal to 1605 // fold a GV into an ICmp. 1606 if (BaseGV) 1607 return false; 1608 1609 // ICmp only has two operands; don't allow more than two non-trivial parts. 1610 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1611 return false; 1612 1613 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1614 // putting the scaled register in the other operand of the icmp. 1615 if (Scale != 0 && Scale != -1) 1616 return false; 1617 1618 // If we have low-level target information, ask the target if it can fold an 1619 // integer immediate on an icmp. 1620 if (BaseOffset != 0) { 1621 // We have one of: 1622 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1623 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1624 // Offs is the ICmp immediate. 1625 if (Scale == 0) 1626 // The cast does the right thing with 1627 // std::numeric_limits<int64_t>::min(). 1628 BaseOffset = -(uint64_t)BaseOffset; 1629 return TTI.isLegalICmpImmediate(BaseOffset); 1630 } 1631 1632 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1633 return true; 1634 1635 case LSRUse::Basic: 1636 // Only handle single-register values. 1637 return !BaseGV && Scale == 0 && BaseOffset == 0; 1638 1639 case LSRUse::Special: 1640 // Special case Basic to handle -1 scales. 1641 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1642 } 1643 1644 llvm_unreachable("Invalid LSRUse Kind!"); 1645 } 1646 1647 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1648 int64_t MinOffset, int64_t MaxOffset, 1649 LSRUse::KindType Kind, MemAccessTy AccessTy, 1650 GlobalValue *BaseGV, int64_t BaseOffset, 1651 bool HasBaseReg, int64_t Scale) { 1652 // Check for overflow. 1653 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1654 (MinOffset > 0)) 1655 return false; 1656 MinOffset = (uint64_t)BaseOffset + MinOffset; 1657 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1658 (MaxOffset > 0)) 1659 return false; 1660 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1661 1662 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1663 HasBaseReg, Scale) && 1664 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1665 HasBaseReg, Scale); 1666 } 1667 1668 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1669 int64_t MinOffset, int64_t MaxOffset, 1670 LSRUse::KindType Kind, MemAccessTy AccessTy, 1671 const Formula &F, const Loop &L) { 1672 // For the purpose of isAMCompletelyFolded either having a canonical formula 1673 // or a scale not equal to zero is correct. 1674 // Problems may arise from non canonical formulae having a scale == 0. 1675 // Strictly speaking it would best to just rely on canonical formulae. 1676 // However, when we generate the scaled formulae, we first check that the 1677 // scaling factor is profitable before computing the actual ScaledReg for 1678 // compile time sake. 1679 assert((F.isCanonical(L) || F.Scale != 0)); 1680 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1681 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1682 } 1683 1684 /// Test whether we know how to expand the current formula. 1685 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1686 int64_t MaxOffset, LSRUse::KindType Kind, 1687 MemAccessTy AccessTy, GlobalValue *BaseGV, 1688 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1689 // We know how to expand completely foldable formulae. 1690 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1691 BaseOffset, HasBaseReg, Scale) || 1692 // Or formulae that use a base register produced by a sum of base 1693 // registers. 1694 (Scale == 1 && 1695 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1696 BaseGV, BaseOffset, true, 0)); 1697 } 1698 1699 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1700 int64_t MaxOffset, LSRUse::KindType Kind, 1701 MemAccessTy AccessTy, const Formula &F) { 1702 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1703 F.BaseOffset, F.HasBaseReg, F.Scale); 1704 } 1705 1706 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1707 const LSRUse &LU, const Formula &F) { 1708 // Target may want to look at the user instructions. 1709 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1710 for (const LSRFixup &Fixup : LU.Fixups) 1711 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1712 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1713 F.Scale, Fixup.UserInst)) 1714 return false; 1715 return true; 1716 } 1717 1718 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1719 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1720 F.Scale); 1721 } 1722 1723 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1724 const LSRUse &LU, const Formula &F, 1725 const Loop &L) { 1726 if (!F.Scale) 1727 return 0; 1728 1729 // If the use is not completely folded in that instruction, we will have to 1730 // pay an extra cost only for scale != 1. 1731 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1732 LU.AccessTy, F, L)) 1733 return F.Scale != 1; 1734 1735 switch (LU.Kind) { 1736 case LSRUse::Address: { 1737 // Check the scaling factor cost with both the min and max offsets. 1738 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1739 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1740 F.Scale, LU.AccessTy.AddrSpace); 1741 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1742 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1743 F.Scale, LU.AccessTy.AddrSpace); 1744 1745 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1746 "Legal addressing mode has an illegal cost!"); 1747 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1748 } 1749 case LSRUse::ICmpZero: 1750 case LSRUse::Basic: 1751 case LSRUse::Special: 1752 // The use is completely folded, i.e., everything is folded into the 1753 // instruction. 1754 return 0; 1755 } 1756 1757 llvm_unreachable("Invalid LSRUse Kind!"); 1758 } 1759 1760 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1761 LSRUse::KindType Kind, MemAccessTy AccessTy, 1762 GlobalValue *BaseGV, int64_t BaseOffset, 1763 bool HasBaseReg) { 1764 // Fast-path: zero is always foldable. 1765 if (BaseOffset == 0 && !BaseGV) return true; 1766 1767 // Conservatively, create an address with an immediate and a 1768 // base and a scale. 1769 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1770 1771 // Canonicalize a scale of 1 to a base register if the formula doesn't 1772 // already have a base register. 1773 if (!HasBaseReg && Scale == 1) { 1774 Scale = 0; 1775 HasBaseReg = true; 1776 } 1777 1778 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1779 HasBaseReg, Scale); 1780 } 1781 1782 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1783 ScalarEvolution &SE, int64_t MinOffset, 1784 int64_t MaxOffset, LSRUse::KindType Kind, 1785 MemAccessTy AccessTy, const SCEV *S, 1786 bool HasBaseReg) { 1787 // Fast-path: zero is always foldable. 1788 if (S->isZero()) return true; 1789 1790 // Conservatively, create an address with an immediate and a 1791 // base and a scale. 1792 int64_t BaseOffset = ExtractImmediate(S, SE); 1793 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1794 1795 // If there's anything else involved, it's not foldable. 1796 if (!S->isZero()) return false; 1797 1798 // Fast-path: zero is always foldable. 1799 if (BaseOffset == 0 && !BaseGV) return true; 1800 1801 // Conservatively, create an address with an immediate and a 1802 // base and a scale. 1803 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1804 1805 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1806 BaseOffset, HasBaseReg, Scale); 1807 } 1808 1809 namespace { 1810 1811 /// An individual increment in a Chain of IV increments. Relate an IV user to 1812 /// an expression that computes the IV it uses from the IV used by the previous 1813 /// link in the Chain. 1814 /// 1815 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1816 /// original IVOperand. The head of the chain's IVOperand is only valid during 1817 /// chain collection, before LSR replaces IV users. During chain generation, 1818 /// IncExpr can be used to find the new IVOperand that computes the same 1819 /// expression. 1820 struct IVInc { 1821 Instruction *UserInst; 1822 Value* IVOperand; 1823 const SCEV *IncExpr; 1824 1825 IVInc(Instruction *U, Value *O, const SCEV *E) 1826 : UserInst(U), IVOperand(O), IncExpr(E) {} 1827 }; 1828 1829 // The list of IV increments in program order. We typically add the head of a 1830 // chain without finding subsequent links. 1831 struct IVChain { 1832 SmallVector<IVInc, 1> Incs; 1833 const SCEV *ExprBase = nullptr; 1834 1835 IVChain() = default; 1836 IVChain(const IVInc &Head, const SCEV *Base) 1837 : Incs(1, Head), ExprBase(Base) {} 1838 1839 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1840 1841 // Return the first increment in the chain. 1842 const_iterator begin() const { 1843 assert(!Incs.empty()); 1844 return std::next(Incs.begin()); 1845 } 1846 const_iterator end() const { 1847 return Incs.end(); 1848 } 1849 1850 // Returns true if this chain contains any increments. 1851 bool hasIncs() const { return Incs.size() >= 2; } 1852 1853 // Add an IVInc to the end of this chain. 1854 void add(const IVInc &X) { Incs.push_back(X); } 1855 1856 // Returns the last UserInst in the chain. 1857 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1858 1859 // Returns true if IncExpr can be profitably added to this chain. 1860 bool isProfitableIncrement(const SCEV *OperExpr, 1861 const SCEV *IncExpr, 1862 ScalarEvolution&); 1863 }; 1864 1865 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1866 /// between FarUsers that definitely cross IV increments and NearUsers that may 1867 /// be used between IV increments. 1868 struct ChainUsers { 1869 SmallPtrSet<Instruction*, 4> FarUsers; 1870 SmallPtrSet<Instruction*, 4> NearUsers; 1871 }; 1872 1873 /// This class holds state for the main loop strength reduction logic. 1874 class LSRInstance { 1875 IVUsers &IU; 1876 ScalarEvolution &SE; 1877 DominatorTree &DT; 1878 LoopInfo &LI; 1879 const TargetTransformInfo &TTI; 1880 Loop *const L; 1881 bool Changed = false; 1882 1883 /// This is the insert position that the current loop's induction variable 1884 /// increment should be placed. In simple loops, this is the latch block's 1885 /// terminator. But in more complicated cases, this is a position which will 1886 /// dominate all the in-loop post-increment users. 1887 Instruction *IVIncInsertPos = nullptr; 1888 1889 /// Interesting factors between use strides. 1890 /// 1891 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1892 /// default, a SmallDenseSet, because we need to use the full range of 1893 /// int64_ts, and there's currently no good way of doing that with 1894 /// SmallDenseSet. 1895 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1896 1897 /// Interesting use types, to facilitate truncation reuse. 1898 SmallSetVector<Type *, 4> Types; 1899 1900 /// The list of interesting uses. 1901 SmallVector<LSRUse, 16> Uses; 1902 1903 /// Track which uses use which register candidates. 1904 RegUseTracker RegUses; 1905 1906 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1907 // have more than a few IV increment chains in a loop. Missing a Chain falls 1908 // back to normal LSR behavior for those uses. 1909 static const unsigned MaxChains = 8; 1910 1911 /// IV users can form a chain of IV increments. 1912 SmallVector<IVChain, MaxChains> IVChainVec; 1913 1914 /// IV users that belong to profitable IVChains. 1915 SmallPtrSet<Use*, MaxChains> IVIncSet; 1916 1917 void OptimizeShadowIV(); 1918 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1919 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1920 void OptimizeLoopTermCond(); 1921 1922 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1923 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1924 void FinalizeChain(IVChain &Chain); 1925 void CollectChains(); 1926 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1927 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1928 1929 void CollectInterestingTypesAndFactors(); 1930 void CollectFixupsAndInitialFormulae(); 1931 1932 // Support for sharing of LSRUses between LSRFixups. 1933 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1934 UseMapTy UseMap; 1935 1936 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1937 LSRUse::KindType Kind, MemAccessTy AccessTy); 1938 1939 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1940 MemAccessTy AccessTy); 1941 1942 void DeleteUse(LSRUse &LU, size_t LUIdx); 1943 1944 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1945 1946 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1947 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1948 void CountRegisters(const Formula &F, size_t LUIdx); 1949 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1950 1951 void CollectLoopInvariantFixupsAndFormulae(); 1952 1953 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1954 unsigned Depth = 0); 1955 1956 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1957 const Formula &Base, unsigned Depth, 1958 size_t Idx, bool IsScaledReg = false); 1959 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1960 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1961 const Formula &Base, size_t Idx, 1962 bool IsScaledReg = false); 1963 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1964 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1965 const Formula &Base, 1966 const SmallVectorImpl<int64_t> &Worklist, 1967 size_t Idx, bool IsScaledReg = false); 1968 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1969 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1970 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 1971 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 1972 void GenerateCrossUseConstantOffsets(); 1973 void GenerateAllReuseFormulae(); 1974 1975 void FilterOutUndesirableDedicatedRegisters(); 1976 1977 size_t EstimateSearchSpaceComplexity() const; 1978 void NarrowSearchSpaceByDetectingSupersets(); 1979 void NarrowSearchSpaceByCollapsingUnrolledCode(); 1980 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 1981 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 1982 void NarrowSearchSpaceByDeletingCostlyFormulas(); 1983 void NarrowSearchSpaceByPickingWinnerRegs(); 1984 void NarrowSearchSpaceUsingHeuristics(); 1985 1986 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 1987 Cost &SolutionCost, 1988 SmallVectorImpl<const Formula *> &Workspace, 1989 const Cost &CurCost, 1990 const SmallPtrSet<const SCEV *, 16> &CurRegs, 1991 DenseSet<const SCEV *> &VisitedRegs) const; 1992 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 1993 1994 BasicBlock::iterator 1995 HoistInsertPosition(BasicBlock::iterator IP, 1996 const SmallVectorImpl<Instruction *> &Inputs) const; 1997 BasicBlock::iterator 1998 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 1999 const LSRFixup &LF, 2000 const LSRUse &LU, 2001 SCEVExpander &Rewriter) const; 2002 2003 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2004 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2005 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2006 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2007 const Formula &F, SCEVExpander &Rewriter, 2008 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2009 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2010 SCEVExpander &Rewriter, 2011 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2012 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2013 2014 public: 2015 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2016 LoopInfo &LI, const TargetTransformInfo &TTI); 2017 2018 bool getChanged() const { return Changed; } 2019 2020 void print_factors_and_types(raw_ostream &OS) const; 2021 void print_fixups(raw_ostream &OS) const; 2022 void print_uses(raw_ostream &OS) const; 2023 void print(raw_ostream &OS) const; 2024 void dump() const; 2025 }; 2026 2027 } // end anonymous namespace 2028 2029 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2030 /// the cast operation. 2031 void LSRInstance::OptimizeShadowIV() { 2032 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2033 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2034 return; 2035 2036 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2037 UI != E; /* empty */) { 2038 IVUsers::const_iterator CandidateUI = UI; 2039 ++UI; 2040 Instruction *ShadowUse = CandidateUI->getUser(); 2041 Type *DestTy = nullptr; 2042 bool IsSigned = false; 2043 2044 /* If shadow use is a int->float cast then insert a second IV 2045 to eliminate this cast. 2046 2047 for (unsigned i = 0; i < n; ++i) 2048 foo((double)i); 2049 2050 is transformed into 2051 2052 double d = 0.0; 2053 for (unsigned i = 0; i < n; ++i, ++d) 2054 foo(d); 2055 */ 2056 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2057 IsSigned = false; 2058 DestTy = UCast->getDestTy(); 2059 } 2060 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2061 IsSigned = true; 2062 DestTy = SCast->getDestTy(); 2063 } 2064 if (!DestTy) continue; 2065 2066 // If target does not support DestTy natively then do not apply 2067 // this transformation. 2068 if (!TTI.isTypeLegal(DestTy)) continue; 2069 2070 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2071 if (!PH) continue; 2072 if (PH->getNumIncomingValues() != 2) continue; 2073 2074 // If the calculation in integers overflows, the result in FP type will 2075 // differ. So we only can do this transformation if we are guaranteed to not 2076 // deal with overflowing values 2077 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2078 if (!AR) continue; 2079 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2080 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2081 2082 Type *SrcTy = PH->getType(); 2083 int Mantissa = DestTy->getFPMantissaWidth(); 2084 if (Mantissa == -1) continue; 2085 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2086 continue; 2087 2088 unsigned Entry, Latch; 2089 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2090 Entry = 0; 2091 Latch = 1; 2092 } else { 2093 Entry = 1; 2094 Latch = 0; 2095 } 2096 2097 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2098 if (!Init) continue; 2099 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2100 (double)Init->getSExtValue() : 2101 (double)Init->getZExtValue()); 2102 2103 BinaryOperator *Incr = 2104 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2105 if (!Incr) continue; 2106 if (Incr->getOpcode() != Instruction::Add 2107 && Incr->getOpcode() != Instruction::Sub) 2108 continue; 2109 2110 /* Initialize new IV, double d = 0.0 in above example. */ 2111 ConstantInt *C = nullptr; 2112 if (Incr->getOperand(0) == PH) 2113 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2114 else if (Incr->getOperand(1) == PH) 2115 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2116 else 2117 continue; 2118 2119 if (!C) continue; 2120 2121 // Ignore negative constants, as the code below doesn't handle them 2122 // correctly. TODO: Remove this restriction. 2123 if (!C->getValue().isStrictlyPositive()) continue; 2124 2125 /* Add new PHINode. */ 2126 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2127 2128 /* create new increment. '++d' in above example. */ 2129 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2130 BinaryOperator *NewIncr = 2131 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2132 Instruction::FAdd : Instruction::FSub, 2133 NewPH, CFP, "IV.S.next.", Incr); 2134 2135 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2136 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2137 2138 /* Remove cast operation */ 2139 ShadowUse->replaceAllUsesWith(NewPH); 2140 ShadowUse->eraseFromParent(); 2141 Changed = true; 2142 break; 2143 } 2144 } 2145 2146 /// If Cond has an operand that is an expression of an IV, set the IV user and 2147 /// stride information and return true, otherwise return false. 2148 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2149 for (IVStrideUse &U : IU) 2150 if (U.getUser() == Cond) { 2151 // NOTE: we could handle setcc instructions with multiple uses here, but 2152 // InstCombine does it as well for simple uses, it's not clear that it 2153 // occurs enough in real life to handle. 2154 CondUse = &U; 2155 return true; 2156 } 2157 return false; 2158 } 2159 2160 /// Rewrite the loop's terminating condition if it uses a max computation. 2161 /// 2162 /// This is a narrow solution to a specific, but acute, problem. For loops 2163 /// like this: 2164 /// 2165 /// i = 0; 2166 /// do { 2167 /// p[i] = 0.0; 2168 /// } while (++i < n); 2169 /// 2170 /// the trip count isn't just 'n', because 'n' might not be positive. And 2171 /// unfortunately this can come up even for loops where the user didn't use 2172 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2173 /// will commonly be lowered like this: 2174 /// 2175 /// if (n > 0) { 2176 /// i = 0; 2177 /// do { 2178 /// p[i] = 0.0; 2179 /// } while (++i < n); 2180 /// } 2181 /// 2182 /// and then it's possible for subsequent optimization to obscure the if 2183 /// test in such a way that indvars can't find it. 2184 /// 2185 /// When indvars can't find the if test in loops like this, it creates a 2186 /// max expression, which allows it to give the loop a canonical 2187 /// induction variable: 2188 /// 2189 /// i = 0; 2190 /// max = n < 1 ? 1 : n; 2191 /// do { 2192 /// p[i] = 0.0; 2193 /// } while (++i != max); 2194 /// 2195 /// Canonical induction variables are necessary because the loop passes 2196 /// are designed around them. The most obvious example of this is the 2197 /// LoopInfo analysis, which doesn't remember trip count values. It 2198 /// expects to be able to rediscover the trip count each time it is 2199 /// needed, and it does this using a simple analysis that only succeeds if 2200 /// the loop has a canonical induction variable. 2201 /// 2202 /// However, when it comes time to generate code, the maximum operation 2203 /// can be quite costly, especially if it's inside of an outer loop. 2204 /// 2205 /// This function solves this problem by detecting this type of loop and 2206 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2207 /// the instructions for the maximum computation. 2208 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2209 // Check that the loop matches the pattern we're looking for. 2210 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2211 Cond->getPredicate() != CmpInst::ICMP_NE) 2212 return Cond; 2213 2214 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2215 if (!Sel || !Sel->hasOneUse()) return Cond; 2216 2217 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2218 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2219 return Cond; 2220 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2221 2222 // Add one to the backedge-taken count to get the trip count. 2223 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2224 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2225 2226 // Check for a max calculation that matches the pattern. There's no check 2227 // for ICMP_ULE here because the comparison would be with zero, which 2228 // isn't interesting. 2229 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2230 const SCEVNAryExpr *Max = nullptr; 2231 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2232 Pred = ICmpInst::ICMP_SLE; 2233 Max = S; 2234 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2235 Pred = ICmpInst::ICMP_SLT; 2236 Max = S; 2237 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2238 Pred = ICmpInst::ICMP_ULT; 2239 Max = U; 2240 } else { 2241 // No match; bail. 2242 return Cond; 2243 } 2244 2245 // To handle a max with more than two operands, this optimization would 2246 // require additional checking and setup. 2247 if (Max->getNumOperands() != 2) 2248 return Cond; 2249 2250 const SCEV *MaxLHS = Max->getOperand(0); 2251 const SCEV *MaxRHS = Max->getOperand(1); 2252 2253 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2254 // for a comparison with 1. For <= and >=, a comparison with zero. 2255 if (!MaxLHS || 2256 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2257 return Cond; 2258 2259 // Check the relevant induction variable for conformance to 2260 // the pattern. 2261 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2262 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2263 if (!AR || !AR->isAffine() || 2264 AR->getStart() != One || 2265 AR->getStepRecurrence(SE) != One) 2266 return Cond; 2267 2268 assert(AR->getLoop() == L && 2269 "Loop condition operand is an addrec in a different loop!"); 2270 2271 // Check the right operand of the select, and remember it, as it will 2272 // be used in the new comparison instruction. 2273 Value *NewRHS = nullptr; 2274 if (ICmpInst::isTrueWhenEqual(Pred)) { 2275 // Look for n+1, and grab n. 2276 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2277 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2278 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2279 NewRHS = BO->getOperand(0); 2280 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2281 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2282 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2283 NewRHS = BO->getOperand(0); 2284 if (!NewRHS) 2285 return Cond; 2286 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2287 NewRHS = Sel->getOperand(1); 2288 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2289 NewRHS = Sel->getOperand(2); 2290 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2291 NewRHS = SU->getValue(); 2292 else 2293 // Max doesn't match expected pattern. 2294 return Cond; 2295 2296 // Determine the new comparison opcode. It may be signed or unsigned, 2297 // and the original comparison may be either equality or inequality. 2298 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2299 Pred = CmpInst::getInversePredicate(Pred); 2300 2301 // Ok, everything looks ok to change the condition into an SLT or SGE and 2302 // delete the max calculation. 2303 ICmpInst *NewCond = 2304 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2305 2306 // Delete the max calculation instructions. 2307 Cond->replaceAllUsesWith(NewCond); 2308 CondUse->setUser(NewCond); 2309 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2310 Cond->eraseFromParent(); 2311 Sel->eraseFromParent(); 2312 if (Cmp->use_empty()) 2313 Cmp->eraseFromParent(); 2314 return NewCond; 2315 } 2316 2317 /// Change loop terminating condition to use the postinc iv when possible. 2318 void 2319 LSRInstance::OptimizeLoopTermCond() { 2320 SmallPtrSet<Instruction *, 4> PostIncs; 2321 2322 // We need a different set of heuristics for rotated and non-rotated loops. 2323 // If a loop is rotated then the latch is also the backedge, so inserting 2324 // post-inc expressions just before the latch is ideal. To reduce live ranges 2325 // it also makes sense to rewrite terminating conditions to use post-inc 2326 // expressions. 2327 // 2328 // If the loop is not rotated then the latch is not a backedge; the latch 2329 // check is done in the loop head. Adding post-inc expressions before the 2330 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2331 // in the loop body. In this case we do *not* want to use post-inc expressions 2332 // in the latch check, and we want to insert post-inc expressions before 2333 // the backedge. 2334 BasicBlock *LatchBlock = L->getLoopLatch(); 2335 SmallVector<BasicBlock*, 8> ExitingBlocks; 2336 L->getExitingBlocks(ExitingBlocks); 2337 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2338 return LatchBlock != BB; 2339 })) { 2340 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2341 IVIncInsertPos = LatchBlock->getTerminator(); 2342 return; 2343 } 2344 2345 // Otherwise treat this as a rotated loop. 2346 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2347 // Get the terminating condition for the loop if possible. If we 2348 // can, we want to change it to use a post-incremented version of its 2349 // induction variable, to allow coalescing the live ranges for the IV into 2350 // one register value. 2351 2352 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2353 if (!TermBr) 2354 continue; 2355 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2356 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2357 continue; 2358 2359 // Search IVUsesByStride to find Cond's IVUse if there is one. 2360 IVStrideUse *CondUse = nullptr; 2361 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2362 if (!FindIVUserForCond(Cond, CondUse)) 2363 continue; 2364 2365 // If the trip count is computed in terms of a max (due to ScalarEvolution 2366 // being unable to find a sufficient guard, for example), change the loop 2367 // comparison to use SLT or ULT instead of NE. 2368 // One consequence of doing this now is that it disrupts the count-down 2369 // optimization. That's not always a bad thing though, because in such 2370 // cases it may still be worthwhile to avoid a max. 2371 Cond = OptimizeMax(Cond, CondUse); 2372 2373 // If this exiting block dominates the latch block, it may also use 2374 // the post-inc value if it won't be shared with other uses. 2375 // Check for dominance. 2376 if (!DT.dominates(ExitingBlock, LatchBlock)) 2377 continue; 2378 2379 // Conservatively avoid trying to use the post-inc value in non-latch 2380 // exits if there may be pre-inc users in intervening blocks. 2381 if (LatchBlock != ExitingBlock) 2382 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2383 // Test if the use is reachable from the exiting block. This dominator 2384 // query is a conservative approximation of reachability. 2385 if (&*UI != CondUse && 2386 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2387 // Conservatively assume there may be reuse if the quotient of their 2388 // strides could be a legal scale. 2389 const SCEV *A = IU.getStride(*CondUse, L); 2390 const SCEV *B = IU.getStride(*UI, L); 2391 if (!A || !B) continue; 2392 if (SE.getTypeSizeInBits(A->getType()) != 2393 SE.getTypeSizeInBits(B->getType())) { 2394 if (SE.getTypeSizeInBits(A->getType()) > 2395 SE.getTypeSizeInBits(B->getType())) 2396 B = SE.getSignExtendExpr(B, A->getType()); 2397 else 2398 A = SE.getSignExtendExpr(A, B->getType()); 2399 } 2400 if (const SCEVConstant *D = 2401 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2402 const ConstantInt *C = D->getValue(); 2403 // Stride of one or negative one can have reuse with non-addresses. 2404 if (C->isOne() || C->isMinusOne()) 2405 goto decline_post_inc; 2406 // Avoid weird situations. 2407 if (C->getValue().getMinSignedBits() >= 64 || 2408 C->getValue().isMinSignedValue()) 2409 goto decline_post_inc; 2410 // Check for possible scaled-address reuse. 2411 MemAccessTy AccessTy = getAccessType(TTI, UI->getUser()); 2412 int64_t Scale = C->getSExtValue(); 2413 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2414 /*BaseOffset=*/0, 2415 /*HasBaseReg=*/false, Scale, 2416 AccessTy.AddrSpace)) 2417 goto decline_post_inc; 2418 Scale = -Scale; 2419 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2420 /*BaseOffset=*/0, 2421 /*HasBaseReg=*/false, Scale, 2422 AccessTy.AddrSpace)) 2423 goto decline_post_inc; 2424 } 2425 } 2426 2427 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2428 << *Cond << '\n'); 2429 2430 // It's possible for the setcc instruction to be anywhere in the loop, and 2431 // possible for it to have multiple users. If it is not immediately before 2432 // the exiting block branch, move it. 2433 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2434 if (Cond->hasOneUse()) { 2435 Cond->moveBefore(TermBr); 2436 } else { 2437 // Clone the terminating condition and insert into the loopend. 2438 ICmpInst *OldCond = Cond; 2439 Cond = cast<ICmpInst>(Cond->clone()); 2440 Cond->setName(L->getHeader()->getName() + ".termcond"); 2441 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2442 2443 // Clone the IVUse, as the old use still exists! 2444 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2445 TermBr->replaceUsesOfWith(OldCond, Cond); 2446 } 2447 } 2448 2449 // If we get to here, we know that we can transform the setcc instruction to 2450 // use the post-incremented version of the IV, allowing us to coalesce the 2451 // live ranges for the IV correctly. 2452 CondUse->transformToPostInc(L); 2453 Changed = true; 2454 2455 PostIncs.insert(Cond); 2456 decline_post_inc:; 2457 } 2458 2459 // Determine an insertion point for the loop induction variable increment. It 2460 // must dominate all the post-inc comparisons we just set up, and it must 2461 // dominate the loop latch edge. 2462 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2463 for (Instruction *Inst : PostIncs) { 2464 BasicBlock *BB = 2465 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2466 Inst->getParent()); 2467 if (BB == Inst->getParent()) 2468 IVIncInsertPos = Inst; 2469 else if (BB != IVIncInsertPos->getParent()) 2470 IVIncInsertPos = BB->getTerminator(); 2471 } 2472 } 2473 2474 /// Determine if the given use can accommodate a fixup at the given offset and 2475 /// other details. If so, update the use and return true. 2476 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2477 bool HasBaseReg, LSRUse::KindType Kind, 2478 MemAccessTy AccessTy) { 2479 int64_t NewMinOffset = LU.MinOffset; 2480 int64_t NewMaxOffset = LU.MaxOffset; 2481 MemAccessTy NewAccessTy = AccessTy; 2482 2483 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2484 // something conservative, however this can pessimize in the case that one of 2485 // the uses will have all its uses outside the loop, for example. 2486 if (LU.Kind != Kind) 2487 return false; 2488 2489 // Check for a mismatched access type, and fall back conservatively as needed. 2490 // TODO: Be less conservative when the type is similar and can use the same 2491 // addressing modes. 2492 if (Kind == LSRUse::Address) { 2493 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2494 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2495 AccessTy.AddrSpace); 2496 } 2497 } 2498 2499 // Conservatively assume HasBaseReg is true for now. 2500 if (NewOffset < LU.MinOffset) { 2501 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2502 LU.MaxOffset - NewOffset, HasBaseReg)) 2503 return false; 2504 NewMinOffset = NewOffset; 2505 } else if (NewOffset > LU.MaxOffset) { 2506 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2507 NewOffset - LU.MinOffset, HasBaseReg)) 2508 return false; 2509 NewMaxOffset = NewOffset; 2510 } 2511 2512 // Update the use. 2513 LU.MinOffset = NewMinOffset; 2514 LU.MaxOffset = NewMaxOffset; 2515 LU.AccessTy = NewAccessTy; 2516 return true; 2517 } 2518 2519 /// Return an LSRUse index and an offset value for a fixup which needs the given 2520 /// expression, with the given kind and optional access type. Either reuse an 2521 /// existing use or create a new one, as needed. 2522 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2523 LSRUse::KindType Kind, 2524 MemAccessTy AccessTy) { 2525 const SCEV *Copy = Expr; 2526 int64_t Offset = ExtractImmediate(Expr, SE); 2527 2528 // Basic uses can't accept any offset, for example. 2529 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2530 Offset, /*HasBaseReg=*/ true)) { 2531 Expr = Copy; 2532 Offset = 0; 2533 } 2534 2535 std::pair<UseMapTy::iterator, bool> P = 2536 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2537 if (!P.second) { 2538 // A use already existed with this base. 2539 size_t LUIdx = P.first->second; 2540 LSRUse &LU = Uses[LUIdx]; 2541 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2542 // Reuse this use. 2543 return std::make_pair(LUIdx, Offset); 2544 } 2545 2546 // Create a new use. 2547 size_t LUIdx = Uses.size(); 2548 P.first->second = LUIdx; 2549 Uses.push_back(LSRUse(Kind, AccessTy)); 2550 LSRUse &LU = Uses[LUIdx]; 2551 2552 LU.MinOffset = Offset; 2553 LU.MaxOffset = Offset; 2554 return std::make_pair(LUIdx, Offset); 2555 } 2556 2557 /// Delete the given use from the Uses list. 2558 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2559 if (&LU != &Uses.back()) 2560 std::swap(LU, Uses.back()); 2561 Uses.pop_back(); 2562 2563 // Update RegUses. 2564 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2565 } 2566 2567 /// Look for a use distinct from OrigLU which is has a formula that has the same 2568 /// registers as the given formula. 2569 LSRUse * 2570 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2571 const LSRUse &OrigLU) { 2572 // Search all uses for the formula. This could be more clever. 2573 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2574 LSRUse &LU = Uses[LUIdx]; 2575 // Check whether this use is close enough to OrigLU, to see whether it's 2576 // worthwhile looking through its formulae. 2577 // Ignore ICmpZero uses because they may contain formulae generated by 2578 // GenerateICmpZeroScales, in which case adding fixup offsets may 2579 // be invalid. 2580 if (&LU != &OrigLU && 2581 LU.Kind != LSRUse::ICmpZero && 2582 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2583 LU.WidestFixupType == OrigLU.WidestFixupType && 2584 LU.HasFormulaWithSameRegs(OrigF)) { 2585 // Scan through this use's formulae. 2586 for (const Formula &F : LU.Formulae) { 2587 // Check to see if this formula has the same registers and symbols 2588 // as OrigF. 2589 if (F.BaseRegs == OrigF.BaseRegs && 2590 F.ScaledReg == OrigF.ScaledReg && 2591 F.BaseGV == OrigF.BaseGV && 2592 F.Scale == OrigF.Scale && 2593 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2594 if (F.BaseOffset == 0) 2595 return &LU; 2596 // This is the formula where all the registers and symbols matched; 2597 // there aren't going to be any others. Since we declined it, we 2598 // can skip the rest of the formulae and proceed to the next LSRUse. 2599 break; 2600 } 2601 } 2602 } 2603 } 2604 2605 // Nothing looked good. 2606 return nullptr; 2607 } 2608 2609 void LSRInstance::CollectInterestingTypesAndFactors() { 2610 SmallSetVector<const SCEV *, 4> Strides; 2611 2612 // Collect interesting types and strides. 2613 SmallVector<const SCEV *, 4> Worklist; 2614 for (const IVStrideUse &U : IU) { 2615 const SCEV *Expr = IU.getExpr(U); 2616 2617 // Collect interesting types. 2618 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2619 2620 // Add strides for mentioned loops. 2621 Worklist.push_back(Expr); 2622 do { 2623 const SCEV *S = Worklist.pop_back_val(); 2624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2625 if (AR->getLoop() == L) 2626 Strides.insert(AR->getStepRecurrence(SE)); 2627 Worklist.push_back(AR->getStart()); 2628 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2629 Worklist.append(Add->op_begin(), Add->op_end()); 2630 } 2631 } while (!Worklist.empty()); 2632 } 2633 2634 // Compute interesting factors from the set of interesting strides. 2635 for (SmallSetVector<const SCEV *, 4>::const_iterator 2636 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2637 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2638 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2639 const SCEV *OldStride = *I; 2640 const SCEV *NewStride = *NewStrideIter; 2641 2642 if (SE.getTypeSizeInBits(OldStride->getType()) != 2643 SE.getTypeSizeInBits(NewStride->getType())) { 2644 if (SE.getTypeSizeInBits(OldStride->getType()) > 2645 SE.getTypeSizeInBits(NewStride->getType())) 2646 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2647 else 2648 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2649 } 2650 if (const SCEVConstant *Factor = 2651 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2652 SE, true))) { 2653 if (Factor->getAPInt().getMinSignedBits() <= 64) 2654 Factors.insert(Factor->getAPInt().getSExtValue()); 2655 } else if (const SCEVConstant *Factor = 2656 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2657 NewStride, 2658 SE, true))) { 2659 if (Factor->getAPInt().getMinSignedBits() <= 64) 2660 Factors.insert(Factor->getAPInt().getSExtValue()); 2661 } 2662 } 2663 2664 // If all uses use the same type, don't bother looking for truncation-based 2665 // reuse. 2666 if (Types.size() == 1) 2667 Types.clear(); 2668 2669 LLVM_DEBUG(print_factors_and_types(dbgs())); 2670 } 2671 2672 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2673 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2674 /// IVStrideUses, we could partially skip this. 2675 static User::op_iterator 2676 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2677 Loop *L, ScalarEvolution &SE) { 2678 for(; OI != OE; ++OI) { 2679 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2680 if (!SE.isSCEVable(Oper->getType())) 2681 continue; 2682 2683 if (const SCEVAddRecExpr *AR = 2684 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2685 if (AR->getLoop() == L) 2686 break; 2687 } 2688 } 2689 } 2690 return OI; 2691 } 2692 2693 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in 2694 /// a convenient helper. 2695 static Value *getWideOperand(Value *Oper) { 2696 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2697 return Trunc->getOperand(0); 2698 return Oper; 2699 } 2700 2701 /// Return true if we allow an IV chain to include both types. 2702 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2703 Type *LType = LVal->getType(); 2704 Type *RType = RVal->getType(); 2705 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2706 // Different address spaces means (possibly) 2707 // different types of the pointer implementation, 2708 // e.g. i16 vs i32 so disallow that. 2709 (LType->getPointerAddressSpace() == 2710 RType->getPointerAddressSpace())); 2711 } 2712 2713 /// Return an approximation of this SCEV expression's "base", or NULL for any 2714 /// constant. Returning the expression itself is conservative. Returning a 2715 /// deeper subexpression is more precise and valid as long as it isn't less 2716 /// complex than another subexpression. For expressions involving multiple 2717 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2718 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2719 /// IVInc==b-a. 2720 /// 2721 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2722 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2723 static const SCEV *getExprBase(const SCEV *S) { 2724 switch (S->getSCEVType()) { 2725 default: // uncluding scUnknown. 2726 return S; 2727 case scConstant: 2728 return nullptr; 2729 case scTruncate: 2730 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2731 case scZeroExtend: 2732 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2733 case scSignExtend: 2734 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2735 case scAddExpr: { 2736 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2737 // there's nothing more complex. 2738 // FIXME: not sure if we want to recognize negation. 2739 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2740 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2741 E(Add->op_begin()); I != E; ++I) { 2742 const SCEV *SubExpr = *I; 2743 if (SubExpr->getSCEVType() == scAddExpr) 2744 return getExprBase(SubExpr); 2745 2746 if (SubExpr->getSCEVType() != scMulExpr) 2747 return SubExpr; 2748 } 2749 return S; // all operands are scaled, be conservative. 2750 } 2751 case scAddRecExpr: 2752 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2753 } 2754 } 2755 2756 /// Return true if the chain increment is profitable to expand into a loop 2757 /// invariant value, which may require its own register. A profitable chain 2758 /// increment will be an offset relative to the same base. We allow such offsets 2759 /// to potentially be used as chain increment as long as it's not obviously 2760 /// expensive to expand using real instructions. 2761 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2762 const SCEV *IncExpr, 2763 ScalarEvolution &SE) { 2764 // Aggressively form chains when -stress-ivchain. 2765 if (StressIVChain) 2766 return true; 2767 2768 // Do not replace a constant offset from IV head with a nonconstant IV 2769 // increment. 2770 if (!isa<SCEVConstant>(IncExpr)) { 2771 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2772 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2773 return false; 2774 } 2775 2776 SmallPtrSet<const SCEV*, 8> Processed; 2777 return !isHighCostExpansion(IncExpr, Processed, SE); 2778 } 2779 2780 /// Return true if the number of registers needed for the chain is estimated to 2781 /// be less than the number required for the individual IV users. First prohibit 2782 /// any IV users that keep the IV live across increments (the Users set should 2783 /// be empty). Next count the number and type of increments in the chain. 2784 /// 2785 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2786 /// effectively use postinc addressing modes. Only consider it profitable it the 2787 /// increments can be computed in fewer registers when chained. 2788 /// 2789 /// TODO: Consider IVInc free if it's already used in another chains. 2790 static bool 2791 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users, 2792 ScalarEvolution &SE, const TargetTransformInfo &TTI) { 2793 if (StressIVChain) 2794 return true; 2795 2796 if (!Chain.hasIncs()) 2797 return false; 2798 2799 if (!Users.empty()) { 2800 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2801 for (Instruction *Inst 2802 : Users) { dbgs() << " " << *Inst << "\n"; }); 2803 return false; 2804 } 2805 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2806 2807 // The chain itself may require a register, so intialize cost to 1. 2808 int cost = 1; 2809 2810 // A complete chain likely eliminates the need for keeping the original IV in 2811 // a register. LSR does not currently know how to form a complete chain unless 2812 // the header phi already exists. 2813 if (isa<PHINode>(Chain.tailUserInst()) 2814 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2815 --cost; 2816 } 2817 const SCEV *LastIncExpr = nullptr; 2818 unsigned NumConstIncrements = 0; 2819 unsigned NumVarIncrements = 0; 2820 unsigned NumReusedIncrements = 0; 2821 for (const IVInc &Inc : Chain) { 2822 if (Inc.IncExpr->isZero()) 2823 continue; 2824 2825 // Incrementing by zero or some constant is neutral. We assume constants can 2826 // be folded into an addressing mode or an add's immediate operand. 2827 if (isa<SCEVConstant>(Inc.IncExpr)) { 2828 ++NumConstIncrements; 2829 continue; 2830 } 2831 2832 if (Inc.IncExpr == LastIncExpr) 2833 ++NumReusedIncrements; 2834 else 2835 ++NumVarIncrements; 2836 2837 LastIncExpr = Inc.IncExpr; 2838 } 2839 // An IV chain with a single increment is handled by LSR's postinc 2840 // uses. However, a chain with multiple increments requires keeping the IV's 2841 // value live longer than it needs to be if chained. 2842 if (NumConstIncrements > 1) 2843 --cost; 2844 2845 // Materializing increment expressions in the preheader that didn't exist in 2846 // the original code may cost a register. For example, sign-extended array 2847 // indices can produce ridiculous increments like this: 2848 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2849 cost += NumVarIncrements; 2850 2851 // Reusing variable increments likely saves a register to hold the multiple of 2852 // the stride. 2853 cost -= NumReusedIncrements; 2854 2855 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2856 << "\n"); 2857 2858 return cost < 0; 2859 } 2860 2861 /// Add this IV user to an existing chain or make it the head of a new chain. 2862 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2863 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2864 // When IVs are used as types of varying widths, they are generally converted 2865 // to a wider type with some uses remaining narrow under a (free) trunc. 2866 Value *const NextIV = getWideOperand(IVOper); 2867 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2868 const SCEV *const OperExprBase = getExprBase(OperExpr); 2869 2870 // Visit all existing chains. Check if its IVOper can be computed as a 2871 // profitable loop invariant increment from the last link in the Chain. 2872 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2873 const SCEV *LastIncExpr = nullptr; 2874 for (; ChainIdx < NChains; ++ChainIdx) { 2875 IVChain &Chain = IVChainVec[ChainIdx]; 2876 2877 // Prune the solution space aggressively by checking that both IV operands 2878 // are expressions that operate on the same unscaled SCEVUnknown. This 2879 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2880 // first avoids creating extra SCEV expressions. 2881 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2882 continue; 2883 2884 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2885 if (!isCompatibleIVType(PrevIV, NextIV)) 2886 continue; 2887 2888 // A phi node terminates a chain. 2889 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2890 continue; 2891 2892 // The increment must be loop-invariant so it can be kept in a register. 2893 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2894 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2895 if (!SE.isLoopInvariant(IncExpr, L)) 2896 continue; 2897 2898 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2899 LastIncExpr = IncExpr; 2900 break; 2901 } 2902 } 2903 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2904 // bother for phi nodes, because they must be last in the chain. 2905 if (ChainIdx == NChains) { 2906 if (isa<PHINode>(UserInst)) 2907 return; 2908 if (NChains >= MaxChains && !StressIVChain) { 2909 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2910 return; 2911 } 2912 LastIncExpr = OperExpr; 2913 // IVUsers may have skipped over sign/zero extensions. We don't currently 2914 // attempt to form chains involving extensions unless they can be hoisted 2915 // into this loop's AddRec. 2916 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2917 return; 2918 ++NChains; 2919 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2920 OperExprBase)); 2921 ChainUsersVec.resize(NChains); 2922 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2923 << ") IV=" << *LastIncExpr << "\n"); 2924 } else { 2925 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2926 << ") IV+" << *LastIncExpr << "\n"); 2927 // Add this IV user to the end of the chain. 2928 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2929 } 2930 IVChain &Chain = IVChainVec[ChainIdx]; 2931 2932 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2933 // This chain's NearUsers become FarUsers. 2934 if (!LastIncExpr->isZero()) { 2935 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2936 NearUsers.end()); 2937 NearUsers.clear(); 2938 } 2939 2940 // All other uses of IVOperand become near uses of the chain. 2941 // We currently ignore intermediate values within SCEV expressions, assuming 2942 // they will eventually be used be the current chain, or can be computed 2943 // from one of the chain increments. To be more precise we could 2944 // transitively follow its user and only add leaf IV users to the set. 2945 for (User *U : IVOper->users()) { 2946 Instruction *OtherUse = dyn_cast<Instruction>(U); 2947 if (!OtherUse) 2948 continue; 2949 // Uses in the chain will no longer be uses if the chain is formed. 2950 // Include the head of the chain in this iteration (not Chain.begin()). 2951 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2952 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2953 for( ; IncIter != IncEnd; ++IncIter) { 2954 if (IncIter->UserInst == OtherUse) 2955 break; 2956 } 2957 if (IncIter != IncEnd) 2958 continue; 2959 2960 if (SE.isSCEVable(OtherUse->getType()) 2961 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 2962 && IU.isIVUserOrOperand(OtherUse)) { 2963 continue; 2964 } 2965 NearUsers.insert(OtherUse); 2966 } 2967 2968 // Since this user is part of the chain, it's no longer considered a use 2969 // of the chain. 2970 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 2971 } 2972 2973 /// Populate the vector of Chains. 2974 /// 2975 /// This decreases ILP at the architecture level. Targets with ample registers, 2976 /// multiple memory ports, and no register renaming probably don't want 2977 /// this. However, such targets should probably disable LSR altogether. 2978 /// 2979 /// The job of LSR is to make a reasonable choice of induction variables across 2980 /// the loop. Subsequent passes can easily "unchain" computation exposing more 2981 /// ILP *within the loop* if the target wants it. 2982 /// 2983 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 2984 /// will not reorder memory operations, it will recognize this as a chain, but 2985 /// will generate redundant IV increments. Ideally this would be corrected later 2986 /// by a smart scheduler: 2987 /// = A[i] 2988 /// = A[i+x] 2989 /// A[i] = 2990 /// A[i+x] = 2991 /// 2992 /// TODO: Walk the entire domtree within this loop, not just the path to the 2993 /// loop latch. This will discover chains on side paths, but requires 2994 /// maintaining multiple copies of the Chains state. 2995 void LSRInstance::CollectChains() { 2996 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 2997 SmallVector<ChainUsers, 8> ChainUsersVec; 2998 2999 SmallVector<BasicBlock *,8> LatchPath; 3000 BasicBlock *LoopHeader = L->getHeader(); 3001 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3002 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3003 LatchPath.push_back(Rung->getBlock()); 3004 } 3005 LatchPath.push_back(LoopHeader); 3006 3007 // Walk the instruction stream from the loop header to the loop latch. 3008 for (BasicBlock *BB : reverse(LatchPath)) { 3009 for (Instruction &I : *BB) { 3010 // Skip instructions that weren't seen by IVUsers analysis. 3011 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3012 continue; 3013 3014 // Ignore users that are part of a SCEV expression. This way we only 3015 // consider leaf IV Users. This effectively rediscovers a portion of 3016 // IVUsers analysis but in program order this time. 3017 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3018 continue; 3019 3020 // Remove this instruction from any NearUsers set it may be in. 3021 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3022 ChainIdx < NChains; ++ChainIdx) { 3023 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3024 } 3025 // Search for operands that can be chained. 3026 SmallPtrSet<Instruction*, 4> UniqueOperands; 3027 User::op_iterator IVOpEnd = I.op_end(); 3028 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3029 while (IVOpIter != IVOpEnd) { 3030 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3031 if (UniqueOperands.insert(IVOpInst).second) 3032 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3033 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3034 } 3035 } // Continue walking down the instructions. 3036 } // Continue walking down the domtree. 3037 // Visit phi backedges to determine if the chain can generate the IV postinc. 3038 for (PHINode &PN : L->getHeader()->phis()) { 3039 if (!SE.isSCEVable(PN.getType())) 3040 continue; 3041 3042 Instruction *IncV = 3043 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3044 if (IncV) 3045 ChainInstruction(&PN, IncV, ChainUsersVec); 3046 } 3047 // Remove any unprofitable chains. 3048 unsigned ChainIdx = 0; 3049 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3050 UsersIdx < NChains; ++UsersIdx) { 3051 if (!isProfitableChain(IVChainVec[UsersIdx], 3052 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3053 continue; 3054 // Preserve the chain at UsesIdx. 3055 if (ChainIdx != UsersIdx) 3056 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3057 FinalizeChain(IVChainVec[ChainIdx]); 3058 ++ChainIdx; 3059 } 3060 IVChainVec.resize(ChainIdx); 3061 } 3062 3063 void LSRInstance::FinalizeChain(IVChain &Chain) { 3064 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3065 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3066 3067 for (const IVInc &Inc : Chain) { 3068 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3069 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3070 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3071 IVIncSet.insert(UseI); 3072 } 3073 } 3074 3075 /// Return true if the IVInc can be folded into an addressing mode. 3076 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3077 Value *Operand, const TargetTransformInfo &TTI) { 3078 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3079 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3080 return false; 3081 3082 if (IncConst->getAPInt().getMinSignedBits() > 64) 3083 return false; 3084 3085 MemAccessTy AccessTy = getAccessType(TTI, UserInst); 3086 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3087 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3088 IncOffset, /*HaseBaseReg=*/false)) 3089 return false; 3090 3091 return true; 3092 } 3093 3094 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3095 /// user's operand from the previous IV user's operand. 3096 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3097 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3098 // Find the new IVOperand for the head of the chain. It may have been replaced 3099 // by LSR. 3100 const IVInc &Head = Chain.Incs[0]; 3101 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3102 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3103 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3104 IVOpEnd, L, SE); 3105 Value *IVSrc = nullptr; 3106 while (IVOpIter != IVOpEnd) { 3107 IVSrc = getWideOperand(*IVOpIter); 3108 3109 // If this operand computes the expression that the chain needs, we may use 3110 // it. (Check this after setting IVSrc which is used below.) 3111 // 3112 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3113 // narrow for the chain, so we can no longer use it. We do allow using a 3114 // wider phi, assuming the LSR checked for free truncation. In that case we 3115 // should already have a truncate on this operand such that 3116 // getSCEV(IVSrc) == IncExpr. 3117 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3118 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3119 break; 3120 } 3121 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3122 } 3123 if (IVOpIter == IVOpEnd) { 3124 // Gracefully give up on this chain. 3125 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3126 return; 3127 } 3128 3129 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3130 Type *IVTy = IVSrc->getType(); 3131 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3132 const SCEV *LeftOverExpr = nullptr; 3133 for (const IVInc &Inc : Chain) { 3134 Instruction *InsertPt = Inc.UserInst; 3135 if (isa<PHINode>(InsertPt)) 3136 InsertPt = L->getLoopLatch()->getTerminator(); 3137 3138 // IVOper will replace the current IV User's operand. IVSrc is the IV 3139 // value currently held in a register. 3140 Value *IVOper = IVSrc; 3141 if (!Inc.IncExpr->isZero()) { 3142 // IncExpr was the result of subtraction of two narrow values, so must 3143 // be signed. 3144 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3145 LeftOverExpr = LeftOverExpr ? 3146 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3147 } 3148 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3149 // Expand the IV increment. 3150 Rewriter.clearPostInc(); 3151 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3152 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3153 SE.getUnknown(IncV)); 3154 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3155 3156 // If an IV increment can't be folded, use it as the next IV value. 3157 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3158 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3159 IVSrc = IVOper; 3160 LeftOverExpr = nullptr; 3161 } 3162 } 3163 Type *OperTy = Inc.IVOperand->getType(); 3164 if (IVTy != OperTy) { 3165 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3166 "cannot extend a chained IV"); 3167 IRBuilder<> Builder(InsertPt); 3168 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3169 } 3170 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3171 DeadInsts.emplace_back(Inc.IVOperand); 3172 } 3173 // If LSR created a new, wider phi, we may also replace its postinc. We only 3174 // do this if we also found a wide value for the head of the chain. 3175 if (isa<PHINode>(Chain.tailUserInst())) { 3176 for (PHINode &Phi : L->getHeader()->phis()) { 3177 if (!isCompatibleIVType(&Phi, IVSrc)) 3178 continue; 3179 Instruction *PostIncV = dyn_cast<Instruction>( 3180 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3181 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3182 continue; 3183 Value *IVOper = IVSrc; 3184 Type *PostIncTy = PostIncV->getType(); 3185 if (IVTy != PostIncTy) { 3186 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3187 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3188 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3189 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3190 } 3191 Phi.replaceUsesOfWith(PostIncV, IVOper); 3192 DeadInsts.emplace_back(PostIncV); 3193 } 3194 } 3195 } 3196 3197 void LSRInstance::CollectFixupsAndInitialFormulae() { 3198 for (const IVStrideUse &U : IU) { 3199 Instruction *UserInst = U.getUser(); 3200 // Skip IV users that are part of profitable IV Chains. 3201 User::op_iterator UseI = 3202 find(UserInst->operands(), U.getOperandValToReplace()); 3203 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3204 if (IVIncSet.count(UseI)) { 3205 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3206 continue; 3207 } 3208 3209 LSRUse::KindType Kind = LSRUse::Basic; 3210 MemAccessTy AccessTy; 3211 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3212 Kind = LSRUse::Address; 3213 AccessTy = getAccessType(TTI, UserInst); 3214 } 3215 3216 const SCEV *S = IU.getExpr(U); 3217 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3218 3219 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3220 // (N - i == 0), and this allows (N - i) to be the expression that we work 3221 // with rather than just N or i, so we can consider the register 3222 // requirements for both N and i at the same time. Limiting this code to 3223 // equality icmps is not a problem because all interesting loops use 3224 // equality icmps, thanks to IndVarSimplify. 3225 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) 3226 if (CI->isEquality()) { 3227 // Swap the operands if needed to put the OperandValToReplace on the 3228 // left, for consistency. 3229 Value *NV = CI->getOperand(1); 3230 if (NV == U.getOperandValToReplace()) { 3231 CI->setOperand(1, CI->getOperand(0)); 3232 CI->setOperand(0, NV); 3233 NV = CI->getOperand(1); 3234 Changed = true; 3235 } 3236 3237 // x == y --> x - y == 0 3238 const SCEV *N = SE.getSCEV(NV); 3239 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3240 // S is normalized, so normalize N before folding it into S 3241 // to keep the result normalized. 3242 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3243 Kind = LSRUse::ICmpZero; 3244 S = SE.getMinusSCEV(N, S); 3245 } 3246 3247 // -1 and the negations of all interesting strides (except the negation 3248 // of -1) are now also interesting. 3249 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3250 if (Factors[i] != -1) 3251 Factors.insert(-(uint64_t)Factors[i]); 3252 Factors.insert(-1); 3253 } 3254 3255 // Get or create an LSRUse. 3256 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3257 size_t LUIdx = P.first; 3258 int64_t Offset = P.second; 3259 LSRUse &LU = Uses[LUIdx]; 3260 3261 // Record the fixup. 3262 LSRFixup &LF = LU.getNewFixup(); 3263 LF.UserInst = UserInst; 3264 LF.OperandValToReplace = U.getOperandValToReplace(); 3265 LF.PostIncLoops = TmpPostIncLoops; 3266 LF.Offset = Offset; 3267 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3268 3269 if (!LU.WidestFixupType || 3270 SE.getTypeSizeInBits(LU.WidestFixupType) < 3271 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3272 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3273 3274 // If this is the first use of this LSRUse, give it a formula. 3275 if (LU.Formulae.empty()) { 3276 InsertInitialFormula(S, LU, LUIdx); 3277 CountRegisters(LU.Formulae.back(), LUIdx); 3278 } 3279 } 3280 3281 LLVM_DEBUG(print_fixups(dbgs())); 3282 } 3283 3284 /// Insert a formula for the given expression into the given use, separating out 3285 /// loop-variant portions from loop-invariant and loop-computable portions. 3286 void 3287 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3288 // Mark uses whose expressions cannot be expanded. 3289 if (!isSafeToExpand(S, SE)) 3290 LU.RigidFormula = true; 3291 3292 Formula F; 3293 F.initialMatch(S, L, SE); 3294 bool Inserted = InsertFormula(LU, LUIdx, F); 3295 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3296 } 3297 3298 /// Insert a simple single-register formula for the given expression into the 3299 /// given use. 3300 void 3301 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3302 LSRUse &LU, size_t LUIdx) { 3303 Formula F; 3304 F.BaseRegs.push_back(S); 3305 F.HasBaseReg = true; 3306 bool Inserted = InsertFormula(LU, LUIdx, F); 3307 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3308 } 3309 3310 /// Note which registers are used by the given formula, updating RegUses. 3311 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3312 if (F.ScaledReg) 3313 RegUses.countRegister(F.ScaledReg, LUIdx); 3314 for (const SCEV *BaseReg : F.BaseRegs) 3315 RegUses.countRegister(BaseReg, LUIdx); 3316 } 3317 3318 /// If the given formula has not yet been inserted, add it to the list, and 3319 /// return true. Return false otherwise. 3320 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3321 // Do not insert formula that we will not be able to expand. 3322 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3323 "Formula is illegal"); 3324 3325 if (!LU.InsertFormula(F, *L)) 3326 return false; 3327 3328 CountRegisters(F, LUIdx); 3329 return true; 3330 } 3331 3332 /// Check for other uses of loop-invariant values which we're tracking. These 3333 /// other uses will pin these values in registers, making them less profitable 3334 /// for elimination. 3335 /// TODO: This currently misses non-constant addrec step registers. 3336 /// TODO: Should this give more weight to users inside the loop? 3337 void 3338 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3339 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3340 SmallPtrSet<const SCEV *, 32> Visited; 3341 3342 while (!Worklist.empty()) { 3343 const SCEV *S = Worklist.pop_back_val(); 3344 3345 // Don't process the same SCEV twice 3346 if (!Visited.insert(S).second) 3347 continue; 3348 3349 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3350 Worklist.append(N->op_begin(), N->op_end()); 3351 else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 3352 Worklist.push_back(C->getOperand()); 3353 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3354 Worklist.push_back(D->getLHS()); 3355 Worklist.push_back(D->getRHS()); 3356 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3357 const Value *V = US->getValue(); 3358 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3359 // Look for instructions defined outside the loop. 3360 if (L->contains(Inst)) continue; 3361 } else if (isa<UndefValue>(V)) 3362 // Undef doesn't have a live range, so it doesn't matter. 3363 continue; 3364 for (const Use &U : V->uses()) { 3365 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3366 // Ignore non-instructions. 3367 if (!UserInst) 3368 continue; 3369 // Ignore instructions in other functions (as can happen with 3370 // Constants). 3371 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3372 continue; 3373 // Ignore instructions not dominated by the loop. 3374 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3375 UserInst->getParent() : 3376 cast<PHINode>(UserInst)->getIncomingBlock( 3377 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3378 if (!DT.dominates(L->getHeader(), UseBB)) 3379 continue; 3380 // Don't bother if the instruction is in a BB which ends in an EHPad. 3381 if (UseBB->getTerminator()->isEHPad()) 3382 continue; 3383 // Don't bother rewriting PHIs in catchswitch blocks. 3384 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3385 continue; 3386 // Ignore uses which are part of other SCEV expressions, to avoid 3387 // analyzing them multiple times. 3388 if (SE.isSCEVable(UserInst->getType())) { 3389 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3390 // If the user is a no-op, look through to its uses. 3391 if (!isa<SCEVUnknown>(UserS)) 3392 continue; 3393 if (UserS == US) { 3394 Worklist.push_back( 3395 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3396 continue; 3397 } 3398 } 3399 // Ignore icmp instructions which are already being analyzed. 3400 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3401 unsigned OtherIdx = !U.getOperandNo(); 3402 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3403 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3404 continue; 3405 } 3406 3407 std::pair<size_t, int64_t> P = getUse( 3408 S, LSRUse::Basic, MemAccessTy()); 3409 size_t LUIdx = P.first; 3410 int64_t Offset = P.second; 3411 LSRUse &LU = Uses[LUIdx]; 3412 LSRFixup &LF = LU.getNewFixup(); 3413 LF.UserInst = const_cast<Instruction *>(UserInst); 3414 LF.OperandValToReplace = U; 3415 LF.Offset = Offset; 3416 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3417 if (!LU.WidestFixupType || 3418 SE.getTypeSizeInBits(LU.WidestFixupType) < 3419 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3420 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3421 InsertSupplementalFormula(US, LU, LUIdx); 3422 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3423 break; 3424 } 3425 } 3426 } 3427 } 3428 3429 /// Split S into subexpressions which can be pulled out into separate 3430 /// registers. If C is non-null, multiply each subexpression by C. 3431 /// 3432 /// Return remainder expression after factoring the subexpressions captured by 3433 /// Ops. If Ops is complete, return NULL. 3434 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3435 SmallVectorImpl<const SCEV *> &Ops, 3436 const Loop *L, 3437 ScalarEvolution &SE, 3438 unsigned Depth = 0) { 3439 // Arbitrarily cap recursion to protect compile time. 3440 if (Depth >= 3) 3441 return S; 3442 3443 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3444 // Break out add operands. 3445 for (const SCEV *S : Add->operands()) { 3446 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3447 if (Remainder) 3448 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3449 } 3450 return nullptr; 3451 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3452 // Split a non-zero base out of an addrec. 3453 if (AR->getStart()->isZero() || !AR->isAffine()) 3454 return S; 3455 3456 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3457 C, Ops, L, SE, Depth+1); 3458 // Split the non-zero AddRec unless it is part of a nested recurrence that 3459 // does not pertain to this loop. 3460 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3461 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3462 Remainder = nullptr; 3463 } 3464 if (Remainder != AR->getStart()) { 3465 if (!Remainder) 3466 Remainder = SE.getConstant(AR->getType(), 0); 3467 return SE.getAddRecExpr(Remainder, 3468 AR->getStepRecurrence(SE), 3469 AR->getLoop(), 3470 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3471 SCEV::FlagAnyWrap); 3472 } 3473 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3474 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3475 if (Mul->getNumOperands() != 2) 3476 return S; 3477 if (const SCEVConstant *Op0 = 3478 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3479 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3480 const SCEV *Remainder = 3481 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3482 if (Remainder) 3483 Ops.push_back(SE.getMulExpr(C, Remainder)); 3484 return nullptr; 3485 } 3486 } 3487 return S; 3488 } 3489 3490 /// Return true if the SCEV represents a value that may end up as a 3491 /// post-increment operation. 3492 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3493 LSRUse &LU, const SCEV *S, const Loop *L, 3494 ScalarEvolution &SE) { 3495 if (LU.Kind != LSRUse::Address || 3496 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3497 return false; 3498 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3499 if (!AR) 3500 return false; 3501 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3502 if (!isa<SCEVConstant>(LoopStep)) 3503 return false; 3504 if (LU.AccessTy.getType()->getScalarSizeInBits() != 3505 LoopStep->getType()->getScalarSizeInBits()) 3506 return false; 3507 // Check if a post-indexed load/store can be used. 3508 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3509 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3510 const SCEV *LoopStart = AR->getStart(); 3511 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3512 return true; 3513 } 3514 return false; 3515 } 3516 3517 /// Helper function for LSRInstance::GenerateReassociations. 3518 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3519 const Formula &Base, 3520 unsigned Depth, size_t Idx, 3521 bool IsScaledReg) { 3522 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3523 // Don't generate reassociations for the base register of a value that 3524 // may generate a post-increment operator. The reason is that the 3525 // reassociations cause extra base+register formula to be created, 3526 // and possibly chosen, but the post-increment is more efficient. 3527 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3528 return; 3529 SmallVector<const SCEV *, 8> AddOps; 3530 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3531 if (Remainder) 3532 AddOps.push_back(Remainder); 3533 3534 if (AddOps.size() == 1) 3535 return; 3536 3537 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3538 JE = AddOps.end(); 3539 J != JE; ++J) { 3540 // Loop-variant "unknown" values are uninteresting; we won't be able to 3541 // do anything meaningful with them. 3542 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3543 continue; 3544 3545 // Don't pull a constant into a register if the constant could be folded 3546 // into an immediate field. 3547 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3548 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3549 continue; 3550 3551 // Collect all operands except *J. 3552 SmallVector<const SCEV *, 8> InnerAddOps( 3553 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3554 InnerAddOps.append(std::next(J), 3555 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3556 3557 // Don't leave just a constant behind in a register if the constant could 3558 // be folded into an immediate field. 3559 if (InnerAddOps.size() == 1 && 3560 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3561 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3562 continue; 3563 3564 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3565 if (InnerSum->isZero()) 3566 continue; 3567 Formula F = Base; 3568 3569 // Add the remaining pieces of the add back into the new formula. 3570 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3571 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3572 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3573 InnerSumSC->getValue()->getZExtValue())) { 3574 F.UnfoldedOffset = 3575 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3576 if (IsScaledReg) 3577 F.ScaledReg = nullptr; 3578 else 3579 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3580 } else if (IsScaledReg) 3581 F.ScaledReg = InnerSum; 3582 else 3583 F.BaseRegs[Idx] = InnerSum; 3584 3585 // Add J as its own register, or an unfolded immediate. 3586 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3587 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3588 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3589 SC->getValue()->getZExtValue())) 3590 F.UnfoldedOffset = 3591 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3592 else 3593 F.BaseRegs.push_back(*J); 3594 // We may have changed the number of register in base regs, adjust the 3595 // formula accordingly. 3596 F.canonicalize(*L); 3597 3598 if (InsertFormula(LU, LUIdx, F)) 3599 // If that formula hadn't been seen before, recurse to find more like 3600 // it. 3601 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3602 // Because just Depth is not enough to bound compile time. 3603 // This means that every time AddOps.size() is greater 16^x we will add 3604 // x to Depth. 3605 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3606 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3607 } 3608 } 3609 3610 /// Split out subexpressions from adds and the bases of addrecs. 3611 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3612 Formula Base, unsigned Depth) { 3613 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3614 // Arbitrarily cap recursion to protect compile time. 3615 if (Depth >= 3) 3616 return; 3617 3618 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3619 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3620 3621 if (Base.Scale == 1) 3622 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3623 /* Idx */ -1, /* IsScaledReg */ true); 3624 } 3625 3626 /// Generate a formula consisting of all of the loop-dominating registers added 3627 /// into a single register. 3628 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3629 Formula Base) { 3630 // This method is only interesting on a plurality of registers. 3631 if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1) 3632 return; 3633 3634 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3635 // processing the formula. 3636 Base.unscale(); 3637 Formula F = Base; 3638 F.BaseRegs.clear(); 3639 SmallVector<const SCEV *, 4> Ops; 3640 for (const SCEV *BaseReg : Base.BaseRegs) { 3641 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3642 !SE.hasComputableLoopEvolution(BaseReg, L)) 3643 Ops.push_back(BaseReg); 3644 else 3645 F.BaseRegs.push_back(BaseReg); 3646 } 3647 if (Ops.size() > 1) { 3648 const SCEV *Sum = SE.getAddExpr(Ops); 3649 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3650 // opportunity to fold something. For now, just ignore such cases 3651 // rather than proceed with zero in a register. 3652 if (!Sum->isZero()) { 3653 F.BaseRegs.push_back(Sum); 3654 F.canonicalize(*L); 3655 (void)InsertFormula(LU, LUIdx, F); 3656 } 3657 } 3658 } 3659 3660 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3661 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3662 const Formula &Base, size_t Idx, 3663 bool IsScaledReg) { 3664 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3665 GlobalValue *GV = ExtractSymbol(G, SE); 3666 if (G->isZero() || !GV) 3667 return; 3668 Formula F = Base; 3669 F.BaseGV = GV; 3670 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3671 return; 3672 if (IsScaledReg) 3673 F.ScaledReg = G; 3674 else 3675 F.BaseRegs[Idx] = G; 3676 (void)InsertFormula(LU, LUIdx, F); 3677 } 3678 3679 /// Generate reuse formulae using symbolic offsets. 3680 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3681 Formula Base) { 3682 // We can't add a symbolic offset if the address already contains one. 3683 if (Base.BaseGV) return; 3684 3685 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3686 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3687 if (Base.Scale == 1) 3688 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3689 /* IsScaledReg */ true); 3690 } 3691 3692 /// Helper function for LSRInstance::GenerateConstantOffsets. 3693 void LSRInstance::GenerateConstantOffsetsImpl( 3694 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3695 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3696 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3697 for (int64_t Offset : Worklist) { 3698 Formula F = Base; 3699 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3700 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3701 LU.AccessTy, F)) { 3702 // Add the offset to the base register. 3703 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3704 // If it cancelled out, drop the base register, otherwise update it. 3705 if (NewG->isZero()) { 3706 if (IsScaledReg) { 3707 F.Scale = 0; 3708 F.ScaledReg = nullptr; 3709 } else 3710 F.deleteBaseReg(F.BaseRegs[Idx]); 3711 F.canonicalize(*L); 3712 } else if (IsScaledReg) 3713 F.ScaledReg = NewG; 3714 else 3715 F.BaseRegs[Idx] = NewG; 3716 3717 (void)InsertFormula(LU, LUIdx, F); 3718 } 3719 } 3720 3721 int64_t Imm = ExtractImmediate(G, SE); 3722 if (G->isZero() || Imm == 0) 3723 return; 3724 Formula F = Base; 3725 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3726 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3727 return; 3728 if (IsScaledReg) 3729 F.ScaledReg = G; 3730 else 3731 F.BaseRegs[Idx] = G; 3732 (void)InsertFormula(LU, LUIdx, F); 3733 } 3734 3735 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3736 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3737 Formula Base) { 3738 // TODO: For now, just add the min and max offset, because it usually isn't 3739 // worthwhile looking at everything inbetween. 3740 SmallVector<int64_t, 2> Worklist; 3741 Worklist.push_back(LU.MinOffset); 3742 if (LU.MaxOffset != LU.MinOffset) 3743 Worklist.push_back(LU.MaxOffset); 3744 3745 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3746 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3747 if (Base.Scale == 1) 3748 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3749 /* IsScaledReg */ true); 3750 } 3751 3752 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3753 /// == y -> x*c == y*c. 3754 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3755 Formula Base) { 3756 if (LU.Kind != LSRUse::ICmpZero) return; 3757 3758 // Determine the integer type for the base formula. 3759 Type *IntTy = Base.getType(); 3760 if (!IntTy) return; 3761 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3762 3763 // Don't do this if there is more than one offset. 3764 if (LU.MinOffset != LU.MaxOffset) return; 3765 3766 // Check if transformation is valid. It is illegal to multiply pointer. 3767 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3768 return; 3769 for (const SCEV *BaseReg : Base.BaseRegs) 3770 if (BaseReg->getType()->isPointerTy()) 3771 return; 3772 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3773 3774 // Check each interesting stride. 3775 for (int64_t Factor : Factors) { 3776 // Check that the multiplication doesn't overflow. 3777 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3778 continue; 3779 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3780 if (NewBaseOffset / Factor != Base.BaseOffset) 3781 continue; 3782 // If the offset will be truncated at this use, check that it is in bounds. 3783 if (!IntTy->isPointerTy() && 3784 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3785 continue; 3786 3787 // Check that multiplying with the use offset doesn't overflow. 3788 int64_t Offset = LU.MinOffset; 3789 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3790 continue; 3791 Offset = (uint64_t)Offset * Factor; 3792 if (Offset / Factor != LU.MinOffset) 3793 continue; 3794 // If the offset will be truncated at this use, check that it is in bounds. 3795 if (!IntTy->isPointerTy() && 3796 !ConstantInt::isValueValidForType(IntTy, Offset)) 3797 continue; 3798 3799 Formula F = Base; 3800 F.BaseOffset = NewBaseOffset; 3801 3802 // Check that this scale is legal. 3803 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3804 continue; 3805 3806 // Compensate for the use having MinOffset built into it. 3807 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3808 3809 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3810 3811 // Check that multiplying with each base register doesn't overflow. 3812 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3813 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3814 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3815 goto next; 3816 } 3817 3818 // Check that multiplying with the scaled register doesn't overflow. 3819 if (F.ScaledReg) { 3820 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3821 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3822 continue; 3823 } 3824 3825 // Check that multiplying with the unfolded offset doesn't overflow. 3826 if (F.UnfoldedOffset != 0) { 3827 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3828 Factor == -1) 3829 continue; 3830 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3831 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3832 continue; 3833 // If the offset will be truncated, check that it is in bounds. 3834 if (!IntTy->isPointerTy() && 3835 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3836 continue; 3837 } 3838 3839 // If we make it here and it's legal, add it. 3840 (void)InsertFormula(LU, LUIdx, F); 3841 next:; 3842 } 3843 } 3844 3845 /// Generate stride factor reuse formulae by making use of scaled-offset address 3846 /// modes, for example. 3847 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3848 // Determine the integer type for the base formula. 3849 Type *IntTy = Base.getType(); 3850 if (!IntTy) return; 3851 3852 // If this Formula already has a scaled register, we can't add another one. 3853 // Try to unscale the formula to generate a better scale. 3854 if (Base.Scale != 0 && !Base.unscale()) 3855 return; 3856 3857 assert(Base.Scale == 0 && "unscale did not did its job!"); 3858 3859 // Check each interesting stride. 3860 for (int64_t Factor : Factors) { 3861 Base.Scale = Factor; 3862 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3863 // Check whether this scale is going to be legal. 3864 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3865 Base)) { 3866 // As a special-case, handle special out-of-loop Basic users specially. 3867 // TODO: Reconsider this special case. 3868 if (LU.Kind == LSRUse::Basic && 3869 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3870 LU.AccessTy, Base) && 3871 LU.AllFixupsOutsideLoop) 3872 LU.Kind = LSRUse::Special; 3873 else 3874 continue; 3875 } 3876 // For an ICmpZero, negating a solitary base register won't lead to 3877 // new solutions. 3878 if (LU.Kind == LSRUse::ICmpZero && 3879 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3880 continue; 3881 // For each addrec base reg, if its loop is current loop, apply the scale. 3882 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3883 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 3884 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 3885 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3886 if (FactorS->isZero()) 3887 continue; 3888 // Divide out the factor, ignoring high bits, since we'll be 3889 // scaling the value back up in the end. 3890 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 3891 // TODO: This could be optimized to avoid all the copying. 3892 Formula F = Base; 3893 F.ScaledReg = Quotient; 3894 F.deleteBaseReg(F.BaseRegs[i]); 3895 // The canonical representation of 1*reg is reg, which is already in 3896 // Base. In that case, do not try to insert the formula, it will be 3897 // rejected anyway. 3898 if (F.Scale == 1 && (F.BaseRegs.empty() || 3899 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 3900 continue; 3901 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 3902 // non canonical Formula with ScaledReg's loop not being L. 3903 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 3904 F.canonicalize(*L); 3905 (void)InsertFormula(LU, LUIdx, F); 3906 } 3907 } 3908 } 3909 } 3910 } 3911 3912 /// Generate reuse formulae from different IV types. 3913 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 3914 // Don't bother truncating symbolic values. 3915 if (Base.BaseGV) return; 3916 3917 // Determine the integer type for the base formula. 3918 Type *DstTy = Base.getType(); 3919 if (!DstTy) return; 3920 DstTy = SE.getEffectiveSCEVType(DstTy); 3921 3922 for (Type *SrcTy : Types) { 3923 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 3924 Formula F = Base; 3925 3926 if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 3927 for (const SCEV *&BaseReg : F.BaseRegs) 3928 BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 3929 3930 // TODO: This assumes we've done basic processing on all uses and 3931 // have an idea what the register usage is. 3932 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 3933 continue; 3934 3935 F.canonicalize(*L); 3936 (void)InsertFormula(LU, LUIdx, F); 3937 } 3938 } 3939 } 3940 3941 namespace { 3942 3943 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 3944 /// modifications so that the search phase doesn't have to worry about the data 3945 /// structures moving underneath it. 3946 struct WorkItem { 3947 size_t LUIdx; 3948 int64_t Imm; 3949 const SCEV *OrigReg; 3950 3951 WorkItem(size_t LI, int64_t I, const SCEV *R) 3952 : LUIdx(LI), Imm(I), OrigReg(R) {} 3953 3954 void print(raw_ostream &OS) const; 3955 void dump() const; 3956 }; 3957 3958 } // end anonymous namespace 3959 3960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 3961 void WorkItem::print(raw_ostream &OS) const { 3962 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 3963 << " , add offset " << Imm; 3964 } 3965 3966 LLVM_DUMP_METHOD void WorkItem::dump() const { 3967 print(errs()); errs() << '\n'; 3968 } 3969 #endif 3970 3971 /// Look for registers which are a constant distance apart and try to form reuse 3972 /// opportunities between them. 3973 void LSRInstance::GenerateCrossUseConstantOffsets() { 3974 // Group the registers by their value without any added constant offset. 3975 using ImmMapTy = std::map<int64_t, const SCEV *>; 3976 3977 DenseMap<const SCEV *, ImmMapTy> Map; 3978 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 3979 SmallVector<const SCEV *, 8> Sequence; 3980 for (const SCEV *Use : RegUses) { 3981 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 3982 int64_t Imm = ExtractImmediate(Reg, SE); 3983 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 3984 if (Pair.second) 3985 Sequence.push_back(Reg); 3986 Pair.first->second.insert(std::make_pair(Imm, Use)); 3987 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 3988 } 3989 3990 // Now examine each set of registers with the same base value. Build up 3991 // a list of work to do and do the work in a separate step so that we're 3992 // not adding formulae and register counts while we're searching. 3993 SmallVector<WorkItem, 32> WorkItems; 3994 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 3995 for (const SCEV *Reg : Sequence) { 3996 const ImmMapTy &Imms = Map.find(Reg)->second; 3997 3998 // It's not worthwhile looking for reuse if there's only one offset. 3999 if (Imms.size() == 1) 4000 continue; 4001 4002 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4003 for (const auto &Entry 4004 : Imms) dbgs() 4005 << ' ' << Entry.first; 4006 dbgs() << '\n'); 4007 4008 // Examine each offset. 4009 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4010 J != JE; ++J) { 4011 const SCEV *OrigReg = J->second; 4012 4013 int64_t JImm = J->first; 4014 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4015 4016 if (!isa<SCEVConstant>(OrigReg) && 4017 UsedByIndicesMap[Reg].count() == 1) { 4018 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4019 << '\n'); 4020 continue; 4021 } 4022 4023 // Conservatively examine offsets between this orig reg a few selected 4024 // other orig regs. 4025 ImmMapTy::const_iterator OtherImms[] = { 4026 Imms.begin(), std::prev(Imms.end()), 4027 Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) / 4028 2) 4029 }; 4030 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4031 ImmMapTy::const_iterator M = OtherImms[i]; 4032 if (M == J || M == JE) continue; 4033 4034 // Compute the difference between the two. 4035 int64_t Imm = (uint64_t)JImm - M->first; 4036 for (unsigned LUIdx : UsedByIndices.set_bits()) 4037 // Make a memo of this use, offset, and register tuple. 4038 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4039 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4040 } 4041 } 4042 } 4043 4044 Map.clear(); 4045 Sequence.clear(); 4046 UsedByIndicesMap.clear(); 4047 UniqueItems.clear(); 4048 4049 // Now iterate through the worklist and add new formulae. 4050 for (const WorkItem &WI : WorkItems) { 4051 size_t LUIdx = WI.LUIdx; 4052 LSRUse &LU = Uses[LUIdx]; 4053 int64_t Imm = WI.Imm; 4054 const SCEV *OrigReg = WI.OrigReg; 4055 4056 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4057 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4058 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4059 4060 // TODO: Use a more targeted data structure. 4061 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4062 Formula F = LU.Formulae[L]; 4063 // FIXME: The code for the scaled and unscaled registers looks 4064 // very similar but slightly different. Investigate if they 4065 // could be merged. That way, we would not have to unscale the 4066 // Formula. 4067 F.unscale(); 4068 // Use the immediate in the scaled register. 4069 if (F.ScaledReg == OrigReg) { 4070 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4071 // Don't create 50 + reg(-50). 4072 if (F.referencesReg(SE.getSCEV( 4073 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4074 continue; 4075 Formula NewF = F; 4076 NewF.BaseOffset = Offset; 4077 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4078 NewF)) 4079 continue; 4080 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4081 4082 // If the new scale is a constant in a register, and adding the constant 4083 // value to the immediate would produce a value closer to zero than the 4084 // immediate itself, then the formula isn't worthwhile. 4085 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4086 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4087 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4088 .ule(std::abs(NewF.BaseOffset))) 4089 continue; 4090 4091 // OK, looks good. 4092 NewF.canonicalize(*this->L); 4093 (void)InsertFormula(LU, LUIdx, NewF); 4094 } else { 4095 // Use the immediate in a base register. 4096 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4097 const SCEV *BaseReg = F.BaseRegs[N]; 4098 if (BaseReg != OrigReg) 4099 continue; 4100 Formula NewF = F; 4101 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4102 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4103 LU.Kind, LU.AccessTy, NewF)) { 4104 if (TTI.shouldFavorPostInc() && 4105 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4106 continue; 4107 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4108 continue; 4109 NewF = F; 4110 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4111 } 4112 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4113 4114 // If the new formula has a constant in a register, and adding the 4115 // constant value to the immediate would produce a value closer to 4116 // zero than the immediate itself, then the formula isn't worthwhile. 4117 for (const SCEV *NewReg : NewF.BaseRegs) 4118 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4119 if ((C->getAPInt() + NewF.BaseOffset) 4120 .abs() 4121 .slt(std::abs(NewF.BaseOffset)) && 4122 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4123 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4124 goto skip_formula; 4125 4126 // Ok, looks good. 4127 NewF.canonicalize(*this->L); 4128 (void)InsertFormula(LU, LUIdx, NewF); 4129 break; 4130 skip_formula:; 4131 } 4132 } 4133 } 4134 } 4135 } 4136 4137 /// Generate formulae for each use. 4138 void 4139 LSRInstance::GenerateAllReuseFormulae() { 4140 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4141 // queries are more precise. 4142 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4143 LSRUse &LU = Uses[LUIdx]; 4144 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4145 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4146 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4147 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4148 } 4149 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4150 LSRUse &LU = Uses[LUIdx]; 4151 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4152 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4153 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4154 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4155 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4156 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4157 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4158 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4159 } 4160 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4161 LSRUse &LU = Uses[LUIdx]; 4162 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4163 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4164 } 4165 4166 GenerateCrossUseConstantOffsets(); 4167 4168 LLVM_DEBUG(dbgs() << "\n" 4169 "After generating reuse formulae:\n"; 4170 print_uses(dbgs())); 4171 } 4172 4173 /// If there are multiple formulae with the same set of registers used 4174 /// by other uses, pick the best one and delete the others. 4175 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4176 DenseSet<const SCEV *> VisitedRegs; 4177 SmallPtrSet<const SCEV *, 16> Regs; 4178 SmallPtrSet<const SCEV *, 16> LoserRegs; 4179 #ifndef NDEBUG 4180 bool ChangedFormulae = false; 4181 #endif 4182 4183 // Collect the best formula for each unique set of shared registers. This 4184 // is reset for each use. 4185 using BestFormulaeTy = 4186 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4187 4188 BestFormulaeTy BestFormulae; 4189 4190 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4191 LSRUse &LU = Uses[LUIdx]; 4192 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4193 dbgs() << '\n'); 4194 4195 bool Any = false; 4196 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4197 FIdx != NumForms; ++FIdx) { 4198 Formula &F = LU.Formulae[FIdx]; 4199 4200 // Some formulas are instant losers. For example, they may depend on 4201 // nonexistent AddRecs from other loops. These need to be filtered 4202 // immediately, otherwise heuristics could choose them over others leading 4203 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4204 // avoids the need to recompute this information across formulae using the 4205 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4206 // the corresponding bad register from the Regs set. 4207 Cost CostF; 4208 Regs.clear(); 4209 CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, SE, DT, LU, &LoserRegs); 4210 if (CostF.isLoser()) { 4211 // During initial formula generation, undesirable formulae are generated 4212 // by uses within other loops that have some non-trivial address mode or 4213 // use the postinc form of the IV. LSR needs to provide these formulae 4214 // as the basis of rediscovering the desired formula that uses an AddRec 4215 // corresponding to the existing phi. Once all formulae have been 4216 // generated, these initial losers may be pruned. 4217 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4218 dbgs() << "\n"); 4219 } 4220 else { 4221 SmallVector<const SCEV *, 4> Key; 4222 for (const SCEV *Reg : F.BaseRegs) { 4223 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4224 Key.push_back(Reg); 4225 } 4226 if (F.ScaledReg && 4227 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4228 Key.push_back(F.ScaledReg); 4229 // Unstable sort by host order ok, because this is only used for 4230 // uniquifying. 4231 llvm::sort(Key.begin(), Key.end()); 4232 4233 std::pair<BestFormulaeTy::const_iterator, bool> P = 4234 BestFormulae.insert(std::make_pair(Key, FIdx)); 4235 if (P.second) 4236 continue; 4237 4238 Formula &Best = LU.Formulae[P.first->second]; 4239 4240 Cost CostBest; 4241 Regs.clear(); 4242 CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, SE, DT, LU); 4243 if (CostF.isLess(CostBest, TTI)) 4244 std::swap(F, Best); 4245 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4246 dbgs() << "\n" 4247 " in favor of formula "; 4248 Best.print(dbgs()); dbgs() << '\n'); 4249 } 4250 #ifndef NDEBUG 4251 ChangedFormulae = true; 4252 #endif 4253 LU.DeleteFormula(F); 4254 --FIdx; 4255 --NumForms; 4256 Any = true; 4257 } 4258 4259 // Now that we've filtered out some formulae, recompute the Regs set. 4260 if (Any) 4261 LU.RecomputeRegs(LUIdx, RegUses); 4262 4263 // Reset this to prepare for the next use. 4264 BestFormulae.clear(); 4265 } 4266 4267 LLVM_DEBUG(if (ChangedFormulae) { 4268 dbgs() << "\n" 4269 "After filtering out undesirable candidates:\n"; 4270 print_uses(dbgs()); 4271 }); 4272 } 4273 4274 // This is a rough guess that seems to work fairly well. 4275 static const size_t ComplexityLimit = std::numeric_limits<uint16_t>::max(); 4276 4277 /// Estimate the worst-case number of solutions the solver might have to 4278 /// consider. It almost never considers this many solutions because it prune the 4279 /// search space, but the pruning isn't always sufficient. 4280 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4281 size_t Power = 1; 4282 for (const LSRUse &LU : Uses) { 4283 size_t FSize = LU.Formulae.size(); 4284 if (FSize >= ComplexityLimit) { 4285 Power = ComplexityLimit; 4286 break; 4287 } 4288 Power *= FSize; 4289 if (Power >= ComplexityLimit) 4290 break; 4291 } 4292 return Power; 4293 } 4294 4295 /// When one formula uses a superset of the registers of another formula, it 4296 /// won't help reduce register pressure (though it may not necessarily hurt 4297 /// register pressure); remove it to simplify the system. 4298 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4299 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4300 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4301 4302 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4303 "which use a superset of registers used by other " 4304 "formulae.\n"); 4305 4306 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4307 LSRUse &LU = Uses[LUIdx]; 4308 bool Any = false; 4309 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4310 Formula &F = LU.Formulae[i]; 4311 // Look for a formula with a constant or GV in a register. If the use 4312 // also has a formula with that same value in an immediate field, 4313 // delete the one that uses a register. 4314 for (SmallVectorImpl<const SCEV *>::const_iterator 4315 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4316 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4317 Formula NewF = F; 4318 NewF.BaseOffset += C->getValue()->getSExtValue(); 4319 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4320 (I - F.BaseRegs.begin())); 4321 if (LU.HasFormulaWithSameRegs(NewF)) { 4322 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4323 dbgs() << '\n'); 4324 LU.DeleteFormula(F); 4325 --i; 4326 --e; 4327 Any = true; 4328 break; 4329 } 4330 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4331 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4332 if (!F.BaseGV) { 4333 Formula NewF = F; 4334 NewF.BaseGV = GV; 4335 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4336 (I - F.BaseRegs.begin())); 4337 if (LU.HasFormulaWithSameRegs(NewF)) { 4338 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4339 dbgs() << '\n'); 4340 LU.DeleteFormula(F); 4341 --i; 4342 --e; 4343 Any = true; 4344 break; 4345 } 4346 } 4347 } 4348 } 4349 } 4350 if (Any) 4351 LU.RecomputeRegs(LUIdx, RegUses); 4352 } 4353 4354 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4355 } 4356 } 4357 4358 /// When there are many registers for expressions like A, A+1, A+2, etc., 4359 /// allocate a single register for them. 4360 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4361 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4362 return; 4363 4364 LLVM_DEBUG( 4365 dbgs() << "The search space is too complex.\n" 4366 "Narrowing the search space by assuming that uses separated " 4367 "by a constant offset will use the same registers.\n"); 4368 4369 // This is especially useful for unrolled loops. 4370 4371 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4372 LSRUse &LU = Uses[LUIdx]; 4373 for (const Formula &F : LU.Formulae) { 4374 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4375 continue; 4376 4377 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4378 if (!LUThatHas) 4379 continue; 4380 4381 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4382 LU.Kind, LU.AccessTy)) 4383 continue; 4384 4385 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4386 4387 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4388 4389 // Transfer the fixups of LU to LUThatHas. 4390 for (LSRFixup &Fixup : LU.Fixups) { 4391 Fixup.Offset += F.BaseOffset; 4392 LUThatHas->pushFixup(Fixup); 4393 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4394 } 4395 4396 // Delete formulae from the new use which are no longer legal. 4397 bool Any = false; 4398 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4399 Formula &F = LUThatHas->Formulae[i]; 4400 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4401 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4402 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4403 LUThatHas->DeleteFormula(F); 4404 --i; 4405 --e; 4406 Any = true; 4407 } 4408 } 4409 4410 if (Any) 4411 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4412 4413 // Delete the old use. 4414 DeleteUse(LU, LUIdx); 4415 --LUIdx; 4416 --NumUses; 4417 break; 4418 } 4419 } 4420 4421 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4422 } 4423 4424 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4425 /// we've done more filtering, as it may be able to find more formulae to 4426 /// eliminate. 4427 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4428 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4429 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4430 4431 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4432 "undesirable dedicated registers.\n"); 4433 4434 FilterOutUndesirableDedicatedRegisters(); 4435 4436 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4437 } 4438 } 4439 4440 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4441 /// Pick the best one and delete the others. 4442 /// This narrowing heuristic is to keep as many formulae with different 4443 /// Scale and ScaledReg pair as possible while narrowing the search space. 4444 /// The benefit is that it is more likely to find out a better solution 4445 /// from a formulae set with more Scale and ScaledReg variations than 4446 /// a formulae set with the same Scale and ScaledReg. The picking winner 4447 /// reg heurstic will often keep the formulae with the same Scale and 4448 /// ScaledReg and filter others, and we want to avoid that if possible. 4449 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4450 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4451 return; 4452 4453 LLVM_DEBUG( 4454 dbgs() << "The search space is too complex.\n" 4455 "Narrowing the search space by choosing the best Formula " 4456 "from the Formulae with the same Scale and ScaledReg.\n"); 4457 4458 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4459 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4460 4461 BestFormulaeTy BestFormulae; 4462 #ifndef NDEBUG 4463 bool ChangedFormulae = false; 4464 #endif 4465 DenseSet<const SCEV *> VisitedRegs; 4466 SmallPtrSet<const SCEV *, 16> Regs; 4467 4468 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4469 LSRUse &LU = Uses[LUIdx]; 4470 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4471 dbgs() << '\n'); 4472 4473 // Return true if Formula FA is better than Formula FB. 4474 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4475 // First we will try to choose the Formula with fewer new registers. 4476 // For a register used by current Formula, the more the register is 4477 // shared among LSRUses, the less we increase the register number 4478 // counter of the formula. 4479 size_t FARegNum = 0; 4480 for (const SCEV *Reg : FA.BaseRegs) { 4481 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4482 FARegNum += (NumUses - UsedByIndices.count() + 1); 4483 } 4484 size_t FBRegNum = 0; 4485 for (const SCEV *Reg : FB.BaseRegs) { 4486 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4487 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4488 } 4489 if (FARegNum != FBRegNum) 4490 return FARegNum < FBRegNum; 4491 4492 // If the new register numbers are the same, choose the Formula with 4493 // less Cost. 4494 Cost CostFA, CostFB; 4495 Regs.clear(); 4496 CostFA.RateFormula(TTI, FA, Regs, VisitedRegs, L, SE, DT, LU); 4497 Regs.clear(); 4498 CostFB.RateFormula(TTI, FB, Regs, VisitedRegs, L, SE, DT, LU); 4499 return CostFA.isLess(CostFB, TTI); 4500 }; 4501 4502 bool Any = false; 4503 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4504 ++FIdx) { 4505 Formula &F = LU.Formulae[FIdx]; 4506 if (!F.ScaledReg) 4507 continue; 4508 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4509 if (P.second) 4510 continue; 4511 4512 Formula &Best = LU.Formulae[P.first->second]; 4513 if (IsBetterThan(F, Best)) 4514 std::swap(F, Best); 4515 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4516 dbgs() << "\n" 4517 " in favor of formula "; 4518 Best.print(dbgs()); dbgs() << '\n'); 4519 #ifndef NDEBUG 4520 ChangedFormulae = true; 4521 #endif 4522 LU.DeleteFormula(F); 4523 --FIdx; 4524 --NumForms; 4525 Any = true; 4526 } 4527 if (Any) 4528 LU.RecomputeRegs(LUIdx, RegUses); 4529 4530 // Reset this to prepare for the next use. 4531 BestFormulae.clear(); 4532 } 4533 4534 LLVM_DEBUG(if (ChangedFormulae) { 4535 dbgs() << "\n" 4536 "After filtering out undesirable candidates:\n"; 4537 print_uses(dbgs()); 4538 }); 4539 } 4540 4541 /// The function delete formulas with high registers number expectation. 4542 /// Assuming we don't know the value of each formula (already delete 4543 /// all inefficient), generate probability of not selecting for each 4544 /// register. 4545 /// For example, 4546 /// Use1: 4547 /// reg(a) + reg({0,+,1}) 4548 /// reg(a) + reg({-1,+,1}) + 1 4549 /// reg({a,+,1}) 4550 /// Use2: 4551 /// reg(b) + reg({0,+,1}) 4552 /// reg(b) + reg({-1,+,1}) + 1 4553 /// reg({b,+,1}) 4554 /// Use3: 4555 /// reg(c) + reg(b) + reg({0,+,1}) 4556 /// reg(c) + reg({b,+,1}) 4557 /// 4558 /// Probability of not selecting 4559 /// Use1 Use2 Use3 4560 /// reg(a) (1/3) * 1 * 1 4561 /// reg(b) 1 * (1/3) * (1/2) 4562 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4563 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4564 /// reg({a,+,1}) (2/3) * 1 * 1 4565 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4566 /// reg(c) 1 * 1 * 0 4567 /// 4568 /// Now count registers number mathematical expectation for each formula: 4569 /// Note that for each use we exclude probability if not selecting for the use. 4570 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4571 /// probabilty 1/3 of not selecting for Use1). 4572 /// Use1: 4573 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4574 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4575 /// reg({a,+,1}) 1 4576 /// Use2: 4577 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4578 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4579 /// reg({b,+,1}) 2/3 4580 /// Use3: 4581 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4582 /// reg(c) + reg({b,+,1}) 1 + 2/3 4583 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4584 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4585 return; 4586 // Ok, we have too many of formulae on our hands to conveniently handle. 4587 // Use a rough heuristic to thin out the list. 4588 4589 // Set of Regs wich will be 100% used in final solution. 4590 // Used in each formula of a solution (in example above this is reg(c)). 4591 // We can skip them in calculations. 4592 SmallPtrSet<const SCEV *, 4> UniqRegs; 4593 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4594 4595 // Map each register to probability of not selecting 4596 DenseMap <const SCEV *, float> RegNumMap; 4597 for (const SCEV *Reg : RegUses) { 4598 if (UniqRegs.count(Reg)) 4599 continue; 4600 float PNotSel = 1; 4601 for (const LSRUse &LU : Uses) { 4602 if (!LU.Regs.count(Reg)) 4603 continue; 4604 float P = LU.getNotSelectedProbability(Reg); 4605 if (P != 0.0) 4606 PNotSel *= P; 4607 else 4608 UniqRegs.insert(Reg); 4609 } 4610 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4611 } 4612 4613 LLVM_DEBUG( 4614 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4615 4616 // Delete formulas where registers number expectation is high. 4617 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4618 LSRUse &LU = Uses[LUIdx]; 4619 // If nothing to delete - continue. 4620 if (LU.Formulae.size() < 2) 4621 continue; 4622 // This is temporary solution to test performance. Float should be 4623 // replaced with round independent type (based on integers) to avoid 4624 // different results for different target builds. 4625 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4626 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4627 size_t MinIdx = 0; 4628 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4629 Formula &F = LU.Formulae[i]; 4630 float FRegNum = 0; 4631 float FARegNum = 0; 4632 for (const SCEV *BaseReg : F.BaseRegs) { 4633 if (UniqRegs.count(BaseReg)) 4634 continue; 4635 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4636 if (isa<SCEVAddRecExpr>(BaseReg)) 4637 FARegNum += 4638 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4639 } 4640 if (const SCEV *ScaledReg = F.ScaledReg) { 4641 if (!UniqRegs.count(ScaledReg)) { 4642 FRegNum += 4643 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4644 if (isa<SCEVAddRecExpr>(ScaledReg)) 4645 FARegNum += 4646 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4647 } 4648 } 4649 if (FMinRegNum > FRegNum || 4650 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4651 FMinRegNum = FRegNum; 4652 FMinARegNum = FARegNum; 4653 MinIdx = i; 4654 } 4655 } 4656 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4657 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4658 if (MinIdx != 0) 4659 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4660 while (LU.Formulae.size() != 1) { 4661 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4662 dbgs() << '\n'); 4663 LU.Formulae.pop_back(); 4664 } 4665 LU.RecomputeRegs(LUIdx, RegUses); 4666 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4667 Formula &F = LU.Formulae[0]; 4668 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4669 // When we choose the formula, the regs become unique. 4670 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4671 if (F.ScaledReg) 4672 UniqRegs.insert(F.ScaledReg); 4673 } 4674 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4675 } 4676 4677 /// Pick a register which seems likely to be profitable, and then in any use 4678 /// which has any reference to that register, delete all formulae which do not 4679 /// reference that register. 4680 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4681 // With all other options exhausted, loop until the system is simple 4682 // enough to handle. 4683 SmallPtrSet<const SCEV *, 4> Taken; 4684 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4685 // Ok, we have too many of formulae on our hands to conveniently handle. 4686 // Use a rough heuristic to thin out the list. 4687 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4688 4689 // Pick the register which is used by the most LSRUses, which is likely 4690 // to be a good reuse register candidate. 4691 const SCEV *Best = nullptr; 4692 unsigned BestNum = 0; 4693 for (const SCEV *Reg : RegUses) { 4694 if (Taken.count(Reg)) 4695 continue; 4696 if (!Best) { 4697 Best = Reg; 4698 BestNum = RegUses.getUsedByIndices(Reg).count(); 4699 } else { 4700 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4701 if (Count > BestNum) { 4702 Best = Reg; 4703 BestNum = Count; 4704 } 4705 } 4706 } 4707 4708 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4709 << " will yield profitable reuse.\n"); 4710 Taken.insert(Best); 4711 4712 // In any use with formulae which references this register, delete formulae 4713 // which don't reference it. 4714 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4715 LSRUse &LU = Uses[LUIdx]; 4716 if (!LU.Regs.count(Best)) continue; 4717 4718 bool Any = false; 4719 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4720 Formula &F = LU.Formulae[i]; 4721 if (!F.referencesReg(Best)) { 4722 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4723 LU.DeleteFormula(F); 4724 --e; 4725 --i; 4726 Any = true; 4727 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4728 continue; 4729 } 4730 } 4731 4732 if (Any) 4733 LU.RecomputeRegs(LUIdx, RegUses); 4734 } 4735 4736 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4737 } 4738 } 4739 4740 /// If there are an extraordinary number of formulae to choose from, use some 4741 /// rough heuristics to prune down the number of formulae. This keeps the main 4742 /// solver from taking an extraordinary amount of time in some worst-case 4743 /// scenarios. 4744 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4745 NarrowSearchSpaceByDetectingSupersets(); 4746 NarrowSearchSpaceByCollapsingUnrolledCode(); 4747 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4748 if (FilterSameScaledReg) 4749 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4750 if (LSRExpNarrow) 4751 NarrowSearchSpaceByDeletingCostlyFormulas(); 4752 else 4753 NarrowSearchSpaceByPickingWinnerRegs(); 4754 } 4755 4756 /// This is the recursive solver. 4757 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4758 Cost &SolutionCost, 4759 SmallVectorImpl<const Formula *> &Workspace, 4760 const Cost &CurCost, 4761 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4762 DenseSet<const SCEV *> &VisitedRegs) const { 4763 // Some ideas: 4764 // - prune more: 4765 // - use more aggressive filtering 4766 // - sort the formula so that the most profitable solutions are found first 4767 // - sort the uses too 4768 // - search faster: 4769 // - don't compute a cost, and then compare. compare while computing a cost 4770 // and bail early. 4771 // - track register sets with SmallBitVector 4772 4773 const LSRUse &LU = Uses[Workspace.size()]; 4774 4775 // If this use references any register that's already a part of the 4776 // in-progress solution, consider it a requirement that a formula must 4777 // reference that register in order to be considered. This prunes out 4778 // unprofitable searching. 4779 SmallSetVector<const SCEV *, 4> ReqRegs; 4780 for (const SCEV *S : CurRegs) 4781 if (LU.Regs.count(S)) 4782 ReqRegs.insert(S); 4783 4784 SmallPtrSet<const SCEV *, 16> NewRegs; 4785 Cost NewCost; 4786 for (const Formula &F : LU.Formulae) { 4787 // Ignore formulae which may not be ideal in terms of register reuse of 4788 // ReqRegs. The formula should use all required registers before 4789 // introducing new ones. 4790 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4791 for (const SCEV *Reg : ReqRegs) { 4792 if ((F.ScaledReg && F.ScaledReg == Reg) || 4793 is_contained(F.BaseRegs, Reg)) { 4794 --NumReqRegsToFind; 4795 if (NumReqRegsToFind == 0) 4796 break; 4797 } 4798 } 4799 if (NumReqRegsToFind != 0) { 4800 // If none of the formulae satisfied the required registers, then we could 4801 // clear ReqRegs and try again. Currently, we simply give up in this case. 4802 continue; 4803 } 4804 4805 // Evaluate the cost of the current formula. If it's already worse than 4806 // the current best, prune the search at that point. 4807 NewCost = CurCost; 4808 NewRegs = CurRegs; 4809 NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, SE, DT, LU); 4810 if (NewCost.isLess(SolutionCost, TTI)) { 4811 Workspace.push_back(&F); 4812 if (Workspace.size() != Uses.size()) { 4813 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 4814 NewRegs, VisitedRegs); 4815 if (F.getNumRegs() == 1 && Workspace.size() == 1) 4816 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 4817 } else { 4818 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 4819 dbgs() << ".\n Regs:"; for (const SCEV *S 4820 : NewRegs) dbgs() 4821 << ' ' << *S; 4822 dbgs() << '\n'); 4823 4824 SolutionCost = NewCost; 4825 Solution = Workspace; 4826 } 4827 Workspace.pop_back(); 4828 } 4829 } 4830 } 4831 4832 /// Choose one formula from each use. Return the results in the given Solution 4833 /// vector. 4834 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 4835 SmallVector<const Formula *, 8> Workspace; 4836 Cost SolutionCost; 4837 SolutionCost.Lose(); 4838 Cost CurCost; 4839 SmallPtrSet<const SCEV *, 16> CurRegs; 4840 DenseSet<const SCEV *> VisitedRegs; 4841 Workspace.reserve(Uses.size()); 4842 4843 // SolveRecurse does all the work. 4844 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 4845 CurRegs, VisitedRegs); 4846 if (Solution.empty()) { 4847 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 4848 return; 4849 } 4850 4851 // Ok, we've now made all our decisions. 4852 LLVM_DEBUG(dbgs() << "\n" 4853 "The chosen solution requires "; 4854 SolutionCost.print(dbgs()); dbgs() << ":\n"; 4855 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 4856 dbgs() << " "; 4857 Uses[i].print(dbgs()); 4858 dbgs() << "\n" 4859 " "; 4860 Solution[i]->print(dbgs()); 4861 dbgs() << '\n'; 4862 }); 4863 4864 assert(Solution.size() == Uses.size() && "Malformed solution!"); 4865 } 4866 4867 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 4868 /// we can go while still being dominated by the input positions. This helps 4869 /// canonicalize the insert position, which encourages sharing. 4870 BasicBlock::iterator 4871 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 4872 const SmallVectorImpl<Instruction *> &Inputs) 4873 const { 4874 Instruction *Tentative = &*IP; 4875 while (true) { 4876 bool AllDominate = true; 4877 Instruction *BetterPos = nullptr; 4878 // Don't bother attempting to insert before a catchswitch, their basic block 4879 // cannot have other non-PHI instructions. 4880 if (isa<CatchSwitchInst>(Tentative)) 4881 return IP; 4882 4883 for (Instruction *Inst : Inputs) { 4884 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 4885 AllDominate = false; 4886 break; 4887 } 4888 // Attempt to find an insert position in the middle of the block, 4889 // instead of at the end, so that it can be used for other expansions. 4890 if (Tentative->getParent() == Inst->getParent() && 4891 (!BetterPos || !DT.dominates(Inst, BetterPos))) 4892 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 4893 } 4894 if (!AllDominate) 4895 break; 4896 if (BetterPos) 4897 IP = BetterPos->getIterator(); 4898 else 4899 IP = Tentative->getIterator(); 4900 4901 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 4902 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 4903 4904 BasicBlock *IDom; 4905 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 4906 if (!Rung) return IP; 4907 Rung = Rung->getIDom(); 4908 if (!Rung) return IP; 4909 IDom = Rung->getBlock(); 4910 4911 // Don't climb into a loop though. 4912 const Loop *IDomLoop = LI.getLoopFor(IDom); 4913 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 4914 if (IDomDepth <= IPLoopDepth && 4915 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 4916 break; 4917 } 4918 4919 Tentative = IDom->getTerminator(); 4920 } 4921 4922 return IP; 4923 } 4924 4925 /// Determine an input position which will be dominated by the operands and 4926 /// which will dominate the result. 4927 BasicBlock::iterator 4928 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 4929 const LSRFixup &LF, 4930 const LSRUse &LU, 4931 SCEVExpander &Rewriter) const { 4932 // Collect some instructions which must be dominated by the 4933 // expanding replacement. These must be dominated by any operands that 4934 // will be required in the expansion. 4935 SmallVector<Instruction *, 4> Inputs; 4936 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 4937 Inputs.push_back(I); 4938 if (LU.Kind == LSRUse::ICmpZero) 4939 if (Instruction *I = 4940 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 4941 Inputs.push_back(I); 4942 if (LF.PostIncLoops.count(L)) { 4943 if (LF.isUseFullyOutsideLoop(L)) 4944 Inputs.push_back(L->getLoopLatch()->getTerminator()); 4945 else 4946 Inputs.push_back(IVIncInsertPos); 4947 } 4948 // The expansion must also be dominated by the increment positions of any 4949 // loops it for which it is using post-inc mode. 4950 for (const Loop *PIL : LF.PostIncLoops) { 4951 if (PIL == L) continue; 4952 4953 // Be dominated by the loop exit. 4954 SmallVector<BasicBlock *, 4> ExitingBlocks; 4955 PIL->getExitingBlocks(ExitingBlocks); 4956 if (!ExitingBlocks.empty()) { 4957 BasicBlock *BB = ExitingBlocks[0]; 4958 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 4959 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 4960 Inputs.push_back(BB->getTerminator()); 4961 } 4962 } 4963 4964 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 4965 && !isa<DbgInfoIntrinsic>(LowestIP) && 4966 "Insertion point must be a normal instruction"); 4967 4968 // Then, climb up the immediate dominator tree as far as we can go while 4969 // still being dominated by the input positions. 4970 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 4971 4972 // Don't insert instructions before PHI nodes. 4973 while (isa<PHINode>(IP)) ++IP; 4974 4975 // Ignore landingpad instructions. 4976 while (IP->isEHPad()) ++IP; 4977 4978 // Ignore debug intrinsics. 4979 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 4980 4981 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 4982 // IP consistent across expansions and allows the previously inserted 4983 // instructions to be reused by subsequent expansion. 4984 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 4985 ++IP; 4986 4987 return IP; 4988 } 4989 4990 /// Emit instructions for the leading candidate expression for this LSRUse (this 4991 /// is called "expanding"). 4992 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 4993 const Formula &F, BasicBlock::iterator IP, 4994 SCEVExpander &Rewriter, 4995 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 4996 if (LU.RigidFormula) 4997 return LF.OperandValToReplace; 4998 4999 // Determine an input position which will be dominated by the operands and 5000 // which will dominate the result. 5001 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5002 Rewriter.setInsertPoint(&*IP); 5003 5004 // Inform the Rewriter if we have a post-increment use, so that it can 5005 // perform an advantageous expansion. 5006 Rewriter.setPostInc(LF.PostIncLoops); 5007 5008 // This is the type that the user actually needs. 5009 Type *OpTy = LF.OperandValToReplace->getType(); 5010 // This will be the type that we'll initially expand to. 5011 Type *Ty = F.getType(); 5012 if (!Ty) 5013 // No type known; just expand directly to the ultimate type. 5014 Ty = OpTy; 5015 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5016 // Expand directly to the ultimate type if it's the right size. 5017 Ty = OpTy; 5018 // This is the type to do integer arithmetic in. 5019 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5020 5021 // Build up a list of operands to add together to form the full base. 5022 SmallVector<const SCEV *, 8> Ops; 5023 5024 // Expand the BaseRegs portion. 5025 for (const SCEV *Reg : F.BaseRegs) { 5026 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5027 5028 // If we're expanding for a post-inc user, make the post-inc adjustment. 5029 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5030 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5031 } 5032 5033 // Expand the ScaledReg portion. 5034 Value *ICmpScaledV = nullptr; 5035 if (F.Scale != 0) { 5036 const SCEV *ScaledS = F.ScaledReg; 5037 5038 // If we're expanding for a post-inc user, make the post-inc adjustment. 5039 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5040 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5041 5042 if (LU.Kind == LSRUse::ICmpZero) { 5043 // Expand ScaleReg as if it was part of the base regs. 5044 if (F.Scale == 1) 5045 Ops.push_back( 5046 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5047 else { 5048 // An interesting way of "folding" with an icmp is to use a negated 5049 // scale, which we'll implement by inserting it into the other operand 5050 // of the icmp. 5051 assert(F.Scale == -1 && 5052 "The only scale supported by ICmpZero uses is -1!"); 5053 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5054 } 5055 } else { 5056 // Otherwise just expand the scaled register and an explicit scale, 5057 // which is expected to be matched as part of the address. 5058 5059 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5060 // Unless the addressing mode will not be folded. 5061 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5062 isAMCompletelyFolded(TTI, LU, F)) { 5063 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5064 Ops.clear(); 5065 Ops.push_back(SE.getUnknown(FullV)); 5066 } 5067 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5068 if (F.Scale != 1) 5069 ScaledS = 5070 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5071 Ops.push_back(ScaledS); 5072 } 5073 } 5074 5075 // Expand the GV portion. 5076 if (F.BaseGV) { 5077 // Flush the operand list to suppress SCEVExpander hoisting. 5078 if (!Ops.empty()) { 5079 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5080 Ops.clear(); 5081 Ops.push_back(SE.getUnknown(FullV)); 5082 } 5083 Ops.push_back(SE.getUnknown(F.BaseGV)); 5084 } 5085 5086 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5087 // unfolded offsets. LSR assumes they both live next to their uses. 5088 if (!Ops.empty()) { 5089 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5090 Ops.clear(); 5091 Ops.push_back(SE.getUnknown(FullV)); 5092 } 5093 5094 // Expand the immediate portion. 5095 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5096 if (Offset != 0) { 5097 if (LU.Kind == LSRUse::ICmpZero) { 5098 // The other interesting way of "folding" with an ICmpZero is to use a 5099 // negated immediate. 5100 if (!ICmpScaledV) 5101 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5102 else { 5103 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5104 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5105 } 5106 } else { 5107 // Just add the immediate values. These again are expected to be matched 5108 // as part of the address. 5109 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5110 } 5111 } 5112 5113 // Expand the unfolded offset portion. 5114 int64_t UnfoldedOffset = F.UnfoldedOffset; 5115 if (UnfoldedOffset != 0) { 5116 // Just add the immediate values. 5117 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5118 UnfoldedOffset))); 5119 } 5120 5121 // Emit instructions summing all the operands. 5122 const SCEV *FullS = Ops.empty() ? 5123 SE.getConstant(IntTy, 0) : 5124 SE.getAddExpr(Ops); 5125 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5126 5127 // We're done expanding now, so reset the rewriter. 5128 Rewriter.clearPostInc(); 5129 5130 // An ICmpZero Formula represents an ICmp which we're handling as a 5131 // comparison against zero. Now that we've expanded an expression for that 5132 // form, update the ICmp's other operand. 5133 if (LU.Kind == LSRUse::ICmpZero) { 5134 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5135 DeadInsts.emplace_back(CI->getOperand(1)); 5136 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5137 "a scale at the same time!"); 5138 if (F.Scale == -1) { 5139 if (ICmpScaledV->getType() != OpTy) { 5140 Instruction *Cast = 5141 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5142 OpTy, false), 5143 ICmpScaledV, OpTy, "tmp", CI); 5144 ICmpScaledV = Cast; 5145 } 5146 CI->setOperand(1, ICmpScaledV); 5147 } else { 5148 // A scale of 1 means that the scale has been expanded as part of the 5149 // base regs. 5150 assert((F.Scale == 0 || F.Scale == 1) && 5151 "ICmp does not support folding a global value and " 5152 "a scale at the same time!"); 5153 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5154 -(uint64_t)Offset); 5155 if (C->getType() != OpTy) 5156 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5157 OpTy, false), 5158 C, OpTy); 5159 5160 CI->setOperand(1, C); 5161 } 5162 } 5163 5164 return FullV; 5165 } 5166 5167 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5168 /// effectively happens in their predecessor blocks, so the expression may need 5169 /// to be expanded in multiple places. 5170 void LSRInstance::RewriteForPHI( 5171 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5172 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5173 DenseMap<BasicBlock *, Value *> Inserted; 5174 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5175 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5176 BasicBlock *BB = PN->getIncomingBlock(i); 5177 5178 // If this is a critical edge, split the edge so that we do not insert 5179 // the code on all predecessor/successor paths. We do this unless this 5180 // is the canonical backedge for this loop, which complicates post-inc 5181 // users. 5182 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5183 !isa<IndirectBrInst>(BB->getTerminator()) && 5184 !isa<CatchSwitchInst>(BB->getTerminator())) { 5185 BasicBlock *Parent = PN->getParent(); 5186 Loop *PNLoop = LI.getLoopFor(Parent); 5187 if (!PNLoop || Parent != PNLoop->getHeader()) { 5188 // Split the critical edge. 5189 BasicBlock *NewBB = nullptr; 5190 if (!Parent->isLandingPad()) { 5191 NewBB = SplitCriticalEdge(BB, Parent, 5192 CriticalEdgeSplittingOptions(&DT, &LI) 5193 .setMergeIdenticalEdges() 5194 .setDontDeleteUselessPHIs()); 5195 } else { 5196 SmallVector<BasicBlock*, 2> NewBBs; 5197 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5198 NewBB = NewBBs[0]; 5199 } 5200 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5201 // phi predecessors are identical. The simple thing to do is skip 5202 // splitting in this case rather than complicate the API. 5203 if (NewBB) { 5204 // If PN is outside of the loop and BB is in the loop, we want to 5205 // move the block to be immediately before the PHI block, not 5206 // immediately after BB. 5207 if (L->contains(BB) && !L->contains(PN)) 5208 NewBB->moveBefore(PN->getParent()); 5209 5210 // Splitting the edge can reduce the number of PHI entries we have. 5211 e = PN->getNumIncomingValues(); 5212 BB = NewBB; 5213 i = PN->getBasicBlockIndex(BB); 5214 } 5215 } 5216 } 5217 5218 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5219 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5220 if (!Pair.second) 5221 PN->setIncomingValue(i, Pair.first->second); 5222 else { 5223 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5224 Rewriter, DeadInsts); 5225 5226 // If this is reuse-by-noop-cast, insert the noop cast. 5227 Type *OpTy = LF.OperandValToReplace->getType(); 5228 if (FullV->getType() != OpTy) 5229 FullV = 5230 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5231 OpTy, false), 5232 FullV, LF.OperandValToReplace->getType(), 5233 "tmp", BB->getTerminator()); 5234 5235 PN->setIncomingValue(i, FullV); 5236 Pair.first->second = FullV; 5237 } 5238 } 5239 } 5240 5241 /// Emit instructions for the leading candidate expression for this LSRUse (this 5242 /// is called "expanding"), and update the UserInst to reference the newly 5243 /// expanded value. 5244 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5245 const Formula &F, SCEVExpander &Rewriter, 5246 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5247 // First, find an insertion point that dominates UserInst. For PHI nodes, 5248 // find the nearest block which dominates all the relevant uses. 5249 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5250 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5251 } else { 5252 Value *FullV = 5253 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5254 5255 // If this is reuse-by-noop-cast, insert the noop cast. 5256 Type *OpTy = LF.OperandValToReplace->getType(); 5257 if (FullV->getType() != OpTy) { 5258 Instruction *Cast = 5259 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5260 FullV, OpTy, "tmp", LF.UserInst); 5261 FullV = Cast; 5262 } 5263 5264 // Update the user. ICmpZero is handled specially here (for now) because 5265 // Expand may have updated one of the operands of the icmp already, and 5266 // its new value may happen to be equal to LF.OperandValToReplace, in 5267 // which case doing replaceUsesOfWith leads to replacing both operands 5268 // with the same value. TODO: Reorganize this. 5269 if (LU.Kind == LSRUse::ICmpZero) 5270 LF.UserInst->setOperand(0, FullV); 5271 else 5272 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5273 } 5274 5275 DeadInsts.emplace_back(LF.OperandValToReplace); 5276 } 5277 5278 /// Rewrite all the fixup locations with new values, following the chosen 5279 /// solution. 5280 void LSRInstance::ImplementSolution( 5281 const SmallVectorImpl<const Formula *> &Solution) { 5282 // Keep track of instructions we may have made dead, so that 5283 // we can remove them after we are done working. 5284 SmallVector<WeakTrackingVH, 16> DeadInsts; 5285 5286 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), 5287 "lsr"); 5288 #ifndef NDEBUG 5289 Rewriter.setDebugType(DEBUG_TYPE); 5290 #endif 5291 Rewriter.disableCanonicalMode(); 5292 Rewriter.enableLSRMode(); 5293 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5294 5295 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5296 for (const IVChain &Chain : IVChainVec) { 5297 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5298 Rewriter.setChainedPhi(PN); 5299 } 5300 5301 // Expand the new value definitions and update the users. 5302 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5303 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5304 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5305 Changed = true; 5306 } 5307 5308 for (const IVChain &Chain : IVChainVec) { 5309 GenerateIVChain(Chain, Rewriter, DeadInsts); 5310 Changed = true; 5311 } 5312 // Clean up after ourselves. This must be done before deleting any 5313 // instructions. 5314 Rewriter.clear(); 5315 5316 Changed |= DeleteTriviallyDeadInstructions(DeadInsts); 5317 } 5318 5319 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5320 DominatorTree &DT, LoopInfo &LI, 5321 const TargetTransformInfo &TTI) 5322 : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L) { 5323 // If LoopSimplify form is not available, stay out of trouble. 5324 if (!L->isLoopSimplifyForm()) 5325 return; 5326 5327 // If there's no interesting work to be done, bail early. 5328 if (IU.empty()) return; 5329 5330 // If there's too much analysis to be done, bail early. We won't be able to 5331 // model the problem anyway. 5332 unsigned NumUsers = 0; 5333 for (const IVStrideUse &U : IU) { 5334 if (++NumUsers > MaxIVUsers) { 5335 (void)U; 5336 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5337 << "\n"); 5338 return; 5339 } 5340 // Bail out if we have a PHI on an EHPad that gets a value from a 5341 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5342 // no good place to stick any instructions. 5343 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5344 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5345 if (isa<FuncletPadInst>(FirstNonPHI) || 5346 isa<CatchSwitchInst>(FirstNonPHI)) 5347 for (BasicBlock *PredBB : PN->blocks()) 5348 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5349 return; 5350 } 5351 } 5352 5353 #ifndef NDEBUG 5354 // All dominating loops must have preheaders, or SCEVExpander may not be able 5355 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5356 // 5357 // IVUsers analysis should only create users that are dominated by simple loop 5358 // headers. Since this loop should dominate all of its users, its user list 5359 // should be empty if this loop itself is not within a simple loop nest. 5360 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5361 Rung; Rung = Rung->getIDom()) { 5362 BasicBlock *BB = Rung->getBlock(); 5363 const Loop *DomLoop = LI.getLoopFor(BB); 5364 if (DomLoop && DomLoop->getHeader() == BB) { 5365 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5366 } 5367 } 5368 #endif // DEBUG 5369 5370 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5371 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5372 dbgs() << ":\n"); 5373 5374 // First, perform some low-level loop optimizations. 5375 OptimizeShadowIV(); 5376 OptimizeLoopTermCond(); 5377 5378 // If loop preparation eliminates all interesting IV users, bail. 5379 if (IU.empty()) return; 5380 5381 // Skip nested loops until we can model them better with formulae. 5382 if (!L->empty()) { 5383 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5384 return; 5385 } 5386 5387 // Start collecting data and preparing for the solver. 5388 CollectChains(); 5389 CollectInterestingTypesAndFactors(); 5390 CollectFixupsAndInitialFormulae(); 5391 CollectLoopInvariantFixupsAndFormulae(); 5392 5393 assert(!Uses.empty() && "IVUsers reported at least one use"); 5394 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5395 print_uses(dbgs())); 5396 5397 // Now use the reuse data to generate a bunch of interesting ways 5398 // to formulate the values needed for the uses. 5399 GenerateAllReuseFormulae(); 5400 5401 FilterOutUndesirableDedicatedRegisters(); 5402 NarrowSearchSpaceUsingHeuristics(); 5403 5404 SmallVector<const Formula *, 8> Solution; 5405 Solve(Solution); 5406 5407 // Release memory that is no longer needed. 5408 Factors.clear(); 5409 Types.clear(); 5410 RegUses.clear(); 5411 5412 if (Solution.empty()) 5413 return; 5414 5415 #ifndef NDEBUG 5416 // Formulae should be legal. 5417 for (const LSRUse &LU : Uses) { 5418 for (const Formula &F : LU.Formulae) 5419 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5420 F) && "Illegal formula generated!"); 5421 }; 5422 #endif 5423 5424 // Now that we've decided what we want, make it so. 5425 ImplementSolution(Solution); 5426 } 5427 5428 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5429 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5430 if (Factors.empty() && Types.empty()) return; 5431 5432 OS << "LSR has identified the following interesting factors and types: "; 5433 bool First = true; 5434 5435 for (int64_t Factor : Factors) { 5436 if (!First) OS << ", "; 5437 First = false; 5438 OS << '*' << Factor; 5439 } 5440 5441 for (Type *Ty : Types) { 5442 if (!First) OS << ", "; 5443 First = false; 5444 OS << '(' << *Ty << ')'; 5445 } 5446 OS << '\n'; 5447 } 5448 5449 void LSRInstance::print_fixups(raw_ostream &OS) const { 5450 OS << "LSR is examining the following fixup sites:\n"; 5451 for (const LSRUse &LU : Uses) 5452 for (const LSRFixup &LF : LU.Fixups) { 5453 dbgs() << " "; 5454 LF.print(OS); 5455 OS << '\n'; 5456 } 5457 } 5458 5459 void LSRInstance::print_uses(raw_ostream &OS) const { 5460 OS << "LSR is examining the following uses:\n"; 5461 for (const LSRUse &LU : Uses) { 5462 dbgs() << " "; 5463 LU.print(OS); 5464 OS << '\n'; 5465 for (const Formula &F : LU.Formulae) { 5466 OS << " "; 5467 F.print(OS); 5468 OS << '\n'; 5469 } 5470 } 5471 } 5472 5473 void LSRInstance::print(raw_ostream &OS) const { 5474 print_factors_and_types(OS); 5475 print_fixups(OS); 5476 print_uses(OS); 5477 } 5478 5479 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5480 print(errs()); errs() << '\n'; 5481 } 5482 #endif 5483 5484 namespace { 5485 5486 class LoopStrengthReduce : public LoopPass { 5487 public: 5488 static char ID; // Pass ID, replacement for typeid 5489 5490 LoopStrengthReduce(); 5491 5492 private: 5493 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5494 void getAnalysisUsage(AnalysisUsage &AU) const override; 5495 }; 5496 5497 } // end anonymous namespace 5498 5499 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5500 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5501 } 5502 5503 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5504 // We split critical edges, so we change the CFG. However, we do update 5505 // many analyses if they are around. 5506 AU.addPreservedID(LoopSimplifyID); 5507 5508 AU.addRequired<LoopInfoWrapperPass>(); 5509 AU.addPreserved<LoopInfoWrapperPass>(); 5510 AU.addRequiredID(LoopSimplifyID); 5511 AU.addRequired<DominatorTreeWrapperPass>(); 5512 AU.addPreserved<DominatorTreeWrapperPass>(); 5513 AU.addRequired<ScalarEvolutionWrapperPass>(); 5514 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5515 // Requiring LoopSimplify a second time here prevents IVUsers from running 5516 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5517 AU.addRequiredID(LoopSimplifyID); 5518 AU.addRequired<IVUsersWrapperPass>(); 5519 AU.addPreserved<IVUsersWrapperPass>(); 5520 AU.addRequired<TargetTransformInfoWrapperPass>(); 5521 } 5522 5523 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5524 DominatorTree &DT, LoopInfo &LI, 5525 const TargetTransformInfo &TTI) { 5526 bool Changed = false; 5527 5528 // Run the main LSR transformation. 5529 Changed |= LSRInstance(L, IU, SE, DT, LI, TTI).getChanged(); 5530 5531 // Remove any extra phis created by processing inner loops. 5532 Changed |= DeleteDeadPHIs(L->getHeader()); 5533 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5534 SmallVector<WeakTrackingVH, 16> DeadInsts; 5535 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5536 SCEVExpander Rewriter(SE, DL, "lsr"); 5537 #ifndef NDEBUG 5538 Rewriter.setDebugType(DEBUG_TYPE); 5539 #endif 5540 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5541 if (numFolded) { 5542 Changed = true; 5543 DeleteTriviallyDeadInstructions(DeadInsts); 5544 DeleteDeadPHIs(L->getHeader()); 5545 } 5546 } 5547 return Changed; 5548 } 5549 5550 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5551 if (skipLoop(L)) 5552 return false; 5553 5554 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5555 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5556 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5557 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5558 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5559 *L->getHeader()->getParent()); 5560 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI); 5561 } 5562 5563 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5564 LoopStandardAnalysisResults &AR, 5565 LPMUpdater &) { 5566 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5567 AR.DT, AR.LI, AR.TTI)) 5568 return PreservedAnalyses::all(); 5569 5570 return getLoopPassPreservedAnalyses(); 5571 } 5572 5573 char LoopStrengthReduce::ID = 0; 5574 5575 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5576 "Loop Strength Reduction", false, false) 5577 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5578 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5579 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5580 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5581 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5582 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5583 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5584 "Loop Strength Reduction", false, false) 5585 5586 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5587