1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/iterator_range.h" 68 #include "llvm/Analysis/AssumptionCache.h" 69 #include "llvm/Analysis/IVUsers.h" 70 #include "llvm/Analysis/LoopAnalysisManager.h" 71 #include "llvm/Analysis/LoopInfo.h" 72 #include "llvm/Analysis/LoopPass.h" 73 #include "llvm/Analysis/MemorySSA.h" 74 #include "llvm/Analysis/MemorySSAUpdater.h" 75 #include "llvm/Analysis/ScalarEvolution.h" 76 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 77 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 78 #include "llvm/Analysis/TargetLibraryInfo.h" 79 #include "llvm/Analysis/TargetTransformInfo.h" 80 #include "llvm/Config/llvm-config.h" 81 #include "llvm/IR/BasicBlock.h" 82 #include "llvm/IR/Constant.h" 83 #include "llvm/IR/Constants.h" 84 #include "llvm/IR/DerivedTypes.h" 85 #include "llvm/IR/Dominators.h" 86 #include "llvm/IR/GlobalValue.h" 87 #include "llvm/IR/IRBuilder.h" 88 #include "llvm/IR/InstrTypes.h" 89 #include "llvm/IR/Instruction.h" 90 #include "llvm/IR/Instructions.h" 91 #include "llvm/IR/IntrinsicInst.h" 92 #include "llvm/IR/Intrinsics.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/OperandTraits.h" 95 #include "llvm/IR/Operator.h" 96 #include "llvm/IR/PassManager.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/Use.h" 99 #include "llvm/IR/User.h" 100 #include "llvm/IR/Value.h" 101 #include "llvm/IR/ValueHandle.h" 102 #include "llvm/InitializePasses.h" 103 #include "llvm/Pass.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MathExtras.h" 110 #include "llvm/Support/raw_ostream.h" 111 #include "llvm/Transforms/Scalar.h" 112 #include "llvm/Transforms/Utils.h" 113 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 114 #include "llvm/Transforms/Utils/Local.h" 115 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstdlib> 121 #include <iterator> 122 #include <limits> 123 #include <map> 124 #include <numeric> 125 #include <utility> 126 127 using namespace llvm; 128 129 #define DEBUG_TYPE "loop-reduce" 130 131 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 132 /// bail out. This threshold is far beyond the number of users that LSR can 133 /// conceivably solve, so it should not affect generated code, but catches the 134 /// worst cases before LSR burns too much compile time and stack space. 135 static const unsigned MaxIVUsers = 200; 136 137 // Temporary flag to cleanup congruent phis after LSR phi expansion. 138 // It's currently disabled until we can determine whether it's truly useful or 139 // not. The flag should be removed after the v3.0 release. 140 // This is now needed for ivchains. 141 static cl::opt<bool> EnablePhiElim( 142 "enable-lsr-phielim", cl::Hidden, cl::init(true), 143 cl::desc("Enable LSR phi elimination")); 144 145 // The flag adds instruction count to solutions cost comparision. 146 static cl::opt<bool> InsnsCost( 147 "lsr-insns-cost", cl::Hidden, cl::init(true), 148 cl::desc("Add instruction count to a LSR cost model")); 149 150 // Flag to choose how to narrow complex lsr solution 151 static cl::opt<bool> LSRExpNarrow( 152 "lsr-exp-narrow", cl::Hidden, cl::init(false), 153 cl::desc("Narrow LSR complex solution using" 154 " expectation of registers number")); 155 156 // Flag to narrow search space by filtering non-optimal formulae with 157 // the same ScaledReg and Scale. 158 static cl::opt<bool> FilterSameScaledReg( 159 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 160 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 161 " with the same ScaledReg and Scale")); 162 163 static cl::opt<bool> EnableBackedgeIndexing( 164 "lsr-backedge-indexing", cl::Hidden, cl::init(true), 165 cl::desc("Enable the generation of cross iteration indexed memops")); 166 167 static cl::opt<unsigned> ComplexityLimit( 168 "lsr-complexity-limit", cl::Hidden, 169 cl::init(std::numeric_limits<uint16_t>::max()), 170 cl::desc("LSR search space complexity limit")); 171 172 static cl::opt<unsigned> SetupCostDepthLimit( 173 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 174 cl::desc("The limit on recursion depth for LSRs setup cost")); 175 176 #ifndef NDEBUG 177 // Stress test IV chain generation. 178 static cl::opt<bool> StressIVChain( 179 "stress-ivchain", cl::Hidden, cl::init(false), 180 cl::desc("Stress test LSR IV chains")); 181 #else 182 static bool StressIVChain = false; 183 #endif 184 185 namespace { 186 187 struct MemAccessTy { 188 /// Used in situations where the accessed memory type is unknown. 189 static const unsigned UnknownAddressSpace = 190 std::numeric_limits<unsigned>::max(); 191 192 Type *MemTy = nullptr; 193 unsigned AddrSpace = UnknownAddressSpace; 194 195 MemAccessTy() = default; 196 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 197 198 bool operator==(MemAccessTy Other) const { 199 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 200 } 201 202 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 203 204 static MemAccessTy getUnknown(LLVMContext &Ctx, 205 unsigned AS = UnknownAddressSpace) { 206 return MemAccessTy(Type::getVoidTy(Ctx), AS); 207 } 208 209 Type *getType() { return MemTy; } 210 }; 211 212 /// This class holds data which is used to order reuse candidates. 213 class RegSortData { 214 public: 215 /// This represents the set of LSRUse indices which reference 216 /// a particular register. 217 SmallBitVector UsedByIndices; 218 219 void print(raw_ostream &OS) const; 220 void dump() const; 221 }; 222 223 } // end anonymous namespace 224 225 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 226 void RegSortData::print(raw_ostream &OS) const { 227 OS << "[NumUses=" << UsedByIndices.count() << ']'; 228 } 229 230 LLVM_DUMP_METHOD void RegSortData::dump() const { 231 print(errs()); errs() << '\n'; 232 } 233 #endif 234 235 namespace { 236 237 /// Map register candidates to information about how they are used. 238 class RegUseTracker { 239 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 240 241 RegUsesTy RegUsesMap; 242 SmallVector<const SCEV *, 16> RegSequence; 243 244 public: 245 void countRegister(const SCEV *Reg, size_t LUIdx); 246 void dropRegister(const SCEV *Reg, size_t LUIdx); 247 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 248 249 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 250 251 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 252 253 void clear(); 254 255 using iterator = SmallVectorImpl<const SCEV *>::iterator; 256 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 257 258 iterator begin() { return RegSequence.begin(); } 259 iterator end() { return RegSequence.end(); } 260 const_iterator begin() const { return RegSequence.begin(); } 261 const_iterator end() const { return RegSequence.end(); } 262 }; 263 264 } // end anonymous namespace 265 266 void 267 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 268 std::pair<RegUsesTy::iterator, bool> Pair = 269 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 270 RegSortData &RSD = Pair.first->second; 271 if (Pair.second) 272 RegSequence.push_back(Reg); 273 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 274 RSD.UsedByIndices.set(LUIdx); 275 } 276 277 void 278 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 279 RegUsesTy::iterator It = RegUsesMap.find(Reg); 280 assert(It != RegUsesMap.end()); 281 RegSortData &RSD = It->second; 282 assert(RSD.UsedByIndices.size() > LUIdx); 283 RSD.UsedByIndices.reset(LUIdx); 284 } 285 286 void 287 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 288 assert(LUIdx <= LastLUIdx); 289 290 // Update RegUses. The data structure is not optimized for this purpose; 291 // we must iterate through it and update each of the bit vectors. 292 for (auto &Pair : RegUsesMap) { 293 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 294 if (LUIdx < UsedByIndices.size()) 295 UsedByIndices[LUIdx] = 296 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 297 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 298 } 299 } 300 301 bool 302 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 303 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 304 if (I == RegUsesMap.end()) 305 return false; 306 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 307 int i = UsedByIndices.find_first(); 308 if (i == -1) return false; 309 if ((size_t)i != LUIdx) return true; 310 return UsedByIndices.find_next(i) != -1; 311 } 312 313 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 314 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 315 assert(I != RegUsesMap.end() && "Unknown register!"); 316 return I->second.UsedByIndices; 317 } 318 319 void RegUseTracker::clear() { 320 RegUsesMap.clear(); 321 RegSequence.clear(); 322 } 323 324 namespace { 325 326 /// This class holds information that describes a formula for computing 327 /// satisfying a use. It may include broken-out immediates and scaled registers. 328 struct Formula { 329 /// Global base address used for complex addressing. 330 GlobalValue *BaseGV = nullptr; 331 332 /// Base offset for complex addressing. 333 int64_t BaseOffset = 0; 334 335 /// Whether any complex addressing has a base register. 336 bool HasBaseReg = false; 337 338 /// The scale of any complex addressing. 339 int64_t Scale = 0; 340 341 /// The list of "base" registers for this use. When this is non-empty. The 342 /// canonical representation of a formula is 343 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 344 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 345 /// 3. The reg containing recurrent expr related with currect loop in the 346 /// formula should be put in the ScaledReg. 347 /// #1 enforces that the scaled register is always used when at least two 348 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 349 /// #2 enforces that 1 * reg is reg. 350 /// #3 ensures invariant regs with respect to current loop can be combined 351 /// together in LSR codegen. 352 /// This invariant can be temporarily broken while building a formula. 353 /// However, every formula inserted into the LSRInstance must be in canonical 354 /// form. 355 SmallVector<const SCEV *, 4> BaseRegs; 356 357 /// The 'scaled' register for this use. This should be non-null when Scale is 358 /// not zero. 359 const SCEV *ScaledReg = nullptr; 360 361 /// An additional constant offset which added near the use. This requires a 362 /// temporary register, but the offset itself can live in an add immediate 363 /// field rather than a register. 364 int64_t UnfoldedOffset = 0; 365 366 Formula() = default; 367 368 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 369 370 bool isCanonical(const Loop &L) const; 371 372 void canonicalize(const Loop &L); 373 374 bool unscale(); 375 376 bool hasZeroEnd() const; 377 378 size_t getNumRegs() const; 379 Type *getType() const; 380 381 void deleteBaseReg(const SCEV *&S); 382 383 bool referencesReg(const SCEV *S) const; 384 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 385 const RegUseTracker &RegUses) const; 386 387 void print(raw_ostream &OS) const; 388 void dump() const; 389 }; 390 391 } // end anonymous namespace 392 393 /// Recursion helper for initialMatch. 394 static void DoInitialMatch(const SCEV *S, Loop *L, 395 SmallVectorImpl<const SCEV *> &Good, 396 SmallVectorImpl<const SCEV *> &Bad, 397 ScalarEvolution &SE) { 398 // Collect expressions which properly dominate the loop header. 399 if (SE.properlyDominates(S, L->getHeader())) { 400 Good.push_back(S); 401 return; 402 } 403 404 // Look at add operands. 405 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 406 for (const SCEV *S : Add->operands()) 407 DoInitialMatch(S, L, Good, Bad, SE); 408 return; 409 } 410 411 // Look at addrec operands. 412 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 413 if (!AR->getStart()->isZero() && AR->isAffine()) { 414 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 415 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 416 AR->getStepRecurrence(SE), 417 // FIXME: AR->getNoWrapFlags() 418 AR->getLoop(), SCEV::FlagAnyWrap), 419 L, Good, Bad, SE); 420 return; 421 } 422 423 // Handle a multiplication by -1 (negation) if it didn't fold. 424 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 425 if (Mul->getOperand(0)->isAllOnesValue()) { 426 SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end()); 427 const SCEV *NewMul = SE.getMulExpr(Ops); 428 429 SmallVector<const SCEV *, 4> MyGood; 430 SmallVector<const SCEV *, 4> MyBad; 431 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 432 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 433 SE.getEffectiveSCEVType(NewMul->getType()))); 434 for (const SCEV *S : MyGood) 435 Good.push_back(SE.getMulExpr(NegOne, S)); 436 for (const SCEV *S : MyBad) 437 Bad.push_back(SE.getMulExpr(NegOne, S)); 438 return; 439 } 440 441 // Ok, we can't do anything interesting. Just stuff the whole thing into a 442 // register and hope for the best. 443 Bad.push_back(S); 444 } 445 446 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 447 /// all loop-invariant and loop-computable values in a single base register. 448 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 449 SmallVector<const SCEV *, 4> Good; 450 SmallVector<const SCEV *, 4> Bad; 451 DoInitialMatch(S, L, Good, Bad, SE); 452 if (!Good.empty()) { 453 const SCEV *Sum = SE.getAddExpr(Good); 454 if (!Sum->isZero()) 455 BaseRegs.push_back(Sum); 456 HasBaseReg = true; 457 } 458 if (!Bad.empty()) { 459 const SCEV *Sum = SE.getAddExpr(Bad); 460 if (!Sum->isZero()) 461 BaseRegs.push_back(Sum); 462 HasBaseReg = true; 463 } 464 canonicalize(*L); 465 } 466 467 /// Check whether or not this formula satisfies the canonical 468 /// representation. 469 /// \see Formula::BaseRegs. 470 bool Formula::isCanonical(const Loop &L) const { 471 if (!ScaledReg) 472 return BaseRegs.size() <= 1; 473 474 if (Scale != 1) 475 return true; 476 477 if (Scale == 1 && BaseRegs.empty()) 478 return false; 479 480 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 481 if (SAR && SAR->getLoop() == &L) 482 return true; 483 484 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 485 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 486 // loop, we want to swap the reg in BaseRegs with ScaledReg. 487 auto I = 488 find_if(make_range(BaseRegs.begin(), BaseRegs.end()), [&](const SCEV *S) { 489 return isa<const SCEVAddRecExpr>(S) && 490 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 491 }); 492 return I == BaseRegs.end(); 493 } 494 495 /// Helper method to morph a formula into its canonical representation. 496 /// \see Formula::BaseRegs. 497 /// Every formula having more than one base register, must use the ScaledReg 498 /// field. Otherwise, we would have to do special cases everywhere in LSR 499 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 500 /// On the other hand, 1*reg should be canonicalized into reg. 501 void Formula::canonicalize(const Loop &L) { 502 if (isCanonical(L)) 503 return; 504 // So far we did not need this case. This is easy to implement but it is 505 // useless to maintain dead code. Beside it could hurt compile time. 506 assert(!BaseRegs.empty() && "1*reg => reg, should not be needed."); 507 508 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 509 if (!ScaledReg) { 510 ScaledReg = BaseRegs.back(); 511 BaseRegs.pop_back(); 512 Scale = 1; 513 } 514 515 // If ScaledReg is an invariant with respect to L, find the reg from 516 // BaseRegs containing the recurrent expr related with Loop L. Swap the 517 // reg with ScaledReg. 518 const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg); 519 if (!SAR || SAR->getLoop() != &L) { 520 auto I = find_if(make_range(BaseRegs.begin(), BaseRegs.end()), 521 [&](const SCEV *S) { 522 return isa<const SCEVAddRecExpr>(S) && 523 (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 524 }); 525 if (I != BaseRegs.end()) 526 std::swap(ScaledReg, *I); 527 } 528 } 529 530 /// Get rid of the scale in the formula. 531 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 532 /// \return true if it was possible to get rid of the scale, false otherwise. 533 /// \note After this operation the formula may not be in the canonical form. 534 bool Formula::unscale() { 535 if (Scale != 1) 536 return false; 537 Scale = 0; 538 BaseRegs.push_back(ScaledReg); 539 ScaledReg = nullptr; 540 return true; 541 } 542 543 bool Formula::hasZeroEnd() const { 544 if (UnfoldedOffset || BaseOffset) 545 return false; 546 if (BaseRegs.size() != 1 || ScaledReg) 547 return false; 548 return true; 549 } 550 551 /// Return the total number of register operands used by this formula. This does 552 /// not include register uses implied by non-constant addrec strides. 553 size_t Formula::getNumRegs() const { 554 return !!ScaledReg + BaseRegs.size(); 555 } 556 557 /// Return the type of this formula, if it has one, or null otherwise. This type 558 /// is meaningless except for the bit size. 559 Type *Formula::getType() const { 560 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 561 ScaledReg ? ScaledReg->getType() : 562 BaseGV ? BaseGV->getType() : 563 nullptr; 564 } 565 566 /// Delete the given base reg from the BaseRegs list. 567 void Formula::deleteBaseReg(const SCEV *&S) { 568 if (&S != &BaseRegs.back()) 569 std::swap(S, BaseRegs.back()); 570 BaseRegs.pop_back(); 571 } 572 573 /// Test if this formula references the given register. 574 bool Formula::referencesReg(const SCEV *S) const { 575 return S == ScaledReg || is_contained(BaseRegs, S); 576 } 577 578 /// Test whether this formula uses registers which are used by uses other than 579 /// the use with the given index. 580 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 581 const RegUseTracker &RegUses) const { 582 if (ScaledReg) 583 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 584 return true; 585 for (const SCEV *BaseReg : BaseRegs) 586 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 587 return true; 588 return false; 589 } 590 591 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 592 void Formula::print(raw_ostream &OS) const { 593 bool First = true; 594 if (BaseGV) { 595 if (!First) OS << " + "; else First = false; 596 BaseGV->printAsOperand(OS, /*PrintType=*/false); 597 } 598 if (BaseOffset != 0) { 599 if (!First) OS << " + "; else First = false; 600 OS << BaseOffset; 601 } 602 for (const SCEV *BaseReg : BaseRegs) { 603 if (!First) OS << " + "; else First = false; 604 OS << "reg(" << *BaseReg << ')'; 605 } 606 if (HasBaseReg && BaseRegs.empty()) { 607 if (!First) OS << " + "; else First = false; 608 OS << "**error: HasBaseReg**"; 609 } else if (!HasBaseReg && !BaseRegs.empty()) { 610 if (!First) OS << " + "; else First = false; 611 OS << "**error: !HasBaseReg**"; 612 } 613 if (Scale != 0) { 614 if (!First) OS << " + "; else First = false; 615 OS << Scale << "*reg("; 616 if (ScaledReg) 617 OS << *ScaledReg; 618 else 619 OS << "<unknown>"; 620 OS << ')'; 621 } 622 if (UnfoldedOffset != 0) { 623 if (!First) OS << " + "; 624 OS << "imm(" << UnfoldedOffset << ')'; 625 } 626 } 627 628 LLVM_DUMP_METHOD void Formula::dump() const { 629 print(errs()); errs() << '\n'; 630 } 631 #endif 632 633 /// Return true if the given addrec can be sign-extended without changing its 634 /// value. 635 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 636 Type *WideTy = 637 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 638 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 639 } 640 641 /// Return true if the given add can be sign-extended without changing its 642 /// value. 643 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 644 Type *WideTy = 645 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 646 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 647 } 648 649 /// Return true if the given mul can be sign-extended without changing its 650 /// value. 651 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 652 Type *WideTy = 653 IntegerType::get(SE.getContext(), 654 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 655 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 656 } 657 658 /// Return an expression for LHS /s RHS, if it can be determined and if the 659 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 660 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that 661 /// the multiplication may overflow, which is useful when the result will be 662 /// used in a context where the most significant bits are ignored. 663 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 664 ScalarEvolution &SE, 665 bool IgnoreSignificantBits = false) { 666 // Handle the trivial case, which works for any SCEV type. 667 if (LHS == RHS) 668 return SE.getConstant(LHS->getType(), 1); 669 670 // Handle a few RHS special cases. 671 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 672 if (RC) { 673 const APInt &RA = RC->getAPInt(); 674 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 675 // some folding. 676 if (RA.isAllOnesValue()) 677 return SE.getMulExpr(LHS, RC); 678 // Handle x /s 1 as x. 679 if (RA == 1) 680 return LHS; 681 } 682 683 // Check for a division of a constant by a constant. 684 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 685 if (!RC) 686 return nullptr; 687 const APInt &LA = C->getAPInt(); 688 const APInt &RA = RC->getAPInt(); 689 if (LA.srem(RA) != 0) 690 return nullptr; 691 return SE.getConstant(LA.sdiv(RA)); 692 } 693 694 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 695 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 696 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 697 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 698 IgnoreSignificantBits); 699 if (!Step) return nullptr; 700 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 701 IgnoreSignificantBits); 702 if (!Start) return nullptr; 703 // FlagNW is independent of the start value, step direction, and is 704 // preserved with smaller magnitude steps. 705 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 706 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 707 } 708 return nullptr; 709 } 710 711 // Distribute the sdiv over add operands, if the add doesn't overflow. 712 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 713 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 714 SmallVector<const SCEV *, 8> Ops; 715 for (const SCEV *S : Add->operands()) { 716 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 717 if (!Op) return nullptr; 718 Ops.push_back(Op); 719 } 720 return SE.getAddExpr(Ops); 721 } 722 return nullptr; 723 } 724 725 // Check for a multiply operand that we can pull RHS out of. 726 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 727 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 728 SmallVector<const SCEV *, 4> Ops; 729 bool Found = false; 730 for (const SCEV *S : Mul->operands()) { 731 if (!Found) 732 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 733 IgnoreSignificantBits)) { 734 S = Q; 735 Found = true; 736 } 737 Ops.push_back(S); 738 } 739 return Found ? SE.getMulExpr(Ops) : nullptr; 740 } 741 return nullptr; 742 } 743 744 // Otherwise we don't know. 745 return nullptr; 746 } 747 748 /// If S involves the addition of a constant integer value, return that integer 749 /// value, and mutate S to point to a new SCEV with that value excluded. 750 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 751 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 752 if (C->getAPInt().getMinSignedBits() <= 64) { 753 S = SE.getConstant(C->getType(), 0); 754 return C->getValue()->getSExtValue(); 755 } 756 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 757 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 758 int64_t Result = ExtractImmediate(NewOps.front(), SE); 759 if (Result != 0) 760 S = SE.getAddExpr(NewOps); 761 return Result; 762 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 763 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 764 int64_t Result = ExtractImmediate(NewOps.front(), SE); 765 if (Result != 0) 766 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 767 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 768 SCEV::FlagAnyWrap); 769 return Result; 770 } 771 return 0; 772 } 773 774 /// If S involves the addition of a GlobalValue address, return that symbol, and 775 /// mutate S to point to a new SCEV with that value excluded. 776 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 777 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 778 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 779 S = SE.getConstant(GV->getType(), 0); 780 return GV; 781 } 782 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 783 SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end()); 784 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 785 if (Result) 786 S = SE.getAddExpr(NewOps); 787 return Result; 788 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 789 SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end()); 790 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 791 if (Result) 792 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 793 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 794 SCEV::FlagAnyWrap); 795 return Result; 796 } 797 return nullptr; 798 } 799 800 /// Returns true if the specified instruction is using the specified value as an 801 /// address. 802 static bool isAddressUse(const TargetTransformInfo &TTI, 803 Instruction *Inst, Value *OperandVal) { 804 bool isAddress = isa<LoadInst>(Inst); 805 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 806 if (SI->getPointerOperand() == OperandVal) 807 isAddress = true; 808 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 809 // Addressing modes can also be folded into prefetches and a variety 810 // of intrinsics. 811 switch (II->getIntrinsicID()) { 812 case Intrinsic::memset: 813 case Intrinsic::prefetch: 814 case Intrinsic::masked_load: 815 if (II->getArgOperand(0) == OperandVal) 816 isAddress = true; 817 break; 818 case Intrinsic::masked_store: 819 if (II->getArgOperand(1) == OperandVal) 820 isAddress = true; 821 break; 822 case Intrinsic::memmove: 823 case Intrinsic::memcpy: 824 if (II->getArgOperand(0) == OperandVal || 825 II->getArgOperand(1) == OperandVal) 826 isAddress = true; 827 break; 828 default: { 829 MemIntrinsicInfo IntrInfo; 830 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 831 if (IntrInfo.PtrVal == OperandVal) 832 isAddress = true; 833 } 834 } 835 } 836 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 837 if (RMW->getPointerOperand() == OperandVal) 838 isAddress = true; 839 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 840 if (CmpX->getPointerOperand() == OperandVal) 841 isAddress = true; 842 } 843 return isAddress; 844 } 845 846 /// Return the type of the memory being accessed. 847 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 848 Instruction *Inst, Value *OperandVal) { 849 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace); 850 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 851 AccessTy.MemTy = SI->getOperand(0)->getType(); 852 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 853 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 854 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 855 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 856 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 857 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 858 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 859 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 860 switch (II->getIntrinsicID()) { 861 case Intrinsic::prefetch: 862 case Intrinsic::memset: 863 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 864 AccessTy.MemTy = OperandVal->getType(); 865 break; 866 case Intrinsic::memmove: 867 case Intrinsic::memcpy: 868 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 869 AccessTy.MemTy = OperandVal->getType(); 870 break; 871 case Intrinsic::masked_load: 872 AccessTy.AddrSpace = 873 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 874 break; 875 case Intrinsic::masked_store: 876 AccessTy.MemTy = II->getOperand(0)->getType(); 877 AccessTy.AddrSpace = 878 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 879 break; 880 default: { 881 MemIntrinsicInfo IntrInfo; 882 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 883 AccessTy.AddrSpace 884 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 885 } 886 887 break; 888 } 889 } 890 } 891 892 // All pointers have the same requirements, so canonicalize them to an 893 // arbitrary pointer type to minimize variation. 894 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy)) 895 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1), 896 PTy->getAddressSpace()); 897 898 return AccessTy; 899 } 900 901 /// Return true if this AddRec is already a phi in its loop. 902 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 903 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 904 if (SE.isSCEVable(PN.getType()) && 905 (SE.getEffectiveSCEVType(PN.getType()) == 906 SE.getEffectiveSCEVType(AR->getType())) && 907 SE.getSCEV(&PN) == AR) 908 return true; 909 } 910 return false; 911 } 912 913 /// Check if expanding this expression is likely to incur significant cost. This 914 /// is tricky because SCEV doesn't track which expressions are actually computed 915 /// by the current IR. 916 /// 917 /// We currently allow expansion of IV increments that involve adds, 918 /// multiplication by constants, and AddRecs from existing phis. 919 /// 920 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 921 /// obvious multiple of the UDivExpr. 922 static bool isHighCostExpansion(const SCEV *S, 923 SmallPtrSetImpl<const SCEV*> &Processed, 924 ScalarEvolution &SE) { 925 // Zero/One operand expressions 926 switch (S->getSCEVType()) { 927 case scUnknown: 928 case scConstant: 929 return false; 930 case scTruncate: 931 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 932 Processed, SE); 933 case scZeroExtend: 934 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 935 Processed, SE); 936 case scSignExtend: 937 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 938 Processed, SE); 939 default: 940 break; 941 } 942 943 if (!Processed.insert(S).second) 944 return false; 945 946 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 947 for (const SCEV *S : Add->operands()) { 948 if (isHighCostExpansion(S, Processed, SE)) 949 return true; 950 } 951 return false; 952 } 953 954 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 955 if (Mul->getNumOperands() == 2) { 956 // Multiplication by a constant is ok 957 if (isa<SCEVConstant>(Mul->getOperand(0))) 958 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 959 960 // If we have the value of one operand, check if an existing 961 // multiplication already generates this expression. 962 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 963 Value *UVal = U->getValue(); 964 for (User *UR : UVal->users()) { 965 // If U is a constant, it may be used by a ConstantExpr. 966 Instruction *UI = dyn_cast<Instruction>(UR); 967 if (UI && UI->getOpcode() == Instruction::Mul && 968 SE.isSCEVable(UI->getType())) { 969 return SE.getSCEV(UI) == Mul; 970 } 971 } 972 } 973 } 974 } 975 976 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 977 if (isExistingPhi(AR, SE)) 978 return false; 979 } 980 981 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 982 return true; 983 } 984 985 namespace { 986 987 class LSRUse; 988 989 } // end anonymous namespace 990 991 /// Check if the addressing mode defined by \p F is completely 992 /// folded in \p LU at isel time. 993 /// This includes address-mode folding and special icmp tricks. 994 /// This function returns true if \p LU can accommodate what \p F 995 /// defines and up to 1 base + 1 scaled + offset. 996 /// In other words, if \p F has several base registers, this function may 997 /// still return true. Therefore, users still need to account for 998 /// additional base registers and/or unfolded offsets to derive an 999 /// accurate cost model. 1000 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1001 const LSRUse &LU, const Formula &F); 1002 1003 // Get the cost of the scaling factor used in F for LU. 1004 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1005 const LSRUse &LU, const Formula &F, 1006 const Loop &L); 1007 1008 namespace { 1009 1010 /// This class is used to measure and compare candidate formulae. 1011 class Cost { 1012 const Loop *L = nullptr; 1013 ScalarEvolution *SE = nullptr; 1014 const TargetTransformInfo *TTI = nullptr; 1015 TargetTransformInfo::LSRCost C; 1016 1017 public: 1018 Cost() = delete; 1019 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI) : 1020 L(L), SE(&SE), TTI(&TTI) { 1021 C.Insns = 0; 1022 C.NumRegs = 0; 1023 C.AddRecCost = 0; 1024 C.NumIVMuls = 0; 1025 C.NumBaseAdds = 0; 1026 C.ImmCost = 0; 1027 C.SetupCost = 0; 1028 C.ScaleCost = 0; 1029 } 1030 1031 bool isLess(Cost &Other); 1032 1033 void Lose(); 1034 1035 #ifndef NDEBUG 1036 // Once any of the metrics loses, they must all remain losers. 1037 bool isValid() { 1038 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1039 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1040 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1041 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1042 } 1043 #endif 1044 1045 bool isLoser() { 1046 assert(isValid() && "invalid cost"); 1047 return C.NumRegs == ~0u; 1048 } 1049 1050 void RateFormula(const Formula &F, 1051 SmallPtrSetImpl<const SCEV *> &Regs, 1052 const DenseSet<const SCEV *> &VisitedRegs, 1053 const LSRUse &LU, 1054 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1055 1056 void print(raw_ostream &OS) const; 1057 void dump() const; 1058 1059 private: 1060 void RateRegister(const Formula &F, const SCEV *Reg, 1061 SmallPtrSetImpl<const SCEV *> &Regs); 1062 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1063 SmallPtrSetImpl<const SCEV *> &Regs, 1064 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1065 }; 1066 1067 /// An operand value in an instruction which is to be replaced with some 1068 /// equivalent, possibly strength-reduced, replacement. 1069 struct LSRFixup { 1070 /// The instruction which will be updated. 1071 Instruction *UserInst = nullptr; 1072 1073 /// The operand of the instruction which will be replaced. The operand may be 1074 /// used more than once; every instance will be replaced. 1075 Value *OperandValToReplace = nullptr; 1076 1077 /// If this user is to use the post-incremented value of an induction 1078 /// variable, this set is non-empty and holds the loops associated with the 1079 /// induction variable. 1080 PostIncLoopSet PostIncLoops; 1081 1082 /// A constant offset to be added to the LSRUse expression. This allows 1083 /// multiple fixups to share the same LSRUse with different offsets, for 1084 /// example in an unrolled loop. 1085 int64_t Offset = 0; 1086 1087 LSRFixup() = default; 1088 1089 bool isUseFullyOutsideLoop(const Loop *L) const; 1090 1091 void print(raw_ostream &OS) const; 1092 void dump() const; 1093 }; 1094 1095 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1096 /// SmallVectors of const SCEV*. 1097 struct UniquifierDenseMapInfo { 1098 static SmallVector<const SCEV *, 4> getEmptyKey() { 1099 SmallVector<const SCEV *, 4> V; 1100 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1101 return V; 1102 } 1103 1104 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1105 SmallVector<const SCEV *, 4> V; 1106 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1107 return V; 1108 } 1109 1110 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1111 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1112 } 1113 1114 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1115 const SmallVector<const SCEV *, 4> &RHS) { 1116 return LHS == RHS; 1117 } 1118 }; 1119 1120 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1121 /// as uses invented by LSR itself. It includes information about what kinds of 1122 /// things can be folded into the user, information about the user itself, and 1123 /// information about how the use may be satisfied. TODO: Represent multiple 1124 /// users of the same expression in common? 1125 class LSRUse { 1126 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1127 1128 public: 1129 /// An enum for a kind of use, indicating what types of scaled and immediate 1130 /// operands it might support. 1131 enum KindType { 1132 Basic, ///< A normal use, with no folding. 1133 Special, ///< A special case of basic, allowing -1 scales. 1134 Address, ///< An address use; folding according to TargetLowering 1135 ICmpZero ///< An equality icmp with both operands folded into one. 1136 // TODO: Add a generic icmp too? 1137 }; 1138 1139 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1140 1141 KindType Kind; 1142 MemAccessTy AccessTy; 1143 1144 /// The list of operands which are to be replaced. 1145 SmallVector<LSRFixup, 8> Fixups; 1146 1147 /// Keep track of the min and max offsets of the fixups. 1148 int64_t MinOffset = std::numeric_limits<int64_t>::max(); 1149 int64_t MaxOffset = std::numeric_limits<int64_t>::min(); 1150 1151 /// This records whether all of the fixups using this LSRUse are outside of 1152 /// the loop, in which case some special-case heuristics may be used. 1153 bool AllFixupsOutsideLoop = true; 1154 1155 /// RigidFormula is set to true to guarantee that this use will be associated 1156 /// with a single formula--the one that initially matched. Some SCEV 1157 /// expressions cannot be expanded. This allows LSR to consider the registers 1158 /// used by those expressions without the need to expand them later after 1159 /// changing the formula. 1160 bool RigidFormula = false; 1161 1162 /// This records the widest use type for any fixup using this 1163 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1164 /// fixup widths to be equivalent, because the narrower one may be relying on 1165 /// the implicit truncation to truncate away bogus bits. 1166 Type *WidestFixupType = nullptr; 1167 1168 /// A list of ways to build a value that can satisfy this user. After the 1169 /// list is populated, one of these is selected heuristically and used to 1170 /// formulate a replacement for OperandValToReplace in UserInst. 1171 SmallVector<Formula, 12> Formulae; 1172 1173 /// The set of register candidates used by all formulae in this LSRUse. 1174 SmallPtrSet<const SCEV *, 4> Regs; 1175 1176 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1177 1178 LSRFixup &getNewFixup() { 1179 Fixups.push_back(LSRFixup()); 1180 return Fixups.back(); 1181 } 1182 1183 void pushFixup(LSRFixup &f) { 1184 Fixups.push_back(f); 1185 if (f.Offset > MaxOffset) 1186 MaxOffset = f.Offset; 1187 if (f.Offset < MinOffset) 1188 MinOffset = f.Offset; 1189 } 1190 1191 bool HasFormulaWithSameRegs(const Formula &F) const; 1192 float getNotSelectedProbability(const SCEV *Reg) const; 1193 bool InsertFormula(const Formula &F, const Loop &L); 1194 void DeleteFormula(Formula &F); 1195 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1196 1197 void print(raw_ostream &OS) const; 1198 void dump() const; 1199 }; 1200 1201 } // end anonymous namespace 1202 1203 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1204 LSRUse::KindType Kind, MemAccessTy AccessTy, 1205 GlobalValue *BaseGV, int64_t BaseOffset, 1206 bool HasBaseReg, int64_t Scale, 1207 Instruction *Fixup = nullptr); 1208 1209 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1210 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1211 return 1; 1212 if (Depth == 0) 1213 return 0; 1214 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1215 return getSetupCost(S->getStart(), Depth - 1); 1216 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1217 return getSetupCost(S->getOperand(), Depth - 1); 1218 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1219 return std::accumulate(S->op_begin(), S->op_end(), 0, 1220 [&](unsigned i, const SCEV *Reg) { 1221 return i + getSetupCost(Reg, Depth - 1); 1222 }); 1223 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1224 return getSetupCost(S->getLHS(), Depth - 1) + 1225 getSetupCost(S->getRHS(), Depth - 1); 1226 return 0; 1227 } 1228 1229 /// Tally up interesting quantities from the given register. 1230 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1231 SmallPtrSetImpl<const SCEV *> &Regs) { 1232 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1233 // If this is an addrec for another loop, it should be an invariant 1234 // with respect to L since L is the innermost loop (at least 1235 // for now LSR only handles innermost loops). 1236 if (AR->getLoop() != L) { 1237 // If the AddRec exists, consider it's register free and leave it alone. 1238 if (isExistingPhi(AR, *SE) && !TTI->shouldFavorPostInc()) 1239 return; 1240 1241 // It is bad to allow LSR for current loop to add induction variables 1242 // for its sibling loops. 1243 if (!AR->getLoop()->contains(L)) { 1244 Lose(); 1245 return; 1246 } 1247 1248 // Otherwise, it will be an invariant with respect to Loop L. 1249 ++C.NumRegs; 1250 return; 1251 } 1252 1253 unsigned LoopCost = 1; 1254 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1255 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1256 1257 // If the step size matches the base offset, we could use pre-indexed 1258 // addressing. 1259 if (TTI->shouldFavorBackedgeIndex(L)) { 1260 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1261 if (Step->getAPInt() == F.BaseOffset) 1262 LoopCost = 0; 1263 } 1264 1265 if (TTI->shouldFavorPostInc()) { 1266 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1267 if (isa<SCEVConstant>(LoopStep)) { 1268 const SCEV *LoopStart = AR->getStart(); 1269 if (!isa<SCEVConstant>(LoopStart) && 1270 SE->isLoopInvariant(LoopStart, L)) 1271 LoopCost = 0; 1272 } 1273 } 1274 } 1275 C.AddRecCost += LoopCost; 1276 1277 // Add the step value register, if it needs one. 1278 // TODO: The non-affine case isn't precisely modeled here. 1279 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1280 if (!Regs.count(AR->getOperand(1))) { 1281 RateRegister(F, AR->getOperand(1), Regs); 1282 if (isLoser()) 1283 return; 1284 } 1285 } 1286 } 1287 ++C.NumRegs; 1288 1289 // Rough heuristic; favor registers which don't require extra setup 1290 // instructions in the preheader. 1291 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1292 // Ensure we don't, even with the recusion limit, produce invalid costs. 1293 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1294 1295 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1296 SE->hasComputableLoopEvolution(Reg, L); 1297 } 1298 1299 /// Record this register in the set. If we haven't seen it before, rate 1300 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1301 /// one of those regs an instant loser. 1302 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1303 SmallPtrSetImpl<const SCEV *> &Regs, 1304 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1305 if (LoserRegs && LoserRegs->count(Reg)) { 1306 Lose(); 1307 return; 1308 } 1309 if (Regs.insert(Reg).second) { 1310 RateRegister(F, Reg, Regs); 1311 if (LoserRegs && isLoser()) 1312 LoserRegs->insert(Reg); 1313 } 1314 } 1315 1316 void Cost::RateFormula(const Formula &F, 1317 SmallPtrSetImpl<const SCEV *> &Regs, 1318 const DenseSet<const SCEV *> &VisitedRegs, 1319 const LSRUse &LU, 1320 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1321 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1322 // Tally up the registers. 1323 unsigned PrevAddRecCost = C.AddRecCost; 1324 unsigned PrevNumRegs = C.NumRegs; 1325 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1326 if (const SCEV *ScaledReg = F.ScaledReg) { 1327 if (VisitedRegs.count(ScaledReg)) { 1328 Lose(); 1329 return; 1330 } 1331 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1332 if (isLoser()) 1333 return; 1334 } 1335 for (const SCEV *BaseReg : F.BaseRegs) { 1336 if (VisitedRegs.count(BaseReg)) { 1337 Lose(); 1338 return; 1339 } 1340 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1341 if (isLoser()) 1342 return; 1343 } 1344 1345 // Determine how many (unfolded) adds we'll need inside the loop. 1346 size_t NumBaseParts = F.getNumRegs(); 1347 if (NumBaseParts > 1) 1348 // Do not count the base and a possible second register if the target 1349 // allows to fold 2 registers. 1350 C.NumBaseAdds += 1351 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1352 C.NumBaseAdds += (F.UnfoldedOffset != 0); 1353 1354 // Accumulate non-free scaling amounts. 1355 C.ScaleCost += getScalingFactorCost(*TTI, LU, F, *L); 1356 1357 // Tally up the non-zero immediates. 1358 for (const LSRFixup &Fixup : LU.Fixups) { 1359 int64_t O = Fixup.Offset; 1360 int64_t Offset = (uint64_t)O + F.BaseOffset; 1361 if (F.BaseGV) 1362 C.ImmCost += 64; // Handle symbolic values conservatively. 1363 // TODO: This should probably be the pointer size. 1364 else if (Offset != 0) 1365 C.ImmCost += APInt(64, Offset, true).getMinSignedBits(); 1366 1367 // Check with target if this offset with this instruction is 1368 // specifically not supported. 1369 if (LU.Kind == LSRUse::Address && Offset != 0 && 1370 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1371 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1372 C.NumBaseAdds++; 1373 } 1374 1375 // If we don't count instruction cost exit here. 1376 if (!InsnsCost) { 1377 assert(isValid() && "invalid cost"); 1378 return; 1379 } 1380 1381 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1382 // additional instruction (at least fill). 1383 // TODO: Need distinguish register class? 1384 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1385 TTI->getRegisterClassForType(false, F.getType())) - 1; 1386 if (C.NumRegs > TTIRegNum) { 1387 // Cost already exceeded TTIRegNum, then only newly added register can add 1388 // new instructions. 1389 if (PrevNumRegs > TTIRegNum) 1390 C.Insns += (C.NumRegs - PrevNumRegs); 1391 else 1392 C.Insns += (C.NumRegs - TTIRegNum); 1393 } 1394 1395 // If ICmpZero formula ends with not 0, it could not be replaced by 1396 // just add or sub. We'll need to compare final result of AddRec. 1397 // That means we'll need an additional instruction. But if the target can 1398 // macro-fuse a compare with a branch, don't count this extra instruction. 1399 // For -10 + {0, +, 1}: 1400 // i = i + 1; 1401 // cmp i, 10 1402 // 1403 // For {-10, +, 1}: 1404 // i = i + 1; 1405 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1406 !TTI->canMacroFuseCmp()) 1407 C.Insns++; 1408 // Each new AddRec adds 1 instruction to calculation. 1409 C.Insns += (C.AddRecCost - PrevAddRecCost); 1410 1411 // BaseAdds adds instructions for unfolded registers. 1412 if (LU.Kind != LSRUse::ICmpZero) 1413 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1414 assert(isValid() && "invalid cost"); 1415 } 1416 1417 /// Set this cost to a losing value. 1418 void Cost::Lose() { 1419 C.Insns = std::numeric_limits<unsigned>::max(); 1420 C.NumRegs = std::numeric_limits<unsigned>::max(); 1421 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1422 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1423 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1424 C.ImmCost = std::numeric_limits<unsigned>::max(); 1425 C.SetupCost = std::numeric_limits<unsigned>::max(); 1426 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1427 } 1428 1429 /// Choose the lower cost. 1430 bool Cost::isLess(Cost &Other) { 1431 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1432 C.Insns != Other.C.Insns) 1433 return C.Insns < Other.C.Insns; 1434 return TTI->isLSRCostLess(C, Other.C); 1435 } 1436 1437 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1438 void Cost::print(raw_ostream &OS) const { 1439 if (InsnsCost) 1440 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1441 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1442 if (C.AddRecCost != 0) 1443 OS << ", with addrec cost " << C.AddRecCost; 1444 if (C.NumIVMuls != 0) 1445 OS << ", plus " << C.NumIVMuls << " IV mul" 1446 << (C.NumIVMuls == 1 ? "" : "s"); 1447 if (C.NumBaseAdds != 0) 1448 OS << ", plus " << C.NumBaseAdds << " base add" 1449 << (C.NumBaseAdds == 1 ? "" : "s"); 1450 if (C.ScaleCost != 0) 1451 OS << ", plus " << C.ScaleCost << " scale cost"; 1452 if (C.ImmCost != 0) 1453 OS << ", plus " << C.ImmCost << " imm cost"; 1454 if (C.SetupCost != 0) 1455 OS << ", plus " << C.SetupCost << " setup cost"; 1456 } 1457 1458 LLVM_DUMP_METHOD void Cost::dump() const { 1459 print(errs()); errs() << '\n'; 1460 } 1461 #endif 1462 1463 /// Test whether this fixup always uses its value outside of the given loop. 1464 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1465 // PHI nodes use their value in their incoming blocks. 1466 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1467 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1468 if (PN->getIncomingValue(i) == OperandValToReplace && 1469 L->contains(PN->getIncomingBlock(i))) 1470 return false; 1471 return true; 1472 } 1473 1474 return !L->contains(UserInst); 1475 } 1476 1477 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1478 void LSRFixup::print(raw_ostream &OS) const { 1479 OS << "UserInst="; 1480 // Store is common and interesting enough to be worth special-casing. 1481 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1482 OS << "store "; 1483 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1484 } else if (UserInst->getType()->isVoidTy()) 1485 OS << UserInst->getOpcodeName(); 1486 else 1487 UserInst->printAsOperand(OS, /*PrintType=*/false); 1488 1489 OS << ", OperandValToReplace="; 1490 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1491 1492 for (const Loop *PIL : PostIncLoops) { 1493 OS << ", PostIncLoop="; 1494 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1495 } 1496 1497 if (Offset != 0) 1498 OS << ", Offset=" << Offset; 1499 } 1500 1501 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1502 print(errs()); errs() << '\n'; 1503 } 1504 #endif 1505 1506 /// Test whether this use as a formula which has the same registers as the given 1507 /// formula. 1508 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1509 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1510 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1511 // Unstable sort by host order ok, because this is only used for uniquifying. 1512 llvm::sort(Key); 1513 return Uniquifier.count(Key); 1514 } 1515 1516 /// The function returns a probability of selecting formula without Reg. 1517 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1518 unsigned FNum = 0; 1519 for (const Formula &F : Formulae) 1520 if (F.referencesReg(Reg)) 1521 FNum++; 1522 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1523 } 1524 1525 /// If the given formula has not yet been inserted, add it to the list, and 1526 /// return true. Return false otherwise. The formula must be in canonical form. 1527 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1528 assert(F.isCanonical(L) && "Invalid canonical representation"); 1529 1530 if (!Formulae.empty() && RigidFormula) 1531 return false; 1532 1533 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1534 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1535 // Unstable sort by host order ok, because this is only used for uniquifying. 1536 llvm::sort(Key); 1537 1538 if (!Uniquifier.insert(Key).second) 1539 return false; 1540 1541 // Using a register to hold the value of 0 is not profitable. 1542 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1543 "Zero allocated in a scaled register!"); 1544 #ifndef NDEBUG 1545 for (const SCEV *BaseReg : F.BaseRegs) 1546 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1547 #endif 1548 1549 // Add the formula to the list. 1550 Formulae.push_back(F); 1551 1552 // Record registers now being used by this use. 1553 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1554 if (F.ScaledReg) 1555 Regs.insert(F.ScaledReg); 1556 1557 return true; 1558 } 1559 1560 /// Remove the given formula from this use's list. 1561 void LSRUse::DeleteFormula(Formula &F) { 1562 if (&F != &Formulae.back()) 1563 std::swap(F, Formulae.back()); 1564 Formulae.pop_back(); 1565 } 1566 1567 /// Recompute the Regs field, and update RegUses. 1568 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1569 // Now that we've filtered out some formulae, recompute the Regs set. 1570 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1571 Regs.clear(); 1572 for (const Formula &F : Formulae) { 1573 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1574 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1575 } 1576 1577 // Update the RegTracker. 1578 for (const SCEV *S : OldRegs) 1579 if (!Regs.count(S)) 1580 RegUses.dropRegister(S, LUIdx); 1581 } 1582 1583 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1584 void LSRUse::print(raw_ostream &OS) const { 1585 OS << "LSR Use: Kind="; 1586 switch (Kind) { 1587 case Basic: OS << "Basic"; break; 1588 case Special: OS << "Special"; break; 1589 case ICmpZero: OS << "ICmpZero"; break; 1590 case Address: 1591 OS << "Address of "; 1592 if (AccessTy.MemTy->isPointerTy()) 1593 OS << "pointer"; // the full pointer type could be really verbose 1594 else { 1595 OS << *AccessTy.MemTy; 1596 } 1597 1598 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1599 } 1600 1601 OS << ", Offsets={"; 1602 bool NeedComma = false; 1603 for (const LSRFixup &Fixup : Fixups) { 1604 if (NeedComma) OS << ','; 1605 OS << Fixup.Offset; 1606 NeedComma = true; 1607 } 1608 OS << '}'; 1609 1610 if (AllFixupsOutsideLoop) 1611 OS << ", all-fixups-outside-loop"; 1612 1613 if (WidestFixupType) 1614 OS << ", widest fixup type: " << *WidestFixupType; 1615 } 1616 1617 LLVM_DUMP_METHOD void LSRUse::dump() const { 1618 print(errs()); errs() << '\n'; 1619 } 1620 #endif 1621 1622 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1623 LSRUse::KindType Kind, MemAccessTy AccessTy, 1624 GlobalValue *BaseGV, int64_t BaseOffset, 1625 bool HasBaseReg, int64_t Scale, 1626 Instruction *Fixup/*= nullptr*/) { 1627 switch (Kind) { 1628 case LSRUse::Address: 1629 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset, 1630 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup); 1631 1632 case LSRUse::ICmpZero: 1633 // There's not even a target hook for querying whether it would be legal to 1634 // fold a GV into an ICmp. 1635 if (BaseGV) 1636 return false; 1637 1638 // ICmp only has two operands; don't allow more than two non-trivial parts. 1639 if (Scale != 0 && HasBaseReg && BaseOffset != 0) 1640 return false; 1641 1642 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1643 // putting the scaled register in the other operand of the icmp. 1644 if (Scale != 0 && Scale != -1) 1645 return false; 1646 1647 // If we have low-level target information, ask the target if it can fold an 1648 // integer immediate on an icmp. 1649 if (BaseOffset != 0) { 1650 // We have one of: 1651 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1652 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1653 // Offs is the ICmp immediate. 1654 if (Scale == 0) 1655 // The cast does the right thing with 1656 // std::numeric_limits<int64_t>::min(). 1657 BaseOffset = -(uint64_t)BaseOffset; 1658 return TTI.isLegalICmpImmediate(BaseOffset); 1659 } 1660 1661 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1662 return true; 1663 1664 case LSRUse::Basic: 1665 // Only handle single-register values. 1666 return !BaseGV && Scale == 0 && BaseOffset == 0; 1667 1668 case LSRUse::Special: 1669 // Special case Basic to handle -1 scales. 1670 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0; 1671 } 1672 1673 llvm_unreachable("Invalid LSRUse Kind!"); 1674 } 1675 1676 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1677 int64_t MinOffset, int64_t MaxOffset, 1678 LSRUse::KindType Kind, MemAccessTy AccessTy, 1679 GlobalValue *BaseGV, int64_t BaseOffset, 1680 bool HasBaseReg, int64_t Scale) { 1681 // Check for overflow. 1682 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) != 1683 (MinOffset > 0)) 1684 return false; 1685 MinOffset = (uint64_t)BaseOffset + MinOffset; 1686 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) != 1687 (MaxOffset > 0)) 1688 return false; 1689 MaxOffset = (uint64_t)BaseOffset + MaxOffset; 1690 1691 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1692 HasBaseReg, Scale) && 1693 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1694 HasBaseReg, Scale); 1695 } 1696 1697 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1698 int64_t MinOffset, int64_t MaxOffset, 1699 LSRUse::KindType Kind, MemAccessTy AccessTy, 1700 const Formula &F, const Loop &L) { 1701 // For the purpose of isAMCompletelyFolded either having a canonical formula 1702 // or a scale not equal to zero is correct. 1703 // Problems may arise from non canonical formulae having a scale == 0. 1704 // Strictly speaking it would best to just rely on canonical formulae. 1705 // However, when we generate the scaled formulae, we first check that the 1706 // scaling factor is profitable before computing the actual ScaledReg for 1707 // compile time sake. 1708 assert((F.isCanonical(L) || F.Scale != 0)); 1709 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1710 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1711 } 1712 1713 /// Test whether we know how to expand the current formula. 1714 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1715 int64_t MaxOffset, LSRUse::KindType Kind, 1716 MemAccessTy AccessTy, GlobalValue *BaseGV, 1717 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) { 1718 // We know how to expand completely foldable formulae. 1719 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1720 BaseOffset, HasBaseReg, Scale) || 1721 // Or formulae that use a base register produced by a sum of base 1722 // registers. 1723 (Scale == 1 && 1724 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1725 BaseGV, BaseOffset, true, 0)); 1726 } 1727 1728 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset, 1729 int64_t MaxOffset, LSRUse::KindType Kind, 1730 MemAccessTy AccessTy, const Formula &F) { 1731 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1732 F.BaseOffset, F.HasBaseReg, F.Scale); 1733 } 1734 1735 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1736 const LSRUse &LU, const Formula &F) { 1737 // Target may want to look at the user instructions. 1738 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1739 for (const LSRFixup &Fixup : LU.Fixups) 1740 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1741 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1742 F.Scale, Fixup.UserInst)) 1743 return false; 1744 return true; 1745 } 1746 1747 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1748 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1749 F.Scale); 1750 } 1751 1752 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI, 1753 const LSRUse &LU, const Formula &F, 1754 const Loop &L) { 1755 if (!F.Scale) 1756 return 0; 1757 1758 // If the use is not completely folded in that instruction, we will have to 1759 // pay an extra cost only for scale != 1. 1760 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1761 LU.AccessTy, F, L)) 1762 return F.Scale != 1; 1763 1764 switch (LU.Kind) { 1765 case LSRUse::Address: { 1766 // Check the scaling factor cost with both the min and max offsets. 1767 int ScaleCostMinOffset = TTI.getScalingFactorCost( 1768 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg, 1769 F.Scale, LU.AccessTy.AddrSpace); 1770 int ScaleCostMaxOffset = TTI.getScalingFactorCost( 1771 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg, 1772 F.Scale, LU.AccessTy.AddrSpace); 1773 1774 assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 && 1775 "Legal addressing mode has an illegal cost!"); 1776 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1777 } 1778 case LSRUse::ICmpZero: 1779 case LSRUse::Basic: 1780 case LSRUse::Special: 1781 // The use is completely folded, i.e., everything is folded into the 1782 // instruction. 1783 return 0; 1784 } 1785 1786 llvm_unreachable("Invalid LSRUse Kind!"); 1787 } 1788 1789 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1790 LSRUse::KindType Kind, MemAccessTy AccessTy, 1791 GlobalValue *BaseGV, int64_t BaseOffset, 1792 bool HasBaseReg) { 1793 // Fast-path: zero is always foldable. 1794 if (BaseOffset == 0 && !BaseGV) return true; 1795 1796 // Conservatively, create an address with an immediate and a 1797 // base and a scale. 1798 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1799 1800 // Canonicalize a scale of 1 to a base register if the formula doesn't 1801 // already have a base register. 1802 if (!HasBaseReg && Scale == 1) { 1803 Scale = 0; 1804 HasBaseReg = true; 1805 } 1806 1807 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 1808 HasBaseReg, Scale); 1809 } 1810 1811 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 1812 ScalarEvolution &SE, int64_t MinOffset, 1813 int64_t MaxOffset, LSRUse::KindType Kind, 1814 MemAccessTy AccessTy, const SCEV *S, 1815 bool HasBaseReg) { 1816 // Fast-path: zero is always foldable. 1817 if (S->isZero()) return true; 1818 1819 // Conservatively, create an address with an immediate and a 1820 // base and a scale. 1821 int64_t BaseOffset = ExtractImmediate(S, SE); 1822 GlobalValue *BaseGV = ExtractSymbol(S, SE); 1823 1824 // If there's anything else involved, it's not foldable. 1825 if (!S->isZero()) return false; 1826 1827 // Fast-path: zero is always foldable. 1828 if (BaseOffset == 0 && !BaseGV) return true; 1829 1830 // Conservatively, create an address with an immediate and a 1831 // base and a scale. 1832 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 1833 1834 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1835 BaseOffset, HasBaseReg, Scale); 1836 } 1837 1838 namespace { 1839 1840 /// An individual increment in a Chain of IV increments. Relate an IV user to 1841 /// an expression that computes the IV it uses from the IV used by the previous 1842 /// link in the Chain. 1843 /// 1844 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 1845 /// original IVOperand. The head of the chain's IVOperand is only valid during 1846 /// chain collection, before LSR replaces IV users. During chain generation, 1847 /// IncExpr can be used to find the new IVOperand that computes the same 1848 /// expression. 1849 struct IVInc { 1850 Instruction *UserInst; 1851 Value* IVOperand; 1852 const SCEV *IncExpr; 1853 1854 IVInc(Instruction *U, Value *O, const SCEV *E) 1855 : UserInst(U), IVOperand(O), IncExpr(E) {} 1856 }; 1857 1858 // The list of IV increments in program order. We typically add the head of a 1859 // chain without finding subsequent links. 1860 struct IVChain { 1861 SmallVector<IVInc, 1> Incs; 1862 const SCEV *ExprBase = nullptr; 1863 1864 IVChain() = default; 1865 IVChain(const IVInc &Head, const SCEV *Base) 1866 : Incs(1, Head), ExprBase(Base) {} 1867 1868 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 1869 1870 // Return the first increment in the chain. 1871 const_iterator begin() const { 1872 assert(!Incs.empty()); 1873 return std::next(Incs.begin()); 1874 } 1875 const_iterator end() const { 1876 return Incs.end(); 1877 } 1878 1879 // Returns true if this chain contains any increments. 1880 bool hasIncs() const { return Incs.size() >= 2; } 1881 1882 // Add an IVInc to the end of this chain. 1883 void add(const IVInc &X) { Incs.push_back(X); } 1884 1885 // Returns the last UserInst in the chain. 1886 Instruction *tailUserInst() const { return Incs.back().UserInst; } 1887 1888 // Returns true if IncExpr can be profitably added to this chain. 1889 bool isProfitableIncrement(const SCEV *OperExpr, 1890 const SCEV *IncExpr, 1891 ScalarEvolution&); 1892 }; 1893 1894 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 1895 /// between FarUsers that definitely cross IV increments and NearUsers that may 1896 /// be used between IV increments. 1897 struct ChainUsers { 1898 SmallPtrSet<Instruction*, 4> FarUsers; 1899 SmallPtrSet<Instruction*, 4> NearUsers; 1900 }; 1901 1902 /// This class holds state for the main loop strength reduction logic. 1903 class LSRInstance { 1904 IVUsers &IU; 1905 ScalarEvolution &SE; 1906 DominatorTree &DT; 1907 LoopInfo &LI; 1908 AssumptionCache &AC; 1909 TargetLibraryInfo &TLI; 1910 const TargetTransformInfo &TTI; 1911 Loop *const L; 1912 MemorySSAUpdater *MSSAU; 1913 bool FavorBackedgeIndex = false; 1914 bool Changed = false; 1915 1916 /// This is the insert position that the current loop's induction variable 1917 /// increment should be placed. In simple loops, this is the latch block's 1918 /// terminator. But in more complicated cases, this is a position which will 1919 /// dominate all the in-loop post-increment users. 1920 Instruction *IVIncInsertPos = nullptr; 1921 1922 /// Interesting factors between use strides. 1923 /// 1924 /// We explicitly use a SetVector which contains a SmallSet, instead of the 1925 /// default, a SmallDenseSet, because we need to use the full range of 1926 /// int64_ts, and there's currently no good way of doing that with 1927 /// SmallDenseSet. 1928 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 1929 1930 /// Interesting use types, to facilitate truncation reuse. 1931 SmallSetVector<Type *, 4> Types; 1932 1933 /// The list of interesting uses. 1934 mutable SmallVector<LSRUse, 16> Uses; 1935 1936 /// Track which uses use which register candidates. 1937 RegUseTracker RegUses; 1938 1939 // Limit the number of chains to avoid quadratic behavior. We don't expect to 1940 // have more than a few IV increment chains in a loop. Missing a Chain falls 1941 // back to normal LSR behavior for those uses. 1942 static const unsigned MaxChains = 8; 1943 1944 /// IV users can form a chain of IV increments. 1945 SmallVector<IVChain, MaxChains> IVChainVec; 1946 1947 /// IV users that belong to profitable IVChains. 1948 SmallPtrSet<Use*, MaxChains> IVIncSet; 1949 1950 void OptimizeShadowIV(); 1951 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 1952 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 1953 void OptimizeLoopTermCond(); 1954 1955 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 1956 SmallVectorImpl<ChainUsers> &ChainUsersVec); 1957 void FinalizeChain(IVChain &Chain); 1958 void CollectChains(); 1959 void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 1960 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 1961 1962 void CollectInterestingTypesAndFactors(); 1963 void CollectFixupsAndInitialFormulae(); 1964 1965 // Support for sharing of LSRUses between LSRFixups. 1966 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 1967 UseMapTy UseMap; 1968 1969 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg, 1970 LSRUse::KindType Kind, MemAccessTy AccessTy); 1971 1972 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 1973 MemAccessTy AccessTy); 1974 1975 void DeleteUse(LSRUse &LU, size_t LUIdx); 1976 1977 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 1978 1979 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1980 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 1981 void CountRegisters(const Formula &F, size_t LUIdx); 1982 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 1983 1984 void CollectLoopInvariantFixupsAndFormulae(); 1985 1986 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 1987 unsigned Depth = 0); 1988 1989 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 1990 const Formula &Base, unsigned Depth, 1991 size_t Idx, bool IsScaledReg = false); 1992 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 1993 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1994 const Formula &Base, size_t Idx, 1995 bool IsScaledReg = false); 1996 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 1997 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 1998 const Formula &Base, 1999 const SmallVectorImpl<int64_t> &Worklist, 2000 size_t Idx, bool IsScaledReg = false); 2001 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2002 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2003 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2004 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2005 void GenerateCrossUseConstantOffsets(); 2006 void GenerateAllReuseFormulae(); 2007 2008 void FilterOutUndesirableDedicatedRegisters(); 2009 2010 size_t EstimateSearchSpaceComplexity() const; 2011 void NarrowSearchSpaceByDetectingSupersets(); 2012 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2013 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2014 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2015 void NarrowSearchSpaceByFilterPostInc(); 2016 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2017 void NarrowSearchSpaceByPickingWinnerRegs(); 2018 void NarrowSearchSpaceUsingHeuristics(); 2019 2020 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2021 Cost &SolutionCost, 2022 SmallVectorImpl<const Formula *> &Workspace, 2023 const Cost &CurCost, 2024 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2025 DenseSet<const SCEV *> &VisitedRegs) const; 2026 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2027 2028 BasicBlock::iterator 2029 HoistInsertPosition(BasicBlock::iterator IP, 2030 const SmallVectorImpl<Instruction *> &Inputs) const; 2031 BasicBlock::iterator 2032 AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2033 const LSRFixup &LF, 2034 const LSRUse &LU, 2035 SCEVExpander &Rewriter) const; 2036 2037 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2038 BasicBlock::iterator IP, SCEVExpander &Rewriter, 2039 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2040 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2041 const Formula &F, SCEVExpander &Rewriter, 2042 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2043 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2044 SCEVExpander &Rewriter, 2045 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2046 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2047 2048 public: 2049 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2050 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2051 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2052 2053 bool getChanged() const { return Changed; } 2054 2055 void print_factors_and_types(raw_ostream &OS) const; 2056 void print_fixups(raw_ostream &OS) const; 2057 void print_uses(raw_ostream &OS) const; 2058 void print(raw_ostream &OS) const; 2059 void dump() const; 2060 }; 2061 2062 } // end anonymous namespace 2063 2064 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2065 /// the cast operation. 2066 void LSRInstance::OptimizeShadowIV() { 2067 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2068 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2069 return; 2070 2071 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2072 UI != E; /* empty */) { 2073 IVUsers::const_iterator CandidateUI = UI; 2074 ++UI; 2075 Instruction *ShadowUse = CandidateUI->getUser(); 2076 Type *DestTy = nullptr; 2077 bool IsSigned = false; 2078 2079 /* If shadow use is a int->float cast then insert a second IV 2080 to eliminate this cast. 2081 2082 for (unsigned i = 0; i < n; ++i) 2083 foo((double)i); 2084 2085 is transformed into 2086 2087 double d = 0.0; 2088 for (unsigned i = 0; i < n; ++i, ++d) 2089 foo(d); 2090 */ 2091 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2092 IsSigned = false; 2093 DestTy = UCast->getDestTy(); 2094 } 2095 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2096 IsSigned = true; 2097 DestTy = SCast->getDestTy(); 2098 } 2099 if (!DestTy) continue; 2100 2101 // If target does not support DestTy natively then do not apply 2102 // this transformation. 2103 if (!TTI.isTypeLegal(DestTy)) continue; 2104 2105 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2106 if (!PH) continue; 2107 if (PH->getNumIncomingValues() != 2) continue; 2108 2109 // If the calculation in integers overflows, the result in FP type will 2110 // differ. So we only can do this transformation if we are guaranteed to not 2111 // deal with overflowing values 2112 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2113 if (!AR) continue; 2114 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2115 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2116 2117 Type *SrcTy = PH->getType(); 2118 int Mantissa = DestTy->getFPMantissaWidth(); 2119 if (Mantissa == -1) continue; 2120 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2121 continue; 2122 2123 unsigned Entry, Latch; 2124 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2125 Entry = 0; 2126 Latch = 1; 2127 } else { 2128 Entry = 1; 2129 Latch = 0; 2130 } 2131 2132 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2133 if (!Init) continue; 2134 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2135 (double)Init->getSExtValue() : 2136 (double)Init->getZExtValue()); 2137 2138 BinaryOperator *Incr = 2139 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2140 if (!Incr) continue; 2141 if (Incr->getOpcode() != Instruction::Add 2142 && Incr->getOpcode() != Instruction::Sub) 2143 continue; 2144 2145 /* Initialize new IV, double d = 0.0 in above example. */ 2146 ConstantInt *C = nullptr; 2147 if (Incr->getOperand(0) == PH) 2148 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2149 else if (Incr->getOperand(1) == PH) 2150 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2151 else 2152 continue; 2153 2154 if (!C) continue; 2155 2156 // Ignore negative constants, as the code below doesn't handle them 2157 // correctly. TODO: Remove this restriction. 2158 if (!C->getValue().isStrictlyPositive()) continue; 2159 2160 /* Add new PHINode. */ 2161 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH); 2162 2163 /* create new increment. '++d' in above example. */ 2164 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2165 BinaryOperator *NewIncr = 2166 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ? 2167 Instruction::FAdd : Instruction::FSub, 2168 NewPH, CFP, "IV.S.next.", Incr); 2169 2170 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2171 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2172 2173 /* Remove cast operation */ 2174 ShadowUse->replaceAllUsesWith(NewPH); 2175 ShadowUse->eraseFromParent(); 2176 Changed = true; 2177 break; 2178 } 2179 } 2180 2181 /// If Cond has an operand that is an expression of an IV, set the IV user and 2182 /// stride information and return true, otherwise return false. 2183 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2184 for (IVStrideUse &U : IU) 2185 if (U.getUser() == Cond) { 2186 // NOTE: we could handle setcc instructions with multiple uses here, but 2187 // InstCombine does it as well for simple uses, it's not clear that it 2188 // occurs enough in real life to handle. 2189 CondUse = &U; 2190 return true; 2191 } 2192 return false; 2193 } 2194 2195 /// Rewrite the loop's terminating condition if it uses a max computation. 2196 /// 2197 /// This is a narrow solution to a specific, but acute, problem. For loops 2198 /// like this: 2199 /// 2200 /// i = 0; 2201 /// do { 2202 /// p[i] = 0.0; 2203 /// } while (++i < n); 2204 /// 2205 /// the trip count isn't just 'n', because 'n' might not be positive. And 2206 /// unfortunately this can come up even for loops where the user didn't use 2207 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2208 /// will commonly be lowered like this: 2209 /// 2210 /// if (n > 0) { 2211 /// i = 0; 2212 /// do { 2213 /// p[i] = 0.0; 2214 /// } while (++i < n); 2215 /// } 2216 /// 2217 /// and then it's possible for subsequent optimization to obscure the if 2218 /// test in such a way that indvars can't find it. 2219 /// 2220 /// When indvars can't find the if test in loops like this, it creates a 2221 /// max expression, which allows it to give the loop a canonical 2222 /// induction variable: 2223 /// 2224 /// i = 0; 2225 /// max = n < 1 ? 1 : n; 2226 /// do { 2227 /// p[i] = 0.0; 2228 /// } while (++i != max); 2229 /// 2230 /// Canonical induction variables are necessary because the loop passes 2231 /// are designed around them. The most obvious example of this is the 2232 /// LoopInfo analysis, which doesn't remember trip count values. It 2233 /// expects to be able to rediscover the trip count each time it is 2234 /// needed, and it does this using a simple analysis that only succeeds if 2235 /// the loop has a canonical induction variable. 2236 /// 2237 /// However, when it comes time to generate code, the maximum operation 2238 /// can be quite costly, especially if it's inside of an outer loop. 2239 /// 2240 /// This function solves this problem by detecting this type of loop and 2241 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2242 /// the instructions for the maximum computation. 2243 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2244 // Check that the loop matches the pattern we're looking for. 2245 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2246 Cond->getPredicate() != CmpInst::ICMP_NE) 2247 return Cond; 2248 2249 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2250 if (!Sel || !Sel->hasOneUse()) return Cond; 2251 2252 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2253 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2254 return Cond; 2255 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2256 2257 // Add one to the backedge-taken count to get the trip count. 2258 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2259 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2260 2261 // Check for a max calculation that matches the pattern. There's no check 2262 // for ICMP_ULE here because the comparison would be with zero, which 2263 // isn't interesting. 2264 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2265 const SCEVNAryExpr *Max = nullptr; 2266 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2267 Pred = ICmpInst::ICMP_SLE; 2268 Max = S; 2269 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2270 Pred = ICmpInst::ICMP_SLT; 2271 Max = S; 2272 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2273 Pred = ICmpInst::ICMP_ULT; 2274 Max = U; 2275 } else { 2276 // No match; bail. 2277 return Cond; 2278 } 2279 2280 // To handle a max with more than two operands, this optimization would 2281 // require additional checking and setup. 2282 if (Max->getNumOperands() != 2) 2283 return Cond; 2284 2285 const SCEV *MaxLHS = Max->getOperand(0); 2286 const SCEV *MaxRHS = Max->getOperand(1); 2287 2288 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2289 // for a comparison with 1. For <= and >=, a comparison with zero. 2290 if (!MaxLHS || 2291 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2292 return Cond; 2293 2294 // Check the relevant induction variable for conformance to 2295 // the pattern. 2296 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2297 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2298 if (!AR || !AR->isAffine() || 2299 AR->getStart() != One || 2300 AR->getStepRecurrence(SE) != One) 2301 return Cond; 2302 2303 assert(AR->getLoop() == L && 2304 "Loop condition operand is an addrec in a different loop!"); 2305 2306 // Check the right operand of the select, and remember it, as it will 2307 // be used in the new comparison instruction. 2308 Value *NewRHS = nullptr; 2309 if (ICmpInst::isTrueWhenEqual(Pred)) { 2310 // Look for n+1, and grab n. 2311 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2312 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2313 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2314 NewRHS = BO->getOperand(0); 2315 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2316 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2317 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2318 NewRHS = BO->getOperand(0); 2319 if (!NewRHS) 2320 return Cond; 2321 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2322 NewRHS = Sel->getOperand(1); 2323 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2324 NewRHS = Sel->getOperand(2); 2325 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2326 NewRHS = SU->getValue(); 2327 else 2328 // Max doesn't match expected pattern. 2329 return Cond; 2330 2331 // Determine the new comparison opcode. It may be signed or unsigned, 2332 // and the original comparison may be either equality or inequality. 2333 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2334 Pred = CmpInst::getInversePredicate(Pred); 2335 2336 // Ok, everything looks ok to change the condition into an SLT or SGE and 2337 // delete the max calculation. 2338 ICmpInst *NewCond = 2339 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp"); 2340 2341 // Delete the max calculation instructions. 2342 Cond->replaceAllUsesWith(NewCond); 2343 CondUse->setUser(NewCond); 2344 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2345 Cond->eraseFromParent(); 2346 Sel->eraseFromParent(); 2347 if (Cmp->use_empty()) 2348 Cmp->eraseFromParent(); 2349 return NewCond; 2350 } 2351 2352 /// Change loop terminating condition to use the postinc iv when possible. 2353 void 2354 LSRInstance::OptimizeLoopTermCond() { 2355 SmallPtrSet<Instruction *, 4> PostIncs; 2356 2357 // We need a different set of heuristics for rotated and non-rotated loops. 2358 // If a loop is rotated then the latch is also the backedge, so inserting 2359 // post-inc expressions just before the latch is ideal. To reduce live ranges 2360 // it also makes sense to rewrite terminating conditions to use post-inc 2361 // expressions. 2362 // 2363 // If the loop is not rotated then the latch is not a backedge; the latch 2364 // check is done in the loop head. Adding post-inc expressions before the 2365 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2366 // in the loop body. In this case we do *not* want to use post-inc expressions 2367 // in the latch check, and we want to insert post-inc expressions before 2368 // the backedge. 2369 BasicBlock *LatchBlock = L->getLoopLatch(); 2370 SmallVector<BasicBlock*, 8> ExitingBlocks; 2371 L->getExitingBlocks(ExitingBlocks); 2372 if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) { 2373 return LatchBlock != BB; 2374 })) { 2375 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2376 IVIncInsertPos = LatchBlock->getTerminator(); 2377 return; 2378 } 2379 2380 // Otherwise treat this as a rotated loop. 2381 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2382 // Get the terminating condition for the loop if possible. If we 2383 // can, we want to change it to use a post-incremented version of its 2384 // induction variable, to allow coalescing the live ranges for the IV into 2385 // one register value. 2386 2387 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2388 if (!TermBr) 2389 continue; 2390 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2391 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2392 continue; 2393 2394 // Search IVUsesByStride to find Cond's IVUse if there is one. 2395 IVStrideUse *CondUse = nullptr; 2396 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2397 if (!FindIVUserForCond(Cond, CondUse)) 2398 continue; 2399 2400 // If the trip count is computed in terms of a max (due to ScalarEvolution 2401 // being unable to find a sufficient guard, for example), change the loop 2402 // comparison to use SLT or ULT instead of NE. 2403 // One consequence of doing this now is that it disrupts the count-down 2404 // optimization. That's not always a bad thing though, because in such 2405 // cases it may still be worthwhile to avoid a max. 2406 Cond = OptimizeMax(Cond, CondUse); 2407 2408 // If this exiting block dominates the latch block, it may also use 2409 // the post-inc value if it won't be shared with other uses. 2410 // Check for dominance. 2411 if (!DT.dominates(ExitingBlock, LatchBlock)) 2412 continue; 2413 2414 // Conservatively avoid trying to use the post-inc value in non-latch 2415 // exits if there may be pre-inc users in intervening blocks. 2416 if (LatchBlock != ExitingBlock) 2417 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI) 2418 // Test if the use is reachable from the exiting block. This dominator 2419 // query is a conservative approximation of reachability. 2420 if (&*UI != CondUse && 2421 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) { 2422 // Conservatively assume there may be reuse if the quotient of their 2423 // strides could be a legal scale. 2424 const SCEV *A = IU.getStride(*CondUse, L); 2425 const SCEV *B = IU.getStride(*UI, L); 2426 if (!A || !B) continue; 2427 if (SE.getTypeSizeInBits(A->getType()) != 2428 SE.getTypeSizeInBits(B->getType())) { 2429 if (SE.getTypeSizeInBits(A->getType()) > 2430 SE.getTypeSizeInBits(B->getType())) 2431 B = SE.getSignExtendExpr(B, A->getType()); 2432 else 2433 A = SE.getSignExtendExpr(A, B->getType()); 2434 } 2435 if (const SCEVConstant *D = 2436 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2437 const ConstantInt *C = D->getValue(); 2438 // Stride of one or negative one can have reuse with non-addresses. 2439 if (C->isOne() || C->isMinusOne()) 2440 goto decline_post_inc; 2441 // Avoid weird situations. 2442 if (C->getValue().getMinSignedBits() >= 64 || 2443 C->getValue().isMinSignedValue()) 2444 goto decline_post_inc; 2445 // Check for possible scaled-address reuse. 2446 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) { 2447 MemAccessTy AccessTy = getAccessType( 2448 TTI, UI->getUser(), UI->getOperandValToReplace()); 2449 int64_t Scale = C->getSExtValue(); 2450 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2451 /*BaseOffset=*/0, 2452 /*HasBaseReg=*/false, Scale, 2453 AccessTy.AddrSpace)) 2454 goto decline_post_inc; 2455 Scale = -Scale; 2456 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2457 /*BaseOffset=*/0, 2458 /*HasBaseReg=*/false, Scale, 2459 AccessTy.AddrSpace)) 2460 goto decline_post_inc; 2461 } 2462 } 2463 } 2464 2465 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2466 << *Cond << '\n'); 2467 2468 // It's possible for the setcc instruction to be anywhere in the loop, and 2469 // possible for it to have multiple users. If it is not immediately before 2470 // the exiting block branch, move it. 2471 if (&*++BasicBlock::iterator(Cond) != TermBr) { 2472 if (Cond->hasOneUse()) { 2473 Cond->moveBefore(TermBr); 2474 } else { 2475 // Clone the terminating condition and insert into the loopend. 2476 ICmpInst *OldCond = Cond; 2477 Cond = cast<ICmpInst>(Cond->clone()); 2478 Cond->setName(L->getHeader()->getName() + ".termcond"); 2479 ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond); 2480 2481 // Clone the IVUse, as the old use still exists! 2482 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2483 TermBr->replaceUsesOfWith(OldCond, Cond); 2484 } 2485 } 2486 2487 // If we get to here, we know that we can transform the setcc instruction to 2488 // use the post-incremented version of the IV, allowing us to coalesce the 2489 // live ranges for the IV correctly. 2490 CondUse->transformToPostInc(L); 2491 Changed = true; 2492 2493 PostIncs.insert(Cond); 2494 decline_post_inc:; 2495 } 2496 2497 // Determine an insertion point for the loop induction variable increment. It 2498 // must dominate all the post-inc comparisons we just set up, and it must 2499 // dominate the loop latch edge. 2500 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2501 for (Instruction *Inst : PostIncs) { 2502 BasicBlock *BB = 2503 DT.findNearestCommonDominator(IVIncInsertPos->getParent(), 2504 Inst->getParent()); 2505 if (BB == Inst->getParent()) 2506 IVIncInsertPos = Inst; 2507 else if (BB != IVIncInsertPos->getParent()) 2508 IVIncInsertPos = BB->getTerminator(); 2509 } 2510 } 2511 2512 /// Determine if the given use can accommodate a fixup at the given offset and 2513 /// other details. If so, update the use and return true. 2514 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, 2515 bool HasBaseReg, LSRUse::KindType Kind, 2516 MemAccessTy AccessTy) { 2517 int64_t NewMinOffset = LU.MinOffset; 2518 int64_t NewMaxOffset = LU.MaxOffset; 2519 MemAccessTy NewAccessTy = AccessTy; 2520 2521 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2522 // something conservative, however this can pessimize in the case that one of 2523 // the uses will have all its uses outside the loop, for example. 2524 if (LU.Kind != Kind) 2525 return false; 2526 2527 // Check for a mismatched access type, and fall back conservatively as needed. 2528 // TODO: Be less conservative when the type is similar and can use the same 2529 // addressing modes. 2530 if (Kind == LSRUse::Address) { 2531 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2532 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2533 AccessTy.AddrSpace); 2534 } 2535 } 2536 2537 // Conservatively assume HasBaseReg is true for now. 2538 if (NewOffset < LU.MinOffset) { 2539 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2540 LU.MaxOffset - NewOffset, HasBaseReg)) 2541 return false; 2542 NewMinOffset = NewOffset; 2543 } else if (NewOffset > LU.MaxOffset) { 2544 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2545 NewOffset - LU.MinOffset, HasBaseReg)) 2546 return false; 2547 NewMaxOffset = NewOffset; 2548 } 2549 2550 // Update the use. 2551 LU.MinOffset = NewMinOffset; 2552 LU.MaxOffset = NewMaxOffset; 2553 LU.AccessTy = NewAccessTy; 2554 return true; 2555 } 2556 2557 /// Return an LSRUse index and an offset value for a fixup which needs the given 2558 /// expression, with the given kind and optional access type. Either reuse an 2559 /// existing use or create a new one, as needed. 2560 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr, 2561 LSRUse::KindType Kind, 2562 MemAccessTy AccessTy) { 2563 const SCEV *Copy = Expr; 2564 int64_t Offset = ExtractImmediate(Expr, SE); 2565 2566 // Basic uses can't accept any offset, for example. 2567 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2568 Offset, /*HasBaseReg=*/ true)) { 2569 Expr = Copy; 2570 Offset = 0; 2571 } 2572 2573 std::pair<UseMapTy::iterator, bool> P = 2574 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2575 if (!P.second) { 2576 // A use already existed with this base. 2577 size_t LUIdx = P.first->second; 2578 LSRUse &LU = Uses[LUIdx]; 2579 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2580 // Reuse this use. 2581 return std::make_pair(LUIdx, Offset); 2582 } 2583 2584 // Create a new use. 2585 size_t LUIdx = Uses.size(); 2586 P.first->second = LUIdx; 2587 Uses.push_back(LSRUse(Kind, AccessTy)); 2588 LSRUse &LU = Uses[LUIdx]; 2589 2590 LU.MinOffset = Offset; 2591 LU.MaxOffset = Offset; 2592 return std::make_pair(LUIdx, Offset); 2593 } 2594 2595 /// Delete the given use from the Uses list. 2596 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2597 if (&LU != &Uses.back()) 2598 std::swap(LU, Uses.back()); 2599 Uses.pop_back(); 2600 2601 // Update RegUses. 2602 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2603 } 2604 2605 /// Look for a use distinct from OrigLU which is has a formula that has the same 2606 /// registers as the given formula. 2607 LSRUse * 2608 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2609 const LSRUse &OrigLU) { 2610 // Search all uses for the formula. This could be more clever. 2611 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 2612 LSRUse &LU = Uses[LUIdx]; 2613 // Check whether this use is close enough to OrigLU, to see whether it's 2614 // worthwhile looking through its formulae. 2615 // Ignore ICmpZero uses because they may contain formulae generated by 2616 // GenerateICmpZeroScales, in which case adding fixup offsets may 2617 // be invalid. 2618 if (&LU != &OrigLU && 2619 LU.Kind != LSRUse::ICmpZero && 2620 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2621 LU.WidestFixupType == OrigLU.WidestFixupType && 2622 LU.HasFormulaWithSameRegs(OrigF)) { 2623 // Scan through this use's formulae. 2624 for (const Formula &F : LU.Formulae) { 2625 // Check to see if this formula has the same registers and symbols 2626 // as OrigF. 2627 if (F.BaseRegs == OrigF.BaseRegs && 2628 F.ScaledReg == OrigF.ScaledReg && 2629 F.BaseGV == OrigF.BaseGV && 2630 F.Scale == OrigF.Scale && 2631 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2632 if (F.BaseOffset == 0) 2633 return &LU; 2634 // This is the formula where all the registers and symbols matched; 2635 // there aren't going to be any others. Since we declined it, we 2636 // can skip the rest of the formulae and proceed to the next LSRUse. 2637 break; 2638 } 2639 } 2640 } 2641 } 2642 2643 // Nothing looked good. 2644 return nullptr; 2645 } 2646 2647 void LSRInstance::CollectInterestingTypesAndFactors() { 2648 SmallSetVector<const SCEV *, 4> Strides; 2649 2650 // Collect interesting types and strides. 2651 SmallVector<const SCEV *, 4> Worklist; 2652 for (const IVStrideUse &U : IU) { 2653 const SCEV *Expr = IU.getExpr(U); 2654 2655 // Collect interesting types. 2656 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2657 2658 // Add strides for mentioned loops. 2659 Worklist.push_back(Expr); 2660 do { 2661 const SCEV *S = Worklist.pop_back_val(); 2662 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2663 if (AR->getLoop() == L) 2664 Strides.insert(AR->getStepRecurrence(SE)); 2665 Worklist.push_back(AR->getStart()); 2666 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2667 Worklist.append(Add->op_begin(), Add->op_end()); 2668 } 2669 } while (!Worklist.empty()); 2670 } 2671 2672 // Compute interesting factors from the set of interesting strides. 2673 for (SmallSetVector<const SCEV *, 4>::const_iterator 2674 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2675 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2676 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2677 const SCEV *OldStride = *I; 2678 const SCEV *NewStride = *NewStrideIter; 2679 2680 if (SE.getTypeSizeInBits(OldStride->getType()) != 2681 SE.getTypeSizeInBits(NewStride->getType())) { 2682 if (SE.getTypeSizeInBits(OldStride->getType()) > 2683 SE.getTypeSizeInBits(NewStride->getType())) 2684 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2685 else 2686 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2687 } 2688 if (const SCEVConstant *Factor = 2689 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2690 SE, true))) { 2691 if (Factor->getAPInt().getMinSignedBits() <= 64) 2692 Factors.insert(Factor->getAPInt().getSExtValue()); 2693 } else if (const SCEVConstant *Factor = 2694 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2695 NewStride, 2696 SE, true))) { 2697 if (Factor->getAPInt().getMinSignedBits() <= 64) 2698 Factors.insert(Factor->getAPInt().getSExtValue()); 2699 } 2700 } 2701 2702 // If all uses use the same type, don't bother looking for truncation-based 2703 // reuse. 2704 if (Types.size() == 1) 2705 Types.clear(); 2706 2707 LLVM_DEBUG(print_factors_and_types(dbgs())); 2708 } 2709 2710 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2711 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2712 /// IVStrideUses, we could partially skip this. 2713 static User::op_iterator 2714 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2715 Loop *L, ScalarEvolution &SE) { 2716 for(; OI != OE; ++OI) { 2717 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2718 if (!SE.isSCEVable(Oper->getType())) 2719 continue; 2720 2721 if (const SCEVAddRecExpr *AR = 2722 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2723 if (AR->getLoop() == L) 2724 break; 2725 } 2726 } 2727 } 2728 return OI; 2729 } 2730 2731 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2732 /// a convenient helper. 2733 static Value *getWideOperand(Value *Oper) { 2734 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2735 return Trunc->getOperand(0); 2736 return Oper; 2737 } 2738 2739 /// Return true if we allow an IV chain to include both types. 2740 static bool isCompatibleIVType(Value *LVal, Value *RVal) { 2741 Type *LType = LVal->getType(); 2742 Type *RType = RVal->getType(); 2743 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() && 2744 // Different address spaces means (possibly) 2745 // different types of the pointer implementation, 2746 // e.g. i16 vs i32 so disallow that. 2747 (LType->getPointerAddressSpace() == 2748 RType->getPointerAddressSpace())); 2749 } 2750 2751 /// Return an approximation of this SCEV expression's "base", or NULL for any 2752 /// constant. Returning the expression itself is conservative. Returning a 2753 /// deeper subexpression is more precise and valid as long as it isn't less 2754 /// complex than another subexpression. For expressions involving multiple 2755 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2756 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2757 /// IVInc==b-a. 2758 /// 2759 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2760 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2761 static const SCEV *getExprBase(const SCEV *S) { 2762 switch (S->getSCEVType()) { 2763 default: // uncluding scUnknown. 2764 return S; 2765 case scConstant: 2766 return nullptr; 2767 case scTruncate: 2768 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 2769 case scZeroExtend: 2770 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 2771 case scSignExtend: 2772 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 2773 case scAddExpr: { 2774 // Skip over scaled operands (scMulExpr) to follow add operands as long as 2775 // there's nothing more complex. 2776 // FIXME: not sure if we want to recognize negation. 2777 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 2778 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()), 2779 E(Add->op_begin()); I != E; ++I) { 2780 const SCEV *SubExpr = *I; 2781 if (SubExpr->getSCEVType() == scAddExpr) 2782 return getExprBase(SubExpr); 2783 2784 if (SubExpr->getSCEVType() != scMulExpr) 2785 return SubExpr; 2786 } 2787 return S; // all operands are scaled, be conservative. 2788 } 2789 case scAddRecExpr: 2790 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 2791 } 2792 llvm_unreachable("Unknown SCEV kind!"); 2793 } 2794 2795 /// Return true if the chain increment is profitable to expand into a loop 2796 /// invariant value, which may require its own register. A profitable chain 2797 /// increment will be an offset relative to the same base. We allow such offsets 2798 /// to potentially be used as chain increment as long as it's not obviously 2799 /// expensive to expand using real instructions. 2800 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 2801 const SCEV *IncExpr, 2802 ScalarEvolution &SE) { 2803 // Aggressively form chains when -stress-ivchain. 2804 if (StressIVChain) 2805 return true; 2806 2807 // Do not replace a constant offset from IV head with a nonconstant IV 2808 // increment. 2809 if (!isa<SCEVConstant>(IncExpr)) { 2810 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 2811 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 2812 return false; 2813 } 2814 2815 SmallPtrSet<const SCEV*, 8> Processed; 2816 return !isHighCostExpansion(IncExpr, Processed, SE); 2817 } 2818 2819 /// Return true if the number of registers needed for the chain is estimated to 2820 /// be less than the number required for the individual IV users. First prohibit 2821 /// any IV users that keep the IV live across increments (the Users set should 2822 /// be empty). Next count the number and type of increments in the chain. 2823 /// 2824 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 2825 /// effectively use postinc addressing modes. Only consider it profitable it the 2826 /// increments can be computed in fewer registers when chained. 2827 /// 2828 /// TODO: Consider IVInc free if it's already used in another chains. 2829 static bool isProfitableChain(IVChain &Chain, 2830 SmallPtrSetImpl<Instruction *> &Users, 2831 ScalarEvolution &SE, 2832 const TargetTransformInfo &TTI) { 2833 if (StressIVChain) 2834 return true; 2835 2836 if (!Chain.hasIncs()) 2837 return false; 2838 2839 if (!Users.empty()) { 2840 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 2841 for (Instruction *Inst 2842 : Users) { dbgs() << " " << *Inst << "\n"; }); 2843 return false; 2844 } 2845 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 2846 2847 // The chain itself may require a register, so intialize cost to 1. 2848 int cost = 1; 2849 2850 // A complete chain likely eliminates the need for keeping the original IV in 2851 // a register. LSR does not currently know how to form a complete chain unless 2852 // the header phi already exists. 2853 if (isa<PHINode>(Chain.tailUserInst()) 2854 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 2855 --cost; 2856 } 2857 const SCEV *LastIncExpr = nullptr; 2858 unsigned NumConstIncrements = 0; 2859 unsigned NumVarIncrements = 0; 2860 unsigned NumReusedIncrements = 0; 2861 2862 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 2863 return true; 2864 2865 for (const IVInc &Inc : Chain) { 2866 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 2867 return true; 2868 if (Inc.IncExpr->isZero()) 2869 continue; 2870 2871 // Incrementing by zero or some constant is neutral. We assume constants can 2872 // be folded into an addressing mode or an add's immediate operand. 2873 if (isa<SCEVConstant>(Inc.IncExpr)) { 2874 ++NumConstIncrements; 2875 continue; 2876 } 2877 2878 if (Inc.IncExpr == LastIncExpr) 2879 ++NumReusedIncrements; 2880 else 2881 ++NumVarIncrements; 2882 2883 LastIncExpr = Inc.IncExpr; 2884 } 2885 // An IV chain with a single increment is handled by LSR's postinc 2886 // uses. However, a chain with multiple increments requires keeping the IV's 2887 // value live longer than it needs to be if chained. 2888 if (NumConstIncrements > 1) 2889 --cost; 2890 2891 // Materializing increment expressions in the preheader that didn't exist in 2892 // the original code may cost a register. For example, sign-extended array 2893 // indices can produce ridiculous increments like this: 2894 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 2895 cost += NumVarIncrements; 2896 2897 // Reusing variable increments likely saves a register to hold the multiple of 2898 // the stride. 2899 cost -= NumReusedIncrements; 2900 2901 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 2902 << "\n"); 2903 2904 return cost < 0; 2905 } 2906 2907 /// Add this IV user to an existing chain or make it the head of a new chain. 2908 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2909 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 2910 // When IVs are used as types of varying widths, they are generally converted 2911 // to a wider type with some uses remaining narrow under a (free) trunc. 2912 Value *const NextIV = getWideOperand(IVOper); 2913 const SCEV *const OperExpr = SE.getSCEV(NextIV); 2914 const SCEV *const OperExprBase = getExprBase(OperExpr); 2915 2916 // Visit all existing chains. Check if its IVOper can be computed as a 2917 // profitable loop invariant increment from the last link in the Chain. 2918 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 2919 const SCEV *LastIncExpr = nullptr; 2920 for (; ChainIdx < NChains; ++ChainIdx) { 2921 IVChain &Chain = IVChainVec[ChainIdx]; 2922 2923 // Prune the solution space aggressively by checking that both IV operands 2924 // are expressions that operate on the same unscaled SCEVUnknown. This 2925 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 2926 // first avoids creating extra SCEV expressions. 2927 if (!StressIVChain && Chain.ExprBase != OperExprBase) 2928 continue; 2929 2930 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 2931 if (!isCompatibleIVType(PrevIV, NextIV)) 2932 continue; 2933 2934 // A phi node terminates a chain. 2935 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 2936 continue; 2937 2938 // The increment must be loop-invariant so it can be kept in a register. 2939 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 2940 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 2941 if (!SE.isLoopInvariant(IncExpr, L)) 2942 continue; 2943 2944 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 2945 LastIncExpr = IncExpr; 2946 break; 2947 } 2948 } 2949 // If we haven't found a chain, create a new one, unless we hit the max. Don't 2950 // bother for phi nodes, because they must be last in the chain. 2951 if (ChainIdx == NChains) { 2952 if (isa<PHINode>(UserInst)) 2953 return; 2954 if (NChains >= MaxChains && !StressIVChain) { 2955 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 2956 return; 2957 } 2958 LastIncExpr = OperExpr; 2959 // IVUsers may have skipped over sign/zero extensions. We don't currently 2960 // attempt to form chains involving extensions unless they can be hoisted 2961 // into this loop's AddRec. 2962 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 2963 return; 2964 ++NChains; 2965 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 2966 OperExprBase)); 2967 ChainUsersVec.resize(NChains); 2968 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 2969 << ") IV=" << *LastIncExpr << "\n"); 2970 } else { 2971 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 2972 << ") IV+" << *LastIncExpr << "\n"); 2973 // Add this IV user to the end of the chain. 2974 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 2975 } 2976 IVChain &Chain = IVChainVec[ChainIdx]; 2977 2978 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 2979 // This chain's NearUsers become FarUsers. 2980 if (!LastIncExpr->isZero()) { 2981 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 2982 NearUsers.end()); 2983 NearUsers.clear(); 2984 } 2985 2986 // All other uses of IVOperand become near uses of the chain. 2987 // We currently ignore intermediate values within SCEV expressions, assuming 2988 // they will eventually be used be the current chain, or can be computed 2989 // from one of the chain increments. To be more precise we could 2990 // transitively follow its user and only add leaf IV users to the set. 2991 for (User *U : IVOper->users()) { 2992 Instruction *OtherUse = dyn_cast<Instruction>(U); 2993 if (!OtherUse) 2994 continue; 2995 // Uses in the chain will no longer be uses if the chain is formed. 2996 // Include the head of the chain in this iteration (not Chain.begin()). 2997 IVChain::const_iterator IncIter = Chain.Incs.begin(); 2998 IVChain::const_iterator IncEnd = Chain.Incs.end(); 2999 for( ; IncIter != IncEnd; ++IncIter) { 3000 if (IncIter->UserInst == OtherUse) 3001 break; 3002 } 3003 if (IncIter != IncEnd) 3004 continue; 3005 3006 if (SE.isSCEVable(OtherUse->getType()) 3007 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3008 && IU.isIVUserOrOperand(OtherUse)) { 3009 continue; 3010 } 3011 NearUsers.insert(OtherUse); 3012 } 3013 3014 // Since this user is part of the chain, it's no longer considered a use 3015 // of the chain. 3016 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3017 } 3018 3019 /// Populate the vector of Chains. 3020 /// 3021 /// This decreases ILP at the architecture level. Targets with ample registers, 3022 /// multiple memory ports, and no register renaming probably don't want 3023 /// this. However, such targets should probably disable LSR altogether. 3024 /// 3025 /// The job of LSR is to make a reasonable choice of induction variables across 3026 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3027 /// ILP *within the loop* if the target wants it. 3028 /// 3029 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3030 /// will not reorder memory operations, it will recognize this as a chain, but 3031 /// will generate redundant IV increments. Ideally this would be corrected later 3032 /// by a smart scheduler: 3033 /// = A[i] 3034 /// = A[i+x] 3035 /// A[i] = 3036 /// A[i+x] = 3037 /// 3038 /// TODO: Walk the entire domtree within this loop, not just the path to the 3039 /// loop latch. This will discover chains on side paths, but requires 3040 /// maintaining multiple copies of the Chains state. 3041 void LSRInstance::CollectChains() { 3042 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3043 SmallVector<ChainUsers, 8> ChainUsersVec; 3044 3045 SmallVector<BasicBlock *,8> LatchPath; 3046 BasicBlock *LoopHeader = L->getHeader(); 3047 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3048 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3049 LatchPath.push_back(Rung->getBlock()); 3050 } 3051 LatchPath.push_back(LoopHeader); 3052 3053 // Walk the instruction stream from the loop header to the loop latch. 3054 for (BasicBlock *BB : reverse(LatchPath)) { 3055 for (Instruction &I : *BB) { 3056 // Skip instructions that weren't seen by IVUsers analysis. 3057 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3058 continue; 3059 3060 // Ignore users that are part of a SCEV expression. This way we only 3061 // consider leaf IV Users. This effectively rediscovers a portion of 3062 // IVUsers analysis but in program order this time. 3063 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3064 continue; 3065 3066 // Remove this instruction from any NearUsers set it may be in. 3067 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3068 ChainIdx < NChains; ++ChainIdx) { 3069 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3070 } 3071 // Search for operands that can be chained. 3072 SmallPtrSet<Instruction*, 4> UniqueOperands; 3073 User::op_iterator IVOpEnd = I.op_end(); 3074 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3075 while (IVOpIter != IVOpEnd) { 3076 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3077 if (UniqueOperands.insert(IVOpInst).second) 3078 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3079 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3080 } 3081 } // Continue walking down the instructions. 3082 } // Continue walking down the domtree. 3083 // Visit phi backedges to determine if the chain can generate the IV postinc. 3084 for (PHINode &PN : L->getHeader()->phis()) { 3085 if (!SE.isSCEVable(PN.getType())) 3086 continue; 3087 3088 Instruction *IncV = 3089 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3090 if (IncV) 3091 ChainInstruction(&PN, IncV, ChainUsersVec); 3092 } 3093 // Remove any unprofitable chains. 3094 unsigned ChainIdx = 0; 3095 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3096 UsersIdx < NChains; ++UsersIdx) { 3097 if (!isProfitableChain(IVChainVec[UsersIdx], 3098 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3099 continue; 3100 // Preserve the chain at UsesIdx. 3101 if (ChainIdx != UsersIdx) 3102 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3103 FinalizeChain(IVChainVec[ChainIdx]); 3104 ++ChainIdx; 3105 } 3106 IVChainVec.resize(ChainIdx); 3107 } 3108 3109 void LSRInstance::FinalizeChain(IVChain &Chain) { 3110 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3111 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3112 3113 for (const IVInc &Inc : Chain) { 3114 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3115 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3116 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3117 IVIncSet.insert(UseI); 3118 } 3119 } 3120 3121 /// Return true if the IVInc can be folded into an addressing mode. 3122 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3123 Value *Operand, const TargetTransformInfo &TTI) { 3124 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3125 if (!IncConst || !isAddressUse(TTI, UserInst, Operand)) 3126 return false; 3127 3128 if (IncConst->getAPInt().getMinSignedBits() > 64) 3129 return false; 3130 3131 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3132 int64_t IncOffset = IncConst->getValue()->getSExtValue(); 3133 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3134 IncOffset, /*HasBaseReg=*/false)) 3135 return false; 3136 3137 return true; 3138 } 3139 3140 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3141 /// user's operand from the previous IV user's operand. 3142 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter, 3143 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3144 // Find the new IVOperand for the head of the chain. It may have been replaced 3145 // by LSR. 3146 const IVInc &Head = Chain.Incs[0]; 3147 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3148 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3149 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3150 IVOpEnd, L, SE); 3151 Value *IVSrc = nullptr; 3152 while (IVOpIter != IVOpEnd) { 3153 IVSrc = getWideOperand(*IVOpIter); 3154 3155 // If this operand computes the expression that the chain needs, we may use 3156 // it. (Check this after setting IVSrc which is used below.) 3157 // 3158 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3159 // narrow for the chain, so we can no longer use it. We do allow using a 3160 // wider phi, assuming the LSR checked for free truncation. In that case we 3161 // should already have a truncate on this operand such that 3162 // getSCEV(IVSrc) == IncExpr. 3163 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3164 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3165 break; 3166 } 3167 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3168 } 3169 if (IVOpIter == IVOpEnd) { 3170 // Gracefully give up on this chain. 3171 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3172 return; 3173 } 3174 assert(IVSrc && "Failed to find IV chain source"); 3175 3176 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3177 Type *IVTy = IVSrc->getType(); 3178 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3179 const SCEV *LeftOverExpr = nullptr; 3180 for (const IVInc &Inc : Chain) { 3181 Instruction *InsertPt = Inc.UserInst; 3182 if (isa<PHINode>(InsertPt)) 3183 InsertPt = L->getLoopLatch()->getTerminator(); 3184 3185 // IVOper will replace the current IV User's operand. IVSrc is the IV 3186 // value currently held in a register. 3187 Value *IVOper = IVSrc; 3188 if (!Inc.IncExpr->isZero()) { 3189 // IncExpr was the result of subtraction of two narrow values, so must 3190 // be signed. 3191 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3192 LeftOverExpr = LeftOverExpr ? 3193 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3194 } 3195 if (LeftOverExpr && !LeftOverExpr->isZero()) { 3196 // Expand the IV increment. 3197 Rewriter.clearPostInc(); 3198 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3199 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3200 SE.getUnknown(IncV)); 3201 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3202 3203 // If an IV increment can't be folded, use it as the next IV value. 3204 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3205 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3206 IVSrc = IVOper; 3207 LeftOverExpr = nullptr; 3208 } 3209 } 3210 Type *OperTy = Inc.IVOperand->getType(); 3211 if (IVTy != OperTy) { 3212 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3213 "cannot extend a chained IV"); 3214 IRBuilder<> Builder(InsertPt); 3215 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3216 } 3217 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3218 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3219 DeadInsts.emplace_back(OperandIsInstr); 3220 } 3221 // If LSR created a new, wider phi, we may also replace its postinc. We only 3222 // do this if we also found a wide value for the head of the chain. 3223 if (isa<PHINode>(Chain.tailUserInst())) { 3224 for (PHINode &Phi : L->getHeader()->phis()) { 3225 if (!isCompatibleIVType(&Phi, IVSrc)) 3226 continue; 3227 Instruction *PostIncV = dyn_cast<Instruction>( 3228 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3229 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3230 continue; 3231 Value *IVOper = IVSrc; 3232 Type *PostIncTy = PostIncV->getType(); 3233 if (IVTy != PostIncTy) { 3234 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3235 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3236 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3237 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3238 } 3239 Phi.replaceUsesOfWith(PostIncV, IVOper); 3240 DeadInsts.emplace_back(PostIncV); 3241 } 3242 } 3243 } 3244 3245 void LSRInstance::CollectFixupsAndInitialFormulae() { 3246 BranchInst *ExitBranch = nullptr; 3247 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3248 3249 for (const IVStrideUse &U : IU) { 3250 Instruction *UserInst = U.getUser(); 3251 // Skip IV users that are part of profitable IV Chains. 3252 User::op_iterator UseI = 3253 find(UserInst->operands(), U.getOperandValToReplace()); 3254 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3255 if (IVIncSet.count(UseI)) { 3256 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3257 continue; 3258 } 3259 3260 LSRUse::KindType Kind = LSRUse::Basic; 3261 MemAccessTy AccessTy; 3262 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3263 Kind = LSRUse::Address; 3264 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3265 } 3266 3267 const SCEV *S = IU.getExpr(U); 3268 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3269 3270 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3271 // (N - i == 0), and this allows (N - i) to be the expression that we work 3272 // with rather than just N or i, so we can consider the register 3273 // requirements for both N and i at the same time. Limiting this code to 3274 // equality icmps is not a problem because all interesting loops use 3275 // equality icmps, thanks to IndVarSimplify. 3276 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3277 // If CI can be saved in some target, like replaced inside hardware loop 3278 // in PowerPC, no need to generate initial formulae for it. 3279 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3280 continue; 3281 if (CI->isEquality()) { 3282 // Swap the operands if needed to put the OperandValToReplace on the 3283 // left, for consistency. 3284 Value *NV = CI->getOperand(1); 3285 if (NV == U.getOperandValToReplace()) { 3286 CI->setOperand(1, CI->getOperand(0)); 3287 CI->setOperand(0, NV); 3288 NV = CI->getOperand(1); 3289 Changed = true; 3290 } 3291 3292 // x == y --> x - y == 0 3293 const SCEV *N = SE.getSCEV(NV); 3294 if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) { 3295 // S is normalized, so normalize N before folding it into S 3296 // to keep the result normalized. 3297 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3298 Kind = LSRUse::ICmpZero; 3299 S = SE.getMinusSCEV(N, S); 3300 } 3301 3302 // -1 and the negations of all interesting strides (except the negation 3303 // of -1) are now also interesting. 3304 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3305 if (Factors[i] != -1) 3306 Factors.insert(-(uint64_t)Factors[i]); 3307 Factors.insert(-1); 3308 } 3309 } 3310 3311 // Get or create an LSRUse. 3312 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy); 3313 size_t LUIdx = P.first; 3314 int64_t Offset = P.second; 3315 LSRUse &LU = Uses[LUIdx]; 3316 3317 // Record the fixup. 3318 LSRFixup &LF = LU.getNewFixup(); 3319 LF.UserInst = UserInst; 3320 LF.OperandValToReplace = U.getOperandValToReplace(); 3321 LF.PostIncLoops = TmpPostIncLoops; 3322 LF.Offset = Offset; 3323 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3324 3325 if (!LU.WidestFixupType || 3326 SE.getTypeSizeInBits(LU.WidestFixupType) < 3327 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3328 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3329 3330 // If this is the first use of this LSRUse, give it a formula. 3331 if (LU.Formulae.empty()) { 3332 InsertInitialFormula(S, LU, LUIdx); 3333 CountRegisters(LU.Formulae.back(), LUIdx); 3334 } 3335 } 3336 3337 LLVM_DEBUG(print_fixups(dbgs())); 3338 } 3339 3340 /// Insert a formula for the given expression into the given use, separating out 3341 /// loop-variant portions from loop-invariant and loop-computable portions. 3342 void 3343 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) { 3344 // Mark uses whose expressions cannot be expanded. 3345 if (!isSafeToExpand(S, SE)) 3346 LU.RigidFormula = true; 3347 3348 Formula F; 3349 F.initialMatch(S, L, SE); 3350 bool Inserted = InsertFormula(LU, LUIdx, F); 3351 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3352 } 3353 3354 /// Insert a simple single-register formula for the given expression into the 3355 /// given use. 3356 void 3357 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3358 LSRUse &LU, size_t LUIdx) { 3359 Formula F; 3360 F.BaseRegs.push_back(S); 3361 F.HasBaseReg = true; 3362 bool Inserted = InsertFormula(LU, LUIdx, F); 3363 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3364 } 3365 3366 /// Note which registers are used by the given formula, updating RegUses. 3367 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3368 if (F.ScaledReg) 3369 RegUses.countRegister(F.ScaledReg, LUIdx); 3370 for (const SCEV *BaseReg : F.BaseRegs) 3371 RegUses.countRegister(BaseReg, LUIdx); 3372 } 3373 3374 /// If the given formula has not yet been inserted, add it to the list, and 3375 /// return true. Return false otherwise. 3376 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3377 // Do not insert formula that we will not be able to expand. 3378 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3379 "Formula is illegal"); 3380 3381 if (!LU.InsertFormula(F, *L)) 3382 return false; 3383 3384 CountRegisters(F, LUIdx); 3385 return true; 3386 } 3387 3388 /// Check for other uses of loop-invariant values which we're tracking. These 3389 /// other uses will pin these values in registers, making them less profitable 3390 /// for elimination. 3391 /// TODO: This currently misses non-constant addrec step registers. 3392 /// TODO: Should this give more weight to users inside the loop? 3393 void 3394 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3395 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3396 SmallPtrSet<const SCEV *, 32> Visited; 3397 3398 while (!Worklist.empty()) { 3399 const SCEV *S = Worklist.pop_back_val(); 3400 3401 // Don't process the same SCEV twice 3402 if (!Visited.insert(S).second) 3403 continue; 3404 3405 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3406 Worklist.append(N->op_begin(), N->op_end()); 3407 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3408 Worklist.push_back(C->getOperand()); 3409 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3410 Worklist.push_back(D->getLHS()); 3411 Worklist.push_back(D->getRHS()); 3412 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3413 const Value *V = US->getValue(); 3414 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3415 // Look for instructions defined outside the loop. 3416 if (L->contains(Inst)) continue; 3417 } else if (isa<UndefValue>(V)) 3418 // Undef doesn't have a live range, so it doesn't matter. 3419 continue; 3420 for (const Use &U : V->uses()) { 3421 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3422 // Ignore non-instructions. 3423 if (!UserInst) 3424 continue; 3425 // Ignore instructions in other functions (as can happen with 3426 // Constants). 3427 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3428 continue; 3429 // Ignore instructions not dominated by the loop. 3430 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3431 UserInst->getParent() : 3432 cast<PHINode>(UserInst)->getIncomingBlock( 3433 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3434 if (!DT.dominates(L->getHeader(), UseBB)) 3435 continue; 3436 // Don't bother if the instruction is in a BB which ends in an EHPad. 3437 if (UseBB->getTerminator()->isEHPad()) 3438 continue; 3439 // Don't bother rewriting PHIs in catchswitch blocks. 3440 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3441 continue; 3442 // Ignore uses which are part of other SCEV expressions, to avoid 3443 // analyzing them multiple times. 3444 if (SE.isSCEVable(UserInst->getType())) { 3445 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3446 // If the user is a no-op, look through to its uses. 3447 if (!isa<SCEVUnknown>(UserS)) 3448 continue; 3449 if (UserS == US) { 3450 Worklist.push_back( 3451 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3452 continue; 3453 } 3454 } 3455 // Ignore icmp instructions which are already being analyzed. 3456 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3457 unsigned OtherIdx = !U.getOperandNo(); 3458 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3459 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3460 continue; 3461 } 3462 3463 std::pair<size_t, int64_t> P = getUse( 3464 S, LSRUse::Basic, MemAccessTy()); 3465 size_t LUIdx = P.first; 3466 int64_t Offset = P.second; 3467 LSRUse &LU = Uses[LUIdx]; 3468 LSRFixup &LF = LU.getNewFixup(); 3469 LF.UserInst = const_cast<Instruction *>(UserInst); 3470 LF.OperandValToReplace = U; 3471 LF.Offset = Offset; 3472 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3473 if (!LU.WidestFixupType || 3474 SE.getTypeSizeInBits(LU.WidestFixupType) < 3475 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3476 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3477 InsertSupplementalFormula(US, LU, LUIdx); 3478 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3479 break; 3480 } 3481 } 3482 } 3483 } 3484 3485 /// Split S into subexpressions which can be pulled out into separate 3486 /// registers. If C is non-null, multiply each subexpression by C. 3487 /// 3488 /// Return remainder expression after factoring the subexpressions captured by 3489 /// Ops. If Ops is complete, return NULL. 3490 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3491 SmallVectorImpl<const SCEV *> &Ops, 3492 const Loop *L, 3493 ScalarEvolution &SE, 3494 unsigned Depth = 0) { 3495 // Arbitrarily cap recursion to protect compile time. 3496 if (Depth >= 3) 3497 return S; 3498 3499 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3500 // Break out add operands. 3501 for (const SCEV *S : Add->operands()) { 3502 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3503 if (Remainder) 3504 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3505 } 3506 return nullptr; 3507 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3508 // Split a non-zero base out of an addrec. 3509 if (AR->getStart()->isZero() || !AR->isAffine()) 3510 return S; 3511 3512 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3513 C, Ops, L, SE, Depth+1); 3514 // Split the non-zero AddRec unless it is part of a nested recurrence that 3515 // does not pertain to this loop. 3516 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3517 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3518 Remainder = nullptr; 3519 } 3520 if (Remainder != AR->getStart()) { 3521 if (!Remainder) 3522 Remainder = SE.getConstant(AR->getType(), 0); 3523 return SE.getAddRecExpr(Remainder, 3524 AR->getStepRecurrence(SE), 3525 AR->getLoop(), 3526 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3527 SCEV::FlagAnyWrap); 3528 } 3529 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3530 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3531 if (Mul->getNumOperands() != 2) 3532 return S; 3533 if (const SCEVConstant *Op0 = 3534 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3535 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3536 const SCEV *Remainder = 3537 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3538 if (Remainder) 3539 Ops.push_back(SE.getMulExpr(C, Remainder)); 3540 return nullptr; 3541 } 3542 } 3543 return S; 3544 } 3545 3546 /// Return true if the SCEV represents a value that may end up as a 3547 /// post-increment operation. 3548 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3549 LSRUse &LU, const SCEV *S, const Loop *L, 3550 ScalarEvolution &SE) { 3551 if (LU.Kind != LSRUse::Address || 3552 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3553 return false; 3554 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3555 if (!AR) 3556 return false; 3557 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3558 if (!isa<SCEVConstant>(LoopStep)) 3559 return false; 3560 // Check if a post-indexed load/store can be used. 3561 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3562 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3563 const SCEV *LoopStart = AR->getStart(); 3564 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3565 return true; 3566 } 3567 return false; 3568 } 3569 3570 /// Helper function for LSRInstance::GenerateReassociations. 3571 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3572 const Formula &Base, 3573 unsigned Depth, size_t Idx, 3574 bool IsScaledReg) { 3575 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3576 // Don't generate reassociations for the base register of a value that 3577 // may generate a post-increment operator. The reason is that the 3578 // reassociations cause extra base+register formula to be created, 3579 // and possibly chosen, but the post-increment is more efficient. 3580 if (TTI.shouldFavorPostInc() && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3581 return; 3582 SmallVector<const SCEV *, 8> AddOps; 3583 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3584 if (Remainder) 3585 AddOps.push_back(Remainder); 3586 3587 if (AddOps.size() == 1) 3588 return; 3589 3590 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3591 JE = AddOps.end(); 3592 J != JE; ++J) { 3593 // Loop-variant "unknown" values are uninteresting; we won't be able to 3594 // do anything meaningful with them. 3595 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3596 continue; 3597 3598 // Don't pull a constant into a register if the constant could be folded 3599 // into an immediate field. 3600 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3601 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3602 continue; 3603 3604 // Collect all operands except *J. 3605 SmallVector<const SCEV *, 8> InnerAddOps( 3606 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3607 InnerAddOps.append(std::next(J), 3608 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3609 3610 // Don't leave just a constant behind in a register if the constant could 3611 // be folded into an immediate field. 3612 if (InnerAddOps.size() == 1 && 3613 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3614 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3615 continue; 3616 3617 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3618 if (InnerSum->isZero()) 3619 continue; 3620 Formula F = Base; 3621 3622 // Add the remaining pieces of the add back into the new formula. 3623 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3624 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3625 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3626 InnerSumSC->getValue()->getZExtValue())) { 3627 F.UnfoldedOffset = 3628 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue(); 3629 if (IsScaledReg) 3630 F.ScaledReg = nullptr; 3631 else 3632 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3633 } else if (IsScaledReg) 3634 F.ScaledReg = InnerSum; 3635 else 3636 F.BaseRegs[Idx] = InnerSum; 3637 3638 // Add J as its own register, or an unfolded immediate. 3639 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3640 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3641 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset + 3642 SC->getValue()->getZExtValue())) 3643 F.UnfoldedOffset = 3644 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue(); 3645 else 3646 F.BaseRegs.push_back(*J); 3647 // We may have changed the number of register in base regs, adjust the 3648 // formula accordingly. 3649 F.canonicalize(*L); 3650 3651 if (InsertFormula(LU, LUIdx, F)) 3652 // If that formula hadn't been seen before, recurse to find more like 3653 // it. 3654 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 3655 // Because just Depth is not enough to bound compile time. 3656 // This means that every time AddOps.size() is greater 16^x we will add 3657 // x to Depth. 3658 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 3659 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 3660 } 3661 } 3662 3663 /// Split out subexpressions from adds and the bases of addrecs. 3664 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 3665 Formula Base, unsigned Depth) { 3666 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 3667 // Arbitrarily cap recursion to protect compile time. 3668 if (Depth >= 3) 3669 return; 3670 3671 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3672 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 3673 3674 if (Base.Scale == 1) 3675 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 3676 /* Idx */ -1, /* IsScaledReg */ true); 3677 } 3678 3679 /// Generate a formula consisting of all of the loop-dominating registers added 3680 /// into a single register. 3681 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 3682 Formula Base) { 3683 // This method is only interesting on a plurality of registers. 3684 if (Base.BaseRegs.size() + (Base.Scale == 1) + 3685 (Base.UnfoldedOffset != 0) <= 1) 3686 return; 3687 3688 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 3689 // processing the formula. 3690 Base.unscale(); 3691 SmallVector<const SCEV *, 4> Ops; 3692 Formula NewBase = Base; 3693 NewBase.BaseRegs.clear(); 3694 Type *CombinedIntegerType = nullptr; 3695 for (const SCEV *BaseReg : Base.BaseRegs) { 3696 if (SE.properlyDominates(BaseReg, L->getHeader()) && 3697 !SE.hasComputableLoopEvolution(BaseReg, L)) { 3698 if (!CombinedIntegerType) 3699 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 3700 Ops.push_back(BaseReg); 3701 } 3702 else 3703 NewBase.BaseRegs.push_back(BaseReg); 3704 } 3705 3706 // If no register is relevant, we're done. 3707 if (Ops.size() == 0) 3708 return; 3709 3710 // Utility function for generating the required variants of the combined 3711 // registers. 3712 auto GenerateFormula = [&](const SCEV *Sum) { 3713 Formula F = NewBase; 3714 3715 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 3716 // opportunity to fold something. For now, just ignore such cases 3717 // rather than proceed with zero in a register. 3718 if (Sum->isZero()) 3719 return; 3720 3721 F.BaseRegs.push_back(Sum); 3722 F.canonicalize(*L); 3723 (void)InsertFormula(LU, LUIdx, F); 3724 }; 3725 3726 // If we collected at least two registers, generate a formula combining them. 3727 if (Ops.size() > 1) { 3728 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 3729 GenerateFormula(SE.getAddExpr(OpsCopy)); 3730 } 3731 3732 // If we have an unfolded offset, generate a formula combining it with the 3733 // registers collected. 3734 if (NewBase.UnfoldedOffset) { 3735 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 3736 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset, 3737 true)); 3738 NewBase.UnfoldedOffset = 0; 3739 GenerateFormula(SE.getAddExpr(Ops)); 3740 } 3741 } 3742 3743 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 3744 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 3745 const Formula &Base, size_t Idx, 3746 bool IsScaledReg) { 3747 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3748 GlobalValue *GV = ExtractSymbol(G, SE); 3749 if (G->isZero() || !GV) 3750 return; 3751 Formula F = Base; 3752 F.BaseGV = GV; 3753 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3754 return; 3755 if (IsScaledReg) 3756 F.ScaledReg = G; 3757 else 3758 F.BaseRegs[Idx] = G; 3759 (void)InsertFormula(LU, LUIdx, F); 3760 } 3761 3762 /// Generate reuse formulae using symbolic offsets. 3763 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 3764 Formula Base) { 3765 // We can't add a symbolic offset if the address already contains one. 3766 if (Base.BaseGV) return; 3767 3768 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3769 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 3770 if (Base.Scale == 1) 3771 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 3772 /* IsScaledReg */ true); 3773 } 3774 3775 /// Helper function for LSRInstance::GenerateConstantOffsets. 3776 void LSRInstance::GenerateConstantOffsetsImpl( 3777 LSRUse &LU, unsigned LUIdx, const Formula &Base, 3778 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) { 3779 3780 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) { 3781 Formula F = Base; 3782 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset; 3783 3784 if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind, 3785 LU.AccessTy, F)) { 3786 // Add the offset to the base register. 3787 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G); 3788 // If it cancelled out, drop the base register, otherwise update it. 3789 if (NewG->isZero()) { 3790 if (IsScaledReg) { 3791 F.Scale = 0; 3792 F.ScaledReg = nullptr; 3793 } else 3794 F.deleteBaseReg(F.BaseRegs[Idx]); 3795 F.canonicalize(*L); 3796 } else if (IsScaledReg) 3797 F.ScaledReg = NewG; 3798 else 3799 F.BaseRegs[Idx] = NewG; 3800 3801 (void)InsertFormula(LU, LUIdx, F); 3802 } 3803 }; 3804 3805 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3806 3807 // With constant offsets and constant steps, we can generate pre-inc 3808 // accesses by having the offset equal the step. So, for access #0 with a 3809 // step of 8, we generate a G - 8 base which would require the first access 3810 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 3811 // for itself and hopefully becomes the base for other accesses. This means 3812 // means that a single pre-indexed access can be generated to become the new 3813 // base pointer for each iteration of the loop, resulting in no extra add/sub 3814 // instructions for pointer updating. 3815 if (FavorBackedgeIndex && LU.Kind == LSRUse::Address) { 3816 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 3817 if (auto *StepRec = 3818 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 3819 const APInt &StepInt = StepRec->getAPInt(); 3820 int64_t Step = StepInt.isNegative() ? 3821 StepInt.getSExtValue() : StepInt.getZExtValue(); 3822 3823 for (int64_t Offset : Worklist) { 3824 Offset -= Step; 3825 GenerateOffset(G, Offset); 3826 } 3827 } 3828 } 3829 } 3830 for (int64_t Offset : Worklist) 3831 GenerateOffset(G, Offset); 3832 3833 int64_t Imm = ExtractImmediate(G, SE); 3834 if (G->isZero() || Imm == 0) 3835 return; 3836 Formula F = Base; 3837 F.BaseOffset = (uint64_t)F.BaseOffset + Imm; 3838 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 3839 return; 3840 if (IsScaledReg) { 3841 F.ScaledReg = G; 3842 } else { 3843 F.BaseRegs[Idx] = G; 3844 // We may generate non canonical Formula if G is a recurrent expr reg 3845 // related with current loop while F.ScaledReg is not. 3846 F.canonicalize(*L); 3847 } 3848 (void)InsertFormula(LU, LUIdx, F); 3849 } 3850 3851 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 3852 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 3853 Formula Base) { 3854 // TODO: For now, just add the min and max offset, because it usually isn't 3855 // worthwhile looking at everything inbetween. 3856 SmallVector<int64_t, 2> Worklist; 3857 Worklist.push_back(LU.MinOffset); 3858 if (LU.MaxOffset != LU.MinOffset) 3859 Worklist.push_back(LU.MaxOffset); 3860 3861 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 3862 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 3863 if (Base.Scale == 1) 3864 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 3865 /* IsScaledReg */ true); 3866 } 3867 3868 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 3869 /// == y -> x*c == y*c. 3870 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 3871 Formula Base) { 3872 if (LU.Kind != LSRUse::ICmpZero) return; 3873 3874 // Determine the integer type for the base formula. 3875 Type *IntTy = Base.getType(); 3876 if (!IntTy) return; 3877 if (SE.getTypeSizeInBits(IntTy) > 64) return; 3878 3879 // Don't do this if there is more than one offset. 3880 if (LU.MinOffset != LU.MaxOffset) return; 3881 3882 // Check if transformation is valid. It is illegal to multiply pointer. 3883 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 3884 return; 3885 for (const SCEV *BaseReg : Base.BaseRegs) 3886 if (BaseReg->getType()->isPointerTy()) 3887 return; 3888 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 3889 3890 // Check each interesting stride. 3891 for (int64_t Factor : Factors) { 3892 // Check that the multiplication doesn't overflow. 3893 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1) 3894 continue; 3895 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor; 3896 if (NewBaseOffset / Factor != Base.BaseOffset) 3897 continue; 3898 // If the offset will be truncated at this use, check that it is in bounds. 3899 if (!IntTy->isPointerTy() && 3900 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset)) 3901 continue; 3902 3903 // Check that multiplying with the use offset doesn't overflow. 3904 int64_t Offset = LU.MinOffset; 3905 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1) 3906 continue; 3907 Offset = (uint64_t)Offset * Factor; 3908 if (Offset / Factor != LU.MinOffset) 3909 continue; 3910 // If the offset will be truncated at this use, check that it is in bounds. 3911 if (!IntTy->isPointerTy() && 3912 !ConstantInt::isValueValidForType(IntTy, Offset)) 3913 continue; 3914 3915 Formula F = Base; 3916 F.BaseOffset = NewBaseOffset; 3917 3918 // Check that this scale is legal. 3919 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 3920 continue; 3921 3922 // Compensate for the use having MinOffset built into it. 3923 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset; 3924 3925 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 3926 3927 // Check that multiplying with each base register doesn't overflow. 3928 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 3929 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 3930 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 3931 goto next; 3932 } 3933 3934 // Check that multiplying with the scaled register doesn't overflow. 3935 if (F.ScaledReg) { 3936 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 3937 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 3938 continue; 3939 } 3940 3941 // Check that multiplying with the unfolded offset doesn't overflow. 3942 if (F.UnfoldedOffset != 0) { 3943 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() && 3944 Factor == -1) 3945 continue; 3946 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor; 3947 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset) 3948 continue; 3949 // If the offset will be truncated, check that it is in bounds. 3950 if (!IntTy->isPointerTy() && 3951 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset)) 3952 continue; 3953 } 3954 3955 // If we make it here and it's legal, add it. 3956 (void)InsertFormula(LU, LUIdx, F); 3957 next:; 3958 } 3959 } 3960 3961 /// Generate stride factor reuse formulae by making use of scaled-offset address 3962 /// modes, for example. 3963 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 3964 // Determine the integer type for the base formula. 3965 Type *IntTy = Base.getType(); 3966 if (!IntTy) return; 3967 3968 // If this Formula already has a scaled register, we can't add another one. 3969 // Try to unscale the formula to generate a better scale. 3970 if (Base.Scale != 0 && !Base.unscale()) 3971 return; 3972 3973 assert(Base.Scale == 0 && "unscale did not did its job!"); 3974 3975 // Check each interesting stride. 3976 for (int64_t Factor : Factors) { 3977 Base.Scale = Factor; 3978 Base.HasBaseReg = Base.BaseRegs.size() > 1; 3979 // Check whether this scale is going to be legal. 3980 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 3981 Base)) { 3982 // As a special-case, handle special out-of-loop Basic users specially. 3983 // TODO: Reconsider this special case. 3984 if (LU.Kind == LSRUse::Basic && 3985 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 3986 LU.AccessTy, Base) && 3987 LU.AllFixupsOutsideLoop) 3988 LU.Kind = LSRUse::Special; 3989 else 3990 continue; 3991 } 3992 // For an ICmpZero, negating a solitary base register won't lead to 3993 // new solutions. 3994 if (LU.Kind == LSRUse::ICmpZero && 3995 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV) 3996 continue; 3997 // For each addrec base reg, if its loop is current loop, apply the scale. 3998 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 3999 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4000 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4001 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4002 if (FactorS->isZero()) 4003 continue; 4004 // Divide out the factor, ignoring high bits, since we'll be 4005 // scaling the value back up in the end. 4006 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) { 4007 // TODO: This could be optimized to avoid all the copying. 4008 Formula F = Base; 4009 F.ScaledReg = Quotient; 4010 F.deleteBaseReg(F.BaseRegs[i]); 4011 // The canonical representation of 1*reg is reg, which is already in 4012 // Base. In that case, do not try to insert the formula, it will be 4013 // rejected anyway. 4014 if (F.Scale == 1 && (F.BaseRegs.empty() || 4015 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4016 continue; 4017 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4018 // non canonical Formula with ScaledReg's loop not being L. 4019 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4020 F.canonicalize(*L); 4021 (void)InsertFormula(LU, LUIdx, F); 4022 } 4023 } 4024 } 4025 } 4026 } 4027 4028 /// Generate reuse formulae from different IV types. 4029 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4030 // Don't bother truncating symbolic values. 4031 if (Base.BaseGV) return; 4032 4033 // Determine the integer type for the base formula. 4034 Type *DstTy = Base.getType(); 4035 if (!DstTy) return; 4036 DstTy = SE.getEffectiveSCEVType(DstTy); 4037 4038 for (Type *SrcTy : Types) { 4039 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4040 Formula F = Base; 4041 4042 // Sometimes SCEV is able to prove zero during ext transform. It may 4043 // happen if SCEV did not do all possible transforms while creating the 4044 // initial node (maybe due to depth limitations), but it can do them while 4045 // taking ext. 4046 if (F.ScaledReg) { 4047 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy); 4048 if (NewScaledReg->isZero()) 4049 continue; 4050 F.ScaledReg = NewScaledReg; 4051 } 4052 bool HasZeroBaseReg = false; 4053 for (const SCEV *&BaseReg : F.BaseRegs) { 4054 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy); 4055 if (NewBaseReg->isZero()) { 4056 HasZeroBaseReg = true; 4057 break; 4058 } 4059 BaseReg = NewBaseReg; 4060 } 4061 if (HasZeroBaseReg) 4062 continue; 4063 4064 // TODO: This assumes we've done basic processing on all uses and 4065 // have an idea what the register usage is. 4066 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4067 continue; 4068 4069 F.canonicalize(*L); 4070 (void)InsertFormula(LU, LUIdx, F); 4071 } 4072 } 4073 } 4074 4075 namespace { 4076 4077 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4078 /// modifications so that the search phase doesn't have to worry about the data 4079 /// structures moving underneath it. 4080 struct WorkItem { 4081 size_t LUIdx; 4082 int64_t Imm; 4083 const SCEV *OrigReg; 4084 4085 WorkItem(size_t LI, int64_t I, const SCEV *R) 4086 : LUIdx(LI), Imm(I), OrigReg(R) {} 4087 4088 void print(raw_ostream &OS) const; 4089 void dump() const; 4090 }; 4091 4092 } // end anonymous namespace 4093 4094 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4095 void WorkItem::print(raw_ostream &OS) const { 4096 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4097 << " , add offset " << Imm; 4098 } 4099 4100 LLVM_DUMP_METHOD void WorkItem::dump() const { 4101 print(errs()); errs() << '\n'; 4102 } 4103 #endif 4104 4105 /// Look for registers which are a constant distance apart and try to form reuse 4106 /// opportunities between them. 4107 void LSRInstance::GenerateCrossUseConstantOffsets() { 4108 // Group the registers by their value without any added constant offset. 4109 using ImmMapTy = std::map<int64_t, const SCEV *>; 4110 4111 DenseMap<const SCEV *, ImmMapTy> Map; 4112 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4113 SmallVector<const SCEV *, 8> Sequence; 4114 for (const SCEV *Use : RegUses) { 4115 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4116 int64_t Imm = ExtractImmediate(Reg, SE); 4117 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4118 if (Pair.second) 4119 Sequence.push_back(Reg); 4120 Pair.first->second.insert(std::make_pair(Imm, Use)); 4121 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4122 } 4123 4124 // Now examine each set of registers with the same base value. Build up 4125 // a list of work to do and do the work in a separate step so that we're 4126 // not adding formulae and register counts while we're searching. 4127 SmallVector<WorkItem, 32> WorkItems; 4128 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems; 4129 for (const SCEV *Reg : Sequence) { 4130 const ImmMapTy &Imms = Map.find(Reg)->second; 4131 4132 // It's not worthwhile looking for reuse if there's only one offset. 4133 if (Imms.size() == 1) 4134 continue; 4135 4136 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4137 for (const auto &Entry 4138 : Imms) dbgs() 4139 << ' ' << Entry.first; 4140 dbgs() << '\n'); 4141 4142 // Examine each offset. 4143 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4144 J != JE; ++J) { 4145 const SCEV *OrigReg = J->second; 4146 4147 int64_t JImm = J->first; 4148 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4149 4150 if (!isa<SCEVConstant>(OrigReg) && 4151 UsedByIndicesMap[Reg].count() == 1) { 4152 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4153 << '\n'); 4154 continue; 4155 } 4156 4157 // Conservatively examine offsets between this orig reg a few selected 4158 // other orig regs. 4159 int64_t First = Imms.begin()->first; 4160 int64_t Last = std::prev(Imms.end())->first; 4161 // Compute (First + Last) / 2 without overflow using the fact that 4162 // First + Last = 2 * (First + Last) + (First ^ Last). 4163 int64_t Avg = (First & Last) + ((First ^ Last) >> 1); 4164 // If the result is negative and First is odd and Last even (or vice versa), 4165 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4166 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63)); 4167 ImmMapTy::const_iterator OtherImms[] = { 4168 Imms.begin(), std::prev(Imms.end()), 4169 Imms.lower_bound(Avg)}; 4170 for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) { 4171 ImmMapTy::const_iterator M = OtherImms[i]; 4172 if (M == J || M == JE) continue; 4173 4174 // Compute the difference between the two. 4175 int64_t Imm = (uint64_t)JImm - M->first; 4176 for (unsigned LUIdx : UsedByIndices.set_bits()) 4177 // Make a memo of this use, offset, and register tuple. 4178 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4179 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4180 } 4181 } 4182 } 4183 4184 Map.clear(); 4185 Sequence.clear(); 4186 UsedByIndicesMap.clear(); 4187 UniqueItems.clear(); 4188 4189 // Now iterate through the worklist and add new formulae. 4190 for (const WorkItem &WI : WorkItems) { 4191 size_t LUIdx = WI.LUIdx; 4192 LSRUse &LU = Uses[LUIdx]; 4193 int64_t Imm = WI.Imm; 4194 const SCEV *OrigReg = WI.OrigReg; 4195 4196 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4197 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm)); 4198 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4199 4200 // TODO: Use a more targeted data structure. 4201 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4202 Formula F = LU.Formulae[L]; 4203 // FIXME: The code for the scaled and unscaled registers looks 4204 // very similar but slightly different. Investigate if they 4205 // could be merged. That way, we would not have to unscale the 4206 // Formula. 4207 F.unscale(); 4208 // Use the immediate in the scaled register. 4209 if (F.ScaledReg == OrigReg) { 4210 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale; 4211 // Don't create 50 + reg(-50). 4212 if (F.referencesReg(SE.getSCEV( 4213 ConstantInt::get(IntTy, -(uint64_t)Offset)))) 4214 continue; 4215 Formula NewF = F; 4216 NewF.BaseOffset = Offset; 4217 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4218 NewF)) 4219 continue; 4220 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4221 4222 // If the new scale is a constant in a register, and adding the constant 4223 // value to the immediate would produce a value closer to zero than the 4224 // immediate itself, then the formula isn't worthwhile. 4225 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) 4226 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) && 4227 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4228 .ule(std::abs(NewF.BaseOffset))) 4229 continue; 4230 4231 // OK, looks good. 4232 NewF.canonicalize(*this->L); 4233 (void)InsertFormula(LU, LUIdx, NewF); 4234 } else { 4235 // Use the immediate in a base register. 4236 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4237 const SCEV *BaseReg = F.BaseRegs[N]; 4238 if (BaseReg != OrigReg) 4239 continue; 4240 Formula NewF = F; 4241 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm; 4242 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4243 LU.Kind, LU.AccessTy, NewF)) { 4244 if (TTI.shouldFavorPostInc() && 4245 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4246 continue; 4247 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm)) 4248 continue; 4249 NewF = F; 4250 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm; 4251 } 4252 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4253 4254 // If the new formula has a constant in a register, and adding the 4255 // constant value to the immediate would produce a value closer to 4256 // zero than the immediate itself, then the formula isn't worthwhile. 4257 for (const SCEV *NewReg : NewF.BaseRegs) 4258 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) 4259 if ((C->getAPInt() + NewF.BaseOffset) 4260 .abs() 4261 .slt(std::abs(NewF.BaseOffset)) && 4262 (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >= 4263 countTrailingZeros<uint64_t>(NewF.BaseOffset)) 4264 goto skip_formula; 4265 4266 // Ok, looks good. 4267 NewF.canonicalize(*this->L); 4268 (void)InsertFormula(LU, LUIdx, NewF); 4269 break; 4270 skip_formula:; 4271 } 4272 } 4273 } 4274 } 4275 } 4276 4277 /// Generate formulae for each use. 4278 void 4279 LSRInstance::GenerateAllReuseFormulae() { 4280 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4281 // queries are more precise. 4282 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4283 LSRUse &LU = Uses[LUIdx]; 4284 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4285 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4286 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4287 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4288 } 4289 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4290 LSRUse &LU = Uses[LUIdx]; 4291 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4292 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4293 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4294 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4295 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4296 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4297 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4298 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4299 } 4300 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4301 LSRUse &LU = Uses[LUIdx]; 4302 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4303 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4304 } 4305 4306 GenerateCrossUseConstantOffsets(); 4307 4308 LLVM_DEBUG(dbgs() << "\n" 4309 "After generating reuse formulae:\n"; 4310 print_uses(dbgs())); 4311 } 4312 4313 /// If there are multiple formulae with the same set of registers used 4314 /// by other uses, pick the best one and delete the others. 4315 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4316 DenseSet<const SCEV *> VisitedRegs; 4317 SmallPtrSet<const SCEV *, 16> Regs; 4318 SmallPtrSet<const SCEV *, 16> LoserRegs; 4319 #ifndef NDEBUG 4320 bool ChangedFormulae = false; 4321 #endif 4322 4323 // Collect the best formula for each unique set of shared registers. This 4324 // is reset for each use. 4325 using BestFormulaeTy = 4326 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4327 4328 BestFormulaeTy BestFormulae; 4329 4330 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4331 LSRUse &LU = Uses[LUIdx]; 4332 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4333 dbgs() << '\n'); 4334 4335 bool Any = false; 4336 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4337 FIdx != NumForms; ++FIdx) { 4338 Formula &F = LU.Formulae[FIdx]; 4339 4340 // Some formulas are instant losers. For example, they may depend on 4341 // nonexistent AddRecs from other loops. These need to be filtered 4342 // immediately, otherwise heuristics could choose them over others leading 4343 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4344 // avoids the need to recompute this information across formulae using the 4345 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4346 // the corresponding bad register from the Regs set. 4347 Cost CostF(L, SE, TTI); 4348 Regs.clear(); 4349 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4350 if (CostF.isLoser()) { 4351 // During initial formula generation, undesirable formulae are generated 4352 // by uses within other loops that have some non-trivial address mode or 4353 // use the postinc form of the IV. LSR needs to provide these formulae 4354 // as the basis of rediscovering the desired formula that uses an AddRec 4355 // corresponding to the existing phi. Once all formulae have been 4356 // generated, these initial losers may be pruned. 4357 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4358 dbgs() << "\n"); 4359 } 4360 else { 4361 SmallVector<const SCEV *, 4> Key; 4362 for (const SCEV *Reg : F.BaseRegs) { 4363 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4364 Key.push_back(Reg); 4365 } 4366 if (F.ScaledReg && 4367 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4368 Key.push_back(F.ScaledReg); 4369 // Unstable sort by host order ok, because this is only used for 4370 // uniquifying. 4371 llvm::sort(Key); 4372 4373 std::pair<BestFormulaeTy::const_iterator, bool> P = 4374 BestFormulae.insert(std::make_pair(Key, FIdx)); 4375 if (P.second) 4376 continue; 4377 4378 Formula &Best = LU.Formulae[P.first->second]; 4379 4380 Cost CostBest(L, SE, TTI); 4381 Regs.clear(); 4382 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4383 if (CostF.isLess(CostBest)) 4384 std::swap(F, Best); 4385 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4386 dbgs() << "\n" 4387 " in favor of formula "; 4388 Best.print(dbgs()); dbgs() << '\n'); 4389 } 4390 #ifndef NDEBUG 4391 ChangedFormulae = true; 4392 #endif 4393 LU.DeleteFormula(F); 4394 --FIdx; 4395 --NumForms; 4396 Any = true; 4397 } 4398 4399 // Now that we've filtered out some formulae, recompute the Regs set. 4400 if (Any) 4401 LU.RecomputeRegs(LUIdx, RegUses); 4402 4403 // Reset this to prepare for the next use. 4404 BestFormulae.clear(); 4405 } 4406 4407 LLVM_DEBUG(if (ChangedFormulae) { 4408 dbgs() << "\n" 4409 "After filtering out undesirable candidates:\n"; 4410 print_uses(dbgs()); 4411 }); 4412 } 4413 4414 /// Estimate the worst-case number of solutions the solver might have to 4415 /// consider. It almost never considers this many solutions because it prune the 4416 /// search space, but the pruning isn't always sufficient. 4417 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4418 size_t Power = 1; 4419 for (const LSRUse &LU : Uses) { 4420 size_t FSize = LU.Formulae.size(); 4421 if (FSize >= ComplexityLimit) { 4422 Power = ComplexityLimit; 4423 break; 4424 } 4425 Power *= FSize; 4426 if (Power >= ComplexityLimit) 4427 break; 4428 } 4429 return Power; 4430 } 4431 4432 /// When one formula uses a superset of the registers of another formula, it 4433 /// won't help reduce register pressure (though it may not necessarily hurt 4434 /// register pressure); remove it to simplify the system. 4435 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4436 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4437 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4438 4439 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4440 "which use a superset of registers used by other " 4441 "formulae.\n"); 4442 4443 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4444 LSRUse &LU = Uses[LUIdx]; 4445 bool Any = false; 4446 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4447 Formula &F = LU.Formulae[i]; 4448 // Look for a formula with a constant or GV in a register. If the use 4449 // also has a formula with that same value in an immediate field, 4450 // delete the one that uses a register. 4451 for (SmallVectorImpl<const SCEV *>::const_iterator 4452 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4453 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4454 Formula NewF = F; 4455 //FIXME: Formulas should store bitwidth to do wrapping properly. 4456 // See PR41034. 4457 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue(); 4458 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4459 (I - F.BaseRegs.begin())); 4460 if (LU.HasFormulaWithSameRegs(NewF)) { 4461 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4462 dbgs() << '\n'); 4463 LU.DeleteFormula(F); 4464 --i; 4465 --e; 4466 Any = true; 4467 break; 4468 } 4469 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4470 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4471 if (!F.BaseGV) { 4472 Formula NewF = F; 4473 NewF.BaseGV = GV; 4474 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4475 (I - F.BaseRegs.begin())); 4476 if (LU.HasFormulaWithSameRegs(NewF)) { 4477 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4478 dbgs() << '\n'); 4479 LU.DeleteFormula(F); 4480 --i; 4481 --e; 4482 Any = true; 4483 break; 4484 } 4485 } 4486 } 4487 } 4488 } 4489 if (Any) 4490 LU.RecomputeRegs(LUIdx, RegUses); 4491 } 4492 4493 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4494 } 4495 } 4496 4497 /// When there are many registers for expressions like A, A+1, A+2, etc., 4498 /// allocate a single register for them. 4499 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4500 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4501 return; 4502 4503 LLVM_DEBUG( 4504 dbgs() << "The search space is too complex.\n" 4505 "Narrowing the search space by assuming that uses separated " 4506 "by a constant offset will use the same registers.\n"); 4507 4508 // This is especially useful for unrolled loops. 4509 4510 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4511 LSRUse &LU = Uses[LUIdx]; 4512 for (const Formula &F : LU.Formulae) { 4513 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1)) 4514 continue; 4515 4516 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4517 if (!LUThatHas) 4518 continue; 4519 4520 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4521 LU.Kind, LU.AccessTy)) 4522 continue; 4523 4524 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4525 4526 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4527 4528 // Transfer the fixups of LU to LUThatHas. 4529 for (LSRFixup &Fixup : LU.Fixups) { 4530 Fixup.Offset += F.BaseOffset; 4531 LUThatHas->pushFixup(Fixup); 4532 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4533 } 4534 4535 // Delete formulae from the new use which are no longer legal. 4536 bool Any = false; 4537 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4538 Formula &F = LUThatHas->Formulae[i]; 4539 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4540 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4541 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4542 LUThatHas->DeleteFormula(F); 4543 --i; 4544 --e; 4545 Any = true; 4546 } 4547 } 4548 4549 if (Any) 4550 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4551 4552 // Delete the old use. 4553 DeleteUse(LU, LUIdx); 4554 --LUIdx; 4555 --NumUses; 4556 break; 4557 } 4558 } 4559 4560 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4561 } 4562 4563 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 4564 /// we've done more filtering, as it may be able to find more formulae to 4565 /// eliminate. 4566 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 4567 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4568 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4569 4570 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 4571 "undesirable dedicated registers.\n"); 4572 4573 FilterOutUndesirableDedicatedRegisters(); 4574 4575 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4576 } 4577 } 4578 4579 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 4580 /// Pick the best one and delete the others. 4581 /// This narrowing heuristic is to keep as many formulae with different 4582 /// Scale and ScaledReg pair as possible while narrowing the search space. 4583 /// The benefit is that it is more likely to find out a better solution 4584 /// from a formulae set with more Scale and ScaledReg variations than 4585 /// a formulae set with the same Scale and ScaledReg. The picking winner 4586 /// reg heuristic will often keep the formulae with the same Scale and 4587 /// ScaledReg and filter others, and we want to avoid that if possible. 4588 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 4589 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4590 return; 4591 4592 LLVM_DEBUG( 4593 dbgs() << "The search space is too complex.\n" 4594 "Narrowing the search space by choosing the best Formula " 4595 "from the Formulae with the same Scale and ScaledReg.\n"); 4596 4597 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 4598 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 4599 4600 BestFormulaeTy BestFormulae; 4601 #ifndef NDEBUG 4602 bool ChangedFormulae = false; 4603 #endif 4604 DenseSet<const SCEV *> VisitedRegs; 4605 SmallPtrSet<const SCEV *, 16> Regs; 4606 4607 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4608 LSRUse &LU = Uses[LUIdx]; 4609 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4610 dbgs() << '\n'); 4611 4612 // Return true if Formula FA is better than Formula FB. 4613 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 4614 // First we will try to choose the Formula with fewer new registers. 4615 // For a register used by current Formula, the more the register is 4616 // shared among LSRUses, the less we increase the register number 4617 // counter of the formula. 4618 size_t FARegNum = 0; 4619 for (const SCEV *Reg : FA.BaseRegs) { 4620 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4621 FARegNum += (NumUses - UsedByIndices.count() + 1); 4622 } 4623 size_t FBRegNum = 0; 4624 for (const SCEV *Reg : FB.BaseRegs) { 4625 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 4626 FBRegNum += (NumUses - UsedByIndices.count() + 1); 4627 } 4628 if (FARegNum != FBRegNum) 4629 return FARegNum < FBRegNum; 4630 4631 // If the new register numbers are the same, choose the Formula with 4632 // less Cost. 4633 Cost CostFA(L, SE, TTI); 4634 Cost CostFB(L, SE, TTI); 4635 Regs.clear(); 4636 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 4637 Regs.clear(); 4638 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 4639 return CostFA.isLess(CostFB); 4640 }; 4641 4642 bool Any = false; 4643 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4644 ++FIdx) { 4645 Formula &F = LU.Formulae[FIdx]; 4646 if (!F.ScaledReg) 4647 continue; 4648 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 4649 if (P.second) 4650 continue; 4651 4652 Formula &Best = LU.Formulae[P.first->second]; 4653 if (IsBetterThan(F, Best)) 4654 std::swap(F, Best); 4655 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4656 dbgs() << "\n" 4657 " in favor of formula "; 4658 Best.print(dbgs()); dbgs() << '\n'); 4659 #ifndef NDEBUG 4660 ChangedFormulae = true; 4661 #endif 4662 LU.DeleteFormula(F); 4663 --FIdx; 4664 --NumForms; 4665 Any = true; 4666 } 4667 if (Any) 4668 LU.RecomputeRegs(LUIdx, RegUses); 4669 4670 // Reset this to prepare for the next use. 4671 BestFormulae.clear(); 4672 } 4673 4674 LLVM_DEBUG(if (ChangedFormulae) { 4675 dbgs() << "\n" 4676 "After filtering out undesirable candidates:\n"; 4677 print_uses(dbgs()); 4678 }); 4679 } 4680 4681 /// If we are over the complexity limit, filter out any post-inc prefering 4682 /// variables to only post-inc values. 4683 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 4684 if (!TTI.shouldFavorPostInc()) 4685 return; 4686 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4687 return; 4688 4689 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 4690 "Narrowing the search space by choosing the lowest " 4691 "register Formula for PostInc Uses.\n"); 4692 4693 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4694 LSRUse &LU = Uses[LUIdx]; 4695 4696 if (LU.Kind != LSRUse::Address) 4697 continue; 4698 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 4699 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 4700 continue; 4701 4702 size_t MinRegs = std::numeric_limits<size_t>::max(); 4703 for (const Formula &F : LU.Formulae) 4704 MinRegs = std::min(F.getNumRegs(), MinRegs); 4705 4706 bool Any = false; 4707 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 4708 ++FIdx) { 4709 Formula &F = LU.Formulae[FIdx]; 4710 if (F.getNumRegs() > MinRegs) { 4711 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4712 dbgs() << "\n"); 4713 LU.DeleteFormula(F); 4714 --FIdx; 4715 --NumForms; 4716 Any = true; 4717 } 4718 } 4719 if (Any) 4720 LU.RecomputeRegs(LUIdx, RegUses); 4721 4722 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4723 break; 4724 } 4725 4726 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4727 } 4728 4729 /// The function delete formulas with high registers number expectation. 4730 /// Assuming we don't know the value of each formula (already delete 4731 /// all inefficient), generate probability of not selecting for each 4732 /// register. 4733 /// For example, 4734 /// Use1: 4735 /// reg(a) + reg({0,+,1}) 4736 /// reg(a) + reg({-1,+,1}) + 1 4737 /// reg({a,+,1}) 4738 /// Use2: 4739 /// reg(b) + reg({0,+,1}) 4740 /// reg(b) + reg({-1,+,1}) + 1 4741 /// reg({b,+,1}) 4742 /// Use3: 4743 /// reg(c) + reg(b) + reg({0,+,1}) 4744 /// reg(c) + reg({b,+,1}) 4745 /// 4746 /// Probability of not selecting 4747 /// Use1 Use2 Use3 4748 /// reg(a) (1/3) * 1 * 1 4749 /// reg(b) 1 * (1/3) * (1/2) 4750 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 4751 /// reg({-1,+,1}) (2/3) * (2/3) * 1 4752 /// reg({a,+,1}) (2/3) * 1 * 1 4753 /// reg({b,+,1}) 1 * (2/3) * (2/3) 4754 /// reg(c) 1 * 1 * 0 4755 /// 4756 /// Now count registers number mathematical expectation for each formula: 4757 /// Note that for each use we exclude probability if not selecting for the use. 4758 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 4759 /// probabilty 1/3 of not selecting for Use1). 4760 /// Use1: 4761 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 4762 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 4763 /// reg({a,+,1}) 1 4764 /// Use2: 4765 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 4766 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 4767 /// reg({b,+,1}) 2/3 4768 /// Use3: 4769 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 4770 /// reg(c) + reg({b,+,1}) 1 + 2/3 4771 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 4772 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4773 return; 4774 // Ok, we have too many of formulae on our hands to conveniently handle. 4775 // Use a rough heuristic to thin out the list. 4776 4777 // Set of Regs wich will be 100% used in final solution. 4778 // Used in each formula of a solution (in example above this is reg(c)). 4779 // We can skip them in calculations. 4780 SmallPtrSet<const SCEV *, 4> UniqRegs; 4781 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4782 4783 // Map each register to probability of not selecting 4784 DenseMap <const SCEV *, float> RegNumMap; 4785 for (const SCEV *Reg : RegUses) { 4786 if (UniqRegs.count(Reg)) 4787 continue; 4788 float PNotSel = 1; 4789 for (const LSRUse &LU : Uses) { 4790 if (!LU.Regs.count(Reg)) 4791 continue; 4792 float P = LU.getNotSelectedProbability(Reg); 4793 if (P != 0.0) 4794 PNotSel *= P; 4795 else 4796 UniqRegs.insert(Reg); 4797 } 4798 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 4799 } 4800 4801 LLVM_DEBUG( 4802 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 4803 4804 // Delete formulas where registers number expectation is high. 4805 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4806 LSRUse &LU = Uses[LUIdx]; 4807 // If nothing to delete - continue. 4808 if (LU.Formulae.size() < 2) 4809 continue; 4810 // This is temporary solution to test performance. Float should be 4811 // replaced with round independent type (based on integers) to avoid 4812 // different results for different target builds. 4813 float FMinRegNum = LU.Formulae[0].getNumRegs(); 4814 float FMinARegNum = LU.Formulae[0].getNumRegs(); 4815 size_t MinIdx = 0; 4816 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4817 Formula &F = LU.Formulae[i]; 4818 float FRegNum = 0; 4819 float FARegNum = 0; 4820 for (const SCEV *BaseReg : F.BaseRegs) { 4821 if (UniqRegs.count(BaseReg)) 4822 continue; 4823 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4824 if (isa<SCEVAddRecExpr>(BaseReg)) 4825 FARegNum += 4826 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 4827 } 4828 if (const SCEV *ScaledReg = F.ScaledReg) { 4829 if (!UniqRegs.count(ScaledReg)) { 4830 FRegNum += 4831 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4832 if (isa<SCEVAddRecExpr>(ScaledReg)) 4833 FARegNum += 4834 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 4835 } 4836 } 4837 if (FMinRegNum > FRegNum || 4838 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 4839 FMinRegNum = FRegNum; 4840 FMinARegNum = FARegNum; 4841 MinIdx = i; 4842 } 4843 } 4844 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 4845 dbgs() << " with min reg num " << FMinRegNum << '\n'); 4846 if (MinIdx != 0) 4847 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 4848 while (LU.Formulae.size() != 1) { 4849 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 4850 dbgs() << '\n'); 4851 LU.Formulae.pop_back(); 4852 } 4853 LU.RecomputeRegs(LUIdx, RegUses); 4854 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 4855 Formula &F = LU.Formulae[0]; 4856 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 4857 // When we choose the formula, the regs become unique. 4858 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 4859 if (F.ScaledReg) 4860 UniqRegs.insert(F.ScaledReg); 4861 } 4862 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4863 } 4864 4865 /// Pick a register which seems likely to be profitable, and then in any use 4866 /// which has any reference to that register, delete all formulae which do not 4867 /// reference that register. 4868 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 4869 // With all other options exhausted, loop until the system is simple 4870 // enough to handle. 4871 SmallPtrSet<const SCEV *, 4> Taken; 4872 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4873 // Ok, we have too many of formulae on our hands to conveniently handle. 4874 // Use a rough heuristic to thin out the list. 4875 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4876 4877 // Pick the register which is used by the most LSRUses, which is likely 4878 // to be a good reuse register candidate. 4879 const SCEV *Best = nullptr; 4880 unsigned BestNum = 0; 4881 for (const SCEV *Reg : RegUses) { 4882 if (Taken.count(Reg)) 4883 continue; 4884 if (!Best) { 4885 Best = Reg; 4886 BestNum = RegUses.getUsedByIndices(Reg).count(); 4887 } else { 4888 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 4889 if (Count > BestNum) { 4890 Best = Reg; 4891 BestNum = Count; 4892 } 4893 } 4894 } 4895 assert(Best && "Failed to find best LSRUse candidate"); 4896 4897 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 4898 << " will yield profitable reuse.\n"); 4899 Taken.insert(Best); 4900 4901 // In any use with formulae which references this register, delete formulae 4902 // which don't reference it. 4903 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4904 LSRUse &LU = Uses[LUIdx]; 4905 if (!LU.Regs.count(Best)) continue; 4906 4907 bool Any = false; 4908 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4909 Formula &F = LU.Formulae[i]; 4910 if (!F.referencesReg(Best)) { 4911 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4912 LU.DeleteFormula(F); 4913 --e; 4914 --i; 4915 Any = true; 4916 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 4917 continue; 4918 } 4919 } 4920 4921 if (Any) 4922 LU.RecomputeRegs(LUIdx, RegUses); 4923 } 4924 4925 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4926 } 4927 } 4928 4929 /// If there are an extraordinary number of formulae to choose from, use some 4930 /// rough heuristics to prune down the number of formulae. This keeps the main 4931 /// solver from taking an extraordinary amount of time in some worst-case 4932 /// scenarios. 4933 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 4934 NarrowSearchSpaceByDetectingSupersets(); 4935 NarrowSearchSpaceByCollapsingUnrolledCode(); 4936 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 4937 if (FilterSameScaledReg) 4938 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 4939 NarrowSearchSpaceByFilterPostInc(); 4940 if (LSRExpNarrow) 4941 NarrowSearchSpaceByDeletingCostlyFormulas(); 4942 else 4943 NarrowSearchSpaceByPickingWinnerRegs(); 4944 } 4945 4946 /// This is the recursive solver. 4947 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 4948 Cost &SolutionCost, 4949 SmallVectorImpl<const Formula *> &Workspace, 4950 const Cost &CurCost, 4951 const SmallPtrSet<const SCEV *, 16> &CurRegs, 4952 DenseSet<const SCEV *> &VisitedRegs) const { 4953 // Some ideas: 4954 // - prune more: 4955 // - use more aggressive filtering 4956 // - sort the formula so that the most profitable solutions are found first 4957 // - sort the uses too 4958 // - search faster: 4959 // - don't compute a cost, and then compare. compare while computing a cost 4960 // and bail early. 4961 // - track register sets with SmallBitVector 4962 4963 const LSRUse &LU = Uses[Workspace.size()]; 4964 4965 // If this use references any register that's already a part of the 4966 // in-progress solution, consider it a requirement that a formula must 4967 // reference that register in order to be considered. This prunes out 4968 // unprofitable searching. 4969 SmallSetVector<const SCEV *, 4> ReqRegs; 4970 for (const SCEV *S : CurRegs) 4971 if (LU.Regs.count(S)) 4972 ReqRegs.insert(S); 4973 4974 SmallPtrSet<const SCEV *, 16> NewRegs; 4975 Cost NewCost(L, SE, TTI); 4976 for (const Formula &F : LU.Formulae) { 4977 // Ignore formulae which may not be ideal in terms of register reuse of 4978 // ReqRegs. The formula should use all required registers before 4979 // introducing new ones. 4980 // This can sometimes (notably when trying to favour postinc) lead to 4981 // sub-optimial decisions. There it is best left to the cost modelling to 4982 // get correct. 4983 if (!TTI.shouldFavorPostInc() || LU.Kind != LSRUse::Address) { 4984 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 4985 for (const SCEV *Reg : ReqRegs) { 4986 if ((F.ScaledReg && F.ScaledReg == Reg) || 4987 is_contained(F.BaseRegs, Reg)) { 4988 --NumReqRegsToFind; 4989 if (NumReqRegsToFind == 0) 4990 break; 4991 } 4992 } 4993 if (NumReqRegsToFind != 0) { 4994 // If none of the formulae satisfied the required registers, then we could 4995 // clear ReqRegs and try again. Currently, we simply give up in this case. 4996 continue; 4997 } 4998 } 4999 5000 // Evaluate the cost of the current formula. If it's already worse than 5001 // the current best, prune the search at that point. 5002 NewCost = CurCost; 5003 NewRegs = CurRegs; 5004 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5005 if (NewCost.isLess(SolutionCost)) { 5006 Workspace.push_back(&F); 5007 if (Workspace.size() != Uses.size()) { 5008 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5009 NewRegs, VisitedRegs); 5010 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5011 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5012 } else { 5013 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5014 dbgs() << ".\nRegs:\n"; 5015 for (const SCEV *S : NewRegs) dbgs() 5016 << "- " << *S << "\n"; 5017 dbgs() << '\n'); 5018 5019 SolutionCost = NewCost; 5020 Solution = Workspace; 5021 } 5022 Workspace.pop_back(); 5023 } 5024 } 5025 } 5026 5027 /// Choose one formula from each use. Return the results in the given Solution 5028 /// vector. 5029 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5030 SmallVector<const Formula *, 8> Workspace; 5031 Cost SolutionCost(L, SE, TTI); 5032 SolutionCost.Lose(); 5033 Cost CurCost(L, SE, TTI); 5034 SmallPtrSet<const SCEV *, 16> CurRegs; 5035 DenseSet<const SCEV *> VisitedRegs; 5036 Workspace.reserve(Uses.size()); 5037 5038 // SolveRecurse does all the work. 5039 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5040 CurRegs, VisitedRegs); 5041 if (Solution.empty()) { 5042 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5043 return; 5044 } 5045 5046 // Ok, we've now made all our decisions. 5047 LLVM_DEBUG(dbgs() << "\n" 5048 "The chosen solution requires "; 5049 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5050 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5051 dbgs() << " "; 5052 Uses[i].print(dbgs()); 5053 dbgs() << "\n" 5054 " "; 5055 Solution[i]->print(dbgs()); 5056 dbgs() << '\n'; 5057 }); 5058 5059 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5060 } 5061 5062 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5063 /// we can go while still being dominated by the input positions. This helps 5064 /// canonicalize the insert position, which encourages sharing. 5065 BasicBlock::iterator 5066 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5067 const SmallVectorImpl<Instruction *> &Inputs) 5068 const { 5069 Instruction *Tentative = &*IP; 5070 while (true) { 5071 bool AllDominate = true; 5072 Instruction *BetterPos = nullptr; 5073 // Don't bother attempting to insert before a catchswitch, their basic block 5074 // cannot have other non-PHI instructions. 5075 if (isa<CatchSwitchInst>(Tentative)) 5076 return IP; 5077 5078 for (Instruction *Inst : Inputs) { 5079 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5080 AllDominate = false; 5081 break; 5082 } 5083 // Attempt to find an insert position in the middle of the block, 5084 // instead of at the end, so that it can be used for other expansions. 5085 if (Tentative->getParent() == Inst->getParent() && 5086 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5087 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5088 } 5089 if (!AllDominate) 5090 break; 5091 if (BetterPos) 5092 IP = BetterPos->getIterator(); 5093 else 5094 IP = Tentative->getIterator(); 5095 5096 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5097 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5098 5099 BasicBlock *IDom; 5100 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5101 if (!Rung) return IP; 5102 Rung = Rung->getIDom(); 5103 if (!Rung) return IP; 5104 IDom = Rung->getBlock(); 5105 5106 // Don't climb into a loop though. 5107 const Loop *IDomLoop = LI.getLoopFor(IDom); 5108 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5109 if (IDomDepth <= IPLoopDepth && 5110 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5111 break; 5112 } 5113 5114 Tentative = IDom->getTerminator(); 5115 } 5116 5117 return IP; 5118 } 5119 5120 /// Determine an input position which will be dominated by the operands and 5121 /// which will dominate the result. 5122 BasicBlock::iterator 5123 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP, 5124 const LSRFixup &LF, 5125 const LSRUse &LU, 5126 SCEVExpander &Rewriter) const { 5127 // Collect some instructions which must be dominated by the 5128 // expanding replacement. These must be dominated by any operands that 5129 // will be required in the expansion. 5130 SmallVector<Instruction *, 4> Inputs; 5131 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5132 Inputs.push_back(I); 5133 if (LU.Kind == LSRUse::ICmpZero) 5134 if (Instruction *I = 5135 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5136 Inputs.push_back(I); 5137 if (LF.PostIncLoops.count(L)) { 5138 if (LF.isUseFullyOutsideLoop(L)) 5139 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5140 else 5141 Inputs.push_back(IVIncInsertPos); 5142 } 5143 // The expansion must also be dominated by the increment positions of any 5144 // loops it for which it is using post-inc mode. 5145 for (const Loop *PIL : LF.PostIncLoops) { 5146 if (PIL == L) continue; 5147 5148 // Be dominated by the loop exit. 5149 SmallVector<BasicBlock *, 4> ExitingBlocks; 5150 PIL->getExitingBlocks(ExitingBlocks); 5151 if (!ExitingBlocks.empty()) { 5152 BasicBlock *BB = ExitingBlocks[0]; 5153 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5154 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5155 Inputs.push_back(BB->getTerminator()); 5156 } 5157 } 5158 5159 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5160 && !isa<DbgInfoIntrinsic>(LowestIP) && 5161 "Insertion point must be a normal instruction"); 5162 5163 // Then, climb up the immediate dominator tree as far as we can go while 5164 // still being dominated by the input positions. 5165 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5166 5167 // Don't insert instructions before PHI nodes. 5168 while (isa<PHINode>(IP)) ++IP; 5169 5170 // Ignore landingpad instructions. 5171 while (IP->isEHPad()) ++IP; 5172 5173 // Ignore debug intrinsics. 5174 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5175 5176 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5177 // IP consistent across expansions and allows the previously inserted 5178 // instructions to be reused by subsequent expansion. 5179 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5180 ++IP; 5181 5182 return IP; 5183 } 5184 5185 /// Emit instructions for the leading candidate expression for this LSRUse (this 5186 /// is called "expanding"). 5187 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5188 const Formula &F, BasicBlock::iterator IP, 5189 SCEVExpander &Rewriter, 5190 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5191 if (LU.RigidFormula) 5192 return LF.OperandValToReplace; 5193 5194 // Determine an input position which will be dominated by the operands and 5195 // which will dominate the result. 5196 IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter); 5197 Rewriter.setInsertPoint(&*IP); 5198 5199 // Inform the Rewriter if we have a post-increment use, so that it can 5200 // perform an advantageous expansion. 5201 Rewriter.setPostInc(LF.PostIncLoops); 5202 5203 // This is the type that the user actually needs. 5204 Type *OpTy = LF.OperandValToReplace->getType(); 5205 // This will be the type that we'll initially expand to. 5206 Type *Ty = F.getType(); 5207 if (!Ty) 5208 // No type known; just expand directly to the ultimate type. 5209 Ty = OpTy; 5210 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5211 // Expand directly to the ultimate type if it's the right size. 5212 Ty = OpTy; 5213 // This is the type to do integer arithmetic in. 5214 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5215 5216 // Build up a list of operands to add together to form the full base. 5217 SmallVector<const SCEV *, 8> Ops; 5218 5219 // Expand the BaseRegs portion. 5220 for (const SCEV *Reg : F.BaseRegs) { 5221 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5222 5223 // If we're expanding for a post-inc user, make the post-inc adjustment. 5224 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5225 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5226 } 5227 5228 // Expand the ScaledReg portion. 5229 Value *ICmpScaledV = nullptr; 5230 if (F.Scale != 0) { 5231 const SCEV *ScaledS = F.ScaledReg; 5232 5233 // If we're expanding for a post-inc user, make the post-inc adjustment. 5234 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5235 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5236 5237 if (LU.Kind == LSRUse::ICmpZero) { 5238 // Expand ScaleReg as if it was part of the base regs. 5239 if (F.Scale == 1) 5240 Ops.push_back( 5241 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5242 else { 5243 // An interesting way of "folding" with an icmp is to use a negated 5244 // scale, which we'll implement by inserting it into the other operand 5245 // of the icmp. 5246 assert(F.Scale == -1 && 5247 "The only scale supported by ICmpZero uses is -1!"); 5248 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5249 } 5250 } else { 5251 // Otherwise just expand the scaled register and an explicit scale, 5252 // which is expected to be matched as part of the address. 5253 5254 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5255 // Unless the addressing mode will not be folded. 5256 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5257 isAMCompletelyFolded(TTI, LU, F)) { 5258 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5259 Ops.clear(); 5260 Ops.push_back(SE.getUnknown(FullV)); 5261 } 5262 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5263 if (F.Scale != 1) 5264 ScaledS = 5265 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5266 Ops.push_back(ScaledS); 5267 } 5268 } 5269 5270 // Expand the GV portion. 5271 if (F.BaseGV) { 5272 // Flush the operand list to suppress SCEVExpander hoisting. 5273 if (!Ops.empty()) { 5274 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5275 Ops.clear(); 5276 Ops.push_back(SE.getUnknown(FullV)); 5277 } 5278 Ops.push_back(SE.getUnknown(F.BaseGV)); 5279 } 5280 5281 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5282 // unfolded offsets. LSR assumes they both live next to their uses. 5283 if (!Ops.empty()) { 5284 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5285 Ops.clear(); 5286 Ops.push_back(SE.getUnknown(FullV)); 5287 } 5288 5289 // Expand the immediate portion. 5290 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset; 5291 if (Offset != 0) { 5292 if (LU.Kind == LSRUse::ICmpZero) { 5293 // The other interesting way of "folding" with an ICmpZero is to use a 5294 // negated immediate. 5295 if (!ICmpScaledV) 5296 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset); 5297 else { 5298 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5299 ICmpScaledV = ConstantInt::get(IntTy, Offset); 5300 } 5301 } else { 5302 // Just add the immediate values. These again are expected to be matched 5303 // as part of the address. 5304 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset))); 5305 } 5306 } 5307 5308 // Expand the unfolded offset portion. 5309 int64_t UnfoldedOffset = F.UnfoldedOffset; 5310 if (UnfoldedOffset != 0) { 5311 // Just add the immediate values. 5312 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, 5313 UnfoldedOffset))); 5314 } 5315 5316 // Emit instructions summing all the operands. 5317 const SCEV *FullS = Ops.empty() ? 5318 SE.getConstant(IntTy, 0) : 5319 SE.getAddExpr(Ops); 5320 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5321 5322 // We're done expanding now, so reset the rewriter. 5323 Rewriter.clearPostInc(); 5324 5325 // An ICmpZero Formula represents an ICmp which we're handling as a 5326 // comparison against zero. Now that we've expanded an expression for that 5327 // form, update the ICmp's other operand. 5328 if (LU.Kind == LSRUse::ICmpZero) { 5329 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5330 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5331 DeadInsts.emplace_back(OperandIsInstr); 5332 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5333 "a scale at the same time!"); 5334 if (F.Scale == -1) { 5335 if (ICmpScaledV->getType() != OpTy) { 5336 Instruction *Cast = 5337 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false, 5338 OpTy, false), 5339 ICmpScaledV, OpTy, "tmp", CI); 5340 ICmpScaledV = Cast; 5341 } 5342 CI->setOperand(1, ICmpScaledV); 5343 } else { 5344 // A scale of 1 means that the scale has been expanded as part of the 5345 // base regs. 5346 assert((F.Scale == 0 || F.Scale == 1) && 5347 "ICmp does not support folding a global value and " 5348 "a scale at the same time!"); 5349 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5350 -(uint64_t)Offset); 5351 if (C->getType() != OpTy) 5352 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5353 OpTy, false), 5354 C, OpTy); 5355 5356 CI->setOperand(1, C); 5357 } 5358 } 5359 5360 return FullV; 5361 } 5362 5363 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5364 /// effectively happens in their predecessor blocks, so the expression may need 5365 /// to be expanded in multiple places. 5366 void LSRInstance::RewriteForPHI( 5367 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F, 5368 SCEVExpander &Rewriter, SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5369 DenseMap<BasicBlock *, Value *> Inserted; 5370 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5371 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5372 bool needUpdateFixups = false; 5373 BasicBlock *BB = PN->getIncomingBlock(i); 5374 5375 // If this is a critical edge, split the edge so that we do not insert 5376 // the code on all predecessor/successor paths. We do this unless this 5377 // is the canonical backedge for this loop, which complicates post-inc 5378 // users. 5379 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5380 !isa<IndirectBrInst>(BB->getTerminator()) && 5381 !isa<CatchSwitchInst>(BB->getTerminator())) { 5382 BasicBlock *Parent = PN->getParent(); 5383 Loop *PNLoop = LI.getLoopFor(Parent); 5384 if (!PNLoop || Parent != PNLoop->getHeader()) { 5385 // Split the critical edge. 5386 BasicBlock *NewBB = nullptr; 5387 if (!Parent->isLandingPad()) { 5388 NewBB = 5389 SplitCriticalEdge(BB, Parent, 5390 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5391 .setMergeIdenticalEdges() 5392 .setKeepOneInputPHIs()); 5393 } else { 5394 SmallVector<BasicBlock*, 2> NewBBs; 5395 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI); 5396 NewBB = NewBBs[0]; 5397 } 5398 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5399 // phi predecessors are identical. The simple thing to do is skip 5400 // splitting in this case rather than complicate the API. 5401 if (NewBB) { 5402 // If PN is outside of the loop and BB is in the loop, we want to 5403 // move the block to be immediately before the PHI block, not 5404 // immediately after BB. 5405 if (L->contains(BB) && !L->contains(PN)) 5406 NewBB->moveBefore(PN->getParent()); 5407 5408 // Splitting the edge can reduce the number of PHI entries we have. 5409 e = PN->getNumIncomingValues(); 5410 BB = NewBB; 5411 i = PN->getBasicBlockIndex(BB); 5412 5413 needUpdateFixups = true; 5414 } 5415 } 5416 } 5417 5418 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5419 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5420 if (!Pair.second) 5421 PN->setIncomingValue(i, Pair.first->second); 5422 else { 5423 Value *FullV = Expand(LU, LF, F, BB->getTerminator()->getIterator(), 5424 Rewriter, DeadInsts); 5425 5426 // If this is reuse-by-noop-cast, insert the noop cast. 5427 Type *OpTy = LF.OperandValToReplace->getType(); 5428 if (FullV->getType() != OpTy) 5429 FullV = 5430 CastInst::Create(CastInst::getCastOpcode(FullV, false, 5431 OpTy, false), 5432 FullV, LF.OperandValToReplace->getType(), 5433 "tmp", BB->getTerminator()); 5434 5435 PN->setIncomingValue(i, FullV); 5436 Pair.first->second = FullV; 5437 } 5438 5439 // If LSR splits critical edge and phi node has other pending 5440 // fixup operands, we need to update those pending fixups. Otherwise 5441 // formulae will not be implemented completely and some instructions 5442 // will not be eliminated. 5443 if (needUpdateFixups) { 5444 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5445 for (LSRFixup &Fixup : Uses[LUIdx].Fixups) 5446 // If fixup is supposed to rewrite some operand in the phi 5447 // that was just updated, it may be already moved to 5448 // another phi node. Such fixup requires update. 5449 if (Fixup.UserInst == PN) { 5450 // Check if the operand we try to replace still exists in the 5451 // original phi. 5452 bool foundInOriginalPHI = false; 5453 for (const auto &val : PN->incoming_values()) 5454 if (val == Fixup.OperandValToReplace) { 5455 foundInOriginalPHI = true; 5456 break; 5457 } 5458 5459 // If fixup operand found in original PHI - nothing to do. 5460 if (foundInOriginalPHI) 5461 continue; 5462 5463 // Otherwise it might be moved to another PHI and requires update. 5464 // If fixup operand not found in any of the incoming blocks that 5465 // means we have already rewritten it - nothing to do. 5466 for (const auto &Block : PN->blocks()) 5467 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5468 ++I) { 5469 PHINode *NewPN = cast<PHINode>(I); 5470 for (const auto &val : NewPN->incoming_values()) 5471 if (val == Fixup.OperandValToReplace) 5472 Fixup.UserInst = NewPN; 5473 } 5474 } 5475 } 5476 } 5477 } 5478 5479 /// Emit instructions for the leading candidate expression for this LSRUse (this 5480 /// is called "expanding"), and update the UserInst to reference the newly 5481 /// expanded value. 5482 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5483 const Formula &F, SCEVExpander &Rewriter, 5484 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5485 // First, find an insertion point that dominates UserInst. For PHI nodes, 5486 // find the nearest block which dominates all the relevant uses. 5487 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 5488 RewriteForPHI(PN, LU, LF, F, Rewriter, DeadInsts); 5489 } else { 5490 Value *FullV = 5491 Expand(LU, LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts); 5492 5493 // If this is reuse-by-noop-cast, insert the noop cast. 5494 Type *OpTy = LF.OperandValToReplace->getType(); 5495 if (FullV->getType() != OpTy) { 5496 Instruction *Cast = 5497 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 5498 FullV, OpTy, "tmp", LF.UserInst); 5499 FullV = Cast; 5500 } 5501 5502 // Update the user. ICmpZero is handled specially here (for now) because 5503 // Expand may have updated one of the operands of the icmp already, and 5504 // its new value may happen to be equal to LF.OperandValToReplace, in 5505 // which case doing replaceUsesOfWith leads to replacing both operands 5506 // with the same value. TODO: Reorganize this. 5507 if (LU.Kind == LSRUse::ICmpZero) 5508 LF.UserInst->setOperand(0, FullV); 5509 else 5510 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 5511 } 5512 5513 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 5514 DeadInsts.emplace_back(OperandIsInstr); 5515 } 5516 5517 /// Rewrite all the fixup locations with new values, following the chosen 5518 /// solution. 5519 void LSRInstance::ImplementSolution( 5520 const SmallVectorImpl<const Formula *> &Solution) { 5521 // Keep track of instructions we may have made dead, so that 5522 // we can remove them after we are done working. 5523 SmallVector<WeakTrackingVH, 16> DeadInsts; 5524 5525 SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", 5526 false); 5527 #ifndef NDEBUG 5528 Rewriter.setDebugType(DEBUG_TYPE); 5529 #endif 5530 Rewriter.disableCanonicalMode(); 5531 Rewriter.enableLSRMode(); 5532 Rewriter.setIVIncInsertPos(L, IVIncInsertPos); 5533 5534 // Mark phi nodes that terminate chains so the expander tries to reuse them. 5535 for (const IVChain &Chain : IVChainVec) { 5536 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 5537 Rewriter.setChainedPhi(PN); 5538 } 5539 5540 // Expand the new value definitions and update the users. 5541 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 5542 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 5543 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], Rewriter, DeadInsts); 5544 Changed = true; 5545 } 5546 5547 for (const IVChain &Chain : IVChainVec) { 5548 GenerateIVChain(Chain, Rewriter, DeadInsts); 5549 Changed = true; 5550 } 5551 // Clean up after ourselves. This must be done before deleting any 5552 // instructions. 5553 Rewriter.clear(); 5554 5555 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 5556 &TLI, MSSAU); 5557 } 5558 5559 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5560 DominatorTree &DT, LoopInfo &LI, 5561 const TargetTransformInfo &TTI, AssumptionCache &AC, 5562 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 5563 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 5564 MSSAU(MSSAU), FavorBackedgeIndex(EnableBackedgeIndexing && 5565 TTI.shouldFavorBackedgeIndex(L)) { 5566 // If LoopSimplify form is not available, stay out of trouble. 5567 if (!L->isLoopSimplifyForm()) 5568 return; 5569 5570 // If there's no interesting work to be done, bail early. 5571 if (IU.empty()) return; 5572 5573 // If there's too much analysis to be done, bail early. We won't be able to 5574 // model the problem anyway. 5575 unsigned NumUsers = 0; 5576 for (const IVStrideUse &U : IU) { 5577 if (++NumUsers > MaxIVUsers) { 5578 (void)U; 5579 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 5580 << "\n"); 5581 return; 5582 } 5583 // Bail out if we have a PHI on an EHPad that gets a value from a 5584 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 5585 // no good place to stick any instructions. 5586 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 5587 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI(); 5588 if (isa<FuncletPadInst>(FirstNonPHI) || 5589 isa<CatchSwitchInst>(FirstNonPHI)) 5590 for (BasicBlock *PredBB : PN->blocks()) 5591 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI())) 5592 return; 5593 } 5594 } 5595 5596 #ifndef NDEBUG 5597 // All dominating loops must have preheaders, or SCEVExpander may not be able 5598 // to materialize an AddRecExpr whose Start is an outer AddRecExpr. 5599 // 5600 // IVUsers analysis should only create users that are dominated by simple loop 5601 // headers. Since this loop should dominate all of its users, its user list 5602 // should be empty if this loop itself is not within a simple loop nest. 5603 for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader()); 5604 Rung; Rung = Rung->getIDom()) { 5605 BasicBlock *BB = Rung->getBlock(); 5606 const Loop *DomLoop = LI.getLoopFor(BB); 5607 if (DomLoop && DomLoop->getHeader() == BB) { 5608 assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest"); 5609 } 5610 } 5611 #endif // DEBUG 5612 5613 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 5614 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 5615 dbgs() << ":\n"); 5616 5617 // First, perform some low-level loop optimizations. 5618 OptimizeShadowIV(); 5619 OptimizeLoopTermCond(); 5620 5621 // If loop preparation eliminates all interesting IV users, bail. 5622 if (IU.empty()) return; 5623 5624 // Skip nested loops until we can model them better with formulae. 5625 if (!L->isInnermost()) { 5626 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 5627 return; 5628 } 5629 5630 // Start collecting data and preparing for the solver. 5631 // If number of registers is not the major cost, we cannot benefit from the 5632 // current profitable chain optimization which is based on number of 5633 // registers. 5634 // FIXME: add profitable chain optimization for other kinds major cost, for 5635 // example number of instructions. 5636 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 5637 CollectChains(); 5638 CollectInterestingTypesAndFactors(); 5639 CollectFixupsAndInitialFormulae(); 5640 CollectLoopInvariantFixupsAndFormulae(); 5641 5642 if (Uses.empty()) 5643 return; 5644 5645 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 5646 print_uses(dbgs())); 5647 5648 // Now use the reuse data to generate a bunch of interesting ways 5649 // to formulate the values needed for the uses. 5650 GenerateAllReuseFormulae(); 5651 5652 FilterOutUndesirableDedicatedRegisters(); 5653 NarrowSearchSpaceUsingHeuristics(); 5654 5655 SmallVector<const Formula *, 8> Solution; 5656 Solve(Solution); 5657 5658 // Release memory that is no longer needed. 5659 Factors.clear(); 5660 Types.clear(); 5661 RegUses.clear(); 5662 5663 if (Solution.empty()) 5664 return; 5665 5666 #ifndef NDEBUG 5667 // Formulae should be legal. 5668 for (const LSRUse &LU : Uses) { 5669 for (const Formula &F : LU.Formulae) 5670 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 5671 F) && "Illegal formula generated!"); 5672 }; 5673 #endif 5674 5675 // Now that we've decided what we want, make it so. 5676 ImplementSolution(Solution); 5677 } 5678 5679 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 5680 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 5681 if (Factors.empty() && Types.empty()) return; 5682 5683 OS << "LSR has identified the following interesting factors and types: "; 5684 bool First = true; 5685 5686 for (int64_t Factor : Factors) { 5687 if (!First) OS << ", "; 5688 First = false; 5689 OS << '*' << Factor; 5690 } 5691 5692 for (Type *Ty : Types) { 5693 if (!First) OS << ", "; 5694 First = false; 5695 OS << '(' << *Ty << ')'; 5696 } 5697 OS << '\n'; 5698 } 5699 5700 void LSRInstance::print_fixups(raw_ostream &OS) const { 5701 OS << "LSR is examining the following fixup sites:\n"; 5702 for (const LSRUse &LU : Uses) 5703 for (const LSRFixup &LF : LU.Fixups) { 5704 dbgs() << " "; 5705 LF.print(OS); 5706 OS << '\n'; 5707 } 5708 } 5709 5710 void LSRInstance::print_uses(raw_ostream &OS) const { 5711 OS << "LSR is examining the following uses:\n"; 5712 for (const LSRUse &LU : Uses) { 5713 dbgs() << " "; 5714 LU.print(OS); 5715 OS << '\n'; 5716 for (const Formula &F : LU.Formulae) { 5717 OS << " "; 5718 F.print(OS); 5719 OS << '\n'; 5720 } 5721 } 5722 } 5723 5724 void LSRInstance::print(raw_ostream &OS) const { 5725 print_factors_and_types(OS); 5726 print_fixups(OS); 5727 print_uses(OS); 5728 } 5729 5730 LLVM_DUMP_METHOD void LSRInstance::dump() const { 5731 print(errs()); errs() << '\n'; 5732 } 5733 #endif 5734 5735 namespace { 5736 5737 class LoopStrengthReduce : public LoopPass { 5738 public: 5739 static char ID; // Pass ID, replacement for typeid 5740 5741 LoopStrengthReduce(); 5742 5743 private: 5744 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 5745 void getAnalysisUsage(AnalysisUsage &AU) const override; 5746 }; 5747 5748 } // end anonymous namespace 5749 5750 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 5751 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 5752 } 5753 5754 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 5755 // We split critical edges, so we change the CFG. However, we do update 5756 // many analyses if they are around. 5757 AU.addPreservedID(LoopSimplifyID); 5758 5759 AU.addRequired<LoopInfoWrapperPass>(); 5760 AU.addPreserved<LoopInfoWrapperPass>(); 5761 AU.addRequiredID(LoopSimplifyID); 5762 AU.addRequired<DominatorTreeWrapperPass>(); 5763 AU.addPreserved<DominatorTreeWrapperPass>(); 5764 AU.addRequired<ScalarEvolutionWrapperPass>(); 5765 AU.addPreserved<ScalarEvolutionWrapperPass>(); 5766 AU.addRequired<AssumptionCacheTracker>(); 5767 AU.addRequired<TargetLibraryInfoWrapperPass>(); 5768 // Requiring LoopSimplify a second time here prevents IVUsers from running 5769 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 5770 AU.addRequiredID(LoopSimplifyID); 5771 AU.addRequired<IVUsersWrapperPass>(); 5772 AU.addPreserved<IVUsersWrapperPass>(); 5773 AU.addRequired<TargetTransformInfoWrapperPass>(); 5774 AU.addPreserved<MemorySSAWrapperPass>(); 5775 } 5776 5777 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 5778 DominatorTree &DT, LoopInfo &LI, 5779 const TargetTransformInfo &TTI, 5780 AssumptionCache &AC, TargetLibraryInfo &TLI, 5781 MemorySSA *MSSA) { 5782 5783 bool Changed = false; 5784 std::unique_ptr<MemorySSAUpdater> MSSAU; 5785 if (MSSA) 5786 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 5787 5788 // Run the main LSR transformation. 5789 Changed |= 5790 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()).getChanged(); 5791 5792 // Remove any extra phis created by processing inner loops. 5793 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5794 if (EnablePhiElim && L->isLoopSimplifyForm()) { 5795 SmallVector<WeakTrackingVH, 16> DeadInsts; 5796 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 5797 SCEVExpander Rewriter(SE, DL, "lsr", false); 5798 #ifndef NDEBUG 5799 Rewriter.setDebugType(DEBUG_TYPE); 5800 #endif 5801 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 5802 if (numFolded) { 5803 Changed = true; 5804 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 5805 MSSAU.get()); 5806 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 5807 } 5808 } 5809 return Changed; 5810 } 5811 5812 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 5813 if (skipLoop(L)) 5814 return false; 5815 5816 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 5817 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 5818 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5819 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 5820 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 5821 *L->getHeader()->getParent()); 5822 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 5823 *L->getHeader()->getParent()); 5824 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 5825 *L->getHeader()->getParent()); 5826 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 5827 MemorySSA *MSSA = nullptr; 5828 if (MSSAAnalysis) 5829 MSSA = &MSSAAnalysis->getMSSA(); 5830 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 5831 } 5832 5833 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 5834 LoopStandardAnalysisResults &AR, 5835 LPMUpdater &) { 5836 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 5837 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 5838 return PreservedAnalyses::all(); 5839 5840 auto PA = getLoopPassPreservedAnalyses(); 5841 if (AR.MSSA) 5842 PA.preserve<MemorySSAAnalysis>(); 5843 return PA; 5844 } 5845 5846 char LoopStrengthReduce::ID = 0; 5847 5848 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 5849 "Loop Strength Reduction", false, false) 5850 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 5851 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5852 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 5853 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 5854 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 5855 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 5856 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 5857 "Loop Strength Reduction", false, false) 5858 5859 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 5860